WorldWideScience

Sample records for climate change annual

  1. Climate change adaptation in Africa : annual report 2006-2007

    International Nuclear Information System (INIS)

    2007-01-01

    The Climate Change Adaptation Program was developed by Canada's International Development Research Centre and the United Kingdom's Department for International Development in order to address the needs of African communities vulnerable to climate change. The objectives of the program are to strengthen the capacity of African scientists, organization and communities to contribute to adaptation to climate change, as well as to generate a better understanding of climate change adaptation, and to support adaptation strategies and their adoption by rural and urban Africans. This annual report provided details of the first year of the program's implementation, in which an advisory board was established in order to balance donor representation and African expertise in adaptation. The first year of the program also saw the recruitment of a 13 person staff and the development of proposals for the first allocation of funding. A financial summary was provided. The report provided details of outreach and communications activities used to introduce the program to African and international audiences. 3 tabs., 44 figs

  2. Climate change influences on the annual onset of Lyme disease in the United States

    Science.gov (United States)

    Monaghan, A. J.; Moore, S. M.; Sampson, K. M.; Beard, C. B.; Eisen, R. J.

    2015-12-01

    Lyme disease is the most commonly reported vector-borne illness in the United States. Lyme disease occurrence is highly seasonal and the annual springtime onset of cases is modulated by meteorological conditions in preceding months. A meteorological-based empirical model for Lyme disease onset week in the United States is driven with downscaled simulations from five global climate models and four greenhouse gas emissions scenarios to project the impacts of 21st century climate change on the annual onset week of Lyme disease. Projections are made individually and collectively for the 12 eastern States where >90% of cases occur. The national average annual onset week of Lyme disease is projected to become 0.4-0.5 weeks earlier for 2025-2040 (pLyme disease spirochete Borrelia burgdorferi in the eastern United States, may alter the disease transmission cycle in unforeseen ways. The results suggest 21st century climate change will make environmental conditions suitable for earlier annual onset of Lyme disease cases in the United States with possible implications for the timing of public health interventions.

  3. Partitioning inter annual variability in net ecosystem exchange between climatic variability and functional change

    International Nuclear Information System (INIS)

    Hui, D.; Luo, Y.; Katul, G.

    2003-01-01

    Inter annual variability in net ecosystem exchange of carbon is investigated using a homogeneity-of-slopes model to identify the function change contributing to inter annual variability, net ecosystem carbon exchange, and night-time ecosystem respiration. Results of employing this statistical approach to a data set collected at the Duke Forest AmeriFlux site from August 1997 to December 2001 are discussed. The results demonstrate that it is feasible to partition the variation in ecosystem carbon fluxes into direct effects of seasonal and inter annual climatic variability and functional change. 51 refs., 4 tabs., 5 figs

  4. Climate Change and Algal Blooms =

    Science.gov (United States)

    Lin, Shengpan

    tested in 1157 lakes across the continental United States. The results show that mean annual algal biomass generally increased with annual temperature. Greater increase was found in lakes with more nutrients. Mean annual algal biomass generally decreased with annual total precipitation. In both the "low" and the "high" greenhouse-gas emission scenarios, mean annual algal biomass in lakes generally increased with climate change, and greater increases are predicted from the high emission scenario.

  5. Hydrological changes impacts on annual runoff distribution in seasonally dry basins

    Science.gov (United States)

    Viola, F.; Caracciolo, D.; Feng, X.

    2017-12-01

    Runoff is expected to be modified in the next future by climate change as well as by land use change. Given its importance for water supply and ecosystem functioning, it is therefore imperative to develop adaptation strategies and new policies for regional water resources management and planning. To do so, the identification and attribution of natural flow regime shifts as a result of climate and land use changes are of crucial importance. In this context, the Budyko's curve has begun to be widely adopted to separate the contributions of climate and land use changes to the variation of runoff over long-term periods by using the multi-year averages of hydrological variables. In this study, a framework based on Fu's equation is proposed and applied to separate the impacts of climate and land use changes on the future annual runoff distribution in seasonally dry basins, such as those in Mediterranean climates. In particular, this framework improves a recently developed method to obtain annual runoff probability density function (pdf) in seasonally dry basins from annual rainfall and potential evapotranspiration statistics, and from knowledge of the Fu's equation parameter ω. The effect of climate change has been taken into account through the variation of the first order statistics of annual rainfall and potential evapotranspiration, consistent with general circulation models' outputs, while the Fu's equation parameter ω has been changed to represent land use change. The effects of the two factors of change (i.e., climate and land use) on the annual runoff pdf have been first independently and then jointly analyzed, by reconstructing the annual runoff pdfs for the current period and, based on likely scenarios, within the next 100 years. The results show that, for large basins, climate change is the dominant driver of the decline in annual runoff, while land use change is a secondary but important factor.

  6. The Effect of Hurricanes on Annual Precipitation in Maryland and the Connection to Global Climate Change

    Science.gov (United States)

    Liu, Jackie; Liu, Zhong

    2015-01-01

    Precipitation is a vital aspect of our lives droughts, floods and other related disasters that involve precipitation can cause costly damage in the economic system and general society. Purpose of this project is to determine what, if any effect do hurricanes have on annual precipitation in Maryland Research will be conducted on Marylands terrain, climatology, annual precipitation, and precipitation contributed from hurricanes Possible connections to climate change

  7. Western water and climate change

    Science.gov (United States)

    Dettinger, Michael; Udall, Bradley; Georgakakos, Aris P.

    2015-01-01

    The western United States is a region long defined by water challenges. Climate change adds to those historical challenges, but does not, for the most part, introduce entirely new challenges; rather climate change is likely to stress water supplies and resources already in many cases stretched to, or beyond, natural limits. Projections are for continued and, likely, increased warming trends across the region, with a near certainty of continuing changes in seasonality of snowmelt and streamflows, and a strong potential for attendant increases in evaporative demands. Projections of future precipitation are less conclusive, although likely the northernmost West will see precipitation increases while the southernmost West sees declines. However, most of the region lies in a broad area where some climate models project precipitation increases while others project declines, so that only increases in precipitation uncertainties can be projected with any confidence. Changes in annual and seasonal hydrographs are likely to challenge water managers, users, and attempts to protect or restore environmental flows, even where annual volumes change little. Other impacts from climate change (e.g., floods and water-quality changes) are poorly understood and will likely be location dependent.

  8. Methods for assessment of climate variability and climate changes in different time-space scales

    International Nuclear Information System (INIS)

    Lobanov, V.; Lobanova, H.

    2004-01-01

    Main problem of hydrology and design support for water projects connects with modern climate change and its impact on hydrological characteristics as observed as well as designed. There are three main stages of this problem: - how to extract a climate variability and climate change from complex hydrological records; - how to assess the contribution of climate change and its significance for the point and area; - how to use the detected climate change for computation of design hydrological characteristics. Design hydrological characteristic is the main generalized information, which is used for water management and design support. First step of a research is a choice of hydrological characteristic, which can be as a traditional one (annual runoff for assessment of water resources, maxima, minima runoff, etc) as well as a new one, which characterizes an intra-annual function or intra-annual runoff distribution. For this aim a linear model has been developed which has two coefficients connected with an amplitude and level (initial conditions) of seasonal function and one parameter, which characterizes an intensity of synoptic and macro-synoptic fluctuations inside a year. Effective statistical methods have been developed for a separation of climate variability and climate change and extraction of homogeneous components of three time scales from observed long-term time series: intra annual, decadal and centural. The first two are connected with climate variability and the last (centural) with climate change. Efficiency of new methods of decomposition and smoothing has been estimated by stochastic modeling and well as on the synthetic examples. For an assessment of contribution and statistical significance of modern climate change components statistical criteria and methods have been used. Next step has been connected with a generalization of the results of detected climate changes over the area and spatial modeling. For determination of homogeneous region with the same

  9. Climate Prediction Center - Outreach: 41st Annual Climate Diagnostics &

    Science.gov (United States)

    home page National Weather Service NWS logo - Click to go to the NWS home page Climate Prediction Annual Climate Diagnostics & Prediction Workshop NOAA's 41st Climate Diagnostics and Prediction Climate Diagnostics Prediction Workshop (CDPW) news, visit the CDPW list server Abstract Submission Has

  10. Climate engineering and the risk of rapid climate change

    International Nuclear Information System (INIS)

    Ross, Andrew; Damon Matthews, H

    2009-01-01

    Recent research has highlighted risks associated with the use of climate engineering as a method of stabilizing global temperatures, including the possibility of rapid climate warming in the case of abrupt removal of engineered radiative forcing. In this study, we have used a simple climate model to estimate the likely range of temperature changes associated with implementation and removal of climate engineering. In the absence of climate engineering, maximum annual rates of warming ranged from 0.015 to 0.07 deg. C/year, depending on the model's climate sensitivity. Climate engineering resulted in much higher rates of warming, with the temperature change in the year following the removal of climate engineering ranging from 0.13 to 0.76 deg. C. High rates of temperature change were sustained for two decades following the removal of climate engineering; rates of change of 0.5 (0.3,0.1) deg. C/decade were exceeded over a 20 year period with 15% (75%, 100%) likelihood. Many ecosystems could be negatively affected by these rates of temperature change; our results suggest that climate engineering in the absence of deep emissions cuts could arguably constitute increased risk of dangerous anthropogenic interference in the climate system under the criteria laid out in the United Nations Framework Convention on Climate Change.

  11. The role of changing climate in driving the shift from perennial grasses to annual succulents in a Mediterranean saltmarsh

    NARCIS (Netherlands)

    Strain, E.M.A.; van Belzen, J.; Comandini, P.; Wong, J.; Bouma, T.J.; Airoldi, L.

    2017-01-01

    Changing climate threatens the structure and function of saltmarshes, which are often severely degraded by other human perturbations. Along the Mediterranean coastline, increasing temperature and decreasing rainfall have been hypothesised to trigger habitat shifts from perennial grasses to annual

  12. Impact of Climate Change on India's Monsoonal Climate: Present ...

    Indian Academy of Sciences (India)

    Expected Future Changes in Rainfall and Temperature over India under IPCC SRES A1B GHG Scenarios · Expected Future Change in Monsoon Rainfall and Annual Surface Temp for 2020's, 2050's and 2080's · Likely Future Paradox of Monsoon-ENSO Links · High-Resolution Regional Climate Change Scenarios.

  13. Changing Climate in the MENA Means Changing Energy Needs

    Directory of Open Access Journals (Sweden)

    Adam Fenech

    2015-12-01

    Full Text Available The leading authority on climate change, the Intergovernmental Panel on Climate Change (IPCC hasconcluded that warming of the climate system is unequivocal, and will continue for centuries. The regionsin the Middle East and Northern Africa (MENA have experienced numerous extreme climate events overthe past few years including the 2009 flooding in Jeddah, Kingdom of Saudi Arabia; the 2005 dust stormin Al Asad, Iraq; water scarcity throughout the Arab MENA; and the rising sea levels on the Nile Deltacoast, Egypt. A climate baseline can be developed for regions in the MENA by locating climate stations inthe study area using observations made in the Global Climate Observing System (GCOS. For projectionsof future climate, global climate models (GCMs, mathematical equations that describe the physics, fluidmotion and chemistry of the atmosphere, are the most advanced science available. The Climate ResearchLab at the University of Prince Edward Island has a dataset available to researchers, called the Climate,Ocean and Atmosphere Data Exchange (COADE, that provides easy access to the output from fortyglobal climate models used in the deliberations of the Intergovernmental Panel on Climate Change’s(IPCC Fifth Assessment Report (AR5 including monthly global climate model projections of future climatechange for a number of climate parameters including temperature and precipitation. Over the past 50years, climate changes in the MENA Region have led to increases in annual mean temperatures anddecreases in annual total precipitation. Applying all four greenhouse gas emission futures on a baseclimate normal of 1981-2010 to an ensemble of forty global climate models used in the Fifth AssessmentReport of the Intergovernmental Panel on Climate Change (IPCC AR5 results in future temperatureincreases for the MENA Region ranging from 1.6 to 2.3 degrees Celsius, and in a range of futureprecipitation changes from reductions of 11 percent to increases of 36 percent

  14. Pleistocene climate, phylogeny, and climate envelope models: an integrative approach to better understand species' response to climate change.

    Directory of Open Access Journals (Sweden)

    A Michelle Lawing

    Full Text Available Mean annual temperature reported by the Intergovernmental Panel on Climate Change increases at least 1.1°C to 6.4°C over the next 90 years. In context, a change in climate of 6°C is approximately the difference between the mean annual temperature of the Last Glacial Maximum (LGM and our current warm interglacial. Species have been responding to changing climate throughout Earth's history and their previous biological responses can inform our expectations for future climate change. Here we synthesize geological evidence in the form of stable oxygen isotopes, general circulation paleoclimate models, species' evolutionary relatedness, and species' geographic distributions. We use the stable oxygen isotope record to develop a series of temporally high-resolution paleoclimate reconstructions spanning the Middle Pleistocene to Recent, which we use to map ancestral climatic envelope reconstructions for North American rattlesnakes. A simple linear interpolation between current climate and a general circulation paleoclimate model of the LGM using stable oxygen isotope ratios provides good estimates of paleoclimate at other time periods. We use geologically informed rates of change derived from these reconstructions to predict magnitudes and rates of change in species' suitable habitat over the next century. Our approach to modeling the past suitable habitat of species is general and can be adopted by others. We use multiple lines of evidence of past climate (isotopes and climate models, phylogenetic topology (to correct the models for long-term changes in the suitable habitat of a species, and the fossil record, however sparse, to cross check the models. Our models indicate the annual rate of displacement in a clade of rattlesnakes over the next century will be 2 to 3 orders of magnitude greater (430-2,420 m/yr than it has been on average for the past 320 ky (2.3 m/yr.

  15. Implication of climate change for the persistence of raptors in arid savanna

    Energy Technology Data Exchange (ETDEWEB)

    Wichmann, M.C.; Wissel, C. [UFZ-Center for Environmental Research, Dept. of Ecological Modelling, Leipzig (Germany); Jeltsch, F. [Univ. of Potsdam, Inst. for Biochemistry and Biology, Potsdam (Germany); Dean, W.R.J. [Univ. of Cape Town, Percy FitzPatrick Inst. of African Ornithology, Rondebosch (South Africa); Moloney, K.A. [Iowa State Univ., Dept. of Botany, Ames, IA (United States)

    2003-07-01

    Arid savannas are regarded as one of the ecosystems most likely to be affected by climate change. In these dry conditions, even top predators like raptors are affected by water availability and precipitation. However, few research initiatives have a adressed the question of how climate change will affect population dynamics and extinction risk of particular species in and ecosystems. Here, we use an individual-oriented modeling approach to conduct experiments on the population dynamics of long lived raptors. We investigate the potential impact of precipitation variation caused by climate change on raptors in and savanna using the tawny eagle (Aquila rapax) in the southern Kalahari as a case study. We simulated various modifications of precipitation scenarios predicted for climate change, such as lowered annual precipitation mean, increased inter-annual variation and increased auto-correlation in precipitation. We found a high impact of these modifications on extinction risk of tawny eagles, with reduced population persistence in most cases. Decreased mean annual precipitation and increased inter-annual variation both caused dramatic decreases in population persistence. Increased autocorrelation in precipitation led only to slightly accelerated extinction of simulated populations. Finally. for various patterns of periodically fluctuating precipitation, we found both increased and decreased population persistence. In summary, our results suggest that the impacts on raptor population dynamics and survival caused by climate change in and savannas will be great. We emphasize that even if under climate change the mean annual precipitation remains constant but the inter-annual variation increases the persistence of raptor populations in and savannas will decrease considerably. This suggests a new dimension, of climate change driven impacts on population persistence and consequently on biodiversity. However, more investigations on particular species and/or species groups

  16. World Regionalization of Climate Change(1961–2010)

    Institute of Scientific and Technical Information of China (English)

    Peijun; Shi; Shao; Sun; Daoyi; Gong; Tao; Zhou

    2016-01-01

    Traditional climate classification or regionalization characterizes the mean state of climate condition, which cannot meet the demand of addressing climate change currently. We have developed a climate change classification method, as well as the fundamental principles, an indicator system, and mapping techniques of climate change regionalization. This study used annual mean temperature and total precipitation as climatic indices, and linear trend and variation change as change indices to characterize climate change quantitatively. The study has proposed a scheme for world climate change regionalization based on a half century of climate data(1961–2010). Level-I regionalization divides the world into 12 tendency zones based on the linear trend of climate, level-II regionalization resulted in 28 fluctuation regions based on the variation change of climate. Climate change regionalization provides a scientific basis for countries and regions to develop plans for adapting to climate change, especially for managing climate-related disaster or environmental risks.

  17. Assessment of weather indicators for possible climate change

    International Nuclear Information System (INIS)

    Maqssood, H.; Ahmed, S.I.

    2014-01-01

    From 20 century onwards, a great concern has been expressed regarding global climate change. This study attempts to perform detailed analysis of temperature and precipitation for Karachi city of Pakistan, to assess the possible climate change, using two data sets (51-year data: 1961-2012 and 31-year data: 1981-2012) for different parameters. Trends were generated using linear regression (LR) and Mann-Kendall (MK), which depicted that daily and annual temperatures were increasing, with changes in minimum temperature being more significant than maximum temperature. Analyses also showed increase in extreme temperature at night and during winter, showing that urbanization was a major factor, as the heat from buildings trapped in between dissipates at nights. The daily and monthly precipitation levels increased in contrast to annual precipitation trend, which is justified by the averaged monthly analysis showing that decreasing trends were much more significant than increasing trends. In addition, monthly precipitation showed an increase of 4.3 mm, using LR and MK test. It can be noticed that two extreme winter months (December and January) and two extreme hot months (May and October) received increased rainfall. However, statistical analyses showed overall annual decrease in rainfall. Furthermore, decadal analysis indicated sinusoidal behaviour of change in climate indicators; making climatic change evident but cyclic in nature. (author)

  18. Recent and Future Climate Change in Northwest China

    International Nuclear Information System (INIS)

    Shi, Yafeng; Shen, Yongping; Kang, Ersi; Li, Dongliang; Ding, Yongjian; Zhang, Guowei; Hu, Ruji

    2007-01-01

    As a consequence of global warming and an enhanced water cycle, the climate changed in northwest China, most notably in the Xinjiang area in the year 1987. Precipitation, glacial melt water and river runoff and air temperature increased continuously during the last decades, as did also the water level of inland lakes and the frequency of flood disasters. As a result, the vegetation cover is improved, number of days with sand-dust storms reduced. From the end of the 19th century to the 1970s, the climate was warm and dry, and then changed to warm and wet. The effects on northwest China can be classified into three classes by using the relation between precipitation and evaporation increase. If precipitation increases more than evaporation, runoff increases and lake water levels rise. We identify regions with: (1) notable change, (2) slight change and (3) no change. The future climate for doubled CO2 concentration is simulated in a nested approach with the regional climate model-RegCM2. The annual temperature will increase by 2.7C and annual precipitation by 25%. The cooling effect of aerosols and natural factors will reduce this increase to 2.0C and 19% of precipitation. As a consequence, annual runoff may increase by more than 10%

  19. Recent and Future Climate Change in Northwest China

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yafeng; Shen, Yongping; Kang, Ersi; Li, Dongliang; Ding, Yongjian [Cold and Arid Regions, Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, 730000 (China); Zhang, Guowei [Xinjiang Bureau of Hydrology and Water Resources, Urumqi, 830010 (China); Hu, Ruji [Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011 (China)

    2007-02-15

    As a consequence of global warming and an enhanced water cycle, the climate changed in northwest China, most notably in the Xinjiang area in the year 1987. Precipitation, glacial melt water and river runoff and air temperature increased continuously during the last decades, as did also the water level of inland lakes and the frequency of flood disasters. As a result, the vegetation cover is improved, number of days with sand-dust storms reduced. From the end of the 19th century to the 1970s, the climate was warm and dry, and then changed to warm and wet. The effects on northwest China can be classified into three classes by using the relation between precipitation and evaporation increase. If precipitation increases more than evaporation, runoff increases and lake water levels rise. We identify regions with: (1) notable change, (2) slight change and (3) no change. The future climate for doubled CO2 concentration is simulated in a nested approach with the regional climate model-RegCM2. The annual temperature will increase by 2.7C and annual precipitation by 25%. The cooling effect of aerosols and natural factors will reduce this increase to 2.0C and 19% of precipitation. As a consequence, annual runoff may increase by more than 10%.

  20. Building on success : Climate Change Action Fund 2001-2002 annual report

    International Nuclear Information System (INIS)

    2003-05-01

    The Climate Change Action Fund (CCAF) was established by the Canadian Government in 1998 with a budget of $150 million over 3 years to support early actions on climate change. The initiative was renewed in the 2000 federal budget with a further $150 million in funding. Thus far, funding has helped 32 research projects regarding communities, health, agriculture, forestry and water resources. The primary tool for implementing federal climate change policy has been the Technology Early Action Measures (TEAM) program. Other integrated components under the CCAF include the Foundation Building, Science Impacts and Adaption (SIA), and Public Education and Outreach (PEO). Broad options have been developed for a Domestic Emissions Trading system. The CCAF played a critical role in ensuring that Canada's policy position was heard in international negotiations on all subject matters, and was instrumental in bringing more developing countries to participate in the climate change initiative. Accomplishments thus far include climate system monitoring, improving climate models, and understanding the role that forests and agricultural lands play in the climate and carbon balance. The second phase of CCAF will focus on climate system processes, climate modelling and climate impact scenarios. 1 tab

  1. Climate Change and Maize Production: Empirical Evidence from ...

    African Journals Online (AJOL)

    Michael Madukwe

    been argued for as major reasons for global climate change. IPCC (2007) confirmed global fluctuations in ... examine adaptation strategies for climate change; and analyse fishers' livelihoods and adaptive capacity. ... (vii) Average annual income from fishing: Respondents were asked to state their income from fishing. 2.

  2. Northern peatlands in global climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Laiho, R.; Laine, J.; Vasander, H. [eds.] [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    Northern peatlands are important in regulating the global climate. While sequestering carbon dioxide, these peatlands release ca. 24-39 Tg methane annually to the atmosphere. This is 5-20 % of the annual anthropogenic methane emissions to the atmosphere. The greenhouse gas balance of peatlands may change as a consequence of water level draw-down after land-use change, or if summers become warmer and drier, as has been predicted for high latitudes after climatic warming. Subsequent emissions of methane would decrease, whereas emissions of carbon dioxide and nitrous oxide would increase. Within the Finnish Research Programme on Climate Change (SILMU), the research project `Carbon Balance of Peatlands and Climate Change` (SUOSILMU) has been under progress since 1990. It is a co-operative research project, with research groups from the Universities of Helsinki and Joensuu, the Finnish Forest Research Institute, the National Public Health Institute and the Finnish Environment Agency. The research consortium of this project organised a workshop entitled `Northern Peatlands in Global Climatic Change - Hyytiaelae Revisited` October 8-12, 1995. The main objective of the workshop was to review the state of the art of the carbon cycling research in natural and managed peatlands. The role of peatlands in the greenhouse effect, their response and feedback to the predicted climate change, and the consequences of land-use changes were assessed, and the future research needs were evaluated. The latest information on the role of peatlands in the atmospheric change was given in 50 posters and 4 key lectures. Results of SUOSILMU projects were demonstrated during a 1-day field excursion to one of the intensive study sites, Lakkasuo near Hyytiaelae

  3. Impact of possible climate changes on river runoff under different natural conditions

    Science.gov (United States)

    Gusev, Yeugeniy M.; Nasonova, Olga N.; Kovalev, Evgeny E.; Ayzel, Georgy V.

    2018-06-01

    The present study was carried out within the framework of the International Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) for 11 large river basins located in different continents of the globe under a wide variety of natural conditions. The aim of the study was to investigate possible changes in various characteristics of annual river runoff (mean values, standard deviations, frequency of extreme annual runoff) up to 2100 on the basis of application of the land surface model SWAP and meteorological projections simulated by five General Circulation Models (GCMs) according to four RCP scenarios. Analysis of the obtained results has shown that changes in climatic runoff are different (both in magnitude and sign) for the river basins located in different regions of the planet due to differences in natural (primarily climatic) conditions. The climatic elasticities of river runoff to changes in air temperature and precipitation were estimated that makes it possible, as the first approximation, to project changes in climatic values of annual runoff, using the projected changes in mean annual air temperature and annual precipitation for the river basins. It was found that for most rivers under study, the frequency of occurrence of extreme runoff values increases. This is true both for extremely high runoff (when the projected climatic runoff increases) and for extremely low values (when the projected climatic runoff decreases).

  4. Annual mean sea level and its sensitivity to wind climate

    Science.gov (United States)

    Gerkema, Theo; Duran Matute, Matias

    2017-04-01

    Changes in relative mean sea level affect coastal areas in various ways, such as the risk of flooding, the evolution of barrier island systems, or the development of salt marshes. Long-term trends in these changes are partly masked by variability on shorter time scales. Some of this variability, for instance due to wind waves and tides (with the exception of long-period tides), is easily averaged out. In contrast, inter-annual variability is found to be irregular and large, of the order of several decimeters, as is evident from tide gauge records. This is why the climatic trend, typically of a few millimeters per year, can only be reliably identified by examining a record that is long enough to outweigh the inter-annual and decadal variabilities. In this presentation we examine the relation between the annual wind conditions from meteorological records and annual mean sea level along the Dutch coast. To do this, we need reliable and consistent long-term wind records. Some wind records from weather stations in the Netherlands date back to the 19th century, but they are unsuitable for trend analysis because of changes in location, height, surroundings, instrument type or protocol. For this reason, we will use only more recent, homogeneous wind records, from the past two decades. The question then is whether such a relatively short record is sufficient to find a convincing relation with annual mean sea level. It is the purpose of this work to demonstrate that the answer is positive and to suggest methods to find and exploit such a relation. We find that at the Dutch coast, southwesterly winds are dominant in the wind climate, but the west-east direction stands out as having the highest correlation with annual mean sea level. For different stations in the Dutch Wadden Sea and along the coast, we find a qualitatively similar pattern, although the precise values of the correlations vary. The inter-annual variability of mean sea level can already be largely explained by

  5. Observed climatic changes in Shanghai during 1873-2002

    Institute of Scientific and Technical Information of China (English)

    ZHANGQiang; CHENJiaqi; ZHANGZengxin

    2005-01-01

    Variation characteristics of temperature and precipitation in January and July and annual mean temperature and annual precipitation are analyzed with the help of cumulative anomalies,Mann-Kendall analysis and wavelet analysis. The research results indicate that January precipitation presents an increasing trend after 1990, wavelet analysis result suggests that this increasing trend will continue in the near future. The changes of July precipitation present different features. During 1900-1960, July precipitation is in a rising trend, but is in a declining trend after 1960. Wavelet analysis shows that this declining trend will go on in the near future. Temperature variations in Shanghai are in fluctuations with 2 to 3 temperature rising periods. Mann-Kendall analysis indicates that temperature variations have the obvious abrupt change time when compared with precipitation changes in Shanghai during the past 100 years. The abrupt change time of January temperature lies in 1985, and that of July temperature lies in 1931-1933 and annual mean temperature has the abrupt change time in 1923-1930. Except July precipitation, the precipitation in January, temperature in January, July and annual mean temperature, and annual precipitation are also in a rising trend in the near future. The research results in this paper may be meaningful for future further climatic changes of Shanghai and social mitigation of climatic disasters in the future.

  6. How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis

    International Nuclear Information System (INIS)

    Döll, Petra; Schmied, Hannes Müller

    2012-01-01

    To assess the impact of climate change on freshwater resources, change in mean annual runoff (MAR) is only a first indicator. In addition, it is necessary to analyze changes of river flow regimes, i.e. changes in the temporal dynamics of river discharge, as these are important for the well-being of humans (e.g. with respect to water supply) and freshwater-dependent biota (e.g. with respect to habitat availability). Therefore, we investigated, in a global-scale hydrological modeling study, the relation between climate-induced changes of MAR and changes of a number of river flow regime indicators, including mean river discharge, statistical low and high flows, and mean seasonal discharge. In addition, we identified, for the first time at the global scale, where flow regime shifts from perennial to intermittent flow regimes (or vice versa) may occur due to climate change. Climate-induced changes of all considered river flow regime indicators (except seasonal river flow changes) broadly follow the spatial pattern of MAR changes. The differences among the computed changes of MAR due to the application of the two climate models are larger than the differences between the change of MAR and the change of the diverse river flow indicators for one climate model. At the sub-basin and grid cell scales, however, there are significant differences between the changes of MAR, mean annual river discharge, and low and high flows. Low flows are projected to be more than halved by the 2050s in almost twice the area as compared to MAR. Similarly, northern hemisphere summer flows decrease more strongly than MAR. Differences between the high emissions scenario A2 (with emissions of 25 Gt C yr −1 in the 2050s) and the low emissions scenario B2 (16 Gt C yr −1 ) are generally small as compared to the differences due to the two climate models. The benefits of avoided emissions are, however, significant in those areas where flows are projected to be more than halved due to climate change

  7. Simulation of future land use change and climate change impacts on hydrological processes in a tropical catchment

    Science.gov (United States)

    Marhaento, H.; Booij, M. J.; Hoekstra, A. Y.

    2017-12-01

    Future hydrological processes in the Samin catchment (278 km2) in Java, Indonesia have been simulated using the Soil and Water Assessment Tool (SWAT) model using inputs from predicted land use distributions in the period 2030 - 2050, bias corrected Regional Climate Model (RCM) output and output of six Global Climate Models (GCMs) to include climate model uncertainty. Two land use change scenarios namely a business-as-usual (BAU) scenario, where no measures are taken to control land use change, and a controlled (CON) scenario, where the future land use follows the land use planning, were used in the simulations together with two climate change scenarios namely Representative Concentration Pathway (RCP) 4.5 and 8.5. It was predicted that in 2050 settlement and agriculture area of the study catchment will increase by 33.9% and 3.5%, respectively under the BAU scenario, whereas agriculture area and evergreen forest will increase by 15.2% and 10.2%, respectively under the CON scenario. In comparison to the baseline conditions (1983 - 2005), the predicted mean annual maximum and minimum temperature in 2030 - 2050 will increase by an average of +10C, while changes in the mean annual rainfall range from -20% to +19% under RCP 4.5 and from -25% to +15% under RCP 8.5. The results show that land use change and climate change individually will cause changes in the water balance components, but that more pronounced changes are expected if the drivers are combined, in particular for changes in annual stream flow and surface runoff. It was observed that combination of the RCP 4.5 climate scenario and BAU land use scenario resulted in an increase of the mean annual stream flow from -7% to +64% and surface runoff from +21% to +102%, which is 40% and 60% more than when land use change is acting alone. Furthermore, under the CON scenario the annual stream flow and surface runoff could be potentially reduced by up to 10% and 30%, respectively indicating the effectiveness of applied

  8. On the Baltic Sea Response to Climate Change: Model Implications

    International Nuclear Information System (INIS)

    Omstedt, Anders; Leppaeranta, Matti

    1999-01-01

    The sensitivity of the Baltic Sea to climate change is reviewed on the basis of recent model studies. In general, the presently available models indicate that the Baltic Sea is a most sensitive system to climate change, particularly in air temperature, wind, fresh water inflow and the barotropic forcing in the entrance area. Available scenarios for ice conditions and climate warming around year 2100 show 2-3 months' shortening of the ice season in the Bothnian Bay and about 0.4 m decrease in the maximum annual ice thickness. Corresponding scenarios for climate cooling show 1-2 months' longer ice season in the Bothnian Bay and 0.2 - 0.5 m increase in the maximum annual ice thickness

  9. Impacts of Climate Change on Surface Ozone and Intercontinental Ozone Pollution: A Multi-Model Study

    Science.gov (United States)

    Doherty, R. M.; Wild, O.; Shindell, D. T.; Zeng, G.; MacKenzie, I. A.; Collins, W. J.; Fiore, A. M.; Stevenson, D. S.; Dentener, F. J.; Schultz, M. G.; hide

    2013-01-01

    The impact of climate change between 2000 and 2095 SRES A2 climates on surface ozone (O)3 and on O3 source-receptor (S-R) relationships is quantified using three coupled climate-chemistry models (CCMs). The CCMs exhibit considerable variability in the spatial extent and location of surface O3 increases that occur within parts of high NOx emission source regions (up to 6 ppbv in the annual average and up to 14 ppbv in the season of maximum O3). In these source regions, all three CCMs show a positive relationship between surface O3 change and temperature change. Sensitivity simulations show that a combination of three individual chemical processes-(i) enhanced PAN decomposition, (ii) higher water vapor concentrations, and (iii) enhanced isoprene emission-largely reproduces the global spatial pattern of annual-mean surface O3 response due to climate change (R2 = 0.52). Changes in climate are found to exert a stronger control on the annual-mean surface O3 response through changes in climate-sensitive O3 chemistry than through changes in transport as evaluated from idealized CO-like tracer concentrations. All three CCMs exhibit a similar spatial pattern of annual-mean surface O3 change to 20% regional O3 precursor emission reductions under future climate compared to the same emission reductions applied under present-day climate. The surface O3 response to emission reductions is larger over the source region and smaller downwind in the future than under present-day conditions. All three CCMs show areas within Europe where regional emission reductions larger than 20% are required to compensate climate change impacts on annual-mean surface O3.

  10. Challenging claims in the study of migratory birds and climate change

    NARCIS (Netherlands)

    Knudsen, Endre; Linden, Andreas; Both, Christiaan; Jonzen, Niclas; Pulido, Francisco; Saino, Nicola; Sutherland, William J.; Bach, Lars A.; Coppack, Timothy; Ergon, Torbjorn; Gienapp, Phillip; Gill, Jennifer A.; Gordo, Oscar; Hedenstrom, Anders; Lehikoinen, Esa; Marra, Peter P.; Moller, Anders P.; Nilsson, Anna L. K.; Peron, Guillaume; Ranta, Esa; Rubolini, Diego; Sparks, Tim H.; Spina, Fernando; Studds, Colin E.; Saether, Stein A.; Tryjanowski, Piotr; Stenseth, Nils Chr.; Ergon, Torbjørn; Hedenström, Anders; Møller, Anders P.

    2011-01-01

    Recent shifts in phenology in response to climate change are well established but often poorly understood. Many animals integrate climate change across a spatially and temporally dispersed annual life cycle, and effects are modulated by ecological interactions, evolutionary change and endogenous

  11. Comparison of methods for extracting annual cycle with changing amplitude in climate science

    Science.gov (United States)

    Deng, Q.; Fu, Z.

    2017-12-01

    Changes of annual cycle gains a growing concern recently. The basic hypothesis regards annual cycle as constant. Climatology mean within a time period is usually used to depict the annual cycle. Obviously this hypothesis contradicts with the fact that annual cycle is changing every year. For the lack of a unified definition about annual cycle, the approaches adopted in extracting annual cycle are various and may lead to different results. The precision and validity of these methods need to be examined. In this work we numerical experiments with known monofrequent annual cycle are set to evaluate five popular extracting methods: fitting sinusoids, complex demodulation, Ensemble Empirical Mode Decomposition (EEMD), Nonlinear Mode Decomposition (NMD) and Seasonal trend decomposition procedure based on loess (STL). Three different types of changing amplitude will be generated: steady, linear increasing and nonlinearly varying. Comparing the annual cycle extracted by these methods with the generated annual cycle, we find that (1) NMD performs best in depicting annual cycle itself and its amplitude change, (2) fitting sinusoids, complex demodulation and EEMD methods are more sensitive to long-term memory(LTM) of generated time series thus lead to overfitting annual cycle and too noisy amplitude, oppositely the result of STL underestimate the amplitude variation (3)all of them can present the amplitude trend correctly in long-time scale but the errors on account of noise and LTM are common in some methods over short time scales.

  12. The dominant role of climate change in determining changes in evapotranspiration in Xinjiang, China from 2001 to 2012.

    Science.gov (United States)

    Yuan, Xiuliang; Bai, Jie; Li, Longhui; Kurban, Alishir; De Maeyer, Philippe

    2017-01-01

    The Xinjiang Uyghur Autonomous Region of China has experienced significant land cover and climate change since the beginning of the 21st century. However, a reasonable simulation of evapotranspiration (ET) and its response to environmental factors are still unclear. For this study, to simulate ET and its response to climate and land cover change in Xinjiang, China from 2001 to 2012, we used the Common Land Model (CoLM) by adding irrigation effects for cropland and modifying root distributions and the root water uptake process for shrubland. Our results indicate that mean annual ET from 2001 to 2012 was 131.22 (±21.78) mm/year and demonstrated no significant trend (p = 0.12). The model simulation also indicates that climate change was capable of explaining 99% of inter-annual ET variability; land cover change only explained 1%. Land cover change caused by the expansion of croplands increased annual ET by 1.11 mm while climate change, mainly resulting from both decreased temperature and precipitation, reduced ET by 21.90 mm. Our results imply that climate change plays a dominant role in determining changes in ET, and also highlight the need for appropriate land-use strategies for managing water sources in dryland ecosystems within Xinjiang.

  13. The dominant role of climate change in determining changes in evapotranspiration in Xinjiang, China from 2001 to 2012.

    Directory of Open Access Journals (Sweden)

    Xiuliang Yuan

    Full Text Available The Xinjiang Uyghur Autonomous Region of China has experienced significant land cover and climate change since the beginning of the 21st century. However, a reasonable simulation of evapotranspiration (ET and its response to environmental factors are still unclear. For this study, to simulate ET and its response to climate and land cover change in Xinjiang, China from 2001 to 2012, we used the Common Land Model (CoLM by adding irrigation effects for cropland and modifying root distributions and the root water uptake process for shrubland. Our results indicate that mean annual ET from 2001 to 2012 was 131.22 (±21.78 mm/year and demonstrated no significant trend (p = 0.12. The model simulation also indicates that climate change was capable of explaining 99% of inter-annual ET variability; land cover change only explained 1%. Land cover change caused by the expansion of croplands increased annual ET by 1.11 mm while climate change, mainly resulting from both decreased temperature and precipitation, reduced ET by 21.90 mm. Our results imply that climate change plays a dominant role in determining changes in ET, and also highlight the need for appropriate land-use strategies for managing water sources in dryland ecosystems within Xinjiang.

  14. Disentangling the effects of feedback structure and climate on Poaceae annual airborne pollen fluctuations and the possible consequences of climate change.

    Science.gov (United States)

    García de León, David; García-Mozo, Herminia; Galán, Carmen; Alcázar, Purificación; Lima, Mauricio; González-Andújar, José L

    2015-10-15

    Pollen allergies are the most common form of respiratory allergic disease in Europe. Most studies have emphasized the role of environmental processes, as the drivers of airborne pollen fluctuations, implicitly considering pollen production as a random walk. This work shows that internal self-regulating processes of the plants (negative feedback) should be included in pollen dynamic systems in order to give a better explanation of the observed pollen temporal patterns. This article proposes a novel methodological approach based on dynamic systems to investigate the interaction between feedback structure of plant populations and climate in shaping long-term airborne Poaceae pollen fluctuations and to quantify the effects of climate change on future airborne pollen concentrations. Long-term historical airborne Poaceae pollen data (30 years) from Cordoba city (Southern Spain) were analyzed. A set of models, combining feedback structure, temperature and actual evapotranspiration effects on airborne Poaceae pollen were built and compared, using a model selection approach. Our results highlight the importance of first-order negative feedback and mean annual maximum temperature in driving airborne Poaceae pollen dynamics. The best model was used to predict the effects of climate change under two standardized scenarios representing contrasting temporal patterns of economic development and CO2 emissions. Our results predict an increase in pollen levels in southern Spain by 2070 ranging from 28.5% to 44.3%. The findings from this study provide a greater understanding of airborne pollen dynamics and how climate change might impact the future evolution of airborne Poaceae pollen concentrations and thus the future evolution of related pollen allergies. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Screening variability and change of soil moisture under wide-ranging climate conditions: Snow dynamics effects.

    Science.gov (United States)

    Verrot, Lucile; Destouni, Georgia

    2015-01-01

    Soil moisture influences and is influenced by water, climate, and ecosystem conditions, affecting associated ecosystem services in the landscape. This paper couples snow storage-melting dynamics with an analytical modeling approach to screening basin-scale, long-term soil moisture variability and change in a changing climate. This coupling enables assessment of both spatial differences and temporal changes across a wide range of hydro-climatic conditions. Model application is exemplified for two major Swedish hydrological basins, Norrström and Piteälven. These are located along a steep temperature gradient and have experienced different hydro-climatic changes over the time period of study, 1950-2009. Spatially, average intra-annual variability of soil moisture differs considerably between the basins due to their temperature-related differences in snow dynamics. With regard to temporal change, the long-term average state and intra-annual variability of soil moisture have not changed much, while inter-annual variability has changed considerably in response to hydro-climatic changes experienced so far in each basin.

  16. The National Climate Change and Wildlife Science Center annual report for 2013

    Science.gov (United States)

    Varela-Acevedo, Elda

    2014-01-01

    In 2008, Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS). The center was formed to respond to the demands of natural resource managers for rigorous scientific information and effective tools for assessing and responding to climate change. Located at the USGS National Headquarters in Reston, Va., the NCCWSC has invested more than $93 million (through FY13) in cutting-edge climate change research and, in response to Secretarial Order No. 3289, established and is managing eight regional Department of Interior (DOI) Climate Science Centers (CSCs). In 2013:

  17. Evaluation of uncertainties in regional climate change simulations

    DEFF Research Database (Denmark)

    Pan, Z.; Christensen, J. H.; Arritt, R. W.

    2001-01-01

    , an atmosphere-ocean coupled general circulation model (GCM) current climate, and a future scenario of transient climate change. Common precipitation climatology features simulated by both models included realistic orographic precipitation, east-west transcontinental gradients, and reasonable annual cycles over...... to different subgrid scale processes in individual models. The ratio of climate change to biases, which we use as one measure of confidence in projected climate changes, is substantially larger than 1 in several seasons and regions while the ratios are always less than 1 in summer. The largest ratios among all...... regions are in California. Spatial correlation coefficients of precipitation were computed between simulation pairs in the 2x3 set. The climate change correlation is highest and the RCM performance correlation is lowest while boundary forcing and intermodel correlations are intermediate. The high spatial...

  18. Mediterranean climate modelling: variability and climate change scenarios

    International Nuclear Information System (INIS)

    Somot, S.

    2005-12-01

    Air-sea fluxes, open-sea deep convection and cyclo-genesis are studied in the Mediterranean with the development of a regional coupled model (AORCM). It accurately simulates these processes and their climate variabilities are quantified and studied. The regional coupling shows a significant impact on the number of winter intense cyclo-genesis as well as on associated air-sea fluxes and precipitation. A lower inter-annual variability than in non-coupled models is simulated for fluxes and deep convection. The feedbacks driving this variability are understood. The climate change response is then analysed for the 21. century with the non-coupled models: cyclo-genesis decreases, associated precipitation increases in spring and autumn and decreases in summer. Moreover, a warming and salting of the Mediterranean as well as a strong weakening of its thermohaline circulation occur. This study also concludes with the necessity of using AORCMs to assess climate change impacts on the Mediterranean. (author)

  19. Widespread climate change in the Himalayas and associated changes in local ecosystems.

    Science.gov (United States)

    Shrestha, Uttam Babu; Gautam, Shiva; Bawa, Kamaljit S

    2012-01-01

    Climate change in the Himalayas, a biodiversity hotspot, home of many sacred landscapes, and the source of eight largest rivers of Asia, is likely to impact the well-being of ~20% of humanity. However, despite the extraordinary environmental, cultural, and socio-economic importance of the Himalayas, and despite their rapidly increasing ecological degradation, not much is known about actual changes in the two most critical climatic variables: temperature and rainfall. Nor do we know how changes in these parameters might impact the ecosystems including vegetation phenology. By analyzing temperature and rainfall data, and NDVI (Normalized Difference Vegetation Index) values from remotely sensed imagery, we report significant changes in temperature, rainfall, and vegetation phenology across the Himalayas between 1982 and 2006. The average annual mean temperature during the 25 year period has increased by 1.5 °C with an average increase of 0.06 °C yr(-1). The average annual precipitation has increased by 163 mm or 6.52 mmyr(-1). Since changes in temperature and precipitation are immediately manifested as changes in phenology of local ecosystems, we examined phenological changes in all major ecoregions. The average start of the growing season (SOS) seems to have advanced by 4.7 days or 0.19 days yr(-1) and the length of growing season (LOS) appears to have advanced by 4.7 days or 0.19 days yr(-1), but there has been no change in the end of the growing season (EOS). There is considerable spatial and seasonal variation in changes in climate and phenological parameters. This is the first time that large scale climatic and phenological changes at the landscape level have been documented for the Himalayas. The rate of warming in the Himalayas is greater than the global average, confirming that the Himalayas are among the regions most vulnerable to climate change.

  20. Vertical climatic belts in the Tatra Mountains in the light of current climate change

    Science.gov (United States)

    Łupikasza, Ewa; Szypuła, Bartłomiej

    2018-04-01

    The paper discusses temporal changes in the configuration of vertical climatic belts in the Tatra Mountains as a result of current climate change. Meteorological stations are scarce in the Tatra Mountains; therefore, we modelled decadal air temperatures using existing data from 20 meteorological stations and the relationship between air temperature and altitude. Air temperature was modelled separately for northern and southern slopes and for convex and concave landforms. Decadal air temperatures were additionally used to delineate five climatic belts previously distinguished by Hess on the basis of threshold values of annual air temperature. The spatial extent and location of the borderline isotherms of 6, 4, 2, 0, and - 2 °C for four decades, including 1951-1960, 1981-1990, 1991-2000, and 2001-2010, were compared. Significant warming in the Tatra Mountains, uniform in the vertical profile, started at the beginning of the 1980s and led to clear changes in the extent and location of the vertical climatic belts delineated on the basis of annual air temperature. The uphill shift of the borderline isotherms was more prominent on southern than on northern slopes. The highest rate of changes in the extent of the climatic belts was found above the isotherm of 0 °C (moderately cold and cold belts). The cold belt dramatically diminished in extent over the research period.

  1. Documented changes in annual runoff and attribution since the 1950s within selected rivers in China

    Directory of Open Access Journals (Sweden)

    Lü-Liu Liu

    2017-03-01

    Full Text Available To enable local water resource management and maintenance of ecosystem integrity and to protect and mitigate against flood and drought, it is necessary to determine changes in long-term series of streamflow and to distinguish the roles that climate change and human disturbance play in these changes. A review of previous research on the detection and attribution of observed changes in annual runoff in China shows a decrease in annual runoff since the 1950s in northern China in areas such as the Songhuajiang River water resources zone, the Liaohe River water resources zone, the Haihe River water resources zone, the Yellow River water resources zone, and the Huaihe River water resources Zone. Furthermore, abrupt changes in annual runoff occurred mostly in the 1970s and 1980s in all the above zones, except for some of the sub-basins in the middle Yellow River where abrupt change occurred in the 1990s. Changes in annual runoff are found to be mainly caused by climate change in the western Songhuajiang River basin, the upper mainstream of the Yangtze River, and the western Pearl River basin, which shows that studies on the impact of climate change on future water resources under different climate change scenarios are required to enable planning and management by agencies in these river basins. However, changes in annual runoff were found to be mainly caused by human activities in most of the catchments in northern China (such as the southern Songhuajiang River, Liaohe River, Haihe River, the lower reach and some of the catchments within the middle Yellow River basin and in middle-eastern China, such as the Huaihe River and lower mainstream of the Yangtze River. This suggests that current hydro-climatic data can continue to be used in water-use planning and that policymakers need to focus on water resource management and protection.

  2. Physical and economic consequences of climate change in Europe.

    Science.gov (United States)

    Ciscar, Juan-Carlos; Iglesias, Ana; Feyen, Luc; Szabó, László; Van Regemorter, Denise; Amelung, Bas; Nicholls, Robert; Watkiss, Paul; Christensen, Ole B; Dankers, Rutger; Garrote, Luis; Goodess, Clare M; Hunt, Alistair; Moreno, Alvaro; Richards, Julie; Soria, Antonio

    2011-02-15

    Quantitative estimates of the economic damages of climate change usually are based on aggregate relationships linking average temperature change to loss in gross domestic product (GDP). However, there is a clear need for further detail in the regional and sectoral dimensions of impact assessments to design and prioritize adaptation strategies. New developments in regional climate modeling and physical-impact modeling in Europe allow a better exploration of those dimensions. This article quantifies the potential consequences of climate change in Europe in four market impact categories (agriculture, river floods, coastal areas, and tourism) and one nonmarket impact (human health). The methodology integrates a set of coherent, high-resolution climate change projections and physical models into an economic modeling framework. We find that if the climate of the 2080s were to occur today, the annual loss in household welfare in the European Union (EU) resulting from the four market impacts would range between 0.2-1%. If the welfare loss is assumed to be constant over time, climate change may halve the EU's annual welfare growth. Scenarios with warmer temperatures and a higher rise in sea level result in more severe economic damage. However, the results show that there are large variations across European regions. Southern Europe, the British Isles, and Central Europe North appear most sensitive to climate change. Northern Europe, on the other hand, is the only region with net economic benefits, driven mainly by the positive effects on agriculture. Coastal systems, agriculture, and river flooding are the most important of the four market impacts assessed.

  3. Managing time in a changing world: Timing of avian annual cycle stages under climate change

    NARCIS (Netherlands)

    Tomotani, B.M.

    2017-01-01

    Animals need to time their seasonal activities such as breeding and migration to occur at the right time. They use cues from the environment to predict changes and organise their activities accordingly. What happens, then, when climate change interferes with this ability to make predictions? Climate

  4. Multiple aspects of climate change - Summary of presentations

    International Nuclear Information System (INIS)

    Andre, Jean-Claude; Bauer, Pierre; Le Treut, Herve; Woeppelmann, Guy; Kouraev, Alexei; Remy, Frederique; Berthier, Etienne; Lehodey, Patrick; Lebourgeois, Francois; Chuine, Isabelle; Vennetier, Michel; Duchene, Eric; Lafaye, Murielle

    2011-01-01

    The French Meteorological Society (SMF) organized its annual scientific day on March 23, 2011 on the topic of the multiple aspects of climate change. The aim was to take stock of the lessons learnt from the different meteorological markers in several domains (agriculture, forests, ecosystems, rise of sea level, changes in marine biodiversity, health, snow and ice caps..). This paper summarizes the seven presentations given at this meeting: 1 - climate change today and tomorrow (H. Le Treut); 2 - rise of oceans level: estimations and regional variability (G. Woeppelmann); 3 - polar caps and continental cryo-sphere as seen from space (A. Kouraev, F. Remy and E. Berthier); 4 - impact of climate change on exploited marine populations: projections and uncertainties (P. Lehodey); 5 - stakes of climate change on agricultural and winery activities in France (E. Duchene); 6 - impact of climate change on forest trees phenology and consequence on their survival and operation (F. Lebourgeois, I. Chuine and M. Vennetier); 7 - 'tele-epidemiology': a health-aid in a climate change context. (J.S.)

  5. Trends of climatic changes considering over years 1894-1993 and 1894-2003 for Sarajevo

    International Nuclear Information System (INIS)

    Majstorovic, Zeljko; Toromanovic, Aida; Halilovic, Senada

    2004-01-01

    Linear trends of changes in climatic parameters have been observed for Sarajevo and we considered correlation with world's trends and mutual correlation of years .1894-1993 and 1894-2003, both for the same meteorological station Sarajevo. In purpose of ascertaining correlation with global climate's changes, Sarajevo's records have been studied over the primary climatic parameters: average annual temperatures, absolute annual maximum and minimum temperatures, annual sum of rainfalls and drought index. We used method of adding of linear trends. Correlation with global tendency of climate has be shown as follow: - We notice increase of average temperature about 0.7 o C in past 100 years - We notice a rapid increase of absolute minimum temperature in compare with values of absolute maximum temperatures. - Annual sum of rainfalls doesn't show drastic changes. - We notice asymmetry trend for some actual seasons. - We notice increase of drought. During correlation of trends for years 1894-1993 and 1894-2003 has been noticed rapid increase of temperature and drought-index, while considering rainfalls there has not been drastic changes. (Author)

  6. Global climate change

    International Nuclear Information System (INIS)

    Gugele, B.; Radunsky, K.; Spangl, W.

    2002-01-01

    In the last decade marked changes of climatic factors have been observed, such as increases in average global earth temperatures, the amount of precipitation and the number of extreme weather events. Green house gases influence the energy flow in the atmosphere by absorbing infra-red radiation. An overview of the Austrian greenhouse gas emissions is given, including statistical data and their major sources. In 1999 the emissions of all six Kyoto greenhouse gases ( CO 2 , CH 4 , N 2 O, HFC s , PFC s and SF 6 ) amounted to 79.2 million tonnes of CO 2 equivalents . A comparison between the EC Members states is also presented. Finally the climate change strategy prepared by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management together with other ministries and the federal provinces is discussed, which main aim is to lead to an annual emission reduction of 16 million tonnes of CO 2 . Figs. 2, Tables 1. (nevyjel)

  7. Energy and climate change: the main analyses of Regards sur la Terre. An annual publication on sustainable development

    International Nuclear Information System (INIS)

    Jacquet, P.; Tubiana, L.; Colombier, Michel; Loup, Jacques; Laponche, Bernard; Martin-Amouroux, Jean-Marie; Chateau, Bertrand; Kieken, Hubert; Kleiche, Mustapha; Heller, Thomas C.; Mathy, Sandrine; Hourcade, Jean-Charles; Goldemberg, Jose; Pizer, William A.

    2007-01-01

    In November 2006, the French Development Agency, AFD (Agence francaise de developpement) and the Institute for Sustainable Development and International Relations, IDDRI (Institut du developpement durable et des relations internationales) launched an annual publication on sustainable development in a global perspective, Regards sur la Terre, published by Les Presses de Sciences Po (Paris). Regards sur la Terre includes an analysis of the most important international events of the last twelve months in the field of sustainable development, along with a thematic section, which in the first edition focused on energy and climate change. This booklet presents the overall introduction of the 2007 publication and the introduction of its thematic section, as well as a selection of the main chapters dealing with the theme of energy and climate change. Contents: Awakening and crisis of confidence; Reorienting our Societies; Energy in the world: Challenges and prospects; Challenges and constraints for energy supply: The coal hard facts; Satisfying energy growth in emerging countries; Diversifying power generation in China; From Rio to Marrakech: Development in climate negotiations; An international coordination regime come what may; The perspective of developing countries; An American 'point of view'

  8. Climate Change Dynamics and Imperatives for Food Security in Nigeria

    Directory of Open Access Journals (Sweden)

    Olumide D. Onafeso

    2016-02-01

    Full Text Available Decadal variability in African rainfall is projected from General Circulation Models (GCMs to continue under elevated greenhouse gas scenarios. Effects on rain intensity, spatio-temporal variability of growing seasons, flooding, drought, and land-use change impose feedbacks at regional-local scales. Yet, empirical knowledge of associated impacts on crop yield is limited; thus, we examined the imperatives for food security in Nigeria. Bivariate correlation and multiple regression suggests impending drought in the northern region where livestock farming is predominant. Relative contributions of climate independent variables in determining crop yield by backward selection procedures with stepwise approach indexed the impacts of annual climate variability by a parameter computed as annual yield minus mean annual yield divided by the standard deviation. Results show Z-distribution approximately 5 to + 5, when 3 indicate impacts significant at 95% confidence levels. In conclusion, we established the interwoven relationship between climatic change and food security.

  9. The impacts of changing transport and precipitation on pollutant distributions in a future climate

    Science.gov (United States)

    Fang, Yuanyuan; Fiore, Arlene M.; Horowitz, Larry W.; Gnanadesikan, Anand; Held, Isaac; Chen, Gang; Vecchi, Gabriel; Levy, Hiram

    2011-09-01

    Air pollution (ozone and particulate matter in surface air) is strongly linked to synoptic weather and thus is likely sensitive to climate change. In order to isolate the responses of air pollutant transport and wet removal to a warming climate, we examine a simple carbon monoxide-like (CO) tracer (COt) and a soluble version (SAt), both with the 2001 CO emissions, in simulations with the Geophysical Fluid Dynamics Laboratory chemistry-climate model (AM3) for present (1981-2000) and future (2081-2100) climates. In 2081-2100, projected reductions in lower-tropospheric ventilation and wet deposition exacerbate surface air pollution as evidenced by higher surface COt and SAt concentrations. However, the average horizontal general circulation patterns in 2081-2100 are similar to 1981-2000, so the spatial distribution of COt changes little. Precipitation is an important factor controlling soluble pollutant wet removal, but the total global precipitation change alone does not necessarily indicate the sign of the soluble pollutant response to climate change. Over certain latitudinal bands, however, the annual wet deposition change can be explained mainly by the simulated changes in large-scale (LS) precipitation. In regions such as North America, differences in the seasonality of LS precipitation and tracer burdens contribute to an apparent inconsistency of changes in annual wet deposition versus annual precipitation. As a step toward an ultimate goal of developing a simple index that can be applied to infer changes in soluble pollutants directly from changes in precipitation fields as projected by physical climate models, we explore here a "Diagnosed Precipitation Impact" (DPI) index. This index captures the sign and magnitude (within 50%) of the relative annual mean changes in the global wet deposition of the soluble pollutant. DPI can only be usefully applied in climate models in which LS precipitation dominates wet deposition and horizontal transport patterns change

  10. Modeled impact of anthropogenic land cover change on climate

    Science.gov (United States)

    Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.

    2007-01-01

    Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.

  11. Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Langner, J.; Bergstroem, R.; Foltescu, V. [Swedish Meteorological and Hydrological Institute, Norrkoeping (Sweden)

    2005-02-01

    The potential impact of regional climate change on the distribution and deposition of air pollutants in Europe has been studied using a regional chemistry/transport/deposition model, MATCH. MATCH was set up using meteorological output from two 10-year climate change experiments made with the Rossby Centre regional Atmospheric climate model version 1 (RCA1). RCA1 was forced by boundary conditions from two different global climate models using the IPCC IS92a (business as usual) emission scenario. The global mean warming in both the GCMs was 2.6 K and was reached in the period 2050-2070. Simulations with MATCH indicate substantial potential impact of regional climate change on both deposition of oxidised nitrogen and concentrations of surface ozone. The simulations show a strong increase in surface ozone expressed as AOT40 and mean of daily maximum over southern and central Europe and a decrease in northern Europe. The simulated changes in April-September AOT40 are significant in relation to inter-annual variability over extended areas. Changes in deposition of oxidised nitrogen are much smaller and also less coherent due to the strong inter-annual variability in precipitation in the RCA1 simulations and differences in the regional climate change simulated with RCA1 in the two regional scenarios. Changes in simulated annual deposition are significant in relation to inter-annual variability only over small areas. This indicates that longer simulation periods are necessary to establish changes in deposition. (author)

  12. Impact of climate change on surface ozone and deposition of sulphur and nitrogen in Europe

    Science.gov (United States)

    Langner, Joakim; Bergström, Robert; Foltescu, Valentin

    The potential impact of regional climate change on the distribution and deposition of air pollutants in Europe has been studied using a regional chemistry/transport/deposition model, MATCH. MATCH was set up using meteorological output from two 10-year climate change experiments made with the Rossby Centre regional Atmospheric climate model version 1 (RCA1). RCA1 was forced by boundary conditions from two different global climate models using the IPCC IS92a (business as usual) emission scenario. The global mean warming in both the GCMs was 2.6 K and was reached in the period 2050-2070. Simulations with MATCH indicate substantial potential impact of regional climate change on both deposition of oxidised nitrogen and concentrations of surface ozone. The simulations show a strong increase in surface ozone expressed as AOT40 and mean of daily maximum over southern and central Europe and a decrease in northern Europe. The simulated changes in April-September AOT40 are significant in relation to inter-annual variability over extended areas. Changes in deposition of oxidised nitrogen are much smaller and also less coherent due to the strong inter-annual variability in precipitation in the RCA1 simulations and differences in the regional climate change simulated with RCA1 in the two regional scenarios. Changes in simulated annual deposition are significant in relation to inter-annual variability only over small areas. This indicates that longer simulation periods are necessary to establish changes in deposition.

  13. Canada's climate change voluntary challenge and registry program : 6. annual progress report

    International Nuclear Information System (INIS)

    2000-10-01

    A Canadian integrated energy company, Suncor Energy Inc. comprises a corporate group, three operating business units, and two emerging businesses. This annual Progress Report for Canada's Climate Change Voluntary Challenge and Registry (VCR) Program represents the sixth for this company. Suncor is committed to sustainable development. Some initiatives undertaken in 1999 by Suncor included: Oil Sands Project Millennium, which will more than double the actual production of crude oil and fuel products by 2002. Suncor is divesting of conventional oil properties in order to concentrate on exploration and production of natural gas. Alternative and renewable energy will see an investment of 100 million over the next five years. The money will be allocated to research and development, the production of fuels from biomass, and conversion of municipal solid waste to energy through the recovery of methane from landfills. Since 1990, the emissions of carbon dioxide have been reduced to 14 per cent below 1990 levels, and reductions of 622, 000 tonnes of greenhouse gases. A comprehensive tracking, reporting, and management system for greenhouse gases was implemented. Ongoing improvements in quality and comprehensiveness have validated the methodology used to monitor emissions inventories and sources. Initiatives in internal and external awareness of greenhouse gases education were implemented, such as speaking engagements at climate change activities, the retrofit of schools with advanced energy-efficient technology, education programs, employee suggestion programs, etc. Collaboration with external partners on research and development projects represents a major building block in this approach. Some of the research and development projects involve the development of advanced carbon dioxide capture and geologic sequestration technologies, work on the production of alternative and renewable energy from Canadian municipal landfills, and the study of a new process to extract heavy

  14. Climate change is catchy – but when will it really hurt?

    CSIR Research Space (South Africa)

    Sweijd, ML

    2015-12-01

    Full Text Available -linked diseases. While climate varies in the medium (inter-annual) time frame, this variability itself may be oscillating and/or trending on cyclical and long-term (climate change) scales because of regional and global scale climate phenomena such as the El...

  15. Vulnerability to Climate Change in Rural Nicaragua

    Science.gov (United States)

    Byrne, T. R.; Townshend, I.; Byrne, J. M.; McDaniel, S. A.

    2013-12-01

    While there is a growing recognition of the impact that climate change may have on human development, there has been a shift in focus from an impacts-led assessment approach towards a vulnerability-led assessment approach. This research operationalizes the IPCC's definition of vulnerability in a sub-national assessment to understand how different factors that shape vulnerability to climate change vary spatially across rural Nicaragua. The research utilizes the Food and Agriculture Organization of the United Nations' (FAO UN) CropWat model to evaluate how the annual yield of two of Nicaragua's staple crops may change under projected changes in temperature and precipitation. This analysis of agricultural sensitivity under exposure to climate change is then overlain with an indicator-based assessment of adaptive capacity in rural Nicaraguan farming households. Adaptive capacity was evaluated using household survey data from the 2001 National Household Survey on Living Standards Measurement, which was provided to us by the FAO UN. The result is a map representing current vulnerability to future climate change, and can serve as a basis for targeting policy interventions in rural Nicaragua.

  16. Climate change and future fire regimes: Examples from California

    Science.gov (United States)

    Keeley, Jon E.; Syphard, Alexandra D.

    2016-01-01

    Climate and weather have long been noted as playing key roles in wildfire activity, and global warming is expected to exacerbate fire impacts on natural and urban ecosystems. Predicting future fire regimes requires an understanding of how temperature and precipitation interact to control fire activity. Inevitably this requires historical analyses that relate annual burning to climate variation. Fuel structure plays a critical role in determining which climatic parameters are most influential on fire activity, and here, by focusing on the diversity of ecosystems in California, we illustrate some principles that need to be recognized in predicting future fire regimes. Spatial scale of analysis is important in that large heterogeneous landscapes may not fully capture accurate relationships between climate and fires. Within climatically homogeneous subregions, montane forested landscapes show strong relationships between annual fluctuations in temperature and precipitation with area burned; however, this is strongly seasonal dependent; e.g., winter temperatures have very little or no effect but spring and summer temperatures are critical. Climate models that predict future seasonal temperature changes are needed to improve fire regime projections. Climate does not appear to be a major determinant of fire activity on all landscapes. Lower elevations and lower latitudes show little or no increase in fire activity with hotter and drier conditions. On these landscapes climate is not usually limiting to fires but these vegetation types are ignition-limited. Moreover, because they are closely juxtaposed with human habitations, fire regimes are more strongly controlled by other direct anthropogenic impacts. Predicting future fire regimes is not rocket science; it is far more complicated than that. Climate change is not relevant to some landscapes, but where climate is relevant, the relationship will change due to direct climate effects on vegetation trajectories, as well as

  17. Climate Change and Future Fire Regimes: Examples from California

    Directory of Open Access Journals (Sweden)

    Jon E. Keeley

    2016-08-01

    Full Text Available Climate and weather have long been noted as playing key roles in wildfire activity, and global warming is expected to exacerbate fire impacts on natural and urban ecosystems. Predicting future fire regimes requires an understanding of how temperature and precipitation interact to control fire activity. Inevitably this requires historical analyses that relate annual burning to climate variation. Fuel structure plays a critical role in determining which climatic parameters are most influential on fire activity, and here, by focusing on the diversity of ecosystems in California, we illustrate some principles that need to be recognized in predicting future fire regimes. Spatial scale of analysis is important in that large heterogeneous landscapes may not fully capture accurate relationships between climate and fires. Within climatically homogeneous subregions, montane forested landscapes show strong relationships between annual fluctuations in temperature and precipitation with area burned; however, this is strongly seasonal dependent; e.g., winter temperatures have very little or no effect but spring and summer temperatures are critical. Climate models that predict future seasonal temperature changes are needed to improve fire regime projections. Climate does not appear to be a major determinant of fire activity on all landscapes. Lower elevations and lower latitudes show little or no increase in fire activity with hotter and drier conditions. On these landscapes climate is not usually limiting to fires but these vegetation types are ignition-limited. Moreover, because they are closely juxtaposed with human habitations, fire regimes are more strongly controlled by other direct anthropogenic impacts. Predicting future fire regimes is not rocket science; it is far more complicated than that. Climate change is not relevant to some landscapes, but where climate is relevant, the relationship will change due to direct climate effects on vegetation

  18. Modelling rainfall erosion resulting from climate change

    Science.gov (United States)

    Kinnell, Peter

    2016-04-01

    It is well known that soil erosion leads to agricultural productivity decline and contributes to water quality decline. The current widely used models for determining soil erosion for management purposes in agriculture focus on long term (~20 years) average annual soil loss and are not well suited to determining variations that occur over short timespans and as a result of climate change. Soil loss resulting from rainfall erosion is directly dependent on the product of runoff and sediment concentration both of which are likely to be influenced by climate change. This presentation demonstrates the capacity of models like the USLE, USLE-M and WEPP to predict variations in runoff and erosion associated with rainfall events eroding bare fallow plots in the USA with a view to modelling rainfall erosion in areas subject to climate change.

  19. The Effects of Inter-annual Climate Variability on the Departures of Leatherback Marine Turtles from the California Current Ecosystem

    OpenAIRE

    Van Zerr, Vanessa E

    2013-01-01

    The Pacific Ocean is a highly variable environment, and changes in oceanographic conditions impact the distributions of many organisms. Inter-annual climate variability, especially the El Niño/Southern Oscillation, is known to have wide-ranging impacts on organisms in the California Current. Understanding the factors that drive changes in the spatial ecology of organisms, such as inter-annual climate variability, is essential in many cases for effective conservation. Leatherback marine turtle...

  20. Community ecology, climate change and ecohydrology in desert grassland and shrubland

    Science.gov (United States)

    Mathew Daniel Petrie

    2014-01-01

    This dissertation explores the climate, ecology and hydrology of Chihuahuan Desert ecosystems in the context of global climate change. In coming decades, the southwestern United States is projected to experience greater temperature-driven aridity, possible small decreases in annual precipitation, and a later onset of summer monsoon rainfall. These changes may have...

  1. Climate Change, Wildland Fires and Public Health

    Science.gov (United States)

    Climate change is contributing to an increase in the severity of wildland fires. The annual acreage burned in the U.S. has risen steadily since 1985, and the fire season has lengthened. Wildland fires impair air quality by producing massive quantities of particulate air polluta...

  2. Climate Change and Political Action: the Citizens' Climate Lobby

    Science.gov (United States)

    Nelson, P. H.; Secord, S.

    2014-12-01

    Recognizing the reality of global warming and its origin in greenhouse gas emissions, what does one do about it? Individual action is commendable, but inadequate. Collective action is necessary--Citizens' Climate Lobby proposes a "fee-and-dividend" approach in which a fee is imposed on carbon-based fuel at its sources of production. The fee increases annually in a predictable manner. The funds collected are paid out to consumers as monthly dividends. The approach is market-based, in that the cost of the fee to producers is passed on to consumers in the cost of carbon-based fuels. Downstream energy providers and consumers then make their choices regarding investments and purchases. Citizens' Climate Lobby (CCL) builds national consensus by growing local Chapters, led and populated by volunteers. The Chapters are charged with public education and presenting the fee-and-dividend proposal to their respective Representatives and Senators. CCL builds trust by its non-partisan approach, meeting with all members of Congress regardless of party affiliation and stance on climate-related issues. CCL also builds trust by a non-confrontational approach, seeking to understand rather than to oppose. CCL works both locally, through its local Chapters, and nationally, with an annual conference in Washington DC during which all Congressional offices are visited. CCL recognizes that a long-term, sustained effort is necessary to address climate change.

  3. Climate change and the safety of the Netherlands. Erasmus Lecture 2003

    International Nuclear Information System (INIS)

    Vellinga, P.

