WorldWideScience

Sample records for clic quadrupole vacuum

  1. CLIC Quadrupole Module final report

    CERN Document Server

    Artoos, K; Mainaud-Durand, H

    2013-01-01

    Future Linear colliders will need particle beam sizes in the nanometre range. The beam also needs to be stable all along the beam line. The CLIC Main Beam Quadrupole (MBQ) module has been defined and studied. It is meant as a test stand for stabilisation and pre-alignment with a MB Quadrupole. The main topic that has been tackled concerns the Quadrupole magnet stabilisation to 1nm at 1Hz. This is needed to obtain the desired CLIC luminosity of 2.1034 cm-2m-1. The deliverable was demonstrated by procuring a MBQ and by stabilising a powered and cooled CLIC MBQ quadrupole. In addition, the stabilisation system has to be compatible with the pre-alignment procedures. Pre-alignment movement resolution has been demonstrated to 1m. The last step is the combined test of stability with a quadrupole on a CLIC Module with the pre-alignment.

  2. Design of the CLIC Quadrupole Vacuum Chambers

    CERN Document Server

    Garion, C

    2010-01-01

    The Compact Linear Collider, under study, requires vacuum chambers with a very small aperture, of the order of 8 mm in diameter, and with a length up to around 2 m for the main beam quadrupoles. To keep the very tight geometrical tolerances on the quadrupoles, no bake out is allowed. The main issue is to reach UHV conditions (typically 10-9 mbar static pressure) in a system where the vacuum performance is driven by water outgassing. For this application, a thinwalled stainless steel vacuum chamber with two ante chambers equipped with NEG strips, is proposed. The mechanical design, especially the stability analysis, is shown. The key technologies of the prototype fabrication are given. Vacuum tests are carried out on the prototypes. The test set-up as well as the pumping system conditions are presented.

  3. Stabilisation and precision pointing quadrupole magnets in the Compact Linear Collider (CLIC)

    CERN Document Server

    Janssens, Stef; Linde, Frank; van den Brand, Jo; Bertolini, Alessandro; Artoos, Kurt

    This thesis describes the research done to provide stabilisation and precision positioning for the main beam quadrupole magnets of the Compact Linear Collider CLIC. The introduction describes why new particle accelerators are needed to further the knowledge of our universe and why they are linear. A proposed future accelerator is the Compact Linear Collider (CLIC) which consists of a novel two beam accelerator concept. Due to its linearity and subsequent single pass at the interaction point, this new accelerator requires a very small beam size at the interaction point, in order to increase collision effectiveness. One of the technological challenges, to obtain these small beam sizes at the interaction point, is to keep the quadrupole magnets aligned and stable to 1.5 nm integrated r.m.s. in vertical and 5 nm integrated root mean square (r.m.s.) in lateral direction. Additionally there is a proposal to create an intentional offset (max. 50 nm every 20 ms with a precision of +/- 1 nm), for several quadrupole ma...

  4. Permanent magnet quadrupoles for the CLIC Drive Beam decelerator

    CERN Document Server

    Shepherd, Ben; Collomb, Norbert

    2012-01-01

    STFC in collaboration with CERN has developed a new type of adjustable permanent magnet based quadrupole for the CLIC Drive Beam Decelerator. It uses vertical movement of the permanent magnets to achieve an integrated gradient range of 3.6-14.6T, which will allow it to be used for the first 60% of the decelerator line. Construction of a prototype of this magnet has begun; following this, it will be measured magnetically at CERN and Daresbury Laboratory.

  5. Accelerator and Technical Sector Seminar: Mechanical stabilization and positioning of CLIC quadrupoles with sub-nanometre resolution

    CERN Multimedia

    2011-01-01

    Thursday 24 November 2010 Accelerator and Technical Sector Seminar at 14:15  -  BE Auditorium, bldg. 6 (Meyrin) – please note unusual place Mechanical stabilization and positioning of CLIC quadrupoles with sub-nanometre resolution Stef Janssens /EN-MME Abstract: To reach the required luminosity at the CLIC interaction point, about 4000 quadrupoles are needed to obtain a vertical beam size of 1 nm at the interaction point. The mechanical jitter of the quadrupole magnets will result in an emittance growth. An active vibration isolation system is required to reduce vibrations from the ground and from external forces to about 1.5 nm integrated root mean square (r.m.s.) vertical displacement at 1 Hz. A short overview of vibration damping and isolation strategies will be presented as well as a comparison of existing systems. The unprecedented resolution requirements and the instruments enabling these measurements will be discussed. The vibration sources from which the magnets need to...

  6. Drive Beam Quadrupoles for the CLIC Project: a Novel Method of Fiducialisation and a New Micrometric Adjustment System

    CERN Document Server

    AUTHOR|(SzGeCERN)411678; Duquenne, Mathieu; Sandomierski, Jacek; Sosin, Mateusz; Rude, Vivien

    2014-01-01

    This paper presents a new method of fiducialisation applied to determine the magnetic axis of the Drive Beam quadrupole of the CLIC project with respect to external alignment fiducials, within a micrometric accuracy and precision. It introduces also a new micrometric adjustment system along 5 Degrees of Freedom, developed for the same Drive Beam quadrupole. The combination of both developments opens very interesting perspectives to get a more simple and accurate alignment of the quadrupoles.

  7. Status of a study of stabilization and fine positioning of CLIC quadrupoles to the nanometre level

    CERN Document Server

    Artoos, K; Esposito, M; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Janssens, S; Kuzmin, A; Leuxe, R; Moron Ballester, R

    2011-01-01

    Mechanical stability to the nanometre and below is required for the Compact Linear Collider (CLIC) quadrupoles to frequencies as low as 1 Hz. An active stabilization and positioning system based on very stiff piezo electric actuators and inertial reference masses is under study for the Main Beam Quadrupoles (MBQ). The stiff support was selected for robustness against direct forces and for the option of incrementally repositioning the magnet with nanometre resolution. The technical feasibility was demonstrated by a representative test mass being stabilized and repositioned to the required level in the vertical and lateral direction. Technical issues were identified and the development programme of the support, sensors, and controller was continued to increase the performance, integrate the system in the overall controller, adapt to the accelerator environment, and reduce costs. The improvements are implemented in models, test benches, and design of the first stabilized prototype CLIC magnet. The characterizati...

  8. Fast Beam-ion Instabilities in CLIC Main Linac Vacuum Specifications

    CERN Document Server

    Oeftiger, Adrian

    2011-01-01

    Specifications for the vacuum pressure in the CLIC electron Main Linac are determined by the onset of the fast beam-ion instability (FBII). When the electron beam is accelerated in the Main Linac, it ionizes the residual gas in the chamber through scattering ionization. If the density of ions around the beam exceeds a certain threshold, a resonant motion between the electron beam and the ions can be excited. A two-stream instability appears and as a result the beam acquires a coherent motion, which can quickly lead to beam quality degradation or even complete loss. Thus, the vacuum pressure must be kept below this threshold to prevent the excitation of FBII. The CLIC Main Linac poses an additional challenge with respect to previous FBII situations, because the gas ionization does not solely occur via scattering. The submicrometric beam sizes lead to extremely high electric fields around the beam and therefore result in field ionization beyond a certain threshold. The residual gas in the corresponding volume a...

  9. CLIC main beam quadrupole active pre-alignment based on cam movers

    CERN Document Server

    Kemppinen, J; Leuxe, R; Mainaud Durand, H; Sandomierski, J; Sosin, M

    2012-01-01

    Compact Linear Collider (CLIC) is a study for a future 48 km long linear electron-positron collider in the multi TeV range. Its target luminosity can only be reached if the main beam quadrupoles (MB quads) are actively pre-aligned within 17 µm in sliding windows of 200 m with respect to a straight reference line. In addition to the positioning requirement, the pre-alignment system has to provide a rigid support for the nano-stabilization system to ensure that the first eigenfrequency is above 100 Hz. Re-adjustment based on cam movers was chosen for detailed studies to meet the stringent pre-alignment requirements. There are four different types of MB quads in CLIC. Their lengths and masses vary so that at least two types of cam movers have to be developed. The validation of the cams with less stringent space restrictions has proceeded to a test setup in 5 degrees of freedom (DOF). Prototypes of the more demanding, smaller cams have been manufactured and they are under tests in 1 DOF. This paper describes the...

  10. Vacuum arc localization in CLIC prototype radio frequency accelerating structures

    CERN Document Server

    AUTHOR|(CDS)2091976; Koivunen, Visa

    2016-04-04

    A future linear collider capable of reaching TeV collision energies should support accelerating gradients beyond 100 MV/m. At such high fields, the occurrence of vacuum arcs have to be mitigated through conditioning, during which an accelerating structure’s resilience against breakdowns is slowly increased through repeated radio frequency pulsing. Conditioning is very time and resource consuming, which is why developing more efficient procedures is desirable. At CERN, conditioning related research is conducted at the CLIC high-power X-band test stands. Breakdown localization is an important diagnostic tool of accelerating structure tests. Abnormal position distributions highlight issues in structure design, manufacturing or operation and may consequently help improve these processes. Additionally, positioning can provide insight into the physics of vacuum arcs. In this work, two established positioning methods based on the time-difference-ofarrival of radio frequency waves are extended. The first method i...

  11. Study of the hybrid controller electronics for the nano-stabilization of mechanical vibrations of CLIC quadrupoles

    International Nuclear Information System (INIS)

    Carmona, P Fernandez; Artoos, K; Esposito, M; Guinchard, M; Janssens, S; Kuzmin, A; Ballester, R Moron; Collette, C

    2011-01-01

    In order to achieve the required levels of luminosity in the CLIC linear collider, mechanical stabilization of quadrupoles to the nanometre level is required. The paper describes a design of hybrid electronics combining an analogue controller and digital communication with the main machine controller. The choice of local analogue control ensures the required low latency while still keeping sufficiently low noise level. Furthermore, it reduces the power consumption, rack space and cost. Sensitivity to radiation single events upsets is reduced compared to a digital controller. The digital part is required for fine tuning and real time monitoring via digitization of critical parameters.

  12. Tunable high-gradient permanent magnet quadrupoles

    CERN Document Server

    Shepherd, B J A; Marks, N; Collomb, N A; Stokes, D G; Modena, M; Struik, M; Bartalesi, A

    2014-01-01

    A novel type of highly tunable permanent magnet (PM) based quadrupole has been designed by the ZEPTO collaboration. A prototype of the design (ZEPTO-Q1), intended to match the specification for the CLIC Drive Beam Decelerator, was built and magnetically measured at Daresbury Laboratory and CERN. The prototype utilises two pairs of PMs which move in opposite directions along a single vertical axis to produce a quadrupole gradient variable between 15 and 60 T/m. The prototype meets CLIC's challenging specification in terms of the strength and tunability of the magnet.

  13. High performance electronics for alignment regulation on the CLIC 30GHz modules

    International Nuclear Information System (INIS)

    Carrica, D.; Coosemans, W.; Pittin, R.

    1999-01-01

    CERN is studying a linear collider (CLIC) to obtain electron-positron collisions with centre-of-mass energies in the TeV range. To demonstrate the feasibility of CLIC, a test facility (CTF2) is being constructed. CTF2 consists of 4 identical modules, each 1.4 m long module consists of 2 linac with a girder and a doublet or a triplet quadrupole. Girders are elements that support mechanically the cavities of the accelerator while the main objective of the quadrupole is to focus particle beams. The alignment system has 2 principal utilities. The first is to pre-align the elements to make the beam pass through the aperture and produce signals in beam position monitors. In respect to these signals the girders and the quadrupoles are moved for making the definitive alignment. The second utility is to maintain the elements in this position. The alignment control system of CTF2 must regulate the position of the girders and quadrupoles with a precision < 10 μm. In fact an accuracy of 1 μ has been obtained on CTF2. Thanks to its flexibility and its simplicity, the system is expected to adapt easily to CLIC even if it means to control modules that involve up to a maximum of 384 motors and 896 sensors

  14. Status of the CLIC study on magnet stabilisation and time-dependent luminosity

    CERN Document Server

    Assmann, R W; Guignard, Gilbert; Leros, Nicolas; Redaelli, S; Schnell, Wolfgang; Schulte, Daniel; Wilson, Ian H; Zimmermann, Frank

    2002-01-01

    The nanometer beam size at the CLIC interaction point imposes magnet vibration tolerances that range from 0.2 nm to a few nanometers. This is well below the floor vibra-tion usually observed. A test stand for magnet stability was set-up at CERN in the immediate neighborhood of roads, operating accelerators, manual shops, and regular office space. It was equipped with modern stabilization tech-nology. First results are presented, demonstrating signif-icant damping of floor vibration. CLIC quadrupoles have been stabilized vertically to an rms motion of (0.9 ± 0.1) n above 4 Hz, or (1.3 ± 0.2) nm with a nominal flow of cooling water. For the horizontal and longitudinal directions respectively, a CLIC quadrupole was stabilized to (0.4 ± 0.1) nm and (3.2 ± 0.4) nm.

  15. Validation of CLIC Re-Adjustment System Based on Eccentric Cam Movers One Degree of Freedom Mock-Up

    CERN Document Server

    Kemppinen, J; Lackner, F

    2011-01-01

    Compact Linear Collider (CLIC) is a 48 km long linear accelerator currently studied at CERN. It is a high luminosity electron-positron collider with an energy range of 0.5-3 TeV. CLIC is based on a two-beam technology in which a high current drive beam transfers RF power to the main beam accelerating structures. The main beam is steered with quadrupole magnets. To reach CLIC target luminosity, the main beam quadrupoles have to be actively pre-aligned within 17 µm in 5 degrees of freedom and actively stabilised at 1 nm in vertical above 1 Hz. To reach the pre-alignment requirement as well as the rigidity required by nano-stabilisation, a system based on eccentric cam movers is proposed for the re-adjustment of the main beam quadrupoles. Validation of the technique to the stringent CLIC requirements was started with tests in one degree of freedom on an eccentric cam mover. This paper describes the dedicated mock-up as well as the tests and measurements carried out with it. Finally, the test results are present...

  16. Status of Ground Motion Mitigation Techniques for CLIC

    CERN Document Server

    Snuverink, J; Collette, C; Duarte Ramos, F; Gaddi, A; Gerwig, H; Janssens, S; Pfingstner, J; Schulte, D; Balik, G; Brunetti, L; Jeremie, A; Burrows, P; Caron, B; Resta-Lopez, J

    2011-01-01

    The Compact Linear Collider (CLIC) accelerator has strong stability requirements on the position of the beam. In particular, the beam position will be sensitive to ground motion. A number of mitigation techniques are proposed - quadrupole stabilisation and positioning, final doublet stabilisation as well as beam based orbit and interaction point (IP) feedback. Integrated studies of the impact of the ground motion on the CLIC Main Linac (ML) and Beam Delivery System (BDS) have been performed, which model the hardware and beam performance in detail. Based on the results future improvements of the mitigation techniques are suggested and simulated. It is shown that with the current design the tight luminosity budget for ground motion effects is fulfilled and accordingly, an essential feasibility issue of CLIC has been addressed.

  17. Data supporting characterization of CLIC1, CLIC4, CLIC5 and DmCLIC antibodies and localization of CLICs in endoplasmic reticulum of cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Devasena Ponnalagu

    2016-06-01

    Full Text Available Chloride intracellular channel (CLICs proteins show 60–70% sequence identity to each other, and exclusively localize to the intracellular organelle membranes and cytosol. In support of our recent publication, “Molecular identity of cardiac mitochondrial chloride intracellular channel proteins” (Ponnalagu et al., 2016 [1], it was important to characterize the specificity of different CLIC paralogs/ortholog (CLIC1, CLIC4, CLIC5 and DmCLIC antibodies used to decipher their localization in cardiac cells. In addition, localization of CLICs in the other organelles such as endoplasmic reticulum (ER of cardiomyocytes was established. This article also provides data on the different primers used to show the relative abundance of CLIC paralogs in cardiac tissue and the specificity of the various CLIC antibodies used. We demonstrate that the predominant CLICs in the heart, namely CLIC1, CLIC4 and CLIC5, show differential distribution in endoplasmic reticulum. CLIC1 and CLIC4 both show co-localization to the endoplasmic reticulum whereas CLIC5 does not.

  18. Test of the beam effect on vacuum arc occurrence in a high-gradient accelerating structure for the CLIC project

    CERN Document Server

    AUTHOR|(CDS)2130409; Gagliardi, Martino

    A new generation of lepton colliders capable of reaching TeV energies is pres- ently under development, and to succeed in this task it is necessary to show that the technology for such a machine is available. The Compact Linear Collider (CLIC) is a possible design option among the future lepton collider projects. It consists of two normal-conducting linacs. Accelerating structures with a gradient of the order of 100 MV/m are necessary to reach the required high energies within a reasonable machine length. One of the strictest require- ments for such accelerating structures is a relatively low occurrence of vacuum arcs. CLIC prototype structures have been tested in the past, but only in absence of beam. In order to proof the feasibility of the high gradient technology for building a functional collider, it is necessary to understand the effect of the beam presence on the vacuum breakdowns. Tests of this type have never been performed previously. The main goal of this work is to provide a first measurement of t...

  19. Technical Specification for the CLIC Two-Beam Module

    CERN Document Server

    Riddone, G; Nousiainen, R; Samoshkin, A; Schulte, D; Syratchev, I; Wuensch, W; Zennaro, R

    2008-01-01

    A high-energy (0.5-3 TeV centre-of-mass), highluminosity Compact Linear Collider (CLIC) is being studied at CERN [1]. The CLIC main linacs, 21-km long each, are composed of 2-m long two beam modules. This paper presents their current layout, the main requirements for the different sub-systems (alignment, supporting, stabilization, cooling and vacuum) as well as the status of their integration.

  20. Experimental verification of the CLIC Decelerator with the test Beam Line in the CLIC test facility 3

    CERN Document Server

    Lillestøl, R L; Olvegård, M; Rabiller, A N; Sterbini, G; Adli, E

    2012-01-01

    The Test Beam Line in the CLIC Test Facility 3 is the first prototype of the CLIC drive beam decelerator. The main purpose of the experiment is to demonstrate efficient 12 GHz rf power production and stable transport of an electron drive beam during deceleration. The Test Beam Line consists of a FODO structure with high precision BPMs and quadrupoles mounted on mechanical movers for precisebeam alignment. Nine out of the planned 16 Power Extraction and Transfer Structures have currently been installed and commissioned. We correlate rf power production measurements with the drive beam deceleration measurements, and compare the two measurements to the theoretical predictions. We also discuss the impact of the drive beam bunch length and bunch combination on the measurements.

  1. Study of the electronics architecture for the mechanical stabilisation of the quadrupoles of the CLIC linear accelerator

    CERN Document Server

    Artoos, K; Fernandez Carmona, P; Guinchard, M; Hauviller, C; Janssens, S; Kuzmin, A; Slaathaug, A

    2010-01-01

    To reach a sufficient luminosity, the transverse beam sizes and emittances in future linear particle accelerators should be reduced to the nanometer level. Mechanical stabilisation of the quadrupole magnets is of the utmost importance for this. The piezo actuators used for this purpose can also be used to make fast incremental orientation adjustments with a nanometer resolution. The main requirements for the CLIC stabilisation electronics is a robust, low noise, low delay, high accuracy and resolution, low band and radiation resistant feedback control loop. Due to the high number of controllers (about 4000) a cost optimization should also be made. Different architectures are evaluated for a magnet stabilisation prototype, including the sensors type and configuration, partition between software and hardware for control algorithms, and optimization of the ADC/DAC converters. The controllers will be distributed along the 50 km long accelerator and a communication bus should allow external control. Furthermore, o...

  2. Progress on low emittance tuning for the CLIC Damping Rings

    CERN Document Server

    Alabau-Gonzalvo, J; Papaphilippou, Y

    2014-01-01

    In the frame of the CLIC main Damping Ring a study on the sensitivity of the lattice to different sources of misalignment is presented. The minimum equilibrium emittance is simulated and analytically estimated under dipole and quadrupole rolls, and quadrupole and sextupole vertical offsets. The result of this study establishes alignment tolerances to preserve the vertical emittance below the design value (1 pmrad). Non-linear dynamics studies have been done to determine the dynamic aperture in the presence of misalignments.

  3. Cam Mover Alignment System positioning with the Wire Positioning with the Wire Position Sensor Feedback for CLIC

    CERN Document Server

    AUTHOR|(CDS)2077936; Mainaud Durand, Helene; Kostka, Z.S.

    2016-01-01

    Compact Linear Collider (CLIC) is a study of an electron-positron collider with nominal energy of 3 TeV and luminosity of 2 ∙ 1034 cm-2s-1. The luminosity goal leads to stringent alignment requirements for single quadrupole magnets. Vertical and lateral offset deviations with regards to a given orbit reference in both ends of a quadrupole shall be below 1 μm and quadrupole roll deviation shall be below 100 μrad. Translation in the direction of particle beam is not controlled but mechanically locked. A parallel kinematic platform based on cam movers was chosen as system for detailed studies. Earlier studies have shown that cam movers can reach the CLIC requirements through an iterative process. The paper presents new modular off-the-shelf control electronics and software including three optional positioning algorithms based on iterations as well as a more advanced algorithm which can reach target position in one movement. The advanced algorithm reads wire position sensors (WPS), calculates quadrupole orien...

  4. Development of an Eccentric CAM Based Active Pre-Alignment System for the CLIC Main Beam Quadrupole Magnet

    CERN Document Server

    Lackner, F; Collette, C; Mainaud Durand, H; Hauviller, C; Kemppinen, J; Leuxe, R

    2010-01-01

    CLIC (Compact Linear Collider) is a study for a future electron-positron collider that would allow physicists to explore a new energy region beyond the capabilities of today's particle accelerators. The demanding transverse and vertical beam sizes and emittance specifications are resulting in stringent alignment and a nanometre stability requirement. In the current feasibility study, the main beam quadrupole magnets have to be actively pre-aligned with a precision of 1 µm in 5 degrees of freedom (d.o.f.) before being mechanically stabilized to the nm scale above 1 Hz. This contribution describes the approach of performing this active pre-alignment based on an eccentric cam system. In order to limit the amplification of the vibration sources at resonant frequencies a sufficiently high Eigenfrequency is required. Therefore the contact region between cam and support was optimized for adequate stiffness based on the Hertzian theory. Furthermore, practical tests performed on a single degree of freedom mock-up wil...

  5. CLIC: Detector technology R&D for CLIC

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The Compact Linear Collider (CLIC) is a future electron-positron collider under study. It foresees e+e- collisions at centre-of-mass energies ranging from a few hundred GeV up to 3 TeV. The CLIC study is an international collaboration hosted by CERN. The lectures provide a broad overview of the CLIC project, covering the physics potential, the particle detectors and the accelerator. An overview of the CLIC physics opportunities is presented. These are best exploited in a staged construction and operation scenario of the collider. The detector technologies, fulfilling CLIC performance requirements and currently under study, are described. The accelerator design and performance, together with its major technologies, are presented in the light of ongoing component tests and large system tests. The status of the optimisation studies (e.g. for cost and power) of the CLIC complex for the proposed energy staging is included. One lecture is dedicated to the use of CLIC technologies in free electron lasers and other ...

  6. CLIC: The CLIC accelerator design and performance

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The Compact Linear Collider (CLIC) is a future electron-positron collider under study. It foresees e+e- collisions at centre-of-mass energies ranging from a few hundred GeV up to 3 TeV. The CLIC study is an international collaboration hosted by CERN. The lectures provide a broad overview of the CLIC project, covering the physics potential, the particle detectors and the accelerator. An overview of the CLIC physics opportunities is presented. These are best exploited in a staged construction and operation scenario of the collider. The detector technologies, fulfilling CLIC performance requirements and currently under study, are described. The accelerator design and performance, together with its major technologies, are presented in the light of ongoing component tests and large system tests. The status of the optimisation studies (e.g. for cost and power) of the CLIC complex for the proposed energy staging is included. One lecture is dedicated to the use of CLIC technologies in free electron lasers and other ...

  7. Development and testing of a double length pets for the CLIC experimental area

    CERN Document Server

    Sánchez, L; Gavela, D; Lara, A; Rodríguez, E; Gutiérrez, J L; Calero, J; Toral, F; Samoshkin, A; Gudkov, D; Riddone, G

    2014-01-01

    CLIC (compact linear collider) is a future e þ e collider based on normal-conducting technology, currently under study at CERN. Its design is based on a novel two-beam acceleration scheme. The main beam gets RF power extracted from a drive beam through power extraction and transfer structures (PETS). The technical feasibility of CLIC is currently being proved by its Third Test Facility (CTF3) which includes the CLIC experimental area (CLEX). Two Double Length CLIC PETS will be installed in CLEX to validate their performance with beam. This paper is focused on the engineering design, fabrication and validation of this PETS fi rst prototype. The design consists of eight identical bars, separated by radial slots in which damping material is located to absorb transverse wake fi elds, and two compact couplers placed at both ends of the bars to extract the generated power. The PETS bars are housed inside a vacuum tank designed to make the PETS as compact as possible. Several joint techniques such as vacuum brazing...

  8. CLIC: Key technology developments for the CLIC accelerator

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The Compact Linear Collider (CLIC) is a future electron-positron collider under study. It foresees e+e- collisions at centre-of-mass energies ranging from a few hundred GeV up to 3 TeV. The CLIC study is an international collaboration hosted by CERN. The lectures provide a broad overview of the CLIC project, covering the physics potential, the particle detectors and the accelerator. An overview of the CLIC physics opportunities is presented. These are best exploited in a staged construction and operation scenario of the collider. The detector technologies, fulfilling CLIC performance requirements and currently under study, are described. The accelerator design and performance, together with its major technologies, are presented in the light of ongoing component tests and large system tests. The status of the optimisation studies (e.g. for cost and power) of the CLIC complex for the proposed energy staging is included. One lecture is dedicated to the use of CLIC technologies in free electron lasers and other ...

  9. Multi-step lining-up correction of the CLIC trajectory

    CERN Document Server

    D'Amico, T E

    1999-01-01

    In the CLIC main linac it is very important to minimise the trajectory excursion and consequently the emittance dilution in order to obtain the required luminosity. Several algorithms have been proposed and lately the ballistic method has proved to be very effective. The trajectory correction method described hereafter retains the main advantages of the latter while adding some interesting features. It is based on the separation of the unknown variables like the quadrupole misalignments, the offset and slope of the injection straight line and the misalignments of the beam position monitors (BPM). This is achieved by referring the trajectory relatively to the injection line and not to the average pre-alignment line and by using two trajectories each corresponding to slightly different quadrupole strengths. A reference straight line is then derived onto which the beam is bent by a kick obtained by moving the first quadrupole. The other quadrupoles are then aligned on that line. The quality of the correction dep...

  10. CLIC CDR - physics and detectors: CLIC conceptual design report.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, E.; Demarteau, M.; Repond, J.; Xia, L.; Weerts, H. (High Energy Physics); (Many)

    2012-02-10

    This report forms part of the Conceptual Design Report (CDR) of the Compact LInear Collider (CLIC). The CLIC accelerator complex is described in a separate CDR volume. A third document, to appear later, will assess strategic scenarios for building and operating CLIC in successive center-of-mass energy stages. It is anticipated that CLIC will commence with operation at a few hundred GeV, giving access to precision standard-model physics like Higgs and top-quark physics. Then, depending on the physics landscape, CLIC operation would be staged in a few steps ultimately reaching the maximum 3 TeV center-of-mass energy. Such a scenario would maximize the physics potential of CLIC providing new physics discovery potential over a wide range of energies and the ability to make precision measurements of possible new states previously discovered at the Large Hadron Collider (LHC). The main purpose of this document is to address the physics potential of a future multi-TeV e{sup +}e{sup -} collider based on CLIC technology and to describe the essential features of a detector that are required to deliver the full physics potential of this machine. The experimental conditions at CLIC are significantly more challenging than those at previous electron-positron colliders due to the much higher levels of beam-induced backgrounds and the 0.5 ns bunch-spacing. Consequently, a large part of this report is devoted to understanding the impact of the machine environment on the detector with the aim of demonstrating, with the example of realistic detector concepts, that high precision physics measurements can be made at CLIC. Since the impact of background increases with energy, this document concentrates on the detector requirements and physics measurements at the highest CLIC center-of-mass energy of 3 TeV. One essential output of this report is the clear demonstration that a wide range of high precision physics measurements can be made at CLIC with detectors which are challenging, but

  11. CLIC Overview

    CERN Document Server

    Tomás, R

    2010-01-01

    The CLIC study is exploring the scheme for an electronpositron collider with a centre-of-mass energy of 3 TeV in order to make the multi-TeV range accessible for lepton physics. The current goal of the project is to demonstrate the feasibility of the technology by the year 2010. Recently, important progress has been made concerning the high-gradient accelerating structure tests and the experiments with beam in the CLIC test facility, CTF3. On the organizational side, the CLIC international collaborations have significantly gained momentum considerably boosting the CLIC study.

  12. CLIC OVERVIEW

    CERN Document Server

    Tomas, R

    2009-01-01

    The CLIC study is exploring the scheme for an electronpositron collider with a centre-of-mass energy of 3 TeV in order to make the multi-TeV range accessible for lepton physics. The current goal of the project is to demonstrate the feasibility of the technology by the year 2010. Recently, important progress has been made concerning the high-gradient accelerating structure tests and the experiments with beam in the CLIC test facility, CTF3. On the organizational side, the CLIC international collaborations have significantly gained momentum considerably boosting the CLIC study.

  13. Mechanical behaviour of vacuum chambers and beam screens under quench conditions in dipole and quadrupole fields

    CERN Document Server

    Rathjen, C

    2002-01-01

    A method based on analytical formulas is described to calculate bending moments, stresses, and deformations of vacuum chambers and beam screens in dipole and in quadrupole fields during a magnet quench. Solutions are given for circular and racetrack shaped structures. Without the need of time consuming calculations the solutions enable a quick design and verification of vacuum chambers and beam screens.

  14. CLIC Physics Potential

    CERN Document Server

    Pandurovic, Mila

    2017-01-01

    The CLICdp is an international collaboration that investigates the physics potential of the Compact Linear Collider (CLIC) and performs research and development of the CLIC detector. CLIC is a future multi-TeV linear electron-positron collider, designed to cover a physics program of the Standard model physics, with the emphasis on Higgs and top as well as to address the wide range of open questions of the phenomena beyond the Standard model with high precision. The CLIC is designed to be build and operated at three discrete energy stages, sort(s) = 380 GeV, 1.5 and 3.0 TeV, which are optimized for the foreseen physics program. In this talk the CLIC accelerator, detector and experimental environment of CLIC will be presented, as well as, the number of the full-simulation measurements in the Higgs, top and beyond Standard model sector, presenting the capabilities of CLIC for high precision measurements.

  15. RGA studies on aluminium chambers for transport line-2 of CLIC facility at CERN

    International Nuclear Information System (INIS)

    Kumar, K.V.A.N.P.S.; Yadav, Praveen Kumar; Sindal, B.K.; Tiwari, S.K.; Tripti, B.; Shukla, S.K.

    2009-01-01

    The Aluminium Chambers for Transport Line-2 (TL-2) of CLIC (Compact Linear Collider) facility were developed by RRCAT, Indore under the CERN-DAE collaboration work. The ultimate vacuum required for these chambers is in 10 -10 mbar range. The design and fabrication of the chambers were done at Workshop-A, RRCAT, Indore. Ultra High Vacuum (UHV) Section at RRCAT, Indore was involved in qualifying tests of these chambers for their ultimate vacuum testing and the residual gas spectrum studies as per CERN requirements. The UHV testing part was established and the RGA studies were conducted using Residual Gas Analyser (RGA, 1-100 AMU range, Make: Spectra/MKS, USA). The RGAs were used for vacuum diagnostics like checking for leaks and the vacuum quality in the chambers. Using the RGA, we could also observe out the pumping speed behaviour of a UHV Gauge (Varian UHV-24 type) and the retention-cum-evaluation of captured gases by Sputter Ion Pump was also studied. In this paper, these experiences are reported during ultimate testing of TL-2 chambers for CLIC facility. (author)

  16. Physics at CLIC

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    The Compact Linear Collider (CLIC) is a high-energy e+e- collider under development. The CLIC conceptual design report, published in 2012, concentrated on 3 TeV centre-of-mass energy. At that time operation at lower energies was not yet studied at the same level. Following the discovery of the Higgs boson, the CLIC potential for precision Higgs measurements was addressed for several centre-of-mass energies. In parallel, the scope for precision top quark physics was further explored. As a result an optimised CLIC staging scenario was defined in collaboration between accelerator and detector experts. The staging scenario aims at a maximum physics output and maximum luminosity yield with a collider built and operated in three energy steps: 380 GeV, 1.5 TeV, 3 TeV. The seminar will comprise a short status report on the CLIC accelerator and detector. Emphasis will be on the CLIC physics potential for Higgs, top quark and BSM physics in the new staging scenario.

  17. Thermo-Mechanical tests for the CLIC two-beam module study

    CERN Document Server

    Xydou, A; Riddone, G; Daskalaki, E

    2014-01-01

    The luminosity goal of CLIC requires micron level precision with respect to the alignment of the components on its two-meter long modules, composing the two main linacs. The power dissipated inside the module components introduces mechanical deformations affecting their alignment and therefore the resulting machine performance. Several two-beam prototype modules must be assembled to extensively measure their thermo-mechanical behavior under different operation modes. In parallel, the real environmental conditions present in the CLIC tunnel should be studied. The air conditioning and ventilation system providing specified air temperature and flow has been installed in the dedicated laboratory. The power dissipation occurring in the modules is being reproduced by the electrical heaters inserted inside the RF structure mock-ups and the quadrupoles. The efficiency of the cooling systems is being verified and the alignment of module components is monitored. The measurement results will be compared to finite elemen...

  18. Particle Identification algorithm for the CLIC ILD and CLIC SiD detectors

    CERN Document Server

    Nardulli, J

    2011-01-01

    This note describes the algorithm presently used to determine the particle identification performance for single particles for the CLIC ILD and CLIC SiD detector concepts as prepared in the CLIC Conceptual Design Report.

  19. CLIC Drive Beam Phase Stabilisation

    CERN Document Server

    Gerbershagen, Alexander; Schulte, Daniel

    The thesis presents phase stability studies for the Compact Linear Collider (CLIC) and focuses in particular on CLIC Drive Beam longitudinal phase stabilisation. This topic constitutes one of the main feasibility challenges for CLIC construction and is an essential component of the current CLIC stabilisation campaign. The studies are divided into two large interrelated sections: the simulation studies for the CLIC Drive Beam stability, and measurements, data analysis and simulations of the CLIC Test Facility (CTF3) Drive Beam phase errors. A dedicated software tool has been developed for a step-by-step analysis of the error propagation through the CLIC Drive Beam. It uses realistic RF potential and beam loading amplitude functions for the Drive and Main Beam accelerating structures, complete models of the recombination scheme and compressor chicane as well as of further CLIC Drive Beam modules. The tool has been tested extensively and its functionality has been verified. The phase error propagation at CLIC h...

  20. Correction of vertical dispersion and betatron coupling for the CLIC damping ring

    CERN Document Server

    Korostelev, M S

    2006-01-01

    The sensitivity of the CLIC damping ring to various kinds of alignment errors has been studied. Without any correction, fairly small vertical misalignments of the quadrupoles and, in particular, the sextupoles, introduce unacceptable distortions of the closed orbit as well as intolerable spurious vertical dispersion and coupling due to the strong focusing optics of the damping ring. A sophisticated beam-based correction scheme has been developed to bring the design target emittances and the dynamic aperture back to the ideal value. The correction using dipolar correctors and several skew quadrupole correctors allows a minimization of the closed-orbit distortion, the cross-talk between vertical and horizontal closed orbits, the residual vertical dispersion and the betatron coupling.

  1. ISSUES AND FEASIBILITY DEMONSTRATION OF CLIC SUPPORTING SYSTEM CHAIN ACTIVE PRE-ALIGNMENT USING A MULTI-MODULE TEST SETUP (MOCK-UP)

    CERN Document Server

    Sosin, Mateusz

    2016-01-01

    The implementation study of the CLIC (Compact LInear Collider) is under way at CERN with a focus on the challenging issues. The pre-alignment precision and accuracy requirements are part of these technical challenges: the permissible transverse position errors of the linac components are typically 14 micrometers over sliding windows of 200m. To validate the proposed methods and strategies, the Large Scale Metrology section at CERN has performed campaigns of measurements on the CLIC Two Beam Test Modules, focusing inter alia on the alignment performance of the CLIC “snake”- girders configuration and the Main Beam Quadrupoles supporting structures. This paper describes the activities and results of tests which were performed on the test mock-up for the qualification of the CLIC supporting system chain for active pre-alignment. The lessons learnt (“know how”), the issues encountered in the girder position determination as well as the behaviour of the mechanical components are presented.

  2. Experimental study of DC vacuum breakdown and application to high-gradient accelerating structures for CLIC

    CERN Document Server

    Shipman, Nicholas; Jones, Roger

    2016-01-01

    The compact linear collider (CLIC) is a leading candidate for the next generation high energy linear collider. As any breakdown would result in a partial or full loss of luminosity for the pulse in which it occurs, obtaining a low breakdown rate in CLIC accelerating structures is a critical requirement for the successful operation of the proposed collider. This thesis presents investigations into the breakdown phenomenon primarily in the low breakdown rate regime of interest to CLIC, performed using the CERN DC spark systems between 2011 and 2014. The design, construction and commissioning of several new pieces of hardware, as well as the development of improved techniques to measuring the inter-electrode gap distance are detailed. These hardware improvements were fundamental in enabling the exciting new experiments mentioned below, which in turn have provided significant additional insight into the phenomenon of breakdown. Experiments were performed to measure fundamental parameters of individual breakdowns...

  3. Ultrasensitive leak detection during ultrahigh vacuum evacuation by quadrupole mass spectrometer

    International Nuclear Information System (INIS)

    Chen Xu; Huang Tianbin; Wang Ligong; Jin Qiji; Cha Liangzhen

    2006-01-01

    One must do ultrasensitive leak detection during ultrahigh-vacuum (UHV) evacuation, especially just before the device is sealed off from the vacuum system, to guarantee the longevity of the sealed high-vacuum or even UHV devices with small volume. A quadrupole mass spectrometer (QMS) with an UHV evacuation system can be used under accumulation mode to do the testing. Possible accumulate modes, as well as their advantages and shortcomings, are studied experimentally and discussed in this paper. We found that the opening action of the metal valve during accumulation mode always severely affects the height of the peak indicated by QMS and causes considerable errors. If we determine the leak rate by the peak area instead of the peak height, the situation is much improved. This method has proven quite useful in ensuring the tightness quality for complex sealed UHV devices with small volumes. Ultrasensitive leak detection has been carried out for such real evacuating devices, and a leak rate of 2x10 -14 Pa·m 3 /s was detected, which is far lower than its dynamic mode and the detection limit of the current advanced commercial leak detectors

  4. A Trajectory Correction based on Multi-Step Lining-up for the CLIC Main Linac

    CERN Document Server

    D'Amico, T E

    1999-01-01

    In the CLIC main linac it is very important to minimise the trajectory excursion and consequently the emittance dilution in order to obtain the required luminosity. Several algorithms have been proposed and lately the ballistic method has proved to be very effective. The trajectory method described in this Note retains the main advantages of the latter while adding some interesting features. It is based on the separation of the unknown variables like the quadrupole misalignments, the offset and slope of the injection straight line and the misalignments of the beam position monitors (BPM). This is achieved by referring the trajectory relatively to the injection line and not to the average pre-alignment line and by using two trajectories each corresponding to slightly different quadrupole strengths. A reference straight line is then derived onto which the beam is bent by a kick obtained by moving the first quadrupole. The other quadrupoles are then aligned on that line. The quality of the correction depends mai...

  5. A Multi-TeV Linear Collider Based on CLIC Technology : CLIC Conceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Aicheler, M [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Burrows, P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Draper, M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garvey, T. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Lebrun, P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Peach, K. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Phinney, N. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Schmickler, H. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Schulte, D. [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Toge, N. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2014-02-13

    This report describes the accelerator studies for a future multi-TeV e+e- collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studies are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from the CLIC test facility at CERN (CTF3). Both the machine and detector/physics studies for CLIC have primarily focused on the 3 TeV implementation of CLIC as a benchmark for the CLIC feasibility. This report also includes specific studies for an initial 500 GeV machine, and some discussion of possible intermediate energy stages. The performance and operation issues related to operation at reduced energy compared to the nominal, and considerations of a staged construction program are included in the final part of the report. The CLIC accelerator study is organized as an international collaboration with 43 partners in 22 countries. An associated report describes the physics potential and experiments at CLIC and a shorter report in preparation will focus on the CLIC implementation strategy, together with a plan for the CLIC R&D studies 2012–2016. Critical and important implementation issues such as cost, power and schedule will be addressed there.

  6. Particle mis-identification rate algorithm for the CLIC ILD and CLIC SiD detectors

    CERN Document Server

    Nardulli, J

    2011-01-01

    This note describes the algorithm presently used to determine the particle mis- identification rate and gives results for single particles for the CLIC ILD and CLIC SiD detector concepts as prepared for the CLIC Conceptual Design Report.

  7. CLIC: Status and Plan

    CERN Document Server

    Sailer, Andre

    2014-01-01

    The Compact Linear Collider (CLIC) is a high energy electron–positron col- lider with a maximal centre-of-mass energy of 3 TeV. In order to achieve high luminosity small bunches with high intensity are necessary. These lead to strong beam-beam forces, which create a challenging background environment. The accelerator concept and the detectors designed for CLIC are presented. Results from detector benchmark studies presented in the CLIC conceptual design report are summarised.

  8. Physics and Detectors at CLIC

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    CLIC represents an attractive option for the future particle physics programme at the energy frontier. CLIC is a proposed electron-positron linear collider, based on a novel two beam accelerating structure, with the capability of operating at centre-of-mass energies of up to 3 TeV. The Physics and Detector volume of the CLIC conceptual design report was recently published as a CERN yellow report. In this seminar, I will review the conclusions of this report, focussing on four main areas. Firstly, I will give an overview of the physics potential at CLIC, and will place this in the context of a possible scenario for the staged construction of the machine. Secondly, I will discuss the challenges for a detector operating in the CLIC machine environment. I will then present detailed studies of possible detector concepts, based on high granularity particle flow calorimetry, which demonstrate that the required detector performance goals at CLIC can be met. Finally, I will highlight the main issues for the future R&a...

  9. Particle Identification performance for leptons in jets for the CLIC ILD and CLIC SiD detectors

    CERN Document Server

    Nardulli, J

    2011-01-01

    This note describes the particle identification performance for particles in jets for the CLIC ILD and CLIC SiD detector concepts as prepared in the CLIC Conceptual Design Report. The results are presented with and without the presence of the γγ → hadrons background events.

  10. Simulation of the pressure recovery time in a CLIC standard module

    CERN Document Server

    Costa-Pinto, P

    2008-01-01

    Vacuum pressure inside the CLIC accelerating structures (AS) is crucial for both beam and RF stability. Gas molecules released during RF breakdown must be evacuated from the cells of the AS before the arrival of the next train of particles. Due to its complex geometry, accurate analytical calculations are not viable. In this paper we introduce a calculation method based on the combination of analytical vacuum equations with Monte Carlo test particle simulations, implemented in a PSpice environment via the vacuum-electrical network analogy. Pressure recovery times are calculated for the main gas species released during a breakdown. The number and type of molecules used for the calculation is the result of measurements performed in the DC spark test system.

  11. CLIC Drive Beam Position Monitor

    CERN Document Server

    Smith, S; Gudkov, D; Soby, L; Syratchev, I

    2011-01-01

    CLIC, an electron-positron linear collider proposed to probe the TeV energy scale, is based on a two-beam scheme where RF power to accelerate a high energy luminosity beam is extracted from a high current drive beam. The drive beam is efficiently generated in a long train at modest frequency and current then compressed in length and multiplied in frequency via bunch interleaving. The drive beam decelerator requires >40000 quadrupoles, each holding a beam position monitor (BPM). Though resolution requirements are modest (2 microns) these BPMs face several challenges. They must be compact and inexpensive. They must operate below waveguide cutoff to insure locality of position signals, ruling out processing at the natural 12 GHz bunch spacing frequency. Wakefields must be kept low. We find compact conventional stripline BPM with signals processed below 40 MHz can meet requirements. Choices of mechanical design, operating frequency, bandwidth, calibration and processing algorithm are presented. Calculations of wa...

  12. Physics and Detectors at CLIC CLIC Conceptual Design Report

    CERN Document Server

    Miyamoto, Akiya; Stanitzki,Marcel; Weerts, Harry

    2012-01-01

    This report describes the physics potential and experiments at a future multi- TeV e+e− collider based on the Compact Linear Collider (CLIC) technology. The physics scenarios considered include precision measurements of known quantities as well as the discovery potential of physics beyond the Standard Model. The report describes the detector performance required at CLIC, taking into account the interaction point environment and especially beaminduced backgrounds. Two detector concepts, designed around highly granular calorimeters and based on concepts studied for the International Linear Collider (ILC), are described and used to study the physics reach and potential of such a collider. Detector subsystems and the principal engineering challenges are illustrated. The overall performance of these CLIC detector concepts is demonstrated by studies of the performance of individual subdetector systems as well as complete simulation studies of six benchmark physics processes. These full detector simulation and rec...

  13. Detector Systems at CLIC

    CERN Document Server

    Simon, Frank

    2011-01-01

    The Compact Linear Collider CLIC is designed to deliver e+e- collisions at a center of mass energy of up to 3 TeV. The detector systems at this collider have to provide highly efficient tracking and excellent jet energy resolution and hermeticity for multi-TeV final states with multiple jets and leptons. In addition, the detector systems have to be capable of distinguishing physics events from large beam-induced background at a crossing frequency of 2 GHz. Like for the detector concepts at the ILC, CLIC detectors are based on event reconstruction using particle flow algorithms. The two detector concepts for the ILC, ILD and SID, were adapted for CLIC using calorimeters with dense absorbers limiting leakage through increased compactness, as well as modified forward and vertex detector geometries and precise time stamping to cope with increased background levels. The overall detector concepts for CLIC are presented, with particular emphasis on the main detector and engineering challenges, such as: the ultra-thi...

  14. Simulations and Vacuum Tests of a CLIC Accelerating Structure

    CERN Document Server

    Garion, C

    2011-01-01

    The Compact LInear Collider, under study, is based on room temperature high gradient structures. The vacuum specificities of these cavities are low conductance, large surface areas and a non-baked system. The main issue is to reach UHV conditions (typically 10-7 Pa) in a system where the residual vacuum is driven by water outgassing. A finite element model based on an analogy thermal/vacuum has been built to estimate the vacuum profile in an accelerating structure. Vacuum tests are carried out in a dedicated set-up, the vacuum performances of different configurations are presented and compared with the predictions.

  15. High Field Studies for CLIC Accelerating Structures Development

    CERN Document Server

    Profatilova, I

    2017-01-01

    Compact Linear Collider RF structures need to be able to achieve the very high average accelerating gradient of 100 MV/m. One of the main challenges in reaching such high accelerating gradients is to avoid vacuum electrical breakdown within CLIC accelerating structures. Accelerating structure tests are carried out in the klystron-based test stands known as the XBoxes. In order to investigate vacuum breakdown phenomena and its statistical characteristics in a simpler system and get results in a faster way, pulsed dc systems have been developed at CERN. To acquire sufficient breakdown data in a reasonable period of time, high repetition rate pulse generators are used in the systems for breakdown studies, so-called pulsed dc system. This paper describes the pulsed dc systems and the two high repetition rate circuits, which produce high-voltage pulses for it, available at CERN.

  16. CLIC: developing a linear collider

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    Compact Linear Collider (CLIC) is a CERN project to provide high-energy electron-positron collisions. Instead of conventional radio-frequency klystrons, CLIC will use a low-energy, high-intensity primary beam to produce acceleration.

  17. Preparing for CLIC tests

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    The Canon 5 undergoes first brazing for preparation in the CLIC study at the CLIC Test Facility 2 (CTF2). This will test injection for a proposed linear collider that will further explore discoveries made at the LHC. Electric fields in the canon will boost electrons into the acceleration fields of the collider.

  18. Tilapia and human CLIC2 structures are highly conserved.

    Science.gov (United States)

    Zeng, Jiao; Li, Zhengjun; Lui, Eei Yin; Lam, Siew Hong; Swaminathan, Kunchithapadam

    2018-01-08

    Chloride intracellular channels (CLICs) exist in soluble and membrane bound forms. We have determined the crystal structure of soluble Clic2 from the euryhaline teleost fish Oreochromis mossambicus. Structural comparison of tilapia and human CLIC2 with other CLICs shows that these proteins are highly conserved. We have also compared the expression levels of clic2 in selected osmoregulatory organs of tilapia, acclimated to freshwater, seawater and hypersaline water. Structural conservation of vertebrate CLICs implies that they might play conserved roles. Also, tissue-specific responsiveness of clic2 suggests that it might be involved in iono-osmoregulation under extreme conditions in tilapia. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. CLIC expands to include the Southern Hemisphere

    CERN Multimedia

    Roberto Cantoni

    2010-01-01

    Australia has recently joined the CLIC collaboration: the enlargement will bring new expertise and resources to the project, and is especially welcome in the wake of CERN budget redistributions following the recent adoption of the Medium Term Plan.   The countries involved in CLIC collaboration With the signing of a Memorandum of Understanding on 26 August 2010, the ACAS network (Australian Collaboration for Accelerator Science) became the 40th member of in the multilateral CLIC collaboration making Australia the 22nd country to join the collaboration. “The new MoU was signed by the ACAS network, which includes the Australian Synchrotron and the University of Melbourne”, explains Jean-Pierre Delahaye, CLIC Study Leader. “Thanks to their expertise, the Australian institutes will contribute greatly to the CLIC damping rings and the two-beam test modules." Institutes from any country wishing to join the CLIC collaboration are invited to assume responsibility o...

  20. CLIC Detector and Physics Status

    CERN Document Server

    AUTHOR|(SzGeCERN)627941

    2017-01-01

    This contribution to LCWS2016 presents recent developments within the CLICdp collaboration. An updated scenario for the staged operation of CLIC has been published; the accelerator will operate at 380 GeV, 1.5 TeV and 3 TeV. The lowest energy stage is optimised for precision Higgs and top physics, while the higher energy stages offer extended Higgs and BSM physics sensitivity. The detector models CLIC_SiD and CLIC_ILD have been replaced by a single optimised detector; CLICdet. Performance studies and R&D in technologies to meet the requirements for this detector design are ongoing.

  1. Physics Signatures at CLIC

    CERN Document Server

    Battaglia, Marco

    2001-01-01

    A set of signatures for physics processes of potential interests for the CLIC programme at = 1 - 5 TeV are discussed. These signatures, that may correspond to the manifestation of different scenarios of new physics as well as to Standard Model precision tests, are proposed as benchmarks for the optimisation of the CLIC accelerator parameters and for a first definition of the required detector response.

  2. CLICdp Overview. Overview of physics potential at CLIC

    Directory of Open Access Journals (Sweden)

    Levy Aharon

    2015-01-01

    Full Text Available CLICdp, the CLIC detector and physics study, is an international collaboration presently composed of 23 institutions. The collaboration is addressing detector and physics issues for the future Compact Linear Collider (CLIC, a high-energy electron-positron accelerator which is one of the options for the next collider to be built at CERN. Precision physics under challenging beam and background conditions is the key theme for the CLIC detector studies. This leads to a number of cutting-edge R&D activities within CLICdp. The talk includes a brief introduction to CLIC, accelerator and detectors, hardware R&D as well as physics studies at CLIC.

  3. Muon System Design Studies for Detectors at CLIC

    CERN Document Server

    van der Kraaij, E

    2011-01-01

    The two concepts for CLIC detectors inherited their design of the muon systems from the ILC community. In this note the outcome of a reevaluation of the design for the CLIC environment is presented. Based on a full detector simulation, the muon identification performance is analysed for different detector layouts and different cellsizes. As a result, nine layers are suggested for the muon systems of the CLIC ILD and CLIC SiD detectors, which are arranged in three groups of three layers. The cellsizes have been kept at 30×30 mm2. These layouts are used for the performance studies of the CLIC Conceptual Design Report (CDR).

