WorldWideScience

Sample records for cleavage fracture

  1. Cleavage and creep fracture of rock salt

    International Nuclear Information System (INIS)

    Chan, K.S.; Munson, D.E.; Bodner, S.R.

    1996-01-01

    The dominant failure mechanism in rock salt at ambient temperature is either cleavage or creep fracture. Since the transition of creep fracture to cleavage in a compressive stress field is not well understood, failure of rock salt by cleavage and creep fracture is analyzed in this paper to elucidate the effect of stress state on the competition between these two fracture mechanisms. For cleavage fracture, a shear crack is assumed to cause the formation and growth of a symmetric pair of wing cracks in a predominantly compressive stress field. The conditions for wing-crack instability are derived and presented as the cleavage fracture boundary in the fracture mechanism map. Using an existing creep fracture model, stress conditions for the onset of creep fracture and isochronous failure curves of specified times-to-rupture are calculated and incorporated into the fracture mechanism map. The regimes of dominance by cleavage and creep fracture are established and compared with experimental data. The result indicates that unstable propagation of cleavage cracks occurs only in the presence of tensile stress. The onset of creep fracture is promoted by a tensile stress, but can be totally suppressed by a high confining pressure. Transition of creep fracture to cleavage occurs when critical conditions of stress difference and tensile stress for crack instability are exceeded

  2. Quantitative characterization of cleavage and hydrogen-assisted quasi-cleavage fracture surfaces with the use of confocal laser scanning microscopy

    International Nuclear Information System (INIS)

    Merson, E.; Kudrya, A.V.; Trachenko, V.A.; Merson, D.; Danilov, V.; Vinogradov, A.

    2016-01-01

    “True” cleavage (TC) and quasi-cleavage (QC) fracture surfaces of low-carbon steel specimens tested in liquid nitrogen and after hydrogen charging respectively were investigated by quantitative confocal laser scanning microscopy (CLSM) and conventional scanning electron microscopy (SEM) with electron-backscattered diffraction (EBSD). Topological and crystallographic features of the TC fracture surface are found in good agreement with the generally accepted cleavage mechanism: TC facets diameters correspond to those of grains; the crack path strictly follows the crystallographic orientation of grains and the most of the cleavage cracks are parallel to {100} planes. On the 2D SEM images, the QC facets appeared resembling the TC ones in terms of river line patterns, shapes and sizes. However, the substantial differences between the topography of these two kinds of fracture surfaces were revealed by 3D CLSM: the average misorientation angle between QC facets and the roughness of the QC fracture surface were much lower than those measured for TC. It is demonstrated that all these features are attributed to the specific fracture mechanism operating during hydrogen-assisted cracking.

  3. Quantitative characterization of cleavage and hydrogen-assisted quasi-cleavage fracture surfaces with the use of confocal laser scanning microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Merson, E. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Kudrya, A.V.; Trachenko, V.A. [Department of Physical Metallurgy and the Physics of Strength, NUST MISiS, Moscow 119490 (Russian Federation); Merson, D. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Laboratory for Advanced Materials, Kazan Federal University, Naberezhnye Chelny 423812, Republic of Tatarstan (Russian Federation); Danilov, V. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Vinogradov, A. [Institute of Advanced Technologies, Togliatti State University, 445667 (Russian Federation); Department of Engineering Design and Materials, Norwegian University of Science and Technology – NTNU, N-7491 Trondheim (Norway)

    2016-05-17

    “True” cleavage (TC) and quasi-cleavage (QC) fracture surfaces of low-carbon steel specimens tested in liquid nitrogen and after hydrogen charging respectively were investigated by quantitative confocal laser scanning microscopy (CLSM) and conventional scanning electron microscopy (SEM) with electron-backscattered diffraction (EBSD). Topological and crystallographic features of the TC fracture surface are found in good agreement with the generally accepted cleavage mechanism: TC facets diameters correspond to those of grains; the crack path strictly follows the crystallographic orientation of grains and the most of the cleavage cracks are parallel to {100} planes. On the 2D SEM images, the QC facets appeared resembling the TC ones in terms of river line patterns, shapes and sizes. However, the substantial differences between the topography of these two kinds of fracture surfaces were revealed by 3D CLSM: the average misorientation angle between QC facets and the roughness of the QC fracture surface were much lower than those measured for TC. It is demonstrated that all these features are attributed to the specific fracture mechanism operating during hydrogen-assisted cracking.

  4. Effect of microstructure on the cleavage fracture strength of low carbon Mn-Ni-Mo bainitic steels

    International Nuclear Information System (INIS)

    Im, Young-Roc; Lee, Byeong-Joo; Oh, Yong Jun; Hong, Jun Hwa; Lee, Hu-Chul

    2004-01-01

    The effects of the microstructure on the cleavage fracture strength of low carbon Mn-Ni-Mo bainitic steels were examined. A four-point bend test and double-notched bend specimens were used to measure the cleavage fracture strength of the alloys and identify the cleavage initiating micro-cracks, respectively. The cleavage fracture strength and DBTT of Mn-Ni-Mo bainitic steels were strongly affected by the alloy carbon content. The decrease in the alloy carbon content resulted in a decrease in the inter-lath cementite-crowded layers and higher cleavage fracture strength. Micro-cracks that formed across the inter-lath cementite-crowded layers were observed to initiate cleavage fracture. The width of these inter-lath cementite-crowded layers was accepted as a cleavage initiating micro-crack size in the micro-mechanical modeling of the cleavage fracture, and the measured cleavage strength values of the bainitic Mn-Ni-Mo steels were well represented by the modified Griffith relationship

  5. Numerical modeling of ductile tearing effects on cleavage fracture toughness

    International Nuclear Information System (INIS)

    Dodds, R.H. Jr.; Tang, M.; Anderson, T.L.

    1994-05-01

    Experimental studies demonstrate a significant effect of specimen size, a/W ratio and prior ductile tearing on cleavage fracture toughness values (J c ) measured in the ductile-to-brittle transition region of ferritic materials. In the lower-transition region, cleavage fracture often occurs under conditions of large-scale yielding but without prior ductile crack extension. The increased toughness develops when plastic zones formed at the crack tip interact with nearby specimen surfaces which relaxes crack-tip constraint (stress triaxiality). In the mid-to-upper transition region, small amounts of ductile crack extension (often c -values. Previous work by the authors described a micromechanics fracture model to correct measured J c -values for the mechanistic effects of large-scale yielding. This new work extends the model to also include the influence of ductile crack extension prior to cleavage. The paper explores development of the new model, provides necessary graphs and procedures for its application and demonstrates the effects of the model on fracture data sets for two pressure vessel steels (A533B and A515)

  6. On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels

    Science.gov (United States)

    Qian, Guian; Lei, Wei-Sheng; Niffenegger, M.; González-Albuixech, V. F.

    2018-04-01

    The work relates to the effect of temperature on the model parameters in local approaches (LAs) to cleavage fracture. According to a recently developed LA model, the physical consensus of plastic deformation being a prerequisite to cleavage fracture enforces any LA model of cleavage fracture to observe initial yielding of a volume element as its threshold stress state to incur cleavage fracture in addition to the conventional practice of confining the fracture process zone within the plastic deformation zone. The physical consistency of the new LA model to the basic LA methodology and the differences between the new LA model and other existing models are interpreted. Then this new LA model is adopted to investigate the temperature dependence of LA model parameters using circumferentially notched round tensile specimens. With the published strength data as input, finite element (FE) calculation is conducted for elastic-perfectly plastic deformation and the realistic elastic-plastic hardening, respectively, to provide stress distributions for model calibration. The calibration results in temperature independent model parameters. This leads to the establishment of a 'master curve' characteristic to synchronise the correlation between the nominal strength and the corresponding cleavage fracture probability at different temperatures. This 'master curve' behaviour is verified by strength data from three different steels, providing a new path to calculate cleavage fracture probability with significantly reduced FE efforts.

  7. Critical cleavage fracture stress characterization of A508 nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    Wu, Sujun; Jin, Huijin; Sun, Yanbin; Cao, Luowei

    2014-01-01

    The critical cleavage fracture stress of SA508 Gr.4N and SA508 Gr.3 low alloy reactor pressure vessel (RPV) steels was studied through the combination of experiments and finite element method (FEM) analysis. The results showed that the value of the local cleavage fracture stress, σ F , of SA508 Gr.4N steel was significantly higher than that of SA508 Gr.3 steel. Detailed microstructural analysis was carried out using FEGSEM which revealed much smaller grains, finer and more homogenous carbide particles formed in SA508 Gr.4N steel. Compared with the SA508 Gr.3 steel currently used in the nuclear industry, the SA508 Gr.4N steel possesses higher strength and notch toughness as well as improved cleavage fracture behavior, and is considered a better candidate RPV steel for the next generation nuclear reactors. - Highlights: • Critical cleavage fracture stress was calculated through experiments and FEM. • Effects of both grain and carbide particle sizes on σ F were discussed. • The SA508 Gr.4N steel is a better candidate for the next generation nuclear reactors

  8. The effects of the local fracture stress and carbides on the cleavage fracture characteristics of Mn-Mo-Ni low alloy steels in the transition region

    International Nuclear Information System (INIS)

    Yang, Won Jon; Huh, Moo Young; Roh, Sung Joo; Lee, Bong Sang; Oh, Yong Jun; Hong, Jun Hwa

    2000-01-01

    In the ductile-brittle transition temperature region of SA508 C1.3 Mn-Mo-Ni low alloy steels, the relationship of the local fracture stress and carbides influencing the cleavage fracture behavior was investigated. Based on the ASTM E1921-97 standard method, the reference transition temperatures were determined by three point bending fracture toughness tests. A local fracture stress σ f * , was determined from a theoretical stress distribution in front of crack tip using the cleavage initiation distance measured in each fractured specimen surface. The local fracture stress values showed a strong relationship with toughness characteristics of the materials and those were larger in the materials of smaller carbide size. Quantitative analysis of carbides showed that carbides larger than a certain size are mainly responsible for the cleavage fracture in the ductile-brittle transition temperature region. (author)

  9. Modelling of ductile and cleavage fracture by local approach

    International Nuclear Information System (INIS)

    Samal, M.K.; Dutta, B.K.; Kushwaha, H.S.

    2000-08-01

    This report describes the modelling of ductile and cleavage fracture processes by local approach. It is now well known that the conventional fracture mechanics method based on single parameter criteria is not adequate to model the fracture processes. It is because of the existence of effect of size and geometry of flaw, loading type and rate on the fracture resistance behaviour of any structure. Hence, it is questionable to use same fracture resistance curves as determined from standard tests in the analysis of real life components because of existence of all the above effects. So, there is need to have a method in which the parameters used for the analysis will be true material properties, i.e. independent of geometry and size. One of the solutions to the above problem is the use of local approaches. These approaches have been extensively studied and applied to different materials (including SA33 Gr.6) in this report. Each method has been studied and reported in a separate section. This report has been divided into five sections. Section-I gives a brief review of the fundamentals of fracture process. Section-II deals with modelling of ductile fracture by locally uncoupled type of models. In this section, the critical cavity growth parameters of the different models have been determined for the primary heat transport (PHT) piping material of Indian pressurised heavy water reactor (PHWR). A comparative study has been done among different models. The dependency of the critical parameters on stress triaxiality factor has also been studied. It is observed that Rice and Tracey's model is the most suitable one. But, its parameters are not fully independent of triaxiality factor. For this purpose, a modification to Rice and Tracery's model is suggested in Section-III. Section-IV deals with modelling of ductile fracture process by locally coupled type of models. Section-V deals with the modelling of cleavage fracture process by Beremins model, which is based on Weibulls

  10. On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels

    Energy Technology Data Exchange (ETDEWEB)

    Martin, May L.; Fenske, Jamey A.; Liu, Grace S.; Sofronis, Petros [University of Illinois, Dept. of Materials Science and Engineering, 1304 W. Green St., Urbana, IL 61801 (United States); Robertson, Ian M., E-mail: ianr@illinois.edu [University of Illinois, Dept. of Materials Science and Engineering, 1304 W. Green St., Urbana, IL 61801 (United States)

    2011-02-15

    Quasi-cleavage, a common feature of hydrogen-induced fracture surfaces, is generally taken as being cleavage-like but not along a known cleavage plane. Despite the frequency with which this surface is observed, the relationship to the underlying microstructure remains unknown. Through a combination of topographical reconstruction of secondary electron microscope fractographs and a transmission electron microscopy study of the microstructure from site-specific locations, it will be shown that the features on quasi-cleavage surfaces are ridges that can be correlated with sub-surface intense and highly localized deformation bands. It will be demonstrated that the fracture surface arises from the growth and coalescence of voids that initiate at and extend along slip band intersections. This mechanism and process is fully consistent with hydrogen enhancing and localizing plastic processes.

  11. Temperature dependence of the fracture toughness and the cleavage fracture strength of a pressure vessel steel

    International Nuclear Information System (INIS)

    Kotilainen, H.

    1980-01-01

    A new model for the temperature dependence of the fracture toughness has been sought. It is based on the yielding processes at the crack tip, which are thought to be competitive with fracture. Using this method a good correlation between measured and calculated values of fracture toughness has been found for a Cr-Mo-V pressure vessel steel as well as for A533B. It has been thought that the application of this method can reduce the number of surveillance specimens in nuclear reactors. A method for the determination of the cleavage fracture strength has been proposed. 28 refs

  12. Status report on experiments and modelling of the cleavage fracture behaviour of F82Hmod using local fracture grid. Task TTMS-005

    International Nuclear Information System (INIS)

    Riesch-Oppermann, H.; Walter, M.

    2001-09-01

    Within the European Fusion Technology Programme framework, a fracture mechanics description of the material behaviour in the ductile to brittle transition-regime is developed using local fracture criteria. Based on experimental results using axisymmetrically notched and pre-cracked specimens together with a numerical stress analysis at fracture load, a statistical evaluation of cleavage fracture parameters can be performed along the lines described in various code schemes such as the British Energy R6-Code or the ESIS P6 procedure. The report contains results of the experimental characterization of the deformation and fracture behaviour of the fusion candidate RAFM steel variant F82Hmod, details and background of the numerical procedure for cleavage fracture parameter determination as well as additional statistical inference methods for transferability analysis. Fractographic results give important information about fracture mode and fracture origin sites and their location. Numerical prediction of fracture origin distribution is an important tool for transferability assessment. Future issues comprise constraint effect and ductile damage as well as incorporation of irradiation effects, which are topically addressed. The methodology developed and described in the present report will be applied to characterize material behaviour of future RAFM variants as the EUROFER 97, for which analysis is currently under way. (orig.)

  13. Crack blunting, cleavage fracture in transition area and stable crack growth - investigated using the nonlinear fracture mechanics method

    International Nuclear Information System (INIS)

    Heerens, J.

    1990-01-01

    A procedure is developed which allows to estimate crack tip blunting using the stress-strain curve of the material and the J-integral. The second part deals with cleavage fracture in a quenched and tempered pressure vessel steel. It was found that within the ductile to brittle transition regime the fracture toughness is controlled by cleavage initiated at 'weak spots of the material' and by the normal stresses at the weak spots. In the last part of the paper the influence of specimen size on J-, Jm- and δ 5 -R-curves for side grooved CT-specimens under fully plastic condition is investigated. In order to characterize constraint-effects the necking of the specimens was measured. For specimens having similar constraint the parameters Jm and δ 5 yielded size independent R-curves over substantial larger amounts of crack extension than the J-integral. (orig.) With 114 figs., 10 tabs [de

  14. Micromechanisms and toughness for cleavage fracture of steel

    International Nuclear Information System (INIS)

    Rosenfield, A.R.; Majumdar, B.S.

    1987-01-01

    A complete understanding of the fracture mechanisms of steel in the ductile/brittle transition region requires analysis not only of crack initiation, but also of crack propagation. This paper reviews micrographic and fractographic experiments that give insight into both phenomena, and suggests a frame-work through which both may be related. Unstable cleavage crack initiation can occur after some blunting of the original fatigue precrack or after some stable crack growth. In either event, instability appears to be triggered by the fracture of a brittle micro-constituent ahead of the precrack. The large scatter in reported K IC values within the transition region reflects the size distribution and relative scarcity of these 'trigger' particles. While a large number of models have attempted to correlate toughness in the ductile/brittle transition regime to events occurring ahead of the crack tip, surprisingly little attention has been paid to events occurring behind the crack front. Fractographic evidence as well as metallographic sectioning of arrested cracks show that the mechanism of rapid crack propagation by cleavage is affected strongly by partial crack-plane deflection which leaves unbroken ligaments in its wake. The tearing of these ligaments by dimple-rupture is the dominant energy-absorbing mechanism. Etch-pit experiments using an Fe-Si alloy show that the crack-tip stress intensity based on plastic zone size is extremely low. It is suggested that the mechanism of crack arrest should be modeled using a sharp crack which is restrained by a distribution of discrete pinching forces along its faces. The same model is applied to crack initiation. (orig.)

  15. Fracture mechanics and physics approach to cleavage analysis in bcc monocrystals

    International Nuclear Information System (INIS)

    Ivanova, V.S.; Plastinin, V.M.

    1980-01-01

    On monocrystals of molybdenum obtained by electron--beam zone melting studied are the bonds between micro-and macroparameters of fracture controlling the limit state. Monocrystals of three orientations have been studied, namely >001 110 111<. Confirmed is an important role of plastic deformation in the (110) family planes at cleavage forming in the (100) family planes. A correlation connection is established between threshold value of the stress intensity coefficient and activation energy of plastic deformation

  16. Extended Hall-Petch Relationships for Yield, Cleavage and Intergranular Fracture Strengths of bcc Steel and Its Deformation and Fracture Behaviors

    Science.gov (United States)

    Heo, N. H.; Heo, Y.-U.; Kwon, S. K.; Kim, N. J.; Kim, S.-J.; Lee, H.-C.

    2018-03-01

    Extended Hall-Petch relationships for yield ( σy ), cleavage ( σ_{cl} ) and intergranular fracture ( σ_{ig} ) strengths of pure iron have been established through the direct calculation of the proportional constant (k) and the estimation of the friction stress (σ0 ) . The magnitude orders of k and σ0 are generally ky causes the high work hardening rate.

  17. The shallow flaw effect and the local approach to cleavage fracture

    International Nuclear Information System (INIS)

    Moinereau, D.

    1996-10-01

    The capability of Beremin model to explain the shallow flaw effect in cleavage fracture is evaluated. Numerous two-dimensional finite element calculations are performed on several cracked specimens (cladded and un-cladded specimens with different values of a/W ratio) submitted to mechanical or thermal loading. The behavior of different specimens is examined using the Weibull stress σ w versus stress intensity factor K J curves. The stress fields and plastic zones at the crack tip are also compared on respective cracked specimens. (K.A.)

  18. Microstructure and cleavage in lath martensitic steels

    International Nuclear Information System (INIS)

    Morris, John W Jr; Kinney, Chris; Pytlewski, Ken; Adachi, Y

    2013-01-01

    In this paper we discuss the microstructure of lath martensitic steels and the mechanisms by which it controls cleavage fracture. The specific experimental example is a 9Ni (9 wt% Ni) steel annealed to have a large prior austenite grain size, then examined and tested in the as-quenched condition to produce a relatively coarse lath martensite. The microstructure is shown to approximate the recently identified ‘classic’ lath martensite structure: prior austenite grains are divided into packets, packets are subdivided into blocks, and blocks contain interleaved laths whose variants are the two Kurjumov–Sachs relations that share the same Bain axis of the transformation. When the steel is fractured in brittle cleavage, the laths in the block share {100} cleavage planes and cleave as a unit. However, cleavage cracks deflect or blunt at the boundaries between blocks with different Bain axes. It follows that, as predicted, the block size governs the effective grain size for cleavage. (paper)

  19. Mezzo-scopic Analysis of Fracture Toughness in Steels

    Directory of Open Access Journals (Sweden)

    Miyata Takashi

    2002-01-01

    Full Text Available The cleavage fracture toughness of steels was mezzo-scopically analyzed on the basis of the statistical local fracture criterion approach. The statistical stress criterion at the crack tip region suggests that the cleavage fracture toughness in steels can be described as a function of the yield stress, the cleavage fracture stress, and other mechanical properties of the materials. Formulation of the cleavage fracture toughness was first examined through an investigation on correlation between the cleavage toughness and the cleavage fracture stress obtained in notched round bar specimens in accordance with the theoretical prediction. Then, the scatter of the toughness, specimen thickness effect on the toughness, deterioration of the toughness due to cold working and irradiation, and improvement of the toughness caused by the Ni addition, were analyzed through the formulation of the toughness.

  20. Development of a Weibull model of cleavage fracture toughness for shallow flaws in reactor pressure vessel material

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; Williams, P.T.; McAfee, W.J.; Pugh, C.E. [Oak Ridge National Lab., Heavy-Section Steel Technology Program, Oak Ridge, TN (United States)

    2001-07-01

    A primary objective of the United States Nuclear Regulatory Commission (USNRC) -sponsored Heavy-Section Steel Technology (HSST) Program is to develop and validate technology applicable to quantitative assessments of fracture prevention margins in nuclear reactor pressure vessels (RPVs) containing flaws and subjected to service-induced material toughness degradation. This paper describes an experimental/analytical program for the development of a Weibull statistical model of cleavage fracture toughness for applications to shallow surface-breaking and embedded flaws in RPV materials subjected to multi-axial loading conditions. The experimental part includes both material characterization testing and larger fracture toughness experiments conducted using a special-purpose cruciform beam specimen developed by Oak Ridge National Laboratory for applying biaxial loads to shallow cracks. Test materials (pressure vessel steels) included plate product forms (conforming to ASTM A533 Grade B Class 1 specifications) and shell segments procured from a pressurized-water reactor vessel intended for a nuclear power plant. Results from tests performed on cruciform specimens demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower-transition temperature region. A local approach methodology based on a three-parameter Weibull model was developed to correlate these experimentally-observed biaxial effects on fracture toughness. The Weibull model, combined with a new hydrostatic stress criterion in place of the more commonly used maximum principal stress in the kernel of the Weibull stress integral definition, is shown to provide a scaling mechanism between uniaxial and biaxial loading states for 2-dimensional flaws located in the A533-B plate material. The Weibull stress density was introduced as a matrice for identifying regions along a semi-elliptical flaw front that have a higher probability of cleavage initiation. Cumulative

  1. Development of a Weibull model of cleavage fracture toughness for shallow flaws in reactor pressure vessel material

    International Nuclear Information System (INIS)

    Bass, B.R.; Williams, P.T.; McAfee, W.J.; Pugh, C.E.

    2001-01-01

    A primary objective of the United States Nuclear Regulatory Commission (USNRC) -sponsored Heavy-Section Steel Technology (HSST) Program is to develop and validate technology applicable to quantitative assessments of fracture prevention margins in nuclear reactor pressure vessels (RPVs) containing flaws and subjected to service-induced material toughness degradation. This paper describes an experimental/analytical program for the development of a Weibull statistical model of cleavage fracture toughness for applications to shallow surface-breaking and embedded flaws in RPV materials subjected to multi-axial loading conditions. The experimental part includes both material characterization testing and larger fracture toughness experiments conducted using a special-purpose cruciform beam specimen developed by Oak Ridge National Laboratory for applying biaxial loads to shallow cracks. Test materials (pressure vessel steels) included plate product forms (conforming to ASTM A533 Grade B Class 1 specifications) and shell segments procured from a pressurized-water reactor vessel intended for a nuclear power plant. Results from tests performed on cruciform specimens demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower-transition temperature region. A local approach methodology based on a three-parameter Weibull model was developed to correlate these experimentally-observed biaxial effects on fracture toughness. The Weibull model, combined with a new hydrostatic stress criterion in place of the more commonly used maximum principal stress in the kernel of the Weibull stress integral definition, is shown to provide a scaling mechanism between uniaxial and biaxial loading states for 2-dimensional flaws located in the A533-B plate material. The Weibull stress density was introduced as a matrice for identifying regions along a semi-elliptical flaw front that have a higher probability of cleavage initiation. Cumulative

  2. Approximate techniques for predicting size effects on cleavage fracture toughness (Jc)

    International Nuclear Information System (INIS)

    Kirk, M.T.; Dodds, R.H. Jr.

    1993-07-01

    This investigation examines the ability of an elastic T-stress analysis coupled with modified boundary layer (MBL) solution to predict stresses ahead of a crack tip in a variety of planar geometries. The approximate stresses are used as input to estimate the effective driving force for cleavage fracture (J 0 ) using the micromechanically based approach introduced by Dodds and Anderson. Finite element analyses for a wide variety of planar cracked geometries are conducted which have elastic biaxiality parameters (β) ranging from -0.99 (very low constraint) to +2.96 (very high constraint). The magnitude and sign of β indicate the rate at which crack-tip constraint changes with increasing applied load. All results pertain to a moderately strain hardening material (strain hardening exponent (η) of 10). These analyses suggest that β is an effective indicator of both the accuracy of T-MBL estimates of J 0 and of applicability limits on evolving fracture analysis methodologies (i.e. T-MBL, J-Q, and J/J 0 ). Specifically, when 1β1>0.4 these analyses show that the T-MBL approximation of J 0 is accurate to within 20% of a detailed finite-element analysis. As ''structural type'' configurations, i.e. shallow cracks in tension, generally have 1β1>0.4, it appears that only an elastic analysis may be needed to determine reasonably accurate J 0 values for structural conditions

  3. Fractographic observations of cleavage initiation in the ductile-brittle transition region of a reactor-pressure-vessel steel

    International Nuclear Information System (INIS)

    Rosenfield, A.R.; Shetty, D.K.; Skidmore, A.J.

    1983-01-01

    This note reports the results of a fractographic study conducted on a group of 1T compact fracture toughness specimens of a heavy-section A508 steel denoted TSE6 tested in the ductile-brittle transition region (22 and 82 0 C). The fatigue-precracked specimens were loaded at a rapid rate (760 or 550 mm per second) to promote cleavage-crack growth and lower-bound toughness behavior. All specimens experienced unstable cleavage fracture prior to reaching a maximum in the load displacement curve. Some ductile crack growth occurred in half of the specimens. The objective of fractographic examinations was to understand the observed statistical variations in cleavage initiation by (a) locating the origins of unstable cleavage fracture in the vicinity of the fatigue-precrack or ductilerupture crack fronts, (b) identifying microstructural features associated with the triggering of cleavage, and (c) documenting characteristic fracture surface dimensions such as the extent of stable-crack growth prior to unstable cleavage (Δα) and the distance of the cleavage origin from the ductilerupture front, /chi/ (or fatigue-crack front when Δα = 0)

  4. Main factors causing intergranular and quasi-cleavage fractures at hydrogen-induced cracking in tempered martensitic steels

    Science.gov (United States)

    Kurokawa, Ami; Doshida, Tomoki; Hagihara, Yukito; Suzuki, Hiroshi; Takai, Kenichi

    2018-05-01

    Though intergranular (IG) and quasi-cleavage (QC) fractures have been widely recognized as typical fracture modes of the hydrogen-induced cracking in high-strength steels, the main factor has been unclarified yet. In the present study, the hydrogen content dependence on the main factor causing hydrogen-induced cracking has been examined through the fracture mode transition from QC to IG at the crack initiation site in the tempered martensitic steels. Two kinds of tempered martensitic steels were prepared to change the cohesive force due to the different precipitation states of Fe3C on the prior γ grain boundaries. A high amount of Si (H-Si) steel has a small amount of Fe3C on the prior austenite grain boundaries. Whereas, a low amount of Si (L-Si) steel has a large amount of Fe3C sheets on the grain boundaries. The fracture modes and initiations were observed using FE-SEM (Field Emission-Scanning Electron Microscope). The crack initiation sites of the H-Si steel were QC fracture at the notch tip under various hydrogen contents. While the crack initiation of the L-Si steel change from QC fracture at the notch tip to QC and IG fractures from approximately 10 µm ahead of the notch tip as increasing in hydrogen content. For L-Si steels, two possibilities are considered that the QC or IG fracture occurred firstly, or the QC and IG fractures occurred simultaneously. Furthermore, the principal stress and equivalent plastic strain distributions near the notch tip were calculated with FEM (Finite Element Method) analysis. The plastic strain was the maximum at the notch tip and the principle stress was the maximum at approximately 10 µm from the notch tip. The position of the initiation of QC and IG fracture observed using FE-SEM corresponds to the position of maximum strain and stress obtained with FEM, respectively. These findings indicate that the main factors causing hydrogen-induced cracking are different between QC and IG fractures.

  5. Further application of the cleavage fracture stress model for estimating the T{sub 0} of highly embrittled ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasan, P.R.

    2016-02-15

    The semi-empirical cleavage fracture stress model (CFS), based on the microscopic cleavage fracture stress, s{sub f}, for estimating the ASTM E1921 reference temperature (T{sub 0}) of ferritic steels from instrumented impact testing of unprecracked Charpy V-notch specimens is further confirmed by test results for additional steels, including steels highly embrittled by thermal aging or irradiation. In addition to the ferrite-pearlite, bainitic or tempered martensitic steels (which was examined earlier), acicular or polygonal ferrite, precipitation-strengthened or additional simulated heat affected zone steels are also evaluated. The upper limit for the applicability of the present CFS model seems to be T{sub 41J} ∝160 to 170 C or T{sub 0} or T{sub Qcfs} (T{sub 0} estimate from the present CFS model) ∝100 to 120 C. This is not a clear-cut boundary, but indicative of an area of caution where generation and evaluation of further data are required. However, the present work demonstrates the applicability of the present CFS model even to substantially embrittled steels. The earlier doubts expressed about T{sub Qcfs} becoming unduly non-conservative for highly embrittled steels has not been fully substantiated and partly arises from the necessity of modifications in the T{sub 0} evaluation itself at high degrees of embrittlement suggested in the literature.

  6. Evaluation of fracture mechanics analyses used in RPV integrity assessment regarding brittle fracture

    International Nuclear Information System (INIS)

    Moinereau, D.; Faidy, C.; Valeta, M.P.; Bhandari, S.; Guichard, D.

    1997-01-01

    Electricite de France has conducted during these last years some experimental and numerical research programmes in order to evaluate fracture mechanics analyses used in nuclear reactor pressure vessels structural integrity assessment, regarding the risk of brittle fracture. These programmes included cleavage fracture tests on large scale cladded specimens containing subclad flaws with their interpretations by 2D and 3D numerical computations, and validation of finite element codes for pressurized thermal shocks analyses. Four cladded specimens made of ferritic steel A508 C13 with stainless steel cladding, and containing shallow subclad flaws, have been tested in four point bending at very low temperature in order to obtain cleavage failure. The specimen failure was obtained in each case in base metal by cleavage fracture. These tests have been interpreted by two-dimensional and three-dimensional finite element computations using different fracture mechanics approaches (elastic analysis with specific plasticity corrections, elastic-plastic analysis, local approach to cleavage fracture). The failure of specimens are conservatively predicted by different analyses. The comparison between the elastic analyses and elastic-plastic analyses shows the conservatism of specific plasticity corrections used in French RPV elastic analyses. Numerous finite element calculations have also been performed between EDF, CEA and Framatome in order to compare and validate several fracture mechanics post processors implemented in finite element programmes used in pressurized thermal shock analyses. This work includes two-dimensional numerical computations on specimens with different geometries and loadings. The comparisons show a rather good agreement on main results, allowing to validate the finite element codes and their post-processors. (author). 11 refs, 24 figs, 3 tabs

  7. Evaluation of fracture mechanics analyses used in RPV integrity assessment regarding brittle fracture

    Energy Technology Data Exchange (ETDEWEB)

    Moinereau, D [Electricite de France, Dept. MTC, Moret-sur-Loing (France); Faidy, C [Electricite de France, SEPTEN, Villeurbanne (France); Valeta, M P [Commisariat a l` Energie Atomique, Dept. DMT, Gif-sur-Yvette (France); Bhandari, S; Guichard, D [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-La-Defense (France)

    1997-09-01

    Electricite de France has conducted during these last years some experimental and numerical research programmes in order to evaluate fracture mechanics analyses used in nuclear reactor pressure vessels structural integrity assessment, regarding the risk of brittle fracture. These programmes included cleavage fracture tests on large scale cladded specimens containing subclad flaws with their interpretations by 2D and 3D numerical computations, and validation of finite element codes for pressurized thermal shocks analyses. Four cladded specimens made of ferritic steel A508 C13 with stainless steel cladding, and containing shallow subclad flaws, have been tested in four point bending at very low temperature in order to obtain cleavage failure. The specimen failure was obtained in each case in base metal by cleavage fracture. These tests have been interpreted by two-dimensional and three-dimensional finite element computations using different fracture mechanics approaches (elastic analysis with specific plasticity corrections, elastic-plastic analysis, local approach to cleavage fracture). The failure of specimens are conservatively predicted by different analyses. The comparison between the elastic analyses and elastic-plastic analyses shows the conservatism of specific plasticity corrections used in French RPV elastic analyses. Numerous finite element calculations have also been performed between EDF, CEA and Framatome in order to compare and validate several fracture mechanics post processors implemented in finite element programmes used in pressurized thermal shock analyses. This work includes two-dimensional numerical computations on specimens with different geometries and loadings. The comparisons show a rather good agreement on main results, allowing to validate the finite element codes and their post-processors. (author). 11 refs, 24 figs, 3 tabs.

  8. Physical fracture properties (fracture surfaces as information sources; crackgrowth and fracture mechanisms; exemples of cracks)

    International Nuclear Information System (INIS)

    Meny, Lucienne.

    1979-06-01

    Fracture surfaces are considered as a useful source of informations: an introduction to fractography is presented; the fracture surface may be observed through X ray microanalysis, and other physical methods such as Auger electron spectroscopy or secundary ion emission. The mechanisms of macroscopic and microscopic crackgrowth and fracture are described, in the case of unstable fracture (cleavage, ductile with shear, intergranular brittleness) and of progressive crack propagation (creep, fatigue). Exemples of cracks are presented in the last chapter [fr

  9. Fracture Phenomena in Amorphous Selenium

    DEFF Research Database (Denmark)

    Lindegaard-Andersen, Asger; Dahle, Birgit

    1966-01-01

    Fracture surfaces of amorphous selenium broken in flexure at room temperature have been studied. The fracture velocity was found to vary in different regions of the fracture surface. Peculiar features were observed in a transition zone between fast and slower fracture. In this zone cleavage steps...

  10. Fundamental flow and fracture studies of HT-9

    International Nuclear Information System (INIS)

    Odette, G.R.; Lucas, G.E.; Maiti, R.; Sheckherd, J.W.

    1984-01-01

    Results of electron microscopy studies of cleavage crack formation and propagation in HT-9 are consistent with a model for stress-controlled cleavage in which the critical stress sigma/sub f//sup */ is related to the lath packet size. Moreover, sigma/sub f//sup */ appears to undergo a sharp transition at low temperatures and high strain rates; this is probably a result of a change in mechanism from slip- to twinning-nucleated cleavage. This change in sigma/sub f//sup */ effects corresponding changes in lower shelf fracture toughness. A simple two-parameter approach is shown to be a reasonable basis for predicting fracture loads for various size and crack-geometry bend specimens. These results indicated that cleavage fracture will occur near plastic collapse loads for thin wall structures containing shallow surface cracks. Results of an initial study of ductility in the cleavage regime indicate deflectional displacements on the order of 1-2 cm/m will be the limit for such shallow surface cracks in thin walls. The effects of dissolved hydrogen and stress state variations induced by side grooving were investigated. Hydrogen charges resulted in an average reduction in measured K/sub O/ values of about 17% and 5% in the ratio of maximum load fracture-to-collapse stress ratios. No significant effect of hydrogen on ductility was observed. Side grooving resulted in increases in both apparent K/sub O/ toughness levels and fracture-to-collapse stress ratios. Side grooving decreased ductility for shallow cracks and increased it for deep cracks. In general these effects are judged to be relatively modest compared to uncertainties in the measurements and the effects of significant variations in size and strength levels

  11. Application of the RKR model for evaluating the fracture toughness of pressure vessel steel in the transition temperature region

    International Nuclear Information System (INIS)

    Yang, Won Jon; Huh, Moo Young; Lee, Bong Sang; Hong, Jun Hwa

    2002-01-01

    Fracture toughness of a SA 533 B-1 steel was characterized in ductile-brittle transition temperature region by means of a RKR-type model. The original RKR model has been used to predict the plane strain fracture toughness (K IC ) behaviors in lower shelf region by assuming two material parameters, ie, the critical fracture stress and the characteristic distance. In this study, the fracture surface of every specimen was thoroughly investigated using scanning electron microscope to locate the actual cleavage initiation and to measure the cleavage initiation distance (CID) from the initial crack. The local fracture stress (σ f * ) of material was determined from the elastic-plastic stress field at the measured cleavage initiation location in the notched and precracked specimen. The local fracture stress of the precracked specimens was much higher than that of the notched specimen. The measured CIDs were strongly dependent on the test temperature and also on the fracture toughness. Based on the observations, it is found that, in the RKR-type cleavage fracture models, the characteristic distance should not be treated as a constant material parameter in the ductile-brittle transition region where the cleavage initiation controls the overall fracture process

  12. Fracture mechanics safety approaches

    International Nuclear Information System (INIS)

    Roos, E.; Schuler, X.; Eisele, U.