    2003-01-01

    In this annual Erasmus Lecture attention is paid to the effects of climate change for the Netherlands: are the Dutch still safe, now and in the future, are they prepared for the worst, and are they willing to pay whatever is needed to adjust or to reduce or stop the impacts of climate change [nl

  4. Ensuring sustainable development within a changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Meltofte Traerup, S L [Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Systems Analysis Div., Roskilde (Denmark)

    2010-09-15

    The research in this thesis focuses on the impacts of and adaptation to present variations in climate and to projected future changes. The research has dealt with different levels, i.e. household/community, national/policymaking, and sectoral level, to show different perspectives of the implications of climate variability and change to development. In particular, it focuses on how present variations in rainfall patterns affect rural households, ways to strengthen households' resilience to climate variability, and the costs and benefits of adaptation measures. The research attempts to contribute to the knowledge that informs the development community and national governments for policy-making on the implications of climate change on development planning and strategies. It is argued in the thesis that it is essential for sustainable development to mainstream climate change into strategies and planning where relevant. To do this a knowledge of the costs and benefits of diverse adaptation measures is essential. Fluctuations in annual and seasonal rainfall, both in terms of modest and excessive rains, are found to cause negative shocks to rural household incomes in the Kagera a region of Tanzania. An analysis of rainfall and household data for the region shows large local discrepancies in the distribution of rainfall, as well as in households reporting shocks to income caused by harvest failure. It is also evident from the research results that the timing of rainfall seems to play a greater role than the level of annual precipitation. The coping strategies that households report following subsequent to a harvest failure further show local divergence in the choice of, for example, taking casual employment and relying on support from others in the form of informal networks. These results support earlier work which points in the same direction and emphasizes that policies should be targeted to local specificities. This provides a great motivation for targeted responses to

  5. Ensuring sustainable development within a changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Meltofte Traerup, S.L. (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Systems Analysis Div., Roskilde (Denmark))

    2010-09-15

    The research in this thesis focuses on the impacts of and adaptation to present variations in climate and to projected future changes. The research has dealt with different levels, i.e. household/community, national/policymaking, and sectoral level, to show different perspectives of the implications of climate variability and change to development. In particular, it focuses on how present variations in rainfall patterns affect rural households, ways to strengthen households' resilience to climate variability, and the costs and benefits of adaptation measures. The research attempts to contribute to the knowledge that informs the development community and national governments for policy-making on the implications of climate change on development planning and strategies. It is argued in the thesis that it is essential for sustainable development to mainstream climate change into strategies and planning where relevant. To do this a knowledge of the costs and benefits of diverse adaptation measures is essential. Fluctuations in annual and seasonal rainfall, both in terms of modest and excessive rains, are found to cause negative shocks to rural household incomes in the Kagera a region of Tanzania. An analysis of rainfall and household data for the region shows large local discrepancies in the distribution of rainfall, as well as in households reporting shocks to income caused by harvest failure. It is also evident from the research results that the timing of rainfall seems to play a greater role than the level of annual precipitation. The coping strategies that households report following subsequent to a harvest failure further show local divergence in the choice of, for example, taking casual employment and relying on support from others in the form of informal networks. These results support earlier work which points in the same direction and emphasizes that policies should be targeted to local specificities. This provides a great motivation for targeted

  6. U.S. Annual/Seasonal Climate Normals (1981-2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The U.S. Annual Climate Normals for 1981 to 2010 are 30-year averages of meteorological parameters that provide users with many tools to understand typical climate...

  7. Global Analysis of Empirical Relationships Between Annual Climate and Seasonality of NDVI

    Science.gov (United States)

    Potter, C. S.

    1997-01-01

    This study describes the use of satellite data to calibrate a new climate-vegetation greenness function for global change studies. We examined statistical relationships between annual climate indexes (temperature, precipitation, and surface radiation) and seasonal attributes of the AVHRR Normalized Difference Vegetation Index (NDVI) time series for the mid-1980s in order to refine our empirical understanding of intraannual patterns and global abiotic controls on natural vegetation dynamics. Multiple linear regression results using global l(sup o) gridded data sets suggest that three climate indexes: growing degree days, annual precipitation total, and an annual moisture index together can account to 70-80 percent of the variation in the NDVI seasonal extremes (maximum and minimum values) for the calibration year 1984. Inclusion of the same climate index values from the previous year explained no significant additional portion of the global scale variation in NDVI seasonal extremes. The monthly timing of NDVI extremes was closely associated with seasonal patterns in maximum and minimum temperature and rainfall, with lag times of 1 to 2 months. We separated well-drained areas from l(sup o) grid cells mapped as greater than 25 percent inundated coverage for estimation of both the magnitude and timing of seasonal NDVI maximum values. Predicted monthly NDVI, derived from our climate-based regression equations and Fourier smoothing algorithms, shows good agreement with observed NDVI at a series of ecosystem test locations from around the globe. Regions in which NDVI seasonal extremes were not accurately predicted are mainly high latitude ecosystems and other remote locations where climate station data are sparse.

  8. Climate Change in the Pacific Islands

    Science.gov (United States)

    Hamnett, Michael P.

    Climate change have been a major concern among Pacific Islanders since the late 1990s. During that period, Time Magazine featured a cover story that read: Say Goodbye to the Marshall Islands, Kiribati, and Tuvalu from sea level rise. Since that time, the South Pacific Regional Environment Programme, UN and government agencies and academic researchers have been assessing the impacts of long-term climate change and seasonal to inter-annual climate variability on the Pacific Islands. The consensus is that long-term climate change will result in more extreme weather and tidal events including droughts, floods, tropical cyclones, coastal erosion, and salt water inundation. Extreme weather events already occur in the Pacific Islands and they are patterned. El Niño Southern Oscillation (ENSO) events impact rainfall, tropical cyclone and tidal patterns. In 2000, the first National Assessment of the Consequences of Climate Variability and Change concluded that long-term climate change will result in more El Niño events or a more El Niño like climate every year. The bad news is that will mean more natural disasters. The good news is that El Niño events can be predicted and people can prepare for them. The reallly bad news is that some Pacific Islands are already becoming uninhabitable because of erosion of land or the loss of fresh water from droughts and salt water intrusion. Many of the most vulnerable countries already overseas populations in New Zealand, the US, or larger Pacific Island countries. For some Pacific Islander abandoning their home countries will be their only option.

  9. Changes in seasonal climate patterns from 34-4 ka in a Soreq Cave (Israel) speleothem: Sub-annual resolution by ion microprobe and CLFM

    Science.gov (United States)

    Orland, I. J.; Bar-Matthews, M.; Kita, N.; Ayalon, A.; Valley, J. W.

    2009-12-01

    Speleothems provide an important proxy-record of paleoclimate. Isotopic data from calcite-dominated cave formations have been used to identify changes in annual rainfall, monsoon strength, telecommunication of Northern Hemisphere climate aberrations, changes in vegetation cover, and other region-specific paleoclimate time-series over annual to millennial timescales. As more research is devoted to understanding abrupt climate change events, there is a need to develop high-temporal-resolution records from continental regions. However, in most isotopic studies, seasonality information is lost due to technical limitations. This study focuses on a speleothem from the semi-arid Eastern Mediterranean region (Soreq Cave, Israel) where prior research shows that conventional drill-sampling methods permit a temporal resolution of ~10-50 years in speleothem paleoclimate records. The WiscSIMS lab has developed analytical protocols for ion microprobe analysis that yield a precision of ~0.3‰ (2 s.d.) in δ18O from 10 μm-diameter spots, which permit multiple analyses/year in many speleothems. Orland et al. (2009, Quat. Res.) establish the methodology for the current study by identifying seasonal variability using a combination of confocal laser fluorescent microscopy (CLFM) and ion microprobe analysis in a younger (~2-1 ka) Soreq speleothem that has a consistent bright-grading-to-dark fluorescence pattern within each annual band. Further, Orland et al. define a quantitative measure of seasonality, Δ18O, that measures the difference in δ18O between bright and dark fluorescent portions of individual annual growth bands [Δ18O = δ18Odark - δ18Obright]. Smaller values of Δ18O are interpreted to be caused by dry years. The current study employs the aforementioned methods to examine seasonality trends in a sample that covers a much longer time period. We report δ18O from >1000 spots across a radial traverse of Soreq Cave sample 2N matched to imaging of annual growth bands by

  10. Effects of Climatic Factors and Ecosystem Responses on the Inter-Annual Variability of Evapotranspiration in a Coniferous Plantation in Subtropical China

    Science.gov (United States)

    Xu, Mingjie; Wen, Xuefa; Wang, Huimin; Zhang, Wenjiang; Dai, Xiaoqin; Song, Jie; Wang, Yidong; Fu, Xiaoli; Liu, Yunfen; Sun, Xiaomin; Yu, Guirui

    2014-01-01

    Because evapotranspiration (ET) is the second largest component of the water cycle and a critical process in terrestrial ecosystems, understanding the inter-annual variability of ET is important in the context of global climate change. Eight years of continuous eddy covariance measurements (2003–2010) in a subtropical coniferous plantation were used to investigate the impacts of climatic factors and ecosystem responses on the inter-annual variability of ET. The mean and standard deviation of annual ET for 2003–2010 were 786.9 and 103.4 mm (with a coefficient of variation of 13.1%), respectively. The inter-annual variability of ET was largely created in three periods: March, May–June, and October, which are the transition periods between seasons. A set of look-up table approaches were used to separate the sources of inter-annual variability of ET. The annual ETs were calculated by assuming that (a) both the climate and ecosystem responses among years are variable (Vcli-eco), (b) the climate is variable but the ecosystem responses are constant (Vcli), and (c) the climate is constant but ecosystem responses are variable (Veco). The ETs that were calculated under the above assumptions suggested that the inter-annual variability of ET was dominated by ecosystem responses and that there was a negative interaction between the effects of climate and ecosystem responses. These results suggested that for long-term predictions of water and energy balance in global climate change projections, the ecosystem responses must be taken into account to better constrain the uncertainties associated with estimation. PMID:24465610

  11. How Does The Climate Change?

    Science.gov (United States)

    Jones, R. N.

    2011-12-01

    In 1997, maximum temperature in SE Australia shifted up by 0.8°C at pH0impact indicators: baumé levels in winegrapes shift >21 days earlier from 1998, streamflow records decrease by 30-70% from 1997 and annual mean forest fire danger index increased by 38% from 1997. Despite catastrophic fires killing 178 people in early 2009, the public remains unaware of this large change in their exposure. When regional temperature was separated into internally and externally forced components, the latter component was found to warm in two steps, in 1968-73 and 1997. These dates coincide with shifts in zonal mean temperature (24-44S; Figure 1). Climate model output shows similar step and trend behavior. Tests run on zonal, hemispheric and global mean temperature observations found shifts in all regions. 1997 marks a shift in global temperature of 0.3°C at pH0ocean heat content. The prevailing paradigm for how climate variables change is signal-noise construct combining a smooth signal with variations caused by internal climate variability. There seems to be no sound theoretical basis for this assumption. On the contrary, complex system behavior would suggest non-linear responses to externally forced change, especially at the regional scale. Some of our most basic assumptions about how climate changes may need to be re-examined.

  12. Characteristics of aggregation of daily rainfall in a middle-latitudes region during a climate variability in annual rainfall amount

    Science.gov (United States)

    Lucero, Omar A.; Rozas, Daniel

    Climate variability in annual rainfall occurs because the aggregation of daily rainfall changes. A topic open to debate is whether that change takes place because rainfall becomes more intense, or because it rains more often, or a combination of both. The answer to this question is of interest for water resources planning, hydrometeorological design, and agricultural management. Change in the number of rainy days can cause major disruptions in hydrological and ecological systems, with important economic and social effects. Furthermore, the characteristics of daily rainfall aggregation in ongoing climate variability provide a reference to evaluate the capability of GCM to simulate changes in the hydrologic cycle. In this research, we analyze changes in the aggregation of daily rainfall producing a climate positive trend in annual rainfall in central Argentina, in the southern middle-latitudes. This state-of-the-art agricultural region has a semiarid climate with dry and wet seasons. Weather effects in the region influence world-market prices of several crops. Results indicate that the strong positive trend in seasonal and annual rainfall amount is produced by an increase in number of rainy days. This increase takes place in the 3-month periods January-March (summer) and April-June (autumn). These are also the 3-month periods showing a positive trend in the mean of annual rainfall. The mean of the distribution of annual number of rainy day (ANRD) increased in 50% in a 36-year span (starting at 44 days/year). No statistically significant indications on time changes in the probability distribution of daily rainfall amount were found. Non-periodic fluctuations in the time series of annual rainfall were analyzed using an integral wavelet transform. Fluctuations with a time scale of about 10 and 20 years construct the trend in annual rainfall amount. These types of non-periodic fluctuations have been observed in other regions of the world. This suggests that results of

  13. Climate change and water resources in Britain

    International Nuclear Information System (INIS)

    Arnell, N.W.

    1998-01-01

    This paper explores the potential implications of climate change for the use and management of water resources in Britain. It is based on a review of simulations of changes in river flows, groundwater recharge and river water quality. These simulations imply, under feasible climate change scenarios, that annual, winter and summer runoff will decrease in southern Britain, groundwater recharge will be reduced and that water quality - as characterised by nitrate concentrations and dissolved oxygen contents - will deteriorate. In northern Britain, river flows are likely to increase throughout the year, particularly in winter. Climate change may lead to increased demands for water, over and above that increase which is forecast for non-climatic reasons, primarily due to increased use for garden watering. These increased pressures on the water resource base will impact not only upon the reliability of water supplies, but also upon navigation, aquatic ecosystems, recreation and power generation, and will have implications for water management. Flood risk is likely to increase, implying a reduction in standards of flood protection. The paper discusses adaptation options. 39 refs., 5 figs

  14. Climate change and agriculture in Denmark

    International Nuclear Information System (INIS)

    Olesen, J.E.

    2001-01-01

    This chapter reviews the current knowledge on effects of climate change on agriculture in Denmark, and the contribution of agriculture to greenhouse gas emissions in Denmark. The chapter also considers the possibilities of Danish agriculture to adapt to changing climate and to reduce greenhouse gas emissions. The relations to other aspects of global change are discussed, including liberalisation of world markets and changes in land use. Scenarios of climate change for Denmark suggest increases in annual mean temperature of 1 to 4 deg. C by the end of the 21st century depending on socioeconomic development. Winter rainfall may increase up to 20%. This implies a wide range of possible consequences. Agricultural productivity may be expected to increase under increasing temperature and increasing CO 2 concentration. Highter temperatures will increase the risk of pests and deseases. Warming in association with increased winter rainfall will also increase the risk of nitrate leaching. Climate change may thus be expected to reinforce the current trends in Danish agriculture of declining cattle population and increasing pig and cereal production. Apart from an anticipated continued decline in total agricultural area, land use will probably not be greatly affected. The current environmental regulation in Denmark aims at reducing pesticide use and nitrogen losses from agriculture. Some of the regulations are very detailed and directly regulate farming practices in a manner that may not provide the most cost-effective mechanism under a changed climate. Some of these existing rigid frameworks for environmental regulation should thus be substituted by more flexible goal-oriented environmental protection strategies, in order to ensure sustainability of farming under global climate change. (LN)

  15. Impacts of climate change and inter-annual variability on cereal crops in China from 1980 to 2008.

    Science.gov (United States)

    Zhang, Tianyi; Huang, Yao

    2012-06-01

    Negative climate impacts on crop yield increase pressures on food security in China. In this study, climatic impacts on cereal yields (rice, wheat and maize) were investigated by analyzing climate-yield relationships from 1980 to 2008. Results indicated that warming was significant, but trends in precipitation and solar radiation were not statistically significant in most of China. In general, maize is particularly sensitive to warming. However, increase in temperature was correlated with both lower and higher yield of rice and wheat, which is inconsistent with the current view that warming results in decline in yields. Of the three cereal crops, further analysis suggested that reduction in yields with higher temperature is accompanied by lower precipitation, which mainly occurred in northern parts of China, suggesting droughts reduced yield due to lack of water resources. Similarly, a positive correlation between temperature and yield can be alternatively explained by the effect of solar radiation, mainly in the southern part of China where water resources are abundant. Overall, our study suggests that it is inter-annual variations in precipitation and solar radiation that have driven change in cereal yields in China over the last three decades. Copyright © 2011 Society of Chemical Industry.

  16. Socio-economic vulnerability to climate change in the central mountainous region of eastern Mexico.

    Science.gov (United States)

    Esperón-Rodríguez, Manuel; Bonifacio-Bautista, Martín; Barradas, Víctor L

    2016-03-01

    Climate change effects are expected to be more severe for some segments of society than others. In Mexico, climate variability associated with climate change has important socio-economic and environmental impacts. From the central mountainous region of eastern Veracruz, Mexico, we analyzed data of total annual precipitation and mean annual temperature from 26 meteorological stations (1922-2008) and from General Circulation Models. We developed climate change scenarios based on the observed trends with projections to 2025, 2050, 2075, and 2100, finding considerable local climate changes with reductions in precipitation of over 700 mm and increases in temperature of ~9°C for the year 2100. Deforested areas located at windward were considered more vulnerable, representing potential risk for natural environments, local communities, and the main crops cultivated (sugarcane, coffee, and corn). Socio-economic vulnerability is exacerbated in areas where temperature increases and precipitation decreases.

  17. Climate change, irrigation, and Israeli agriculture. Will warming be harmful?

    Energy Technology Data Exchange (ETDEWEB)

    Fleischer, Aliza; Lichtman, Ivgenia [Hebrew University of Jerusalem, Jerusalem (Israel); Mendelsohn, Robert [Yale University, New Haven, Connecticut (United States)

    2008-04-15

    This paper utilizes a Ricardian model to test the relationship between annual net revenues and climate across Israeli farms. The study finds that it is important to include the amount of irrigation water available to each farm in order to measure the response of farms to climate. With irrigation water omitted, the model predicts climate change is strictly beneficial. However, with water included, the model predicts that only modest climate changes are beneficial while drastic climate change in the long run will be harmful. Using the AOGCM Scenarios we show that farm net revenue is expected to increase. Although Israel has a relatively warm climate a mild increase in temperature is beneficial due to the ability to supply international markets with farm product early in the season. (author)

  18. Climate change, irrigation, and Israeli agriculture. Will warming be harmful?

    International Nuclear Information System (INIS)

    Fleischer, Aliza; Lichtman, Ivgenia; Mendelsohn, Robert

    2008-01-01

    This paper utilizes a Ricardian model to test the relationship between annual net revenues and climate across Israeli farms. The study finds that it is important to include the amount of irrigation water available to each farm in order to measure the response of farms to climate. With irrigation water omitted, the model predicts climate change is strictly beneficial. However, with water included, the model predicts that only modest climate changes are beneficial while drastic climate change in the long run will be harmful. Using the AOGCM Scenarios we show that farm net revenue is expected to increase. Although Israel has a relatively warm climate a mild increase in temperature is beneficial due to the ability to supply international markets with farm product early in the season. (author)

  19. Contribution of human and climate change impacts to changes in streamflow of Canada.

    Science.gov (United States)

    Tan, Xuezhi; Gan, Thian Yew

    2015-12-04

    Climate change exerts great influence on streamflow by changing precipitation, temperature, snowpack and potential evapotranspiration (PET), while human activities in a watershed can directly alter the runoff production and indirectly through affecting climatic variables. However, to separate contribution of anthropogenic and natural drivers to observed changes in streamflow is non-trivial. Here we estimated the direct influence of human activities and climate change effect to changes of the mean annual streamflow (MAS) of 96 Canadian watersheds based on the elasticity of streamflow in relation to precipitation, PET and human impacts such as land use and cover change. Elasticities of streamflow for each watershed are analytically derived using the Budyko Framework. We found that climate change generally caused an increase in MAS, while human impacts generally a decrease in MAS and such impact tends to become more severe with time, even though there are exceptions. Higher proportions of human contribution, compared to that of climate change contribution, resulted in generally decreased streamflow of Canada observed in recent decades. Furthermore, if without contributions from retreating glaciers to streamflow, human impact would have resulted in a more severe decrease in Canadian streamflow.

  20. Environmental risk of climate change and groundwater abstraction on stream ecological conditions

    DEFF Research Database (Denmark)

    Seaby, Lauren Paige; Bøgh, Eva; Jensen, Niels H.

    with DAISY, a one dimensional crop model describing soil water dynamics in the root zone, and MIKE SHE, a distributed groundwater-surface water model. The relative and combined impacts on low flows, groundwater levels, and nitrate leaching are quantified and compared to assess the water resource sensitivity...... and risk to stream ecological conditions. We find low flow and annual discharge to be most impacted by scenarios of climate change, with high variation across climate models (+/- 40% change). Doubling of current groundwater abstraction rates reduces annual discharge by approximately 20%, with higher...... flows and groundwater levels are of interest, as they relate to aquatic habitat and nitrate leaching, respectively. This study evaluates the risk to stream ecological conditions for a lowland Danish catchment under multiple scenarios of climate change and groundwater abstraction. Projections of future...

  1. How light competition between plants affects their response to climate change

    NARCIS (Netherlands)

    Loon, van M.P.; Schieving, F.; Rietkerk, M.; Dekker, S.C.; Sterck, F.J.; Anten, N.P.R.

    2014-01-01

    How plants respond to climate change is of major concern, as plants will strongly impact future ecosystem functioning, food production and climate. Here, we investigated how vegetation structure and functioning may be influenced by predicted increases in annual temperatures and atmospheric CO2

  2. Impacts of Future Grassland Changes on Surface Climate in Mongolia

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2013-01-01

    Full Text Available Climate change caused by land use/cover change (LUCC is becoming a hot topic in current global change, especially the changes caused by the grassland degradation. In this paper, based on the baseline underlying surface data of 1993, the predicted underlying surface data which can be derived through overlaying the grassland degradation information to the map of baseline underlying surface, and the atmospheric forcing data of RCP 6.0 from CMIP5, climatological changes caused by future grassland changes for the years 2010–2020 and 2040–2050 with the Weather Research Forecast model (WRF are simulated. The model-based analysis shows that future grassland degradation will significantly result in regional climate change. The grassland degradation in future could lead to an increasing trend of temperature in most areas and corresponding change range of the annual average temperature of −0.1°C–0.4°C, and it will cause a decreasing trend of precipitation and corresponding change range of the annual average precipitation of 10 mm–50 mm. This study identifies lines of evidence for effects of future grassland degradation on regional climate in Mongolia which provides meaningful decision-making information for the development and strategy plan making in Mongolia.

  3. Climate Change in Voyageurs National Park

    Science.gov (United States)

    Seeley, M. W.

    2011-12-01

    Voyageurs National Park was created in 1975. This beautifully forested and lake-dominated landscape shared between Minnesota and Canada has few roads and must be seen by water. The islands and Kabetogama Peninsula are part of the Canadian Shield, some of the oldest exposed rock in the world. Voyageurs National Park boasts many unique landscape and climatic attributes, and like most mid-latitude regions of the northern hemisphere climate change is in play there. The statistical signals of change in the climate record are evident from both temperature and precipitation measurements. The history of these measurements goes back over 100 years. Additionally, studies and measurements of the lakes and general ecosystem already show some consequences of these climate changes. Mean temperature measurements are generally warmer than they once were, most notably in the winter season. Minimum temperatures have changed more than maximum temperatures. Precipitation has trended upward, but has also changed in character with greater frequency and contribution from thunderstorm rainfalls across the park. In addition variability in annual precipitation has become more amplified, as the disparity between wet and dry years has grown wider. Some changes are already in evidence in terms of bird migration patterns, earlier lake ice-out dates, warmer water temperatures with more algal blooms, decline in lake clarity, and somewhat longer frost-free seasons. Climate change will continue to have impacts on Voyageurs National Park, and likely other national parks across the nation. Furthermore scientists may find that the study, presentation, and discussion about climate impacts on our national parks is a particularly engaging way to educate citizens and improve climate literacy as we contemplate what adaptation and mitigation policies should be enacted to preserve the quality of our national parks for future generations.

  4. Seasonal climate change patterns due to cumulative CO2 emissions

    Science.gov (United States)

    Partanen, Antti-Ilari; Leduc, Martin; Damon Matthews, H.

    2017-07-01

    Cumulative CO2 emissions are near linearly related to both global and regional changes in annual-mean surface temperature. These relationships are known as the transient climate response to cumulative CO2 emissions (TCRE) and the regional TCRE (RTCRE), and have been shown to remain approximately constant over a wide range of cumulative emissions. Here, we assessed how well this relationship holds for seasonal patterns of temperature change, as well as for annual-mean and seasonal precipitation patterns. We analyzed an idealized scenario with CO2 concentration growing at an annual rate of 1% using data from 12 Earth system models from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Seasonal RTCRE values for temperature varied considerably, with the highest seasonal variation evident in the Arctic, where RTCRE was about 5.5 °C per Tt C for boreal winter and about 2.0 °C per Tt C for boreal summer. Also the precipitation response in the Arctic during boreal winter was stronger than during other seasons. We found that emission-normalized seasonal patterns of temperature change were relatively robust with respect to time, though they were sub-linear with respect to emissions particularly near the Arctic. Moreover, RTCRE patterns for precipitation could not be quantified robustly due to the large internal variability of precipitation. Our results suggest that cumulative CO2 emissions are a useful metric to predict regional and seasonal changes in precipitation and temperature. This extension of the TCRE framework to seasonal and regional climate change is helpful for communicating the link between emissions and climate change to policy-makers and the general public, and is well-suited for impact studies that could make use of estimated regional-scale climate changes that are consistent with the carbon budgets associated with global temperature targets.

  5. [Impact of changes in land use and climate on the runoff in Liuxihe Watershed based on SWAT model].

    Science.gov (United States)

    Yuan, Yu-zhi; Zhang, Zheng-dong; Meng, Jin-hua

    2015-04-01

    SWAT model, an extensively used distributed hydrological model, was used to quantitatively analyze the influences of changes in land use and climate on the runoff at watershed scale. Liuxihe Watershed' s SWAT model was established and three scenarios were set. The calibration and validation at three hydrological stations of Wenquan, Taipingchang and Nangang showed that the three factors of Wenquan station just only reached the standard in validated period, and the other two stations had relative error (RE) 0.8 and Nash-Sutcliffe efficiency valve (Ens) > 0.75, suggesting that SWAT model was appropriate for simulating runoff response to land use change and climate variability in Liuxihe watershed. According to the integrated scenario simulation, the annual runoff increased by 11.23 m3 x s(-1) from 2001 to 2010 compared with the baseline period from 1991 to 2000, among which, the land use change caused an annual runoff reduction of 0.62 m3 x s(-1), whereas climate variability caused an annual runoff increase of 11.85 m3 x s(-1). Apparently, the impact of climate variability was stronger than that of land use change. On the other hand, the scenario simulation of extreme land use showed that compared with the land use in 2000, the annual runoff of the farmland scenario and the grassland scenario increased by 2.7% and 0.5% respectively, while that of the forest land scenario were reduced by 0.7%, which suggested that forest land had an ability of diversion closure. Furthermore, the scenario simulation of climatic variability indicated that the change of river runoff correlated positively with precipitation change (increase of 11.6% in annual runoff with increase of 10% in annual precipitation) , but negatively with air temperature change (reduction of 0.8% in annual runoff with increase of 1 degrees C in annual mean air temperature), which showed that the impact of precipitation variability was stronger than that of air temperature change. Therefore, in face of climate

  6. Simulating Climate Change in Ireland

    Science.gov (United States)

    Nolan, P.; Lynch, P.

    2012-04-01

    At the Meteorology & Climate Centre at University College Dublin, we are using the CLM-Community's COSMO-CLM Regional Climate Model (RCM) and the WRF RCM (developed at NCAR) to simulate the climate of Ireland at high spatial resolution. To address the issue of model uncertainty, a Multi-Model Ensemble (MME) approach is used. The ensemble method uses different RCMs, driven by several Global Climate Models (GCMs), to simulate climate change. Through the MME approach, the uncertainty in the RCM projections is quantified, enabling us to estimate the probability density function of predicted changes, and providing a measure of confidence in the predictions. The RCMs were validated by performing a 20-year simulation of the Irish climate (1981-2000), driven by ECMWF ERA-40 global re-analysis data, and comparing the output to observations. Results confirm that the output of the RCMs exhibit reasonable and realistic features as documented in the historical data record. Projections for the future Irish climate were generated by downscaling the Max Planck Institute's ECHAM5 GCM, the UK Met Office HadGEM2-ES GCM and the CGCM3.1 GCM from the Canadian Centre for Climate Modelling. Simulations were run for a reference period 1961-2000 and future period 2021-2060. The future climate was simulated using the A1B, A2, B1, RCP 4.5 & RCP 8.5 greenhouse gas emission scenarios. Results for the downscaled simulations show a substantial overall increase in precipitation and wind speed for the future winter months and a decrease during the summer months. The predicted annual change in temperature is approximately 1.1°C over Ireland. To date, all RCM projections are in general agreement, thus increasing our confidence in the robustness of the results.

  7. Changes in the Amplitude and Phase of the Annual Cycle: quantifying from surface wind series in China

    Science.gov (United States)

    Feng, Tao

    2013-04-01

    Climate change is not only reflected in the changes in annual means of climate variables but also in the changes in their annual cycles (seasonality), especially in the regions outside the tropics. Changes in the timing of seasons, especially the wind season, have gained much attention worldwide in recent decade or so. We introduce long-range correlated surrogate data to Ensemble Empirical Mode Decomposition method, which represent the statistic characteristics of data better than white noise. The new method we named Ensemble Empirical Mode Decomposition with Long-range Correlated noise (EEMD-LRC) and applied to 600 station wind speed records. This new method is applied to investigate the trend in the amplitude of the annual cycle of China's daily mean surface wind speed for the period 1971-2005. The amplitude of seasonal variation decrease significantly in the past half century over China, which can be well explained by Annual Cycle component from EEMD-LRC. Furthermore, the phase change of annual cycle lead to strongly shorten of wind season in spring, and corresponding with strong windy day frequency change over Northern China.

  8. Climate change impacts and adaptation : a Canadian perspective

    International Nuclear Information System (INIS)

    Lemmen, D.S.; Warren, F.J.

    2004-01-01

    This book summarizes the research that has been conducted in Canada over the past five years on the issue of climate change impacts on key sectors such as water resources, agriculture, forestry, fisheries, coastal zones, transportation, and human health and well-being. The book refers to the growing evidence that climate change is occurring. The Intergovernmental Panel on Climate Change (IPCC) believes that these changes have already contributed to increases in annual precipitation, cloud cover and extreme temperatures over the last 50 years. It suggests that it in order to develop an effective strategy for adaptation, it is necessary to understand the vulnerability of each sector to climate change in terms of the nature of climate change, the climatic sensitivity of the region being considered, and the capacity to adapt to the changes. Adaptation will require a reduction in greenhouse gas emissions in order to lower the rate of climate change. Problems associated with water resources include water quality issues that relate to water shortages from droughts, or excesses from floods. The impacts of climate change on agriculture will vary depending on precipitation changes, soil conditions, and land use. Some studies have suggested that higher temperatures would benefit the forestry sector by improving the growth rate of trees, but the increase in the frequency and severity of moisture stress and forest disturbances would create other problems. Adaptations in the fisheries sector may have implications for the water resources, transportation, tourism and human health sectors. The impact of climate change in the coastal zone may include changes in water levels, wave patterns, storm surges, and thickness of seasonal ice cover. The areas that seem most vulnerable to climate change in the transportation sector include northern ice roads, Great Lakes shipping, coastal infrastructure threatened by sea-level rise, and infrastructure located on permafrost

  9. The impact of climate change on river discharges in Eastern Romania

    Science.gov (United States)

    Croitoru, Adina-Eliza; Minea, Ionut

    2014-05-01

    Climate changes imply many changes in different socioeconomic and environmental fields. Among the most important impacts are changes in water resources. Long- and mid-term river discharge flow analysis is essential for the effective management of water resources. In this work, the changes in two climatic parameters (temperature and precipitation) and river discharges and the connections between precipitation and river discharges were investigated. Seasonal and annual climatic and hydrological data collected at six weather stations and 17 hydrological stations were employed. The data sets cover 57 years (1950-2006). The modified Mann-Kendall test was used to calculate trends, and the Bravais-Pearson correlation index was chosen to detect the connections between precipitation and river discharge data series. The main findings are as follows: A general increase was identified in all the three parameters. The air temperature data series showed the highest frequency of statistically significant slopes, mainly in annual and spring series. All data series, except the series for winter, showed an increase in precipitation; in winter, a significant decrease in precipitation was observed at most of the stations. The increase in precipitation is reflected in the upward trends of the river discharge flows, as verified by the good Bravais-Pearson correlations, mainly for annual, summer, and autumn series

  10. The Effect of Thermal Mass on Annual Heat Load and Thermal Comfort in Cold Climate Construction

    DEFF Research Database (Denmark)

    Stevens, Vanessa; Kotol, Martin; Grunau, Bruno

    2016-01-01

    been shown to reduce the annual heating demand. However, few studies exist regarding the effects of thermal mass in cold climates. The purpose of this research is to determine the effect of high thermal mass on the annual heat demand and thermal comfort in a typical Alaskan residence using energy......Thermal mass in building construction refers to a building material's ability to absorb and release heat based on changing environmental conditions. In building design, materials with high thermal mass used in climates with a diurnal temperature swing around the interior set-point temperature have...... modeling software. The model simulations show that increased thermal mass can decrease the risk of summer overheating in Alaskan residences. They also show that increased thermal mass does not significantly decrease the annual heat load in residences located in cold climates. These results indicate...

  11. Assessing climate change impacts on soil salinity development with proximal and satellite sensors

    Science.gov (United States)

    Changes in climate patterns have dramatically influenced some agricultural areas. Examples include the historic 5-year drought in California’s San Joaquin Valley (SJV) and the 20-year above average annual rainfall in the Red River Valley (RRV) of the Midwestern USA. Climate change may have impacted ...

  12. Annual energy analysis of concrete containing phase change materials for building envelopes

    International Nuclear Information System (INIS)

    Thiele, Alexander M.; Jamet, Astrid; Sant, Gaurav; Pilon, Laurent

    2015-01-01

    Highlights: • Adding PCM to concrete walls can significantly reduce the cooling needs of buildings. • Climate, season, and wall orientation strongly affect energy and cost savings. • The PCM melting temperature should be near the desired indoor temperature. • Benefits are maximum for outdoor temperature oscillating around set indoor temperature. • Adding PCM had little effect on heating energy needs and associated cost savings. - Abstract: This paper examines the annual energy and cost savings potential of adding microencapsulated phase change material to the exterior concrete walls of an average-sized single family home in California climate zones 3 (San Francisco, CA) and 9 (Los Angeles, CA). The annual energy and cost savings were larger for South- and West-facing walls than for other walls. They were also the largest when the phase change temperature was near the desired indoor temperature. The addition of microencapsulated phase change material to the building walls reduced the cooling load in summer substantially more than the heating load in winter. This was attributed to the cold winter temperatures resulting in nearly unidirectional heat flux on many days. The annual cooling load reduction in an average-sized single family home in San Francisco and in Los Angeles ranged from 85% to 100% and from 53% to 82%, respectively, for phase change material volume fraction ranging from 0.1 to 0.3. The corresponding annual electricity cost savings ranged from $36 to $42 in San Francisco and from $94 to $143 in Los Angeles. From an energy standpoint, the best climate for using building materials containing uniformly distributed microencapsulated phase change material would have outdoor temperature oscillations centered around the desired indoor temperature for the entire year

  13. The Impact of Climate Change in Rainfall Erosivity Index on Humid Mudstone Area

    Science.gov (United States)

    Yang, Ci-Jian; Lin, Jiun-Chuan

    2017-04-01

    It has been quite often pointed out in many relevant studies that climate change may result in negative impacts on soil erosion. Then, humid mudstone area is highly susceptible to climate change. Taiwan has extreme erosion in badland area, with annual precipitation over 2000 mm/y which is a considerably 3 times higher than other badland areas around the world, and with around 9-13 cm/y in denudation rate. This is the reason why the Erren River, a badland dominated basin has the highest mean sediment yield in the world, over 105 t km2 y. This study aims to know how the climate change would affect soil erosion from the source in the Erren River catchment. Firstly, the data of hourly precipitation from 1992 to 2016 are used to establish the regression between rainfall erosivity index (R, one of component for USLE) and precipitation. Secondly, using the 10 climate change models (provide form IPCC AR5) simulates the changes of monthly precipitation in different scenario from 2017 to 2216, and then over 200 years prediction R values can be use to describe the tendency of soil erosion in the future. The results show that (1) the relationship between rainfall erosion index and precipitation has high correction (>0.85) during 1992-2016. (2) From 2017 to 2216, 7 scenarios show that annual rainfall erosion index will increase over 2-18%. In contrast, the others will decrease over 7-14%. Overall, the variations of annual rainfall erosion index fall in the range of -14 to 18%, but it is important to pay attention to the variation of annual rainfall erosion index in extreme years. These fall in the range of -34 to 239%. This explains the extremity of soil erosion will occur easily in the future. Keywords: Climate Change, Mudstone, Rainfall Erosivity Index, IPCC AR5

  14. Climate change impacts on runoff and hydropower in the Nordic countries. Final report from the project 'Climate change and energy production'

    International Nuclear Information System (INIS)

    Roar Saelthun, N.; Aittoniemi, P.; Bergstroem, S.

    1998-01-01

    The Nordic research program 'Climate change and energy production' has been carried out in co-operation between the Nordic hydrological services and the Nordic hydroelectric power industry with funding from the Nordic Council of Ministers and participating institutions. The program has been running for the period 1991-1996. The main objective of the research program was to analyse the effects of a future global climate change on the Nordic system for hydroelectric power production due to increased anthropogenic emissions of greenhouse gases in the atmosphere. The main parts of the program have been: A. Testing and improvements of hydrological models, with special emphasis on evapotranspiration, snow melt and glacier mass balance submodels. B. Assessment of the capability of existing energy planning models to analyse climate change impacts. C. Establishment of state-of-art scenarios for meteorological variables. Estimation of runoff scenarios. D. Analysis of climate change impacts on electricity consumption. E. Analysis of impacts on the hydropower systems, on national and regional scale, including effects on floods and dam safety issues. F. Analysis of climatic variability and climatic trends of hydrological records, including annual, seasonal and extreme values. (au) 171 refs

  15. Chinese and Russian Policies on Climate Change: Implications for U.S. National Security Policy

    Science.gov (United States)

    2016-06-01

    crop productivity in China by 2030 as a result of climate change, and a decline of up to 37 percent in rice, maize , and wheat yields after 2050...against global warming. Comparing and contrasting China’s and Russia’s climate change policies and programs may also help to identify gaps in...adequate measures to adapt agriculture to climate change, the annual economic loss from a decrease in climate-determined crop yield in Russia is

  16. Climate Change and Variability: Implications for Household Food ...

    African Journals Online (AJOL)

    These are drought, low annual rainfall, high temperature, and water shortage. The econometric model estimation result revealed the important factors determining household food security. These are household perception of climate change, use of soil and water conservation practices, use of livestock feed management ...

  17. Climatic change due to land surface alterations

    Energy Technology Data Exchange (ETDEWEB)

    Franchito, S.H.; Rao, V.B.

    1992-01-01

    A primitive equations global zonally averaged climate model is developed. The model includes biofeedback mechanisms. For the Northern Hemisphere the parameterization of biofeedback mechanisms is similar to that used by Gutman et al. For the Southern Hemisphere new parameterizations are derived. The model simulates reasonably well the mean annual zonally averaged climate and geobotanic zones. Deforestation, desertification, and irrigation experiments are performed. In the case of deforestation and desertification there is a reduction in the surface net radiation, evaporation, and precipitation and an increase in the surface temperature. In the case of irrigation experiment opposite changes occurred. In all the cases considered the changes in evapotranspiration overcome the effect of surface albedo modification. In all the experiments changes are smaller in the Southern Hemisphere.

  18. Holocene climate in the western Great Lakes national parks and lakeshores: Implications for future climate change

    Science.gov (United States)

    Davis, Margaret; Douglas, Christine; Cole, K.L.; Winkler, Marge; Flaknes, Robyn

    2000-01-01

    We reconstruct Holocene climate history (last 10,000 years) for each of the U.S. National Park Service units in the western Great Lakes region in order to evaluate their sensitivity to global warming. Annual precipitation, annual temperature, and July and January temperatures were reconstructed by comparing fossil pollen in lake sediment with pollen in surface samples, assuming that ancient climates were similar to modern climate near analogous surface samples. In the early Holocene, most of the parks experienced colder winters, warmer summers, and lower precipitation than today. An exception is Voyageurs National Park in northern Minnesota where, by 8000 years ago, January temperatures were higher than today. The combination of high mean annual temperature and lower precipitation at Voyageurs resulted in a dry period between 8000 and 5000 years ago, similar to the Prairie Period in regions to the south and west. A mid-Holocene warm-dry period also occurred at other northern and central parks but was much less strongly developed. In southern parks there was no clear evidence of a mid-Holocene warm-dry period. These differences suggest that global model predictions of a warm, dry climate in the northern Great Plains under doubled atmospheric CO2 may be more applicable to Voyageurs than to the other parks. The contrast in reconstructed temperatures at Voyageurs and Isle Royale indicates that the ameliorating effect of the Great Lakes on temperatures has been in effect throughout the Holocene and presumably will continue in the future, thus reducing the potential for species loss caused by future temperature extremes. Increased numbers of mesic trees at all of the parks in the late Holocene reflect increasing annual precipitation. This trend toward more mesic conditions began 6000 years ago in the south and 4000 years ago in the north and increased sharply in recent millennia at parks located today in lake-effect snow belts. This suggests that lake-effect snowfall is

  19. SOILS AS INDICATORS OF CLIMATIC CHANGES

    Directory of Open Access Journals (Sweden)

    Yury Chendev

    2012-01-01

    Full Text Available A number of examples for the reaction of chernozems in the center of the East European Plain and their relation to different periodical climatic changes are examined. According to unequal-age chernozems properties, the transition from the Middle Holocene arid conditions to the Late Holocene wet conditions occurred at 4000 yr BP. Using data on changes of soil properties, the position of boundary between steppe and forest-steppe and the annual amount of precipitation at approximately 4000 yr BP were reconstructed. The change from warm-dry to cool-moist climatic phases, which occurred at the end of the XX century as a reflection of intra-age-long climatic cyclic recurrence, led to the strengthening of dehumification over the profile of automorphic chernozems and to the reduction of its content in the upper meter of the soils. The leaching of carbonates and of readily soluble salts contributed to the decrease in soil areas occupied by typical and solonetzic chernozems, and to the increase in areas occupied by leached chernozems.

  20. Climate change and zoonotic infections in the Russian Arctic

    Directory of Open Access Journals (Sweden)

    Boris Revich

    2012-07-01

    Full Text Available Climate change in the Russian Arctic is more pronounced than in any other part of the country. Between 1955 and 2000, the annual average air temperature in the Russian North increased by 1.2°C. During the same period, the mean temperature of upper layer of permafrost increased by 3°C. Climate change in Russian Arctic increases the risks of the emergence of zoonotic infectious diseases. This review presents data on morbidity rates among people, domestic animals and wildlife in the Russian Arctic, focusing on the potential climate related emergence of such diseases as tick-borne encephalitis, tularemia, brucellosis, leptospirosis, rabies, and anthrax.

  1. Homogenised Australian climate datasets used for climate change monitoring

    International Nuclear Information System (INIS)

    Trewin, Blair; Jones, David; Collins; Dean; Jovanovic, Branislava; Braganza, Karl

    2007-01-01

    Full text: The Australian Bureau of Meteorology has developed a number of datasets for use in climate change monitoring. These datasets typically cover 50-200 stations distributed as evenly as possible over the Australian continent, and have been subject to detailed quality control and homogenisation.The time period over which data are available for each element is largely determined by the availability of data in digital form. Whilst nearly all Australian monthly and daily precipitation data have been digitised, a significant quantity of pre-1957 data (for temperature and evaporation) or pre-1987 data (for some other elements) remains to be digitised, and is not currently available for use in the climate change monitoring datasets. In the case of temperature and evaporation, the start date of the datasets is also determined by major changes in instruments or observing practices for which no adjustment is feasible at the present time. The datasets currently available cover: Monthly and daily precipitation (most stations commence 1915 or earlier, with many extending back to the late 19th century, and a few to the mid-19th century); Annual temperature (commences 1910); Daily temperature (commences 1910, with limited station coverage pre-1957); Twice-daily dewpoint/relative humidity (commences 1957); Monthly pan evaporation (commences 1970); Cloud amount (commences 1957) (Jovanovic etal. 2007). As well as the station-based datasets listed above, an additional dataset being developed for use in climate change monitoring (and other applications) covers tropical cyclones in the Australian region. This is described in more detail in Trewin (2007). The datasets already developed are used in analyses of observed climate change, which are available through the Australian Bureau of Meteorology website (http://www.bom.gov.au/silo/products/cli_chg/). They are also used as a basis for routine climate monitoring, and in the datasets used for the development of seasonal

  2. The Framing of Climate-Change Discourse by Shell and the Framing of Shell’s Climate Change-Related Activities by The Economist and The Financial Times

    Directory of Open Access Journals (Sweden)

    Oleksandr Kapranov

    2017-09-01

    Full Text Available This article presents a qualitative study of the Royal Dutch/Shell Group’s (further - Shell corporate image building in relation to climate change and how this image is represented in the British financial press. The material of the study involves the official 2014 Shell’s annual report (further - AR and online coverages of Shell’s climate change-related activities by the leading British financial newspapers, The Economist and The Financial Times (further – The FT. Shell’s image of climate change is investigated by means of identification of conceptual metaphors viewed through the lenses of the methodological apparatus of cognitive linguistics. Conceptual metaphors identified in the 2014 AR are subsequently juxtaposed with conceptual metaphors associated with Shell’s climate-change activities in The Economist and in The FT. The results reveal that Shell’s 2014 AR involves the following conceptual metaphors associated with climate change: ‘Climate Change as a Journey’, ‘Climate Change as a Battle’, ‘Shell as a Responsible Citizen’, ‘Shell as a Caring Corporation’, ‘Climate Change as Growth’, and ‘Climate Change as Money’. In contrast with these conceptual metaphors, The Economist represents Shell’s climate change activities in 2014 via ‘Shell as an Immoral Corporation’ and ‘Shell as a Sinner’. The FT frames Shell’s climate change agenda in 2014 by means of conceptual metaphors ‘Climate Change as Growth’, ‘Climate Change as a Journey’, and ‘Climate Change as Money’ respectively. The discrepancies between Shell’s self-image of climate change and its representations by The Economist and The FT are further presented and discussed in the article.

  3. Climatic and biotic controls on annual carbon storage in Amazonian ecosystems

    Science.gov (United States)

    Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich, J.; Moore, B.; Vorosmarty, C.J.

    2000-01-01

    1 The role of undisturbed tropical land ecosystems in the global carbon budget is not well understood. It has been suggested that inter-annual climate variability can affect the capacity of these ecosystems to store carbon in the short term. In this paper, we use a transient version of the Terrestrial Ecosystem Model (TEM) to estimate annual carbon storage in undisturbed Amazonian ecosystems during the period 1980-94, and to understand the underlying causes of the year-to-year variations in net carbon storage for this region. 2 We estimate that the total carbon storage in the undisturbed ecosystems of the Amazon Basin in 1980 was 127.6 Pg C, with about 94.3 Pg C in vegetation and 33.3 Pg C in the reactive pool of soil organic carbon. About 83% of the total carbon storage occurred in tropical evergreen forests. Based on our model's results, we estimate that, over the past 15 years, the total carbon storage has increased by 3.1 Pg C (+ 2%), with a 1.9-Pg C (+2%) increase in vegetation carbon and a 1.2-Pg C (+4%) increase in reactive soil organic carbon. The modelled results indicate that the largest relative changes in net carbon storage have occurred in tropical deciduous forests, but that the largest absolute changes in net carbon storage have occurred in the moist and wet forests of the Basin. 3 Our results show that the strength of interannual variations in net carbon storage of undisturbed ecosystems in the Amazon Basin varies from a carbon source of 0.2 Pg C/year to a carbon sink of 0.7 Pg C/year. Precipitation, especially the amount received during the drier months, appears to be a major controller of annual net carbon storage in the Amazon Basin. Our analysis indicates further that changes in precipitation combine with changes in temperature to affect net carbon storage through influencing soil moisture and nutrient availability. 4 On average, our results suggest that the undisturbed Amazonian ecosystems accumulated 0.2 Pg C/year as a result of climate

  4. The effect of climate change on electricity needs – A case study from Mediterranean Europe

    International Nuclear Information System (INIS)

    Zachariadis, Theodoros; Hadjinicolaou, Panos

    2014-01-01

    This paper assesses additional electricity requirements and the associated costs in the Mediterranean island of Cyprus by the mid-21st century because of projected anthropogenic climate change, following an interdisciplinary approach that combines climate science with economics. An econometric model of electricity demand is used, in conjunction with climate projections from a state-of-the-art Global Circulation Model with a regional focus on the Eastern Mediterranean. Annual electricity demand is projected to rise by about 6% compared to a ‘no climate change’ case. Although these additional power requirements are not very remarkable on an annual basis, total costs up to 2050, which may exceed 730 million Euros at today's prices, imply that the country may need to forgo one or two years of economic growth in order to cope with extra electricity needs due to climate change. This outlook indicates that a reasonable future energy path in regions with Mediterranean climate would involve substantial deployment of solar-powered electricity generation, which can meet peak load requirements while reducing the country's energy dependence. Moreover, this forecast highlights the need for adaptation to climate change through investments in the improvement of the energy performance of the building stock. - Highlights: • Assessment of additional electricity needs in Cyprus because of climate change. • Use of econometric model of electricity demand and regional climate projections. • Annual electricity demand to rise by 6% by 2050 due to climate change. • Welfare losses of up to more than 150 million Euros (at 2010 prices) per year. • Impacts can be tackled by use of solar power and energy efficiency improvements

  5. The Interplay of Climate Change and Air Pollution on Health

    OpenAIRE

    Orru, H.; Ebi, K. L.; Forsberg, B.

    2017-01-01

    Purpose of review: Air pollution significantly affects health, causing up to 7 million premature deaths annually with an even larger number of hospitalizations and days of sick leave. Climate change could alter the dispersion of primary pollutants, particularly particulate matter, and intensify the formation of secondary pollutants, such as near-surface ozone. The purpose of the review is to evaluate the recent evidence on the impacts of climate change on air pollution and air pollution-relat...

  6. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  7. The Interplay of Climate Change and Air Pollution on Health.

    Science.gov (United States)

    Orru, H; Ebi, K L; Forsberg, B

    2017-12-01

    Air pollution significantly affects health, causing up to 7 million premature deaths annually with an even larger number of hospitalizations and days of sick leave. Climate change could alter the dispersion of primary pollutants, particularly particulate matter, and intensify the formation of secondary pollutants, such as near-surface ozone. The purpose of the review is to evaluate the recent evidence on the impacts of climate change on air pollution and air pollution-related health impacts and identify knowledge gaps for future research. Several studies modelled future ozone and particulate matter concentrations and calculated the resulting health impacts under different climate scenarios. Due to climate change, ozone- and fine particle-related mortalities are expected to increase in most studies; however, results differ by region, assumed climate change scenario and other factors such as population and background emissions. This review explores the relationships between climate change, air pollution and air pollution-related health impacts. The results highly depend on the climate change scenario used and on projections of future air pollution emissions, with relatively high uncertainty. Studies primarily focused on mortality; projections on the effects on morbidity are needed.

  8. Study of climate change related to deforestation in the Xishuangbanna area, Yunnan, China

    International Nuclear Information System (INIS)

    Chungcheng Li; Cong Lai

    1991-01-01

    The analysis of the results of deforestation and the meteorological data of the Xinshuangbanna region of China shows that there are possible relations between the deforestation and climate change. With the forest area decreased by 33% during the past 30 years, the climate of this region has also been changed. The annual mean temperature has been increased by 0.7C, of which the increase is 0.97C in the dry season and 0.53C in the wet season. Together with the annual temperature increase the temperature variations have also been increased, which has resulted in more frequent low temperature damage to the local plantation agriculture. The relative humidity decreased by 3% annually; and the annual precipitation also decreased, with a decrease in the wet season of 6.8% and an increase in the dry season of 20.8%

  9. Federal climate change programs : funding history and policy issues

    Science.gov (United States)

    2010-03-01

    In recent years, the federal government has allocated several billion dollars annually for projects to expand the understanding of climate change or to reduce carbon dioxide and other greenhouse-gas (GHG) emissions. Most of that spending is done by t...

  10. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration

    International Nuclear Information System (INIS)

    Kang, Sinkyu; Kimball, John S.; Running, Steven W.

    2006-01-01

    We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km 2 portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO 2 , climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO 2 resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T a ), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 o C for T a and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO 2 , climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients. (author)

  11. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration.

    Science.gov (United States)

    Kang, Sinkyu; Kimball, John S; Running, Steven W

    2006-06-01

    We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km(2) portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO2, climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO2 resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T(a)), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 degrees C for T(a) and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO2, climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients.

  12. Combined Impacts of Medium Term Socio-Economic Changes and Climate Change on Water Resources in a Managed Mediterranean Catchment

    Directory of Open Access Journals (Sweden)

    Anastassi Stefanova

    2015-04-01

    Full Text Available Climate projections agree on a dryer and warmer future for the Mediterranean. Consequently, the region is likely to face serious problems regarding water availability and quality in the future. We investigated potential climate change impacts, alone (for three scenario periods and in combination with four socio-economic scenarios (for the near future on water resources in a Mediterranean catchment, whose economy relies on irrigated agriculture and tourism. For that, the Soil and Water Integrated Model (SWIM was applied to the drainage area of the Mar Menor coastal lagoon, using a set of 15 climate scenarios and different land use maps and management settings. We assessed the long-term average seasonal and annual changes in generated runoff, groundwater recharge and actual evapotranspiration in the catchment, as well as on water inflow and nutrients input to the lagoon. The projected average annual changes in precipitation are small for the first scenario period, and so are the simulated impacts on all investigated components, on average. The negative trend of potential climate change impacts on water resources (i.e., decrease in all analyzed components becomes pronounced in the second and third scenario periods. The applied socio-economic scenarios intensify, reduce or even reverse the climate-induced impacts, depending on the assumed land use and management changes.

  13. Functional consequences of climate change-induced plant species loss in a tallgrass prairie.

    Science.gov (United States)

    Craine, Joseph M; Nippert, Jesse B; Towne, E Gene; Tucker, Sally; Kembel, Steven W; Skibbe, Adam; McLauchlan, Kendra K

    2011-04-01

    Future climate change is likely to reduce the floristic diversity of grasslands. Yet the potential consequences of climate-induced plant species losses for the functioning of these ecosystems are poorly understood. We investigated how climate change might alter the functional composition of grasslands for Konza Prairie, a diverse tallgrass prairie in central North America. With species-specific climate envelopes, we show that a reduction in mean annual precipitation would preferentially remove species that are more abundant in the more productive lowland positions at Konza. As such, decreases in precipitation could reduce productivity not only by reducing water availability but by also removing species that inhabit the most productive areas and respond the most to climate variability. In support of this prediction, data on species abundance at Konza over 16 years show that species that are more abundant in lowlands than uplands are preferentially reduced in years with low precipitation. Climate change is likely to also preferentially remove species from particular functional groups and clades. For example, warming is forecast to preferentially remove perennials over annuals as well as Cyperaceae species. Despite these predictions, climate change is unlikely to unilaterally alter the functional composition of the tallgrass prairie flora, as many functional traits such as physiological drought tolerance and maximum photosynthetic rates showed little relationship with climate envelope parameters. In all, although climatic drying would indirectly alter grassland productivity through species loss patterns, the insurance afforded by biodiversity to ecosystem function is likely to be sustained in the face of climate change.

  14. Introducing an integrated climate change perspective in POPs modelling, monitoring and regulation

    International Nuclear Information System (INIS)

    Lamon, L.; Dalla Valle, M.; Critto, A.; Marcomini, A.

    2009-01-01

    This paper presents a review on the implications of climate change on the monitoring, modelling and regulation of persistent organic pollutants (POPs). Current research gaps are also identified and discussed. Long-term data sets are essential to identify relationships between climate fluctuations and changes in chemical species distribution. Reconstructing the influence of climatic changes on POPs environmental behaviour is very challenging in some local studies, and some insights can be obtained by the few available dated sediment cores or by studying POPs response to inter-annual climate fluctuations. Knowledge gaps and future projections can be studied by developing and applying various modelling tools, identifying compounds susceptibility to climate change, local and global effects, orienting international policies. Long-term monitoring strategies and modelling exercises taking into account climate change should be considered when devising new regulatory plans in chemicals management. - Climate change implications on POPs are addressed here with special attention to monitoring, modelling and regulation issues.

  15. Costa Rica Rainfall in Future Climate Change Scenarios

    Science.gov (United States)

    Castillo Rodriguez, R. A., Sr.; Amador, J. A.; Duran-Quesada, A. M.

    2017-12-01

    Studies of intraseasonal and annual cycles of meteorological variables, using projections of climate change, are nowadays extremely important to improve regional socio-economic planning for countries. This is particularly true in Costa Rica, as Central America has been identified as a climate change hot spot. Today many of the economic activities in the region, especially those related to agriculture, tourism and hydroelectric power generation are linked to the seasonal cycle of precipitation. Changes in rainfall (mm/day) and in the diurnal temperature range (°C) for the periods 1950-2005 and 2006-2100 were investigated using the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP) constructed using the CMIP5 (Coupled Model Intercomparison Project version 5) data. Differences between the multi-model ensembles of the two prospective scenarios (RCP 4.5 and RCP 8.5) and the retrospective baseline scenario were computed. This study highlights Costa Rica as an inflexion point of the climate change in the region and also suggests future drying conditions.

  16. Integrated regional changes in arctic climate feedbacks: Implications for the global climate system

    Science.gov (United States)

    McGuire, A.D.; Chapin, F. S.; Walsh, J.E.; Wirth, C.; ,

    2006-01-01

    The Arctic is a key part of the global climate system because the net positive energy input to the tropics must ultimately be resolved through substantial energy losses in high-latitude regions. The Arctic influences the global climate system through both positive and negative feedbacks that involve physical, ecological, and human systems of the Arctic. The balance of evidence suggests that positive feedbacks to global warming will likely dominate in the Arctic during the next 50 to 100 years. However, the negative feedbacks associated with changing the freshwater balance of the Arctic Ocean might abruptly launch the planet into another glacial period on longer timescales. In light of uncertainties and the vulnerabilities of the climate system to responses in the Arctic, it is important that we improve our understanding of how integrated regional changes in the Arctic will likely influence the evolution of the global climate system. Copyright ?? 2006 by Annual Reviews. All rights reserved.

  17. Climate Change, Risk and Grain Production in China

    OpenAIRE

    Holst, Rainer; Yu, Xiaohua; Grun, Carola

    2010-01-01

    This paper employs the production function-based method proposed by Just and Pope (1978, 1979) to explicitly analyze production risk in the context of Chinese grain farming and climate change, and test for potential endogeneity of climate factors in Chinese grain production. Our results indicate that grain production in south China might, at least in the short run, could be a net beneficiary of global warming. In particular, we find that a 1 °C increase in annual average temperature in South ...

  18. Fish Farmers' Perception of Climate change impact on fish ...

    African Journals Online (AJOL)

    Michael Madukwe

    *Department of Agricultural Extension and Management ... Respondents in the area perceived climate change factors ... rural farmers who implement their regular annual farm business plans risk total ... 2010). Constraints to increased fish production in Nigeria include, among others, ..... Build ponds close to water sources.

  19. Communicating global climate change using simple indices: an update

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Frank; Karoly, David [University of Melbourne, School of Earth Sciences, Melbourne, VIC (Australia); Braganza, Karl [National Climate Centre, Bureau of Meteorology, Melbourne, VIC (Australia)

    2012-08-15

    Previous studies have shown that there are several indices of global-scale temperature variations, in addition to global-mean surface air temperature, that are useful for distinguishing natural internal climate variations from anthropogenic climate change. Appropriately defined, such indices have the ability to capture spatio-temporal information in a similar manner to optimal fingerprints of climate change. These indices include the contrast between the average temperatures over land and over oceans, the Northern Hemisphere meridional temperature gradient, the temperature contrast between the Northern and Southern Hemisphere and the magnitude of the annual cycle of average temperatures over land. They contain information independent of the global-mean temperature for internal climate variations at decadal time scales and represent different aspects of the climate system, yet they show common responses to anthropogenic climate change. In addition, the ratio of average temperature changes over land to those over the oceans should be nearly constant for transient climate change. Hence, supplementing analysis of global-mean surface temperature with analyses of these indices can strengthen results of attribution studies of causes of observed climate variations. In this study, we extend the previous work by including the last 10 years of observational data and the CMIP3 climate model simulations analysed for the IPCC AR4. We show that observed changes in these indices over the last 10 years provide increased evidence of an anthropogenic influence on climate. We also show the usefulness of these indices for evaluating the performance of climate models in simulating large-scale variability of surface temperature. (orig.)

  20. Functional group, biomass, and climate change effects on ecological drought in semiarid grasslands

    Science.gov (United States)

    Wilson, Scott D.; Schlaepfer, Daniel R.; Bradford, John B.; Lauenroth, William K.; Duniway, Michael C.; Hall, Sonia A.; Jamiyansharav, Khishigbayar; Jia, Gensuo; Lkhagva, Ariuntsetseg; Munson, Seth M.; Pyke, David A.; Tietjen, Britta

    2018-01-01

    Water relations in plant communities are influenced both by contrasting functional groups (grasses, shrubs) and by climate change via complex effects on interception, uptake and transpiration. We modelled the effects of functional group replacement and biomass increase, both of which can be outcomes of invasion and vegetation management, and climate change on ecological drought (soil water potential below which photosynthesis stops) in 340 semiarid grassland sites over 30‐year periods. Relative to control vegetation (climate and site‐determined mixes of functional groups), the frequency and duration of drought were increased by shrubs and decreased by annual grasses. The rankings of shrubs, control vegetation, and annual grasses in terms of drought effects were generally consistent in current and future climates, suggesting that current differences among functional groups on drought effects predict future differences. Climate change accompanied by experimentally‐increased biomass (i.e. the effects of invasions that increase community biomass, or management that increases productivity through fertilization or respite from grazing) increased drought frequency and duration, and advanced drought onset. Our results suggest that the replacement of perennial temperate semiarid grasslands by shrubs, or increased biomass, can increase ecological drought both in current and future climates.

  1. Water in Urban Areas in a Climate Change Perspective

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten

    2012-01-01

    Climatic changes will influence the water cycle substantially. This will have an immediate impact on the performance of urban water infrastructure. A case study from Roskilde shows that assuming an increase in design intensities of 40 % over a 100 year horizon will lead to increased cost of indiv......Climatic changes will influence the water cycle substantially. This will have an immediate impact on the performance of urban water infrastructure. A case study from Roskilde shows that assuming an increase in design intensities of 40 % over a 100 year horizon will lead to increased cost...... of individual very extreme events (e.g. more than 100 years) of approximately 70 % and a 900 % increase in the expected annual losses due to floods. Other case studies in Denmark show smaller impacts, but still very significant increased annual costs compared to the present state. This calls for systematic...

  2. Financial market response to extreme events indicating climatic change

    Science.gov (United States)

    Anttila-Hughes, J. K.

    2016-05-01

    A variety of recent extreme climatic events are considered to be strong evidence that the climate is warming, but these incremental advances in certainty often seem ignored by non-scientists. I identify two unusual types of events that are considered to be evidence of climate change, announcements by NASA that the global annual average temperature has set a new record, and the sudden collapse of major polar ice shelves, and then conduct an event study to test whether news of these events changes investors' valuation of energy companies, a subset of firms whose future performance is closely tied to climate change. I find evidence that both classes of events have influenced energy stock prices since the 1990s, with record temperature announcements on average associated with negative returns and ice shelf collapses associated with positive returns. I identify a variety of plausible mechanisms that may be driving these differential responses, discuss implications for energy markets' views on long-term regulatory risk, and conclude that investors not only pay attention to scientifically significant climate events, but discriminate between signals carrying different information about the nature of climatic change.

  3. Climate change characteristics of Amur River

    Directory of Open Access Journals (Sweden)

    Lan-lan YU

    2013-04-01

    Full Text Available Unusually severe weather is occurring more frequently due to global climate change. Heat waves, rainstorms, snowstorms, and droughts are becoming increasingly common all over the world, threatening human lives and property. Both temperature and precipitation are representative variables usually used to directly reflect and forecast the influences of climate change. In this study, daily data (from 1953 to 1995 and monthly data (from 1950 to 2010 of temperature and precipitation in five regions of the Amur River were examined. The significance of changes in temperature and precipitation was tested using the Mann-Kendall test method. The amplitudes were computed using the linear least-squares regression model, and the extreme temperature and precipitation were analyzed using hydrological statistical methods. The results show the following: the mean annual temperature increased significantly from 1950 to 2010 in the five regions, mainly due to the warming in spring and winter; the annual precipitation changed significantly from 1950 to 2010 only in the lower mainstream of the Amur River; the frequency of extremely low temperature events decreased from 1953 to 1995 in the mainstream of the Amur River; the frequency of high temperature events increased from 1953 to 1995 in the mainstream of the Amur River; and the frequency of extreme precipitation events did not change significantly from 1953 to 1995 in the mainstream of the Amur River. This study provides a valuable theoretical basis for settling disputes between China and Russia on sustainable development and utilization of water resources of the Amur River.

  4. Modelling the effects of climate change on streamflow in a sub-basin of the lower Churchill River

    International Nuclear Information System (INIS)

    Pryse-Phillips, Amy; Snelgrove, Ken

    2010-01-01

    Climate change is likely to affect extreme flows as well as average flows. This is an important consideration for hydroelectric power producers. This paper presented the development of an approach to assess the impact of climate changes on seasonal and average annual river flows. The main goal was to investigate how climate change will affect the hydroelectric potential of the Lower Churchill Project using different combinations of emissions scenarios, climate model output and downscaling techniques. The setup and calibration of the numerical hydrological model, WATFLOOD, were performed as preliminary work for the Pinus River basin selected as study basin. Downscaled climate data from the North America change assessment program for both current and future climate periods were analysed. The calibrated model was used to simulate the current and future period streamflow scenarios. The results showed a 13 percent increase in mean annual flows concentrated in the winter and spring seasons.

  5. Modelling the effects of climate change on streamflow in a sub-basin of the lower Churchill River

    Energy Technology Data Exchange (ETDEWEB)

    Pryse-Phillips, Amy [Hatch Ltd., St John' s, (Canada); Snelgrove, Ken [Memorial University of Newfoundland, St John' s, (Canada)

    2010-07-01

    Climate change is likely to affect extreme flows as well as average flows. This is an important consideration for hydroelectric power producers. This paper presented the development of an approach to assess the impact of climate changes on seasonal and average annual river flows. The main goal was to investigate how climate change will affect the hydroelectric potential of the Lower Churchill Project using different combinations of emissions scenarios, climate model output and downscaling techniques. The setup and calibration of the numerical hydrological model, WATFLOOD, were performed as preliminary work for the Pinus River basin selected as study basin. Downscaled climate data from the North America change assessment program for both current and future climate periods were analysed. The calibrated model was used to simulate the current and future period streamflow scenarios. The results showed a 13 percent increase in mean annual flows concentrated in the winter and spring seasons.

  6. Climate change

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In this paper, the authors discuss in brief the magnitude and rate of past changes in climate and examine the various factors influencing climate in order to place the potential warming due to increasing greenhouse gas concentrations in context. Feedback mechanisms that can amplify or lessen imposed climate changes are discussed next. The overall sensitivity of climate to changes in forcing is then considered, followed by a discussion of the time-dependent response of the Earth system. The focus is on global temperature as an indicator for the magnitude of climatic change

  7. The Vulnerability of Forest Ecosystems of Armenia to the Global Climate Change

    Science.gov (United States)

    Khachatryan, S.

    2009-05-01

    Climate changes characterized as global warming can lead to irreversible effects on regional and global scales, such as drought, pest attacks, diseases, excessive forest fires, and climate driven extinction of numerous animal and plant species. We assess the issues that the development of forestry in Armenia faces, where the climate change is causing the landscape zone borders in the territory to shift. This will have a significant impact on the most vulnerable tree species in Armenia. An increase in climate aridity and intensification of desertification can be expected under the projected escalated temperatures and reduced precipitation. For example, we can consider average annual temperature of the Ijevan meteorological station (located in forestry region) for the period of 1936-2008. We analyze the vulnerability of forest ecosystems in Armenia to climatic and anthropogenic factors for the period of 1936-2008. Temperature and precipitation data from 25 meteorological stations in the territory of Armenia is studied for the period of 1936-2008. The dynamic of average temperature annual anomalies are revealed. The deviations of temperature and precipitation from the norms (average for 1961-1990) are evaluated for the period of study. We discuss the reasons for the abrupt increase in temperature and decrease in precipitation. Based on the dataset, the possible near future impact of global climate change on the Armenian forest ecosystems is discussed, and measures on the adaptation to the adverse consequences that climate change has on forests are offered.

  8. Climate change 101 : understanding and responding to global climate change

    Science.gov (United States)

    2009-01-01

    To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...

  9. Climate Change

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Hansen, Ernst Jan de Place

    2011-01-01

    This paper presents the effects of climate change relevant for Denmark, including the change in mean year values as well as the extent of maximum and minimum extremes. Described by the Intergovernmental Panel on Climate Change, the assumptions that the scenarios are based on were outlined...... and evaluated in a Danish context. The uncertainty of the scenarios leaves major challenges that, if not addressed and taken into account in building design, will grow far more serious as climate change progresses. Cases implemented in the Danish building stock illustrate adaptation to climate change...... and illustrate how building design can include mitigating measures to counteract climate change. Cases studied were individual buildings as well as the urban environment. Furthermore the paper describes some of the issues that must be addressed, as the building sector is investing in measures to adapt to climate...

  10. Decadal Changes in Global Ocean Annual Primary Production

    Science.gov (United States)

    Gregg, Watson; Conkright, Margarita E.; Behrenfeld, Michael J.; Ginoux, Paul; Casey, Nancy W.; Koblinsky, Chester J. (Technical Monitor)

    2002-01-01

    The Sea-viewing Wide Field-of-View Sensor (SeaWiFS) has produced the first multi-year time series of global ocean chlorophyll observations since the demise of the Coastal Zone Color Scanner (CZCS) in 1986. Global observations from 1997-present from SeaWiFS combined with observations from 1979-1986 from the CZCS should in principle provide an opportunity to observe decadal changes in global ocean annual primary production, since chlorophyll is the primary driver for estimates of primary production. However, incompatibilities between algorithms have so far precluded quantitative analysis. We have developed and applied compatible processing methods for the CZCS, using modern advances in atmospheric correction and consistent bio-optical algorithms to advance the CZCS archive to comparable quality with SeaWiFS. We applied blending methodologies, where in situ data observations are incorporated into the CZCS and SeaWiFS data records, to provide improvement of the residuals. These re-analyzed, blended data records provide maximum compatibility and permit, for the first time, a quantitative analysis of the changes in global ocean primary production in the early-to-mid 1980's and the present, using synoptic satellite observations. An intercomparison of the global and regional primary production from these blended satellite observations is important to understand global climate change and the effects on ocean biota. Photosynthesis by chlorophyll-containing phytoplankton is responsible for biotic uptake of carbon in the oceans and potentially ultimately from the atmosphere. Global ocean annual primary decreased from the CZCS record to SeaWiFS, by nearly 6% from the early 1980s to the present. Annual primary production in the high latitudes was responsible for most of the decadal change. Conversely, primary production in the low latitudes generally increased, with the exception of the tropical Pacific. The differences and similarities of the two data records provide evidence

  11. Climatic and land-use driven change of runoff throughout Sweden

    Science.gov (United States)

    Worman, A. L. E.; Riml, J.; Lindstrom, G.