  4. CLIC brochure (English version)

    CERN Multimedia

    Lefevre, Christiane

    2012-01-01

    The world's biggest and most powerful accelerator, the LHC, is mapping the route of particle physics for the future. The next step, to complement the LHC in exploring this new region, is most likely to be a linear electron-positron collider. The Compact Linear Collider (CLIC) is a novel approach to such a collider. It is currently under development by the CLIC collaboration, which is hosted at CERN.

  5. Acquisition system for the CLIC Module

    CERN Document Server

    Vilalte, Sebastien

    2011-01-01

    The status of R&D activities for CLIC module acquisition are discussed [1]. LAPP is involved in the design of the local CLIC module acquisition crate, described in the document Study of the CLIC Module Front-End Acquisition and Evaluation Electronics [2]. This acquisition system is a project based on a local crate, assigned to the CLIC module, including several mother boards. These motherboards are foreseen to hold mezzanines dedicated to the different subsystems. This system has to work in radiation environment. LAPP is involved in the development of Drive Beam stripline position monitors read-out, described in the document Drive Beam Stripline BPM Electronics and Acquisition [3]. LAPP also develops a generic acquisition mezzanine that allows to perform all-around acquisition and components tests for drive beam stripline BPM read-out.

  6. Breakdown Studies for the CLIC Accelerating

    CERN Document Server

    Calatroni, S; Kovermann, J; Taborelli, M; Timko, H; Wuensch, W; Durabekova, F; Nordlund, K; Pohjonen, A; Kuronen, A

    2010-01-01

    Optimizing the design and the manufacturing of the CLIC RF accelerating structures for achieving the target value of breakdown rate at the nominal accelerating gradient of 100 MV/m requires a detailed understanding of all the steps involved in the mechanism of breakdown. These include surface modification under RF fields, electron emission and neutral evaporation in the vacuum, arc ignition and consequent surface modification due to plasma bombardment. Together with RF tests, experiments are conducted in a simple DC test set-up instrumented with electrical diagnostics and optical spectroscopy. The results are also used for validating simulations which are performed using a wide range of numerical tools (MD coupled to electrostatic codes, PIC plasma simulations) able to include all the above phenomena. Some recent results are presented in this paper

  7. From glutathione transferase to pore in a CLIC

    CERN Document Server

    Cromer, B A; Morton, C J; Parker, M W; 10.1007/s00249-002-0219-1

    2002-01-01

    Many plasma membrane chloride channels have been cloned and characterized in great detail. In contrast, very little is known about intracellular chloride channels. Members of a novel class of such channels, called the CLICs (chloride intracellular channels), have been identified over the last few years. A striking feature of the CLIC family of ion channels is that they can exist in a water- soluble state as well as a membrane-bound state. A major step forward in understanding the functioning of these channels has been the recent crystal structure determination of one family member, CLIC1. The structure confirms that CLICs are members of the glutathione S- transferase superfamily and provides clues as to how CLICs can insert into membranes to form chloride channels. (69 refs).

  8. CLIC Luminosity Monitoring

    CERN Document Server

    Apyan, Armen; Gschwendtner, Edda; Lefevre, Thibault; Tygier, Sam; Appleby, Robert B

    2012-01-01

    The CLIC post-collision line is designed to transport the un-collided beams and the products of the collided beams with a total power of 14 MW to the main beam dump. Luminosity monitoring for CLIC is based on high energy muons produced by beamstrahlung photons in the main dump. Threshold Cherenkov counters are proposed for the detection of these muons. The expected rates and layout for these detectors is presented. Another method for luminosity monitoring is to directly detect the beamstrahlung photons in the post-collision line. Full Monte Carlo simulation has been performed to address its feasibility.

  9. Overview of the CLIC detector and its physics potential

    CERN Document Server

    AUTHOR|(SzGeCERN)786425

    2016-01-01

    The CLIC detector and physics study (CLICdp) is an international collaboration that investigates the physics potential of the Compact Linear Collider (CLIC). CLIC is a high-energy electron-positron collider under development, aiming for centre-of-mass energies from a few hundred GeV to 3 TeV. In addition to physics studies based on full Monte Carlo simulations of signal and background processes, CLICdp performs cutting-edge hardware R&D. In this contribution CLICdp will present recent results from physics prospect studies, emphasising Higgs studies. Additionally the new CLIC detector model and the recently updated CLIC baseline staging scenario will be presented.

  10. Overview of the CLIC detector and its physics potential

    Science.gov (United States)

    Ström, Rickard

    2017-12-01

    The CLIC detector and physics study (CLICdp) is an international collaboration that investigates the physics potential of the Compact Linear Collider (CLIC). CLIC is a high-energy electron-positron collider under development, aiming for centre-of-mass energies from a few hundred GeV to 3 TeV. In addition to physics studies based on full Monte Carlo simulations of signal and background processes, CLICdp performs cuttingedge hardware R&D. In this contribution CLICdp will present recent results from physics prospect studies, emphasising Higgs studies. Additionally the new CLIC detector model and the recently updated CLIC baseline staging scenario will be presented.

  11. Impedance effects in the CLIC damping rings

    CERN Document Server

    Koukovini-Platia, E; Mounet, N; Rumolo, G; Salvant, B

    2011-01-01

    Due to the unprecedented brilliance of the beams, the performance of the Compact Linear Collider (CLIC) damping rings (DR) is affected by collective effects. Single bunch instability thresholds based on a broad-band resonator model and the associated coherent tune shifts have been evaluated with the HEADTAIL code. Simulations performed for positive and negative values of chromaticity showed that higher order bunch modes can be potentially dangerous for the beam stability. This study also includes the effects of high frequency resistive wall impedance due to different coatings applied on the chambers of the wigglers for e-cloud mitigation and/or ultra-low vacuum pressure. The impact of the resistive wall wake fields on the transverse impedance budget is finally discussed.

  12. LHC and CLIC LLRF final reports

    CERN Document Server

    Dexter, A; Woolley, B; Ambattu, P; Tahir, I; Syratchev, Igor; Wuensch, Walter

    2013-01-01

    Crab cavities rotate bunches from opposing beams to achieve effective head-on collision in CLIC or collisions at an adjustable angle in LHC. Without crab cavities 90% of achievable luminosity at CLIC would be lost. In the LHC, the crab cavities allow the same or larger integrated luminosity while reducing significantly the requested dynamic range of physics detectors. The focus for CLIC is accurate phase synchronisation of the cavities, adequate damping of wakefields and modest amplitude stability. For the LHC, the main LLRF issues are related to imperfections: beam offsets in cavities, RF noise, measurement noise in feedback loops, failure modes and mitigations. This report develops issues associated with synchronising the CLIC cavities. It defines an RF system and experiments to validate the approach. It reports on the development of hardware for measuring the phase performance of the RF distributions system and cavities. For the LHC, the hardware being very close to the existing LLRF, the report focuses on...

  13. CLIC: Physics potential of a high-energy e+e- collider

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The Compact Linear Collider (CLIC) is a future electron-positron collider under study. It foresees e+e- collisions at centre-of-mass energies ranging from a few hundred GeV up to 3 TeV. The CLIC study is an international collaboration hosted by CERN. The lectures provide a broad overview of the CLIC project, covering the physics potential, the particle detectors and the accelerator. An overview of the CLIC physics opportunities is presented. These are best exploited in a staged construction and operation scenario of the collider. The detector technologies, fulfilling CLIC performance requirements and currently under study, are described. The accelerator design and performance, together with its major technologies, are presented in the light of ongoing component tests and large system tests. The status of the optimisation studies (e.g. for cost and power) of the CLIC complex for the proposed energy staging is included. One lecture is dedicated to the use of CLIC technologies in free electron lasers and other ...

  14. A sensitiviy analysis for the stabilization of the CLIC main beam quadrupoles

    CERN Document Server

    Janssens, S; Artoos, K; Fernandez Carmona, P; Hauviller, C

    2010-01-01

    In particle colliders (like the LHC), particles are highly accelerated in a circular beam pipe before the collision. However, due to the curved trajectory of the particles, they are also loosing energy because of the so-called Bremsstrahlung. In order to bypass this fundamental limitation imposed by circular beams, the next generation of particle colliders will accelerate two straight beams of particles before the collision. One of them, the Compact Linear Collider, is currently under study at CERN. The machine is constituted of a huge number of accelerating structures (used to accelerate the particles) and quadrupoles (electromagnets used to focus the particles). The latter ones are required to be stable at the nanometer level. This extreme stability has to be guaranteed by active vibration isolation from all types of disturbances like ground vibrations, ventilation, cooling system, or acoustic noise. Because of the huge number of quadrupoles (about 4000), it is critical that the strategy adopted for the act...

  15. A Multi-TeV Linear Collider Based on CLIC Technology

    Energy Technology Data Exchange (ETDEWEB)

    Aicheler, M [European Organ. ization for Nuclear Research, Geneva (Switzerland); Burrows, P [Oxford University (United Kingdom); Draper, M; Garvey, T; Lebrun, P [European Organization for Nuclear Research, Geneva (Switzerland); Peach, K [Oxford University (United Kingdom); Phinney, N [SLAC (United States); Schmickler, H; Schulte, D [European Organization for Nuclear Research, Geneva (Switzerland); Toge, N [KEK, Tsukuba (Japan)

    2012-07-01

    This report describes the accelerator studies for a future multi-TeV e+e- collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studies are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from the CLIC test facility at CERN (CTF3). Both the machine and detector/physics studies for CLIC have primarily focused on the 3 TeV implementation of CLIC as a benchmark for the CLIC feasibility. This report also includes specific studies for an initial 500 GeV machine, and some discussion of possible intermediate energy stages. The performance and operation issues related to operation at reduced energy compared to the nominal, and considerations of a staged construction program are included in the final part of the report. The CLIC accelerator study is organized as an international collaboration with 43 partners in 22 countries. An associated report describes the physics potential and experiments at CLIC and a shorter report in preparation will focus on the CLIC implementation strategy, together with a plan for the CLIC R&D studies 2012–2016. Critical and important implementation issues such as cost, power and schedule will be addressed there. (author)

  16. A Multi-TeV Linear Collider Based on CLIC Technology

    International Nuclear Information System (INIS)

    Aicheler, M; Burrows, P; Draper, M; Garvey, T; Lebrun, P; Peach, K; Phinney, N; Schmickler, H; Schulte, D; Toge, N

    2012-01-01

    This report describes the accelerator studies for a future multi-TeV e+e- collider based on the Compact Linear Collider (CLIC) technology. The CLIC concept as described in the report is based on high gradient normal-conducting accelerating structures where the RF power for the acceleration of the colliding beams is extracted from a high-current Drive Beam that runs parallel with the main linac. The focus of CLIC R&D over the last years has been on addressing a set of key feasibility issues that are essential for proving the fundamental validity of the CLIC concept. The status of these feasibility studies are described and summarized. The report also includes a technical description of the accelerator components and R&D to develop the most important parts and methods, as well as a description of the civil engineering and technical services associated with the installation. Several larger system tests have been performed to validate the two-beam scheme, and of particular importance are the results from the CLIC test facility at CERN (CTF3). Both the machine and detector/physics studies for CLIC have primarily focused on the 3 TeV implementation of CLIC as a benchmark for the CLIC feasibility. This report also includes specific studies for an initial 500 GeV machine, and some discussion of possible intermediate energy stages. The performance and operation issues related to operation at reduced energy compared to the nominal, and considerations of a staged construction program are included in the final part of the report. The CLIC accelerator study is organized as an international collaboration with 43 partners in 22 countries. An associated report describes the physics potential and experiments at CLIC and a shorter report in preparation will focus on the CLIC implementation strategy, together with a plan for the CLIC R&D studies 2012–2016. Critical and important implementation issues such as cost, power and schedule will be addressed there. (author)

  17. Physics at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)669060; Roloff, Philipp Gerhard

    2015-01-01

    CLIC is a concept for a future linear collider which would use two-beam acceleration to produce e+e- collisions with a centre-of-mass energy of 3 TeV. A staging scenario would also provide collisions at lower centre-of-mass energies, provisionally 350 GeV and 1.4 TeV. In order to demonstrate the wide range of physics processes available at such a linear collider, and to benchmark the performance of proposed detector models, a campaign of simulated physics analyses including Higgs, top and beyond the Standard Model processes has been undertaken at these three energy stages. These proceedings present the current status of these studies and illustrate the potential for precision physics measurements at CLIC.

  18. Beam-based alignment of CLIC drive beam decelerator using girders movers

    CERN Document Server

    Sterbini, G

    2011-01-01

    The CLIC drive beams will provide the rf power to accelerate the colliding beams: in order to reach the design performance, an efficient transport of the drive beam has to be ensured in spite of its challenging energy spread and large current intensity. As shown in previous studies, the specifications can be met by coupling a convenient optics design with the state-of-the-art of pre-alignment and beambased alignment techniques. In this paper we consider a novel beam-based alignment scheme that does not require quadrupole movers or dipole correctors but uses the motors already foreseen for the pre-alignment system. This implies potential savings in terms of complexity and cost at the expense of the alignment flexibility: the performance, limitations and sensitivity to pre-alignment tolerances of this method are discussed.

  19. CLIC e+e- Linear Collider Studies

    CERN Document Server

    Dannheim, Dominik; Linssen, Lucie; Schulte, Daniel; Simon, Frank; Stapnes, Steinar; Toge, Nobukazu; Weerts, Harry; Wells, James

    2012-01-01

    This document provides input from the CLIC e+e- linear collider studies to the update process of the European Strategy for Particle Physics. It is submitted on behalf of the CLIC/CTF3 collaboration and the CLIC physics and detector study. It describes the exploration of fundamental questions in particle physics at the energy frontier with a future TeV-scale e+e- linear collider based on the Compact Linear Collider (CLIC) two-beam acceleration technique. A high-luminosity high-energy e+e- collider allows for the exploration of Standard Model physics, such as precise measurements of the Higgs, top and gauge sectors, as well as for a multitude of searches for New Physics, either through direct discovery or indirectly, via high-precision observables. Given the current state of knowledge, following the observation of a \\sim125 GeV Higgs-like particle at the LHC, and pending further LHC results at 8 TeV and 14 TeV, a linear e+e- collider built and operated in centre-of-mass energy stages from a few-hundred GeV up t...

  20. CLIC preparations go up a notch

    CERN Multimedia

    2007-01-01

    The Compact Linear Collider gears up for post-LHC physics with an international workshop. A schematic diagram of CLIC.In June CERN gained a new building: number 2010. And as chance would have it, this is more than just a number to its new residents. By the year 2010, teams working at the new CLIC Experimental Area, along with the already established CLIC Test Facility Three (CTF3), hope to have demonstrated the feasibility of the Compact Linear Collider and, depending on results from the LHC, embark on its final design and proposal. A workshop on 16t-18 October brought people from all around the world to CERN to exchange ideas and hear how the ambitious project is progressing. CLIC is a project that aims to extend lepton collider technology to multi-TeV energy physics, colliding leptons with a centre-of-mass-energy up to 3TeV, more than ten times the energy of the LEP. This is only possible in a linear collider, where no energy is lo...

  1. Technological challenges of CLIC

    CERN Multimedia

    CERN. Geneva; Döbert, Steffen; Arnau-Izquierdo, G; Redaelli, Stefano; Mainaud, Helène; Lefèvre, Thibaut

    2006-01-01

    Future e+e- Linear Colliders offer the potential to explore new physics at the TeV scale and beyond to very high precision. While the International Linear Collider (ILC) scheme of a collider in the 0.5 - 1 TeV range enters the engineering design phase, the Compact Linear Collider (CLIC) study explores the technical feasibility of a collider capable of reaching into the multi-TeV energy domain. Key ingredients of the CLIC scheme are acceleration at high-frequency (30 GHz) and high-gradient (150 MV/m) in normal conducting structures and the use of the so-called Two Beam Acceleration concept, where a high-charge electron beam (drive beam) running parallel to the main beam is decelerated to provide the RF power to accelerate the main beam itself. A vigorous R&D effort is presently developed by the CLIC international collaboration to demonstrate its feasibility by 2010, when the first physics results from LHC should be available to guide the choice of the centre-of-mass energy better suited to explore the futu...

  2. ISR Superconducting Quadrupoles

    CERN Multimedia

    1977-01-01

    Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.

  3. CLIC Test Facility 3

    CERN Multimedia

    Kossyvakis, I; Faus-golfe, A

    2007-01-01

    The design of CLIC is based on a two-beam scheme, where short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP.

  4. Feasibility Study for the CERN "CLIC" Photo-Injector Laser System

    CERN Document Server

    Ross, I N

    2000-01-01

    This study is designed to contribute to the development of the Cern Linear Collider (CLIC). One route to the generation of the required electron injection into this system is through the use of photo-cathodes illuminated with a suitably designed laser system. The requirements of the accelerator and photo-cathodes have led to a specification for the laser system given in Table 1. Because CLIC will not be built directly but in stages, notably via CLIC Test Facilities (CTF), this table also includes the specification for a photo-injector laser system for CTF3 which will be required before the final system for CLIC. Although there are significant differences between these two specifications it will be necessary to design the CTF3 system such that it can be easily upgraded to the system for CLIC and will be able to check all the critical issues necessary for CLIC.

  5. Thermogravimetric-quadrupole mass-spectrometric analysis of geochemical samples.

    Science.gov (United States)

    Gibson, E. K., Jr.; Johnson, S. M.

    1972-01-01

    Thermogravimetric-quadrupole mass-spectrometric-analysis techniques can be used to study a wide variety of problems involving decomposition processes and identification of released volatile components. A recording vacuum thermoanalyzer has been coupled with a quadrupole mass spectrometer. The rapid scan capabilities of the quadrupole mass spectrometer are used to identify the gaseous components released. The capability of the thermogravimetric-quadrupole mass spectrometer to provide analytical data for identification of the released volatile components, for determination of their sequence of release and for correlation of thermal-decomposition studies is illustrated by an analysis of the Orgueil carbonaceous chondrite.

  6. CLIC Project Overview (In Conjunction with the Muon Collider Workshop)

    International Nuclear Information System (INIS)

    Latina, Andrea

    2009-01-01

    The CLIC study is exploring the scheme for an electron-positron collider with a centre-of-mass energy of 3 TeV in order to make the multi-TeV range accessible for physics. The current goal of the project is to demonstrate the feasibility of the technology by the year 2010. Recently, important progress has been made concerning the high-gradient accelerating structure tests and the experiments with beam in the CLIC test facility, CTF3. On the organizational side, the CLIC international collaborations have significantly gained momentum, boosting the CLIC study.

  7. CLIC-ACM: Acquisition and Control System

    CERN Document Server

    Bielawski, B; Magnoni, S

    2014-01-01

    CLIC [1] (Compact Linear Collider) is a world-wide collaboration to study the next terascale lepton collider, relying upon a very innovative concept of two-beamacceleration. In this scheme, the power is transported to the main accelerating structures by a primary electron beam. The Two Beam Module (TBM) is a compact integration with a high filling factor of all components: RF, Magnets, Instrumentation, Vacuum, Alignment and Stabilization. This paper describes the very challenging aspects of designing the compact system to serve as a dedicated Acquisition & Control Module (ACM) for all signals of the TBM. Very delicate conditions must be considered, in particular radiation doses that could reach several kGy in the tunnel. In such severe conditions shielding and hardened electronics will have to be taken into consideration. In addition, with more than 300 ADC&DAC channels per ACM and about 21000 ACMs in total, it appears clearly that power consumption will be an important issue. It is also obvious that...

  8. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, Andre

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GuineaPig and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam background hitting the vertex detector.

  9. Simulation of Beam-Beam Background at CLIC

    CERN Document Server

    Sailer, A

    2010-01-01

    The dense beams used at CLIC to achieve a high luminosity will cause a large amount of background particles through beam-beam interactions. Generator level studies with GUINEAPIG and full detector simulation studies with an ILD based CLIC detector have been performed to evaluate the amount of beam-beam back- ground hitting the vertex detector.

  10. WAKEFIELD DAMPING FOR THE CLIC CRAB CAVITY

    CERN Document Server

    Ambattu, P; Dexter, A; Carter, R; Khan, V; Jones, R; Dolgashev, V

    2009-01-01

    A crab cavity is required in the CLIC to allow effective head-on collision of bunches at the IP. A high operating frequency is preferred as the deflection voltage required for a given rotation angle and the RF phase tolerance for a crab cavity are inversely proportional to the operating frequency. The short bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to dipole kicks demand very high damping of the inter-bunch wakes, the major contributor to the luminosity loss of colliding bunches. This paper investigates the nature of the wakefields in the CLIC crab cavity and the possibility of using various damping schemes to suppress them effectively.

  11. Oxidation promotes insertion of the CLIC1 chloride intracellular channel into the membrane.

    Science.gov (United States)

    Goodchild, Sophia C; Howell, Michael W; Cordina, Nicole M; Littler, Dene R; Breit, Samuel N; Curmi, Paul M G; Brown, Louise Jennifer

    2009-12-01

    Members of the chloride intracellular channel (CLIC) family exist primarily as soluble proteins but can also auto-insert into cellular membranes to form ion channels. While little is known about the process of CLIC membrane insertion, a unique feature of mammalian CLIC1 is its ability to undergo a dramatic structural metamorphosis between a monomeric glutathione-S-transferase homolog and an all-helical dimer upon oxidation in solution. Whether this oxidation-induced metamorphosis facilitates CLIC1 membrane insertion is unclear. In this work, we have sought to characterise the role of oxidation in the process of CLIC1 membrane insertion. We examined how redox conditions modify the ability of CLIC1 to associate with and insert into the membrane using fluorescence quenching studies and a sucrose-loaded vesicle sedimentation assay to measure membrane binding. Our results suggest that oxidation of monomeric CLIC1, in the presence of membranes, promotes insertion into the bilayer more effectively than the oxidised CLIC1 dimer.

  12. Fiducialisation and initial alignment of CLIC component with micrometric accuracy

    CERN Document Server

    Mainaud Durand, Helene; Buzio, Marco; Caiazza, Domenico; Catalan Lasheras, Nuria; Cherif, Ahmed; Doytchinov, Iordan Petrov; Fuchs, Jean-Frederic; Gaddi, Andrea; Galindo Munoz, Natalia; Gayde, Jean-Christophe; Kamugasa, Solomon William; Modena, Michele; Novotny, Peter; Sanz, Claude; Severino, Giordana; Russenschuck, Stephan; Tshilumba, David; Vlachakis, Vasileios; Wendt, Manfred; Zorzetti, Silvia; CERN. Geneva. ATS Department

    2016-01-01

    We propose a new solution to fiducialise the three major components of the CLIC collider: quadrupoles, beam-position monitors (BPM), and accelerating structures (AS). This solution is based on the use of a copper-beryllium (CuBe) wire to locate the reference position, i.e. the symmetry axes of the components (their magnetic, respectively electromagnetic centre axis), and to determine their position in the common support assembly defining a local coordinate system, with respect to the fiducials. These alignment targets will be used later to align the support assembly in the tunnel. With such a method, several accelerator components of different types, supported by a dedicated adjustment system, can be simultaneously fiducialised and pre-aligned using the same wire, enabling a micrometric accuracy with help of a 3D coordinate measurement machine (CMM). Alternative solutions based on frequency scanning interferometry (FSI) and micro-triangulation are also under development, to perform such fiducialisation and in...

  13. Light-flavor squark reconstruction at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)548062; Weuste, Lars

    2015-01-01

    We present a simulation study of the prospects for the mass measurement of TeV-scale light- flavored right-handed squark at a 3 TeV e+e collider based on CLIC technology. The analysis is based on full GEANT4 simulations of the CLIC_ILD detector concept, including Standard Model physics backgrounds and beam-induced hadronic backgrounds from two- photon processes. The analysis serves as a generic benchmark for the reconstruction of highly energetic jets in events with substantial missing energy. Several jet finding algorithms were evaluated, with the longitudinally invariant kt algorithm showing a high degree of robustness towards beam-induced background while preserving the features typically found in algorithms developed for e+e- collisions. The presented study of the reconstruction of light-flavored squarks shows that for TeV-scale squark masses, sub-percent accuracy on the mass measurement can be achieved at CLIC.

  14. A Versatile Beam Loss Monitoring System for CLIC

    CERN Document Server

    Kastriotou, Maria; Farabolini, Wilfrid; Holzer, Eva Barbara; Nebot Del Busto, Eduardo; Tecker, Frank; Welsch, Carsten

    2016-01-01

    The design of a potential CLIC beam loss monitoring (BLM) system presents multiple challenges. To successfully cover the 48 km of beamline, ionisation chambers and optical fibre BLMs are under investigation. The former fulfils all CLIC requirements but would need more than 40000 monitors to protect the whole facility. For the latter, the capability of reconstructing the original loss position with a multi-bunch beam pulse and multiple loss locations still needs to be quantified. Two main sources of background for beam loss measurements are identified for CLIC. The two-beam accelerator scheme introduces so-called crosstalk, i.e. detection of losses originating in one beam line by the monitors protecting the other. Moreover, electrons emitted from the inner surface of RF cavities and boosted by the high RF gradients may produce signals in neighbouring BLMs, limiting their ability to detect real beam losses. This contribution presents the results of dedicated experiments performed in the CLIC Test Facility to qu...

  15. M10.3.4: CLIC crab cavity specifications completed

    CERN Document Server

    Dexter, A; Ambattu, P; Shinton, I; Jones, R

    2010-01-01

    The starting point of Sub-task 2 is to document the currently anticipated requirements for the CLIC crab cavity system. This milestone concerns completion of the basic specifications for the CLIC crab cavity system. This comprises kick, power requirement, phase and amplitude stability, technology choice, and RF layout. The wakefield calculations of a baseline CLIC cavity will be used to estimate the required damping of the higher order modes as well as other special modes in crab cavities (the lower and same order modes).

  16. CLIC CRAB CAVITY SPECIFICATIONS MILESTONE: M10.3.4

    CERN Document Server

    Ambattu, P; Dexter, A; Jones, R; McIntosh, P; Shinton, I

    2010-01-01

    The starting point of Sub-task 2 is to document the currently anticipated requirements for the CLIC crab cavity system. This milestone concerns completion of the basic specifications for the CLIC crab cavity system. This comprises kick, power requirement, phase and amplitude stability, technology choice, and RF layout. The wakefield calculations of a baseline CLIC cavity will be used to estimate the required damping of the higher order modes as well as other special modes in crab cavities (the lower and same order modes).

  17. Vertex-Detector R&D for CLIC

    OpenAIRE

    Dannheim, Dominik

    2013-01-01

    A detector concept based on hybrid planar pixel-detector technology is under development for the CLIC vertex detector. It comprises fast, low-power and small-pitch readout ASICs implemented in 65 nm CMOS technology (CLICpix) coupled to ultra-thin sensors via low-mass interconnects. The power dissipation of the readout chips is reduced by means of power pulsing, allowing for a cooling system based on forced gas flow. In this paper the CLIC vertex-detector requirements are reviewed and the curr...

  18. New clic-g structure design

    CERN Document Server

    AUTHOR|(CDS)2082335

    2016-01-01

    The baseline design of the Compact Linear Collider main linac accelerating structure is called ‘CLIC-G’. It is described in the CLIC Conceptual Design Report (CDR) [1]. As shown in Fig. 1, a regular cell of the structure has four waveguides to damp unwanted high-order-modes (HOMs). These waveguides are dimensioned to cut off the fundamental working frequency in order to prevent the degradation of the fundamental mode Q-factor. The cell geometry and HOM damping loads had been extensively optimized in order to maximize the RF-to-beam efficiency, to minimize the cost, and to meet the beam dynamics and the high gradient RF constraints [2

  19. Accelerator Physics for ILC and CLIC

    CERN Document Server

    Zimmermann, F

    2010-01-01

    This paper summarizes the second part of the “accelerator physics lectures” delivered at the Ambleside Linear Collider School 2009. It discusses more specific linear-collider issues: superconducting and room-temperature linear accelerators, particle sources for electrons and positrons, synchrotron radiation and damping, intensity limits, beam stability, and beam delivery system – including final focus, collimation, and beam-beam effects. It also presents an overview of the International Linear Collider (ILC), a description of the two beam acceleration scheme of the Compact Linear Collider (CLIC), and a comparison of the ILC and CLIC parameters.

  20. CLICdet: The post-CDR CLIC detector model

    CERN Document Server

    Alipour Tehrani, Niloufar; Cure, Benoit; Dannheim, Dominik; Duarte Ramos, Fernando; Elsener, Konrad; Gaddi, Andrea; Gerwig, Hubert; Green, Steven; Grefe, Christian; Hynds, Daniel; Klempt, Wolfgang; Linssen, Lucie; Nikiforou, Nikiforos; Nurnberg, Andreas Matthias; Marshall, John Stuart; Petric, Marko; Redford, Sophie; Roloff, Philipp Gerhard; Sailer, Andre; Sefkow, Felix; Sicking, Eva; Siegrist, Nicolas; Simon, Frank Richard; Simoniello, Rosa; Spannagel, Simon; Sroka, Szymon Krzysztof; Strom, Lars Rickard; Weber, Matthias Artur

    2017-01-01

    A new model for the CLIC detector has been defined based on lessons learnt while working with the CDR detector models and after a series of simulation studies. The new model, dubbed "CLICdet", also incorporates the experience from various R&D activities linked to a future experiment at CLIC. This note describes the studies and thoughts leading to the new detector model, and gives details on all of its sub-detector systems.

  1. The physics benchmark processes for the detector performance studies used in CLIC CDR Volume 3

    CERN Document Server

    Allanach, B.J.; Desch, K.; Ellis, J.; Giudice, G.; Grefe, C.; Kraml, S.; Lastovicka, T.; Linssen, L.; Marschall, J.; Martin, S.P.; Muennich, A.; Poss, S.; Roloff, P.; Simon, F.; Strube, J.; Thomson, M.; Wells, J.D.

    2012-01-01

    This note describes the detector benchmark processes used in volume 3 of the CLIC conceptual design report (CDR), which explores a staged construction and operation of the CLIC accelerator. The goal of the detector benchmark studies is to assess the performance of the CLIC ILD and CLIC SiD detector concepts for different physics processes and at a few CLIC centre-of-mass energies.

  2. Magnetic Measurement Results of the LCLS Undulator Quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Scott; Caban, Keith; Nuhn, Heinz-Dieter; Reese, Ed; Wolf, Zachary; /SLAC

    2011-08-18

    This note details the magnetic measurements and the magnetic center fiducializations that were performed on all of the thirty-six LCLS undulator quadrupoles. Temperature rise, standardization reproducibility, vacuum chamber effects and magnetic center reproducibility measurements are also presented. The Linac Coherent Light Source (LCLS) undulator beam line has 33 girders, each with a LCLS undulator quadrupole which focuses and steers the beam through the beam line. Each quadrupole has main quadrupole coils, as well as separate horizontal and vertical trim coils. Thirty-six quadrupoles, thirty-three installed and three spares were, manufactured for the LCLS undulator system and all were measured to confirm that they met requirement specifications for integrated gradient, harmonics and for magnetic center shifts after current changes. The horizontal and vertical dipole trims of each quadrupole were similarly characterized. Each quadrupole was also fiducialized to its magnetic center. All characterizing measurements on the undulator quads were performed with their mirror plates on and after a standardization of three cycles from -6 to +6 to -6 amps. Since the undulator quadrupoles could be used as a focusing or defocusing magnet depending on their location, all quadrupoles were characterized as focusing and as defocusing quadrupoles. A subset of the undulator quadrupoles were used to verify that the undulator quadrupole design met specifications for temperature rise, standardization reproducibility and magnetic center reproducibility after splitting. The effects of the mirror plates on the undulator quadrupoles were also measured.

  3. Results from the CLIC Test Facility

    CERN Document Server

    Braun, H; Bossart, Rudolf; Chautard, F; Corsini, R; Delahaye, J P; Godot, J C; Hutchins, S; Kamber, I; Madsen, J H B; Rinolfi, Louis; Rossat, G; Schreiber, S; Suberlucq, Guy; Thorndahl, L; Wilson, Ian H; Wuensch, Walter

    1996-01-01

    In order to study the principle of the Compact Linear Collider (CLIC) based on the Two Beam Acceleration (TBA) scheme at high frequency, a CLIC Test Facility (CTF) has been set-up at CERN. After four years of successful running, the experimental programme is now fully completed and all its objectives reached, particularly the generation of a high intensity drive beam with short bunches by a photo-injector, the production of 30 GHz RF power and the acceleration of a probe beam by 30 GHz structures. A summary of the CTF results and their impact on linear collider design is given. This covers 30 GHz high power testing, study of intense, short single bunches; as well as RF-Gun, photocathode and beam diagnostic developments. A second phase of the test facility (CTF2) is presently being installed to demonstrate the feasibility of the TBA scheme by constructing a fully engineered, 10 m long, test section very similar to the CLIC drive and main linacs, producing up to 480 MW of peak RF power at 30 GHz and acceleratin...

  4. Academic Training - Technological challenges of CLIC

    CERN Multimedia

    Françoise Benz

    2006-01-01

    2005-2006 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 12, 13, 14, 15 and 16 June 11:00-12:00 - Auditorium, bldg 500 Technological challenges of CLIC R. Corsini, S. Doebert, S. Redaelli, T.Lefevre, CERN-AB and G. Arnau Izquierdo, H. Mainaud, CERN-TS Future e+e- Linear Colliders offer the potential to explore new physics at the TeV scale and beyond to very high precision. While the International Linear Collider (ILC) scheme of a collider in the 0.5 - 1 TeV range enters the engineering design phase, the Compact Linear Collider (CLIC) study explores the technical feasibility of a collider capable of reaching into the multi-TeV energy domain. Key ingredients of the CLIC scheme are acceleration at high-frequency (30 GHz) and high-gradient (150 MV/m) in normal conducting structures and the use of the so-called Two Beam Acceleration concept, where a high-charge electron beam (drive beam) running parallel to the main beam is decelerated to provide the RF power to accelerate the main beam itself. A vigorous R&...

  5. CLIC project timeline

    CERN Multimedia

    CLIC, Compact Linear Collider Project

    2018-01-01

    The CLIC project timeline. Current plan is to start at sqrt(s)=380 GeV for Higgs and top quark precision physics and upgrade up to 3 TeV. This timeline represent a purely technical schedule and assumes support at the European Strategy for Particle Physics (ESPP) in 2020 and available funding.

  6. CLIC: Overview of applications using high-gradient acceleration, from photon sources to medical physics

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    The Compact Linear Collider (CLIC) is a future electron-positron collider under study. It foresees e+e- collisions at centre-of-mass energies ranging from a few hundred GeV up to 3 TeV. The CLIC study is an international collaboration hosted by CERN. The lectures provide a broad overview of the CLIC project, covering the physics potential, the particle detectors and the accelerator. An overview of the CLIC physics opportunities is presented. These are best exploited in a staged construction and operation scenario of the collider. The detector technologies, fulfilling CLIC performance requirements and currently under study, are described. The accelerator design and performance, together with its major technologies, are presented in the light of ongoing component tests and large system tests. The status of the optimisation studies (e.g. for cost and power) of the CLIC complex for the proposed energy staging is included. One lecture is dedicated to the use of CLIC technologies in free electron lasers and other ...

  7. Physics highlights at ILC and CLIC

    CERN Document Server

    Lukić, Strahinja

    2015-01-01

    In this lecture, the physics potential for the e+e- linear collider experiments ILC and CLIC is reviewed. The experimental conditions are compared to those at hadron colliders and their intrinsic value for precision experiments, complementary to the hadron colliders, is discussed. The detector concepts for ILC and CLIC are outlined in their most important aspects related to the precision physics. Highlights from the physics program and from the benchmark studies are given. It is shown that linear colliders are a promising tool, complementing the LHC in essential ways to test the Standard Model and to search for new physics.

  8. CLIC project R&D studies: the magnet system for the 3 TEV

    CERN Document Server

    Modena, Michele

    2017-01-01

    This Note presents the R&D activities done and coordinated by TE-MSC Group on the magnetic system for the CLIC (Compact Linear Collider) project. The main aspects investigated are: the magnetic system definition, basic design for all magnets (i.e. a CLIC Magnet Catalogue), powering and cost evaluation, advanced design and prototyping for the most critical magnet variants. The CLIC layout here considered is the one for the highest collision energy of 3 TeV. This layout was the one studied in detail as baseline for the CLIC Conceptual Design Report that was released in 2012. This Note summarize the activities of about 6 years (2010-2016) done with the contribution of CERN staff (part-time), the contribution of some CERN Project Associates sponsored by the CLIC Project and in collaboration with STCF Daresbury Laboratory (UK).

  9. Superconducting Quadrupole for the ISR High Luminosity insertion:end view

    CERN Multimedia

    1977-01-01

    Connection end view of the prototype quadrupole before insertion of the inner vacuum chamber with inbedded 6-pole windings. The main components of the structure can be seen: (from inside outwards) the superconducting quadrupole coils surrounded by glass epoxy bandage rings and stainless steel spacers, the low-carbon steel yoke quadrants and the aluminium alloy shrinking rings. See also photos 7702690X, 7702307, 7702308, 7812604X.

  10. The CLIC programme: Towards a staged $e^{+}e^{−}$ linear collider exploring the terascale CLIC conceptual design report

    CERN Document Server

    Lebrun, P.; Lucaci-Timoce, A.; Schulte, D.; Simon, F.; Stapnes, S.; Toge, N.; Weerts, H.; Wells, J.

    2012-01-01

    This report describes the exploration of fundamental questions in particle physics at the energy frontier with a future TeV-scale $e^+e^-$ linear collider based on the Compact Linear Collider (CLIC) two-beam acceleration technology. A high-luminosity high-energy $e^+e^-$ collider allows for the exploration of Standard Model physics, such as precise measurements of the Higgs, top and gauge sectors, as well as for a multitude of searches for New Physics, either through direct discovery or indirectly, via high-precision observables. Given the current state of knowledge, following the observation of a 125 GeV Higgs-like particle at the LHC, and pending further LHC results at 8 TeV and 14 TeV, a linear $e^+e^-$ collider built and operated in centre-of-mass energy stages from a few-hundred GeV up to a few TeV will be an ideal physics exploration tool, complementing the LHC. In this document, an overview of the physics potential of CLIC is given. Two example scenarios are presented for a CLIC accelerator built in th...

  11. Design of the LINAC4 Transfer Line Quadrupole Electromagnets

    CERN Document Server

    Vanherpe, L

    2013-01-01

    Beam focusing in the various segments of the Linac4 Transfer Line is provided by quadrupole electromagnets. In total seventeen pulsed, air-cooled quadrupole electromagnets are required. They are made of laminated electrical steel yokes and coils wound from solid copper wire. All magnets have an aperture radius of 50 mm and are required to provide an integrated field gradient of 1.8 T over a magnetic length of 300 mm. This design report summarizes the main magnetic, electrical and mechanical design parameters of the Linac4 Transfer Line Quadrupole Magnets. The effect of the vacuum chamber on the magnetic field quality and the field delay is studied.

  12. First phase of CLIC R&D complete

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Let’s turn back the clocks to 2002: the LHC is still under construction, the wrap-up of the LEP physics programme is still in recent memory and the future of electron-positron accelerators at CERN is ambiguous. It was then that CLIC set out to prove the feasibility of their novel accelerator design in the CTF3 test facility. Though once a tall order for the collaboration, the recently released CLIC Conceptual Design Report has proven many of the major design elements… bringing to an end the first phase of CLIC R&D and pointing toward detailed performance optimisation studies in the next phase.   Streak camera images of the final beam, illustrating the combination of beams in the Combiner Ring. Over a decade ago, the CTF3 team set up shop in the vacated LIL injector site, once home to the weathered machine that delivered electrons and positrons to LEP. Rebuilding and upgrading the machine piece by piece, the CTF3 team converted this mA linac into a high-current drive b...

  13. CLIC accelerator modules under construction at CERN

    CERN Multimedia

    Anna Pantelia

    2012-01-01

    The Compact LInear Collider (CLIC) study is dedicated to the design of an electron-positron (e- e+) linear accelerator, colliding particle beams at the energy of 3 TeV. The CLIC required luminosity can be reached with powerful particle beams (14 MW each) colliding with extremely small dimensions and high beam stability at the interaction point. The accelerated particle beams must have dimensions of 45 nm in the horizontal plane and 1 nm in the vertical plane. CLIC relies upon a novel two-beam acceleration concept in which the Radio Frequency (RF) power is extracted from a low energy but high-intensity particle beam, called Drive Beam (DB), and transferred to a parallel high energy accelerating particle beam, called Main Beam (MB). The extraction and transfer of the RF power is achieved by the Power Extraction and Transfer Structures (PETS) and the particle beam acceleration is achieved with high precision RF-Accelerating Structures (AS), operating at 11.9942 GHz with an accelerating gradient of 100 MV/m, whi...

  14. Silicon Technologies for the CLIC Vertex Detector

    CERN Document Server

    Spannagel, Simon

    2017-01-01

    CLIC is a proposed linear e$^+$e$^−$ collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2%$~X_0$ per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50–150$~\\mu$m, including different active edge designs, are evaluated using Timepix3 A...

  15. SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT

    International Nuclear Information System (INIS)

    Rainer Meinke Carl Goodzeit Penny Ball Roger Bangerter

    2003-01-01

    The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of loW--cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet RandD construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed

  16. SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT

    Energy Technology Data Exchange (ETDEWEB)

    Rainer Meinke

    2003-10-01

    The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of low-cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet R&D construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed

  17. A 12 GHz RF Power Source for the CLIC Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirm, Karl; /CERN; Curt, Stephane; /CERN; Dobert, Steffen; /CERN; McMonagle, Gerard; /CERN; Rossat, Ghislain; /CERN; Syratchev, Igor; /CERN; Timeo, Luca; /CERN; Haase, Andrew /SLAC; Jensen, Aaron; /SLAC; Jongewaard, Erik; /SLAC; Nantista, Christopher; /SLAC; Sprehn, Daryl; /SLAC; Vlieks, Arnold; /SLAC; Hamdi, Abdallah; /Saclay; Peauger, Franck; /Saclay; Kuzikov, Sergey; /Nizhnii Novgorod, IAP; Vikharev, Alexandr; /Nizhnii Novgorod, IAP

    2012-07-03

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  18. Pulse Power Modulator development for the CLIC Damping Ring Kickers

    CERN Document Server

    Holma, Janne

    2012-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity (10-34 – 10-35 cm-2s-1) and a nominal centre-of-mass energy of 3 TeV: CLIC would complement LHC physics in the multi-TeV range. The CLIC design relies on Pre-Damping Rings (PDR) and Damping Rings (DR) to achieve the very low emittance, through synchrotron radiation, needed for the luminosity requirements of CLIC. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the DR kickers must provide extremely flat, high-voltage pulses: the 2 GHz specification called for a 160 ns duration flat-top of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. In order to meet these demanding specifications, a combination of broadband impedance matching, optimized electrical circuit layout and advanced control techniques is required. A solid-state modulator, the inductive adder, is the most promising approach to meeting the demanding specifications...

  19. A 12 GHZ RF Power source for the CLIC study

    CERN Document Server

    Peauger, F; Curt, S; Doebert, S; McMonagle, G; Rossat, G; Schirm, KM; Syratchev, I; Timeo, L; Kuzikhov, S; Vikharev, AA; Haase, A; Sprehn, D; Jensen, A; Jongewaard, EN; Nantista, CD; Vlieks, A

    2010-01-01

    The CLIC RF frequency has been changed in 2008 from the initial 30 GHz to the European X-band 11.9942 GHz permitting beam independent power production using klystrons for CLIC accelerating structure testing. A design and fabrication contract for five klystrons at that frequency has been signed by different parties with SLAC. France (IRFU, CEA Saclay) is contributing a solid state modulator purchased in industry and specific 12 GHz RF network components to the CLIC study. RF pulses over 120 MW peak at 230 ns length will be obtained by using a novel SLED-I type pulse compression scheme designed and fabricated by IAP, Nizhny Novgorod, Russia. The X-band power test stand is being installed in the CLIC Test Facility CTF3 for independent structure and component testing in a bunker, but allowing, in a later stage, for powering RF components in the CTF3 beam lines. The design of the facility, results from commissioning of the RF power source and the expected performance of the Test Facility are reported.

  20. CLIC/ILC Researchers Explore New Avenues for Collaboration

    CERN Multimedia

    Katarina Anthony

    2010-01-01

    Researchers from CLIC and ILC met for their first common International Workshop on Linear Colliders, which was held in Geneva from 18 to 22 October. Although the talks were mostly scientific and technical, the political message behind them was a breakthrough, as the workshop showed the progress made in unifying the two communities.   The International Workshop on Linear Colliders (IWLC), which was organised by the European Committee for Future Accelerators, hosted by CERN, and held at CERN and the International Conference Centre in Geneva, attracted a large audience of about 500 experts. Although there have been other joint conferences between the CLIC and ILC communities before, they have all been focused on specific technical and/or managerial issues. The IWLC was part of an ongoing effort by CLIC and ILC to provide an environment in which researchers can exchange ideas, inform their peers about their most recent achievements and work together on common issues. Given the possible technical ov...

  1. Propagation error simulations concerning the CLIC active prealignment

    CERN Document Server

    Touzé, T; Missiaen, D

    2009-01-01

    The CLIC1 components will have to be prealigned within a thirty times more demanding tolerance than the existing CERNmachines. It is a technical challenge and a key issue for the CLIC feasibility. Simulations have been undertaken concerning the propagation error due to the measurement uncertainties of the prealignment systems. The uncertainties of measurement, taken as hypothesis for the simulations, are based on the data obtained on several dedicated facilities. This paper introduces the simulations and the latest results obtained, as well as the facilities.

  2. CLIC's three-step plan

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    In early October, the Compact Linear Collider (CLIC) collaboration published its final Conceptual Design Report. Accompanying it was a strategic summary document that describes a whole new approach to the project: developing the linear e+e− collider in three energy stages. Though CLIC’s future still depends on signs from the LHC, its new staged approach to high-energy electron-positron physics for the post-LHC era is nothing short of convincing.   Instead of asking for a 48-kilometre-long commitment right off the bat, the CLIC collaboration is now presenting an accelerator that can be constructed in stages. For example, it could begin as an 11-kilometre 500 GeV accelerator that could later be extended to a 27-kilometre 1.5 TeV machine. Finally, after a decade or so of data taking, it could be taken up to the full 48-kilometre 3 TeV facility (see image 2). “Not only is the approach technically and financially practical, it also offers a very convincing physics prog...

  3. Experimental Program for the CLIC test facility 3 test beam line

    CERN Document Server

    Adli, E; Dobert, S; Olvegaard, M; Schulte, D; Syratchev, I; Lillestol, Reidar

    2010-01-01

    The CLIC Test Facility 3 Test Beam Line is the first prototype for the CLIC drive beam decelerator. Stable transport of the drive beam under deceleration is a mandatory component in the CLIC two-beam scheme. In the Test Beam Line more than 50% of the total energy will be extracted from a 150 MeV, 28 A electron drive beam, by the use of 16 power extraction and transfer structures. A number of experiments are foreseen to investigate the drive beam characteristics under deceleration in the Test Beam Line, including beam stability, beam blow up and the efficiency of the power extraction. General benchmarking of decelerator simulation and theory studies will also be performed. Specially designed instrumentation including precision BPMs, loss monitors and a time-resolved spectrometer dump will be used for the experiments. This paper describes the experimental program foreseen for the Test Beam Line, including the relevance of the results for the CLIC decelerator studies.

  4. Simulation of an all silicon tracker for CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Muenker, Magdalena; Nuernerg, Andreas [CERN (Switzerland); University of Bonn (Germany)

    2016-07-01

    CLIC is a proposed future electron-positron linear collider with a centre-of-mass energy up to 3 TeV. The aim of high precision measurements at CLIC is driving the design of the detector for CLIC. To perform a precise measurement of the Higgs recoil mass a momentum resolution of σ{sub p{sub T}}/p{sub T}{sup 2} ∝2 . 10{sup -5} GeV{sup -1} is required. This imposes a single point tracking resolution of ∝7 μm. To reach this aim an all silicon tracker is foreseen for CLIC. A simulation chain has been set up to study the performance of different silicon sensor designs. This simulation chain consists of a GEANT4 simulation to model the energy deposit in silicon, a finite element simulation of the charge drift and signal formation with TCAD and a fast parametric modelling of the front-end electronics. By that energy fluctuations, electronic noise and the digitalisation of the readout signal are taken into account. Furthermore this tool is used to predict the sensor performance in terms of efficiency, cluster-size and resolution. This framework is used to study the performance of e.g. sensors with different pitch and thickness. Various incident angles of charged particles with respect to the sensor surface and the effect of a magnetic field are taken into account. The simulation chain is validated with data.

  5. Online Resources for High School Teachers--A CLIC Away

    Science.gov (United States)

    Holmes, Jon L.

    2000-04-01

    "I'm a high school teacher. I don't have time to sift through all of JCE to find what I need. I don't have enough time as it is!" If you need to find things in a hurry, go to JCE HS CLIC, the JCE High School Chemed Learning Information Center, http://JChemEd.chem.wisc.edu/HS/. You will find good solid, reliable information, and you will find it fast. CLIC is open 24 hours every day, all over the world. What You Will Find at JCE CLIC We know teachers are pressed for time. During the few minutes between classes or at the end of the day, information needs to be found very quickly. Perhaps you are looking for a demo that illustrates electrochemistry using Cu, Mg, orange juice, and a clock; or a student activity on chromatography that is ready to copy and hand out; or a video to illustrate the action of aqua regia on gold, because you can't use aqua regia and can't afford gold. You can find each of these quickly at CLIC. The Journal has always provided lots of articles designed with high school teachers in mind. What the new JCE HS CLIC does is collect the recent materials at one address on JCE Online, making it quicker and easier for you to find them. Information has been gathered from both print and online versions of the Journal, from JCE Software, and from JCE Internet. It is organized as shown at the bottom of the page. Getting Access to Information You have located something that interests you, perhaps a list of tested demonstrations that pertain to consumer chemistry. Now it is time to get it. JCE subscribers (individuals and libraries) can read, download, and print the full versions of the articles as well as all supplemental materials, including student handouts and instructor's notes. You will need the username and password that are on the mailing label that comes with your Journaleach month. JCE HS CLIC home page: http://JChemEd.chem.wisc.edu/HS/ Your Suggestions, Please Our plans for JCE HS CLIC do not end with what you find now. Other resources and features

  6. Impact of Dynamic Magnetic fields on the CLIC Main Beam

    CERN Document Server

    Snuverink, J; Jach, C; Jeanneret, JB; Schulte, D; Stulle, F

    2010-01-01

    The Compact Linear Collider (CLIC) accelerator has strong precision requirements on the position of the beam. The beam position will be sensitive to external dynamic magnetic fields (stray fields) in the nanotesla regime. The impact of these fields on the CLIC main beam has been studied by performing simulations on the lattices and tolerances have been determined. Several mitigation techniques will be discussed.

  7. Golden Jubilee Photos: A CLIC for the future

    CERN Multimedia

    2004-01-01

    http://www.cern.ch/cern50/ Prototype copper accelerating structures for CLIC. New accelerator projects take many years to make and mature. When the LHC project was still only a twinkle in CERN's eye, research was already starting on a new machine. A small team at CERN was setting about the task of studying a high-energy, compact, lepton linear collider, known as CLIC. This is possibly set to become the collider of the future. A machine of this kind has all the advantages of a collider (the total collision energy is equal to the sum of the energies of the two colliding beams) without the drawback of synchrotron radiation, which is produced when particles are accelerated around a ring and thus puts a limit on the energy of such colliders. But in a project as technically challenging as CLIC, considerable technological hurdles must be overcome. To limit the linear collider's length to some tens of kilometres, the beams must acquire a considerable quantity of energy per metre travelled. The collision rate (lumi...

  8. Performance-Optimization Studies for the CLIC Vertex Detector

    CERN Document Server

    AUTHOR|(CDS)2085406; Roloff, Philipp

    The Compact Linear Collider (CLIC) is a mutli-TeV linear e+e- collider currently under development at CERN. In the post-LHC era, CLIC will allow to explore a great number of searches for New Physics such as the precise measurements of the Higgs boson. In this master thesis, we mainly focus on the development and the improvement of the vertex detector. The vertex detector requires excellent spatial resolution, low mass, geometrical coverage down to low polar angles, high rate readout for the sensors and new cooling technologies for heat removal. Considering such requirements, the CLIC vertex detector technology is far more advanced in comparison to the technologies currently used in particle physics. This project consists of two main parts. In the first part, we study the vertex detector and optimize its geometry for the use of airflow cooling techniques and also for flavor tagging. In the second part, we implement a decoder which can respect the timing constraints for the CLICpix chip, a silicon pixel detect...