    2004-01-01

    Component integrity assessments require the knowledge of reliable fracture toughness parameters characterising the initiation of the failure process in the whole relevant temperature range. From a large number of fracture mechanics tests a statistically based procedure was derived allowing to quantify the initiation of fracture toughness as a function of temperature as a closed function as well as the temperature dependence of the cleavage instability parameters. Alternatively to the direct experimental determination one also can use a correlation between fracture toughness and notch impact energy. (orig.)

  13. Application of local approach to quantitative prediction of degradation in fracture toughness of steels due to pre-straining and irradiation

    International Nuclear Information System (INIS)

    Miyata, T.; Tagawa, T.

    1996-01-01

    Degradation of cleavage fracture toughness for low carbon steels due to pre-straining and irradiation was investigated on the basis of the local fracture criterion approach. Formulation of cleavage fracture toughness through the statistical modelling proposed by BEREMIN has been simplified by the present authors to the expression involving yield stress and cleavage fracture stress of materials. A few percent pre-strain induced by cold rolling deteriorates significantly the cleavage fracture toughness. Ductile-brittle transition temperature is increased to more than 70 C higher by 8% straining in 500 MPa class high strength steel. Quantitative prediction of degradation has been successfully examined through the formulation of the cleavage fracture toughness. Analytical and experimental results indicate that degradation in toughness is caused by the increase of flow stress in pre-strained materials. Quantitative prediction of degradation of toughness due to irradiation has been also examined for the past experiments on the basis of the local fracture criterion approach. Analytical prediction from variance of yield stress by irradiation is well consistent with the experimental results. (orig.)

  14. Fracture of Fe--Cr--Mn austenitic steel

    International Nuclear Information System (INIS)

    Caskey, G.R. Jr.

    1979-01-01

    Tensile tests of Tenelon (U.S. Steel), a nitrogen-strengthened iron-base alloy containing 18% chromium and 15% manganese, demonsterated that cleavage fracture can occur in some austenitic steels and is promoted by the presence of hydrogen. Tensile failure of Tenelon at 78 0 K occurred with no detectable necking at low strain levels. The fracture surface contained cleavage facets that lay along coherent twin boundaries oriented transversely to the tensile axis. Charging gaseous hydrogen at 679 MPa pressure and 650 0 K had no significant effect on the mechanical behavior or fracture mode at 78 0 K, but raised the ductile-to-brittle transition temperature from less than 200 0 K to about 250 0 K

  15. ''Global and local approaches of fracture in the ductile to brittle regime of a low alloy steel''

    International Nuclear Information System (INIS)

    Renevey, S.

    1998-01-01

    The study is a contribution to the prediction of flow fracture toughness of low alloy steel and to a better knowledge of fracture behavior in the ductile to brittle transition region. Experiments were performed on a nozzle cut-off from a pressurized water reactor vessel made of steels A508C13 type steel. Axisymmetrical notched specimens were tested to study the fracture onset in a volume element while pre-cracked specimens were used to investigate cleavage fracture after stable crack growth. Systematic observations of fracture surfaces showed manganese sulfide inclusions (MnS) at cleavage sites or in the vicinity. The experimental results were used for modelling by the local approach to fracture. In a volume element the fracture is described by an original probabilistic model. This model is based on volume fraction distributions of MnS inclusions gathered in clusters and on the assumption of a competition without interaction between ductile and cleavage fracture modes. This model was applied to pre-cracked specimens (CT specimens). It is able to describe the scatter in the toughness after a small stable crack growth if a temperature effect on the cleavage stress is assumed. So, the modelling is able to give a lower bound of fracture toughness as a function of temperature. (author)

  16. Intergranular brittle fracture of a low alloy steel. Global and local approaches

    International Nuclear Information System (INIS)

    Kantidis, E.

    1993-08-01

    The intergranular brittle fracture of a low alloy steel (A533B.Cl1) is studied: an embrittlement heat treatment is used to develop two brittle 'states' that fail through an intergranular way at low temperatures. This mode of fracture leads to an important shift of the transition temperature (∼ 165 deg C) and a decrease in the fracture toughness. The local approach to fracture, developed for cleavage, is applied to the case of intergranular fracture. Modifications are proposed. The physical supports of these models are verified by biaxial (tension-torsion) tests. From the local approaches developed for intergranular fracture, the static and dynamic fracture toughness of the embrittled steel is predicted. The local approach applied to a structural steel, which presents mixed modes of fracture (cleavage and intergranular), showed that this mode of fracture seems to be controlled by intergranular loss of cohesion

  17. Initiation of cleavage in a low alloy steel: effect of a ductile damage localized around inclusions; Declenchement du clivage dans un acier faiblement allie: role de l'endommagement ductile localise autour des inclusions

    Energy Technology Data Exchange (ETDEWEB)

    Carassou, S

    2000-07-01

    The fracture mechanism in a low alloy steel, used in the pressurised water reactor vessel, has been studied in the ductile to brittle transition temperature range. We used the local approach of fracture in conjunction with both fractographic observations and numerical simulations. Previous studies suggested the onset of cleavage to be favoured by the presence of nearby manganese sulphide (MnS) clusters: the ductile damaged zone localised inside a cluster increases the stress around it, and so contribute to the triggering of cleavage due to nearby classical sites, like carbides. The experimental study of size dependence and anisotropy on the global fracture behaviour, together with fractographic observations, give here the proof of the influence of MnS clusters on the onset of cleavage in this steel. Fracture behaviour of pre-cracked specimens tested in the transition regime has then been simulated, by three dimensional finite element method computations. Ductile tearing process preceding the cleavage onset at those temperatures regime was well reproduced by the Rousselier's model. Failure probabilities, related to given stress states, has been given by post-processor calculations, using a probabilistic model based on the specific cleavage fracture process. Fracture toughness scatter of the steel, tested in the transition regime, is then well reproduced by those calculations. However, the critical cleavage stress of an elementary volume, that scales for the fracture process, is still assumed to be temperature dependant. Numerical simulations of the local fracture process suggest that this temperature effect can partly be explained by the temperature dependant decrease of the stress amplification due to the MnS clusters. (author)

  18. Cleavage-ductile fracture transition study by competition between two fracture criteria

    International Nuclear Information System (INIS)

    Bouche, D.; Dubois, D.; Bretin, M.

    1983-01-01

    We present the results of the numerical simulation of rupture experiments conducted at -90 degrees C on A508 axisymmetrical test-specimens; the calculations have been performed with a finite element programme (TITUS) with an updated lagrangian formulation; moreover, the post-processing procedures of this programme can be evaluate focal fracture criteria. (orig./HP)

  19. Influence of the austenitizing temperature in the cleavage facet size of Niocor 2

    International Nuclear Information System (INIS)

    Darwish, F.A.I.; Teixeira, J.C.G.; Fernandes, R.A.; Juer, S.

    1983-01-01

    Convetional Charpy specimens of Niocor 2 steel cooled in air from various austenitizing temperatures were fractured at -196 0 C so as to insure failure by cleavage. The cleavage facet size distribution was determined and then correlated with the grain size and other aspects of the microstructure. The results that the average facet size can be increased through a coarsening of the microstructure. For the case where the γ→α transformation products are predominantely acicular, the facet size is shown to depend on substructural aspects primarily the lath packet size. (Author) [pt

  20. Development of a shallow-flaw fracture assessment methodology for nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryson, J.W.; Dickson, T.L.; McAfee, W.J.; Pennell, W.E.

    1996-01-01

    Shallow-flaw fracture technology is being developed within the Heavy-Section Steel Technology (HSST) Program for application to the safety assessment of radiation-embrittled nuclear reactor pressure vessels (RPVs) containing postulated shallow flaws. Cleavage fracture in shallow-flaw cruciform beam specimens tested under biaxial loading at temperatures in the lower transition temperature range was shown to be strain-controlled. A strain-based dual-parameter fracture toughness correlation was developed and shown to be capable of predicting the effect of crack-tip constraint on fracture toughness for strain-controlled fracture. A probabilistic fracture mechanics (PFM) model that includes both the properties of the inner-surface stainless-steel cladding and a biaxial shallow-flaw fracture toughness correlation gave a reduction in probability of cleavage initiation of more than two orders of magnitude from an ASME-based reference case

  1. Remarkable weakness against cleavage stress for YBCO-coated conductors and its effect on the YBCO coil performance

    International Nuclear Information System (INIS)

    Yanagisawa, Y.; Nakagome, H.; Takematsu, T.; Takao, T.; Sato, N.; Takahashi, M.; Maeda, H.

    2011-01-01

    Cleavage strength for YBCO-coated conductor is extremely low, typically 0.5 MPa. The remarkable weakness is due to cracks on the slit edge of the conductor. The cleavage stress appears on YBCO double pancake coils impregnated with epoxy. The cleavage stress should be avoided in the coil winding. Cleavage strength for an YBCO-coated conductor at 77 K was investigated with a model experiment. The nominal cleavage strength for an YBCO-coated conductor is extremely low, typically 0.5 MPa. This low nominal cleavage strength is due to stress concentration on a small part of the YBCO-coated conductor in cleavage fracture. Debonding by the cleavage stress occurs at the interface between the buffer layer and the Hastelloy substrate. The nominal cleavage strength for a slit edge of the conductor is 2.5-times lower than that for the original edge of the conductor; cracks and micro-peel existing over the slit edge reduce the cleavage strength for the slit edge. Cleavage stress and peel stress should be avoided in coil winding, as they easily delaminate the YBCO-coated conductor, resulting in substantial degradation of coil performance. These problems are especially important for epoxy impregnated YBCO-coated conductor coils. It appears that effect of cleavage stress and peel stress are mostly negligible for paraffin impregnated YBCO-coated conductor coils or dry wound YBCO-coated conductor coils.

  2. Conversion of transgranular to intergranular fracture in NiCr steels

    Czech Academy of Sciences Publication Activity Database

    Hadraba, Hynek; Němec, O.; Dlouhý, Ivo

    2008-01-01

    Roč. 75, č. 12 (2008), s. 3677-3691 ISSN 0013-7944 R&D Projects: GA AV ČR IAA200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : intergranular fracture * cleavage * fracture toughness * fracture stress * micromechanics * micromechanism * fractal dimension Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.713, year: 2008

  3. First principles characterisation of brittle transgranular fracture of titanium hydrides

    International Nuclear Information System (INIS)

    Olsson, Pär A.T.; Mrovec, Matous; Kroon, Martin

    2016-01-01

    In this work we have studied transgranular cleavage and the fracture toughness of titanium hydrides by means of quantum mechanical calculations based on density functional theory. The calculations show that the surface energy decreases and the unstable stacking fault energy increases with increasing hydrogen content. This is consistent with experimental findings of brittle behaviour of titanium hydrides at low temperatures. Based on Griffith-Irwin theory we estimate the fracture toughness of the hydrides to be of the order of 1 MPa⋅m"1"/"2, which concurs well with experimental data. To investigate the cleavage energetics, we analyse the decohesion at various crystallographic planes and determine the traction-separation laws based on the Rose's extended universal binding energy relation. The calculations predict that the peak stresses do not depend on the hydrogen content of the phases, but it is rather dependent on the crystallographic cleavage direction. However, it is found that the work of fracture decreases with increasing hydrogen content, which is an indication of hydrogen induced bond weakening in the material.

  4. Elastic fracture in driven media

    International Nuclear Information System (INIS)

    Lung Chiwei; Wang Shenggang; Long Qiyi

    1999-08-01

    Fracture as one of the mechanical properties of materials is structurally dependent. Defects, defect assemblies, grain boundaries and sub-boundaries materials, modify the local stress intensity factors intensively. Brittle fracture prefers to confine to the grain boundary where the specific surface energy is lower than that in the grain. Again, transgranular cracking may occur on the crystal cleavage plane or planes where the local toughness is lowered by dislocation interaction and motion. This paper shows the complexity of the fractal dimension or roughness index of fractured surfaces in materials with metallographic structures or in inhomogeneous media. (author)

  5. Analysis and experimental validation of through-thickness cracked large-scale biaxial fracture tests

    International Nuclear Information System (INIS)

    Wiesner, C.S.; Goldthorpe, M.R.; Andrews, R.M.; Garwood, S.J.

    1999-01-01

    Since 1984 TWI has been involved in an extensive series of tests investigating the effects of biaxial loading on the fracture behaviour of A533B steel. Testing conditions have ranged from the lower to upper shelf regions of the transition curve and covered a range of biaxiality ratios. In an attempt to elucidate the trends underlying the experimental results, finite element-based mechanistic models were used to analyse the effects of biaxial loading. For ductile fracture, a modified Gunson model was used and important effects on tearing behaviour were found for through thickness cracked wide plates, as observed in upper shelf tests. For cleavage fracture, both simple T-stress methods and the Anderson-Dodds and Beremin models were used. Whilst the effect of biaxiality on surface cracked plates was small, a marked effect of biaxial loading was found for the through-thickness crack. To further validate the numerical predictions for cleavage fracture, TWI have performed an additional series of lower shelf through thickness cracked biaxial wide plate fracture tests. These tests were performed using various biaxiality loading conditions varying from simple uniaxial loading, through equibiaxial loading, to a biaxiality ratio equivalent to a circumferential crack in a pressure vessel. These tests confirmed the predictions that there is a significant effect of biaxial loading on cleavage fracture of through thickness cracked plate. (orig.)

  6. Studies of fracture processes in Cr-Mo-V ferritic steel with various types of microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Dzioba, I., E-mail: pkmid@tu.kielce.p [Fundamentals of Machine Design Chair, Kielce University of Technology, Al.1000-lecia PP 7, 25-314 Kielce (Poland); Gajewski, M., E-mail: gajem@tu.kielce.p [Fundamentals of Machine Design Chair, Kielce University of Technology, Al.1000-lecia PP 7, 25-314 Kielce (Poland); Neimitz, A., E-mail: neimitz@tu.kielce.p [Fundamentals of Machine Design Chair, Kielce University of Technology, Al.1000-lecia PP 7, 25-314 Kielce (Poland)

    2010-10-15

    In this paper, the authors report on analysis of the influence of microstructure on ductile and cleavage fracture mechanisms. The question investigated was whether microstructure observations alone can provide sufficient information to predict the possible fracture mechanism or change in fracture mechanism. Four different microstructures of ferritic steel were tested after four different heat treatments. The microstructures examined were ferritic, ferritic-pearlitic, ferritic-bainitic, and tempered martensitic types. It was concluded that the ratio (S{sub C}/S{sub 0}) of the area covered by carbides to the total area of a ferritic grain (measured by taking into account large carbides) is the only possible quantitative measure that can be used to predict cleavage fracture.

  7. Role of Austenite in Brittle Fracture of Bond Region of Super Duplex Stainless Steel

    Science.gov (United States)

    Kitagawa, Yoshihiko; Ikeuchi, Kenji; Kuroda, Toshio

    Weld simulation of heat-affected zone (HAZ) was performed to investigate the mechanism by which austenite affects the toughness of super duplex stainless steel. Thermal cycles of various peak temperatures in the range from 1373 K to 1673 K corresponding to the HAZ were applied to SAF2507 super duplex stainless steel specimens. Charpy impact test was carried out using the specimens after the weld simulation, and the fracture surfaces were observed by SEM using three-dimensionally reconstruction technique. Austenite content decreased with increasing the peak temperature when the peak temperature exceeded 1473 K and the impact value decreased with increasing the peak temperature and decreasing the austenite content. The thermal cycle of the peak temperature of 1673 K corresponding to weld bond region caused decreasing of austenite content which was 22% lower than that of the base metal. The ductile-brittle transition temperature was measured. As a result the temperature increased rapidly in the weld bond region, the peak temperature of which exceeded 1623 K by the grain growth of ferrite matrix occurring subsequently to the completely dissolution of austenite. The morphology of the fracture surfaces after impact testing at 77 K showed cleavage fracture of ferrite. The {100} orientations of cleavage fracture facets were measured using three-dimensional images of the fracture surfaces and the results were visualized as the orientation color maps. The results showed that there were cleavage fractures consisting of a few facets parallel to each other. It was considered that a few facets existed in one ferrite grain. It was concluded that Widmanstätten austenite divided the large fracture into smaller cleavage facets in a ferrite grain and then suppressed the degradation of bond toughness of duplex stainless steel.

  8. Loading rate and test temperature effects on fracture of in situ niobium silicide-niobium composites

    International Nuclear Information System (INIS)

    Rigney, J.D.; Lewandowski, J.J.

    1996-01-01

    Arc cast, extruded, and heat-treated in situ composites of niobium silicide (Nb 5 Si 3 ) intermetallic with niobium phases (primary--Nb p and secondary--Nb s ) exhibited high fracture resistance in comparison to monolithic Nb 5 Si 3 . In toughness tests conducted at 298 K and slow applied loading rates, the fracture process proceeded by the microcracking of the Nb 5 Si 3 and plastic deformation of the Nb p and Nb s phases, producing resistance-curve behavior and toughnesses of 28 MPa√m with damage zone lengths less than 500 microm. The effects of changes in the Nb p yield strength and fracture behavior on the measured toughnesses were investigated by varying the loading rates during fracture tests at both 77 and 298 K. Quantitative fractography was utilized to completely characterize each fracture surface created at 298 K in order to determine the type of fracture mode (i.e., dimpled, cleavage) exhibited by the Nb p . Specimens tested at either higher loading rates or lower test temperatures consistently exhibited a greater amount of cleavage fracture in the Nb p , while the Nb s always remained ductile. However, the fracture toughness values determined from experiments spanning six orders of magnitude in loading rate at 298 and 77 K exhibited little variation, even under conditions when the majority of Nb p phases failed by cleavage at 77 K. The changes in fracture mode with increasing loading rate and/or decreasing test temperature and their effects on fracture toughness are rationalized by comparison to existing theoretical models

  9. Fracture toughness of a welded super duplex stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Pilhagen, Johan, E-mail: pilhagen@kth.se [Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm (Sweden); Sieurin, Henrik [Scania CV AB, Södertälje (Sweden); Sandström, Rolf [Department of Materials Science and Engineering, KTH Royal Institute of Technology, Stockholm (Sweden)

    2014-06-01

    Fracture toughness testing was conducted on standard single-edge notched bend bar specimens of base and weld metal. The material was the SAF 2906 super duplex stainless steel. The aim was to evaluate the susceptibility for brittle failure at sub-zero temperatures for the base and weld metal. The base metal was tested between −103 and −60 °C and was evaluated according to the crack-tip opening displacement method. The fracture event at and below −80 °C can be described as ductile until critical cleavage initiation occurs, which caused unstable failure of the specimen. The welding method used was submerged arc welding with a 7 wt% nickel filler metal. The welded specimens were post-weld heat treated (PWHT) at 1100 °C for 20 min and then quenched. Energy-dispersive X-ray spectroscopy analysis showed that during PWHT substitutional element partitioning occurred which resulted in decreased nickel content in the ferrite. The PWHT weld metal specimens were tested at −72 °C. The fracture sequence was critical cleavage fracture initiation after minor crack-tip blunting and ductile fracture.

  10. An evaluation of analysis methodologies for predicting cleavage arrest of a deep crack in an RPV subjected to PTS loading conditions

    International Nuclear Information System (INIS)

    Keeney-Walker, J.; Bass, B.R.

    1992-01-01

    Several calculational procedures are compared for predicting cleavage arrest of a deep crack in the wall of a prototypical reactor pressure vessel (RPV) subjected to pressurized-thermal-shock (PTS) types of loading conditions. Three procedures examined in this study utilized the following models: (1) a static finite-element model (full bending); (2) a radially constrained static model; and (3) a thermoelastic dynamic finite-element model. A PTS transient loading condition was selected that produced a deep arrest of an axially-oriented initially shallow crack according to calculational results obtained from the static (full-bending) model. Results from the two static models were compared with those generated from the detailed thermoelastic dynamic finite-element analysis. The dynamic analyses modeled cleavage-crack propagation using node-release technique and an application-mode methodology based on dynamic fracture toughness curves generated from measured data. Comparisons presented here indicate that the degree to which dynamic solutions can be approximated by static models is highly dependent on several factors, including the material dynamic fracture curves and the propensity for cleavage reinitiation of the arrested crack under PTS loading conditions. Additional work is required to develop and validate a satisfactory dynamic fracture toughness model applicable to postcleavage arrest conditions in an RPV

  11. Fracture characteristics of uranium alloys by scanning electron microscopy

    International Nuclear Information System (INIS)

    Koger, J.W.; Bennett, R.K. Jr.

    1976-10-01

    The fracture characteristics of uranium alloys were determined by scanning electron microscopy. The fracture mode of stress-corrosion cracking (SCC) of uranium-7.5 weight percent niobium-2.5 weight percent zirconium (Mulberry) alloy, uranium--niobium alloys, and uranium--molybdenum alloys in aqueous chloride solutions is intergranular. The SCC fracture surface of the Mulberry alloy is characterized by very clean and smooth grain facets. The tensile-overload fracture surfaces of these alloys are characteristically ductile dimple. Hydrogen-embrittlement failures of the uranium alloys are brittle and the fracture mode is transgranular. Fracture surfaces of the uranium-0.75 weight percent titanium alloys are quasi cleavage

  12. Atomistic investigations on the mechanical properties and fracture mechanisms of indium phosphide nanowires.

    Science.gov (United States)

    Pial, Turash Haque; Rakib, Tawfiqur; Mojumder, Satyajit; Motalab, Mohammad; Akanda, M A Salam

    2018-03-28

    The mechanical properties of indium phosphide (InP) nanowires are an emerging issue due to the promising applications of these nanowires in nanoelectromechanical and microelectromechanical devices. In this study, molecular dynamics simulations of zincblende (ZB) and wurtzite (WZ) crystal structured InP nanowires (NWs) are presented under uniaxial tension at varying sizes and temperatures. It is observed that the tensile strengths of both types of NWs show inverse relationships with temperature, but are independent of the size of the nanowires. Moreover, applied load causes brittle fracture by nucleating cleavage on ZB and WZ NWs. When the tensile load is applied along the [001] direction, the direction of the cleavage planes of ZB NWs changes with temperature. It is found that the {111} planes are the cleavage planes at lower temperatures; on the other hand, the {110} cleavage planes are activated at elevated temperatures. In the case of WZ NWs, fracture of the material is observed to occur by cleaving along the (0001) plane irrespective of temperature when the tensile load is applied along the [0001] direction. Furthermore, the WZ NWs of InP show considerably higher strength than their ZB counterparts. Finally, the impact of strain rate on the failure behavior of InP NWs is also studied, and higher fracture strengths and strains at higher strain rates are found. With increasing strain rate, the number of cleavages also increases in the NWs. This paper also provides in-depth understanding of the failure behavior of InP NWs, which will aid the design of efficient InP NWs-based devices.

  13. Multi scale study of the plasticity at low temperature in α-iron: application for the cleavage

    International Nuclear Information System (INIS)

    Chaussidon, J.

    2007-10-01

    An accident inside a nuclear power plant may lead to the cleavage of the nuclear vessel made of bainitic steel. In order to understand the origin of this fracture, we studied BCC-iron plasticity at low temperature using numerical simulations at different scales. Molecular Dynamics simulations show the high dependency of screw dislocation motion with temperature and stress. Results from these simulations were added to experiment data to develop a new Dislocation Dynamics code dedicated to BCC iron at low temperature. The code was used to model plasticity into a ferritic lath for various temperatures. This work confirms that cleavage is favoured by low temperatures. (author)

  14. Discrete Dislocation Plasticity Analysis of Cracks and Fracture

    NARCIS (Netherlands)

    Giessen, Erik van der; Pippan, R; Gumbsch, P

    2010-01-01

    Fracture in plastically deforming crystals involves several length scales for cleavage-like crack growth. The relevant length scales range from that of the macroscale object to the atomic scale, including the various microstructural length scales in between that are associated with, for example,

  15. Fracture mechanism of a dispersion-hardened molybdenum alloy with strong structural interfaces

    International Nuclear Information System (INIS)

    Vasil'ev, A.D.; Malashenko, I.S.; Moiseev, V.F.; Pechkovskij, Eh.P.; Sul'zhenko, V.K.; Trefilov, V.I.; AN Ukrainskoj SSR, Kiev. Inst. Ehlektrosvarki)

    1978-01-01

    Fracture mechanism in the two-phase Mo-15wt.%Nb-3.5 vol.% TiN alloy known to be of ''brittle matrix-strong interfaces'' type has been investigated depending on tensile test temperature. Several temperature intervals of fracture have been found, each of them having its own peculiarities. A scheme is suggested for fracture mechanism changes in dispersion-hardened alloys with strong interfaces. At low test temperatures brittle cleavage fracture takes place. With temperature increase fracture mechanisms change in the following way: brittle intergranular fracture; fracture of ''microvoid coalescence'' type; fracture typical for reinforced materials with ductile matrix; intergran laru fracture. Particles of strengthening phase have been shown to play different roles depending on the test temperature in the fracture of the alloys studied

  16. Statistical analyses of fracture toughness results for two irradiated high-copper welds

    International Nuclear Information System (INIS)

    Nanstad, R.K.; McCabe, D.E.; Haggag, F.M.; Bowman, K.O.; Downing, D.J.

    1990-01-01

    The objectives of the Heavy-Section Steel Irradiation Program Fifth Irradiation Series were to determine the effects of neutron irradiation on the transition temperature shift and the shape of the K Ic curve described in Sect. 6 of the ASME Boiler and Pressure Vessel Code. Two submerged-arc welds with copper contents of 0.23 and 0.31% were commercially fabricated in 215-mm-thick plates. Charpy V-notch (CVN) impact, tensile, drop-weight, and compact specimens up to 203.2 mm thick [1T, 2T, 4T, 6T, and 8T C(T)] were tested to provide a large data base for unirradiated material. Similar specimens with compacts up to 4T were irradiated at about 288 degrees C to a mean fluence of about 1.5 x 10 19 neutrons/cm 2 (>1 MeV) in the Oak Ridge Research Reactor. Both linear-elastic and elastic-plastic fracture mechanics methods were used to analyze all cleavage fracture results and local cleavage instabilities (pop-ins). Evaluation of the results showed that the cleavage fracture toughness values determined at initial pop-ins fall within the same scatter band as the values from failed specimens; thus, they were included in the data base for analysis (all data are designated K Jc )

  17. Criterion of cleavage crack propagation and arrest in a nuclear PWR vessel steel

    International Nuclear Information System (INIS)

    Bousquet, Amaury

    2013-01-01

    The purpose of this PhD thesis is to understand physical mechanisms of cleavage crack propagation and arrest in the 16MND5 PWR vessel steel and to propose a robust predicting model based on a brittle fracture experimental campaign of finely instrumented laboratory specimens associated with numerical computations. First, experiments were carried out on thin CT25 specimens at five temperatures (-150 C, -125 C, -100 C, -7 C, -50 C). Two kinds of crack path, straight or branching path, have been observed. To characterize crack propagation and to measure crack speed, a high-speed framing camera system was used, combined with the development of an experimental protocol which allowed to observe CT surface without icing inside the thermal chamber and on the specimen. The framing camera (520 000 fps) has allowed to have a very accurate estimation of crack speed on the complete ligament of CT (∼ 25 mm). Besides, to analyse experiments and to study the impact of viscosity on the mechanical response around the crack tip, the elastic-viscoplastic behavior of the ferritic steel has been studied up to a strain rate of 104 s -1 for the tested temperatures.The extended Finite Element Method (X-FEM) was used in CAST3M FE software to model crack propagation. Numerical computations combine a local non linear dynamic approach with a RKR type fracture stress criterion to a characteristic distance. The work carried out has confirmed the form of the criterion proposed by Prabel at -125 C, and has identified the dependencies of the criterion on temperature and strain rate. From numerical analyzes in 2D and 3D, a multi-temperature fracture stress criterion, increasing function of the strain rate, was proposed. Predictive modeling were used to confirm the identified criterion on two specimen geometries (CT and compressive ring) in mode I at different temperatures. SEM observations and 3D analyzes made with optical microscope showed that the fracture mechanism was the cleavage associated

  18. Cleavage strain in the Variscan fold belt, County Cork, Ireland, estimated from stretched arsenopyrite rosettes

    Science.gov (United States)

    Ford, M.; Ferguson, C.C.

    1985-01-01

    In south-west Ireland, hydrothermally formed arsenopyrite crystals in a Devonian mudstone have responded to Variscan deformation by brittle extension fracture and fragment separation. The interfragment gaps and terminal extension zones of each crystal are infilled with fibrous quartz. Stretches within the cleavage plane have been calculated by the various methods available, most of which can be modified to incorporate terminal extension zones. The Strain Reversal Method is the most accurate currently available but still gives a minimum estimate of the overall strain. The more direct Hossain method, which gives only slightly lower estimates with this data, is more practical for field use. A strain ellipse can be estimated from each crystal rosette composed of three laths (assuming the original interlimb angles were all 60??) and, because actual rather than relative stretches are estimated, this provides a lower bound to the area increase in the plane of cleavage. Based on the average of our calculated strain ellipses this area increase is at least 114% and implies an average shortening across the cleavage of at least 53%. However, several lines of evidence suggest that the cleavage deformation was more intense and more oblate than that calculated, and we argue that a 300% area increase in the cleavage plane and 75% shortening across the cleavage are more realistic estimates of the true strain. Furthermore, the along-strike elongation indicated is at least 80%, which may be regionally significant. Estimates of orogenic contraction derived from balanced section construction should therefore take into account the possibility of a substantial strike elongation, and tectonic models that can accommodate such elongations need to be developed. ?? 1985.

  19. Fracture Resistances of Y_2O_3 Particle Dispersion Strengthened 9Cr Steel at Room Temperature and High Temperatures

    International Nuclear Information System (INIS)

    Yoon, Ji Hyun; Kang, Suk Hoon; Lee, Yongbok; Kim, Sung Soo

    2012-01-01

    The fracture resistance and tensile properties of Y_2O_3 oxide dispersion strengthened steel containing 9 wt% Cr (9Cr-ODS) were measured at various temperatures up to 700°C. The fracture characteristics were compared with those of commercial E911 ferritic/martensitic steel. The strength of 9Cr-ODS was at least 30% higher than that of E911 steel at the test temperatures below 500°C. The strength difference between the two materials was almost diminished at 700°C. 9Cr-ODS showed cleavage fracture behavior at room temperature and unstable crack growth behaviors at 300°C and 500°C. The J-R fracture resistance of 9Cr-ODS was much lower than that of E911 steel at all temperatures. It was deduced that the coarse Cr_2O_3 particles that were formed during the alloying process provided the crack initiation sites of cleavage fracture in 9Cr-ODS.

  20. The effect of specimen and flaw dimensions on fracture toughness

    International Nuclear Information System (INIS)

    Nevalainen, M.J.

    1997-06-01

    The effect of the specimen size and geometry on fracture toughness has been investigated both by experimental tests and computational analyses. The methods for constraint description, namely T-stress, Q-parameter and Small-Scale Yielding Correction (SSYC) have been compared and applied for various geometries. A statistical treatment for the specimen thickness effect on cleavage fracture toughness has been investigated. Elliptical surface cracks were compared with straight-thickness cracks and a method for crack shape correction was presented. Based on the results, the differences in apparent fracture toughness values obtained from various specimen configurations can be better understood and taken into account

  1. Hot pressing, strength, and fracture of calcium hexaboride

    International Nuclear Information System (INIS)

    Dutta, S.K.

    1975-01-01

    Fracture behavior and strength of hot-pressed CaB 6 were studied. The modulus of elasticity determined by attaching strain gages to the tensile surface of the bend bars to measure strain, was 55 +- 3 x 10 6 psi. The results are compared with values for other low density ceramic materials (B 4 C, SiB 6 , Be 4 B, AlB 12 ) in a table. The fracture mode was observed for both modulus of rupture and impact test specimens. Predominantly transgranular fracture, associated with distinct step cleavages is evident. Fracture origins were examined in an effort to understand the strength limiting features in hot-pressed CaB 6 specimens. Surface defects, large grain agglomerations, and isolated pore pockets were observed and varied from bar to bar; these were similar to those found in B 4 C. (U.S.)

  2. Microscale fracture mechanisms of a Cr3C2-NiCr HVOF coating

    International Nuclear Information System (INIS)

    Robertson, Andrew L.; White, Ken W.

    2017-01-01

    Thermal spray coatings, often composed of heterogeneous, multiphase microstructures, may, consequently, exhibit complex fracture behavior. For such coating structures, conventional mechanical evaluation methods fail to isolate the contribution of microstructural features to the overall fracture behavior. For this reason, this study employed focused ion beam machined (FIB) microcantilever beams and FIB sectioning methods to study the fracture mechanisms important at the scale of the heterogeneous Cr 3 C 2 -NiCr thermal spray coating. We found three fracture modes, namely, intergranular matrix fracture, matrix/carbide interfacial fracture, and carbide cleavage. By comparison, microindentation-induced cracks, the frequency of crack deflection around carbides is significantly more prevalent at this much larger crack dimension. This mechanistic variation provides some insight into the specific role and limitations of the microcantilever beam technique for fracture characterization of composite microstructures.

  3. Vertebrate Embryonic Cleavage Pattern Determination.

    Science.gov (United States)

    Hasley, Andrew; Chavez, Shawn; Danilchik, Michael; Wühr, Martin; Pelegri, Francisco

    2017-01-01

    The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate development. This chapter describes the early cleavage stages for species representing ray-finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these patterns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orientation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early development, as well as cytoskeletal specializations specific to early blastomeres including processes leading to blastomere cohesion. Finally, we discuss evolutionary conclusions beginning to emerge from the contemporary analysis of the phylogenetic distributions of cleavage patterns. In sum, this chapter seeks to summarize our current understanding of vertebrate early embryonic cleavage patterns and their control and evolution.

  4. Relationship between toughness and the physical fracture process on a microscopic scale

    International Nuclear Information System (INIS)

    Francois, D.

    1975-01-01

    Cleavage occurs when a local stress reaches a critical level sigma-f which is a function of temperature and metallurgical factors such as grain size. Cleavages occur ahead of the main crack tip. It is possible to establish a relationship between the cleavage stress and toughness, involving the notch root radius. At higher temperatures, fracture is ductile and occurs at a critical elongation epsilon-f, which is a function of the distribution of inclusions and the strain hardening index. It is possible to establish a relationship between toughness and this elongation at rupture. The influence of temperature, which affects several parameters, is complex. On the other hand, pressure, modifying only elongation at rupture represents an attractive means for confirming this theories. Experimental results are presented [fr

  5. The effect of specimen and flaw dimensions on fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Nevalainen, M.J. [VTT Manufacturing Technology, Espoo (Finland)

    1997-06-01

    The effect of the specimen size and geometry on fracture toughness has been investigated both by experimental tests and computational analyses. The methods for constraint description, namely T-stress, Q-parameter and Small-Scale Yielding Correction (SSYC) have been compared and applied for various geometries. A statistical treatment for the specimen thickness effect on cleavage fracture toughness has been investigated. Elliptical surface cracks were compared with straight-thickness cracks and a method for crack shape correction was presented. Based on the results, the differences in apparent fracture toughness values obtained from various specimen configurations can be better understood and taken into account. 64 refs. The thesis includes also four previous publications by author.