    2015-12-01

    Changes in runoff can be caused by climatic variations, land-use changes and water regulation. In this paper we propose a separation of the power spectral response of runoff in watersheds in terms of the product of the power spectra of precipitation and the impulse response function for the watershed. This allows a formal separation of the spectral response in climatic factors - the precipitation - from those of land-use change and regulation - the impulse response function. The latter function characterizes the surface water-groundwater interaction, stream network topology and open channel hydraulics. Based on daily data of digitalized hydro-climatological data from 1961, we constructed synthetic, but calibrated data of runoff from 1001 watersheds in Sweden. From spectral analysis of the data we found periodic fluctuations occurring on time scales of about a decade and a bi-annual peak. These multi-annual fluctuations could be statistically linked through the coherence spectra to climatic indices like the NAO, PDO, geostrophic wind velocity and sun spot numbers on common periods of 3,6 and 7,6 years. Such long-term fluctuations in runoff are not significantly affected by the land-use or regulation other than indirectly through impact on local hydro-climate. Based on a spectral separation of precipitation and impulse response function of the watersheds, we found that the intra-annual variation in runoff was primarily affected by the land-use change in 79 unregulated catchments with up to century-long time series of measured daily discharge. There is a statistically significant increasing slope of the catchments impulse response function for 63 of the 79 catchments and this suggest a significant hydrological effect of land-use practice in agriculture, urbanisation and forestry.

  12. Climate Change

    Science.gov (United States)

    Climate is the average weather in a place over a period of time. Climate change is major change in temperature, rainfall, snow, ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. ...

  13. Climate change and maize yield in southern Africa: what can farm management do?

    Science.gov (United States)

    Rurinda, Jairos; van Wijk, Mark T; Mapfumo, Paul; Descheemaeker, Katrien; Supit, Iwan; Giller, Ken E

    2015-12-01

    There is concern that food insecurity will increase in southern Africa due to climate change. We quantified the response of maize yield to projected climate change and to three key management options - planting date, fertilizer use and cultivar choice - using the crop simulation model, agricultural production systems simulator (APSIM), at two contrasting sites in Zimbabwe. Three climate periods up to 2100 were selected to cover both near- and long-term climates. Future climate data under two radiative forcing scenarios were generated from five global circulation models. The temperature is projected to increase significantly in Zimbabwe by 2100 with no significant change in mean annual total rainfall. When planting before mid-December with a high fertilizer rate, the simulated average grain yield for all three maize cultivars declined by 13% for the periods 2010-2039 and 2040-2069 and by 20% for 2070-2099 compared with the baseline climate, under low radiative forcing. Larger declines in yield of up to 32% were predicted for 2070-2099 with high radiative forcing. Despite differences in annual rainfall, similar trends in yield changes were observed for the two sites studied, Hwedza and Makoni. The yield response to delay in planting was nonlinear. Fertilizer increased yield significantly under both baseline and future climates. The response of maize to mineral nitrogen decreased with progressing climate change, implying a decrease in the optimal fertilizer rate in the future. Our results suggest that in the near future, improved crop and soil fertility management will remain important for enhanced maize yield. Towards the end of the 21st century, however, none of the farm management options tested in the study can avoid large yield losses in southern Africa due to climate change. There is a need to transform the current cropping systems of southern Africa to offset the negative impacts of climate change. © 2015 John Wiley & Sons Ltd.

  14. Global climate change and introduced species in United States forests

    Energy Technology Data Exchange (ETDEWEB)

    Simberloff, D. [Department of Ecology and Evolutionary Biology, University of Tennessee, 37996 Knoxville, TN (United States)

    2000-11-15

    Introduced species already cause billions of dollars of damage annually in United States forests, plus massive ecological damage whose economic value has often not been estimated. The variety of impacts is staggering and includes herbivory, predation, disease, parasitism, competition, habitat destruction, hybridization, and changed disturbance regimes and nutrient cycles. How global climate change will affect these impacts has scarcely been assessed. Range changes of existing introduced species will be prominent, as many species' biogeographic ranges are set primarily by climate. Similarly, some species that might otherwise not have survived will be able to establish populations in a changed climate. It is more difficult to predict what the impacts of the introduced species will be. What is most needed are studies of the combined impacts of changing climate, CO{sub 2}, and nutrients. Certain aspects of the biology of introduced species, such as evolution and autonomous dispersal, greatly complicate the prediction of spread and impact of introduced species.

  15. Vegetation dynamic characteristics and its responses to climate change in Jinghe River watershed of Loess Plateau, China

    Science.gov (United States)

    Chang, F.; Liu, W.; Zhou, H.; Ning, T.; Wang, Y.

    2017-12-01

    The Jinghe River is a second-order tributary of the Yellow River, and located in the middle-south part of the Loess Plateau. The watershed area is 45421km², with the mean annual precipitation (P) being about 508mm and aridity index 2.09. For a long time, soil and water loss in this watershed is severe, resulting in very fragile ecological environment. The GIMMS-normalized vegetation index NDVI is used to reflect condition of vegetation cover, and P and Penman potential evapotranspiration (ET) to represent climate water and heat conditions. The annual actual ET is estimated as the difference between P and runoff (ignoring the change of watershed water storage during each hydrological year, May to April of the following year). These concepts were introduced to discuss the dynamic characteristics of vegetation cover and its response to climate change. Results showed that the mean annual NDVI value was 0.51, showing a stable increasing trend from 2000 with an annual increasing rate of 8.7×10¯³. This result is consistent with the implementation of the project that converts farmland to forests and grassland and has achieved remarkable success in the Loess Plateau since 1999. It also indicates that the positive impact of human activity has been strengthened under the background of climate change. From 1982 to 2012, the annual actual ET was 464mm, accounting for 93.6% of annual P over the same period. The NDVI value of main growing season (5-9 months) is significantly correlated with annual P and annual humid index (ratio of annual P to annual potential ET). Vegetation water consumption is the main part of land surface ET, and the relationship between annual actual ET and NDVI value over the same period is also significant. The NDVI value, P and potential ET variation varied substantially within the Jinghe River watershed, and their relationships in different regions at an inter-annual scale are different. Currently, we are investigating the influence of the changes in

  16. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sinkyu [Department of Environmental Science, Kangwon National University, Chunchon, Kangwon-do 200-701 (Korea, Republic of); Kimball, John S.; Running, Steven W. [Numerical Terradynamic Simulation Group, Department of Ecosystem and Conservation Sciences, The University of Montana, Missoula, MT 59812 (United States)

    2006-06-01

    We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km{sup 2} portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO{sub 2}, climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO{sub 2} resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T{sub a}), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 {sup o}C for T{sub a} and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO{sub 2}, climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients. (author)

  17. The effects of climate, permafrost and fire on vegetation change in Siberia in a changing climate

    Energy Technology Data Exchange (ETDEWEB)

    Tchebakova, N M; Parfenova, E [V N Sukachev Institute of Forest, Siberian Branch of the Russian Academy of Sciences, Academgorodok, Krasnoyarsk, 660036 (Russian Federation); Soja, A J, E-mail: ncheby@forest.akadem.r, E-mail: Amber.J.Soja@nasa.go [National Institute of Aerospace (NIA), NASA Langley Research Center, Climate Sciences, 21 Langley Boulevard, Mail Stop 420, Hampton, VA 23681-2199 (United States)

    2009-10-15

    Observations and general circulation model projections suggest significant temperature increases in Siberia this century that are expected to have profound effects on Siberian vegetation. Potential vegetation change across Siberia was modeled, coupling our Siberian BioClimatic Model with several Hadley Centre climate change scenarios for 2020, 2050 and 2080, with explicit consideration of permafrost and fire activity. In the warmer and drier climate projected by these scenarios, Siberian forests are predicted to decrease and shift northwards and forest-steppe and steppe ecosystems are predicted to dominate over half of Siberia due to the dryer climate by 2080. Despite the large predicted increases in warming, permafrost is not predicted to thaw deep enough to sustain dark (Pinus sibirica, Abies sibirica, and Picea obovata) taiga. Over eastern Siberia, larch (Larix dahurica) taiga is predicted to continue to be the dominant zonobiome because of its ability to withstand continuous permafrost. The model also predicts new temperate broadleaf forest and forest-steppe habitats by 2080. Potential fire danger evaluated with the annual number of high fire danger days (Nesterov index is 4000-10 000) is predicted to increase by 2080, especially in southern Siberia and central Yakutia. In a warming climate, fuel load accumulated due to replacement of forest by steppe together with frequent fire weather promotes high risks of large fires in southern Siberia and central Yakutia, where wild fires would create habitats for grasslands because the drier climate would no longer be suitable for forests.

  18. Climate change velocity underestimates climate change exposure in mountainous regions

    Science.gov (United States)

    Solomon Z. Dobrowski; Sean A. Parks

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...

  19. Climate Change And Hydrologic Instability In Yemen

    Science.gov (United States)

    Kelley, C. P.; Funk, C. C.; McNally, A.; Shukla, S.

    2015-12-01

    Yemen is one of the most food insecure nations in the world. Its agriculture is strongly dependent on soil moisture that is heavily influenced by surface temperature and annual precipitation. We examine observations of rainfall and surface temperature and find that the rainfall, which exhibits strong interannual variability, has seen a moderate downward trend over the last 35 years while surface temperature has seen a very significant rise over the same period. Yemen has high vulnerability and low resilience to these climate changes stemming from many geopolitical and socioeconomic factors. The threshold of resilience has been crossed as Yemen is embroiled in chaos and conflict. We examine the relationship between climate change and agricultural and water insecurity using observed data and the Noah land surface model. We further used atmospheric reanalyses to explore the atmospheric teleconnections that affect the anomalous regional circulation. According to these investigations the robust surface temperature increase over recent decades, expected to continue under climate change, has strongly depleted the soil moisture. This drying of the soil exacerbated the acute hydrologic insecurity in Yemen, stemming predominantly from unsustainable groundwater use, and was likely a contributing factor to the ongoing conflict. We show that during naturally occurring dry years and under climate change this region experiences anomalous dry air advection from the northeast and that these regional circulation changes appear to be linked to tropical sea-surface temperature forcing and to the Northern Hemisphere midlatitude circulation. These results are an important example of the emerging influence of climate change in hydrologically insecure regions.

  20. Quantifying the effects of climate and post-fire landscape change on hydrologic processes

    Science.gov (United States)

    Steimke, A.; Han, B.; Brandt, J.; Som Castellano, R.; Leonard, A.; Flores, A. N.

    2016-12-01

    Seasonally snow-dominated, forested mountain watersheds supply water to many human populations globally. However, the timing and magnitude of water delivery from these watersheds has already and will continue to change as the climate warms. Changes in vegetation also affect the runoff response of watersheds. The largest driver of vegetation change in many mountainous regions is wildfire, whose occurrence is affected by both climate and land management decisions. Here, we quantify how direct (i.e. changes in precipitation and temperature) and indirect (i.e. changing fire regimes) effects of climate change influence hydrologic parameters such as dates of peak streamflow, annual discharge, and snowpack levels. We used the Boise River Basin, ID as a model laboratory to calculate the relative magnitude of change stemming from direct and indirect effects of climate change. This basin is relevant to study as it is well-instrumented and major drainages have experienced burning at different spatial and temporal intervals, aiding in model calibration. We built a hydrology-based integrated model of the region using a multiagent simulation framework, Envision. We used a modified HBV (Hydrologiska Byråns Vattenbalansavdelning) rainfall-runoff model and calibrated it to historic streamflow and snowpack observations. We combined a diverse set of climate projections with wildfire scenarios (low vs. high) representing two distinct intervals in the regional historic fire record. In fire simulations, we altered land cover coefficients to reflect a burned state post-fire, which decreased overall evapotranspiration rates and increased water yields. However, direct climate effects had a larger signal on annual variations of hydrologic parameters. By comparing and analyzing scenario outputs, we identified links and sensitivities between land cover and regional hydrology in the context of a changing climate, with potential implications for local land and water managers. In future

  1. Using temporal coherence to determine the response to climate change in Boreal Shield lakes.

    Science.gov (United States)

    Arnott, Shelley E; Keller, Bill; Dillon, Peter J; Yan, Norman; Paterson, Michael; Findlay, David

    2003-01-01

    Climate change is expected to have important impacts on aquatic ecosystems. On the Boreal Shield, mean annual air temperatures are expected to increase 2 to 4 degrees C over the next 50 years. An important challenge is to predict how changes in climate and climate variability will impact natural systems so that sustainable management policies can be implemented. To predict responses to complex ecosystem changes associated with climate change, we used long-term biotic databases to evaluate how important elements of the biota in Boreal Shield lakes have responded to past fluctuations in climate. Our long-term records span a two decade period where there have been unusually cold years and unusually warm years. We used coherence analyses to test for regionally operating controls on climate, water temperature, pH, and plankton richness and abundance in three regions across Ontario: the Experimental Lakes Area, Sudbury, and Dorset. Inter-annual variation in air temperature was similar among regions, but there was a weak relationship among regions for precipitation. While air temperature was closely related to lake surface temperatures in each of the regions, there were weak relationships between lake surface temperature and richness or abundance of the plankton. However, inter-annual changes in lake chemistry (i.e., pH) were correlated with some biotic variables. In some lakes in Sudbury and Dorset, pH was dependent on extreme events. For example, El Nino related droughts resulted in acidification pulses in some lakes that influenced phytoplankton and zooplankton richness. These results suggest that there can be strong heterogeneity in lake ecosystem responses within and across regions.

  2. Greenhouse Gas Induced Changes in the Seasonal Cycle of the Amazon Basin in Coupled Climate-Vegetation Regional Model

    Directory of Open Access Journals (Sweden)

    Flavio Justino

    2016-01-01

    Full Text Available Previous work suggests that changes in seasonality could lead to a 70% reduction in the extent of the Amazon rainforest. The primary cause of the dieback of the rainforest is a lengthening of the dry season due to a weakening of the large-scale tropical circulation. Here we examine these changes in the seasonal cycle. Under present day conditions the Amazon climate is characterized by a zonal separation of the dominance of the annual and semi-annual seasonal cycles. This behavior is strongly modified under greenhouse warming conditions, with the annual cycle becoming dominant throughout the Amazon basin, increasing differences between the dry and wet seasons. In particular, there are substantial changes in the annual cycle of temperature due to the increase in the temperature of the warmest month, but the lengthening of the dry season is believed to be particularly important for vegetation-climate feedbacks. Harmonic analysis performed to regional climate model simulations yields results that differ from the global climate model that it is forced from, with the regional model being more sensitive to changes in the seasonal cycle.

  3. Understanding climatic change

    International Nuclear Information System (INIS)

    Fellous, J.L.; Gautier, C.; Andre, J.C.; Balstad, R.; Boucher, O.; Brasseur, G.; Chahine, M.T.; Chanin, M.L.; Ciais, P.; Corell, W.; Duplessy, J.C.; Hourcade, J.C.; Jouzel, J.; Kaufman, Y.J.; Laval, K.; Le Treut, H.; Minster, J.F.; Moore, B. III; Morel, P.; Rasool, S.I.; Remy, F.; Smith, R.C.; Somerville, R.C.J.; Wood, E.F.; Wood, H.; Wunsch, C.

    2007-01-01

    Climatic change is gaining ground and with no doubt is stimulated by human activities. It is therefore urgent to better understand its nature, importance and potential impacts. The chapters of this book have been written by US and French experts of the global warming question. After a description of the Intergovernmental Panel on Climate Change (IPCC, GIEC in French) consensus, they present the past and present researches on each of the main component of the climate system, on the question of climatic change impacts and on the possible answers. The conclusion summarizes the results of each chapter. Content: presentation of the IPCC; greenhouse effect, radiation balance and clouds; atmospheric aerosols and climatic change; global water cycle and climate; influence of climatic change on the continental hydrologic cycle; ocean and climate; ice and climate; global carbon cycle; about some impacts of climatic change on Europe and the Atlantic Ocean; interaction between atmospheric chemistry and climate; climate and society, the human dimension. (J.S.)

  4. CLIMATE CHANGE, Change International Negociations?

    Institute of Scientific and Technical Information of China (English)

    Gao Xiaosheng

    2009-01-01

    @@ Climate change is one of key threats to human beings who have to deal with.According to Bali Action Plan released after the 2007 Bali Climate Talk held in Indonesia,the United Nations Framework on Climate Change(UNFCCC) has launched a two-year process to negotiate a post-2012 climate arrangement after the Kyoto Protocol expires in 2012 and the Copenhagen Climate Change Conference will seal a final deal on post-2012 climate regime in December,2009.For this,the United Nation Chief Ban Ki Moon called 2009"the year ofclimate change".

  5. Statistically downscaled climate projections to support evaluating climate change risks for hydropower

    International Nuclear Information System (INIS)

    Brekke, L.

    2008-01-01

    This paper described a web-served public access archive of down-scaled climate projections developed as a tool for water managers of river and hydropower systems. The archive provided access to climate projection data at basin-relevant resolution and included an extensive compilation of down-scale climate projects designed to support risk-based adaptation planning. Downscaled translations of 112 contemporary climate projections produced using the World Climate Research Program's coupled model intercomparison project were also included. Datasets for the coupled model included temperature and precipitation, monthly time-steps, and geographic coverage for the United States and portions of Mexico and Canada. It was concluded that the archive will be used to develop risk-based studies on shifts in seasonal patterns, changes in mean annual runoff, and associated responses in water resources and hydroelectric power management. Case studies demonstrating reclamation applications of archive content and potential applications for hydroelectric power production impacts were included. tabs., figs

  6. Distribution of climatic changes during global warming

    Energy Technology Data Exchange (ETDEWEB)

    Vinnikov, K Ya; Kovyneva, N P

    1983-05-01

    Empirical evaluations of the influence of small (scale +/- 0.5/sup 0/C) changes in mean annual air surface temperature in the northern hemisphere on the fields of the mean values of the principal meteorological elements (temperature, pressure, precipitation) are discussed. The archives of climatic data for the last 100 years were subjected to statistical processing. The method is described in detail. 14 references, 5 figures.

  7. Farmers´ perceptions of climate change and agricultural adaptation strategies in rural Sahel

    DEFF Research Database (Denmark)

    Mertz, Ole; Mbow, Cheikh; Reenberg, Anette

    2009-01-01

    Farmers in the Sahel have always been facing climatic variability at intra- and inter-annual and decadal time scales. While coping and adaptation strategies have traditionally included crop diversification, mobility, livelihood diversification, and migration, singling out climate as a direct driver...... of changes is not so simple. Using focus group interviews and a household survey, this study analyzes the perceptions of climate change and the strategies for coping and adaptation by sedentary farmers in the savanna zone of central Senegal. Households are aware of climate variability and identify wind...

  8. Climate change impacts on human exposures to air pollution ...

    Science.gov (United States)

    This is an abstract for a presentations at the Annual Conference of the International Society on Exposure Science and Environmental Epidemiology. This presentation will serve as an introduction to the symposium. As we consider the potential health impacts of a warming planet, the relationships between climate change and air pollutants become increasingly important to understand. These relationships are complex and highly variable, causing a variety of environmental impacts at local, regional and global scales. Human exposures and health impacts for air pollutants have the potential to be altered by changes in climate through multiple factors that drive population exposures to these pollutants. Research on this topic will provide both state and local governments with the tools and scientific knowledge base to undertake any necessary adaptation of the air pollution regulations and/or public health management systems in the face of climate change.

  9. Aridity changes in the Tibetan Plateau in a warming climate

    International Nuclear Information System (INIS)

    Gao, Yanhong; Li, Xia; Xu, Jianwei; Ruby Leung, L.; Chen, Deliang

    2015-01-01

    Desertification in the Tibetan Plateau (TP) has drawn increasing attention in the recent decades. It has been postulated as a consequence of increasing climate aridity due to the observed warming. This study quantifies the aridity changes in the TP and attributes the changes to different climatic factors. Using the ratio of precipitation to potential evapotranspiration (P/PET) as an aridity index, we used observed meteorological records at 83 stations in the TP to calculate PET using the Penman–Monteith algorithm and the ratio. Spatial and temporal changes of P/PET in 1979–2011 were analyzed. Results show that stations located in the arid and semi-arid northwestern TP are becoming significantly wetter, and half of the stations in the semi-humid eastern TP are becoming drier, though not significantly, in the recent three decades. The aridity change patterns are significantly correlated with the change patterns of precipitation, sunshine duration and diurnal temperature range. Temporal correlations between the annual P/PET ratio and other meteorological variables confirm the significant correlation between aridity and the three variables, with precipitation being the dominant driver of P/PET changes at the interannual time scale. Annual PET are insignificantly but negatively correlated with P/PET in the cold season. In the warm season, however, the correlation between PET and P/PET is significant at the confidence level of 99.9% when the cryosphere near the surface melts. Significant correlation between annual wind speed and aridity occurs in limited locations and months. Consistency in the climatology pattern and linear trends in surface air temperature and precipitation calculated using station data, gridded data, and nearest grid-to-stations for the TP average and across sub-basins indicate the robustness of the trends despite the large spatial heterogeneity in the TP that challenge climate monitoring. (letter)

  10. Assessment of Climate Change Effects on Shahcheraghi Reservoir Inflow

    Directory of Open Access Journals (Sweden)

    M. E. Banihabib

    2016-10-01

    Full Text Available Introduction: Forecasting the inflow to the reservoir is important issues due to the limited water resources and the importance of optimal utilization of reservoirs to meet the need for drinking, industry and agriculture in future time periods. In the meantime, ignoring the effects of climate change on meteorological and hydrological parameters and water resources in long-term planning of water resources cause inaccuracy. It is essential to assess the impact of climate change on reservoir operation in arid regions. In this research, climate change impact on hydrological and meteorological variables of the Shahcheragh dam basin, in Semnan Province, was studied using an integrated model of climate change assessment. Materials and Methods: The case study area of this study was located in Damghan Township, Semnan Province, Iran. It is an arid zone. The case study area is a part of the Iran Central Desert. The basin is in 12 km north of the Damghan City and between 53° E to 54° 30’ E longitude and 36° N to 36° 30’ N latitude. The area of the basin is 1,373 km2 with average annual inflow around 17.9 MCM. Total actual evaporation and average annual rainfall are 1,986 mm and 137 mm, respectively. This case study is chosen to test proposed framework for assessment of climate change impact hydrological and meteorological variables of the basin. In the proposed model, LARS-WG and ANN sub-models (7 sub models with a combination of different inputs such as temperature, precipitation and also solar radiation were used for downscaling daily outputs of CGCM3 model under 3 emission scenarios, A2, B1 and A1B and reservoir inflow simulation, respectively. LARS-WG was tested in 99% confidence level before using it as downscaling model and feed-forward neural network was used as raifall-runoff model. Moreover, the base period data (BPD, 1990-2008, were used for calibration. Finally, reservoir inflow was simulated for future period data (FPD of 2015-2044 and

  11. Response of salt-marsh carbon accumulation to climate change.

    Science.gov (United States)

    Kirwan, Matthew L; Mudd, Simon M

    2012-09-27

    About half of annual marine carbon burial takes place in shallow water ecosystems where geomorphic and ecological stability is driven by interactions between the flow of water, vegetation growth and sediment transport. Although the sensitivity of terrestrial and deep marine carbon pools to climate change has been studied for decades, there is little understanding of how coastal carbon accumulation rates will change and potentially feed back on climate. Here we develop a numerical model of salt marsh evolution, informed by recent measurements of productivity and decomposition, and demonstrate that competition between mineral sediment deposition and organic-matter accumulation determines the net impact of climate change on carbon accumulation in intertidal wetlands. We find that the direct impact of warming on soil carbon accumulation rates is more subtle than the impact of warming-driven sea level rise, although the impact of warming increases with increasing rates of sea level rise. Our simulations suggest that the net impact of climate change will be to increase carbon burial rates in the first half of the twenty-first century, but that carbon-climate feedbacks are likely to diminish over time.

  12. Spatiotemporal Exploration of Impacts of Coupled Climate and Socioeconomic Changes on Grassland Ecosystems (Invited)

    Science.gov (United States)

    Xie, Y.

    2013-12-01

    Although the coupled impacts of climate change and human adaptation on land cover change has been a prime research topic in recent years, a majority of reported efforts are examining the coupled effects of climate and socioeconomic factors qualitatively. Even though some are applying statistical methods, they often look into the impacts of coupled climate variations and socioeconomic transformations on land cover changes in a detached or sequential manner, or they handle socioeconomic influences indirectly through land use changes. Very few of them deal with the coupled effects concurrently through times and cross regions. We assimilate a big dataset of climate change, plant community growth condition, and socioeconomic transformation in Inner Mongolia of China. The study area consists of twelve types of plant communities, reflecting an east-to-west water-temperature gradient from moist meadow-type, to typical steppe-type and then to arid desert-type communities. The enhanced vegetation index (EVI), derived from MODIS at a 250 m resolution and 16-day intervals from May 8 to September 28 during 2000-2010, is adopted as a proxy for vegetation growth. The inter-annual and intra-annual changes of seven climate factors (barometric pressure, humidity, precipitation, sunlight hours, temperature, vapor pressure and wind speed) during the same period are synchronized with the EVI observations. Ten socioeconomic variables (urban population, urban GDP, rural GDP, grain output, livestock, fixed assets investment, local government revenue, per capita net income of farmers and pastoralists, the total length of highways, and rural population) are collected over 34 counties in the study area and during the same period. The GIS-based spatial database approach is adopted to integrate all of the above data into a big spatiotemporal dataset. We develop a multi-controlled panel-data regression model to investigate spatiotemporal changes of vegetation growth and their underlying causes

  13. Climate change

    Science.gov (United States)

    Cronin, Thomas M.

    2016-01-01

    Climate change (including climate variability) refers to regional or global changes in mean climate state or in patterns of climate variability over decades to millions of years often identified using statistical methods and sometimes referred to as changes in long-term weather conditions (IPCC, 2012). Climate is influenced by changes in continent-ocean configurations due to plate tectonic processes, variations in Earth’s orbit, axial tilt and precession, atmospheric greenhouse gas (GHG) concentrations, solar variability, volcanism, internal variability resulting from interactions between the atmosphere, oceans and ice (glaciers, small ice caps, ice sheets, and sea ice), and anthropogenic activities such as greenhouse gas emissions and land use and their effects on carbon cycling.

  14. Climate change and watershed mercury export: a multiple projection and model analysis.

    Science.gov (United States)

    Golden, Heather E; Knightes, Christopher D; Conrads, Paul A; Feaster, Toby D; Davis, Gary M; Benedict, Stephen T; Bradley, Paul M

    2013-09-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling. Copyright © 2013 SETAC.

  15. Climate change and watershed mercury export: a multiple projection and model analysis

    Science.gov (United States)

    Golden, Heather E.; Knightes, Christopher D.; Conrads, Paul; Feaster, Toby D.; Davis, Gary M.; Benedict, Stephen T.; Bradley, Paul M.

    2013-01-01

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. An ensemble of watershed models was applied in the present study to simulate and evaluate the responses of hydrological and total Hg (THg) fluxes from the landscape to the watershed outlet and in-stream THg concentrations to contrasting climate change projections for a watershed in the southeastern coastal plain of the United States. Simulations were conducted under stationary atmospheric deposition and land cover conditions to explicitly evaluate the effect of projected precipitation and temperature on watershed Hg export (i.e., the flux of Hg at the watershed outlet). Based on downscaled inputs from 2 global circulation models that capture extremes of projected wet (Community Climate System Model, Ver 3 [CCSM3]) and dry (ECHAM4/HOPE-G [ECHO]) conditions for this region, watershed model simulation results suggest a decrease of approximately 19% in ensemble-averaged mean annual watershed THg fluxes using the ECHO climate-change model and an increase of approximately 5% in THg fluxes with the CCSM3 model. Ensemble-averaged mean annual ECHO in-stream THg concentrations increased 20%, while those of CCSM3 decreased by 9% between the baseline and projected simulation periods. Watershed model simulation results using both climate change models suggest that monthly watershed THg fluxes increase during the summer, when projected flow is higher than baseline conditions. The present study's multiple watershed model approach underscores the uncertainty associated with climate change response projections and their use in climate change management decisions. Thus, single-model predictions can be misleading, particularly in developmental stages of watershed Hg modeling.

  16. Climate variability and climate change

    International Nuclear Information System (INIS)

    Rind, D.

    1990-01-01

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century

  17. Approximating uncertainty of annual runoff and reservoir yield using stochastic replicates of global climate model data

    Science.gov (United States)

    Peel, M. C.; Srikanthan, R.; McMahon, T. A.; Karoly, D. J.

    2015-04-01

    Two key sources of uncertainty in projections of future runoff for climate change impact assessments are uncertainty between global climate models (GCMs) and within a GCM. Within-GCM uncertainty is the variability in GCM output that occurs when running a scenario multiple times but each run has slightly different, but equally plausible, initial conditions. The limited number of runs available for each GCM and scenario combination within the Coupled Model Intercomparison Project phase 3 (CMIP3) and phase 5 (CMIP5) data sets, limits the assessment of within-GCM uncertainty. In this second of two companion papers, the primary aim is to present a proof-of-concept approximation of within-GCM uncertainty for monthly precipitation and temperature projections and to assess the impact of within-GCM uncertainty on modelled runoff for climate change impact assessments. A secondary aim is to assess the impact of between-GCM uncertainty on modelled runoff. Here we approximate within-GCM uncertainty by developing non-stationary stochastic replicates of GCM monthly precipitation and temperature data. These replicates are input to an off-line hydrologic model to assess the impact of within-GCM uncertainty on projected annual runoff and reservoir yield. We adopt stochastic replicates of available GCM runs to approximate within-GCM uncertainty because large ensembles, hundreds of runs, for a given GCM and scenario are unavailable, other than the Climateprediction.net data set for the Hadley Centre GCM. To date within-GCM uncertainty has received little attention in the hydrologic climate change impact literature and this analysis provides an approximation of the uncertainty in projected runoff, and reservoir yield, due to within- and between-GCM uncertainty of precipitation and temperature projections. In the companion paper, McMahon et al. (2015) sought to reduce between-GCM uncertainty by removing poorly performing GCMs, resulting in a selection of five better performing GCMs from

  18. Climate Change Sensitivity of Multi-Species Afforestation in Semi-Arid Benin

    Directory of Open Access Journals (Sweden)

    Florent Noulèkoun

    2018-06-01

    Full Text Available The early growth stage is critical in the response of trees to climate change and variability. It is not clear, however, what climate metrics are best to define the early-growth sensitivity in assessing adaptation strategies of young forests to climate change. Using a combination of field experiments and modelling, we assessed the climate sensitivity of two promising afforestation species, Jatropha curcas L. and Moringa oleifera Lam., by analyzing their predicted climate–growth relationships in the initial two years after planting on degraded cropland in the semi-arid zone of Benin. The process-based WaNuLCAS model (version 4.3, World Agroforestry Centre, Bogor, Indonesia was used to simulate aboveground biomass growth for each year in the climate record (1981–2016, either as the first or as the second year of tree growth. Linear mixed models related the annual biomass growth to climate indicators, and climate sensitivity indices quantified climate–growth relationships. In the first year, the length of dry spells had the strongest effect on tree growth. In the following year, the annual water deficit and length of dry season became the strongest predictors. Simulated rooting depths greater than those observed in the experiments enhanced biomass growth under extreme dry conditions and reduced sapling sensitivity to drought. Projected increases in aridity implied significant growth reduction, but a multi-species approach to afforestation using species that are able to develop deep-penetrating roots should increase the resilience of young forests to climate change. The results illustrate that process-based modelling, combined with field experiments, can be effective in assessing the climate–growth relationships of tree species.

  19. The effect of climate change on electricity expenditures in Massachusetts

    International Nuclear Information System (INIS)

    Véliz, Karina D.; Kaufmann, Robert K.; Cleveland, Cutler J.; Stoner, Anne M.K.

    2017-01-01

    Climate change affects consumer expenditures by altering the consumption of and price for electricity. Previous analyses focus solely on the former, which implicitly assumes that climate-induced changes in consumption do not affect price. But this assumption is untenable because a shift in demand alters quantity and price at equilibrium. Here we present the first empirical estimates for the effect of climate change on electricity prices. Translated through the merit order dispatch of existing capacity for generating electricity, climate-induced changes in daily and monthly patterns of electricity consumption cause non-linear changes in electricity prices. A 2 °C increase in global mean temperature increases the prices for and consumption of electricity in Massachusetts USA, such that the average household’s annual expenditures on electricity increase by about 12%. Commercial customers incur a 9% increase. These increases are caused largely by higher prices for electricity, whose impacts on expenditures are 1.3 and 3.6 fold larger than changes in residential and commercial consumption, respectively. This suggests that previous empirical studies understate the effects of climate change on electricity expenditures and that policy may be needed to ensure that the market generates investments in peaking capacity to satisfy climate-driven changes in summer-time consumption. - Highlights: • Climate change increases summer peak of load curve in US state of Massachusetts. • Climate change increases electricity prices more than consumption. • Previous studies understate the effect of climate change on electricity expenditures. • Adaptation that reduces electricity demand may reduce the price effect. • Adaptation may raise prices by increasing capacity but lowering utilization rate.

  20. Potential impact of climate change on air pollution-related human health effects.

    Science.gov (United States)

    Tagaris, Efthimios; Liao, Kuo-Jen; Delucia, Anthony J; Deck, Leland; Amar, Praveen; Russell, Armistead G

    2009-07-01

    The potential health impact of ambient ozone and PM2.5 concentrations modulated by climate change over the United States is investigated using combined atmospheric and health modeling. Regional air quality modeling for 2001 and 2050 was conducted using CMAQ Modeling System with meteorology from the GISS Global Climate Model, downscaled regionally using MM5,keeping boundary conditions of air pollutants, emission sources, population, activity levels, and pollution controls constant. BenMap was employed to estimate the air pollution health outcomes at the county, state, and national level for 2050 caused by the effect of meteorology on future ozone and PM2.5 concentrations. The changes in calculated annual mean PM2.5 concentrations show a relatively modest change with positive and negative responses (increasing PM2.5 levels across the northeastern U.S.) although average ozone levels slightly decrease across the northern sections of the U.S., and increase across the southern tier. Results suggest that climate change driven air quality-related health effects will be adversely affected in more then 2/3 of the continental U.S. Changes in health effects induced by PM2.5 dominate compared to those caused by ozone. PM2.5-induced premature mortality is about 15 times higher then that due to ozone. Nationally the analysis suggests approximately 4000 additional annual premature deaths due to climate change impacts on PM2.5 vs 300 due to climate change-induced ozone changes. However, the impacts vary spatially. Increased premature mortality due to elevated ozone concentrations will be offset by lower mortality from reductions in PM2.5 in 11 states. Uncertainties related to different emissions projections used to simulate future climate, and the uncertainties forecasting the meteorology, are large although there are potentially important unaddressed uncertainties (e.g., downscaling, speciation, interaction, exposure, and concentration-response function of the human health studies).

  1. Climate for Change?

    DEFF Research Database (Denmark)

    Wejs, Anja

    Cities rather than national governments take the lead in acting on climate change. Several cities have voluntarily created climate change plans to prevent and prepare for the effects of climate change. In the literature climate change has been examined as a multilevel governance area taking place...... around international networks. Despite the many initiatives taken by cities, existing research shows that the implementation of climate change actions is lacking. The reasons for this scarcity in practice are limited to general explanations in the literature, and studies focused on explaining...... the constraints on climate change planning at the local level are absent. To understand these constraints, this PhD thesis investigates the institutional dynamics that influence the process of the integration of climate change into planning practices at the local level in Denmark. The examination of integration...

  2. Optimal adaptation to extreme rainfalls under climate change

    Science.gov (United States)

    Rosbjerg, Dan

    2017-04-01

    More intense and frequent rainfalls have increased the number of urban flooding events in recent years, prompting adaptation efforts. Economic optimization is considered an efficient tool to decide on the design level for adaptation. The costs associated with a flooding to the T-year level and the annual capital and operational costs of adapting to this level are described with log-linear relations. The total flooding costs are developed as the expected annual damage of flooding above the T-year level plus the annual capital and operational costs for ensuring no flooding below the T-year level. The value of the return period T that corresponds to the minimum of the sum of these costs will then be the optimal adaptation level. The change in climate, however, is expected to continue in the next century, which calls for expansion of the above model. The change can be expressed in terms of a climate factor (the ratio between the future and the current design level) which is assumed to increase in time. This implies increasing costs of flooding in the future for many places in the world. The optimal adaptation level is found for immediate as well as for delayed adaptation. In these cases the optimum is determined by considering the net present value of the incurred costs during a sufficiently long time span. Immediate as well as delayed adaptation is considered.

  3. Climate variability and climate change

    International Nuclear Information System (INIS)

    Rind, D.

    1991-01-01

    Changes of variability with climate change are likely to have a substantial impact on vegetation and society, rivaling the importance of changes in the mean values themselves. A variety of paleoclimate and future climate simulations performed with the GISS global climate model is used to assess how the variabilities of temperature and precipitation are altered as climate warms or cools. In general, as climate warms, temperature variability decreases due to reductions in the latitudinal temperature gradient and precipitation variability increases together with the intensity of the hydrologic cycle. If future climate projections are accurate, the reduction in temperature variability will be minimized by the rapid change in mean temperatures, but the hydrologic variability will be amplified by increased evapotranspiration. Greater hydrologic variability would appear to pose a potentially severe problem for the next century. 19 refs.; 3 figs.; 2 tabs

  4. Synchronism of runoff response to climate change in Kaidu River Basin in Xinjiang, Northwest China

    Institute of Scientific and Technical Information of China (English)

    Jie Xue; JiaQiang Lei; DongWei Gui; JianPing Zhao; DongLei Mao; Jie Zhou

    2016-01-01

    The runoff in alpine river basins where the runoff is formed in nearby mountainous areas is mainly affected by temperature and precipitation. Based on observed annual mean temperature, annual precipitation, and runoff time-series datasets during 1958–2012 within the Kaidu River Basin, the synchronism of runoff response to climate change was analyzed and iden-tified by applying several classic methods, including standardization methods, Kendall's W test, the sequential version of the Mann-Kendall test, wavelet power spectrum analysis, and the rescaled range (R/S) approach. The concordance of the nonlinear trend variations of the annual mean temperature, annual precipitation, and runoff was tested significantly at the 0.05 level by Kendall's W method. The sequential version of the Mann-Kendall test revealed that abrupt changes in annual runoff were synchronous with those of annual mean temperature. The periodic characteristics of annual runoff were mainly consistent with annual precipitation, having synchronous 3-year significant periods and the same 6-year, 10-year, and 38-year quasi-periodicities. While the periodic characteristics of annual runoff in the Kaidu River Basin tracked well with those of annual precipitation, the abrupt changes in annual runoff were synchronous with the annual mean temperature, which directly drives glacier- and snow-melt processes. R/S analysis indicated that the annual mean temperature, annual precipitation, and runoff will continue to increase and remain synchronously persistent in the future. This work can im-prove the understanding of runoff response to regional climate change to provide a viable reference in the management of water resources in the Kaidu River Basin, a regional sustainable socio-economic development.

  5. The impact of climate changes on rivers discharge in Eastern Romania

    Science.gov (United States)

    Croitoru, Adina-Eliza; Minea, Ionus

    2015-05-01

    Climate changes imply many changes in different socioeconomic and environmental fields. Among the most important impacts are changes in water resources. Long- and mid-term river discharge flow analysis is essential for the effective management of water resources. In this work, the changes in temperature, precipitation, and river discharges as well as the connections between precipitation and river discharges were investigated. Seasonal and annual climatic and hydrological data collected at 6 weather stations and 17 hydrological stations were employed. The data sets cover 57 years (1950-2006). The modified Mann-Kendall test and Sen's slope were used to calculate trends and their slopes, whereas the Bravais-Pearson correlation index was chosen to detect the connections between precipitation and river discharge data series. The main findings are as follows: a general increase was identified in all the three variables; the air temperature data series showed the highest frequency of statistically significant slopes, mainly in annual and spring series; all data series, except the series for winter, showed an increase in precipitation, and in winter, a significant decrease in precipitation was observed at most of the stations. The increase in precipitation is reflected in the upward trends of the river discharge flows, as verified by the good Bravais-Pearson correlations, mainly for annual, summer, and autumn series.

  6. Climate change impacts on the temperature of recharge water in a temporate climate

    Science.gov (United States)

    Murdock, E. A.

    2015-12-01

    Groundwater outflows into headwater streams play an important role in controlling local stream temperature and maintaining habitat for cool and cold water fisheries. Because of the ecological and economic importance of these fisheries, there is significant concern about the impacts of climate change on these habitats. Many studies of stream temperature changes under climate change assume that groundwater outflows will vary with long-term mean air temperature, perhaps with a temporal lag to account for the relatively slow rate of heat diffusion through soils. This assumption, however, ignores the fact that climate change will also impact the temporal patterns of recharge in some regions. In Southern Wisconsin, much of the annual recharge comes from the spring snowmelt event, as a large amount of meltwater is released onto saturated soils with little to no active transpiration. Using the Simultaneous Heat and Water (SHAW) model populated with climate date from the North American Regional Climate Change Assessment Program (NARCCAP), we show that the temperature of water passing below the rooting zone in a simulated corn planting in Southern Wisconsin will change significantly less than the air temperature by midcentury. This finding highlights the importance of understanding the variability of heat flow mechanisms in the subsurface while assessing climate change impacts on surface water resources. In landscapes such as Wisconsin's driftless area, where deep aquifers feed numerous localized headwater streams, meltwater-driven recharge may provide a buffer against rising air temperatures for some time into the future. Fully understanding this dynamic will allow for targeted conservation efforts in those streams that are likely to show higher than average resilience to rising temperatures, but which remain vulnerable to development, stormwater runoff, agricultural pollution and other ecological threats. In a world with dwindling coldwater resources, identifying and

  7. Average monthly and annual climate maps for Bolivia

    KAUST Repository

    Vicente-Serrano, Sergio M.; El Kenawy, Ahmed M.; Azorin-Molina, Cesar; Chura, O.; Trujillo, F.; Aguilar, Enric; Martí n-Herná ndez, Natalia; Ló pez-Moreno, Juan Ignacio; Sanchez-Lorenzo, Arturo; Morá n-Tejeda, Enrique; Revuelto, Jesú s; Ycaza, P.; Friend, F.

    2015-01-01

    This study presents monthly and annual climate maps for relevant hydroclimatic variables in Bolivia. We used the most complete network of precipitation and temperature stations available in Bolivia, which passed a careful quality control

  8. Climate change impact on operation of dams and hydroelectricity generation in the Northeastern United States

    Science.gov (United States)

    Ehsani, N.; Vorosmarty, C. J.; Fekete, B. M.

    2016-12-01

    We are using a large-scale, high-resolution, fully integrated hydrological/reservoir/hydroelectricity model to investigate the impact of climate change on the operation of 11037 dams and generation of electricity from 375 hydroelectric power plants in the Northeastern United States. Moreover, we estimate the hydropower potential of the region by energizing the existing non-powered dams and then studying the impact of climate change on the hydropower potential. We show that climate change increases the impact of dams on the hydrology of the region. Warmer temperatures produce shorter frozen periods, earlier snowmelt and elevated evapotranspiration rates, which when combined with changes in precipitation, are projected to increase water availability in winter but reduce it during summer. As a result, the water that is stored by dams will be more than ever a necessary part of the routine water systems operations to compensate for these seasonal imbalances. The function of dams as emergency water storage for creating drought resiliency will mostly diminish in the future. Building more dams to cope with the local impacts of climate change on water resources and to offset the increased drought vulnerability may thus be inevitable. Annual hydroelectricity generation in the region is 41 Twh. Our estimate of the annual hydropower potential of non-powered dams adds up to 350 Twh. Climate change may reduce hydropower potential from non-powered dams by up to 13% and reduce current hydroelectricity generation by up to 8% annually. Hydroelectricity generation and hydropower potential may increase in winter months and decline in months of summer and fall. These changes call for recalibration of dam operations and may raise conflict of interests in multipurpose dams.

  9. Resilience and vulnerability of permafrost to climate change

    Science.gov (United States)

    M.Torre Jorgenson; Vladimir Romanovsky; Jennifer Harden; Yuri Shur; Jonathan O' Donnell; Edward A.G. Schuur; Mikhail Kanevskiy; Sergei. Marchenko

    2010-01-01

    The resilience and vulnerability of permafrost to climate change depends on complex interactions among topography, water, soil, vegetation, and snow, which allow permafrost to persist at mean annual air temperatures (MAATs) as high as +2 °C and degrade at MAATs as low as -20°C. To assess these interactions, we compiled existing data and tested effects of varying...

  10. Climate change and health: global to local influences on disease risk.

    Science.gov (United States)

    Patz, J A; Olson, S H

    2006-01-01

    The World Health Organization has concluded that the climatic changes that have occurred since the mid 1970s could already be causing annually over 150,000 deaths and five million disability-adjusted life-years (DALY), mainly in developing countries. The less developed countries are, ironically, those least responsible for causing global warming. Many health outcomes and diseases are sensitive to climate, including: heat-related mortality or morbidity; air pollution-related illnesses; infectious diseases, particularly those transmitted, indirectly, via water or by insect or rodent vectors; and refugee health issues linked to forced population migration. Yet, changing landscapes can significantly affect local weather more acutely than long-term climate change. Land-cover change can influence micro-climatic conditions, including temperature, evapo-transpiration and surface run-off, that are key determinants in the emergence of many infectious diseases. To improve risk assessment and risk management of these synergistic processes (climate and land-use change), more collaborative efforts in research, training and policy-decision support, across the fields of health, environment, sociology and economics, are required.

  11. Human-experienced temperature changes exceed global average climate changes for all income groups

    Science.gov (United States)

    Hsiang, S. M.; Parshall, L.

    2009-12-01

    Global climate change alters local climates everywhere. Many climate change impacts, such as those affecting health, agriculture and labor productivity, depend on these local climatic changes, not global mean change. Traditional, spatially averaged climate change estimates are strongly influenced by the response of icecaps and oceans, providing limited information on human-experienced climatic changes. If used improperly by decision-makers, these estimates distort estimated costs of climate change. We overlay the IPCC’s 20 GCM simulations on the global population distribution to estimate local climatic changes experienced by the world population in the 21st century. The A1B scenario leads to a well-known rise in global average surface temperature of +2.0°C between the periods 2011-2030 and 2080-2099. Projected on the global population distribution in 2000, the median human will experience an annual average rise of +2.3°C (4.1°F) and the average human will experience a rise of +2.4°C (4.3°F). Less than 1% of the population will experience changes smaller than +1.0°C (1.8°F), while 25% and 10% of the population will experience changes greater than +2.9°C (5.2°F) and +3.5°C (6.2°F) respectively. 67% of the world population experiences temperature changes greater than the area-weighted average change of +2.0°C (3.6°F). Using two approaches to characterize the spatial distribution of income, we show that the wealthiest, middle and poorest thirds of the global population experience similar changes, with no group dominating the global average. Calculations for precipitation indicate that there is little change in average precipitation, but redistributions of precipitation occur in all income groups. These results suggest that economists and policy-makers using spatially averaged estimates of climate change to approximate local changes will systematically and significantly underestimate the impacts of climate change on the 21st century population. Top: The

  12. Seasonal and inter-annual variability of the net ecosystem CO2 exchange of a temperate mountain grassland: effects of climate and management.

    Science.gov (United States)

    Wohlfahrt, Georg; Hammerle, Albin; Haslwanter, Alois; Bahn, Michael; Tappeiner, Ulrike; Cernusca, Alexander

    2008-04-27

    The role and relative importance of climate and cutting for the seasonal and inter-annual variability of the net ecosystem CO 2 (NEE) of a temperate mountain grassland was investigated. Eddy covariance CO 2 flux data and associated measurements of the green area index and the major environmental driving forces acquired during 2001-2006 at the study site Neustift (Austria) were analyzed. Driven by three cutting events per year which kept the investigated grassland in a stage of vigorous growth, the seasonal variability of NEE was primarily modulated by gross primary productivity (GPP). The role of environmental parameters in modulating the seasonal variability of NEE was obscured by the strong response of GPP to changes in the amount of green area, as well as the cutting-mediated decoupling of phenological development and the seasonal course of climate drivers. None of the climate and management metrics examined was able to explain the inter-annual variability of annual NEE. This is thought to result from (1) a high covariance between GPP and ecosystem respiration (R eco ) at the annual time scale which results in a comparatively small inter-annual variation of NEE, (2) compensating effects between carbon exchange during and outside the management period, and (3) changes in the biotic response to rather than the climate variables per se. GPP was more important in modulating inter-annual variations in NEE in spring and before the first and second cut, while R eco explained a larger fraction of the inter-annual variability of NEE during the remaining, in particular the post-cut, periods.

  13. The impact of climate change on hydro-electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Musy, A.; Music, B.; Roy, R. [Ouranos, Montreal, PQ (Canada)

    2008-07-01

    Hydroelectricity is a clean and renewable energy source for many countries, and is expected to play an important role in future energy supplies. However, the impact of climatic change on hydroelectricity resources is not yet understood. This study provided a critical review of current methods used to determine the potential impacts of climatic change on hydroelectric power production. General circulation models (GCMs) are used to predict future climate conditions under various greenhouse gas (GHG) emissions scenarios. Statistical techniques are then used to down-scale GCM outputs to the appropriate scales needed for hydrological models, which are then used to simulate the effects of climatic change at regional and local scales. Outputs from the models are then used to develop water management models for hydroelectric power production. Observed linear trends in annual precipitation during the twentieth century were provided. The theoretical advantages and disadvantages of various modelling techniques were reviewed. Risk assessment strategies for Hydro-Quebec were also outlined and results of the study will be used to guide research programs for the hydroelectric power industry. refs., tabs., figs.

  14. The impact of climate change on hydro-electricity generation

    International Nuclear Information System (INIS)

    Musy, A.; Music, B.; Roy, R.

    2008-01-01

    Hydroelectricity is a clean and renewable energy source for many countries, and is expected to play an important role in future energy supplies. However, the impact of climatic change on hydroelectricity resources is not yet understood. This study provided a critical review of current methods used to determine the potential impacts of climatic change on hydroelectric power production. General circulation models (GCMs) are used to predict future climate conditions under various greenhouse gas (GHG) emissions scenarios. Statistical techniques are then used to down-scale GCM outputs to the appropriate scales needed for hydrological models, which are then used to simulate the effects of climatic change at regional and local scales. Outputs from the models are then used to develop water management models for hydroelectric power production. Observed linear trends in annual precipitation during the twentieth century were provided. The theoretical advantages and disadvantages of various modelling techniques were reviewed. Risk assessment strategies for Hydro-Quebec were also outlined and results of the study will be used to guide research programs for the hydroelectric power industry. refs., tabs., figs

  15. American archives and climate change: Risks and adaptation

    Directory of Open Access Journals (Sweden)

    T. Mazurczyk

    Full Text Available Climate change directly affects the future security of cultural resources. Cultural heritage and in particular, archives, are increasingly at risk of degradation due to climate change threats and triggers. This study evaluated present and future consequences of water-related climate change impacts using a mapping methodology to assess exposure of American archives to incompatible weather extremes. Susceptibility to climate change threats like sea level rise, storm surge, surface water flooding, and humidity, all influenced by a combination of temperature rise and increased precipitation, at a worst-case scenario were assessed for 1232 archival repositories. Results indicate that approximately 98.8% of archives are likely to be affected by at least one climate risk factor, though on average, most archives are at low risk of exposure (90% when risk factors are combined. Future storm surge plus sea level rise was likely to impact 17.7% of archival repositories with 22.1% affected by only storm surge and 4.3% affected by only sea level rise (1.8-m scenario. Fewer archives were likely to be susceptible to surface water flooding (2.4%. More than 90% of archives were estimated to have a temperature change greater than ±1 °C, with 7.5% of sites likely to change by ±10 °C, and 69.5% of archives were likely to receive at least 152 mm more rainfall by 2100 over current annual averages. In terms of sustainability, developing appropriate socio-economic planning schemes that integrate cumulative exposure of archives to future climate patterns is critically important for safeguarding society and its heritage. The outcomes from the risk assessment in this study aid in the decision-making process by promoting strategic adaptation protocols and providing administrators a way to prioritize archival management goals based on the expected severity of future climate change impacts. Keywords: Archives, Climate change, Sea level rise, Storm surge, Cultural

  16. Climate Change and Tropical Total Lightning

    Science.gov (United States)

    Albrecht, R.; Petersen, W.; Buechler, D.; Goodman, S.; Blakeslee, R.; Christian, H.

    2009-01-01

    While global warming is regarded as a fact by many in the scientific community, its future impact remains a challenge to be determined and measured. The International Panel on Climate Change (IPCC) assessment report (IPCC, 2007) shows inconclusive answers on global rainfall trends and general agreement on a future drier climate with increased global warming. The relationship between temperature, humidity and convection is not linear and is strongly dependent on regional scale features, such as topography and land cover. Furthermore, the relationship between convective lightning production (thunderstorms) and temperature is even more complicated, being subjected to the cloud dynamics and microphysics. Total lightning (intracloud and cloud-to-ground) monitoring is a relatively new field of observation. Global and tropical total lightning began to be more extensively measured by satellites in the mid 90s. In this scope, the Lightning Imaging Sensor (LIS) onboard of the Tropical Rainfall Measurement Mission (TRMM) has been operational for over 11 years. Here we address total lightning trends observed by LIS from 1998 to 2008 in different temporal (annual and seasonal) and spatial (large and regional) scales. The observed 11-year trends are then associate to different predicted/hypothesized climate change scenarios.

  17. Projected impacts of climate change on hydropower potential in China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingcai; Tang, Qiuhong; Voisin, Nathalie; Cui, Huijuan

    2016-01-01

    Hydropower is an important renewable energy source in China, but it is sensitive to climate change, because the changing climate may alter hydrological conditions (e.g., river flow and reservoir storage). Future changes and associated uncertainties in China's gross hydropower potential (GHP) and developed hydropower potential (DHP) are projected using simulations from eight global hydrological models (GHMs), including a large-scale reservoir regulation model, forced by five general circulation models (GCMs) with climate data under two representative concentration pathways (RCP2.6 and RCP8.5). Results show that the estimation of the present GHP of China is comparable to other studies; overall, the annual GHP is projected to change by −1.7 to 2 % in the near future (2020–2050) and increase by 3 to 6 % in the late 21st century (2070–2099). The annual DHP is projected to change by −2.2 to −5.4 % (0.7–1.7 % of the total installed hydropower capacity (IHC)) and −1.3 to −4 % (0.4–1.3 % of total IHC) for 2020–2050 and 2070–2099, respectively. Regional variations emerge: GHP will increase in northern China but decrease in southern China – mostly in south central China and eastern China – where numerous reservoirs and large IHCs currently are located. The area with the highest GHP in southwest China will have more GHP, while DHP will reduce in the regions with high IHC (e.g., Sichuan and Hubei) in the future. The largest decrease in DHP (in %) will occur in autumn or winter, when streamflow is relatively low and water use is competitive. Large ranges in hydropower estimates across GHMs and GCMs highlight the necessity of using multimodel assessments under climate change conditions. This study prompts the consideration of climate change in planning for hydropower development and operations in China, to be further combined with a socioeconomic analysis for strategic expansion.

  18. Comparative study on change in groundwaters of rural and urban areas in Korea: effects of climate change

    Science.gov (United States)

    Yun, Sang Woong; Seul Kim, Ye; Kim, Dong Hyun; Kim, Ho Chul; Shin, Min Cheol; Park, Jae Yong; Kim, Heejung; Lee, Jin-Yong

    2013-04-01

    Groundwater occupies a considerable proportion of the world's water resources and is affected by climate change. It is important to understand how water budget responds to future precipitation variability for sustainable management of groundwater resources. In order to evaluate the effects of climate change on groundwater resources in the future, it is necessary to not only collect field data but also predict groundwater change using some groundwater numerical modelling. In this study, a relevant climate change scenario (RCP 4.5) was adopted and Visual MODFLOW was used as a main tool for predicting water budget. The predicted precipitation and air temperature data were obtained from Climate Change Information Center (CCIC) of Korea. By using the data on the scenario from 2011 to 2100, the future water budget was calculated using groundwater numerical modelling for both Wonju (WJ: urban area) and Yanggu (YG: rural area) of Gangwon Province in Korea. The model calibration was done by the groundwater level measured at 10 monitoring wells. For the numerical prediction, the groundwater recharge (WJ: 10.1%, YG: 13.3%) was estimated using watertable fluctuation (WTF) method and a concept of threshold precipitation (WJ: 240.5 mm, YG: 363.8 mm) was applied. Consequently, the water levels in both Wonju and Yanggu showed gradually increasing trends and ranged from 3.0 to 10.8 m, from 0.5 to 1.8 m in 2100, respectively. Under annual precipitation fluctuation on the scenario (2011-2100), water budget IN-OUT value (-0.87~1.07 m3/day) in Wonju city gradually increases while that (-0.73~0.46 m3/day) of Yanggu county does not. However, its annual difference is enlarged with year for both areas. The results indicate that securing groundwater resource and its management will be difficult because of frequent annual change of the groundwater storage. This work was supported by Science High School R&E program (No. C1008804-01-01) and the National Research Foundation of Korea (NRF) grant

  19. Quantifying impacts of historical climate change in American River basin

    Science.gov (United States)

    Sultana, R.

    2017-12-01

    There is a near consensus among scientists that climate has been changing for the last few decades in different parts of the world. Some regions are already experiencing the impacts of these changes. Warmer climate can alter the hydrology and water resources around the globe. Historical data shows the temperature has been rising in California and affecting California's water resource by reducing snowfall and snowmelt runoff during spring season. In this study, Soil and Water Assessment Tool (SWAT) model is used to simulate the historical climate in American River basin, a mountainous watershed in California. The results show that warmer climate in the recent decades (1995-2014) have already have affected streamflow characteristics of the watershed. Compared to the 1965-1974, the mean annual streamflow has decreased more than 6% and the peak streamflow has shifted from May to April. Understanding the changes will assist the water resource managers with valuable insight on the effectiveness of mitigation strategies considered as of now.

  20. [Environmental pollution, climate variability and climate change: a review of health impacts on the Peruvian population].

    Science.gov (United States)

    Gonzales, Gustavo F; Zevallos, Alisson; Gonzales-Castañeda, Cynthia; Nuñez, Denisse; Gastañaga, Carmen; Cabezas, César; Naeher, Luke; Levy, Karen; Steenland, Kyle

    2014-01-01

    This article is a review of the pollution of water, air and the effect of climate change on the health of the Peruvian population. A major air pollutant is particulate matter less than 2.5 μ (PM 2.5). In Lima, 2,300 premature deaths annually are attributable to this pollutant. Another problem is household air pollution by using stoves burning biomass fuels, where excessive indoor exposure to PM 2.5 inside the household is responsible for approximately 3,000 annual premature deaths among adults, with another unknown number of deaths among children due to respiratory infections. Water pollution is caused by sewage discharges into rivers, minerals (arsenic) from various sources, and failure of water treatment plants. In Peru, climate change may impact the frequency and severity of El Niño Southern Oscillation (ENSO), which has been associated with an increase in cases of diseases such as cholera, malaria and dengue. Climate change increases the temperature and can extend the areas affected by vector-borne diseases, have impact on the availability of water and contamination of the air. In conclusion, Peru is going through a transition of environmental risk factors, where traditional and modern risks coexist and infectious and chronic problems remain, some of which are associated with problems of pollution of water and air.

  1. Predictions of potential geographical distribution and quality of Schisandra sphenanthera under climate change

    Directory of Open Access Journals (Sweden)

    Yanlong Guo

    2016-10-01

    Full Text Available Climate change will significantly affect plant distribution as well as the quality of medicinal plants. Although numerous studies have analyzed the effect of climate change on future habitats of plants through species distribution models (SDMs, few of them have incorporated the change of effective content of medicinal plants. Schisandra sphenanthera Rehd. et Wils. is an endangered traditional Chinese medical plant which is mainly located in the Qinling Mountains. Combining fuzzy theory and a maximum entropy model, we obtained current spatial distribution of quality assessment for S. spenanthera. Moreover, the future quality and distribution of S. spenanthera were also projected for the periods 2020s, 2050s and 2080s under three different climate change scenarios (SRES-A1B, SRES-A2 and SRES-B1 emission scenarios described in the Special Report on Emissions Scenarios (SRES of IPCC (Intergovernmental Panel on Climate Change. The results showed that the moderately suitable habitat of S. sphenanthera under all climate change scenarios remained relatively stable in the study area. The highly suitable habitat of S. sphenanthera would gradually decrease in the future and a higher decline rate of the highly suitable habitat area would occur under climate change scenarios SRES-A1B and SRES-A2. The result suggested that in the study area, there would be no more highly suitable habitat areas for S. sphenanthera when the annual mean temperature exceeds 20 °C or its annual precipitation exceeds 1,200 mm. Our results will be influential in the future ecological conservation and management of S. sphenanthera and can be taken as a reference for habitat suitability assessment research for other medicinal plants.

  2. Climate change and associated spatial heterogeneity of Pakistan: Empirical evidence using multidisciplinary approach.

    Science.gov (United States)

    Ali, Ghaffar

    2018-09-01

    Climate change is a multidimensional phenomenon, which has various implications for the environment and socio-economic conditions of the people. Its effects are deeper in an agrarian economy which is susceptible to the vagaries of nature. Therefore, climate change directly impacts the society in different ways, and society must pay the cost. Focusing on this truth, the main objective of this research was to investigate the empirical changes and spatial heterogeneity in the climate of Pakistan in real terms using time series data. Climate change and variability in Pakistan, over time, were estimated from 1961 to 2014 using all the climate variables for the very first time. Several studies were available on climate change impacts, mitigation, and adaptation; however, it was difficult to observe exactly how much change occurred in which province and when. A multidisciplinary approach was utilized to estimate the absolute change through a combination of environmental, econometric, and remote sensing methods. Moreover, the Autoregressive Distributed Lag (ARDL) model was used to ascertain the extent of variability in climate change and information was digitalized through ground truthing. Results showed that the average temperature of Pakistan increased by 2°C between 1960 and 1987 and 4°C between 1988 and 2014, and R 2 was 0.978. The rate of temperature increased 0.09°C between 1960 and 2014. The mean annual precipitation of Pakistan increased by 478mm, and its R 2 were 0.34-0.64. The mean annual humidity of Pakistan increased by 2.94%, and the rate of humidity has been increased by 0.97% from 1988 to 2014. Notably, Sindh and Balochistan provinces have shown a significant spatial heterogeneity regarding the increase in precipitation. Statistically all variables are significant. This would serve as a baseline information for climate change-related studies in Pakistan and its application in different sectors. This would also serve the plant breeders and policymakers of

  3. Climate Change Mitigation A Balanced Approach to Climate Change

    CERN Document Server

    2012-01-01

    This book provides a fresh and innovative perspective on climate change policy. By emphasizing the multiple facets of climate policy, from mitigation to adaptation, from technological innovation and diffusion to governance issues, it contains a comprehensive overview of the economic and policy dimensions of the climate problem. The keyword of the book is balance. The book clarifies that climate change cannot be controlled by sacrificing economic growth and many other urgent global issues. At the same time, action to control climate change cannot be delayed, even though gradually implemented. Therefore, on the one hand climate policy becomes pervasive and affects all dimensions of international policy. On the other hand, climate policy cannot be too ambitious: a balanced approach between mitigation and adaptation, between economic growth and resource management, between short term development efforts and long term innovation investments, should be adopted. I recommend its reading. Carlo Carraro, President, Ca�...

  4. Cinematic climate change, a promising perspective on climate change communication.

    Science.gov (United States)

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions. © The Author(s) 2014.

  5. Environmental pollution, climate variability and climate change: a review of health impacts on the peruvian population

    OpenAIRE

    Gonzales, Gustavo F.; Instituto de Investigaciones de la Altura. Lima, Perú. Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Lima, Perú. Academia Nacional de Ciencias. Lima, Perú. Doctor en Ciencias y doctor en Medicina; Zevallos, Alisson; Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Lima, Perú. estudiante de Biología; Gonzales-Castañeda, Cynthia; Instituto de Investigaciones de la Altura. Lima, Perú. Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Lima, Perú. Philosophal Doctor; Nuñez, Denisse; Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Lima, Perú. estudiante de Biología; Gastañaga, Carmen; Instituto Nacional de Salud. Lima, Perú. médico cirujano; Cabezas, César; Instituto Nacional de Salud. Lima, Perú. médico infectólogo; Naeher, Luke; University of Georgia. Georgia, EE. UU. Philosophal Doctor; Levy, Karen; University of Emory. Georgia. EE. UU. Philosophal Doctor; Steenlan, Kyle; University of Emory. Georgia. EE. UU. Philosophal Doctor

    2014-01-01

    This article is a review of the pollution of water, air and the effect of climate change on the health of the Peruvian population. A major air pollutant is particulate matter less than 2.5 μ (PM 2.5). In Lima, 2,300 premature deaths annually are attributable to this pollutant. Another problem is household air pollution by using stoves burning biomass fuels, where excessive indoor exposure to PM 2.5 inside the household is responsible for approximately 3,000 annual premature deaths among adult...

  6. Managing Climate Change Refugia for Climate Adaptation

    Science.gov (United States)

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  7. Managing climate change refugia for climate adaptation

    Science.gov (United States)

    Morelli, Toni L.; Jackson, Stephen T.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  8. Assessment of climate change impacts on runoff in China using climate elasticity and multiple CMIP5 GCMs

    Science.gov (United States)

    Wu, C.; Hu, B. X.; Wang, P.; Xu, K.

    2017-12-01

    The occurrence of climate warming is unequivocal and is expected to alter the temporal-spatial patterns of regional water resources. Based on the long-term (1960-2012) water budget data and climate projections from 28 Global Climate Models (GCMs) of the Coupled Model Intercomparison Project Phase 5 (CMIP5), this study investigated the responses of runoff (R) to future climate variability in China at both grid and catchment scales using the Budyko-based elasticity method. Results indicate a large spatial variation in precipitation (P) elasticity (from 1.2 to 3.3) and potential evaporation (PET) elasticity (from -2.3 to -0.2) across China. The P elasticity is larger in northeast and western China than in southern China, while the opposite occurs for PET elasticity. Climate projections suggest that there is large uncertainty involved among the GCM simulations, but most project a consistent change in P (or PET) over China at the mean annual scale. During the future period of 2071-2100, the mean annual P will likely increase in most parts of China particularly the western regions, while the mean annual PET will likely increase in the whole China especially the southern regions due to future increases in temperature. Moreover, larger increases are projected for higher emission scenarios. Compared with the baseline 1971-2000, the arid regions and humid regions of China will likely become wetter and drier in the period 2071-2100, respectively.

  9. Wildfire Suppression Costs for Canada under a Changing Climate.

    Directory of Open Access Journals (Sweden)

    Emily S Hope

    Full Text Available Climate-influenced changes in fire regimes in northern temperate and boreal regions will have both ecological and economic ramifications. We examine possible future wildfire area burned and suppression costs using a recently compiled historical (i.e., 1980-2009 fire management cost database for Canada and several Intergovernmental Panel on Climate Change (IPCC climate projections. Area burned was modelled as a function of a climate moisture index (CMI, and fire suppression costs then estimated as a function of area burned. Future estimates of area burned were generated from projections of the CMI under two emissions pathways for four General Circulation Models (GCMs; these estimates were constrained to ecologically reasonable values by incorporating a minimum fire return interval of 20 years. Total average annual national fire management costs are projected to increase to just under $1 billion (a 60% real increase from the 1980-2009 period under the low greenhouse gas emissions pathway and $1.4 billion (119% real increase from the base period under the high emissions pathway by the end of the century. For many provinces, annual costs that are currently considered extreme (i.e., occur once every ten years are projected to become commonplace (i.e., occur once every two years or more often as the century progresses. It is highly likely that evaluations of current wildland fire management paradigms will be necessary to avoid drastic and untenable cost increases as the century progresses.

  10. Indications of climatic change

    International Nuclear Information System (INIS)

    2005-04-01

    The earth's annual mean global temperature increased by around 0,6 C during the 20 century, with wide regional differences. Even if solar activity has played some part in the mean temperature rise and some greenhouse gases are present naturally in the atmosphere, enhancing of the greenhouse effect due to the human activities is responsible for a large and increasing part of the observed warming. The work of the Intergovernmental Panel on Climate Change confirms the future increase under all scenarios. Depending on the efforts made by mankind to limit greenhouse gases emissions, the global mean temperature in 2100 could be between 1,4 and 5,8 C higher than in 2000. (A.L.B.)

  11. Lake sediment records of Quaternary climate change

    International Nuclear Information System (INIS)

    Moy, C.

    2012-01-01

    Lake sediment records provide an excellent means to reconstruct past climate and environmental change because they typically provide long, high-resolution and continuous archives of environmental change. Lake sediment records typically exhibit high sedimentation rates (centennial to millennial scale variability is common and annual resolution is possible in some sites), contain sedimentary components well-suited for a multi-proxy approach, multiple dating methods can be applied, tend to exhibit a broad geographic distribution, and are relatively accessible. Furthermore, a number of geochemical techniques can be applied to reconstruct components of the climate system based on the stable isotope geochemistry of carbonate or organic phases preserved and exposed in lacustrine sediment cores. Various stable isotope methods can be applied to lacustrine systems and these are a valuable tool that can be used to monitor physical processes (e.g. evaporation), vegetation dynamics within the watershed (C 3 vs C 4 plant distributions), biologic processes (aquatic productivity), all of which can be driven by a regional climate forcing. (author). 31 refs., 11 figs., 1 tab.

  12. The Impacts of Climate Variability and Land Use Change on Streamflow in the Hailiutu River Basin

    Directory of Open Access Journals (Sweden)

    Guangwen Shao

    2018-06-01

    Full Text Available The Hailiutu River basin is a typical semi-arid wind sandy grass shoal watershed in northwest China. Climate and land use have changed significantly during the period 1970–2014. These changes are expected to impact hydrological processes in the basin. The Mann–Kendall (MK test and sequential t-test analysis of the regime shift method were used to detect the trend and shifts of the hydrometeorological time series. Based on the analyzed results, seven scenarios were developed by combining different land use and/or climate situations. The Soil Water Assessment Tool (SWAT model was applied to analyze the impacts of climate variability and land use change on the values of the hydrological components. The China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS was applied to enhance the spatial expressiveness of precipitation data in the study area during the period 2008–2014. Rather than solely using observed precipitation or CMADS precipitation, the precipitation values of CMADS and the observed precipitation values were combined to drive the SWAT model for better simulation results. From the trend analysis, the annual streamflow and wind speed showed a significant downward trend. No significant trend was found for the annual precipitation series; however, the temperature series showed upward trends. With the change point analysis, the whole study period was divided into three sub-periods (1970–1985, 1986–2000, and 2001–2014. The annual precipitation, mean wind speed, and average temperature values were 316 mm, 2.62 m/s, and 7.9 °C, respectively, for the sub-period 1970–1985, 272 mm, 2.58 m/s, and 8.4 °C, respectively, for the sub-period 1986–2000, and 391 mm, 2.2 m/s, and 9.35 °C, respectively, for the sub-period 2001–2014. The simulated mean annual streamflow was 35.09 mm/year during the period 1970–1985. Considering the impact of the climate variability, the simulated mean annual streamflow values were

  13. Implications of climate change scenarios for soil erosion potential in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, D L; White, D; Johnson, B [US EPA, Corvallis, OR (United States). Environmental Research Laboratory

    1993-07-01

    Atmospheric general circulation models (GCMs) project that increasing atmospheric concentrations of greenhouse gases may result in global changes in temperature and precipitation over the next 40-100 years. Equilibrium climate scenarios from four GCMs run under doubled CO[sub 2] conditions were examined for their effect on the climatic potential for sheet and rill erosion in the conterminous USA. Changes in the mean annual rainfall factor (R) in the Universal Soil Loss Equation (USLE) were calculated for each cropland, pastureland and rangeland sample point in the 1987 National Resources Inventory. Projected annual precipitation changes were assumed to be from differences in either storm frequency or storm intensity. With all other USLE factors held constant these changes in R translated to changes in the sheet and rill erosion national average of +2 to +16 per cent in croplands, -2 to +10 per cent in pasturelands and 5 to +22 per cent in rangelands under the eight scenarios. Land with erosion rates above the soil loss tolerance (T) level and land classified as highly erodible also increased slightly. These results show the range of sensitivity of soil erosion potential by water under projected climate change scenarios. However, actual changes in soil erosion could be mitigated by management practices, or possibly by increased crop growth and residue production under higher atmospheric CO[sub 2] concentrations.