  9. Detector optimization studies and light Higgs decay into muons at CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Grefe, Christian

    2013-09-15

    The Compact Linear Collider (CLIC) is a concept for a future e{sup +}e{sup -} linear collider with a center-of-mass energy of up to 3 TeV. The design of a CLIC experiment is driven by the requirements related to the physics goals, as well as by the experimental conditions. For example, the short time between two bunch crossings of 0.5 ns and the backgrounds due to beamstrahlung have direct impact on the design of a CLIC experiment. The Silicon Detector (SiD) is one of the concepts currently being discussed as a possible detector for the International Linear Collider (ILC). In this thesis we develop a modified version of the SiD simulation model for CLIC, taking into account the specific experimental conditions. In addition, we developed a software tool to investigate the impact of beam-related backgrounds on the detector by overlaying events from different simulated event samples. Moreover, we present full simulation studies, determining the performance of the calorimeter and tracking systems. We show that the track reconstruction in the all-silicon tracker of SiD is robust in the presence of the backgrounds at CLIC. Furthermore, we investigate tungsten as a dense absorber material for the hadronic calorimeter, which allows for the construction of a compact hadronic calorimeter that fulfills the requirements on the energy resolution and shower containment without a significant increase of the coil radius. Finally, the measurement of the decays of light Higgs bosons into two muons is studied in full simulation. We find that with an integrated luminosity of 2 ab{sup -1}, corresponding to 4 years of data taking at CLIC, the respective Higgs branching ratio can be determined with a statistical uncertainty of approximately 15%.

  10. Detector optimization studies and light Higgs decay into muons at CLIC

    International Nuclear Information System (INIS)

    Grefe, Christian

    2013-09-01

    The Compact Linear Collider (CLIC) is a concept for a future e + e - linear collider with a center-of-mass energy of up to 3 TeV. The design of a CLIC experiment is driven by the requirements related to the physics goals, as well as by the experimental conditions. For example, the short time between two bunch crossings of 0.5 ns and the backgrounds due to beamstrahlung have direct impact on the design of a CLIC experiment. The Silicon Detector (SiD) is one of the concepts currently being discussed as a possible detector for the International Linear Collider (ILC). In this thesis we develop a modified version of the SiD simulation model for CLIC, taking into account the specific experimental conditions. In addition, we developed a software tool to investigate the impact of beam-related backgrounds on the detector by overlaying events from different simulated event samples. Moreover, we present full simulation studies, determining the performance of the calorimeter and tracking systems. We show that the track reconstruction in the all-silicon tracker of SiD is robust in the presence of the backgrounds at CLIC. Furthermore, we investigate tungsten as a dense absorber material for the hadronic calorimeter, which allows for the construction of a compact hadronic calorimeter that fulfills the requirements on the energy resolution and shower containment without a significant increase of the coil radius. Finally, the measurement of the decays of light Higgs bosons into two muons is studied in full simulation. We find that with an integrated luminosity of 2 ab -1 , corresponding to 4 years of data taking at CLIC, the respective Higgs branching ratio can be determined with a statistical uncertainty of approximately 15%.

  11. Occupancy in the CLIC ILD Time Projection Chamber using Pixelised Readout

    CERN Document Server

    Killenberg, Martin

    2013-01-01

    The occupancy in the CLIC ILD TPC caused by the beam induced background from gamma gamma -> hadrons, e+e- pairs and beam halo muons is very high for conventional pad readout. We show that the occupancy for a pixelised TPC readout is moderate and might be a viable solution to operate a TPC at CLIC.

  12. Dimension-6 operator analysis of the CLIC sensitivity to new physics

    International Nuclear Information System (INIS)

    Ellis, John; Roloff, Philipp; Sanz, Verónica; You, Tevong

    2017-01-01

    We estimate the possible accuracies of measurements at the proposed CLIC e + e − collider of Higgs and W + W − production at centre-of-mass energies up to 3 TeV, incorporating also Higgsstrahlung projections at higher energies that had not been considered previously, and use them to explore the prospective CLIC sensitivities to decoupled new physics. We present the resulting constraints on the Wilson coefficients of dimension-6 operators in a model-independent approach based on the Standard Model effective field theory (SM EFT). The higher centre-of-mass energy of CLIC, compared to other projects such as the ILC and CEPC, gives it greater sensitivity to the coefficients of some of the operators we study. We find that CLIC Higgs measurements may be sensitive to new physics scales Λ=O(10) TeV for individual operators, reduced to O(1) TeV sensitivity for a global fit marginalising over the coefficients of all contributing operators. We give some examples of the corresponding prospective constraints on specific scenarios for physics beyond the SM, including stop quarks and the dilaton/radion.

  13. Tuning of Clic accelerating structure prototypes at CERN

    CERN Document Server

    Shi, J; Olyunin, A; Wuensch, W

    2010-01-01

    An RF measurement system has been set up at CERN for use in the X-band accelerating structure development program of the CLIC study. Using the system, S-parameters are measured and the field distribution is obtained automatically using a bead-pull technique. The corrections for tuning the structure are calculated from an initial measurement and cell-by-cell tuning is applied to obtain the correct phase advance and minimum reflection at the operation frequency. The detailed tuning procedure is presented and explained along with an example of measurement and tuning of CLIC accelerating structure prototypes.

  14. Top Mass Measurement at CLIC at 500 GeV

    CERN Document Server

    Simon, Frank; Poss, Stephane

    2012-01-01

    We present a study of the capability of a 500 GeV e+e- collider based on CLIC technology for precision measurements of top quark properties. The analysis is based on full detector simulations of the CLIC_ILD detector concept using Geant4, including realistic background contributions from two photon processes. Event reconstruction is performed using a particle flow algorithm with stringent cuts to control the influence of background. The mass and width of the top quark are studied in fully-hadronic and semi-leptonic decays of ttbar pairs using event samples of signal and standard model background processes corresponding to an integrated luminosity of 100/fb. Statistical uncertainties of the top mass given by the invariant mass of its decay products of 0.08 GeV and 0.09 GeV are obtained for the fully-hadronic and the semi-leptonic decay channel, respectively, demonstrating that similar precision to that at ILC can be achieved at CLIC despite less favorable experimental conditions.

  15. Drive beam stabilisation in the CLIC Test Facility 3

    Science.gov (United States)

    Malina, L.; Corsini, R.; Persson, T.; Skowroński, P. K.; Adli, E.

    2018-06-01

    The proposed Compact Linear Collider (CLIC) uses a high intensity, low energy drive beam to produce the RF power needed to accelerate a lower intensity main beam with 100 MV/m gradient. This scheme puts stringent requirements on drive beam stability in terms of phase, energy and current. The consequent experimental work was carried out in CLIC Test Facility CTF3. In this paper, we present a novel analysis technique in accelerator physics to find beam drifts and their sources in the vast amount of the continuously gathered signals. The instability sources are identified and adequately mitigated either by hardware improvements or by implementation and commissioning of various feedbacks, mostly beam-based. The resulting drive beam stability is of 0.2°@ 3 GHz in phase, 0.08% in relative beam energy and about 0.2% beam current. Finally, we propose a stabilisation concept for CLIC to guarantee the main beam stability.

  16. Higgs Physics at CLIC

    CERN Document Server

    AUTHOR|(CDS)2073690

    2016-01-01

    The Compact Linear Collider (CLIC) is an attractive option for a future multi-TeV linear electron-positron collider, offering the potential for a rich precision physics programme, combined with sensitivity to a wide range of new phenomena. The physics reach of CLIC has been studied in the context of three distinct centre-of-mass energies, √s = 350 GeV, 1.4 TeV and 3.0 TeV. This staged scenario provides an excellent environment for precise studies of the properties of the 126 GeV Higgs boson. Operation at √s = 350 GeV allows, on the one hand, for a determination of the couplings and width of the Higgs boson in a model-independent manner through the study of the Higgsstrahlung process, and on the other hand, for a study of Higgs bosons produced in W+W− fusion for the most common Higgs decay modes. Operation at higher centre-of-mass energies, √s = 1.4 TeV and 3 TeV, provides high statistics W+W− fusion samples allowing for high precision measurements of many Higgs couplings and a study of rare Higgs de...

  17. Vertex and Tracker Research and Development for CLIC

    CERN Document Server

    Munker, M

    2017-01-01

    Challenging detector requirements are imposed by the physics goals at the future multi-TeV e+e− Compact Linear Collider (CLIC). A single point resolution of 3 μm for the vertex detector and 7 μm for the tracker is required. Moreover, the CLIC vertex detector and tracker need to be extremely light weighted with a material budget of 0.2%X0 per layer in the vertex detector and 1 - 2%X0 in the tracker. A fast time slicing of 10 ns is further required to suppress background from beam-beam interactions. A wide range of sensor and readout ASIC technologies are investigated within the CLIC silicon pixel R&D; effort. Various hybrid planar sensor assemblies with a pixel size of 25 × 25 μm2 and 55 × 55 μm2 have been produced and characterised by laboratory measurements and during test-beam campaigns. Experimental and simulation results for thin (50 μm- 500 μm) slim edge and active-edge planar, and High-Voltage CMOS sensors hybridised to various readout ASICs (Timepix, Timepix3, CLICpix) are presented.

  18. LHC interaction region quadrupole cryostat design

    International Nuclear Information System (INIS)

    Nicol, T.H.; Darve, Ch.; Huang, Y.; Page, T.M.

    2002-01-01

    The cryostat of a Large Hadron Collider (LHC) Interaction Region (IR) quadrupole magnet consists of all components of the inner triplet except the magnet assembly itself. It serves to support the magnet accurately and reliably within the vacuum vessel, to house all required cryogenic piping, and to insulate the cold mass from heat radiated and conducted from the environment. It must function reliably during storage, shipping and handling, normal magnet operation, quenches, and seismic excitations, and must be able to be manufactured at low cost. The major components of the cryostat are the vacuum vessel, thermal shield, multi-layer insulation system, cryogenic piping, and suspension system. The overall design of a cryostat for superconducting accelerator magnets requires consideration of fluid flow, proper selection of materials for their thermal and structural performance at both ambient and operating temperature, and knowledge of the environment to which the magnets will be subjected over the course of their expected operating lifetime. This paper describes the current LHC IR inner triplet quadrupole magnet cryostats being designed and manufactured at Fermilab as part of the US-LHC collaboration, and includes discussions on the structural and thermal considerations involved in the development of each of the major systems

  19. CLIC Brochure

    CERN Multimedia

    AUTHOR|(CDS)2086185

    2015-01-01

    After the discovery of the Higgs boson and with upgrades to higher energy and luminosity, the LHC is mapping the route of particle physics into the future. The next step in this journey of discovery could be a linear electron-positron collider, which would complement the LHC and allow high precision measurements of the Higgs boson, the top quark and electroweak processes in addition to possible new physics beyond the Standard Model. The Compact Linear Collider is under development by two worldwide collaborations, pushing the limits of particle acceleration and detection. Technological R&D, physics simulations and engineering studies must all come together to make CLIC a reality.

  20. SM-like Higgs decay into two muons at 1.4 TeV CLIC

    CERN Document Server

    Milutinovic-Dumbelovic, Gordana

    2016-06-02

    The branching fraction measurement of the SM-like Higgs boson decay into two muons at 1.4 TeV CLIC will be described in this paper contributed to the LCWS13. The study is performed in the fully simulated ILD detector concept for CLIC, taking into consideration all the relevant physics and the beam-induced backgrounds, as well as the instrumentation of the very forward region to tag the high-energy electrons. Higgs couplings are known to be sensitive to BSM physics and we prove that BR times the Higgs production cross section can be measured with approximately 35.5% statistical accuracy in four years of the CLIC operation at 1.4 TeV centre-of-mass energy with unpolarised beams. The result is preliminary as the equivalent photon approximation is not considered in the cross-section calculations. This study complements the Higgs physics program foreseen at CLIC.

  1. Status of Wakefield Monitor Experiments at the CLIC Test Facility

    CERN Document Server

    Lillestøl, Reidar; Aftab, Namra; Corsini, Roberto; Döbert, Steffen; Farabolini, Wilfrid; Grudiev, Alexej; Javeed, Sumera; Pfingstner, Juergen; Wuensch, Walter

    2016-01-01

    For the very low emittance beams in CLIC, it is vital to mitigate emittance growth which leads to reduced luminosity in the detectors. One factor that leads to emittance growth is transverse wakefields in the accelerating structures. In order to combat this the structures must be aligned with a precision of a few um. For achieving this tolerance, accelerating structures are equipped with wakefield monitors that measure higher-order dipole modes excited by the beam when offset from the structure axis. We report on such measurements, performed using prototype CLIC accelerating structures which are part of the module installed in the CLIC Test Facility 3 (CTF3) at CERN. Measurements with and without the drive beam that feeds rf power to the structures are compared. Improvements to the experimental setup are discussed, and finally remaining measurements that should be performed before the completion of the program are summarized.

  2. Material studies for CLIC RF cavities

    CERN Document Server

    Taborelli, M

    2004-01-01

    Following the EST/SM suggestion of replacing copper by molybdenum or tungsten for the construction of the RF cavity irises, different CLIC main beam accelerating structures were produced, extensively operated and disassembled for iris surface inspection. The observed surface modifications were found to be very similar to those obtained by sparking in a dedicated laboratory set-up, showing the superior behaviour of both Mo and W with respect to Cu, in terms of surface erosion and conditioning. The iris thermomechanical fatigue due to RF heating was simulated by high power pulsed laser irradiation. A CuZr alloy was found to be much more resistant than pure Cu. Measurements at higher pulse number will be performed on CuZr in order to extrapolate its fatigue behaviour up to the nominal CLIC duration. Finally a possible future development of a hybrid probe beam acceleration structure will be presented.

  3. Cherenkov Fibers for Beam Loss Monitoring at the CLIC Two Beam Module

    CERN Document Server

    van Hoorne, Jacobus Willem; Holzer, E B

    The Compact Linear Collider (CLIC) study is a feasibility study aiming at a nominal center of mass energy of 3TeV and is based on normal conducting travelling-wave accelerating structures, operating at very high field gradients of 100 MV/m. Such high fields require high peak power and hence a novel power source, the CLIC two beam system, has been developed, in which a high intensity, low energy drive beam (DB) supplies energy to a high energy, low intensity main beam (MB). At the Two Beam Modules (TBM), which compose the 2x21km long CLIC main linac, a protection against beam losses resulting from badly controlled beams is necessary and particularly challenging, since the beam power of both main beam (14 MW) and drive beam (70 MW) is impressive. To avoid operational downtimes and severe damages to machine components, a general Machine Protection System (MPS) scheme has been developed. The Beam Loss Monitoring (BLM) system is a key element of the CLIC machine protection system. Its main role will be to detect p...

  4. Strategy and validation of fiducialisation for the pre-alignment of CLIC components

    CERN Document Server

    Griffet, S; Kemppinen, J; Mainaud Durand, H; Rude, V; Sterbini, G

    2012-01-01

    The feasibility of the high energy e+ e- linear collider CLIC (Compact Linear Collider) is very dependent on the ability to accurately pre-align its components. There are two 20 km long Main Linacs which meet in an interaction point (IP). The Main Linacs are composed of thousands of 2 m long modules. One of the challenges is to meet very tight alignment tolerances at the level of CLIC module: for example, the magnetic centre of a Drive Beam Quad needs to be aligned within 20 µm rms with respect to a straight line. Such accuracies cannot be achieved using usual measurement devices. Thus it is necessary to work in close collaboration with the metrology lab. To test and improve many critical points, including alignment, a CLIC mock-up is being assembled at CERN. This paper describes the application of the strategy of fiducialisation for the pre-alignment of CLIC mock-up components. It also deals with the first results obtained by performing measurements using a CMM (Coordinate Measuring Machine) to ensure the f...

  5. Collective effects and experimental verification of the CLIC drive beam and decelerator

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00418229; Stapnes, Steinar; Adli, Erik

    The Compact Linear Collider (CLIC) is a potential next-generation particle collider, in which electrons and positrons collide at a center-of-mass energy of up to 3 TeV. In order to reach a high accelerating gradient and reduce the length of the machine, CLIC uses a novel two-beam scheme. Here, the acceleration energy for the main beam is provided by energy extraction from a secondary electron drive beam, by the use of Power Extraction and Transfer Structures (PETS). This Ph.D. thesis describes deceleration measurements from the CLIC Test Facility 3 at CERN, from a beam that had up to 37 % of its kinetic energy converted into 12 GHz rf power. The results are part of the feasibility demonstration of the CLIC scheme. The measured difference in beam energy of the decelerated beam is correlated with particle tracking simulations and with predictions based on analytical formulae, and a very good agreement is demonstrated. The evolution of the transverse emittance was also studied, since it is critical to contain th...

  6. Results from the CLIC X-Band Structure Test Program at NLCTA

    International Nuclear Information System (INIS)

    Adolphsen, C.

    2009-01-01

    As part of a SLAC-CERN-KEK collaboration on high gradient X-band structure research, several prototype structures for the CLIC linear collider study have been tested using two of the high power (300 MW) X-band rf stations in the NLCTA facility at SLAC. These structures differ in terms of their fabrication (brazed disks and clamped quadrants), gradient profile (amount by which the gradient increases along the structure, which optimizes efficiency and maximizes sustainable gradient) and HOM damping (use of slots or waveguides to rapidly dissipate dipole mode energy). The CLIC goal in the next few years is to demonstrate the feasibility of a CLIC-ready baseline design and to investigate alternatives that could increase efficiency. This paper summarizes the high gradient test results from NLCTA in support of this effort.

  7. Point mutations in the transmembrane region of the clic1 ion channel selectively modify its biophysical properties.

    Directory of Open Access Journals (Sweden)

    Stefania Averaimo

    Full Text Available Chloride intracellular Channel 1 (CLIC1 is a metamorphic protein that changes from a soluble cytoplasmic protein into a transmembrane protein. Once inserted into membranes, CLIC1 multimerises and is able to form chloride selective ion channels. Whilst CLIC1 behaves as an ion channel both in cells and in artificial lipid bilayers, its structure in the soluble form has led to some uncertainty as to whether it really is an ion channel protein. CLIC1 has a single putative transmembrane region that contains only two charged residues: arginine 29 (Arg29 and lysine 37 (Lys37. As charged residues are likely to have a key role in ion channel function, we hypothesized that mutating them to neutral alanine to generate K37A and R29A CLIC1 would alter the electrophysiological characteristics of CLIC1. By using three different electrophysiological approaches: i single channel Tip-Dip in artificial bilayers using soluble recombinant CLIC1, ii cell-attached and iii whole-cell patch clamp recordings in transiently transfected HEK cells, we determined that the K37A mutation altered the single-channel conductance while the R29A mutation affected the single-channel open probability in response to variation in membrane potential. Our results show that mutation of the two charged amino acids (K37 and R29 in the putative transmembrane region of CLIC1 alters the biophysical properties of the ion channel in both artificial bilayers and cells. Hence these charged residues are directly involved in regulating its ion channel activity. This strongly suggests that, despite its unusual structure, CLIC1 itself is able to form a chloride ion channel.

  8. Sensitivity Analysis for the CLIC Damping Ring Inductive Adder

    CERN Document Server

    Holma, Janne

    2012-01-01

    The CLIC study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings will produce, through synchrotron radiation, ultra-low emittance beam with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse generators for the damping ring kickers must provide extremely flat, high-voltage pulses. The specifications for the extraction kickers of the CLIC damping rings are particularly demanding: the flattop of the output pulse must be 160 ns duration, 12.5 kV and 250 A, with a combined ripple and droop of not more than ±0.02 %. An inductive adder allows the use of different modulation techniques and is therefore a very promising approach to meeting the specifications. PSpice has been utilised to carry out a sensitivity analysis of the predicted output pulse to the value of both individual and groups of circuit compon...

  9. Silicon technologies for the CLIC vertex detector

    Science.gov (United States)

    Spannagel, S.

    2017-06-01

    CLIC is a proposed linear e+e- collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2% X0 per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50-150 μm, including different active edge designs, are evaluated using Timepix3 ASICs. First prototypes of the CLICpix readout ASIC, implemented in 65 nm CMOS technology and with a pixel size of 25×25μm 2, have been produced and tested in particle beams. An updated version of the ASIC with a larger pixel matrix and improved precision of the time-over-threshold and time-of-arrival measurements has been submitted. Different hybridization concepts have been developed for the interconnection between the sensor and readout ASIC, ranging from small-pitch bump bonding of planar sensors to capacitive coupling of active HV-CMOS sensors. Detector simulations based on Geant 4 and TCAD are compared with experimental results to assess and optimize the performance of the various designs. This contribution gives an overview of the R&D program undertaken for the CLIC vertex detector and presents performance measurements of the prototype detectors currently under investigation.

  10. Development of a novel rf waveguide vacuum valve

    CERN Document Server

    Grudiev, A

    2006-01-01

    The development of a novel rf waveguide vacuum valve is presented. The rf design is based on the use of TE0n modes of circular waveguides. In the device, the TE01 mode at the input is converted into a mixture of several TE0n modes which provide low-loss rf power transmission across the vacuum valve gap, these modes are then converted back into the TE01 mode at the output. There are a number of advantages associated with the absence of surface fields in the region of the valve: • Possibility to use commercially available vacuum valves equipped with two specially designed mode converter sections. • No necessity for an rf contact between these two sections. • Increased potential for high power rf transmission. This technology can be used for all frequencies for which vacuum waveguides are used. In rectangular waveguides, mode converters from the operating mode into the TE01 mode and back again are necessary. Experimental results for the 30 GHz valves developed for the CLIC Test Facility 3 (CTF3) a...

  11. arXiv Dimension-6 Operator Analysis of the CLIC Sensitivity to New Physics

    CERN Document Server

    Ellis, John; Sanz, Veronica; You, Tevong

    2017-05-17

    We estimate the possible accuracies of measurements at the proposed CLIC e$^{+}$ e$^{−}$ collider of Higgs and W$^{+}$ W$^{−}$ production at centre-of-mass energies up to 3 TeV, incorporating also Higgsstrahlung projections at higher energies that had not been consid-ered previously, and use them to explore the prospective CLIC sensitivities to decoupled new physics. We present the resulting constraints on the Wilson coefficients of dimension-6 operators in a model-independent approach based on the Standard Model effective field theory (SM EFT). The higher centre-of-mass energy of CLIC, compared to other projects such as the ILC and CEPC, gives it greater sensitivity to the coefficients of some of the operators we study. We find that CLIC Higgs measurements may be sensitive to new physics scales $ \\Lambda =\\mathcal{O}(10) $ TeV for individual operators, reduced to $ \\mathcal{O}(1) $ TeV sensitivity for a global fit marginalising over the coefficients of all contributing operators. We give some examples of...

  12. Theoretical temperature model with experimental validation for CLIC Accelerating Structures

    CERN Document Server

    AUTHOR|(CDS)2126138; Vamvakas, Alex; Alme, Johan

    Micron level stability of the Compact Linear Collider (CLIC) components is one of the main requirements to meet the luminosity goal for the future $48 \\,km$ long underground linear accelerator. The radio frequency (RF) power used for beam acceleration causes heat generation within the aligned structures, resulting in mechanical movements and structural deformations. A dedicated control of the air- and water- cooling system in the tunnel is therefore crucial to improve alignment accuracy. This thesis investigates the thermo-mechanical behavior of the CLIC Accelerating Structure (AS). In CLIC, the AS must be aligned to a precision of $10\\,\\mu m$. The thesis shows that a relatively simple theoretical model can be used within reasonable accuracy to predict the temperature response of an AS as a function of the applied RF power. During failure scenarios or maintenance interventions, the RF power is turned off resulting in no heat dissipation and decrease in the overall temperature of the components. The theoretica...

  13. Validation of a Micrometric remotely controlled pre-alignment system for the CLIC Linear Collider using a test setup (Mock-Up) with 5 degrees of freedom

    CERN Document Server

    Mainaud Durand, H; Griffet, S; Kemppinen, J; Leuxe, R; Sosin, M

    2011-01-01

    The CLIC main beam quadrupoles need to be prealigned within 17 um rms with respect to a straight reference line along a sliding window of 200 m. A readjustment system based on eccentric cam movers, which will provide stiffness to the support assembly, is being studied. The cam movers were qualified on a 1 degree of freedom (DOF) test setup, where a repeatability of adjustment below 1um was measured along their whole range. This paper presents the 5 DOF mock-up, built for the validation of the eccentric cam movers, as well as the first results of tests carried out: resolution of displacement along the whole range, measurements of the support eigenfrequencies.

  14. CERN: Making CLIC tick

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    While the Large Hadron Collider (LHC) scheme for counter-rotating proton beams in a new superconducting ring to be built in CERN's existing 27-kilometre LEP tunnel is being pushed as the Laboratory's main construction project for the 1990s, research and development continues in parallel for an eventual complementary attack on new physics frontiers with CERN's Linear Collider - CLIC - firing TeV electron and positron beams at each other

  15. Proposal for an alignment method of the CLIC linear accelerator - From geodesic networks to the active pre-alignment

    International Nuclear Information System (INIS)

    Touze, T.

    2011-01-01

    The compact linear collider (CLIC) is the particle accelerator project proposed by the european organization for nuclear research (CERN) for high energy physics after the large hadron collider (LHC). Because of the nano-metric scale of the CLIC leptons beams, the emittance growth budget is very tight. It induces alignment tolerances on the positions of the CLIC components that have never been achieved before. The last step of the CLIC alignment will be done according to the beam itself. It falls within the competence of the physicists. However, in order to implement the beam-based feedback, a challenging pre-alignment is required: 10 μm at 3σ along a 200 m sliding window. For such a precision, the proposed solution must be compatible with a feedback between the measurement and repositioning systems. The CLIC pre-alignment will have to be active. This thesis does not demonstrate the feasibility of the CLIC active pre-alignment but shows the way to the last developments that have to be done for that purpose. A method is proposed. Based on the management of the Helmert transformations between Euclidean coordinate systems, from the geodetic networks to the metrological measurements, this method is likely to solve the CLIC pre-alignment problem. Large scale facilities have been built and Monte-Carlo simulations have been made in order to validate the mathematical modeling of the measurement systems and of the alignment references. When this is done, it will be possible to extrapolate the modeling to the entire CLIC length. It will be the last step towards the demonstration of the CLIC pre-alignment feasibility. (author)

  16. Prototype Superconducting Quadrupole for the ISR low-beta insertion

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    The picture shows the cold mass of the Quadrupole with its outer aluminium alloy rings pre-compressing the superconducting coils via the magnetic yoke split in 4 parts.The end of the inner vacuum chamber,supporting the 6-pole correction windings, can also be seen as well as the electrical connections. See also photos 7702690X, 7702307.

  17. Higgs physics at the CLIC electron-positron linear collider.

    Science.gov (United States)

    Abramowicz, H; Abusleme, A; Afanaciev, K; Alipour Tehrani, N; Balázs, C; Benhammou, Y; Benoit, M; Bilki, B; Blaising, J-J; Boland, M J; Boronat, M; Borysov, O; Božović-Jelisavčić, I; Buckland, M; Bugiel, S; Burrows, P N; Charles, T K; Daniluk, W; Dannheim, D; Dasgupta, R; Demarteau, M; Díaz Gutierrez, M A; Eigen, G; Elsener, K; Felzmann, U; Firlej, M; Firu, E; Fiutowski, T; Fuster, J; Gabriel, M; Gaede, F; García, I; Ghenescu, V; Goldstein, J; Green, S; Grefe, C; Hauschild, M; Hawkes, C; Hynds, D; Idzik, M; Kačarević, G; Kalinowski, J; Kananov, S; Klempt, W; Kopec, M; Krawczyk, M; Krupa, B; Kucharczyk, M; Kulis, S; Laštovička, T; Lesiak, T; Levy, A; Levy, I; Linssen, L; Lukić, S; Maier, A A; Makarenko, V; Marshall, J S; Martin, V J; Mei, K; Milutinović-Dumbelović, G; Moroń, J; Moszczyński, A; Moya, D; Münker, R M; Münnich, A; Neagu, A T; Nikiforou, N; Nikolopoulos, K; Nürnberg, A; Pandurović, M; Pawlik, B; Perez Codina, E; Peric, I; Petric, M; Pitters, F; Poss, S G; Preda, T; Protopopescu, D; Rassool, R; Redford, S; Repond, J; Robson, A; Roloff, P; Ros, E; Rosenblat, O; Ruiz-Jimeno, A; Sailer, A; Schlatter, D; Schulte, D; Shumeiko, N; Sicking, E; Simon, F; Simoniello, R; Sopicki, P; Stapnes, S; Ström, R; Strube, J; Świentek, K P; Szalay, M; Tesař, M; Thomson, M A; Trenado, J; Uggerhøj, U I; van der Kolk, N; van der Kraaij, E; Vicente Barreto Pinto, M; Vila, I; Vogel Gonzalez, M; Vos, M; Vossebeld, J; Watson, M; Watson, N; Weber, M A; Weerts, H; Wells, J D; Weuste, L; Winter, A; Wojtoń, T; Xia, L; Xu, B; Żarnecki, A F; Zawiejski, L; Zgura, I-S

    2017-01-01

    The Compact Linear Collider (CLIC) is an option for a future [Formula: see text] collider operating at centre-of-mass energies up to [Formula: see text], providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: [Formula: see text], 1.4 and [Formula: see text]. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung ([Formula: see text]) and [Formula: see text]-fusion ([Formula: see text]), resulting in precise measurements of the production cross sections, the Higgs total decay width [Formula: see text], and model-independent determinations of the Higgs couplings. Operation at [Formula: see text] provides high-statistics samples of Higgs bosons produced through [Formula: see text]-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes [Formula: see text] and [Formula: see text] allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.

  18. Construction of vacuum system for Tristan accumulation ring

    International Nuclear Information System (INIS)

    Ishimaru, H.; Horikoshi, G.; Kobayashi, M.; Kubo, T.; Mizuno, H.; Momose, T.; Narushima, K.; Watanabe, H.; Yamaguchi, H.

    1983-01-01

    An all aluminum-alloy vacuum system for the TRISTAN accumulation ring is now under construction. Aluminum and aluminum alloys are preferred materials for ultrahigh vacuum systems of large electron storage rings because of their good thermal conductivity, extremely low outgassing rate, and low residual radioactivity. Vacuum beam chambers for the dipole and quadrupole magnets are extruded using porthole dies. The aluminum alloy 6063-T6 provides superior performance in extrusion. For ultrahigh vacuum performance, a special extrusion technique is applied which, along with the outgassing procedure used, is described in detail. Aluminum alloy 3004 seamless elliptical bellows are inserted between the dipole and quadrupole magnet chambers. These bellows are produced by the hydraulic forming of a seamless tube. The seamless bellows and the beam chambers are joined by fully automatic welding. The ceramic chambers for the kicker magnets, the fast bump magnets, and the slow beam intensity monitor are inserted in the aluminum alloy beam chambers. The ceramic chamber (98% alumina) and elliptical bellows are brazed with brazing sheets (4003-3003-4003) in a vacuum furnace. The brazing technique is described. The inner surface of the ceramic chamber is coated with a TiMo alloy by vacuum evaporation to permit a smooth flow of the RF wall current. Other suitable aluminum alloy components, including fittings, feedthroughs, gauges, optical windows, sputter ion pumps, turbomolecular pumps, and valves have been developed; their fabrication is described

  19. Study of the supporting system for the CLIC Two-Beam Module

    CERN Document Server

    Gazis, Nick; Mainaud-Durand, Hélène; Gudkov, Dmitry; Samoshkin, Alexandre; Simopoulos, Simos; Hinis, Evangelos; Alexopoulos, Theodoros

    2010-01-01

    The Compact Linear Collider (CLIC) study aims at the development of a Multi-TeV e+ e-collider. The micro-precision CLIC structures will have an accelerating gradient of 100 MV/m and will be aligned on so-called girders. The girder construction constrains are mainly dictated by the beam physics and RF requirements. The study of such girders is a challenging case involving material choice, mechanical design as well as prototype fabrication and experimental testing.

  20. Study of the ALICE Investigator chip in view of the requirements at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)754303; Dannheim, Dominik; Fiergolski, Adrian; Van Hoorne, Jacobus Willem; Hynds, Daniel; Klempt, Wolfgang; Nurnberg, Andreas Matthias; Sielewicz, Krzysztof Marek; Snoeys, Walter

    2017-01-01

    CLIC is an option for a future high energy linear $e^{+}e^{−}$ collider at CERN in the post-LHC era. The CLIC machine is designed to reach centre-of-mass energies ranging from a few hundred GeV up to 3 TeV. To achieve high precision measurements, e.g. of the Higgs- width, challenging requirements are imposed on the CLIC detector. A single point tracking resolution of 7 μm and a material budget of 1-2%$X_{0}$ per layer are required for the tracker. Moreover, to suppress background hits from beam-beam interactions, a precise time slicing of hits of 10 ns is needed. To address these requirements, a large area silicon tracker is foreseen for the detector at CLIC. In this context, integrated technologies are promising candidates to achieve large scale production and low material budget. The Investigator chip is a test chip developed for the ALICE Inner Tracking System upgrade, implemented in a 180 nm CMOS process on a high resistivity substrate. It contains various test-matrices with analogue functionality, whi...

  1. Successful start for new CLIC test facility

    CERN Document Server

    2004-01-01

    A new test facility is being built to study key feasibility issues for a possible future linear collider called CLIC. Commissioning of the first part of the facility began in June 2003 and nominal beam parameters have been achieved already.

  2. Phase detection electronics for CLIC

    CERN Document Server

    Andersson, A

    2011-01-01

    The Compact Linear Collider (CLIC) requires very tight RF phase synchronisation in order to preserve high luminosity. The electronics required for processing the signals delivered from the phase pick-ups present a significant challenge. This paper discusses the strategy adopted to achieve a sufficiently accurate measurement of the phase. Performance measurements performed in the lab of some of the sub-systems are also presented.

  3. Finite Element Model for Thermal-Structural analysis of CLIC Lab Module type 0#2

    CERN Document Server

    Moilanen, Antti; Vamvakas, Alex; Vainola, Jukka Ilmari; Doebert, Steffen

    2017-01-01

    Temperature changes lead to unwanted thermo-mechanical deformations in the components of the Compact Linear Collider (CLIC) module. There are several sources and sinks of heat around the CLIC two-beam module. Heat is generated in the components that produce, transfer, and extract radio frequency (RF) power. Excess heat is removed from the components by cooling water as well as dissipated to air by convection from the outer surfaces of the components. The ambient temperature might also vary along the tunnel during the operation of CLIC. Due to tight assembling and alignment tolerances, it is necessary to minimize the thermo-mechanical deformations in the components. In this paper, the steps of thermal-structural Finite Element Analysis (FEA) of CLIC lab module type 0#2 are described from geometry model simplification to setting up the simulation. The description is accompanied by useful hints for CATIA and ANSYS users performing similar modelling tasks. A reliable computer simulation is important for studying ...

  4. Mass and Cross Section Measurements of light-flavored Squarks at CLIC

    CERN Document Server

    WEUSTE, L.

    2011-01-01

    We present a study of the prospects for the measurement of TeV-scale light-flavored right-squark masses and and the production cross sections at a 3 TeV e+e- collider based on CLIC technology. The analysis, performed in the framework of the CLIC Conceptual Design Report, is based on full Geant4 simulations of the CLIC ILD detector concept, including standard model physics background and machine related hadronic background from two-photon processes. The events were reconstructed using particle flow event reconstruction, and the mass and cross sections were obtained from a template fit built from generator-level simulations with smearing to parametrize the detector response. For an integrated luminosity of 2 ab^-1, a statistical precision of 5.9 GeV, corresponding to 0.52%, was obtained for unseparated first and second generation right squarks. For the combined cross section, a precision of 0.07 fb, corresponding to 5%, was obtained.

  5. Overview of CLIC and CTF3

    CERN Document Server

    Corsini, R

    2002-01-01

    The CLIC study aims at the design of a high-energy (0.5-5 TeV), high luminosity e+e- linear collider, as a possible facility for the post-LHC era. The beams are accelerated using high-frequency (30 GHz) normal-conducting structures operating at high accelerating gradients to reduce the length and, in consequence, the cost of the linac. The RF power for these structures is generated using the so-called Two-Beam Acceleration (TBA) scheme, where a low-energy, high-intensity electron beam (drive beam) runs parallel to the main linacs and is decelerated in resonant structures, which extract RF power from the drive beam. The drive beam is first accelerated in a low-frequency fully-loaded normal-conducting linac. Its time structure is then obtained by funneling in isochronous rings using transverse RF deflectors. CTF3, a new generation CLIC Test Facility, is being built at CERN to demonstrate the technical feasibility of this novel drive beam generation and RF power production scheme, albeit on a much smaller scale....

  6. Inhibition of CLIC4 enhances autophagy and triggers mitochondrial and ER stress-induced apoptosis in human glioma U251 cells under starvation.

    Directory of Open Access Journals (Sweden)

    Jiateng Zhong

    Full Text Available CLIC4/mtCLIC, a chloride intracellular channel protein, localizes to mitochondria, endoplasmic reticulum (ER, nucleus and cytoplasm, and participates in the apoptotic response to stress. Apoptosis and autophagy, the main types of the programmed cell death, seem interconnected under certain stress conditions. However, the role of CLIC4 in autophagy regulation has yet to be determined. In this study, we demonstrate upregulation and nuclear translocation of the CLIC4 protein following starvation in U251 cells. CLIC4 siRNA transfection enhanced autophagy with increased LC3-II protein and puncta accumulation in U251 cells under starvation conditions. In that condition, the interaction of the 14-3-3 epsilon isoform with CLIC4 was abolished and resulted in Beclin 1 overactivation, which further activated autophagy. Moreover, inhibiting the expression of CLIC4 triggered both mitochondrial apoptosis involved in Bax/Bcl-2 and cytochrome c release under starvation and endoplasmic reticulum stress-induced apoptosis with CHOP and caspase-4 upregulation. These results demonstrate that CLIC4 nuclear translocation is an integral part of the cellular response to starvation. Inhibiting the expression of CLIC4 enhances autophagy and contributes to mitochondrial and ER stress-induced apoptosis under starvation.

  7. Transverse stability in multibunch mode for CLIC

    International Nuclear Information System (INIS)

    Guignard, G.

    1993-01-01

    In order to reach the desired luminosity with 250 GeV per beam, multibunch operation (limited to 4 bunches, say) might have to be considered in the CERN linear collider (CLIC). One limitation comes from the coupling of the bunch motion with the long-range transverse wake fields that may induce beam breakup. These wake fields have therefore to be controlled, and means of reducing their effects on the beam are discussed in a companion paper. One possibility consists in detuning the dipole modes in the cells to obtain decoherent contributions and hence reduce the field amplitude at the downstream bunch location. The important question is to know below which value this amplitude must be limited to prevent intolerable beam breakup. In a first attempt at estimating this threshold for CLIC two approaches are considered, i.e. the criterion developed at SLAC and based on the convergence of the multibunch-motion solution, and numerical simulations of two-bunch motion in a focusing lattice

  8. Proposition d'une méthode d'alignement de l'accélérateur linéaire CLIC

    CERN Document Server

    Touzé, Thomas; Mainaud-Durand, H

    2011-01-01

    The compact linear collider (CLIC) is the particles accelerator project proposed by the european organization for nuclear research (CERN) for high energy physics after the large hadron collider (LHC). Because of the nanometric scale of the CLIC leptons beams, the emittance growth budget is very tight. It induces alignment tolerances on the positions of the CLIC components that have never been achieved. The last step of the CLIC alignment will be done according to the beam itself. It falls within the competence of the physicists. However, in order to implement the beam-based feedback, a challenging pre-alignment is required : 10 μm at 3σ along a 200 m sliding window. For such a precision, the proposed solution must be compatible with a feedback between the measurement and repositioning systems. The CLIC pre-alignment will have to be active. This thesis does not demonstrate the feasibility of the CLIC active prealignment but shows the way to the last developments that have to be done for that purpose. A metho...

  9. Mechanical integration studies for the CLIC vertex and inner tracking detectors

    CERN Document Server

    Villarejo Bermudez, M.A.; Gerwig, H.

    2015-01-01

    Since the publication of the CLIC Conceptual Design Report, work has proceeded in order to establish a preliminary mechanical design for the innermost CLIC detector region. This note proposes a design for the main Carbon-Fibre Reinforced Polymer (CFRP) structural elements of the inner detectors, for the beam pipe and their supports. It also describes an assembly sequence for the integration of the sensors and the mechanical components. Mechanical simulations of different structural elements and a material budget estimation are appended. Details of a proposed cabling layout for all the subdetectors are included.

  10. Top Quark Pair Production at a 500 GeV CLIC Collider

    CERN Document Server

    Seidel, K; Simon, F

    2012-01-01

    We present a study of the capability of a 500 GeV e+e− collider based on the CLIC technology for precision measurements of top quark properties. The analysis is based on full detector simulations of the CLIC ILD detector concept using Geant4, including realistic beam-induced background contributions from two photon processes. Event reconstruction is performed using a particle flow algorithm with stringent cuts to control the influence of background. The mass and width of the top quark are studied in fully-hadronic and semi-leptonic decays of tt ̄ pairs using event samples of signal and standard model background processes corresponding to an integrated luminosity of 100fb−1. Statistical uncertainties of the top mass of 0.08 GeV and 0.09 GeV were obtained for the fully-hadronic channel and the semi-leptonic channel, respectively. The results are compared to a similar analysis performed within the framework of the ILC, showing that a similar precision can be achieved at CLIC despite less favorable experimen...

  11. Engineering study, development and prototype fabrication of the supporting system for the CLIC Two-Beam Module

    CERN Document Server

    AUTHOR|(CDS)2068725; Karyotakis, Yannis; Dahoo, Pierre Richard; Alexopoulos, Theo; MEIS, Costantin; De Conto, Jean Marie; Jeremie, Andrea; Puzot, Patrique

    CERN, the European Organization for Nuclear Research, is based on the international collaboration in the field of high-energy particle physics research. The experiments carried out in its facilities are achieved through the existing particle accelerators. In addition, advanced accelerator research and development is one of the goals of CERN. For this reason, CLIC (the Compact LInear Collider) a new electron-positron linear accelerator is being studied at CERN. CLIC is built by the assembly of the Two-Beam Modules and takes advantage of an innovative acceleration principle, the Two-Beam acceleration. Each Module contains several technical systems that contribute to its successful operation. This thesis presents the development of the prototype supporting system for the CLIC Two-Beam Module. At first, the physics requirements are translated into technical specifications and the fundamental parts of the supporting system are defined. The CLIC operational conditions are identified and the corresponding boundaries...

  12. A gas monitoring facility with a quadrupole mass spectrometer for the ZEUS transition-radiation chambers

    International Nuclear Information System (INIS)

    Kapp, U.

    1988-07-01

    A gas analysis facility for the ZEUS transition-radiation chambers based on a quadrupole mass spectrometer is described. After a description of the spectrometer, the vacuum system, and the software, some test results are presented. (HSI)

  13. Higgs physics at the CLIC electron-positron linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Abramowicz, H.; Benhammou, Y.; Borysov, O.; Kananov, S.; Levy, A.; Levy, I.; Rosenblat, O. [Tel Aviv University, Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv (Israel); Abusleme, A.; Diaz Gutierrez, M.A.; Vogel Gonzalez, M. [Pontificia Universidad Catolica de Chile, Santiago (Chile); Afanaciev, K.; Makarenko, V.; Shumeiko, N. [Belarusian State University, National Scientific and Educational Centre of Particle and High Energy Physics, Minsk (Belarus); Alipour Tehrani, N.; Dannheim, D.; Elsener, K.; Grefe, C.; Hauschild, M.; Hynds, D.; Klempt, W.; Kulis, S.; Linssen, L.; Maier, A.A.; Muenker, R.M.; Muennich, A.; Nikiforou, N.; Nuernberg, A.; Perez Codina, E.; Petric, M.; Pitters, F.; Poss, S.G.; Redford, S.; Roloff, P.; Sailer, A.; Schlatter, D.; Schulte, D.; Sicking, E.; Simoniello, R.; Stapnes, S.; Stroem, R.; Strube, J.; Weber, M.A. [CERN, Geneva (Switzerland); Balazs, C.; Charles, T.K. [Monash University, Melbourne (Australia); Benoit, M.; Vicente Barreto Pinto, M. [Universite de Geneve, Departement de Physique Nucleaire et Corpusculaire (DPNC), Geneva (Switzerland); Bilki, B.; Demarteau, M.; Repond, J.; Weerts, H.; Xia, L. [Argonne National Laboratory, Argonne, IL (United States); Blaising, J.J. [Laboratoire d' Annecy-le-Vieux de Physique des Particules, Annecy-le-Vieux (France); Boland, M.J.; Felzmann, U.; Rassool, R. [University of Melbourne, Melbourne (Australia); Boronat, M.; Fuster, J.; Garcia, I.; Ros, E.; Vos, M. [CSIC-University of Valencia, IFIC, Valencia (Spain); Bozovic-Jelisavcic, I.; Kacarevic, G.; Lukic, S.; Milutinovic-Dumbelovic, G.; Pandurovic, M. [University of Belgrade, Vinca Institute of Nuclear Sciences, Belgrade (Serbia); Buckland, M.; Vossebeld, J. [University of Liverpool, Liverpool (United Kingdom); Bugiel, S.; Dasgupta, R.; Firlej, M.; Fiutowski, T.; Idzik, M.; Kopec, M.; Moron, J.; Swientek, K.P. [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Crakow (Poland); Burrows, P.N. [Oxford University, Oxford (United Kingdom); Daniluk, W.; Krupa, B.; Kucharczyk, M.; Lesiak, T.; Moszczynski, A.; Pawlik, B.; Sopicki, P.; Wojton, T.; Zawiejski, L. [The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Crakow (Poland); Eigen, G.; Kraaij, E. van der [University of Bergen, Department of Physics and Technology, Bergen (Norway); Firu, E.; Ghenescu, V.; Neagu, A.T.; Preda, T.; Zgura, I.S. [Institute of Space Science, Bucharest (Romania); Gabriel, M.; Simon, F.; Szalay, M.; Tesar, M.; Kolk, N. van der; Weuste, L. [Max-Planck-Institut fuer Physik, Munich (Germany); Gaede, F. [CERN, Geneva (Switzerland); DESY, Hamburg (Germany); Goldstein, J. [University of Bristol, Bristol (United Kingdom); Green, S.; Marshall, J.S.; Mei, K.; Thomson, M.A.; Xu, B. [University of Cambridge, Cavendish Laboratory, Cambridge (United Kingdom); Hawkes, C.; Nikolopoulos, K.; Watson, M.; Watson, N.; Winter, A. [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Kalinowski, J.; Krawczyk, M.; Zarnecki, A.F. [University of Warsaw, Faculty of Physics, Warsaw (Poland); Lastovicka, T. [Institute of Physics of the Academy of Sciences of the Czech Republic, Prague (Czech Republic); Martin, V.J. [University of Edinburgh, Edinburgh (United Kingdom); Moya, D.; Ruiz-Jimeno, A.; Vila, I. [CSIC-University of Cantabria, IFCA, Santander (Spain); Peric, I. [Institut fuer Prozessdatenverarbeitung und Elektronik (IPE), Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany); Protopopescu, D.; Robson, A. [University of Glasgow, Glasgow (United Kingdom); Trenado, J. [University of Barcelona, Barcelona (ES); Uggerhoej, U.I. [Aarhus University, Aarhus (DK); Wells, J.D. [University of Michigan, Physics Department, Ann Arbor, MI (US)

    2017-07-15

    The Compact Linear Collider (CLIC) is an option for a future e{sup +}e{sup -} collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: √(s) = 350 GeV, 1.4 and 3 TeV. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung (e{sup +}e{sup -} → ZH) and WW-fusion (e{sup +}e{sup -} → Hν{sub e} anti ν{sub e}), resulting in precise measurements of the production cross sections, the Higgs total decay width Γ{sub H}, and model-independent determinations of the Higgs couplings. Operation at √(s) > 1 TeV provides high-statistics samples of Higgs bosons produced through WW-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes e{sup +}e{sup -} → t anti tH and e{sup +}e{sup -} → HHν{sub e} anti ν{sub e} allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit. (orig.)

  14. Anisotropic cosmological constant and the CMB quadrupole anomaly

    International Nuclear Information System (INIS)

    Rodrigues, Davi C.

    2008-01-01

    There are evidences that the cosmic microwave background (CMB) large-angle anomalies imply a departure from statistical isotropy and hence from the standard cosmological model. We propose a ΛCDM model extension whose dark energy component preserves its nondynamical character but wields anisotropic vacuum pressure. Exact solutions for the cosmological scale factors are presented, upper bounds for the deformation parameter are evaluated and its value is estimated considering the elliptical universe proposal to solve the quadrupole anomaly. This model can be constructed from a Bianchi I cosmology with a cosmological constant from two different ways: (i) a straightforward anisotropic modification of the vacuum pressure consistently with energy-momentum conservation; (ii) a Poisson structure deformation between canonical momenta such that the dynamics remain invariant under scale factors rescalings

  15. Energy and Beam-Offset dependence of the Luminosity weighted depolarization for CLIC

    CERN Document Server

    Esberg, Jakob; Uggerhoj, Ulrik; Dalena, Barbara

    2011-01-01

    We report on simulations of e+e- depolarization due to beam-beam effects. These effects are studied for CLIC at 3 TeV, using GUINEA PIG++. We find a strong energy dependence of the luminosity weighted depolarization. In the luminosity peak at CLIC the total luminosity weighted depolarization remains below the one per-mil level. The effect of a vertical offset on the energy dependent depolarization is investigated. The depolarization in the luminosity peak remains below per-cent level even for 5sy offsets.

  16. Common ground in ILC and CLIC detector concepts

    CERN Multimedia

    Daisy Yuhas

    2013-01-01

    The Compact Linear Collider and the International Linear Collider will accelerate particles and create collisions in different ways. Nonetheless, the detector concepts under development share many commonalities.   Timepix chips under scrutiny in the DESY test beam with the help of the beam telescope. CERN physicist Dominik Dannheim explains that the CLIC detector plans are adaptations of the ILC detector designs with a few select modifications. “When we started several years ago, we did not want to reinvent the wheel,” says Dannheim. “The approved ILC detector concepts served as an excellent starting point for our designs.” Essential differences Both CLIC and ILC scientists foresee general-purpose detectors that make measurements with exquisite precision. These colliders, however, have very different operating parameters, which will have important consequences for the various detector components. The ILC’s collision energy is set at 500 GeV ...

  17. Development of a Beam-based Phase Feedforward Demonstration at the CLIC Test Facility (CTF3)

    CERN Document Server

    AUTHOR|(CDS)2083344; Christian, Glenn

    The Compact Linear Collider (CLIC) is a proposal for a future linear electron--positron collider that could achieve collision energies of up to 3~TeV. In the CLIC concept the main high energy beam is accelerated using RF power extracted from a high intensity drive beam, achieving an accelerating gradient of 100~MV/m. This scheme places strict tolerances on the drive beam phase stability, which must be better than $0.2^\\circ$ at 12~GHz. To achieve the required phase stability CLIC proposes a high bandwidth (${>}17.5$~MHz), low latency drive beam ``phase feedforward'' (PFF) system. In this system electromagnetic kickers, powered by 500~kW amplifiers, are installed in a chicane and used to correct the phase by deflecting the beam on to longer or shorter trajectories. A prototype PFF system has been installed at the CLIC Test Facility, CTF3; the design, operation and commissioning of which is the focus of this work. Two kickers have been installed in the pre-existing chicane in the TL2 transfer line at CTF3 for t...

  18. Occupancy in the CLIC_ILD Time Projection Chamber

    CERN Document Server

    KILLENBERG, M.

    2011-01-01

    We report on the occupancy in the CLIC ILD TPC caused by the beam induced background from gg !hadrons, e+e- pairs and beam halo muons. In addition the particle composition of the backgrounds and the origin of back-scattering particles have been studied.