  6. The FEM Analysis of Stress Distribution in front of the Crack Tip and Fracture Process in the Elements of Modified and Unmodified Cast Steel G17CrMo5-5

    Directory of Open Access Journals (Sweden)

    Pała Robert

    2016-09-01

    Full Text Available The article presents influence of modification of the low-alloy cast steel G17CrMo5-5 by rare earth metals on stress distribution in front of the crack at the initial moment of the crack extension. Experimental studies include determination of strength and fracture toughness characteristics for unmodified (UM and modified (M cast steel. In the numerical computations, experimentally tested specimens SEN(B were modelled. The true stress–strain curves for the UM and M cast steel are used in the calculation. The stress distributions in front of the crack were calculated at the initial moment of the crack extension. On the basis of data on the particle size inclusions in the UM and M cast steel, and the calculated stress distributions was performed an assessment of the possibility of the occurrence of cleavage fracture. The analysis results indicate that at room temperature for the UM cast steel, there is a possibility of cleavage fracture, while for the M cast steel occurrence of cleavage fracture is negligible.

  7. Tensile and fracture properties of EBR-II-irradiated V-15Cr-5Ti containing helium

    International Nuclear Information System (INIS)

    Grossbeck, M.L.; Horak, J.A.

    1986-01-01

    The alloy V-15Cr-5Ti was cyclotron-implanted with 80 appM He and subsequently irradiated in the Experimental Breeder Reactor (EBR-II) to 30 dpa. The same alloy was also irradiated in the 10, 20, and 30% cold-worked conditions. Irradiation temperatures ranged from 400 to 700 0 C. No significant effects of helium on mechanical properties were found in this temperature range although the neutron irradiation shifted the temperature of transition from cleavage to ductile fracture to about 625 0 C. Ten percent cold work was found to have a beneficial effect in reducing the tendency for cleavage fracture following irradiation, but high levels (20%) were observed to reduce ductility. Still higher levels (30%) improved ductility by inducing recovery during the elevated-temperature irradiation. Swelling was found to be negligible, but precipitates - titanium oxides or carbonitrides - contained substantial cavities

  8. Microscale fracture mechanisms of a Cr{sub 3}C{sub 2}-NiCr HVOF coating

    Energy Technology Data Exchange (ETDEWEB)

    Robertson, Andrew L., E-mail: Andrew.robertson99987@gmail.com; White, Ken W.

    2017-03-14

    Thermal spray coatings, often composed of heterogeneous, multiphase microstructures, may, consequently, exhibit complex fracture behavior. For such coating structures, conventional mechanical evaluation methods fail to isolate the contribution of microstructural features to the overall fracture behavior. For this reason, this study employed focused ion beam machined (FIB) microcantilever beams and FIB sectioning methods to study the fracture mechanisms important at the scale of the heterogeneous Cr{sub 3}C{sub 2}-NiCr thermal spray coating. We found three fracture modes, namely, intergranular matrix fracture, matrix/carbide interfacial fracture, and carbide cleavage. By comparison, microindentation-induced cracks, the frequency of crack deflection around carbides is significantly more prevalent at this much larger crack dimension. This mechanistic variation provides some insight into the specific role and limitations of the microcantilever beam technique for fracture characterization of composite microstructures.

  9. Biaxial loading and shallow-flaw effects on crack-tip constraint and fracture-toughness

    International Nuclear Information System (INIS)

    Pennell, W.E.; Bass, B.R.; Bryson, J.W.; McAfee, W.J.; Theiss, T.J.; Rao, M.C.

    1993-01-01

    Uniaxial tests of single-edged notched bend (SENB) specimens with both deep- and shallow-flaws have shown elevated fracture-toughness for the shallow flaws. The elevation in fracture-toughness for shallow flaws has been shown to be the result of reduced constraint at the crack-tip. Biaxial loading has the potential to increase constraint at the crack-tip and thereby reduce some of the shallow-flaw, fracture-toughness elevation. Biaxial fracture-toughness tests have shown that the shallow-flaw, fracture-toughness elevation is reduced but not eliminated by biaxial loading. Dual-parameter, fracture-toughness correlations have been proposed to reflect the effect of crack-tip constraint on fracture-toughness. Test results from the uniaxial and biaxial tests were analyzed using the dual-parameter technology. Discrepancies between analysis results and cleavage initiation site data from fractographic examinations indicate that the analysis models are in need of further refinement. Addition of a precleavage, ductile-tearing element to the analysis model has the potential to resolve the noted discrepancies

  10. Fracture toughness of Ti-Al3Ti-Al-Al3Ti laminate composites under static and cyclic loading conditions

    Science.gov (United States)

    Patselov, A. M.; Gladkovskii, S. V.; Lavrikov, R. D.; Kamantsev, I. S.

    2015-10-01

    The static and cyclic fracture toughnesses of a Ti-Al3Ti-Al-Al3Ti laminate composite material containing at most 15 vol % intermetallic compound are studied. Composite specimens are prepared by terminating reaction sintering of titanium and aluminum foils under pressure. The fracture of the titanium layers is quasi-cleavage during cyclic crack growth and is ductile during subsequent static loading.

  11. Investigation of the local fracture toughness and the elastic-plastic fracture behavior of NiAl and tungsten by means of micro-cantilever tests

    International Nuclear Information System (INIS)

    Ast, Johannes

    2016-01-01

    The objective of this work was to get an improved understanding of the size dependence of the fracture toughness. For this purpose notched micro-cantilevers were fabricated ranging in dimensions from the submicron regime up to some tens of microns by means of a focused ion beam. B2-NiAl and tungsten were chosen as model materials as their brittle to ductile transition temperatures are well above room temperature. In that way, fracture processes accompanied by limited plastic deformation around the crack tip could be studied at the micro scale. For this size regime, new methods to describe the local elastic-plastic fracture behavior and to measure the fracture toughness were elaborated. Particular focus was set on the J-integral concept which was adapted to the micro scale to derive crack growth from stiffness measurements. This allowed a precise analysis of the transition from crack tip blunting to stable crack growth which is necessary to accurately measure the fracture toughness. Experiments in single crystalline NiAl showed for the two investigated crack systems, namely the hard and the soft orientation, that the fracture toughness at the micro scale is the same as the one known from macroscopic testing. Thus, size effects were not found for the tested length scale. The addition of little amounts of iron did not affect the fracture toughness considerably. Yet, it influenced the crack growth in those samples and consequently the resistance curve behavior. Concerning experiments in single crystalline tungsten, the fracture toughness showed a clear dependency on sample size. The smallest cantilevers fractured purely by cleavage. Larger samples exhibited stable crack growth along with plastic deformation which was recognizable in SEM-micrographs and quantified by means of EBSD measurements. Just as in macroscopic testing, the investigated crack system {100} demonstrated a dependency on loading rate with higher loading rates leading to a more brittle behavior. This

  12. Slip, twinning, and fracture at a grain boundary in the L1/sub 2/ ordered structure: A. sigma. = 9 tilt boundary

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, M.H.; King, A.H.

    1988-09-01

    The role of interaction between slip dislocations and a ..sigma.. = 9 tilt boundary in localized microplastic deformation, cleavage, or intergranular fracture in the L1/sub 2/ ordered structure has been analyzed by using the anisotropic elasticity theory of dislocations and fracture. Screw superpartials cross slip easily at the boundary onto the (11-bar1) and the (001) planes at low and high temperatures, respectively. Transmission of primary slip dislocations onto the conjugate slip system occurs with a certain degree of difficulty, which is eased by localized disordering. When the transmission is impeded, cleavage fracture on the (1-bar11) plane is predicted to occur, not intergranular fracture, unless a symmetric double pileup occurs simultaneously. Absorption (or emission) of superpartials occurs only when the boundary region is disordered. Slip initiation from pre-existing sources near the boundary can occur under the local stress concentration. Implications of the present result on the inherent brittleness of grain boundaries in Ni/sub 3/ Al and its improvement by boron segregation are discussed.

  13. A Nanoindentation Study of the Plastic Deformation and Fracture Mechanisms in Single-Crystalline CaFe2As2

    Science.gov (United States)

    Frawley, Keara G.; Bakst, Ian; Sypek, John T.; Vijayan, Sriram; Weinberger, Christopher R.; Canfield, Paul C.; Aindow, Mark; Lee, Seok-Woo

    2018-04-01

    The plastic deformation and fracture mechanisms in single-crystalline CaFe2As2 has been studied using nanoindentation and density functional theory simulations. CaFe2As2 single crystals were grown in a Sn-flux, resulting in homogeneous and nearly defect-free crystals. Nanoindentation along the [001] direction produces strain bursts, radial cracking, and lateral cracking. Ideal cleavage simulations along the [001] and [100] directions using density functional theory calculations revealed that cleavage along the [001] direction requires a much lower stress than cleavage along the [100] direction. This strong anisotropy of cleavage strength implies that CaFe2As2 has an atomic-scale layered structure, which typically exhibits lateral cracking during nanoindentation. This special layered structure results from weak atomic bonding between the (001) Ca and Fe2As2 layers.

  14. Tensile and fracture properties of EBR-II-irradiated V-15Cr-5Ti containing helium

    Energy Technology Data Exchange (ETDEWEB)

    Grossbeck, M.L.; Horak, J.A.

    1986-01-01

    The alloy V-15Cr-5Ti was cyclotron-implanted with 80 appM He and subsequently irradiated in the Experimental Breeder Reactor (EBR-II) to 30 dpa. The same alloy was also irradiated in the 10, 20, and 30% cold-worked conditions. Irradiation temperatures ranged from 400 to 700/sup 0/C. No significant effects of helium on mechanical properties were found in this temperature range although the neutron irradiation shifted the temperature of transition from cleavage to ductile fracture to about 625/sup 0/C. Ten percent cold work was found to have a beneficial effect in reducing the tendency for cleavage fracture following irradiation, but high levels (20%) were observed to reduce ductility. Still higher levels (30%) improved ductility by inducing recovery during the elevated-temperature irradiation. Swelling was found to be negligible, but precipitates - titanium oxides or carbonitrides - contained substantial cavities.

  15. Statistical evaluation of fracture characteristics of RPV steels in the ductile-brittle transition temperature region

    International Nuclear Information System (INIS)

    Kang, Sung Sik; Chi, Se Hwan; Hong, Jun Hwa

    1998-01-01

    The statistical analysis method was applied to the evaluation of fracture toughness in the ductile-brittle transition temperature region. Because cleavage fracture in steel is of a statistical nature, fracture toughness data or values show a similar statistical trend. Using the three-parameter Weibull distribution, a fracture toughness vs. temperature curve (K-curve) was directly generated from a set of fracture toughness data at a selected temperature. Charpy V-notch impact energy was also used to obtain the K-curve by a K IC -CVN (Charpy V-notch energy) correlation. Furthermore, this method was applied to evaluate the neutron irradiation embrittlement of reactor pressure vessel(RPV) steel. Most of the fracture toughness data were within the 95 percent confidence limits. The prediction of a transition temperature shift by statistical analysis was compared with that from the experimental data. (author)

  16. An Examination Of Fracture Splitting Parameters Of Crackable Connecting Rods

    Directory of Open Access Journals (Sweden)

    Zafer Özdemir

    2000-06-01

    Full Text Available Fracture splitting method is an innovative processing technique in the field of automobile engine connecting rod (con/rod manufacturing. Compared with traditional method, this technique has remarkable advantages. Manufacturing procedures, equipment and tools investment can be decreased and energy consumption reduced remarkably. Furthermore, product quality and bearing capability can also be improved. It provides a high quality, high accuracy and low cost route for producing connecting rods (con/rods. With the many advantages mentioned above, this method has attracted manufacturers attention and has been utilized in many types of con/rod manufacturing. In this article, the method and the advantages it provides, such as materials, notches for fracture splitting, fracture splitting conditions and fracture splitting equipment are discussed in detail. The paper describes an analysis of examination of fracture splitting parameters and optik-SEM fractography of C70S6 crackable connectıng rod. Force and velocity parameters are investigated. That uniform impact force distrubition starting from the starting notch causes brittle and cleavage failure mode is obtained as a result. This induces to decrease the toughness.

  17. The influence of hydride on fracture toughness of recrystallized Zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsiao-Hung, E-mail: 175877@mail.csc.com.tw [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China); China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chiang, Ming-Feng [China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chen, Yen-Chen [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China)

    2014-04-01

    In this work, RXA cladding tubes were hydrogen-charged to target hydrogen content levels between 150 and 800 wppm (part per million by weight). The strings of zirconium hydrides observed in the cross sections are mostly oriented in the circumferential direction. The fracture toughness of hydrided RXA Zircaloy-4 cladding was measured to evaluate its hydride embrittlement susceptibility. With increasing hydrogen content, the fracture toughness of hydrided RXA cladding decreases at both 25 °C and 300 °C. Moreover, highly localized hydrides (forming a hydride rim) aggravate the degradation of the fracture properties of RXA Zircaloy-4 cladding at both 25 °C and 300 °C. Brittle features in the form of quasi-cleavages and secondary cracks were observed on the fracture surface of the hydride rim, even for RXA cladding tested at 300 °C.

  18. Modeling and inferring cleavage patterns in proliferating epithelia.

    Directory of Open Access Journals (Sweden)

    Ankit B Patel

    2009-06-01

    Full Text Available The regulation of cleavage plane orientation is one of the key mechanisms driving epithelial morphogenesis. Still, many aspects of the relationship between local cleavage patterns and tissue-level properties remain poorly understood. Here we develop a topological model that simulates the dynamics of a 2D proliferating epithelium from generation to generation, enabling the exploration of a wide variety of biologically plausible cleavage patterns. We investigate a spectrum of models that incorporate the spatial impact of neighboring cells and the temporal influence of parent cells on the choice of cleavage plane. Our findings show that cleavage patterns generate "signature" equilibrium distributions of polygonal cell shapes. These signatures enable the inference of local cleavage parameters such as neighbor impact, maternal influence, and division symmetry from global observations of the distribution of cell shape. Applying these insights to the proliferating epithelia of five diverse organisms, we find that strong division symmetry and moderate neighbor/maternal influence are required to reproduce the predominance of hexagonal cells and low variability in cell shape seen empirically. Furthermore, we present two distinct cleavage pattern models, one stochastic and one deterministic, that can reproduce the empirical distribution of cell shapes. Although the proliferating epithelia of the five diverse organisms show a highly conserved cell shape distribution, there are multiple plausible cleavage patterns that can generate this distribution, and experimental evidence suggests that indeed plants and fruitflies use distinct division mechanisms.

  19. Analysis of the competition between brittle and ductile fracture: application for the mechanical behaviour of C-Mn and theirs welds

    International Nuclear Information System (INIS)

    Le Corre, V.

    2006-09-01

    This study deals with the fracture behaviour of welded thin structures in the ductile to brittle transition range. It aims to propose a criterion to define the conditions for which the risk of fracture by cleavage does not exist on a cracked structure. The literature review shows that the difficulties of prediction of the fracture behaviour of a structure are related to the dependence of the fracture probability to the mechanical fields at the crack tip. The ductile to brittle transition range thus depends on the studied geometry of the structure. A threshold stress, below which cleavage cannot take place, is defined using fracture tests on notched specimens broken at very low temperature. The finite element numerical simulation of fracture tests on CT specimens in the transition range shows a linear relationship between the fracture probability and the volume exceeding the threshold stress, thus showing the relevance of the proposed criterion. Moreover, several relations are established allowing to simplify the identification of the criterion parameters. The criterion is applied to a nuclear structural C-Mn steel, by focusing more particularly on the higher boundary of the transition range. A fracture test on a full-scale pipe is designed, developed, carried out and analysed using its numerical simulation. The results show firstly that, on the structure, the transition range is shifted in temperature, compared to laboratory specimens, due to the low plasticity constraint achieved in thin structures, and secondly that the threshold stress criterion allows to estimate simply this shift. (author)

  20. Intermolecular cleavage by UmuD-like mutagenesis proteins

    Science.gov (United States)

    McDonald, John P.; Frank, Ekaterina G.; Levine, Arthur S.; Woodgate, Roger

    1998-01-01

    The activity of a number of proteins is regulated by self-processing reactions. Elegant examples are the cleavage of the prokaryotic LexA and λCI transcriptional repressors and the UmuD-like mutagenesis proteins. Various studies support the hypothesis that LexA and λCI cleavage reactions are predominantly intramolecular in nature. The recently described crystal structure of the Escherichia coli UmuD′ protein (the posttranslational cleavage product of the UmuD protein) suggests, however, that the region of the protein corresponding to the cleavage site is at least 50 Å away from the catalytic active site. We considered the possibility, therefore, that the UmuD-like proteins might undergo self-processing that, in contrast to LexA and λCI, occurs via an intermolecular rather than intramolecular reaction. To test this hypothesis, we introduced into E. coli compatible plasmids with mutations at either the cleavage or the catalytic site of three UmuD-like proteins. Cleavage of these proteins only occurs in the presence of both plasmids, indicating that the reaction is indeed intermolecular in nature. Furthermore, this intermolecular reaction is completely dependent upon the multifunctional RecA protein and leads to the restoration of cellular mutagenesis in nonmutable E. coli strains. Intermolecular cleavage of a biotinylated UmuD active site mutant was also observed in vitro in the presence of the wild-type UmuD′ protein, indicating that in addition to the intact UmuD protein, the normal cleavage product (UmuD′) can also act as a classical enzyme. PMID:9465040

  1. Regioselectivity in the Reductive Bond Cleavage of Diarylalkylsulfonium Salts

    DEFF Research Database (Denmark)

    Kampmeier, Jack; Mansurul Hoque, AKM; D. Saeva, Franklin

    2009-01-01

    products vary from regiospecific alkyl cleavage to predominant aryl cleavage as a function of the potential of the reducing agent. We conclude that differences between the reductive cleavages of mono- and diarylsulfonium salts are direct consequences of the structures of the sulfuranyl radical......- tolylethylsulfonium and di-4-tolyl-2-phenylethylsulfonium salts by a variety of one-electron reducing agents ranging in potential from -0.77 to +2.5 eV (vs SCE) and including thermal reductants, indirect electrolyses mediated by a series of cyanoaromatics, and excited singlet states. We report that the cleavage...... intermediates and the bond dissociation energies of the alkyl and aryl bonds. Competitions between the rates of cleavage and oxidation of the intermediate sulfuranyl radicals and between concerted and stepwise mechanisms are discussed to explain the variations in bond cleavage products as a function...

  2. Recommendations for the application of fracture toughness data for structural integrity assessments

    International Nuclear Information System (INIS)

    Wallin, K.

    1993-01-01

    Large scale testing for the purpose of fracture mechanics verification is essentially directed towards the validation of the transferability of material data obtained with small specimens. Unfortunately the results are sometimes controversial, insinuating that the transferability is imprecise at the very least. However, it seems that in many cases the controversy is due to an improper application of the small specimen data. Present testing standards do not give any recommendations for the correct application of fracture toughness data and yet this is a crucial point for successful structural integrity assessment and fracture mechanics verification. In this presentation the topic concerning recommendations is addressed, focusing on the application of brittle (cleavage type) fracture data. Simple guidelines for obtaining optimum open-quotes best-close quotes and open-quotes safe-close quotes estimates of the behavior of the actual structure based on small specimen data are presented. 51 refs., 16 figs., 1 tab

  3. Secondary isotope effects on alpha-cleavage reactions

    International Nuclear Information System (INIS)

    Ingemann, S.; Hammerum, S.

    1980-01-01

    Kinetic deuterium isotope effects on mass spectral reactions have in several instances been utilized to provide structural information and to answer mechanistic questions. Typically, the influence of the deuterium label on the rate of one of a number of competing reactions has been studied. Secondary isotope effects have usually been assumed to be relatively insignificant in comparison with the observed kinetic effects, even though various workers have shown that secondary isotope effects may indeed exert a considerable influence on the rates of competing simple cleavages. Recent studies have provided quantitative data to show that the mere presence of deuterium atoms up to six bonds away may influence the rate of a simple cleavage reaction. In relation to an investigation of rearrangements accompanying simple cleavage reactions, a semi-quantitative measure was needed of the variation of the secondary isotope effect with the number of bonds between the deuterium label and the point of rupture. The influence has therefore been examined of the presence of remote deuterium atoms on a typical simple cleavage reaction, the α-cleavage of aliphatic amines. As a model compound, N-methyldipentylamine was chosen, systematically labelled with deuterium. (author)

  4. Size effects and strain localization in atomic-scale cleavage modeling

    International Nuclear Information System (INIS)

    Elsner, B A M; Müller, S

    2015-01-01

    In this work, we study the adhesion and decohesion of Cu(1 0 0) surfaces using density functional theory (DFT) calculations. An upper stress to surface decohesion is obtained via the universal binding energy relation (UBER), but the model is limited to rigid separation of bulk-terminated surfaces. When structural relaxations are included, an unphysical size effect arises if decohesion is considered to occur as soon as the strain energy equals the energy of the newly formed surfaces. We employ the nudged elastic band (NEB) method to show that this size effect is opposed by a size-dependency of the energy barriers involved in the transition. Further, we find that the transition occurs via a localization of bond strain in the vicinity of the cleavage plane, which resembles the strain localization at the tip of a sharp crack that is predicted by linear elastic fracture mechanics. (paper)

  5. Technical report on micro-mechanical versus conventional modelling in non-linear fracture mechanics

    International Nuclear Information System (INIS)

    2001-07-01

    While conventional fracture mechanics is capable of predicting crack growth behaviour if sufficient experimental observations are available, micro-mechanical modelling can both increase the accuracy of these predictions and model phenomena that are inaccessible by the conventional theory such as the ductile-cleavage temperature transition. A common argument against micro-mechanical modelling is that it is too complicated for use in routine engineering applications. This is both a computational and an educational problem. That micro-mechanical modelling is unnecessarily complicated is certainly true in many situations. The on-going development of micro-mechanical models, computational algorithms and computer speed will however most probably diminish the computational problem rather rapidly. Compare for instance the rate of development of computational methods for structural analysis. Meanwhile micro-mechanical modelling may serve as a tool by which more simplified engineering methods can be validated. The process of receiving a wide acceptance of the new methods is probably much slower. This involves many steps. First the research community must be in reasonable agreement on the methods and their use. Then the methods have to be implemented into computer software and into code procedures. The development and acceptance of conventional fracture mechanics may serve as an historical example of the time required before a new methodology has received a wide usage. The CSNI Working Group on Integrity and Ageing (IAGE) decided to carry out a report on micro-mechanical modeling to promote this promising and valuable technique. The report presents a comparison with non-linear fracture mechanics and highlights key aspects that could lead to a better knowledge and accurate predictions. Content: - 1. Introduction; - 2. Concepts of non-linear fracture mechanics with point crack tip modelling; - 3. Micro-mechanical models for cleavage fracture; - 4, Micro-mechanical modelling of

  6. Fracture toughness evaluation in the transition region of reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Onizawa, K.; Suzuki, M.

    1995-01-01

    The fracture toughness (K jc and Jc) values at the cleavage fracture initiation in the transition region of a RPV steel were investigated using mainly precracked Charpy specimens. A conventional statistical approach and a fractographic study were applied to analyze the scatter of the fracture toughness values from precracked Charpy specimens. The material used was an ASTM A533B class 1 steel, which was designated as an IAEA correlation monitor material, JRQ. A lower bound transition curve of the fracture toughness for unirradiated condition was determined by the 5% confidence limit from the Weibull and fractographic analyses. The lower bound transition curve after irradiation was evaluated based on the statistics of unirradiated specimens. The results indicated that the shift of the fracture toughness transition curbe were somewhat larger than the Charpy 41J transition temperature. The parameters to determine the lower bound toughness such as the Weibull slope and the amount of ductile crack growth are discussed. The results are also compared with a model based on weakest link theory. (author). 12 refs, 12 figs, 5 tabs

  7. Numerical investigation of 3-D constraint effects on brittle fracture in SE(B) and C(T) specimens

    International Nuclear Information System (INIS)

    Nevalainen, M.; Dodds, R.H. Jr.

    1996-07-01

    This investigation employs 3-D nonlinear finite element analyses to conduct an extensive parametric evaluation of crack front stress triaxiality for deep notch SE(B) and C(T) specimens and shallow notch SE(B) specimens, with and without side grooves. Crack front conditions are characterized in terms of J-Q trajectories and the constraint scaling model for cleavage fracture toughness proposed previously by Dodds and Anderson. The 3-D computational results imply that a significantly less strict size/deformation limit, relative to the limits indicated by previous plane-strain computations, is needed to maintain small-scale yielding conditions at fracture by a stress- controlled, cleavage mechanism in deep notch SE(B) and C(T) specimens. Additional new results made available from the 3-D analyses also include revised η-plastic factors for use in experimental studies to convert measured work quantities to thickness average and maximum (local) J-values over the crack front

  8. Determination of the fracture thoughness curve within the ductile brittle transition region in ferritic steel AISI4140

    International Nuclear Information System (INIS)

    Hernandez, R.; Orozco, E.

    1996-01-01

    The aim of this work is to show the validity in the employment of small test tubes (1/2 T) in order to determine the fracture thoughness in ferritic steels that experience the beginning of cracking by cleavage, to elastic instability, and/or elasto-plastic. It was calculated the change of fracture thoughness in the ductile brittle transition region like function of the temperature employing statistic methods for steel to the annealed carbon of the type AISI4140. The testings were carried out within an interval of temperatures, where the cracking by cleavage and/or pop-in occurs. The thoughness curve of the cracking in the transition region was determined, in small test tubes 1/2 T, and in standard test tubes, 1T. It was calculated the beginning of instability of the integral J, J IC , and was converted to its equivalent in K JC units based in the ASTM Standard rev. 6-12-95 (ref. 6). (Author)

  9. Prediction of non-brittle fracture in the welded joint of C-Mn steel in the brittle-ductile transition domain

    International Nuclear Information System (INIS)

    Nguyen, Thai Ha

    2009-11-01

    This work concerns the nuclear safety, specifically the secondary circuit integrity of pressurized water reactors (PWR). The problem is that of the fracture of a thin tubular structure in ferritic steel with many welded joints. The ferritic steel and weld present a brittle/ductile tenacity transition. Moreover, the welds present geometry propitious to the appearance of fatigue cracks, due to vibrations and expansions. These cracks may cause the complete fracture of the structure. The objectives of this work are to establish a criterion of non-fracture by cleavage of thin welded structures in ferritic steel, applicable to actual structures. Therefore, the present study focuses on the fracture behaviour of welded thin structures in brittle/ductile transition. It aims at developing the threshold stress model initially proposed by Chapuliot, to predict the non-brittle-fracture of this welded structure. The model is identified for the welded joint in C-Mn steel for nuclear construction, specifically in the upper part of the transition. A threshold stress, below which the cleavage cannot take place, is identified using tensile tests at low temperature on axis-symmetrical notched specimens taken in welded joint. This threshold stress is used to define the threshold volume where the maximum principal stress exceeds the threshold stress during the test. The analysis by SEM of specimen fracture surfaces shows that the gross solidification molten zone in the weld is the most likely to cleave. The relation between the brittle fracture probability and the threshold volume in the gross solidification molten zone is established via a sensitivity function, using multi-materials simulations. The model thus identified is tested for the prediction of non-brittle-fracture of SENT specimens taken in the welded joint and tested in tension. The results obtained are encouraging with regards to the transferability of the model to the actual structure. (author)

  10. Quantification of DNA cleavage specificity in Hi-C experiments.

    Science.gov (United States)

    Meluzzi, Dario; Arya, Gaurav

    2016-01-08

    Hi-C experiments produce large numbers of DNA sequence read pairs that are typically analyzed to deduce genomewide interactions between arbitrary loci. A key step in these experiments is the cleavage of cross-linked chromatin with a restriction endonuclease. Although this cleavage should happen specifically at the enzyme's recognition sequence, an unknown proportion of cleavage events may involve other sequences, owing to the enzyme's star activity or to random DNA breakage. A quantitative estimation of these non-specific cleavages may enable simulating realistic Hi-C read pairs for validation of downstream analyses, monitoring the reproducibility of experimental conditions and investigating biophysical properties that correlate with DNA cleavage patterns. Here we describe a computational method for analyzing Hi-C read pairs to estimate the fractions of cleavages at different possible targets. The method relies on expressing an observed local target distribution downstream of aligned reads as a linear combination of known conditional local target distributions. We validated this method using Hi-C read pairs obtained by computer simulation. Application of the method to experimental Hi-C datasets from murine cells revealed interesting similarities and differences in patterns of cleavage across the various experiments considered. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  11. Dataset of cocoa aspartic protease cleavage sites

    Directory of Open Access Journals (Sweden)

    Katharina Janek

    2016-09-01

    Full Text Available The data provide information in support of the research article, “The cleavage specificity of the aspartic protease of cocoa beans involved in the generation of the cocoa-specific aroma precursors” (Janek et al., 2016 [1]. Three different protein substrates were partially digested with the aspartic protease isolated from cocoa beans and commercial pepsin, respectively. The obtained peptide fragments were analyzed by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/TOF-MS/MS and identified using the MASCOT server. The N- and C-terminal ends of the peptide fragments were used to identify the corresponding in-vitro cleavage sites by comparison with the amino acid sequences of the substrate proteins. The same procedure was applied to identify the cleavage sites used by the cocoa aspartic protease during cocoa fermentation starting from the published amino acid sequences of oligopeptides isolated from fermented cocoa beans. Keywords: Aspartic protease, Cleavage sites, Cocoa, In-vitro proteolysis, Mass spectrometry, Peptides

  12. Mechanical strength and analysis of fracture of titanium joining submitted to laser and tig welding

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Gabrielli Piveta

    2012-12-01

    Full Text Available This study compared the tensile strength and fracture mechanism of tungsten inert gas (TIG welds in cylindrical rods of commercially pure titanium (cp Ti with those of laser welds and intact samples. Thirty dumbbell-shaped samples were developed by using brass rods as patterns. The samples were invested in casings, subjected to thermal cycles, and positioned in a plasma arc welding machine under argon atmosphere and vacuum, and titanium was injected under vacuum/pressure. The samples were X-rayed to detect possible welding flaws and randomly assigned to three groups to test the tensile strength and the fracture mechanism: intact, laser welding, and TIG welding. The tensile test results were investigated using ANOVA, which indicated that the samples were statistically similar. The fracture analysis showed that the cpTi samples subjected to laser welding exhibited brittle fracture and those subjected to TIG welding exhibited mixed brittle/ductile fracture with a predominance of ductile fracture with the presence of microcavities and cleavage areas. Intact samples presented the characteristic straightening in the fracture areas, indicating the ductility of the material.

  13. Cleavage events and sperm dynamics in chick intrauterine embryos.

    Directory of Open Access Journals (Sweden)

    Hyung Chul Lee

    Full Text Available This study was undertaken to elucidate detailed event of early embryogenesis in chicken embryos using a noninvasive egg retrieval technique before oviposition. White Leghorn intrauterine eggs were retrieved from 95 cyclic hens aged up to 54-56 weeks and morphogenetic observation was made under both bright field and fluorescent image in a time course manner. Differing from mammals, asymmetric cleavage to yield preblastodermal cells was observed throughout early embryogenesis. The first two divisions occurred synchronously and four polarized preblastodermal cells resulted after cruciform cleavage. Then, asynchronous cleavage continued in a radial manner and overall cell size in the initial cleavage region was smaller than that in the distal area. Numerous sperms were visible, regardless of zygotic nuclei formation. Condensed sperm heads were present mainly in the perivitelline space and cytoplasm, and rarely in the yolk region, while decondensed sperm heads were only visible in the yolk. In conclusion, apparent differences in sperm dynamics and early cleavage events compared with mammalian embryos were detected in chick embryo development, which demonstrated polarized cleavage with penetrating supernumerary sperm into multiple regions.

  14. New Insight into the Cleavage Reaction of Nostoc sp. Strain PCC 7120 Carotenoid Cleavage Dioxygenase in Natural and Nonnatural Carotenoids

    Science.gov (United States)

    Heo, Jinsol; Kim, Se Hyeuk

    2013-01-01

    Carotenoid cleavage dioxygenases (CCDs) are enzymes that catalyze the oxidative cleavage of carotenoids at a specific double bond to generate apocarotenoids. In this study, we investigated the activity and substrate preferences of NSC3, a CCD of Nostoc sp. strain PCC 7120, in vivo and in vitro using natural and nonnatural carotenoid structures. NSC3 cleaved β-apo-8′-carotenal at 3 positions, C-13C-14, C-15C-15′, and C-13′C-14′, revealing a unique cleavage pattern. NSC3 cleaves the natural structure of carotenoids 4,4′-diaponeurosporene, 4,4′-diaponeurosporen-4′-al, 4,4′-diaponeurosporen-4′-oic acid, 4,4′-diapotorulene, and 4,4′-diapotorulen-4′-al to generate novel cleavage products (apo-14′-diaponeurosporenal, apo-13′-diaponeurosporenal, apo-10′-diaponeurosporenal, apo-14′-diapotorulenal, and apo-10′-diapotorulenal, respectively). The study of carotenoids with natural or nonnatural structures produced by using synthetic modules could provide information valuable for understanding the cleavage reactions or substrate preferences of other CCDs in vivo and in vitro. PMID:23524669

  15. Dependence of Fracture Toughness on Crystallographic Orientation in Single-Crystalline Cubic (β) Silicon Carbide

    Energy Technology Data Exchange (ETDEWEB)

    Pharr, M.; Katoh, Y.; Bei, H.

    2006-01-01

    Along with other desirable properties, the ability of silicon carbide (SiC) to retain high strength after elevated temperature exposures to neutron irradiation renders it potentially applicable in fusion and advanced fission reactors. However, properties of the material such as room temperature fracture toughness must be thoroughly characterized prior to such practical applications. The objective of this work is to investigate the dependence of fracture toughness on crystallographic orientation for single-crystalline β-SiC. X-ray diffraction was first performed on the samples to determine the orientation of the crystal. Nanoindentation was used to determine a hardness of 39.1 and 35.2 GPa and elastic modulus of 474 and 446 GPa for the single-crystalline and polycrystalline samples, respectively. Additionally, crack lengths and indentation diagonals were measured via a Vickers micro-hardness indenter under a load of 100 gf for different crystallographic orientations with indentation diagonals aligned along fundamental cleavage planes. Upon examination of propagation direction of cracks, the cracks usually did not initiate and propagate from the corners of the indentation where the stresses are concentrated but instead from the indentation sides. Such cracks clearly moved along the {1 1 0} family of planes (previously determined to be preferred cleavage plane), demonstrating that the fracture toughness of SiC is comparatively so much lower along this set of planes that the lower energy required to cleave along this plane overpowers the stress-concentration at indentation corners. Additionally, fracture toughness in the <1 1 0> direction was 1.84 MPa·m1/2, lower than the 3.46 MPa·m1/2 measured for polycrystalline SiC (which can serve as an average of a spectrum of orientations), further demonstrating that single-crystalline β-SiC has a strong fracture toughness anisotropy.

  16. In vivo analysis of the Notch receptor S1 cleavage.

    Directory of Open Access Journals (Sweden)

    Robert J Lake

    2009-08-01

    Full Text Available A ligand-independent cleavage (S1 in the extracellular domain of the mammalian Notch receptor results in what is considered to be the canonical heterodimeric form of Notch on the cell surface. The in vivo consequences and significance of this cleavage on Drosophila Notch signaling remain unclear and contradictory. We determined the cleavage site in Drosophila and examined its in vivo function by a transgenic analysis of receptors that cannot be cleaved. Our results demonstrate a correlation between loss of cleavage and loss of in vivo function of the Notch receptor, supporting the notion that S1 cleavage is an in vivo mechanism of Notch signal control.

  17. Multi scale study of the plasticity at low temperature in {alpha}-iron: application for the cleavage; Etude multiechelle de la plasticite du fer-{alpha} a basse temperature application au clivage

    Energy Technology Data Exchange (ETDEWEB)

    Chaussidon, J

    2007-10-15

    An accident inside a nuclear power plant may lead to the cleavage of the nuclear vessel made of bainitic steel. In order to understand the origin of this fracture, we studied BCC-iron plasticity at low temperature using numerical simulations at different scales. Molecular Dynamics simulations show the high dependency of screw dislocation motion with temperature and stress. Results from these simulations were added to experiment data to develop a new Dislocation Dynamics code dedicated to BCC iron at low temperature. The code was used to model plasticity into a ferritic lath for various temperatures. This work confirms that cleavage is favoured by low temperatures. (author)

  18. Implications of Y-fluting microstructures in zircaloy stress-corrosion fracture and analogous systems

    International Nuclear Information System (INIS)

    Banks, T.M.; Garlick, A.