  14. The influence of climate change on meteorological drought characteristic in Taiwan

    International Nuclear Information System (INIS)

    Pao-Shan Yu; Chun-Chao Kuo; Chi-Wen Sung

    2004-01-01

    Global climate change and its influence on water resource are the worldwide issues. This study aims at investigating the impacts of climate change on drought characteristic in western Taiwan. This analysis on local climate change, may provide the reference for climate change study on Asia region. Thirty-one rainfall stations with at least 80 years records over western Taiwan provide the data set to analysis trend and change in the long term rainfall series. As the area of Taiwan is too small, the GCM is not suitable for our investigation on climate change. Therefore, the statistical methods of Cumulative Deviations test, Kruskal-Wallis test and Mann-Whitney-Pettitt test were applied to detect the change points of annual rainfall depth and detect whether the long-term rainfall series exist variation and tendency in the historical records. The analytical results reveal that a significant change point occurs during about 1960s for annual rainfall series. Two samples in the long- tern rainfall series are further divided based on this change point. Yearly rainfall depth increases in northern Taiwan and decreases in middle and southern Taiwan. Average values and standard deviation of monthly rainfall depth in these two samples are compared. A stable reducing tendency of average rainfall in the wet seasons (May to October) is found in middle and southern Taiwan and increasing tendency in northern Taiwan. We further investigate whether drought characteristic is difference before and after 1960. Nine irrigation areas in Taiwan are divided based on its irrigation system. Standardized Precipitation Index (SPI) is estimated and compared with historical agriculture drought. It is found that 3-month SPI has better characteristic than 1-month SPI to respond the agriculture drought characteristic. Therefore, 3-month SPI for each irrigation area is estimated both before and after 1960. It is found that the frequency and duration of moderate dry (3-month SPI<-1.0) and severely dry

  15. Hydrological Impacts of Climate Change: A Case Study on the Ebro River Basin (Spain)

    Science.gov (United States)

    Zambrano-Bigiarini, M.; Bellin, A.; Majone, B.; Bovolo, C. I.; Blenkinsop, S.

    2009-12-01

    Uncertainty in projections from climate models limits the understanding of future hydrological impacts and complicates the assessment of mitigation policies. This work presents hydrological simulations of the Ebro River Basin (Spain), using both control (1961-1990) and future (2071-2100) climate scenarios, in order to investigate the effect of climate change on the water availability of the basin. Using the SWAT model, hydrological simulations were carried out for four catchments with different climatological regimes. Sets of model parameters were identified using sensitivity analysis, long-term calibration and uncertainty analysis procedures, which enabled the historical behaviour of the catchments to be reproduced. Following validation, the parameters were used to simulate the effects of climate change on future streamflow. Bias-corrected daily time series of precipitation and mean temperature from an ensemble of 6 Regional Climate Models (RCMs), using the SRES A2 emissions scenario, were used as drivers of the hydrological simulations during the future scenarios. Important annual and seasonal differences in the projected future precipitation and temperature fields were observed among the RCMs. However, a general decrease in annual mean precipitation and an increase in annual mean temperature relative to the control period were observed, with the strongest differences during the summer season. When these changes were used to project future streamflows, a general decrease was observed at the outlet of the catchments. Changes in streamflows were in general agreement with the projections of daily precipitation and temperature fields, with a larger drop in predicted monthly streamflows for catchments with more semi-arid climatological regimes, and seasonal differences that are related to the elevation range of the catchments.

  16. Changing heathlands in a changing climate

    DEFF Research Database (Denmark)

    Ransijn, Johannes

    Atmospheric CO2 concentrations and temperatures are rising and precipitation regimes are changing at global scale. How ecosystem will be affected by global climatic change is dependent on the responses of plants and plant communities. This thesis focuses on how climate change affects heathland...... plant communities. Many heathlands have shifted from dwarf shrub dominance to grass dominance and climatic change might affect the competitive balance between dwarf shrubs and grasses. We looked at heathland vegetation dynamics and heathland plant responses to climatic change at different spatial...... between C. vulgaris and D. flexuosa in the same climate change experiment and 5) a study where we compared the responses of shrubland plant communities to experimental warming and recurrent experimental droughts in seven climate change experiments across Europe. Heathland vegetation dynamics are slow...

  17. Strategic Program for Biodiversity and Water Resource Management and Climate Change Adaptation in Pakistan

    Science.gov (United States)

    Sher, Hassan; Aldosari, Ali

    2014-05-01

    Population pressure, climate change and resulting extreme weather scenarios, armed con?ict and economic pressure have put the situation of Pakistan's biodiversity at risk. Melting glaciers, deforestation, erosion, landslides and depletion of agricultural areas are aggravating the regulation of water ?ow in Pakistan. In Pakistan agro-biodiversity is central to human survival and play vital role in the economy of the country. It contributes 21% to the GDP, employs 45% of the labor force and contributes 71% of the export earnings. Agro- biodiversity in Pakistan is greatly affected by short term climate variability and could be harmed signi?cantly by long-term climate change. As the duration of crop growth cycle is related to temperature, an increase in temperature will speed up crop growth and shorten the duration between sowing and harvesting. This shortening could have an adverse effect on productivity of crops. The present assessment also revealed that hydrological cycle is also likely to be in?uenced by global warming. Since the agricultural crops are heavily dependent on the water, and water resources are inextricably linked with climate; therefore, the projected climate change has serious implications for water resources of the country. The freshwater resources, in Pakistan, are based on snow- and glacier-melt and monsoon rains, both being highly sensitive to climate change. The country speci?c current information strongly suggests that: decrease in glacier volume and snow cover leading to alterations in the seasonal ?ow pattern of Indus River System; increased annual ?ows for a few decades followed by decline in ?ows in subsequent years; increase in the formation and burst of glacial lakes; higher frequency and intensity of extreme climate events coupled with irregular monsoon rains causing frequent ?oods and droughts; and greater demand of water due to higher evapotranspiration rates at elevated temperatures. These trends will have large impact on the spatial

  18. Climate change and climate policy

    International Nuclear Information System (INIS)

    Alfsen, Knut H.; Kolshus, Hans H.; Torvanger, Asbjoern

    2000-08-01

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done to curtail the emission of

  19. Impact of the climate change to shallow groundwater in Baltic artesian basin

    Science.gov (United States)

    Lauva, D.; Bethers, P.; Timuhins, A.; Sennikovs, J.

    2012-04-01

    The purpose of our work was to find the long term pattern of annual shallow ground water changes in region of Latvia, ground water level modelling for the contemporary climate and future climate scenarios and the model generalization to the Baltic artesian basin (BAB) region. Latvia is located in the middle part of BAB. It occupies about 65'000 square kilometers. BAB territory (480'000 square kilometres) also includes Lithuania, Estonia as well as parts of Poland, Russia, Belarus and the Baltic Sea. Territory of BAB is more than seven times bigger than Latvia. Precipitation and spring snow melt are the main sources of the ground water recharge in BAB territory. The long term pattern of annual shallow ground water changes was extracted from the data of 25 monitoring wells in the territory of Latvia. The main Latvian groundwater level fluctuation regime can be described as a function with two maximums (in spring and late autumn) and two minimums (in winter and late summer). The mathematical model METUL (developed by Latvian University of Agriculture) was chosen for the ground water modelling. It was calibrated on the observations in 25 gauging wells around Latvia. After the calibration we made calculations using data provided by an ensemble of regional climate models, yielding a continuous groundwater table time-series from 1961 to 2100, which were analysed and split into 3 time windows for further analysis: contemporary climate (1961-1990), near future (2021-2050) and far future (2071-2100). The daily average temperature, precipitation and humidity time series were used as METUL forcing parameters. The statistical downscaling method (Sennikovs and Bethers, 2009) was applied for the bias correction of RCM calculated and measured variables. The qualitative differences in future and contemporary annual groundwater regime are expected. The future Latvian annual groundwater cycle according to the RCM climate projection changes to curve with one peak and one drought point

  20. Optimization of annual energy demand in office buildings under the influence of climate change in Chile

    International Nuclear Information System (INIS)

    Rubio-Bellido, Carlos; Pérez-Fargallo, Alexis; Pulido-Arcas, Jesús A.

    2016-01-01

    Numerous studies about climate change have emerged in recent years because of their potential impact on many activities of human life, amongst which, the building sector is no exception. Changes in climate conditions have a direct influence on the external conditions for buildings and, thus, on their energy demand. In this context, computer aided simulation provides handy tools that help in assessing this impact. This paper investigates climate data for future scenarios and the effect on energy demand in office buildings in Chile. This data has been generated in the 9 climatic zones that are representative of the main inhabited areas, for the years 2020, 2050 and 2080. Predictions have been produced for the acknowledged A2 ‘medium-high’ Greenhouse Gases emissions GHG scenario, pursuant the Intergovernmental Panel on Climate Change (IPCC). The effect of climate change on the energy demand for office buildings is optimized by implementing the calculation procedure of ISO-13790:2008, based on iterations of its envelope and form. As a result, this research clarifies how future climate scenarios will affect the energy demand for different types of office buildings in Chile, and how their shape and enclosure can be optimized. - Highlights: • Forecast of 9 Chilean climate zones under Greenhouse Gases Scenario A2. • Influence of envelope and form on future energy demand in office buildings. • Multiple iterations on Form Ratio (FR) and Window-to-Wall Ratio (WWR). • Optimization in early stages of design considering global warming.

  1. Possible effects of climatic change on estimated crop yields in Canada: A review

    International Nuclear Information System (INIS)

    Stewart, R.

    1990-01-01

    An overview is presented of research relating to the possible effects of climatic change on crop yields in Canada. Possible changes in the long-term climate resulting from a doubling in atmospheric carbon dioxide would have a major impact on agriculture in Canada. The Goddard Institute for Space Studies' general circulation model suggests that Canada will be significantly warmer and somewhat drier, with an annual temperature increase of more than 3 degree C and an annual precipitation increase of 11-13%. The increased annual precipitation will not compensate for the increased temperatures, and most agricultural regions will be somewhat drier. Current crop varieties and cropping systems will be unsuitable. Existing varieties will be eliminated or moved north into more suitable agricultural areas. Longer growing season varieties or alternative crops will be required for existing agricultural areas. Production opportunities for hard and soft winter wheat, corn, soybeans, horticulture and tender fruits could be enhanced. 21 refs

  2. Climate change in Inner Mongolia from 1955 to 2005-trends at regional, biome and local scales

    Energy Technology Data Exchange (ETDEWEB)

    Lu, N; Wilske, B; John, R; Chen, J [Department of Environmental Sciences, University of Toledo, Toledo, OH 43606 (United States); Ni, J, E-mail: nan.lu@utoledo.ed, E-mail: burkhard.wilske@utoledo.ed, E-mail: jni@ibcas.ac.c, E-mail: ranjeet.john@utoledo.ed, E-mail: jiquan.chen@utoledo.ed [Alfred Wegener Institute for Polar and Marine Research, Telegrafenberg A43, D-14473 Potsdam (Germany)

    2009-10-15

    This study investigated the climate change in Inner Mongolia based on 51 meteorological stations from 1955 to 2005. The climate data was analyzed at the regional, biome (i.e. forest, grassland and desert) and station scales, with the biome scale as our primary focus. The climate records showed trends of warmer and drier conditions in the region. The annual daily mean, maximum and minimum temperature increased whereas the diurnal temperature range (DTR) decreased. The decreasing trend of annual precipitation was not significant. However, the vapor pressure deficit (VPD) increased significantly. On the decadal scale, the warming and drying trends were more significant in the last 30 years than the preceding 20 years. The climate change varied among biomes, with more pronounced changes in the grassland and the desert biomes than in the forest biome. DTR and VPD showed the clearest inter-biome gradient from the lowest rate of change in the forest biome to the highest rate of change in the desert biome. The rates of change also showed large variations among the individual stations. Our findings correspond with the IPCC predictions that the future climate will vary significantly by location and through time, suggesting that adaptation strategies also need to be spatially viable.

  3. Climate change in Inner Mongolia from 1955 to 2005-trends at regional, biome and local scales

    International Nuclear Information System (INIS)

    Lu, N; Wilske, B; John, R; Chen, J; Ni, J

    2009-01-01

    This study investigated the climate change in Inner Mongolia based on 51 meteorological stations from 1955 to 2005. The climate data was analyzed at the regional, biome (i.e. forest, grassland and desert) and station scales, with the biome scale as our primary focus. The climate records showed trends of warmer and drier conditions in the region. The annual daily mean, maximum and minimum temperature increased whereas the diurnal temperature range (DTR) decreased. The decreasing trend of annual precipitation was not significant. However, the vapor pressure deficit (VPD) increased significantly. On the decadal scale, the warming and drying trends were more significant in the last 30 years than the preceding 20 years. The climate change varied among biomes, with more pronounced changes in the grassland and the desert biomes than in the forest biome. DTR and VPD showed the clearest inter-biome gradient from the lowest rate of change in the forest biome to the highest rate of change in the desert biome. The rates of change also showed large variations among the individual stations. Our findings correspond with the IPCC predictions that the future climate will vary significantly by location and through time, suggesting that adaptation strategies also need to be spatially viable.

  4. Climate change and water supply and demand in western Canada

    International Nuclear Information System (INIS)

    Lawford, R.G.

    1990-01-01

    There is reason to be concerned that water resources on the Canadian Prairies could be at considerable risk due to climatic change. The Canadian Prairies frequently experience variations in the climate, which can reduce crop production by 25-50% and annual volumetric river flows by 70-90%. The potential impacts of climatic change on the Prairies are discussed. Consumptive water uses on the Prairies are dominated by irrigation and the water demands arising from thermal power generation. The overall effect of climatic change on water supplies will depend on the ways in which the various components of the hydrological cycle are affected. At the present time it is unsure whether complementary equations are more realistic in estimating evaporation than mass balance techniques. There is a need to obtain good baseline data which will allow the unequivocal resolution of the most accurate technique for estimating evaporation on the Prairies. Climate change could lead to a decrease in spring runoff, and would also lead to earlier snowmelt and peak flows. This could lead to a longer period of low flows during the summer and fall and a further drawdown of moisture reserves. Some appropriate strategies for adapting to climate change would be: encouraging water conservation; reductions in agricultural water use by developing/utilizing strains of plants with lower water demand; controlling new water developments; and enhancing on-farm retention. 10 refs

  5. Climate variability and change

    International Nuclear Information System (INIS)

    Manton, M.

    2006-01-01

    When Australia's climate should not be definite barrier to the population reaching 30 million by 2050, it is recognised that our climate has limited the development of the nation over the past 200 years. Indeed in 1911, based on a comparison of the climate and development between the US and Australia. Griffith Taylor predicted that Australia's population would be 19 million at the end of the 20th century, which is a pretty good 90-year forecast. The climate constraint is not only due to much of the country being semi-arid with an annual rainfall below 400 millimetres, but also due to the large year-to-year variability of rainfall across the country

  6. Vulnerability of Agriculture to Climate Change as Revealed by Relationships between Simulated Crop Yield and Climate Change Indices

    Science.gov (United States)

    King, A. W.; Absar, S. M.; Nair, S.; Preston, B. L.

    2012-12-01

    The vulnerability of agriculture is among the leading concerns surrounding climate change. Agricultural production is influenced by drought and other extremes in weather and climate. In regions of subsistence farming, worst case reductions in yield lead to malnutrition and famine. Reduced surplus contributes to poverty in agrarian economies. In more economically diverse and industrialized regions, variations in agricultural yield can influence the regional economy through market mechanisms. The latter grows in importance as agriculture increasingly services the energy market in addition to markets for food and fiber. Agriculture is historically a highly adaptive enterprise and will respond to future changes in climate with a variety of adaptive mechanisms. Nonetheless, the risk, if not expectation, of increases in climate extremes and hazards exceeding historical experience motivates scientifically based anticipatory assessment of the vulnerability of agriculture to climate change. We investigate the sensitivity component of that vulnerability using EPIC, a well established field-scale model of cropping systems that includes the simulation of economic yield. The core of our analysis is the relationship between simulated yield and various indices of climate change, including the CCI/CLIVAR/JCOM ETCCDI indices, calculated from weather inputs to the model. We complement this core with analysis using the DSSAT cropping system model and exploration of relationships between historical yield statistics and climate indices calculated from weather records. Our analyses are for sites in the Southeast/Gulf Coast region of the United States. We do find "tight" monotonic relationships between annual yield and climate for some indices, especially those associated with available water. More commonly, however, we find an increase in the variability of yield as the index value becomes more extreme. Our findings contribute to understanding the sensitivity of crop yield as part of

  7. CLIMATE CHANGE AND ESSENTIAL ANNUAL CROP PRODUCTION. A VIEW FROM FOOD SECURITY IN CHILE

    Directory of Open Access Journals (Sweden)

    CARLOS MÉNDEZ NOTARI

    2017-09-01

    Full Text Available This research has the objective of analyzing whether the public policies that today define the rules for productive development in agriculture can mitigate the effects related to global warming and if these are sufficient to prevent the pressing of climate change over the difficulties already existing in the agricultural sector or, to prevent the emergence of new risk factors or threats that affect the country’s food security. It also seeks to propose some recommendations for the design of public policies to minimize the risks and threats related to the adaptation of agricultural production to climate change and, therefore, to ensure physical, social and economic access to sufficient food and nutritious foods that meet the needs of the national population and mitigate its effects on the multidimensional sphere of the security. In this sense, we try to answer the following question: What challenges does climate change pose to Chilean agriculture in terms of food security?

  8. Changes in Vegetation Growth Dynamics and Relations with Climate over China’s Landmass from 1982 to 2011

    Directory of Open Access Journals (Sweden)

    Guang Xu

    2014-04-01

    Full Text Available Understanding how the dynamics of vegetation growth respond to climate change at different temporal and spatial scales is critical to projecting future ecosystem dynamics and the adaptation of ecosystems to global change. In this study, we investigated vegetated growth dynamics (annual productivity, seasonality and the minimum amount of vegetated cover in China and their relations with climatic factors during 1982–2011, using the updated Global Inventory Modeling and Mapping Studies (GIMMS third generation global satellite Advanced Very High Resolution Radiometer (AVHRR Normalized Difference Vegetation Index (NDVI dataset and climate data acquired from the National Centers for Environmental Prediction (NCEP. Major findings are as follows: (1 annual mean NDVI over China significantly increased by about 0.0006 per year from 1982 to 2011; (2 of the vegetated area in China, over 33% experienced a significant positive trend in vegetation growth, mostly located in central and southern China; about 21% experienced a significant positive trend in growth seasonality, most of which occurred in northern China (>35°N; (3 changes in vegetation growth dynamics were significantly correlated with air temperature and precipitation (p < 0.001 at a region scale; (4 at the country scale, changes in NDVI was significantly and positively correlated with annual air temperature (r = 0.52, p < 0.01 and not associated with annual precipitation (p > 0.1; (5 of the vegetated area, about 24% showed significant correlations between annual mean NDVI and air temperature (93% positive and remainder negative, and 12% showed significant correlations of annual mean NDVI with annual precipitation (65% positive and 35% negative. The spatiotemporal variations in vegetation growth dynamics were controlled primarily by temperature and secondly by precipitation. Vegetation growth was also affected by human activities; and (6 monthly NDVI was significantly correlated with the

  9. A demographic approach to study effects of climate change in desert plants

    Science.gov (United States)

    Salguero-Gómez, Roberto; Siewert, Wolfgang; Casper, Brenda B.; Tielbörger, Katja

    2012-01-01

    Desert species respond strongly to infrequent, intense pulses of precipitation. Consequently, indigenous flora has developed a rich repertoire of life-history strategies to deal with fluctuations in resource availability. Examinations of how future climate change will affect the biota often forecast negative impacts, but these—usually correlative—approaches overlook precipitation variation because they are based on averages. Here, we provide an overview of how variable precipitation affects perennial and annual desert plants, and then implement an innovative, mechanistic approach to examine the effects of precipitation on populations of two desert plant species. This approach couples robust climatic projections, including variable precipitation, with stochastic, stage-structured models constructed from long-term demographic datasets of the short-lived Cryptantha flava in the Colorado Plateau Desert (USA) and the annual Carrichtera annua in the Negev Desert (Israel). Our results highlight these populations' potential to buffer future stochastic precipitation. Population growth rates in both species increased under future conditions: wetter, longer growing seasons for Cryptantha and drier years for Carrichtera. We determined that such changes are primarily due to survival and size changes for Cryptantha and the role of seed bank for Carrichtera. Our work suggests that desert plants, and thus the resources they provide, might be more resilient to climate change than previously thought. PMID:23045708

  10. Responsibility for private sector adaptation to climate change

    Directory of Open Access Journals (Sweden)

    Tina Schneider

    2014-06-01

    Full Text Available The Intergovernmental Panel on Climate Change (2007 indicates that vulnerable industries should adapt to the increasing likelihood of extreme weather events along with slowly shifting mean annual temperatures and precipitation patterns, to prevent major damages or periods of inoperability in the future. Most articles in the literature on business management frame organizational adaptation to climate change as a private action. This makes adaptation the sole responsibility of a company, for its sole benefit, and overlooks the fact that some companies provide critical goods and services such a food, water, electricity, and medical care, that are so vital to society that even a short-term setback in operations could put public security at risk. This raises the following questions: (1 Who is responsible for climate change adaptation by private-sector suppliers of critical infrastructure? (2 How can those who are identified to be responsible, actually be held to assume their responsibility for adapting to climate change? These questions will be addressed through a comprehensive review of the literature on business management, complemented by a review of specialized literature on public management. This review leads to several conclusions. Even though tasks that formerly belonged to the state have been taken over by private companies, the state still holds ultimate responsibility in the event of failure of private-sector owned utilities, insofar as they are "critical infrastructure." Therefore, it remains the state's responsibility to foster adaptation to climate change with appropriate action. In theory, effective ways of assuming this responsibility, while enabling critical infrastructure providers the flexibility adapt to climate change, would be to delegate adaptation to an agency, or to conduct negotiations with stakeholders. In view of this theory, Germany will be used as a case study to demonstrate how private-sector critical infrastructure

  11. Climate change, fire and the carbon balance

    International Nuclear Information System (INIS)

    Amiro, B.; Flannigan, M.

    2004-01-01

    On average, forest fires have burned 2 to 3 million hectares annually in Canada over the last twenty years. Over the last 40 years, this amounts to 20 per cent of the amount of carbon released through fossil fuel emissions in Canada. This paper analyses the extent to which climate change may contribute to a disturbance in the carbon balance due to increased fire activity. In addition, data from FLUXNET-Canada was examined, indicating that carbon fluxes from younger forests show dramatic changes in diurnal carbon flux patterns, caused by reduced photosynthetic uptake during the day and less root respiration at night. Increases in fire are expected throughout much of the boreal forest towards the end of this century, with a lengthening of the fire season and increases in severity and intensity. It was concluded that there is the possibility of a positive feedback, where climate change could cause more fires, resulting in a greater release of carbon and thereby increasing greenhouse gas concentrations. Evidence that smoke promoted positive lightning strikes while reducing precipitation was also presented. It was suggested that certain self-limiting factors may prevent a run-away scenario. Changes to human and lightning ignition patterns, for example, may have an impact. It was also suggested that research efforts should focus on refining climate change estimates that account for landscape change and other aspects that control fire in Canada. 9 refs., 2 figs

  12. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2017

    Science.gov (United States)

    Varela Minder, Elda

    2018-04-19

    IntroductionThe year 2017 was a year of review and renewal for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). The Southeast, Northwest, Alaska, Southwest, and North Central CSCs’ 5-year summary review reports were released in 2017 and contain the findings of the external review teams led by the Cornell University Human Dimensions Research Unit in conjunction with the American Fisheries Society. The reports for the Pacific Islands, South Central, and Northeast CSCs are planned for release in 2018. The reviews provide an opportunity to evaluate aspects of the cooperative agreement, such as the effectiveness of the CSC in meeting project goals and assessment of the level of scientific contribution and achievement. These reviews serve as a way for the CSCs and NCCWSC to look for ways to recognize and enhance our network’s strengths and identify areas for improvement. The reviews were followed by the CSC recompetition, which led to new hosting agreements at the Northwest, Alaska, and Southeast CSCs. Learn more about the excellent science and activities conducted by the network centers in the 2017 annual report.

  13. Emissions pathways, climate change, and impacts on California

    Science.gov (United States)

    Hayhoe, Katharine; Cayan, Daniel; Field, Christopher B.; Frumhoff, Peter C.; Maurer, Edwin P.; Miller, Norman L.; Moser, Susanne C.; Schneider, Stephen H.; Cahill, Kimberly Nicholas; Cleland, Elsa E.; Dale, Larry; Drapek, Ray; Hanemann, R. Michael; Kalkstein, Laurence S.; Lenihan, James; Lunch, Claire K.; Neilson, Ronald P.; Sheridan, Scott C.; Verville, Julia H.

    2004-01-01

    The magnitude of future climate change depends substantially on the greenhouse gas emission pathways we choose. Here we explore the implications of the highest and lowest Intergovernmental Panel on Climate Change emissions pathways for climate change and associated impacts in California. Based on climate projections from two state-of-the-art climate models with low and medium sensitivity (Parallel Climate Model and Hadley Centre Climate Model, version 3, respectively), we find that annual temperature increases nearly double from the lower B1 to the higher A1fi emissions scenario before 2100. Three of four simulations also show greater increases in summer temperatures as compared with winter. Extreme heat and the associated impacts on a range of temperature-sensitive sectors are substantially greater under the higher emissions scenario, with some interscenario differences apparent before midcentury. By the end of the century under the B1 scenario, heatwaves and extreme heat in Los Angeles quadruple in frequency while heat-related mortality increases two to three times; alpine/subalpine forests are reduced by 50–75%; and Sierra snowpack is reduced 30–70%. Under A1fi, heatwaves in Los Angeles are six to eight times more frequent, with heat-related excess mortality increasing five to seven times; alpine/subalpine forests are reduced by 75–90%; and snowpack declines 73–90%, with cascading impacts on runoff and streamflow that, combined with projected modest declines in winter precipitation, could fundamentally disrupt California's water rights system. Although interscenario differences in climate impacts and costs of adaptation emerge mainly in the second half of the century, they are strongly dependent on emissions from preceding decades. PMID:15314227

  14. Climatic change

    International Nuclear Information System (INIS)

    Perthuis, Ch. de; Delbosc, A.

    2009-01-01

    Received ideas about climatic change are a mixture of right and wrong information. The authors use these ideas as starting points to shade light on what we really know and what we believe to know. The book is divided in three main chapters: should we act in front of climatic change? How can we efficiently act? How can we equitably act? For each chapter a series of received ideas is analyzed in order to find those which can usefully contribute to mitigate the environmental, economical and social impacts of climatic change. (J.S.)

  15. Regional differences in climate change impacts on groundwater and stream discharge in Denmark

    DEFF Research Database (Denmark)

    Van Roosmalen, Lieke Petronella G; Christensen, Britt S.B.; Sonnenborg, Torben O.

    2007-01-01

    of the hydrological response to the simulated climate change is highly dependant on the geological setting of the model area. In the Jylland area, characterized by sandy top soils and large interconnected aquifers, groundwater recharge increases significantly, resulting in higher groundwater levels and increasing......Regional impact studies of the effects of future climate change are necessary because projected changes in meteorological variables vary regionally and different hydrological systems can react in various ways to the same changes. In this study the effects of climate change on groundwater recharge...... simulates changes in groundwater head, recharge, and discharge. Precipitation, temperature, and reference evapotranspiration increase for both the A2 and B2 scenarios. This results in a significant increase in mean annual net precipitation, but with decreased values in the summer months. The magnitude...

  16. Climate change science compendium 2009

    Energy Technology Data Exchange (ETDEWEB)

    McMullen, C.P.; Jabbour, J.

    2009-09-15

    In a matter of a few weeks' time, governments will gather in Copenhagen, Denmark, for a crucial UN climate convention meeting. Many governments and stakeholders have requested an annual snapshot of how the science has been evolving since the publication of the IPCC's landmark fourth assessment in advance of the panel's next one in 2014. This Climate Change Science Compendium, based on the wealth of peerreviewed research published by researchers and institutions since 2006, has been compiled by UNEP in response to that request. The findings indicate that ever more rapid environmental change is underway with the pace and the scale of climate change accelerating, along with the confidence among researchers in their forecasts. The Arctic, with implications for the globe, is emerging as an area of major concern. There is growing evidence that the ice there is melting far faster than had been previously supposed. Mountains glaciers also appear to be retreating faster. Scientists now suggest that the Arctic could be virtually ice free in September of 2037 and that a nearly ice-free September by 2028 is well within the realms of possibility. Recent findings also show that significant warming extends well beyond the Antarctic Peninsula to cover most of West Antarctica, an area of warming much larger than previously reported. The impact on the Earth's multi-trillion dollar ecosystems is also a key area of concern. Under a high emission scenario-the one that most closely matches current trends-12-39 per cent of the planet's terrestrial surface could experience novel climate conditions and 10-48 per cent could suffer disappearing climates by 2100. Rising levels of aridity are also concentrating scientific minds. New research indicates that by the end of the 21st century the Mediterranean region will also experience much more severe increases in aridity than previously estimated rendering the entire region, but particularly the southern Mediterranean

  17. Effects of climate change on the production and consumption of electricity in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Forsius, J; Kuivalainen, P; Maekinen, P [Imatran Voima Oy, Helsinki (Finland). Environmental Protection Div.

    1997-12-31

    In the next few decades, the probable strengthening of the greenhouse effect may bring about considerable changes in energy production and consumption, which depend on climate. It is presumed that some of the changes will occur even if the rise in greenhouse gas concentration will be reduced. Because the investments in energy production have a long-term influence, decision-makers should have an idea about the impact of the strengthening of the greenhouse effect on energy production and consumption in Finland. According to the results of this study, the effects of climate change on the total consumption and production of electricity will be limited. The structure of both electricity consumption and production will remain rather similar, the most important changes applying to hydro power. The consumption of heating electricity will decrease substantially. Because the non- climate-dependent sectors of electricity consumption (process industry and services) account for more than a half of the total consumption, the effect on the total consumption is, however, rather small. The total annual hydropower production in Finland was estimated to be 2 % more both in the year 2025 and 2100 than at present. The annual mean discharges do not change very much compared to the present. The greatest difference in comparison with the present is the noticeable smoothing of the annual discharge variation. Particularly in Northern Finland the smoothing is considerable in average circumstances. In the scenario for the year 2100, in particular, the spring flood peak is, on average, significantly reduced, the flood peak takes place earlier and the average winter discharges increase

  18. Effects of climate change on the production and consumption of electricity in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Forsius, J.; Kuivalainen, P.; Maekinen, P. [Imatran Voima Oy, Helsinki (Finland). Environmental Protection Div.

    1996-12-31

    In the next few decades, the probable strengthening of the greenhouse effect may bring about considerable changes in energy production and consumption, which depend on climate. It is presumed that some of the changes will occur even if the rise in greenhouse gas concentration will be reduced. Because the investments in energy production have a long-term influence, decision-makers should have an idea about the impact of the strengthening of the greenhouse effect on energy production and consumption in Finland. According to the results of this study, the effects of climate change on the total consumption and production of electricity will be limited. The structure of both electricity consumption and production will remain rather similar, the most important changes applying to hydro power. The consumption of heating electricity will decrease substantially. Because the non- climate-dependent sectors of electricity consumption (process industry and services) account for more than a half of the total consumption, the effect on the total consumption is, however, rather small. The total annual hydropower production in Finland was estimated to be 2 % more both in the year 2025 and 2100 than at present. The annual mean discharges do not change very much compared to the present. The greatest difference in comparison with the present is the noticeable smoothing of the annual discharge variation. Particularly in Northern Finland the smoothing is considerable in average circumstances. In the scenario for the year 2100, in particular, the spring flood peak is, on average, significantly reduced, the flood peak takes place earlier and the average winter discharges increase

  19. A simple approach to distinguish land-use and climate-change effects on watershed hydrology

    Science.gov (United States)

    Tomer, M.D.; Schilling, K.E.

    2009-01-01

    Impacts of climate change on watershed hydrology are subtle compared to cycles of drought and surplus precipitation (PPT), and difficult to separate from effects of land-use change. In the US Midwest, increasing baseflow has been more attributed to increased annual cropping than climate change. The agricultural changes have led to increased fertilizer use and nutrient losses, contributing to Gulf of Mexico hypoxia. In a 25-yr, small-watershed experiment in Iowa, when annual hydrologic budgets were accrued between droughts, a coupled water-energy budget (ecohydrologic) analysis showed effects of tillage and climate on hydrology could be distinguished. The fraction of PPT discharged increased with conservation tillage and time. However, unsatisfied evaporative demand (PET - Hargreaves method) increased under conservation tillage, but decreased with time. A conceptual model was developed and a similar analysis conducted on long-term (>1920s) records from four large, agricultural Midwest watersheds underlain by fine-grained tills. At least three of four watersheds showed decreases in PET, and increases in PPT, discharge, baseflow and PPT:PET ratios (p analysis of covariance showed the fraction of precipitation discharged increased, while unsatisfied evaporative demand decreased with time among the four watersheds (p agricultural changes were associated with ecohydrologic shifts that affected timing and significance, but not direction, of these trends. Thus, an ecohydrologic concept derived from small-watershed research, when regionally applied, suggests climate change has increased discharge from Midwest watersheds, especially since the 1970s. By inference, climate change has increased susceptibility of nutrients to water transport, exacerbating Gulf of Mexico hypoxia.

  20. Investment in flood protection measures under climate change uncertainty. An investment decision

    Energy Technology Data Exchange (ETDEWEB)

    Bruin, Karianne de

    2012-11-01

    Recent river flooding in Europe has triggered debates among scientists and policymakers on future projections of flood frequency and the need for adaptive investments, such as flood protection measures. Because there exists uncertainty about the impact of climate change of flood risk, such investments require a careful analysis of expected benefits and costs. The objective of this paper is to show how climate change uncertainty affects the decision to invest in flood protection measures. We develop a model that simulates optimal decision making in flood protection, it incorporates flexible timing of investment decisions and scientific uncertainty on the extent of climate change impacts. This model allows decision-makers to cope with the uncertain impacts of climate change on the frequency and damage of river flood events and minimises the risk of under- or over-investment. One of the innovative elements is that we explicitly distinguish between structural and non-structural flood protection measures. Our results show that the optimal investment decision today depends strongly on the cost structure of the adaptation measures and the discount rate, especially the ratio of fixed and weighted annual costs of the measures. A higher level of annual flood damage and later resolution of uncertainty in time increases the optimal investment. Furthermore, the optimal investment decision today is influenced by the possibility of the decision-maker to adjust his decision at a future moment in time.(auth)

  1. Impact of climate change and variability on the global oceanic sink of CO2

    OpenAIRE

    Le Quéré, Corinne; Takahashi, Taro; Buitenhuis, Erik T.; Rödenbeck, Christian; Sutherland, Stewart C.

    2010-01-01

    About one quarter of the CO2 emitted to the atmosphere by human activities is absorbed annually by the ocean. All the processes that influence the oceanic uptake of CO2 are controlled by climate. Hence changes in climate (both natural and human-induced) are expected to alter the uptake of CO2 by the ocean. However, available information that constrains the direction, magnitude, or rapidity of the response of ocean CO2 to changes in climate is limited. We present an analysis of oceanic CO2 tre...

  2. Simulation of the influence of historical land cover changes on the global climate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [Nanjing Univ. of Aeronautics and Astronautics (China). College of Civil Aviation; Chinese Academy of Sciences, Beijing (China). Key Lab. of Regional Climate-Environment for East Asia; Yan, X. [Chinese Academy of Sciences, Beijing (China). Key Lab. of Regional Climate-Environment for East Asia; Beijing Normal Univ. (China). State Key Lab. of Earth Surface Processes and Resource Ecology (ESPRE); Wang, Z. [British Antarctic Survey, Cambridge (United Kingdom)

    2013-09-01

    In order to estimate biogeophysical effects of historical land cover change on climate during last three centuries, a set of experiments with a climate system model of intermediate complexity (MPM-2) is performed. In response to historical deforestation, the model simulates a decrease in annual mean global temperature in the range of 0.07-0.14 C based on different grassland albedos. The effect of land cover changes is most pronounced in the middle northern latitudes with maximum cooling reaching approximately 0.6 C during northern summer. The cooling reaches 0.57 C during northern spring owing to the large effects of land surface albedo. These results suggest that land cover forcing is important for study on historical climate change and that more research is necessary in the assessment of land management options for climate change mitigation. (orig.)

  3. Climate change governance

    Energy Technology Data Exchange (ETDEWEB)

    Knieling, Joerg [HafenCity Univ. Hamburg (Germany). Urban Planning and Regional Development; Leal Filho, Walter (eds.) [HAW Hamburg (Germany). Research and Transfer Centre Applications of Life Science

    2013-07-01

    Climate change is a cause for concern both globally and locally. In order for it to be tackled holistically, its governance is an important topic needing scientific and practical consideration. Climate change governance is an emerging area, and one which is closely related to state and public administrative systems and the behaviour of private actors, including the business sector, as well as the civil society and non-governmental organisations. Questions of climate change governance deal both with mitigation and adaptation whilst at the same time trying to devise effective ways of managing the consequences of these measures across the different sectors. Many books have been produced on general matters related to climate change, such as climate modelling, temperature variations, sea level rise, but, to date, very few publications have addressed the political, economic and social elements of climate change and their links with governance. This book will address this gap. Furthermore, a particular feature of this book is that it not only presents different perspectives on climate change governance, but it also introduces theoretical approaches and brings these together with practical examples which show how main principles may be implemented in practice.

  4. Determinants of farmers’ adaptation to climate change: A micro level analysis in Ghana

    Directory of Open Access Journals (Sweden)

    Francis Ndamani

    2016-06-01

    Full Text Available ABSTRACT This study analyzed socio-economic factors that influence farmers’ adaptation to climate change in agriculture. Perceptions regarding long-term changes in climate variables and the rate of occurrence of weather extremes were also investigated. Additionally, farmers’ perceived barriers to the use of adaptation practices were identified and ranked. A total of 100 farm-households were randomly selected from four communities in the Lawra district of Ghana and data were collected through semi-structured questionnaires, focused group discussions and field observations. A logistic regression model and weighted average index were used to analyze the data. The results showed that 87 % of respondents perceived a decrease in rainfall amount, while 82 % perceived an increase in temperature over the past 10 years. Results of the weighted average index indicate that dry spell and drought have a higher annual rate of occurrence than flood. Empirical results of the logistic regression model showed that education, household size, annual household income, access to information, credit and membership of farmer-based organization are the most important factors that influence farmers’ adaptation to climate change. The main constraints on adaptation include unpredictability of weather, high farm input cost, lack of access to timely weather information and water resources. The policy implication of this study is that governments should mainstream barriers to, and choice factors of, adaptation practices to climate change related projects and programs.

  5. Long-term climatic change and sustainable ground water resources management

    International Nuclear Information System (INIS)

    Loaiciga, Hugo A

    2009-01-01

    Atmospheric concentrations of greenhouse gases (GHGs), prominently carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), and halocarbons, have risen from fossil-fuel combustion, deforestation, agriculture, and industry. There is currently heated national and international debate about the consequences of such increasing concentrations of GHGs on the Earth's climate, and, ultimately, on life and society in the world as we know it. This paper reviews (i) long-term patterns of climate change, secular climatic variability, and predicted population growth and their relation to water resources management, and, specifically, to ground water resources management, (ii) means available for mitigating and adapting to trends of climatic change and climatic variability and their impacts on ground water resources. Long-term (that is, over hundreds of millions of years), global-scale, climatic fluctuations are compared with more recent (in the Holocene) patterns of the global and regional climates to shed light on the meaning of rising mean surface temperature over the last century or so, especially in regions whose historical hydroclimatic records exhibit large inter-annual variability. One example of regional ground water resources response to global warming and population growth is presented.

  6. Should anticipated impacts of climate change on hydrology modify water management practices?

    International Nuclear Information System (INIS)

    St-Jean, R.

    2008-01-01

    Over the last few decades the scientific community has closely monitored climatologic trends and developed theories to better model interactions between the many factors that govern changes in climate. Although climate evolves naturally, evidence continues to mount that rapidly increasing concentrations of greenhouse gasses are causing accelerated changes: there is now a worldwide consensus about the general warming trend caused by this phenomenon, and now countries are initiating efforts to reduce emission rates, identify the potential impacts, and plan adaptation measures. The electric industry in general is investing in renewable energy sources, low-emission technologies, and emission offsets. More particularly, hydroelectric generators are getting prepared to face the challenge in anticipation of modified temporal and spatial distributions of precipitation, along with possible changes in overall precipitation volumes. Current industry practices in determining expected annual production levels rely 'in almost all instances upon the use of historical streamflow records'. The same survey also shows that 'in no case did respondents indicate that they currently reduce the length of available historical record in order to reflect recent trends in precipitation'. Relying on historical observations is also common practice to forecast inflows for periods longer than a few weeks in the future. Given that changes in precipitation patterns will modify the availability of water, it should be expected that the pattern of production from hydroelectric stations will be altered in a variety of ways: total annual production volumes, seasonal distributions of energy, changes in reservoir management rules caused by extreme events or competing needs for water, and so on, may all be affected. The utility of historical series in predicting the future may decline, and current work practices will potentially need to be modified accordingly. At the same time, electric system operators

  7. Global priority conservation areas in the face of 21st century climate change.

    Directory of Open Access Journals (Sweden)

    Junsheng Li

    Full Text Available In an era when global biodiversity is increasingly impacted by rapidly changing climate, efforts to conserve global biodiversity may be compromised if we do not consider the uneven distribution of climate-induced threats. Here, via a novel application of an aggregate Regional Climate Change Index (RCCI that combines changes in mean annual temperature and precipitation with changes in their interannual variability, we assess multi-dimensional climate changes across the "Global 200" ecoregions - a set of priority ecoregions designed to "achieve the goal of saving a broad diversity of the Earth's ecosystems" - over the 21(st century. Using an ensemble of 62 climate scenarios, our analyses show that, between 1991-2010 and 2081-2100, 96% of the ecoregions considered will be likely (more than 66% probability to face moderate-to-pronounced climate changes, when compared to the magnitudes of change during the past five decades. Ecoregions at high northern latitudes are projected to experience most pronounced climate change, followed by those in the Mediterranean Basin, Amazon Basin, East Africa, and South Asia. Relatively modest RCCI signals are expected over ecoregions in Northwest South America, West Africa, and Southeast Asia, yet with considerable uncertainties. Although not indicative of climate-change impacts per se, the RCCI-based assessment can help policy-makers gain a quantitative and comprehensive overview of the unevenly distributed climate risks across the G200 ecoregions. Whether due to significant climate change signals or large uncertainties, the ecoregions highlighted in the assessment deserve special attention in more detailed impact assessments to inform effective conservation strategies under future climate change.

  8. International aspects of climate change: The intergovernmental panel on climate change

    International Nuclear Information System (INIS)

    Brydges, T.; Fenech, A.

    1990-01-01

    The impact of various international conferences concerning global climate change on international opinions and attitudes is discussed. A number of conferences over the past two decades have drawn attention to the large socio-economic consequences of climate change. There has been increasing attention given to the likely affect of anthropogenically derived greenhouse gases on the global climate. Some early uncertainty over the likely long term changes in global temperature have been replaced by a scientific consensus that global temperatures are increasing and will continue to do so into the next century. Public awareness of the possibility of climate change and severe socio-economic consequences has been increasing and was given a major impetus by the Toronto Conference on the Changing Atmosphere. An estimate of the possible time to solution of the climate change issue is given as 1988-2005, a span of 17 years. The Intergovernmental Panel on Climate Change has focused work into three working groups examining science, impacts and response strategies. 28 refs., 3 figs., 6 tabs

  9. Changing climate, changing frames

    International Nuclear Information System (INIS)

    Vink, Martinus J.; Boezeman, Daan; Dewulf, Art; Termeer, Catrien J.A.M.

    2013-01-01

    Highlights: ► We show development of flood policy frames in context of climate change attention. ► Rising attention on climate change influences traditional flood policy framing. ► The new framing employs global-scale scientific climate change knowledge. ► With declining attention, framing disregards climate change, using local knowledge. ► We conclude that frames function as sensemaking devices selectively using knowledge. -- Abstract: Water management and particularly flood defence have a long history of collective action in low-lying countries like the Netherlands. The uncertain but potentially severe impacts of the recent climate change issue (e.g. sea level rise, extreme river discharges, salinisation) amplify the wicked and controversial character of flood safety policy issues. Policy proposals in this area generally involve drastic infrastructural works and long-term investments. They face the difficult challenge of framing problems and solutions in a publicly acceptable manner in ever changing circumstances. In this paper, we analyse and compare (1) how three key policy proposals publicly frame the flood safety issue, (2) the knowledge referred to in the framing and (3) how these frames are rhetorically connected or disconnected as statements in a long-term conversation. We find that (1) framings of policy proposals differ in the way they depict the importance of climate change, the relevant timeframe and the appropriate governance mode; (2) knowledge is selectively mobilised to underpin the different frames and (3) the frames about these proposals position themselves against the background of the previous proposals through rhetorical connections and disconnections. Finally, we discuss how this analysis hints at the importance of processes of powering and puzzling that lead to particular framings towards the public at different historical junctures

  10. Climate Change Impact on Rainfall: How will Threaten Wheat Yield?

    Science.gov (United States)

    Tafoughalti, K.; El Faleh, E. M.; Moujahid, Y.; Ouargaga, F.

    2018-05-01

    Climate change has a significant impact on the environmental condition of the agricultural region. Meknes has an agrarian economy and wheat production is of paramount importance. As most arable area are under rainfed system, Meknes is one of the sensitive regions to rainfall variability and consequently to climate change. Therefore, the use of changes in rainfall is vital for detecting the influence of climate system on agricultural productivity. This article identifies rainfall temporal variability and its impact on wheat yields. We used monthly rainfall records for three decades and wheat yields records of fifteen years. Rainfall variability is assessed utilizing the precipitation concentration index and the variation coefficient. The association between wheat yields and cumulative rainfall amounts of different scales was calculated based on a regression model. The analysis shown moderate seasonal and irregular annual rainfall distribution. Yields fluctuated from 210 to 4500 Kg/ha with 52% of coefficient of variation. The correlation results shows that wheat yields are strongly correlated with rainfall of the period January to March. This investigation concluded that climate change is altering wheat yield and it is crucial to adept the necessary adaptation to challenge the risk.

  11. Climate Change Community Outreach Initiative (CCCOI)--A Gulf of Mexico Education Partnership

    Science.gov (United States)

    Walker, S. H.; Stone, D.; Schultz, T.; LeBlanc, T.; Miller-Way, T.; Estrada, P.

    2012-12-01

    This five-year, Gulf of Mexico regional collaborative is funded by the National Oceanic and Atmospheric Administration (NOAA)-Office of Education and represents a successful grant submitted by the FL Aquarium as a member of the Association of Zoos and Aquariums (AZA). This climate change effort focuses on enhanced content knowledge and the manner in which personal actions and behaviors contribute to sustainability and stewardship. Diverse audiences—represented by visitors at the informal centers listed above—have been and are involved in the following activities: social networking via responses to climate change surveys; an "ocean and climate change defender" computer game, specifically designed for this project; an average of 10 annual outreach events implemented by these facilities at community festivals; climate change lectures provided to family audiences; and professional development workshops for informal and formal educators. This presentation will provide opportunities and challenges encountered during the first two years of implementation. This regional effort is also aligned with both the Ocean Literacy: Essential Principles and the Climate Literacy: Essential Principles. Additional partners include: Normandeau Associates, Conservation Enterprises, Unlimited, and Mindclay Creative.

  12. Effects of climate variables on intra-annual stem radial increment in Pinus cembra (L.) along the alpine treeline ecotone.

    Science.gov (United States)

    Gruber, Andreas; Zimmermann, Jolanda; Wieser, Gerhard; Oberhuber, Walter

    2009-08-01

    Within the alpine treeline ecotone tree growth is increasingly restricted by extreme climate conditions. Although intra-annual stem growth recorded by dendrometers can be linked to climate, stem diameter increments in slow-growing subalpine trees are masked by changes in tree water status.We tested the hypothesis that intra-annual radial stem growth in Pinus cembra is influenced by different climate variables along the treeline ecotone in the Austrian Alps. Dendrometer traces were compared with dynamics of xylem cell development to date onset of cambial activity and radial stem growth in spring.Daily fluctuations in stem radius reflected changes in tree water status throughout the treeline ecotone. Extracted daily radial increments were significantly correlated with air temperature at the timberline and treeline only, where budburst, cambial activity and enlargement of first tracheids also occurred quite similarly. A close relationship was detected between radial increment and number of enlarging tracheids throughout the treeline ecotone.We conclude that (i) the relationship between climate and radial stem growth within the treeline ecotone is dependent on a close coupling to atmospheric climate conditions and (ii) initiation of cambial activity and radial growth in spring can be distinguished from stem re-hydration by histological analysis.

  13. Future southcentral US wildfire probability due to climate change

    Science.gov (United States)

    Stambaugh, Michael C.; Guyette, Richard P.; Stroh, Esther D.; Struckhoff, Matthew A.; Whittier, Joanna B.

    2018-01-01

    Globally, changing fire regimes due to climate is one of the greatest threats to ecosystems and society. In this paper, we present projections of future fire probability for the southcentral USA using downscaled climate projections and the Physical Chemistry Fire Frequency Model (PC2FM). Future fire probability is projected to both increase and decrease across the study region of Oklahoma, New Mexico, and Texas. Among all end-of-century projections, change in fire probabilities (CFPs) range from − 51 to + 240%. Greatest absolute increases in fire probability are shown for areas within the range of approximately 75 to 160 cm mean annual precipitation (MAP), regardless of climate model. Although fire is likely to become more frequent across the southcentral USA, spatial patterns may remain similar unless significant increases in precipitation occur, whereby more extensive areas with increased fire probability are predicted. Perhaps one of the most important results is illumination of climate changes where fire probability response (+, −) may deviate (i.e., tipping points). Fire regimes of southcentral US ecosystems occur in a geographic transition zone from reactant- to reaction-limited conditions, potentially making them uniquely responsive to different scenarios of temperature and precipitation changes. Identification and description of these conditions may help anticipate fire regime changes that will affect human health, agriculture, species conservation, and nutrient and water cycling.

  14. Proceedings of the clean air and climate change summit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The Clean Air Partnership was established in the Greater Toronto Area (GTA) over 10 years ago to work on issues related to air pollution and climate change. This summit presented details of the partnership's municipal activities and provided an outline of various projects conducted to reduce air pollution, increase the use of green energy, and encourage residents to reduce their ecological footprint. Climate change was discussed in relation to the recent economic crisis and recently discovered problems related to ocean acidification. The International Energy Agency (IEA) annual report was discussed in relation to peak oil and future economic crises. Advancements in green energy policy in Ontario were outlined. Sustainable housing and renewable energy projects in Germany were presented along with successful urban designs in Melbourne, New York City, and Denver. The GTA-CAC inter-governmental declaration on clean air was discussed, and an interim progress report was presented. The summit concluded with a video presentation of a collaborative artistic piece about climate change and the Arctic. 11 figs.

  15. Proceedings of the clean air and climate change summit

    International Nuclear Information System (INIS)

    2010-01-01

    The Clean Air Partnership was established in the Greater Toronto Area (GTA) over 10 years ago to work on issues related to air pollution and climate change. This summit presented details of the partnership's municipal activities and provided an outline of various projects conducted to reduce air pollution, increase the use of green energy, and encourage residents to reduce their ecological footprint. Climate change was discussed in relation to the recent economic crisis and recently discovered problems related to ocean acidification. The International Energy Agency (IEA) annual report was discussed in relation to peak oil and future economic crises. Advancements in green energy policy in Ontario were outlined. Sustainable housing and renewable energy projects in Germany were presented along with successful urban designs in Melbourne, New York City, and Denver. The GTA-CAC inter-governmental declaration on clean air was discussed, and an interim progress report was presented. The summit concluded with a video presentation of a collaborative artistic piece about climate change and the Arctic. 11 figs.

  16. Background document for climate change policy options in Northern Canada

    International Nuclear Information System (INIS)

    Newton, J.

    2001-01-01

    This paper presents an initial compilation of background material in support of the development of climate change policy options for the jurisdictions of Yukon, Northwest Territories and Nunavut in Northern Canada. While Northern Canada contributes only a small fraction of the world's greenhouse gas (GHG) emissions, scientists forecast changes in average annual temperatures to be among the highest in the world. The Northern Climate Exchange at Yukon College was created in March 2001 to address this issue and to help guide northerners in what they can do now and in the future. This paper includes an annotated bibliography of a total of 75 international, national, and territorial policy documents and major reference documents relevant to climate change issues. It is meant to be a resource for researchers, policy analysts and government officials developing policy options and implementing programs for Northern Canada. While each of the three northern territories are at a different stage in the evolution of their climate change activities, they are all striving to develop strategies and action plans and to initiate the implementation of those plans. It is recognized that many long-standing programs and initiatives, particularly in the areas of energy efficiency and alternate energy, will help northern jurisdictions address their climate change objectives. The three territories are cooperating to deliver their message to the federal government. 75 refs., 4 figs

  17. Assessment of long-term effects of climate change on biodiversity and vulnerability of terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Oene, H.; Berendse, F.; De Kovel, C.G.F. [Nature Consevation and Plant Ecology Group, Wageningen University, Wageningen (Netherlands); Alkemade, J.R.M.; Bakkenes, M.; Ihle, F. [National Institute of Public Health and the Environment RIVM, Bilthoven (Netherlands)

    1999-07-01

    The aim of this project was to analyze the effects of climatic change on plant species diversity and ecosystem functioning. The direct effects of climatic change on plant species diversity are analyzed using a species based probabilistic Model (EUROMOVE) that relates the probability of occurrence of ca 1400 European plant species to climatic variables as the mean temperature of the coldest month, the effective temperature sum, the annual precipitation, the annual potential and actual evapotranspiration, the length of the growing season, and the mean growing season temperature. The indirect effects of raised C0{sub 2} levels and increased temperatures on ecosystem functioning and the consequences of these indirect effects for plant diversity are analyzed by combining a mechanistic simulation model (NUCOM) with regression models. NUCOM predicts the effects of environmental changes on dominant plant species composition and ecosystem variables. The predicted ecosystem variables are linked to plant species diversity of subordinate species by regression models, using Ellenberg indices for N availability, soil acidity, soil moisture, and light intensity. With these two approaches, the consequences of climatic change scenarios (IPCC Baseline A, IPCC Stabilization 450) and N deposition scenarios (reduced, constant) are analyzed for Europe (EUROMOVE) and part of the Netherlands (NUCOM). The results showed that the direct effects of climatic change may have large impact on plant species diversity and distribution. The indirect effects of climatic change on plant diversity appeared minor but effects of changes in soil moisture are not included. Other environmental changes like eutrofication and human impact have large effect on ecosystem variables and plant species diversity. Reductions in nitrogen emission have a positive effect but take time to become apparent. 49 refs.

  18. Global vs climate change

    International Nuclear Information System (INIS)

    Watson, H.L.; Bach, M.C.; Goklany, I.M.

    1991-01-01

    The various agents of global change that will affect the state of natural resources 50-100 years from now are discussed. These include economic and population growth, technological progress, and climatic change. The importance of climatic change lies in its effects on natural resources and on human activities that depend on those resources. Other factors affecting those resources include the demand on those resources from an increasing population and from a growing economy, and a more efficient use of those resources that comes from technological changes and from the consequences of economic growth itself. It is shown that there is a considerable ability to adapt to climatic change, since humans already have an intrinsic ability to adapt to the wide variations in climates that already exist and since technological developments can make it easier to cope with climatic variability. It appears that agents other than climatic change are more significant to the future state of natural resources than climatic change. Criteria for selecting options for addressing climatic change are outlined. Technological change and economic growth are seen to be key response options, since the vulnerability to climatic change depends on economic resources and technological progress. Specific options to stimulate sustainable economic growth and technological progress are listed. 16 refs., 1 fig., 2 tabs

  19. Climate for change

    International Nuclear Information System (INIS)

    Newell, P.

    2000-01-01

    Climate for Change: Non-State Actors and the Global Politics of the Greenhouse provides a challenging explanation of the forces that have shaped the international global warming debate. Unlike existing books on the politics of climate change, this book concentrates on how non-stage actors, such as scientific, environmental and industry groups, as opposed to governmental organisations, affect political outcomes in global fora on climate change. It also provides insights in to the role of the media in influencing the agenda. The book draws on a range of analytical approaches to assess and explain the influence of these non-governmental organisations in the course of global climate change politics. The book will be of interest to all researchers and policy-makers associated with climate change, and will be used on university courses in international relations, politics and environmental studies. (Author)

  20. Climate change

    International Nuclear Information System (INIS)

    2006-01-01

    This paper presented indicators of climate change for British Columbia (BC) with an emphasis on the coastal region. An overview of global effects of climate change was presented, as well as details of BC's current climate change action plan. Indicators examined in the paper for the BC coastal region included long-term trends in air temperature; long-term trends in precipitation; coastal ocean temperatures; sea levels on the BC coast; and the sensitivity of the BC coast to sea level rise and erosion. Data suggested that average air temperatures have become higher in many areas, and that Springtime temperatures have become warmer over the whole province. Winters have become drier in many areas of the province. Sea surface temperature has risen over the entire coast, with the North Coast and central Strait of Georgia showing the largest increases. Deep-water temperatures have also increased in 5 inlets on the South Coast. Results suggested that the direction and spatial pattern of the climate changes reported for British Columbia are consistent with broader trends in North America and the type of changes predicted by climate models for the region. Climate change will likely result in reduced snow-pack in southern BC. An earlier spring freshet on many snow-dominated river systems is anticipated as well as glacial retreat and disappearance. Warmer temperatures in some lakes and rivers are expected, as well as the increased frequency and severity of natural disturbances such as the pine mountain beetle. Large-scale shifts in ecosystems and the loss of certain ecosystems may also occur. BC's current climate plan includes cost effective actions that address GHG emissions and support efficient infrastructure and opportunities for innovation. Management programs for forest and agricultural lands have been initiated, as well as programs to reduce emissions from government operations. Research is also being conducted to understand the impacts of climate change on water

  1. Climate challenge 2012: growth and climate change - Socio-economical impacts of climate change. Conference proceedings

    International Nuclear Information System (INIS)

    Orange-Louboutin, Mylene; Robinet, Olivier; Delalande, Daniel; Reysset, Bertrand; De Perthuis, Christian; Le Treut, Herve; Cottenceau, Jean-Baptiste; Ayong, Alain; Daubaire, Aurelien; Gaudin, Thomas

    2012-01-01

    The contributions of this conference session proposed comments and discussion on the relationship between climate change and 'green' growth, on the status of scientific knowledge on climate change (from global to local), on the way to perform carbon print assessment and to decide which actions to implement, on the costs and opportunity of impacts of climate change, on the economy of adaptation, on the benefits and costs of the adaptation policy, and on impacts of climate change on employment in quantitative terms and in terms of profession types

  2. How is climate change impacting precipitation?

    Science.gov (United States)

    Heidari, A.; Houser, P. R.

    2015-12-01

    Water is an integrating component of the climate, energy and geochemical cycles, regulating biological and ecological activities at all spatial and temporal scales. The most significant climate warming manifestation would be a change in the distribution of precipitation and evaporation, and the exacerbation of extreme hydrologic events. Due to this phenomenon and the fact that precipitation is the most important component of the water cycle, the assumption of its stationarity for water management and engineering design should be examined closely. The precipitation Annual Maximum Series (AMS) over some stations in Virginia based on in situ data were been used as a starting point to examine this important issue. We analyzed the AMS precipitation on NOAA data for the stations close to Fairfax VA, looked for trends in extreme values, and applied our new method of Generalized Extreme Value (GEV) theory based on quadratic forms to address changes in those extreme values and to quantify non-stationarities. It is very important to address the extreme values of precipitation based on several statistical tests to have better understanding of climate change impact on the extreme water cycle events. In our study we compared our results with the conclusion on NOAA atlas 14 Ap.3 which found no sign of precipitation non-stationarity. We then assessed the impact of this uncertainty in IDF curves on the flood map of Fairfax and compared the results with the classic IDF curves.

  3. Separating the role of biotic interactions and climate in determining adaptive response of plants to climate change.

    Science.gov (United States)

    Tomiolo, Sara; Van der Putten, Wim H; Tielbörger, Katja

    2015-05-01

    Altered rainfall regimes will greatly affect the response of plant species to climate change. However, little is known about how direct effects of changing precipitation on plant performance may depend on other abiotic factors and biotic interactions. We used reciprocal transplants between climatically very different sites with simultaneous manipulation of soil, plant population origin, and neighbor conditions to evaluate local adaptation and possible adaptive response of four Eastern Mediterranean annual plant species to climate change. The effect of site on plant performance was negligible, but soil origin had a strong effect on fecundity, most likely due to differential water retaining ability. Competition by neighbors strongly reduced fitness. We separated the effects of the abiotic and biotic soil properties on plant performance by repeating the field experiment in a greenhouse under homogenous environmental conditions and including a soil biota manipulation treatment. As in the field, plant performance differed among soil origins and neighbor treatments. Moreover, we found plant species-specific responses to soil biota that may be best explained by the differential sensitivity to negative and positive soil biota effects. Overall, under the conditions of our experiment with two contrasting sites, biotic interactions had a strong effect on plant fitness that interacted with and eventually overrode climate. Because climate and biotic interactions covary, reciprocal transplants and climate gradient studies should consider soil biotic interactions and abiotic conditions when evaluating climate change effects on plant performance.

  4. Climate change and forests: Impacts and adaption. A regional assessment for the Western Ghats, India

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranath, N H; Sukumar, R [Indian Inst. of Science, Bangalore (India). Centre for Ecological Sciences; Deshingkar, P [Stockholm Environment Inst. (Sweden)

    1998-12-31

    Potential climate change over the next 50 to 100 years could have major impacts on tropical forests. Forests, particularly in the tropics, are subjected to anthropogenic pressures leading to degradation and loss of forest ecosystems. Given the significant dependence of local people and economies on forests in tropical and temperate countries, there is a need to assess the possible impacts of climate change and to develop adaption measures. The diversity of forest types in the Western Ghats ranges from wet evergreen and deciduous forest to dry thorn and montane forests with a wide range of annual rainfall regimes (from less than 65 cm to over 300 cm). The study was conducted in two regions of the Western Ghats; the Uttara Kannada district and the Nilgiris. Climate change projections for 2020 and 2050 were used in assessing the possible impacts on forests. In general, the `most likely` projections of climate change were an increase in mean temperature in the range of 0.3-1.0 deg C and an increase in precipitation of 3-8% over the study regions by the year 2050. The `worst case` scenario was an increase in temperature of 1 deg C and a decrease in precipitation by 8% by 2050. To assess the vegetational responses to climate change, a simple model based on present-day correlations between climatic (mean annual temperature and precipitation) and vegetation types for these regions was developed. Likely changes in the areas under different forest types were assessed for `moderate climate` sensitivity and central scaling factor (referred to as the `most likely scenario`) for the years 2020 and 2050, and `high climate` sensitivity and a lower scaling factor (the `worst case scenario`) for 2050 90 refs, 15 figs, 15 tabs

  5. Climate change and forests: Impacts and adaption. A regional assessment for the Western Ghats, India

    Energy Technology Data Exchange (ETDEWEB)

    Ravindranath, N.H.; Sukumar, R. [Indian Inst. of Science, Bangalore (India). Centre for Ecological Sciences; Deshingkar, P. [Stockholm Environment Inst. (Sweden)

    1997-12-31

    Potential climate change over the next 50 to 100 years could have major impacts on tropical forests. Forests, particularly in the tropics, are subjected to anthropogenic pressures leading to degradation and loss of forest ecosystems. Given the significant dependence of local people and economies on forests in tropical and temperate countries, there is a need to assess the possible impacts of climate change and to develop adaption measures. The diversity of forest types in the Western Ghats ranges from wet evergreen and deciduous forest to dry thorn and montane forests with a wide range of annual rainfall regimes (from less than 65 cm to over 300 cm). The study was conducted in two regions of the Western Ghats; the Uttara Kannada district and the Nilgiris. Climate change projections for 2020 and 2050 were used in assessing the possible impacts on forests. In general, the `most likely` projections of climate change were an increase in mean temperature in the range of 0.3-1.0 deg C and an increase in precipitation of 3-8% over the study regions by the year 2050. The `worst case` scenario was an increase in temperature of 1 deg C and a decrease in precipitation by 8% by 2050. To assess the vegetational responses to climate change, a simple model based on present-day correlations between climatic (mean annual temperature and precipitation) and vegetation types for these regions was developed. Likely changes in the areas under different forest types were assessed for `moderate climate` sensitivity and central scaling factor (referred to as the `most likely scenario`) for the years 2020 and 2050, and `high climate` sensitivity and a lower scaling factor (the `worst case scenario`) for 2050 90 refs, 15 figs, 15 tabs

  6. Cool Science: K-12 Climate Change Art Displayed on Buses

    Science.gov (United States)

    Chen, R. F.; Lustick, D. S.; Lohmeier, J.; Thompson, S. R.

    2015-12-01

    Cool science is an art contest where K12 students create placards (7" x 22") to educate the public about climate change. Students are prompted to create their artwork in response to questions such as: What is the evidence for climate change? How does climate change impact your local community? What can you do to reduce the impacts of climate change? In each of three years, 500-600 student entrees have been submitted from more than 12 school districts across Massachusetts. A panel of judges including scientists, artists, rapid transit representatives, and educators chooses elementary, middle, and high school winners. Winners (6), runners-up (6), and honorable mentions (12) and their families and teachers are invited to an annual Cool Science Award Ceremony to be recognized and view winning artwork. All winning artwork is posted on the Cool Science website. The winning artwork (2 per grade band) is converted into placards (11" x 28") and posters (2.5' x 12') that are placed on the inside (placards) and outside (posters) of buses. Posters are displayed for one month. So far, Cool Science was implemented in Lowell, MA where over 5000 public viewers see the posters daily on the sides of Lowell Rapid Transit Authority (LRTA) buses, making approximately 1,000,000 impressions per year. Cool Science acts to increase climate literacy in children as well as the public, and as such promotes intergenerational learning. Using art in conjunction with science learning about climate change appears to be effective at engaging not just traditionally high achieving science students, but also those interested in the creative arts. Hearing winners' stories about how they created their artwork and what this contest meant to them supports the idea that Cool Science attracts a wide diversity of students. Parents discuss climate change with their children. Multiple press releases announcing the winners further promotes the awareness of climate change throughout school districts and their

  7. Hydrologic impacts of changes in climate and glacier extent in the Gulf of Alaska watershed

    Science.gov (United States)

    Beamer, J. P.; Hill, D. F.; McGrath, D.; Arendt, A.; Kienholz, C.

    2017-09-01

    High-resolution regional-scale hydrologic models were used to quantify the response of late 21st century runoff from the Gulf of Alaska (GOA) watershed to changes in regional climate and glacier extent. NCEP Climate Forecast System Reanalysis data were combined with five Coupled Model Intercomparison Project Phase 5 general circulation models (GCMs) for two representative concentration pathway (RCP) scenarios (4.5 and 8.5) to develop meteorological forcing for the period 2070-2099. A hypsographic model was used to estimate future glacier extent given assumed equilibrium line altitude (ELA) increases of 200 and 400 m. GCM predictions show an increase in annual precipitation of 12% for RCP 4.5 and 21% for RCP 8.5, and an increase in annual temperature of 2.5°C for RCP 4.5 and 4.3°C for RCP 8.5, averaged across the GOA. Scenarios with perturbed climate and glaciers predict annual GOA-wide runoff to increase by 9% for RCP4.5/ELA200 case and 14% for the RCP8.5/ELA400 case. The glacier runoff decreased by 14% for RCP4.5/ELA200 and by 34% for the RCP8.5/ELA400 case. Intermodel variability in annual runoff was found to be approximately twice the variability in precipitation input. Additionally, there are significant changes in runoff partitioning and increases in snowpack runoff are dominated by increases in rain-on-snow events. We present results aggregated across the entire GOA and also for individual watersheds to illustrate the range in hydrologic regime changes and explore the sensitivities of these results by independently perturbing only climate forcings and only glacier cover.

  8. The annual cycle of African climate and its variability | Jury | Water SA

    African Journals Online (AJOL)

    low) annual cycle correspond with La Nina (El Nino) and increased (decreased) inter-annual fluctuations of the African climate. A composite analysis shows that the South Atlantic Hadley cell and standing waves in the subtropical jet may connect ...

  9. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    Science.gov (United States)

    Mahmud, A.; Hixson, M.; Kleeman, M. J.

    2012-08-01

    The effect of climate change on population-weighted concentrations of particulate matter (PM) during extreme pollution events was studied using the Parallel Climate Model (PCM), the Weather Research and Forecasting (WRF) model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44) global emissions scenario was dynamically downscaled for the entire state of California between the years 2000-2006 and 2047-2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV), the San Joaquin Valley air basin (SJV) and the South Coast Air Basin (SoCAB). Results over annual-average periods were contrasted with extreme events. The current study found that the change in annual-average population-weighted PM2.5 mass concentrations due to climate change between 2000 vs. 2050 within any major sub-region in California was not statistically significant. However, climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; -3%) and organic carbon (OC; -3%) due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (-3%) and food cooking (-4%). In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-yr period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3). In general, climate change caused increased stagnation during future extreme pollution events, leading to higher exposure to diesel engines

  10. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    Directory of Open Access Journals (Sweden)

    A. Mahmud

    2012-08-01

    Full Text Available The effect of climate change on population-weighted concentrations of particulate matter (PM during extreme pollution events was studied using the Parallel Climate Model (PCM, the Weather Research and Forecasting (WRF model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44 global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV, the San Joaquin Valley air basin (SJV and the South Coast Air Basin (SoCAB. Results over annual-average periods were contrasted with extreme events.

    The current study found that the change in annual-average population-weighted PM2.5 mass concentrations due to climate change between 2000 vs. 2050 within any major sub-region in California was not statistically significant. However, climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; −3% and organic carbon (OC; −3% due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (−3% and food cooking (−4%. In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-yr period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3. In general, climate

  11. Fire, carbon, and climate change

    International Nuclear Information System (INIS)

    Amiro, B.; Flannigan, M.