  19. Simulation and Optimisation of CLIC's recombination complex

    CERN Document Server

    Costa, Raul; Barroso, Manuel

    In this thesis we present the first Placet2 recombination simulations of the drive beam recombination complex (DBRC) design for the compact linear collider (CLIC). We start by presenting a review of the CLIC project and the DBRC’s role and design within it. We then discuss some of the core principles of beam dynamics and how tracking codes like Placet2 implement them. We follow that by presenting the design issues raised by our simulations and our proposed strategy to address them, key among which is a previously unknown parabolic dependency of the longitudinal position to the momentum (T 566 ), which threat- ens the efficiency of the power extraction structures. Through iterative opti- misation of the design, we eliminated this aberration both in the delay loop and in combiner ring 1. We also found the beam’s horizontal emittance to be significantly over the design budget (150 μm) and attempted to meet that budget, reaching 157 μm. In order to obtain this emittance value, an update to the combiner ring...

  20. En route vers la nano stabilisation de CLIC faisceau principale et focalisation finale

    CERN Document Server

    Artoos, K; Guinchard, M; Hauviller, Claude; Lackner, F; CERN. Geneva. TS Department

    2008-01-01

    Pour atteindre la luminosité voulue de CLIC, la taille transversale du faisceau doit être de l?ordre du nanomètre. Ceci nécessite une stabilité vibratoire des quadripôles du faisceau principal de 1 nm et même 0.1 nm pour les doublets de la focalisation finale. La nano technologie et la nano stabilisation sont des activités qui évoluent rapidement dans l?industrie et centres de recherche pour des applications très variées comme l?électronique, l?optique, la chimie voire la médecine. Cette présentation décrit les avancées techniques nécessaires pour atteindre l?objectif de CLIC et les projets et collaborations R&D prévus pour démontrer la faisabilité de la nano stabilisation de CLIC en 2010.

  1. SM-like Higgs decay into two muons at 1.4 TeV CLIC

    CERN Document Server

    Milutinovic-Dumbelovic, G

    2014-01-01

    The potential for measuring the Standard Model (SM) Higgs boson decay into two muons at a 1.4 TeV CLIC e+e− collider is addressed in this paper, that was presented at ICHEP2014. The study is performed in the full Geant4 detector simulations of CLIC_ILD, taking into consideration all the relevant physics and the beam-induced background processes, as well as the instrumentation of the very forward region to tag forward electrons. In this analysis we show that the branching ratio BR(H-->mu+mu-) times the Higgs production cross-section can be measured with 38% statistical accuracy at √s =1.4 TeV using an integrated luminosity of 1.5 ab-1. This study is part of an ongoing comprehensive Higgs physics benchmark study covering various Higgs production processes and decay modes, currently being carried out to estimate the full Higgs physics potential of CLIC.

  2. Measurement of the transfer function of the main SPS Quadrupoles

    CERN Document Server

    Dinius, A; Semanaz, P; CERN. Geneva. SPS and LEP Division

    1998-01-01

    During two short MD's we have measured the transfer function (amplitude and phase) of the main quadrupole string QD. By the word string we mean the global effect of power supplies, magnets and the eddy current effects of the vacuum chamber. This paper presents the measurement procedure and the results, which are needed for the design of a real-time feedback system for the betatron tunes ( Qloop).

  3. CLIC Telescope optimization with ALLPIX simulation

    CERN Document Server

    Qi, Wu

    2015-01-01

    A simulation study of CLIC-EUDET telescope resolution with MIMOSA 26 as reference sensors under DESY (5.6 GeV electron beam) and CERN-SPS (120-180 GeV pion^{-} beam) conditions. During the study, a virtual DUT sensor with cylindrical sensing area was defined and used with ALLPIX software. By changing the configuration of telescope, some results for DESY's setup were found agreeing with the theoretical calculation.

  4. Study and application of micrometric alignment on the prototype girders of the CLIC Two-Beam Module

    CERN Document Server

    Gazis, Nikolaos; Mainaud-Durand, Hélène; Samochkine, Alexandre; Anastasopoulos, Michail

    2011-01-01

    The Compact LInear Collider (CLIC), currently under study at CERN, aims at the development of a Multi-TeV e+ e- collider. The micro-precision CLIC RF-structures will have an accelerating gradient of 100 MV/m and will be mounted and aligned on specially developed supporting girders. The girder fabrication constraints are dictated by stringent physics requirements. The micrometric pre-alignment over several kilometers of girders, allow for the CLIC structures to fulfill their acceleration and collision functionality. Study of such girders and their sophisticated alignment method, is a challenging case involving dedicated mechanical design as well as prototype production and experimental testing.

  5. CLIC Detector Concepts as described in the CDR: Differences between the GEANT4 and Engineering Models

    CERN Document Server

    Elsener, K; Schlatter, D; Siegrist, N

    2011-01-01

    The CLIC_ILD and CLIC_SiD detector concepts as used for the CDR Vol. 2 in 2011 exist both in GEANT4 simulation models and in engineering layout drawings. At this early stage of a conceptual design, there are inevitably differences between these models, which are described in this note.

  6. Vector boson scattering at CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Kilian, Wolfgang; Fleper, Christian [Department Physik, Universitaet Siegen, 57068 Siegen (Germany); Reuter, Juergen [DESY Theory Group, 22603 Hamburg (Germany); Sekulla, Marco [Institut fuer Theoretische Physik, Karlsruher Institut fuer Technologie, 76131 Karlsruhe (Germany)

    2016-07-01

    Linear colliders operating in a range of multiple TeV are able to investigate the details of vector boson scattering and electroweak symmetry breaking. We calculate cross sections with the Monte Carlo generator WHIZARD for vector boson scattering processes at the future linear e{sup +} e{sup -} collider CLIC. By finding suitable cuts, the vector boson scattering signal processes are isolated from the background. Finally, we are able to determine exclusion sensitivities on the non-Standard Model parameters of the relevant dimension eight operators.

  7. Experimental Study of the Effect of Beam Loading on RF Breakdown Rate in CLIC High-Gradient Accelerating Structures

    CERN Document Server

    Tecker, F; Kelisani, M; Doebert, S; Grudiev, A; Quirante, J; Riddone, G; Syratchev, I; Wuensch, W; Kononenko, O; Solodko, A; Lebet, S

    2013-01-01

    RF breakdown is a key issue for the multi-TeV highluminosity e+e- Compact Linear Collider (CLIC). Breakdowns in the high-gradient accelerator structures can deflect the beam and decrease the desired luminosity. The limitations of the accelerating structures due to breakdowns have been studied so far without a beam present in the structure. The presence of the beam modifies the distribution of the electrical and magnetic field distributions, which determine the breakdown rate. Therefore an experiment has been designed for high power testing a CLIC prototype accelerating structure with a beam present in the CLIC Test Facility (CTF3). A special beam line allows extracting a beam with nominal CLIC beam current and duration from the CTF3 linac. The paper describes the beam optics design for this experimental beam line and the commissioning of the experiment with beam.

  8. dc breakdown conditioning and breakdown rate of metals and metallic alloys under ultrahigh vacuum

    CERN Document Server

    Descoeudres, A; Calatroni, S; Taborelli, M; Wuensch, W

    2009-01-01

    RF accelerating structures of the Compact Linear Collider (CLIC) require a material capable of sustaining high electric field with a low breakdown rate and low induced damage. Because of the similarity of many aspects of DC and RF breakdown, a DC breakdown study is underway at CERN in order to test candidate materials and surface preparations, and have a better understanding of the breakdown mechanism under ultra-high vacuum in a simple setup. Conditioning speeds and breakdown fields of several metals and alloys have been measured. The average breakdown field after conditioning ranges from 100 MV/m for Al to 850 MV/m for stainless steel, and is around 170 MV/m for Cu which is the present base-line material for CLIC structures. The results indicate clearly that the breakdown field is limited by the cathode. The presence of a thin cuprous oxide film at the surface of copper electrodes significantly increases the breakdown field. On the other hand, the conditioning speed of Mo is improved by removing oxides at t...

  9. Experiments of Laser Pointing Stability in Air and in Vacuum to Validate Micrometric Positioning Sensor

    CERN Document Server

    Stern, G; Piedigrossi, D; Sandomierski, J; Sosin, M; Geiger, A; Guillaume, S

    2014-01-01

    Aligning accelerator components over 200m with 10 μm accuracy is a challenging task within the Compact Linear Collider (CLIC) study. A solution based on laser beam in vacuum as straight line reference is proposed. The positions of the accelerator’s components are measured with respect to the laser beam by sensors made of camera/shutter assemblies. To validate these sensors, laser pointing stability has to be studied over 200m. We perform experiments in air and in vacuum in order to know how laser pointing stability varies with the distance of propagation and with the environment. The experiments show that the standard deviations of the laser spot coordinates increase with the distance of propagation. They also show that the standard deviations are much smaller in vacuum (8 μm at 35m) than in air (2000 μm at 200m). Our experiment validates the concept of laser beam in vacuum with camera/shutter assembly for micrometric positioning over 35m. It also gives an estimation of the achievable precision.

  10. A prototype cavity beam position monitor for the CLIC Main Beam

    CERN Document Server

    Cullinany , F; Joshi, N; Lyapin, A; Bastard, D; Calvo, E; Chritin, N; Guillot-Vignot, F; Lefevre, T; Søby, L; Wendt, M; Lunin, A; Yakovlev, V P; Smith, S

    2012-01-01

    The Compact Linear Collider (CLIC) places unprecedented demands on its diagnostics systems. A large number of cavity beam position monitors (BPMs) throughout the main linac and beam delivery system (BDS) must routinely perform with 50 nm spatial resolution. Multiple position measurements within a single 156 ns bunch train are also required. A prototype low-Q cavity beam position monitor has been designed and built to be tested on the CLIC Test Facility (CTF3) probe beam. This paper presents the latest measurements of the prototype cavity BPM and the design and simulation of the radio frequency (RF) signal processing electronics with regards to the final performance. Installation of the BPM in the CTF3 probe beamline is also discussed.

  11. Summary of the BDS and MDI CLIC08 Working Group

    CERN Document Server

    Tomás, R; Ahmed, I; Ambatu, PK; Angal-Kalinin, D; Barlow, R; Baud, J P; Bolzon, B; Braun, H; Burkhardt, H; Burt, GC; Corsini, R; Dalena, B; Dexter, AC; Dolgashev, V; Elsener, K; Fernandez Hernando, JL; Gaillard, G; Geffroy, N; Jackson, F; Jeremie, A; Jones, RM; McIntosh, P; Moffeit, K; Peltier, F; Resta-López, J; Rumolo, G; Schulte, D; Seryi, A; Toader, A; Zimmermann, F

    2008-01-01

    This note summarizes the presentations held within the Beam Delivery System and Machine Detector Interface working group of the CLIC08 workshop. The written contributions have been provided by the presenters on a voluntary basis.

  12. Simulated top-quark pair production in the CLIC_ILD detector

    CERN Multimedia

    CLIC, Compact Linear Collider Project

    2017-01-01

    Simulated production of a top-quark pair with a nominal collision energy of 3 TeV, in the CLIC_ILD detector. The event display show the reconstructed particles used as input for a jet clustering algorithm.

  13. Achievements and Future Plans of CLIC Test Facilities

    CERN Document Server

    Braun, Hans Heinrich

    2001-01-01

    CTF2 was originally designed to demonstrate the feasibility of two-beam acceleration with high current drive beams and a string of 30 GHz CLIC accelerating structure prototypes (CAS). This goal was achieved in 1999 and the facility has since been modified to focus on high gradient testing of CAS's and 30 GHz single cell cavities (SCC). With these modifications, it is now possible to provide 30 GHz RF pulses of more than 150 MW and an adjustable pulselength from 3 to 15 ns. While the SCC results are promising, the testing of CAS's revealed problems of RF breakdown and related surface damage. As a consequence, a new R&D program has been launched to advance the understanding of RF breakdown processes, to improve surface properties, investigate new materials and to optimise the structure geometries of the CAS's. In parallel the construction of a new facility named CTF3 has started. CTF3 will mainly serve two purposes. The first is the demonstration of the CLIC drive beam generation scheme. CTF3 will acceler-a...

  14. High frequency electromagnetic characterization of NEG properties for the CLIC damping rings

    CERN Document Server

    Koukovini-Platia, E; Zannini, C

    2014-01-01

    Coating materials will be used in the CLIC damping rings (DR) to suppress two-stream effects. In particular, NEG coating is necessary to suppress fast beam ion instabilities in the electron damping ring (EDR). The electromagnetic (EM) characterization of the material properties up to high frequencies is required for the impedance modeling of the CLIC DR components. The EM properties for frequencies of few GHz are determined with the waveguide method, based on a combination of experimental measurements of the complex transmission coefficient S21 and CST 3D EM simulations. The results obtained from a NEG-coated copper (Cu) waveguide are presented in this paper.

  15. Standardization of the Experimental Methodology for Quality Assurance and Quality Control (QA-QC of the CLIC Structural Materials

    Directory of Open Access Journals (Sweden)

    N. Gazis

    2015-04-01

    Full Text Available The main linear accelerators (linacs of the Compact LInear Collider (CLIC are constituted of sequential two-beam modules (of approximate length of two meters. The CLIC linacs need to be firmly stabilized on their supports with a micron-level requirement, essential for maintaining the final target luminosity close to the required XXX value. Real scale two-beam prototype modules have been designed, manufactured and commissioned to study their behaviour under different operation modes and experimental conditions. The CLIC machine will work for continuous runs under conditions of high radiation background. The structural materials of the systems of the accelerator have to sustain the significant fatigue and activation due to the radiation, generated mainly by the losses of the particle beam. Extensive testing has taken place with a combination of mechanical experiments and irradiation sessions on samples of structural materials, focusing on the micro-precise CLIC module supporting system. The followed experimentally strategy was standardized in a series of sequential steps.

  16. ACE3P Computations of Wakefield Coupling in the CLIC Two-Beam Accelerator

    International Nuclear Information System (INIS)

    Candel, Arno

    2010-01-01

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedented accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.

  17. Online optimisation of the CLIC Drive Beam bunch train recombination at CTF3

    CERN Document Server

    AUTHOR|(CDS)2082483; Tecker, Frank

    The Compact Linear Collider (CLIC) design is the leading alternative for a future multi-TeV "e^+e^−" linear collider. One of the key aspects of the design is the use of a Drive Beam as power source for the acceleration of the colliding beams. This work is focused on the optimisation of the set-up and the operations of the CLIC Drive Beam recombination at the CLIC Test Facility (CTF3) at CERN. The main effects that may affect the beam quality during the recombination are studied, with emphasis on orbit, transverse dynamics and beam energy effects. A custom methodology is used to analyse the problem, both from a theoretical and a numerical point of view. The aim is to provide first-order orbit and transverse optics constraints, which can be used as guidelines during the set-up of the beam recombination process. The developed techniques are applied at the CTF3, and the results are reported. The non-linear beam energy effects have been investigated by means of MAD-X simulations. The results show that these effe...

  18. CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation.

    Science.gov (United States)

    Tang, Tiantian; Lang, Xueting; Xu, Congfei; Wang, Xiaqiong; Gong, Tao; Yang, Yanqing; Cui, Jun; Bai, Li; Wang, Jun; Jiang, Wei; Zhou, Rongbin

    2017-08-04

    The NLRP3 inflammasome can sense different pathogens or danger signals, and has been reported to be involved in the development of many human diseases. Potassium efflux and mitochondrial damage are both reported to mediate NLRP3 inflammasome activation, but the underlying, orchestrating signaling events are still unclear. Here we show that chloride intracellular channels (CLIC) act downstream of the potassium efflux-mitochondrial reactive oxygen species (ROS) axis to promote NLRP3 inflammasome activation. NLRP3 agonists induce potassium efflux, which causes mitochondrial damage and ROS production. Mitochondrial ROS then induces the translocation of CLICs to the plasma membrane for the induction of chloride efflux to promote NEK7-NLRP3 interaction, inflammasome assembly, caspase-1 activation, and IL-1β secretion. Thus, our results identify CLICs-dependent chloride efflux as an essential and proximal upstream event for NLRP3 activation.The NLRP3 inflammasome is key to the regulation of innate immunity against pathogens or stress, but the underlying signaling regulation is still unclear. Here the authors show that chloride intracellular channels (CLIC) interface between mitochondria stress and inflammasome activation to modulate inflammatory responses.

  19. High-Efficiency Klystron Design for the CLIC Project

    CERN Document Server

    Mollard, Antoine; Peauger, Franck; Plouin, Juliette; Beunas, Armel; Marchesin, Rodolphe

    2017-01-01

    The CLIC project requests new type of RF sources for the high power conditioning of the accelerating cavities. We are working on the development of a new kind of high-efficiency klystron to fulfill this need. This work is performed under the EuCARD-2 European program and involves theoretical and experimental study of a brand new klystron concept.

  20. Validation of the CLIC alignment strategy on short range

    CERN Document Server

    Mainaud Durand, H; Griffet, S; Kemppinen, J; Rude, V; Sosin, M

    2012-01-01

    The pre-alignment of CLIC consists of aligning the components of linacs and beam delivery systems (BDS) in the most accurate possible way, so that a first pilot beam can circulate and allow the implementation of the beam based alignment. Taking into account the precision and accuracy needed: 10 µm rms over sliding windows of 200m, this pre-alignment must be active and it can be divided into two parts: the determination of a straight reference over 20 km, thanks to a metrological network and the determination of the component positions with respect to this reference, and their adjustment. The second part is the object of the paper, describing the steps of the proposed strategy: firstly the fiducialisation of the different components of CLIC; secondly, the alignment of these components on common supports and thirdly the active alignment of these supports using sensors and actuators. These steps have been validated on a test setup over a length of 4m, and the obtained results are analysed.

  1. Brilliant positron sources for CLIC and other collider projects

    CERN Document Server

    Rinolfi, Louis; Dadoun, Olivier; Kamitani, Takuya; Strakhovenko, Vladimir; Variola, Alessandro

    2013-01-01

    The CLIC (Compact Linear Collider), as future linear collider, requires an intense positron source. A brief history is given up to the present baseline configuration which assumes unpolarized beams. A conventional scheme, with a single tungsten target as source of e-e+ pairs, has been studied several years ago. But, in order to reduce the beam energy deposition on the e+ target converter, a double-target system has been studied and proposed as baseline for CLIC. With this ‘‘hybrid target’’, the positron production scheme is based on the channeling process. A 5 GeV electron beam impinges on a thin crystal tungsten target aligned along its axis, enhancing the photon production by channeling radiation. A large number of photons are sent to a thick amorphous tungsten target, generating large number of e-e+ pairs, while the charged particles are bent away, reducing the deposited energy and the PEDD (Peak Energy Deposition Density). The targets parameters are optimized for the positron production. Polarize...

  2. Status of vertex and tracking detector R&D at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)754272

    2015-01-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the bunch train structure of the beam and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few micron, ultra-low mass (~0.2% X0 per layer for the inner vertex region), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~10 ns time stamping capabilities. An overview of the R&D program for pixel and tracking detectors at CLIC will be presented, including recent results on an innovative hybridisation concept based on capacitive coupling between active sensors (HV-CMOS) and readout ASICs (CLICpix).

  3. Measurement of the H$\\rightarrow$WW$^*$ Branching Ratio at 1.4TeV using the semileptonic final state at CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)762723; Watson, Nigel

    2016-01-01

    This note summarises a study to evaluate the potential to measure the H$\\rightarrow$WW$^*$ branching fraction at CLIC, 1.4TeV centre-of-mass energy, with the CLIC_ILD detector, using the WW$\\rightarrow$qql$\

  4. Vacuum system design considerations of the Los Alamos Accelerator Test Stand (ATS)

    International Nuclear Information System (INIS)

    Wilson, N.G.

    1986-01-01

    The accelerator test stand (ATS), in operation at the Los Alamos National Laboratory, includes a hydrogen ion source, low- and high-energy beam-transport sections, and a 425-MHz radio-frequency quadrupole (RFQ) linear accelerator. A 425-MHz drift-tube linac (DTL) and a powered ''buncher'' matching section have been constructed and will be installed on the ATS. The vacuum systems required for the various sections of the ATS are designed to provide: (1) high gas-load capability, as required in the ion source, and (2) high-vacuum capability in the high-power, radio-frequency accelerator sections (where fast vacuum-system response time is of importance) through the use of distributed, differential pumping as a principal vacuum-system feature. This paper describes properties of accelerator materials, vacuum-systems engineering and analysis, vacuum equipment used, and ATS vacuum-system performance

  5. ISABELLE insertion quadrupoles

    International Nuclear Information System (INIS)

    Kaugerts, J.; Polk, I.; Sampson, W.; Dahl, P.F.

    1979-01-01

    Beam focussing and control at the beam intersection regions of ISABELLE is accomplished by a number of superconducting insertion quadrupoles. These magnets differ from the standard ISABELLE quadrupoles in various ways. In particular, the requirements of limited space near the intersections and aperture for beam extraction impose constraints on their configuration. To achieve optimum beam focussing and provide tuning flexibility calls for stronger quadrupole trim windings than those in the standard quadrupoles. The magnetic and mechanical design of the insertion quadrupoles and their associated correction and steering windings to accomplish the above tasks is presented

  6. Material studies in the frame of CLIC Accelerating structures production conducted within the Mechanics program together with Metso Oy

    CERN Document Server

    Nurminen, Janne

    2012-01-01

    MeChanICs (Marie Curie Linking Industry to CERN) is an Industry to Academia Partnership and Pathways (IAPP) platform for precision manufacturing knowledge exchange bringing together five Finnish manufacturing companies with Helsinki Insitute of Physics (HIP) and CERN. The scientific objective of MeChanICs project is to contribute to the manufacturing RTD of CLIC enabling technologies. The focus is on the design, materials, machining, brazing and assembly of A CLIC accelerating structure. This study deals with the materials work package of the program and wants to explore the following items: 1) producing copper accelerating structures for CLIC from raw copper powder by near net shape hot isostatic pressing (HIP). 2) The feasibility to use HIP diffusion bonding of the accelerator structures as a function of surface quality and applied temperature and pressure. 3) Brazing for CLIC AS auxiliary systems, like water cooling or damping manifolds, to the disc stack by coating one of the brazing partners with an enab...

  7. Damping rings for CLIC

    CERN Document Server

    Jowett, John M; Zimmermann, Frank; Owen, H

    2001-01-01

    The Compact Linear Colider (CLIC) is designed to operate at 3 TeV centre-of-mass energy with a total luminosity of 10^35 cm^-2 s^-1. The overall system design leads to extremely demanding requirements on the bunch trains injected into the main libac at frequency of 100 Hz. In particular, the emittances of the intense bunches have to be about an order of magnitude smaller than presently achieved. We describe our approach to finding a damping ring design capable of meeting these requirements. Besides lattice design, emittance and damping rate considerations, a number of scattering and instability effects have to be incorporated into the optimisation of parameters. Among these, intra-bem scattering and the electron cloud effect are two of the most significant.

  8. Determination of diffusion coefficients of hydrogen and deuterium in Zr–2.5%Nb pressure tube material using hot vacuum extraction-quadrupole mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Komal Chandra, E-mail: komal@barc.gov.in [Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Kulkarni, A.S.; Ramanjaneyulu, P.S. [Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sunil, Saurav [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Saxena, M.K. [Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Singh, R.N. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Tomar, B.S.; Ramakumar, K.L. [Radioanalytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2015-06-15

    The diffusion coefficients of hydrogen and deuterium in Zr–2.5%Nb alloy were measured in the temperature range 523 to 673 K, employing hot vacuum extraction-quadrupole mass spectrometry (HVE-QMS). One end of the Zr–2.5%Nb alloy specimens was charged electrolytically with the desired hydrogen isotope. After annealing at different temperatures for a predetermined time, the specimens were cut into thin slices, which were analyzed for their H{sub 2}/D{sub 2} content using the HVE-QMS technique. The depth profile data were fitted into the equation representing the solution of Fick’s second law of diffusion. The activation energy of hydrogen/deuterium diffusion was obtained from the Arrhenius relation between the diffusion coefficient and temperature. The temperature dependent diffusion coefficient can be represented as D{sub H} = 1.41 × 10{sup −7} exp(−36,000/RT) and D{sub D} = 6.16 × 10{sup −8} exp(−35,262/RT) for hydrogen and deuterium, respectively.

  9. RF Design of the TW Buncher for the CLIC Drive Beam Injector (2nd report)

    CERN Document Server

    Shaker, Hamed

    2016-01-01

    CLIC is based on the two beams concept that one beam (drive beam) produces the required RF power to accelerate another beam (main beam). The drive beam is produced and accelerated up to 50MeV inside the CLIC drive beam injector. The drive beam injector main components are a thermionic electron gun, three sub-harmonic bunchers, a pre-buncher, a TW buncher, 13 accelerating structures and one magnetic chicane. This document is the second report of the RF structure design of the TW buncher. This design is based on the beam dynamic design done by Shahin Sanaye Hajari due to requirements mentioned in CLIC CDR. A disk-loaded tapered structure is chosen for the TW buncher. The axial electric field increases strongly based on the beam dynamic requirements. This second report includes the study of HOM effects, retuning the cells, study of dimensional tolerances and the heat dissipation on the surface.

  10. IN-SITU EXPERIMENTS OF VACUUM DISCHARGE USING SCANNING ELECTRON MICROSCOPES

    CERN Document Server

    Muranaka, T; Leifer, K; Ziemann, V

    2011-01-01

    The fundamental understanding of vacuum discharge mechanisms and induced surface damage is indispensable for the CLIC feasibility study. We have been conducting dc sparc experiments inside a Scanning Electron Microscope (SEM) at Uppsala university in order to investigate localized breakdown phenomena. By using a SEM, we achieve the resolution of the electron probe in the few-nm range, which is of great advantage as the surface roughness of the polished accelerating structures is in the same scale. The high accelerating field of 1 GV/m is realized by biasing an electrode with 1 kV set above the sample with a gap of sub μm. Furthermore, a second SEM equipped with a Focused Ion Beam (FIB) is used to modify the topography of sample surfaces thus the geometrical dependence of field emissions and vacuum discharges can be studied. The FIB can be used for the surface damage analysis as well. We have demonstrated subsurface damage observations by using FIB to sputter a rectangular recess into the sample in the breakd...

  11. Conceptual Design of ILC Damping Ring Wiggler Straight Vacuum System

    International Nuclear Information System (INIS)

    Marks, S.; Kennedy, K.; Plate, D.; Schlueter, R.D.; Zisman, M.

    2007-01-01

    The positron and electron damping rings for the International Linear Collider will contain long straight sections consisting of twenty wiggler/quadrupole pairs. The wigglers will be based upon the CESR superconducting design. There are a number of challenges associated with the design of the wiggler straight vacuum system, in particular, the absorption of photon power generated by the wigglers. This paper will present the overall conceptual design of the wiggler straight vacuum system developed for the ILC Reference Design Report. Particular emphasis will be placed on photon power load calculations and the absorber design

  12. Design and characterization of a prototype stripline beam position monitor for the Clic Drive Beam*

    CERN Document Server

    Benot-Morell, A; Wendt, M; Nappa, J M; Tassan-Viol, J; Vilalte, S; Smith, S

    2012-01-01

    The prototype of a stripline Beam Position Monitor (BPM) with its associated readout electronics is under development at CERN, in collaboration with SLAC, LAPP and IFIC. The anticipated position resolution and accuracy are expected to be below 2μm and 20μm respectively for operation of the BPM in the CLIC drive beam (DB) linac. This paper describes the particular CLIC DB conditions with respect to the beam position monitoring, presents the measurement concept, and summarizes electromagnetic simulations and RF measurements performed on the prototype.

  13. Radio frequency quadrupole linac for the superconducting super collider

    International Nuclear Information System (INIS)

    Schrage, D.L.; Young, L.M.; Clark, W.L.; Billen, J.H.; DePaula, R.F.; Naranjo, A.C.; Neuschaefer, G.H.; Roybal, P.L.; Stovall, J.E.; Ray, K.; Richter, R.

    1993-01-01

    A 2.5 MeV, 428 MHz radio frequency quadrupole (RFQ) linac has been designed and fabricated by the Los Alamos National Laboratory and GAR Electroforming for the Superconducting Super Collider Laboratory. This device is a two segment accelerator fabricated from tellurium-copper (CDA14500) vane/cavity quadrants which are joined by electroforming. The structure incorporates an integral vacuum jacket and has no longitudinal rf or mechanical joints. The SSC RFQ linac is an extension of the design of the 1.0 MeV RFQ which was successfully flown on the BEAR Project. (orig.)

  14. Probing LINEAR Collider Final Focus Systems in SuperKEKB

    CERN Document Server

    Thrane, Paul Conrad Vaagen

    2017-01-01

    A challenge for future linear collider final focus systems is the large chromaticity produced by the final quadrupoles. SuperKEKB will be correcting high levels of chromaticity using the traditional scheme which has been also proposed for the CLIC FFS. We present early simulation results indicating that lowering β*у in the SuperKEKB Low Energy Ring might be possible given on-axis injection and low bunch current, opening the possibility of testing chromaticity correction beyond FFTB level, similar to ILC and approaching that of CLIC. CLIC – Note – 1077

  15. R and D for the Feasibility Study of CLIC Technology

    CERN Document Server

    Braun, H; Geschonke, Günther; Guignard, Gilbert; Hübner, K; Wilson, Ian H

    2004-01-01

    An overview is given of the necessary R&D and particularly of the CLIC test facility CTF3 which is presently under construction for demonstrating the key issues related to the CLIC technology and to the two-beam scheme. The results concerning the commissioning of the injector and of the first part of the linac already built are summarized. The main R&D topics to be covered with this test infrastructure are described and the planned road-map in order to reach the pre-defined goals is indicated. The potential of CTF3 for checking the bunch-train recombination, testing RF accelerating structures, investigating the use of a drive-beam for RF power production, for bench-marking simulation codes and possibly making low-energy experiments related to linear collider R&D is presented. The activities required for the feasibility programme planned are given in the form of work packages, together with the needed but not available resources and the time schedule.

  16. Prototype Superconducting Quadrupole for the ISR high-luminosity (low beta)insertion:end view.

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    In this picture, taken before the insertion of the inner vacuum chamber with inbedded 6-pole superconducting windings, one can see the main components of the magnet structure: (from inside outwards) the superconducting quadrupole coils surronded by glass epoxy bandage rings and stainless steel spacers, the low-carbon steel yoke quadrants and the aluminium alloy shrinking rings. See also photos 7702307, 7702688X, 7702690X.

  17. Evaluation of CBA first string full cell vacuum system

    International Nuclear Information System (INIS)

    Foerster, C.L.; Briggs, J.; Christianson, C.; Stattel, P.

    1983-01-01

    The CBA (Colliding Beam Accelerator, formerly known as ISABELLE) Full Cell Magnet System consisting of six superconducting dipole magnets and two superconducting quadrupole magnets requires two separate vacuum systems. One, known as beam vacuum operates below 3 x 10 -11 Torr and the other, known as insulating vacuum, operates at less than 10 -7 Torr to isolate cryo circuits from atmosphere and from the uhv beam tubes. The uhv bore tube is isolated from the 4.0 0 K magnet by thirty-six (36) layers of superinsulation and insulating vacuum. Heat load measurements on the bore tube have been completed and found to agree with data obtained in smaller controlled experiments. Measurements of helium, accumulated on cryogenic pumped charcoal panels over many weeks, have verified sensitive helium mass spectrometer leak detection methods for vacuum integrity, providing sound design of the welded complex. The Full Cell was assembled and operated under conditions that would exist in the completed machine. Pressures below 2 x 10 -11 Torr beam vacuum requirement and below 2 x 10 -7 Torr insulating vacuum, were routinely achieved during all phases of the Full Cell operation and support systems testing

  18. dc breakdown conditioning and breakdown rate of metals and metallic alloys under ultrahigh vacuum

    Directory of Open Access Journals (Sweden)

    A. Descoeudres

    2009-03-01

    Full Text Available The rf accelerating structures of the Compact Linear Collider (CLIC require a material capable of sustaining high electric field with a low breakdown rate and low induced damage. Because of the similarity of many aspects of dc and rf breakdown, a dc breakdown study is underway at CERN in order to test candidate materials and surface preparations, and have a better understanding of the breakdown mechanism under ultrahigh vacuum in a simple setup. Conditioning speeds and breakdown fields of several metals and alloys have been measured. The average breakdown field after conditioning ranges from 100  MV/m for Al to 850  MV/m for stainless steel, and is around 170  MV/m for Cu which is the present base-line material for CLIC structures. The results indicate clearly that the breakdown field is limited by the cathode. The presence of a thin cuprous oxide film at the surface of copper electrodes significantly increases the breakdown field. On the other hand, the conditioning speed of Mo is improved by removing oxides at the surface with a vacuum heat treatment, typically at 875°C for 2 hours. Surface finishing treatments of Cu samples only affect the very first breakdowns. More generally, surface treatments have an effect on the conditioning process itself, but not on the average breakdown field reached after the conditioning phase. In analogy to rf, the breakdown probability has been measured in dc with Cu and Mo electrodes. The dc data show similar behavior as rf as a function of the applied electric field.

  19. Integrated CMOS sensor technologies for the CLIC tracker

    CERN Document Server

    AUTHOR|(SzGeCERN)754303

    2017-01-01

    Integrated technologies are attractive candidates for an all silicon tracker at the proposed future multi-TeV linear e+e- collider CLIC. In this context CMOS circuitry on a high resistivity epitaxial layer has been studied using the ALICE Investigator test-chip. Test-beam campaigns have been performed to study the Investigator performance and a Technology Computer Aided Design based simulation chain has been developed to further explore the sensor technology.

  20. Hidden Valley searches at CLIC

    CERN Document Server

    Kucharczyk, Marcin

    2018-01-01

    Several beyond the Standard Model theoretical models predict the decay of Higgs bosons decaying into heavy long-lived particles. The sensitivity to observe such long-lived particles has been determined using a data sample of e$^+$e$^-$ collisions at $\\sqrt{s}=$3 TeV, simulated with the CLIC_ILD detector model and corresponding to an integrated luminosity of 3 ab$^{-1}$. The analysis identifies secondary vertices which can be associated with the decay of such particles. Decay products are subsequently combined to reconstruct the parent bosons. The sensitivity range covers long-lived particle lifetimes from 1 to 300 ps, masses between 25 and 50 GeV/c$^2$, and a parent Higgs mass of 126 GeV/c$^2$.

  1. Vacuum Chambers for LEP sections

    CERN Multimedia

    1983-01-01

    The picture shows sections of the LEP vacuum chambers to be installed in the dipole magnets (left) and in the quadrupoles (right). The dipole chamber has three channels: the beam chamber, the pumping duct where the NEG (non-evaporabe getter) is installed and the water channel for cooling (on top in the picture). The pumping duct is connected to the beam chamber through holes in the separating wall. The thick lead lining to shield radiation can also be seen. These chambers were manufactured as extruded aluminium alloy profiles.

  2. Conceptual Design for CLIC Gun Pulser

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Tao [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-01-08

    The Compact Linear Collider (CLIC) is a proposed future electron-positron collider, designed to perform collisions at energies from 0.5 to 5 TeV, with a nominal design optimized for 3 TeV (Dannheim, 2012). The Drive Beam Accelerator consists of a thermionic DC gun, bunching section and an accelerating section. The thermionic gun needs deliver a long (~143us) pulse of current into the buncher. A pulser is needed to drive grid of the gun to generate a stable current output. This report explores the requirements of the gun pulser and potential solutions to regulate grid current.

  3. An Injector for the CLIC Test Facility (CTF3)

    CERN Document Server

    Braun, H; Rinolfi, Louis; Zhou, F; Mouton, B; Miller, R; Yeremian, A D

    2000-01-01

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed.

  4. An Injector for the CLIC Test Facility (CTF3)

    International Nuclear Information System (INIS)

    Miller, Roger H.

    2001-01-01

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed

  5. An injector for the CLIC test Facility (CTF3)

    CERN Document Server

    Braun, Hans-Heinrich; Rinolfi, L.; Zhou, F.; Mouton, B.; Miller, R.; Yeremian, D.

    2008-01-01

    The CLIC Test Facility (CTF3) is an intermediate step to demonstrate the technical feasibility of the key concepts of the new RF power source for CLIC. CTF3 will use electron beams with an energy range adjustable from 170 MeV (3.5 A) to 380 MeV (with low current). The injector is based on a thermionic gun followed by a classical bunching system embedded in a long solenoidal field. As an alternative, an RF photo-injector is also being studied. The beam dynamics studies on how to reach the stringent beam parameters at the exit of the injector are presented. Simulations performed with the EGUN code showed that a current of 7 A can be obtained with an emittance less than 10 mm.mrad at the gun exit. PARMELA results are presented and compared to the requested beam performance at the injector exit. Sub-Harmonic Bunchers (SHB) are foreseen, to switch the phase of the bunch trains by 180 degrees from even to odd RF buckets. Specific issues of the thermionic gun and of the SHB with fast phase switch are discussed.

  6. Feasibility study of multipoint based laser alignment system for CLIC

    CERN Document Server

    Stern, G; Mainaud-Durand, H; Piedigrossi, D; Geiger, A

    2012-01-01

    CLIC (Compact LInear Collider) is a study for a future electron-positron collider that would allow physicists to explore a new energy region beyond the capabilities oftoday’s particle accelerators. Alignment is one of the major challenges within the CLIC study in order to achieve the high requirement of a multi-TeV center of mass colliding beam energy range (nominal 3 TeV). To reach this energy in a realistic and cost efficient scenario all accelerator components have to be aligned with an accuracy of 10 μm over a sliding window of 200 m. The demand for a straight line reference is so far based on stretched wires coupled with Wire Positioning Sensors (WPS). These solutions are currently further developed inorder to reduce the drawbacks which are mainly given by their costs and difficult implementation. However, it should be validated through inter-comparison with a solution ideally based on a different physical principle. Therefore, a new metrological approach is proposed using a laser beam as straight lin...

  7. Preliminary Design of an Inductive Adder for CLIC Damping Rings

    CERN Document Server

    Holma, J

    2011-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC damping rings will produce ultra-low emittance beam, with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse power modulators for the damping rings kickers must provide extremely flat, high-voltage, pulses: specifications call for a 160 ns duration flattop of 12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 %. A solid-state modulator, the inductive adder, is a very promising approach to meeting the demanding specifications; this topology allows the use of both digital and analogue modulation. To effectively use modulation techniques to achieve such low ripple and droop requires an in-depth knowledge of the behaviour of the solid-state switching components and their gate drivers, as well as a good understanding of the overa...

  8. Study of impurities in Aditya Tokamak during different conditions using quadrupole mass analyzer

    International Nuclear Information System (INIS)

    Bhatt, S.B.; Jadeja, K.A.; Patel, K.M.; Patel, N.D.; Raval, M.K.; Ghosh, J.

    2015-01-01

    In fusion devices, e.g., Tokamak, the presence of the impurities, i.e. gas species other than the fuel gas, deteriorates plasma and makes confinement difficult. The gas molecules tend to get adsorbed on the surfaces of the solid state materials of the vessel wall during discharges. A Residual Gas Analyzer (RGA) is the most commonly useful instrument to measure the presence and quantity of the various gases in a vacuum system. Quadrupole Mass Analyzer (QMA) is installed on Aditya Tokamak to measure the concentrations of various gas species present in Aditya vacuum system. It is also used to monitor impurities generated during various phases of discharges in Aditya Tokamak. The impurities are reduced by various types of discharge cleaning and in-situ coatings. Presence of residual gas concentration in vacuum system creates limitation for achievement of ultrahigh vacuum and also affects plasma performance. The presence of residual gases is due to different reasons like atmospheric concentration, contamination of the wall materials, outgassing from the exposed materials, permeation, real and virtual leaks

  9. A review of the use of Al-alloy vacuum components for operation at 10-13 Torr

    Science.gov (United States)

    Ishimaru, Hajime

    1990-02-01

    An extremely high vacuum (XHV) chamber was fabricated and tested. The vacuum chamber was made of special surface finished (EX-process) aluminum alloy in oxygen and argon atmosphere. The chamber was assembled using TIG welding in an argon atmosphere and by electron beam welding. The system was evacuated with a turbo-backed 300 l/s turbomolecular pump separated from the main chamber using a right angle valve. The liquid nitrogen shroud is installed inside the main vacuum chamber. The XHV is maintained by two 300 l/s sputter ion pumps and a titanium sublimation pump with a liquid nitrogen shroud. These pumps are also made of aluminum alloys. An ultimate pressure of 3×10-13 Torr was measured with a point collector gauge with a spherical anode mounted on an Al-flange. Residual gas analysis in the order 10-13 Torr was performed by a newly developed Q-mass filter. To suppress outgassing from the quadrupole electrode, the ion source is mounted on an Al-flange separated from the quadrupole electrode.

  10. Beam dynamic simulations of the CLIC crab cavity and implications on the BDS

    Energy Technology Data Exchange (ETDEWEB)

    Shinton, I.R.R., E-mail: ian.shinton@stfc.ac.uk [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Cockcroft Institute of Accelerator Science and Technology, Daresbury (United Kingdom); Burt, G. [Engineering Department, Lancaster University, Lancaster (United Kingdom); Cockcroft Institute of Accelerator Science and Technology, Daresbury (United Kingdom); Glasman, C.J.; Jones, R.M. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Cockcroft Institute of Accelerator Science and Technology, Daresbury (United Kingdom); Wolski, A. [Department of Physics, University of Liverpool, Liverpool (United Kingdom); Cockcroft Institute of Accelerator Science and Technology, Daresbury (United Kingdom)

    2011-11-21

    The Compact Linear Collider (CLIC) is a proposed electron positron linear collider design aiming to achieve a centre of mass energy of up to 3 TeV. The main accelerating structures in CLIC operate at an X-band frequency of 11.994 GHz with an accelerating gradient of 100 MV/m. The present design requires the beams to collide at a small crossing angle of 10 mrad per line giving a resultant overall crossing angle of 20 mrad. Transverse deflecting cavities, referred to as 'Crab cavities', are installed in the beam delivery system (BDS) of linear collider designs in order to ensure the final luminosity at the interaction point (IP) is comparable to that in a head on collision. We utilise the beam tracking code PLACET combined with the beam-beam code GUINEA-PIG to calculate the resulting luminosity at the IP. We follow a similar tuning procedure to that used for the design of the ILC crab cavities and anitcrab cavities. However an unexpected loss in luminosity of 10% was observed for the 20 mrad design was observed. It was discovered that the action of the crab cavities can affect the geometric aberrations resulting from the sextupoles used to correct chromatic effects in the beam delivery system. This has direct consequences regarding the design of the present CLIC BDS.

  11. Silicon pixel R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2017-01-01

    The physics aims at the proposed future CLIC high-energy linear e+e− collider pose challenging demands on the performance of the vertex and tracking detector system. In particular the detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The requirements include ultra-low mass, facilitated by power pulsing and air cooling in the vertex-detector region, small cell sizes and precision hit timing at the few-ns level. A highly granular all- silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints.

  12. A highly miniaturized vacuum package for a trapped ion atomic clock

    Energy Technology Data Exchange (ETDEWEB)

    Schwindt, Peter D. D., E-mail: pschwin@sandia.gov; Jau, Yuan-Yu; Partner, Heather; Casias, Adrian; Wagner, Adrian R.; Moorman, Matthew; Manginell, Ronald P. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Kellogg, James R.; Prestage, John D. [Jet Propulsion Laboratory, Pasadena, California 91109 (United States)

    2016-05-15

    We report on the development of a highly miniaturized vacuum package for use in an atomic clock utilizing trapped ytterbium-171 ions. The vacuum package is approximately 1 cm{sup 3} in size and contains a linear quadrupole RF Paul ion trap, miniature neutral Yb sources, and a non-evaporable getter pump. We describe the fabrication process for making the Yb sources and assembling the vacuum package. To prepare the vacuum package for ion trapping, it was evacuated, baked at a high temperature, and then back filled with a helium buffer gas. Once appropriate vacuum conditions were achieved in the package, it was sealed with a copper pinch-off and was subsequently pumped only by the non-evaporable getter. We demonstrated ion trapping in this vacuum package and the operation of an atomic clock, stabilizing a local oscillator to the 12.6 GHz hyperfine transition of {sup 171}Y b{sup +}. The fractional frequency stability of the clock was measured to be 2 × 10{sup −11}/τ{sup 1/2}.

  13. TCAD simulations of High-Voltage-CMOS Pixel structures for the CLIC vertex detector

    CERN Document Server

    Buckland, Matthew Daniel

    2016-01-01

    The requirements for precision physics and the experimental conditions at CLIC result in stringent constraints for the vertex detector. Capacitively coupled active pixel sensors with 25 μm pitch implemented in a commercial 180 nm High-Voltage CMOS (HV-CMOS) process are currently under study as a candidate technology for the CLIC vertex detector. Laboratory calibration measurements and beam tests with prototypes are complemented by detailed TCAD and electronic circuit simulations, aiming for a comprehensive understanding of the signal formation in the HV-CMOS sensors and subsequent readout stages. In this note 2D and 3D TCAD simulation results of the prototype sensor, the Capacitively Coupled Pixel Detector version three (CCPDv3), will be presented. These include the electric field distribution, leakage current, well capacitance, transient response to minimum ionising particles and charge-collection.

  14. An energy-filtering device coupled to a quadrupole mass spectrometer for soft-landing molecular ions on surfaces with controlled energy

    Energy Technology Data Exchange (ETDEWEB)

    Bodin, A.; Laloo, R.; Abeilhou, P.; Guiraud, L.; Gauthier, S.; Martrou, D. [Nanosciences Group, CEMES, CNRS UPR 8011 and University Toulouse III - Paul Sabatier, 29 rue Jeanne Marvig, BP94347, F-31055 Toulouse Cedex 4 (France)

    2013-09-15

    We have developed an energy-filtering device coupled to a quadrupole mass spectrometer to deposit ionized molecules on surfaces with controlled energy in ultra high vacuum environment. Extensive numerical simulations as well as direct measurements show that the ion beam flying out of a quadrupole exhibits a high-energy tail decreasing slowly up to several hundred eV. This energy distribution renders impossible any direct soft-landing deposition of molecular ions. To remove this high-energy tail by energy filtering, a 127° electrostatic sector and a specific triplet lenses were designed and added after the last quadrupole of a triple quadrupole mass spectrometer. The results obtained with this energy-filtering device show clearly the elimination of the high-energy tail. The ion beam that impinges on the sample surface satisfies now the soft-landing criterion for molecular ions, opening new research opportunities in the numerous scientific domains involving charges adsorbed on insulating surfaces.

  15. CLIC5 stabilizes membrane-actin filament linkages at the base of hair cell stereocilia in a molecular complex with radixin, taperin, and myosin VI.

    Science.gov (United States)

    Salles, Felipe T; Andrade, Leonardo R; Tanda, Soichi; Grati, M'hamed; Plona, Kathleen L; Gagnon, Leona H; Johnson, Kenneth R; Kachar, Bechara; Berryman, Mark A

    2014-01-01

    Chloride intracellular channel 5 protein (CLIC5) was originally isolated from microvilli in complex with actin binding proteins including ezrin, a member of the Ezrin-Radixin-Moesin (ERM) family of membrane-cytoskeletal linkers. CLIC5 concentrates at the base of hair cell stereocilia and is required for normal hearing and balance in mice, but its functional significance is poorly understood. This study investigated the role of CLIC5 in postnatal development and maintenance of hair bundles. Confocal and scanning electron microscopy of CLIC5-deficient jitterbug (jbg) mice revealed progressive fusion of stereocilia as early as postnatal day 10. Radixin (RDX), protein tyrosine phosphatase receptor Q (PTPRQ), and taperin (TPRN), deafness-associated proteins that also concentrate at the base of stereocilia, were mislocalized in fused stereocilia of jbg mice. TPRQ and RDX were dispersed even prior to stereocilia fusion. Biochemical assays showed interaction of CLIC5 with ERM proteins, TPRN, and possibly myosin VI (MYO6). In addition, CLIC5 and RDX failed to localize normally in fused stereocilia of MYO6 mutant mice. Based on these findings, we propose a model in which these proteins work together as a complex to stabilize linkages between the plasma membrane and subjacent actin cytoskeleton at the base of stereocilia. © Published 2013 Wiley Periodicals, Inc. This article is a US government work and, as such, is in the public domain in the United States of America.

  16. Development and manufacturing of a Nb$_{3}$Sn quadrupole magnet Model at CEA/Saclay for TESLA Interaction Region

    CERN Document Server

    Durante, Maria; Fratini, M; Leboeuf, D; Segreti, M; Védrine, Pierre; 10.1109/TASC.2004.829129

    2004-01-01

    One possible application of Nb/sub 3/Sn, whose superconducting properties far exceed those of NbTi, is the fabrication of short and powerful quadrupole magnets for the interaction regions of large particle accelerators. In some projects, as in the future linear collider TESLA, the quadrupole magnets are inside the detector solenoid and must operate in its background field. This situation gives singular Lorentz force distribution in the ends of the magnet. To learn about Nb/sub 3/Sn technology, evaluate fabrication techniques and test the interaction with a solenoidal field, DAPNIA /SACM at CEA/Saclay has started the manufacturing of a 1-m-long, 56- mm-single-aperture quadrupole magnet model. The model relies on the same coil geometry as the LHC arc quadrupole magnets, but has no iron yoke. It will produce a nominal field gradient of 211 T/m at 11,870 A. The coils are wound from Rutherford-type cables insulated with glass fiber tape, before being heat-treated and vacuum-impregnated with epoxy resin. Laminated,...

  17. Eight piece quadrupole magnet, method for aligning quadrupole magent pole tips

    Science.gov (United States)

    Jaski, Mark S.; Liu, Jie; Donnelly, Aric T.; Downey, Joshua S.; Nudell, Jeremy J.; Jain, Animesh

    2018-01-30

    The invention provides an alternative to the standard 2-piece or 4-piece quadrupole. For example, an 8-piece and a 10-piece quadrupole are provided whereby the tips of each pole may be adjustable. Also provided is a method for producing a quadrupole using standard machining techniques but which results in a final tolerance accuracy of the resulting construct which is better than that obtained using standard machining techniques.

  18. Study of the Thermo-Mechanical Behavior of the CLIC Two-Beam Modules

    CERN Document Server

    Rossi, F; Riddone, G; Österberg, K; Kossyvakis, I; Gudkov, D; Samochkine, A

    2013-01-01

    The final luminosity target of the Compact LInear Collider (CLIC) imposes a micron-level stability requirement on the two-meter repetitive two-beam modules constituting the main linacs. Two-beam prototype modules are being assembled to extensively study their thermo-mechanical behaviour under different operation modes. The power dissipation occurring in the modules will be reproduced and the efficiency of the corresponding cooling systems validated. At the same time, the real environmental conditions present in the CLIC tunnel will be studied. Air conditioning and ventilation systems have been installed in the dedicated laboratory. The air temperature will be changed from 20 to 40°C, while the air flow rate will be varied up to 0.8 m/s. During all experimental tests, the alignment of the RF structures will be monitored to investigate the influence of power dissipation and air temperature on the overall thermo-mechanical behaviour. \

  19. Performance of quadrupole and sextupole magnets for the Advanced Photon Source storage ring

    International Nuclear Information System (INIS)

    Kim, S.H.; Doose, C.L.; Kim, K.; Thompson, K.M.; Turner, L.R.

    1993-01-01

    From the magnetic measurement data of several production quadrupole and sextupole magnets for the storage ring of the Advanced Photon Source, the excitation efficiencies and systematic and random multipole coefficients of the magnets are summarized. The designs of the magnets, which are constrained due to the geometry of the vacuum chamber have rotation symmetries of 180 degrees and 120 degrees. The production data meet the allowed tolerances of a few parts in 10 -4 for the storage ring

  20. Airfoil sampling of a pulsed Laval beam with tunable vacuum ultraviolet synchrotron ionization quadrupole mass spectrometry: application to low-temperature kinetics and product detection.