    1982-01-01

    Transgranular cleavage is an important mode of crack propagation during stress-corrosion cracking (SCC) of Zircaloy in iodine vapour; and another characteristic feature is the presence of parallel closely spaced ridges. These are often referred to as Y-flutings because each ridge takes the form of an inverted Y when viewed along the direction of crack growth. The flutings are shown here to be formed by localised ductile parting of the Zircaloy near the tips of cleavage cracks; high mechanical constraints in those regions and the limited number of available slip systems result in the formation of a planar array of parallel tunnels. Upon final separation these appear as a pattern of parallel ridges on each fracture face. Striking similarities in morphology have been noted here between Y-flutings in Zircaloy and those produced during tests on unstable fluid interfaces: the direction of motion of the fluid interface can be determined from the Y-morphology and is in agreement with observations from Zircaloy SCC tests. It is further demonstrated that equations governing thermodynamic and kinetic instability of fluid interfaces can be adapted to relate the fluting spacing in Zircaloy to standard fracture mechanics parameters. (author)

  19. Effect of helium bubbles at grain boundaries on the fracture characteristics of high-density 238PuO2

    International Nuclear Information System (INIS)

    Sisson, R.D.; McDonell, W.R.

    1976-01-01

    Helium bubbles that formed at grain boundaries in high density (greater than 92 percent of theoretical) 238 PuO 2 shards did not affect the room temperature fracture behavior as observed by scanning electron microscopy. Fracture was predominantly by brittle transgranular cleavage with only infrequent intergranular failure observed. Pores (approximately 5 μm dia) that formed within the grains during the sintering process, rather than helium bubbles, initiated fractures. Helium bubbles were observed occasionally on the fracture surfaces of 20-month-old shards that had been heated to 1600 0 C for 8 h and subsequently crushed at room temperature. The average radius of these bubbles was approximately 1 μm. These bubbles were not interconnected, but were sometimes aligned in stringers

  20. In vitro measurement of beta-carotene cleavage activity : methodological considerations and the effect of other carotenoids on beta-carotene cleavage

    NARCIS (Netherlands)

    Vliet, T. van; Schaik, F. van; Schreurs, W.H.P.; Berg, H. van den

    1996-01-01

    In view of controversies about assessment of the β-carotene cleavage activity, methodological aspects and problems of the dioxygenase assay are described. Using rat and hamster intestinal preparations the method was optimized on retinal formation, the only cleavage product we could demonstrate. It

  1. Fracture toughness testing of V-4Cr-4Ti at 25{degrees}C and -196{degrees}C

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.X.; Kurtz, R.J. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-10-01

    Measurements of the fracture toughness of the production-scale heat (832665) of V-4Cr-4Ti have been performed at 25{degrees}C and {minus}196{degrees}C using compact tension (CT) specimens. Test specimens were vacuum annealed at either 1000{degrees}C for 1 hour (HT1) or 1050{degrees}C for two hours (HT2). Specimens given the HT1 treatment were annealed after final machining, whereas the HT2 specimens received the 1050{degrees}C anneal at Teledyne Wah Chang prior to final machining. Following machining HT2 specimens were then vacuum annealed at 180{degrees}C for two hours to remove hydrogen. Specimens treated using HT1 had a partially recrystallized microstructure and those treated using HT2 had a fully recrystallized microstructure. The fracture toughness at 25{degrees}C was determined by J-integral tests and at {minus}196{degrees}C by ASTM E 399 type tests. Toughness values obtained at {minus}196{degrees}C were converted to J-integral values for comparison to the 25{degrees}C data. The 25{degrees}C fracture toughness was very high with none of the specimens giving valid results per ASTM criteria. Specimens fractured by microvoid coalescence. The fracture toughness at {minus}196{degrees}C was much lower than that at 25{degrees}C and the fracture surface showed predominantly cleavage features. The present results show a transition from ductile to brittle behavior with decreasing test temperature which is not observed from one-third scale Charpy impact tests. The fracture toughness at {minus}196{degrees}C was still quite high, however, at about 75 kJ/m{sup 2}. Delaminations in planes normal to the thickness direction were seen at both test temperatures. Fracture surfaces inside the delaminations exhibited nearly 100% cleavage facets. The cause of the brittle delaminations was not determined, but will be a subject for further investigation.

  2. Degradation of impact fracture during accelerated aging of weld metal on microalloyed steel

    International Nuclear Information System (INIS)

    Vargas-Arista, B.; Hallen, J. M.; Albiter, A.; Angeles-Chavez, C.

    2008-01-01

    The effect of accelerated aging on the toughness and fracture of the longitudinal weld metal on an API5L-X52 line pipe steel was evaluated by Charpy V-notch impact test, fracture analysis and transmission electron microscopy. Aging was performed at 250 degree centigrade for 100 to 1000 h. The impact results indicated a significant reduction in the fracture energy and impact toughness as a function of aging time, which were achieved by the scanning electron microscope fractography that showed a decrease in the vol fraction of microvoids by Charpy ductile failure with the aging time, which favored the brittle fracture by transgranular cleavage. The minimum vol fraction of microvoids was reached at 500 h due to the peak aged. The microstructural analysis indicated the precipitation of transgranular iron nano carbides in the aged specimens, which was related to the deterioration of toughness and change in the ductile to brittle behavior. (Author) 15 refs

  3. Effect of hydrogen on the fracture toughness of 17-4 PH stainless steel

    International Nuclear Information System (INIS)

    Capeletti, T.L.

    1976-01-01

    Fracture toughness (K/sub c/) of 17-4 PH stainless steel decreased significantly with increased hydrogen test pressure for a variety of heat treatment conditions: solution annealed, underaged, peak-aged, and overaged. Minimum toughness (13 MPa√m) was obtained with peak-aged samples tested in 69.5-MPa hydrogen; toughness was maximum (100 MPa√m) for samples tested in helium. Aging treatments increased the hardness from 28 R/sub c/ for solution-annealed material to 42 R/c/ for peak-aged material and correspondingly decreased the fracture toughness in high-pressure hydrogen (K/sub H/) from 31 to 13 MPa√m. However, increased hardness had no substantial effect on the K/sub c/ in helium. Fracture mechanism changed from predominantly ductile rupture in helium to cleavage in 69.5-MPa hydrogen, with mixed-mode fractures at lower hydrogen pressure (3.5-MPa). On the basis of these data, 17-4 PH stainless steel is not recommended for hydrogen service

  4. Pripper: prediction of caspase cleavage sites from whole proteomes

    Directory of Open Access Journals (Sweden)

    Salmi Jussi

    2010-06-01

    Full Text Available Abstract Background Caspases are a family of proteases that have central functions in programmed cell death (apoptosis and inflammation. Caspases mediate their effects through aspartate-specific cleavage of their target proteins, and at present almost 400 caspase substrates are known. There are several methods developed to predict caspase cleavage sites from individual proteins, but currently none of them can be used to predict caspase cleavage sites from multiple proteins or entire proteomes, or to use several classifiers in combination. The possibility to create a database from predicted caspase cleavage products for the whole genome could significantly aid in identifying novel caspase targets from tandem mass spectrometry based proteomic experiments. Results Three different pattern recognition classifiers were developed for predicting caspase cleavage sites from protein sequences. Evaluation of the classifiers with quality measures indicated that all of the three classifiers performed well in predicting caspase cleavage sites, and when combining different classifiers the accuracy increased further. A new tool, Pripper, was developed to utilize the classifiers and predict the caspase cut sites from an arbitrary number of input sequences. A database was constructed with the developed tool, and it was used to identify caspase target proteins from tandem mass spectrometry data from two different proteomic experiments. Both known caspase cleavage products as well as novel cleavage products were identified using the database demonstrating the usefulness of the tool. Pripper is not restricted to predicting only caspase cut sites, but it gives the possibility to scan protein sequences for any given motif(s and predict cut sites once a suitable cut site prediction model for any other protease has been developed. Pripper is freely available and can be downloaded from http://users.utu.fi/mijopi/Pripper. Conclusions We have developed Pripper, a tool for

  5. Fracture assessment of the Oskarshamn 1 reactor pressure vessel under cold over-pressurization

    International Nuclear Information System (INIS)

    Sattari-Far, I.

    2001-03-01

    The major motivation of this study was to develop a methodology for fracture assessment of surface defects in the 01 reactor pressure vessel under cold loading scenarios, particularly the cold over-pressurization event. According to a previous study, the FENIX project, the cold over-pressurization of the O1 reactor is a limiting loading case, as the ductile/brittle transition temperature (RT NDT ) of certain welds in the O1 beltline region may be over 100 deg C at the-end-of-life condition. The FENIX project gave values of the acceptable and critical crack depth to be equal to the thickness of the cladding layer (about 6 mm) under this load case using the ASME K Ic reference curve methodology. This study is aimed to develop a methodology to give a more precise fracture assessment of the O1 reactor under cold loading scenarios. Some of the main objectives of this study have been as below: To prepare a material which can simulate the mechanical properties and RT NDT of the O1 reactor at the end-of-life conditions. To conduct a fracture mechanics test program to cover the essential influencing factors, such as crack geometry (shallow and deep cracks) and loading condition (uniaxial and biaxial) on the cleavage fracture toughness. To perform fracture mechanics analyses to identify a suitable methodology for assessment of the experimental results. To study the responses of engineering fracture assessment methods to the experimental results from the clad specimens. To propose a fracture assessment procedure for determination of the acceptable and critical flaw sizes in the 01 reactor under the cold loading events. A test program consisted of experiments on standard SEN(B) specimens and clad beams, containing surface cracks was conducted during the course of this project. A total of nine clad beams and clad cruciform specimens were tested under uniaxial and biaxial loading. The test material is reactor steel of type A 508 Grade B, which is specially heat-treated to

  6. Application of fracture toughness scaling models to the ductile-to- brittle transition

    International Nuclear Information System (INIS)

    Link, R.E.; Joyce, J.A.

    1996-01-01

    An experimental investigation of fracture toughness in the ductile-brittle transition range was conducted. A large number of ASTM A533, Grade B steel, bend and tension specimens with varying crack lengths were tested throughout the transition region. Cleavage fracture toughness scaling models were utilized to correct the data for the loss of constraint in short crack specimens and tension geometries. The toughness scaling models were effective in reducing the scatter in the data, but tended to over-correct the results for the short crack bend specimens. A proposed ASTM Test Practice for Fracture Toughness in the Transition Range, which employs a master curve concept, was applied to the results. The proposed master curve over predicted the fracture toughness in the mid-transition and a modified master curve was developed that more accurately modeled the transition behavior of the material. Finally, the modified master curve and the fracture toughness scaling models were combined to predict the as-measured fracture toughness of the short crack bend and the tension specimens. It was shown that when the scaling models over correct the data for loss of constraint, they can also lead to non-conservative estimates of the increase in toughness for low constraint geometries

  7. CLEAVAGE FRACTURE ANALYSIS OF CLADDED BEAMS WITH AN EMBEDDED FLAW UNDER FOUR-POINT BENDING

    International Nuclear Information System (INIS)

    Yin, Shengjun; Williams, Paul T; Bass, Bennett Richard

    2008-01-01

    Semi-large scale embedded flaw beams were tested at Nuclear Research Institute (NRI) Rez in the Czech Republic for the 6th Network for Evaluating Structural Components (NESC-VI) project. The experiments included, among others, a series of semi-large scale tests on cladded beam specimens containing simulated sub-clad flaws. Oak Ridge National Laboratory (ORNL) conducted numerical studies to analyze the constraint issues associated with embedded flaws using various fracture mechanics methods, including T-Stress, hydrostatic stress based QH stress, and the Weibull stress model. The recently developed local approach using the modified Weibull stress model combined with the Master Curve methodology was also utilized to predict the failure probability (Pf) of semi-large scale beams. For this study, the Weibull statistical model associated with the Master Curve methodology was employed to stochastically simulate the fracture toughness data using the available Master Curve reference temperature T0 for the tested base material from the 'aged' WWER-440 Reactor Pressure Vessel (RPV). The study was also conducted to investigate the sensitivity of predicated probability of failure of semi-large scale beams with embedded flaw with different Weibull shape parameters, m

  8. Functional analysis of coordinated cleavage in V(D)J recombination.

    Science.gov (United States)

    Kim, D R; Oettinger, M A

    1998-08-01

    V(D)J recombination in vivo requires a pair of signals with distinct spacer elements of 12 and 23 bp that separate conserved heptamer and nonamer motifs. Cleavage in vitro by the RAG1 and RAG2 proteins can occur at individual signals when the reaction buffer contains Mn2+, but cleavage is restricted to substrates containing two signals when Mg2+ is the divalent cation. By using a novel V(D)J cleavage substrate, we show that while the RAG proteins alone establish a moderate preference for a 12/23 pair versus a 12/12 pair, a much stricter dependence of cleavage on the 12/23 signal pair is produced by the inclusion of HMG1 and competitor double-stranded DNA. The competitor DNA serves to inhibit the cleavage of substrates carrying a 12/12 or 23/23 pair, as well as the cutting at individual signals in 12/23 substrates. We show that a 23/33 pair is more efficiently recombined than a 12/33 pair, suggesting that the 12/23 rule can be generalized to a requirement for spacers that differ from each other by a single helical turn. Furthermore, we suggest that a fixed spatial orientation of signals is required for cleavage. In general, the same signal variants that can be cleaved singly can function under conditions in which a signal pair is required. However, a chemically modified substrate with one noncleavable signal enables us to show that formation of a functional cleavage complex is mechanistically separable from the cleavage reaction itself and that although cleavage requires a pair of signals, cutting does not have to occur simultaneously at both. The implications of these results are discussed with respect to the mechanism of V(D)J recombination and the generation of chromosomal translocations.

  9. Influence of Aging Conditions on Fatigue Fracture Behaviour of 6063 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Rafiq Ahmed Siddiqui

    2001-12-01

    Full Text Available Aluminum - Magnesium - Silicon (Al-Mg-Si 6063 alloy was heat-treated using under aged, peak aged and overage temperatures. The numbers of cycles required to cause the fatigue fracture, at constant stress, was considered as criteria for the fatigue resistance. Moreover, the fractured surface of the alloy at different aging conditions was evaluated by optical microscopy and the Scanning Electron Microscopy (SEM. The SEM micrographs confirmed the cleavage surfaces with well-defined fatigue striations. It has been observed that the various aging time and temperature of the 6063 Al-alloy, produces different modes of fractures. The most suitable age hardening time and temperature was found to be between 4 to 5 hours and to occur at 460 K. The increase in fatigue fracture property of the alloy due to aging could be attributed to a vacancy assisted diffusion mechanism or due to pinning of dislocations movement by the precipitates produced during aging. However, the decrease in the fatigue resistance, for the over aged alloys, might be due to the coalescence of precipitates into larger grains.

  10. Coexistence of ductile and brittle fracture in metals

    International Nuclear Information System (INIS)

    Ohr, S.M.; Chang, S.J.; Park, C.G.; Thomson, R.

    1985-01-01

    It is well known that semibrittle body-centered cubic (bcc) metals fail at low temperatures by cleavage that is preceded by crack tip deformation. Sinclair and Finnis proposed a mechanism by which crack tip deformation may be combined with brittle crack extension. In this model, edge dislocations are emitted from a crack tip on an inclined plane under pure mode I loading conditions. The authors propose a new mechanism of brittle fracture of semibrittle metals preceded by crack tip deformation by extending the model of Sinclair and Finnis and by incorporating experimental evidence on mixed mode crack propagation observed by transmission electron microscopy (TEM). They have shown experimentally that, even when the orientation of the dislocations in the plastic zone indicated pure mode III crack tip deformation, the crack opening displacement determined from the relative displacement of the crack flanks showed the presence of an additional mode I component. They have also shown that zigzag crack propagation observed in many metals can occur only if mode I cleavage is superimposed to mode II crack tip deformation

  11. Molecular-dynamics Simulation-based Cohesive Zone Representation of Intergranular Fracture Processes in Aluminum

    Science.gov (United States)

    Yamakov, Vesselin I.; Saether, Erik; Phillips, Dawn R.; Glaessgen, Edward H.

    2006-01-01

    A traction-displacement relationship that may be embedded into a cohesive zone model for microscale problems of intergranular fracture is extracted from atomistic molecular-dynamics simulations. A molecular-dynamics model for crack propagation under steady-state conditions is developed to analyze intergranular fracture along a flat 99 [1 1 0] symmetric tilt grain boundary in aluminum. Under hydrostatic tensile load, the simulation reveals asymmetric crack propagation in the two opposite directions along the grain boundary. In one direction, the crack propagates in a brittle manner by cleavage with very little or no dislocation emission, and in the other direction, the propagation is ductile through the mechanism of deformation twinning. This behavior is consistent with the Rice criterion for cleavage vs. dislocation blunting transition at the crack tip. The preference for twinning to dislocation slip is in agreement with the predictions of the Tadmor and Hai criterion. A comparison with finite element calculations shows that while the stress field around the brittle crack tip follows the expected elastic solution for the given boundary conditions of the model, the stress field around the twinning crack tip has a strong plastic contribution. Through the definition of a Cohesive-Zone-Volume-Element an atomistic analog to a continuum cohesive zone model element - the results from the molecular-dynamics simulation are recast to obtain an average continuum traction-displacement relationship to represent cohesive zone interaction along a characteristic length of the grain boundary interface for the cases of ductile and brittle decohesion. Keywords: Crack-tip plasticity; Cohesive zone model; Grain boundary decohesion; Intergranular fracture; Molecular-dynamics simulation

  12. Brittle fracture in structural steels: perspectives at different size-scales.

    Science.gov (United States)

    Knott, John

    2015-03-28

    This paper describes characteristics of transgranular cleavage fracture in structural steel, viewed at different size-scales. Initially, consideration is given to structures and the service duty to which they are exposed at the macroscale, highlighting failure by plastic collapse and failure by brittle fracture. This is followed by sections describing the use of fracture mechanics and materials testing in carrying-out assessments of structural integrity. Attention then focuses on the microscale, explaining how values of the local fracture stress in notched bars or of fracture toughness in pre-cracked test-pieces are related to features of the microstructure: carbide thicknesses in wrought material; the sizes of oxide/silicate inclusions in weld metals. Effects of a microstructure that is 'heterogeneous' at the mesoscale are treated briefly, with respect to the extraction of test-pieces from thick sections and to extrapolations of data to low failure probabilities. The values of local fracture stress may be used to infer a local 'work-of-fracture' that is found experimentally to be a few times greater than that of two free surfaces. Reasons for this are discussed in the conclusion section on nano-scale events. It is suggested that, ahead of a sharp crack, it is necessary to increase the compliance by a cooperative movement of atoms (involving extra work) to allow the crack-tip bond to displace sufficiently for the energy of attraction between the atoms to reduce to zero. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Cleavage sites within the poliovirus capsid protein precursors

    International Nuclear Information System (INIS)

    Larsen, G.R.; Anderson, C.W.; Dorner, A.J.; Semler, B.L.; Wimmer, E.

    1982-01-01

    Partial amino-terminal sequence analysis was performed on radiolabeled poliovirus capsid proteins VP1, VP2, and VP3. A computer-assisted comparison of the amino acid sequences obtained with that predicted by the nucleotide sequence of the poliovirus genome allows assignment of the amino terminus of each capsid protein to a unique position within the virus polyprotein. Sequence analysis of trypsin-digested VP4, which has a blocked amino terminus, demonstrates that VP4 is encoded at or very near to the amino terminus of the polyprotein. The gene order of the capsid proteins is VP4-VP2-VP3-VP1. Cleavage of VP0 to VP4 and VP2 is shown to occur between asparagine and serine, whereas the cleavages that separate VP2/VP3 and VP3/VP1 occur between glutamine and glycine residues. This finding supports the hypothesis that the cleavage of VP0, which occurs during virion morphogenesis, is distinct from the cleavages that separate functional regions of the polyprotein

  14. A new cultural cleavage in post-modern society

    Directory of Open Access Journals (Sweden)

    Jan-Erik Lane

    2007-09-01

    Full Text Available The attitudes towards gender and homosexuality tend to be linked at the micro level (individuals, which explains the political saliency of this newly emerging cleavage. At the macro level (country, the main finding is that the value orientations towards gender and homosexuality are strongly embedded in the basic cultural or civilisation differences among countries. As developing countries modernise and enter post-modernity, they will also experience the gender cleavage, especially when they adhere to an individualistic culture. Cultural cleavages in the post-modern society, whether in rich or developing countries, can only be properly researched by the survey method. It opens up a large area for both micro and macro analyses in the social sciences.

  15. Unexpected tolerance of alpha-cleavage of the prion protein to sequence variations.

    Directory of Open Access Journals (Sweden)

    José B Oliveira-Martins

    Full Text Available The cellular form of the prion protein, PrP(C, undergoes extensive proteolysis at the alpha site (109K [see text]H110. Expression of non-cleavable PrP(C mutants in transgenic mice correlates with neurotoxicity, suggesting that alpha-cleavage is important for PrP(C physiology. To gain insights into the mechanisms of alpha-cleavage, we generated a library of PrP(C mutants with mutations in the region neighbouring the alpha-cleavage site. The prevalence of C1, the carboxy adduct of alpha-cleavage, was determined for each mutant. In cell lines of disparate origin, C1 prevalence was unaffected by variations in charge and hydrophobicity of the region neighbouring the alpha-cleavage site, and by substitutions of the residues in the palindrome that flanks this site. Instead, alpha-cleavage was size-dependently impaired by deletions within the domain 106-119. Almost no cleavage was observed upon full deletion of this domain. These results suggest that alpha-cleavage is executed by an alpha-PrPase whose activity, despite surprisingly limited sequence specificity, is dependent on the size of the central region of PrP(C.

  16. Comparative and phylogenetic perspectives of the cleavage process in tailed amphibians.

    Science.gov (United States)

    Desnitskiy, Alexey G; Litvinchuk, Spartak N

    2015-10-01

    The order Caudata includes about 660 species and displays a variety of important developmental traits such as cleavage pattern and egg size. However, the cleavage process of tailed amphibians has never been analyzed within a phylogenetic framework. We use published data on the embryos of 36 species concerning the character of the third cleavage furrow (latitudinal, longitudinal or variable) and the magnitude of synchronous cleavage period (up to 3-4 synchronous cell divisions in the animal hemisphere or a considerably longer series of synchronous divisions followed by midblastula transition). Several species from basal caudate families Cryptobranchidae (Andrias davidianus and Cryptobranchus alleganiensis) and Hynobiidae (Onychodactylus japonicus) as well as several representatives from derived families Plethodontidae (Desmognathus fuscus and Ensatina eschscholtzii) and Proteidae (Necturus maculosus) are characterized by longitudinal furrows of the third cleavage and the loss of synchrony as early as the 8-cell stage. By contrast, many representatives of derived families Ambystomatidae and Salamandridae have latitudinal furrows of the third cleavage and extensive period of synchronous divisions. Our analysis of these ontogenetic characters mapped onto a phylogenetic tree shows that the cleavage pattern of large, yolky eggs with short series of synchronous divisions is an ancestral trait for the tailed amphibians, while the data on the orientation of third cleavage furrows seem to be ambiguous with respect to phylogeny. Nevertheless, the midblastula transition, which is characteristic of the model species Ambystoma mexicanum (Caudata) and Xenopus laevis (Anura), might have evolved convergently in these two amphibian orders.

  17. Fractal analysis of fractures and microstructures in rocks

    International Nuclear Information System (INIS)

    Merceron, T.; Nakashima, S.; Velde, B.; Badri, A.

    1991-01-01

    Fractal geometry was used to characterize the distribution of fracture fields in rocks, which represent main pathways for material migration such as groundwater flow. Fractal investigations of fracture distribution were performed on granite along Auriat and Shikoku boreholes. Fractal dimensions range between 0.3 and 0.5 according to the different sets of fracture planes selected for the analyses. Shear, tension and compressional modes exhibit different fractal values while the composite fracture patterns are also fractal but with a different, median, fractal value. These observations indicate that the fractal method can be used to distinguish fracture types of different origins in a complex system. Fractal results for Shikoku borehole also correlate with geophysical parameters recorded along, drill-holes such as resistivity and possibly permeability. These results represent the first steps of the fractal investigation along drill-holes. Future studies will be conducted to verify relationships between fractal dimensions and permeability by using available geophysical data. Microstructures and microcracks were analysed in the Inada granite. Microcrack patterns are fractal but fractal dimensions values vary according to both mineral type and orientations of measurement within the mineral. Microcracks in quartz are characterized by more irregular distribution (average D = 0.40) than those in feldspars (D = 0.50) suggesting a different mode of rupture. Highest values of D are reported along main cleavage planes for feldspars or C axis for quartz. Further fractal investigations of microstructure in granite will be used to characterize the potential pathways for fluid migration and diffusion in the rock matrix. (author)

  18. Kininogen Cleavage Assay: Diagnostic Assistance for Kinin-Mediated Angioedema Conditions.

    Directory of Open Access Journals (Sweden)

    Rémi Baroso

    Full Text Available Angioedema without wheals (AE is a symptom characterised by localised episodes of oedema presumably caused by kinin release from kininogen cleavage. It can result from a hereditary deficiency in C1 Inhibitor (C1Inh, but it can present with normal level of C1Inh. These forms are typically difficult to diagnose although enhanced kinin production is suspected or demonstrated in some cases.We wanted to investigate bradykinin overproduction in all AE condition with normal C1Inh, excluding cases with enhanced kinin catabolism, and to propose this parameter as a disease biomarker.We retrospectively investigated high molecular weight kininogen (HK cleavage pattern, using gel electrophoresis and immunorevelation. Plasma samples were drawn using the same standardised procedure from blood donors or AE patients with normal C1Inh conditions, normal kinin catabolism, and without prophylaxis.Circulating native HK plasma concentrations were similar in the healthy men (interquartile range: 98-175μg/mL, n = 51 and in healthy women (90-176μg/mL, n = 74, while HK cleavage was lower (p14.4% HK cleavage for men; 33.0% HK cleavage for women, with >98% specificity achieved for all parameters. In plasma from patients undergoing recovery two months after oestrogen/progestin combination withdrawal (n = 13 or two weeks after AE attack (n = 2, HK cleavage was not fully restored, suggesting its use as a post-attack assay.As a diagnostic tool, HK cleavage can offer physicians supportive arguments for kinin production in suspected AE cases and improve patient follow-up in clinical trials or prophylactic management.

  19. Fracture assessment of the Oskarshamn 1 reactor pressure vessel under cold over-pressurization

    Energy Technology Data Exchange (ETDEWEB)

    Sattari-Far, I. [DNV Technical Consulting AB, Stockholm (Sweden)

    2001-03-01

    The major motivation of this study was to develop a methodology for fracture assessment of surface defects in the 01 reactor pressure vessel under cold loading scenarios, particularly the cold over-pressurization event. According to a previous study, the FENIX project, the cold over-pressurization of the O1 reactor is a limiting loading case, as the ductile/brittle transition temperature (RT{sub NDT}) of certain welds in the O1 beltline region may be over 100 deg C at the-end-of-life condition. The FENIX project gave values of the acceptable and critical crack depth to be equal to the thickness of the cladding layer (about 6 mm) under this load case using the ASME K{sub Ic} reference curve methodology. This study is aimed to develop a methodology to give a more precise fracture assessment of the O1 reactor under cold loading scenarios. Some of the main objectives of this study have been as below: To prepare a material which can simulate the mechanical properties and RT{sub NDT} of the O1 reactor at the end-of-life conditions. To conduct a fracture mechanics test program to cover the essential influencing factors, such as crack geometry (shallow and deep cracks) and loading condition (uniaxial and biaxial) on the cleavage fracture toughness. To perform fracture mechanics analyses to identify a suitable methodology for assessment of the experimental results. To study the responses of engineering fracture assessment methods to the experimental results from the clad specimens. To propose a fracture assessment procedure for determination of the acceptable and critical flaw sizes in the 01 reactor under the cold loading events. A test program consisted of experiments on standard SEN(B) specimens and clad beams, containing surface cracks was conducted during the course of this project. A total of nine clad beams and clad cruciform specimens were tested under uniaxial and biaxial loading. The test material is reactor steel of type A 508 Grade B, which is specially heat

  20. Detection of nucleic acid sequences by invader-directed cleavage

    Science.gov (United States)

    Brow, Mary Ann D.; Hall, Jeff Steven Grotelueschen; Lyamichev, Victor; Olive, David Michael; Prudent, James Robert

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The 5' nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based by charge.

  1. The relationship between observed stress corrosion cracking fracture morphology and microstructure in Alloy 600

    International Nuclear Information System (INIS)

    Symons, D.M.; Burke, M.G.; Foster, J.P.

    1997-01-01

    Microstructure is known to influence the stress corrosion cracking (SCC) behavior of Alloy 600 in both hydrogenated water and steam environments. This study evaluated the relative SCC response of a single heat of Alloy 600 as a function of microstructure in a hydrogenated doped-steam environment. The 400 C doped-steam environment was selected for the SCC tests to accelerate cracking. The material was evaluated in three conditions: (1) as-received (2) as-annealed, and (3) as-annealed + 26% deformation. Microstructural characterization was performed using analytical electron microscopy (AEM) techniques for the evaluation of carbide type and morphology, and general structure. Constant displacement (bolt-loaded) compact tension specimens were used to induce SCC. The as-annealed and as-annealed plus cold worked samples had two fracture morphologies: a rough intergranular SCC fracture morphology and a smooth intergranular fracture morphology. The SCC fracture in the as-received specimens was characterized by a classic intergranular morphology at low magnification, consistent with the microstructural evaluation of cross-sectional metallographic samples. More detailed examination revealed a pseudo-intergranular fracture morphology. This pseudo-intergranular morphology appears to be comprised of very fine cleavage-like microfacets. These observations may assist in understanding the difference in SCC fracture morphologies as reported in the open literature

  2. Two-parameter fracture mechanics: Theory and applications

    International Nuclear Information System (INIS)

    O'Dowd, N.P.; Shih, C.F.

    1993-02-01

    A family of self-similar fields provides the two parameters required to characterize the full range of high- and low-triaxiality crack tip states. The two parameters, J and Q, have distinct roles: J sets the size scale of the process zone over which large stresses and strains develop, while Q scales the near-tip stress distribution relative to a high triaxiality reference stress state. An immediate consequence of the theory is this: it is the toughness values over a range of crack tip constraint that fully characterize the material's fracture resistance. It is shown that Q provides a common scale for interpreting cleavage fracture and ductile tearing data thus allowing both failure modes to be incorporated in a single toughness locus. The evolution of Q, as plasticity progresses from small scale yielding to fully yielded conditions, has been quantified for several crack geometries and for a wide range of material strain hardening properties. An indicator of the robustness of the J-Q fields is introduced; Q as a field parameter and as a pointwise measure of stress level is discussed

  3. Controllable laser thermal cleavage of sapphire wafers

    Science.gov (United States)

    Xu, Jiayu; Hu, Hong; Zhuang, Changhui; Ma, Guodong; Han, Junlong; Lei, Yulin

    2018-03-01

    Laser processing of substrates for light-emitting diodes (LEDs) offers advantages over other processing techniques and is therefore an active research area in both industrial and academic sectors. The processing of sapphire wafers is problematic because sapphire is a hard and brittle material. Semiconductor laser scribing processing suffers certain disadvantages that have yet to be overcome, thereby necessitating further investigation. In this work, a platform for controllable laser thermal cleavage was constructed. A sapphire LED wafer was modeled using the finite element method to simulate the thermal and stress distributions under different conditions. A guide groove cut by laser ablation before the cleavage process was observed to guide the crack extension and avoid deviation. The surface and cross section of sapphire wafers processed using controllable laser thermal cleavage were characterized by scanning electron microscopy and optical microscopy, and their morphology was compared to that of wafers processed using stealth dicing. The differences in luminous efficiency between substrates prepared using these two processing methods are explained.

  4. Potential impact of enhanced fracture-toughness data on pressurized-thermal-shock analysis

    International Nuclear Information System (INIS)

    Dickson, T.L.; Theiss, T.J.

    1990-01-01

    The Heavy Section Steel Technology (HSST) Program is involved with the generation of ''enhanced'' fracture-initiation toughness and fracture-arrest toughness data of prototypic nuclear reactor vessel steels. These two sets of data are enhanced because they have distinguishing characteristics that could potentially impact PWR pressure vessel integrity assessments for the pressurized-thermal shock (PTS) loading condition which is a major plant-life extension issue to be confronted in the 1990's. Currently, the HSST Program is planning experiments to verify and quantify, for A533B steel, the distinguishing characteristic of elevated initiation-fracture toughness for shallow flaws which has been observed for other steels. Deterministic and probabilistic fracture-mechanics analyses were performed to examine the influence of the enhanced initiation and arrest fracture-toughness data on the cleavage fracture response of a nuclear reactor pressure vessel subjected to PTS loading. The results of the analyses indicated that application of the enhanced K Ia data does reduce the conditional probability of failure P(F|E); however, it does not appear to have the potential to significantly impact the results of PTS analyses. The application of enhanced fracture-initiation-toughness data for shallow flaws also reduces P(F|E), but it does appear to have a potential for significantly affecting the results of PTS analyses. The effect of including Type I warm prestress in probabilistic fracture-mechanics analyses is beneficial. The benefit is transient dependent and, in some cases, can be quite significant. 19 refs., 12 figs., 1 tab

  5. In-Situ Characterization of Deformation and Fracture Behavior of Hot-Rolled Medium Manganese Lightweight Steel

    Science.gov (United States)

    Zhao, Zheng-zhi; Cao, Rong-hua; Liang, Ju-hua; Li, Feng; Li, Cheng; Yang, Shu-feng

    2018-02-01

    The deformation and fracture behavior of hot-rolled medium manganese lightweight (0.32C-3.85Mn-4.18Al-1.53Si) steel was revealed by an in situ tensile test. Deformed δ-ferrite with plenty of cross-parallel deformation bands during in situ tensile tests provides δ-ferrite of good plasticity and ductility, although it is finally featured by the cleavage fracture. The soft and ductile δ-ferrite and high-volume fraction of austenite contribute to the superior mechanical properties of medium manganese lightweight steel heated at 800°C, with a tensile strength of 924 MPa, total elongation of 35.2% and product of the strength and elongation of 32.5 GPa %.

  6. Radial cracks and fracture mechanism of radially oriented ring 2:17 type SmCo magnets

    International Nuclear Information System (INIS)

    Tian Jianjun; Pan Dean; Zhou Hao; Yin Fuzheng; Tao Siwu; Zhang Shengen; Qu Xuanhui

    2009-01-01

    Radially oriented ring 2:17 type SmCo magnets have different microstructure in the radial direction (easy magnetization) and axial direction (hard magnetization). The structure of the cross-section in radial direction is close-packed atomic plane, which shows cellular microstructure. The microstructure of the cross-section in axial direction consists of a mixture of rhombic microstructure and parallel lamella phases. So the magnets have obvious anisotropy of thermal expansion in different directions. The difference of the thermal expansion coefficients reaches the maximum value at 830-860 deg. C, which leads to radial cracks during quenching. The magnets have high brittlement because there are fewer slip systems in crystal structure. The fracture is brittle cleavage fracture.

  7. CSNI Project for Fracture Analyses of Large-Scale International Reference Experiments (FALSIRE II)

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; Pugh, C.E.; Keeney, J. [Oak Ridge National Lab., TN (United States); Schulz, H.; Sievers, J. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koeln (Gemany)

    1996-11-01

    A summary of Phase II of the Project for FALSIRE is presented. FALSIRE was created by the Fracture Assessment Group (FAG) of the OECD/NEA`s Committee on the Safety of Nuclear Installations (CNSI) Principal Working Group No. 3. FALSIRE I in 1988 assessed fracture methods through interpretive analyses of 6 large-scale fracture experiments in reactor pressure vessel (RPV) steels under pressurized- thermal-shock (PTS) loading. In FALSIRE II, experiments examined cleavage fracture in RPV steels for a wide range of materials, crack geometries, and constraint and loading conditions. The cracks were relatively shallow, in the transition temperature region. Included were cracks showing either unstable extension or two stages of extensions under transient thermal and mechanical loads. Crack initiation was also investigated in connection with clad surfaces and with biaxial load. Within FALSIRE II, comparative assessments were performed for 7 reference fracture experiments based on 45 analyses received from 22 organizations representing 12 countries. Temperature distributions in thermal shock loaded samples were approximated with high accuracy and small scatter bands. Structural response was predicted reasonably well; discrepancies could usually be traced to the assumed material models and approximated material properties. Almost all participants elected to use the finite element method.