    2005-01-01

    One million hectares of forest are harvested in Canada annually, with 1 to 8 million hectares destroyed by fire and a further 10 to 25 million hectares consumed by insects. Enhanced disturbances have meant that Canadian forests are becoming carbon sources instead of carbon sinks. Canadian fire statistics from the year 1920 were provided along with a map of large fires between 1980 and 1999. A cycle of combustion losses, decomposition and regeneration of forests was presented, along with a stylized concept of forest carbon life cycles with fire. Direct emissions from forests fires were evaluated. An annual net ecosystem production in Canadian boreal forests and stand age was presented. Projections of areas burned were presented based on weather and fire danger relationships, with statistics suggesting that a 75 to 120 per cent increase is likely to occur by the end of this century. Trend observations show that areas burned are correlated with increasing temperature caused by anthropogenic effects. Prevention, detection, suppression and fuels management were presented as areas that needed improvement in fire management. However, management strategies may only postpone an increase in forest fires. Changes in disturbances such as fire and insects will be a significant early impact of climate change on forests. tabs., figs

  12. Effects of land cover and regional climate variations on long-term spatiotemporal changes in sagebrush ecosystems

    Science.gov (United States)

    Xian, George Z.; Homer, Collin G.; Aldridge, Cameron L.

    2012-01-01

    This research investigated the effects of climate and land cover change on variation in sagebrush ecosystems. We combined information of multi-year sagebrush distribution derived from multitemporal remote sensing imagery and climate data to study the variation patterns of sagebrush ecosystems under different potential disturbances. We found that less than 40% of sagebrush ecosystem changes involved abrupt changes directly caused by landscape transformations and over 60% of the variations involved gradual changes directly related to climatic perturbations. The primary increases in bare ground and declines in sagebrush vegetation abundance were significantly correlated with the 1996-2006 decreasing trend in annual precipitation.

  13. Implications of global climate change on water resources of the south Asian region

    International Nuclear Information System (INIS)

    Lal, M.

    1994-01-01

    An assessment of future changes in the mean and/or variances of hydrological parameters due to anthropogenic increases in greenhouse gases is much warranted for south Asia for developing adaptive response strategies. The evolution of changes in surface meteorological as well as hydrological parameters in the transient numerical experiments with the current state-of-art coupled climate models holds much promise for a better understanding of the interannual variability of climate and its change on a regional scale. A plausible future hydrological scenario for the south Asian region based on the numerical results obtained from the reference control and greenhouse warming simulations (using the Business-as-Usual scenario of CO 2 concentration in the atmosphere) with the Hamburg climate model is presented in this paper. For validation of regional-scale model-simulated hydrology and the assessment of future changes, analysis of data has been performed for annual mean conditions as well as for two seasons, namely, winter (December to February) and summer (June to August). Their results suggest a rise in annual mean surface air temperature of about 1.0 to 2.5 C over the ocean and between 2.0 to 4.5 C over the land regions of south Asia during the next hundred years. During the NH-winter, surface warming in the land regions of India and China is considerably higher (3.6 C) than during the NH-summer (2.7 C). The model simulates an increase in total (averaged for land points over the study area) annual precipitation of about 16 cm per year in a warmer atmosphere

  14. Climatic Change over the 'Third Pole' from Long Tree-Ring Records

    Science.gov (United States)

    Cook, E.

    2011-12-01

    Climatic change over the Greater Himalayas and Tibetan Plateau, the 'Third Pole' of the world, is of great concern now as the Earth continues to warm at an alarming rate. While future climatic change over this region and its resulting impacts on humanity and the environment are difficult to predict with much certainty, knowing how climate has varied in the past can provide both an improved understanding of the range of variability and change that could occur in the future and the necessary context for assessing recent observed climatic change there. For this purpose, one of the best natural archives of past climate information available for study of the Third Pole environment is the changing pattern of annual ring widths found in long tree-ring chronologies. The forests of the Third Pole support many long-lived tree species, with some having life spans in excess of 1,000 years. This natural resource is steadily dwindling now due to continuing deforestation caused by human activity, but there is still enough remaining forest cover to produce a detailed network of long tree-ring chronologies for study of climate variability and change covering the past several centuries. The tree-ring records provide a mix of climate information, including that related to both temperature and precipitation. Examples of long drought-sensitive tree-ring records from the more arid parts of the Karakoram and Tibetan Plateau will be presented, along with records that primarily reflect changing temperatures in moister environments such as in Bhutan. Together they provide a glimpse of how climate of the Third Pole has changed over the past several centuries, the range of natural variability that could occur in the future independent of changes caused by greenhouse warming, and how changes during the latter part of the 20th century period of rapid global warming compare to the past.

  15. Understanding the Changes in Global Crop Yields Through Changes in Climate and Technology

    Science.gov (United States)

    Najafi, Ehsan; Devineni, Naresh; Khanbilvardi, Reza M.; Kogan, Felix

    2018-03-01

    During the last few decades, the global agricultural production has risen and technology enhancement is still contributing to yield growth. However, population growth, water crisis, deforestation, and climate change threaten the global food security. An understanding of the variables that caused past changes in crop yields can help improve future crop prediction models. In this article, we present a comprehensive global analysis of the changes in the crop yields and how they relate to different large-scale and regional climate variables, climate change variables and technology in a unified framework. A new multilevel model for yield prediction at the country level is developed and demonstrated. The structural relationships between average yield and climate attributes as well as trends are estimated simultaneously. All countries are modeled in a single multilevel model with partial pooling to automatically group and reduce estimation uncertainties. El Niño-southern oscillation (ENSO), Palmer drought severity index (PDSI), geopotential height anomalies (GPH), historical carbon dioxide (CO2) concentration and country-based time series of GDP per capita as an approximation of technology measurement are used as predictors to estimate annual agricultural crop yields for each country from 1961 to 2013. Results indicate that these variables can explain the variability in historical crop yields for most of the countries and the model performs well under out-of-sample verifications. While some countries were not generally affected by climatic factors, PDSI and GPH acted both positively and negatively in different regions for crop yields in many countries.

  16. Relative importance of climate changes at different time scales on net primary productivity-a case study of the Karst area of northwest Guangxi, China.

    Science.gov (United States)

    Liu, Huiyu; Zhang, Mingyang; Lin, Zhenshan

    2017-10-05

    Climate changes are considered to significantly impact net primary productivity (NPP). However, there are few studies on how climate changes at multiple time scales impact NPP. With MODIS NPP product and station-based observations of sunshine duration, annual average temperature and annual precipitation, impacts of climate changes at different time scales on annual NPP, have been studied with EEMD (ensemble empirical mode decomposition) method in the Karst area of northwest Guangxi, China, during 2000-2013. Moreover, with partial least squares regression (PLSR) model, the relative importance of climatic variables for annual NPP has been explored. The results show that (1) only at quasi 3-year time scale do sunshine duration and temperature have significantly positive relations with NPP. (2) Annual precipitation has no significant relation to NPP by direct comparison, but significantly positive relation at 5-year time scale, which is because 5-year time scale is not the dominant scale of precipitation; (3) the changes of NPP may be dominated by inter-annual variabilities. (4) Multiple time scales analysis will greatly improve the performance of PLSR model for estimating NPP. The variable importance in projection (VIP) scores of sunshine duration and temperature at quasi 3-year time scale, and precipitation at quasi 5-year time scale are greater than 0.8, indicating important for NPP during 2000-2013. However, sunshine duration and temperature at quasi 3-year time scale are much more important. Our results underscore the importance of multiple time scales analysis for revealing the relations of NPP to changing climate.

  17. Climate change and precipitation: Detecting changes Climate change and precipitation: Detecting changes

    International Nuclear Information System (INIS)

    Van Boxel, John H

    2001-01-01

    Precipitation is one of the most, if not the most important climate parameter In most studies on climate change the emphasis is on temperature and sea level rise. Often too little attention is given to precipitation. For a large part this is due to the large spatial en temporal variability of precipitation, which makes the detection of changes difficult. This paper describes methods to detect changes in precipitation. In order to arrive at statistically significant changes one must use long time series and spatial averages containing the information from several stations. In the Netherlands the average yearly precipitation increased by 11% during the 20th century .In the temperate latitudes on the Northern Hemisphere (40-60QN) the average increase was about 7% over the 20th century and the globally averaged precipitation increased by about 3%. During the 20th century 38% of the land surface of the earth became wetter, 42% experienced little change (less than 5% change) and 20% became dryer. More important than the average precipitation is the occurrence of extremes. In the Netherlands there is a tendency to more extreme precipitations, whereas the occurrence of relatively dry months has not changed. Also in many other countries increases in heavy precipitation events are observed. All climate models predict a further increase of mean global precipitation if the carbon dioxide concentration doubles. Nevertheless some areas get dryer, others have little change and consequently there are also areas where the increase is much more than the global average. On a regional scale however there are large differences between the models. Climate models do not yet provide adequate information on changes in extreme precipitations

  18. Scientific climate change information by collaborative venture and digital portal

    Science.gov (United States)

    Dubelaar-Versluis, W.

    2010-09-01

    Klimaatportaal is the digital entry of Dutch ‘climate' knowledge centres, which are collaborated in the Platform Communication on Climate Change (PCCC). This collaborative venture was established in 2003 by the Dutch climate research community to improve the quality, efficiency and effectiveness of the communication of Dutch climate research. By now, eight Dutch knowledge centres are participating and still more want to join. The Ministry of Housing, Spatial Planning and the Environment (VROM) supports the PCCC and the project is implemented in collaboration with the BSIK ‘Climate Changes Spatial Planning' programme. The website provides actual and background climate change information for a wide audience on the national scale from policy makers, media to general public. By supplying integral climate information, such as observations of climate change, causes and consequences of climate system, adaptation, mitigation and energy issues, a wide spectrum of target groups will be served. The information is offered in different forms, because of the needs of different target groups. Klimaatportaal contains therefore news on climate issues, frequently asked questions and popular science reports, like the annually brochure De Staat van het Klimaat (‘The State of the Climate'). Recently, also a portal for students is added, where they can find information for their assignments. Beside the website, PCCC is organising activities as symposia and workshops and is supplying information on international issues, for example the content of the Kyoto protocol and the IPCC fourth assessment report (2007). Finally, informing the public through contacts with the media is also an important part of the PCCC. The presentation will address the strengths and weaknesses of this approach which may serve as an example for combining knowledge in outreach activities in other countries.

  19. The impact of climate change and emissions control on future ozone levels: Implications for human health.

    Science.gov (United States)

    Stowell, Jennifer D; Kim, Young-Min; Gao, Yang; Fu, Joshua S; Chang, Howard H; Liu, Yang

    2017-11-01

    Overwhelming evidence has shown that, from the Industrial Revolution to the present, human activities influence ground-level ozone (O 3 ) concentrations. Past studies demonstrate links between O 3 exposure and health. However, knowledge gaps remain in our understanding concerning the impacts of climate change mitigation policies on O 3 concentrations and health. Using a hybrid downscaling approach, we evaluated the separate impact of climate change and emission control policies on O 3 levels and associated excess mortality in the US in the 2050s under two Representative Concentration Pathways (RCPs). We show that, by the 2050s, under RCP4.5, increased O 3 levels due to combined climate change and emission control policies, could contribute to an increase of approximately 50 premature deaths annually nationwide in the US. The biggest impact, however, is seen under RCP8.5, where rises in O 3 concentrations are expected to result in over 2,200 additional premature deaths annually. The largest increases in O 3 are seen in RCP8.5 in the Northeast, the Southeast, the Central, and the West regions of the US. Additionally, when O 3 increases are examined by climate change and emissions contributions separately, the benefits of emissions mitigation efforts may significantly outweigh the effects of climate change mitigation policies on O 3 -related mortality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Climate Change, Politics and Religion: Australian Churchgoers’ Beliefs about Climate Change

    Directory of Open Access Journals (Sweden)

    Miriam Pepper

    2016-05-01

    Full Text Available A growing literature has sought to understand the relationships between religion, politics and views about climate change and climate change policy in the United States. However, little comparative research has been conducted in other countries. This study draws on data from the 2011 Australian National Church Life Survey to examine the beliefs of Australian churchgoers from some 20 denominations about climate change—whether or not it is real and whether it is caused by humans—and political factors that explain variation in these beliefs. Pentecostals, Baptist and Churches of Christ churchgoers, and people from the smallest Protestant denominations were less likely than other churchgoers to believe in anthropogenic climate change, and voting and hierarchical and individualistic views about society predicted beliefs. There was some evidence that these views function differently in relation to climate change beliefs depending on churchgoers’ degree of opposition to gay rights. These findings are of interest not only for the sake of international comparisons, but also in a context where Australia plays a role in international climate change politics that is disproportionate to its small population.

  1. Climate changes your business

    International Nuclear Information System (INIS)

    2008-01-01

    Businesses face much bigger climate change costs than they realise. That is the conclusion of Climate Changes Your Business. The climate change risks that companies should be paying more attention to are physical risks, regulatory risks as well as risk to reputation and the emerging risk of litigation, says the report. It argues that the risks associated with climate change tend to be underestimated

  2. Modeling Impacts of Climate and Land Use Change on Ecosystem Processes to Quantify Exposure to Climate Change in Two Landscape Conservation Cooperatives

    Science.gov (United States)

    Quackenbush, A.

    2015-12-01

    Urban land cover and associated impervious surface area is expected to increase by as much as 50% over the next few decades across substantial portions of the United States. In combination with urban expansion, increases in temperature and changes in precipitation are expected to impact ecosystems through changes in productivity, disturbance and hydrological properties. In this study, we use the NASA Terrestrial Observation and Prediction System Biogeochemical Cycle (TOPS-BGC) model to explore the combined impacts of urbanization and climate change on hydrologic dynamics (snowmelt, runoff, and evapotranspiration) and vegetation carbon uptake (gross productivity). The model is driven using land cover predictions from the Spatially Explicit Regional Growth Model (SERGoM) to quantify projected changes in impervious surface area, and climate projections from the 30 arc-second NASA Earth Exchange Downscaled Climate Projection (NEX-DCP30) dataset derived from the CMIP5 climate scenarios. We present the modeling approach and an analysis of the ecosystem impacts projected to occur in the US, with an emphasis on protected areas in the Great Northern and Appalachian Landscape Conservation Cooperatives (LCC). Under the ensemble average of the CMIP5 models and land cover change scenarios for both representative concentration pathways (RCPs) 4.5 and 8.5, both LCCs are predicted to experience increases in maximum and minimum temperatures as well as annual average precipitation. In the Great Northern LCC, this is projected to lead to increased annual runoff, especially under RCP 8.5. Earlier melt of the winter snow pack and increased evapotranspiration, however, reduces summer streamflow and soil water content, leading to a net reduction in vegetation productivity across much of the Great Northern LCC, with stronger trends occurring under RCP 8.5. Increased runoff is also projected to occur in the Appalachian LCC under both RCP 4.5 and 8.5. However, under RCP 4.5, the model

  3. Does the weather influence public opinion about climate change?

    Science.gov (United States)

    Donner, S. D.; McDaniel, J.

    2010-12-01

    Public opinion in North America about the science of anthropogenic climate change and the motivation for policy action has been variable over the past twenty years. The trends in public opinion over time have been attributed the general lack of pressing public concern about climate change to a range of political, economic and psychological factors. One driving force behind the variability in polling data from year to year may be the weather itself. The difference between what we “expect” - the climate - and what we “get” - the weather - can be a major source of confusion and obfuscation in the public discourse about climate change. For example, reaction to moderate global temperatures in 2007 and 2008 may have helped prompt the spread of a “global cooling” meme in the public and the news media. At the same time, a decrease in the belief in the science of climate change and the need for action has been noted in opinion polls. This study analyzes the relationship between public opinion about climate change and the weather in the U.S. since the mid-1980s using historical polling data from several major organizations (e.g. Gallup, Pew, Harris Interactive, ABC News), historical monthly air temperature (NCDC) and a survey of opinion articles from major U.S. newspapers (Washington Post, New York Times, Wall Street Journal, Houston Chronicle, USA Today). Seasonal and annual monthly temperature anomalies for the northeastern U.S and the continental U.S are compared with available national opinion data for three general categories of questions: i) Is the climate warming?, ii) Is the observed warming due to human activity?, and iii) Are you concerned about climate change? The variability in temperature and public opinion over time is also compared with the variability in the fraction of opinion articles in the newspapers (n ~ 7000) which express general agreement or disagreement with IPCC Summary for Policymakers consensus statements on climate change (“most of

  4. Potential effects of climate change on hydrology in the oil sands region of Alberta

    International Nuclear Information System (INIS)

    Biftu, G.F.; Beersing, A.; Kalinga, O.A.; Pandit, K.N.

    2007-01-01

    The potential effects of climate change must be incorporated within environmental assessments of oil and gas developments. This paper evaluated the findings of a study examining the potential impacts of climate change on watershed hydrology in the oil sands region of Alberta. Components of the study included a review of trends in climate parameters and their effect on hydrology, as well as statistical analyses of precipitation, temperature and stream flow data of the Athabasca River at both the local and regional scale. The influences of tributary streams were also examined. Results of the study demonstrated that air temperatures have been steadily rising over the past few decades. Recorded annual precipitation also increased during the spring and summer months, and decreased during the winter and fall. Annual mean flows decreased. Results suggested that wet and dry cycles tended to exaggerate trends when only partial segments of the cycles were analyzed. The analysis of flows in the tributary streams indicated a that mean and peak flows were also decreasing. However, an increase in peak winter flows was observed. It was concluded that there is a large degree of uncertainty in the predictions of the hydrologic effects of climate change. 17 refs., 6 tabs

  5. Construction of climate change scenarios from transient climate change experiments for the IPCC impacts assessment

    International Nuclear Information System (INIS)

    Viner, D.; Hulme, M.; Raper, S.C.B.; Jones, P.D.

    1994-01-01

    This paper outlines the different methods which may be used for the construction of regional climate change scenarios. The main focus of the paper is the construction of global climate change scenarios from climate change experiments carried out using General Circulation Models (GCMS) An introduction to some GCM climate change experiments highlights the difference between model types and experiments (e.g., equilibrium or transient). The latest generation of climate change experiments has been performed using fully coupled ocean-atmosphere GCMS. These allow transient simulations of climate change to be performed with respect to a given greenhouse gas forcing scenario. There are, however, a number of problems with these simulations which pose difficulties for the construction of climate change scenarios for use in climate change impacts assessment. The characteristics of the transient climate change experiments which pose difficulties for the construction of climate change scenarios are discussed. Three examples of these problems are: different climate change experiments use different greenhouse gas concentration scenarios; the 'cold-start' problem makes it difficult to link future projections of climate change to a given calendar year; a drift of the climate is noticeable in the control simulations. In order to construct climate change scenarios for impacts assessment a method has therefore to be employed which addresses these problems. At present the climate modeling and climate change impacts communities are somewhat polarized in their approach to spatial scales. Current GCMs model the climate at resolutions larger than 2.5 x 3.75 degree, while the majority of impacts assessment studies are undertaken at scales below 50km (or 0.5 degree). This paper concludes by addressing the problems in bringing together these two different modeling perspectives by presenting a number of regional climate change scenarios. 35 refs., 8 figs., 2 tabs

  6. Assessing climate change impacts on fresh water resources of the Athabasca River Basin, Canada.

    Science.gov (United States)

    Shrestha, Narayan Kumar; Du, Xinzhong; Wang, Junye

    2017-12-01

    Proper management of blue and green water resources is important for the sustainability of ecosystems and for the socio-economic development of river basins such as the Athabasca River Basin (ARB) in Canada. For this reason, quantifying climate change impacts on these water resources at a finer temporal and spatial scale is often necessary. In this study, we used a Soil and Water Assessment Tool (SWAT) to assess climate change impacts on fresh water resources, focusing explicitly on the impacts to both blue and green water. We used future climate data generated by the Canadian Center for Climate Modelling and Analysis Regional Climate Model (CanRCM4) with a spatial resolution of 0.22°×0.22° (~25km) for two emission scenarios (RCP 4.5 and 8.5). Results projected the climate of the ARB to be wetter by 21-34% and warmer by 2-5.4°C on an annual time scale. Consequently, the annual average blue and green water flow was projected to increase by 16-54% and 11-34%, respectively, depending on the region, future period, and emission scenario. Furthermore, the annual average green water storage at the boreal region was expected to increase by 30%, while the storage was projected to remain fairly stable or decrease in other regions, especially during the summer season. On average, the fresh water resources in the ARB are likely to increase in the future. However, evidence of temporal and spatial heterogeneity could pose many future challenges to water resource planners and managers. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  7. Georgian climate change under global warming conditions

    Directory of Open Access Journals (Sweden)

    Mariam Elizbarashvili

    2017-03-01

    Full Text Available Georgian Climate change has been considered comprehensively, taking into account World Meteorological Organization recommendations and recent observation data. On the basis of mean temperature and precipitation decadal trend geo-information maps for 1936–2012 years period, Georgian territory zoning has been carried out and for each areas climate indices main trends have been studied, that best characterize climate change - cold and hot days, tropical nights, vegetation period duration, diurnal maximum precipitation, maximum five-day total precipitation, precipitation intensity simple index, precipitation days number of at least 10 mm, 20 mm and 50 mm, rainy and rainless periods duration. Trends of temperature indices are statistically significant. On the Black Sea coastline and Colchis lowland at high confidence level cold and hot days and tropical nights number changes are statistically significant. On eastern Georgia plains at high level of statistical significance, the change of all considered temperature indices has been fixed except for the number of hot days. In mountainous areas only hot day number increasing is significant. Trends of most moisture indices are statistically insignificant. While keeping Georgian climate change current trends, precipitation amount on the Black Sea coastline and Colchis lowland, as well as in some parts of Western Caucasus to the end of the century will increase by 50% and amounts to 3000 and 6000 mm, respectively this will strengthen humidity of those areas. Besides increasing of rainy period duration may constitute the risk for flooding and high waters. On eastern Georgia plains, in particular Kvemo Kartli, annual precipitation amount will decrease by 50% or more, and will be only 150–200 mm and the precipitation daily maximum will decrease by about 20 mm and be only 10–15 mm, which of course will increase the intensity of desertification of steppe and semi-desert landscapes.

  8. Shift of biome patterns due to simulated climate variability and climate change

    International Nuclear Information System (INIS)

    Claussen, M.

    1993-01-01

    The variability of simulated equilibrium-response patterns of biomes caused by simulated climate variability and climate shift is analysed. This investigation is based on various realisations of simulated present-day climate and climate shift. It has been found that the difference between biomes computed from three 10-year climatologies and from the corresponding 30-year climatology, simulated by the Hamburg climate model at T21 resolution, amounts to approximately 6% of the total land area, Antarctica excluded. This difference is mainly due to differences in annual moisture availability and winter temperatures. When intercomparing biomes from the 10-year climatologies a 10% difference is seen, but there is no unique difference pattern. In contrast to the interdecadal variability, the shift of conditions favorable for biomes due to a shift in climate in the next 100 years, caused by an increase in sea-surface temperatures and atmospheric CO 2 , reveals a unique trend pattern. It turns out that the strongest and most significant signal is the north-east shift of conditions for boreal biomes. This signal is caused by an increase of annual temperature sums as well as mean temperatures of the coldest and warmest months. Trends in annual moisture availability are of secondary importance globally. Regionally, a decrease in water availability affects biomes in Central and East Europe and an increase of water availability leads to a potential increase in tropical rain forest. In total, all differences amount to roughly 30% of the total land surface, Antarctica excluded. (orig./KW)

  9. The roles of natural areas in a changing climate

    International Nuclear Information System (INIS)

    Pollard, D.F.W.

    1991-01-01

    Natural areas are protected sites which are integral parts of a systematic network representing the diversity of natural environments. They are relatively undisturbed by man, selected according to ecological criteria, have assured permanency, are set aside mainly for scientific and educational purposes, and harbor genetic materials of value to society. In the Pacific Northwest, natural areas have been established by the United States Forest Service and the British Columbia Ministry of the Environment and include national parks, wilderness areas, wildlife refuges, and wild rivers. A change in climate will undoubtedly create a mismatch between climatic regions and vegetation and wildlife occupying them. The distribution of plant and animal species will change. Species and communities that will be most affected by climatic change include those at the contracting periphery of the species range, genetically impoverished or highly sensitive species, annual plants, and Arctic and coastal communities. Most species will disperse from existing locations, with variable and unpredictable results. It is conceivable that natural areas will evolve from their current role as refuges to a new role as centers of diversity from which genes migrate into a changing world. Natural areas also serve as a base for biomonitoring of long-term environmental changes and for assessing effects of interventions such as acid precipitation. 32 refs

  10. Possible impact of climate change on meningitis in northwest Nigeria: an assessment using CMIP5 climate model simulations

    Science.gov (United States)

    Abdussalam, Auwal; Monaghan, Andrew; Steinhoff, Daniel; Dukic, Vanja; Hayden, Mary; Hopson, Thomas; Thornes, John; Leckebusch, Gregor

    2014-05-01

    Meningitis remains a major health burden throughout Sahelian Africa, especially in heavily-populated northwest Nigeria. Cases exhibit strong sensitivity to intra- and inter-annual climate variability, peaking during the hot and dry boreal spring months, raising concern that future climate change may increase the incidence of meningitis in the region. The impact of future climate change on meningitis risk in northwest Nigeria is assessed by forcing an empirical model of meningitis with monthly simulations from an ensemble of thirteen statistically downscaled global climate model projections from the Coupled Model Intercomparison Experiment Phase 5 (CMIP5) for RCPs 2.6, 6.0 and 8.5 scenarios. The results suggest future temperature increases due to climate change has the potential to significantly increase meningitis cases in both the early and late 21st century, and to increase the length of the meningitis season in the late century. March cases may increase from 23 per 100,000 people for present day (1990-2005), to 29-30 per 100,000 (p<0.01) in the early century (2020-2035) and 31-42 per 100,000 (p<0.01) in the late century (2060-2075), the range being dependent on the emissions scenario. It is noteworthy that these results represent the climatological potential for increased cases due to climate change, as we assume current prevention and treatment strategies remain similar in the future.

  11. Combating the effects of climatic change on forests by mitigation strategies

    Directory of Open Access Journals (Sweden)

    Dieter Matthias

    2010-11-01

    Full Text Available Abstract Background Forests occur across diverse biomes, each of which shows a specific composition of plant communities associated with the particular climate regimes. Predicted future climate change will have impacts on the vulnerability and productivity of forests; in some regions higher temperatures will extend the growing season and thus improve forest productivity, while changed annual precipitation patterns may show disadvantageous effects in areas, where water availability is restricted. While adaptation of forests to predicted future climate scenarios has been intensively studied, less attention was paid to mitigation strategies such as the introduction of tree species well adapted to changing environmental conditions. Results We simulated the development of managed forest ecosystems in Germany for the time period between 2000 and 2100 under different forest management regimes and climate change scenarios. The management regimes reflect different rotation periods, harvesting intensities and species selection for reforestations. The climate change scenarios were taken from the IPCC's Special Report on Emission Scenarios (SRES. We used the scenarios A1B (rapid and successful economic development and B1 (high level of environmental and social consciousness combined with a globally coherent approach to a more sustainable development. Our results indicate that the effects of different climate change scenarios on the future productivity and species composition of German forests are minor compared to the effects of forest management. Conclusions The inherent natural adaptive capacity of forest ecosystems to changing environmental conditions is limited by the long life time of trees. Planting of adapted species and forest management will reduce the impact of predicted future climate change on forests.

  12. Anthropogenic radiative forcing of southern African and Southern Hemisphere climate variability and change

    CSIR Research Space (South Africa)

    Engelbrecht, FA

    2014-10-01

    Full Text Available of stratospheric ozone, greenhouse gasses, aerosols and sulphur dioxide, can improve the model's skill to simulate inter-annual variability over southern Africa. The paper secondly explores the role of different radiative forcings of future climate change over...

  13. The NASA Global Climate Change Education Project: An Integrated Effort to Improve the Teaching and Learning about Climate Change (Invited)

    Science.gov (United States)

    Chambers, L. H.; Pippin, M. R.; Welch, S.; Spruill, K.; Matthews, M. J.; Person, C.

    2010-12-01

    The NASA Global Climate Change Education (GCCE) Project, initiated in 2008, seeks to: - improve the teaching and learning about global climate change in elementary and secondary schools, on college campuses, and through lifelong learning; - increase the number of people, particularly high school and undergraduate students, using NASA Earth observation data, Earth system models, and/or simulations to investigate and analyze global climate change issues; - increase the number of undergraduate students prepared for employment and/or to enter graduate school in technical fields relevant to global climate change. Through an annual solicitation, proposals are requested for projects that address these goals using a variety of approaches. These include using NASA Earth system data, interactive models and/or simulations; providing research experiences for undergraduate or community college students, or for pre- or in-service teachers; or creating long-term teacher professional development experiences. To date, 57 projects have been funded to pursue these goals (22 in 2008, 18 in 2009, and 17 in 2010), each for a 2-3 year period. The vast majority of awards address either teacher professional development, or use of data, models, or simulations; only 7 awards have been made for research experiences. NASA, with assistance from the Virginia Space Grant Consortium, is working to develop these awardees into a synergistic community that works together to maximize its impact. This paper will present examples of collaborations that are evolving within this developing community. It will also introduce the opportunities available in fiscal year 2011, when a change in emphasis is expected for the project as it moves within the NASA Office of Education Minority University Research and Education Program (MUREP).

  14. Farmers' Perceptions of and Adaptations to Changing Climate in the Melamchi Valley of Nepal

    Directory of Open Access Journals (Sweden)

    Nani Maiya Sujakhu

    2016-02-01

    Full Text Available Knowledge of farmers’ perceptions of and adaptations to climate change is important to inform policies addressing the risk of climate change to farmers. This case study explored those issues in the Melamchi Valley of Nepal through a survey of 365 households and focus group discussions in 6 communities using a Community-Based Risk Screening Tool–Adaptation and Livelihoods (CRiSTAL. Analysis of climate trends in the study area for 1979–2009 showed that mean annual temperatures rose by 1.02°C and the frequency of drought increased measurably after 2003. Farmers reported increases in crop pests, hailstorms, landslides, floods, thunderstorms, and erratic precipitation as climate-related hazards affecting agriculture. They responded in a variety of ways including changing farming practices, selling livestock, milk, and eggs, and engaging in daily wage labor and seasonal labor migration. With more efficient support and planning, some of these measures could be adjusted to better meet current and future risks from climate change.

  15. Effect of Climate Change on Surface Ozone over North America, Europe, and East Asia

    Science.gov (United States)

    Schnell, Jordan L.; Prather, Michael J.; Josse, Beatrice; Naik, Vaishali; Horowitz, Larry W.; Zeng, Guang; Shindell, Drew T.; Faluvegi, Greg

    2016-01-01

    The effect of future climate change on surface ozone over North America, Europe, and East Asia is evaluated using present-day (2000s) and future (2100s) hourly surface ozone simulated by four global models. Future climate follows RCP8.5, while methane and anthropogenic ozone precursors are fixed at year-2000 levels. Climate change shifts the seasonal surface ozone peak to earlier in the year and increases the amplitude of the annual cycle. Increases in mean summertime and high-percentile ozone are generally found in polluted environments, while decreases are found in clean environments. We propose climate change augments the efficiency of precursor emissions to generate surface ozone in polluted regions, thus reducing precursor export to neighboring downwind locations. Even with constant biogenic emissions, climate change causes the largest ozone increases at high percentiles. In most cases, air quality extreme episodes become larger and contain higher ozone levels relative to the rest of the distribution.

  16. Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador

    Science.gov (United States)

    Hildebrandt, Patrick; Cueva, Jorge; Espinosa, Carlos Iván; Stimm, Bernd; Günter, Sven

    2017-01-01

    Seasonally dry forests in the neotropics are heavily threatened by a combination of human disturbances and climate change; however, the severity of these threats is seldom contrasted. This study aims to quantify and compare the effects of deforestation and climate change on the natural spatial ranges of 17 characteristic tree species of southern Ecuador dry deciduous forests, which are heavily fragmented and support high levels of endemism as part of the Tumbesian ecoregion. We used 660 plant records to generate species distribution models and land-cover data to project species ranges for two time frames: a simulated deforestation scenario from 2008 to 2014 with native forest to anthropogenic land-use conversion, and an extreme climate change scenario (CCSM4.0, RCP 8.5) for 2050, which assumed zero change from human activities. To assess both potential threats, we compared the estimated annual rates of species loss (i.e., range shifts) affecting each species. Deforestation loss for all species averaged approximately 71 km2/year, while potential climate-attributed loss was almost 21 km2/year. Moreover, annual area loss rates due to deforestation were significantly higher than those attributed to climate-change (P < 0.01). However, projections into the future scenario show evidence of diverging displacement patterns, indicating the potential formation of novel ecosystems, which is consistent with other species assemblage predictions as result of climate change. Furthermore, we provide recommendations for management and conservation, prioritizing the most threatened species such as Albizia multiflora, Ceiba trichistandra, and Cochlospermum vitifolium. PMID:29267357

  17. Climate change versus deforestation: Implications for tree species distribution in the dry forests of southern Ecuador.

    Science.gov (United States)

    Manchego, Carlos E; Hildebrandt, Patrick; Cueva, Jorge; Espinosa, Carlos Iván; Stimm, Bernd; Günter, Sven

    2017-01-01

    Seasonally dry forests in the neotropics are heavily threatened by a combination of human disturbances and climate change; however, the severity of these threats is seldom contrasted. This study aims to quantify and compare the effects of deforestation and climate change on the natural spatial ranges of 17 characteristic tree species of southern Ecuador dry deciduous forests, which are heavily fragmented and support high levels of endemism as part of the Tumbesian ecoregion. We used 660 plant records to generate species distribution models and land-cover data to project species ranges for two time frames: a simulated deforestation scenario from 2008 to 2014 with native forest to anthropogenic land-use conversion, and an extreme climate change scenario (CCSM4.0, RCP 8.5) for 2050, which assumed zero change from human activities. To assess both potential threats, we compared the estimated annual rates of species loss (i.e., range shifts) affecting each species. Deforestation loss for all species averaged approximately 71 km2/year, while potential climate-attributed loss was almost 21 km2/year. Moreover, annual area loss rates due to deforestation were significantly higher than those attributed to climate-change (P < 0.01). However, projections into the future scenario show evidence of diverging displacement patterns, indicating the potential formation of novel ecosystems, which is consistent with other species assemblage predictions as result of climate change. Furthermore, we provide recommendations for management and conservation, prioritizing the most threatened species such as Albizia multiflora, Ceiba trichistandra, and Cochlospermum vitifolium.

  18. Variability and changes in selected climate elements in Madrid and Alicante in the period 2000-2014

    Directory of Open Access Journals (Sweden)

    Cielecka Katarzyna

    2015-10-01

    Full Text Available The aim of this study is to compare climatic conditions between the interior of the Iberian Peninsula and the southeastern coast of Spain. The article analyzes selected elements of climate over the last 15 years (2000-2014. Synoptic data from airport meteorological stations in Madrid Barajas and Alicante Elche were used. Attention was focused on annual air temperature, relative humidity and precipitation. The mean climatic conditions over the period 2000-2014 were compared with those over the 1961-1990 period which is recommended by WMO as climate normal and with data for the 1971-2000 coming from ‘Climate Atlas’ of Spanish meteorologists group AEMET. Two of climate elements discussed were characterized by significant changes. The annual air temperature was higher by about 0.2°C in Alicante and 0.9°C in Madrid in the period 2000-2014 compared to the 1961-1990. The current winters were colder than in years 1961-1990 at both stations. Gradual decrease in annual precipitation totals was observed at both stations. In 1961-1990 the annual average precipitation in Madrid amounted to 414 mm, while in Alicante it was 356 mm. However, in the recent years of 2000-2014 these totals were lower compared to 1961-1990 reaching 364.1 mm in the central part of Spain and 245.7 mm on the south-western coast.

  19. On the brink of change: plant responses to climate on the Colorado Plateau

    Science.gov (United States)

    Munson, Seth M.; Belnap, Jayne; Schelz, Charles D.; Moran, Mary; Carolin, Tara W.

    2011-01-01

    The intensification of aridity due to anthropogenic climate change in the southwestern U.S. is likely to have a large impact on the growth and survival of plant species that may already be vulnerable to water stress. To make accurate predictions of plant responses to climate change, it is essential to determine the long-term dynamics of plant species associated with past climate conditions. Here we show how the plant species and functional types across a wide range of environmental conditions in Colorado Plateau national parks have changed with climate variability over the last twenty years. During this time, regional mean annual temperature increased by 0.18°C per year from 1989–1995, 0.06°C per year from 1995–2003, declined by 0.14°C from 2003–2008, and there was high interannual variability in precipitation. Non-metric multidimensional scaling of plant species at long-term monitoring sites indicated five distinct plant communities. In many of the communities, canopy cover of perennial plants was sensitive to mean annual temperature occurring in the previous year, whereas canopy cover of annual plants responded to cool season precipitation. In the perennial grasslands, there was an overall decline of C3 perennial grasses, no change of C4 perennial grasses, and an increase of shrubs with increasing temperature. In the shrublands, shrubs generally showed no change or slightly increased with increasing temperature. However, certain shrub species declined where soil and physical characteristics of a site limited water availability. In the higher elevation woodlands, Juniperus osteosperma and shrub canopy cover increased with increasing temperature, while Pinus edulis at the highest elevation sites was unresponsive to interannual temperature variability. These results from well-protected national parks highlight the importance of temperature to plant responses in a water-limited region and suggest that projected increases in aridity are likely to promote

  20. Preface to the Special Issue on Geodynamic and Climate-Change Processes over Tibet, Xinjiang and Siberia

    OpenAIRE

    Cheinway Hwang; Benjamin Fong Chao; Jeffrey T. Freymueller; Wenbin Shen; C. K. Shum

    2011-01-01

    Tibet, Xinjiang and Siberia (TibXS) are regions with active plate tectonics. Evidence from satellite gravimetry and altimetry shows the hydrological evolutions over these regions are sensitive to global climate change. For example, inter-annual lake level changes over Tibet and Xinjiang from satellite altimetry are found to be connected to the El Nino Southern Oscillation (ENSO). Lakes in central Asia, Xinjiang and Siberia show sharp changes in lake levels that can be explained by climate cha...

  1. Should anticipated impacts of climate change on hydrology modify water management practices?

    Energy Technology Data Exchange (ETDEWEB)

    St-Jean, R. [Energie Renouvelable Brookfield, Gatineau, Quebec (Canada)

    2008-07-01

    Over the last few decades the scientific community has closely monitored climatologic trends and developed theories to better model interactions between the many factors that govern changes in climate. Although climate evolves naturally, evidence continues to mount that rapidly increasing concentrations of greenhouse gasses are causing accelerated changes: there is now a worldwide consensus about the general warming trend caused by this phenomenon, and now countries are initiating efforts to reduce emission rates, identify the potential impacts, and plan adaptation measures. The electric industry in general is investing in renewable energy sources, low-emission technologies, and emission offsets. More particularly, hydroelectric generators are getting prepared to face the challenge in anticipation of modified temporal and spatial distributions of precipitation, along with possible changes in overall precipitation volumes. Current industry practices in determining expected annual production levels rely 'in almost all instances upon the use of historical streamflow records'. The same survey also shows that 'in no case did respondents indicate that they currently reduce the length of available historical record in order to reflect recent trends in precipitation'. Relying on historical observations is also common practice to forecast inflows for periods longer than a few weeks in the future. Given that changes in precipitation patterns will modify the availability of water, it should be expected that the pattern of production from hydroelectric stations will be altered in a variety of ways: total annual production volumes, seasonal distributions of energy, changes in reservoir management rules caused by extreme events or competing needs for water, and so on, may all be affected. The utility of historical series in predicting the future may decline, and current work practices will potentially need to be modified accordingly. At the same time

  2. Our changing climate

    International Nuclear Information System (INIS)

    Kandel, R.

    1990-01-01

    The author presents an overview of the changing climate. Attention is focused on the following: meteorology; weather; climate anomalies; changes in atmospheric composition and global warming; ozone; mathematical models; and climate and politics. In its conclusion, it asks researchers to stay out of a game in which, ultimately, neither science nor politics stands to gain anything

  3. Climate change and skin disease.

    Science.gov (United States)

    Lundgren, Ashley D

    2018-04-01

    Despite commanding essentially universal scientific consensus, climate change remains a divisive and poorly understood topic in the United States. Familiarity with this subject is not just for climate scientists. The impact of climate change on human morbidity and mortality may be considerable; thus, physicians also should be knowledgeable in this realm. Climate change science can seem opaque and inferential, creating fertile ground for political polemics and undoubtedly contributing to confusion among the general public. This puts physicians in a pivotal position to facilitate a practical understanding of climate change in the public sphere by discussing changes in disease patterns and their possible relationship to a changing climate. This article provides a background on climate change for dermatologists and highlights how climate change may impact the management of skin disease across the United States.

  4. Annual Change Report 2003/2004

    International Nuclear Information System (INIS)

    2004-01-01

    As part of continuing compliance, the U.S. Environmental Protection Agency (EPA) requires the U.S. Department of Energy (DOE) to provide any change in information since the most recent compliance application. This requirement is identified in Title 40 Code of Federal Regulations (CFR), Section 194.4(b)(4), which states: 'No later than six months after the administrator issues a certification, and at least annually thereafter, the Department shall report to the Administrator, in writing, any changes in conditions or activities pertaining to the disposal system that were not required to be reported by paragraph (b)(3) of this section and that differ from information contained in the most recent compliance application.' In meeting the requirement, the DOE provides an annual report of all changes applicable under the above requirement each November. This annual report informs the EPA of changes to information in the most recent compliance application, or for this report the 1996 Compliance Certification Application (CCA). Significant planned changes must be reported to the EPA prior to implementation by the DOE. In addition, Title 40 CFR, Section 194.4(b)(3) requires that significant unplanned changes be reported to the EPA within 24 hours or ten days, depending on the severity of the activity or condition. To date, there have been no significant unplanned changes to the certification basis. Planned changes have been submitted on an individual basis. All other changes are reported annually. The period covered by this Annual Change Report includes changes that occurred between July 1, 2003, and June 30, 2004. Changes in activities or conditions are reviewed to determine if 40 CFR Section 194.4(b)(3) reporting is necessary. As indicated above, no significant unplanned changes were identified for the time period covered by this report. The enclosed tables list those items identified for reporting under 40 CFR Section 194.4(b)(4). The majority of the changes described in

  5. Climatic controls on diffuse groundwater recharge across Australia

    Directory of Open Access Journals (Sweden)

    O. V. Barron

    2012-12-01

    Full Text Available Reviews of field studies of groundwater recharge have attempted to investigate how climate characteristics control recharge, but due to a lack of data have not been able to draw any strong conclusions beyond that rainfall is the major determinant. This study has used numerical modelling for a range of Köppen-Geiger climate types (tropical, arid and temperate to investigate the effect of climate variables on recharge for different soil and vegetation types. For the majority of climate types, the correlation between the modelled recharge and total annual rainfall is weaker than the correlation between recharge and the annual rainfall parameters reflecting rainfall intensity. Under similar soil and vegetation conditions for the same annual rainfall, annual recharge in regions with winter-dominated rainfall is greater than in regions with summer-dominated rainfall. The importance of climate parameters other than rainfall in recharge estimation is highest in the tropical climate type. Mean annual values of solar radiation and vapour pressure deficit show a greater importance in recharge estimation than mean annual values of the daily mean temperature. Climate parameters have the lowest relative importance in recharge estimation in the arid climate type (with cold winters and the temperate climate type. For 75% of all soil, vegetation and climate types investigated, recharge elasticity varies between 2 and 4 indicating a 20% to 40% change in recharge for a 10% change in annual rainfall. Understanding how climate controls recharge under the observed historical climate allows more informed choices of analogue sites if they are to be used for climate change impact assessments.

  6. High-latitude tree-ring data: Records of climatic change and ecological response

    International Nuclear Information System (INIS)

    Graumlich, L.J.

    1991-01-01

    Tree-ring data provide critical information regarding two fundamental questions as to the role of the polar regions in global change: (1) what is the nature of climatic variability? and (2) what is the response of vegetation to climatic variability? Tree-ring-based climatic reconstructions document the variability of the climate system on time scales of years to centuries. Dendroclimatic reconstructions indicate that the climatic episodes defined on the basis of documentary evidence in western Europe (i.e., Medieval Warm Episode, ca. A.D. 1000-1300; Little Ice Age, ca. A.D. 1550-1850) can be observed at some high-latitude sites (ex., Polar Urals). Spatial variation in long-term temperature trends (ex., northern Fennoscandia vs. Polar Urals) demonstrates the importance of regional-scale climatic controls. When collated into global networks, proxy-based climatic reconstructions can be used to test hypotheses as to the relative importance of external forcing vs. internal variation in governing climatic variation. Specifically, such a global network would allow the quantification of the climatic response to various permutations of factors thought to be important in governing decadal- to centennial-scale climatic variation. Tree populations respond to annual- to centennial-scale climatic variation through changes in rates of growth, establishment, and mortality. Tree-ring studies that document multiple aspects of high-latitude treeline dynamics (i.e., the timing of tree establishment, mortality, and changes from krummholz to upright growth) indicate a complex interaction between growth form, population processes, and environmental variability. Such interactions result in varying sensitivities of high-latitude trees to climatic change

  7. Quality Climate Change Professional Development Translates into Quality Climate Change Education (Invited)

    Science.gov (United States)

    Holzer, M. A.

    2013-12-01

    Perhaps one of the reasons we have so many climate change deniers in the United States is that to them climate change is not occurring. This is a valid claim about climate change deniers considering that the effects of climate change in the mid-latitudes are quite subtle as compared to those found in low-latitude and high-latitude regions. A mid-latitude classroom teacher is saddled with the challenge of enlightening students about our changing climate and empowering students to assist in making necessary lifestyle changes, all the while the students don't understand the urgency in doing so. Quality climate change data and resources from the Polar Regions and low latitudes, as well as connections to researchers from these regions help to bridge the understanding of our changing climate from the extreme latitudes to the mid-latitudes. Connecting science teachers with data, resources, and researchers is one way of ensuring our mid-latitude students understand the urgency in taking appropriate actions to adapt, mitigate, and show resilience. This presentation will highlight a few of the many impacts of an authentic research experience for teachers that not only provides teachers with data, resources, and researchers, but changes the way a science teacher teaches where the methods they use mirror the methods used by scientists. National projects like PolarTREC connect educators with the science of climate change as well as the reality of impacts of climate change. For example, research expeditions in the Arctic and in Antarctica connect teachers with the content and practices of climate change science preparing them to replicate their experiences with their students. A PolarTREC experience does not end with the close of the expedition. Teachers continue their connections with the program through their educator network, the integration of PolarTREC resources into their curriculums, and communications with their principal investigators either virtually or with school

  8. Trade and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Tamiotti, L.; Teh, R.; Kulacoglu, V. (World Trade Organization (WTO), Geneva (Switzerland)); Olhoff, A.; Simmons, B.; Abaza, H. (United Nations Environment Programme (UNEP) (Denmark))

    2009-06-15

    The Report aims to improve understanding about the linkages between trade and climate change. It shows that trade intersects with climate change in a multitude of ways. For example, governments may introduce a variety of policies, such as regulatory measures and economic incentives, to address climate change. This complex web of measures may have an impact on international trade and the multilateral trading system. The Report begins with a summary of the current state of scientific knowledge on climate change and on the options available for responding to the challenge of climate change. The scientific review is followed by a part on the economic aspects of the link between trade and climate change, and these two parts set the context for the subsequent parts of the Report, which looks at the policies introduced at both the international and national level to address climate change. The part on international policy responses to climate change describes multilateral efforts to reduce greenhouse gas emissions and to adapt to the effects of climate change, and also discusses the role of the current trade and environment negotiations in promoting trade in technologies that aim to mitigate climate change. The final part of the Report gives an overview of a range of national policies and measures that have been used in a number of countries to reduce greenhouse gas emissions and to increase energy efficiency. It presents key features in the design and implementation of these policies, in order to draw a clearer picture of their overall effect and potential impact on environmental protection, sustainable development and trade. It also gives, where appropriate, an overview of the WTO rules that may be relevant to such measures. (author)

  9. Sensitivity of Regulated Flow Regimes to Climate Change in the Western United States

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tian [Pacific Northwest National Laboratory, Richland, Washington; Voisin, Nathalie [Pacific Northwest National Laboratory, Richland, Washington; Leng, Guoyong [Pacific Northwest National Laboratory, Richland, Washington; Huang, Maoyi [Pacific Northwest National Laboratory, Richland, Washington; Kraucunas, Ian [Pacific Northwest National Laboratory, Richland, Washington

    2018-03-01

    Water management activities or flow regulations modify water fluxes at the land surface and affect water resources in space and time. We hypothesize that flow regulations change the sensitivity of river flow to climate change with respect to unmanaged water resources. Quantifying these changes in sensitivity could help elucidate the impacts of water management at different spatiotemporal scales and inform climate adaptation decisions. In this study, we compared the emergence of significant changes in natural and regulated river flow regimes across the Western United States from simulations driven by multiple climate models and scenarios. We find that significant climate change-induced alterations in natural flow do not cascade linearly through water management activities. At the annual time scale, 50% of the Hydrologic Unit Code 4 (HUC4) sub-basins over the Western U.S. regions tend to have regulated flow regime more sensitive to the climate change than natural flow regime. Seasonality analyses show that the sensitivity varies remarkably across the seasons. We also find that the sensitivity is related to the level of water management. For 35% of the HUC4 sub-basins with the highest level of water management, the summer and winter flows tend to show a heightened sensitivity to climate change due to the complexity of joint reservoir operations. We further demonstrate that the impacts of considering water management in models are comparable to those that arises from uncertainties across climate models and emission scenarios. This prompts further climate adaptation studies research about nonlinearity effects of climate change through water management activities.

  10. The climate is changing

    International Nuclear Information System (INIS)

    Alfsen, Knut H.

    2001-01-01

    The Intergovernmental Panel on Climate Change (IPCC) has finalized its Third Assessment Report. Among its conclusions is that we must expect continued changes in our climate, despite our efforts to reduce greenhouse gas emissions. Planning for and adapting to climate change are therefore necessary. As a starting point, CICERO has written this short note on expected impacts in Norway. The main conclusions are that (1) Adaptation to climate change is necessary (2) Substantial impacts are expected for several important sectors in Norway (3) The local and central authorities should now consider and start planning for adaptation measures. (4) There is still a need for more knowledge about potential impacts of climate change in Norway. (author)

  11. Soils and climate: redness and weathering as indicators of mean annual precipitation

    Science.gov (United States)

    Lucke, Bernhard

    2016-04-01

    Paleosols can be used as archives of past changes of climate and landscapes, but their interpretation has to be based on modern analogies such as Budyko's law of soil zonality. These can be very useful if the respective processes of soil formation are sufficiently well understood. However, some soils such as the Terra Rossa or Red Mediterranean Soils, that are widespread at the fringes of the steppes and deserts, are still disputed with regard to their genesis and environmental significance. In particular, there is no agreement whether they resemble current environmental conditions, or are inherited from climates or sediments of the past. In this context, a remarkable change of the color of surface soils can be observed when driving from the city of Irbid in Jordan towards the east. Soil color apparently changes slowly, but steadily from dark red to yellow colors. However, attempting to express these color changes in numerical form is challenging, and it seemed questionable whether color is indeed connected with soil weathering intensity, or an optical illusion. However, a systematic comparison of different approaches of calculating soil redness found that the CIELAB-color system is suited for numerical expressions of soil redness and performs better than the Munsell charts. Along the investigated transect in Jordan, soil color seems strongly connected with weathering intensity, since various weathering indicators point to a steady increase of soil development with moisture. This suggests that such indices can well be used in semi-arid areas of 250-600 mm of mean annual precipitation. A very strong correlation of magnetic enhancement and rainfall indicates that the investigated soils are forming in equilibrium with current climatic conditions, and regressions based on this gradient might be suited for estimating paleorainfalls recorded by buried paelosols. It seems therefore that surface Terra Rossa soils in Jordan can be in equilibrium with current climate

  12. Paleoclimate from ice cores : abrupt climate change and the prolonged Holocene

    International Nuclear Information System (INIS)

    White, J.W.C.

    2001-01-01

    Ice cores provide valuable information about the Earth's past climates and past environments. They can also help in predicting future climates and the nature of climate change. Recent findings in ice cores have shown large and abrupt climate changes in the past. This paper addressed abrupt climate changes and the peculiar nature of the Holocene. An abrupt climate change is a shift of 5 degrees C in mean annual temperature in less than 50 years. This is considered to be the most threatening aspect of potential future climate change since it leaves very little time for adaptation by humans or any other part of the Earth's ecosystem. This paper also discussed the arrival of the next glacial period. In the past 50 years, scientists have recognized the importance of the Earth's orbit around the sun in pacing the occurrence of large ice sheets. The timing of orbital forcing suggests that the Earth is overdue for the next major glaciation. The reason for this anomaly was discussed. Abrupt climate shifts seem to be caused by mode changes in sensitive points in the climate system, such as the North Atlantic Deep Water Formation and its impact on sea ice cover in the North Atlantic. These changes have been observed in ice cores in Greenland but they are not restricted to Greenland. Evidence from Antarctic ice cores suggest that abrupt climate change may also occur in the Southern Hemisphere. The Vostok ice core in Antarctica indicates that the 11,000 year long interglacial period that we are in right now is longer than the previous four interglacial periods. The Holocene epoch is unique because both methane and carbon dioxide rise in the last 6,000 years, an atypical response from these greenhouse gases during an interglacial period. It was suggested that the rise in methane can be attributed to human activities. 13 refs., 2 figs

  13. Assessment on the Effect of Climate Change on Streamflow in the Source Region of the Yangtze River, China

    Directory of Open Access Journals (Sweden)

    Huanqing Bian

    2017-01-01

    Full Text Available Tuotuo River basin, known as the source region of the Yangtze River, is the key area where the impact of climate change has been observed on many of the hydrological processes of this central region of the Tibetan Plateau. In this study, we examined six Global Climate Models (GCMs under three Representative Concentration Pathways (RCPs scenarios. First, the already impacted climate change was analyzed, based on the historical data available and then, the simulation results of the GCMs and RCPs were used for future scenario assessments. Results indicated that the annual mean temperature will likely be increased, ranging from −0.66 °C to 6.68 °C during the three future prediction periods (2020s, 2050s and 2080s, while the change in the annual precipitation ranged from −1.18% to 66.14%. Then, a well-known distributed hydrological soil vegetation model (DHSVM was utilized to evaluate the effects of future climate change on the streamflow dynamics. The seasonal mean streamflows, predicted by the six GCMs and the three RCPs scenarios, were also shown to likely increase, ranging from −0.52% to 22.58%. Watershed managers and regulators can use the findings from this study to better implement their conservation practices in the face of climate change.

  14. Impacts of Climate Change and Human Activities on the Three Gorges Reservoir Inflow

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2017-12-01

    Full Text Available Identifying changes in runoff and quantifying the impacts of climate change and human activities are of great significance for water resources planning and management in a river basin. In this study, an inflow series of the Three Gorges Reservoir observed from 1951 to 2016 is used to identify the trend and abrupt change point by using statistical methods. Based on the meteorological data, soil type data, and land use data during the same period, the Soil and Water Assessment Tool (SWAT model is established to quantitatively attribute changes in the Three Gorges Reservoir inflow to climate change and human activities separately and discuss the differences between the two-stage method, which divides the whole study period into two stages to analyze the reasons for runoff evolution, and multi-stage method, which divides the whole study period into more stages to consider the temporal and spatial variation of land use/cover (LULC. The results show: (1 During the study period, a significant decrease is detected in the Three Gorges Reservoir inflow and the decrease rate is 7.7 km3 per ten years, annual total precipitation decreases by −13.5 mm per ten years, and annual average temperature increases by 0.1 °C per ten years. (2 Contribution of climate change and human activities is around 7:3. Climate change is the main reason for the decrease in the Three Gorges Reservoir inflow. (3 Results of stages in multi-stage method are different from the result of two-stage method. Accumulative results of multi-stage method and result of two-stage method are consistent. There are some changes in results of every stage, which are different from the accumulative results.

  15. Projected changes in climate extremes over Qatar and the Arabian Gulf region

    Science.gov (United States)

    Kundeti, K.; Kanikicharla, K. K.; Al sulaiti, M.; Khulaifi, M.; Alboinin, N.; Kito, A.

    2015-12-01

    The climate of the State of Qatar and the adjacent region is dominated by subtropical dry, hot desert climate with low annual rainfall, very high temperatures in summer and a big difference between maximum and minimum temperatures, especially in the inland areas. The coastal areas are influenced by the Arabian Gulf, and have lower maximum, but higher minimum temperatures and a higher moisture percentage in the air. The global warming can have profound impact on the mean climate as well as extreme weather events over the Arabian Peninsula that may affect both natural and human systems significantly. Therefore, it is important to assess the future changes in the seasonal/annual mean of temperature and precipitation and also the extremes in temperature and wind events for a country like Qatar. This study assesses the performance of the Coupled Model Inter comparison Project Phase 5 (CMIP5) simulations in present and develops future climate scenarios. The changes in climate extremes are assessed for three future periods 2016-2035, 2046-2065 and 2080-2099 with respect to 1986-2005 (base line) under two RCPs (Representative Concentrate Pathways) - RCP4.5 and RCP8.5. We analyzed the projected changes in temperature and precipitation extremes using several indices including those that capture heat stress. The observations show an increase in warm extremes over many parts in this region that are generally well captured by the models. The results indicate a significant change in frequency and intensity of both temperature and precipitation extremes over many parts of this region which may have serious implications on human health, water resources and the onshore/offshore infrastructure in this region. Data from a high-resolution (20km) AGCM simulation from Meteorological Research Institute of Japan Meteorological Agency for the present (1979-2003) and a future time slice (2075-2099) corresponding to RCP8.5 have also been utilized to assess the impact of climate change on

  16. Climate Change Portal - Home Page

    Science.gov (United States)

    Science Partnerships Contact Us Take Action Climate change is already having significant and widespread of climate change. Business Businesses throughout California are taking action to address climate climate change impacts and informing policies to reduce greenhouse gases, adapt to changing environments

  17. The impacts of climate change on energy: An aggregate expenditure model for the US

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, W. [Boston Univ., MA (United States); Mendelsohn, R. [Yale Univ., New Haven, CT (United States). School of Forestry and Environmental Studies

    1998-09-01

    This paper develops a theoretical model to measure the climate change impacts to the energy sector. Welfare effects are approximately equal to the resulting change in expenditures on energy and buildings. Using micro data on individuals and firms across the United States, energy expenditures are regressed on climate and other control variables to estimate both short-run and long-run climate response functions. The analysis suggests that energy expenditures have a quadratic U-shaped relationship with respect to temperature. Future warming of 2 C is predicted to cause annual damages of about $6 billion but increases of 5 C would increase damages to almost $30 billion.

  18. The impacts of climate change on energy: An aggregate expenditure model for the US

    International Nuclear Information System (INIS)

    Morrison, W.; Mendelsohn, R.

    1998-01-01

    This paper develops a theoretical model to measure the climate change impacts to the energy sector. Welfare effects are approximately equal to the resulting change in expenditures on energy and buildings. Using micro data on individuals and firms across the United States, energy expenditures are regressed on climate and other control variables to estimate both short-run and long-run climate response functions. The analysis suggests that energy expenditures have a quadratic U-shaped relationship with respect to temperature. Future warming of 2 C is predicted to cause annual damages of about $6 billion but increases of 5 C would increase damages to almost $30 billion

  19. Climate change and forest diseases

    Science.gov (United States)

    R.N. Sturrock; Susan Frankel; A. V. Brown; Paul Hennon; J. T. Kliejunas; K. J. Lewis; J. J. Worrall; A. J. Woods

    2011-01-01

    As climate changes, the effects of forest diseases on forest ecosystems will change. We review knowledge of relationships between climate variables and several forest diseases, as well as current evidence of how climate, host and pathogen interactions are responding or might respond to climate change. Many forests can be managed to both adapt to climate change and...

  20. Climatic change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-02-15

    In spite of man's remarkable advances in technology, ultimately he is still dependent on the Earth's climatic system for food and fresh water. The recent occurrences in certain regions of the world of climatic extremes such as excessive rain or droughts and unseasonably high or low temperatures have led to speculation that a major climatic change is occurring on a global scale. Some point to the recent drop in temperatures in the northern hemisphere as an indication that the Earth is entering a new ice age. Others see a global warming trend that may be due to a build-up of carbon dioxide in the atmosphere. An authoritative report on the subject has been prepared by a World Meteorological Organization Panel of Experts on Climatic Change. Excerpts from the report are given. (author)

  1. Climatic change

    International Nuclear Information System (INIS)

    1977-01-01

    In spite of man's remarkable advances in technology, ultimately he is still dependent on the Earth's climatic system for food and fresh water. The recent occurrences in certain regions of the world of climatic extremes such as excessive rain or droughts and unseasonably high or low temperatures have led to speculation that a major climatic change is occurring on a global scale. Some point to the recent drop in temperatures in the northern hemisphere as an indication that the Earth is entering a new ice age. Others see a global warming trend that may be due to a build-up of carbon dioxide in the atmosphere. An authoritative report on the subject has been prepared by a World Meteorological Organization Panel of Experts on Climatic Change. Excerpts from the report are given. (author)

  2. Managing climate change refugia for climate adaptation

    Science.gov (United States)

    Toni Lyn Morelli; Christopher Daly; Solomon Z. Dobrowski; Deanna M. Dulen; Joseph L. Ebersole; Stephen T. Jackson; Jessica D. Lundquist; Connie Millar; Sean P. Maher; William B. Monahan; Koren R. Nydick; Kelly T. Redmond; Sarah C. Sawyer; Sarah Stock; Steven R. Beissinger

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that...

  3. Climate variability and vulnerability to climate change: a review

    Science.gov (United States)

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  4. Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia

    Science.gov (United States)

    Hauser, Mathias; Orth, René; Seneviratne, Sonia I.

    2016-03-01

    The severe 2010 heat wave in western Russia was found to be influenced by anthropogenic climate change. Additionally, soil moisture-temperature feedbacks were deemed important for the buildup of the exceptionally high temperatures. We quantify the relative role of both factors by applying the probabilistic event attribution framework and analyze ensemble simulations to distinguish the effect of climate change and the 2010 soil moisture conditions for annual maximum temperatures. The dry 2010 soil moisture alone has increased the risk of a severe heat wave in western Russia sixfold, while climate change from 1960 to 2000 has approximately tripled it. The combined effect of climate change and 2010 soil moisture yields a 13 times higher heat wave risk. We conclude that internal climate variability causing the dry 2010 soil moisture conditions formed a necessary basis for the extreme heat wave.

  5. Climate Change and Vector-borne Diseases: An Economic Impact Analysis of Malaria in Africa

    Directory of Open Access Journals (Sweden)

    Ximing Wu

    2011-03-01

    Full Text Available A semi-parametric econometric model is used to study the relationship between malaria cases and climatic factors in 25 African countries. Results show that a marginal change in temperature and precipitation levels would lead to a significant change in the number of malaria cases for most countries by the end of the century. Consistent with the existing biophysical malaria model results, the projected effects of climate change are mixed. Our model projects that some countries will see an increase in malaria cases but others will see a decrease. We estimate projected malaria inpatient and outpatient treatment costs as a proportion of annual 2000 health expenditures per 1,000 people. We found that even under minimal climate change scenario, some countries may see their inpatient treatment cost of malaria increase more than 20%.

  6. Climate Change and Malaria

    OpenAIRE

    Goklany;, I. M.

    2004-01-01

    Sir David A. King's claim that "Climate change is the most severe problem that we are facing today—more serious even than the threat of terrorism" "Climate change is the most severe problem that we are facing today—more serious even than the threat of terrorism" ("Climate change

  7. Climate change and Finland. Summary of the Finnish research programme on climate change (SILMU)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    Anthropogenic impacts on the Earth`s atmosphere are expected to cause significant global climate changes during the next few decades. These changes will have many consequences both in nature and on human activities. In order to investigate the implications of such changes in Finland, a six-year multidisciplinary national research programme on climate and global change, the Finnish Research Programme on Climate Change (SILMU), was initiated in 1990. The key research areas were: (1) quantification of the greenhouse effect and the magnitude of anticipated climate changes, (2) assessment of the effects of changing climate on terrestrial and aquatic ecosystems, and (3) development of mitigation and adaptation strategies

  8. Climate change and Finland. Summary of the Finnish research programme on climate change (SILMU)

    International Nuclear Information System (INIS)

    1996-01-01

    Anthropogenic impacts on the Earth's atmosphere are expected to cause significant global climate changes during the next few decades. These changes will have many consequences both in nature and on human activities. In order to investigate the implications of such changes in Finland, a six-year multidisciplinary national research programme on climate and global change, the Finnish Research Programme on Climate Change (SILMU), was initiated in 1990. The key research areas were: (1) quantification of the greenhouse effect and the magnitude of anticipated climate changes, (2) assessment of the effects of changing climate on terrestrial and aquatic ecosystems, and (3) development of mitigation and adaptation strategies

  9. WATER AVAILABILITY IN SOUTHERN PORTUGAL FOR DIFFERENT CLIMATE CHANGE SCENARIOS SUBJECTED TO BIAS CORRECTION

    Directory of Open Access Journals (Sweden)

    Sandra Mourato

    2014-01-01

    Full Text Available Regional climate models provided precipitation and temperature time series for control (1961–1990 and scenario (2071–2100 periods. At southern Portu gal, the climate models in the control period systematically present higher temp eratures and lower precipitation than the observations. Therefore, the direct inpu t of climate model data into hydrological models might result in more severe scenarios for future water availability. Three bias correction methods (Delta Change, Dire ct Forcing and Hybrid are analysed and their performances in water availability impac t studies are assessed. The Delta Change method assumes that the observed series variab ility is maintained in the scenario period and is corrected by the evolution predicted by the climate models. The Direct Forcing method maintains the scenario series variabi lity, which is corrected by the bias found in the control period, and the Hybrid method maintains the control model series variability, which is corrected by the bias found in the control period and by the evolution predicted by the climate models. To assess the climate impacts in the water resources expected for the scenario period, a physically based spatially distributed hydrological model, SHETRAN, is used for runoff pro jections in a southern Portugal basin. The annual and seasonal runoff shows a runoff d ecrease in the scenario period, increasing the water shor tage that is already experienc ed. The overall annual reduction varies between –80% and –35%. In general, the results show that the runoff reductions obtained with climate models corrected with the Delt a Change method are highest but with a narrow range that varies between –80% and –5 2%.

  10. Using Impact-Relevant Sensitivities to Efficiently Evaluate and Select Climate Change Scenarios

    Science.gov (United States)

    Vano, J. A.; Kim, J. B.; Rupp, D. E.; Mote, P.

    2014-12-01

    We outline an efficient approach to help researchers and natural resource managers more effectively use global climate model information in their long-term planning. The approach provides an estimate of the magnitude of change of a particular impact (e.g., summertime streamflow) from a large ensemble of climate change projections prior to detailed analysis. These estimates provide both qualitative information as an end unto itself (e.g., the distribution of future changes between emissions scenarios for the specific impact) and a judicious, defensible evaluation structure that can be used to qualitatively select a sub-set of climate models for further analysis. More specifically, the evaluation identifies global climate model scenarios that both (1) span the range of possible futures for the variable/s most important to the impact under investigation, and (2) come from global climate models that adequately simulate historical climate, providing plausible results for the future climate in the region of interest. To identify how an ecosystem process responds to projected future changes, we methodically sample, using a simple sensitivity analysis, how an impact variable (e.g., streamflow magnitude, vegetation carbon) responds locally to projected regional temperature and precipitation changes. We demonstrate our technique over the Pacific Northwest, focusing on two types of impacts each in three distinct geographic settings: (a) changes in streamflow magnitudes in critical seasons for water management in the Willamette, Yakima, and Upper Columbia River basins; and (b) changes in annual vegetation carbon in the Oregon and Washington Coast Ranges, Western Cascades, and Columbia Basin ecoregions.

  11. Chatham Islands Climate Change

    International Nuclear Information System (INIS)

    Mullan, B.; Salinger, J.; Thompson, C.; Ramsay, D.; Wild, M.

    2005-06-01

    This brief report provides guidance on climate change specific to the Chatham Islands, to complement the information recently produced for local government by the Ministry for the Environment in 'Climate Change Effects and Impacts Assessment: A guidance manual for Local Government in New Zealand' and 'Coastal Hazards and Climate Change: A guidance manual for Local Government in New Zealand'. These previous reports contain a lot of generic information on climate change, and how to assess associated risks, that is relevant to the Chatham Islands Council.

  12. Impacts of climate variability and change on crop yield in sub-Sahara Africa

    Science.gov (United States)

    Pan, S.; Zhang, J.; Yang, J.; Chen, G.; Xu, R.; Zhang, B.; Lou, Y.

    2017-12-01

    Much concern has been raised about the impacts of climate change and climate extremes on Africa's food security. The impact of climate change on Africa's agriculture is likely to be severe compared to other continents due to high rain-fed agricultural dependence, and limited ability to mitigate and adapt to climate change. In recent decades, warming in Africa is more pronounced and faster than the global average and this trend is likely to continue in the future. However, quantitative assessment on impacts of climate extremes and climate change on crop yield has not been well investigated yet. By using an improved agricultural module of the Dynamic Land Ecosystem Model (DLEM-AG2) driven by spatially-explicit information on land use, climate and other environmental changes, we have assessed impacts of historical climate variability and future climate change on food crop yield across the sub-Sahara Africa during1980-2016 and the rest of the 21st century (2017-2099). Our simulated results indicate that African crop yield in the past three decades shows an increasing trend primarily due to cropland expansion. However, crop yield shows substantially spatial and temporal variation due to inter-annual and inter-decadal climate variability and spatial heterogeneity of environmental drivers. Droughts have largely reduced crop yield in the most vulnerable regions of Sub-Sahara Africa. Future projections with DLEM-AG2 show that food crop production in Sub-Sahara Africa would be favored with limiting end-of-century warming to below 1.50 C.

  13. Assessment of Climate Change Impact on Reservoir Inflows Using Multi Climate-Models under RCPs—The Case of Mangla Dam in Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Babur

    2016-09-01

    Full Text Available Assessment of climate change on reservoir inflow is important for water and power stressed countries. Projected climate is subject to uncertainties related to climate change scenarios and Global Circulation Models (GCMs. This paper discusses the consequences of climate change on discharge. Historical climatic and gauging data were collected from different stations within a watershed. Bias correction was performed on GCMs temperature and precipitation data. After successful development of the hydrological modeling system (SWAT for the basin, streamflow was simulated for three future periods (2011–2040, 2041–2070, and 2071–2100 and compared with the baseline data (1981–2010 to explore the changes in different flow indicators such as mean flow, low flow, median flow, high flow, flow duration curves, temporal shift in peaks, and temporal shifts in center-of-volume dates. From the results obtained, an overall increase in mean annual flow was projected in the basin under both RCP 4.5 and RCP 8.5 scenarios. Winter and spring showed a noticeable increase in streamflow, while summer and autumn showed a decrease in streamflow. High flows were predicted to increase, but median flow was projected to decrease in the future under both scenarios. Flow duration curves showed that the probability of occurrence of high flow is likely to be more in the future. It was also noted that peaks were predicted to shift from May to July in the future, and the center-of-volume date of the annual flow may vary from −11 to 23 days in the basin, under both RCP 4.5 and RCP 8.5. As a whole, the Mangla basin will face more floods and less droughts in the future due to the projected increase in high and low flows, decrease in median flows and greater temporal and magnitudinal variations in peak flows. These outcomes suggest that it is important to consider the influence of climate change on water resources to frame appropriate guidelines for planning and management.