    Science.gov (United States)

    Soorkia, Satchin; Liu, Chen-Lin; Savee, John D; Ferrell, Sarah J; Leone, Stephen R; Wilson, Kevin R

    2011-12-01

    A new pulsed Laval nozzle apparatus with vacuum ultraviolet (VUV) synchrotron photoionization quadrupole mass spectrometry is constructed to study low-temperature radical-neutral chemical reactions of importance for modeling the atmosphere of Titan and the outer planets. A design for the sampling geometry of a pulsed Laval nozzle expansion has been developed that operates successfully for the determination of rate coefficients by time-resolved mass spectrometry. The new concept employs airfoil sampling of the collimated expansion with excellent sampling throughput. Time-resolved profiles of the high Mach number gas flow obtained by photoionization signals show that perturbation of the collimated expansion by the airfoil is negligible. The reaction of C(2)H with C(2)H(2) is studied at 70 K as a proof-of-principle result for both low-temperature rate coefficient measurements and product identification based on the photoionization spectrum of the reaction product versus VUV photon energy. This approach can be used to provide new insights into reaction mechanisms occurring at kinetic rates close to the collision-determined limit.

  1. CLIC-ACM: generic modular rad-hard data acquisition system based on CERN GBT versatile link

    International Nuclear Information System (INIS)

    Bielawski, B.; Locci, F.; Magnoni, S.

    2015-01-01

    CLIC is a world-wide collaboration to study the next ''terascale'' lepton collider, relying upon a very innovative concept of two-beam-acceleration. This accelerator, currently under study, will be composed of the subsequence of 21000 two-beam-modules. Each module requires more than 300 analogue and digital signals which need to be acquired and controlled in a synchronous way. CLIC-ACM (Acquisition and Control Module) is the 'generic' control and acquisition module developed to accommodate the controls of all these signals for various sub-systems and related specification in term of data bandwidth, triggering and timing synchronization. This paper describes the system architecture with respect to its radiation-tolerance, power consumption and scalability

  2. Technologies and R&D for a High Resolution Cavity BPM for the CLIC Main Beam

    CERN Document Server

    Towler, J R; Soby, L; Wendt, M; Boogert, S T; Cullinan, F J; Lyapin, A

    2013-01-01

    The Main Beam (MB) linac of the Compact Linear Collider (CLIC) requires a beam orbit measurement system with high spatial (50 nm) and high temporal resolution (50 ns) to resolve the beam position within the 156 ns long bunch train, traveling on an energy-chirped, minimum dispersive trajectory. A 15 GHz prototype cavity BPM has been commissioned in the probe beam-line of the CTF3 CLIC Test Facility. We discuss performance and technical details of this prototype installation, including the 15 GHz analogue downconverter, the data acquisition and the control electronics and software. An R&D outlook is given for the next steps, which requires a system of 3 cavity BPMs to investigate the full resolution potential.

  3. CesrTA Retarding Field Analyzer Measurements in Drifts, Dipoles, Quadrupoles and Wigglers

    International Nuclear Information System (INIS)

    Calvey, J.R.; Li, Y.; Livezey, J.A.; Makita, J.; Meller, R.E.; Palmer, M.A.; Schwartz, R.M.; Strohman, C.R.; Harkay, K.; Calatroni, S.; Rumolo, G.; Kanazawa, K.; Suetsugu, Y.; Pivi, M.; Wang, L.

    2010-01-01

    Over the course of the CesrTA program, the Cornell Electron Storage Ring (CESR) has been instrumented with several retarding field analyzers (RFAs), which measure the local density and energy distribution of the electron cloud. These RFAs have been installed in drifts, dipoles, quadrupoles, and wigglers; and data have been taken in a variety of beam conditions and bunch configurations. This paper will provide an overview of these results, and give a preliminary evaluation of the efficacy of cloud mitigation techniques implemented in the instrumented vacuum chambers.

  4. The CLIC Study of a Multi-TeV $e^\\pm$ Linear Collider

    CERN Document Server

    Bossart, Rudolf; Carron, G; Coosemans, Williame; Corsini, R; D'Amico, T E; Delahaye, J P; Godot, J C; Guignard, Gilbert; Hagel, J; Hutchins, S; Jensen, E; Luong, M; Millich, Antonio; Pearce, P; Potier, J P; Riche, A J; Rinolfi, Louis; Schulte, Daniel; Suberlucq, Guy; Thorndahl, L; Valentini, M; Wilson, Ian H; Wuensch, Walter; Napoly, O; Raubenheimer, T O; Ruth, Ronald D; Syratchev, I V

    1999-01-01

    The progress of the Compact LInear Collider (CLIC) study of a multi-TeV (0.5 - 5 TeV) high-luminosity (5'1033 to 1.5'1035 cm-2 sec-1) e± linear collider based on Two-Beam Acceleration (TBA) is presented. The length and, in consequence, the cost of the overall complex is reduced by the use of high accelerating fields (150 MV/m), which are generated by specially damped 30 GHz normal-conducting accelerating structures. The large amount of RF power (400 MW/m) required to generate these high fields is provided by a novel RF power generating scheme which is potentially both cost and power efficient. After summarising the progress made in the developments of 30 GHz components and the performance obtained in the present phase of the CLIC Test Facility (CTF2), the design of a new test facility (CTF3), which will demonstrate the feasibility of the RF power generating scheme, is described

  5. Thermo-mechanical modelling and experimental validation of CLIC prototype module type 0

    CERN Document Server

    Kortelainen, Lauri; Koivurova, Hannu; Riddone, Germana; Österberg, Kenneth

    Micron level stability of the two-meter repetitive modules constituting the two main linacs is one of the most important requirements to achieve the luminosity goal for the Compact Linear Collider. Structural deformations due to thermal loads and related to the RF power dissipated inside the modules affect the alignment of the linacs and therefore the resulting luminosity performance. A CLIC prototype module has been assembled in a dedicated laboratory and a thermal test program has been started in order to study its thermo-mechanical behaviour. This thesis focuses on the finite elements modelling of the first CLIC prototype module 0. The aim of the modelling is to examine the temperature distributions and the resulting deformations of the module in different operating conditions defined in the thermal test program. The theoretical results have been compared to the experimental ones; the comparison shows that the results are in good agreement both for the thermal behaviour of the module and for the resulting ...

  6. Integration of the PHIN RF Gun into the CLIC Test Facility

    CERN Document Server

    Döbert, Steffen

    2006-01-01

    CERN is a collaborator within the European PHIN project, a joint research activity for Photo injectors within the CARE program. A deliverable of this project is an rf Gun equipped with high quantum efficiency Cs2Te cathodes and a laser to produce the nominal beam for the CLIC Test Facility (CTF3). The nominal beam for CTF3 has an average current of 3.5 A, 1.5 GHz bunch repetition frequency and a pulse length of 1.5 ìs (2332 bunches) with quite tight stability requirements. In addition a phase shift of 180 deg is needed after each train of 140 ns for the special CLIC combination scheme. This rf Gun will be tested at CERN in fall 2006 and shall be integrated as a new injector into the CTF3 linac, replacing the existing injector consisting of a thermionic gun and a subharmonic bunching system. The paper studies the optimal integration into the machine trying to optimize transverse and longitudinal phase space of the beam while respecting the numerous constraints of the existing accelerator. The presented scheme...

  7. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  8. Towards TeV-scale electron-positron collisions: the Compact Linear Collider (CLIC)

    Science.gov (United States)

    Doebert, Steffen; Sicking, Eva

    2018-02-01

    The Compact Linear Collider (CLIC), a future electron-positron collider at the energy frontier, has the potential to change our understanding of the universe. Proposed to follow the Large Hardron Collider (LHC) programme at CERN, it is conceived for precision measurements as well as for searches for new phenomena.

  9. La construcción de audiencias en Internet a través de los cebos de clics

    OpenAIRE

    Gracia Biarge, Pablo

    2018-01-01

    El presente trabajo tiene como objetivo estudiar el papel de los cebos de clics en la prensa digital y su influencia en la calidad y veracidad de la información publicada. Para ello se analizarán diversos casos ilustrativos y se realizarán entrevistas a profesionales, además de contar con el apoyo teórico de autores y otros profesionales conocedores de este fenómeno. El present treball té com a objectiu estudiar el paper dels esquers de clics en la premsa digital i la seva influència en...

  10. Nuclear quadrupole-quadrupole interaction in the inelastic scattering of aligned deuterons from deformed nuclei

    International Nuclear Information System (INIS)

    Clement, H.; Frick, R.; Graw, G.; Schiemenz, P.; Seichert, N.

    1983-01-01

    The 2 1 + -excitation of deformed nuclei by tensor polarized deuterons provides an alignment of both nuclei and thus a means to study specifically the quadrupole-quadrupole interaction between both nuclei. The tensor analyzing power Asub(xz)(theta) has been measured for the elastic and inelastic scattering on 24 Mg and 28 Si. The coupled channel analysis including a deformed tensor potential reveals a clear signature of the quadrupole-quadrupole part of the nuclear projectile-target interaction. (orig.)

  11. Phase and amplitude stability of a pulsed RF system on the example of the CLIC drive beam LINAC

    CERN Document Server

    AUTHOR|(CDS)2132320; Prof. BANTEL, Michael

    The CLIC drive beam accelerator consists of the Drive Beam Injector (DBI) and two Drive Beam Linacs (DBLs). The drive beam injector is composed of a thermionic electron source, 3 Sub Harmonic Bunchers (SHBs), a pre-buncher, and several acceleration structures. In the electron source the DC electron beam is produced from a thermionic cathode. The following buncher cavities group ("bunch") the electrons to be accelerated by RF later on. Each electron bunch has an energy of 140 keV, a length of 3 mm, and a charge qb = 8.4 nC. Afterwards the electrons are accelerated in the 1 GHz accelerating structures up to 50MeV. The pulsed Radio Frequency (RF) power for this acceleration is provided by 1 GHz, 20MW modulator-klystron units, one per acceleration structure. A klystron is an RF amplifier based on a linear-beam vacuum tube. The high voltage modulator supplies the acceleration voltage to this tube. A DC electron beam gets modulated with an input signal, the modulation enhances in a drift space, and finally the powe...

  12. High RF Power Production for CLIC

    CERN Document Server

    Syratchev, I; Adli, E; Taborelli, M

    2007-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and delivered to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability and main linac RF power needs. Another requirement is to provide local RF power termination in case of accelerating structure failure (ON/OFF capability). Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design

  13. Dumping the decelerated beams of CLIC

    CERN Document Server

    Jeanneret, Bernard

    2011-01-01

    The spent drive beam must be cleanly extracted and bent away from the decelerator axis at the end of each CLIC decelerator in order to leave space for injecting a fresh beam train in the next sector. Then the spent beam must be safely absorbed. A compact extraction system made of a single dipole is proposed. The spent beam is driven to a water dump located at 20m downstream of the extraction point and transversely 6m away of the axis of the main linac. An adequate spread of the beam impact map on the dump offers small temperature excursions in both the dump and its entrance window, allowing for reliable operation and a long lifetime of the system.

  14. Tracking Performance in High Multiplicity Environment for the CLIC ILD Detector

    CERN Document Server

    Killenberg, M

    2012-01-01

    We report on the tracking efficiency and the fraction of badly reconstructed tracks in the CLIC ILD detector for high multiplicity events (tt ̄@3 TeV) with and without the presence of γγ →hadrons background. They have been studied for the silicon tracking, the TPC tracking and the so called FullLDC tacking, which combines silicon and TPC measurements.

  15. The first LHC insertion quadrupole

    CERN Multimedia

    2004-01-01

    An important milestone was reached in December 2003 at the CERN Magnet Assembly Facility. The team from the Accelerator Technology - Magnet and Electrical Systems group, AT-MEL, completed the first special superconducting quadrupole for the LHC insertions which house the experiments and major collider systems. The magnet is 8 metres long and contains two matching quadrupole magnets and an orbit corrector, a dipole magnet, used to correct errors in quadrupole alignment. All were tested in liquid helium and reached the ultimate performance criteria required for the LHC. After insertion in the cryostat, the superconducting magnet will be installed as the Q9 quadrupole in sector 7-8, the first sector of the LHC to be put in place in 2004. Members of the quadrupole team, from the AT-MEL group, gathered around the Q9 quadrupole at its inauguration on 12 December 2003 in building 181.

  16. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    CERN Document Server

    Lukic, Strahinja

    2013-01-01

    Procedures for correcting the beam-beam effects in luminosity measurement at CLIC at 3 TeV CM energy are described and tested using Monte Carlo simulations: - Correction of the angular counting loss due to the combined Beamstrahlung and initial-state radiation (ISR) effects, based on the reconstructed velocity of the collision frame of the Bhabha scattering. - Deconvolution of the luminosity spectrum distortion due to the ISR emission. - Correction of the counting bias due to the finite calorimeter energy resolution. All procedures were tested by simulation. Bhabha events were generated using BHLUMI, and used in Guinea-PIG to simulate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. Residual uncertainties after correction are listed in a table in the conclusions. The beam-beam related systematic counting uncertainty in the luminosity peak can be reduced to the order of permille.

  17. Correction of beam-beam effects in luminosity measurement in the forward region at CLIC

    CERN Document Server

    Lukic, Strahinja

    2013-01-01

    Procedures for correcting the beam-beam effects in luminosity measurement at CLIC at 3 TeV CM energy are described and tested using Monte Carlo simulations: -> Correction of the angular counting loss due to the combined Beamstrahlung and initial-state radiation (ISR) effects, based on the reconstructed velocity of the collision frame of the Bhabha scattering. -> Deconvolution of the luminosity spectrum distortion due to the ISR emission. -> Correction of the counting bias due to the finite calorimeter energy resolution. All procedures were tested by simulation. Bhabha events were generated using BHLUMI, and used in Guinea-PIG to simulate the outgoing momenta of Bhabha particles in the bunch collisions at CLIC. Residual uncertainties after correction are listed in a table in the conclusions. The beam-beam related systematic counting uncertainty in the luminosity peak can be reduced to the order of permille.

  18. Quadrupole shunt experiments at SPEAR

    International Nuclear Information System (INIS)

    Corbett, W.J.; Hettel, R.O.; Nuhn, H.-D.

    1996-05-01

    As part of a program to align and stabilize the SPEAR storage ring, a switchable shunt resistor was installed on each quadrupole to bypass a small percentage of the magnet current. The impact of a quadrupole shunt is to move the electron beam orbit in proportion to the off-axis beam position at the quadrupole, and to shift the betatron tune. Initially, quadrupole shunts in SPEAR were used to position the electron beam in the center of the quadrupoles. This provided readback offsets for nearby beam position monitors, and helped to steer the photon beams with low-amplitude corrector currents. The shunt-induced tune shift measurements were then processed in MAD to derive a lattice model

  19. A silicon pixel detector prototype for the CLIC vertex detector

    CERN Multimedia

    AUTHOR|(INSPIRE)INSPIRE-00714258

    2017-01-01

    A silicon pixel detector prototype for CLIC, currently under study for the innermost detector surrounding the collision point. The detector is made of a High-Voltage CMOS sensor (top) and a CLICpix2 readout chip (bottom) that are glued to each other. Both parts have a size of 3.3 x 4.0 $mm^2$ and consist of an array of 128 x 128 pixels of 25 x 25 $\\micro m^2$ size.

  20. Physics potential for the measurement of sigma(H nu antinu ̄) x BR(H -->μ+μ-) at a 1.4 TeV CLIC collider

    CERN Document Server

    Milutinovic-Dumbelovic, Gordana; Grefe, Christian; Kacarevic, Goran; Lukic, Strahinja; Pandurovic, Mila; Roloff, Philipp Gerhard; Smiljanic, Ivan

    2015-01-01

    Measurements of Higgs couplings at CLIC will offer the potential for a rich precision phys- ics programme and for the search for physics beyond the Standard Model(SM). The poten- tial for measuring the SM Higgs boson decay into two muons at a 1.4 TeV CLIC collider is addressed in this paper. The study is performed using a full Geant4 detector simulation of the CLIC_ILD detector model, taking into consideration all the relevant physics and beam-induced background processes, as well as the instrumentation of the very forward region to identify high-energy electrons. In this analysis, we show that the branching ratio BR(H-->μ+μ-) times the Higgs production cross-section in W+W- fusion can be measured with 38% statistical accuracy at sqrt(s) = 1.4 TeV assuming an integrated luminosity of 1.5 ab-1 with unpolarised beams. If 80% electron beam polarisation is considered, as planned for CLIC, the statistical uncertainty of the measurement is 27%. Systematic uncertainties are negligible.

  1. Initial measurements on a prototype inductive adder for the CLIC kicker systems

    CERN Document Server

    Holma, Janne

    2013-01-01

    The CLIC study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings will produce, through synchrotron radiation, ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the damping ring kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the extraction kickers of the DRs are particularly demanding: the flattops of the pulses must be ±12.5 kV with a combined ripple and droop of not more than ±0.02 % (±2.5 V). An inductive adder is a very promising approach to meeting the specifications. To achieve ultra-flat pulses with a fast rise time the output impedance of the inductive adder needs to be well matched to the system impedance. The parasitic circuit elements of the inductive adder have a significant effect upon the output impedance and these values are very difficult to calculate accurately analytically. To predict these paramet...

  2. The Prototype Inductive Adder With Droop Compensation for the CLIC Kicker Systems

    CERN Document Server

    Holma, J

    2014-01-01

    The Compact Linear Collider (CLIC) study is exploring the scheme for an electron-positron collider with high luminosity and a nominal center-of-mass energy of 3 TeV. The CLIC predamping rings and damping rings (DRs) will produce, through synchrotron radiation, an ultralow emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the extraction kickers of the DRs are particularly demanding: the flattops of the pulses must be ±12.5 kV with a combined ripple and droop of not more than ±0.02% (±2.5 V). An inductive adder is a very promising approach to meeting the specifications. Recently, a five-layer prototype has been built at CERN. Passive analog modulation has been applied to compensate the voltage droop, for example of the pulse capacitors. The output waveforms of the prototype inductive adder have been compared with predictions of the voltage droop and pulse shape. Conclusions are drawn concern...

  3. Quadrupole shunt experiments at SPEAR

    International Nuclear Information System (INIS)

    Corbett, W.J.; Hettel, R.O.; Nuhn, H.

    1997-01-01

    As part of a program to align and stabilize the SPEAR storage ring, a switchable shunt resistor was installed on each quadrupole to bypass a small percentage of the magnet current. The impact of a quadrupole shunt is to move the electron beam orbit in proportion to the off-axis beam position at the quadrupole and to shift the betatron tune. Initially, quadrupole shunts in SPEAR were used to position the electron beam in the center of the quadrupoles. This provided readback offsets for nearby beam position monitors and helped to steer the photon beams with low-amplitude corrector currents. The shunt-induced tune shift measurements were then processed in MAD to derive a lattice model. copyright 1997 American Institute of Physics

  4. Electric quadrupole strength in nuclei

    International Nuclear Information System (INIS)

    Kirson, M.W.

    1979-01-01

    Isoscalar electric quadrupole strength distributions in nuclei are surveyed, and it is concluded that the strength is shared, in most cases, roughly equally between low-lying transitions and the giant quadrupole state. The same is not true of the isovector case. A simple extension of the schematic model gives a remarkably successul description of the data, and emphasizes the vital importance of the coupling between high-lying and low-lying quadrupole modes. The standadrd simple representation of the giant quadrupole resonance as produced by operating on the nuclear ground state with the quadrupole transition operator is not applicable to the isoscalar case. It is suggested that giant resonances fall into broad classes of similar states, with considerable qualitative differences between the distinct classes. (author)

  5. The CLIC Multi-Drive Beam Scheme

    CERN Document Server

    Corsini, R

    1998-01-01

    The CLIC study of an e+ / e- linear collider in the TeV energy range is based on Two-Beam Acceleration (TBA) in which the RF power needed to accelerate the beam is extracted from high intensity relativistic electron beams, the so-called drive beams. The generation, acceleration and transport of the high-intensity drive beams in an efficient and reliable way constitute a challenging task. An overview of a potentially very effective scheme is presented. It is based on the generation of trains of short bunches, accelerated sequentially in low frequency superconducting cavities in a c.w. mode, stored in an isochronous ring and combined at high energy by funnelling before injection by sectors into the drive linac for RF power production. The various systems of the complex are discussed.

  6. Long-term changes in the sensitivity of quadrupole mass spectrometers

    International Nuclear Information System (INIS)

    Blanchard, W.R.; McCarthy, P.J.; Dylla, H.F.; LaMarche, P.H.; Simpkins, J.E.

    1986-02-01

    We routinely use quadrupole mass spectrometers (QMS) to monitor vacuum conditions, gas purity, and plasma-wall interactions in the Tokamak Fusion Test Reactor (TFTR) at Princeton. Two QMS systems have been operating on TFTR continuously for a two-year period. Both QMS systems are absolutely calibrated at weekly intervals using a six-part standard gas mixture. The calibration procedure is based on the use of transfer standards (ion gauge and capacitance manometer) that are calibrated against a primary standard (spinning rotor gauge) on an external vacuum system. We have identified variations in the efficiency of the QMS ionizer and drifts in the sensitivity of the electron multiplier ion detector to be the major reasons for the observed changes in overall OMS sensitivity. Weekly variations in sensitivity greater than 100% have been observed following system bakeout at 150 0 C and with the use of rhenium filaments which were initially in the QMS ionizer. Operation of the QMS systems with tungsten filaments and at constant temperature has yielded more stable operation with weekly sensitivity changes generally being less than 10%. 7 refs., 7 figs

  7. Thermo-structural analysis of the rf-induced pulsed surface heating of the CLIC accelerating structures

    CERN Document Server

    Huopana, Jouni Juhani

    2006-01-01

    The CLIC (Compact LInear Collider) is being studied at CERN as a potential multi-TeV e+e- collider. The acceleration of the particles is done by RF (Radio Frequency). The surfaces of the RF (radio frequency) accelerating cavities are exposed to high pulsed RF currents which induce cyclic thermal stresses. These cyclic stresses are crucial for the fatigue lifetime of the cavities. To study the fatigue phenomenon properly the induced stresses must be well known. ANSYS FEM simulations were made to study the thermo-structural behaviour of the CLIC accelerating structure in copper zirconium, bimetallic and diamond coated constructions. The simulations showed the existence of high thermal stresses and low stress level shockwaves. It was also shown that the bimetallic structure increases stress values due to the differences in material properties. Diamond coating was found to reduce the thermal stresses.

  8. Stabilization of the Beam Intensity in the Linac at the CTF3 CLIC Test Facility

    CERN Document Server

    Dubrovskiy, A; Bathe, BN; Srivastava, S

    2013-01-01

    A new electron beam stabilization system has been introduced in CTF3 in order to open new possibilities for CLIC beam studies in ultra-stable conditions and to provide a sustainable tool to keep the beam intensity and energy at its reference values for long term operations. The stabilization system is based on a pulse-to-pulse feedback control of the electron gun to compensate intensity deviations measured at the end of the injector and at the beginning of the linac. Thereby it introduces negligible beam distortions at the end of the linac and it significantly reduces energy deviations. A self-calibration mechanism has been developed to automatically configure the feedback controller for the optimum performance. The residual intensity jitter of 0.045% of the stabilized beam was measured whereas the CLIC requirement is 0.075%.

  9. SPS Quadrupole Magnets

    CERN Multimedia

    1974-01-01

    A stack of SPS Quadrupole Magnets ready for installation in the tunnel. The SPS uses a total of 216 laminated normal conducting lattice quadrupoles with a length of 3.13 m for the core, 3.3 m overall. The F and D quads. have identical characteristics: inscribed circle radius 44 mm, core height and width 800 mm, maximum gradient 20 Tesla/m.

  10. Avoiding vacuum arcs in high gradient normal conducting RF structures

    CERN Document Server

    Sjøbæk, Kyrre Ness; Adli, Erik; Grudiev, Alexej; Wuensch, Walter

    In order to build the Compact LInear Collider (CLIC), accelerating structures reaching extremely high accelerating gradients are needed. Such structures have been built and tested using normal-conducting copper, powered by X-band RF power and reaching gradients of 100 MV/m and above. One phenomenon that must be avoided in order to reliably reach such gradients, is vacuum arcs or “breakdowns”. This can be accomplished by carefully designing the structure geometry such that high surface fields and large local power flows are avoided. The research presented in this thesis presents a method for optimizing the geometry of accelerating structures so that these breakdowns are made less likely, allowing the structure to operate reliably at high gradients. This was done primarily based on a phenomenological scaling model, which predicted the maximum gradient as a function of the break down rate, pulse length, and field distribution in the structure. The model is written in such a way that it allows direct comparis...

  11. The CLIC ILD CDR Geometry for the CDR Monte Carlo Mass Production

    CERN Document Server

    Muennich, A

    2012-01-01

    The CLIC ILD CDR detector for the Monte Carlo event simulation is described in a GEANT4 application, with some parameters available in a database and XML files. This makes it difficult to quickly “look up” interesting parameters of the detector geometry used for the simulation. This note summarises the important geometrical parameters and some details of the implemented detector components.

  12. Physics potential for the measurement of σ (Hνν) × BR(H → μ+μ−) at a 1.4 TeV CLIC collider

    CERN Document Server

    Milutinović-Dumbelović, G; Grefe, C; Lukić, S; Pandurović, M; Roloff, P

    2014-01-01

    The potential for the measurement of the branching ratio of the Standard Model-like Higgs boson decay into a μ+μ− pair at 1.4 TeV CLIC is analysed. The study is performed using the fully simulated CLIC_ILD detector concept, taking into consideration all the relevant physics and the beam-induced backgrounds. Despite the very low branching ratio of the H → μ+μ− decay, we show that the product of the branching ratio times the Higgs production cross section can be measured with a statistical uncertainty of 38 %, assuming an integrated luminosity of 1.5 ab−1 collected in five years of the detector operation at the 1.4 TeV CLIC with unpolarised beams. With polarised beams (+80 %, -30 %), the statistical uncertainty is better than 25%

  13. Stability of the drive beam in the decelerator of CLIC

    CERN Document Server

    Schulte, Daniel

    2002-01-01

    The RF power necessary to accelerate the main beam in the compact linear collider (CLIC) is generated by decelerating high-intensity low energy drive beams in 44 decelerators. Recently new decelerating structures (PETS, power extraction and transfer structures) have been developed. In these structures the RF energy travels with particularly high group velocity, which can affect efficiency and transverse stability. The paper considers the transverse beam stability in the decelerator as well as the longitudinal effects in the presence of dynamic and static imperfections.

  14. MQXFS1 Quadrupole Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Ambrosio, Giorgio [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); et al.

    2016-04-14

    This report presents the reference design of MQXFS1, the first 1.5 m prototype of the low-beta quadrupoles (MQXF) for the LHC High Luminosity Upgrade. The MQXF quadrupoles have 150 mm aperture, coil peak field of about 12 T, and use $Nb_{3}Sn$ conductor. The design is based on the LARP HQ quadrupoles, which had 120 mm aperture. MQXFS1 has 1st generation cable cross-section and magnetic design.

  15. The Baseline Positron Production and Capture Scheme for CLIC

    CERN Document Server

    Dadoun, Olivier; Lepercq, Pierre; Poirier, Freddy; Variola, Alessandro; Chehab, Robert; Rinolfi, Louis; Vivoli, Alessandro; Strakhovenko, Vladimir; Xu, Chengai

    2010-01-01

    The CLIC study considers the hybrid source using channeling as the baseline for unpolarised positron production. The hybrid source uses a few GeV electron beam impinging on a tungsten crystal target. With the crystal oriented on its axis it results an intense relatively low energy photon beam. The later is then impinging on an amorphous tungsten target producing positrons by e+e− pair creation. Downstream the amorphous target, a capture section based on an adiabatic matching device followed by a 2 GHz Pre- Injector Linac focuses and accelerates the positron beam up to around 200 MeV

  16. Centering of quadrupole family

    International Nuclear Information System (INIS)

    Pinayev, Igor

    2007-01-01

    A procedure for finding the individual centers for a family of quadrupoles fed with a single power supply is described. The method is generalized for using the correctors adjacent to the quadrupoles. Theoretical background is presented as well as experimental data for the NSLS rings. The method accuracy is also discussed

  17. Ion trajectories quadrupole mass filters

    International Nuclear Information System (INIS)

    Ursu, D.; Lupsa, N.; Muntean, F.

    1994-01-01

    The present paper aims at bringing some contributions to the understanding of ion motion in quadrupole mass filters. The theoretical treatment of quadrupole mass filter is intended to be a concise derivation of the important physical relationships using Mathieu functions. A simple iterative method of numerical computation has been used to simulate ion trajectories in an ideal quadrupole field. Finally, some examples of calculation are presented with the aid of computer graphics. (Author) 14 Figs., 1 Tab., 20 Refs

  18. Electron Cloud Build Up and Instability in the CLIC Damping Rings

    CERN Document Server

    Rumolo, G; Papaphilippou, Y

    2008-01-01

    Electron cloud can be formed in the CLIC positron damping ring and cause intolerable tune shift and beam instability. Build up simulations with the Faktor2 code, developed at CERN, have been done to predict the cloud formation in the arcs and wigglers of the damping rings. HEADTAIL simulations have been used to study the effect of this electron cloud on the beam and assess the thresholds above which the electron cloud instability would set in.

  19. A Vertex and Tracking Detector System for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2017-01-01

    The physics aims at the proposed future CLIC high-energy linear $e^+e^−$ collider pose challenging demands on the performance of the detector system. In particular the vertex and tracking detectors have to combine precision measurements with robustness against the expected high rates of beam-induced backgrounds. The requirements include ultra-low mass, facilitated by power pulsing and air cooling in the vertex-detector region, small cell sizes and precision hit timing at the few-ns level. A detector concept meeting these requirements has been developed and an integrated R&D program addressing the challenges is progressing in the areas of ultra-thin sensors and readout ASICs, interconnect technology, mechanical integration and cooling.

  20. 30 GHz High Power Production for CLIC

    CERN Document Server

    Syratchev, I V

    2006-01-01

    The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous TM01 mode at 30 GHz. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and conveyed to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability along a single decelerator sector (600 m) and the active length of the structure to match the main linac RF power needs and layout. Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design.

  1. Wakefield monitor development for CLIC accelerating structure

    CERN Document Server

    Peauger, F; Girardot, P; Andersson, A; Riddone, G; Samoshkin, A; Solodko, A; Zennaro, R; Ruber, R

    2010-01-01

    Abstract To achieve high luminosity in CLIC, the accelerating structures must be aligned to an accuracy of 5 μm with respect to the beam trajectory. Position detectors called Wakefield Monitors (WFM) are integrated to the structure for a beam based alignment. This paper describes the requirements of such monitors. Detailed RF design and electromagnetic simulations of the WFM itself are presented. In particular, time domain computations are performed and an evaluation of the resolution is done for two higher order modes at 18 and 24 GHz. The mechanical design of a prototype accelerating structure with WFM is also presented as well as the fabrication status of three complete structures. The objective is to implement two of them in CTF3 at CERN for a feasibility demonstration with beam and high power rf.

  2. Investigation into diode pumped modelocked Nd based laser oscillators for the CLIC-3 photoinjector system

    NARCIS (Netherlands)

    Valentine, G.J.; Burns, D.; Bente, E.A.J.M.; Berghmans, F.; Thienpont, H.; Danckaert, J.; Desmet, L.

    2001-01-01

    The photo-injector system envisaged for the proposed CLIC linear e+-e- accelerator at CERN has a demanding set of specifications on output pulse structure, power and timing stability. This paper reports on results obtained with quasi-CW diode pumped laser oscillators with output stabilisation. A

  3. Permanent quadrupole magnets

    International Nuclear Information System (INIS)

    Bush, E.D. Jr.

    1976-01-01

    A family of quadrupole magnets using a soft iron return yoke and circular cross-section permanent magnet poles were fabricated to investigate the feasibility for use in ion or electron beam focusing applications in accelerators and transport lines. Magnetic field measurements yielded promising results. In fixed-field applications, permanent magnets with sufficient gradients would be a low cost substitute for conventional electromagnets, eliminating the need for power supplies, associated wiring, and cooling. Based on preliminary tests, it was seen that permanent quadrupole magnets can offer a low cost, reliable solution in applications requiring small, fixed-field focusing devices for use in ion or electron-beam transport systems. Permanent magnets do require special considerations in design, fabrication, handling, and service that are different than encountered in conventional quadrupole magnets. If these basic conditions are satisfied, the resulting beam-focusing device would be stable, maintenance free, with virtually an indefinite lifetime

  4. Ring Coils on the Endcap Yoke of a CLIC Detector

    CERN Document Server

    Gerwig, H

    2011-01-01

    Ring coils on the endcap return yoke can be useful in several ways. Depending on their size and the current chosen, they may either be used to reduce the fringe-field outside the return yoke of a detector, or to reduce considerably the thickness of the endcap yoke. The main focus of this note is the analysis of the ring coils, with the aim to reduce the overall length of the CLIC_ILD detector. In addition, some results concerning the fringe field in the vicinity of the detector are shown.

  5. Design of the Injection and extraction system and related machine protection for the Clic Damping Rings

    CERN Document Server

    Apsimon, Robert; Barnes, Mike; Borburgh, Jan; Goddard, Brennan; Papaphilippou, Yannis; Uythoven, Jan

    2014-01-01

    Linear machines such as CLIC have relatively low rates of collision between bunches compared to their circular counterparts. In order to achieve the required luminosity, a very small spot size is envisaged at the interaction point, thus a low emittance beam is needed. Damping rings are essential for producing the low emittances needed for the CLIC main beam. It is crucial that the beams are injected and extracted from the damping rings in a stable and repeatable fashion to minimise emittance blow-up and beam jitter at the interaction point; both of these effects will deteriorate the luminosity at the interaction point. In this paper, the parameters and constraints of the injection and extraction systems are considered and the design of these systems is optimised within this parameter space. Related machine protection is considered in order to prevent damage from potential failure modes of the injection and extraction systems.

  6. Torques on quadrupoles

    OpenAIRE

    Torres del Castillo, G.F; Méndez Garrido, A

    2006-01-01

    Making use of the fact that a 2l-pole can be represented by means of l vectors of the same magnitude, the torque on a quadrupole in an inhomogeneous external field is expressed in terms of the vectors that represent the quadrupole and the gradient of the external field. The conditions for rotational equilibrium are also expressed in terms of these vectors. Haciendo uso de que un multipolo de orden 2l puede representarse mediante l vectores de la misma magnitud, la torca sobre un cuadripolo...

  7. CLIC crab cavity design optimisation for maximum luminosity

    Energy Technology Data Exchange (ETDEWEB)

    Dexter, A.C., E-mail: a.dexter@lancaster.ac.uk [Lancaster University, Lancaster, LA1 4YR (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD (United Kingdom); Burt, G.; Ambattu, P.K. [Lancaster University, Lancaster, LA1 4YR (United Kingdom); Cockcroft Institute, Daresbury, Warrington, WA4 4AD (United Kingdom); Dolgashev, V. [SLAC, Menlo Park, CA 94025 (United States); Jones, R. [University of Manchester, Manchester, M13 9PL (United Kingdom)

    2011-11-21

    The bunch size and crossing angle planned for CERN's compact linear collider CLIC dictate that crab cavities on opposing linacs will be needed to rotate bunches of particles into alignment at the interaction point if the desired luminosity is to be achieved. Wakefield effects, RF phase errors between crab cavities on opposing linacs and unpredictable beam loading can each act to reduce luminosity below that anticipated for bunches colliding in perfect alignment. Unlike acceleration cavities, which are normally optimised for gradient, crab cavities must be optimised primarily for luminosity. Accepting the crab cavity technology choice of a 12 GHz, normal conducting, travelling wave structure as explained in the text, this paper develops an analytical approach to optimise cell number and iris diameter.

  8. Quadrupole moments of hadrons

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.

    1985-01-01

    In chiral bag model an expression is obtained for the quark wave functions with account of color and pion interaction of quarks. The quadrupole moments of nonstrange hadrons are calculated. Quadrupole moment of nucleon isobar is found to be Q(Δ)=-6.3x10 -28 esub(Δ)(cm)sup(2). Fredictions of the chiral bag model are in strong disagreement with the non-relativistic quark model

  9. Laced permanent magnet quadrupole drift tube magnets

    International Nuclear Information System (INIS)

    Feinberg, B.; Behrsing, G.U.; Halbach, K.; Marks, J.S.; Morrison, M.E.; Nelson, D.H.

    1988-10-01

    A laced permanent magnet quadrupole drift tube magnet has been constructed for a proof-of-principle test. The magnet is a conventional tape-wound quadrupole electromagnet, using iron pole- pieces, with the addition of permanent magnet material (neodymium iron) between the poles to reduce the effects of saturation. The iron is preloaded with magnetic flux generated by the permanent magnet material, resulting in an asymmetrical saturation curve. Since the polarity of the quadrupole magnets in a drift tube linac is not reversed we can take advantage of this asymmetrical saturation to provide greater focusing strength. The magnet configuration has been optimized and the vanadium permendur poles needed in a conventional quadrupole have been replaced with iron poles. The use of permanent magnet material has allowed us to increase the focusing strength of the magnet by about 20% over that of a conventional tape-wound quadrupole. Comparisons will be made between this magnet and the conventional tape-wound quadrupole. 3 refs., 5 figs

  10. Clinical Computer Systems Survey (CLICS): learning about health information technology (HIT) in its context of use.

    Science.gov (United States)

    Lichtner, Valentina; Cornford, Tony; Klecun, Ela

    2013-01-01

    Successful health information technology (HIT) implementations need to be informed on the context of use and on users' attitudes. To this end, we developed the CLinical Computer Systems Survey (CLICS) instrument. CLICS reflects a socio-technical view of HIT adoption, and is designed to encompass all members of the clinical team. We used the survey in a large English hospital as part of its internal evaluation of the implementation of an electronic patient record system (EPR). The survey revealed extent and type of use of the EPR; how it related to and integrated with other existing systems; and people's views on its use, usability and emergent safety issues. Significantly, participants really appreciated 'being asked'. They also reminded us of the wider range of administrative roles engaged with EPR. This observation reveals pertinent questions as to our understanding of the boundaries between administrative tasks and clinical medicine - what we propose as the field of 'administrative medicine'.

  11. Assembly Test of Elastic Averaging Technique to Improve Mechanical Alignment for Accelerating Structure Assemblies in CLIC

    CERN Document Server

    Huopana, J

    2010-01-01

    The CLIC (Compact LInear Collider) is being studied at CERN as a potential multi-TeV e+e- collider [1]. The manufacturing and assembly tolerances for the required RF-components are important for the final efficiency and for the operation of CLIC. The proper function of an accelerating structure is very sensitive to errors in shape and location of the accelerating cavity. This causes considerable issues in the field of mechanical design and manufacturing. Currently the design of the accelerating structures is a disk design. Alternatively it is possible to create the accelerating assembly from quadrants, which favour the mass manufacturing. The functional shape inside of the accelerating structure remains the same and a single assembly uses less parts. The alignment of these quadrants has been previously made kinematic by using steel pins or spheres to align the pieces together. This method proved to be a quite tedious and time consuming method of assembly. To limit the number of different error sources, a meth...

  12. Study of a 5-Tesla large aperture coil for the CLIC detector

    CERN Document Server

    Cure, B

    2011-01-01

    The present design of a CLIC detector foresees a large solenoid magnet with a 6 m aperture and a magnetic induction of 5 T at the interaction point. This can be achieved by a thin superconducting coil. This report gives the typical main parameters of such a coil and presents the feasibility based on and compared with the CMS and Atlas solenoid coil designs, indicating the limits on the conductor and the identified R&D prospects.

  13. Application of quadrupole mass spectrometer to the 40Ar-39Ar geochronological study

    International Nuclear Information System (INIS)

    Takigami, Yutaka; Nishijima, Tadashi; Koike, Toshio; Okuma, Kouichi.

    1984-01-01

    A Quadrupole Mass Spectrometer (QMS) has commonly been used for qualitative analyses of gases in organic chemistry or for monitoring the vacuum conditions in industrial machines. No attempt has been made, however, to apply it to geochronological studies because of its disadvantages such as the difficulty in obtaining precise isotope ratios due to triangular peak shapes and poor reproducibility. On the other hand, there are advantages that a QMS is relatively inexpensive and gives a shorter scanning time for analysis compared with a sector type mass spectrometer. The latter characteristics is useful for 40 Ar/ 39 Ar geochronological studies, since it gives a lower background in the QMS and the possibility to obtain many more data from one sample in a limited time. In this study, we have tried to improve a commercial QMS at many parts, such as rf-generator, quadrupole, ionization chamber, source magnet, and so on, in order to meet the requirements to use it for geochronological studies. With the use of the improved QMS equipped with an on-line microcomputer, we could obtain Ar isotope data which are sufficiently precise for the 40 Ar/ 39 Ar geochronological studies. (author)

  14. Quadrupole to BPM offset determination in Indus-2

    International Nuclear Information System (INIS)

    Jena, Saroj; Ghodke, A.D.; Singh, G.

    2009-01-01

    A feasibility of finding the quadrupole to BPM offset using beam based alignment (BBA) technique in Indus-2 has been studied. The measurements of the offsets between BPM and quadrupoles could be performed by using quadratic fitting for the minima of the orbit response w. r. t. changes in the quadrupole strengths. These offsets will be integrated to the orbit data during closed orbit correction. There are 72 quadrupoles and 56 BPMs in Indus-2. However the assessment of Quad-BPM offsets is not feasible in some cases due to non-availability of BPM adjacent to quadrupole and also in some cases because of a large phase advance between quadrupole and nearby BPM. Here single corrector method is used to obtain these offsets and assumed the current of each quadrupole can be varied independently. A graphical user interface (GUI) is developed in MATLAB for the use of BBA in Indus-2. (author)

  15. Test-beam measurements and simulation studies of thin pixel sensors for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00574329; Dannheim, Dominik

    The multi-$TeV$ $e^{+}e^{-}$ Compact Linear Collider (CLIC) is one of the options for a future high-energy collider for the post-LHC era. It would allow for searches of new physics and simultaneously offer the possibility for precision measurements of standard model processes. The physics goals and experimental conditions at CLIC set high precision requirements on the vertex detector made of pixel detectors: a high pointing resolution of 3 $\\mu m$, very low mass of 0.2% $X_{0}$ per layer, 10 ns time stamping capability and low power dissipation of 50 mW/$cm^{2}$ compatible with air-flow cooling. In this thesis, hybrid assemblies with thin active-edge planar sensors are characterised through calibrations, laboratory and test-beam measurements. Prototypes containing 50 $\\mu m$ to 150 $\\mu m$ thin planar silicon sensors bump-bonded to Timepix3 readout ASICs with 55 $\\mu m$ pitch are characterised in test beams at the CERN SPS in view of their detection efficiency and single-point resolution. A digitiser for AllP...

  16. Measurements on Prototype Inductive Adders with Ultra-Flat-Top Output Pulses for CLIC DR Kickers

    CERN Document Server

    Holma, J; Belver-Aguilar, C

    2014-01-01

    The CLIC study is investigating the technical feasibility of an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings (DRs) will produce ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely flat, high-voltage, pulses. The specifications for the DR extraction kickers call for a 160 ns duration flat-top pulses of ±12.5 kV, 250 A, with a combined ripple and droop of not more than ±0.02 % (±2.5 V). An inductive adder is a very promising approach to meeting the specifications because this topology allows the use of both passive and analogue modulation methods to adjust the output waveform. Recently, two five-layer, 3.5 kV, prototype inductive adders have been built at CERN. The first of these has been used to test the passive and active analogue modulation methods to compensate voltage droop and ripple of the output pulses. Pulse waveforms have been reco...

  17. Separation of hadronic W and Z decays in the CLIC_ILD and the CLICdet detector models at 1.4 and 3TeV

    CERN Document Server

    AUTHOR|(SzGeCERN)793139; Roloff, Philipp Gerhard; Strom, Lars Rickard; Weber, Matthias Artur

    2017-01-01

    A study of the W and Z separation was performed for the CLIC_ILD and the CLICdet detector models for the proposed Compact Linear Collider (CLIC). Comparisons were done for fully-hadronic WW and ZZ events at the collision energies of 1.4 and 3 TeV. Particle flow objects are reconstructed using a full simulation of the events including relevant beam-induced background processes. Several different collections of particles, with varying level of background suppression, were compared for each of the detector models and optimal jet clustering parameters were found in each case, resulting in the best separation of the W and Z mass peaks. The CLICdet detector model performs similar to CLIC_ILD with an achieved jet mass separation of around 1.6 $\\sigma$ at 1.4 TeV and 1.3 $\\sigma$ at 3 TeV. For both detector models we achieve a better separation at 1.4 TeV when comparing dijet masses rather than large-R jet masses. At 3 TeV jets with a radius around R=0.5 perform similarly well as dijets.

  18. A composite vacuum barrier for the LHC short straight section

    International Nuclear Information System (INIS)

    Jenny, B.; Rohmig, P.; Uriarte, J.M.

    1996-01-01

    The lattice of the CERN Large Hadron Collider (LHC) will contain 384 Short Straight Section (SSS) units, one in every 53 m half-cell. The SSS is composed of a twin aperture high-field superconducting quadrupole and of two combined-function corrector magnets operating in pressurized helium at 1.9 K. The SSS cryostat contains also a barrier for sectorisation of the insulation vacuum. The vacuum barrier is mounted between the helium vessel and the vacuum enclosure. Its functions are to limit the extent of eventual helium leaks and to facilitate the leak detection and the pumping-down from atmospheric pressure. During installation of the LHC, the vacuum barrier permits independent testing of the half-cells, thus enabling higher installation rates. In parallel to a conventional barrier made out of austenitic stainless steel, a barrier of composite material was developed, taking advantage of the lower thermal conductivity of glass fibre reinforced epoxy resin, and with the aim of reducing costs for LHC. The thermo-mechanical design together with the conception and the moulding techniques used for the manufacture of the prototype are described. Bonding techniques for the leak tight stainless steel composite interfaces are presented and test results shown. Results on the mechanical performance and on the helium tests carried out on the prototype are given

  19. Modelling vacuum arcs : from plasma initiation to surface interactions

    International Nuclear Information System (INIS)

    Timko, H.

    2011-01-01

    A better understanding of vacuum arcs is desirable in many of today's 'big science' projects including linear colliders, fusion devices, and satellite systems. For the Compact Linear Collider (CLIC) design, radio-frequency (RF) breakdowns occurring in accelerating cavities influence efficiency optimisation and cost reduction issues. Studying vacuum arcs both theoretically as well as experimentally under well-defined and reproducible direct-current (DC) conditions is the first step towards exploring RF breakdowns. In this thesis, we have studied Cu DC vacuum arcs with a combination of experiments, a particle-in-cell (PIC) model of the arc plasma, and molecular dynamics (MD) simulations of the subsequent surface damaging mechanism. We have also developed the 2D Arc-PIC code and the physics model incorporated in it, especially for the purpose of modelling the plasma initiation in vacuum arcs. Assuming the presence of a field emitter at the cathode initially, we have identified the conditions for plasma formation and have studied the transitions from field emission stage to a fully developed arc. The 'footing' of the plasma is the cathode spot that supplies the arc continuously with particles; the high-density core of the plasma is located above this cathode spot. Our results have shown that once an arc plasma is initiated, and as long as energy is available, the arc is self-maintaining due to the plasma sheath that ensures enhanced field emission and sputtering.The plasma model can already give an estimate on how the time-to-breakdown changes with the neutral evaporation rate, which is yet to be determined by atomistic simulations. Due to the non-linearity of the problem, we have also performed a code-to-code comparison. The reproducibility of plasma behaviour and time-to-breakdown with independent codes increased confidence in the results presented here. Our MD simulations identified high-flux, high-energy ion bombardment as a possible mechanism forming the early

  20. Three-dimensional quadrupole lenses made with permanent magnets

    International Nuclear Information System (INIS)

    Ivanov, A.S.

    1984-01-01

    The performance of accelerator systems with quadrupole magnets can be improved by using permanent magnets in quadrupole lenses. This requires better methods for treating the three-dimensional nature of the magnetic fields and the nonlinear characteristics of the magnets. A numerical method is described for simulating three-dimensional magnetic fields and used to analyze quadrupole lenses and doublets with permanent magnets. The results, which are confirmed experimentally, indicate that both the quadrupole magnetic gradient and the effective field length are changed in permanent-magnet quadrupole lenses when the pole lengths and the gap between the lenses are varied while the other characteristics of the magnets remain unchanged

  1. Comparative Study of the Tuning Performances of the Nominal and Long L* CLIC Final Focus System at √s = 380 GeV

    CERN Document Server

    Plassard, F; Marin, E; Tomás, R

    2017-01-01

    Mitigation of static imperfections for emittance preservation is one of the most important and challenging tasks faced by the Compact Linear Collider (CLIC) beam delivery system. A simulation campaign has been performed to recover the nominal luminosity by means of different alignment procedures. The state of the art of the tuning studies is drawn up. Comparative studies of the tuning performances and a tuning-based final focus system design optimization for two L options are presented. The effectiveness of the tuning techniques applied to these different lattices will be decisive for the final layout of the CLIC final focus system at √s = 380 GeV.

  2. Study of an hybrid positron source using channeling for CLIC

    CERN Document Server

    Dadoun, O; Chehab, R; Poirier, F; Rinolfi, L; Strakhovenko, V; Variola, A; Vivoli, A

    2009-01-01

    The CLIC study considers the hybrid source using channeling as the baseline for positron production. The hybrid source uses a few GeV electron beam impinging on a crystal tungsten radiator. With the tungsten crystal oriented on its axis it results an intense, relatively low energy photon beam due mainly to channeling radiation. Those photons are then impinging on an amorphous tungsten target producing positrons by e+e− pair creation. In this note the optimization of the positron yield and the peak energy deposition density in the amorphous target are studied according to the distance between the crystal and the amorphous targets, the primary electron energy and the amorphous target thickness.

  3. Fluka and thermo-mechanical studies for the CLIC main dump

    CERN Document Server

    Mereghetti, Alessio; Vlachoudis, Vasilis

    2011-01-01

    In order to best cope with the challenge of absorbing the multi-MW beam, a water beam dump at the end of the CLIC post-collision line has been proposed. The design of the dump for the Conceptual Design Report (CDR) was checked against with a set of FLUKA Monte Carlo simulations, for the estimation of the peak and total power absorbed by the water and the vessel. Fluence spectra of escaping particles and activation rates of radio-nuclides were computed as well. Finally, the thermal transient behavior of the water bath and a thermo-mechanical analysis of the preliminary design of the window were done.

  4. Design of an electrostatic magnetic quadrupole accelerator

    International Nuclear Information System (INIS)

    Mizuno, M.; Ohara, Y.

    1993-01-01

    A new type of electrostatic acceleration system, electrostatic magnetic quadrupole (ESMQ) acceleration system, is proposed for efficient acceleration of negative ion beams. In this system, permanent magnets are buried in the acceleration electrodes so as to produce a quadrupole magnetic field in the electrode aperture region. Envelope simulation indicates that the quadrupole field can deflect electrons stripped from the negative ions. Beam envelope simulations for deuterium ions and electrons have been carried out using the beam envelope code TRACE. Electrons are largely divergent and most appear likely to hit downstream electrodes. Furthermore, maximum beam divergence of the deuterium ions is reduced to the focusing effect of the quadrupole magnetic field

  5. High gradient superconducting quadrupoles

    International Nuclear Information System (INIS)

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed

  6. Prospects for the measurement of the Higgs Yukawa couplings to b and c quarks, and muons at CLIC

    Czech Academy of Sciences Publication Activity Database

    Grefe, C.; Laštovička, Tomáš; Strube, J.

    2013-01-01

    Roč. 73, č. 2 (2013), s. 1-7 ISSN 1434-6044 Institutional support: RVO:68378271 Keywords : Higgs * branching * ratio * Yukawa * couplings * quarks * muons * CLIC * inear collider Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.436, year: 2013

  7. Electrostatic quadrupoles for heavy-ion fusion

    International Nuclear Information System (INIS)

    Seidl, P.; Faltens, A.

    1993-05-01

    Voltage-holding data for three quadrupole electrode sizes and inter-electrode spacings are reported. The dependence of the breakdown voltage on system size and its influence on the optimum quadrupole size for beam transport in a multiple beam array are discussed

  8. Silicon pixel-detector R&D for CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718101

    2016-01-01

    The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (∼ 0.2% X${}_0$ per layer for the vertex region and ∼ 1 % X${}_0$ per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ∼ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer trac...