  8. CSNI Project for Fracture Analyses of Large-Scale International Reference Experiments (FALSIRE II)

    International Nuclear Information System (INIS)

    Bass, B.R.; Pugh, C.E.; Keeney, J.; Schulz, H.; Sievers, J.

    1996-11-01

    A summary of Phase II of the Project for FALSIRE is presented. FALSIRE was created by the Fracture Assessment Group (FAG) of the OECD/NEA's Committee on the Safety of Nuclear Installations (CNSI) Principal Working Group No. 3. FALSIRE I in 1988 assessed fracture methods through interpretive analyses of 6 large-scale fracture experiments in reactor pressure vessel (RPV) steels under pressurized- thermal-shock (PTS) loading. In FALSIRE II, experiments examined cleavage fracture in RPV steels for a wide range of materials, crack geometries, and constraint and loading conditions. The cracks were relatively shallow, in the transition temperature region. Included were cracks showing either unstable extension or two stages of extensions under transient thermal and mechanical loads. Crack initiation was also investigated in connection with clad surfaces and with biaxial load. Within FALSIRE II, comparative assessments were performed for 7 reference fracture experiments based on 45 analyses received from 22 organizations representing 12 countries. Temperature distributions in thermal shock loaded samples were approximated with high accuracy and small scatter bands. Structural response was predicted reasonably well; discrepancies could usually be traced to the assumed material models and approximated material properties. Almost all participants elected to use the finite element method

  9. Influences of process parameters and microstructure on the fracture mechanisms of ODS steels

    International Nuclear Information System (INIS)

    Rouffié, A.L.; Wident, P.; Ziolek, L.; Delabrouille, F.; Tanguy, B.; Crépin, J.; Pineau, A.; Garat, V.; Fournier, B.

    2013-01-01

    The present work investigates the impact response of three ODS steels containing 9%Cr and 14%Cr. These steels were produced by hot extrusion in the shapes of a rod and a plate. The 9%Cr ODS steel has a quasi-isotropic microstructure and is given as a reference material. In comparison, the 14%Cr ODS steel has a strong morphological and crystallographic texture given by the process route. The impact behaviour is anisotropic and the fracture energies are higher when the material is tested in the longitudinal direction compared to the transverse direction. Moreover, the 14%Cr ODS steel has a better impact behaviour when it is extruded in the shape of a rod rather than in the shape of a plate. This work focuses on the fracture mechanisms involved in the ductile to brittle transition regime and in the brittle regime of these materials. In the case of the 14%Cr ODS steel, the cleavage facets observed at very low temperature are much larger than the actual size of the grains. Packets of grains with less than 15° of internal misorientation were defined as effective grains for cleavage. In the transition range, the texture enhances intergranular delamination on the 14%Cr rod material. The occurrence of delamination consumes a lot of energy and tends to enhance scattering in impact energies

  10. Influences of process parameters and microstructure on the fracture mechanisms of ODS steels

    Energy Technology Data Exchange (ETDEWEB)

    Rouffié, A.L., E-mail: anne-laure.rouffie@cea.fr [CEA, DEN, DANS, DMN, SRMA, Bât 453, F-91191 Gif-sur-Yvette (France); Wident, P.; Ziolek, L. [CEA, DEN, DANS, DMN, SRMA, Bât 453, F-91191 Gif-sur-Yvette (France); Delabrouille, F. [EDF – EDF R and D, Département MMC groupe Métallurgie, 77818 Moret sur Loing (France); Tanguy, B. [CEA, DEN, DANS, DMN, SEMI, Bât 625, F-91191 Gif-sur-Yvette (France); Crépin, J.; Pineau, A. [Mines ParisTech, Centre des Matériaux PM Fourt, UMR CNRS 7633, BP 87, 91003 Evry (France); Garat, V. [AREVA NP, 10 rue J. Récamier, 69006 Lyon (France); Fournier, B. [Manoir Industries, Metallurgy Dept., 12 rue des Ardennes, BP 8401 Pîtres, 27108 Val de Reuil Cedex (France)

    2013-02-15

    The present work investigates the impact response of three ODS steels containing 9%Cr and 14%Cr. These steels were produced by hot extrusion in the shapes of a rod and a plate. The 9%Cr ODS steel has a quasi-isotropic microstructure and is given as a reference material. In comparison, the 14%Cr ODS steel has a strong morphological and crystallographic texture given by the process route. The impact behaviour is anisotropic and the fracture energies are higher when the material is tested in the longitudinal direction compared to the transverse direction. Moreover, the 14%Cr ODS steel has a better impact behaviour when it is extruded in the shape of a rod rather than in the shape of a plate. This work focuses on the fracture mechanisms involved in the ductile to brittle transition regime and in the brittle regime of these materials. In the case of the 14%Cr ODS steel, the cleavage facets observed at very low temperature are much larger than the actual size of the grains. Packets of grains with less than 15° of internal misorientation were defined as effective grains for cleavage. In the transition range, the texture enhances intergranular delamination on the 14%Cr rod material. The occurrence of delamination consumes a lot of energy and tends to enhance scattering in impact energies.

  11. Full Length Research Paper Curcumin induces cleavage of -catenin ...

    African Journals Online (AJOL)

    β-Catenin/Tcf-4 signaling pathway plays important roles in colorectal tumorigenesis. RT-PCR, western blotting and immunoprecipitation were used to study the effects of curcumin on β-catenin/Tcf-4 signaling pathway in HT-29 cells. Treatment of curcumin could induce cleavage of β-catenin and the cleavage could be ...

  12. Investigation of Acoustic Emission during Fracture Toughness Testing of Chevron-Notched Specimens.

    Science.gov (United States)

    1984-03-01

    chevron-notched specimlens was employed to investigate crack growth in four steels )rel)ared by electroslag-remelt casting. 15-5PH, AISI 4140 , D6AC, and...this investigation: 15-SPH, AISI 4140 , D6AC and AISI 440C. The composition of each steel is given in Table 1. Castings were prepared by electro- slag...well defined, it appears that the AISI 4140 (Figure 2b) and the D6AC (Figure 2c) failed primarily by cleavage also. The fracture illustrated in Figure

  13. Fracture assessment of shallow-flaw cruciform beams tested under uniaxial and biaxial loading conditions

    International Nuclear Information System (INIS)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1999-01-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate with the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states. (orig.)

  14. Altered cleavage patterns in human tripronuclear embryos and their association to fertilization method

    DEFF Research Database (Denmark)

    Joergensen, Mette Warming; Agerholm, Inge; Hindkjaer, Johnny

    2014-01-01

    PURPOSE: To analyze the cleavage patterns in dipronuclear (2PN) and tripronuclear (3PN) embryos in relation to fertilization method. METHOD: Time-lapse analysis. RESULTS: Compared to 2PN, more 3PN IVF embryos displayed early cleavage into 3 cells (p ... stage (p embryos, the 2nd and 3rd cleavage cycles were completed within the expected time frame. However, timing of the cell divisions within the cleavage cycles differed between the two groups. In contrast......, the completion of the 1st, 2nd, and 3rd cleavage cycle was delayed, but with a similar division pattern for 3PN ICSI compared with the 2PN ICSI embryos. 3PN, more often than 2PN ICSI embryos, displayed early cleavage into 3 cells (p = 0.03) and arrested development from the compaction stage and onwards (p = 0...

  15. RecA-mediated cleavage reaction of Lambda repressor and DNA ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-01-11

    Jan 11, 2010 ... hydrolyze ATP at all, but fulfills RecA functions such as cleavage of Lambda repressor and strand .... DNA binding properties of RecA and may result in an in- .... AMP-PNP there is no cleavage of Lambda repressor (Figure.

  16. Effect of hot extrusion, other constituents, and temperature on the strength and fracture of polycrystalline MgO

    Energy Technology Data Exchange (ETDEWEB)

    Rice, R.W. (W.R. Grace and Co.-Conn, Columbia, MD (United States))

    1993-12-01

    Improved agreement was confirmed between the Petch intercept and single-crystal yield stresses at 22 C. Hot-extruded MgO crystal specimens stressed parallel with the resultant axial texture (1) gave the highest and least-scattered strength-grain size results at 22 C, (2) showed direct fractographic evidence of microplastic initiated fracture at 22 C and showed macroscopic yield at 1,315 and especially 1,540 C, and (3) fractured entirely via transgranular cleavage, except for intergranular failure initiation from one or a few grain boundary surfaces exposed on the subsequent fracture surface, mainly at 1,540 C. Hot-extruded, hot-pressed MgO billets gave comparable strength when fracture initiated transgranularly, but lower strength when fracture initiated from one or especially a few grain boundary surfaces exposed on the fracture. The extent and frequency of such boundary fracture increased with test temperature. While oxide additions of [<=] 5% or impurities in hot-pressed or hot-extruded MgO can make limited strength increases at larger grain sizes, those having limited solubility can limit strength at finer grain sizes, as can coarser surface finish. Overall, MgO strength is seen as a balance between flaw and microplastic controlled failure, with several parameters shifting the balance.

  17. Post-uniform elongation and tensile fracture mechanisms of Fe-18Mn-0.6C-xAl twinning-induced plasticity steels

    International Nuclear Information System (INIS)

    Yu, Ha-Young; Lee, Sang-Min; Nam, Jae-Hoon; Lee, Seung-Joon; Fabrègue, Damien; Park, Myeong-heom; Tsuji, Nobuhiro; Lee, Young-Kook

    2017-01-01

    The objective of the present study was to elucidate the complicated interrelationship between necking, post-uniform elongation (e_p_u), strain rate sensitivity (SRS), fracture mechanism and Al concentration in Fe-18Mn-0.6C-xAl twinning-induced plasticity steels. Many tensile tests were conducted for in- and ex-situ observations of necking, fracture surfaces, crack propagation and the density and size of micro-voids with the assistance of a high-speed camera and X-ray tomographic equipment. The addition of Al increased e_p_u, SRS and reduction ratios in dimension of the neck part of tensile specimens, and also changed fracture mode from quasi-cleavage to ductile fracture at the edge part. The quasi-cleavage surface of Al-free specimen was induced by edge and side cracks occurring along grain boundary junctions and twin boundaries within the edges and side surfaces where local deformation bands meet. The ductile-fracture surface of 1.5 %Al-added specimen was formed by the coalescence of micro-voids. While the side-to-middle crack propagation occurred in Al-free and 1 %Al-added specimens due to side cracks, the middle-to-side crack propagation was observed in 1.5 %Al-added specimen. The Al-free specimen had the larger size of the 20 largest voids compared to the 1.5 %Al-added specimen despite its lower void density and local strain due to the accelerated growth of voids near the tips of side cracks. Evaluating the negligible e_p_u of Al-free specimen by SRS is not deemed to be reasonable due to its inappreciable necking and side cracks. The improvement of e_p_u in 1.5 %Al-added specimen is primarily due to disappearance of edge and side cracks.

  18. Acquisition of a novel eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site confers intracellular cleavage of an H7N7 influenza virus hemagglutinin

    International Nuclear Information System (INIS)

    Hamilton, Brian S.; Sun, Xiangjie; Chung, Changik; Whittaker, Gary R.

    2012-01-01

    A critical feature of highly pathogenic avian influenza viruses (H5N1 and H7N7) is the efficient intracellular cleavage of the hemagglutinin (HA) protein. H7N7 viruses also exist in equine species, and a unique feature of the equine H7N7 HA is the presence of an eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site. Here, we show that three histidine residues within the unique insertion of the equine H7N7 HA are essential for intracellular cleavage. An asparagine residue within the insertion-derived glycosylation site was also found to be essential for intracellular cleavage. The presence of the histidine residues also appear to be involved in triggering fusion, since mutation of the histidine residues resulted in a destabilizing effect. Importantly, the addition of a tetrabasic site and the eleven amino acid insertion conferred efficient intracellular cleavage to the HA of an H7N3 low pathogenicity avian influenza virus. Our studies show that acquisition of the eleven amino acid insertion offers an alternative mechanism for intracellular cleavage of influenza HA.

  19. Acquisition of a novel eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site confers intracellular cleavage of an H7N7 influenza virus hemagglutinin

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Brian S.; Sun, Xiangjie; Chung, Changik [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853 (United States); New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627 (United States); Whittaker, Gary R., E-mail: grw7@cornell.edu [Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca NY 14853 (United States); New York Center of Excellence for Influenza Research and Surveillance, University of Rochester Medical Center, Rochester NY 14627 (United States)

    2012-12-05

    A critical feature of highly pathogenic avian influenza viruses (H5N1 and H7N7) is the efficient intracellular cleavage of the hemagglutinin (HA) protein. H7N7 viruses also exist in equine species, and a unique feature of the equine H7N7 HA is the presence of an eleven amino acid insertion directly N-terminal to a tetrabasic cleavage site. Here, we show that three histidine residues within the unique insertion of the equine H7N7 HA are essential for intracellular cleavage. An asparagine residue within the insertion-derived glycosylation site was also found to be essential for intracellular cleavage. The presence of the histidine residues also appear to be involved in triggering fusion, since mutation of the histidine residues resulted in a destabilizing effect. Importantly, the addition of a tetrabasic site and the eleven amino acid insertion conferred efficient intracellular cleavage to the HA of an H7N3 low pathogenicity avian influenza virus. Our studies show that acquisition of the eleven amino acid insertion offers an alternative mechanism for intracellular cleavage of influenza HA.

  20. Short RNA guides cleavage by eukaryotic RNase III.

    Directory of Open Access Journals (Sweden)

    Bruno Lamontagne

    Full Text Available In eukaryotes, short RNAs guide a variety of enzymatic activities that range from RNA editing to translation repression. It is hypothesized that pre-existing proteins evolved to bind and use guide RNA during evolution. However, the capacity of modern proteins to adopt new RNA guides has never been demonstrated. Here we show that Rnt1p, the yeast orthologue of the bacterial dsRNA-specific RNase III, can bind short RNA transcripts and use them as guides for sequence-specific cleavage. Target cleavage occurred at a constant distance from the Rnt1p binding site, leaving the guide RNA intact for subsequent cleavage. Our results indicate that RNase III may trigger sequence-specific RNA degradation independent of the RNAi machinery, and they open the road for a new generation of precise RNA silencing tools that do not trigger a dsRNA-mediated immune response.

  1. Failure analysis of eleven Gates Glidden drills that fractured intraorally during post space preparation. A retrieval analysis study.

    Science.gov (United States)

    Al Jabbari, Youssef S; Fournelle, Raymond; Al Taweel, Sara M; Zinelis, Spiros

    2017-07-19

    The purpose of this study was to determine the failure mechanism of clinically failed Gates Glidden (GG) drills. Eleven retrieved GG drills (sizes #1 to #3) which fractured during root canal preparation were collected and the fracture location was recorded based on macroscopic observation. All fracture surfaces were investigated by a SEM. Then the fractured parts were embedded in acrylic resin and after metallographic preparation, the microstructure and elemental composition was evaluated by SEM and EDS. The Vickers hardness (HV) of all specimens was also determined. Macroscopic examination and SEM analysis showed that the drills failed near the hand piece end by torsional fatigue with fatigue cracks initiating at several locations around the circumference and propagating toward the center. Final fracture followed by a tensile overloading at the central region of cross section. Microstructural analysis, hardness measurements and EDS show that the drills are made of a martensitic stainless steel like AISI 440C. Based on the findings of this study, clinicians should expect fatigue fracture of GG drills that have small size during root canal preparation. Selection of a more fatigue resistant stainless steel alloy and enhancing the instrument design might reduce the incidence of quasi-cleavage fracture on GG drills.

  2. Fracture behaviour of steel 20 MnMoNi 5 5 under stress wave loading

    International Nuclear Information System (INIS)

    Clos, R.; Schreppel, U.; Veit, P.; Zencker, U.; Specht, E.

    1994-01-01

    Crack initiation in fine grained 20 MnMoNi 5 5 steel has been investigated under stress wave loading conditions in the temperature range from -50 C to 20 C by a loading setup similar the ''Split Hopkinson Pressure Bar'' technique. For temperatures up to 20 C, fracture occurs by cleavage and K Id approaches and falls below the reference fracture toughness, while at room temperature stable crack growth occurs with a J i close to the static initiation value of the J-integral. The analysis of the crack tip configuration suggests that stable crack growth is the result of the following simultaneously induced stochastical processes: generation of constrained local microcracks, blunting of the individual crack tips and the deformation of material bridges at different regions along the crack tip front. (orig.)

  3. Characterization of SNARE Cleavage Products Generated by Formulated Botulinum Neurotoxin Type-A Drug Products

    Directory of Open Access Journals (Sweden)

    Jack Xie

    2010-08-01

    Full Text Available The study evaluated substrate cleavage product(s generated by three botulinum neurotoxin serotype A (BoNT/A medicinal drug products utilizing a novel and highly specific, light-chain activity, high-performance liquid chromatography (LCA-HPLC method. Samples were reacted with a commercially available BoNT/A fluorescent substrate derived from the SNAP-25 sequence. Reaction products were separated by reversed-phase HPLC. The method detected an atypical cleavage pattern by one of the formulated drug products. IncobotulinumtoxinA produced two cleavage fragments rather than the single fragment typically generated by BoNT/A. Identification confirmed the secondary cleavage at a position corresponding to SNAP-25 Arg198–Ala199 (normal BoNT/A cleavage is Gln197–Arg198. Arg198–Ala199 is also the cleavage site for trypsin and serotype C toxin. Normal cleavage was observed for all other BoNT/A drug product samples, as well as 900-kD and 150-kD bulk toxin BoNT/A. The reason for this unexpected secondary cleavage pattern by one formulated BoNT/A drug product is unknown. Possible explanations include a contaminating protease and/or damage to the 150-kD type-A toxin causing nonspecific substrate recognition and subsequent cleavage uncharacteristic of type-A toxin. The BoNT/A drug products were also analyzed via the LCA-HPLC assay using a commercial BoNT/C fluorescent substrate derived from the syntaxin sequence. Cleavage of the serotype C substrate by incobotulinumtoxinA was also confirmed whilst neither of the other drug products cleaved the syntaxin substrate.

  4. Development of Numerical Analysis Techniques Based on Damage Mechanics and Fracture Mechanics

    International Nuclear Information System (INIS)

    Chang, Yoon Suk; Lee, Dock Jin; Choi, Shin Beom; Kim, Sun Hye; Cho, Doo Ho; Lee, Hyun Boo

    2010-04-01

    The scatter of measured fracture toughness data and transferability problems among different crack configurations as well as geometry and loading conditions are major obstacles for application of fracture mechanics. To address these issues, recently, concerns on the local approach employing reliable micro-mechanical damage models are being increased again in connection with a progress of computational technology. In the present research, as part of development of fracture mechanical evaluation model for material degradation of reactor pressure boundary, several investigations on fracture behaviors were carried out. Especially, a numerical scheme to determine key parameters consisting both cleavage and ductile fracture estimate models was changed efficiently by incorporating a genetic algorithm. Also, with regard to the well-known master curve, newly reported methods such as bimodal master curve, randomly inhomogeneous master curve and single point estimation were reviewed to deal with homogeneous and inhomogeneous material characteristics. A series of preliminary finite element analyses was conducted to examine the element size effect on micro-mechanical models. Then, a new thickness correction equation was derived from parametric three-dimensional numerical simulations, which was founded on the current test standard, ASTM E1921, but could lead to get more realistic fracture toughness values. As a result, promising modified master curves as well as fracture toughness diagrams to convert data between pre-cracked V-notched and compact tension specimens were generated. Moreover, a user-subroutine in relation to GTN(Gurson-Tvergaard-Needleman) model was made by adopting Hill's 48 yield potential theory. By applying GTN model combined with the subroutine to small punch specimens, the effect of inhomogeneous properties on fracture behaviors of miniature specimens was confirmed. Therefore, it is anticipated that the aforementioned enhanced research results can be utilized

  5. Post-transcription cleavage generates the 3' end of F17R transcripts in vaccinia virus

    International Nuclear Information System (INIS)

    D'Costa, Susan M.; Antczak, James B.; Pickup, David J.; Condit, Richard C.

    2004-01-01

    Most vaccinia virus intermediate and late mRNAs possess 3' ends that are extremely heterogeneous in sequence. However, late mRNAs encoding the cowpox A-type inclusion protein (ATI), the second largest subunit of the RNA polymerase, and the late telomeric transcripts possess homogeneous 3' ends. In the case of the ATI mRNA, it has been shown that the homogeneous 3' end is generated by a post-transcriptional endoribonucleolytic cleavage event. We have determined that the F17R gene also produces homogeneous transcripts generated by a post-transcriptional cleavage event. Mapping of in vivo mRNA shows that the major 3' end of the F17R transcript maps 1262 nt downstream of the F17R translational start site. In vitro transcripts spanning the in vivo 3' end are cleaved in an in vitro reaction using extracts from virus infected cells, and the site of cleavage is the same both in vivo and in vitro. Cleavage is not observed using extract from cells infected in the presence of hydroxyurea; therefore, the cleavage factor is either virus-coded or virus-induced during the post-replicative phase of virus replication. The cis-acting sequence responsible for cleavage is orientation specific and the factor responsible for cleavage activity has biochemical properties similar to the factor required for cleavage of ATI transcripts. Partially purified cleavage factor generates cleavage products of expected size when either the ATI or F17R substrates are used in vitro, strongly suggesting that cleavage of both transcripts is mediated by the same factor

  6. An experimental study on the deformation and fracture modes of steel projectiles during impact

    International Nuclear Information System (INIS)

    Rakvåg, K.G.; Børvik, T.; Westermann, I.; Hopperstad, O.S.

    2013-01-01

    Highlights: • The fracture process is ductile for the unhardened projectiles. • A combined ductile–brittle fracture process is obtained for the HRC 40 projectiles. • The fragmentation of HRC 52 projectiles has cleavage as the main mechanism. • The fracture modes were confirmed in a metallurgical study. • The hardened materials have a stochastic variation of the mechanical properties. - Abstract: Previous investigations of the penetration and perforation of high-strength steel plates struck by hardened steel projectiles have shown that under certain test conditions the projectile may fracture or even fragment upon impact. Simulations without an accurate failure description for the projectile material will then predict perforation of the target instead of fragmentation of the projectile, and thus underestimate the ballistic limit velocity of the target plate. This paper presents an experimental investigation of the various deformation and fracture modes that may occur in steel projectiles during impact. This is studied by conducting Taylor bar impact tests using 20 mm diameter, 80 mm long, tool steel projectiles with three different hardness values (HRC 19, 40 and 52). A gas gun was used to fire the projectiles into a rigid wall at impact velocities ranging from 100 to 350 m/s, and the deformation and fracture processes were captured by a high-speed video camera. From the tests, several different deformation and fracture modes were registered for each hardness value. To investigate the influence of material on the deformation and fracture modes, several series of tensile tests on smooth axisymmetric specimens were carried out to characterise the mechanical properties of the three materials. To gain a deeper understanding of the various processes causing fracture and fragmentation during impact, a metallurgical investigation was conducted. The fracture surfaces of the failed projectiles of different hardness were investigated, and the microstructure was

  7. A study on the fractures of iodine induced stress corrosion cracking of new zirconium alloys

    International Nuclear Information System (INIS)

    Peng Qian; Zhao Wenjin; Li Weijun; Tang Zhenghua; Heng Xuemei

    2005-10-01

    The morphology and chemical compositions of I-SCC fractures of new zirconium alloys were investigated by SEM and EDXA. The feature on fracture surface for I-SCC samples, such as corrosion products, the secondary cracking, intergranular cracking and pseudo-cleavage transgranular cracking, have been observed. And the fluting, the typical characteristic of I-SCC also has been found. Intergranular cracking is visible at crack initiation stage and transgranular cracking is distinguished at crack propagation stage. The corrosion products are mainly composed of Zr and O; and I can be detected on the local pseudocleavage zone. The most of grooves on the fractures of relieved-stress annealing samples are parallel with the roll plane. The intergranular cracking in relieved-stress annealing samples is not obvious. When the test temperature increases, the activity of iodine increases and the stress on crack tip is easier to be released, thus the corrosion products on fracture also increase and intergranular cracking is visible. The partial pressure of iodine influents the thickness of corrosion products, and intergranular cracking is easier to be found when iodine partial pressure is high enough. (authors)

  8. Fracture assessment of HSST Plate 14 shallow-flaw cruciform bend specimens tested under biaxial loading conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bass, B.R.; McAfee, W.J.; Williams, P.T.; Pennell, W.E.

    1998-06-01

    A technology to determine shallow-flaw fracture toughness of reactor pressure vessel (RPV) steels is being developed for application to the safety assessment of RPVs containing postulated shallow surface flaws. Matrices of cruciform beam tests were developed to investigate and quantify the effects of temperature, biaxial loading, and specimen size on fracture initiation toughness of two-dimensional (constant depth), shallow, surface flaws. The cruciform beam specimens were developed at Oak Ridge National Laboratory (ORNL) to introduce a far-field, out-of-plane biaxial stress component in the test section that approximates the nonlinear stresses resulting from pressurized-thermal-shock or pressure-temperature loading of an RPV. Tests were conducted under biaxial load ratios ranging from uniaxial to equibiaxial. These tests demonstrated that biaxial loading can have a pronounced effect on shallow-flaw fracture toughness in the lower transition temperature region for an RPV material. The cruciform fracture toughness data were used to evaluate fracture methodologies for predicting the observed effects of biaxial loading on shallow-flaw fracture toughness. Initial emphasis was placed on assessment of stress-based methodologies, namely, the J-Q formulation, the Dodds-Anderson toughness scaling model, and the Weibull approach. Applications of these methodologies based on the hydrostatic stress fracture criterion indicated an effect of loading-biaxiality on fracture toughness; the conventional maximum principal stress criterion indicated no effect. A three-parameter Weibull model based on the hydrostatic stress criterion is shown to correlate the experimentally observed biaxial effect on cleavage fracture toughness by providing a scaling mechanism between uniaxial and biaxial loading states.

  9. Macro-mesoscopic Fracture and Strength Character of Pre-cracked Granite Under Stress Relaxation Condition

    Science.gov (United States)

    Liu, Junfeng; Yang, Haiqing; Xiao, Yang; Zhou, Xiaoping

    2018-05-01

    The fracture characters are important index to study the strength and deformation behavior of rock mass in rock engineering. In order to investigate the influencing mechanism of loading conditions on the strength and macro-mesoscopic fracture character of rock material, pre-cracked granite specimens are prepared to conduct a series of uniaxial compression experiments. For parts of the experiments, stress relaxation tests of different durations are also conducted during the uniaxial loading process. Furthermore, the stereomicroscope is adopted to observe the microstructure of the crack surfaces of the specimens. The experimental results indicate that the crack surfaces show several typical fracture characters in accordance with loading conditions. In detail, some cleavage fracture can be observed under conventional uniaxial compression and the fractured surface is relatively rough, whereas as stress relaxation tests are attached, relative slip trace appears between the crack faces and some shear fracture starts to come into being. Besides, the crack faces tend to become smoother and typical terrace structures can be observed in local areas. Combining the macroscopic failure pattern of the specimens, it can be deduced that the duration time for the stress relaxation test contributes to the improvement of the elastic-plastic strain range as well as the axial peak strength for the studied material. Moreover, the derived conclusion is also consistent with the experimental and analytical solution for the pre-peak stage of the rock material. The present work may provide some primary understanding about the strength character and fracture mechanism of hard rock under different engineering environments.

  10. Coronavirus 3CLpro proteinase cleavage sites: Possible relevance to SARS virus pathology

    Directory of Open Access Journals (Sweden)

    Blom Nikolaj

    2004-06-01

    Full Text Available Abstract Background Despite the passing of more than a year since the first outbreak of Severe Acute Respiratory Syndrome (SARS, efficient counter-measures are still few and many believe that reappearance of SARS, or a similar disease caused by a coronavirus, is not unlikely. For other virus families like the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection. Prompted by this, we set out to analyse and predict cleavage by the coronavirus main proteinase using computational methods. Results We retrieved sequence data on seven fully sequenced coronaviruses and identified the main 3CL proteinase cleavage sites in polyproteins using alignments. A neural network was trained to recognise the cleavage sites in the genomes obtaining a sensitivity of 87.0% and a specificity of 99.0%. Several proteins known to be cleaved by other viruses were submitted to prediction as well as proteins suspected relevant in coronavirus pathology. Cleavage sites were predicted in proteins such as the cystic fibrosis transmembrane conductance regulator (CFTR, transcription factors CREB-RP and OCT-1, and components of the ubiquitin pathway. Conclusions Our prediction method NetCorona predicts coronavirus cleavage sites with high specificity and several potential cleavage candidates were identified which might be important to elucidate coronavirus pathology. Furthermore, the method might assist in design of proteinase inhibitors for treatment of SARS and possible future diseases caused by coronaviruses. It is made available for public use at our website: http://www.cbs.dtu.dk/services/NetCorona/.

  11. Prediction of proteasome cleavage motifs by neural networks

    DEFF Research Database (Denmark)

    Kesimir, C.; Nussbaum, A.K.; Schild, H.

    2002-01-01

    physiological conditions. Our algorithm has been trained not only on in vitro data, but also on MHC Class I ligand data, which reflect a combination of immunoproteasome and constitutive proteasome specificity. This feature, together with the use of neural networks, a non-linear classification technique, make...... the prediction of MHC Class I ligand boundaries more accurate: 65% of the cleavage sites and 85% of the non-cleavage sites are correctly determined. Moreover, we show that the neural networks trained on the constitutive proteasome data learns a specificity that differs from that of the networks trained on MHC...

  12. Flanking signal and mature peptide residues influence signal peptide cleavage

    Directory of Open Access Journals (Sweden)

    Ranganathan Shoba

    2008-12-01

    Full Text Available Abstract Background Signal peptides (SPs mediate the targeting of secretory precursor proteins to the correct subcellular compartments in prokaryotes and eukaryotes. Identifying these transient peptides is crucial to the medical, food and beverage and biotechnology industries yet our understanding of these peptides remains limited. This paper examines the most common type of signal peptides cleavable by the endoprotease signal peptidase I (SPase I, and the residues flanking the cleavage sites of three groups of signal peptide sequences, namely (i eukaryotes (Euk (ii Gram-positive (Gram+ bacteria, and (iii Gram-negative (Gram- bacteria. Results In this study, 2352 secretory peptide sequences from a variety of organisms with amino-terminal SPs are extracted from the manually curated SPdb database for analysis based on physicochemical properties such as pI, aliphatic index, GRAVY score, hydrophobicity, net charge and position-specific residue preferences. Our findings show that the three groups share several similarities in general, but they display distinctive features upon examination in terms of their amino acid compositions and frequencies, and various physico-chemical properties. Thus, analysis or prediction of their sequences should be separated and treated as distinct groups. Conclusion We conclude that the peptide segment recognized by SPase I extends to the start of the mature protein to a limited extent, upon our survey of the amino acid residues surrounding the cleavage processing site. These flanking residues possibly influence the cleavage processing and contribute to non-canonical cleavage sites. Our findings are applicable in defining more accurate prediction tools for recognition and identification of cleavage site of SPs.

  13. Staggering in the cleavage pattern of E. coli ABC-excinuclease

    International Nuclear Information System (INIS)

    Myles, G.M.; Van Houten, B.; Sancar, A.

    1986-01-01

    E. coli ABC excinuclease is a complex of three proteins encoded by the uvrA, uvrB, and uvrC genes. The enzyme repairs DNA mono and diadducts by the single strand cleavage of DNA eight phosphodiester bond 5' and four or five phosphodiester bonds 3' to a DNA lesion and facilitates the removal of the resulting twelve or thirteen nucleotide fragment. In this study, the authors have investigated the excision pattern for ultraviolet (UV) induced diadducts, i.e. cyclobutane pyrimidine dimers and pyrimidine-pyrimidone (6-4) photoproducts. Terminally (5' or 3') labeled DNA was irradiated with 254nm UV and treated with ABC excinuclease before and after photoreactivation of cyclobutane dimers by E. coli DNA photolyase. In this way, the authors were able to differentiate between the cleavage pattern of pyrimidine dimers and of (6-4) photoproducts. Their results show that certain TT cyclobutane dimers and rare TT (6-4) photoproducts are excised by cleavage seven and, less frequently, six phosphodiester bonds to the 5' side of the DNA lesion in addition to the primary cutting site at the eight 5' phosphodiester bond. The 3' cleavage sites are maintained at the fourth and fifth phosphodiester bonds for the these UV induced lesions. These data indicate that the cleavage pattern of the ABC excinuclease may be dependent upon both the type of DNA lesion as well as it surrounding nucleotide sequence. In addition, the authors analysis shows that (6-4) photoproducts are much better substrates for ABC excinuclease than are pyrimidine dimers

  14. On size and geometry effects on the brittle fracture of ferritic and tempered martensitic steels

    Science.gov (United States)

    Odette, G. R.; Chao, B. L.; Lucas, G. E.

    1992-09-01

    A finite element computation of nonsingular crack tip fields was combined with a weakest link statistics model of cleavage fracture. Model predictions for three point bend specimens with various widths and crack depth to width ratios are qualitatively consistent with a number of trends observed in a 12 Cr martensitic stainless steel. The toughness “benefits” of small sizes and shallow cracks are primarily reflected in strain limits rather than net section stress capacities, which is significant to fusion structures subject to large secondary stresses.

  15. Downstream element determines RNase Y cleavage of the saePQRS operon in Staphylococcus aureus.

    Science.gov (United States)

    Marincola, Gabriella; Wolz, Christiane

    2017-06-02

    In gram-positive bacteria, RNase J1, RNase J2 and RNase Y are thought to be major contributors to mRNA degradation and maturation. In Staphylococcus aureus, RNase Y activity is restricted to regulating the mRNA decay of only certain transcripts. Here the saePQRS operon was used as a model to analyze RNase Y specificity in living cells. A RNase Y cleavage site is located in an intergenic region between saeP and saeQ. This cleavage resulted in rapid degradation of the upstream fragment and stabilization of the downstream fragment. Thereby, the expression ratio of the different components of the operon was shifted towards saeRS, emphasizing the regulatory role of RNase Y activity. To assess cleavage specificity different regions surrounding the sae CS were cloned upstream of truncated gfp, and processing was analyzed in vivo using probes up- and downstream of CS. RNase Y cleavage was not determined by the cleavage site sequence. Instead a 24-bp double-stranded recognition structure was identified that was required to initiate cleavage 6 nt upstream. The results indicate that RNase Y activity is determined by secondary structure recognition determinants, which guide cleavage from a distance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Protein cleavage strategies for an improved analysis of the membrane proteome

    Directory of Open Access Journals (Sweden)

    Poetsch Ansgar

    2006-03-01

    Full Text Available Abstract Background Membrane proteins still remain elusive in proteomic studies. This is in part due to the distribution of the amino acids lysine and arginine, which are less frequent in integral membrane proteins and almost absent in transmembrane helices. As these amino acids are cleavage targets for the commonly used protease trypsin, alternative cleavage conditions, which should improve membrane protein analysis, were tested by in silico digestion for the three organisms Saccharomyces cerevisiae, Halobacterium sp. NRC-1, and Corynebacterium glutamicum as hallmarks for eukaryotes, archea and eubacteria. Results For the membrane proteomes from all three analyzed organisms, we identified cleavage conditions that achieve better sequence and proteome coverage than trypsin. Greater improvement was obtained for bacteria than for yeast, which was attributed to differences in protein size and GRAVY. It was demonstrated for bacteriorhodopsin that the in silico predictions agree well with the experimental observations. Conclusion For all three examined organisms, it was found that a combination of chymotrypsin and staphylococcal peptidase I gave significantly better results than trypsin. As some of the improved cleavage conditions are not more elaborate than trypsin digestion and have been proven useful in practice, we suppose that the cleavage at both hydrophilic and hydrophobic amino acids should facilitate in general the analysis of membrane proteins for all organisms.