  14. Nonlinearity and Fractal Properties of Climate Change during the Past 500 Years in Northwestern China

    Directory of Open Access Journals (Sweden)

    Shiquan Wan

    2016-01-01

    Full Text Available By using detrended fluctuation analysis (DFA, the present paper analyzed the nonlinearity and fractal properties of tree-ring records from two types of trees in northwestern China, and then we disclosed climate change characteristics during the past 500 years in this area. The results indicate that climate change in northwestern China displayed a long-range correlation (LRC, which can exist over time span of 100 years or longer. This conclusion provides a theoretical basis for long-term climate predictions. Combining the DFA results obtained from daily temperatures records at the Xi’an meteorological observation station, which is near the southern peak of the Huashan Mountains, self-similarities widely existed in climate change on monthly, seasonal, annual, and decadal timescales during the past 500 years in northwestern China, and this change was a typical nonlinear process.

  15. Assessing the impact of future climate change on groundwater recharge in Galicia-Costa, Spain

    Science.gov (United States)

    Raposo, Juan Ramón; Dafonte, Jorge; Molinero, Jorge

    2013-03-01

    Climate change can impact the hydrological processes of a watershed and may result in problems with future water supply for large sections of the population. Results from the FP5 PRUDENCE project suggest significant changes in temperature and precipitation over Europe. In this study, the Soil and Water Assessment Tool (SWAT) model was used to assess the potential impacts of climate change on groundwater recharge in the hydrological district of Galicia-Costa, Spain. Climate projections from two general circulation models and eight different regional climate models were used for the assessment and two climate-change scenarios were evaluated. Calibration and validation of the model were performed using a daily time-step in four representative catchments in the district. The effects on modeled mean annual groundwater recharge are small, partly due to the greater stomatal efficiency of plants in response to increased CO2 concentration. However, climate change strongly influences the temporal variability of modeled groundwater recharge. Recharge may concentrate in the winter season and dramatically decrease in the summer-autumn season. As a result, the dry-season duration may be increased on average by almost 30 % for the A2 emission scenario, exacerbating the current problems in water supply.

  16. Changing climate increases discharge and attenuates its seasonal distribution in the northeastern United States

    Directory of Open Access Journals (Sweden)

    Rouzbeh Berton

    2016-03-01

    Full Text Available Study region: The Hubbard Brook Experimental Forest is well-established as a Long-Term Ecological Research (LTER site for climate change and anthropogenic impacts studies on hydrological processes. It is located at the headwater regions of the Merrimack Watershed, the fourth largest basin in New England, USA. The watershed is mostly forested (67% with some developed regions (16%. Study focus: We assessed the scale-dependency of streamflow response to climate variation, river regulation, and development for dry, average, and wet years using long-term precipitation and discharge records. New hydrological insights for the region: The effects of basin scale were limited to discharges with exceedance probability less than 15% and greater than 60% and were expressed as lagged discharge in large sub-basins and earlier discharge in small catchments. Annual discharge responded to increases in annual precipitation but not to river regulation or land development. In general, the temporal trends showed less discharge in dry and greater discharge in wet hydrologic flow classes. Keywords: Climate change, Land development, Hydrologic indicator, Scale dependency, Merrimack river, Northeastern United States

  17. Scaling Climate Change Communication for Behavior Change

    Science.gov (United States)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  18. Asking about climate change

    DEFF Research Database (Denmark)

    Nielsen, Jonas Østergaard; D'haen, Sarah Ann Lise

    2014-01-01

    and the number and types of interviews conducted are, for example, not always clear. Information on crucial aspects of qualitative research like researcher positionality, social positions of key informants, the use of field assistants, language issues and post-fieldwork treatment of data is also lacking in many...... with climate change? On the basis of a literature review of all articles published in Global Environmental Change between 2000 and 2012 that deal with human dimensions of climate change using qualitative methods this paper provides some answers but also raises some concerns. The period and length of fieldwork......There is increasing evidence that climate change will strongly affect people across the globe. Likely impacts of and adaptations to climate change are drawing the attention of researchers from many disciplines. In adaptation research focus is often on perceptions of climate change...

  19. Assessing the response of runoff to climate change and human activities for a typical basin in the Northern Taihang Mountain, China

    Science.gov (United States)

    Wang, Jinfeng; Gao, Yanchuan; Wang, Sheng

    2018-04-01

    Climate change and human activities are the two main factors on runoff change. Quantifying the contribution of climate change and human activities on runoff change is important for water resources planning and management. In this study, the variation trend and abrupt change point of hydro-meteorological factors during 1960-2012 were detected by using the Mann-Kendall test and Pettitt change-point statistics. Then the runoff was simulated by SWAT model. The contribution of climate change and human activities on runoff change was calculated based on the SWAT model and the elasticity coefficient method. The results showed that in contrast to the increasing trend for annual temperature, the significant decreasing trends were detected for annual runoff and precipitation, with an abrupt change point in 1982. The simulated results of SWAT had good consistency with observed ones, and the values of R2 and E_{NS} all exceeded 0.75. The two methods used for assessing the contribution of climate change and human activities on runoff reduction yielded consistent results. The contribution of climate change (precipitation reduction and temperature rise) was {˜ }37.5%, while the contribution of human activities (the increase of economic forest and built-up land, hydrologic projects) was {˜ }62.5%.

  20. Land surface phenology of Northeast China during 2000-2015: temporal changes and relationships with climate changes.

    Science.gov (United States)

    Zhang, Yue; Li, Lin; Wang, Hongbin; Zhang, Yao; Wang, Naijia; Chen, Junpeng

    2017-10-01

    As an important crop growing area, Northeast China (NEC) plays a vital role in China's food security, which has been severely affected by climate change in recent years. Vegetation phenology in this region is sensitive to climate change, and currently, the relationship between the phenology of NEC and climate change remains unclear. In this study, we used a satellite-derived normalized difference vegetation index (NDVI) to obtain the temporal patterns of the land surface phenology in NEC from 2000 to 2015 and validated the results using ground phenology observations. We then explored the relationships among land surface phenology, temperature, precipitation, and sunshine hours for relevant periods. Our results showed that the NEC experienced great phenological changes in terms of spatial heterogeneity during 2000-2015. The spatial patterns of land surface phenology mainly changed with altitude and land cover type. In most regions of NEC, the start date of land surface phenology had advanced by approximately 1.0 days year -1 , and the length of land surface phenology had been prolonged by approximately 1.0 days year -1 except for the needle-leaf and cropland areas, due to the warm conditions. We found that a distinct inter-annual variation in land surface phenology related to climate variables, even if some areas presented non-significant trends. Land surface phenology was coupled with climate variables and distinct responses at different combinations of temperature, precipitation, sunshine hours, altitude, and anthropogenic influence. These findings suggest that remote sensing and our phenology extracting methods hold great potential for helping to understand how land surface phenology is sensitive to global climate change.

  1. The potential of Indonesian mangrove forests for global climate change mitigation

    Science.gov (United States)

    Murdiyarso, Daniel; Purbopuspito, Joko; Kauffman, J. Boone; Warren, Matthew W.; Sasmito, Sigit D.; Donato, Daniel C.; Manuri, Solichin; Krisnawati, Haruni; Taberima, Sartji; Kurnianto, Sofyan

    2015-12-01

    Mangroves provide a wide range of ecosystem services, including nutrient cycling, soil formation, wood production, fish spawning grounds, ecotourism and carbon (C) storage. High rates of tree and plant growth, coupled with anaerobic, water-logged soils that slow decomposition, result in large long-term C storage. Given their global significance as large sinks of C, preventing mangrove loss would be an effective climate change adaptation and mitigation strategy. It has been reported that C stocks in the Indo-Pacific region contain on average 1,023 MgC ha-1 (ref. ). Here, we estimate that Indonesian mangrove C stocks are 1,083 +/- 378 MgC ha-1. Scaled up to the country-level mangrove extent of 2.9 Mha (ref. ), Indonesia’s mangroves contained on average 3.14 PgC. In three decades Indonesia has lost 40% of its mangroves, mainly as a result of aquaculture development. This has resulted in annual emissions of 0.07-0.21 Pg CO2e. Annual mangrove deforestation in Indonesia is only 6% of its total forest loss; however, if this were halted, total emissions would be reduced by an amount equal to 10-31% of estimated annual emissions from land-use sectors at present. Conservation of carbon-rich mangroves in the Indonesian archipelago should be a high-priority component of strategies to mitigate climate change.

  2. [Prediction of the suitable distribution and responses to climate change of Elaeagnus mollis in Shanxi Province, China].

    Science.gov (United States)

    Zhang, Yin Bo; Gao, Chen Hong; Qin, Hao

    2018-04-01

    Understanding the responses of the habitats of endangered species to climate change is of great significance for biodiversity conservation and the maintenance of the integrity of ecosystem function. In this study, the potential suitable distribution habitats of Elaeagnus mollis in Shanxi Province was simulated by the maximum entropy model, based on 73 occurrence field records and 35 environmental factors under the current climate condition. Moreover, with the Fifth Assessment Report of Intergovernmental Panel on Climate Change, the dynamics of distribution pattern was analyzed for E. mollis under different climate scenarios. The results showed that the area under the receiver operating characteristic curve (AUC) value was 0.987, indicating that the data fitted the model very well and that the prediction was highly reliable. Results from the Jackknife test showed that the main environmental variables affecting the E. mollis distribution were the precipitation seasonality, the range of annual temperature, annual mean temperature, isothermality, annual precipitation, and pH of topsoil, with the cumulative contribution reaching 94.8%. At present, the potential suitable habitats of E. mollis are mainly located in two regions, the southern of Lyuliang Mountain and Zhongtiao Mountain in Shanxi Province. Under different climate scenarios, the total suitable area of E. mollis would shrink in 2070s. In RCP 2.6 the suitable area would firstly increase and then decrease, while in RCP 4.5 and RCP 8.5 it would response sensitively and first decrease and then increase. Its spatial distribution in two suitable regions would show divergent responses to climate change. The distribution in southern Lyuliang Mountain would fluctuate slightly in latitudinal direction, while that in Zhongtiao Mountain would migrate along elevation.

  3. Interactive Effects of Nitrogen and Climate Change on Biodiversity

    Science.gov (United States)

    Porter, E. M.; Bowman, W. D.; Clark, C. M.; Compton, J. E.; Pardo, L. H.; Soong, J.

    2011-12-01

    example, in certain arid ecosystems of southern California, elevated nitrogen has promoted invasions of annual non-native grasses. At the same time, a period of above-normal precipitation years has exacerbated the grass invasions. Increased grass cover has altered the hydrologic cycle of these areas and increased fire risk, ultimately leading to conversion of the ecosystem from diverse shrublands to less diverse grasslands. In addition to empirical studies, modeling can be used to simulate climate change and nitrogen interactions. The ForSAFE-VEG model, for example, has been used to examine climate change and nitrogen interactions in Rocky Mountain alpine vegetation communities. Results from both empirical studies and modeling indicate that nitrogen and climate change interact to drive losses in biodiversity greater than those caused by either stressor alone. Reducing inputs of anthropogenic reactive nitrogen may be an effective mitigation strategy for protecting biodiversity in the face of climate change.

  4. Remote sensing of California estuaries: Monitoring climate change and invasive species

    Science.gov (United States)

    Mulitsch, Melinda Jennifer

    The spread of invasive species and climate change are among the most serious global environmental threats. The goal of this dissertation was to link inter-annual climate change and biological invasions at a landscape scale using novel remote sensing techniques applied to the San Francisco Bay/Sacramento- San Joaquin Delta Estuary. I evaluated the use of hyperspectral imagery for detecting invasive aquatic species in the Delta using 3 m HyMap hyperspectral imagery. The target invasive aquatics weeds were the emergent water hyacinth (Eichhornia crassipes) and the submerged Brazilian waterweed (Egeria densa). Data were analyzed using linear spectral mixture analysis (SMA). The results show the weeds were mapped with a classification accuracy of 90.6% compared to 2003 sample sites and 82.6% accuracy compared to 2004 sample sites. Brazilian waterweed locations were successfully mapped but the abundances were overestimated because we did not separate it from other submerged aquatic vegatation (SAV). I evaluated 3 m HyMap imagery, from 2004, for SAV species in the Delta, including: Brazilian waterweed ( Egeria densa), Eurasian watermilfoil (Myriophyllum spicatum ), curlyleaf pondweed (Potamogeton crispus), coontail (Ceratophyllum demersum), American pondweed (Potamogeton nodosus), fanwort (Cabomba caroliniana), and common elodea (Elodea canadensis). Data were analyzed using SMA with a classification accuracy of 84.4%. Spectral simulations of Brazilian waterweed and American pondweed show how spectral properties can change at different water depths and varying water quality. Finally I address the effect of inter-annual climate change on the estuary ecology in the San Francisco Bay by analyzing current (2002) and historical (1994-1996) Airborne Visible Infrared Imaging Spectrometer (AVIRIS) datasets to map salt marsh species distribution. The species in the estuary, Salicornia virginica, Spartinia foliosa, Scirpus robustus, and Distichlis spicata undergo dramatic changes in

  5. Climate change impact assessment on flow regime by incorporating spatial correlation and scenario uncertainty

    Science.gov (United States)

    Vallam, P.; Qin, X. S.

    2017-07-01

    Flooding risk is increasing in many parts of the world and may worsen under climate change conditions. The accuracy of predicting flooding risk relies on reasonable projection of meteorological data (especially rainfall) at the local scale. The current statistical downscaling approaches face the difficulty of projecting multi-site climate information for future conditions while conserving spatial information. This study presents a combined Long Ashton Research Station Weather Generator (LARS-WG) stochastic weather generator and multi-site rainfall simulator RainSim (CLWRS) approach to investigate flow regimes under future conditions in the Kootenay Watershed, Canada. To understand the uncertainty effect stemming from different scenarios, the climate output is fed into a hydrologic model. The results showed different variation trends of annual peak flows (in 2080-2099) based on different climate change scenarios and demonstrated that the hydrological impact would be driven by the interaction between snowmelt and peak flows. The proposed CLWRS approach is useful where there is a need for projection of potential climate change scenarios.

  6. Climate Change and Health Risks from Extreme Heat and Air Pollution in the Eastern United States

    Science.gov (United States)

    Limaye, V.; Vargo, J.; Harkey, M.; Holloway, T.; Meier, P.; Patz, J.

    2013-12-01

    Climate change is expected to exacerbate health risks from exposure to extreme heat and air pollution through both direct and indirect mechanisms. Directly, warmer ambient temperatures promote biogenic emissions of ozone precursors and favor the formation of ground-level ozone, while an anticipated increase in the frequency of stagnant air masses will allow fine particulates to accumulate. Indirectly, warmer summertime temperatures stimulate energy demand and exacerbate polluting emissions from the electricity sector. Thus, while technological adaptations such as air conditioning can reduce risks from exposures to extreme heat, they can trigger downstream damage to air quality and public health. Through an interdisciplinary modeling effort, we quantify the impacts of climate change on ambient temperatures, summer energy demand, air quality, and public health. The first phase of this work explores how climate change will directly impact the burden of heat-related mortality. Climatic patterns, demographic trends, and epidemiologic risk models suggest that populations in the eastern United States are likely to experience an increasing heat stress mortality burden in response to rising summertime air temperatures. We use North American Regional Climate Change Assessment Program modeling data to estimate mid-century 2-meter air temperatures and humidity across the eastern US from June-August, and quantify how long-term changes in actual and apparent temperatures from present-day will affect the annual burden of heat-related mortality across this region. With the US Environmental Protection Agency's Environmental Benefits Mapping and Analysis Program, we estimate health risks using concentration-response functions, which relate temperature increases to changes in annual mortality rates. We compare mid-century summertime temperature data, downscaled using the Weather Research and Forecasting model, to 2007 baseline temperatures at a 12 km resolution in order to estimate

  7. Remotely Sensed Northern Vegetation Response to Changing Climate: Growing Season and Productivity Perspective

    Science.gov (United States)

    Ganguly, S.; Park, Taejin; Choi, Sungho; Bi, Jian; Knyazikhin, Yuri; Myneni, Ranga

    2016-01-01

    Vegetation growing season and maximum photosynthetic state determine spatiotemporal variability of seasonal total gross primary productivity of vegetation. Recent warming induced impacts accelerate shifts on growing season and physiological status over Northern vegetated land. Thus, understanding and quantifying these changes are very important. Here, we first investigate how vegetation growing season and maximum photosynthesis state are evolved and how such components contribute on inter-annual variation of seasonal total gross primary productivity. Furthermore, seasonally different response of northern vegetation to changing temperature and water availability is also investigated. We utilized both long-term remotely sensed data to extract larger scale growing season metrics (growing season start, end and duration) and productivity (i.e., growing season summed vegetation index, GSSVI) for answering these questions. We find that regionally diverged growing season shift and maximum photosynthetic state contribute differently characterized productivity inter-annual variability and trend. Also seasonally different response of vegetation gives different view of spatially varying interaction between vegetation and climate. These results highlight spatially and temporally varying vegetation dynamics and are reflective of biome-specific responses of northern vegetation to changing climate.

  8. Projected hydrologic changes in monsoon-dominated Himalaya Mountain basins with changing climate and deforestation

    Science.gov (United States)

    Neupane, Ram P.; White, Joseph D.; Alexander, Sara E.

    2015-06-01

    In mountain headwaters, climate and land use changes affect short and long term site water budgets with resultant impacts on landslide risk, hydropower generation, and sustainable agriculture. To project hydrologic change associated with climate and land use changes in the Himalaya Mountains, we used the Soil and Water Assessment Tool (SWAT) calibrated for the Tamor and Seti River basins located at eastern and western margins of Nepal. Future climate change was modeled using averaged temperature and precipitation for 2080 derived from Special Report on Emission Scenarios (SRES) (B1, A1B and A2) of 16 global circulation models (GCMs). Land use change was modeled spatially and included expansion of (1) agricultural land, (2) grassland, and (3) human settlement area that were produced by considering existing land use with projected changes associated with viability of elevation and slope characteristics of the basins capable of supporting different land use type. From these simulations, higher annual stream discharge was found for all GCM-derived scenarios compared to a baseline simulation with maximum increases of 13 and 8% in SRES-A2 and SRES-A1B for the Tamor and Seti basins, respectively. On seasonal basis, we assessed higher precipitation during monsoon season in all scenarios that corresponded with higher stream discharge of 72 and 68% for Tamor and Seti basins, respectively. This effect appears to be geographically important with higher influence in the eastern Tamor basin potentially due to longer and stronger monsoonal period of that region. However, we projected minimal changes in stream discharge for the land use scenarios potentially due to higher water transmission to groundwater reservoirs associated with fractures of the Himalaya Mountains rather than changes in surface runoff. However, when combined the effects of climate and land use changes, discharge was moderately increased indicating counteracting mechanisms of hydrologic yield in these mountains

  9. Impacts of Climate Change Induced Vegetation Responses on BVOC Emissions from Subarctic Heath Ecosystems

    DEFF Research Database (Denmark)

    Valolahti, Hanna Maritta

    The role of biogenic volatile organic compounds (BVOCs) affecting Earths’ climate system is one of the greatest uncertainties when modelling the global climate change. BVOCs presence in the atmosphere can have both positive and negative climate feedback mechanisms when they involve atmospheric...... chemistry and physics. Vegetation is the main source of BVOCs. Their production is directly linked to temperature and the foliar biomass. On global scale, vegetation in subarctic and arctic regions has been modeled to have only minor contribution to annual total BVOC emissions. In these regions cold...... temperature has been regulating annual plant biomass production, but ongoing global warming is more pronounced in these regions than what the global average is. This may increase the importance of subarctic and arctic vegetation as a source of BVOC emissions in near future. This thesis aims to increase...

  10. Uncertainty and Climate Change

    OpenAIRE

    Berliner, L. Mark

    2003-01-01

    Anthropogenic, or human-induced, climate change is a critical issue in science and in the affairs of humankind. Though the target of substantial research, the conclusions of climate change studies remain subject to numerous uncertainties. This article presents a very brief review of the basic arguments regarding anthropogenic climate change with particular emphasis on uncertainty.

  11. Climate@Home: Crowdsourcing Climate Change Research

    Science.gov (United States)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  12. Impacts of land use change and climate variations on annual inflow into the Miyun Reservoir, Beijing, China

    Science.gov (United States)

    Jiangkun Zheng; Ge Sun; Wenhong Li; Xinxiao Yu; Chi Zhang; Yuanbo Gong; Lihua Tu

    2016-01-01

    The Miyun Reservoir, the only surface water source for Beijing city, has experienced water supply decline in recent decades. Previous studies suggest that both land use change and climate contribute to the changes of water supply in this critical watershed. However, the specific causes of the decline in the Miyun Reservoir are debatable under a non-stationary climate...

  13. China's response to climate change issues after Paris Climate Change Conference

    Directory of Open Access Journals (Sweden)

    Yun Gao

    2016-12-01

    Full Text Available The Paris Climate Change Conference was successfully concluded with the Paris Agreement, which is a milestone for the world in collectively combating climate change. By participating in IPCC assessments and conducting national climate change assessments, China has been increasing its understanding of the issue. For the first time, China's top leader attended the Conference of the Parties, which indicates the acknowledgement of the rationality and necessity of climate change response by China at different levels. Moreover, this participation reflects China's commitment to including climate change in its ecology improvement program and pursuing a low-carbon society and economy. In order to ensure the success of the Paris Conference, China has contributed significantly. China's constructive participation in global governance shows that China is a responsible power. These principles such as the creation of a future of win–win cooperation with each country contributing to the best of its ability; a future of the rule of law, fairness, and justice; and a future of inclusiveness, mutual learning, and common development will serve as China's guidelines in its efforts to facilitate the implementation of the Paris Agreement and participate in the design of international systems.

  14. China's response to climate change issues after Paris Climate Change Conference

    Institute of Scientific and Technical Information of China (English)

    GAO Yun

    2016-01-01

    The Paris Climate Change Conference was successfully concluded with the Paris Agreement, which is a milestone for the world in collectively combating climate change. By participating in IPCC assessments and conducting national climate change assessments, China has been increasing its understanding of the issue. For the first time, China's top leader attended the Conference of the Parties, which indicates the acknowledgement of the rationality and necessity of climate change response by China at different levels. Moreover, this participation reflects China's commitment to including climate change in its ecology improvement program and pursuing a low-carbon society and economy. In order to ensure the success of the Paris Conference, China has contributed significantly. China's constructive participation in global governance shows that China is a responsible power. These principles such as the creation of a future of winewin cooperation with each country contributing to the best of its ability;a future of the rule of law, fairness, and justice;and a future of inclusiveness, mutual learning, and common development will serve as China's guidelines in its efforts to facilitate the implementation of the Paris Agreement and participate in the design of international systems.

  15. An exploration of potential directions for climate change policy in Northern Canada

    International Nuclear Information System (INIS)

    Newton, J.

    2001-01-01

    The challenges facing decision and policy makers for climate change actions in the Canadian North were described. While Northern Canada contributes only a small fraction of the world's greenhouse gas (GHG) emissions, the impacts are already being felt there, and scientists forecast changes in average annual temperatures to be among the highest in the world. Canada is well positioned to take a lead role in addressing climate change in northern regions. This paper examined the policy choices in the North and outlined the policy directions worthy of further consideration and development. The objective of the paper is to provide a catalyst for on-going discussion and deliberation on climate change actions and policy options in Northern Canada. The paper also addressed the global context that influences national framework and local initiatives. Some tentative policy choices were proposed and described within the general context of the global challenge that climate change presents for the design of coherent regional public policy. It was suggested that integration and mitigation measures should not be approached in isolation from other environmental and socio-economic changes, such as pollution abatement and economic and social development. It was emphasized that building on the sound foundation of current policy frameworks in these areas is essential to the integration of climate change initiatives within established and complementary processes. It was concluded that the evolution of policy options for climate change in the North will be driven by a political willingness to take deliberate actions. 13 refs., 2 tabs., 1 fig

  16. The Climate Science Special Report: Arctic Changes and their Effect on Alaska and the Rest of the United States

    Science.gov (United States)

    Taylor, P. C.

    2017-12-01

    Rapid and visible climate change is happening across the Arctic, outpacing global change. Annual average near-surface air temperatures across the Arctic are increasing at more than twice the rate of global average surface temperature. In addition to surface temperature, all components of the Arctic climate system are responding in kind, including sea ice, mountain glaciers and the Greenland Ice sheet, snow cover, and permafrost. Many of these changes with a discernable anthropogenic imprint. While Arctic climate change may seem physically remote to those living in other regions of the planet, Arctic climate change can affect the global climate influencing sea level, the carbon cycle, and potentially atmospheric and oceanic circulation patterns. As an Arctic nation, United States' adaptation, mitigation, and policy decisions depend on projections of future Alaskan and Arctic climate. This chapter of the Climate Science Special Report documents significant scientific progress and knowledge about how the Alaskan and Arctic climate has changed and will continue to change.

  17. Regional Climate Change Impact on Agricultural Land Use in West Africa

    Science.gov (United States)

    Ahmed, K. F.; Wang, G.; You, L.

    2014-12-01

    Agriculture is a key element of the human-induced land use land cover change (LULCC) that is influenced by climate and can potentially influence regional climate. Temperature and precipitation directly impact the crop yield (by controlling photosynthesis, respiration and other physiological processes) that then affects agricultural land use pattern. In feedback, the resulting changes in land use and land cover play an important role to determine the direction and magnitude of global, regional and local climate change by altering Earth's radiative equilibrium. The assessment of future agricultural land use is, therefore, of great importance in climate change study. In this study, we develop a prototype land use projection model and, using this model, project the changes to land use pattern and future land cover map accounting for climate-induced yield changes for major crops in West Africa. Among the inputs to the land use projection model are crop yield changes simulated by the crop model DSSAT, driven with the climate forcing data from the regional climate model RegCM4.3.4-CLM4.5, which features a projected decrease of future mean crop yield and increase of inter-annual variability. Another input to the land use projection model is the projected changes of food demand in the future. In a so-called "dumb-farmer scenario" without any adaptation, the combined effect of decrease in crop yield and increase in food demand will lead to a significant increase in agricultural land use in future years accompanied by a decrease in forest and grass area. Human adaptation through land use optimization in an effort to minimize agricultural expansion is found to have little impact on the overall areas of agricultural land use. While the choice of the General Circulation Model (GCM) to derive initial and boundary conditions for the regional climate model can be a source of uncertainty in projecting the future LULCC, results from sensitivity experiments indicate that the changes

  18. Climate effects on inter- and intra-annual larch stemwood anomalies in the Mongolian forest-steppe

    Science.gov (United States)

    Khishigjargal, Mookhor; Dulamsuren, Choimaa; Leuschner, Hanns Hubert; Leuschner, Christoph; Hauck, Markus

    2014-02-01

    Climate response of tree-ring width and intra-annual wood anomalies were studied in stands of Siberian larch (Larix sibirica) on Mt. Bogd Uul in the forest-steppe ecotone of Mongolia. Climate on Mt. Bogd Uul is characterized by an increase of the annual mean temperature by 1.5 K between 1965 and 2007, the lack of a long-term trend for annual precipitation and, with it, an increase in aridity. Tree-ring width increases with increasing June precipitation of the current year (June) and increasing late summer precipitation of the previous year. In >100-year old trees, also a negative correlation of tree-ring width with the July temperature of the year prior to tree-ring formation was found. Decreasing tree-ring width with increasing snowfall in December can be explained with the protection of the frost-sensitive eggs of gypsy moth by snow cover, which is a major herbivore of larch in Mongolia and causes reduction in the annual stem increment. The most significant change in wood anatomy was the decline of wide latewood, which is attributable to the increase of summer days with a mean temperature > 15 °C and drought periods in summer without precipitation. Increasing summer drought is also thought to have caused the repeated occurrence of missing rings since the 1960s, which were not observed in the late 19th and early 20th centuries.

  19. The effect of climate and climate change on ammonia emissions in Europe

    Directory of Open Access Journals (Sweden)

    C. A. Skjøth

    2013-01-01

    Full Text Available We present here a dynamical method for modelling temporal and geographical variations in ammonia emissions in regional-scale chemistry transport models (CTMs and chemistry climate models (CCMs. The method is based on the meteorology in the models and gridded inventories. We use the dynamical method to investigate the spatiotemporal variability of ammonia emissions across part of Europe and study how these emissions are related to geographical and year-to-year variations in atmospheric temperature alone. For simplicity we focus on the emission from a storage facility related to a standard Danish pig stable with 1000 animals and display how emissions from this source would vary geographically throughout central and northern Europe and from year to year. In view of future climate changes, we also evaluate the potential future changes in emission by including temperature projections from an ensemble of climate models. The results point towards four overall issues. (1 Emissions can easily vary by 20% for different geographical locations within a country due to overall variations in climate. The largest uncertainties are seen for large countries such as the UK, Germany and France. (2 Annual variations in overall climate can at specific locations cause uncertainties in the range of 20%. (3 Climate change may increase emissions by 0–40% in central to northern Europe. (4 Gradients in existing emission inventories that are seen between neighbour countries (e.g. between the UK and France can be reduced by using a dynamical methodology for calculating emissions. Acting together these four factors can cause substantial uncertainties in emission. Emissions are generally considered among the largest uncertainties in the model calculations made with CTM and CCM models. Efforts to reduce uncertainties are therefore highly relevant. It is therefore recommended that both CCMs and CTMs implement a dynamical methodology for simulating ammonia emissions in a

  20. Climate of Tajikistan in connection with global climate change

    International Nuclear Information System (INIS)

    Khakimov, F.Kh.; Mirzokhonova, S.O.; Mirzokhonava, N.A.

    2006-01-01

    The analysis of global climate change for different periods and its consequences on regional climate is given. The chronology of climate change in Tajikistan in various regions and the reasons leading or resulted to these changes are changes are shown as well

  1. Communities under climate change

    DEFF Research Database (Denmark)

    Nogues, David Bravo; Rahbek, Carsten

    2011-01-01

    The distribution of species on Earth and the interactions among them are tightly linked to historical and contemporary climate, so that global climate change will transform the world in which we live. Biological models can now credibly link recent decadal trends in field data to climate change......, but predicting future impacts on biological communities is a major challenge. Attempts to move beyond general macroecological predictions of climate change impact on one hand, and observations from specific, local-scale cases, small-scale experiments, or studies of a few species on the other, raise a plethora...... of unanswered questions. On page 1124 of this issue, Harley (1) reports results that cast new light on how biodiversity, across different trophic levels, responds to climate change....

  2. Climatic driving forces in inter-annual variation of global FPAR

    Science.gov (United States)

    Peng, Dailiang; Liu, Liangyun; Yang, Xiaohua; Zhou, Bin

    2012-09-01

    Fraction of Absorbed Photosynthetically Active Radiation (FPAR) characterizes vegetation canopy functioning and its energy absorption capacity. In this paper, we focus on climatic driving forces in inter-annual variation of global FPAR from 1982 to 2006 by Global Historical Climatology Network (GHCN-Monthly) data. Using FPAR-Simple Ratio Vegetation Index (SR) relationship, Advanced Very High Resolution Radiometer (AVHRR) Global Inventory Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) was used to estimate FPAR at the global scale. The correlation between inter-annual variation of FPAR and temperature, precipitation derived from GHCN-Monthly was examined, during the periods of March-May (MAM), June-August (JJA), September-November (SON), and December-February (DJF) over from 1982 to 2006. The analysis of climatic influence on global FPAR revealed the significant correlation with temperature and precipitation in some meteorological stations area, and a more significant correlation with precipitation was found than which with temperature. Some stations in the regions between 30° N and 60° N and around 30° S in South America, where the annual FPAR variation showed a significant positive correlation with temperature (P forest of Africa and Amazon during the dry season of JJA and SON.

  3. Urbanism, climate change and floods: Case of Tlemcen city

    Directory of Open Access Journals (Sweden)

    Hayat Adjim

    2018-03-01

    Full Text Available After a drought during the 1990s, Tlemcen has experienced heavy rainfall in recent years which caused several floods. They have become frequent and usually cause large damage. We then asked ourselves questions about the reasons for this deregulation of rainfall and floods. We have assumed that climate change has led to deregulation of precipitation and that the urbanization and morphology of the site are the causes of the floods. For this, we analyzed the rainfall data and study the configuration of the town of Tlemcen. We noticed then that Tlemcen town undergoes the climate changes effects per a diminution of the multi-annual mean of rainfall between 1974 and 2008, and a slight displacement of the rainfall from April to November after 2008. Finally, the principal reason of floods is the thoughtless urban sprawl on the water courses also favored by an unfavourable topography.

  4. Modeling framework for estimating impacts of climate change on electricity demand at regional level: Case of Greece

    International Nuclear Information System (INIS)

    Mirasgedis, S.; Sarafidis, Y.; Georgopoulou, E.; Kotroni, V.; Lagouvardos, K.; Lalas, D.P.

    2007-01-01

    This paper focuses on the potential upcoming impacts of climate change in the 21st century on electricity demand at regional/national levels for regions where topography and location result in large differences in local climate. To address this issue, a regional climate model, PRECIS, has been used to predict future climatic conditions under different emissions scenarios (namely A2 and B2 of the IPCC special report on emissions scenarios (SRES)) as an input to a multiple regression model of the sensitivity of electricity demand in the Greek interconnected power system to climate and socio-economic factors. The economic development input to the multiple regression model follows the same storylines of the SRES scenarios upto 2100 and includes sub-scenarios to cover larger and smaller economic development rates. The results of the analysis indicate an increase of the annual electricity demand attributable solely to climate change of 3.6-5.5% under all scenarios examined, most of which results from increased annual variability with substantial increases during the summer period that outweighs moderate declines estimated for the winter period. This becomes more pronounced if inter-annual variability, especially of summer months, is taken into consideration. It was also found that in the long run, economic development will have a strong effect on future electricity demand, thus increasing substantially the total amount of energy consumed for cooling and heating purposes. This substantial increase in energy demand with strong annual variability will lead to the need for inordinate increases of installed capacity, a large percentage of which will be under utilized. Thus, appropriate adaptation strategies (e.g. new investments, interconnections with other power systems, energy saving programmes, etc.) need to be developed at the state level in order to ensure the security of energy supply. (author)

  5. The long-term climate change task of the Hanford permanent isolation barrier development program

    International Nuclear Information System (INIS)

    1994-01-01

    The Hanford Site Permanent Isolation Barrier Development Program is developing an in-place disposal capability for low-level nuclear waste for the US Department of Energy at the Hanford Site in southeastern Washington State. Layered earthen and engineered barriers are being developed that will function in what is currently a semiarid environment (mean annual precipitation and temperature of 16 cm and 11.8 degrees C, respectively) for at least 1,000 yr by limiting the infiltration of water through the waste. The Long-Term Climate Change Task has specific goals of (1) obtaining defensible probabilistic projections of the long-term climate variability in the Hanford Site region at many different time scales into the future; (2) developing several test-case climate scenarios that bracket the range of potential future climate, including both greenhouse warming and cycling into another ice age; and (3) using the climate scenarios both to test and to model protective barrier performance. Results from the Carp Lake Pollen Coring Project indicate that for the last approximately 100,000 yr the Columbia River Basin's long-term range of mean annual precipitation ranged from 25%--50% below to 28% above modern levels, while temperature has ranged from 7 degrees C--10 degrees C below to 2 degrees C above modern levels. This long record provides confidence that such a range should bracket potential natural climate change even if the earth cycles back into another Ice Age in the next few millennia

  6. Analysis of hydrologic variation under climate change environment in southern Taiwan

    Science.gov (United States)

    Chen, Yung-Chau; Chen, Yu-Chin; Chen, Wen-Fu

    2014-05-01

    Impact and adaptation is an important issue in response to climate change. We need to know the affections of climate change on hydrologic characteristics before estimating the impacts and making adaptation strategies of concerned area. The wet and dry seasons of southern Taiwan are significant. In addition, the amount of average annual rainfall is about 2,100mm in southern Taiwan. Most of rainfalls happen in wet season and are caused by cyclones (typhoons) or thunderstorms in wet season. It implies that both quantity and intensity of rainfall are large in wet season, while they are small in dry season. Corresponding to the phenomena, the possibility of flood in wet season and draught in dry season is high. This means significant hydrologic variations may cause disasters. The purpose of this study is to analyze hydrologic variation due to recent climate changes in southern Taiwan, and provide decision makers some information to understand possible impacts and make adaptation strategies. Before typhoon Morakot hit Taiwan, southern Taiwan was suffering from aridity. As usual, people were expecting the rainfall accompanied with typhoons will resolve the drought in this area. However, it fell down huge amount of water within a short period of time and the rain became a big disaster in this area. The rainfall is an over 200-year event, a record breaker. The data used in this research is based on the records of Taiwan Central Weather Bureau at Chiayi, Tainan, Kaohsiung, and Hengchun station, respectively. The trends of temperature, amount of rainfall, and number of rainy days are examined. Both Mann-Kendall trend test and linear regression method are chosen as the means to do trend examination.The results show that annual mean temperatures at Chiayi, Tainan, Kaohsiung, and Hengchun have raised 0.5~0.9°C during past decades under the impact of global warming. The amount of annual rainfall does not appear statistically significant trend. However, the number of annual rainy

  7. Climate change research in Canada

    International Nuclear Information System (INIS)

    Dawson, K.

    1994-01-01

    The current consensus on climatic change in Canada is briefly summarized, noting the results of modelling of the effects of a doubling of atmospheric CO 2 , the nonuniformity of climate change across the country, the uncertainties in local responses to change, and the general agreement that 2-4 degrees of warming will occur for each doubling of CO 2 . Canadian government response includes programs aimed at reducing the uncertainties in the scientific understanding of climate change and in the socio-economic response to such change. Canadian climate change programs include participation in large-scale experiments on such topics as heat transport in the ocean, and sources and sinks of greenhouse gases; development of next-generation climate models; studying the social and economic effects of climate change in the Great Lakes Basin and Mackenzie River Basin; investigation of paleoclimates; and analysis of climate data for long-term trends

  8. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2013-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  9. Strategy for Climate Change Adaptation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    2014-01-01

    . This absence of an agreement calls for adaptation to climate change. Emphasis should be put on buildings, as they play a vital economic and social role in society and are vulnerable to climate change. Therefore, the building stock deserves its own policy and implementation plans as well as tools that enable...... adequate and cost-efficient adaptation to climate change. This paper explains the need for climate change adaptation of the building stock and suggests a pattern for a strategic approach to how to reach the climate change adaptation needed. The suggested and presented need of a strategic approach is based...... on three main initiatives consisting of the need to examine the potential impacts of climate change on the building stock, the need to assess and develop a roadmap of current and future adaptation measures that can withstand the effects of climate change, and the need to engage relevant stakeholders...

  10. Climate Change in China : Exploring Informants' Perceptions of Climate Change through a Qualitative Approach

    OpenAIRE

    Lipin, Tan

    2016-01-01

    Climate change is not only a natural phenomenon, but also a global social issue. Many studies try to explore the mechanisms behind climate change and the consequences of climate change, and provide information for developing the measures to mitigate or adapt to it. For example, the IPCC reviews and assesses climate-change-related scientific information produced worldwide, thus aiming to support decision-making from a scientific perspective. However, though various international and regional c...

  11. The social construct of climate and climate change

    International Nuclear Information System (INIS)

    Stehr, N.

    1994-01-01

    Different time scales of climate change and their differential perception in society are discussed. A historical examination of natural climate changes during the past millennium suggests that short-term changes, especially crucial changes, trigger a significant response in and by society. Short-term changes correspond to the 'time horizon of everyday life', that is, to a time scale from days and weeks to a few years. The anticipated anthropogenic climate changes, however, are expected to occur on a longer time scale. They require a response by society not on the basis of primary experience but on the basis of scientifically constructed scenarios and ways in which such information is represented in the modern media for example. Socio-economic impact research relies on concepts that are based on the premise of perfectly informed actors for the development of optimal adaptation strategies. In contrast to such a conception, we develop the concept of a 'social construct of climate' as decisive for the public perception of scientific knowledge about climate and for public policy on climate change. The concept is illustrated using a number of examples. (orig.)

  12. The neurobiology of climate change.

    Science.gov (United States)

    O'Donnell, Sean

    2018-01-06

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  13. The neurobiology of climate change

    Science.gov (United States)

    O'Donnell, Sean

    2018-02-01

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  14. Climate change and the expected impact in water resources in Albania

    International Nuclear Information System (INIS)

    Demiraj, Eglantina; Mucaj, Liri; Bicja, Mirela

    2004-01-01

    The climate change scenarios for Albania are prepared by using MAGICC/SCENGEN software, by CRU/UEA. MAGICC is run to calculate the global changes by using the mid- range IS92a emission scenario as the reference scenario and SRESA1, SRESA2, SRESB1 and SRESB2 as policy scenarios. SCENGEN is run using 6 of the available standardized GCM global warming patterns (HadCM2, UKTR, ECHAM4, CSIRO-TR, UIUC-EQ, GFDLLO). A composite pattern is constructed by using these 6 GSM altogether for each scenario. The climate change scenario for Albania leads to an annual increase in temperature up to 3.6 o C and decrease in precipitation to -12.5% by 2100 related to 1990. Severe summers with high temperatures (up to 4.10 o C) and low precipitation (up to -27%) are expected to meet over the territory that may cause negative or positive impacts. Autumn seems to play the second role in annual changes. Milder winters and warmer springs are expected as well. A decrease in the long term mean annual and seasonal runoff has to be expected for the whole territory and for three time horizons (years 2025, 2050, 2100). It would affect the surface water flow, reducing its amount. Under reduced surface flow and increased evaporation, the storage of reservoirs will decrease, which will effect the energy production by hydropower stations. Because of the reduction of stream flows in the wetlands, western part of Albania would experience both increasing demands for water and reduced supply of water, which would decrease wetland area. Other consequences of expected warming include not only changes in total water amount and levels, but also erosion of riverbeds, and modification of turbidity and sediment load. (Author)

  15. Trees and Climate Change

    OpenAIRE

    Dettenmaier, Megan; Kuhns, Michael; Unger, Bethany; McAvoy, Darren

    2017-01-01

    This fact sheet describes the complex relationship between forests and climate change based on current research. It explains ways that trees can mitigate some of the risks associated with climate change. It details the impacts that forests are having on the changing climate and discuss specific ways that trees can be used to reduce or counter carbon emissions directly and indirectly.

  16. Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology

    Science.gov (United States)

    Shen, Mingxi; Chen, Jie; Zhuan, Meijia; Chen, Hua; Xu, Chong-Yu; Xiong, Lihua

    2018-01-01

    Uncertainty estimation of climate change impacts on hydrology has received much attention in the research community. The choice of a global climate model (GCM) is usually considered as the largest contributor to the uncertainty of climate change impacts. The temporal variation of GCM uncertainty needs to be investigated for making long-term decisions to deal with climate change. Accordingly, this study investigated the temporal variation (mainly long-term) of uncertainty related to the choice of a GCM in predicting climate change impacts on hydrology by using multi-GCMs over multiple continuous future periods. Specifically, twenty CMIP5 GCMs under RCP4.5 and RCP8.5 emission scenarios were adapted to adequately represent this uncertainty envelope, fifty-one 30-year future periods moving from 2021 to 2100 with 1-year interval were produced to express the temporal variation. Future climatic and hydrological regimes over all future periods were compared to those in the reference period (1971-2000) using a set of metrics, including mean and extremes. The periodicity of climatic and hydrological changes and their uncertainty were analyzed using wavelet analysis, while the trend was analyzed using Mann-Kendall trend test and regression analysis. The results showed that both future climate change (precipitation and temperature) and hydrological response predicted by the twenty GCMs were highly uncertain, and the uncertainty increased significantly over time. For example, the change of mean annual precipitation increased from 1.4% in 2021-2050 to 6.5% in 2071-2100 for RCP4.5 in terms of the median value of multi-models, but the projected uncertainty reached 21.7% in 2021-2050 and 25.1% in 2071-2100 for RCP4.5. The uncertainty under a high emission scenario (RCP8.5) was much larger than that under a relatively low emission scenario (RCP4.5). Almost all climatic and hydrological regimes and their uncertainty did not show significant periodicity at the P = .05 significance

  17. Responses of snowmelt runoff to climatic change in an inland river basin, Northwestern China, over the past 50 years

    Directory of Open Access Journals (Sweden)

    J. Wang

    2010-10-01

    Full Text Available The spatial and temporal variations of snowcover distribution, and snowmelt runoff are considered as sensitive indicators for climatic change. The purpose of this paper is to analyze and forecast the responses of snowmelt runoff to climate change in an inland river basin. The upper basin of Heihe River in Northwestern China was chose as the study area, and the observation data from the meteorological and hydrological stations were utilized to analyze the status and regularity of the climatic change over the past 50 years. Snow cover area was obtained by an optimized technology using Moderate Resolution Imaging Spectroradiometer data with Normalized Difference Snow Index adjustment and topographic correction. A concept of potential snowmelt was suggested to illustrate the response of spatial snowmelt to climate change. The results show that the annual SCA proportion and the potential snowmelt keep an increasing trend since 2000. There is a negative relationship between annual air temperature and SCA proportion from 2000 to 2008. Snowmelt Runoff Model was chose to simulate snowmelt runoff and scenario forecast the change trend of snowmelt runoff in this region. The results show that climatic warming was apparent in the upper basin of Heihe River over the past 50 a. Annual average air temperature of three different weather stations located in the basin has increased 2.1 °C, 2.6 °C and 2.9 °C respectively from 1956 to present. The snowmelt runoff has increased obviously from 1970 to present. With different warming climate scenarios, the results by using SRM simulating showed that the first occurred time of snowmelt runoff shift ahead and discharge become larger as responses of snowmelt runoff to air temperature increasing, and the influence of temperature rising on average discharge of the whole snow season is not obvious.

  18. Climate Change Action Fund: public education and outreach. Change: think climate

    International Nuclear Information System (INIS)

    2001-05-01

    This illustrated booklet provides a glimpse of the many creative approaches being adopted by educators, community groups, industry associations and governments at all levels to inform Canadians about the causes and effects of climate change. It also provides suggestions about how each individual person can contribute to reduce greenhouse gas emissions through residential energy efficiency, by participating in ride-share programs, by planting trees and a myriad of other community action projects and public awareness campaigns. The booklet describes educational resources and training available to teachers, science presentations, climate change workshops, public awareness initiatives, community action on climate change, and sector-specific actions underway in the field of transportation and in improving energy efficiency in residential and large buildings. Descriptive summaries of the activities of organizations involved in climate change advocacy and promotion, and a list of contacts for individual projects also form part of the volume

  19. Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change

    Science.gov (United States)

    Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

    2011-12-01

    We would like to talk about a multidisciplinary education and outreach program we co-direct at Colorado State University, with support from an NSF-funded STC, CMMAP, the Center for Multiscale Modeling of Atmospheric Processes. We are working to raise public literacy about climate change by providing information that is high quality, up to date, thoroughly multidisciplinary, and easy for non-specialists to understand. Our primary audiences are college-level students, their teachers, and the general public. Our motto is Climate Change is Everybody's Business. To encourage and help our faculty infuse climate-change content into their courses, we have organized some 115 talks given by as many different speakers-speakers drawn from 28 academic departments, all 8 colleges at CSU, and numerous other entities from campus, the community, and farther afield. We began with a faculty-teaching-faculty series and then broadened our attentions to the whole campus and surrounding community. Some talks have been for narrowly focused audiences such as extension agents who work on energy, but most are for more eclectic groups of students, staff, faculty, and citizens. We count heads at most events, and our current total is roughly 6,000. We have created a website (http://changingclimates.colostate.edu) that includes videotapes of many of these talks, short videos we have created, and annotated sources that we judge to be accurate, interesting, clearly written, and aimed at non-specialists, including books, articles and essays, websites, and a few items specifically for college teachers (such as syllabi). Pages of the website focus on such topics as how the climate works / how it changes; what's happening / what might happen; natural ecosystems; agriculture; impacts on people; responses from ethics, art, literature; communication; daily life; policy; energy; and-pulling all the pieces together-the big picture. We have begun working on a new series of very short videos that can be

  20. Tiny and Hidden but Changing Your World: The Importance of Soil Microbes to Climate Change

    Science.gov (United States)

    Waldo, N.; Neumann, R. B.

    2017-12-01

    When most people think about global climate change they think about massive power plants billowing smoke and expansive glaciers melting to nothingness. What the public often overlooks is how natural processes invisible to the naked eye can be changed by the climate, and the fact that the natural response to those changes can further alter the climate. Scientists call these reactions "feedback cycles", and understanding them is crucial to predicting the true impact of human activities. In our research, we study one particular feedback cycle: the effect of increased plant productivity on methane emissions from wetlands. Globally, wetlands account for about a third of annual emissions of methane, the second most important greenhouse gas after carbon dioxide. This heat-trapping gas is generated in the soil of wetlands by microscopic organisms that consume, among other things, proteins and sugars released by the roots of plants. As the atmosphere becomes warmer and richer in carbon dioxide, these plants will grow larger and faster, releasing more of this microbe food into the soil. Our current research seeks to understand how that will affect the microbial ecosystem, and through it the emissions of methane gas.

  1. Predicting Climate Change Impacts to the Canadian Boreal Forest

    Directory of Open Access Journals (Sweden)

    Trisalyn A. Nelson

    2014-03-01

    Full Text Available Climate change is expected to alter temperature, precipitation, and seasonality with potentially acute impacts on Canada’s boreal. In this research we predicted future spatial distributions of biodiversity in Canada’s boreal for 2020, 2050, and 2080 using indirect indicators derived from remote sensing and based on vegetation productivity. Vegetation productivity indices, representing annual amounts and variability of greenness, have been shown to relate to tree and wildlife richness in Canada’s boreal. Relationships between historical satellite-derived productivity and climate data were applied to modelled scenarios of future climate to predict and map potential future vegetation productivity for 592 regions across Canada. Results indicated that the pattern of vegetation productivity will become more homogenous, particularly west of Hudson Bay. We expect climate change to impact biodiversity along north/south gradients and by 2080 vegetation distributions will be dominated by processes of seasonality in the north and a combination of cumulative greenness and minimum cover in the south. The Hudson Plains, which host the world’s largest and most contiguous wetland, are predicted to experience less seasonality and more greenness. The spatial distribution of predicted trends in vegetation productivity was emphasized over absolute values, in order to support regional biodiversity assessments and conservation planning.

  2. Climate - Change - Alps. Tourism and regional planning in weather load. Proceedings; Klima - Wandel - Alpen. Tourismus und Raumplanung im Wetterstress. Tagungsband

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    Within the international annual conference ''Climate-Change-Alps Tourism and regional planning under weather load'' between 18th and 20th May, 2006, in Bad Hindelang (federal Republic of Germany) lectures were held to the following topics: (a) CIPRA resolution; (b) Future in the Alps - Distribution of knowledge, networking of people; (c) Climatic change and climate protection; (d) Planning of nature dangers; (e) Tourism.

  3. CO2-induced climate change in northern Europe: comparison of 12 CMIP2 experiments

    International Nuclear Information System (INIS)

    Raeisaenen, Jouni

    2000-01-01

    The results of 12 coupled atmosphere-ocean general circulation model experiments participating in the second phase of the Coupled Model Intercomparison Project (CMIP2) are studied with focus on the area of northern Europe. The variables considered are surface air temperature, precipitation and sea level pressure. The 80-year control simulations are first compared with observational estimates of the present climate. Several aspects of the simulated CO 2 -induced climate changes, defined by subtracting the control run seasonal or annual means from 20-year perturbation run means around the transient doubling of CO 2 , are then studied. The common features and individual variations in the simulated climate change are documented. Particular attention is put on expressing the inter experiment agreement in quantitative terms and on estimating the relative contribution of model-simulated internal variability to the inter experiment variance. For that purpose, a new statistical framework is developed. Finally, an attempt is made to statistically relate the inter experiment differences in the simulated climate change in northern Europe to aspects of the control climates, global climate change and some of the basic model characteristics. A summary of the main findings is given in the last section of the report

  4. Climate change

    NARCIS (Netherlands)

    Marchal, V.; Dellink, R.; Vuuren, D.P. van; Clapp, C.; Chateau, J.; Magné, B.; Lanzi, E.; Vliet, J. van

    2012-01-01

    This chapter analyses the policy implications of the climate change challenge. Are current emission reduction pledges made in Copenhagen/Cancun enough to stabilise the climate and limit global average temperature increase to 2 oC? If not, what will the consequences be? What alternative growth

  5. U.S. Department of the Interior Climate Science Centers and U.S. Geological Survey National Climate Change and Wildlife Science Center—Annual report for 2016

    Science.gov (United States)

    Weiskopf, Sarah R.; Varela Minder, Elda; Padgett, Holly A.

    2017-05-19

    Introduction2016 was an exciting year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). In recognition of our ongoing efforts to raise awareness and provide the scientific data and tools needed to address the impacts of climate change on fish, wildlife, ecosystems, and people, NCCWSC and the CSCs received an honorable mention in the first ever Climate Adaptation Leadership Award for Natural Resources sponsored by the National Fish, Wildlife, and Plant Climate Adaptation Strategy’s Joint Implementation Working Group. The recognition is a reflection of our contribution to numerous scientific workshops and publications, provision of training for students and early career professionals, and work with Tribes and indigenous communities to improve climate change resilience across the Nation. In this report, we highlight some of the activities that took place throughout the NCCWSC and CSC network in 2016.

  6. Climate change impact and resilience in the electricity sector: The example of Austria and Germany

    International Nuclear Information System (INIS)

    Totschnig, G.; Hirner, R.; Müller, A.; Kranzl, L.; Hummel, M.; Nachtnebel, H.-P.; Stanzel, P.; Schicker, I.; Formayer, H.

    2017-01-01

    The purpose of this paper is to investigate the resilience of possible future electricity and heating systems in regard to climate change and fuel price shocks. The dynamical simulation model HiREPS of the Austrian and German electricity, heating and cooling sectors was used for this analysis. The electricity generation cost and changes in the required secured capacity were used as indicators for the resilience of the energy system. The results show, that the analysed changes in the natural gas price have larger impact on the electricity generation cost than weather variability between different years or climate change. Especially the fossil fuel based scenario showed high sensitivity to the gas price. Analysis of the required secured capacity shows, that in the last quarter of the 21st century the annual maximum residual loads are growing and are dominated by strong cooling demand peaks. Promoting passive cooling options, efficient building designs and options for a controlled down regulation of cooling devices seems to be advisable to avoid installing large thermal power plant backup capacities. The evaluated climate model simulations show only small changes in photovoltaic, wind and hydro power generation for 2051−2080 in Austria and Germany. - Highlights: • Natural gas price has larger impact on the electricity cost than climate variability. • End of 21st century the annual maximum load is set by summer cooling demand peaks. • Promoting passive cooling options is advisable to avoid large backup capacities. • Only small changes in photovoltaic, wind and hydro power generation up to 2080.

  7. The 'Blue-Shift' in midlatitude dynamics in a Changing Climate

    Science.gov (United States)

    Carvalho, L. V.

    2013-12-01

    Global surface temperature variations and changes result from intricate interplay of phenomena varying on scales ranging from fraction of seconds (turbulence) to thousands of years (e.g. glaciations). To complicate these issues further, the contribution of the anthropogenic forcing on the observed changes in surface temperatures varies over time and is spatially non-uniform. While evaluating all individual bands of this broad spectrum is virtually impossible, the availability of global daily datasets in the last few decades from reanalyses and Global Climate Models (GCMs) simulations allows estimating the contribution of phenomena varying on synoptic-to-interannual timescales. Previous studies using GCM simulations for the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment (IPCC AR4) have documented a consistent poleward shift in the storm tracks related to changes in baroclinicity resulting from global warming. However, our recent research (Cannon et al. 2013) indicated that the pattern of changes in the storm tracks observed in the last few decades is much more complex in both space and time. Complex terrain and the relative distribution of continents, oceans and icecaps play a significant role for changes in synoptic activity. Coupled modes such as the Northern and Southern annular modes, the El Nino-Southern Oscillation (ENSO) and respective teleconnections with changes in baroclinicity have been identified as relevant dynamical forcings for variations of the midlatitude storm tracks, increasing the uncertainties in future projections. Moreover, global warming has modified the amplitude of the annual cycles of temperature, moisture and circulation throughout the planet and there is strong indication that these changes have mostly affected the tropics and Polar Regions. The present study advances these findings by investigating the 'blue-shift' in the underlying dynamics causing surface temperature anomalies and investigates relationships with

  8. Climate change and runoff in south-western Australia

    Science.gov (United States)

    Silberstein, R. P.; Aryal, S. K.; Durrant, J.; Pearcey, M.; Braccia, M.; Charles, S. P.; Boniecka, L.; Hodgson, G. A.; Bari, M. A.; Viney, N. R.; McFarlane, D. J.

    2012-12-01

    SummaryThis paper presents the results of computer simulations of runoff from 13 major fresh and brackish river basins in south-western Australia (SWA) under climate projections obtained from 15 GCMs with three future global warming scenarios equivalent to global temperature rises of 0.7 °C, 1.0 °C and 1.3 °C by 2030. The objective was to apply an efficient methodology, consistent across a large region, to examine the implications of the best available projections in climate trends for future surface water resources. An ensemble of rainfall-runoff models was calibrated on stream flow data from 1975 to 2007 from 106 gauged catchments distributed throughout the basins of the study area. The sensitivity of runoff to projected changes in mean annual rainfall is examined using the climate 'elasticity' concept. Averaged across the study area, all 15 GCMs project declines in rainfall under all global warming scenarios with a median decline of 8% resulting in a median decline in runoff of 25%. Such uniformity in projections from GCMs is unusual. Over SWA the average annual runoff under the 5th wettest and 5th driest of the 45 projections of the 2030 climate declines by 10 and 42%, respectively. Under the 5th driest projection the runoff decline ranges from 53% in the northern region to 40% in the southern region. Strong regional variations in climate sensitivity are found with the proportional decline in runoff greatest in the northern region and the greatest volumetric declines in the wetter basins in the south. Since the mid 1970s stream flows into the major water supply reservoirs in SWA have declined by more than 50% following a 16% rainfall reduction. This has already had major implications for water resources planning and for the preservation of aquatic and riparian ecosystems in the region. Our results indicate that this reduction in runoff is likely to continue if future climate projections eventuate.

  9. Changes in the Perceived Risk of Climate Change: Evidence from Sudden Climatic Events

    Science.gov (United States)

    Anttila-Hughes, J. K.

    2009-12-01

    In the course of the past two decades the threat of anthropogenic climate change has moved from a scientific concern of relative obscurity to become one of the largest environmental and public goods problems in history. During this period public understanding of the risk of climate change has shifted from negligible to quite large. In this paper I propose a means of quantifying this change by examining how sudden events supporting the theory of anthropogenic climate change have affected carbon intensive companies' stock prices. Using CAPM event study methodology for companies in several carbon-intensive industries, I find strong evidence that markets have been reacting to changes in the scientific evidence for climate change for some time. Specifically, the change in magnitude of response over time seems to indicate that investors believed climate change was a potentially serious risk to corporate profits as early as the mid 1990s. Moreover, market reaction dependence on event type indicates that investors are differentiating between different advances in the scientific knowledge. Announcements by NASA GISS that the previous year was a “record hot year” for the globe are associated with negative excess returns, while news of ice shelf collapses are associated with strong positive excess returns. These results imply that investors are aware of how different aspects of climate change will affect carbon intensive companies, specifically in terms of the link between warming in general and polar ice cover. This implies that policy choices based on observable public opinion have lagged actual private concern over climate change's potential threat.

  10. Chemistry and climate change

    International Nuclear Information System (INIS)

    Bernier, Jean-Claude; Brasseur, Guy; Brechet, Yves; Candel, Sebastien; Cazenave, Anny; Courtillot, Vincent; Fontecave, Marc; Garnier, Emmanuel; Goebel, Philippe; Legrand, Jack; Legrand, Michel; Le Treut, Herve; Mauberger, Pascal; Dinh-Audouin, Minh-Thu; Olivier, Daniele; Rigny, Paul; Bigot, Bernard

    2016-01-01

    In its first part, this collective publication addresses the decennial and centuries-old variations of climate: perspectives and implications of climate change for the 21. century, questions remaining about the understanding of climate change from its sources to its modelling, extreme climate variations and societies during the last millennium. The contributions of the second part outline how chemistry is a tool to study climate change: ice chemistry as an archive of our past environment, observations and predictions on sea level rise, relationship between atmosphere chemistry and climate. The third set of contributions discusses the transformation of the energy system for a cleaner atmosphere and the management of the climate risk: the chemical processing of CO_2, actions of chemical companies to support the struggle against climate change, relationship between barrel price and renewable energies, relationship between grid complexity and green energy. The last part outlines the role chemistry can have to be able to do without fossil fuels: chemistry in front of challenges of transformation of the energy system, the use of micro-algae, the use of hydrogen as a vector of energy transition

  11. Sea Level Change and Coastal Climate Services: The Way Forward

    Directory of Open Access Journals (Sweden)

    Gonéri Le Cozannet

    2017-10-01

    Full Text Available For many climate change impacts such as drought and heat waves, global and national frameworks for climate services are providing ever more critical support to adaptation activities. Coastal zones are especially in need of climate services for adaptation, as they are increasingly threatened by sea level rise and its impacts, such as submergence, flooding, shoreline erosion, salinization and wetland change. In this paper, we examine how annual to multi-decadal sea level projections can be used within coastal climate services (CCS. To this end, we review the current state-of-the art of coastal climate services in the US, Australia and France, and identify lessons learned. More broadly, we also review current barriers in the development of CCS, and identify research and development efforts for overcoming barriers and facilitating their continued growth. The latter includes: (1 research in the field of sea level, coastal and adaptation science and (2 cross-cutting research in the area of user interactions, decision making, propagation of uncertainties and overall service architecture design. We suggest that standard approaches are required to translate relative sea level information into the forms required to inform the wide range of relevant decisions across coastal management, including coastal adaptation.

  12. Contributions of meteorology to the phenology of cyanobacterial blooms: implications for future climate change.

    Science.gov (United States)

    Zhang, Min; Duan, Hongtao; Shi, Xiaoli; Yu, Yang; Kong, Fanxiang

    2012-02-01

    Cyanobacterial blooms are often a result of eutrophication. Recently, however, their expansion has also been found to be associated with changes in climate. To elucidate the effects of climatic variables on the expansion of cyanobacterial blooms in Taihu, China, we analyzed the relationships between climatic variables and bloom events which were retrieved by satellite images. We then assessed the contribution of each climate variable to the phenology of blooms using multiple regression models. Our study demonstrates that retrieving ecological information from satellite images is meritorious for large-scale and long-term ecological research in freshwater ecosystems. Our results show that the phenological changes of blooms at an inter-annual scale are strongly linked to climate in Taihu during the past 23 yr. Cyanobacterial blooms occur earlier and last longer with the increase of temperature, sunshine hours, and global radiation and the decrease of wind speed. Furthermore, the duration increases when the daily averages of maximum, mean, and minimum temperature each exceed 20.3 °C, 16.7 °C, and 13.7 °C, respectively. Among these factors, sunshine hours and wind speed are the primary contributors to the onset of the blooms, explaining 84.6% of their variability over the past 23 yr. These factors are also good predictors of the variability in the duration of annual blooms and determined 58.9% of the variability in this parameter. Our results indicate that when nutrients are in sufficiently high quantities to sustain the formation of cyanobacterial blooms, climatic variables become crucial in predicting cyanobacterial bloom events. Climate changes should be considered when we evaluate how much the amount of nutrients should be reduced in Taihu for lake management. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Climate change refugia as a tool for climate adaptation

    Science.gov (United States)

    Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...

  14. Climate change. Climate in Medieval time.

    Science.gov (United States)

    Bradley, Raymond S; Hughes, Malcolm K; Diaz, Henry F

    2003-10-17

    Many papers have referred to a "Medieval Warm Period." But how well defined is climate in this period, and was it as warm as or warmer than it is today? In their Perspective, Bradley et al. review the evidence and conclude that although the High Medieval (1100 to 1200 A.D.) was warmer than subsequent centuries, it was not warmer than the late 20th century. Moreover, the warmest Medieval temperatures were not synchronous around the globe. Large changes in precipitation patterns are a particular characteristic of "High Medieval" time. The underlying mechanisms for such changes must be elucidated further to inform the ongoing debate on natural climate variability and anthropogenic climate change.

  15. Papers of the CWRA climate change symposium : understanding climate change impacts on Manitoba's water resources

    International Nuclear Information System (INIS)

    2003-01-01

    This symposium provided an opportunity for discussions on climate change issues with particular reference to the impacts on Manitoba's water resources. The presentations addressed issues of importance to governments, scientists, academics, managers, consultants and the general public. Topics of discussion ranged from climate change impacts on water quality, wetlands, hydropower, fisheries and drought, to adaptation to climate change. Recent advances in global and regional climate modelling were highlighted along with paleo-environmental indicators of climate change. The objective was to provide a better understanding of the science of climate change. The conference featured 16 presentations of which 1 was indexed separately for inclusion in this database. refs., tabs., figs

  16. Climate change and human health

    DEFF Research Database (Denmark)

    Warren, John A; Berner, James E; Curtis, Tine

    2005-01-01

    In northern regions, climate change can include changes in precipitation magnitude and frequency, reductions in sea ice extent and thickness, and climate warming and cooling. These changes can increase the frequency and severity of storms, flooding, or erosion; other changes may include drought...... or degradation of permafrost. Climate change can result in damage to sanitation infrastructure resulting in the spread of disease or threatening a community's ability to maintain its economy, geographic location and cultural tradition, leading to mental stress. Through monitoring of some basic indicators...... communities can begin to develop a response to climate change. With this information, planners, engineers, health care professionals and governments can begin to develop approaches to address the challenges related to climate change....

  17. Multiple aspects of climate change - Summary of presentations; Les multiples facettes du changement climatique - Resume des presentations

    Energy Technology Data Exchange (ETDEWEB)

    Andre, Jean-Claude; Bauer, Pierre; Le Treut, Herve [Institut Pierre Simon Laplace, 78280 Guyancourt Cedex (France); Woeppelmann, Guy [Universite de la Rochelle, 17000 La Rochelle (France); Kouraev, Alexei; Remy, Frederique; Berthier, Etienne [Legos, 31401 Toulouse cedex 9 (France); Lehodey, Patrick [CLS, 31520 Ramonville St Agne (France); Lebourgeois, Francois [ENGREF, AgroParisTech, 54042 Nancy Cedex (France); Chuine, Isabelle [CEFE, CNRS, Montpellier (France); Vennetier, Michel [CEMAGREF, 13182 Aix en Provence cedex 5 (France); Duchene, Eric [INRA-Universite de Strasbourg, 68021 Colmar Cedex (France); Lafaye, Murielle [CNES, 31401 Toulouse cedex 9 (France)

    2011-08-15

    The French Meteorological Society (SMF) organized its annual scientific day on March 23, 2011 on the topic of the multiple aspects of climate change. The aim was to take stock of the lessons learnt from the different meteorological markers in several domains (agriculture, forests, ecosystems, rise of sea level, changes in marine biodiversity, health, snow and ice caps..). This paper summarizes the seven presentations given at this meeting: 1 - climate change today and tomorrow (H. Le Treut); 2 - rise of oceans level: estimations and regional variability (G. Woeppelmann); 3 - polar caps and continental cryo-sphere as seen from space (A. Kouraev, F. Remy and E. Berthier); 4 - impact of climate change on exploited marine populations: projections and uncertainties (P. Lehodey); 5 - stakes of climate change on agricultural and winery activities in France (E. Duchene); 6 - impact of climate change on forest trees phenology and consequence on their survival and operation (F. Lebourgeois, I. Chuine and M. Vennetier); 7 - 'tele-epidemiology': a health-aid in a climate change context. (J.S.)

  18. Climate change sensitivity of the African ivory nut palm, Hyphaene petersiana Klotzsch ex Mart. (Arecaceae) - a keystone species in SE Africa

    International Nuclear Information System (INIS)

    Blach-Overgaard, A; Svenning, J-C; Balslev, H

    2009-01-01

    Africa is the most vulnerable continent to future climate change. Profound changes are projected for southwestern Africa with increased drying, notably with delayed onset of the rainy season in September-November, and temperature increases in all seasons. The projected climate changes combined with land-use changes are thought to constitute the main threats to biodiversity in the 21st century. To be able to predict the potential impact on biodiversity, it is crucial to achieve a better insight into the controls of contemporary species ranges. Using species distribution modeling, we assessed the climate sensitivity of the key-stone palm species Hyphaene petersiana (African ivory nut palm) in southern Africa. We tested the relative roles of climate vs. non-climatic range-controls and found that climate had a clear effect on the range of H. petersiana and that especially water-related variables (annual precipitation and precipitation driest quarter) were of high importance. Nevertheless, latitude was the overall most dominant variable, reflecting spatial constraints on the continental-scale distribution. Of the remaining non-climatic factors, soil type and human influence were as important as the climatic factors. A future decrease in annual precipitation below 400 mm and hydrological changes towards drier conditions could cause a dramatic decline in H. petersiana populations, while the influence of temperature changes is less clear. The ongoing, unsustainable utilization pressures on this palm species by humans and livestock are likely to exacerbate the negative effect of future climate changes on its populations, especially, given the expected human population increase in Africa.

  19. Overview of different aspects of climate change effects on soils

    Energy Technology Data Exchange (ETDEWEB)

    Qafoku, Nikolla P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-08-01

    Climate change [i.e., high atmospheric carbon dioxide (CO2) concentrations (≥400 ppm); increasing air temperatures (2-4°C or greater); significant and/or abrupt changes in daily, seasonal, and inter-annual temperature; changes in the wet/dry cycles; intensive rainfall and/or heavy storms; extended periods of drought; extreme frost; heat waves and increased fire frequency] is and will significantly affect soil properties and fertility, water resources, food quantity and quality, and environmental quality. Biotic processes that consume atmospheric CO2 and create organic carbon (C) that is either reprocessed to CO2 or stored in soils, are the subject of active current investigations with great concern over the influence of climate change. In addition, abiotic C cycling and its influence on the inorganic C pool in soils is a fundamental global process in which acidic atmospheric CO2 participates in the weathering of carbonate and silicate minerals, ultimately delivering bicarbonate and Ca2+ or other cations that precipitate in the form of carbonates in soils or are transported to the rivers, lakes, and oceans. Soil responses to climate change will be complex, and there are many uncertainties and unresolved issues. The objective of the review is to initiate and further stimulate a discussion about some important and challenging aspects of climate-change effects on soils, such as accelerated weathering of soil minerals and resulting C and elemental fluxes in and out of soils, soil/geo-engineering methods used to increase C sequestration in soils, soil organic matter (SOM) protection, transformation and mineralization, and SOM temperature sensitivity. This review reports recent discoveries and identifies key research needs required to understand the effects of climate change on soils.