  9. Parameter scan for the CLIC Damping rings under the infleunce of intrabeam scattering

    OpenAIRE

    Antoniou, F; Martini, M; Papaphilippou, Y; Vivoli, A

    2010-01-01

    Due to the high bunch density, the output emittances of the CLIC Damping Rings (DR) are strongly dominated by the effect of Intrabeam Scattering (IBS). In an attempt to optimize the ring design, the bench-marking of the multiparticle tracking code SIRE with the classical IBS formalisms and approximations is first considered. The scaling of the steady state emittances and IBS growth rates is also studied, with respect to several ring parameters including energy, bunch charge and wiggler charac...

  10. Parameter scan for the CLIC Damping rings under the infleunce of intrabeam scattering

    CERN Document Server

    Antoniou, F; Papaphilippou, Y; Vivoli, A

    2010-01-01

    Due to the high bunch density, the output emittances of the CLIC Damping Rings (DR) are strongly dominated by the effect of Intrabeam Scattering (IBS). In an attempt to optimize the ring design, the bench-marking of the multiparticle tracking code SIRE with the classical IBS formalisms and approximations is first considered. The scaling of the steady state emittances and IBS growth rates is also studied, with respect to several ring parameters including energy, bunch charge and wiggler characteristics.

  11. A strong focussing cylindrical electrostatic quadrupole

    International Nuclear Information System (INIS)

    Sheng Yaochang

    1986-01-01

    The construction and performance of small cylindrical electrostatic quadrupole, which is installed in JM-400 pulse electrostatic accelerator, are described. This electrostatic quadrupole is not only used in neutron generator, but also suitable for ion injector as well as for low energy electron accelerator

  12. Double-photoionization of helium including quadrupole radiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Colgan, James [Los Alamos National Laboratory; Ludlow, J A [AUBURN UNIV; Lee, Teck - Ghee [AUBURN UNIV; Pindzola, M S [AUBURN UNIV; Robicheaux, F [AUBURN UNIV

    2009-01-01

    Non-perturbative time-dependent close-coupling calculations are carried out for the double photoionization of helium including both dipole and quadrupole radiation effects. At a photon energy of 800 eV, accessible at CUlTent synchrotron light sources, the quadrupole interaction contributes around 6% to the total integral double photoionization cross section. The pure quadrupole single energy differential cross section shows a local maxima at equal energy sharing, as opposed to the minimum found in the pure dipole single energy differential cross section. The sum of the pure dipole and pure quadrupole single energy differentials is insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the quadrupole interaction that may be experimentally observable.

  13. The Features of Moessbauer Spectra of Hemoglobins: Approximation by Superposition of Quadrupole Doublets or by Quadrupole Splitting Distribution?

    International Nuclear Information System (INIS)

    Oshtrakh, M. I.; Semionkin, V. A.

    2004-01-01

    Moessbauer spectra of hemoglobins have some features in the range of liquid nitrogen temperature: a non-Lorentzian asymmetric line shape for oxyhemoglobins and symmetric Lorentzian line shape for deoxyhemoglobins. A comparison of the approximation of the hemoglobin Moessbauer spectra by a superposition of two quadrupole doublets and by a distribution of the quadrupole splitting demonstrates that a superposition of two quadrupole doublets is more reliable and may reflect the non-equivalent iron electronic structure and the stereochemistry in the α- and β-subunits of hemoglobin tetramers.

  14. CLIC transfer structure (CTS) simulations using open-quotes MAFIAclose quotes

    International Nuclear Information System (INIS)

    Millich, A.

    1993-01-01

    In the two-beam accelerator scheme of CLIC the Transfer Structure serves the purpose of extracting 30 GHz power from the drive beam. The purpose of the 3D simulations of the 30 GHz CTS using the MAFIA set of codes has been to assist the designers in the choice of the final dimensions by appreciating the sensitivity of the RF characteristics to the mechanical parameters. The results of the frequency domain analysis have allowed plotting of the dispersion curves of the waveguides and appreciation the relative importance of higher modes. The time domain investigations have produced results on the shape and magnitude of the beam-induced longitudinal and transverse wake fields and of the loss factors

  15. Analysis of test-beam data with hybrid pixel detector prototypes for the Compact LInear Collider (CLIC) vertex detectors

    CERN Document Server

    Pequegnot, Anne-Laure

    2013-01-01

    The LHC is currently the most powerful accelerator in the world. This proton-proton collider is now stoppped to increase significantly its luminosity and energy, which would provide a larger discovery potential in 2014 and beyond. A high-energy $e^{+}e^{-}$ collider, such as CLIC, is an option to complement and to extend the LHC physics programme. Indeed, a lepton collider gives access to additional physics processes, beyond those observable at the LHC, and therefore provides new discovery potential. It can also provide complementary and/or more precise information about new physics uncovered at the LHC. Many essential features of a detector are required to deliver the full physics potential of this CLIC machine. In this present report, I present my work on the vertex detector R\\&D for this future linear collider, which aims at developping highly granular and ultra-thin position sensitive detection devices with very low power consumption and fast time-stamping capability. We tested here thin silicon pixel...

  16. Investigation of Hadronic Higgs Decays at CLIC at 350 GeV & Scintillator Studies for a Highly Granular Calorimeter

    CERN Document Server

    AUTHOR|(CDS)2081006; Simon, Frank

    The energy frontier of accelerator-based physics has been dominated, for the best part of the last ten years, by the Large Hadron Collider (LHC). This remarkable accelerator has provided scientists with proton-proton collisions up to 13 TeV in energy, that led to exciting progress in the understanding of particle physics, culminating in the discovery of the Higgs boson in 2012. Despite its successes, the LHC carries an intrinsic limitation: since it collides composite particles, the initial conditions of each interaction cannot be completely determined. This limits the precision with which some observables can be measured. A new generation of colliders, designed for the acceleration of elementary electrons and positrons, is being developed to reach higher precision and to provide complementary discovery potential for new phenomena. The two most mature projects in this category are the Compact LInear Collider (CLIC) and the International Linear Collider (ILC). One key component of the physics program at CLIC i...

  17. The beam based alignment technique for the measurements of beam position monitors offsets and beam offsets from quadrupoles in the Pohang Light Source

    International Nuclear Information System (INIS)

    Kim, K.H.; Huang, J.Y.; Ko, I.S.

    1999-01-01

    The beam based alignment (BBA) technique is applied to the 2-GeV storage ring of the Pohang Light Source to measure the offsets of beam position monitors. This measurement is particularly necessary for beam position monitors (BPMs) plugged into a long (∼10 m) aluminum chamber, since the mechanical deformation of the vacuum chamber is experienced after repeated heating for the outgassing process, and the BPM positions are changed accordingly. A part of the excitation current of each quadrupole magnet is shunted through an electronic shunt circuit. Then, the closed orbit receives a perturbation due to the current reduction. Using two quadrupole magnets, we can measure the offset of each BPM. Also, the BBA technique is applied to measure the beam offsets from the center of quadrupole magnets, and gives information to the survey team about which quadrupole magnets should be aligned mostly. In this process, we introduce the merit function to reduce various errors such as BPM characteristic changes and the lattice imperfection. By minimizing the merit function, we can get the beam offset as the maximized expectation value. This paper presents the BBA technique used and experimental results taken from the 2-GeV Pohang Light Source (PLS) storage ring. When the BPM offset is measured, it is observed that a 3% of the shunt current is suitable. (author)

  18. Matter-wave solitons supported by quadrupole-quadrupole interactions and anisotropic discrete lattices

    Science.gov (United States)

    Zhong, Rong-Xuan; Huang, Nan; Li, Huang-Wu; He, He-Xiang; Lü, Jian-Tao; Huang, Chun-Qing; Chen, Zhao-Pin

    2018-04-01

    We numerically and analytically investigate the formations and features of two-dimensional discrete Bose-Einstein condensate solitons, which are constructed by quadrupole-quadrupole interactional particles trapped in the tunable anisotropic discrete optical lattices. The square optical lattices in the model can be formed by two pairs of interfering plane waves with different intensities. Two hopping rates of the particles in the orthogonal directions are different, which gives rise to a linear anisotropic system. We find that if all of the pairs of dipole and anti-dipole are perpendicular to the lattice panel and the line connecting the dipole and anti-dipole which compose the quadrupole is parallel to horizontal direction, both the linear anisotropy and the nonlocal nonlinear one can strongly influence the formations of the solitons. There exist three patterns of stable solitons, namely horizontal elongation quasi-one-dimensional discrete solitons, disk-shape isotropic pattern solitons and vertical elongation quasi-continuous solitons. We systematically demonstrate the relationships of chemical potential, size and shape of the soliton with its total norm and vertical hopping rate and analytically reveal the linear dispersion relation for quasi-one-dimensional discrete solitons.

  19. PACMAN – an Innovative Doctoral Programme for CLIC

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    The final network project funded under the European Commission’s Seventh Framework Programme (FP7), Marie Curie Actions, held its kick-off meeting at CERN on 20 November 2013.   PACMAN – a study on Particle Accelerator Components Metrology and Alignment to the Nanometre scale – is in the final stage of recruiting 10 PhD students to do research on beam instrumentation, metrology, micrometric alignment, magnetic measurements, nano-positioning and high-precision engineering. The students will acquire multi-disciplinary expertise in advanced engineering combined with a broad span of transferable skills. “PACMAN gives us the opportunity to attract students to CERN at a key moment in the CLIC study,” said Frédérick Bordry, Head of CERN’s Technology Department. “This is also an ideal opportunity to further develop CERN’s networks with industry and universities.” “The project is...

  20. All systems go for LHC quadrupoles

    CERN Multimedia

    2003-01-01

    The series fabrication of the Main Quadrupole cold masses for the LHC has begun with the delivery of the first unit on February 12th. The superconducting dipole magnets required to bend the proton beams around the LHC are often in the news. Less famous, perhaps, but equally important are the 360 main quadrupole (MQ) magnets, which will perform the principal focusing around the 27 km ring. CERN and CEA-Saclay began collaborating on the development and prototyping of these magnets in 1989. This resulted in five highly successful quadrupole units - also known as short straight sections - one of which was integrated for testing in String 1, and two others of the final design in String 2. Once the tests had confirmed the validity of the design and realization, the fabrication of the 360 cold masses had to be transferred to industry. After highly competitive tendering, the German firm ACCEL Instruments was entrusted both with the construction of the quadrupole magnets themselves, and with their assembly into the co...

  1. Nonuniform radiation damage in permanent magnet quadrupoles.

    Science.gov (United States)

    Danly, C R; Merrill, F E; Barlow, D; Mariam, F G

    2014-08-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL's pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  2. Nonuniform radiation damage in permanent magnet quadrupoles

    International Nuclear Information System (INIS)

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.

    2014-01-01

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components

  3. Nonuniform radiation damage in permanent magnet quadrupoles

    Energy Technology Data Exchange (ETDEWEB)

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G. [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States)

    2014-08-15

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  4. Ion-storage in radiofrequency electric quadrupole field

    International Nuclear Information System (INIS)

    Gheorghe, V.

    1976-01-01

    The confinement of charged particles in a quadrupole radiofrequency electric field are presented. The stability diagrams and phase space trajectories for the quadrupole mass spectrometer and for the ion trap are represented and their main characteristics are discussed. (author)

  5. Mechanical design of a pre-isolator for the CLIC final focusing magnets

    CERN Document Server

    Gaddi, A; Ramos, F; Siegrist, N

    2012-01-01

    Due to the very small vertical beam sizes, the final focusing elements at the future CLIC linear collider need to be stable against vibrations to below 0.15 nanometres at frequencies above about 4 Hz. One of the key elements in the strategy to achieve such a stable environment is a passive, heavy pre-isolator. In this report, the results from the dynamic finite element analyses of the proposed design for such a passive preisolator are summarized. Furthermore, the results from a low frequency, heavy mass passive vibration isolation test set-up used to validate the calculations are shown.

  6. The CLIC stability study on the feasibility of colliding high energy nanobeams

    CERN Document Server

    Assmann, R W; Guignard, Gilbert; Leros, Nicolas; Redaelli, S; Schulte, Daniel; Wilson, Ian H; Zimmermann, Frank

    2002-01-01

    The Compact Linear Collider (CLIC) study at CERN proposes a linear collider with nanometer-size colliding beams at an energy of 3 TeV c.m. ("colliding high energy nanobeams"). The transport, demagnification and collision of these nanobeams imposes magnet vibration tolerances that range from 0.2 nm to a few nanometers. This is well below the floor vibration usually observed. A test stand for magnet stability was set-up at CERN in the immediate neighborhood of roads, operating accelerators, workshops, and regular office space. It was equipped with modern stabilization equipment. The experimental setup and first preliminary results are presented. (10 refs).

  7. Quadrupole moments measured by nuclear orientation

    International Nuclear Information System (INIS)

    Bouchta, H.

    1985-01-01

    Quadrupole interactions between the nuclei and solids have been studied with the low temperature nuclear orientation technique. The first series of measurements have been effected on the orientation of 195H g m and 197 Hg m , long lived daughter states in the 195 Au and 197 Au decay. The lifetimes of these states are of the same order as the spin-lattice relaxation time. The reorientation of the intermediate states has been taken into account extending the dipole relaxation mechanism to non-equidistant relaxing substates. The experimental nuclear quadrupole moments, thus deduced are slightly different from theoretical estimations. A new high precision method accessible to levels with 100 ns to 1 m lifetimes, the level mixing resonance on oriented nuclei (LMR/ON) has been elaborated in collaboration with LEUVEN university (Belgium). In this technique the nucleus is subject to a non colinear electric plus magnetic combined interaction. The quadrupole interaction of Ag[7/2, = 40 s] isomer with the electric field gradient in zinc has been established to better than 1% observing its level mixing resonances; and also the ratio of electric field gradients of silver in zinc to cadmium. The electric quadrupole moments of 106 Ag m , 107 Ag m and 109 Ag m have been established combining the level mixing resonances with classical low temperature quadrupole alignment measurements. The experimental values are in good agreement with theoretical calculations based on a semi-microscopical model using Yukawa potential [fr

  8. Rescuing the nonjet (NJ) azimuth quadrupole from the flow narrative

    Science.gov (United States)

    Trainor, Thomas A.

    2017-04-01

    According to the flow narrative commonly applied to high-energy nuclear collisions a cylindrical-quadrupole component of 1D azimuth angular correlations is conventionally denoted by quantity υ2 and interpreted to represent elliptic flow. Jet angular correlations may also contribute to υ2 data "nonflow" depending on the method used to calculate υ2, but 2D graphical methods are available to insure accurate separation. The nonjet (NJ) quadrupole has various properties inconsistent with a flow interpretation, including the observation that NJ quadrupole centrality variation in A-A collisions has no relation to strongly-varying jet modication ("jet quenching") in those collisions commonly attributed to jet interaction with a flowing dense medium. In this presentation I describe isolation of quadrupole spectra from pt-differential υ2(pt) data from the RHIC and LHC. I demonstrate that quadrupole spectra have characteristics very different from the single-particle spectra for most hadrons, that quadrupole spectra indicate a common boosted hadron source for a small minority of hadrons that "carry" the NJ quadrupole structure, that the narrow source-boost distribution is characteristic of an expanding thin cylindrical shell (strongly contradicting hydro descriptions), and that in the boost frame a single universal quadrupole spectrum (Lévy distribution) on transverse mass mt accurately describes data for several hadron species scaled according to their statistical-model abundances. The quadrupole spectrum shape changes very little from RHIC to LHC energies. Taken in combination those characteristics strongly suggest a unique nonflow (and nonjet) QCD mechanism for the NJ quadrupole conventionally represented by υ2.

  9. Rescuing the nonjet (NJ azimuth quadrupole from the flow narrative

    Directory of Open Access Journals (Sweden)

    Trainor Thomas A.

    2017-01-01

    Full Text Available According to the flow narrative commonly applied to high-energy nuclear collisions a cylindrical-quadrupole component of 1D azimuth angular correlations is conventionally denoted by quantity υ2 and interpreted to represent elliptic flow. Jet angular correlations may also contribute to υ2 data “nonflow” depending on the method used to calculate υ2, but 2D graphical methods are available to insure accurate separation. The nonjet (NJ quadrupole has various properties inconsistent with a flow interpretation, including the observation that NJ quadrupole centrality variation in A-A collisions has no relation to strongly-varying jet modication (“jet quenching” in those collisions commonly attributed to jet interaction with a flowing dense medium. In this presentation I describe isolation of quadrupole spectra from pt-differential υ2(pt data from the RHIC and LHC. I demonstrate that quadrupole spectra have characteristics very different from the single-particle spectra for most hadrons, that quadrupole spectra indicate a common boosted hadron source for a small minority of hadrons that “carry” the NJ quadrupole structure, that the narrow source-boost distribution is characteristic of an expanding thin cylindrical shell (strongly contradicting hydro descriptions, and that in the boost frame a single universal quadrupole spectrum (Lévy distribution on transverse mass mt accurately describes data for several hadron species scaled according to their statistical-model abundances. The quadrupole spectrum shape changes very little from RHIC to LHC energies. Taken in combination those characteristics strongly suggest a unique nonflow (and nonjet QCD mechanism for the NJ quadrupole conventionally represented by υ2.

  10. Silicon pixel R&D for the CLIC detector

    CERN Document Server

    AUTHOR|(SzGeCERN)674552

    2017-01-01

    The physics aims at the future CLIC high-energy linear $e^{+}e^{−}$ collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The main challenges are: a point resolution of a few microns, ultra-low mass (~0.2% X$_{0}$ per layer for the vertex region and ~1% X$_{0}$ per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analogue readout are explored. For the outer tra...

  11. Quadrupole Ion Traps

    Indian Academy of Sciences (India)

    to do precision spectroscopic measurements on these ions. ... Bonn, investigated the non-magnetic quadrupole mass filter, .... the details of which will be discussed in the subse- ... the radial plane the ion undergoes a circular motion with the.

  12. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/m Range

    CERN Document Server

    Wang, Juwen; Van Pelt, John; Yoneda, Charles; Gudkov, D; Riddone, Germana; Higo, Toshiyasu; Takatomi, Toshikazu

    2010-01-01

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of <5×10-7/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control, tuning and RF characterization will be discussed

  13. Development of Stripline Kickers for Low Emittance Rings: Application to the Beam Extraction Kicker for CLIC Damping Rings

    CERN Document Server

    AUTHOR|(SzGeCERN)728476; Toral Fernandez, Fernando

    In the framework of the design study of Future Linear Colliders, the Compact Linear Collider (CLIC) aims for electron-positron collisions with high luminosity at a nominal centre-of-mass energy of 3 TeV. To achieve the luminosity requirements, Pre-Damping Rings (PDRs) and Damping Rings (DRs) are required: they reduce the beam emittance before the beam is accelerated in the main linac. Several injection and extraction systems are needed to inject and extract the beam from the PDRs and DRs. The work of this Thesis consists of the design, fabrication and laboratory tests of the first stripline kicker prototype for beam extraction from the CLIC DRs, although the methodology proposed can be extended to stripline kickers for any low emittance ring. The excellent field homogeneity required, as well as a good transmission of the high voltage pulse through the electrodes, has been achieved by choosing a novel electrode shape. With this new geometry, it has been possible to benefit from all the advantages that the most...

  14. submitter Measurements on a 20-layer 12.5 kV prototype inductive adder for the CLIC DR kickers

    CERN Document Server

    Holma, J

    2018-01-01

    The CLIC study is investigating the technical feasibility of an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The predamping rings and damping rings (DRs) will produce ultra-low emittance beam with high bunch charge. To avoid beam emittance increase, the DR kicker systems must provide extremely stable field pulses during injection and extraction of bunches. The DR extraction kicker system consists of a stripline kicker and two pulse modulators. The present specification for the modulators calls for pulses with 160 ns or 900 ns flat-top duration of nominally ±12.5 kV and 305 A, with ripple of not more than ±0.02% (±2.5 V). In addition, there is a proposal to use the same modulators and striplines for dumping the beam, with ±17.5 kV stripline pulse voltage. An inductive adder is a very promising approach to meeting the CLIC DR extraction kicker specifications because analogue modulation methods can be applied to adjust the shape of the flat-top of the output w...

  15. AA, wide quadrupole on measurement stand

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Please look up 8101024 first. Shims and washers on the wide quadrupoles (QFW, QDW; located in the lattice where dispersion was large) served mostly for corrections of those lattice parameters which were a function of momentum. After mounting shims and washers, the quadrupoles were measured to determine their magnetic centre and to catalogue the effect of washer constellations. Raymond Brown is busy measuring a wide quad.

  16. AA, shims and washers on quadrupole ends

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Due to the fact that much of the field of the quadrupoles was outside the iron (in particular with the wide quadrupoles) and that thus the fields of quadrupoles and bending magnets interacted, the lattice properties of the AA could not be predicted with the required accuracy. After a first running period in 1980, during which detailed measurements were made with proton test beams, corrections to the quadrupoles were made in 1981, in the form of laminated shims at the ends of the poles, and with steel washers. With the latter ones, further refinements were made in an iterative procedure with measurements on the circulating beam. This eventually resulted, amongst other things, in a very low chromaticity, with the Q-values being constant to within +- 0.001 over the total momentum range of 6 %. Here we see the shims and washers on a narrow qudrupole (QFN, QDN). See also 8103203, 8103204, 8103205, 8103206.

  17. Analyzing the Anomalous Dipole Moment Type Couplings of Heavy Quarks with FCNC Interactions at the CLIC

    International Nuclear Information System (INIS)

    Senol, A.; Tasci, A. T.; Verep, C.

    2014-01-01

    We examine both anomalous magnetic and dipole moment type couplings of a heavy quark via its single production with subsequent dominant standard model decay modes at the compact linear collider (CLIC). The signal and background cross sections are analyzed for heavy quark masses 600 and 700 GeV. We make the analysis to delimitate these couplings as well as to find the attainable integrated luminosities for 3σ observation limit

  18. Measurements of quadrupole magnets

    International Nuclear Information System (INIS)

    Conradie, J.L.; Fourie, D.T.; Cornell, J.C.; Lloyd, G.C.W.

    1987-01-01

    Measurements carried out on quadrupole magnets using a long asymmetric rotating coil are described. Although the method itself is fairly well-known, the introduction of microprocessors has made this once-tedious technique into a useful and simple method of evaluating quadrupole magnets. The rotating-coil device and a variety of coil sizes are now commercially available. The coil contains a large number of extremely fine wires, embedded in a carefully balanced fibre-glass rotor, resulting in a reasonable induced voltage when the coil is rotated. A digital harmonic analyser is then used to obtain the integrated multipole content of the waveform, while the coil is rotating. By integrating over time, one can average out random noise and increase the reliability and repeatability of the measurements. Because the harmonic analysis is done in real time, the method is quick, easy and accurate, and has been extended to locate the precise magnetic centre of the quadrupole magnet by adjusting its position relative to the coil axis so as to minimize the dipole content of the output waveform. Results of these measurements are compared with those obtained with an optical method using a suspension of magnetite. The observed light pattern is explained analytically. (author)

  19. He leaks in the CERN LHC beam vacuum chambers operating at cryogenic temperatures

    CERN Document Server

    Baglin, V

    2007-01-01

    The 27 km long large hadron collider (LHC), currently under construction at CERN, will collide protons beam at 14 TeV in the centre of mass. In the 8 arcs, the superconducting dipoles and quadrupoles of the FODO cells operate with superfluid He at 1.9 K. In the 8 long straight sections, the cold bores of the superconducting magnets are held at 1.9 or 4.5 K. Thus, in the LHC, 75% of the beam tube vacuum chamber is cooled with He. In many areas of the machine, He leaks could appear in the beam tube. At cryogenic temperature, the gas condenses onto the cold bores or beam screens, and interacts with the circulating beam. He leaks creates a He front propagating along the vacuum chambers, which might cause magnet quench. We discuss the consequences of He leaks, the possible means of detections, the strategies to localise them and the methods to measure their size.

  20. Power supplies for the injector synchrotron quadrupoles and sextupoles

    International Nuclear Information System (INIS)

    Fathizadeh, M.

    1995-01-01

    This light source note will describe the power supplies for the injector synchrotron quadrupole and sextupole magnets. The injector synchrotron has two families of quadrupole magnets. Each family consists of 40 quadrupole magnets connected in series. These magnets are energized by two phase-controlled, 12-pulse power supplies. Therefore, each power supply will be rated to deliver the necessary power to only 40 quadrupole magnets. The two families of sextupole magnets in the injector synchrotron each consists of 32 sextupole magnets connected in series, powered by a phase-controlled power supply. Thus, each power supply shall be capable of delivering power to only 32 sextupole magnets

  1. A New Damped and Tapered Accelerating Structure for CLIC

    CERN Document Server

    Raguin, J Y; Syratchev, I V; Wilson, Ian H; Wuensch, Walter

    2002-01-01

    The main performance limits when designing accelerating structures for the Compact Linear Collider (CLIC) for an average accelerating gradient above 100 MV/m are electrical breakdown and material fatigue caused by pulsed surface heating. In addition, for stable beam operation, the structures should have low short-range transverse wakefields and much-reduced transverse and longitudinal long-range wakefields. Two damped and tapered accelerating structures have been designed. The first has an accelerating gradient of 112 MV/m with the surface electrical field limited to 300 MV/m and the maximum temperature increase limited to 100°C. The second, with an accelerating gradient of 150 MV/m, has a peak surface electrical field of 392 MV/m and a maximum temperature increase of 167°C. Innovations to the cell and damping waveguide geometry and to the tapering of the structures are presented, and possible further improvements are proposed.

  2. Stability considerations of permanent magnet quadrupoles for CESR phase-III upgrade

    Directory of Open Access Journals (Sweden)

    W. Lou

    1998-06-01

    Full Text Available The Cornell electron storage ring (CESR phase-III upgrade plan includes very strong permanent magnet quadrupoles in front of the cryostat for the superconducting quadrupoles and physically as close as possible to the interaction point. Together with the superconducting quadrupoles, they provide tighter vertical focusing at the interaction point. The quadrupoles are built with neodymium iron boron (NdFeB material and operate inside the 15 kG solenoid field. Requirements on the field quality and stability of these quadrupoles are discussed and test results are presented.

  3. Alignement général du CLIC: stratégie et progrès

    CERN Document Server

    Mainaud-Durand, H

    2008-01-01

    La faisabilité concernant le pré-alignement actif du CLIC sera démontrée si l?on peut prouver qu?il existe une référence et ses capteurs associés permettant l?alignement des composants à mieux que 3 microns (1?). Pour répondre à ce challenge, une méthode de mesure d?écarts à un fil tendu est proposée, basée sur 40 ans de pratique de cette technique au CERN. Quelques problèmes demeurent concernant cette méthode : la connaissance de la forme du fil tendu utilisé comme référence droite, la détermination du géoïde à la précision souhaitée et le développement de capteurs bas coût permettant des mesures sub-micrométriques. Des études ont été entreprises afin de lever les derniers points en suspens, pendant que cette solution est intégrée dans une proposition concernant l?alignement général du CLIC. Cela implique un grand nombre d?interactions au niveau du projet, dans des domaines aussi différents que le génie civil, l?intégration, la physique du faisceau, la métrologie des �...

  4. Compact quadrupole triplet for the S-DALINAC polarized electron injector SPIN

    Energy Technology Data Exchange (ETDEWEB)

    Eckardt, C.; Eichhorn, R.; Enders, J.; Hessler, C.; Poltoratska, Y. [Inst. fuer Kernphysik, Technische Univ. Darmstadt (Germany); Ackermann, W.; Mueller, W.F.O.; Steiner, B.; Weiland, T. [Inst. fuer Theorie Elektromagnetischer Felder, Technische Univ. Darmstadt (Germany)

    2007-07-01

    An ultra compact quadrupole triplet for the S-DALINAC Polarized Electron Injector SPIN has been developed. This development is due to limiting spatial restrictions. Each individual quadrupole has a length of 8 mm, affixed by two 2 mm aluminum plates, resulting in a length of only 12 mm per quadrupole. The gaps between each quadrupole are set to 18 mm, therefore the complete triplet has a total length of only 72 mm. The quadrupole design includes a large aperture, suitable for CF 35 beam pipes. As fringe fields reach far info neighboring yokes, the assembly requires simulation by a beam dynamics tool for optimal weighting of the current excitation. Measurement of the magnetic field distribution is compared to numerical values and the quadrupole strength is calculated. (orig.)

  5. Variable Permanent Magnet Quadrupole

    International Nuclear Information System (INIS)

    Mihara, T.; Iwashita, Y.; Kyoto U.; Kumada, M.; NIRS, Chiba; Spencer, C.M.; SLAC

    2007-01-01

    A permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens in a linear collider. An over 120 T/m strong variable permanent magnet quadrupole is achieved by the introduction of saturated iron and a 'double ring structure'. A fabricated PMQ achieved 24 T integrated gradient with 20 mm bore diameter, 100 mm magnet diameter and 20 cm pole length. The strength of the PMQ is adjustable in 1.4 T steps, due to its 'double ring structure': the PMQ is split into two nested rings; the outer ring is sliced along the beam line into four parts and is rotated to change the strength. This paper describes the variable PMQ from fabrication to recent adjustments

  6. The giant quadrupole resonance in highly excited rotating nuclei

    International Nuclear Information System (INIS)

    Civitarese, O.; Furui, S.; Ploszajczak, M.; Faessler, A.

    1983-01-01

    The giant quadrupole resonance in highly excited, fast rotating nuclei is studied as a function of both the nuclear temperature and the nuclear angular momentum. The photo-absorption cross sections for quadrupole radiation in 156 Dy, 160 Er and 164 Er are evaluated within the linear response theory. The strength functions of the γ-ray spectrum obtained from the decay of highly excited nuclear states by deexcitation of the isoscalar quadrupole mode show a fine structure, which depends on the temperature T, the angular momentum I and the deformation of the nucleus β. The splitting of the modes associated with the signature-conserving and signature-changing components of the quadrupole field is discussed. (orig.)

  7. Electromagnetic design of superconducting quadrupoles

    Directory of Open Access Journals (Sweden)

    L. Rossi

    2006-10-01

    Full Text Available We study how the critical gradient depends on the coil layout in a superconducting quadrupole for particle accelerators. We show that the results relative to a simple sector coil are well representative of the coil layouts that have been used to build several quadrupoles in the past 30 years. Using a semianalytical approach, we derive a formula that gives the critical gradient as a function of the coil cross-sectional area, of the magnet aperture, and of the superconducting cable parameters. This formula is used to evaluate the efficiency of several types of coil layouts (shell, racetrack, block, open midplane.

  8. Boson models of quadrupole collective motion

    International Nuclear Information System (INIS)

    Zelevinskij, V.G.

    1985-01-01

    The subject of the lecture is the low-lying excitations of even-even (e-e) spherical nuclei. The predominant role of the quadrupole mode, which determines the structure of spectra and transitions, is obvious on the background of shell periodicity and pair correlations. Typical E2-transitions are strengthened Ω ∼ A 2/3 times in comparison with single particle evaluations. Together with the regularity of the whole picture it gives evidence about collectivization of quadrupole motion. The collective states are combined in bands, where the transition probability are especially great; frequencies ω of the strengthened transitions are small in comparison with pair separation energies of 2 E-bar ∼ 2 MeV. Thus, the description of low-lying excitations of spherical nuclei has to be based on three principles: collectivity (Ω >> 1), adiabaticity (τ ≡ ω/2E-bar << 1) and quadrupole symmetry

  9. Nuclear electric quadrupole interactions in liquids entrapped in cavities

    Energy Technology Data Exchange (ETDEWEB)

    Furman, Gregory B., E-mail: gregoryf@bgu.ac.il; Meerovich, Victor M.; Sokolovsky, Vladimir L. [Ben Gurion University of the Negev, Physics Department (Israel)

    2016-12-15

    Liquids entrapped in cavities and containing quadrupole nuclei are considered. The interaction of the quadrupole moment of a nucleus with the electric field gradient is studied. In such a system, molecules are in both rotational and translational Brownian motions which are described by the diffusion equation. Solving this equation, we show that the intra- and intermolecular nuclear quadrupole interactions are averaged to zero in cavities with the size larger than several angstroms.

  10. Commissioning status of the decelerator test beam line in CTF3

    CERN Document Server

    Adli, E; Lillestol, R; Olvegaard, M; Syratchev, I; Carrillo, D; Toral, F; Faus-Golfe, A; Garcia-Garrigos, J J; Kubyshin, Y; Montoro, G

    2010-01-01

    The CLIC Test Facility (CTF3) at CERN was constructed by the CTF3 collaboration to study the feasibility of the concepts for a compact linear collider. The test beam line (TBL) recently added to the CTF3 machine was designed to study the CLIC decelerator beam dynamics and 12 GHz power production. The beam line consists of a FODO lattice with high precision BPM’s and quadrupoles on movers for precise beam alignment. A total of 16 Power Extraction and Transfer Structures (PETS) will be installed in between the quadrupoles to extract 12 GHz power from the drive beam provided by the CTF3 machine. The CTF3 drive beam with a bunch-train length of 140 ns, 12 GHz bunch repetition frequency and an average current over the train of up to 28 A will be injected into the test beam line. Each PETS structure will produce 135 MW of 12 GHz power at nominal current. The beam will have lost more than 50 % of its initial energy of 150 MeV at the end of the beam line and will contain particles with energies between 65 MeV and 1...

  11. The CLIC Positron Capture and Acceleration in the Injector Linac.

    CERN Document Server

    Vivoli, Alessandro; Chehab, Robert; Dadoun, Olivier; Lepercq, Pierre; Poirier, Freddy; Rinolfi, Louis; Strakhovenko, Vladimir; Variola, Alessandro

    2010-01-01

    The baseline of the CLIC study considers non-polarized e+ for the 3 TeV centre of mass energy. The e+ source is based on the hybrid targets scheme, where a crystal-radiator target is followed by an amorphous-converter target. Simulations have been performed from the exit of the amorphous target up to the entrance of the Pre-Damping Ring. Downstream the amorphous target, there is an Adiabatic Matching Device (AMD) followed by a Pre-Injector Linac accelerating the e+ beam up to around 200 MeV. Then a common Injector Linac (for both e+ and e-) accelerates the beams up to 2.86 GeV before being injected into the Pre-Damping Ring. In this note, the characteristics of the AMD and the other sections are described and the beam parameters at the entrance of the Pre-Damping Ring are given.

  12. Dynamics on the positron capture and accelerating sections of CLIC

    CERN Document Server

    Poirier, Freddy; Vivoli, Alessandro; Dadoun, Olivier; Lepercq, Pierre; Variola, Alessandro

    2011-01-01

    The CLIC Pre-Injector Linac for the e+ beam is composed of an Adiabatic Matching Device (AMD) followed by 4 (or 5) accelerating RF structures embedded in a solenoidal magnetic field. The accelerating sections are based on 2 GHz long travelling wave structures. In this note, the positrons capture strategy downstream the AMD is reviewed. The first RF structure can be phased either for full acceleration or for deceleration. In the latter case, the simulations results show that the number of e+ capture at the end of the 200 MeV Pre-Injector Linac is increased. Then the impact of the space charge is presented. Additional techniques are also studied to explore the potentiality of increasing the number of e+ namely an extra RF field at the beginning of the capture section and a higher solenoidal field.

  13. Alignment Methods Developed for the Validation of the Thermal and Mechanical Behaviour of the Two Beam Test Modules for the CLIC Project

    CERN Document Server

    Mainaud Durand, Helene; Sosin, Mateusz; Rude, Vivien

    2014-01-01

    CLIC project will consist of more than 20 000 two meters long modules. A test setup made of three modules is being built at CERN to validate the assembly and integration of all components and technical systems and to validate the short range strategy of pre-alignment. The test setup has been installed in a room equipped with a sophisticated system of ventilation able to reproduce the environmental conditions of the CLIC tunnel. Some of the components have been equipped with electrical heaters to simulate the power dissipation, combined with a water cooling system integrated in the RF components. Using these installations, to have a better understanding of the thermal and mechanical behaviour of a module under different operation modes, machine cycles have been simulated; the misalignment of the components and their supports has been observed. This paper describes the measurements methods developed for such a project and the results obtained.

  14. PRINCIPLE OF SKEW QUADRUPOLE MODULATION TO MEASURE BETATRON COUPLING

    International Nuclear Information System (INIS)

    LUO, Y.; PILAT, F.; ROSER, T.

    2004-01-01

    The measurement of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of different skew quadrupole families the two eigentunes are precisely measured with the phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation directions are determined. The residual linear coupling could be corrected according to the measurement. An analytical solution for skew quadrupole modulation based on Hamiltonian perturbation approximation is given, and simulation code using smooth accelerator model is also developed. Some issues concerning the practical applications of this technique are discussed

  15. Technologies for Future Vertex and Tracking Detectors at CLIC

    CERN Document Server

    Spannagel, Simon

    2018-01-01

    CLIC is a proposed linear e$^{+}$e$^{-}$ collider with center-of-mass energies of up to 3 TeV. Its main objectives are precise top quark and Higgs boson measurements, as well as searches for Beyond Standard Model physics. To meet the physics goals, the vertex and tracking detectors require not only a spatial resolution of a few micrometers and a very low material budget, but also timing capabilities with a precision of a few nanoseconds to allow suppression of beam-induced backgrounds. Different technologies using hybrid silicon detectors are explored for the vertex detectors, such as dedicated readout ASICs, small-pitch active edge sensors as well as capacitively coupled High-Voltage CMOS sensors. Monolithic sensors are considered as an option for the tracking detector, and a prototype using a CMOS process with a high-resistivity epitaxial layer is being designed. Different designs using a silicon-on-insulator process are under investigation for both vertex and tracking detector. All prototypes are evaluate...

  16. SKEW QUADRUPOLE FOCUSING LATTICES AND APPLICATIONS

    International Nuclear Information System (INIS)

    Parker, B.

    2001-01-01

    In this paper we revisit using skew quadrupole fields in place of traditional normal upright quadrupole fields to make beam focusing structures. We illustrate by example skew lattice decoupling, dispersion suppression and chromatic correction using the neutrino factory Study-II muon storage ring design. Ongoing BNL investigation of flat coil magnet structures that allow building a very compact muon storage ring arc and other flat coil configurations that might bring significant magnet cost reduction to a VLHC motivate our study of skew focusing

  17. MEQALAC: (multiple electrostatic quadrupole linac): a new approach to low beta rf acceleration

    International Nuclear Information System (INIS)

    Mobley, R.M.; Brodowski, J.J.; Gammel, G.M.; Keane, J.T.; Maschka, A.W.; Sanders, R.T.

    1980-01-01

    MEQALAC is an acronym for a multiple-beam electrostatic-quadrupole array linear accelerator. The principle of operation is very simple. It makes use of the fact that electrostatic quadrupoles focus more effectively at low velocities than conventional magnetic quadrupoles. Moreover, the pole-tip field of an electrostatic quadrupole is limited by field emission of electrons, and is not a function of the size of the quadrupole. Conventional magnetic quadrupoles, on the other hand, require increasingly high current densities if one attempts to scale to smaller size

  18. Beam-based alignment of C-shaped quadrupole magnets

    International Nuclear Information System (INIS)

    Portmann, G.; Robin, D.

    1998-06-01

    Many storage rings have implemented a method of finding the positional offset between the electrical center of the beam position monitors (BPM) and the magnetic center of the adjacent quadrupole magnets. The algorithm for accomplishing this is usually based on modulating the current in the quadrupole magnet and finding the beam position that minimizes the orbit perturbation. When the quadrupole magnet is C-shaped, as it is for many light sources, the modulation method can produce an erroneous measurement of the magnetic center in the horizontal plane. When the current in a C-shaped quadrupole is changed, there is an additional dipole component in the vertical field. Due to nonlinearities in the hysteresis cycle of the C-magnet geometry, the beam-based alignment technique at the Advanced Light Source (ALS) deviated horizontally by .5 mm from the actual magnetic center. By modifying the technique, the offsets were measured to an accuracy of better than 50 microm

  19. High-temperature quadrupole mass spectrometer for studying vaporization from materials heated by a CO2 laser

    International Nuclear Information System (INIS)

    Fredin, L.; Hansen, G.P.; Sampson, M.P.; Margrave, J.L.; Behrens, R.G.

    1986-09-01

    To evaluate the effectiveness of mass spectrometry techniques in studying vaporization from selected materials, we designed a mass spectrometer than can be used either with a continuous wave or pulsed laser heating system or with a conventional furnace heating system. Our experimental apparatus, the components of which are described in detail, consisted of a quadrupole mass spectrometer positioned in a crossed-beam configuration, controlling electronics, a data acquisition system, a vacuum system, a cryogenic collimation system, and a laser heating system. Results of mass spectral scans taken during laser pyrolysis of polymeric materials and laser vaporization of graphite were compatible with data reported in other studies. Results of mass spectral studies of laser-induced combustion in the Ti + C system are also presented

  20. Nuclei quadrupole coupling constants in diatomic molecule

    International Nuclear Information System (INIS)

    Ivanov, A.I.; Rebane, T.K.

    1993-01-01

    An approximate relationship between the constants of quadrupole interaction of nuclei in a two-atom molecule is found. It enabled to establish proportionality of oscillatory-rotation corrections to these constants for both nuclei in the molecule. Similar results were obtained for the factors of electrical dipole-quadrupole screening of nuclei. Applicability of these relationships is proven by the example of lithium deuteride molecule. 4 refs., 1 tab

  1. Variable-field permanent-magnet quadrupole for the SSC

    International Nuclear Information System (INIS)

    Barlow, D.B.; Kraus, R.H. Jr.; Martinez, R.P.; Meyer, R.E.

    1994-01-01

    A set of compact variable-field permanent-magnet quadrupoles have been designed, fabricated, and tested for use in the SSC linac matching section. The quadrupoles have 24 mm-diameter apertures and 40 mm-long poles. The hybrid (permanent-magnet and iron) design, uses a fixed core of magnet material (NdFeB) and iron (C-1006) surrounded by a rotating ring of the same magnet material and iron. The quadrupole gradient-length product can be smoothly varied from a minimum of 0.7 T up to a maximum of 4.3 T by a 90 degree rotation of the outer ring of iron and magnet material

  2. Variable-field permanent magnet quadrupole for the SSC

    International Nuclear Information System (INIS)

    Barlow, D.B.; Kraus, R.H. Jr.; Martinez, R.P.; Meyer, R.E.

    1993-01-01

    A set of compact variable-field permanent-magnet quadrupoles have been designed, fabricated, and tested for use In the SSC linac matching section. The quadrupoles have 24 mm-diameter apertures and 40 mm-long poles. The hybrid (permanent-magnet and iron) design, uses a fixed core of magnet material (NdFeB) and iron (C-1006) surrounded by a rotating ring of the same magnet material and iron. The quadrupole gradient-length product can be smoothly varied from a minimum of 0.7 T up to a maximum, of 4.3 T by a 90 degrees rotation of the outer ring of iron and magnet material

  3. Development of Superconducting Focusing Quadrupoles for Heavy Ion Drivers

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, N; Manahan, R; Lietzke, A F

    2001-09-10

    Heavy Ion Fusion (HIF) is exploring a promising path to a practical inertial-confinement fusion reactor. The associated heavy ion driver will require a large number of focusing quadrupole magnets. A concept for a superconducting quadrupole array, using many simple racetrack coils, was developed at LLNL. Two, single-bore quadrupole prototypes of the same design, with distinctly different conductor, were designed, built, and tested. Both prototypes reached their short sample currents with little or no training. Magnet design, and test results, are presented and discussed.

  4. Beam dynamics simulations in the photo-cathode RF gun for the CLIC test facility

    International Nuclear Information System (INIS)

    Marchand, P.; Rinolfi, L.

    1992-01-01

    The CERN CLIC Test Facility (CTF) uses an RF gun with a laser driven photo-cathode in order to generate electron pulses of high charge (≥10 nC) and short duration (≤20 ps). The RF gun consists of a 3 GHz 1 + 1/2 cell cavity based on the design originally proposed at BNL which minimizes the non-linearities in the transverse field. The beam dynamics in the cavity is simulated by means of the multiparticle tracking code PARMELA. The results are compared to previous simulations as well as to the first experimental data. (author). 4 refs., 4 tabs., 4 figs

  5. Random errors in the magnetic field coefficients of superconducting quadrupole magnets

    International Nuclear Information System (INIS)

    Herrera, J.; Hogue, R.; Prodell, A.; Thompson, P.; Wanderer, P.; Willen, E.

    1987-01-01

    The random multipole errors of superconducting quadrupoles are studied. For analyzing the multipoles which arise due to random variations in the size and locations of the current blocks, a model is outlined which gives the fractional field coefficients from the current distributions. With this approach, based on the symmetries of the quadrupole magnet, estimates are obtained of the random multipole errors for the arc quadrupoles envisioned for the Relativistic Heavy Ion Collider and for a single-layer quadrupole proposed for the Superconducting Super Collider

  6. Initial value gravitational quadrupole radiation theorem

    International Nuclear Information System (INIS)

    Winicour, J.

    1987-01-01

    A rigorous version of the quadrupole radiation formula is derived using the characteristic initial value formulation of a general relativistic fluid space-time. Starting from initial data for a Newtonian fluid, an algorithm is presented that determines characteristic initial data for a one-parameter family of general relativistic fluid space-times. At the initial time, a one-parameter family of space-times with this initial data osculates the evolution of the Newtonian fluid and has leading order news function equal to the third time derivative of the transverse Newtonian quadrupole moment

  7. Issues and Feasibility Demonstration of Positioning Closed Loop Control for the CLIC Supporting System Using a Test Mock-up with Five Degrees of Freedom

    CERN Document Server

    Sosin, M; Chritin, N; Griffet, S; Kemppinen, J; Mainaud Durand, H; Rude, V; Sterbini, G

    2012-01-01

    Since several years, CERN is studying the feasibility of building a high energy e+ e- linear collider: the CLIC (Compact LInear Collider). One of the challenges of such a collider is the pre-alignment precision and accuracy requirement on the transverse positions of the linac components, which is typically 14 μm over a window of 200 m. To ensure the possibility of positioning within such tight constraints, CERN Beams Department’s Survey team has worked intensively at developing the methods and technology needed to achieve that objective. This paper describes activities which were performed on a test bench (mock-up) with five degrees of freedom (DOF) for the qualification of control algorithms for the CLIC supporting system active-pre-alignment. Present understanding, lessons learned (“know how”), issues of sensors noise and mechanical components nonlinearities are presented.

  8. Theoretical investigation of flute modes in a magnetic quadrupole

    International Nuclear Information System (INIS)

    Wu, H.S.

    1988-01-01

    This research developed theories and conducted numerical investigations of electrostatic flute modes in a plasma confined in a magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L 0 for intermediate- and low-frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. The frequency is predicted to be inversely proportional to the wave number. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion bounce frequencies in a plasma confined to a magnetic quadrupole. Chapter VIII presents a summary of the research described

  9. Capacitively coupled hybrid pixel assemblies for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627; Benoit, Mathieu; Dannheim, Dominik; Dette, Karola; Hynds, Daniel; Kulis, Szymon; Peric, Ivan; Petric, Marko; Redford, Sophie; Sicking, Eva; Valerio, Pierpaolo

    2016-01-01

    The vertex detector at the proposed CLIC multi-TeV linear e+e- collider must have minimal material content and high spatial resolution, combined with accurate time-stamping to cope with the expected high rate of beam-induced backgrounds. One of the options being considered is the use of active sensors implemented in a commercial high-voltage CMOS process, capacitively coupled to hybrid pixel ASICs. A prototype of such an assembly, using two custom designed chips (CCPDv3 as active sensor glued to a CLICpix readout chip), has been characterised both in the lab and in beam tests at the CERN SPS using 120 GeV/c positively charged hadrons. Results of these characterisation studies are presented both for single and dual amplification stages in the active sensor. Pixel cross-coupling results are also presented, showing the sensitivity to placement precision and planarity of the glue layer.

  10. Flow induced vibrations of the CLIC X-Band accelerating structures

    CERN Document Server

    Charles, Tessa; Boland, Mark; Riddone, Germana; Samoshkin, Alexandre

    2011-01-01

    Turbulent cooling water in the Compact Linear Collider (CLIC) accelerating structures will inevitably induce some vibrations. The maximum acceptable amplitude of vibrations is small, as vibrations in the accelerating structure could lead to beam jitter and alignment difficulties. A Finite Element Analysis model is needed to identify the conditions under which turbulent instabilities and significant vibrations are induced. Due to the orders of magnitude difference between the fluid motion and the structure’s motion, small vibrations of the structure will not contribute to the turbulence of the cooling fluid. Therefore the resonant conditions of the cooling channels presented in this paper, directly identify the natural frequencies of the accelerating structures to be avoided under normal operating conditions. In this paper a 2D model of the cooling channel is presented finding spots of turbulence being formed from a shear layer instability. This effect is observed through direct visualization and wavelet ana...

  11. Collisional damping of giant monopole and quadrupole resonances

    International Nuclear Information System (INIS)

    Yildirim, S.; Gokalp, A.; Yilmaz, O.; Ayik, S.

    2001-01-01

    Collisional damping widths of giant monopole and quadrupole excitations for 120 Sn and 208 Pb at zero and finite temperatures are calculated within Thomas-Fermi approximation by employing the microscopic in-medium cross-sections of Li and Machleidt and the phenomenological Skyrme and Gogny forces, and are compared with each other. The results for the collisional widths of giant monopole and quadrupole vibrations at zero temperature as a function of the mass number show that the collisional damping of giant monopole vibrations accounts for about 30 - 40% of the observed widths at zero temperature, while for giant quadrupole vibrations it accounts for only 20 - 30% of the observed widths at zero temperature. (orig.)

  12. Table of Nuclear Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2013-12-01

    This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended value of the moment is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary reference EFG/moment references are required and their use is specified. The literature search covers the period to mid-2013. (author)

  13. Fifth-order aberrations in magnetic quadrupole-octupole systems

    International Nuclear Information System (INIS)

    Ling, K.M.

    1990-01-01

    Explicit integral expressions are given for the fifth-order geometrical aberration coefficients in rectilinear magnetic quadrupole-octupole systems used for the transport of nonrelativistic charged particle beams. The numerical values of the fifth-order geometrical aberration coefficients for a rare earth cobalt (REC) quadrupole doublet are given as an example. 26 refs., 5 figs., 4 tabs

  14. Progress in the development of superconducting quadrupoles for heavy ion fusion

    International Nuclear Information System (INIS)

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, B.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-01-01

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported

  15. Progress in the development of superconducting quadrupoles for heavy ion fusion

    Energy Technology Data Exchange (ETDEWEB)

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, B.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-05-24

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  16. Progress in the Development of Superconducting Quadrupoles forHeavy-ion Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, R.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-08-19

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  17. ISR "Terwilliger" Quadrupole

    CERN Multimedia

    1983-01-01

    There were 48 of these Quadrupoles in the ISR. They were distributed around the rings according to the so-called Terwilliger scheme. Their aperture was 184 mm, their core length 300 mm, their gradient 5 T/m. Due to their small length as compared to the aperture, the end fringe field errors had to be compensated by suitably shaping the poles.

  18. Global study of quadrupole correlation effects

    International Nuclear Information System (INIS)

    Bender, M.; Bertsch, G.F.; Heenen, P.-H.

    2006-01-01

    We discuss the systematics of ground-state quadrupole correlations of binding energies and mean-square charge radii for all even-even nuclei, from 16 O up to the superheavies, for which data are available. To that aim we calculate their correlated J=0 ground state by means of the angular-momentum and particle-number projected generator coordinate method, using the axial mass quadrupole moment as the generator coordinate and self-consistent mean-field states restricted only by axial, parity, and time-reversal symmetries. The calculation is performed within the framework of a nonrelativistic self-consistent mean-field model by use of the same Skyrme interaction SLy4 and to a density-dependent pairing force to generate the mean-field configurations and to mix them. These are the main conclusions of our study: (i) The quadrupole correlation energy varies between a few 100 keV and about 5.5 MeV. It is affected by shell closures, but varies only slightly with mass and asymmetry. (ii) Projection on angular momentum J=0 provides the major part of the energy gain of up to about 4 MeV; all nuclei in the study, including doubly magic ones, gain energy by deformation. (iii) The mixing of projected states with different intrinsic axial deformations adds a few 100 keV up to 1.5 MeV to the correlation energy. (iv) Typically nuclei below mass A≤60 have a larger correlation energy than static deformation energy whereas the heavier deformed nuclei have larger static deformation energy than correlation energy. (v) Inclusion of the quadrupole correlation energy improves the description of mass systematics, particularly around shell closures, and of differential quantities, namely two-nucleon separation energies and two-nucleon gaps. The correlation energy provides an explanation of 'mutually enhanced magicity'. (vi) The correlation energy tends to decrease the shell effect on binding energies around magic numbers, but the magnitude of the suppression is not large enough to explain

  19. ASACUSA's radio-frequency quadrupole decelerator, open to show the four-rod structure along the centre, which crosses 35 resonator chambers formed by the vertical partitions.