  17. Cleavage and Cell Adhesion Properties of Human Epithelial Cell Adhesion Molecule (HEPCAM)*

    Science.gov (United States)

    Tsaktanis, Thanos; Kremling, Heidi; Pavšič, Miha; von Stackelberg, Ricarda; Mack, Brigitte; Fukumori, Akio; Steiner, Harald; Vielmuth, Franziska; Spindler, Volker; Huang, Zhe; Jakubowski, Jasmine; Stoecklein, Nikolas H.; Luxenburger, Elke; Lauber, Kirsten; Lenarčič, Brigita; Gires, Olivier

    2015-01-01

    Human epithelial cell adhesion molecule (HEPCAM) is a tumor-associated antigen frequently expressed in carcinomas, which promotes proliferation after regulated intramembrane proteolysis. Here, we describe extracellular shedding of HEPCAM at two α-sites through a disintegrin and metalloprotease (ADAM) and at one β-site through BACE1. Transmembrane cleavage by γ-secretase occurs at three γ-sites to generate extracellular Aβ-like fragments and at two ϵ-sites to release human EPCAM intracellular domain HEPICD, which is efficiently degraded by the proteasome. Mapping of cleavage sites onto three-dimensional structures of HEPEX cis-dimer predicted conditional availability of α- and β-sites. Endocytosis of HEPCAM warrants acidification in cytoplasmic vesicles to dissociate protein cis-dimers required for cleavage by BACE1 at low pH values. Intramembrane cleavage sites are accessible and not part of the structurally important transmembrane helix dimer crossing region. Surprisingly, neither chemical inhibition of cleavage nor cellular knock-out of HEPCAM using CRISPR-Cas9 technology impacted the adhesion of carcinoma cell lines. Hence, a direct function of HEPCAM as an adhesion molecule in carcinoma cells is not supported and appears to be questionable. PMID:26292218

  18. Characterization of a Non-Canonical Signal Peptidase Cleavage Site in a Replication Protein from Tomato Ringspot Virus.

    Directory of Open Access Journals (Sweden)

    Ting Wei

    Full Text Available The NTB-VPg polyprotein from tomato ringspot virus is an integral membrane replication protein associated with endoplasmic reticulum membranes. A signal peptidase (SPase cleavage was previously detected in the C-terminal region of NTB-VPg downstream of a 14 amino acid (aa-long hydrophobic region (termed TM2. However, the exact location of the cleavage site was not determined. Using in vitro translation assays, we show that the SPase cleavage site is conserved in the NTB-VPg protein from various ToRSV isolates, although the rate of cleavage varies from one isolate to another. Systematic site-directed mutagenesis of the NTB-VPg SPase cleavage sites of two ToRSV isolates allowed the identification of sequences that affect cleavage efficiency. We also present evidence that SPase cleavage in the ToRSV-Rasp2 isolate occurs within a GAAGG sequence likely after the AAG (GAAG/G. Mutation of a downstream MAAV sequence to AAAV resulted in SPase cleavage at both the natural GAAG/G and the mutated AAA/V sequences. Given that there is a distance of seven aa between the two cleavage sites, this indicates that there is flexibility in the positioning of the cleavage sites relative to the inner surface of the membrane and the SPase active site. SPase cleavage sites are typically located 3-7 aa downstream of the hydrophobic region. However, the NTB-VPg GAAG/G cleavage site is located 17 aa downstream of the TM2 hydrophobic region, highlighting unusual features of the NTB-VPg SPase cleavage site. A putative 11 aa-long amphipathic helix was identified immediately downstream of the TM2 region and five aa upstream of the GAAG/G cleavage site. Based on these results, we present an updated topology model in which the hydrophobic and amphipathic domains form a long tilted helix or a bent helix in the membrane lipid bilayer, with the downstream cleavage site(s oriented parallel to the membrane inner surface.

  19. Calicivirus 3C-like proteinase inhibits cellular translation by cleavage of poly(A)-binding protein.

    Science.gov (United States)

    Kuyumcu-Martinez, Muge; Belliot, Gaël; Sosnovtsev, Stanislav V; Chang, Kyeong-Ok; Green, Kim Y; Lloyd, Richard E

    2004-08-01

    Caliciviruses are single-stranded RNA viruses that cause a wide range of diseases in both humans and animals, but little is known about the regulation of cellular translation during infection. We used two distinct calicivirus strains, MD145-12 (genus Norovirus) and feline calicivirus (FCV) (genus Vesivirus), to investigate potential strategies used by the caliciviruses to inhibit cellular translation. Recombinant 3C-like proteinases (r3CL(pro)) from norovirus and FCV were found to cleave poly(A)-binding protein (PABP) in the absence of other viral proteins. The norovirus r3CL(pro) PABP cleavage products were indistinguishable from those generated by poliovirus (PV) 3C(pro) cleavage, while the FCV r3CL(pro) products differed due to cleavage at an alternate cleavage site 24 amino acids downstream of one of the PV 3C(pro) cleavage sites. All cleavages by calicivirus or PV proteases separated the C-terminal domain of PABP that binds translation factors eIF4B and eRF3 from the N-terminal RNA-binding domain of PABP. The effect of PABP cleavage by the norovirus r3CL(pro) was analyzed in HeLa cell translation extracts, and the presence of r3CL(pro) inhibited translation of both endogenous and exogenous mRNAs. Translation inhibition was poly(A) dependent, and replenishment of the extracts with PABP restored translation. Analysis of FCV-infected feline kidney cells showed that the levels of de novo cellular protein synthesis decreased over time as virus-specific proteins accumulated, and cleavage of PABP occurred in virus-infected cells. Our data indicate that the calicivirus 3CL(pro), like PV 3C(pro), mediates the cleavage of PABP as part of its strategy to inhibit cellular translation. PABP cleavage may be a common mechanism among certain virus families to manipulate cellular translation.

  20. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls

    KAUST Repository

    Bruno, Mark

    2015-04-01

    Down-regulation of the potato carotenoid cleavage dioxygenase 4 (StCCD4) transcript level led to tubers with altered morphology and sprouting activity, which also accumulated higher levels of violaxanthin and lutein leading to elevated carotenoid amounts. This phenotype indicates a role of this enzyme in tuber development, which may be exerted by a cleavage product. In this work, we investigated the enzymatic activity of StCCD4, by expressing the corresponding cDNA in carotenoid accumulating Escherichia coli strains and by performing in vitro assays with heterologously expressed enzyme. StCCD4 catalyzed the cleavage of all-. trans-β-carotene at the C9\\'-C10\\' double bond, leading to β-ionone and all-. trans-β-apo-10\\'-carotenal, both in vivo and in vitro. The enzyme also cleaved β,β-cryptoxanthin, zeaxanthin and lutein either at the C9\\'-C10\\' or the C9-C10 double bond in vitro. In contrast, we did not observe any conversion of violaxanthin and only traces of activity with 9-. cis-β-carotene, which led to 9-. cis-β-apo-10\\'-carotenal. Our data indicate that all-. trans-β-carotene is the likely substrate of StCCD4 in planta, and that this carotene may be precursor of an unknown compound involved in tuber development.

  1. Application of ductile fracture assessment methods for the assessment of pressure vessels from high strength steels (HSS)

    International Nuclear Information System (INIS)

    Eisele, U.; Schiedermaier, J.

    2003-01-01

    The economical and safe design of pressure vessels requires, besides others, also a detailed knowledge of the vessel failure behaviour in the case of existing imperfections or cracks. The behaviour of a cracked component under a given loading situation depends on material toughness. For ferritic steels, the material toughness is varying with temperature. At low temperature dominantly brittle fracture behaviour is observed, at high temperature the failure mode is dominantly ductile fracture. The transition between these two extremes is floating. In the case of existing or postulated cracks, the safety analysis has to be performed using fracture mechanics methods. In the lower shelf of toughness, K iC as of ASTM E 399 is the characterising value for crack initiation and immediate unstable crack extension (cleavage). In the upper shelf level the characterising value is the ''actual crack initiation toughness'' J i acc. to ISO 12135, characterising the onset of slow stable crack extension. For the transition regime in ASTM E 1921 the instability values K JC are defined, characterising cleavage failure after more or less extended ductile crack growth. The safety analysis of a component operated in the upper shelf of the material toughness, has to consider initiation as well as stable crack extension following initiation. The inclusion of any crack extension into this consideration needs to consider the influence of the constraint in front of a crack tip, leading to multiaxial stress conditions and decreasing the material crack resistance significantly. Thus, the exclusion of crack initiation needs to be proven in a first step of each safety analysis. Assessing the component in a uniform way over the relevant temperature range is possible by using initiation characteristics, which also have the advantage of transferability. A change of criterion considering initiation at the lower shelf, instability in the transition range and again initiation in the upper shelf can be

  2. Analysis of the competition between brittle and ductile fracture: application for the mechanical behaviour of C-Mn and theirs welds; Etude de la competition dechirure ductile/rupture fragile: application de la tenue mecanique des tubes en acier C-Mn et de leurs joints soudes

    Energy Technology Data Exchange (ETDEWEB)

    Le Corre, V

    2006-09-15

    This study deals with the fracture behaviour of welded thin structures in the ductile to brittle transition range. It aims to propose a criterion to define the conditions for which the risk of fracture by cleavage does not exist on a cracked structure. The literature review shows that the difficulties of prediction of the fracture behaviour of a structure are related to the dependence of the fracture probability to the mechanical fields at the crack tip. The ductile to brittle transition range thus depends on the studied geometry of the structure. A threshold stress, below which cleavage cannot take place, is defined using fracture tests on notched specimens broken at very low temperature. The finite element numerical simulation of fracture tests onspecimens in the transition range shows a linear relationship between the fracture probability and the volume exceeding the threshold stress, thus showing the relevance of the proposed criterion. Moreover, several relations are established allowing to simplify the identification of the criterion parameters. The criterion is applied to a nuclear structural C-Mn steel, by focusing more particularly on the higher boundary of the transition range. A fracture test on a full-scale pipe is designed, developed, carried out and analysed using its numerical simulation. The results show firstly that, on the structure, the transition range is shifted in temperature, compared to laboratory specimens, due to the low plasticity constraint achieved in thin structures, and secondly that the threshold stress criterion allows to estimate simply this shift. (author)

  3. [Recent knowledge about intestinal absorption and cleavage of carotenoids].

    Science.gov (United States)

    Borel, P; Drai, J; Faure, H; Fayol, V; Galabert, C; Laromiguière, M; Le Moël, G

    2005-01-01

    Our knowledge about intestinal absorption and cleavage of carotenoids has rapidly grown during the last years. New facts about carotenoid absorption have emerged while some controversies about cleavage are close to end. The knowledge of the absorption and conversion processes is indispensable to understand and interpret the perturbations that can occur in the metabolism of carotenoids and vitamin A. Recently, it has been shown that the absorption of certain carotenoids is not passive - as believed for a long time - but is a facilitated process that requires, at least for lutein, the class B-type 1 scavenger receptor (SR-B1). Various epidemiological and clinical studies have shown wide variations in carotenoid absorption from one subject to another, such differences are now explained by the structure of the concerned carotenoid, by the nature of the food that is absorbed with the carotenoid, by diverse exogenous factors like the intake of medicines or interfering components, by diet factors, by genetic factors, and by the nutritional status of the subject. Recently, the precise mechanism of beta-carotene cleavage by betabeta-carotene 15,15' monooxygenase (EC 1.14.99.36) - formerly called beta-carotene 15,15' dioxygenase (ex EC 1.13.11.21) - has been discovered, and a second enzyme which cleaves asymmetrically the beta-carotene molecule has been found. beta-carotene 15,15' monooxygenase only acts on the 15,15' bond, thus forming two molecules of retinal from one molecule of beta-carotene by central cleavage. Even though the betabeta-carotene 15,15' monooxygenase is much more active on the beta-carotene molecule, a study has shown that it can act on all carotenoids. Searchers now agree that other enzymes that can catalyse an eccentric cleavage of carotenoids probably exist, but under physiological conditions the betabeta-carotene 15,15' monooxygenase is by far the most active, and it is mainly effective in the small bowel mucosa and in the liver. However the

  4. Effects of consolidation temperature, strength and microstructure on fracture toughness of nanostructured ferritic alloys

    International Nuclear Information System (INIS)

    Miao, P.; Odette, G.R.; Yamamoto, T.; Alinger, M.; Hoelzer, D.; Gragg, D.

    2007-01-01

    Fully consolidated nanostructured ferritic alloys (NFAs) were prepared by attritor milling pre-alloyed Fe-14Cr-3W-0.4Ti and 0.3 wt% Y 2 O 3 powders, followed by hot isostatic pressing (HIPing) at 1000 o C or 1150 o C at 200 MPa for 4 h. Transmission electron microscopy (TEM) revealed similar bimodal distributions of fine and coarse ferrite grains in both cases. However, as expected, the alloy microhardness decreased with increasing in HIPing temperature. Three point bend tests on single edge notched specimens, with a nominal root radius ρ = 0.15 mm, were used to measure the notch fracture toughness, K ρ , as a function of test temperature. The K ρ curves were found to be similar for both processing conditions. It appears that the coarser ferrite grains control cleavage fracture, in a way that is independent of alloy strength and HIPing temperature

  5. Application of small specimens to fracture mechanics characterization of irradiated pressure vessel steels

    International Nuclear Information System (INIS)

    Sokolov, M.A.; Wallin, K.; McCabe, D.E.

    1996-01-01

    In this study, precracked Charpy V-notch (PCVN) specimens were used to characterize the fracture toughness of unirradiated and irradiated reactor pressure vessel steels in the transition region by means of three-point static bending. Fracture toughness at cleavage instability was calculated in terms of elastic-plastic K Jc values. A statistical size correction based upon weakest-link theory was performed. The concept of a master curve was applied to analyze fracture toughness properties. Initially, size-corrected PCVN data from A 533 grade B steel, designated HSST Plate O2, were used to position the master curve and a 5% tolerance bound for K Jc data. By converting PCVN data to IT compact specimen equivalent K Jc data, the same master curve and 5% tolerance bound curve were plotted against the Electric Power Research Institute valid linear-elastic K Jc database and the ASME lower bound K Ic curve. Comparison shows that the master curve positioned by testing several PCVN specimens describes very well the massive fracture toughness database of large specimens. These results give strong support to the validity of K Jc with respect to K Ic in general and to the applicability of PCVN specimens to measure fracture toughness of reactor vessel steels in particular. Finally, irradiated PCVN specimens of other materials were tested, and the results are compared to compact specimen data. The current results show that PCVNs demonstrate very good capacity for fracture toughness characterization of reactor pressure vessel steels. It provides an opportunity for direct measurement of fracture toughness of irradiated materials by means of precracking and testing Charpy specimens from surveillance capsules. However, size limits based on constraint theory restrict the operational test temperature range for K Jc data from PCVN specimens. 13 refs., 8 figs., 1 tab

  6. Endocytic down-regulation of ErbB2 is stimulated by cleavage of its C-terminus

    DEFF Research Database (Denmark)

    Lerdrup, Mads; Bruun, Silas; Grandal, Michael Vibo

    2007-01-01

    inhibition of HSP90 with geldanamycin this cleavage is accompanied by proteasome-dependent endocytosis of ErbB2. However, it is unknown whether C-terminal cleavage is linked to endocytosis. To study ErbB2 cleavage and endocytic trafficking, we fused yellow fluorescent protein (YFP) and cyan fluorescent...

  7. Effects of Cysteamine on Sheep Embryo Cleavage Rates

    Directory of Open Access Journals (Sweden)

    Sinem Ö. ENGİNLER

    2015-01-01

    Full Text Available Oxidative stress during in vitro culture leads to defects in development of gametes and embryos. Several antioxidants such as cysteamine, L-ascorbic acid, beta mercaptoethanol, cysteine, glutathione, proteins, vitamins have been used to supplement culture media to counter the oxidative stress. This study was conducted to detect the effect of adding cysteamine to the maturation medium to subsequent cleavage rates of sheep embryos. Totally 604 ovaries were obtained by ten replica and 2060 oocytes were collected. The cumulus oocyte complexes were recovered by the slicing method. A total of 1818 selected oocytes were divided into two groups and used for maturation (88.25%. The first group was created as supplemented with cysteamine (Group A and second group (Group B, control without cysteamine in TCM-199. The two groups were incubated for 24 h at 38.8 °C in an atmosphere of 5% CO2 in humidified air for in vitro maturation (IVM. After IVM, oocytes were fertilized with 50 x 107 / mL fresh ram semen in BSOF medium for 18 h. After fertilization, maturation groups were divided into two subgroups with different culture media: Group AI-SOF (Synthetic Oviduct Fluid medium, Group AII-CR1aa (Charles Rosencrans medium, Group BI-SOF and Group BII-CR1aa were achieved. Cleavage rates were evaluated at day 2. post insemination. The rates of cleavage were detected as 59.54% (184/309, 55.44% (173/312, 65.34% (215/329, 59.34% (200/337 respectively, with showing no statistically significant difference between the groups at the level of P>0.05. In conclusion, supplementing cysteamine to maturation media in TCM-199 did not affect the cleavage rates of sheep embryos in SOF and CR1aa culture media.

  8. Variable context Markov chains for HIV protease cleavage site prediction.

    Science.gov (United States)

    Oğul, Hasan

    2009-06-01

    Deciphering the knowledge of HIV protease specificity and developing computational tools for detecting its cleavage sites in protein polypeptide chain are very desirable for designing efficient and specific chemical inhibitors to prevent acquired immunodeficiency syndrome. In this study, we developed a generative model based on a generalization of variable order Markov chains (VOMC) for peptide sequences and adapted the model for prediction of their cleavability by certain proteases. The new method, called variable context Markov chains (VCMC), attempts to identify the context equivalence based on the evolutionary similarities between individual amino acids. It was applied for HIV-1 protease cleavage site prediction problem and shown to outperform existing methods in terms of prediction accuracy on a common dataset. In general, the method is a promising tool for prediction of cleavage sites of all proteases and encouraged to be used for any kind of peptide classification problem as well.

  9. Changes in Contact Area in Meniscus Horizontal Cleavage Tears Subjected to Repair and Resection.

    Science.gov (United States)

    Beamer, Brandon S; Walley, Kempland C; Okajima, Stephen; Manoukian, Ohan S; Perez-Viloria, Miguel; DeAngelis, Joseph P; Ramappa, Arun J; Nazarian, Ara

    2017-03-01

    To assess the changes in tibiofemoral contact pressure and contact area in human knees with a horizontal cleavage tear before and after treatment. Ten human cadaveric knees were tested. Pressure sensors were placed under the medial meniscus and the knees were loaded at twice the body weight for 20 cycles at 0°, 10°, and 20° of flexion. Contact area and pressure were recorded for the intact meniscus, the meniscus with a horizontal cleavage tear, after meniscal repair, after partial meniscectomy (single leaflet), and after subtotal meniscectomy (double leaflet). The presence of a horizontal cleavage tear significantly increased average peak contact pressure and reduced effective average tibiofemoral contact area at all flexion angles tested compared with the intact state (P contact pressure after creation of the horizontal cleavage tear. Repairing the horizontal cleavage tear restored peak contact pressures and areas to within 15% of baseline, statistically similar to the intact state at all angles tested (P contact pressure and reduced average contact area at all degrees of flexion compared with the intact state (P contact area and a significant elevation in contact pressure. These changes may accelerate joint degeneration. A suture-based repair of these horizontal cleavage tears returns the contact area and contact pressure to nearly normal, whereas both partial and subtotal meniscectomy lead to significant reductions in contact area and significant elevations in contact pressure within the knee. Repairing horizontal cleavage tears may lead to improved clinical outcomes by preserving meniscal tissue and the meniscal function. Understanding contact area and peak contact pressure resulting from differing strategies for treating horizontal cleavage tears will allow the surgeon to evaluate the best strategy for treating his or her patients who present with this meniscal pathology. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier

  10. Oxidative cleavage of erucic acid for the synthesis of brassylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed J. Nasrullah; Pooja Thapliyal; Erica N. Pfarr; Nicholas S. Dusek; Kristofer L. Schiele; James A. Bahr

    2010-10-29

    The main focus of this work is to synthesize Brassylic Acid (BA) using oxidative cleavage of Erucic Acid (EA). Crambe (Crambe abyssinica) is an industrial oilseed grown in North Dakota. Crambe has potential as an industrial fatty acid feedstock as a source of Erucic acid (EA). It has approximately 50-60 % of EA, a C{sub 22} monounsaturated fatty acid. Oxidative cleavage of unsaturated fatty acids derived from oilseeds produces long chain (9, 11, and 13 carbon atoms) dibasic and monobasic acids. These acids are known commercial feedstocks for the preparation of nylons, polyesters, waxes, surfactants, and perfumes. Other sources of EA are Rapeseed seed oil which 50-60 % of EA. Rapeseed is grown outside USA. The oxidative cleavage of EA was done using a high throughput parallel pressure reactor system. Kinetics of the reaction shows that BA yields reach a saturation at 12 hours. H{sub 2}WO{sub 4} was found to be the best catalyst for the oxidative cleavage of EA. High yields of BA were obtained at 80 C with bubbling of O{sub 2} or 10 bar of O{sub 2} for 12 hours.

  11. Caspase-Dependent Apoptosis Induced by Telomere Cleavage and TRF2 Loss

    Directory of Open Access Journals (Sweden)

    Asha S. Multani

    2000-07-01

    Full Text Available Chromosomal abnormalities involving telomeric associations (TAs often precede replicative senescence and abnormal chromosome configurations. We report here that telomere cleavage following exposure to proapoptotic agents is an early event in apoptosis. Exposure of human and murine cancer cells to a variety of pro-apoptotic stimuli (staurosporine, thapsigargin, anti-Fas antibody, cancer chemotherapeutic agents resulted in telomere cleavage and aggregation, finally their extrusion from the nuclei. Telomere loss was associated with arrest of cells in G2/M phase and preceded DNA fragmentation. Telomere erosion and subsequent large-scale chromatin cleavage were inhibited by overexpression of the anti -apoptotic protein, bcl-2, two peptide caspase inhibitors (BACMK and zVADfmk, indicating that both events are regulated by caspase activation. The results demonstrate that telomere cleavage is an early chromatin alteration detected in various cancer cell lines leading to drug-induced apoptosis, suggest that this event contributes to mitotic catastrophe and induction of cell death. Results also suggest that the decrease of telomeric-repeat binding factor 2 (TRF2 may be the earliest event in the ara-C-induced telomere shortening, induction of endoreduplication and chromosomal fragmentation leading to cell death.

  12. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls.

    Science.gov (United States)

    Bruno, Mark; Beyer, Peter; Al-Babili, Salim

    2015-04-15

    Down-regulation of the potato carotenoid cleavage dioxygenase 4 (StCCD4) transcript level led to tubers with altered morphology and sprouting activity, which also accumulated higher levels of violaxanthin and lutein leading to elevated carotenoid amounts. This phenotype indicates a role of this enzyme in tuber development, which may be exerted by a cleavage product. In this work, we investigated the enzymatic activity of StCCD4, by expressing the corresponding cDNA in carotenoid accumulating Escherichia coli strains and by performing in vitro assays with heterologously expressed enzyme. StCCD4 catalyzed the cleavage of all-trans-β-carotene at the C9'-C10' double bond, leading to β-ionone and all-trans-β-apo-10'-carotenal, both in vivo and in vitro. The enzyme also cleaved β,β-cryptoxanthin, zeaxanthin and lutein either at the C9'-C10' or the C9-C10 double bond in vitro. In contrast, we did not observe any conversion of violaxanthin and only traces of activity with 9-cis-β-carotene, which led to 9-cis-β-apo-10'-carotenal. Our data indicate that all-trans-β-carotene is the likely substrate of StCCD4 in planta, and that this carotene may be precursor of an unknown compound involved in tuber development. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Biaxial loading and shallow-flaw effects on crack-tip constraint and fracture toughness

    International Nuclear Information System (INIS)

    Bass, B.R.; Bryson, J.W.; Theiss, T.J.; Rao, M.C.

    1994-01-01

    A program to develop and evaluate fracture methodologies for the assessment of crack-tip constraint effects on fracture toughness of reactor pressure vessel (RPV) steels has been initiated in the Heavy-Section Steel Technology (HSST) Program. Crack-tip constraint is an issue that significantly impacts fracture mechanics technologies employed in safety assessment procedures for commercially licensed nuclear RPVs. The focus of studies described herein is on the evaluation of two stressed-based methodologies for quantifying crack-tip constraint (i.e., J-Q theory and a micromechanical scaling model based on critical stressed volumes) through applications to experimental and fractographic data. Data were utilized from single-edge notch bend (SENB) specimens and HSST-developed cruciform beam specimens that were tested in HSST shallow-crack and biaxial testing programs. Results from applications indicate that both the J-Q methodology and the micromechanical scaling model can be used successfully to interpret experimental data from the shallow- and deep-crack SENB specimen tests. When applied to the uniaxially and biaxially loaded cruciform specimens, the two methodologies showed some promising features, but also raised several questions concerning the interpretation of constraint conditions in the specimen based on near-tip stress fields. Fractographic data taken from the fracture surfaces of the SENB and cruciform specimens are used to assess the relevance of stress-based fracture characterizations to conditions at cleavage initiation sites. Unresolved issues identified from these analyses require resolution as part of a validation process for biaxial loading applications. This report is designated as HSST Report No. 142

  14. Pressure modulates the self-cleavage step of the hairpin ribozyme

    Science.gov (United States)

    Schuabb, Caroline; Kumar, Narendra; Pataraia, Salome; Marx, Dominik; Winter, Roland

    2017-03-01

    The ability of certain RNAs, denoted as ribozymes, to not only store genetic information but also catalyse chemical reactions gave support to the RNA world hypothesis as a putative step in the development of early life on Earth. This, however, might have evolved under extreme environmental conditions, including the deep sea with pressures in the kbar regime. Here we study pressure-induced effects on the self-cleavage of hairpin ribozyme by following structural changes in real-time. Our results suggest that compression of the ribozyme leads to an accelerated transesterification reaction, being the self-cleavage step, although the overall process is retarded in the high-pressure regime. The results reveal that favourable interactions between the reaction site and neighbouring nucleobases are strengthened under pressure, resulting therefore in an accelerated self-cleavage step upon compression. These results suggest that properly engineered ribozymes may also act as piezophilic biocatalysts in addition to their hitherto known properties.

  15. Computational analysis and modeling of cleavage by the immunoproteasome and the constitutive proteasome

    Directory of Open Access Journals (Sweden)

    Lafuente Esther M

    2010-09-01

    Full Text Available Abstract Background Proteasomes play a central role in the major histocompatibility class I (MHCI antigen processing pathway. They conduct the proteolytic degradation of proteins in the cytosol, generating the C-terminus of CD8 T cell epitopes and MHCI-peptide ligands (P1 residue of cleavage site. There are two types of proteasomes, the constitutive form, expressed in most cell types, and the immunoproteasome, which is constitutively expressed in mature dendritic cells. Protective CD8 T cell epitopes are likely generated by the immunoproteasome and the constitutive proteasome, and here we have modeled and analyzed the cleavage by these two proteases. Results We have modeled the immunoproteasome and proteasome cleavage sites upon two non-overlapping sets of peptides consisting of 553 CD8 T cell epitopes, naturally processed and restricted by human MHCI molecules, and 382 peptides eluted from human MHCI molecules, respectively, using N-grams. Cleavage models were generated considering different epitope and MHCI-eluted fragment lengths and the same number of C-terminal flanking residues. Models were evaluated in 5-fold cross-validation. Judging by the Mathew's Correlation Coefficient (MCC, optimal cleavage models for the proteasome (MCC = 0.43 ± 0.07 and the immunoproteasome (MCC = 0.36 ± 0.06 were obtained from 12-residue peptide fragments. Using an independent dataset consisting of 137 HIV1-specific CD8 T cell epitopes, the immunoproteasome and proteasome cleavage models achieved MCC values of 0.30 and 0.18, respectively, comparatively better than those achieved by related methods. Using ROC analyses, we have also shown that, combined with MHCI-peptide binding predictions, cleavage predictions by the immunoproteasome and proteasome models significantly increase the discovery rate of CD8 T cell epitopes restricted by different MHCI molecules, including A*0201, A*0301, A*2402, B*0702, B*2705. Conclusions We have developed models that are specific

  16. Prediction of non-brittle fracture in the welded joint of C-Mn steel in the brittle-ductile transition domain; Prediction de la non-rupture fragile dans un joint soude en acier C-Mn dans le domaine de la transition fragile/ductile

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thai Ha

    2009-11-15

    This work concerns the nuclear safety, specifically the secondary circuit integrity of pressurized water reactors (PWR). The problem is that of the fracture of a thin tubular structure in ferritic steel with many welded joints. The ferritic steel and weld present a brittle/ductile tenacity transition. Moreover, the welds present geometry propitious to the appearance of fatigue cracks, due to vibrations and expansions. These cracks may cause the complete fracture of the structure. The objectives of this work are to establish a criterion of non-fracture by cleavage of thin welded structures in ferritic steel, applicable to actual structures. Therefore, the present study focuses on the fracture behaviour of welded thin structures in brittle/ductile transition. It aims at developing the threshold stress model initially proposed by Chapuliot, to predict the non-brittle-fracture of this welded structure. The model is identified for the welded joint in C-Mn steel for nuclear construction, specifically in the upper part of the transition. A threshold stress, below which the cleavage cannot take place, is identified using tensile tests at low temperature on axis-symmetrical notched specimens taken in welded joint. This threshold stress is used to define the threshold volume where the maximum principal stress exceeds the threshold stress during the test. The analysis by SEM of specimen fracture surfaces shows that the gross solidification molten zone in the weld is the most likely to cleave. The relation between the brittle fracture probability and the threshold volume in the gross solidification molten zone is established via a sensitivity function, using multi-materials simulations. The model thus identified is tested for the prediction of non-brittle-fracture of SENT specimens taken in the welded joint and tested in tension. The results obtained are encouraging with regards to the transferability of the model to the actual structure. (author)

  17. Sensitive and fast mutation detection by solid phase chemical cleavage

    DEFF Research Database (Denmark)

    Hansen, Lise Lotte; Justesen, Just; Kruse, Torben A

    1996-01-01

    We have developed a solid phase chemical cleavage method (SpCCM) for screening large DNA fragments for mutations. All reactions can be carried out in microtiterwells from the first amplification of the patient (or test) DNA through the search for mutations. The reaction time is significantly...... reduced compared to the conventional chemical cleavage method (CCM), and even by using a uniformly labelled probe, the exact position and nature of the mutation can be revealed. The SpCCM is suitable for automatization using a workstation to carry out the reactions and a fluorescent detection-based DNA...

  18. Effect of Random Natural Fractures on Hydraulic Fracture Propagation Geometry in Fractured Carbonate Rocks

    Science.gov (United States)

    Liu, Zhiyuan; Wang, Shijie; Zhao, Haiyang; Wang, Lei; Li, Wei; Geng, Yudi; Tao, Shan; Zhang, Guangqing; Chen, Mian

    2018-02-01

    Natural fractures have a significant influence on the propagation geometry of hydraulic fractures in fractured reservoirs. True triaxial volumetric fracturing experiments, in which random natural fractures are created by placing cement blocks of different dimensions in a cuboid mold and filling the mold with additional cement to create the final test specimen, were used to study the factors that influence the hydraulic fracture propagation geometry. These factors include the presence of natural fractures around the wellbore, the dimension and volumetric density of random natural fractures and the horizontal differential stress. The results show that volumetric fractures preferentially formed when natural fractures occurred around the wellbore, the natural fractures are medium to long and have a volumetric density of 6-9%, and the stress difference is less than 11 MPa. The volumetric fracture geometries are mainly major multi-branch fractures with fracture networks or major multi-branch fractures (2-4 fractures). The angles between the major fractures and the maximum horizontal in situ stress are 30°-45°, and fracture networks are located at the intersections of major multi-branch fractures. Short natural fractures rarely led to the formation of fracture networks. Thus, the interaction between hydraulic fractures and short natural fractures has little engineering significance. The conclusions are important for field applications and for gaining a deeper understanding of the formation process of volumetric fractures.

  19. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls

    KAUST Repository

    Bruno, Mark; Beyer, Peter D.; Al-Babili, Salim

    2015-01-01

    amounts. This phenotype indicates a role of this enzyme in tuber development, which may be exerted by a cleavage product. In this work, we investigated the enzymatic activity of StCCD4, by expressing the corresponding cDNA in carotenoid accumulating

  20. Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein.

    Science.gov (United States)

    Welch, Brett D; Liu, Yuanyuan; Kors, Christopher A; Leser, George P; Jardetzky, Theodore S; Lamb, Robert A

    2012-10-09

    The paramyxovirus parainfluenza virus 5 (PIV5) enters cells by fusion of the viral envelope with the plasma membrane through the concerted action of the fusion (F) protein and the receptor binding protein hemagglutinin-neuraminidase. The F protein folds initially to form a trimeric metastable prefusion form that is triggered to undergo large-scale irreversible conformational changes to form the trimeric postfusion conformation. It is thought that F refolding couples the energy released with membrane fusion. The F protein is synthesized as a precursor (F0) that must be cleaved by a host protease to form a biologically active molecule, F1,F2. Cleavage of F protein is a prerequisite for fusion and virus infectivity. Cleavage creates a new N terminus on F1 that contains a hydrophobic region, known as the FP, which intercalates target membranes during F protein refolding. The crystal structure of the soluble ectodomain of the uncleaved form of PIV5 F is known; here we report the crystal structure of the cleavage-activated prefusion form of PIV5 F. The structure shows minimal movement of the residues adjacent to the protease cleavage site. Most of the hydrophobic FP residues are buried in the uncleaved F protein, and only F103 at the newly created N terminus becomes more solvent-accessible after cleavage. The conformational freedom of the charged arginine residues that compose the protease recognition site increases on cleavage of F protein.

  1. A set of simple cell processes is sufficient to model spiral cleavage.

    Science.gov (United States)

    Brun-Usan, Miguel; Marín-Riera, Miquel; Grande, Cristina; Truchado-Garcia, Marta; Salazar-Ciudad, Isaac

    2017-01-01

    During cleavage, different cellular processes cause the zygote to become partitioned into a set of cells with a specific spatial arrangement. These processes include the orientation of cell division according to: an animal-vegetal gradient; the main axis (Hertwig's rule) of the cell; and the contact areas between cells or the perpendicularity between consecutive cell divisions (Sachs' rule). Cell adhesion and cortical rotation have also been proposed to be involved in spiral cleavage. We use a computational model of cell and tissue biomechanics to account for the different existing hypotheses about how the specific spatial arrangement of cells in spiral cleavage arises during development. Cell polarization by an animal-vegetal gradient, a bias to perpendicularity between consecutive cell divisions (Sachs' rule), cortical rotation and cell adhesion, when combined, reproduce the spiral cleavage, whereas other combinations of processes cannot. Specifically, cortical rotation is necessary at the 8-cell stage to direct all micromeres in the same direction. By varying the relative strength of these processes, we reproduce the spatial arrangement of cells in the blastulae of seven different invertebrate species. © 2017. Published by The Company of Biologists Ltd.

  2. Role of MRI in hip fractures, including stress fractures, occult fractures, avulsion fractures

    International Nuclear Information System (INIS)

    Nachtrab, O.; Cassar-Pullicino, V.N.; Lalam, R.; Tins, B.; Tyrrell, P.N.M.; Singh, J.

    2012-01-01

    MR imaging plays a vital role in the diagnosis and management of hip fractures in all age groups, in a large spectrum of patient groups spanning the elderly and sporting population. It allows a confident exclusion of fracture, differentiation of bony from soft tissue injury and an early confident detection of fractures. There is a spectrum of MR findings which in part is dictated by the type and cause of the fracture which the radiologist needs to be familiar with. Judicious but prompt utilisation of MR in patients with suspected hip fractures has a positive therapeutic impact with healthcare cost benefits as well as social care benefits.