  20. Impact of Climate Conditions on Occupational Health and Related Economic Losses: A New Feature of Global and Urban Health in the Context of Climate Change.

    Science.gov (United States)

    Kjellstrom, Tord

    2016-03-01

    One feature of climate change is the increasing heat exposure in many workplaces where efficient cooling systems cannot be applied. Excessive heat exposure is a particular problem for working people because of the internal heat production when muscle work is carried out. The physiological basis for severe heat stroke, other clinical effects, and heat exhaustion is well known. One feature of this health effect of excessive workplace heat exposure is reduced work capacity, and new research has started to quantify this effect in the context of climate change. Current climate conditions in tropical and subtropical parts of the world are already so hot during the hot seasons that occupational health effects occur and work capacity for many working people is affected. The Hothaps-Soft database and software andClimateCHIP.orgwebsite make it possible to rapidly produce estimates of local heat conditions and trends. The results can be mapped to depict the spatial distribution of workplace heat stress. In South-East Asia as much as 15% to 20% of annual work hours may already be lost in heat-exposed jobs, and this may double by 2050 as global climate change progresses. By combining heat exposure data and estimates of the economic consequences, the vulnerability of many low- and middle-income countries is evident. The annual cost of reduced labor productivity at country level already in 2030 can be several percent of GDP, which means billions of US dollars even for medium-size countries. The results provide new arguments for effective climate change adaptation and mitigation policies and preventive actions in all countries. © 2015 APJPH.

  1. Mitigating the Effects of Climate Change on the Water Resources of the Columbia River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Payne, J.T.; Wood, A.W.; Hamlet, A.F.; Palmer, R.N.; Lettenmaier, D.P. [Department of Civil Engineering, 164 Wilcox Hall, P.O. Box 352700, University of Washington, Seattle, WA 98195-2700 (United States)

    2004-07-01

    The potential effects of climate change on the hydrology and water resources of the Columbia River Basin (CRB) were evaluated using simulations from the U.S. Department of Energy and National Center for Atmospheric Research Parallel Climate Model (DOE/NCAR PCM). This study focuses on three climate projections for the 21st century based on a 'business as usual' (BAU) global emissions scenario, evaluated with respect to a control climate scenario based on static 1995 emissions. Time-varying monthly PCM temperature and precipitation changes were statistically downscaled and temporally disaggregated to produce daily forcings that drove a macro-scale hydrologic simulation model of the Columbia River basin at 1/4-degree spatial resolution. For comparison with the direct statistical downscaling approach, a dynamical downscaling approach using a regional climate model (RCM) was also used to derive hydrologic model forcings for 20-year subsets from the PCM control climate (1995-2015) scenario and from the three BAU climate (2040-2060) projections. The statistically downscaled PCM scenario results were assessed for three analysis periods (denoted Periods 1-3: 2010-2039, 2040-2069, 2070-2098) in which changes in annual average temperature were +0.5, +1.3 and +2.1C, respectively, while critical winter season precipitation changes were -3, +5 and +1 percent. For RCM, the predicted temperature change for the 2040-2060 period was +1.2C and the average winter precipitation change was -3 percent, relative to the RCM control climate. Due to the modest changes in winter precipitation, temperature changes dominated the simulated hydrologic effects by reducing winter snow accumulation, thus shifting summer streamflow to the winter. The hydrologic changes caused increased competition for reservoir storage between firm hydropower and instream flow targets developed pursuant to the Endangered Species Act listing of Columbia River salmonids. We examined several alternative

  2. Climate Change Adaptation

    DEFF Research Database (Denmark)

    Hudecz, Adriána

    The European Union ROADEX Project 1998 – 2012 was a trans-national roads co-operation aimed at developing ways for interactive and innovative management of low traffic volume roads throughout the cold climate regions of the Northern Periphery Area of Europe. Its goals were to facilitate co......-operation and research into the common problems of the Northern Periphery. This report is an output of the ROADEX “Implementing Accessibility” project (2009-2012). It gives a summary of the results of research into adaptation measures to combat climate change effects on low volume roads in the Northern Periphery...... causes changes in other climatic variables such as rainfall, humidity and wind speed that impact on the functioning of infrastructure such road networks. This paper discusses the climate changes predicted by the world’s meteorological organisations and considers how these may impact on the public...

  3. The influence of inter-annually varying albedo on regional climate and drought

    KAUST Repository

    Meng, Xianhong

    2013-05-05

    Albedo plays an important role in land-atmosphere interactions and local climate. This study presents the impact on simulating regional climate, and the evolution of a drought, when using the default climatological albedo as is usually done in regional climate modelling, or using the actual observed albedo which is rarely done. Here, time-varying satellite derived albedo data is used to update the lower boundary condition of the Weather Research and Forecasting regional climate model in order to investigate the influence of observed albedo on regional climate simulations and also potential changes to land-atmosphere feedback over south-east Australia. During the study period from 2000 to 2008, observations show that albedo increased with an increasingly negative precipitation anomaly, though it lagged precipitation by several months. Compared to in-situ observations, using satellite observed albedo instead of the default climatological albedo provided an improvement in the simulated seasonal mean air temperature. In terms of precipitation, both simulations reproduced the drought that occurred from 2002 through 2006. Using the observed albedo produced a drier simulation overall. During the onset of the 2002 drought, albedo changes enhanced the precipitation reduction by 20 % on average, over locations where it was active. The area experiencing drought increased 6.3 % due to the albedo changes. Two mechanisms for albedo changes to impact land-atmosphere drought feedback are investigated. One accounts for the increased albedo, leading to reduced turbulent heat flux and an associated decrease of moist static energy density in the planetary boundary layer; the other considers that enhanced local radiative heating, due to the drought, favours a deeper planetary boundary layer, subsequently decreasing the moist static energy density through entrainment of the free atmosphere. Analysis shows that drought related large-scale changes in the regional climate favour a

  4. Notable shifting in the responses of vegetation activity to climate change in China

    Science.gov (United States)

    Chen, Aifang; He, Bin; Wang, Honglin; Huang, Ling; Zhu, Yunhua; Lv, Aifeng

    The weakening relationship between inter-annual temperature variability and vegetation activity in the Northern Hemisphere over the last three decades has been reported by a recent study. However, how and to what extent vegetation activity responds to climate change in China is still unclear. We applied the Pearson correlation and partial correlation methods with a moving 15-y window to the GIMMS NDVI dataset from NOAA/AVHRR and observed climate data to examine the variation in the relationships between vegetation activity and climate variables. Results showed that there was an expanding negative response of vegetation growth to climate warming and a positive role of precipitation. The change patterns between NDVI and climate variables over vegetation types during the past three decades pointed an expending negative correlation between NDVI and temperature and a positive role of precipitation over most of the vegetation types (meadow, grassland, shrub, desert, cropland, and forest). Specifically, correlation between NDVI and temperature (PNDVI-T) have shifted from positive to negative in most of the station of temperature-limited areas with evergreen broadleaf forests, whereas precipitation-limited temperate grassland and desert were characterized by a positive PNDVI-P. This study contributes to ongoing investigations of the effects of climate change on vegetation activity. It is also of great importance for designing forest management strategies to cope with climate change.

  5. Role of resolution in regional climate change projections over China

    Science.gov (United States)

    Shi, Ying; Wang, Guiling; Gao, Xuejie

    2017-11-01

    This paper investigates the sensitivity of projected future climate changes over China to the horizontal resolution of a regional climate model RegCM4.4 (RegCM), using RCP8.5 as an example. Model validation shows that RegCM performs better in reproducing the spatial distribution and magnitude of present-day temperature, precipitation and climate extremes than the driving global climate model HadGEM2-ES (HadGEM, at 1.875° × 1.25° degree resolution), but little difference is found between the simulations at 50 and 25 km resolutions. Comparison with observational data at different resolutions confirmed the added value of the RCM and finer model resolutions in better capturing the probability distribution of precipitation. However, HadGEM and RegCM at both resolutions project a similar pattern of significant future warming during both winter and summer, and a similar pattern of winter precipitation changes including dominant increase in most areas of northern China and little change or decrease in the southern part. Projected precipitation changes in summer diverge among the three models, especially over eastern China, with a general increase in HadGEM, little change in RegCM at 50 km, and a mix of increase and decrease in RegCM at 25 km resolution. Changes of temperature-related extremes (annual total number of daily maximum temperature > 25 °C, the maximum value of daily maximum temperature, the minimum value of daily minimum temperature in the three simulations especially in the two RegCM simulations are very similar to each other; so are the precipitation-related extremes (maximum consecutive dry days, maximum consecutive 5-day precipitation and extremely wet days' total amount). Overall, results from this study indicate a very low sensitivity of projected changes in this region to model resolution. While fine resolution is critical for capturing the spatial variability of the control climate, it may not be as important for capturing the climate response to

  6. Analysis and detection of climate change

    International Nuclear Information System (INIS)

    Thejll, P.; Stendel, M.

    2001-01-01

    The authors first discuss the concepts 'climate' and 'climate change detection', outlining the difficulties of the latter in terms of the properties of the former. In more detail they then discuss the analysis and detection, carried out at the Danish Climate Centre, of anthropogenic climate change and the nonanthropogenic changes regarding anthropogenic climate change the emphasis is on the improvement of global and regional climate models, and the reconstruction of past climates regarding non-anthropogenic changes the authors describe two case studies of potential solar influence on climate. (LN)

  7. [Does annual simulation training influence the safety climate of a university hospital? : Prospective 5‑year investigation using dimensions of the safety attitude questionnaire].

    Science.gov (United States)

    St Pierre, M; Gall, C; Breuer, G; Schüttler, J

    2017-12-01

    Simulation-based training with a focus on non-technical skills can have a positive influence on safety relevant attitudes of participants. If an organization succeeds in training sufficient staff, it may experience a positive change in the safety climate. As the effects of a single training are of a transient nature, annual training sessions may lead to an incremental improvement of safety relevant attitudes of employees over time. In spring 2012 the Department of Anesthesia at the University Hospital of Erlangen established an annual simulation-based training for staff members (e.g. consultants, trainee anesthetists and nurse anesthetists). The study aimed to test whether an annual simulation-based training would result in an incremental longitudinal improvement in attitudes towards teamwork, safety and stress recognition. A survey comprising three domains (teamwork climate, safety climate and stress recognition) of the safety attitudes questionnaire (SAQ) and items addressing briefing and speaking up was distributed to all participants in an annual in-house simulation training. Participants filled out the questionnaire in the morning of each training day. The attitudes were measured before the first training series in 2012, 6 months after the first training and then every year (2013-2016). Participants generated a personalized identification code which allowed individuals to be anonymously tracked over time. Results of the 5‑point Likert scale were transformed to a 100-point scale. Results were calculated at the group level and at the individual level. Univariable linear regression was used to calculate mean changes per year. Over a period of 5 years (2012-2016) a total of 255 individuals completed the questionnaire. Each year, 14-20% of all nurse anesthetists and 81-90% of all anesthetists participated in the simulation-based training. As a result of annual staff turnover 16-24% of participants were new staff members. A personalized code allowed the

  8. Yukon Government climate change action plan

    International Nuclear Information System (INIS)

    2009-02-01

    This Climate Change Action Plan described the measures that are being taken by the Yukon Government to adapt to, understand, and reduce contributions to climate change. The action plan is the result of input received from more than 100 individuals and organizations and provides clear direction for a strategy that will minimize the negative impacts of climate change and provide economic, social and other environmental benefits through climate change mitigation. The Yukon government has already taken many actions that respond to climate change, such as: developing the Yukon Cold Climate Innovation Centre; supporting the Northern Climate Exchange for public education and outreach; funding community recycling depots and other groups that reduce waste generation, promote public awareness and divert solid waste; and working with provincial and territorial counterparts to enhance national building standards. The main objectives of the climate change actions are to enhance knowledge and understanding of climate change; adapt to climate change; reduce greenhouse gas emissions; and lead Yukon action in response to climate change. tabs., figs.

  9. Climate change and nutrition: creating a climate for nutrition security.

    Science.gov (United States)

    Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A

    2013-12-01

    Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC

  10. An overview of climate change

    International Nuclear Information System (INIS)

    Masson-Delmotte, V.; Paillard, D.

    2004-01-01

    We describe briefly here the main mechanisms and time scales involved in natural and anthropogenic climate variability, based on quantitative paleo-climatic reconstructions from natural archives and climate model simulations: the large glacial-interglacial cycles of the last million years (the Quaternary), lasting typically a hundred thousand years, triggered by changes in the solar radiation received by the Earth due to its position around the Sun; the century-long climatic changes occurring during last glacial period and triggered by recurrent iceberg discharges of the large northern hemisphere ice caps, massive freshwater flux to the north Atlantic, and changes in the ocean heat transport. We show the strong coupling between past climatic changes and global biogeochemical cycles, namely here atmospheric greenhouse gases. We also discuss the decadal climatic fluctuations during the last thousand years, showing an unprecedented warming attributed to the anthropogenic greenhouse gas emissions. We show the range of atmospheric greenhouse concentrations forecasted for the end of the 21. century and the climate model predictions for global temperature changes during the 21. century. We also discuss the possible climatic changes at longer time scales involving the possibility of north Atlantic heat transport collapse (possibility of abrupt climate change), and the duration of the current interglacial period. (author)

  11. Hydrology of the North Klondike River: carbon export, water balance and inter-annual climate influences within a sub-alpine permafrost catchment.

    Science.gov (United States)

    Lapp, Anthony; Clark, Ian; Macumber, Andrew; Patterson, Tim

    2017-10-01

    Arctic and sub-arctic watersheds are undergoing significant changes due to recent climate warming and degrading permafrost, engendering enhanced monitoring of arctic rivers. Smaller catchments provide understanding of discharge, solute flux and groundwater recharge at the process level that contributes to an understanding of how larger arctic watersheds are responding to climate change. The North Klondike River, located in west central Yukon, is a sub-alpine permafrost catchment, which maintains an active hydrological monitoring station with a record of >40 years. In addition to being able to monitor intra-annual variability, this data set allows for more complex analysis of streamflow records. Streamflow data, geochemistry and stable isotope data for 2014 show a groundwater-dominated system, predominantly recharged during periods of snowmelt. Radiocarbon is shown to be a valuable tracer of soil zone recharge processes and carbon sources. Winter groundwater baseflow contributes 20 % of total annual discharge, and accounts for up to 50 % of total river discharge during the spring and summer months. Although total stream discharge remains unchanged, mean annual groundwater baseflow has increased over the 40-year monitoring period. Wavelet analysis reveals a catchment that responds to El Niño and longer solar cycles, as well as climatic shifts such as the Pacific Decadal Oscillation. Dedicated to Professor Peter Fritz on the occasion of his 80th birthday.

  12. Managing the impact of climate change on the hydrology of the Gallocanta Basin, NE-Spain.

    Science.gov (United States)

    Kuhn, Nikolaus J; Baumhauer, Roland; Schütt, Brigitta

    2011-02-01

    The Gallocanta Basin represents an environment highly sensitive to climate change. Over the past 60 years, the Laguna de Gallocanta, an ephemeral lake situated in the closed Gallocanta basin, experienced a sequence of wet and dry phases. The lake and its surrounding wetlands are one of only a few bird sanctuaries left in NE-Spain for grey cranes on their annual migration from Scandinavia to northern Africa. Understanding the impact of climate change on basin hydrology is therefore of utmost importance for the appropriate management of the bird sanctuary. Changes in lake level are only weakly linked to annual rainfall, with reaction times between hours and months after rainfall. Both the total amount of rainfall over the reaction period, as well as individual extreme events, affect lake level. In this study the characteristics and frequencies of daily, event, monthly and bi-monthly rainfall over the past 60 years were analysed. The results revealed a clear link between increased frequencies of high magnitude rainfall and phases of water filling in the Laguna de Gallocanta. In the middle of the 20th century, the absolute amount of rainfall appears to have been more important for lake level, while more recently the frequency of high magnitude rainfall has emerged as the dominant variable. In the Gallocanta Basin, climate change and the distinct and continuing land use change since Spain joined the EU in 1986 have created an environment that is in a more or less constant state of transition. This highlights two challenges faced by hydrologists and climatologists involved in developing water management tools for the Gallocanta Basin in particular, but also other areas with sensitive and rapidly changing environments. Hydrologists have to understand the processes and the spatial and temporal patterns of surface-climate interaction in a watershed to assess the impact of climate change on its hydrology. Climatologists, on the other hand, have to develop climate models

  13. Downscaled Climate Change Projections for the Southern Colorado Plateau: Variability and Implications for Vegetation Changes

    Science.gov (United States)

    Garfin, G. M.; Eischeid, J. K.; Cole, K. L.; Ironside, K.; Cobb, N. S.

    2008-12-01

    most striking aspect of projections of future precipitation is steadily decreasing May-June precipitation during the twenty-first century. Though absolute precipitation during this season is small, declining moisture during the arid pre-monsoon will likely decrease soil moisture, and increase drought stress - consequently, increasing vegetation susceptibility the insect outbreaks and disease. Summer precipitation projections show considerable multi-decade variability, but no substantial trends. Winter precipitation shows little interannual variability and no strong trends. By 2090, annual precipitation is projected to decline by 1-5% across much of the region, with greater declines in the southern part of the domain and increases of 1-5% in the northwestern and northeastern parts of the domain. As part of a National Institute for Climate Change Research project, these projected changes will be input into a USDA-FS vegetation response model, in order to estimate species-specific responses to projected climate changes. We expect increasing temperatures, declining annual precipitation, and extreme declines in pre-monsoon season precipitation to generate significant redistribution of some plant species in the Southern Colorado Plateau.

  14. Using Web GIS "Climate" for Adaptation to Climate Change

    Science.gov (United States)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation

  15. Quantifying the hydrological responses to climate change in an intact forested small watershed in southern China

    Science.gov (United States)

    Zhou, Guo-Yi; Wei, Xiaohua; Wu, Yiping; Liu, Shu-Guang; Huang, Yuhui; Yan, Junhua; Zhang, Deqiang; Zhang, Qianmei; Liu, Juxiu; Meng, Ze; Wang, Chunlin; Chu, Guowei; Liu, Shizhong; Tang, Xu-Li; Liu, Xiaodong

    2011-01-01

    Responses of hydrological processes to climate change are key components in the Intergovernmental Panel for Climate Change (IPCC) assessment. Understanding these responses is critical for developing appropriate mitigation and adaptation strategies for sustainable water resources management and protection of public safety. However, these responses are not well understood and little long-term evidence exists. Herein, we show how climate change, specifically increased air temperature and storm intensity, can affect soil moisture dynamics and hydrological variables based on both long-term observation and model simulations using the Soil and Water Assessment Tool (SWAT) in an intact forested watershed (the Dinghushan Biosphere Reserve) in Southern China. Our results show that, although total annual precipitation changed little from 1950 to 2009, soil moisture decreased significantly. A significant decline was also found in the monthly 7-day low flow from 2000 to 2009. However, the maximum daily streamflow in the wet season and unconfined groundwater tables have significantly increased during the same 10-year period. The significant decreasing trends on soil moisture and low flow variables suggest that the study watershed is moving towards drought-like condition. Our analysis indicates that the intensification of rainfall storms and the increasing number of annual no-rain days were responsible for the increasing chance of both droughts and floods. We conclude that climate change has indeed induced more extreme hydrological events (e.g. droughts and floods) in this watershed and perhaps other areas of Southern China. This study also demonstrated usefulness of our research methodology and its possible applications on quantifying the impacts of climate change on hydrology in any other watersheds where long-term data are available and human disturbance is negligible.

  16. Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities.

    Science.gov (United States)

    Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R

    2017-10-01

    Climate change is altering life at multiple scales, from genes to ecosystems. Predicting the vulnerability of populations to climate change is crucial to mitigate negative impacts. We suggest that regional patterns of spatial and temporal climatic variation scaled to the traits of an organism can predict where and why populations are most vulnerable to climate change. Specifically, historical climatic variation affects the sensitivity and response capacity of populations to climate change by shaping traits and the genetic variation in those traits. Present and future climatic variation can affect both climate change exposure and population responses. We provide seven predictions for how climatic variation might affect the vulnerability of populations to climate change and suggest key directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Plastic-covered agriculture forces the regional climate to change

    Science.gov (United States)

    Yang, D.; Chen, J.; Chen, X.; Cao, X.

    2016-12-01

    The practice of plastic-covered agriculture as a solution to moderate the dilemma of global food shortage, meanwhile, brings great pressure to the local environment. This research was conducted to reveal the impacts of plastic-covered agritulture on regional climate change by experimenting in a plastic greenhouse (PG) dominated area - Weifang district, Shandong province, China. Based on a new plastic greenhouse index (PGI) proposed in this study, we reconstructed the spatial distribution of PG across 1995-2015 in the study area. With that, land surface temperature (LST) dataset combined with surface evapotranspiration, surface reflectance and precipitation data, was applied to the probe of PG's climatic impacts. Results showed that PG, in the study area, has experienced a striking spatial expansion during the past 20 years, and more important, the expansion correlated strongly to the local climate change. It showed that the annual precipitation, in the study area, decreased during these years, which constrasts to a slightly increasing trend of the adjacent districts without PG construction. In addition, resulting from the greenhouse effect, PG area presented a harsher increase of surface temperature compared to the non-PG areas. Our study also telled that the evapotranspiration of PG area has been largely cutted down ascribing to the gas tightness of plastic materials, showing a decline around 40%. This indicates a way that the development of plastic-covered agriculture may contribute to the change of the local climate.

  18. Shaping the Public Dialogue on Climate Change

    Science.gov (United States)

    Spitzer, W.; Anderson, J. C.

    2012-12-01

    In order to broaden the public dialogue about climate change, climate scientists need to leverage the potential of informal science education and recent advances in social and cognitive science. In the US, more than 1,500 informal science venues (science centers, museums, aquariums, zoos, nature centers, national parks, etc.) are visited annually by 61% of the population. Extensive research shows that these visitors are receptive to learning about climate change and trust these institutions as reliable sources. Given that we spend less than 5% of our lifetime in a classroom, and only a fraction of that is focused on science, informal science venues will continue to play a critical role in shaping public understanding of environmental issues in the years ahead. Public understanding of climate change continues to lag far behind the scientific consensus not merely because the public lacks information, but because there is in fact too much complex and contradictory information available. Fortunately, we can now (1) build on careful empirical cognitive and social science research to understand what people already value, believe, and understand; and then (2) design and test strategies for translating complex science so that people can examine evidence, make well-informed inferences, and embrace science-based solutions. The New England Aquarium is leading a national effort to enable informal science education institutions to effectively communicate the impacts of climate change and ocean acidification on marine ecosystems. This NSF-funded partnership, the National Network for Ocean and Climate Change Interpretation (NNOCCI), involves the Association of Zoos and Aquariums, FrameWorks Institute, Woods Hole Oceanographic Institution, Monterey Bay Aquarium, and National Aquarium, with evaluation conducted by the New Knowledge Organization, Pennsylvania State University, and Ohio State University. We believe that skilled interpreters can serve as "communication strategists" by

  19. The impact of climate change on US power grids

    International Nuclear Information System (INIS)

    Lu, N.; Wong, P.C.; Leung, L.Y.; Scott, M.; Taylor, T.; Jiang, W.; Correia, J.

    2009-01-01

    This presentation discussed a new model and system designed to interactively predict the impact of climate change on power grids and its wider implications on national security. Sensitivity curves for daily energy consumption were analyzed. The model was used to investigate the localized and system-wide impact of digital end use technologies; demand changes due to different dynamic pricing models; and the effects of greenhouse gas (GHG) mitigation options. The study showed that annual peak loads and energy consumption will increase in the southwest regions of the United States. Peak load months will include spring and autumn months. The Pacific northwest will experience hotter days in the summer months, and the use of air conditioning systems is expected to increase significantly in the future. Air conditioning loads will require stronger voltage support and more reactive power consumption. Fault-induced delayed voltage recovery phenomena will pose a threat to system voltage stability. It was concluded that new technologies will help to mitigate the adverse impacts caused by climatic changes. tabs., figs

  20. The response of big sagebrush (Artemisia tridentata) to interannual climate variation changes across its range.

    Science.gov (United States)

    Kleinhesselink, Andrew R; Adler, Peter B

    2018-05-01

    Understanding how annual climate variation affects population growth rates across a species' range may help us anticipate the effects of climate change on species distribution and abundance. We predict that populations in warmer or wetter parts of a species' range should respond negatively to periods of above average temperature or precipitation, respectively, whereas populations in colder or drier areas should respond positively to periods of above average temperature or precipitation. To test this, we estimated the population sensitivity of a common shrub species, big sagebrush (Artemisia tridentata), to annual climate variation across its range. Our analysis includes 8,175 observations of year-to-year change in sagebrush cover or production from 131 monitoring sites in western North America. We coupled these observations with seasonal weather data for each site and analyzed the effects of spring through fall temperatures and fall through spring accumulated precipitation on annual changes in sagebrush abundance. Sensitivity to annual temperature variation supported our hypothesis: years with above average temperatures were beneficial to sagebrush in colder locations and detrimental to sagebrush in hotter locations. In contrast, sensitivity to precipitation did not change significantly across the distribution of sagebrush. This pattern of responses suggests that regional abundance of this species may be more limited by temperature than by precipitation. We also found important differences in how the ecologically distinct subspecies of sagebrush responded to the effects of precipitation and temperature. Our model predicts that a short-term temperature increase could produce an increase in sagebrush cover at the cold edge of its range and a decrease in cover at the warm edge of its range. This prediction is qualitatively consistent with predictions from species distribution models for sagebrush based on spatial occurrence data, but it provides new mechanistic

  1. The Inuit and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Fenge, T.

    2001-12-31

    Marked climate change has been forecast for regions in high latitudes by global climate models presented by the Intergovernmental Panel on Climate Change. Observations and reports of significant alterations to the natural environment of Canada's north have been reported by Inuit and other indigenous peoples using their traditional ecological knowledge as a reference. Global climate change appears to be the cause for the changes noted. Many aspects of climate change need to be addressed, such as research, outreach, impacts, adaptations and international negotiations. Based on the strong partnership that had been developed between the Inuit and four federal agencies, three territorial governments and four indigenous people's organizations in support of the Northern Contaminants Program, Inuit are now seeking a partnership with the federal government to address the issues mentioned above concerning climate change. refs., 1 tab.

  2. Adapting to climate change

    DEFF Research Database (Denmark)

    Arndt, Channing; Strzepek, Kenneth; Tarp, Finn

    2011-01-01

    Mozambique, like many African countries, is already highly susceptible to climate variability and extreme weather events. Climate change threatens to heighten this vulnerability. In order to evaluate potential impacts and adaptation options for Mozambique, we develop an integrated modeling...... framework that translates atmospheric changes from general circulation model projections into biophysical outcomes via detailed hydrologic, crop, hydropower and infrastructure models. These sector models simulate a historical baseline and four extreme climate change scenarios. Sector results are then passed...... down to a dynamic computable general equilibrium model, which is used to estimate economy-wide impacts on national welfare, as well as the total cost of damages caused by climate change. Potential damages without changes in policy are significant; our discounted estimates range from US2.3 to US2.3toUS7...

  3. Drivers and uncertainties of forecasted range shifts for warm-water fishes under climate and land cover change

    Science.gov (United States)

    Bouska, Kristen; Whitledge, Gregory W.; Lant, Christopher; Schoof, Justin

    2018-01-01

    Land cover is an important determinant of aquatic habitat and is projected to shift with climate changes, yet climate-driven land cover changes are rarely factored into climate assessments. To quantify impacts and uncertainty of coupled climate and land cover change on warm-water fish species’ distributions, we used an ensemble model approach to project distributions of 14 species. For each species, current range projections were compared to 27 scenario-based projections and aggregated to visualize uncertainty. Multiple regression and model selection techniques were used to identify drivers of range change. Novel, or no-analogue, climates were assessed to evaluate transferability of models. Changes in total probability of occurrence ranged widely across species, from a 63% increase to a 65% decrease. Distributional gains and losses were largely driven by temperature and flow variables and underscore the importance of habitat heterogeneity and connectivity to facilitate adaptation to changing conditions. Finally, novel climate conditions were driven by mean annual maximum temperature, which stresses the importance of understanding the role of temperature on fish physiology and the role of temperature-mitigating management practices.

  4. Implications of climate change on hydrological extremes in the Blue Nile basin: A review

    Directory of Open Access Journals (Sweden)

    Meron Teferi Taye

    2015-09-01

    New hydrological insights: The review illustrates some discrepancy among research outputs. For the historical context, this is partially related to the period and length of data analyzed and the failure to consider the influence of multi-decadal oscillations. Consequently, we show that annual cycle of Blue Nile flow has not changed in the past five decades. For the future context, discrepancy is partially attributable to the various and differing climate and hydrological models included and the downscaling techniques applied. The need to prudently consider sources of uncertainty and potential causes of bias in historical trend and climate change impact research is highlighted.

  5. Impact of climate change on operations and planning of Hydro-Quebec's generation system

    International Nuclear Information System (INIS)

    Raymond, M.P.; Houle, B.; Robert, S.

    2008-01-01

    Hydraulic resources currently account for more than 95 per cent of Hydro-Quebec's generation capacity. Hydro-Quebec also plans to purchase more wind power in the future. However, the utility wind and hydroelectric resources will be affected by climatic change in the future. This paper outlined research needed by hydroelectric and water resource managers in order to accurately determine the impacts of climatic change. Parameters included changes in annual and seasonal distribution as well as changes in the variability of natural inflows. The research will be used to determine the configuration of new projects as well as the refurbishment and replacement of existing infrastructure. Load profiles for the future indicate that electricity use will change, with less heating needed in winter, and more air conditioning required in summer months. The Delta method was used to determine impacts of future inflows and hydrological regimes. A case study of climate change impacts and management strategies for the Outardes River system up to the year 2050 was presented. The study showed that higher inflows are expected to produce more energy. Maintenance planning and flood control techniques were also discussed. The study showed that the effects of climate change on each of Hydro-Quebec's systems is expected to follow a similar pattern to the Outardes system. tabs., figs

  6. CLIMATIC SIGNALS FROM INTRA-ANNUAL DENSITY FLUCTUATION FREQUENCY IN MEDITERRANEAN PINES AT A REGIONAL SCALE

    Directory of Open Access Journals (Sweden)

    Enrica eZalloni

    2016-05-01

    Full Text Available Tree rings provide information about the climatic conditions during the growing season by recording them in different anatomical features, such as Intra-Annual Density Fluctuations (IADFs. IADFs are intra-annual changes of wood density appearing as latewood-like cells within earlywood, or earlywood-like cells within latewood. The occurrence of IADFs is dependent on the age and size of the tree, and it is triggered by climatic drivers. The variations of IADF frequency of different species and their dependence on climate across a wide geographical range have still to be explored. The objective of this study is to investigate the effect of age, tree-ring width and climate on IADF formation and frequency at a regional scale across the Mediterranean Basin in Pinus halepensis Mill., Pinus pinaster Ait. and Pinus pinea L. The analyzed tree-ring network was composed of P. pinea trees growing at 11 sites (2 in Italy, 4 in Spain and 4 in Portugal, P. pinaster from 19 sites (2 in Italy, 13 in Spain and 4 in Portugal, and P. halepensis from 38 sites in Spain. The correlations between IADF frequency and monthly minimum, mean and maximum temperatures, as well as between IADF frequency and total precipitation, were analyzed. A significant negative relationship between IADF frequency and tree-ring age was found for the three Mediterranean pines. Moreover, IADFs were more frequent in wider rings than in narrower ones, although the widest rings showed a reduced IADF frequency. Wet conditions during late summer/early autumn triggered the formation of IADFs in the three species. Our results suggest the existence of a common climatic driver for the formation of IADFs in Mediterranean pines, highlighting the potential use of IADF frequency as a proxy for climate reconstructions with geographical resolution.

  7. Climatic Signals from Intra-annual Density Fluctuation Frequency in Mediterranean Pines at a Regional Scale

    Science.gov (United States)

    Zalloni, Enrica; de Luis, Martin; Campelo, Filipe; Novak, Klemen; De Micco, Veronica; Di Filippo, Alfredo; Vieira, Joana; Nabais, Cristina; Rozas, Vicente; Battipaglia, Giovanna

    2016-01-01

    Tree rings provide information about the climatic conditions during the growing season by recording them in different anatomical features, such as intra-annual density fluctuations (IADFs). IADFs are intra-annual changes of wood density appearing as latewood-like cells within earlywood, or earlywood-like cells within latewood. The occurrence of IADFs is dependent on the age and size of the tree, and it is triggered by climatic drivers. The variations of IADF frequency of different species and their dependence on climate across a wide geographical range have still to be explored. The objective of this study is to investigate the effect of age, tree-ring width and climate on IADF formation and frequency at a regional scale across the Mediterranean Basin in Pinus halepensis Mill., Pinus pinaster Ait., and Pinus pinea L. The analyzed tree-ring network was composed of P. pinea trees growing at 10 sites (2 in Italy, 4 in Spain, and 4 in Portugal), P. pinaster from 19 sites (2 in Italy, 13 in Spain, and 4 in Portugal), and P. halepensis from 38 sites in Spain. The correlations between IADF frequency and monthly minimum, mean and maximum temperatures, as well as between IADF frequency and total precipitation, were analyzed. A significant negative relationship between IADF frequency and tree-ring age was found for the three Mediterranean pines. Moreover, IADFs were more frequent in wider rings than in narrower ones, although the widest rings showed a reduced IADF frequency. Wet conditions during late summer/early autumn triggered the formation of IADFs in the three species. Our results suggest the existence of a common climatic driver for the formation of IADFs in Mediterranean pines, highlighting the potential use of IADF frequency as a proxy for climate reconstructions with geographical resolution. PMID:27200052

  8. Climate change research - Danish contributions

    International Nuclear Information System (INIS)

    Joergensen, A.M.K.; Fenger, J.; Halsnaes, K.

    2001-01-01

    The book describes a series of Danish scientific and technical studies. They broadly reflect the fields and disciplines embraced by assessments of the Intergovernmental Panel on Climate Change (IPCC), but with an emphasis on natural sciences (i.e. climate investigations and impact studies). After the general introduction, that presents the issue and gives a summary of the content of the book, the chapters are organised in four parts: 1. The Climate System and Climate Variations. 2. Climate Change Scenarios. 3. Impacts of Climate Change. 4. Policy Aspects. Each chapter is indexed separately. (LN)

  9. Climate induced changes in biome distribution, NPP and hydrology for potential vegetation of the Upper Midwest U.S

    Science.gov (United States)

    Motew, M.; Kucharik, C. J.

    2011-12-01

    While much attention is focused on future impacts of climate change on ecosystems, much can be learned about the previous interactions of ecosystems with recent climate change. In this study, we investigated the impacts of climate change on potential vegetation distributions (i.e. grasses, trees, and shrubs) and carbon and water cycling across the Upper Midwest USA from 1948-2007 using the Agro-IBIS dynamic vegetation model. We drove the model using a historical, gridded daily climate data set (temperature, precipitation, humidity, solar radiation, and wind speed) at a spatial resolution of 5 min x 5 min. While trends in climate variables exhibited heterogeneous spatial patterns over the study period, the overall impact of climate change on vegetation productivity was positive. We observed total increases in net primary productivity (NPP) ranging from 20-150 g C m-2, based on linear regression analysis. We determined that increased summer relative humidity, increased annual precipitation and decreased mean maximum summer temperatures were key variables contributing to these positive trends, likely through a reduction in soil moisture stress (e.g., increased available water) and heat stress. Model simulations also illustrated an increase in annual drainage throughout the region of 20-140 mm yr-1, driven by substantial increases in annual precipitation. Evapotranspiration had a highly variable spatial trend over the 60-year period, with total change over the study period ranging between -100 and +100 mm yr-1. We also analyzed potential changes in plant functional type (PFT) distributions at the biome level, but hypothesize that the model may be unable to adequately capture competitive interactions among PFTs as well as the dynamics between upper and lower canopies consisting of trees, grasses and shrubs. An analysis of the bioclimatic envelopes for PFTs common to the region revealed no significant change to the boreal conifer tree climatic domain over the study

  10. Climate engineering research : A precautionary response to climate change?

    NARCIS (Netherlands)

    Reynolds, J.L.; Fleurke, F.M.

    2013-01-01

    In the face of dire forecasts for anthropogenic climate change, climate engineering is increasingly discussed as a possible additional set of responses to reduce climate change’s threat. These proposals have been controversial, in part because they – like climate change itself – pose uncertain risks

  11. Climate change, conflict and health.

    Science.gov (United States)

    Bowles, Devin C; Butler, Colin D; Morisetti, Neil

    2015-10-01

    Future climate change is predicted to diminish essential natural resource availability in many regions and perhaps globally. The resulting scarcity of water, food and livelihoods could lead to increasingly desperate populations that challenge governments, enhancing the risk of intra- and interstate conflict. Defence establishments and some political scientists view climate change as a potential threat to peace. While the medical literature increasingly recognises climate change as a fundamental health risk, the dimension of climate change-associated conflict has so far received little attention, despite its profound health implications. Many analysts link climate change with a heightened risk of conflict via causal pathways which involve diminishing or changing resource availability. Plausible consequences include: increased frequency of civil conflict in developing countries; terrorism, asymmetric warfare, state failure; and major regional conflicts. The medical understanding of these threats is inadequate, given the scale of health implications. The medical and public health communities have often been reluctant to interpret conflict as a health issue. However, at times, medical workers have proven powerful and effective peace advocates, most notably with regard to nuclear disarmament. The public is more motivated to mitigate climate change when it is framed as a health issue. Improved medical understanding of the association between climate change and conflict could strengthen mitigation efforts and increase cooperation to cope with the climate change that is now inevitable. © The Royal Society of Medicine.

  12. Systematic losses of outdoor production from heat stress and climate change

    Science.gov (United States)

    Buzan, J. R.; Huber, M.

    2017-12-01

    Heat stress impacts humans today with heat waves, worker reductions, and health issues. Here we show novel results in labor productivity for outdoor work due to global warming. We use the HumanIndexMod to calculate 4x daily values of Simplified Wet Bulb Globe Temperature index (sWBGT) from the CMIP5 archive normalized by global mean surface temperature changes. Previous work shows that scaling of sWBGT is robust across the CMIP5 archive. We calculate total annual outdoor labor capacity from our scaled sWBGT results. Our results show modern day losses due to heat stress impacting outdoor work for low latitudes (and parts of Eastern China and the Southern United States). At 2°C of climate change, up to 20% losses to total capacity impact Midwestern United States, while the Southern United States suffers >20% losses. Western Coastal Africa suffers annual losses at >80%, along with the Amazon Basin and the greater South East Asia region. India suffers losses >50% annually. At +5°C, the estimated mean global change by 2100, the Equatorial region (Northern Australia and Northern Bolivia to Western Coastal Africa and Southern India) has complete cessation of annual outdoor work. The Midwest United States suffers losses up to 30%, and the Gulf of Mexico suffers losses >50%. Our results imply that small changes in global mean surface temperature (2°C) will lead to crippling losses to outdoor work annually, and ≥5°C losses will lead to cessation of labor for more than half the world's population.

  13. Co-evolution of hydrological components under climate change scenarios in the Mediterranean area

    Energy Technology Data Exchange (ETDEWEB)

    Viola, F., E-mail: francesco.viola77@unipa.it; Francipane, A.; Caracciolo, D.; Pumo, D.; La Loggia, G.; Noto, L.V.

    2016-02-15

    ABSTRACT: The Mediterranean area is historically characterized by high human pressure on water resources. Today, while climate is projected to be modified in the future, through precipitation decrease and temperature increase, that jointly and non-linearly may affect runoff, concerns about water availability are increasing. For these reasons, quantitative assessment of future modifications in the mean annual water availability are important; likewise, the description of the future interannual variability of some hydrological components such as runoff and evapotranspiration are highly wished for water management and ecosystems dynamics analyses. This study investigates at basin spatial scale future runoff and evapotranspiration, exploring their probability density functions and their interdependence as functions of climatic changes. In order to do that, a parsimonious conceptual lumped model is here used. The model is forced by different future climate scenarios, generated through a weather generator based on a stochastic downscaling of an ensemble of General Circulation Models (GCMs) realizations. The use of the adopted hydrological model, under reliable stochastic future climate scenarios, allows to project future values of evapotranspiration and runoff in a probabilistic framework and, at the same time, the evaluation of their bivariate frequency distributions for changes through the Multivariate Kernel Density Estimation method. As a case study, a benchmark Mediterranean watershed has been proposed (Imera Meridionale, Italy). Results suggest a radical shift and shape modification of the annual runoff and evapotranspiration probability density functions. Possible implications and impacts on water resources management are here addressed and discussed. - Highlights: • This study investigates at basin spatial scale future runoff and evapotranspiration. • A simple conceptual hydrological model and GCMs realizations have been coupled. • Radical shift and shape

  14. Co-evolution of hydrological components under climate change scenarios in the Mediterranean area

    International Nuclear Information System (INIS)

    Viola, F.; Francipane, A.; Caracciolo, D.; Pumo, D.; La Loggia, G.; Noto, L.V.

    2016-01-01

    ABSTRACT: The Mediterranean area is historically characterized by high human pressure on water resources. Today, while climate is projected to be modified in the future, through precipitation decrease and temperature increase, that jointly and non-linearly may affect runoff, concerns about water availability are increasing. For these reasons, quantitative assessment of future modifications in the mean annual water availability are important; likewise, the description of the future interannual variability of some hydrological components such as runoff and evapotranspiration are highly wished for water management and ecosystems dynamics analyses. This study investigates at basin spatial scale future runoff and evapotranspiration, exploring their probability density functions and their interdependence as functions of climatic changes. In order to do that, a parsimonious conceptual lumped model is here used. The model is forced by different future climate scenarios, generated through a weather generator based on a stochastic downscaling of an ensemble of General Circulation Models (GCMs) realizations. The use of the adopted hydrological model, under reliable stochastic future climate scenarios, allows to project future values of evapotranspiration and runoff in a probabilistic framework and, at the same time, the evaluation of their bivariate frequency distributions for changes through the Multivariate Kernel Density Estimation method. As a case study, a benchmark Mediterranean watershed has been proposed (Imera Meridionale, Italy). Results suggest a radical shift and shape modification of the annual runoff and evapotranspiration probability density functions. Possible implications and impacts on water resources management are here addressed and discussed. - Highlights: • This study investigates at basin spatial scale future runoff and evapotranspiration. • A simple conceptual hydrological model and GCMs realizations have been coupled. • Radical shift and shape

  15. Forestry Canada's perspectives on climate change

    International Nuclear Information System (INIS)

    Hall, J.P.; Carlson, L.W.

    1990-01-01

    The impacts of climatic change on Canada's forestry sector are discussed, in the context of major research priorities relating to forecasting climate, forecasting forest responses, monitoring changes, mitigating effects, and understanding the forest carbon balance. There are five major concerns that affect policy decisions: effects of climatic change on forests; adaptation to climate change; impacts of changing crops on forestry; changing forestry values in changing sociological settings; and international implications of the changing climate. A scientific program to respond to climate change issues is required, and should include the following concentrations of research effort. Planning requires projections of likely future climates, and efforts should concern relations between pre-historic climates and forest ecosystems and integrating data into predictive models. Forecasting of response of forests should include tree physiology, factors controlling reforestation, variations in forest trees, effects of pollutants, damage to forests, and forest decline

  16. Climate Change Indicators

    Science.gov (United States)

    Presents information, charts and graphs showing measured climate changes across 40 indicators related to greenhouse gases, weather and climate, oceans, snow and ice, heath and society, and ecosystems.

  17. Adapting to climate variability and change: experiences from cereal-based farming in the central rift and Kobo Valleys, Ethiopia.

    Science.gov (United States)

    Kassie, Belay Tseganeh; Hengsdijk, Huib; Rötter, Reimund; Kahiluoto, Helena; Asseng, Senthold; Van Ittersum, Martin

    2013-11-01

    Small-holder farmers in Ethiopia are facing several climate related hazards, in particular highly variable rainfall with severe droughts which can have devastating effects on their livelihoods. Projected changes in climate are expected to aggravate the existing challenges. This study examines farmer perceptions on current climate variability and long-term changes, current adaptive strategies, and potential barriers for successful further adaptation in two case study regions-the Central Rift Valley (CRV) and Kobo Valley. The study was based on a household questionnaire, interviews with key stakeholders, and focus group discussions. The result revealed that about 99 % of the respondents at the CRV and 96 % at the Kobo Valley perceived an increase in temperature and 94 % at CRV and 91 % at the Kobo Valley perceived a decrease in rainfall over the last 20-30 years. Inter-annual and intraseasonal rainfall variability also has increased according to the farmers. The observed climate data (1977-2009) also showed an increasing trend in temperature and high inter-annual and intra-seasonal rainfall variability. In contrast to farmers' perceptions of a decrease in rainfall totals, observed rainfall data showed no statistically significant decline. The interaction among various bio-physical and socio-economic factors, changes in rainfall intensity and reduced water available to crops due to increased hot spells, may have influenced the perception of farmers with respect to rainfall trends. In recent decades, farmers in both the CRV and Kobo have changed farming practices to adapt to perceived climate change and variability, for example, through crop and variety choice, adjustment of cropping calendar, and in situ moisture conservation. These relatively low-cost changes in farm practices were within the limited adaptation capacity of farmers, which may be insufficient to deal with the impacts of future climate change. Anticipated climate change is expected to impose new

  18. Adapting to Climate Variability and Change: Experiences from Cereal-Based Farming in the Central Rift and Kobo Valleys, Ethiopia

    Science.gov (United States)

    Kassie, Belay Tseganeh; Hengsdijk, Huib; Rötter, Reimund; Kahiluoto, Helena; Asseng, Senthold; Van Ittersum, Martin

    2013-11-01

    Small-holder farmers in Ethiopia are facing several climate related hazards, in particular highly variable rainfall with severe droughts which can have devastating effects on their livelihoods. Projected changes in climate are expected to aggravate the existing challenges. This study examines farmer perceptions on current climate variability and long-term changes, current adaptive strategies, and potential barriers for successful further adaptation in two case study regions—the Central Rift Valley (CRV) and Kobo Valley. The study was based on a household questionnaire, interviews with key stakeholders, and focus group discussions. The result revealed that about 99 % of the respondents at the CRV and 96 % at the Kobo Valley perceived an increase in temperature and 94 % at CRV and 91 % at the Kobo Valley perceived a decrease in rainfall over the last 20-30 years. Inter-annual and intraseasonal rainfall variability also has increased according to the farmers. The observed climate data (1977-2009) also showed an increasing trend in temperature and high inter-annual and intra-seasonal rainfall variability. In contrast to farmers’ perceptions of a decrease in rainfall totals, observed rainfall data showed no statistically significant decline. The interaction among various bio-physical and socio-economic factors, changes in rainfall intensity and reduced water available to crops due to increased hot spells, may have influenced the perception of farmers with respect to rainfall trends. In recent decades, farmers in both the CRV and Kobo have changed farming practices to adapt to perceived climate change and variability, for example, through crop and variety choice, adjustment of cropping calendar, and in situ moisture conservation. These relatively low-cost changes in farm practices were within the limited adaptation capacity of farmers, which may be insufficient to deal with the impacts of future climate change. Anticipated climate change is expected to impose new

  19. Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan

    OpenAIRE

    A. K. Basheer; H. Lu; A. Omer; A. B. Ali; A. M. S. Abdelgader

    2016-01-01

    The fate of seasonal river ecosystem habitats under climate change essentially depends on the changes in annual recharge of the river, which are related to alterations in precipitation and evaporation over the river basin. Therefore, the change in climate conditions is expected to significantly affect hydrological and ecological components, particularly in fragmented ecosystems. This study aims to assess the impacts of climate change on the streamflow in the Dinder River bas...

  20. Climate Extreme Events over Northern Eurasia in Changing Climate

    Science.gov (United States)

    Bulygina, O.; Korshunova, N. N.; Razuvaev, V. N.; Groisman, P. Y.

    2014-12-01

    During the period of widespread instrumental observations in Northern Eurasia, the annual surface air temperature has increased by 1.5°C. Close to the north in the Arctic Ocean, the late summer sea ice extent has decreased by 40% providing a near-infinite source of water vapor for the dry Arctic atmosphere in the early cold season months. The contemporary sea ice changes are especially visible in the Eastern Hemisphere All these factors affect the change extreme events. Daily and sub-daily data of 940 stations to analyze variations in the space time distribution of extreme temperatures, precipitation, and wind over Russia were used. Changing in number of days with thaw over Russia was described. The total seasonal numbers of days, when daily surface air temperatures (wind, precipitation) were found to be above (below) selected thresholds, were used as indices of climate extremes. Changing in difference between maximum and minimum temperature (DTR) may produce a variety of effects on biological systems. All values falling within the intervals ranged from the lowest percentile to the 5th percentile and from the 95th percentile to the highest percentile for the time period of interest were considered as daily extremes. The number of days, N, when daily temperatures (wind, precipitation, DTR) were within the above mentioned intervals, was determined for the seasons of each year. Linear trends in the number of days were calculated for each station and for quasi-homogeneous climatic regions. Regional analysis of extreme events was carried out using quasi-homogeneous climatic regions. Maps (climatology, trends) are presented mostly for visualization purposes. Differences in regional characteristics of extreme events are accounted for over a large extent of the Russian territory and variety of its physical and geographical conditions. The number of days with maximum temperatures higher than the 95% percentile has increased in most of Russia and decreased in Siberia in

  1. When climate science became climate politics: British media representations of climate change in 1988.

    Science.gov (United States)

    Jaspal, Rusi; Nerlich, Brigitte

    2014-02-01

    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  2. The spatial pattern of leaf phenology and its response to climate change in China.

    Science.gov (United States)

    Dai, Junhu; Wang, Huanjiong; Ge, Quansheng

    2014-05-01

    Leaf phenology has been shown to be one of the most important indicators of the effects of climate change on biological systems. Few such studies have, however, been published detailing the relationship between phenology and climate change in Asian contexts. With the aim of quantifying species' phenological responsiveness to temperature and deepening understandings of spatial patterns of phenological and climate change in China, this study analyzes the first leaf date (FLD) and the leaf coloring date (LCD) from datasets of four woody plant species, Robinia pseudoacacia, Ulmus pumila, Salix babylonica, and Melia azedarach, collected from 1963 to 2009 at 47 Chinese Phenological Observation Network (CPON) stations spread across China (from 21° to 50° N). The results of this study show that changes in temperatures in the range of 39-43 days preceding the date of FLD of these plants affected annual variations in FLD, while annual variations in temperature in the range of 71-85 days preceding LCD of these plants affected the date of LCD. Average temperature sensitivity of FLD and LCD for these plants was -3.93 to 3.30 days °C(-1) and 2.11 to 4.43 days °C⁻¹, respectively. Temperature sensitivity of FLD was found to be stronger at lower latitudes or altitude as well as in more continental climates, while the response of LCD showed no consistent pattern. Within the context of significant warming across China during the study period, FLD was found to have advanced by 5.44 days from 1960 to 2009; over the same period, LCD was found to have been delayed by 4.56 days. These findings indicate that the length of the growing season of the four plant species studied was extended by a total of 10.00 days from 1960 to 2009. They also indicate that phenological response to climate is highly heterogeneous spatially.

  3. Uncertainties in Integrated Climate Change Impact Assessments by Sub-setting GCMs Based on Annual as well as Crop Growing Period under Rice Based Farming System of Indo-Gangetic Plains of India

    Science.gov (United States)

    Pillai, S. N.; Singh, H.; Panwar, A. S.; Meena, M. S.; Singh, S. V.; Singh, B.; Paudel, G. P.; Baigorria, G. A.; Ruane, A. C.; McDermid, S.; Boote, K. J.; Porter, C.; Valdivia, R. O.

    2016-12-01

    Integrated assessment of climate change impact on agricultural productivity is a challenge to the scientific community due to uncertainties of input data, particularly the climate, soil, crop calibration and socio-economic dataset. However, the uncertainty due to selection of GCMs is the major source due to complex underlying processes involved in initial as well as the boundary conditions dealt in solving the air-sea interactions. Under Agricultural Modeling Intercomparison and Improvement Project (AgMIP), the Indo-Gangetic Plains Regional Research Team investigated the uncertainties caused due to selection of GCMs through sub-setting based on annual as well as crop-growth period of rice-wheat systems in AgMIP Integrated Assessment methodology. The AgMIP Phase II protocols were used to study the linking of climate-crop-economic models for two study sites Meerut and Karnal to analyse the sensitivity of current production systems to climate change. Climate Change Projections were made using 29 CMIP5 GCMs under RCP4.5 and RCP 8.5 during mid-century period (2040-2069). Two crop models (APSIM & DSSAT) were used. TOA-MD economic model was used for integrated assessment. Based on RAPs (Representative Agricultural Pathways), some of the parameters, which are not possible to get through modeling, derived from literature and interactions with stakeholders incorporated into the TOA-MD model for integrated assessment.

  4. Climate change and managing water crisis: Pakistan's perspective.

    Science.gov (United States)

    Hussain, Mumtaz; Mumtaz, Saniea

    2014-01-01

    Climate change is a global phenomenon manifested mainly through global warming. The International Panel on Climate Change (IPCC) has reported its negative consequences on natural resources, anthropogenic activities, and natural disasters. The El Nino and La Nina have affected hydrologic regimes and ecosystems. It has been observed that the average temperature in 1995 was 0.4°C higher than that in 1895. By the end of the 21st century, 10% of the area of Bangladesh is likely to be submerged by the sea. Most of the islands of Pacific Ocean will disappear. A major part of Maldives will be submerged. The sea level is expected to rise by 30-150 cm. Extreme events such as floods, cyclones, tsunamis, and droughts have become regular phenomena in many parts of the world. Other adverse impacts are proliferation of water-borne diseases, sea water intrusion, salinization of coastal areas, loss of biodiversity, eco-degradation of watersheds and global glacial decline, and haphazard snow melts/thaws. In turn, these factors have serious effect on water resources. Pakistan is confronting similar climate change. Meteorological data reveal that winter temperatures are rising and summers are getting cooler. Temperature is expected to increase by 0.9°C and 1.5°C by years 2020 and 2050, respectively. Water resources in Pakistan are affected by climate change as it impacts the behavior of glaciers, rainfall patterns, greenhouse gas emissions, recurrence of extreme events such as floods and droughts. Severe floods have occurred in the years 1950, 1956, 1957, 1973, 1976, 1978, 1988, 1992, 2010, 2011, and 2012. Pakistan has faced the worst-ever droughts during the period from 1998 to 2004. Pakistan has surface water potential of 140 million acre feet (MAF) and underground water reserve of 56 MAF. It is one of the most water-stressed countries in the world. The per capita annual availability of water has reduced from 5140 m3 in 1950 to 1000 m3 now. It is fast approaching towards water

  5. Our knowledge on climate change

    International Nuclear Information System (INIS)

    Turkenburg, W.C.; Van Wijk, A.J.M.

    1991-01-01

    A workshop was organised to evaluate and discuss the report 'Scientific Assessment of Climate Change (1990)' of the Intergovernmental Panel on Climate Change (IPCC). Thirty prominent Dutch experts in the field attended the workshop. The introductions and discussions held on our knowledge of climatic change as a result of the growth of the greenhouse effect caused by the emission of greenhouse gases from human actions are presented. It is concluded that the IPCC-report shows in a clear and balanced way the certainties and uncertainties in our knowledge of climate change. There is a large chance that the earth's climate will change considerably, if the policy remains unamended. 15 figs., 2 apps

  6. Annual Change Report 2006/2007

    International Nuclear Information System (INIS)

    2007-01-01

    As part of continuing compliance, the U.S. Environmental Protection Agency (EPA) requires the U.S. Department of Energy (DOE) to provide information on any change in conditions or activities pertaining to the disposal system since the most recent compliance application. This requirement is identified in Title 40 Code of Federal Regulations (CFR), Section 194.4(b)(4), which states: 'No later than six months after the administrator issues a certification, and at least annually thereafter, the Department shall report to the Administrator, in writing, any changes in conditions or activities pertaining to the disposal system that were not required to be reported by paragraph (b)(3) of this section and that differ from information contained in the most recent compliance application.' In meeting the requirement, the DOE provides an annual report each November of all applicable changes under the above requirement. This annual report informs the EPA of changes to information in the most recent compliance recertification (the 2004 Compliance Recertification). Significant planned changes must be reported to the EPA prior to implementation by the DOE. In addition, Title 40 CFR, Section 194.4(b)(3) requires that significant unplanned changes be reported to the EPA within 24 hours or ten days, depending on the severity of the activity or condition. To date, there have been no significant unplanned changes to the certification basis. Planned changes have been submitted on an individual basis. All other changes are reported annually. Changes in activities or conditions are reviewed to determine if 40 CFR Section 194.4(b)(3) reporting is necessary. As indicated above, no significant unplanned changes were identified for the time period covered by this report. The enclosed tables list those items identified for reporting under 40 CFR Section 194.4(b)(4). The majority of the items described in this report are inspections, reports, and modifications to written plans and procedures for

  7. Recent changes in seasonal variations of climate within the range of northern caribou populations

    Directory of Open Access Journals (Sweden)

    Paul H. Whitfield

    2005-05-01

    Full Text Available The Arctic is one region where it is expected that the impacts of a globally changing climate will be readily observed. We present results that indicate that climate derivatives of potential significance to caribou changed during the past 50 years. Many temperature derivatives reflect the increasing overall temperature in the Arctic such as decreases in the number of days with low temperatures, increases in the number of days with thaw, and days with extremely warm temperatures. Other derivatives reflect changes in the precipitation regime such as days with heavy precipitation and number of days when rain fell on snow. Our results indicate that specific caribou herds from across the Arctic were subjected to different variations of these derivatives in different seasons in the recent past. Examination of temperature and precipitation at finer time-steps than annual or monthly means, shows that climatic variations in the region are neither consistent through the seasons nor across space. Decadal changes in seasonal patterns of temperature and precipitation are shown for selected herds. A process for assessing caribou-focused climate derivatives is proposed.

  8. Comparison of hydrological simulations of climate change using perturbation of observations and distribution-based scaling

    DEFF Research Database (Denmark)

    Van Roosmalen, Lieke Petronella G; Sonnenborg, Torben; Jensen, Karsten Høgh

    2011-01-01

    of the HIRHAM4 regional climate model (RCM). The aim of this study was to determine whether the choice of bias-correction method, applied to the RCM data, aff ected the projected hydrological changes. One method consisted of perturbation of observed data (POD) using climate change signals derived from the RCM......Projected climate change eff ects on groundwater and stream discharges were investigated through simulations with a distributed, physically based, surface water–groundwater model. Input to the hydrological model includes precipitation, reference evapotranspiration, and temperature data...... the simulations using both methods, only small differences between the projected changes in hydrological variables for the scenario period were found. Mean annual recharge increased by 15% for the DBS method and 12% for POD, and drain flow increased by 24 and 19%, respectively, while the increases in base flow...

  9. Climate change: biological and human aspects

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Cowie

    2007-07-15

    The textbook provides a broad review of past, present and likely future climate change from the viewpoints of biology, ecology and human ecology. Contents are: 1. An introduction to climate change; 2. Principal indicators of past climates; 3. Past climate change; 4. The Oligocene to the Quaternary: climate and biology; 5. Present climate and biological change; 6. Current warming and likely future impacts; 7. Human ecology of climate change; 8. Sustainability and policy; Appendix 1. Glossary and acronyms; Appendix 2. Bio-geological timescale; Appendix 3. Calculations of energy demand/supply, and orders of magnitude; Index. 69 figs.

  10. Our Changing Climate: A Brand New Way to Study Climate Science

    Science.gov (United States)

    Brey, J. A.; Kauffman, C.; Geer, I.; Nugnes, K. A.; Mills, E. W.

    2014-12-01

    Earth's climate is inherently variable, but is currently changing at rates unprecedented in recent Earth history. Human activity plays a major role in this change and is projected to do so well into the future. This is the stance taken in Our Changing Climate, the brand new climate science ebook from the American Meteorological Society (AMS). Our Changing Climate investigates Earth's climate system, explores humans' impact on it, and identifies actions needed in response to climate change. Released in August 2014, Our Changing Climate is the result of a year's worth of intensive research and writing, incorporating the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the Third National Climate Assessment. To encourage additional exploration of climate science information, scientific literature, from which chapter content was derived, is cited at the conclusion of each chapter. In addition, Topic In Depth sections appear throughout each chapter and lead to more extensive information related to various topics. For example, a Topic In Depth in Chapter 11 describes the effect of climate extremes on ranching enterprises in Nebraska. Climate science is multi-disciplinary and therefore Our Changing Climate covers a breadth of topics. From understanding basic statistics and geospatial tools used to investigate Earth's climate system to examining the psychological and financial reasons behind climate change denial, the AMS believes that a multi-disciplinary approach is the most effective way to increase climate literacy. Our Changing Climate is part of the AMS Climate Studies course which is intended for undergraduate-level students. Other course materials include an eInvestigations Manual and access to the RealTime Climate Portal, both of which provide weekly activities corresponding to that week's chapter content. The RealTime Climate Portal also has links to climate data as well as societal interactions and climate policy

  11. Climate change adaptation for the US National Wildlife Refuge System

    Science.gov (United States)

    Griffith, Brad; Scott, J. Michael; Adamcik, Robert S.; Ashe, Daniel; Czech, Brian; Fischman, Robert; Gonzalez, Patrick; Lawler, Joshua J.; McGuire, A. David; Pidgorna, Anna

    2009-01-01

    Since its establishment in 1903, the National Wildlife Refuge System (NWRS) has grown to 635 units and 37 Wetland Management Districts in the United States and its territories. These units provide the seasonal habitats necessary for migratory waterfowl and other species to complete their annual life cycles. Habitat conversion and fragmentation, invasive species, pollution, and competition for water have stressed refuges for decades, but the interaction of climate change with these stressors presents the most recent, pervasive, and complex conservation challenge to the NWRS. Geographic isolation and small unit size compound the challenges of climate change, but a combined emphasis on species that refuges were established to conserve and on maintaining biological integrity, diversity, and environmental health provides the NWRS with substantial latitude to respond. Individual symptoms of climate change can be addressed at the refuge level, but the strategic response requires system-wide planning. A dynamic vision of the NWRS in a changing climate, an explicit national strategic plan to implement that vision, and an assessment of representation, redundancy, size, and total number of units in relation to conservation targets are the first steps toward adaptation. This adaptation must begin immediately and be built on more closely integrated research and management. Rigorous projections of possible futures are required to facilitate adaptation to change. Furthermore, the effective conservation footprint of the NWRS must be increased through land acquisition, creative partnerships, and educational programs in order for the NWRS to meet its legal mandate to maintain the biological integrity, diversity, and environmental health of the system and the species and ecosystems that it supports.

  12. Impacts of northern climate changes on Arctic engineering practice

    International Nuclear Information System (INIS)

    Esch, D.C.

    1993-01-01

    Potential impacts of climate changes on engineering design practices in the Arctic are discussed with reference to permafrost engineering aspects, hydrology, and coastal and sea ice processes. Permafrost generally remains thermally stable only when mean annual air temperature remains 2-4 degrees below zero and the original surface conditions remain unchanged. It has been demonstrated that a temperature rise of only 1-2 degrees is very critical. The many different climate change forecasts make it difficult to design structures in permafrost with definite levels of confidence over a project's lifetime (i.e. up to 50 years). Consequences of climate warming on transportation-related structures can be estimated to a certain degree by examining experience with natural permafrost surfaces affected by land clearing or with structures built in permafrost. Melting of permafrost will be accompanied by surface settlements, slumping of slopes and banks, and creation of thaw pits and ponds, with eventual distress to many surface structures such as pavements and foundations. Designing for a warmer climate is illustrated for the case of the Bethel Highway, the first in Alaska to be designed for a progressively warmer climate. Increased water flows both from ice melting and increased precipitation in a warmer climate will make forecasting of discharge levels in drainage basins a difficult task. Of great concern to engineers is the potential for increased erosion and sediment loadings in streams. In coastal engineering, the effects of rising sea levels, increased open-water areas, and more severe storms foreseen in a warmer climate will require heavier and more elevated shore protection. On the other hand, shipping and offshore operations will be made easier. 9 refs., 4 figs

  13. Climate change and One Health.

    Science.gov (United States)

    Zinsstag, Jakob; Crump, Lisa; Schelling, Esther; Hattendorf, Jan; Maidane, Yahya Osman; Ali, Kadra Osman; Muhummed, Abdifatah; Umer, Abdurezak Adem; Aliyi, Ferzua; Nooh, Faisal; Abdikadir, Mohammed Ibrahim; Ali, Seid Mohammed; Hartinger, Stella; Mäusezahl, Daniel; de White, Monica Berger Gonzalez; Cordon-Rosales, Celia; Castillo, Danilo Alvarez; McCracken, John; Abakar, Fayiz; Cercamondi, Colin; Emmenegger, Sandro; Maier, Edith; Karanja, Simon; Bolon, Isabelle; de Castañeda, Rafael Ruiz; Bonfoh, Bassirou; Tschopp, Rea; Probst-Hensch, Nicole; Cissé, Guéladio

    2018-06-01

    The journal The Lancet recently published a countdown on health and climate change. Attention was focused solely on humans. However, animals, including wildlife, livestock and pets, may also be impacted by climate change. Complementary to the high relevance of awareness rising for protecting humans against climate change, here we present a One Health approach, which aims at the simultaneous protection of humans, animals and the environment from climate change impacts (climate change adaptation). We postulate that integrated approaches save human and animal lives and reduce costs when compared to public and animal health sectors working separately. A One Health approach to climate change adaptation may significantly contribute to food security with emphasis on animal source foods, extensive livestock systems, particularly ruminant livestock, environmental sanitation, and steps towards regional and global integrated syndromic surveillance and response systems. The cost of outbreaks of emerging vector-borne zoonotic pathogens may be much lower if they are detected early in the vector or in livestock rather than later in humans. Therefore, integrated community-based surveillance of zoonoses is a promising avenue to reduce health effects of climate change.

  14. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    Science.gov (United States)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  15. Anthropogenic nitrogen deposition alters growth responses of European beech (Fagus sylvativa L.) to climate change.

    Science.gov (United States)

    Hess, Carsten; Niemeyer, Thomas; Fichtner, Andreas; Jansen, Kirstin; Kunz, Matthias; Maneke, Moritz; von Wehrden, Henrik; Quante, Markus; Walmsley, David; von Oheimb, Goddert; Härdtle, Werner

    2018-02-01

    Global change affects the functioning of forest ecosystems and the services they provide, but little is known about the interactive effects of co-occurring global change drivers on important functions such as tree growth and vitality. In the present study we quantified the interactive (i.e. synergistic or antagonistic) effects of atmospheric nitrogen (N) deposition and climatic variables (temperature, precipitation) on tree growth (in terms of tree-ring width, TRW), taking forest ecosystems with European beech (Fagus sylvatica L.) as an example. We hypothesised that (i) N deposition and climatic variables can evoke non-additive responses of the radial increment of beech trees, and (ii) N loads have the potential to strengthen the trees' sensitivity to climate change. In young stands, we found a synergistic positive effect of N deposition and annual mean temperature on TRW, possibly linked to the alleviation of an N shortage in young stands. In mature stands, however, high N deposition significantly increased the trees' sensitivity to increasing annual mean temperatures (antagonistic effect on TRW), possibly due to increased fine root dieback, decreasing mycorrhizal colonization or shifts in biomass allocation patterns (aboveground vs. belowground). Accordingly, N deposition and climatic variables caused both synergistic and antagonistic effects on the radial increment of beech trees, depending on tree age and stand characteristics. Hence, the nature of interactions could mediate the long-term effects of global change drivers (including N deposition) on forest carbon sequestration. In conclusion, our findings illustrate that interaction processes between climatic variables and N deposition are complex and have the potential to impair growth and performance of European beech. This in turn emphasises the importance of multiple-factor studies to foster an integrated understanding and models aiming at improved projections of tree growth responses to co-occurring drivers

  16. Deducing Climatic Elasticity to Assess Projected Climate Change Impacts on Streamflow Change across China

    Science.gov (United States)

    Liu, Jianyu; Zhang, Qiang; Zhang, Yongqiang; Chen, Xi; Li, Jianfeng; Aryal, Santosh K.

    2017-10-01

    Climatic elasticity has been widely applied to assess streamflow responses to climate changes. To fully assess impacts of climate under global warming on streamflow and reduce the error and uncertainty from various control variables, we develop a four-parameter (precipitation, catchment characteristics n, and maximum and minimum temperatures) climatic elasticity method named PnT, based on the widely used Budyko framework and simplified Makkink equation. We use this method to carry out the first comprehensive evaluation of the streamflow response to potential climate change for 372 widely spread catchments in China. The PnT climatic elasticity was first evaluated for a period 1980-2000, and then used to evaluate streamflow change response to climate change based on 12 global climate models under Representative Concentration Pathway 2.6 (RCP2.6) and RCP 8.5 emission scenarios. The results show that (1) the PnT climatic elasticity method is reliable; (2) projected increasing streamflow takes place in more than 60% of the selected catchments, with mean increments of 9% and 15.4% under RCP2.6 and RCP8.5 respectively; and (3) uncertainties in the projected streamflow are considerable in several regions, such as the Pearl River and Yellow River, with more than 40% of the selected catchments showing inconsistent change directions. Our results can help Chinese policy makers to manage and plan water resources more effectively, and the PnT climatic elasticity should be applied to other parts of the world.

  17. Modeling transport of nutrients & sediment loads into Lake Tahoe under climate change

    Science.gov (United States)

    Riverson, John; Coats, Robert; Costa-Cabral, Mariza; Dettinger, Mike; Reuter, John; Sahoo, Goloka; Schladow, Geoffrey

    2013-01-01

    The outputs from two General Circulation Models (GCMs) with two emissions scenarios were downscaled and bias-corrected to develop regional climate change projections for the Tahoe Basin. For one model—the Geophysical Fluid Dynamics Laboratory or GFDL model—the daily model results were used to drive a distributed hydrologic model. The watershed model used an energy balance approach for computing evapotranspiration and snowpack dynamics so that the processes remain a function of the climate change projections. For this study, all other aspects of the model (i.e. land use distribution, routing configuration, and parameterization) were held constant to isolate impacts of climate change projections. The results indicate that (1) precipitation falling as rain rather than snow will increase, starting at the current mean snowline, and moving towards higher elevations over time; (2) annual accumulated snowpack will be reduced; (3) snowpack accumulation will start later; and (4) snowmelt will start earlier in the year. Certain changes were masked (or counter-balanced) when summarized as basin-wide averages; however, spatial evaluation added notable resolution. While rainfall runoff increased at higher elevations, a drop in total precipitation volume decreased runoff and fine sediment load from the lower elevation meadow areas and also decreased baseflow and nitrogen loads basin-wide. This finding also highlights the important role that the meadow areas could play as high-flow buffers under climatic change. Because the watershed model accounts for elevation change and variable meteorological patterns, it provided a robust platform for evaluating the impacts of projected climate change on hydrology and water quality.