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    The Radio-Frequency Quadrupole, RFQD, which further decelerates antiprotons ejected from the Antiproton Decelerator (AD). Starting from a momentum of 100 MeV/c (kinetic energy 5.3 MeV), the RFQD delivers very-low-energy antiprotons, adjustable between 10 and 110 keV, to the experiment ASACUSA. In picture _02, the view from the upstream end shows its 4-rod structure, traversing 35 resonator chambers formed by the vertical partitions. The tank has an inner diameter of 390 mm and is pumped to a vacuum of a few E-8 Torr.

  20. Low-level feedback control for the phase regulation of CLIC Drive Beam Klystrons

    CERN Document Server

    AUTHOR|(SzGeCERN)752526

    2015-01-01

    The requirement of luminosity loss below 1% raises tight tolerances for the phase and power stability of the CLIC drive beam (DB) klystrons and consequently for the high voltage pulse ripple of the modulators. A low-level RF (LLRF) feedback system needs to be developed and combined with the modulator in order to guarantee the phase and amplitude tolerances. To this aim, three feedback control strategies were investigated, i) Proportional Integral (PI) controller, ii) Linear Quadratic Integral Regulator (LQI) and iii) Model Predictive Controller (MPC). The klystron, as well as the incident phase noise were modelled and used for the design and evaluation of the controllers. First simulation results are presented along with future steps and directions.

  1. Fe/sup 57/ polarimetry based on quadrupole interaction

    Energy Technology Data Exchange (ETDEWEB)

    Gonser, U; Sakai, H; Keune, W [Universitaet des Saarlandes, Saarbruecken (F.R. Germany). Fachbereich Angewandte Physik

    1976-01-01

    A quadrupole Fe/sup 57/ polarimeter consisting of single crystals of LiNbO/sub 3/:Co/sup 57/ as source (polarizer) and of FeCO/sub 3/ (siderite) as absorber (analyzer) is described. The quadrupole interactions of the two materials are nearly equal in magnitude but opposite in sign and in addition the asymmetry parameter eta equal approximately 0.

  2. CLIC, a Multi-TeV $e^{\\pm}$ Linear Collider

    CERN Document Server

    Delahaye, J P; Bossart, Rudolf; Braun, Hans Heinrich; Carron, G; Coosemans, Williame; Corsini, R; D'Amico, T E; Godot, J C; Guignard, Gilbert; Hutchins, S; Jensen, E; Millich, Antonio; Pearce, P; Potier, J P; Riche, A J; Rinolfi, Louis; Schulte, Daniel; Suberlucq, Guy; Thorndahl, L; Valentini, M; Wuensch, Walter; Zimmermann, Frank; Napoly, O; Raubenheimer, T O; Ruth, Ronald D; Syratchev, I V

    1999-01-01

    The CLIC study of a high energy (0.5 - 5 TeV), high luminosity (1034 - 1035 cm-2 sec-1) e± linear collider is presented. Beam acceleration using high frequency (30 GHz) normal-conducting structures operating at high accelerating fields (150 MV/m) significantly reduces the length and, in consequence, the cost of the linac. Based on new beam and linac parameters derived from a recently developed set of general scaling laws for linear colliders, the beam stability is shown to be similar to lower frequency designs in spite of the strong wake-field dependency on frequency. A new cost-effective and efficient drive beam generation scheme for RF power production by the so-called "Two Beam Acceleration (TBA)" method is described. It uses a thermionic gun and a fully-loaded normal-conducting linac operating at low frequency (937 MHz) to generate and accelerate the drive beam bunches, and RF multiplication by funnelling in compressor rings to produce the desired bunch structure. Recent 30 GHz hardware developments and ...

  3. A New Technique For Information Processing of CLIC Technical Documentation

    CERN Document Server

    Tzermpinos, Konstantinos

    2013-01-01

    The scientific work presented in this paper could be described as a novel, systemic approach to the process of organization of CLIC documentation. The latter refers to the processing of various sets of archived data found on various CERN archiving services in a more friendly and organized way. From physics aspect, this is equal to having an initial system characterized by high entropy, which after some transformation of energy and matter will produce a final system of reduced entropy. However, this reduction in entropy can be considered valid for open systems only, which are sub-systems of grander isolated systems, to which the total entropy will always increase. Thus, using as basis elements from information theory, systems theory and thermodynamics, the unorganized form of data pending to be organized to a higher form, is modeled as an initial open sub-system with increased entropy, which, after the processing of information, will produce a final system with decreased entropy. This systemic approach to the ...

  4. Corrector/quadrupole/sextupole power leads for the Relativistic Heavy Ion Collider at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Shutt, R.; Hornik, K.; Rehak, M.

    1993-01-01

    In RHIC (Relativistic Heavy Ion Collider), there are 492 CQS (Corrector/Quadrupole/Sextupole) assemblies which require leads to carry the current from the power supply to the magnet. The lead assemblies will contain these leads along with instrumentation voltage taps and current carrying wires that are used only for magnet warm-up. These lead assemblies are analyzed for two cooling schemes: (1) gas flow through the lead tube and (2) heat sinking the lead tube along a 40--70 K heat shield (without gas flow). The analysis was extended to include the modeling of the cold and warm ends and effects of superinsulation shielding the lead assembly against radiation (including heat conduction due to residual gas pressure in the surrounding vacuum). Extensive parametric studies of heat exchange areas, specific copper properties, length of the lead, etc. are also included in the analysis

  5. Semimicroscopic description of the giant quadrupole resonances in deformed nuclei

    International Nuclear Information System (INIS)

    Kurchev, G.; Malov, L.A.; Nesterenko, V.O.; Soloviev, V.G.

    1976-01-01

    The calculation results of the giant quadrupole isoscalar and isovector resonances performed within the random phase approximation are represented. The strength functions for E2-transitions are calculated for doubly even deformed nuclei in the regions 150 (<=) A < 190 and 228 (<=) A < 248 in the energy interval (0-40) MeV. The following integral characteristics of giant quadrupole resonances are obtained: the position, widths, the contribution to the energy weighted sum rule and the contribution to the total cross section of photoabsorption. The calculations have shown that giant quadrupole resonances are common for all the considered nuclei. The calculated characteristics of the isoscalar giant quadrupole resonance agree with the available experimental data. The calculations also show that the semimicroscopic theory can be successfully applied for the description of giant multipole resonances

  6. Kinetic energy in the collective quadrupole Hamiltonian from the experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Jolos, R.V., E-mail: jolos@theor.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Dubna State University, 141980 Dubna (Russian Federation); Kolganova, E.A. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Dubna State University, 141980 Dubna (Russian Federation)

    2017-06-10

    Dependence of the kinetic energy term of the collective nuclear Hamiltonian on collective momentum is considered. It is shown that the fourth order in collective momentum term of the collective quadrupole Hamiltonian generates a sizable effect on the excitation energies and the matrix elements of the quadrupole moment operator. It is demonstrated that the results of calculation are sensitive to the values of some matrix elements of the quadrupole moment. It stresses the importance for a concrete nucleus to have the experimental data for the reduced matrix elements of the quadrupole moment operator taken between all low lying states with the angular momenta not exceeding 4.

  7. Beam Stability in the Drive-Beam Decelerator of CLIC Using Structures of High-Order Symmetry

    CERN Document Server

    Millich, Antonio; Schulte, Daniel

    1999-01-01

    The RF power necessary to accelerate the main beam of the Compact Linear Collider (CLIC) is produced by decelerating a high-current drive beam in Power Extraction and Transfer Structures (PETS). The reference structure is not cylindrically symmetric but has longitudinal waveguides carved into the inner surface. This gives rise to a transverse component of the main longitudinal mode which can not be damped, in contrast to the transverse dipole wake- field. The field is non-linear and couples the motion of the particles in the two planes. Limits of the stability of the decelerated beam are investigated for different structures.

  8. Upgrade of the radio frequency quadrupole cooler and buncher for the HIE-ISOLDE project

    CERN Document Server

    Babcock, Carla

    2013-01-01

    The upgrade to the ISOLDE facility, HIE-ISOLDE, will include an upgrade to the RFQCB (radio frequency quadrupole cooler and buncher), the focus of which will be fixing the problems of alignment with the current machine, improving the integrity of the vacuum system, stabilizing the internal gas pressure, and the changes associated with a new position. The beam passage inside the RFQCB has been simulated with an independent code to highlight the importance of the internal gas pressure, to motivate design changes in the new RFQCB and to explain ways to improve the performance of the current machine. The suspected misalignment of ISCOOL has been quantified, and, using a simulation of ions passing through the external injection electrodes, the effect of the misalignment on machine acceptance has been detailed. Plans for the future RFQCB test stand and HIE-ISOLDE installation have been outlined. (C) 2013 Elsevier B.V. All rights reserved.

  9. Quadrupole magnets for IR-FEL at RRCAT

    International Nuclear Information System (INIS)

    Ruwali, Kailash; Singh, Kushraj; Mishra, Anil Kumar; Biswas, Bhaskar

    2013-01-01

    The IR-FEL project at RRCAT needs quadrupole magnets for focusing 15 to 35 MeV electron beam through a dog-leg type beam line. This bend needs tighter relative tolerances on the central quadrupole triplet . The magnetic design, fabrication and magnetic characterization of five quadrupole magnets were carried out. The poles are detachable and wider than the coils. This significantly improves the good field region of the magnet. The magnet cross-section was optimized using 2D POISON code and entry-exit tapers were optimized using 3D code TOSCA.. The aperture radius of the magnet is 30 mm and the total core length is 180 mm. The integrated gradient of magnet is 0.51 T. The magnetic measurements were carried out using Danfysik make rotating coil bench model 690. Integrated gradient and multipoles present in the magnet aperture were measured at various excitation levels. The details of magnetic development and the magnetic measurements are discussed in this paper. (author)

  10. Quadrupole moments as measures of electron correlation in two-electron atoms

    International Nuclear Information System (INIS)

    Ceraulo, S.C.; Berry, R.S.

    1991-01-01

    We have calculated quadrupole moments, Q zz , of helium in several of its doubly excited states and in two of its singly excited Rydberg states, and of the alkaline-earth atoms Be, Mg, Ca, Sr, and Ba in their ground and low-lying excited states. The calculations use well-converged, frozen-core configuration-interaction (CI) wave functions and, for interpretive purposes, Hartree-Fock (HF) atomic wave functions and single-term, optimized, molecular rotor-vibrator (RV) wave functions. The quadrupole moments calculated using RV wave functions serve as a test of the validity of the correlated, moleculelike model, which has been used to describe the effects of electron correlation in these two-electron and pseudo-two-electron atoms. Likewise, the quadrupole moments calculated with HF wave functions test the validity of the independent-particle model. In addition to their predictive use and their application to testing simple models, the quadrupole moments calculated with CI wave functions reveal previously unavailable information about the electronic structure of these atoms. Experimental methods by which these quadrupole moments might be measured are also discussed. The quadrupole moments computed from CI wave functions are presented as predictions; measurements of Q zz have been made for only two singly excited Rydberg states of He, and a value of Q zz has been computed previously for only one of the states reported here. We present these results in the hope of stimulating others to measure some of these quadrupole moments

  11. Rf quadrupole beam dynamics

    International Nuclear Information System (INIS)

    Stokes, R.H.; Crandall, K.R.; Stovall, J.E.; Swenson, D.A.

    1979-01-01

    A method has been developed to analyze the beam dynamics of the radiofrequency quadrupole accelerating structure. Calculations show that this structure can accept a dc beam at low velocity, bunch it with high capture efficiency, and accelerate it to a velocity suitable for injection into a drift tube linac

  12. Superconducting Panofsky quadrupoles

    International Nuclear Information System (INIS)

    Harwood, L.H.

    1981-01-01

    A design for a rectangular aperture quadrupole magnet without pole-tips was introduced by Hand and Panofsky in 1959. This design was quite radical but simple to construct. Few magnets of this design were ever built because of the large power needed. With the advent of superconducting coils there has been a renewed interest in them. The mathematical basis, field characteristics, and present and future construction of these magnets are described

  13. Quadrupole interactions in pionic and muonic tantalum and rhenium

    International Nuclear Information System (INIS)

    Konijn, J.; Doesburg, W. van; Ewan, G.T; Johansson, T.; Tibell, G.

    1981-01-01

    The hyperfine splitting of pionic and muonic X-rays in natural Re has been studied using the known ratio (accurate to 1.6 parts in 10 5 ) of the quadrupole moments of the two naturally occurring 185 Re and 187 Re isotopes. From the hyperfine splitting of the 5g → 4f and 4f → 3d pionic X-rays the effective quadrupole hyperfine constants were determined to be 187 A 2 sup(e)sup(f)sup(f) (4f) = 1.163 +- 0.010 keV and 187 A 2 sup(e)sup(f)sup(f) (3d) = 5.39 +- 0.63 keV, giving strong interaction quadrupole shifts epsilon 2 (4f) = 46 +- 10 eV and epsilon 2 (3d) = 1.3 +- 0.6 keV. The strong interaction monopole shifts epsilon 0 and widths GAMMA 0 of the 5g, 4f and 3d levels have also been measured. For the two higher orbits, standard optical-potential calculations fit the measured shifts and widths quite well. The observed deeper-lying 3d state, however, has shifts and widths that differ by a factor of 2 or more from the predictions. From the measured quadrupole hyperfine constants of the 4f level we calculate the spectroscopic quadrupole moments to be 187 Qsup(μ) = 2.09 +- 0.04 b, 187 Qsup(π) = 2.07 +- 0.02 b, 185 Qsup(μ) = 2.21 +- 0.04 b, and 185 Qsup(π) = 2.18 +- 0.02 b. In addition, muonic X-rays from 181 Ta were observed; using the same methods for determining the quadrupole moments as above, a value of 181 Qsup(μ) = 3.28 +- 0.06 b was obtained, in good agreement with earlier published data. (orig.)

  14. Quadrupole photoionization of endohedral Xe-C60

    International Nuclear Information System (INIS)

    Govil, Karan; Deshmukh, P C

    2009-01-01

    The effect of an endohedral confinement on the quadrupole photoionization of atomic Xe is studied using the relativistic random phase approximation (RRPA). The atom's confinement is modelled by placing atomic Xe at the centre of a C 60 cage represented by an annular potential around it. A new confinement resonance is reported in the 4p quadrupole cross-section along with 'correlation confinement resonances' in 4d, 5s and 5p photoionizations at about 185 eV. The effect of the confinement on the non-dipole photoelectron angular distribution parameter γ is also reported.

  15. High and ulta-high gradient quadrupole magnets

    International Nuclear Information System (INIS)

    Brunk, W.O.; Walz, D.R.

    1985-05-01

    Small bore conventional dc quadrupoles with apertures from 1 to 2.578cm were designed and prototypes built and measured. New fabrication techniques including the use of wire electric discharge milling (EDM) to economically generate the pole tip contours and aperture tolerances are described. Magnetic measurement data from a prototype of a 1cm aperture quadrupole with possible use in future e + /e - super colliders are presented. At a current of 400A, the lens achieved a gradient of 2.475 T/cm, and had an efficiency of 76.6%

  16. Quadrupole formula for Kaluza-Klein modes in the braneworld

    International Nuclear Information System (INIS)

    Kinoshita, Shunichiro; Kudoh, Hideaki; Sendouda, Yuuiti; Sato, Katsuhiko

    2005-01-01

    The quadrupole formula in four-dimensional Einstein gravity is a useful tool to describe gravitational wave radiation. We derive the quadrupole formula for the Kaluza-Klein (KK) modes in the Randall-Sundrum braneworld model. The quadrupole formula provides a transparent representation of the exterior weak gravitational field induced by localized sources. We find that a general isolated dynamical source gives rise to the 1/r 2 correction to the leading 1/r gravitational field. We apply the formula to an evaluation of the effective energy carried by the KK modes from the viewpoint of an observer on the brane. Contrary to the ordinary gravitational waves (zero mode), the flux of the induced KK modes by the non-spherical part of the quadrupole moment vanishes at infinity and only the spherical part contributes to the flux. Since the effect of the KK modes appears in the linear order of the metric perturbations, the effective energy flux observed on the brane is not always positive, but can become negative depending on the motion of the localized sources

  17. Sensitivity of (α,α') cross sections to excited-state quadrupole moments

    International Nuclear Information System (INIS)

    Baker, F.T.; Scott, A.; Ronningen, R.M.; Hamilton, J.H.; Kruse, T.H.; Suchannek, R.; Savin, W.

    1977-01-01

    Inelastic α particle scattering at 21 and 24 MeV has been used to estimate the electric quadrupole moment of the second 2 + state in 180 Hf. Sensitivity to the assumed quadrupole moment is due almost entirely to reorientation via the nuclear force. Results suggest that the technique may be a useful method of estimating excited state quadrupole moments, particularly for states with high excitation energies or with J greater than 2

  18. Optimization of an electrostatic quadrupole doublet focusing systems

    Energy Technology Data Exchange (ETDEWEB)

    Hussein, Oday A., E-mail: oah@sc.nahrainuniv.edu.iq [Department of Physics, College of Science, Al-Nahrain University, Baghdad (Iraq); Sise, Omer [Department of Science Education, Faculty of Education, Suleyman Demirel University, Isparta (Turkey)

    2017-05-15

    Highlights: • The imaging properties of an electrostatic quadrupole doublet lens were analyzed with the aid of computer simulation. • The optimal electrode voltages which lead to stigmatic image in both planes of the quadrupole doublet lens with minimum spot size at position sensitive detector (PSD) were found for two operation modes: point-to-point focusing and parallel-to-point focusing. • The imaging properties of are very sensitive to the lunching angle of the electron-beam. - Abstract: The imaging properties of an electrostatic quadrupole doublet lens were analyzed with the aid of computer simulation. The optimal electrode voltages which lead to stigmatic image in both planes of the quadrupole doublet lens with minimum spot size at position sensitive detector (PSD) were found for two operation modes: point-to-point focusing and parallel-to-point focusing. The optical properties as: Magnifications, spot sizes in the image plane and aberration figures were discussed. The results showed that the focusing of the lens was strong in the xy-plane in comparison with the focusing in the xz-plane. The distortion of the image was greater when the image position will be close to the lens in comparison with object position. Also, the imaging properties were very sensitive to the lunching angle of the electron-beam.

  19. Preliminary design of the pulse generator for the CLIC damping ring extraction system

    CERN Document Server

    Holma, Janne; Ovaska, Seppo

    2011-01-01

    The spent drive beam must be cleanly extracted and bent away from the decelerator axis at the end of each CLIC decelerator in order to leave space for injecting a fresh beam train in the next sector. Then the spent beam must be safely absorbed. A compact extraction system made of a single dipole is proposed. The spent beam is driven to a water dump located at 20m downstream of the extraction point and transversely 6m away of the axis of the main linac. An adequate spread of the beam impact map on the dump offers small temperature excursions in both the dump and its entrance window, allowing for reliable operation and a long lifetime of the system.

  20. Large permanent magnet quadrupoles for an electron storage ring

    International Nuclear Information System (INIS)

    Herb, S.W.

    1987-01-01

    We have built large high quality permanent magnet quadrupoles for use as interaction region quadrupoles in the Cornell Electron Storage Ring where they must operate in the 10 kG axial field of the CLEO experimental detector. We describe the construction and the magnetic measurement and tuning procedures used to achieve the required field quality and stability. (orig.)

  1. Frequency scanning interferometry for CLIC component fiducialisation

    CERN Document Server

    Kamugasa, Solomon William; Mainaud Durand, Helene; CERN. Geneva. ATS Department

    2016-01-01

    We present a strategy for the fiducialisation of CLIC’s Main Beam Quadrupole (MBQ) magnets using Frequency Scanning Interferometry (FSI). We have developed complementary device for a commercial FSI system to enable coordinate determination via multilateration. Using spherical high index glass retroreflectors with a wide acceptance angle, we optimise the geometry of measurement stations with respect to fiducials -- thus improving the precision of coordinates. We demonstrate through simulations that the 10 μm uncertainty required in the vertical and lateral axes for the fiducialisation of the MBQ can be attained using FSI multilateration.

  2. Design of the 70 mm twin aperture superconducting quadrupole for the LHC dump insertion

    CERN Document Server

    Kirby, G A; Taylor, T M; Trinquart, G

    1996-01-01

    The LHC dump insertion features a pair of superconducting quadrupoles located on either side of a 340 m long straight section. Two horizontally deflecting kickers, located in between the quadrupole pairs, and a septum in the centre of the insertion, vertically deflect the two counter-rotating beams past the quadrupoles on the downstream sides, and into the dump areas. Due to the layout, the optical ß function in the quadrupoles is around 640 m, the largest around the LHC at injection. The quadrupoles must therefore have enlarged aperture and specially designed cryostats to allow for the safe passage of both the circulating and ejected beams. In this paper we present the design of the twin aperture dump quadrupole based on the 70 mm four layer coil proposed for the LHC low-ß quadrupoles. In preparation for model construction, we report on improvements of the coil design and a study of the retaining structures.

  3. CESAR, 2 MeV electron storage ring; construction period; quadrupole.

    CERN Multimedia

    Service Photo; CERN PhotoLab

    1962-01-01

    One of the 24 quadrupoles. They were made of massive (non-laminated) soft iron, which at the low field-strength (35 G on the pole-tips) presented problems. Later they were fitted with shims on all 4 poles, to correct the quadrupole and sextupole components.

  4. Excitation of giant monopole and quadrupole resonances

    Energy Technology Data Exchange (ETDEWEB)

    Ogata, H. [Osaka Univ., Suita (Japan). Research Center for Nuclear Physics; Yamagata, T.; Tanaka, M. [and others; Ikegami, H.; Muraoka, M. [eds.; Osaka Univ., Suita (Japan). Research Center for Nuclear Physics

    1980-01-01

    Recent studies on the giant monopole resonance (GMR) and the giant quadrupole resonance (GQR) in /sup 144/Sm and /sup 208/Pb using the ..cap alpha..-scattering performed at RCNP are summarized. The observed angular range covered 1.6/sup 0/ -- 7/sup 0/ with a coupled system of a dipole and a triplet quadrupole magnet. The incident energy was changed from 84 to 119 MeV. The resonance shapes and energy-weighted sum-rule strengths of the GMR and the GQR were reliably deduced as a function of incident energy. The quadrupole strength of --20% was found in the GMR region. The observed excitation function of the GMR was compared with the DWBA calculation, in which the Satchler's Version I was used as a form factor representing the compressional motion of the nucleus. It was found that the experimental excitation function of the GMR shows steeper decrease as lowering the incident energy than the DWBA prediction whereas that of the GQR is successfully described by the DWBA. This suggests that examination of the model describing the GMR is necessary.

  5. Puzzle of the 6Li Quadrupole Moment: Steps toward Solving It

    International Nuclear Information System (INIS)

    Blokhintsev, L.D.; Kukulin, V.I.; Pomerantsev, V.N.

    2005-01-01

    The problem of the origin of the quadrupole deformation in the 6 Li ground state is investigated with allowance for the three-deuteron component of the 6 Li wave function. Two long-standing puzzles related to the tensor interaction in the 6 Li nucleus are known: that of an anomalous smallness of the 6 Li quadrupole moment (being negative, it is smaller in magnitude than the 7 Li quadrupole moment by a factor of 5) and that of an anomalous behavior of the tensor analyzing power T 2q in the scattering of polarized 6 Li nuclei on various targets. It is shown that a large (in magnitude) negative exchange contribution to the 6 Li quadrupole moment from the three-deuteron configuration cancels almost completely the 'direct' positive contribution due to the αd folding potential. As a result, the total quadrupole moment proves to be close to zero and highly sensitive to fine details of the tensor nucleon-nucleon interaction in the 4 He nucleus and of its wave function

  6. Permanent quadrupole magnets

    International Nuclear Information System (INIS)

    Bush, E.D. Jr.

    1976-01-01

    A family of quadrupole magnets using a soft iron return yoke and circular cross-section permanent magnet poles were fabricated to investigate the feasibility for use in ion or electron beam focusing applications in accelerators and transport lines. Magnetic field measurements yielded promising results. In fixed-field applications, permanent magnets with sufficient gradients would be a low cost substitute for conventional electromagnets, eliminating the need for power supplies, associated wiring, and cooling. (author)

  7. Nuclear quadrupole interactions in ferroelectric compounds of HF181

    International Nuclear Information System (INIS)

    Kunzler, J.V.

    1971-01-01

    Measurements of nuclear quadrupole interaction constants in perovkite-type compounds of PbHfO 3 , SnhfO 3 , CaHfO 3 e SrHfO 3 have been performed using the perturbed angular correlation technique. A range of fundamental frequencies from 150 to 550 Megaradians persecond was determined. The variation of quadrupole constants has been discussed through the molecular orbital theory

  8. Leybold vacuum handbook

    CERN Document Server

    Diels, K; Diels, Kurt

    1966-01-01

    Leybold Vacuum Handbook presents a collection of data sets that are essential for numerical calculation of vacuum plants and vacuum processes. The title first covers vacuum physics, which includes gas kinetics, flow phenomena, vacuum gauges, and vapor removal. Next, the selection presents data on vacuum, high vacuum process technology, and gas desorption and gettering. The text also deals with materials, vapor pressure, boiling and melting points, and gas permeability. The book will be of great interest to engineers and technicians that deals with vacuum related technologies.

  9. Vacuum Technology

    Energy Technology Data Exchange (ETDEWEB)

    Biltoft, P J

    2004-10-15

    The environmental condition called vacuum is created any time the pressure of a gas is reduced compared to atmospheric pressure. On earth we typically create a vacuum by connecting a pump capable of moving gas to a relatively leak free vessel. Through operation of the gas pump the number of gas molecules per unit volume is decreased within the vessel. As soon as one creates a vacuum natural forces (in this case entropy) work to restore equilibrium pressure; the practical effect of this is that gas molecules attempt to enter the evacuated space by any means possible. It is useful to think of vacuum in terms of a gas at a pressure below atmospheric pressure. In even the best vacuum vessels ever created there are approximately 3,500,000 molecules of gas per cubic meter of volume remaining inside the vessel. The lowest pressure environment known is in interstellar space where there are approximately four molecules of gas per cubic meter. Researchers are currently developing vacuum technology components (pumps, gauges, valves, etc.) using micro electro mechanical systems (MEMS) technology. Miniature vacuum components and systems will open the possibility for significant savings in energy cost and will open the doors to advances in electronics, manufacturing and semiconductor fabrication. In conclusion, an understanding of the basic principles of vacuum technology as presented in this summary is essential for the successful execution of all projects that involve vacuum technology. Using the principles described above, a practitioner of vacuum technology can design a vacuum system that will achieve the project requirements.

  10. Measurement of Higgs decay to WW$^{*}$ in Higgsstrahlung at $\\sqrt{s}=500$ GeV ILC and in WW-fusion at $\\sqrt{s}=3$ TeV CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)718111

    2017-01-01

    This talk presents results of the two independent analyses evaluating the measurement accuracy of the branching ratio for the Standard model Higgs boson decay to a W-pair, at the Compact Linear Collider (CLIC) and at the International Linear Collider (ILC). The considered Higgs production channels are the WW-fusion for the highest energy stage of CLIC, $\\sqrt{s}=3$ TeV, and the Higgsstrahlung process for the nominal ILC energy, $\\sqrt{s}=500$ GeV. Both studies are performed using the full simulation of the detector. The realistic experimental conditions have been simulated including beam energy spectrum, initial state radiation and the background from $\\gamma \\gamma \\rightarrow hadrons$ processes, which are overlaid on simulated events. The multivariate analysis technique is used for the final event selection and the expected relative statistical uncertainty, $\\Delta ( \\sigma \\cdot BR)/(\\sigma \\cdot BR)$, of the measured Higgs production cross sections is estimated.

  11. Indian Vacuum Society: The Indian Vacuum Society

    Science.gov (United States)

    Saha, T. K.

    2008-03-01

    The Indian Vacuum Society (IVS) was established in 1970. It has over 800 members including many from Industry and R & D Institutions spread throughout India. The society has an active chapter at Kolkata. The society was formed with the main aim to promote, encourage and develop the growth of Vacuum Science, Techniques and Applications in India. In order to achieve this aim it has conducted a number of short term courses at graduate and technician levels on vacuum science and technology on topics ranging from low vacuum to ultrahigh vacuum So far it has conducted 39 such courses at different parts of the country and imparted training to more than 1200 persons in the field. Some of these courses were in-plant training courses conducted on the premises of the establishment and designed to take care of the special needs of the establishment. IVS also regularly conducts national and international seminars and symposia on vacuum science and technology with special emphasis on some theme related to applications of vacuum. A large number of delegates from all over India take part in the deliberations of such seminars and symposia and present their work. IVS also arranges technical visits to different industries and research institutes. The society also helped in the UNESCO sponsored post-graduate level courses in vacuum science, technology and applications conducted by Mumbai University. The society has also designed a certificate and diploma course for graduate level students studying vacuum science and technology and has submitted a syllabus to the academic council of the University of Mumbai for their approval, we hope that some colleges affiliated to the university will start this course from the coming academic year. IVS extended its support in standardizing many of the vacuum instruments and played a vital role in helping to set up a Regional Testing Centre along with BARC. As part of the development of vacuum education, the society arranges the participation of

  12. Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach

    Energy Technology Data Exchange (ETDEWEB)

    Feinberg, B. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.

  13. Status report of the baseline collimation system of CLIC. Part I

    CERN Document Server

    Resta-Lopez, J.; Dalena, B.; Fernandez-Hernando, J.L.; Jackson, F.; Schulte, D.; Seryi, A.; Tomas, R.

    2011-01-01

    Important efforts have recently been dedicated to the characterisation and improvement of the design of the post-linac collimation system of the Compact Linear Collider (CLIC). This system consists of two sections: one dedicated to the collimation of off-energy particles and another one for betatron collimation. The energy collimation system is further conceived as protection system against damage by errant beams. In this respect, special attention is paid to the optimisation of the energy collimator design. The material and the physical parameters of the energy collimators are selected to withstand the impact of an entire bunch train. Concerning the betatron collimation section, different aspects of the design have been optimised: the transverse collimation depths have been recalculated in order to reduce the collimator wakefield effects while maintaining a good efficiency in cleaning the undesired beam halo; the geometric design of the spoilers has been reviewed to minimise wakefields; in addition, the opti...

  14. Status report of the baseline collimation system of CLIC. Part II

    CERN Document Server

    Resta-Lopez, J.; Dalena, B.; Fernandez-Hernando, J.L.; Jackson, F.; Schulte, D.; Seryi, A.; Tomas, R.

    2011-01-01

    Important efforts have recently been dedicated to the characterisation and improvement of the design of the post-linac collimation system of the Compact Linear Collider (CLIC). This system consists of two sections: one dedicated to the collimation of off-energy particles and another one for betatron collimation. The energy collimation system is further conceived as protection system against damage by errant beams. In this respect, special attention is paid to the optimisation of the energy collimator design. The material and the physical parameters of the energy collimators are selected to withstand the impact of an entire bunch train. Concerning the betatron collimation section, different aspects of the design have been optimised: the transverse collimation depths have been recalculated in order to reduce the collimator wakefield effects while maintaining a good efficiency in cleaning the undesired beam halo; the geometric design of the spoilers has been reviewed to minimise wakefields; in addition, the opti...

  15. Coevaporation of Y, BaF2, and Cu utilizing a quadrupole mass spectrometer as a rate measuring probe

    International Nuclear Information System (INIS)

    Hudner, J.; Oestling, M.; Ohlsen, H.; Stolt, L.

    1991-01-01

    An ultrahigh vacuum coevaporator equipped with three sources for preparation of Y--BaF 2 --Cu--O thin films is described. Evaporation rates of Y, BaF 2 , and Cu were controlled using a quadrupole mass spectrometer operating in a multiplexed mode. To evaluate the method depositions have been performed using different source configurations and evaporation rates. Utilizing Rutherford backscattering spectrometry absolute values of the actual evaporation rates were determined. It was observed that the mass-spectrometer sensitivity is highest for Y, followed by BaF 2 (BaF + is the measured ion) and Cu. A partial pressure of oxygen during evaporation of Y, BaF 2 , and Cu affected mainly the rate of Y. It is shown that the mass spectrometer can be utilized to precisely control the film composition

  16. Dynamical quadrupole structure factor of frustrated ferromagnetic chain

    Science.gov (United States)

    Onishi, Hiroaki

    2018-05-01

    We investigate the dynamical quadrupole structure factor of a spin-1/2 J1-J2 Heisenberg chain with competing ferromagnetic J1 and antiferromagnetic J2 in a magnetic field by exploiting density-matrix renormalization group techniques. In a field-induced spin nematic regime, we observe gapless excitations at q = π according to quasi-long-range antiferro-quadrupole correlations. The gapless excitation mode has a quadratic form at the saturation, while it changes into a linear dispersion as the magnetization decreases.

  17. Quadrupole moment of the superdeformed band in 131Ce

    International Nuclear Information System (INIS)

    He, Y.; Godfrey, M.J.; Jenkins, I.; Kirwan, A.J.; Nolan, P.J.

    1990-01-01

    A mean lifetime measurement has been carried out on the states in the superdeformed band found in 131 Ce using the Doppler shift attenuation method (DSAM). The measured intrinsic nuclear quadrupole moment is Q o approx= 6 eb, assuming constant deformation, which corresponds to a quadrupole deformation β 2 approx= 0.35. This is considerably smaller than the value deduced for 132 Ce. (author)

  18. Computation of a quadrupole magnet for the APS storage ring

    Energy Technology Data Exchange (ETDEWEB)

    Turner, L.R.; Kim, S.H.; Thompson, K.M.

    1990-01-01

    The storage ring of the Advanced Photon Source will include 400 quadrupole magnets for focusing the beam. A prototype quadrupole has been designed, constructed, and measured. This paper describes the two- and three-dimensional (2-D and 3-D) field computations performed for this design. 2 refs., 6 figs., 1 tab.

  19. Origin-independent calculation of quadrupole intensities in X-ray spectroscopy

    International Nuclear Information System (INIS)

    Bernadotte, Stephan; Atkins, Andrew J.; Jacob, Christoph R.

    2012-01-01

    For electronic excitations in the ultraviolet and visible range of the electromagnetic spectrum, the intensities are usually calculated within the dipole approximation, which assumes that the oscillating electric field is constant over the length scale of the transition. For the short wavelengths used in hard X-ray spectroscopy, the dipole approximation may not be adequate. In particular, for metal K-edge X-ray absorption spectroscopy (XAS), it becomes necessary to include higher-order contributions. In quantum-chemical approaches to X-ray spectroscopy, these so-called quadrupole intensities have so far been calculated by including contributions depending on the square of the electric-quadrupole and magnetic-dipole transition moments. However, the resulting quadrupole intensities depend on the choice of the origin of the coordinate system. Here, we show that for obtaining an origin-independent theory, one has to include all contributions that are of the same order in the wave vector consistently. This leads to two additional contributions depending on products of the electric-dipole and electric-octupole and of the electric-dipole and magnetic-quadrupole transition moments, respectively. We have implemented such an origin-independent calculation of quadrupole intensities in XAS within time-dependent density-functional theory, and demonstrate its usefulness for the calculation of metal and ligand K-edge XAS spectra of transition metal complexes.

  20. Development of LHC-IR model quadrupoles in the US

    CERN Document Server

    Sabbi, G

    2007-01-01

    Insertion quadrupoles with large aperture and high gradient are required to achieve the luminosity upgrade goal of 1035 cm-2 s-1 at the Large Hadron Collider (LHC). In 2004, the US Department of Energy established the LHC Accelerator Research Program (LARP) to develop a technology base for the upgrade. The focus of the magnet program, which is a collaboration of three US laboratories, BNL, FNAL and LBNL, is on development of high gradient quadrupoles using Nb$_{3}$Sn in order to operate at high field and with sufficient temperature margin. Other program components address issues regarding magnet design, radiation-hard materials, long magnet scale-up, quench protection, fabrication techniques and conductor and cable R&D. This paper reports on the development od model quadrupoles and outlines the long-term goals of the program.

  1. Communication: On the isotope anomaly of nuclear quadrupole coupling in molecules

    Science.gov (United States)

    Filatov, Michael; Zou, Wenli; Cremer, Dieter

    2012-10-01

    The dependence of the nuclear quadrupole coupling constants (NQCC) on the interaction between electrons and a nucleus of finite size is theoretically analyzed. A deviation of the ratio of the NQCCs obtained from two different isotopomers of a molecule from the ratio of the corresponding bare nuclear electric quadrupole moments, known as quadrupole anomaly, is interpreted in terms of the logarithmic derivatives of the electric field gradient at the nuclear site with respect to the nuclear charge radius. Quantum chemical calculations based on a Dirac-exact relativistic methodology suggest that the effect of the changing size of the Au nucleus in different isotopomers can be observed for Au-containing molecules, for which the predicted quadrupole anomaly reaches values of the order of 0.1%. This is experimentally detectable and provides an insight into the charge distribution of non-spherical nuclei.

  2. Lifetime Studies of Cs2Te Cathodes at the Phin RF Photoinjector at CERN

    CERN Document Server

    Hessler, C; Divall Csatari, M; Doebert, S; Fedosseev, V

    2012-01-01

    The PHIN photoinjector has been developed to study the feasibility of a photoinjector option for the CLIC (Compact LInear Collider) drive beam as an alternative to the baseline design, using a thermionic gun. The CLIC drive beam requires a high charge of 8.4 nC per bunch in 0.14 ms long trains, with 2 ns bunch spacing and 50 Hz macro pulse repetition rate, which corresponds to a total charge per macro pulse of 0.59 mC. This means unusually high peak and average currents for photoinjectors and is challenging concerning the cathode lifetime. In this paper detailed studies of the lifetime of Cs2Te cathodes, produced by the co-evaporation technique, are presented with respect to bunch charge, train length and vacuum level. Furthermore, the impact of the train length and bunch charge on the vacuum level will be discussed and steps to extend the lifetime will be outlined.

  3. Physics performances for Scalar Electron, Scalar Muon and Scalar Neutrino searches at 3 TeV and 1.4 TeV at CLIC

    CERN Document Server

    Battaglia, M.; Marshall, J.S.; Poss, S.; Sailer, A.; Thomson, M.; van der Kraaij, E.

    2013-01-01

    The determination of scalar lepton and gaugino masses is an important part of the programme of spectroscopic studies of Supersymmetry at a high energy e+e- linear collider. In this article we present results of a study of the processes: e+e- -> eR eR -> e+e- chi0 chi, e+e- -> muR muR -> mu mu- chi0 chi0, e+e- -> eL eL -> e e chi0 chi0 and e+e- -> snu_e snu_e -> e e chi+ chi-in two Supersymmetric benchmark scenarios at 3 TeV and 1.4 TeV at CLIC. We characterize the detector performance, lepton energy resolution and boson mass resolution. We report the accuracy of the production cross section measurements and the eR muR, snu_e, chi+ and chi0 mass determination, estimate the systematic errors affecting the mass measurement and discuss the requirements on the detector time stamping capability and beam polarization. The analysis accounts for the CLIC beam energy spectrum and the dominant beam-induced background. The detector performances are incorporated by full simulation and reconstruction of the events within t...

  4. Calculation of the quadrupole-lense fringing field

    International Nuclear Information System (INIS)

    Arzumanov, A.A.

    1978-01-01

    With the aim of decreasing the scattering field effect at electrode edge or quadrupole lens poles with conformal transformations the scattering fields of electric quadrupole lens, two-electrode lens with the electrodes in a hyperbola form, as well as magnetic lens with hyperbolic poles are calculated. For the two-electrode system with kappa=0.1 (kappa - is coefficient, characterizing the rate of field intensity change in the lens) field distortion equals 1.8%. The comparison of experimental data with the calculation data has shown that with a rather high accuracy the scattering field effect in electric and magnetic lenses with hyperbolic poles may be taken into account

  5. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    International Nuclear Information System (INIS)

    Maschke, A. W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly

  6. Quadrupole moment in the excited 2Psub(1/2) state

    International Nuclear Information System (INIS)

    Amusia, M.Ya.; Yakhontov, V.L.

    1984-01-01

    Computation of the quadrupole moment values in the 2Psub(1/2) states of hydrogen and meso-hydrogen is carried out. It is shown that allowance for the hyperfine interaction of the electron with the proton in the first order of perturbation theory results in giant values of the quadrupole moment of the atoms. (author)

  7. Alumina Ceramics Vacuum Duct for the 3GeV-RCS of the J-PARC

    CERN Document Server

    Kinsho, Michikazu; Ogiwara, Norio; Saito, Yoshio

    2005-01-01

    It was success to develop alumina ceramics vacuum ducts for the 3GeV-RCS of J-PARC at JAERI. There are two types of alumina ceramics vacuum ducts needed, one being 1.5m-long duct with a circular cross section for use in the quadrupole magnet, the other being 3.5m-long and bending 15 degrees, with a race-track cross section for use in the dipole magnet. These ducts could be manufactured by joining several duct segments of 0.5-0.8 m in length by brazing. The alumina ceramics ducts have copper stripes on the outside surface of the ducts to reduce the duct impedance. One of the ends of each stripe is connected to a titanium flange by way of a capacitor so to interrupt an eddy current circuit. The copper stripes are produced by an electroforming method in which a stripe pattern formed by Mo-Mn metallization is first sintered on the exterior surface and then overlaid by PR-electroformed copper (Periodic current Reversal electroforming method). In order to reduce emission of secondary electrons when protons or elect...

  8. Stability of the coherent quadrupole oscillations excited by the beam-beam interaction

    International Nuclear Information System (INIS)

    Kamiya, Y.; Chao, A.W.

    1983-10-01

    We study the coherent quadrupole motion in the presence of beam-beam interaction, using a linear approximation to the beam-beam force. The corresponding beam-beam limit is determined by evaluating the eigenvalues of a system of linear equations describing the coherent quadrupole motion. We find that the stability of the quadrupole motions imposes severe limits on the beam current, as is the case for the dipole instability. Preliminary results of this study have appeared elsewhere

  9. On quantum quadrupole radiation

    International Nuclear Information System (INIS)

    Fonda, L.; Mankoc-Borstnik, N.

    1981-02-01

    In this paper it is shown that for the electromagnetic decay of a quantum system in a coherent rotational state the total quadrupole radiation is proportional to (d 5 Q/dt 5 )(dQ/dt)sup(*)+c.c. For the radiation flux out of a sphere of large radius a different quantity, closer to the classical expression (d 3 Q/dt 3 ) 2 , is found. (author)

  10. The Erez–Rosen metric and the role of the quadrupole on light propagation

    International Nuclear Information System (INIS)

    Bini, Donato; Crosta, Mariateresa; Vecchiato, Alberto; De Felice, Fernando; Geralico, Andrea

    2013-01-01

    The gravitational field of a static body with the quadrupole moment is described by an exact solution found by Erez and Rosen. Here, we investigate the role of the quadrupole in the motion, deflection and lensing of a light ray in the above metric. The standard lensing observables such as image positions and magnification have been explicitly obtained in the weak-field and small-quadrupole limit. In this limit, the spacetime metric appears as the natural generalization to quadrupole corrections of the metric form adopted also in current astrometric models. Hence, the corresponding analytical solution of the inverse ray tracing problem and the consistency with other approaches are also discussed. (paper)

  11. Vacuum mechatronics

    Science.gov (United States)

    Hackwood, Susan; Belinski, Steven E.; Beni, Gerardo

    1989-01-01

    The discipline of vacuum mechatronics is defined as the design and development of vacuum-compatible computer-controlled mechanisms for manipulating, sensing and testing in a vacuum environment. The importance of vacuum mechatronics is growing with an increased application of vacuum in space studies and in manufacturing for material processing, medicine, microelectronics, emission studies, lyophylisation, freeze drying and packaging. The quickly developing field of vacuum mechatronics will also be the driving force for the realization of an advanced era of totally enclosed clean manufacturing cells. High technology manufacturing has increasingly demanding requirements for precision manipulation, in situ process monitoring and contamination-free environments. To remove the contamination problems associated with human workers, the tendency in many manufacturing processes is to move towards total automation. This will become a requirement in the near future for e.g., microelectronics manufacturing. Automation in ultra-clean manufacturing environments is evolving into the concept of self-contained and fully enclosed manufacturing. A Self Contained Automated Robotic Factory (SCARF) is being developed as a flexible research facility for totally enclosed manufacturing. The construction and successful operation of a SCARF will provide a novel, flexible, self-contained, clean, vacuum manufacturing environment. SCARF also requires very high reliability and intelligent control. The trends in vacuum mechatronics and some of the key research issues are reviewed.

  12. Analysis of magnetic nanoparticles using quadrupole magnetic field-flow fractionation

    International Nuclear Information System (INIS)

    Carpino, Francesca; Moore, Lee R.; Zborowski, Maciej; Chalmers, Jeffrey J.; Williams, P. Stephen

    2005-01-01

    The new technique of quadrupole magnetic field-flow fractionation is described. It is a separation and characterization technique for particulate magnetic materials. Components of a sample are eluted from the separation channel at times dependent on the strength of their interaction with the magnetic field. A quadrupole electromagnet allows a programmed reduction of field strength during analysis of polydisperse samples

  13. Recent results with HV-CMOS and planar sensors for the CLIC vertex detector

    CERN Document Server

    AUTHOR|(SzGeCERN)734627

    2017-01-01

    The physics aims for the future multi-TeV e+e- Compact Linear Collider (CLIC) impose high precision requirements on the vertex detector which has to match the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of 3μm, 10 ns time stamping capabilities, low mass (⇠0.2% X0 per layer), low power dissipation and pulsed power operation. Recent results of test beam measurements and GEANT4 simulations for assemblies with Timepix3 ASICs and thin active-edge sensors are presented. The 65 nm CLICpix readout ASIC with 25μm pitch was bump bonded to planar silicon sensors and also capacitively coupled through a thin layer of glue to active HV-CMOS sensors. Test beam results for these two hybridisation concepts are presented.

  14. Waferscale Electrostatic Quadrupole Array for Multiple Ion Beam Manipulation

    OpenAIRE

    Vinayakumar, K. B.; Persaud, A.; Seidl, P. A.; Ji, Q.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Lal, A.

    2018-01-01

    We report on the first through-wafer silicon-based Electrostatic Quadrupole Array (ESQA) to focus high energy ion beams. This device is a key enabler for a wafer based accelerator architecture that lends itself to orders-of-magnitude reduction in cost, volume and weight of charged particle accelerators. ESQs are a key building block in developing compact Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) [1]. In a MEQALAC electrostatic forces are used to focus ions, and elec...

  15. Mechanical Design of a Second Generation LHC IR Quadrupole

    International Nuclear Information System (INIS)

    Caspi, S.; Bartlett, S.E.; Dietderich, D.R.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.R.; Hannaford, C.R.; Lietzke, A.F.; McInturff, A.D.; Sabbi, G.; Scanlan, R.M.

    2003-01-01

    One of the proposed options to increase the LHC luminosity is the replacement of the existing inner triplets at the Interaction Regions with new low-beta larger aperture quadrupoles operating at the same gradient. Lawrence Berkeley National Laboratory (LBNL) is carrying out preliminary studies of a large-bore Nb 3 Sn quadrupole. The mechanical design presents a support structure based on the use of keys and bladders without self-supporting collars. This technology has been proven effective in several successful common coil Nb 3 Sn dipoles built at LBNL, and it is for the first time applied to a cos(2(var t heta)) design. In this paper we present a detailed analysis of the quadrupole mechanical behavior, demonstrating the possibility of delivering, through this method, well-controlled coil precompression during assembly, cool-down and excitation. The study has been performed with the finite element program ANSYS

  16. Les mesures de métrologie pour le CLIC

    CERN Document Server

    Cherif, A

    2008-01-01

    Le projet CLIC est en tout point un défi technique majeur ; c?est le cas également pour la mesure dimensionnelle. Quels sont les équipements et les méthodes qui permettent de caractériser les pièces avec une incertitude de mesure aussi réduite que possible, vu les tolérances micrométriques imposées ? Afin de répondre à cette question, une veille technologique a été maintenue sur une longue période. Les acteurs relevants ont été contactés pour bénéficier d?une ouverture sur les dernières avancées dans le domaine. Différentes techniques ont été étudiées et comparées telles que la digitalisation, la tomographie X, la mesure tridimensionnelle. L'assemblage de haute précision des composants est aussi primordial. Sa mise en ?uvre sous un microscope optique ou à l'aide d'une machine tridimensionnelle est en cours d?étude. L'exposé traitera aussi de la mesure de rugosité, un domaine où nous disposons de moyens adaptés aux exigences spécifiques du projet.

  17. Study on pulsed-operation of the drift tube quadrupole magnets

    International Nuclear Information System (INIS)

    Mutou, M.

    1982-01-01

    The heavy ion linac for NUMATRON project is designed not only as a injector for a synchrotron but also as a supplier of heavy ion beams for experiments with linac beam. In one repetition cycle of the synchrotron (1sec), the linac injects nearly 25 beam pulses with pulse width of 300 μsec and pulse interval of 30 msec. And the ion species can be varied every repetition. On the other hand, when it is off duty of injection to the synchrotron, the linac accelerates the beams that are directly used for the experiments. Also in this case, the ion species should be varied according to the requests of the experiments, for instance every 1 sec. Therefore, the quadrupole magnets installed in the drift tubes of the linac must be excited with pulse mode. The power supply of the quadrupole magnets will consists of two parts, namely pulse-excitation and dc-excitation power sources. The report describes the posibilities on the pulse-operation of the quadrupole magnets with the field gradient of asymptotically equals 10 KG/cm, and the analysis of the power supply of the quadrupole magnets. (author)

  18. The Analysis of Quadrupole Magnetic Focusing Effect by Finite Element Method

    International Nuclear Information System (INIS)

    Utaja

    2003-01-01

    Quadrupole magnets will introduce focusing effect to a beam of the charge particle passing parallel to the magnet faces. The focusing effect is need to control the particle beam, so that it is in accordance with necessity requirement stated. This paper describes the analysis of focusing effect on the quadrupole magnetic by the finite element method. The finite element method in this paper is used for solve the potential distribution of magnetic field. If the potential magnetic field distribution in every node have known, a charge particle trajectory can be traced. This charge particle trajectory will secure the focusing effect of the quadrupole magnets. (author)

  19. Development and Validation of a Multipoint Based Laser Alignment System for CLIC

    CERN Document Server

    Stern, G; Lackner, F; Mainaud-Durand, H; Piedigrossi, D; Sandomierski, J; Sosin, M; Geiger, A; Guillaume, S

    2013-01-01

    Alignment is one of the major challenges within CLIC study, since all accelerator components have to be aligned with accuracy up to 10 μm over sliding windows of 200 m. So far, the straight line reference concept has been based on stretched wires coupled with Wire Positioning Sensors. This concept should be validated through inter-comparison with an alternative solution. This paper proposes an alternative concept where laser beam acts as straight line reference and optical shutters coupled with cameras visualise the beam. The principle was first validated by a series of tests using low-cost components. Yet, in order to further decrease measurement uncertainty in this validation step, a high-precision automatised micrometric table and reference targets have been added to the setup. The paper presents the results obtained with this new equipment, in terms of measurement precision. In addition, the paper gives an overview of first tests done at long distance (up to 53 m), having emphasis on beam divergence

  20. High Frequency Effects of Impedances and Coatings in the CLIC Damping Rings

    CERN Document Server

    Koukovini Platia, Eirini; Rumolo, G

    The Compact Linear Collider (CLIC) is a 3 TeV eÅe¡ machine, currently under design at CERN, that targets to explore the terascale particle physics regime. The experiment requires a high luminosity of 2£1034 cm2 s¡1, which can be achieved with ultra low emittances delivered from the Damping Rings (DRs) complex. The high bunch brightness of the DRs gives rise to several collective effects that can limit the machine performance. Impedance studies during the design stage of the DR are of great importance to ensure safe operation under nominal parameters. As a first step, the transverse impedance model of the DRis built, accounting for the wholemachine. Beam dynamics simulations are performedwith HEADTAIL to investigate the effect on beam dynamics. For the correct impedancemodeling of the machine elements, knowledge of the material properties is essential up to hundreds of GHz, where the bunch spectrum extends. Specifically, Non Evaporable Getter (NEG) is a commonly used coating for good vacuumbut its properti...