  3. Paratrooper's ankle fracture: posterior malleolar fracture.

    Science.gov (United States)

    Young, Ki Won; Kim, Jin-su; Cho, Jae Ho; Kim, Hyung Seuk; Cho, Hun Ki; Lee, Kyung Tai

    2015-03-01

    We assessed the frequency and types of ankle fractures that frequently occur during parachute landings of special operation unit personnel and analyzed the causes. Fifty-six members of the special force brigade of the military who had sustained ankle fractures during parachute landings between January 2005 and April 2010 were retrospectively analyzed. The injury sites and fracture sites were identified and the fracture types were categorized by the Lauge-Hansen and Weber classifications. Follow-up surveys were performed with respect to the American Orthopedic Foot and Ankle Society ankle-hindfoot score, patient satisfaction, and return to preinjury activity. The patients were all males with a mean age of 23.6 years. There were 28 right and 28 left ankle fractures. Twenty-two patients had simple fractures and 34 patients had comminuted fractures. The average number of injury and fractures sites per person was 2.07 (116 injuries including a syndesmosis injury and a deltoid injury) and 1.75 (98 fracture sites), respectively. Twenty-three cases (41.07%) were accompanied by posterior malleolar fractures. Fifty-five patients underwent surgery; of these, 30 had plate internal fixations. Weber type A, B, and C fractures were found in 4, 38, and 14 cases, respectively. Based on the Lauge-Hansen classification, supination-external rotation injuries were found in 20 cases, supination-adduction injuries in 22 cases, pronation-external rotation injuries in 11 cases, tibiofibular fractures in 2 cases, and simple medial malleolar fractures in 2 cases. The mean follow-up period was 23.8 months, and the average follow-up American Orthopedic Foot and Ankle Society ankle-hindfoot score was 85.42. Forty-five patients (80.36%) reported excellent or good satisfaction with the outcome. Posterior malleolar fractures occurred in 41.07% of ankle fractures sustained in parachute landings. Because most of the ankle fractures in parachute injuries were compound fractures, most cases had to

  4. The effect of niobium morphology on the fracture behavior of MoSi2/Nb composites

    International Nuclear Information System (INIS)

    Alman, D.E.; Stoloff

    1995-01-01

    The morphology of the niobium reinforcement added to MoSi 2 affected the fracture behavior (and hence toughness) of MoSi 2 /20 vol pct Nb composites. The addition of discontinuous random niobium in the form of particles or short fibers deflected cracks that propagated through the MoSi 2 matrix. However, this did not result in any improvements in toughness, as matrix cracks preferentially propagated through the Nb/MoSi 2 interphase region. The addition of aligned niobium fibers, oriented perpendicular to the direction of matrix crack propagation, directly participated in the fracture of the composite. Depending on the diameter of Nb embedded in the MoSi 2 matrix, these fibers either fractured in a brittle manner or ruptured in a ductile manner. Small (400-μm) diameter continuously aligned Nb fibers fractured by brittle cleavage during testing. Therefore, the addition of these fibers was not as effective in improving the toughness of MoSi 2 as the addition of larger (800-μm) diameter continuously aligned Nb fibers, which ruptured in a ductile manner. It was observed that the larger diameter fibers had separated from the matrix through the propagation of cracks in the reaction zone adjacent to the fibers and that these cracks formed prior to yielding of these fibers. In contrast, the smaller diameter fibers remained well bonded to the matrix and, thus, were constrained by the MoSi 2 matrix from yielding. This resulted in brittle fracture behavior of the Nb fiber. There appeared to be an effect of aspect ratio on the fracture of the ductile embedded fibers

  5. Fracture toughness evaluation of a low upper-shelf weld metal from the Midland Reactor using the master curve

    International Nuclear Information System (INIS)

    McCabe, D.E.; Sokolov, M.A.; Nanstad, R.K.

    1997-01-01

    The primary objective of the Heavy-Section Steel Irradiation (HSSI) Program Tenth Irradiation Series was to develop a fracture mechanics evaluation of weld metal WF-70, which was taken from the beltline and nozzle course girth weld joints of the Midland Reactor vessel. This material became available when Consumers Power Company of Midland, Michigan, decided to abort plans to operate their nuclear power plant. WF-70 is classified as a low upper-shelf steel primarily due to the Linde 80 flux that was used in the submerged-arc welding process. The master curve concept is introduced to model the transition range fracture toughness when the toughness is quantified in terms of K Jc values. K Jc is an elastic-plastic stress intensity factor calculated by conversion from J c ; i.e., J-integral at onset of cleavage instability

  6. Boron-doped diamond electrodes for the electrochemical oxidation and cleavage of peptides.

    Science.gov (United States)

    Roeser, Julien; Alting, Niels F A; Permentier, Hjalmar P; Bruins, Andries P; Bischoff, Rainer

    2013-07-16

    Electrochemical oxidation of peptides and proteins is traditionally performed on carbon-based electrodes. Adsorption caused by the affinity of hydrophobic and aromatic amino acids toward these surfaces leads to electrode fouling. We compared the performance of boron-doped diamond (BDD) and glassy carbon (GC) electrodes for the electrochemical oxidation and cleavage of peptides. An optimal working potential of 2000 mV was chosen to ensure oxidation of peptides on BDD by electron transfer processes only. Oxidation by electrogenerated OH radicals took place above 2500 mV on BDD, which is undesirable if cleavage of a peptide is to be achieved. BDD showed improved cleavage yield and reduced adsorption for a set of small peptides, some of which had been previously shown to undergo electrochemical cleavage C-terminal to tyrosine (Tyr) and tryptophan (Trp) on porous carbon electrodes. Repeated oxidation with BDD electrodes resulted in progressively lower conversion yields due to a change in surface termination. Cathodic pretreatment of BDD at a negative potential in an acidic environment successfully regenerated the electrode surface and allowed for repeatable reactions over extended periods of time. BDD electrodes are a promising alternative to GC electrodes in terms of reduced adsorption and fouling and the possibility to regenerate them for consistent high-yield electrochemical cleavage of peptides. The fact that OH-radicals can be produced by anodic oxidation of water at elevated positive potentials is an additional advantage as they allow another set of oxidative reactions in analogy to the Fenton reaction, thus widening the scope of electrochemistry in protein and peptide chemistry and analytics.

  7. Numerical simulation of a Charpy test and correlation of fracture toughness with fracture energy. Vessel steel and duplex stainless steel of the primary loop

    International Nuclear Information System (INIS)

    Breban, P; Eripret, C.

    1995-01-01

    The analysis methods used to evaluate the harmlessness of defects in the components of the primary coolant circuit of pressurized water reactor are based on the knowledge of the failure properties of concerned materials. The toughness is used to be measured through tests performed on normalized samples. But in some cases, especially for the vessel steel submitted to irradiation effects or for cast components in duplex stainless steel sensitive to thermal ageing, these measurements are not available on the material aged in operation. Therefore, fracture resistance has been evaluated through Charpy tests. Toughness is thus obtained on the basis of an empirical correlation. To improve these predictions, a modeling of the Charpy test in the framework of the local approach to fracture has been performed, for both materials. For the vessel steel, a complete evaluation of toughness has been achieved on the basis of a bidimensional viscoplastic modeling under large strain assumptions and a post-treatment with a Weibull model (cleavage fracture). The main hypothesis (partition between plain stress and plain strain areas in the bidimensional modeling) was corrected after a three dimensional calculations with the finite element program Code-Aster. The fracture analysis put into evidence that damage considerations like cavity nucleation and growth have to be introduced in the model in order to improve the description of physical phenomena. Two ways of progress have been suggested and are in course of being investigated, one in the framework of local approach to failure, the other with the help of micro-macro relationship. With regard to the duplex steel, the description of a Charpy (U) test allowed to clearly discriminate between crack initiation and propagation phases. A modeling through an equivalent homogenous material with a damage law based on a modified Gurson potential enables to describe quantitatively both phases of fracture. It clearly appears that a reliable

  8. Cleavage mechanoluminescence in elemental and III-V semiconductors

    International Nuclear Information System (INIS)

    Chandra, B.P.; Patel, R.P.; Gour, Anubha S.; Chandra, V.K.; Gupta, R.K.

    2003-01-01

    The present paper reports the theory of mechanoluminescence (ML) produced during cleavage of elemental and III-V semiconductors. It seems that the formation of crack-induced localized states is responsible for the ML excitation produced during the cleavage of elemental and III-V semiconductors. According to this mechanism, as the atoms are drawn away from each other in an advancing crack tip, the decreasing wave function overlap across the crack may result in localized states which is associated with increasing electron energy. If the energy of these localized states approach that of the conduction band, transition to the conduction band via tunnelling would be possible, creating minority carriers, and consequently the electron-hole recombination may give rise to mechanoluminescence. When an elemental or III-V semiconductor is cleaved, initially the ML intensity increases with time, attains a peak value I m at the time t m corresponding to completion of the cleavage of the semiconductor, and then it decreases following power law decay. Expressions are derived for the ML intensity I m corresponding to the peak of the ML intensity versus time curve and for the total ML intensity I T . It is shown that both I m and I T should increase directly with the area of the newly created surfaces of the crystals. From the measurements of the ML intensity, the velocity of crack propagation in material can be determined by using the relation v=H/t m

  9. Implementation of a combinatorial cleavage and deprotection scheme

    DEFF Research Database (Denmark)

    Nielsen, John; Rasmussen, Palle H.

    1996-01-01

    Phthalhydrazide libraries are synthesized in solution from substituted hydrazines and phthalimides in several different library formats including single compounds, indexed sub-libraries and a full library. When carried out during solid-phase synthesis, this combinatorial cleavage and deprotection...

  10. Investigating liquid-metal embrittlement of T91 steel by fracture toughness tests

    Energy Technology Data Exchange (ETDEWEB)

    Ersoy, Feyzan, E-mail: fersoy@sckcen.be [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400, Mol (Belgium); Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052, Ghent (Belgium); Gavrilov, Serguei [SCK-CEN (Belgian Nuclear Research Centre), Boeretang 200, B-2400, Mol (Belgium); Verbeken, Kim [Department of Materials Science and Engineering, Ghent University (UGent), Technologiepark 903, B-9052, Ghent (Belgium)

    2016-04-15

    Heavy liquid metals such as lead bismuth eutectic (LBE) are chosen as the coolant to innovative Generation IV (Gen IV) reactors where ferritic/martensitic T91 steel is a candidate material for high temperature applications. It is known that LBE has a degrading effect on the mechanical properties of this steel. This degrading effect, which is known as liquid metal embrittlement (LME), has been screened by several tests such as tensile and small punch tests, and was most severe in the temperature range from 300 °C to 425 °C. To meet the design needs, mechanical properties such as fracture toughness should be addressed by corresponding tests. For this reason liquid-metal embrittlement of T91 steel was investigated by fracture toughness tests at 350 °C. Tests were conducted in Ar-5%H{sub 2} and LBE under the same experimental conditions Tests in Ar-5%H{sub 2} were used as reference. The basic procedure in the ASTM E 1820 standard was followed to perform tests and the normalization data reduction (NDR) method was used for the analysis. Comparison of the tests demonstrated that the elastic–plastic fracture toughness (J{sub 1C}) of the material was reduced by a factor in LBE and the fracture mode changed from ductile to quasi-cleavage. It was also shown that the pre-cracking environment played an important role in observing LME of the material since it impacts the contact conditions between LBE and steel at the crack tip. It was demonstrated that when specimens were pre-cracked in air and tested in LBE, wetting of the crack surface by LBE could not be achieved. When specimens were pre-cracked in LBE though, they showed a significant reduction in fracture toughness.

  11. Fracture Mechanics

    International Nuclear Information System (INIS)

    Jang, Dong Il; Jeong, Gyeong Seop; Han, Min Gu

    1992-08-01

    This book introduces basic theory and analytical solution of fracture mechanics, linear fracture mechanics, non-linear fracture mechanics, dynamic fracture mechanics, environmental fracture and fatigue fracture, application on design fracture mechanics, application on analysis of structural safety, engineering approach method on fracture mechanics, stochastic fracture mechanics, numerical analysis code and fracture toughness test and fracture toughness data. It gives descriptions of fracture mechanics to theory and analysis from application of engineering.

  12. The scaling of stress distribution under small scale yielding by T-scaling method and application to prediction of the temperature dependence on fracture toughness

    International Nuclear Information System (INIS)

    Ishihara, Kenichi; Hamada, Takeshi; Meshii, Toshiyuki

    2017-01-01

    In this paper, a new method for scaling the crack tip stress distribution under small scale yielding condition was proposed and named as T-scaling method. This method enables to identify the different stress distributions for materials with different tensile properties but identical load in terms of K or J. Then by assuming that the temperature dependence of a material is represented as the stress-strain relationship temperature dependence, a method to predict the fracture load at an arbitrary temperature from the already known fracture load at a reference temperature was proposed. This method combined the T-scaling method and the knowledge “fracture stress for slip induced cleavage fracture is temperature independent.” Once the fracture load is predicted, fracture toughness J c at the temperature under consideration can be evaluated by running elastic-plastic finite element analysis. Finally, the above-mentioned framework to predict the J c temperature dependency of a material in the ductile-to-brittle temperature distribution was validated for 0.55% carbon steel JIS S55C. The proposed framework seems to have a possibility to solve the problem the master curve is facing in the relatively higher temperature region, by requiring only tensile tests. (author)

  13. Mutation in Spike Protein Cleavage Site and Pathogenesis of Feline Coronavirus

    Science.gov (United States)

    Licitra, Beth N.; Millet, Jean K.; Regan, Andrew D.; Hamilton, Brian S.; Rinaldi, Vera D.; Duhamel, Gerald E.

    2013-01-01

    Feline coronaviruses (FCoV) exist as 2 biotypes: feline enteric coronavirus (FECV) and feline infectious peritonitis virus (FIPV). FECV causes subclinical infections; FIPV causes feline infectious peritonitis (FIP), a systemic and fatal disease. It is thought that mutations in FECV enable infection of macrophages, causing FIP. However, the molecular basis for this biotype switch is unknown. We examined a furin cleavage site in the region between receptor-binding (S1) and fusion (S2) domains of the spike of serotype 1 FCoV. FECV sequences were compared with FIPV sequences. All FECVs had a conserved furin cleavage motif. For FIPV, there was a correlation with the disease and >1 substitution in the S1/S2 motif. Fluorogenic peptide assays confirmed that the substitutions modulate furin cleavage. We document a functionally relevant S1/S2 mutation that arises when FIP develops in a cat. These insights into FIP pathogenesis may be useful in development of diagnostic, prevention, and treatment measures against coronaviruses. PMID:23763835

  14. Trichomonas vaginalis Metalloproteinase Induces mTOR Cleavage of SiHa Cells

    Science.gov (United States)

    Quan, Juan-Hua; Choi, In-Wook; Yang, Jung-Bo; Zhou, Wei; Cha, Guang-Ho; Zhou, Yu; Ryu, Jae-Sook

    2014-01-01

    Trichomonas vaginalis secretes a number of proteases which are suspected to be the cause of pathogenesis; however, little is understood how they manipulate host cells. The mammalian target of rapamycin (mTOR) regulates cell growth, cell proliferation, cell motility, cell survival, protein synthesis, and transcription. We detected various types of metalloproteinases including GP63 protein from T. vaginalis trophozoites, and T. vaginalis GP63 metalloproteinase was confirmed by sequencing and western blot. When SiHa cells were stimulated with live T. vaginalis, T. vaginalis excretory-secretory products (ESP) or T. vaginalis lysate, live T. vaginalis and T. vaginalis ESP induced the mTOR cleavage in both time- and parasite load-dependent manner, but T. vaginalis lysate did not. Pretreatment of T. vaginalis with a metalloproteinase inhibitor, 1,10-phenanthroline, completely disappeared the mTOR cleavage in SiHa cells. Collectively, T. vaginalis metallopeptidase induces host cell mTOR cleavage, which may be related to survival of the parasite. PMID:25548410

  15. Fracture toughness prediction for RPV Steels with various degree of embrittlement

    International Nuclear Information System (INIS)

    Margolin, B.; Gulenko, A.; Shvetsova, V.

    2003-01-01

    In the present report, predictions of the temperature dependence of cleavage fracture toughness are performed on the basis of the Master Curve approach and a probabilistic model named now the Prometey model. These predictions are performed for reactor pressure vessel steels in different states, the initial (as-produced), irradiated state with moderate degree of embrittlement and in the highly embrittled state. Calculations of the K IC (T) curves may be performed with both approaches on the basis of fracture toughness test results from pre-cracked Charpy specimens at some (one) temperature. The calculated curves are compared with test results. It is shown that the K IC (T) curves for the initial state calculated with the Master Curve approach and the probabilistic model show good agreement. At the same time, for highly embrittled RPV steel, the K IC (T) curve predicted with the Master Curve approach is not an adequate fit to the experimental data, whereas the agreement of the test results and the K IC (T) curve calculated with the probabilistic model is good. An analysis is performed for a possible variation of the K IC (T) curve shape and the scatter in K IC results. (author)

  16. Condensed tannins: A novel rearrangement of procyanidins and prodelphinidins in thiolytic cleavage

    Science.gov (United States)

    G. Wayne McGraw; Jan P. Steynberg; Richard W. Hemingway

    1993-01-01

    Conditions commonly used for the thiolytic cleavage of interflavanoid bonds of condensed tannins also result in cleavage of the C4 to C10 bond of flavan units. Subsequenet lectrophilic attack of the C4 carbocation on the C2' or C6' of the B-ring, and loss of phloroglucinol (the A-ring), result in the formation of a mixture of 1,3-dithiobenzyl-2,4,s,6-...

  17. Degradation of impact fracture during accelerated aging of weld metal on microalloyed steel; Degradacion de la tenacidad al impacto durante el envejecimiento acelerado de soldadura en acero microaleado

    Energy Technology Data Exchange (ETDEWEB)

    Vargas-Arista, B.; Hallen, J. M.; Albiter, A.; Angeles-Chavez, C.

    2008-07-01

    The effect of accelerated aging on the toughness and fracture of the longitudinal weld metal on an API5L-X52 line pipe steel was evaluated by Charpy V-notch impact test, fracture analysis and transmission electron microscopy. Aging was performed at 250 degree centigrade for 100 to 1000 h. The impact results indicated a significant reduction in the fracture energy and impact toughness as a function of aging time, which were achieved by the scanning electron microscope fractography that showed a decrease in the vol fraction of microvoids by Charpy ductile failure with the aging time, which favored the brittle fracture by transgranular cleavage. The minimum vol fraction of microvoids was reached at 500 h due to the peak aged. The microstructural analysis indicated the precipitation of transgranular iron nano carbides in the aged specimens, which was related to the deterioration of toughness and change in the ductile to brittle behavior. (Author) 15 refs.

  18. Yeast ribonuclease III uses a network of multiple hydrogen bonds for RNA binding and cleavage.

    Science.gov (United States)

    Lavoie, Mathieu; Abou Elela, Sherif

    2008-08-19

    Members of the bacterial RNase III family recognize a variety of short structured RNAs with few common features. It is not clear how this group of enzymes supports high cleavage fidelity while maintaining a broad base of substrates. Here we show that the yeast orthologue of RNase III (Rnt1p) uses a network of 2'-OH-dependent interactions to recognize substrates with different structures. We designed a series of bipartite substrates permitting the distinction between binding and cleavage defects. Each substrate was engineered to carry a single or multiple 2'- O-methyl or 2'-fluoro ribonucleotide substitutions to prevent the formation of hydrogen bonds with a specific nucleotide or group of nucleotides. Interestingly, introduction of 2'- O-methyl ribonucleotides near the cleavage site increased the rate of catalysis, indicating that 2'-OH are not required for cleavage. Substitution of nucleotides in known Rnt1p binding site with 2'- O-methyl ribonucleotides inhibited cleavage while single 2'-fluoro ribonucleotide substitutions did not. This indicates that while no single 2'-OH is essential for Rnt1p cleavage, small changes in the substrate structure are not tolerated. Strikingly, several nucleotide substitutions greatly increased the substrate dissociation constant with little or no effect on the Michaelis-Menten constant or rate of catalysis. Together, the results indicate that Rnt1p uses a network of nucleotide interactions to identify its substrate and support two distinct modes of binding. One mode is primarily mediated by the dsRNA binding domain and leads to the formation of stable RNA/protein complex, while the other requires the presence of the nuclease and N-terminal domains and leads to RNA cleavage.

  19. The inclusion of weld residual stress in fracture margin assessments of embrittled nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Dickson, T.L.; Bass, B.R.; McAfee, W.J.

    1998-01-01

    Analyses were performed to determine the impact of weld residual stresses in a reactor pressure vessel (RPV) on (1) the generation of pressure temperature (P-T) curves required for maintaining specified fracture prevention margins during nuclear plant startup and shutdown, and (2) the conditional probability of vessel failure due to pressurized thermal shock (PTS) loading. The through wall residual stress distribution in an axially oriented weld was derived using measurements taken from a shell segment of a canceled RPV and finite element thermal stress analyses. The P-T curve derived from the best estimate load analysis and a t / 8 deep flaw, based on K Ic , was less limiting than the one derived from the current methodology prescribed in the ASME Boiler and Pressure Vessel Code. The inclusion of the weld residual stresses increased the conditional probability of cleavage fracture due to PTS loading by a factor ranging from 2 to 4

  20. Polycystin-1 C-terminal Cleavage Is Modulated by Polycystin-2 Expression*

    Science.gov (United States)

    Bertuccio, Claudia A.; Chapin, Hannah C.; Cai, Yiqiang; Mistry, Kavita; Chauvet, Veronique; Somlo, Stefan; Caplan, Michael J.

    2009-01-01

    Autosomal dominant polycystic kidney disease is caused by mutations in the genes encoding polycystin-1 (PC-1) and polycystin-2 (PC-2). PC-1 cleavage releases its cytoplasmic C-terminal tail (CTT), which enters the nucleus. To determine whether PC-1 CTT cleavage is influenced by PC-2, a quantitative cleavage assay was utilized, in which the DNA binding and activation domains of Gal4 and VP16, respectively, were appended to PC-1 downstream of its CTT domain (PKDgalvp). Cells cotransfected with the resultant PKDgalvp fusion protein and PC-2 showed an increase in luciferase activity and in CTT expression, indicating that the C-terminal tail of PC-1 is cleaved and enters the nucleus. To assess whether CTT cleavage depends upon Ca2+ signaling, cells transfected with PKDgalvp alone or together with PC-2 were incubated with several agents that alter intracellular Ca2+ concentrations. PC-2 enhancement of luciferase activity was not altered by any of these treatments. Using a series of PC-2 C-terminal truncated mutations, we identified a portion of the PC-2 protein that is required to stimulate PC-1 CTT accumulation. These data demonstrate that release of the CTT from PC-1 is influenced and stabilized by PC-2. This effect is independent of Ca2+ but is regulated by sequences contained within the PC-2 C-terminal tail, suggesting a mechanism through which PC-1 and PC-2 may modulate a novel signaling pathway. PMID:19491093

  1. Restriction enzyme cleavage of ultraviolet-damaged Simian virus 40 and pBR322 DNA

    International Nuclear Information System (INIS)

    Cleaver, J.E.

    1983-01-01

    Cleavage of specific DNA sequences by the restriction enzymes EcoRI, HindIII and TaqI was prevented when the DNA was irradiated with ultraviolet light. Most of the effects were attributed to cyclobutane pyrimidine dimers in the recognition sequences; the effectiveness of irradiation was directly proportional to the number of potential dimer sites in the DNA. Combining EcoRI with dimer-specific endonuclease digestion revealed that pyrimidine dimers blocked cleavage within one base-pair on the strand opposite to the dimer but did not block cleavage three to four base-pairs away on the same strand. These are the probable limits for the range of influence of pyrimidine dimers along the DNA, at least for this enzyme. The effect of irradiation on cleavage by TaqI seemed far greater than expected for the cyclobutane dimer yield, possibly because of effects from photoproducts flanking the tetranucleotide recognition sequence and the effect of non-cyclobutane (6-4)pyrimidine photoproducts involving adjacent T and C bases. (author)

  2. Control of extracellular cleavage of ProBDNF by high frequency neuronal activity

    OpenAIRE

    Nagappan, Guhan; Zaitsev, Eugene; Senatorov, Vladimir V.; Yang, Jianmin; Hempstead, Barbara L.; Lu, Bai

    2009-01-01

    Pro- and mature neurotrophins often elicit opposing biological effects. For example, mature brain-derived neurotrophic factor (mBDNF) is critical for long-term potentiation induced by high-frequency stimulation, whereas proBDNF facilitate long-term depression induced by low-frequency stimulation. Because mBDNF is derived from proBDNF by endoproteolytic cleavage, mechanisms regulating the cleavage of proBDNF may control the direction of BDNF regulation. Using methods that selectively detect pr...

  3. Stimulation of NADH-dependent microsomal DNA strand cleavage by rifamycin SV.

    Science.gov (United States)

    Kukiełka, E; Cederbaum, A I

    1995-04-15

    Rifamycin SV is an antibiotic anti-bacterial agent used in the treatment of tuberculosis. This drug can autoxidize, especially in the presence of metals, and generate reactive oxygen species. A previous study indicated that rifamycin SV can increase NADH-dependent microsomal production of reactive oxygen species. The current study evaluated the ability of rifamycin SV to interact with iron and increase microsomal production of hydroxyl radical, as detected by conversion of supercoiled plasmid DNA into the relaxed open circular state. The plasmid used was pBluescript II KS(-), and the forms of DNA were separated by agarose-gel electrophoresis. Incubation of rat liver microsomes with plasmid plus NADH plus ferric-ATP caused DNA strand cleavage. The addition of rifamycin SV produced a time- and concentration-dependent increase in DNA-strand cleavage. No stimulation by rifamycin SV occurred in the absence of microsomes, NADH or ferric-ATP. Stimulation occurred with other ferric complexes besides ferric-ATP, e.g. ferric-histidine, ferric-citrate, ferric-EDTA, and ferric-(NH4)2SO4. Rifamycin SV did not significantly increase the high rates of DNA strand cleavage found with NADPH as the microsomal reductant. The stimulation of NADH-dependent microsomal DNA strand cleavage was completely blocked by catalase, superoxide dismutase, GSH and a variety of hydroxyl-radical-scavenging agents, but not by anti-oxidants that prevent microsomal lipid peroxidation. Redox cycling agents, such as menadione and paraquat, in contrast with rifamycin SV, stimulated the NADPH-dependent reaction; menadione and rifamycin SV were superior to paraquat in stimulating the NADH-dependent reaction. These results indicate that rifamycin SV can, in the presence of an iron catalyst, increase microsomal production of reactive oxygen species which can cause DNA-strand cleavage. In contrast with other redox cycling agents, the stimulation by rifamycin SV is more pronounced with NADH than with NADPH as the

  4. Proximity-activated nanoparticles: in vitro performance of specific structural modification by enzymatic cleavage

    Science.gov (United States)

    Adam Smith, R; Sewell, Sarah L; Giorgio, Todd D

    2008-01-01

    The development and in vitro performance of a modular nanoscale system capable of specific structural modification by enzymatic activity is described in this work. Due to its small physical size and adaptable characteristics, this system has the potential for utilization in targeted delivery systems and biosensing. Nanoparticle probes were synthesized containing two distinct fluorescent species including a quantum dot base particle and fluorescently labeled cleavable peptide substrate. Activity of these probes was monitored by gel electrophoresis with quantitative cleavage measurements made by fluorometric analysis. The model proximity-activated nanoparticles studied here exhibit significant susceptibility to cleavage by matrix metalloprotease-7 (MMP-7) at physiologically relevant concentrations, with nearly complete cleavage of available substrate molecules after 24 hours. This response is specific to MMP-7 enzyme activity, as cleavage is completely inhibited with the addition of EDTA. Utilization of enzyme-specific modification is a sensitive approach with broad applications for targeted therapeutics and biosensing. The versatility of this nanoparticle system is highlighted in its modular design, as it has the capability to integrate characteristics for detection, biosensing, targeting, and payload delivery into a single, multifunctional nanoparticle structure. PMID:18488420

  5. Model of T-Type Fracture in Coal Fracturing and Analysis of Influence Factors of Fracture Morphology

    Directory of Open Access Journals (Sweden)

    Yuwei Li

    2018-05-01

    Full Text Available Special T-type fractures can be formed when coal is hydraulically fractured and there is currently no relevant theoretical model to calculate and describe them. This paper first establishes the height calculation model of vertical fractures in multi-layered formations and deduces the stress intensity factor (SIF at the upper and lower sides of the fracture in the process of vertical fracture extension. Combined with the fracture tip stress analysis method of fracture mechanics theory, the horizontal bedding is taken into account for tensile and shear failure, and the critical mechanical conditions for the formation of horizontal fracture in coal are obtained. Finally, the model of T-type fracture in coal fracturing is established, and it is verified by fracturing simulation experiments. The model calculation result shows that the increase of vertical fracture height facilitates the increase of horizontal fracture length. The fracture toughness of coal has a significant influence on the length of horizontal fracture and there is a threshold. When the fracture toughness is less than the threshold, the length of horizontal fracture remains unchanged, otherwise, the length of horizontal fracture increases rapidly with the increase of fracture toughness. When the shear strength of the interface between the coalbed and the interlayer increases, the length of the horizontal fracture of the T-type fracture rapidly decreases.

  6. PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.

    Directory of Open Access Journals (Sweden)

    Jiangning Song

    Full Text Available The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-specific proteolysis is one of the most important post-translational modifications. The key to understanding the physiological role of a protease is to identify its natural substrate(s. Knowledge of the substrate specificity of a protease can dramatically improve our ability to predict its target protein substrates, but this information must be utilized in an effective manner in order to efficiently identify protein substrates by in silico approaches. To address this problem, we present PROSPER, an integrated feature-based server for in silico identification of protease substrates and their cleavage sites for twenty-four different proteases. PROSPER utilizes established specificity information for these proteases (derived from the MEROPS database with a machine learning approach to predict protease cleavage sites by using different, but complementary sequence and structure characteristics. Features used by PROSPER include local amino acid sequence profile, predicted secondary structure, solvent accessibility and predicted native disorder. Thus, for proteases with known amino acid specificity, PROSPER provides a convenient, pre-prepared tool for use in identifying protein substrates for the enzymes. Systematic prediction analysis for the twenty-four proteases thus far included in the database revealed that the features we have included in the tool strongly improve performance in terms of cleavage site prediction, as evidenced by their contribution to performance improvement in terms of identifying known cleavage sites in substrates for these enzymes. In comparison with two state-of-the-art prediction tools, PoPS and SitePrediction, PROSPER achieves greater accuracy and coverage. To our knowledge, PROSPER is the first comprehensive server capable of predicting cleavage sites of multiple proteases within a single substrate

  7. Fe-Catalyzed Oxidative Cleavage of Unsaturated Fatty Acids

    NARCIS (Netherlands)

    Spannring, P.

    2013-01-01

    The oxidative cleavage of unsaturated fatty acids into aldehydes or carboxylic acids gives access to valuable products. The products can be used as chemical building blocks, as emulsifiers or in the paint or polymer industry. Ozonolysis is applied industrially to cleave the fatty acid oleic acid

  8. Signal peptide discrimination and cleavage site identification using SVM and NN.

    Science.gov (United States)

    Kazemian, H B; Yusuf, S A; White, K

    2014-02-01

    About 15% of all proteins in a genome contain a signal peptide (SP) sequence, at the N-terminus, that targets the protein to intracellular secretory pathways. Once the protein is targeted correctly in the cell, the SP is cleaved, releasing the mature protein. Accurate prediction of the presence of these short amino-acid SP chains is crucial for modelling the topology of membrane proteins, since SP sequences can be confused with transmembrane domains due to similar composition of hydrophobic amino acids. This paper presents a cascaded Support Vector Machine (SVM)-Neural Network (NN) classification methodology for SP discrimination and cleavage site identification. The proposed method utilises a dual phase classification approach using SVM as a primary classifier to discriminate SP sequences from Non-SP. The methodology further employs NNs to predict the most suitable cleavage site candidates. In phase one, a SVM classification utilises hydrophobic propensities as a primary feature vector extraction using symmetric sliding window amino-acid sequence analysis for discrimination of SP and Non-SP. In phase two, a NN classification uses asymmetric sliding window sequence analysis for prediction of cleavage site identification. The proposed SVM-NN method was tested using Uni-Prot non-redundant datasets of eukaryotic and prokaryotic proteins with SP and Non-SP N-termini. Computer simulation results demonstrate an overall accuracy of 0.90 for SP and Non-SP discrimination based on Matthews Correlation Coefficient (MCC) tests using SVM. For SP cleavage site prediction, the overall accuracy is 91.5% based on cross-validation tests using the novel SVM-NN model. © 2013 Published by Elsevier Ltd.

  9. Sequence specificity of DNA cleavage by Micrococcus luteus γ endonuclease

    International Nuclear Information System (INIS)

    Hentosh, P.; Henner, W.D.; Reynolds, R.J.

    1985-01-01

    DNA fragments of defined sequence have been used to determine the sites of cleavage by γ-endonuclease activity in extracts prepared from Micrococcus luteus. End-labeled DNA restriction fragments of pBR322 DNA that had been irradiated under nitrogen in the presence of potassium iodide or t-butanol were treated with M. luteus γ endonuclease and analyzed on irradiated DNA preferentially at the positions of cytosines and thymines. DNA cleavage occurred immediately to the 3' side of pyrimidines in irradiated DNA and resulted in fragments that terminate in a 5'-phosphoryl group. These studies indicate that both altered cytosines and thymines may be important DNA lesions requiring repair after exposure to γ radiation

  10. Dynamic propagation and cleavage crack arrest in bainitic steel

    International Nuclear Information System (INIS)

    Hajjaj, M.

    2006-06-01

    In complement of the studies of harmfulness of defects, generally realized in term of initiation, the concept of crack arrest could be used as complementary analyses to the studies of safety. The stop occurs when the stress intensity factor becomes lower than crack arrest toughness (KIa) calculated in elasto-statics (KI ≤ KIa). The aim of this thesis is to understand and predict the stop of a crack propagating at high speed in a 18MND5 steel used in the pressure water reactor (PWR). The test chosen to study crack arrest is the disc thermal shock test. The observations under the scanning electron microscope of the fracture surface showed that the crack arrest always occurs in cleavage mode and that the critical microstructural entity with respect to the propagation and crack arrest corresponds to at least the size of the prior austenitic grain. The numerical analyses in elasto-statics confirm the conservatism of the codified curve of the RCC-M with respect to the values of KIa. The dynamic numerical analyses show that the deceleration of the crack measured at the end of the propagation is related to the global dynamic of the structure (vibrations). The transferability to components of crack arrest toughness obtained from tests analysed in static is thus not assured. The disc thermal shock tests were also modelled by considering a criterion of propagation and arrest of the type 'RKR' characterized by a critical stress sc which depends on the temperature. The results obtained account well for the crack jump measured in experiments as well as the shape of the crack arrest front. (author)

  11. DNA Cleavage Activity of Diazonium Salts: Chemical Nucleases

    OpenAIRE

    KIZIL, Murat

    2014-01-01

    4-Fenoldiazonium tetrafluoroborate and 4-benzoicaciddiazonium tetrafluoroborate was prepared and was shown to be an effective DNA cleavage agent in the presence of the 1-electron donor copper(II) chloride. Its mechanism involves the generation of the aryl radical cleaving DNA by hydrogen atom abstraction from deoxyribose sugar.

  12. Autoactivation of mouse trypsinogens is regulated by chymotrypsin C via cleavage of the autolysis loop.

    Science.gov (United States)

    Németh, Balázs Csaba; Wartmann, Thomas; Halangk, Walter; Sahin-Tóth, Miklós

    2013-08-16

    Chymotrypsin C (CTRC) is a proteolytic regulator of trypsinogen autoactivation in humans. CTRC cleavage of the trypsinogen activation peptide stimulates autoactivation, whereas cleavage of the calcium binding loop promotes trypsinogen degradation. Trypsinogen mutations that alter these regulatory cleavages lead to increased intrapancreatic trypsinogen activation and cause hereditary pancreatitis. The aim of this study was to characterize the regulation of autoactivation of mouse trypsinogens by mouse Ctrc. We found that the mouse pancreas expresses four trypsinogen isoforms to high levels, T7, T8, T9, and T20. Only the T7 activation peptide was cleaved by mouse Ctrc, causing negligible stimulation of autoactivation. Surprisingly, mouse Ctrc poorly cleaved the calcium binding loop in all mouse trypsinogens. In contrast, mouse Ctrc readily cleaved the Phe-150-Gly-151 peptide bond in the autolysis loop of T8 and T9 and inhibited autoactivation. Mouse chymotrypsin B also cleaved the same peptide bond but was 7-fold slower. T7 was less sensitive to chymotryptic regulation, which involved slow cleavage of the Leu-149-Ser-150 peptide bond in the autolysis loop. Modeling indicated steric proximity of the autolysis loop and the activation peptide in trypsinogen, suggesting the cleaved autolysis loop may directly interfere with activation. We conclude that autoactivation of mouse trypsinogens is under the control of mouse Ctrc with some notable differences from the human situation. Thus, cleavage of the trypsinogen activation peptide or the calcium binding loop by Ctrc is unimportant. Instead, inhibition of autoactivation via cleavage of the autolysis loop is the dominant mechanism that can mitigate intrapancreatic trypsinogen activation.

  13. Analysis by the reductive-cleavage method of linkage positions in a polysaccharide containing 4-linked D-glucopyranosyluronic residues.