  18. Mediterranean climate modelling: variability and climate change scenarios; Modelisation climatique du Bassin mediterraneen: variabilite et scenarios de changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    Somot, S

    2005-12-15

    Air-sea fluxes, open-sea deep convection and cyclo-genesis are studied in the Mediterranean with the development of a regional coupled model (AORCM). It accurately simulates these processes and their climate variabilities are quantified and studied. The regional coupling shows a significant impact on the number of winter intense cyclo-genesis as well as on associated air-sea fluxes and precipitation. A lower inter-annual variability than in non-coupled models is simulated for fluxes and deep convection. The feedbacks driving this variability are understood. The climate change response is then analysed for the 21. century with the non-coupled models: cyclo-genesis decreases, associated precipitation increases in spring and autumn and decreases in summer. Moreover, a warming and salting of the Mediterranean as well as a strong weakening of its thermohaline circulation occur. This study also concludes with the necessity of using AORCMs to assess climate change impacts on the Mediterranean. (author)

  19. Using the SPEI to Assess Recent Climate Change in the Yarlung Zangbo River Basin, South Tibet

    Directory of Open Access Journals (Sweden)

    Binquan Li

    2015-10-01

    Full Text Available The Yarlung Zangbo River (YZR is the largest river system in the Tibetan Plateau, and its basin is one of the centers of human economic activity in Tibet. Large uncertainties exist in several previous climate change studies in this basin because of limited climate observations. In this paper, we used a meteorological drought index (Standardized Precipitation Evapotranspiration Index, SPEI and a newly-released gridded climate forcing dataset based on high-quality climate station data to re-evaluate climate change in the YZR Basin during the period of 1961–2014. Results showed that precipitation experienced a statistically insignificant increasing trend at a rate of 6.32 mm/10 years, and its annual mean was 512.40 mm. The basin was sensitive to climate change in terms of the air temperature that significantly increased at the rate of 0.32 °C/10 years. This warming rate was obviously larger than that in many other regions. Analysis of SPEI showed that the basin had no obvious statistical trends in the number of dry/wet episodes, but the severity of dry episode aggravated in terms of duration and magnitude. This study provides a reliable analysis of climate change in the YZR Basin, and suggests this large Tibetan river basin is sensitive to climate change.

  20. Europeans' attitudes towards climate change

    International Nuclear Information System (INIS)

    2009-07-01

    This report presents the results of a survey on Europeans' attitudes towards climate change which was carried out in January and February 2009. The survey focuses on: Citizens' perceptions of climate change in relation to other world problems; Citizens' perceptions of the seriousness of climate change; The extent to which citizens feel informed about climate change - its causes, consequences and ways of fighting it; Citizens' attitudes towards alternative fuels and CO2 emissions; Whether citizens feel that climate change is stoppable or has been exaggerated, and what impact it has on the European economy; Whether citizens have taken personal action to fight climate change. This Eurobarometer survey was carried out by TNS Opinion and Social network between 16 January and 22 February 2009. The interviews were conducted among 26,718 citizens in the 27 Member States of the European Union, the three candidate countries for accession to the European Union (Croatia, Turkey and the Former Yugoslav Republic of Macedonia) and in the Turkish Cypriot Community.

  1. Assessment of climate change impact on water resources in the Pungwe river basin

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Lotta; Samuelsson, Patrick; Kjellstroem, Erik (Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)), e-mail: lotta.andersson@smhi.se

    2011-01-15

    The Rossby Centre Regional Climate Model (RCA3) and the hydrological model HBV were linked to assess climate change impacts on water resources in the Pungwe basin until 2050. RCA3 was capable of simulating the most important aspects of the climate for a control period at the regional scale. At the subbasin scale, additional scaling was needed. Three climate change experiments using ECHAM4-A2, B2 and CCSM3-B2 as input to RCA3 were carried out. According to the simulations annual rainfall in 2050 would be reduced by approximately 10% with increasing interannual variability of rainfall and dry season river flow and later onset of the rainy season. The ECHAM4-A2 driven experiment did also indicate a slight increase of high flows. If the results indeed reflect the future, they will worsen the already critical situation for water resources, regarding both floods and droughts. Uncertainties, however in the downscaled scenarios make it difficult to prioritize adaptation options. This calls for inclusion of more climate change experiments, in an ensemble of climate scenarios possibly by using a combination of dynamical and statistical downscaling of general circulation models, as well as extending the simulations to 2100 to further ensure robustness of the signal

  2. Climate change and climate policy; Klimaendringer og klimapolitikk

    Energy Technology Data Exchange (ETDEWEB)

    Alfsen, Knut H.; Kolshus, Hans H.; Torvanger, Asbjoern

    2000-08-01

    The climate issue is a great political and scientific challenge for several reasons: (1) There are many uncertain aspects of the climate problem, such as future emission of climate gases, the response of the climate system upon these gases, and the effects of climate changes. (2) It is probable, however, that anthropogenic emission of climate gases, deforestation etc. will cause noticeable climate changes in the future. This might be observed as increased frequency of extreme weather situations. This appears to be a greater threat than a gradual increase of temperature and precipitation. (3) Since the climate system is large and react only relatively slowly on changes in for instance the emission of climate gases, the climate problem can only be solved by means of long-term measures. (4) The climate changes may be irreversible. A rational short-term strategy is to ensure maximum flexibility, which can be done by ''slowing down'' (curtailing emissions) and by avoiding irreversible actions as much as possible. The long-term challenge is to develop an economically responsible alternative to the present fossil-based energy system that permits carbon-efficient technologies to compete on price with coal and unconventional oil and gas. Norway is in a special position by being a large exporter of fossil fuel and at the same time wanting to appear responsible in environmental matters. This combination may incur considerable expenses upon Norway and it is therefore important that environmental commitments like the Kyoto agreement can be honoured to the lowest possible cost. The costs can be minimized by: (1) minimizing the measure costs in Norway, (2) working to make the international quota price as low as possible, and (3) reducing the loss of petroleum income as much as possible. This report describes the earth's climate history, the forces behind climatic changes and what the prospects for the future look like. It also reviews what is being done

  3. Climate change: against despair

    OpenAIRE

    McKinnon, Catriona

    2014-01-01

    In the face of accelerating climate change and the parlous state of its politics, despair is tempting. This paper analyses two manifestations of despair about climate change related to (1) the inefficacy of personal emissions reductions, and (2) the inability to make a difference to climate change through personal emissions reductions. On the back of an analysis of despair as a loss of hope, the paper argues that the judgements grounding each form of despair are unsound. The paper concludes w...

  4. Climate change in China and China’s policies and actions for addressing climate change

    Directory of Open Access Journals (Sweden)

    Luo Y.

    2010-12-01

    Full Text Available Since the first assessment report (FAR of Inter-Governmental Panel on Climate Change (IPCC in 1990, the international scientific community has made substantial progresses in climate change sciences. Changes in components of climate system, including the atmosphere, oceans and cryosphere, indicate that global warming is unequivocal. Instrumental records demonstrate that the global mean temperature has a significant increasing trend during the 20th century and in the latest 50 years the warming become faster. In the meantime, the global sea level has a strong increasing trend, as well as the snow coverage of Northern Hemisphere showed an obvious downward trend. Moreover, the global warming plays a key role in significantly affecting the climate system and social-economy on both global and regional scales, such as sea level rise, melting of mountain glaciers and ice sheets, desertification, deforestation, increase of weather extremes (typhoon, hurricane and rainstorm and so on. The state of the art understanding of IPCC Fourth Assessment Report (AR4 was most of the observed increase in global average temperatures since the mid-20th century is very likely due to the observed increase in the concentrations of anthropogenic greenhouse gases. Climate change issues, as a grave challenge to the sustainable development of the human society, have received ever greater attention from the international community. Deeply cognizant of the complexity and extensive influence of these issues and fully aware of the arduousness and urgency of the task of addressing climate change, the Chinese government is determined to address climate change in the process of pursuing sustainable development. The facts of climate change in China and its impacts, and China’s policies and actions for addressing climate change are introduced in this paper.

  5. Climate change matters.

    Science.gov (United States)

    Macpherson, Cheryl Cox

    2014-04-01

    One manifestation of climate change is the increasingly severe extreme weather that causes injury, illness and death through heat stress, air pollution, infectious disease and other means. Leading health organisations around the world are responding to the related water and food shortages and volatility of energy and agriculture prices that threaten health and health economics. Environmental and climate ethics highlight the associated challenges to human rights and distributive justice but rarely address health or encompass bioethical methods or analyses. Public health ethics and its broader umbrella, bioethics, remain relatively silent on climate change. Meanwhile global population growth creates more people who aspire to Western lifestyles and unrestrained socioeconomic growth. Fulfilling these aspirations generates more emissions; worsens climate change; and undermines virtues and values that engender appreciation of, and protections for, natural resources. Greater understanding of how virtues and values are evolving in different contexts, and the associated consequences, might nudge the individual and collective priorities that inform public policy toward embracing stewardship and responsibility for environmental resources necessary to health. Instead of neglecting climate change and related policy, public health ethics and bioethics should explore these issues; bring transparency to the tradeoffs that permit emissions to continue at current rates; and offer deeper understanding about what is at stake and what it means to live a good life in today's world.

  6. Impact of Climate Change on Irrigation and Hydropower Potential: A Case of Upper Blue Nile Basin

    Science.gov (United States)

    Abdella, E. J.; Gosain, A. K.; Khosa, R.

    2017-12-01

    Due to the growing pressure in water resource and climate change there is great uncertainty in the availability of water for existing as well as proposed irrigation and hydropower projects in the Upper Blue Nile basin (longitude 34oE and 39oE and latitude 7oN and 12oN). This study quantitatively assessed the impact of climate change on the hydrological regime of the basin which intern affect water availability for different use including hydropower and irrigation. Ensemble of four bias corrected regional climate models (RCM) of CORDEX Africa domain and two scenarios (RCP 4.5 and RCP 8.5) were used to determine climate projections for future (2021-2050) period. The outputs from the climate models used to drive the calibrated Soil and Water Assessment Tool (SWAT) hydrologic model to simulate future runoff. The simulated discharge were used as input to a Water Evaluation and Planning (WEAP) water allocation model to determine the implication in hydropower and irrigation potential of the basin. The WEAP model was setup to simulate three scenarios which includes Current, Medium-term (by 2025) and Long-term (by 2050) Development scenario. The projected mean annual temperature of the basin are warmer than the baseline (1982 - 2005) average in the range of 1 to 1.4oC. Projected mean annual precipitation varies across the basin in the range of - 3% to 7%, much of the expected increase is in the highland region of the basin. The water use simulation indicate that the current annual average irrigation water demand in the basin is 1.29Bm3y-1 with 100% coverage. By 2025 and 2050, with the development of new schemes and changing climate, water demand for irrigation is estimated to increase by 2.5 Bm3y-1 and 3.4 Bm3y-1 with 99 % and 96% coverage respectively. Simulation for domestic water demand coverage for all scenarios shows that there will be 100% coverage for the two major cities in the basin. The hydropower generation simulation indicate that 98% of hydroelectricity

  7. Impacts of climate change on TN load and its control in a River Basin with complex pollution sources.

    Science.gov (United States)

    Yang, Xiaoying; Warren, Rachel; He, Yi; Ye, Jinyin; Li, Qiaoling; Wang, Guoqing

    2018-02-15

    It is increasingly recognized that climate change could affect the quality of water through complex natural and anthropogenic mechanisms. Previous studies on climate change and water quality have mostly focused on assessing its impact on pollutant loads from agricultural runoff. A sub-daily SWAT model was developed to simulate the discharge, transport, and transformation of nitrogen from all known anthropogenic sources including industries, municipal sewage treatment plants, concentrated and scattered feedlot operations, rural households, and crop production in the Upper Huai River Basin. This is a highly polluted basin with total nitrogen (TN) concentrations frequently exceeding Class V of the Chinese Surface Water Quality Standard (GB3838-2002). Climate change projections produced by 16 Global Circulation Models (GCMs) under the RCP 4.5 and RCP 8.5 scenarios in the mid (2040-2060) and late (2070-2090) century were used to drive the SWAT model to evaluate the impacts of climate change on both the TN loads and the effectiveness of three water pollution control measures (reducing fertilizer use, constructing vegetative filter strips, and improving septic tank performance) in the basin. SWAT simulation results have indicated that climate change is likely to cause an increase in both monthly average and extreme TN loads in February, May, and November. The projected impact of climate change on TN loads in August is more varied between GCMs. In addition, climate change is projected to have a negative impact on the effectiveness of septic tanks in reducing TN loads, while its impacts on the other two measures are more uncertain. Despite the uncertainty, reducing fertilizer use remains the most effective measure for reducing TN loads under different climate change scenarios. Meanwhile, improving septic tank performance is relatively more effective in reducing annual TN loads, while constructing vegetative filter strips is more effective in reducing annual maximum monthly

  8. Building Capacity: The National Network for Ocean and Climate Change Interpretation

    Science.gov (United States)

    Spitzer, W.

    2014-12-01

    In the US, more than 1,500 informal science venues (science centers, museums, aquariums, zoos, nature centers, national parks) are visited annually by 61% of the population. Research shows that these visitors are receptive to learning about climate change, and expect these institutions to provide reliable information about environmental issues and solutions. These informal science venues play a critical role in shaping public understanding. Since 2007, the New England Aquarium has led a national effort to increase the capacity of informal science venues to effectively communicate about climate change. We are now leading the NSF-funded National Network for Ocean and Climate Change Interpretation (NNOCCI), partnering with the Association of Zoos and Aquariums, FrameWorks Institute, Woods Hole Oceanographic Institution, Monterey Bay Aquarium, and National Aquarium, with evaluation conducted by the New Knowledge Organization, Pennsylvania State University, and Ohio State University. After two years of project implementation, key findings include: 1. Importance of adaptive management - We continue to make ongoing changes in training format, content, and roles of facilitators and participants. 2. Impacts on interpreters - We have multiple lines of evidence for changes in knowledge, skills, attitudes, and behaviors. 3. Social radiation - Trained interpreters have a significant influence on their friends, family and colleagues. 4. Visitor impacts - "Exposure to "strategically framed" interpretation does change visitors' perceptions about climate change. 5. Community of practice - We are seeing evidence of growing participation, leadership, and sustainability. 6. Diffusion of innovation - Peer networks are facilitating dissemination throughout the informal science education community. Over the next five years, NNOCCI will achieve a systemic national impact across the ISE community, embed its work within multiple ongoing regional and national climate change education

  9. Climate Change and Natural Disasters

    NARCIS (Netherlands)

    Merkouris, Panos; Negri, Stefania; Maljean-Dubois, Sandrine

    2014-01-01

    Only 21 years ago, in 1992, the first ever convention on climate change, the United Nations Framework Convention on Climate Change (UNFCCC) was signed. The science behind studying climate change and its effects on the environment is not only mind-boggling but still in its infancy. It should come

  10. Observed climatic changes in Shanghai during 1873-2002%上海市100余年来气候变化(1873-2002)

    Institute of Scientific and Technical Information of China (English)

    张强; 陈家其; 张增信

    2005-01-01

    Variation characteristics of temperature and precipitation in January and July and annual mean temperature and annual precipitation are analyzed with the help of cumulative anomalies, Mann-Kendall analysis and wavelet analysis. The research results indicate that January precipitation presents an increasing trend after 1990, wavelet analysis result suggests that this increasing trend will continue in the near future. The changes of July precipitation present different features. During 1900-1960, July precipitation is in a rising trend, but is in a declining trend after 1960. Wavelet analysis shows that this declining trend will go on in the near future. Temperature variations in Shanghai are in fluctuations with 2 to 3 temperature rising periods. Mann-Kendall analysis indicates that temperature variations have the obvious abrupt change time when compared with precipitation changes in Shanghai during the past 100 years. The abrupt change time of January temperature lies in 1985, and that of July temperature lies in 1931-1933 and annual mean temperature has the abrupt change time in 1923-1930. Except July precipitation, the precipitation in January, temperature in January, July and annual mean temperature, and annual precipitation are also in a rising trend in the near future. The research results in this paper may be meaningful for future further climatic changes of Shanghai and social mitigation of climatic disasters in the future.

  11. Local Variability Mediates Vulnerability of Trout Populations to Land Use and Climate Change.

    Directory of Open Access Journals (Sweden)

    Brooke E Penaluna

    Full Text Available Land use and climate change occur simultaneously around the globe. Fully understanding their separate and combined effects requires a mechanistic understanding at the local scale where their effects are ultimately realized. Here we applied an individual-based model of fish population dynamics to evaluate the role of local stream variability in modifying responses of Coastal Cutthroat Trout (Oncorhynchus clarkii clarkii to scenarios simulating identical changes in temperature and stream flows linked to forest harvest, climate change, and their combined effects over six decades. We parameterized the model for four neighboring streams located in a forested headwater catchment in northwestern Oregon, USA with multi-year, daily measurements of stream temperature, flow, and turbidity (2007-2011, and field measurements of both instream habitat structure and three years of annual trout population estimates. Model simulations revealed that variability in habitat conditions among streams (depth, available habitat mediated the effects of forest harvest and climate change. Net effects for most simulated trout responses were different from or less than the sum of their separate scenarios. In some cases, forest harvest countered the effects of climate change through increased summer flow. Climate change most strongly influenced trout (earlier fry emergence, reductions in biomass of older trout, increased biomass of young-of-year, but these changes did not consistently translate into reductions in biomass over time. Forest harvest, in contrast, produced fewer and less consistent responses in trout. Earlier fry emergence driven by climate change was the most consistent simulated response, whereas survival, growth, and biomass were inconsistent. Overall our findings indicate a host of local processes can strongly influence how populations respond to broad scale effects of land use and climate change.

  12. Development of bioenergy conversion alternatives for climate change mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Derkyi, Nana S.A.; Sekyere, Daniel [CSIR-FORIG, Kwame Nkrumah University of Science and Technology KNUST Box 63 (Ghana); Okyere, Philip Y. [Electrical Engineering Department, Kwame Nkrumah University of Science and Technology KNUST (Ghana); Darkwa, Nicholas A. [FRNR, Kwame Nkrumah University of Science and Technology KNUST (Ghana); Nketiah, Samuel K. [TROPENBOS International (Ghana)

    2011-07-01

    Traditional charcoal production, firewood sourcing and over-dependence on the national grid for electricity are associated with high greenhouse gas emissions relative to other common energy options. However, there have been few attempts to analyze the potential of cogeneration and briquetting as favourable energy options for climate change mitigation. The possibility of utilizing abundant wood residues to produce energy for domestic and industrial application through co-generation and sawdust briquetting was assessed. Annual residues generated in the three mills studied ranged from 19,230 m3 to 32,610 m3. Annual output of semi-carbonized and carbonized sawdust briquette from the briquette factory studied was 1400 tonnes. Heating values of the wood species ranged from 8.2 to 20.3 MJ/kg. Power requirements for the mills, necessary for sizing co-generation units were derived from their monthly electricity bills. Power ratings for co-generation units were specified between 400 kWe to 2000 kWe with heat to power ratios of 19 to 21. The energy generated could be used to produce electrical power and reduce dependency on the national grid. Conversion of sawdust in the briquette factory potentially contributes a saving of 5,600 tonnes of trees/year that would have been cut from the forest. Thus, adoption of co-generation and sawdust briquetting nationwide could be of immense benefit to the country in terms of climate change mitigation.

  13. Climate change, climatic variation and extreme biological responses.

    Science.gov (United States)

    Palmer, Georgina; Platts, Philip J; Brereton, Tom; Chapman, Jason W; Dytham, Calvin; Fox, Richard; Pearce-Higgins, James W; Roy, David B; Hill, Jane K; Thomas, Chris D

    2017-06-19

    Extreme climatic events could be major drivers of biodiversity change, but it is unclear whether extreme biological changes are (i) individualistic (species- or group-specific), (ii) commonly associated with unusual climatic events and/or (iii) important determinants of long-term population trends. Using population time series for 238 widespread species (207 Lepidoptera and 31 birds) in England since 1968, we found that population 'crashes' (outliers in terms of species' year-to-year population changes) were 46% more frequent than population 'explosions'. (i) Every year, at least three species experienced extreme changes in population size, and in 41 of the 44 years considered, some species experienced population crashes while others simultaneously experienced population explosions. This suggests that, even within the same broad taxonomic groups, species are exhibiting individualistic dynamics, most probably driven by their responses to different, short-term events associated with climatic variability. (ii) Six out of 44 years showed a significant excess of species experiencing extreme population changes (5 years for Lepidoptera, 1 for birds). These 'consensus years' were associated with climatically extreme years, consistent with a link between extreme population responses and climatic variability, although not all climatically extreme years generated excess numbers of extreme population responses. (iii) Links between extreme population changes and long-term population trends were absent in Lepidoptera and modest (but significant) in birds. We conclude that extreme biological responses are individualistic, in the sense that the extreme population changes of most species are taking place in different years, and that long-term trends of widespread species have not, to date, been dominated by these extreme changes.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Authors.

  14. Accounting for multiple climate components when estimating climate change exposure and velocity

    Science.gov (United States)

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures of climate change. We conclude with a set of future directions and recommend future work to determine which measures of climate change exposure and velocity are most related to biological responses to climate change.

  15. Population dynamics under increasing environmental variability: implications of climate change for ecological network design criteria

    NARCIS (Netherlands)

    Verboom, J.; Schippers, P.; Cormont, A.; Sterk, M.; Vos, C.C.; Opdam, P.F.M.

    2010-01-01

    There is growing evidence that climate change causes an increase in variation in conditions for plant and animal populations. This increase in variation, e.g. amplified inter-annual variability in temperature and rainfall has population dynamical consequences because it raises the variation in vital

  16. Biodiversity and Climate Change

    International Nuclear Information System (INIS)

    Onyango, J.C.O.; Ojoo-Massawa, E.; Abira, M.A.

    1997-01-01

    Biological diversity or biodiversity is crucial for ecological stability including regulation of climate change, recreational and medicinal use; and scientific advancement. Kenya like other developing countries, especially, those in Sub-Saharan Africa, will continue to depend greatly on her biodiversity for present and future development. This important resource must, therefore be conserved. This chapter presents an overview of Kenya's biodiversity; its importance and initiatives being undertaken for its conservation; and in detail, explores issues of climate change and biodiversity, concentrating on impacts of climate change

  17. Climate change impact assessment on the hydrological regime of the Kaligandaki Basin, Nepal.

    Science.gov (United States)

    Bajracharya, Ajay Ratna; Bajracharya, Sagar Ratna; Shrestha, Arun Bhakta; Maharjan, Sudan Bikash

    2018-06-01

    The Hindu Kush-Himalayan region is an important global freshwater resource. The hydrological regime of the region is vulnerable to climatic variations, especially precipitation and temperature. In our study, we modelled the impact of climate change on the water balance and hydrological regime of the snow dominated Kaligandaki Basin. The Soil and Water Assessment Tool (SWAT) was used for a future projection of changes in the hydrological regime of the Kaligandaki basin based on Representative Concentration Pathways Scenarios (RCP 4.5 and RCP 8.5) of ensemble downscaled Coupled Model Intercomparison Project's (CMIP5) General Circulation Model (GCM) outputs. It is predicted to be a rise in the average annual temperature of over 4°C, and an increase in the average annual precipitation of over 26% by the end of the 21st century under RCP 8.5 scenario. Modeling results show these will lead to significant changes in the basin's water balance and hydrological regime. In particular, a 50% increase in discharge is expected at the outlet of the basin. Snowmelt contribution will largely be affected by climate change, and it is projected to increase by 90% by 2090.Water availability in the basin is not likely to decrease during the 21st century. The study demonstrates that the important water balance components of snowmelt, evapotranspiration, and water yield at higher elevations in the upper and middle sub-basins of the Kaligandaki Basin will be most affected by the increasing temperatures and precipitation. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Robustness of a multiple-use reservoir to seasonal runoff shifts associated with climate change

    International Nuclear Information System (INIS)

    Lettenmaier, D.P.; Brettman, K.L.

    1990-05-01

    Although much remains to be learned about long-term climate change associated with anthropogenic increases in concentrations of the so-called ''greenhouse gases,'' such as carbon dioxide and methane, there is a general consensus that some global warming will result from past and present emissions. In the western United States, the dominant hydrologic effect of such warming, aside from any accompanying changes in precipitation, would be to reduce winter snow accumulations in mountainous headwaters regions. To assess the robustness of reservoir operation to such shifts in seasonal runoff, simulations were developed of monthly runoff for the American River, Washington, using the National Weather Service River Forecast System. The American River is presently unregulated; however, we tested the performance of hypothetical reservoirs with capacity of 0.25 and 0.50 of the mean annual flow for a range of annual temperature changes from 0.0 (present climate) to 4.0 degree C. We considered a multiple-purpose reservoir system operated for water supply ad hydropower, with minimum releases required for fisheries enhancement. In addition to evaluating the sensitivity of water supply, low flow, and hydropower performance using a heuristic operating rule, the relative performance of the system under present and altered climates was evaluated using an optimization algorithm, extended linear quadratic Gaussian control. This paper reports the results of hydrologic simulations for the American River, Washington. 13 refs., 8 figs

  19. US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits

    International Nuclear Information System (INIS)

    Wing, Ian Sue; Monier, Erwan; Stern, Ari; Mundra, Anupriya

    2015-01-01

    We estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops’ yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming’s economic effects on major crops are slightly positive—annual benefits <$4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching $17 B under moderate mitigation, but only $7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18 B, generating benefits to moderate (stringent) mitigation as large as $26 B ($20 B). (letter)

  20. Quantifying the hydrological responses to climate change in an intact forested small watershed in Southern China

    Science.gov (United States)

    Zhou, G.; Wei, X.; Wu, Y.; Huang, Y.; Yan, J.; Zhang, Dongxiao; Zhang, Q.; Liu, J.; Meng, Z.; Wang, C.; Chu, G.; Liu, S.; Tang, X.; Liu, Xiuying

    2011-01-01

    Responses of hydrological processes to climate change are key components in the Intergovernmental Panel for Climate Change (IPCC) assessment. Understanding these responses is critical for developing appropriate mitigation and adaptation strategies for sustainable water resources management and protection of public safety. However, these responses are not well understood and little long-term evidence exists. Herein, we show how climate change, specifically increased air temperature and storm intensity, can affect soil moisture dynamics and hydrological variables based on both long-term observation and model simulations using the Soil and Water Assessment Tool (SWAT) in an intact forested watershed (the Dinghushan Biosphere Reserve) in Southern China. Our results show that, although total annual precipitation changed little from 1950 to 2009, soil moisture decreased significantly. A significant decline was also found in the monthly 7-day low flow from 2000 to 2009. However, the maximum daily streamflow in the wet season and unconfined groundwater tables have significantly increased during the same 10-year period. The significant decreasing trends on soil moisture and low flow variables suggest that the study watershed is moving towards drought-like condition. Our analysis indicates that the intensification of rainfall storms and the increasing number of annual no-rain days were responsible for the increasing chance of both droughts and floods. We conclude that climate change has indeed induced more extreme hydrological events (e.g. droughts and floods) in this watershed and perhaps other areas of Southern China. This study also demonstrated usefulness of our research methodology and its possible applications on quantifying the impacts of climate change on hydrology in any other watersheds where long-term data are available and human disturbance is negligible. ?? 2011 Blackwell Publishing Ltd.

  1. Wild Apple Growth and Climate Change in Southeast Kazakhstan

    Directory of Open Access Journals (Sweden)

    Irina P. Panyushkina

    2017-10-01

    Full Text Available Wild populations of Malus sieversii [Ldb.] M. Roem are valued genetic and watershed resources in Inner Eurasia. These populations are located in a region that has experienced rapid and on-going climatic change over the past several decades. We assess relationships between climate variables and wild apple radial growth with dendroclimatological techniques to understand the potential of a changing climate to influence apple radial growth. Ring-width chronologies spanning 48 to 129 years were developed from 12 plots in the Trans-Ili Alatau and Jungar Alatau ranges of Tian Shan Mountains, southeastern Kazakhstan. Cluster analysis of the plot-level chronologies suggests different temporal patterns of growth variability over the last century in the two mountain ranges studied. Changes in the periodicity of annual ring-width variability occurred ca. 1970 at both mountain ranges, with decadal-scale variability supplanted by quasi-biennial variation. Seascorr correlation analysis of primary and secondary weather variables identified negative growth associations with spring precipitation and positive associations with cooler fall-winter temperatures, but the relative importance of these relationships varied spatially and temporally, with a shift in the relative importance of spring precipitation ca. 1970 at Trans-Ili Alatau. Altered apple tree radial growth patterns correspond to altered climatology in the Lake Balkhash Basin driven by unprecedented intensified Arctic Oscillations after the late 1970s.

  2. Climate and Global Change

    International Nuclear Information System (INIS)

    Duplessy, J.C.; Pons, A.; Fantechi, R.

    1991-01-01

    The present volume contains the lessons delivered at the course held in Arles, France, on the subject Climate and Global Change: natural variability of the geosphere and biosphere systems, biogeochemical cycles and their perturbation by human activities, monitoring and forecasting global changes (satellite observations, modelling,...). Short presentations of students' own research activities are also proposed (climatic fluctuation in the Mediterranean area, climate/vegetation relations, etc.)

  3. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U [DKRZ, Hamburg (Germany)

    1996-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  4. Climate change experiments in Hamburg

    Energy Technology Data Exchange (ETDEWEB)

    Gubasch, U. [DKRZ, Hamburg (Germany)

    1995-12-31

    Nowadays the anthropogenic climate change is been simulated world wide with a fair number of coupled ocean atmosphere general circulation models (IPCC, 1995). Typical model problems do not only blur the estimates of the anthropogenic climate change, but they also cause errors in the estimates of the natural variability. An accurate representation of the natural variability of the climate system is, however, essential for the detection of the anthropogenic climate change. All model simulations world wide show, even though they differ considerably in their technical details and the experimental setup and the forcing data, similar amplitudes and pattern of the predicted climate change. In the model world it is already at the beginning of the next century possible to detect the anthropogenic climate change in the global mean. If the model results are applied in a `fingerprint analysis`, then it is possible to prove that the climate change during the last 30 years is with a significance of 95 % larger than any other climate change during the last 100 years. The experiments performed in Hamburg show that the experimental conditions are of great importance for the estimate of the future climate. The usual starting point of most of the simulations with present day conditions (1980-1990) is too late, because then a considerable part of the warming since the beginning of the industrialization (ca. 1750) has been neglected. Furthermore it has only recently become clear that the sulphat-aerosols play an important role in the present day climate and in the future climate. The effect of the sulphat aerosols has first been simulated in a number of equilibrium simulations with mixed layer models, but nowadays with globally coupled ocean-atmosphere circulation models

  5. Simulating the effect of climate change on stream temperature in the Trout Lake Watershed, Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Selbig, William R., E-mail: wrselbig@usgs.gov

    2015-07-15

    The potential for increases in stream temperature across many spatial and temporal scales as a result of climate change can pose a difficult challenge for environmental managers, especially when addressing thermal requirements for sensitive aquatic species. This study evaluates simulated changes to the thermal regime of three northern Wisconsin streams in response to a projected changing climate using a modeling framework and considers implications of thermal stresses to the fish community. The Stream Network Temperature Model (SNTEMP) was used in combination with a coupled groundwater and surface water flow model to assess forecasts in climate from six global circulation models and three emission scenarios. Model results suggest that annual average stream temperature will steadily increase approximately 1.1 to 3.2 °C (varying by stream) by the year 2100 with differences in magnitude between emission scenarios. Daily mean stream temperature during the months of July and August, a period when cold-water fish communities are most sensitive, showed excursions from optimal temperatures with increased frequency compared to current conditions. Projections of daily mean stream temperature, in some cases, were no longer in the range necessary to sustain a cold water fishery. - Highlights: • A stream temperature model was calibrated for three streams in northern Wisconsin. • The effect of climate change on stream temperature was simulated in each stream. • Annual average stream temperature was projected to rise from 1 to 3 °C by 2100. • Forecasts of stream temperature exceeded optimal ranges for brook trout.

  6. Potential economic benefits of adapting agricultural production systems to future climate change

    Science.gov (United States)

    Fagre, Daniel B.; Pederson, Gregory; Bengtson, Lindsey E.; Prato, Tony; Qui, Zeyuan; Williams, Jimmie R.

    2010-01-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960–2005) and future climate period (2006–2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO2 emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting

  7. Potential Economic Benefits of Adapting Agricultural Production Systems to Future Climate Change

    Science.gov (United States)

    Prato, Tony; Zeyuan, Qiu; Pederson, Gregory; Fagre, Dan; Bengtson, Lindsey E.; Williams, Jimmy R.

    2010-03-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960-2005) and future climate period (2006-2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO2 emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting APSs to

  8. Potential economic benefits of adapting agricultural production systems to future climate change.

    Science.gov (United States)

    Prato, Tony; Zeyuan, Qiu; Pederson, Gregory; Fagre, Dan; Bengtson, Lindsey E; Williams, Jimmy R

    2010-03-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960-2005) and future climate period (2006-2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO(2) emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting APSs

  9. Ozone, air quality and climatic change

    International Nuclear Information System (INIS)

    Van Noije, T.

    2008-01-01

    Changes in climate due to increased greenhouse gas emissions differ per region. Regional climate changes can also be caused by regional changes in air quality, though. On the other hand, global and regional changes in climate also lead to changes in air quality without any changes in sources of pollution. This article discusses the various aspects of the interaction between air quality and climate change with extra focus on the role of ozone. [mk] [nl

  10. How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO2 data

    Science.gov (United States)

    Rödenbeck, Christian; Zaehle, Sönke; Keeling, Ralph; Heimann, Martin

    2018-04-01

    The response of the terrestrial net ecosystem exchange (NEE) of CO2 to climate variations and trends may crucially determine the future climate trajectory. Here we directly quantify this response on inter-annual timescales by building a linear regression of inter-annual NEE anomalies against observed air temperature anomalies into an atmospheric inverse calculation based on long-term atmospheric CO2 observations. This allows us to estimate the sensitivity of NEE to inter-annual variations in temperature (seen as a climate proxy) resolved in space and with season. As this sensitivity comprises both direct temperature effects and the effects of other climate variables co-varying with temperature, we interpret it as inter-annual climate sensitivity. We find distinct seasonal patterns of this sensitivity in the northern extratropics that are consistent with the expected seasonal responses of photosynthesis, respiration, and fire. Within uncertainties, these sensitivity patterns are consistent with independent inferences from eddy covariance data. On large spatial scales, northern extratropical and tropical inter-annual NEE variations inferred from the NEE-T regression are very similar to the estimates of an atmospheric inversion with explicit inter-annual degrees of freedom. The results of this study offer a way to benchmark ecosystem process models in more detail than existing effective global climate sensitivities. The results can also be used to gap-fill or extrapolate observational records or to separate inter-annual variations from longer-term trends.

  11. Predicting Wetland Distribution Changes under Climate Change and Human Activities in a Mid- and High-Latitude Region

    Directory of Open Access Journals (Sweden)

    Dandan Zhao

    2018-03-01

    Full Text Available Wetlands in the mid- and high-latitudes are particularly vulnerable to environmental changes and have declined dramatically in recent decades. Climate change and human activities are arguably the most important factors driving wetland distribution changes which will have important implications for wetland ecological functions and services. We analyzed the importance of driving variables for wetland distribution and investigated the relative importance of climatic factors and human activity factors in driving historical wetland distribution changes. We predicted wetland distribution changes under climate change and human activities over the 21st century using the Random Forest model in a mid- and high-latitude region of Northeast China. Climate change scenarios included three Representative Concentration Pathways (RCPs based on five general circulation models (GCMs downloaded from the Coupled Model Intercomparison Project, Phase 5 (CMIP5. The three scenarios (RCP 2.6, RCP 4.5, and RCP 8.5 predicted radiative forcing to peak at 2.6, 4.5, and 8.5 W/m2 by the 2100s, respectively. Our results showed that the variables with high importance scores were agricultural population proportion, warmness index, distance to water body, coldness index, and annual mean precipitation; climatic variables were given higher importance scores than human activity variables on average. Average predicted wetland area among three emission scenarios were 340,000 ha, 123,000 ha, and 113,000 ha for the 2040s, 2070s, and 2100s, respectively. Average change percent in predicted wetland area among three periods was greatest under the RCP 8.5 emission scenario followed by RCP 4.5 and RCP 2.6 emission scenarios, which were 78%, 64%, and 55%, respectively. Losses in predicted wetland distribution were generally around agricultural lands and expanded continually from the north to the whole region over time, while the gains were mostly associated with grasslands and water in the

  12. Greenland climate change

    DEFF Research Database (Denmark)

    Masson-Delmotte, Valérie; Swingedouw, Didier; Landais, Amaëlle

    2012-01-01

    Climate archives available from deep-sea and marine shelf sediments, glaciers, lakes and ice cores in and around Greenland allow us to place the current trends in regional climate, ice sheet dynamics, and land surface changes in a broader perspective. We show that during the last decade (2000s......), atmospheric and sea-surface temperatures are reaching levels last encountered millennia ago when northern high latitude summer insolation was higher due to a different orbital configuration. Concurrently, records from lake sediments in southern Greenland document major environmental and climatic conditions...... regional climate and ice sheet dynamics. The magnitude and rate of future changes in Greenland temperature, in response to increasing greenhouse gas emissions, may be faster than any past abrupt events occurring under interglacial conditions. Projections indicate that within one century Greenland may...

  13. Impacts of climate change on Middle Eastern societies over the last 2700 years: new results from the Gejkar speleothem, Iraq

    Science.gov (United States)

    Flohr, Pascal; Fleitmann, Dominik; Bosomworth, Matt; Cheng, Hai; Sadekov, Aleksey; Matthews, Roger; Matthews, Wendy; Black, Stuart; Edwards, Lawrence

    2016-04-01

    Climatic and environmental changes are often cited as a major factor for past social, economic, and political changes. This is especially relevant in the semi-arid to arid Middle East, where, however, only few precisely dated, high-resolution climate records are available. Here we present new results from an up to annually resolved stalagmite from Gejkar Cave in the Kurdish Regional Government of Iraq region. Based on Uranium-series dating and annual layer counts, the record dates back ~2700 years, and its annual layer thickness and carbon and oxygen isotope profile appear indicative of precipitation and effective moisture. We also assess if observed decadal to multi-decadal shifts in precipitation are synchronous with socio-economic changes as observed in the archaeological and historical record in the wider Middle East over the last 2000 years, such as the largely prosperous Roman and Byzantine periods, the Seljuq invasion, and the decline of the Ottoman Empire.

  14. Climate change and electricity demand in Brazil: A stochastic approach

    International Nuclear Information System (INIS)

    Trotter, Ian M.; Bolkesjø, Torjus Folsland; Féres, José Gustavo; Hollanda, Lavinia

    2016-01-01

    We present a framework for incorporating weather uncertainty into electricity demand forecasting when weather patterns cannot be assumed to be stable, such as in climate change scenarios. This is done by first calibrating an econometric model for electricity demand on historical data, and subsequently applying the model to a large number of simulated weather paths, together with projections for the remaining determinants. Simulated weather paths are generated based on output from a global circulation model, using a method that preserves the trend and annual seasonality of the first and second moments, as well as the spatial and serial correlations. The application of the framework is demonstrated by creating long-term, probabilistic electricity demand forecasts for Brazil for the period 2016–2100 that incorporates weather uncertainty for three climate change scenarios. All three scenarios indicate steady growth in annual average electricity demand until reaching a peak of approximately 1071–1200 TWh in 2060, then subsequently a decline, largely reflecting the trajectory of the population projections. The weather uncertainty in all scenarios is significant, with up to 400 TWh separating the 10th and the 90th percentiles, or approximately ±17% relative to the mean. - Highlights: • Large number of realistic weather paths generated based on output from a single GCM. • Simulated weather paths used to include weather uncertainty in demand forecasting. • We present a probabilistic electricity demand forecast for Brazil 2016–2100. • Annual Brazilian electricity demand will peak around 2060 at about 1071–1200 TWh. • Significant weather uncertainty, ∼400 TWh separating the 10th and 90th percentiles.

  15. Climate changes over the past millennium: Relationships with Mediterranean climates

    International Nuclear Information System (INIS)

    Mann, M.E.

    2006-01-01

    Evidence is reviewed for climate change and its causes over the interval spanning roughly the past millennium. Particular emphasis is placed on patterns of climate change influencing Mediterranean climates of the Northern Hemisphere. The evidence is taken from studies using high-resolution climate proxy data sources, and climate modeling simulations. The available evidence suggests that forced changes in dynamical modes of variability including the North Atlantic Oscillation (NAO) and El Nino/Southern Oscillation (ENSO) have played a key role in the patterns of climate variability in Mediterranean regions over the past millennium

  16. Climate Change and Health

    Science.gov (United States)

    ... Home / News / Fact sheets / Detail WHO /A. Craggs Climate change and health 1 February 2018 ","datePublished":"2018-02- ... in improved health, particularly through reduced air pollution. Climate change Over the last 50 years, human activities – particularly ...

  17. Climate change uncertainty and risk assessment in Iran during twenty-first century: evapotranspiration and green water deficit analysis

    Science.gov (United States)

    Karandish, Fatemeh; Mousavi, Seyed-Saeed

    2018-01-01

    For a 120-year period, the projected effects of climate change on annual, seasonal, and monthly potential evapotranspiration (ETo) and green water deficit (GWD) were analyzed involving the associated uncertainties for five climatic zones of Iran. Analysis was carried out using data obtained from 15 general circulation models (GCMs) under three SRES scenarios of A1B, A2, and B1 which were downscaled using LARS-WG for 52 synoptic stations up to 2100. The majority of GCMs as well as the median of the ensemble for each scenario project a positive change in both ETo and GWD. A total of 5.8-19.8 % increase in annual ETo, drier than normal wet seasons, as well as 2.3-56.4 % increase in ETo during December-March period well represent a probable increase in the hydrological water requirement in Iran under global warming. Regarding GWD, the country will experience more arid years requiring 113.7 × 103-576.8 × 103 Mm3 more water to supply annual atmospheric water demand. Semi-arid and Mediterranean regions, principal agricultural producer areas of Iran, will be the most vulnerable part of the country due to 1-38.6 % increase in annual GWD under climate change. In addition, water scarcity for irrigated agriculture will enhance in all climatic zones due to 0.9-41 % increase GWD in June-August. However, rain-fed agriculture might be less affected in the hyper-humid and Mediterranean regions because of 1.1-105.3 % reduction in GWD during wet season. Nevertheless, uncertainty analysis revealed that given results for monthly timescale as well as those for times and regions with lower ETo will be the most uncertain. Based on the results, suitable adaptation solutions are highly required to be undertaken to relieve the extra pressure on the decreased blue water resources in the future.

  18. Adaptability and climate change

    International Nuclear Information System (INIS)

    Sprague, M.W.

    1991-01-01

    The potential social, economic and environmental impacts of climate change are reviewed, with emphasis on agricultural implications. Impact analyses must be done on the scale of watersheds or river basins. For agriculture, climate change effects on water resources are likely to be more important than temperature changes, and climatic variability is also equally important. Another set of critical climatic variables are the frequencies, magnitudes and timing of extreme events such as floods, droughts, etc. A carbon dioxide enriched atmosphere will increase water use efficiency and confer increased tolerance to drought, salinity and air pollution. Better understanding and accounting is required for the effects of increased carbon dioxide on all plant life, including crops. Adaptability of agriculture to change must be taken into account in predicting impacts of climate change, with technological innovation and infrastructure giving agriculture a dynamic nature. Limitations and adaptations must be considered when formulating public policy, to ensure that marginal costs do not exceed marginal benefits. Monoculture plantation forests may be the most efficient sinks of atmospheric carbon dioxide, yet widespread reliance on them may harm biological diversity. Actions the U.S. is currently taking under a no-regrets policy are summarized

  19. Challenges and solutions for climate change

    CERN Document Server

    Gaast, Wytze

    2012-01-01

    The latest scientific knowledge on climate change indicates that higher greenhouse gas concentrations in the atmosphere through unchecked emissions will provoke severe climate change and ocean acidification threatening environmental structures on which humanity relies. Climate change therefore poses major socio-economic, technical and environmental challenges which will have serious impacts on countries’ pathways towards sustainable development. As a result, climate change and sustainable development have increasingly become interlinked. A changing climate makes achieving Millennium Development Goals more difficult and expensive, so there is every reason to achieve development goals with low greenhouse gas emissions. This leads to the following five challenges discussed by Challenges and Solutions for Climate Change: To place climate negotiations in the wider context of sustainability, equity and social change so that development benefits can be maximised at the same time as decreasing greenhouse gas emissi...

  20. Struggle against climate change

    International Nuclear Information System (INIS)

    2009-01-01

    This document first proposes a presentation of the cross-cutting policy defined for the struggle against climate change. It notably presents its various programs. It describes the implemented strategy which aims at reducing on a short term greenhouse gas emissions with the available technologies, at making the climate challenge a driver for economic competitiveness, at developing the knowledge on climatic change and at preparing the necessary adaptation measures, and at stating on the international scene the French commitment and its dynamic role in front of the climate challenge

  1. Potentials to mitigate climate change using biochar - the Austrian perspective

    Science.gov (United States)

    Bruckman, Viktor J.; Klinglmüller, Michaela; Liu, Jay; Uzun, Basak B.; Varol, Esin A.

    2015-04-01

    Biomass utilization is seen as one of various promising strategies to reduce additional carbon emissions. A recent project on potentials of biochar to mitigate climate change (FOREBIOM) goes even a step further towards bioenergy in combination of CCS or "BECS" and tries to assess the current potentials, from sustainable biomass availability to biochar amendment in soils, including the identification of potential disadvantages and current research needs. The current report represents an outcome of the 1st FOREBIOM Workshop held in Vienna in April, 2013 and tries to characterize the Austrian perspective of biochar for climate change mitigation. The survey shows that for a widespread utilization of biochar in climate change mitigation strategies, still a number of obstacles have to be overcome. There are concerns regarding production and application costs, contamination and health issues for both producers and customers besides a fragmentary knowledge about biochar-soil interactions specifically in terms of long-term behavior, biochar stability and the effects on nutrient cycles. However, there are a number of positive examples showing that biochar indeed has the potential to sequester large amounts of carbon while improving soil properties and subsequently leading to a secondary carbon sink via rising soil productivity. Diversification, cascadic utilization and purpose designed biochar production are key strategies overcoming initial concerns, especially regarding economic aspects. A theoretical scenario calculation showed that relatively small amounts of biomass that is currently utilized for energy can reduce the gap between Austria's current GHG emissions and the Kyoto target by about 30% if biomass residues are pyrolized and biochar subsequently used as soil amendment. However, by using a more conservative approach that is representing the aims of the underlying FOREBIOM project (assuming that 10% of the annual biomass increment from forests is used for biochar

  2. Response of the boreal forest ecosystem to climatic change and its silvicultural implications

    Energy Technology Data Exchange (ETDEWEB)

    Kellomaeki, S; Haenninen, H; Karjalainen, T [Joensuu Univ. (Finland). Faculty of Forestry; and others

    1997-12-31

    During the next 100 years, the mean annual temperature is expected to be 1-6 deg C higher than at present. It is also expected to be accompanied by a lengthening of the thermal growing season and increased precipitation. Consequently, climatic change will increase the uncertainty of the management of forest ecosystems in the future. In this context, this research project aimed to outline the ecological and silvicultural implications of climatic change with regard to (1) how the expected climatic change might modify the functioning and structure of the boreal forest ecosystem, and (2) how the silvicultural management of the forest ecosystem should be modified in order to maintain sustainable forest yield under changing climatic conditions. The experimental component of the project concerned first the effect that elevating temperature and elevating concentration of atmospheric carbon have on the ontogenetic development of Scots pine (Pinus sylvestris L) and on the subsequent increase in frost damage during winter. The second part of the study looked the effect of elevating temperature and elevating concentration of atmospheric carbon on the growth of Scots pine through photosynthesis, respiration, transpiration, nutrient supply, and changes in crown structure. This experiment was utilised in several subprojects of the overall project

  3. Response of the boreal forest ecosystem to climatic change and its silvicultural implications

    Energy Technology Data Exchange (ETDEWEB)

    Kellomaeki, S.; Haenninen, H.; Karjalainen, T. [Joensuu Univ. (Finland). Faculty of Forestry] [and others

    1996-12-31

    During the next 100 years, the mean annual temperature is expected to be 1-6 deg C higher than at present. It is also expected to be accompanied by a lengthening of the thermal growing season and increased precipitation. Consequently, climatic change will increase the uncertainty of the management of forest ecosystems in the future. In this context, this research project aimed to outline the ecological and silvicultural implications of climatic change with regard to (1) how the expected climatic change might modify the functioning and structure of the boreal forest ecosystem, and (2) how the silvicultural management of the forest ecosystem should be modified in order to maintain sustainable forest yield under changing climatic conditions. The experimental component of the project concerned first the effect that elevating temperature and elevating concentration of atmospheric carbon have on the ontogenetic development of Scots pine (Pinus sylvestris L) and on the subsequent increase in frost damage during winter. The second part of the study looked the effect of elevating temperature and elevating concentration of atmospheric carbon on the growth of Scots pine through photosynthesis, respiration, transpiration, nutrient supply, and changes in crown structure. This experiment was utilised in several subprojects of the overall project

  4. Evaluating Impacts of climate and land use changes on streamflow using SWAT and land use models based CESM1-CAM5 Climate scenarios

    Science.gov (United States)

    Lin, Tzu Ping; Lin, Yu Pin; Lien, Wan Yu

    2015-04-01

    Climate change projects have various levels of impacts on hydrological cycles around the world. The impact of climate change and uncertainty of climate projections from general circulation models (GCMs) from the Coupled Model Intercomparison Project (CMIP5) which has been just be released in Taiwan, 2014. Since the streamflow run into ocean directly due to the steep terrain and the rainfall difference between wet and dry seasons is apparent; as a result, the allocation water resource reasonable is very challenge in Taiwan, particularly under climate change. The purpose of this study was to evaluate the impacts of climate and land use changes on a small watershed in Taiwan. The AR5 General Circulation Models(GCM) output data was adopted in this study and was downscaled from the monthly to the daily weather data as the input data of hydrological model such as Soil and Water Assessment Tool (SWAT) model in this study. The spatially explicit land uses change model, the Conservation of Land Use and its Effects at Small regional extent (CLUE-s), was applied to simulate land use scenarios in 2020-2039. Combined climate and land use change scenarios were adopted as input data of the hydrological model, the SWAT model, to estimate the future streamflows. With the increasing precipitation, increasing urban area and decreasing agricultural and grass land, the annual streamflow in the most of twenty-three subbasins were also increased. Besides, due to the increasing rainfall in wet season and decreasing rainfall in dry season, the difference of streamflow between wet season and dry season are also increased. This result indicates a more stringent challenge on the water resource management in future. Therefore, impacts on water resource caused by climate change and land use change should be considered in water resource planning for the Datuan river watershed. Keywords: SWAT, GCM, CLUE-s, streamflow, climate change, land use change

  5. Climate change issues in China

    Energy Technology Data Exchange (ETDEWEB)

    Ye Ruqiu (China National Environmental Protection Agency, Beijing (China))

    China is vulnerable to global climate change because of its specific geographical and climatic conditions. Recent climate change trends in China are briefly described. To deal with climate change and reduce the increase in greenhouse gas emissions, a set of strategic measures aimed at harmonizing environmental protection and economic development have been worked out. Special attention has been given to the analysis of problems of energy efficiency and energy structure. Preliminary policy consideration is discussed. 8 refs., 3 tabs.

  6. Climate change and the biosphere

    Science.gov (United States)

    F. Stuart Chapin

    2008-01-01

    Scientific assessments now clearly demonstrate the ecologic and societal consequences of human induced climate change, as detailed by the most recent Intergovernmental Panel on Climate Change (IPCC) report. Global warming spells danger for Earth's biomes, which in turn play an important role in climate change. On the following pages, you will read about some of...

  7. Climate change: Recent findings

    International Nuclear Information System (INIS)

    Hesselmans, G.H.F.M.

    1993-08-01

    In the late eighties several reports have been published on climate change and sea level rise. In the meantime insights may have changed due to the availability of better and more observations and/or more advanced climate models. The aim of this report is to present the most recent findings with respect to climate change, in particular of sea level rise, storm surges and river peak flows. These climate factors are important for the safety of low-lying areas with respect to coastal erosion and flooding. In the first chapters a short review is presented of a few of the eighties reports. Furthermore, the predictions by state of the art climate models at that time are given. The reports from the eighties should be considered as 'old' information, whereas the IPCC supplement and work, for example, by Wigley should be considered as new information. To assess the latest findings two experts in this field were interviewed: dr J. Oerlemans and dr C.J.E. Schuurmans, a climate expert from the Royal Netherlands Meteorological Institute (KNMI). Their views are presented together with results published in recent papers on the subject. On the basis of this assessment, the report presents current knowledge regarding predictions of climate change (including sea-level rise) over the next century, together with an assessment of the uncertainties associated with these predictions. 14 figs., 11 tabs., 24 refs

  8. Collective behaviour of climate indices in the North Pacific air—sea system and its potential relationships with decadal climate changes

    International Nuclear Information System (INIS)

    Wang Xiao-Juan; Zhi Rong; He Wen-Ping; Gong Zhi-Qiang

    2012-01-01

    A climate network of six climate indices of the North Pacific air—sea system is constructed during the period of 1948–2009. In order to find out the inherent relationship between the intrinsic mechanism of climate index network and the important climate shift, the synchronization behaviour and the coupling behaviour of these indices are investigated. Results indicate that climate network synchronization happened around the beginning of the 1960s, in the middle of the 1970s and at the beginnings of the 1990s and the 2000s separately. These synchronization states were always followed by the decrease of the coupling coefficient. Each synchronization of the network was well associated with the abrupt phase or trend changes of annually accumulated abnormal values of North Pacific sea-surface temperature and 500-hPa height, among which the one that happened in the middle of the 1970s is the most noticeable climate shift. We can also obtain this mysterious shift from the first mode of the empirical orthogonal function of six indices. That is to say, abrupt climate shift in North Pacific air—sea system is not only shown by the phase or trend changes of climate indices, but also might be indicated by the synchronizing and the coupling of climate indices. Furthermore, at the turning point of 1975, there are also abrupt correlation changes in the yearly mode of spatial degree distribution of the sea surface temperature and 500-hPa height in the region of the North Pacific, which further proves the probability of climate index synchronization and coupling shift in air—sea systems. (geophysics, astronomy, and astrophysics)

  9. Collective behaviour of climate indices in the North Pacific air-sea system and its potential relationships with decadal climate changes

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Juan; Zhi Rong; He Wen-Ping; Gong Zhi-Qiang

    2012-01-01

    A climate network of six climate indices of the North Pacific air-sea system is constructed during the period of 1948-2009.In order to find out the inherent relationship between the intrinsic mechanism of climate index network and the important climate shift,the synchronization behaviour and the coupling behaviour of these indices are investigated.Results indicate that climate network synchronization happened around the beginning of the 1960s,in the middle of the 1970s and at the beginnings of the 1990s and the 2000s separately.These synchronization states were always followed by the decrease of the coupling coefficient.Each synchronization of the network was well associated with the abrupt phase or trend changes of annually accumulated abnormal vaiues of North Pacific sea-surface temperature and 500-hPa height,among which the one that happened in the middle of the 1970s is the most noticeable climate shift.We can also obtain this mysterious shift from the first mode of the empirical orthogonal function of six indices.That is to say,abrupt climate shift in North Pacific air-sea system is not only shown by the phase or trend changes of climate indices,but also night be indicated by the synchronizing and the coupling of climate indices.Furthermore,at the turning point of 1975,there are also abrupt correlation changes in the yearly mode of spatial degree distribution of the sea surface temperature and 500-hPa height in the region of the North Pacific,which further proves the probability of climate index synchronization and coupling shift in air-sea systems.

  10. Linear trend and abrupt changes of climate indices in the arid region of northwestern China

    Science.gov (United States)

    Wang, Huaijun; Pan, Yingping; Chen, Yaning; Ye, Zhengwei

    2017-11-01

    In recent years, climate extreme events have caused increasing direct economic and social losses in the arid region of northwestern China. Based on daily temperature and precipitation data from 1960 to 2010, this paper discussed the linear trend and abrupt changes of climate indices. The general evolution was obtained by the empirical orthogonal function (EOF), the Mann-Kendall test, and the distribution-free cumulative sum chart (CUSUM) test. The results are as follows: (1) climate showed a warming trend at annual and seasonal scale, with all temperature indices exhibiting statistically significant changes. The warm indices have increased, with 1.37%days/decade of warm days (TX90p), 0.17 °C/decade of warmest days (TXx) and 1.97 days/decade of warm spell duration indicator (WSDI), respectively. The cold indices have decreased, with - 1.89%days/decade, 0.65 °C/decade and - 0.66 days/decade for cold nights (TN10p), coldest nights (TNn) and cold spell duration indicator (CSDI), respectively. The precipitation indices have also increased significantly, coupled with the changes of magnitude (max 1-day precipitation amount (RX1day)), frequency (rain day (R0.1)), and duration (consecutive dry days (CDD)). (2) Abrupt changes of the annual regional precipitation indices and the minimum temperature indices were observed around 1986, and that of the maximum temperature indices were observed in 1996. (3) The EOF1 indicated the overall coherent distribution for the whole study area, and its principal component (PC1) was also observed, showing a significant linear trend with an abrupt change, which were in accordance with the regional observation results. EOF2 and EOF3 show contrasts between the southern and northern study areas, and between the eastern and western study areas, respectively, whereas no significant tendency was observed for their PCs. Hence, the climate indices have changed significantly, with linear trends and abrupt changes noted for all climate indices

  11. Geopolitics of climate change: A review

    Directory of Open Access Journals (Sweden)

    Bošnjaković Branko

    2012-01-01

    Full Text Available The paper reviews the geopolitical elements of the emerging discourse on how to control, and cope with climate change. Two complementary approaches may be distinguished: the actor-related approach analyses the positioning of states and interest groups, which develop strategies on coping with climate change; the other approach addresses processes and problem areas (physical, economic, demographic… emerging in the geographic space as a consequence of, or linked to climate change. With failing mitigation policies and instruments, the urgency of adaptation to climate change is increasing. Assessment of regional consequences of climate change includes the perceptions and motivations of presumed losers or winners. New security implications related to climate change are emerging in the Arctic, South-East Asia, Africa and the Pacific. Energy supply security is a dominant factor in geopolitical considerations. The geopolitics of climate change is inextricably linked to many other issues of globalization. Significant shift of global power raises the discussion of ethical responsibility. Climate change is evolving as a testing ground for competitiveness and innovation potential of political and economic models in achieving sustainability.

  12. Responsible investors acting on climate change. Investors acting on climate change. Climate: Investors take action

    International Nuclear Information System (INIS)

    Simon, Marie; Blanc, Dominique; Husson-Traore, Anne-Catherine; Amiell, Alison; Barochez, Aurelie de; Conti, Sophie; Kamelgarn, Yona; Bonnet, Olivier; Braman, Stuart; Chenet, Hugues; Fisher, Remco; Hellier, Mickael; Horster, Maximilian; Kindelbacher, Sophie; Leaton, James; Lieblich, Sebastien; Neuneyer, Dustin; Lenoel, Benjamin; Smart, Lauren; Torklep Meisingset, Christine

    2015-02-01

    Some investors are willing to lower the carbon emission financed by their investment, recognizing that climate change has financial impacts. At first they measure the carbon footprint of their portfolio, than initiate shareholder engagement actions at oil and gas companies, publish list of exclusion composed of the most carbon-intensive companies and ask for ex fossil fuels indices. In June 2015, Novethic launches the first actualisation of its study released on February 2015 on the mobilisation of investors on climate change over the whole 2015 year. The trend is gaining momentum since more than 200 additional investors publicly disclosed commitments to integrate climate risk into their investment and management practices. In September 2015, for its second update of the report on how investors are taking action on climate change, more than 800 entities were screened. As a key result, investor's actions gain momentum: approaches are growing in number and becoming more expert, divestments are widespread in Europe, and green investments promises are more ambitious. The last edition of November 2015 highlights and scans an exclusive panel of 960 investors worth Euro 30 trillion of assets who have made steps forward to tackle climate change. During the last 8 months, their number has almost increased twofold. This document brings together the first edition of Novethic's study and its three updates

  13. Climate change and health in Bangladesh: a baseline cross-sectional survey.

    Science.gov (United States)

    Kabir, Md Iqbal; Rahman, Md Bayzidur; Smith, Wayne; Lusha, Mirza Afreen Fatima; Milton, Abul Hasnat

    2016-01-01

    Bangladesh is facing the unavoidable challenge of adaptation to climate change. However, very little is known in relation to climate change and health. This article provides information on potential climate change impact on health, magnitude of climate-sensitive diseases, and baseline scenarios of health systems to climate variability and change. A cross-sectional study using multistage cluster sampling framework was conducted in 2012 among 6,720 households of 224 rural villages in seven vulnerable districts of Bangladesh. Information was obtained from head of the households using a pretested, interviewer-administered, structured questionnaire. A total of 6,720 individuals participated in the study with written, informed consent. The majority of the respondents were from the low-income vulnerable group (60% farmers or day labourers) with an average of 30 years' stay in their locality. Most of them (96%) had faced extreme weather events, 45% of people had become homeless and displaced for a mean duration of 38 days in the past 10 years. Almost all of the respondents (97.8%) believe that health care expenditure increased after the extreme weather events. Mean annual total health care expenditure was 6,555 Bangladeshi Taka (BDT) (1 USD=77 BDT in 2015) and exclusively out of pocket of the respondents. Incidence of dengue was 1.29 (95% CI 0.65-2.56) and malaria 13.86 (95% CI 6.00-32.01) per 1,000 adult population for 12 months preceding the data collection. Incidence of diarrhoea and pneumonia among under-five children of the households for the preceding month was 10.3% (95% CI 9.16-11.66) and 7.3% (95% CI 6.35-8.46), respectively. The findings of this survey indicate that climate change has a potential adverse impact on human health in Bangladesh. The magnitude of malaria, dengue, childhood diarrhoea, and pneumonia was high among the vulnerable communities. Community-based adaptation strategy for health could be beneficial to minimise climate change attributed health

  14. Climate change and health in Bangladesh: a baseline cross-sectional survey

    Directory of Open Access Journals (Sweden)

    Md Iqbal Kabir

    2016-04-01

    Full Text Available Background: Bangladesh is facing the unavoidable challenge of adaptation to climate change. However, very little is known in relation to climate change and health. This article provides information on potential climate change impact on health, magnitude of climate-sensitive diseases, and baseline scenarios of health systems to climate variability and change. Design: A cross-sectional study using multistage cluster sampling framework was conducted in 2012 among 6,720 households of 224 rural villages in seven vulnerable districts of Bangladesh. Information was obtained from head of the households using a pretested, interviewer-administered, structured questionnaire. A total of 6,720 individuals participated in the study with written, informed consent. Results: The majority of the respondents were from the low-income vulnerable group (60% farmers or day labourers with an average of 30 years’ stay in their locality. Most of them (96% had faced extreme weather events, 45% of people had become homeless and displaced for a mean duration of 38 days in the past 10 years. Almost all of the respondents (97.8% believe that health care expenditure increased after the extreme weather events. Mean annual total health care expenditure was 6,555 Bangladeshi Taka (BDT (1 USD=77 BDT in 2015 and exclusively out of pocket of the respondents. Incidence of dengue was 1.29 (95% CI 0.65–2.56 and malaria 13.86 (95% CI 6.00–32.01 per 1,000 adult population for 12 months preceding the data collection. Incidence of diarrhoea and pneumonia among under-five children of the households for the preceding month was 10.3% (95% CI 9.16–11.66 and 7.3% (95% CI 6.35–8.46, respectively. Conclusions: The findings of this survey indicate that climate change has a potential adverse impact on human health in Bangladesh. The magnitude of malaria, dengue, childhood diarrhoea, and pneumonia was high among the vulnerable communities. Community-based adaptation strategy for health

  15. Role of Soil Moisture vs. Recent Climate Change for the 2010 Heat Wave in Western Russia

    Science.gov (United States)

    Hauser, Mathias; Orth, René; Seneviratne, Sonia

    2016-04-01

    Extreme event attribution statements are often conditional on increased greenhouse gas concentrations or a particular ocean state, but not on other physical factors of the climate system. Here we extend the classical framework and assess the influence of soil moisture on a heat wave to obtain a physical attribution statement. In particular, we test the role of soil-moisture-temperature feedbacks which have been shown to be generally relevant for the build-up of exceptionally high temperatures. As a case study we investigate the severe 2010 heat wave in western Russia, which was previously found to be influenced by anthropogenic climate change. We quantify the relative role of climate change and that of soil moisture-temperature feedbacks with the event attribution framework and analyze ensemble simulations to distinguish the effect of climate change and the 2010 soil moisture conditions for annual maximum temperatures. We find that climate change from 1960 to 2000 alone has approximately tripled the risk of a severe heat wave in western Russia. The combined effect of climate change and the dry 2010 soil moisture yields a 13 times higher heat wave risk. We conclude that internal climate variability causing the dry 2010 soil moisture conditions formed the basis for this extreme heatwave.

  16. Global climate change and international security

    Energy Technology Data Exchange (ETDEWEB)

    Rice, M.

    1991-01-01

    On May 8--10, 1991, the Midwest Consortium of International Security Studies (MCISS) and Argonne National Laboratory cosponsored a conference on Global Climate Change and International Security. The aim was to bring together natural and social scientists to examine the economic, sociopolitical, and security implications of the climate changes predicted by the general circulation models developed by natural scientists. Five themes emerged from the papers and discussions: (1) general circulation models and predicted climate change; (2) the effects of climate change on agriculture, especially in the Third World; (3) economic implications of policies to reduce greenhouse gas emissions; (4) the sociopolitical consequences of climate change; and (5) the effect of climate change on global security.

  17. Climate Change Through a Poverty Lens

    Science.gov (United States)

    Rozenberg, J.; Hallegatte, S.

    2017-12-01

    Analysis of the economic impact of climate change typically considers regional or national economies and assesses its impact on macroeconomic aggregates such as gross domestic product. These studies therefore do not investigate the distributional impacts of climate change within countries or the impacts on poverty. This Perspective aims to close this gap and provide an assessment of climate change impacts at the household level to investigate the consequences of climate change for poverty and for poor people. It does so by combining assessments of the physical impacts of climate change in various sectors with household surveys. In particular, it highlights how rapid and inclusive development can reduce the future impact of climate change on poverty.

  18. Climate change in Nova Scotia : a background paper to guide Nova Scotia's climate change action plan

    International Nuclear Information System (INIS)

    2007-10-01

    Climate change causes changes in the temperature of the earth, the level of the sea, and the frequency of extreme weather conditions. The province of Nova Scotia recently released an act related to environmental goals and sustainable prosperity. Addressing climate change is a key element in achieving Nova Scotia's sustainable prosperity goals outlined in the act. The Nova Scotia Department of Energy is working towards developing both policy and action, to help meet its target of a 10 per cent reduction in greenhouse gases from 1990 levels by the year 2020. Two major plans are underway, notably a climate change action plan and a renewed energy strategy. This report provided background information on Nova Scotia's climate change action plan. It discussed climate change issues affecting Nova Scotia, air pollutants, energy sources in Nova Scotia, energy consumers in the province, and Nova Scotia's approach to climate change. The report also discussed actions underway and funding sources. It was concluded that in order for the climate change action plan to be successful, Nova Scotians must use energy more efficiently; use renewable energy; use cleaner energy; and plan for change. 13 refs., 2 tabs., 6 figs., 4 appendices

  19. Adaptive genetic potential of coniferous forest tree species under climate change: implications for sustainable forest management

    Science.gov (United States)

    Mihai, Georgeta; Birsan, Marius-Victor; Teodosiu, Maria; Dumitrescu, Alexandru; Daia, Mihai; Mirancea, Ionel; Ivanov, Paula; Alin, Alexandru

    2017-04-01

    Mountain ecosystems are extremely vulnerable to climate change. The real potential for adaptation depends upon the existence of a wide genetic diversity in trees populations, upon the adaptive genetic variation, respectively. Genetic diversity offers the guarantee that forest species can survive, adapt and evolve under the influence of changing environmental conditions. The aim of this study is to evaluate the genetic diversity and adaptive genetic potential of two local species - Norway spruce and European silver fir - in the context of regional climate change. Based on data from a long-term provenance experiments network and climate variables spanning over more than 50 years, we have investigated the impact of climatic factors on growth performance and adaptation of tree species. Our results indicate that climatic and geographic factors significantly affect forest site productivity. Mean annual temperature and annual precipitation amount were found to be statistically significant explanatory variables. Combining the additive genetic model with the analysis of nuclear markers we obtained different images of the genetic structure of tree populations. As genetic indicators we used: gene frequencies, genetic diversity, genetic differentiation, genetic variance, plasticity. Spatial genetic analyses have allowed identifying the genetic centers holding high genetic diversity which will be valuable sources of gene able to buffer the negative effects of future climate change. Correlations between the marginal populations and in the optimal vegetation, between the level of genetic diversity and ecosystem stability, will allow the assessment of future risks arising from current genetic structure. Therefore, the strategies for sustainable forest management have to rely on the adaptive genetic variation and local adaptation of the valuable genetic resources. This work was realized within the framework of the project GENCLIM (Evaluating the adaptive potential of the main

  20. Capturing Tweets on Climate Change: What is the role of Twitter in Climate Change Communication?

    Science.gov (United States)

    Ngo, A. M.; McNeal, K.; Luginbuhl, S.; Enteen, J.

    2015-12-01

    Climate change is a major environmental issue that is often discussed throughout the world using social media outlets such as Twitter. This research followed and collected tweets about climate change as they related to two events: (i) the June 18, 2015 release of the Encyclical by Pope Francis which included content about climate change and (ii) the upcoming COP21 conference, a United Nations climate change conference, to be held on Dec. 7-8, 2015 in Paris. Using a Twitter account and Ncapture we were able to collect tens of thousands of climate change related tweets that were then loaded into a program called Nvivo which stored the tweets and associated publically available user information. We followed a few major hashtags such as COP21, UNFCCC, @climate, and the Pope. We examined twitter users, the information sources, locations, number of re-tweets, and frequency of tweets as well as the category of the tweet in regard to positive, negative, and neutral positions about climate. Frequency analysis of tweets over a 10 day period of the Encyclical event showed that ~200 tweets per day were made prior to the event, with ~1000 made on the day of the event, and ~100 per day following the event. For the COP21 event, activity ranged from 2000-3000 tweets per day. For the Encyclical event, an analysis of 1100 tweets on the day of release indicated that 47% of the tweets had a positive perspective about climate change, 50% were neutral, 1% negative, and 2% were unclear. For the COP21 event, an analysis of 342 tweets randomly sampled from 31,721 tweets, showed that 53% of the tweets had a positive perspective about climate change, 12% were neutral, 13% negative, and 22% were unclear. Differences in the frequency and perspectives of tweets were likely due to the nature of the events, one a long-term and recurring international event and the other a single international religious-oriented event. We tabulated the top 10 tweets about climate change as they relate to these two