  1. Relaxation of quadrupole orientation in an optically pumped alkali vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-04-01

    The relaxation of quadrupole orientation (alignment) in an optically pumped alkali vapour is theoretically studied by taking into account the relaxation processes by alkali-buffer gas, alkali-alkali with spin exchange and alkali-cell wall (diffusion process) collisions. The relaxation transients of the quadrupole orientation are obtained by introducing a first-order weak-pumping approximation (intermediate pumping) less restrictive than the usually considered (zeroth order) one.

  2. Nuclear quadrupole interactions in ferroelectric compounds of HF/sup 181/

    Energy Technology Data Exchange (ETDEWEB)

    Kunzler, J V

    1971-01-01

    Measurements of nuclear quadrupole interaction constants in perovkite-type compounds of PbHfO/sub 3/, SnhfO/sub 3/, CaHfO/sub 3/ e SrHfO/sub 3/ have been performed using the perturbed angular correlation technique. A range of fundamental frequencies from 150 to 550 Megaradians per second was determined. The variation of quadrupole constants has been discussed through the molecular orbital theory.

  3. Compact high-field superconducting quadrupole magnet with holmium poles

    Energy Technology Data Exchange (ETDEWEB)

    Barlow, D.B.; Kraus, R.H. Jr.; Lobb, C.T.; Menzel, M.T. (Los Alamos National Lab., NM (United States)); Walstrom, P.L. (Grumman Space Systems, Los Alamos, NM (United States))

    1992-03-15

    A compact high-field superconducting quadrupole magnet was designed and built with poles made of the rare-earth metal holmium. The magnet is intended for use in superconducting coupled-cavity linear accelerators where compact high-field quadrupoles are needed, but where the use of permanent magnets is ruled out because of trapped-flux losses. The magnet has a clear bore diameter of 1.8 cm, outside diameter of 11 cm, length of 11 cm, and pole tip length of 6 cm. The effect of using holmium, a material with a higher saturation field than iron, was investigated by replacing poles made of iron with identical poles made of holmium. The magnet was operated at a temperature of 4.2 K and reached a peak quadrupole field gradient of 355 T/m, a 10% increase over the same magnet with iron poles. This increase in performance is consistent with calculations based on B-H curves that were measured for holmium at 4.2 K. (orig.).

  4. Construction and Qualification of the Pre-Series MQM Superconducting Quadrupoles for the LHC Insertions

    CERN Document Server

    Ostojic, R; Lucas, J; Venturini-Delsolaro, W; Landgrebe, D

    2004-01-01

    The LHC insertions will be equipped with individually powered MQM superconducting quadrupoles, produced in three versions with magnetic lengths of 2.4 m, 3.4 m, and 4.8 m. The quadrupoles feature a 56 mm aperture coil, designed on the basis of an 8.8 mm wide Rutherford-type NbTi cable for a nominal gradient of 200 T/m at 1.9 K and 5390 A. A total of 96 quadrupoles are in production in Tesla Engineering, UK. In this report we describe the construction of the pre-series MQM quadrupoles and present the results of the qualification tests.

  5. AA, wide quadrupole on measurement stand

    CERN Multimedia

    CERN PhotoLab

    1981-01-01

    Please look up 8101024 and 8103203 first. Wide quadrupole (QFW, QDW) with end-shims and shimming washers on the measurement stand. With the measurement coil one measured the harmonics of the magnetic field, determined the magnetic centre, and catalogued the effect of washer constellations.

  6. Design, simulation and construction of quadrupole magnets for focusing electron beam in powerful industrial electron accelerator

    Directory of Open Access Journals (Sweden)

    S KH Mousavi

    2015-09-01

    Full Text Available In this paper the design and simulation of quadrupole magnets and electron beam optical of that by CST Studio code has been studied. Based on simulation result the magnetic quadrupole has been done for using in beam line of first Iranian powerful electron accelerator. For making the suitable magnetic field the effects of material and core geometry and coils current variation on quadrupole magnetic field have been studied. For test of quadrupole magnet the 10 MeV beam energy and 0.5 pi mm mrad emittance of input beam has been considered. We see the electron beam through the quadrupole magnet focus in one side and defocus in other side. The optimum of distance between two quadrupole magnets for low emittance have been achieved. The simulation results have good agreement with experimental results

  7. Observation of a phononic quadrupole topological insulator

    Science.gov (United States)

    Serra-Garcia, Marc; Peri, Valerio; Süsstrunk, Roman; Bilal, Osama R.; Larsen, Tom; Villanueva, Luis Guillermo; Huber, Sebastian D.

    2018-03-01

    The modern theory of charge polarization in solids is based on a generalization of Berry’s phase. The possibility of the quantization of this phase arising from parallel transport in momentum space is essential to our understanding of systems with topological band structures. Although based on the concept of charge polarization, this same theory can also be used to characterize the Bloch bands of neutral bosonic systems such as photonic or phononic crystals. The theory of this quantized polarization has recently been extended from the dipole moment to higher multipole moments. In particular, a two-dimensional quantized quadrupole insulator is predicted to have gapped yet topological one-dimensional edge modes, which stabilize zero-dimensional in-gap corner states. However, such a state of matter has not previously been observed experimentally. Here we report measurements of a phononic quadrupole topological insulator. We experimentally characterize the bulk, edge and corner physics of a mechanical metamaterial (a material with tailored mechanical properties) and find the predicted gapped edge and in-gap corner states. We corroborate our findings by comparing the mechanical properties of a topologically non-trivial system to samples in other phases that are predicted by the quadrupole theory. These topological corner states are an important stepping stone to the experimental realization of topologically protected wave guides in higher dimensions, and thereby open up a new path for the design of metamaterials.

  8. The effect of quadrupole force to the spectra of nuclei in the f7/2 shell

    International Nuclear Information System (INIS)

    Zhang Qingying

    1992-01-01

    The effect of quadrupole force on the spectra of nuclei in the f 7/2 shell is tested. The nuclear spectra are calculated by using the surface delta interaction plus quadrupole interaction and the modified surface delta interaction respectively. The results calculated with the former are much better than those with the latter, the role of the isospin modified term in the modified surface delta interaction can be substituted by the quadrupole interaction term. It is also shown that the effect of quadrupole interaction in the f 7/2 shell is important although the quadrupole deformations of nuclei in this region are not large

  9. Nuclear quadrupole relaxation and viscosity in liquid metals

    International Nuclear Information System (INIS)

    Schirmacher, W.

    1976-01-01

    It is shown that the nuclear quadrupole relaxation rate due to the molecular motions in liquid metals is related to the shear and bulk viscosity and hence to the absorption coefficient of ultrasound. Application of the 'extended liquid phonon' model of Ortoleva and Nelkin - which is the third of a series of continued-fraction-approximations for the van Hove neutron scattering function - gives a relation to the self diffusion constant. The predictions of the theory concerning the temperature dependence are compared with quadrupole relaxation measurements of Riegel et al. and Kerlin et al. in liquid gallium. Agreement is found only with the data of Riegel et al. (orig.) [de

  10. Low-frequency quadrupole impedance of undulators and wigglers

    Directory of Open Access Journals (Sweden)

    A. Blednykh

    2016-10-01

    Full Text Available An analytical expression of the low-frequency quadrupole impedance for undulators and wigglers is derived and benchmarked against beam-based impedance measurements done at the 3 GeV NSLS-II storage ring. The adopted theoretical model, valid for an arbitrary number of electromagnetic layers with parallel geometry, allows to calculate the quadrupole impedance for arbitrary values of the magnetic permeability μ_{r}. In the comparison of the analytical results with the measurements for variable magnet gaps, two limit cases of the permeability have been studied: the case of perfect magnets (μ_{r}→∞, and the case in which the magnets are fully saturated (μ_{r}=1.

  11. Proposal to negotiate extensions to four collaboration agreements for the design of key components of the beam-delivery and linac systems for the Compact Linear Collider (CLIC) for a duration of two years

    CERN Document Server

    2017-01-01

    Proposal to negotiate extensions to four collaboration agreements for the design of key components of the beam-delivery and linac systems for the Compact Linear Collider (CLIC) for a duration of two years

  12. MEA vacuum system

    International Nuclear Information System (INIS)

    Stroo, R.; Schwebke, H.; Heine, E.

    1984-01-01

    This report describes construction and operation of the MEA vacuum system of NIKHEF (Netherlands). First, the klystron vacuum system, beam transport system, diode pump and a triode pump are described. Next, the isolation valve and the fast valves of the vacuum system are considered. Measuring instruments, vacuum system commands and messages of failures are treated in the last chapter. (G.J.P.)

  13. Prediction for CP violation via electric dipole moment of τ lepton in γγ→τ{sup +}τ{sup −} process at CLIC

    Energy Technology Data Exchange (ETDEWEB)

    Atağ, S. [Department of Physics, Faculty of Sciences, Ankara University,06100 Tandogan, Ankara (Turkey); Gürkanlı, E. [Department of Physics, Sinop University,57000 Sinop (Turkey); Department of Physics, Faculty of Sciences, Ankara University,06100 Tandogan, Ankara (Turkey)

    2016-06-21

    Pair production of tau leptons in two photon collision γγ→τ{sup +}τ{sup −} is studied at CLIC to test CP violating QED couplings of tau leptons. CP violating effects are investigated using tau pair spin correlations which are observed through the hadronic decay of each τ into πν. Competitive bounds with previous works on the electric dipole moment from CP odd terms have been obtained.

  14. Ellipsoidal universe can solve the cosmic microwave background quadrupole problem.

    Science.gov (United States)

    Campanelli, L; Cea, P; Tedesco, L

    2006-09-29

    The recent 3 yr Wilkinson Microwave Anisotropy Probe data have confirmed the anomaly concerning the low quadrupole amplitude compared to the best-fit Lambda-cold dark matter prediction. We show that by allowing the large-scale spatial geometry of our universe to be plane symmetric with eccentricity at decoupling or order 10(-2), the quadrupole amplitude can be drastically reduced without affecting higher multipoles of the angular power spectrum of the temperature anisotropy.

  15. Insulation vacuum and beam vacuum overpressure release

    CERN Document Server

    Parma, V

    2009-01-01

    There is evidence that the incident of 19th September caused a high pressure build-up inside the cryostat insulation vacuum which the existing overpressure devices could not contain. As a result, high longitudinal forces acting on the insulation vacuum barriers developed and broke the floor and the floor fixations of the SSS with vacuum barriers. The consequent large longitudinal displacements of the SSS damaged chains of adjacent dipole cryo-magnets. Estimates of the helium mass flow and the pressure build- up experienced in the incident are presented together with the pressure build-up for an even more hazardous event, the Maximum Credible Incident (MCI). The strategy of limiting the maximum pressure by the installation of addition pressure relieve devices is presented and discussed. Both beam vacuum lines were ruptured during the incident in sector 3-4 giving rise to both mechanical damage and pollution of the system. The sequence, causes and effects of this damage will be briefly reviewed. We will then an...

  16. Quadrupole collective excitations in rapidly rotating nuclej

    International Nuclear Information System (INIS)

    Mikhajlov, I.N.

    1983-01-01

    The spectrum of collective quadrupole excitations in nuclei is investigated. The average nucleus field has the axial symmetry and rotation occurs relatively to this axis. Dependences of the spectrum of quadrupole oscillations on rotation rate for classic liquid drop (CLD) and for a drop of fermi-liquid (DFL) with fissionability parameter X=0.62 ( 154 Er) are presented. The dependence of probabilities of E2-transitions between single-phonon and phonon-free states on rotation rate for CLD and DFL with fussionability parameter X=0.62 ( 154 Er) is also presented. It is shown that for CLD collective E2-transition of states of yrast-consequence is absolutely forbidden. For DFL transitions are possible that lead to decay of phonon-free state with the excitation of phonons of γ-modes and decrease of angular momentum

  17. Dynamic imperfections and optimized feedback design in the Compact Linear Collider main linac

    CERN Document Server

    Eliasson, Peder

    2008-01-01

    The Compact Linear Collider (CLIC) main linac is sensitive to dynamic imperfections such as element jitter, injected beam jitter, and ground motion. These effects cause emittance growth that, in case of ground motion, has to be counteracted by a trajectory feedback system. The feedback system itself will, due to jitter effects and imperfect beam position monitors (BPMs), indirectly cause emittance growth. Fast and accurate simulations of both the direct and indirect effects are desirable, but due to the many elements of the CLIC main linac, simulations may become very time consuming. In this paper, an efficient way of simulating linear (or nearly linear) dynamic effects is described. The method is also shown to facilitate the analytic determination of emittance growth caused by the different dynamic imperfections while using a trajectory feedback system. Emittance growth expressions are derived for quadrupole, accelerating structure, and beam jitter, for ground motion, and for noise in the feedback BPMs. Fina...

  18. Magnetic field in the end region of the SSC quadrupole magnet

    International Nuclear Information System (INIS)

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-06-01

    Recent advances in methods of computing magnetic fields have made it possible to study the field in the end region of the SS quadrupole magnet in detail. The placement of conductor in the straight section, away from the ends, was designed to produce a practically pure quadrupole field in the two-dimensional sense. The ends of the coils were designed to produce a practically pure quadrupole field in the integral sense using a method that ignores the presence of the iron yoke. Subsequently, the effect of presence of the yoke on the field was analyzed. The paper presents the end configuration together with the computed integrated multipole components, local multipole components, and local field components. A comparison with measurements is included. 5 refs., 5 figs., 1 tab

  19. Magnetic field measurements of LHC inner triplet quadrupoles fabricated at Fermilab

    International Nuclear Information System (INIS)

    Velev, G.V.; Bossert, R.; Carcagno, R.; DiMarco, J.; Feher, S.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Orris, D.; Schlabach, P.; Strait, J.

    2006-01-01

    Fermilab, as part of the US-LHC Accelerator Project, is producing superconducting low-beta quadrupole magnets for the Large Hadron Collider (LHC). These 5.5 m long magnets are designed to operate in superfluid helium at 1.9 K with a nominal gradient of 205 T/m in the 70 mm bore. Two quadrupoles separated by a dipole orbit corrector in a single cryogenic assembly comprise the Q2 optical elements of the final focus triplets in the LHC interaction regions. The field quality of the quadrupoles is measured at room temperature during construction of the cold masses as well as during cold testing of the cryogenic assembly. We summarize data from the series measurements of the magnets and discuss various topics of interest

  20. Magnetic field measurements of LHC inner triplet quadrupoles fabricated at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Velev, G.V.; Bossert, R.; Carcagno, R.; DiMarco, J.; Feher, S.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Orris, D.; Schlabach, P.; Strait, J.; /Fermilab

    2006-08-01

    Fermilab, as part of the US-LHC Accelerator Project, is producing superconducting low-beta quadrupole magnets for the Large Hadron Collider (LHC). These 5.5 m long magnets are designed to operate in superfluid helium at 1.9 K with a nominal gradient of 205 T/m in the 70 mm bore. Two quadrupoles separated by a dipole orbit corrector in a single cryogenic assembly comprise the Q2 optical elements of the final focus triplets in the LHC interaction regions. The field quality of the quadrupoles is measured at room temperature during construction of the cold masses as well as during cold testing of the cryogenic assembly. We summarize data from the series measurements of the magnets and discuss various topics of interest.

  1. Advanced light source vacuum policy and vacuum guidelines for beamlines and experiment endstations

    International Nuclear Information System (INIS)

    Hussain, Z.

    1995-08-01

    The purpose of this document is to: (1) Explain the ALS vacuum policy and specifications for beamlines and experiment endstations. (2) Provide guidelines related to ALS vacuum policy to assist in designing beamlines which are in accordance with ALS vacuum policy. This document supersedes LSBL-116. The Advanced Light Source is a third generation synchrotron radiation source whose beam lifetime depends on the quality of the vacuum in the storage ring and the connecting beamlines. The storage ring and most of the beamlines share a common vacuum and are operated under ultra-high-vacuum (UHV) conditions. All endstations and beamline equipment must be operated so as to avoid contamination of beamline components, and must include proper safeguards to protect the storage ring vacuum from an accidental break in the beamline or endstation vacuum systems. The primary gas load during operation is due to thermal desorption and electron/photon induced desorption of contaminants from the interior of the vacuum vessel and its components. The desorption rates are considerably higher for hydrocarbon contamination, thus considerable emphasis is placed on eliminating these sources of contaminants. All vacuum components in a beamline and endstation must meet the ALS vacuum specifications. The vacuum design of both beamlines and endstations must be approved by the ALS Beamline Review Committee (BRC) before vacuum connections to the storage ring are made. The vacuum design is first checked during the Beamline Design Review (BDR) held before construction of the beamline equipment begins. Any deviation from the ALS vacuum specifications must be approved by the BRC prior to installation of the equipment on the ALS floor. Any modification that is incorporated into a vacuum assembly without the written approval of the BRC is done at the user's risk and may lead to rejection of the whole assembly

  2. Trapping of Electron Cloud LLC/Cesrta Quadrupole and Sextupole Magnets

    International Nuclear Information System (INIS)

    Wang, L.

    2011-01-01

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R and D (1). One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in CESRTA and ILC quadrupole and sextupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with a long lifetime in a quadrupole and sextupole magnet due to the mirror field trapping mechanism. We study the effects of magnet strength, bunch current, ante-chamber effect, bunch spacing effect and secondary emission yield (SEY) in great detail. The development of an electron cloud in magnets is the main concern where a weak solenoid field is not effective. Quadrupole and sextupole magnets have mirror field configurations which may trap electrons by the mirror field trapping mechanism (2). Fig.1 shows the orbit of a trapped electron in a quadrupole magnet. The electron makes gyration motion (called transverse motion) and also moves along the field line (called longitudinal motion). At the mirror point (middle of the field line), there is a maximum longitudinal energy and minimum transverse energy. When the electron moves away from the mirror point, its longitudinal energy reduces and the transverse energy increases as the magnetic field increases. If the magnetic field is strong enough, the longitudinal energy becomes zero at one point and then the electron is turned back by the strong field. Note that the electrons are trapped in the region near the middle of the field lines. Although all quadrupole and sextupole magnets can trap electrons in principle, the

  3. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum

    Science.gov (United States)

    Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.

    2016-08-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.

  4. Energies and transition probabilities from the full solution of nuclear quadrupole-octupole model

    International Nuclear Information System (INIS)

    Strecker, M.; Lenske, H.; Minkov, N.

    2013-01-01

    A collective model of nuclear quadrupole-octupole vibrations and rotations, originally restricted to a coherent interplay between quadrupole and octupole modes, is now developed for application beyond this restriction. The eigenvalue problem is solved by diagonalizing the unrestricted Hamiltonian in the basis of the analytic solution obtained in the case of the coherent-mode assumption. Within this scheme the yrast alternating-parity band is constructed by the lowest eigenvalues having the appropriate parity at given angular momentum. Additionally we include the calculation of transition probabilities which are fitted with the energies simultaneously. As a result we obtain a unique set of parameters. The obtained model parameters unambiguously determine the shape of the quadrupole-octupole potential. From the resulting wave functions quadrupole deformation expectation values are calculated which are found to be in agreement with experimental values. (author)

  5. Isotopic dependence of the giant quadrupole resonance in the stable even-mass molybdenum nuclei

    International Nuclear Information System (INIS)

    Moalem, A.; Gaillard, Y.; Bemolle, A.M.; Buenerd, M.; Chauvin, J.; Duhamel, G.; Lebrun, D.; Martin, P.; Perrin, G.; de Saintignon, P.

    1979-01-01

    Inelastic scattering of 110 MeV 3 He particles is used to probe the quadrupole strength in the even Mo isotopes. The peak position of the giant quadrupole resonance is found to decrease more rapidly than predicted by the A/sup -1/3/ law, a behavior very similar to that exhibited by the photonuclear giant dipole resonance. The width and strength of the giant quadrupole resonance are practically constant in 92 Mo through 100 Mo

  6. Design and construction of superconducting quadrupole magnets for ion beam fusion

    International Nuclear Information System (INIS)

    Wang, S.T.; Ludwig, H.; Turner, L.R.

    1978-01-01

    A high gradient superconducting quadrupole has been designed and developed as the heavy ion beam focussing element in the low velocity portions of an rf linac for the Argonne Ion Beam Fusion Reactor. The quadrupole magnets will require an extremely short magnet coil length (approximately 20 cm to 30 cm) and extremely high central gradients (approximately 100 T/m to 200 T/m). The useful warm bore will be about 4 to 6 cm and the integral gradient homogeneity should be constant to +-5% over the useful warm bore. Special techniques have been developed which are especially suitable for multilayer coil winding and coil assembly with high average current density over the coil cross section. A 5-layer quadrupole with 9 cm winding bore has been built and tested to the full performance of about 100 T/m with little training. The achieved average current density is 22,000 A/cm 2 at a peak field in conductor of about 5.0 T. An 8-layer quadrupole is under construction for a design gradient of 140 T/m over 9 cm winding bore. The peak field will be about 7.2 T

  7. A superconducting quadrupole array for transport of multiple high current beams

    International Nuclear Information System (INIS)

    Faltens, A.; Shuman, D.

    1999-01-01

    We present a conceptual design of a superconducting quadrupole magnet array for the side-by-side transport of multiple high current particle beams in induction linear accelerators. The magnetic design uses a modified cosine 20 current distribution inside a square cell boundary. Each interior magnet's neighbors serve as the return flux paths and the poles are placed as close as possible to each other to facilitate this. No iron is present in the basic 2-D magnetic design; it will work at any current level without correction windings. Special 1/8th quadrupoles are used along the transverse periphery of the array to contain and channel flux back into the array, making every channel look as part of an infinite array. This design provides a fixed dimension array boundary equal to the quadrupole radius that can be used for arrays of any number of quadrupole channels, at any field level. More importantly, the design provides magnetic field separation between the array and the induction cores which may be surrounding it. Flux linkage between these two components can seriously affect the operation of both of them

  8. Fundamental Design Principles of Linear Collider Damping Rings, with an Application to CLIC

    CERN Document Server

    Potier, J P

    2000-01-01

    Damping Rings for Linear Colliders have to produce very small normalised emittances at a high repetition rate. A previous paper presented analytical expressions for the equilibrium emittance of an arc cell as a function of the deflection angle per dipole. In addition, an expression for the lattice parameters providing the minimum emittance, and a strategy to stay close to this, were proposed. This analytical approach is extended to the detailed design of Damping Rings, taking into account the straight sections and the damping wigglers. Complete rings, including wiggler and injection insections, were modelled with the MAD [1] program, and their performance was found to be in good agreement with the analytical calculation. With such an approach it is shown that a Damping Ring corresponding to the Compact Linear Collider (CLIC) parameters at 0.5 and 1 TeV centre-of-mass energy, and tunable for two different sets of emittance and injection repetition rate, can be designed using the same ring layout.

  9. Conceptual design of a quadrupole magnet for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Witte, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory, which would allow collisions of up to 21 GeV polarized electrons with a variety of species from the existing RHIC accelerator. eRHIC employs an Energy Recovery Linac (ERL) and an FFAG lattice for the arcs. The arcs require open-midplane quadrupole magnets of up to 30 T/m gradient of good field quality. In this paper we explore initial quadrupole magnet design concepts based on permanent magnetic material which allow to modify the gradient during operation.

  10. Test facility for investigation of heating of 30 GHz accelerating structure imitator for the CLIC project

    International Nuclear Information System (INIS)

    Elzhov, A.V.; Ginzburg, N.S.; Kaminsky, A.K.; Kuzikov, S.V.; Perelstein, E.A.; Peskov, N.Yu.; Petelin, M.I.; Sedykh, S.N.; Sergeev, A.P.; Sergeev, A.S.; Syratchev, I.; Zaitsev, N.I.

    2004-01-01

    Since 2001 an experimental test facility for investigation of lifetime of a copper material, with respect to multiple RF pulse actions, was set up on the basis of the JINR (Dubna) FEM oscillator, in collaboration with IAP RAS (Nizhny Novgorod). A high-Q copper cavity, which simulates the parameters of the accelerating structure of the collider CLIC at an operating frequency of 30 GHz, is used in the investigation. The experimental setup consists of a wavebeam injector--FEM oscillator (power of ∼25 MW, pulse duration up to 200 ns, spectral bandwidth not higher than 0.1%), a quasi-optic two-mirror transmission line, a wave-type converter, and a testing cavity. The frequency and transmission features of the components of the quasi-optic line were analyzed

  11. LARP Long Nb3Sn Quadrupole Design

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Ferracin, P.; Ghosh, A.; Hafalia, R.; Hannaford, R.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmalzle, J.; Tartaglia, M.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A.V.

    2008-01-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb 3 Sn conductor. The goal of these magnets is to be a proof of principle that Nb 3 Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure

  12. LARP Long Nb3Sn Quadrupole Design

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Felice, H.; Ferracin, P.; Fermilab; Brookhaven; LBL, Berkeley; Texas A-M

    2007-01-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb3Sn conductor. The goal of these magnets is to be a proof of principle that Nb3Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure

  13. LARP Long Nb3Sn Quadrupole Design

    International Nuclear Information System (INIS)

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Felice, H.; Ferracin, P.; Ghosh, A.; Hafalia, A.R.; Hannaford, C.R.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmalzle, J.; Tartaglia, M.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A.V.

    2007-01-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb 3 Sn conductor. The goal of these magnets is to be a proof of principle that Nb 3 Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure

  14. Quadrupole magnetic mapping of the high resolution spectrometers of Thomas Jefferson National Accelerator Laboratory, Hall A. (Q.M.M. project: Quadrupole Magnetic Measurement)

    International Nuclear Information System (INIS)

    Quemener, Gilles

    1997-01-01

    This thesis describes the magnetic measurements that have been performed on the superconducting quadrupoles of the High Resolution Spectrometers of TJNAF, Hall A (USA), which are designed to measure particle momentum up to 4 GeV.c -1 with a σp/p = 10 -4 resolution. The mapping method is based on rotating coil technique, the originality being a segmentation of the probe along the quad axis. Together with an accurate magnet modelling, the measurement of the flux variations through the set of rotating coils allows to determine the magnetic field at each point. We use the 3D field formalism, i.e., the Fourier-Bessel expansion of the field obtained by solving the Laplace equation. We describe the QMM method and then the apparatus consisting in two probes of length 1.6 m and 3.2 m built to map the three quadrupoles Q1, Q2, Q3. Data processing uses Fourier analysis. The mapping of the Electron Arm took place in situ in 1996. A first set of results concerns integral measurements including the properties of excitation cycle of the magnets (saturation and hysteresis). Second set of results in terms of local field yields the 3D field maps of the quadrupoles. After having applied corrections to the data we obtain a local field accuracy of 5 Gauss on each component, i.e. an uncertainty of 5.10 -4 relative to the quadrupole central field. We use SNAKE ray-tracing code with the implementation of QMM field maps and obtain preliminary results on HRS optics. (author)

  15. Kinetic equilibrium of space charge dominated beams in a misaligned quadrupole focusing channel

    International Nuclear Information System (INIS)

    Goswami, A.; Sing Babu, P.; Pandit, V. S.

    2013-01-01

    The dynamics of intense beam propagation through the misaligned quadrupole focusing channel has been studied in a self-consistent manner using nonlinear Vlasov-Maxwell equations. The equations of motion of the beam centroid have been developed and found to be independent of any specific beam distribution. A Vlasov equilibrium distribution and beam envelope equations have been obtained, which provide us a theoretical tool to investigate the dynamics of intense beam propagating in a misaligned quadrupole focusing channel. It is shown that the displaced quadrupoles only cause the centroid of the beam to wander off axis. The beam envelope around the centroid obeys the familiar Kapchinskij-Vladimirskij envelope equation that is independent of the centroid motion. However, the rotation of the quadrupole about its optical axis affects the beam envelope and causes an increase in the projected emittances in the two transverse planes due to the inter-plane coupling

  16. Vacuum mechatronics first international workshop

    Energy Technology Data Exchange (ETDEWEB)

    Belinski, S.E.; Shirazi, M.; Hackwood, S.; Beni, G. (eds.) (California Univ., Santa Barbara, CA (USA))

    1989-01-01

    This report contains papers on the following topics: proposed epitaxial thin film growth in the ultra-vacuum of space; particle monitoring and control in vacuum processing equipment; electrostatic dust collector for use in vacuum systems; materials evaluation of an electrically noisy vacuum slip ring assembly; an overview of lubrication and associated materials for vacuum service; the usage of lubricants in a vacuum environment; guidelines and practical applications for lubrication in vacuum; recent development in leak detector and calibrator designs; the durability of ballscrews for ultrahigh vacuum; vacuum-compatible robot for self-contained manufacturing systems; the design, fabrication, and assembly of an advanced vacuum robotics system for space payload calibration; design criteria for mechanisms used in space; and concepts and requirements for semiconductor multiprocess integration in vacuum. These papers are indexed separately elsewhere.

  17. MQRAD, a computer code for synchrotron radiation from quadrupole magnets

    International Nuclear Information System (INIS)

    Morimoto, Teruhisa.

    1984-01-01

    The computer code, MQRAD, is developed for the calculation of the synchrotron radiation from the particles passing through quadrupole magnets at the straight section of the electron-positron colliding machine. This code computes the distributions of photon numbers and photon energies at any given points on the beam orbit. In this code, elements such as the quadrupole magnets and the drift spaces can be divided into many sub-elements in order to obtain the results with good accuracy. The synchrotron radiation produced by inserted quadrupole magnets at the interaction region of the electron-positron collider is one of the main background sources to the detector. The masking system against the synchrotron radiation at TRISTAN is very important because of the relatively high beam energy and the long straight section, which are 30 GeV and 100 meters, respectively. MQRAD has been used to design the masking system of the TOPAZ detector and the result is presented here as an example. (author)

  18. The puzzle of the 6Li quadrupole moment: steps toward the solution

    International Nuclear Information System (INIS)

    Blokhintsev, L.D.; Kukulin, V.I.; Pomerantsev, V.N.

    2005-01-01

    The problem of origin of the ground-state 6 Li quadrupole deformation has been investigated with account of the three-deuteron component of this nucleus wave function. two long-standing puzzles related to the tensor interaction in 6 Li are known. The first one lies in the anomalously small value of the 6 Li quadrupole moment which, being negative, is in absolute magnitude smaller by the factor of 5 than that of 6 Li. The second puzzle consists in the anomalous behavior of the tensor analyzing power T 2q in scattering of polarized 6 Li nuclei from various targets. It is shown that the large (in absolute magnitude) negative contribution to the 6 Li quadrupole moment resulting from the three-deuteron configuration cancels almost completely the direct positive contribution due to the folding αd-potential. As a result, the total quadrupole moment turns out to be close to zero and highly sensitive to fine details of the tensor NN interaction and of the 4 He wave function [ru

  19. The drive beam pulse compression system for the CLIC RF power source

    CERN Document Server

    Corsini, R

    1999-01-01

    The Compact LInear Collider (CLIC) is a high energy (0.5 to 5 TeV) e ± linear collider that uses a high- current electron beam (the drive beam) for 30 GHz RF power production by the Two-Beam Acceleration (TBA) method. Recently, a new cost­effective and efficient generation scheme for the drive beam has been developed. A fully­loaded normal­conducting linac operating at lower frequency (937 MHz) generates and accelerates the drive beam bunches, and a compression system composed of a delay­line and two combiner rings produces the proper drive beam time structure for RF power generation in the drive beam decelerator. In this paper, a preliminary design of the whole compression system is presented. In particular, the fundamental issue of preserving the bunch quality along the complex is studied and its impact on the beam parameters and on the various system components is assessed. A first design of the rings and delay­line lattice, including path length tuning chicanes, injection and extraction regions is a...

  20. Ab initio determination of the nuclear quadrupole moments of 114In, 115In, and 117In

    International Nuclear Information System (INIS)

    Errico, Leonardo A.; Renteria, Mario

    2006-01-01

    We present here ab initio determinations of the nuclear-quadrupole moment Q of hyperfine-probe-nuclear states of three different In isotopes: the 5 + 192 keV excited state of 114 In (probe for nuclear quadrupole alignment spectroscopy), the 9/2 + ground state of 115 In (nuclear magnetic and nuclear quadrupole resonance probe), and the 3/2 + 659 keV excited state of 117 In (perturbed angular correlations probe). These nuclear-quadrupole moments were determined by comparing experimental nuclear-quadrupole frequencies to the electric field gradient tensor calculated with high accuracy at In sites in metallic indium within the density functional theory. These ab initio calculations were performed with the full-potential linearized augmented plane wave method. The results obtained for the quadrupole moments of 114 In [Q( 114 In)=-0.14(1) b] are in clear discrepancy with those reported in the literature [Q( 114 In)=+0.16(6) b and +0.739(12) b]. For 115 In and 117 In our results are in excellent agreement with the literature and in the last case Q( 117 In) is determined with more precision. In the case of Q( 117 In), its sign cannot be determined because standard γ-γ perturbed angular correlations experiments are not sensitive to the sign of the nuclear-quadrupole frequency

  1. Test Results of the LARP Nb$_3$Sn Quadrupole HQ03a

    CERN Document Server

    DiMarco, J; Anerella, M; Bajas, H; Chlachidze, G; Borgnolutti, F; Bossert, R; Cheng, D W; Dietderich, D; Felice, H; Pan, H; Ferracin, P; Ghosh, A; Godeke, A; Hafalia, A R; Marchevsky, M; Orris, D; Ravaioli, E; Sabbi, G; Salmi, T; Schmalzle, J; Stoynev, S; Strauss, T; Sylvester, C; Tartaglia, M; Todesco, E; Wanderer, P; Wang, X R; Yu, M

    2016-01-01

    The US LHC Accelerator Research Program (LARP) has been developing $Nb_3Sn$ quadrupoles of progressively increasing performance for the high luminosity upgrade of the Large Hadron Collider. The 120 mm aperture High-field Quadrupole (HQ) models are the last step in the R&D; phase supporting the development of the new IR Quadrupoles (MQXF). Three series of HQ coils were fabricated and assembled in a shell-based support structure, progressively optimizing the design and fabrication process. The final set of coils consistently applied the optimized design solutions, and was assembled in the HQ03a model. This paper reports a summary of the HQ03a test results, including training, mechanical performance, field quality and quench studies.

  2. Resolution limit of probe-forming systems with magnetic quadrupole lens triplets and quadruplets

    International Nuclear Information System (INIS)

    Ponomarev, A.G.; Melnik, K.I.; Miroshnichenko, V.I.; Storizhko, V.E.; Sulkio-Cleff, B.

    2003-01-01

    Over the past decade, in MeV ion beam microanalysis efforts to achieve a spatial resolution better than 0.1 μm with a beam current of ∼100 pA have been connected with microprobes of new generation where the probe is formed by means of separated magnetic quadrupole lens structures . However, as was pointed out in , no dramatic improvements in spatial resolution have been produced so far. For better understanding of the situation the authors carried out theoretical studies of multiparameter sets of probe-forming systems based on separated triplets and quadruplets of magnetic quadrupole lenses. Comparisons were made between the highest current values attained at different systems for a given beam spot size. The maximum parasitic sextupole and octupole field components were found whose contributions to spot broadening are tolerable. It is shown that the use of modern electrostatic accelerators and precision magnetic quadrupole lenses makes it possible to eliminate the effect of chromatic aberrations and second- and third-order parasitic aberrations resulting from distortions of the quadrupole lens symmetry. Therefore probe-forming systems with triplets and quadruplets of magnetic quadrupole lenses have a lower theoretical spatial resolution limit which is restricted mainly by intrinsic spherical third-order aberrations in state-of-the-art microprobes

  3. Global set of quadrupole deformation parameters for even-even nuclei

    International Nuclear Information System (INIS)

    Raman, S.; Nestor, C.W. Jr.

    1986-01-01

    A compilation of experimental results has been completed for the reduced electric quadrupole transition probability [B(E2)up arrow] between the 0 + ground state and the first 2 + state in even-even nuclei. This compilation together with certain simple relationships noted by other authors can be used to make reasonable predictions of unmeasured B(E2)up arrow values. The quadrupole deformation parameter β 2 immediately follows, because β 2 is proportional to [B(E2)up arrow]/sup 1/2/. 8 refs., 7 figs

  4. The team responsible for testing and measuring the LHC insertion quadrupoles

    CERN Multimedia

    Patrice Loïez

    2003-01-01

    The LHC main magnet system includes about 600 superconducting quadrupoles for beam focusing. Superconducting Matching Quadrupole Magnets (MQMs) are just one of several varieties of quadrupole; they will be installed in the accelerator´s eight ´insertion zones´, four of which are also experimental areas, where the beams will intersect to produce proton-proton collisions. The first MQM, built by the UK firm Tesla Engineering, has passed its acceptance tests. The team responsible for the tests is pictured here with the 3.5-metre-long magnet. Photo 01: Bottom row, left to right, Michäel Ky, Antoine Dias Goncalves, Gilles Rittaud, Yannick Riva; middle row, left to right, Vladimir Bretin, Noël Dalexandro, Bert Lust, Patrick Viret; top row, left to right, Christian Giloux, Ranko Ostojic, Walter Venturini Delsolaro, Lassaâd Gharsallah.

  5. Measurement of the branching ratios for the Standard Model Higgs decays into muon pairs and into Z boson pairs at a 1.4 TeV CLIC

    CERN Document Server

    AUTHOR|(SzGeCERN)701211; Bozovic-Jelisavcic, Ivanka; Grefe, Christian; Kacarevic, Goran; Lukic, Strahinja; Pandurovic, Mila; Roloff, Philipp Gerhard; Smiljanic, Ivan

    2016-01-01

    The measurement of the Higgs production cross-section times the branching ratios for its decays into μ+μ- and ZZ* pairs at a 1.4 TeV CLIC collider is investigated in this paper. The Standard Model Higgs boson with a mass of 126 GeV is dominantly produced via WW fusion in e+e- collisions at 1.4 TeV centre-of-mass energy. Analyses for both decay channels are based on a full simulation of the CLIC_ILD detector. All relevant physics and beam-induced background processes are taken into account. An integrated luminosity of 1.5 ab 1 and unpolarised beams are assumed. For the H-->ZZ* decay, the purely hadronic final state (ZZ*--> qq ̄qq ̄) is considered as well as ZZ* decays into two jets and two leptons (ZZ*--> qq ̄l+l- ). It is shown that the branching ratio for the Higgs decay into a muon pair times the Higgs production cross-section can be measured with 38% statistical uncertainty. It is also shown that the statistical uncertainty of the Higgs branching fraction for decay into a Z boson pair times the Hi...

  6. Magnetically induced vacuum decay

    International Nuclear Information System (INIS)

    Xue Shesheng

    2003-01-01

    We study the fermionic vacuum energy of vacua with and without application of an external magnetic field. The energetic difference of two vacua leads to the vacuum decaying and the vacuum energy being released. In the context of quantum field theories, we discuss why and how the vacuum energy can be released by spontaneous photon emission and/or paramagnetically screening the external magnetic field. In addition, we quantitatively compute the vacuum energy released, the paramagnetic screening effect, and the rate and spectrum of spontaneous photon emission. The possibilities of experimentally detecting such an effect of vacuum-energy release and that this effect accounts for the anomalous x-ray pulsar are discussed

  7. Preliminary proposal of a Nb3Sn quadrupole model for the low β insertions of the LHC

    International Nuclear Information System (INIS)

    Ambrosio, G.; Ametrano, F.; Bellomo, G.; Broggi, F.; Rossi, L.; Volpini, G.

    1995-09-01

    In recent years Nb 3 Sn based conductors have shown wide applicability for superconducting magnets in many research areas like high field solenoids for laboratory experiment, for NMR spectroscopy and high field magnets for fusion. Nb 3 Sn technology is progressing fast, increasing both technical reliability and availability. The Nb 3 Sn technology, which has a higher critical field than NbTi, seems attractive for IR (Insertion Region) quadrupoles of large colliders . In this paper it is proposed the construction of a superconducting quadrupole wound with Nb 3 Sn cable for a second generation IR inner triplet low β quadrupoles, for the Large Hadron Collider at CERN. The low β quadrupoles, control the beam focusing at collision points, therefore a gain in term of focus strength and/or coil aperture can increase significantly machine performance. Two are the main steps for the whole project: 1) design and construction of a 1 metre long quadrupole to demonstrate the actual feasibility, which is the subject of this proposal; 2) study for integration of the quadrupole in the machine and final design of 5 m long quadrupoles finalized to the LHC

  8. R&D ERL: Vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Mapes, M.; Smart, L.; Weiss, D.; Steszyn, A.; Todd, R.

    2010-01-01

    The ERL Vacuum systems are depicted in a figure. ERL has eight vacuum volumes with various sets of requirements. A summary of vacuum related requirements is provided in a table. Five of the eight volumes comprise the electron beamline. They are the 5-cell Superconducting RF Cavity, Superconducting e-gun, injection, loop and beam dump. Two vacuum regions are the individual cryostats insulating the 5-cell Superconducting RF Cavity and the Superconducting e-gun structures. The last ERL vacuum volume not shown in the schematic is the laser transport line. The beamline vacuum regions are separated by electropneumatic gate valves. The beam dump is common with loop beamline but is considered a separate volume due to geometry and requirements. Vacuum in the 5-cell SRF cavity is maintained in the {approx}10{sup -9} torr range at room temperature by two 20 l/s ion pumps and in the e-gun SRF cavity by one 60 l/s ion pump. Vacuum in the SRF cavities operated at 2{sup o}K is reduced to low 10{sup -11} torr via cryopumping of the cavity walls. The cathode of the e-gun must be protected from poisoning, which can occur if vacuum adjacent to the e-gun in the injection line exceeds 10-11 torr range in the injection warm beamline near the e-gun exit. The vacuum requirements for beam operation in the loop and beam dump are 10-9 torr range. The beamlines are evacuated from atmospheric pressure to high vacuum level with a particulate free, oil free turbomolecular pumping cart. 25 l/s shielded ion pumps distributed throughout the beamlines maintain the vacuum requirement. Due to the more demanding vacuum requirement of the injection beamline proximate to the e-gun, a vacuum bakeout of the injection beamline is required. In addition, two 200 l/s diode ion pumps and supplemental pumping provided by titanium sublimation pumps are installed in the injection line just beyond the exit of the e-gun. Due to expected gas load a similar pumping arrangement is planned for the beam dump. The

  9. Electroweak vacuum instability and renormalized Higgs field vacuum fluctuations in the inflationary universe

    Energy Technology Data Exchange (ETDEWEB)

    Kohri, Kazunori [Institute of Particle and Nuclear Studies, KEK, 1-1 Oho, Tsukuba 305-0801 (Japan); Matsui, Hiroki, E-mail: kohri@post.kek.jp, E-mail: matshiro@post.kek.jp [The Graduate University for Advanced Studies (SOKENDAI), 1-1 Oho, Tsukuba 305-0801 (Japan)

    2017-08-01

    In this work, we investigated the electroweak vacuum instability during or after inflation. In the inflationary Universe, i.e., de Sitter space, the vacuum field fluctuations < δ φ {sup 2} > enlarge in proportion to the Hubble scale H {sup 2}. Therefore, the large inflationary vacuum fluctuations of the Higgs field < δ φ {sup 2} > are potentially catastrophic to trigger the vacuum transition to the negative-energy Planck-scale vacuum state and cause an immediate collapse of the Universe. However, the vacuum field fluctuations < δ φ {sup 2} >, i.e., the vacuum expectation values have an ultraviolet divergence, and therefore a renormalization is necessary to estimate the physical effects of the vacuum transition. Thus, in this paper, we revisit the electroweak vacuum instability from the perspective of quantum field theory (QFT) in curved space-time, and discuss the dynamical behavior of the homogeneous Higgs field φ determined by the effective potential V {sub eff}( φ ) in curved space-time and the renormalized vacuum fluctuations < δ φ {sup 2} >{sub ren} via adiabatic regularization and point-splitting regularization. We simply suppose that the Higgs field only couples the gravity via the non-minimal Higgs-gravity coupling ξ(μ). In this scenario, the electroweak vacuum stability is inevitably threatened by the dynamical behavior of the homogeneous Higgs field φ, or the formations of AdS domains or bubbles unless the Hubble scale is small enough H < Λ {sub I} .

  10. Nuclear quadrupole moment of the 99Tc ground state

    International Nuclear Information System (INIS)

    Errico, Leonardo; Darriba, German; Renteria, Mario; Tang Zhengning; Emmerich, Heike; Cottenier, Stefaan

    2008-01-01

    By combining first-principles calculations and existing nuclear magnetic resonance (NMR) experiments, we determine the quadrupole moment of the 9/2 + ground state of 99 Tc to be (-)0.14(3)b. This confirms the value of -0.129(20)b, which is currently believed to be the most reliable experimental determination, and disagrees with two earlier experimental values. We supply ab initio calculated electric-field gradients for Tc in YTc 2 and ZrTc 2 . If this calculated information would be combined with yet to be performed Tc-NMR experiments in these compounds, the error bar on the 99 Tc ground state quadrupole moment could be further reduced

  11. Characterization and tuning of ultrahigh gradient permanent magnet quadrupoles

    Directory of Open Access Journals (Sweden)

    S. Becker

    2009-10-01

    Full Text Available The application of quadrupole devices with high field gradients and small apertures requires precise control over higher order multipole field components. We present a new scheme for performance control and tuning, which allows the illumination of most of the quadrupole device aperture because of the reduction of higher order field components. Consequently, the size of the aperture can be minimized to match the beam size achieving field gradients of up to 500  T m^{-1} at good imaging quality. The characterization method based on a Hall probe measurement and a Fourier analysis was confirmed using the high quality electron beam at the Mainz Microtron MAMI.

  12. Nb3Sn Quadrupoles Designs For The LHC Upgrades

    International Nuclear Information System (INIS)

    Felice, Helene

    2008-01-01

    In preparation for the LHC luminosity upgrades, high field and large aperture Nb 3 Sn quadrupoles are being studied. This development has to incorporate all the relevant features for an accelerator magnet like alignment and cooling channels. The LARP HQ model is a high field and large bore quadrupole that will meet these requirements. The 2-layer coils are surrounded by a structure based on key and bladder technology with supporting iron yoke and aluminum shell. This structure is aimed at pre-stress control, alignment and field quality. We present here the magnetic and mechanical design of HQ, along with recent progress on the development of the first 1-meter model.

  13. Vacuum system for ISABELLE

    International Nuclear Information System (INIS)

    Hobson, J.P.

    1975-01-01

    An analysis is presented of the proposed vacuum system for the planned ISABELLE storage rings with respect to acceptability and practicality from the vacuum viewport. A comparison is made between the proposed vacuum system and the vacuum system at the CERN ISR, and some comments on various design and operational parameters are made

  14. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    International Nuclear Information System (INIS)

    Chu Zhe; Lin, W. P.; Yang Xiaofeng

    2013-01-01

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. We find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.

  15. Electrons in a positive-ion beam with solenoid or quadrupole magnetic transport

    International Nuclear Information System (INIS)

    Molvik, A.W.; Kireeff Covo, M.; Cohen, R.; Coleman, J.; Sharp, W.; Bieniosek, F.; Friedman, A.; Roy, P.K.; Seidl, P.; Lund, S.M.; Faltens, A.; Vay, J.L.; Prost, L.

    2007-01-01

    The High Current Experiment (HCX) is used to study beam transport and accumulation of electrons in quadrupole magnets and the Neutralized Drift-Compression Experiment (NDCX) to study beam transport through and accumulation of electrons in magnetic solenoids. We find that both clearing and suppressor electrodes perform as intended, enabling electron cloud densities to be minimized. Then, the measured beam envelopes in both quadrupoles and solenoids agree with simulations, indicating that theoretical beam current transport limits are reliable, in the absence of electrons. At the other extreme, reversing electrode biases with the solenoid transport effectively traps electrons; or, in quadrupole magnets, grounding the suppressor electrode allows electron emission from the end wall to flood the beam, in both cases producing significant degradation in the beam

  16. Vacuum extraction

    DEFF Research Database (Denmark)

    Maagaard, Mathilde; Oestergaard, Jeanett; Johansen, Marianne

    2012-01-01

    Objectives. To develop and validate an Objective Structured Assessment of Technical Skills (OSATS) scale for vacuum extraction. Design. Two-part study design: Primarily, development of a procedure-specific checklist for vacuum extraction. Hereafter, validation of the developed OSATS scale for vac...

  17. Measurement of time dependent fields in high gradient superconducting quadrupoles for the Tevatron

    International Nuclear Information System (INIS)

    Lamm, M.J.; Coulter, K.; Gourlay, S.; Jaffery, T.S.

    1990-10-01

    Magnetic field measurements have been performed on prototype and production magnets from two high gradient superconducting quadrupoles designs. One design is a double shell quadrupole with 36 strand Rutherford cable. The other design is a single shell quadrupole with 5 individually monolithic strands connected in series. These magnets have similar bore diameters and cable dimensions. However, there are significant differences between the two designs, as well as differences between prototype and production magnets within each design, with regard to Cu to superconductor ratio, filament diameter and filament spacing to strand diameter. The time dependence of fixed currents of the measured magnetic fields is discussed. 9 refs., 6 figs., 1 tab

  18. Comprehensive two-dimensional gas chromatography in combination with rapid scanning quadrupole mass spectrometry in perfume analysis.

    Science.gov (United States)

    Mondello, Luigi; Casillia, Alessandro; Tranchida, Peter Quinto; Dugo, Giovanni; Dugo, Paola

    2005-03-04

    Single column gas chromatography (GC) in combination with a flame ionization detector (FID) and/or a mass spectrometer is routinely employed in the determination of perfume profiles. The latter are to be considered medium to highly complex matrices and, as such, can only be partially separated even on long capillaries. Inevitably, several monodimensional peaks are the result of two or more overlapping components, often hindering reliable identification and quantitation. The present investigation is based on the use of a comprehensive GC (GC x GC) method, in vacuum outlet conditions, for the near to complete resolution of a complex perfume sample. A rapid scanning quadrupole mass spectrometry (qMS) system, employed for the assignment of GC x GC peaks, supplied high quality mass spectra. The validity of the three-dimensional (3D) GC x GC-qMS application was measured and compared to that of GC-qMS analysis on the same matrix. Peak identification, in all applications, was achieved through MS spectra library matching and the interactive use of linear retention indices (LRI).

  19. DESIGN OF A THIN QUADRUPOLE TO BE USED IN THE AGS SYNCHROTRON

    Energy Technology Data Exchange (ETDEWEB)

    TSOUPAS,N.; AHRENS, L.; ALFORQUE, R.; BAI, M.; BROWN, K.; COURANT, E.; ET AL.

    2007-06-25

    The Alternating Gradient Synchrotron (AGS) employs two partial helical snakes[l] to preserve the polarization of the proton beam during acceleration. In order to compensate for the focusing effect of the partial helical snakes on the beam optics in the AGS during acceleration of the beam, we introduced eight quadrupoles in straight sections of the AGS at the proximity of the partial snakes. At injection energies, the strength of each quad is set at a high value, and is ramped down to zero as the effect of the snakes diminishes by the square of beam's rigidity. Four of the eight compensation quadrupoles had to be placed in very short straight sections -30 cm in length, therefore the quadruples had be thin with an overall length of less than 30 cm. In this paper we will discus: (a) the mechanical and magnetic specifications of the ''thin'' quadrupole. (b) the method to minimize the strength of the dodecapole harmonic, (c) the method to optimize the thickness of the laminations that the magnet iron is made, (d) mechanical tolerances of the magnet, (e) comparison of the measured and calculated magnetic multipoles of the quadrupole.

  20. Stabilization of the Electron-Nuclear Spin Orientation in Quantum Dots by the Nuclear Quadrupole Interaction

    Science.gov (United States)

    Dzhioev, R. I.; Korenev, V. L.

    2007-07-01

    The nuclear quadrupole interaction eliminates the restrictions imposed by hyperfine interaction on the spin coherence of an electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of nonpolarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.