    Science.gov (United States)

    Vodonik, S A; Gray, G R

    1988-04-01

    The fate of 4-linked D-glucopyranosyluronic residues under reductive-cleavage conditions was investigated by using the Klebsiella aerogenes type 54 strain A3 capsular polysaccharide. Treatment of the fully methylated polysaccharide with triethylsilane and trimethylsilyl trifluoromethanesulfonate in dichloromethane, followed by in situ acetylation, yielded 1,5-anhydro-2,3,4,6-tetra-O-methyl-D-glucitol, 3,4-di-O-acetyl-1,5-anhydro-2,6-di-O-methyl-D-glucitol, and 3-O-acetyl-1,5-anhydro-2,4-di-O-methyl-L-fucitol, as expected, but the expected product of reductive cleavage of the 4-linked D-glucopyranosyluronic residue, namely, methyl 3-O-acetyl-2,6-anhydro-4,5-di-O-methyl-L-gulonate, was not observed. Instead, methyl 2-O-acetyl-3,6-anhydro-4,5-di-O-methyl-L-gulonate (6) was identified as the sole product of reductive cleavage of the 4-linked D-glucopyranosyluronic residue. That compound 6 arose as a result of rearrangement during reductive cleavage rather than by reductive cleavage of a 5-linked D-glucofuranosyluronic residue, was established by reductive cleavage of the fully methylated polysaccharide following reduction of its ester groups with either lithium aluminum hydride or lithium aluminum deuteride. The products of the latter reductive cleavage were the same as before, except for the absence of 6 and the presence of 4,6-di-O-acetyl-1,5-anhydro-2,3-di-O-methyl-D-glucitol, or its 6,6-dideuterio isomer. Although the reductive-cleavage technique is suitable for the direct analysis of polysaccharides containing 4-linked D-glucopyranosyluronic residues, it does not establish whether the uronic residue is a 4-linked pyranoside or a 5-linked furanoside. The expected product is, however, derived from the 4-linked D-glucopyranosyluronic residue after sequential methylation, reduction of its ester group and reductive cleavage.

  14. Programmable RNA recognition and cleavage by CRISPR/Cas9.

    Science.gov (United States)

    O'Connell, Mitchell R; Oakes, Benjamin L; Sternberg, Samuel H; East-Seletsky, Alexandra; Kaplan, Matias; Doudna, Jennifer A

    2014-12-11

    The CRISPR-associated protein Cas9 is an RNA-guided DNA endonuclease that uses RNA-DNA complementarity to identify target sites for sequence-specific double-stranded DNA (dsDNA) cleavage. In its native context, Cas9 acts on DNA substrates exclusively because both binding and catalysis require recognition of a short DNA sequence, known as the protospacer adjacent motif (PAM), next to and on the strand opposite the twenty-nucleotide target site in dsDNA. Cas9 has proven to be a versatile tool for genome engineering and gene regulation in a large range of prokaryotic and eukaryotic cell types, and in whole organisms, but it has been thought to be incapable of targeting RNA. Here we show that Cas9 binds with high affinity to single-stranded RNA (ssRNA) targets matching the Cas9-associated guide RNA sequence when the PAM is presented in trans as a separate DNA oligonucleotide. Furthermore, PAM-presenting oligonucleotides (PAMmers) stimulate site-specific endonucleolytic cleavage of ssRNA targets, similar to PAM-mediated stimulation of Cas9-catalysed DNA cleavage. Using specially designed PAMmers, Cas9 can be specifically directed to bind or cut RNA targets while avoiding corresponding DNA sequences, and we demonstrate that this strategy enables the isolation of a specific endogenous messenger RNA from cells. These results reveal a fundamental connection between PAM binding and substrate selection by Cas9, and highlight the utility of Cas9 for programmable transcript recognition without the need for tags.

  15. Conservation of a proteinase cleavage site between an insect retrovirus (gypsy) Env protein and a baculovirus envelope fusion protein

    International Nuclear Information System (INIS)

    Pearson, Margot N.; Rohrmann, George F.

    2004-01-01

    The predicted Env protein of insect retroviruses (errantiviruses) is related to the envelope fusion protein of a major division of the Baculoviridae. The highest degree of homology is found in a region that contains a furin cleavage site in the baculovirus proteins and an adjacent sequence that has the properties of a fusion peptide. In this investigation, the homologous region in the Env protein of the gypsy retrovirus of Drosophila melanogaster (DmegypV) was investigated. Alteration of the predicted DmegypV Env proteinase cleavage site from RIAR to AIAR significantly reduced cleavage of Env in both Spodoptera frugiperda (Sf-9) and D. melanogaster (S2) cell lines. When the predicted DmegypV Env cleavage site RIAR was substituted for the cleavage sequence RRKR in the Lymantria dispar nucleopolyhedrovirus fusion protein (LD130) sequence, cleavage of the hybrid LD130 molecules still occurred, although at a reduced level. The conserved 21-amino acid sequence just downstream of the cleavage site, which is thought to be the fusion peptide in LD130, was also characterized. When this sequence from DmegypV Env was substituted for the homologous sequence in LD130, cleavage still occurred, but no fusion was observed in either cell type. In addition, although a DmegypV-Env-green fluorescent protein construct localized to cell membranes, no cell fusion was observed

  16. Drosha regulates gene expression independently of RNA cleavage function

    DEFF Research Database (Denmark)

    Gromak, Natalia; Dienstbier, Martin; Macias, Sara

    2013-01-01

    Drosha is the main RNase III-like enzyme involved in the process of microRNA (miRNA) biogenesis in the nucleus. Using whole-genome ChIP-on-chip analysis, we demonstrate that, in addition to miRNA sequences, Drosha specifically binds promoter-proximal regions of many human genes in a transcription......-dependent manner. This binding is not associated with miRNA production or RNA cleavage. Drosha knockdown in HeLa cells downregulated nascent gene transcription, resulting in a reduction of polyadenylated mRNA produced from these gene regions. Furthermore, we show that this function of Drosha is dependent on its N......-terminal protein-interaction domain, which associates with the RNA-binding protein CBP80 and RNA Polymerase II. Consequently, we uncover a previously unsuspected RNA cleavage-independent function of Drosha in the regulation of human gene expression....

  17. Polycystin-1 Cleavage and the Regulation of Transcriptional Pathways

    Science.gov (United States)

    Merrick, David; Bertuccio, Claudia A.; Chapin, Hannah C.; Lal, Mark; Chauvet, Veronique; Caplan, Michael J.

    2013-01-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic cause of end stage renal disease, affecting ~1 in 1,000 people. The disease is characterized by the development of numerous large fluid filled renal cysts over the course of decades. These cysts compress the surrounding renal parenchyma and impair its function. Mutations in two genes are responsible for ADPKD. The protein products of both of these genes, polycystin-1 and polycystin-2, localize to the primary cilium and participate in a wide variety of signaling pathways. Polycystin-1 undergoes several proteolytic cleavages that produce fragments that manifest biological activities. Recent results suggest that the production of polycystin-1 cleavage fragments is necessary and sufficient to account for at least some, although certainly not all, of the physiological functions of the parent protein. PMID:23824180

  18. Cell-surface acceleration of urokinase-catalyzed receptor cleavage

    DEFF Research Database (Denmark)

    Høyer-Hansen, G; Ploug, M; Behrendt, N

    1997-01-01

    by a prior incubation of the cells with uPA inactivated by diisopropyl fluorophosphate, demonstrating a requirement for specific receptor binding of the active uPA to obtain the high-efficiency cleavage of cell-bound uPAR. Furthermore, amino-terminal sequence analysis revealed that uPAR(2+3), purified from U...

  19. Bimalleolar ankle fracture with proximal fibular fracture

    NARCIS (Netherlands)

    Colenbrander, R. J.; Struijs, P. A. A.; Ultee, J. M.

    2005-01-01

    A 56-year-old female patient suffered a bimalleolar ankle fracture with an additional proximal fibular fracture. This is an unusual fracture type, seldom reported in literature. It was operatively treated by open reduction and internal fixation of the lateral malleolar fracture. The proximal fibular

  20. Correlation of Hip Fracture with Other Fracture Types: Toward a Rational Composite Hip Fracture Endpoint

    Science.gov (United States)

    Colón-Emeric, Cathleen; Pieper, Carl F.; Grubber, Janet; Van Scoyoc, Lynn; Schnell, Merritt L; Van Houtven, Courtney Harold; Pearson, Megan; Lafleur, Joanne; Lyles, Kenneth W.; Adler, Robert A.

    2016-01-01

    Purpose With ethical requirements to the enrollment of lower risk subjects, osteoporosis trials are underpowered to detect reduction in hip fractures. Different skeletal sites have different levels of fracture risk and response to treatment. We sought to identify fracture sites which cluster with hip fracture at higher than expected frequency; if these sites respond to treatment similarly, then a composite fracture endpoint could provide a better estimate of hip fracture reduction. Methods Cohort study using Veterans Affairs and Medicare administrative data. Male Veterans (n=5,036,536) aged 50-99 years receiving VA primary care between1999-2009 were included. Fractures were ascertained using ICD9 and CPT codes and classified by skeletal site. Pearson correlation coefficients, logistic regression and kappa statistics, were used to describe the correlation between each fracture type and hip fracture within individuals, without regards to the timing of the events. Results 595,579 (11.8%) men suffered 1 or more fractures and 179,597 (3.6%) suffered 2 or more fractures during the time under study. Of those with one or more fractures, rib was the most common site (29%), followed by spine (22%), hip (21%) and femur (20%). The fracture types most highly correlated with hip fracture were pelvic/acetabular (Pearson correlation coefficient 0.25, p<0.0001), femur (0.15, p<0.0001), and shoulder (0.11, p<0.0001). Conclusions Pelvic, acetabular, femur, and shoulder fractures cluster with hip fractures within individuals at greater than expected frequency. If we observe similar treatment risk reductions within that cluster, subsequent trials could consider use of a composite endpoint to better estimate hip fracture risk. PMID:26151123

  1. Fetal hemoglobin is much less prone to DNA cleavage compared to the adult protein

    Directory of Open Access Journals (Sweden)

    Sandeep Chakane

    2017-08-01

    Full Text Available Hemoglobin (Hb is well protected inside the red blood cells (RBCs. Upon hemolysis and when free in circulation, Hb can be involved in a range of radical generating reactions and may thereby attack several different biomolecules. In this study, we have examined the potential damaging effects of cell-free Hb on plasmid DNA (pDNA. Hb induced cleavage of supercoiled pDNA (sc pDNA which was proportional to the concentration of Hb applied. Almost 70% of sc pDNA was converted to open circular or linear DNA using 10 µM of Hb in 12 h. Hb can be present in several different forms. The oxy (HbO2 and met forms are most reactive, while the carboxy-protein shows only low hydrolytic activity. Hemoglobin A (HbA could easily induce complete pDNA cleavage while fetal hemoglobin (HbF was three-fold less reactive. By inserting, a redox active cysteine residue on the surface of the alpha chain of HbF by site-directed mutagenesis, the DNA cleavage reaction was enhanced by 82%. Reactive oxygen species were not directly involved in the reaction since addition of superoxide dismutase and catalase did not prevent pDNA cleavage. The reactivity of Hb with pDNA can rather be associated with the formation of protein based radicals. Keywords: Adult hemoglobin, Fetal hemoglobin, Supercoiled plasmid DNA, DNA cleavage, Cysteine, Protein radicals

  2. The reinitiation of fracture at the tip of an arrested crack in a reactor pressure vessel: The effect of ligaments on the reinitiation K value

    International Nuclear Information System (INIS)

    Smith, E.

    1986-01-01

    During a hypothetical thermal shock event involving a water-cooled nuclear reactor steel pressure vessel, it is possible for a crack to propagate deep into the reactor vessel thickness by a series of run-arrest-reinitiation events. Furthermore, within the transition temperature regime, crack propagation and arrest are associated with a combination of cleavage and ductile rupture processes, the latter being manifested by ligaments that are normal to the crack plane and parallel to the direction of crack propagation. Earlier work by the author has modelled the effect of ligaments on the reinitiation of fracture at the tip of an arrested crack. Proceeding from the basis that the ligaments fail by a ductile rupture process, reinitiation K values were calculated. These values were appreciably higher than the experimental reinitiation K values for cracks in model vessels subject to thermal shock; it was therefore argued that the ligaments, which are present at arrest, are unlikely to fail entirely by ductile rupture prior to the reinitiation of fracture at an arrested crack tip. Instead it was suggested that the ligaments fail by cleavage, and consequently do not markedly affect the reinitiation K value, which therefore correlates with Ksub(IC). This paper's theoretical analysis extends the earlier work by relaxing a key assumption in the earlier work that, when calculating the reinitiation K value on the basis that the ligaments fail by ductile rupture, they should disappear completely prior to reinitiation. The new results, however, show that the predicted reinitiation K values are still so much greater than the model test reinitiation K values, that it is unlikely that the ligaments fail solely by ductile rupture prior to reinitiation. The view that the ligaments can fail by cleavage is therefore reinforced. (orig.)

  3. Abyssal fiction: common shares, colonial cleavages

    Directory of Open Access Journals (Sweden)

    Alexandre Montaury

    2016-12-01

    Full Text Available The paper aims to develop a reflection on the interaction between the legacies of colonialism and traditional symbolic and cultural practices in African Portuguese-speaking spaces. From a preliminary analysis of fictional texts of wide circulation in Brazil, aims to examine the cleavages, or “abyssal lines” that constitute experiences printed in the daily life of the former Portuguese colony of Cape Verde, Mozambique and Angola.---DOI: http://dx.doi.org/10.21881/abriluff.2016n17a378

  4. Applicability of the fracture toughness master curve to irradiated reactor pressure vessel steels

    International Nuclear Information System (INIS)

    Sokolov, M.A.; McCabe, D.E.; Alexander, D.J.; Nanstad, R.K.

    1997-01-01

    The current methodology for determination of fracture toughness of irradiated reactor pressure vessel (RPV) steels is based on the upward temperature shift of the American Society of Mechanical Engineers (ASME) K Ic curve from either measurement of Charpy impact surveillance specimens or predictive calculations based on a database of Charpy impact tests from RPV surveillance programs. Currently, the provisions for determination of the upward temperature shift of the curve due to irradiation are based on the Charpy V-notch (CVN) 41-J shift, and the shape of the fracture toughness curve is assumed to not change as a consequence or irradiation. The ASME curve is a function of test temperature (T) normalized to a reference nit-ductility temperature, RT NDT , namely, T-RT NDT . That curve was constructed as the lower boundary to the available K Ic database and, therefore, does not consider probability matters. Moreover, to achieve valid fracture toughness data in the temperature range where the rate of fracture toughness increase with temperature is rapidly increasing, very large test specimens were needed to maintain plain-strain, linear-elastic conditions. Such large specimens are impractical for fracture toughness testing of each RPV steel, but the evolution of elastic-plastic fracture mechanics has led to the use of relatively small test specimens to achieve acceptable cleavage fracture toughness measurements, K Jc , in the transition temperature range. Accompanying this evolution is the employment of the Weibull distribution function to model the scatter of fracture toughness values in the transition range. Thus, a probabilistic-based bound for a given data population can be made. Further, it has been demonstrated by Wallin that the probabilistic-based estimates of median fracture toughness of ferritic steels tend to form transition curves of the same shape, the so-called ''master curve'', normalized to one common specimen size, namely the 1T [i.e., 1.0-in

  5. Transcriptional down-regulation and rRNA cleavage in Dictyostelium discoideum mitochondria during Legionella pneumophila infection.

    Directory of Open Access Journals (Sweden)

    Chenyu Zhang

    2009-05-01

    Full Text Available Bacterial pathogens employ a variety of survival strategies when they invade eukaryotic cells. The amoeba Dictyostelium discoideum is used as a model host to study the pathogenic mechanisms that Legionella pneumophila, the causative agent of Legionnaire's disease, uses to kill eukaryotic cells. Here we show that the infection of D. discoideum by L. pneumophila results in a decrease in mitochondrial messenger RNAs, beginning more than 8 hours prior to detectable host cell death. These changes can be mimicked by hydrogen peroxide treatment, but not by other cytotoxic agents. The mitochondrial large subunit ribosomal RNA (LSU rRNA is also cleaved at three specific sites during the course of infection. Two LSU rRNA fragments appear first, followed by smaller fragments produced by additional cleavage events. The initial LSU rRNA cleavage site is predicted to be on the surface of the large subunit of the mitochondrial ribosome, while two secondary sites map to the predicted interface with the small subunit. No LSU rRNA cleavage was observed after exposure of D. discoideum to hydrogen peroxide, or other cytotoxic chemicals that kill cells in a variety of ways. Functional L. pneumophila type II and type IV secretion systems are required for the cleavage, establishing a correlation between the pathogenesis of L. pneumophila and D. discoideum LSU rRNA destruction. LSU rRNA cleavage was not observed in L. pneumophila infections of Acanthamoeba castellanii or human U937 cells, suggesting that L. pneumophila uses distinct mechanisms to interrupt metabolism in different hosts. Thus, L. pneumophila infection of D. discoideum results in dramatic decrease of mitochondrial RNAs, and in the specific cleavage of mitochondrial rRNA. The predicted location of the cleavage sites on the mitochondrial ribosome suggests that rRNA destruction is initiated by a specific sequence of events. These findings suggest that L. pneumophila specifically disrupts mitochondrial

  6. Foal Fractures: Osteochondral Fragmentation, Proximal Sesamoid Bone Fractures/Sesamoiditis, and Distal Phalanx Fractures.

    Science.gov (United States)

    Reesink, Heidi L

    2017-08-01

    Foals are susceptible to many of the same types of fractures as adult horses, often secondary to external sources of trauma. In addition, some types of fractures are specific to foals and occur routinely in horses under 1 year of age. These foal-specific fractures may be due to the unique musculoskeletal properties of the developing animal and may present with distinct clinical signs. Treatment plans and prognoses are tailored specifically to young animals. Common fractures not affecting the long bones in foals are discussed in this article, including osteochondral fragmentation, proximal sesamoid bone fractures/sesamoiditis, and distal phalanx fractures. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Micro-mechanical analysis and modelling of the behavior and brittle fracture of a french 16MND5 steel: role of microstructural heterogeneities

    International Nuclear Information System (INIS)

    Mathieu, J.Ph.

    2006-10-01

    Reactor Pressure Vessel is the second containment barrier between nuclear fuel and the environment. Electricite de France's reactors are made with french 16MND5 low-alloyed steel (equ. ASTM A508 Cl.3). Various experimental techniques (scanning electron microscopy, X-ray diffraction...) are set up in order to characterize mechanical heterogeneities inside material microstructure during tensile testing at different low temperatures [-150 C;-60 C]. Heterogeneities can be seen as the effect of both 'polycrystalline' and 'composite' microstructural features. Interphase (until 150 MPa in average between ferritic and bainitic macroscopic stress state) and intra-phase (until 100 MPa in average between ferritic orientations) stress variations are highlighted. Modelling involves micro-mechanical description of plastic glide, mean fields models and realistic three-dimensional aggregates, all put together inside a multi-scale approach. Calibration is done on macroscopic stress-strain curves at different low temperatures, and modelling reproduces experimental stress heterogeneities. This modelling allows to apply a local micro-mechanical fracture criterion for crystallographic cleavage. Deterministic computations of time to fracture for different carbides random selection provide a way to express probability of fracture for the elementary volume. Results are in good agreement with hypothesis made by local approach to fracture. Hence, the main difference is that no dependence to loading nor microstructure features is supposed for probability of fracture on the representative volume: this dependence is naturally introduced by modelling. (author)

  8. Cleavage specificity analysis of six type II transmembrane serine proteases (TTSPs using PICS with proteome-derived peptide libraries.

    Directory of Open Access Journals (Sweden)

    Olivier Barré

    Full Text Available Type II transmembrane serine proteases (TTSPs are a family of cell membrane tethered serine proteases with unclear roles as their cleavage site specificities and substrate degradomes have not been fully elucidated. Indeed just 52 cleavage sites are annotated in MEROPS, the database of proteases, their substrates and inhibitors.To profile the active site specificities of the TTSPs, we applied Proteomic Identification of protease Cleavage Sites (PICS. Human proteome-derived database searchable peptide libraries were assayed with six human TTSPs (matriptase, matriptase-2, matriptase-3, HAT, DESC and hepsin to simultaneously determine sequence preferences on the N-terminal non-prime (P and C-terminal prime (P' sides of the scissile bond. Prime-side cleavage products were isolated following biotinylation and identified by tandem mass spectrometry. The corresponding non-prime side sequences were derived from human proteome databases using bioinformatics. Sequencing of 2,405 individual cleaved peptides allowed for the development of the family consensus protease cleavage site specificity revealing a strong specificity for arginine in the P1 position and surprisingly a lysine in P1' position. TTSP cleavage between R↓K was confirmed using synthetic peptides. By parsing through known substrates and known structures of TTSP catalytic domains, and by modeling the remainder, structural explanations for this strong specificity were derived.Degradomics analysis of 2,405 cleavage sites revealed a similar and characteristic TTSP family specificity at the P1 and P1' positions for arginine and lysine in unfolded peptides. The prime side is important for cleavage specificity, thus making these proteases unusual within the tryptic-enzyme class that generally has overriding non-prime side specificity.

  9. Change in radiosensitivity of sea-urchin eggs during early cleavage stages

    International Nuclear Information System (INIS)

    Nakamura, I.

    1977-01-01

    When sea-urchin eggs were irradiated with 137 Cs γ-rays, their radiosensitivity, expressed by the percentage which formed pluteus larvae, fluctuated during the early cleavage cycle. Split-dose irradiations were made both in the sensitive and resistant phases. For eggs in the sensitive phase, the effect of the first exposure of 500 rad was not diminished during the interval before the second exposure. Eggs irradiated in the resistant phase were only slightly damaged. Results implied that fluctuations in radiosensitivity of sea-urchin eggs were caused mainly by different degrees of non-repairable damage in each phase of cleavage rather than by different recovery abilities. (author)

  10. Effect of substructure on mechanical properties and fracture behavior of lath martensite in 0.1C–1.1Si–1.7Mn steel

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shengci [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhu, Guoming, E-mail: zhuguoming@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Kang, Yonglin, E-mail: kangylin@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-08-05

    The purpose of this study was to analyze the microstructure of lath martensite in 0.1C–1.1Si–1.7Mn (wt.%) steel and its effect on mechanical properties and fracture behavior. The microstructure was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron back scattering diffraction (EBSD). Charpy V-notch impact samples and compact tension (CT) samples were used to investigate the Charpy impact properties and fatigue crack growth behavior of the steel, respectively. The propagation of cleavage crack and fatigue crack were analyzed to figure out the effective grain size. The results showed that the typical hierarchical lath martensite structure contained prior austenite grains, packets, blocks and laths; packet size and block width were positively correlated to prior austenite grain size, while lath width was maintained at about 0.29 μm. Yield strength was related to prior austenite grain size, packet size and block width, and obeyed Hall–Petch relationship. Grain refinement was effective in improving the resistance to cleavage fracture by introducing barriers to crack propagation; packet boundaries and block boundaries hold similar ability to impede the propagation of crack. Paris model can well describe the FCG behavior of the investigated steel. Block width governs the effective grain size for strength, toughness and fatigue crack propagation. - Graphical abstract: Mechanical properties and fracture behavior of 0.1C–1.1Si–1.7Mn steel. - Highlights: • Hall–Petch relationship is obeyed between yield strength and martensite microstructure size. • Packet boundaries and block boundaries hold similar ability to impede the propagation of crack. • Block width is the effective grain size for strength, toughness and fatigue crack propagation.

  11. Caspase Cleavages of the Lymphocyte-oriented Kinase Prevent Ezrin, Radixin, and Moesin Phosphorylation during Apoptosis*

    Science.gov (United States)

    Leroy, Catherine; Belkina, Natalya V.; Long, Thavy; Deruy, Emeric; Dissous, Colette; Shaw, Stephen; Tulasne, David

    2016-01-01

    The lymphocyte-oriented kinase (LOK), also called serine threonine kinase 10 (STK10), is synthesized mainly in lymphocytes. It is involved in lymphocyte migration and polarization and can phosphorylate ezrin, radixin, and moesin (the ERM proteins). In a T lymphocyte cell line and in purified human lymphocytes, we found LOK to be cleaved by caspases during apoptosis. The first cleavage occurs at aspartic residue 332, located between the kinase domain and the coiled-coil regulation domain. This cleavage generates an N-terminal fragment, p50 N-LOK, containing the kinase domain and a C-terminal fragment, which is further cleaved during apoptosis. Although these cleavages preserve the entire kinase domain, p50 N-LOK displays no kinase activity. In apoptotic lymphocytes, caspase cleavages of LOK are concomitant with a decrease in ERM phosphorylation. When non-apoptotic lymphocytes from mice with homozygous and heterozygous LOK knockout were compared, the latter showed a higher level of ERM phosphorylation, but when apoptosis was induced, LOK−/− and LOK+/− lymphocytes showed the same low level, confirming in vivo that LOK-induced ERM phosphorylation is prevented during lymphocyte apoptosis. Our results demonstrate that cleavage of LOK during apoptosis abolishes its kinase activity, causing a decrease in ERM phosphorylation, crucial to the role of the ERM proteins in linking the plasma membrane to actin filaments. PMID:26945071

  12. Caspase Cleavages of the Lymphocyte-oriented Kinase Prevent Ezrin, Radixin, and Moesin Phosphorylation during Apoptosis.

    Science.gov (United States)

    Leroy, Catherine; Belkina, Natalya V; Long, Thavy; Deruy, Emeric; Dissous, Colette; Shaw, Stephen; Tulasne, David

    2016-05-06

    The lymphocyte-oriented kinase (LOK), also called serine threonine kinase 10 (STK10), is synthesized mainly in lymphocytes. It is involved in lymphocyte migration and polarization and can phosphorylate ezrin, radixin, and moesin (the ERM proteins). In a T lymphocyte cell line and in purified human lymphocytes, we found LOK to be cleaved by caspases during apoptosis. The first cleavage occurs at aspartic residue 332, located between the kinase domain and the coiled-coil regulation domain. This cleavage generates an N-terminal fragment, p50 N-LOK, containing the kinase domain and a C-terminal fragment, which is further cleaved during apoptosis. Although these cleavages preserve the entire kinase domain, p50 N-LOK displays no kinase activity. In apoptotic lymphocytes, caspase cleavages of LOK are concomitant with a decrease in ERM phosphorylation. When non-apoptotic lymphocytes from mice with homozygous and heterozygous LOK knockout were compared, the latter showed a higher level of ERM phosphorylation, but when apoptosis was induced, LOK(-/-) and LOK(+/-) lymphocytes showed the same low level, confirming in vivo that LOK-induced ERM phosphorylation is prevented during lymphocyte apoptosis. Our results demonstrate that cleavage of LOK during apoptosis abolishes its kinase activity, causing a decrease in ERM phosphorylation, crucial to the role of the ERM proteins in linking the plasma membrane to actin filaments. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Caspase-2 cleavage of tau reversibly impairs memory.

    Science.gov (United States)

    Zhao, Xiaohui; Kotilinek, Linda A; Smith, Benjamin; Hlynialuk, Chris; Zahs, Kathleen; Ramsden, Martin; Cleary, James; Ashe, Karen H

    2016-11-01

    In Alzheimer's disease (AD) and other tauopathies, the tau protein forms fibrils, which are believed to be neurotoxic. However, fibrillar tau has been dissociated from neuron death and network dysfunction, suggesting the involvement of nonfibrillar species. Here we describe a novel pathological process in which caspase-2 cleavage of tau at Asp314 impairs cognitive and synaptic function in animal and cellular models of tauopathies by promoting the missorting of tau to dendritic spines. The truncation product, Δtau314, resists fibrillation and is present at higher levels in brains from cognitively impaired mice and humans with AD. The expression of tau mutants that resisted caspase-2 cleavage prevented tau from infiltrating spines, dislocating glutamate receptors and impairing synaptic function in cultured neurons, and it prevented memory deficits and neurodegeneration in mice. Decreasing the levels of caspase-2 restored long-term memory in mice that had existing deficits. Our results suggest an overall treatment strategy for re-establishing synaptic function and restoring memory in patients with AD by preventing tau from accumulating in dendritic spines.

  14. AID-induced decrease in topoisomerase 1 induces DNA structural alteration and DNA cleavage for class switch recombination.

    Science.gov (United States)

    Kobayashi, Maki; Aida, Masatoshi; Nagaoka, Hitoshi; Begum, Nasim A; Kitawaki, Yoko; Nakata, Mikiyo; Stanlie, Andre; Doi, Tomomitsu; Kato, Lucia; Okazaki, Il-mi; Shinkura, Reiko; Muramatsu, Masamichi; Kinoshita, Kazuo; Honjo, Tasuku

    2009-12-29

    To initiate class switch recombination (CSR) activation-induced cytidine deaminase (AID) induces staggered nick cleavage in the S region, which lies 5' to each Ig constant region gene and is rich in palindromic sequences. Topoisomerase 1 (Top1) controls the supercoiling of DNA by nicking, rotating, and religating one strand of DNA. Curiously, Top1 reduction or AID overexpression causes the genomic instability. Here, we report that the inactivation of Top1 by its specific inhibitor camptothecin drastically blocked both the S region cleavage and CSR, indicating that Top1 is responsible for the S region cleavage in CSR. Surprisingly, AID expression suppressed Top1 mRNA translation and reduced its protein level. In addition, the decrease in the Top1 protein by RNA-mediated knockdown augmented the AID-dependent S region cleavage, as well as CSR. Furthermore, Top1 reduction altered DNA structure of the Smu region. Taken together, AID-induced Top1 reduction alters S region DNA structure probably to non-B form, on which Top1 can introduce nicks but cannot religate, resulting in S region cleavage.

  15. Acetabular Fracture

    Directory of Open Access Journals (Sweden)

    Chad Correa

    2017-09-01

    Full Text Available History of present illness: A 77-year-old female presented to her primary care physician (PCP with right hip pain after a mechanical fall. She did not lose consciousness or have any other traumatic injuries. She was unable to ambulate post-fall, so X-rays were ordered by her PCP. Her X-rays were concerning for a right acetabular fracture (see purple arrows, so the patient was referred to the emergency department where a computed tomography (CT scan was ordered. Significant findings: The non-contrast CT images show a minimally displaced comminuted fracture of the right acetabulum involving the acetabular roof, medial and anterior walls (red arrows, with associated obturator muscle hematoma (blue oval. Discussion: Acetabular fractures are quite rare. There are 37 pelvic fractures per 100,000 people in the United States annually, and only 10% of these involve the acetabulum. They occur more frequently in the elderly totaling an estimated 4,000 per year. High-energy trauma is the primary cause of acetabular fractures in younger individuals and these fractures are commonly associated with other fractures and pelvic ring disruptions. Fractures secondary to moderate or minimal trauma are increasingly of concern in patients of advanced age.1 Classification of acetabular fractures can be challenging. However, the approach can be simplified by remembering the three basic types of acetabular fractures (column, transverse, and wall and their corresponding radiologic views. First, column fractures should be evaluated with coronally oriented CT images. This type of fracture demonstrates a coronal fracture line running caudad to craniad, essentially breaking the acetabulum into two halves: a front half and a back half. Secondly, transverse fractures should be evaluated by sagittally oriented CT images. By definition, a transverse fracture separates the acetabulum into superior and inferior halves with the fracture line extending from anterior to posterior

  16. Carotenoid-cleavage activities of crude enzymes from Pandanous amryllifolius.

    Science.gov (United States)

    Ningrum, Andriati; Schreiner, Matthias

    2014-11-01

    Carotenoid degradation products, known as norisoprenoids, are aroma-impact compounds in several plants. Pandan wangi is a common name of the shrub Pandanus amaryllifolius. The genus name 'Pandanus' is derived from the Indonesian name of the tree, pandan. In Indonesia, the leaves from the plant are used for several purposes, e.g., as natural colorants and flavor, and as traditional treatments. The aim of this study was to determine the cleavage of β-carotene and β-apo-8'-carotenal by carotenoid-cleavage enzymes isolated from pandan leaves, to investigate dependencies of the enzymatic activities on temperature and pH, to determine the enzymatic reaction products by using Headspace Solid Phase Microextraction Gas Chromatography/Mass Spectrophotometry (HS-SPME GC/MS), and to investigate the influence of heat treatment and addition of crude enzyme on formation of norisoprenoids. Crude enzymes from pandan leaves showed higher activity against β-carotene than β-apo-8'-carotenal. The optimum temperature of crude enzymes was 70°, while the optimum pH value was 6. We identified β-ionone as the major volatile reaction product from the incubations of two different carotenoid substrates, β-carotene and β-apo-8'-carotenal. Several treatments, e.g., heat treatment and addition of crude enzymes in pandan leaves contributed to the norisoprenoid content. Our findings revealed that the crude enzymes from pandan leaves with carotenoid-cleavage activity might provide a potential application, especially for biocatalysis, in natural-flavor industry. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  17. Caspase activation increases beta-amyloid generation independently of caspase cleavage of the beta-amyloid precursor protein (APP).

    Science.gov (United States)

    Tesco, Giuseppina; Koh, Young Ho; Tanzi, Rudolph E

    2003-11-14

    The amyloid precursor protein (APP) undergoes "alternative" proteolysis mediated by caspases. Three major caspase recognition sites have been identified in the APP, i.e. one at the C terminus (Asp720) and two at the N terminus (Asp197 and Asp219). Caspase cleavage at Asp720 has been suggested as leading to increased production of Abeta. Thus, we set out to determine which putative caspase sites in APP, if any, are cleaved in Chinese hamster ovary cell lines concurrently with the increased Abeta production that occurs during apoptosis. We found that cleavage at Asp720 occurred concurrently with caspase 3 activation and the increased production of total secreted Abeta and Abeta1-42 in association with staurosporine- and etoposide-induced apoptosis. To investigate the contribution of caspase cleavage of APP to Abeta generation, we expressed an APP mutant truncated at Asp720 that mimics APP caspase cleavage at the C-terminal site. This did not increase Abeta generation but, in contrast, dramatically decreased Abeta production in Chinese hamster ovary cells. Furthermore, the ablation of caspase-dependent cleavage at Asp720, Asp197, and Asp219 (by site-directed mutagenesis) did not prevent enhanced Abeta production following etoposide-induced apoptosis. These findings indicate that the enhanced Abeta generation associated with apoptosis does not require cleavage of APP at its C-terminal (Asp720) and/or N-terminal caspase sites.

  18. Cleaving the Halqeh-ye-nur diamonds: a dynamic fracture analysis.

    Science.gov (United States)

    Atkinson, Colin; Martineau, Philip M; Khan, Rizwan U A; Field, John E; Fisher, David; Davies, Nick M; Samartseva, Julia V; Putterman, Seth J; Hird, Jonathan R

    2015-03-28

    The degree of surface roughness and clarity with which a surface in a brittle material can be formed via fracture is known to be related to the speed of the propagating crack. Cracks traversing a brittle material at low speed produce very smooth surfaces, while those propagating faster create less reflective and rough surfaces (Buehler MJ, Gao H. 2006 Nature 439, 307-310 (doi:10.1038/nature04408)). The elastic wave speeds (c(l)≈18 000 m s(-1), c(s)≈11 750 m s(-1)) in diamond are fast (Willmott GR, Field JE. 2006 Phil. Mag. 86, 4305-4318 (doi:10.1080/14786430500482336)) and present a particular problem in creating smooth surfaces during the cleaving of diamond-a routine operation in the fashioning of diamonds for gemstone purposes--as the waves are reflected from the boundaries of the material and can add a tensile component to the propagating crack tip causing the well-known cleavage steps observed on diamond surfaces (Field JE. 1971 Contemp. Phys. 12, 1-31 (doi:10.1080/00107517108205103); Field JE. 1979 Properties of diamond, 1st edn, Academic Press; Wilks EM. 1958 Phil. Mag. 3, 1074-1080 (doi:10.1080/14786435808237036)). Here we report an analysis of two diamonds, having large dimensions and high aspect ratio, which from a gemological analysis are shown to have been cleaved from the same 200 carat specimen. A methodology for their manufacture is calculated by an analysis of a model problem. This takes into account the effect of multiple reflections from the sample boundaries. It is suggested that the lapidary had an intuitive guide to how to apply the cleavage force in order to control the crack speed. In particular, it is shown that it is likely that this technique caused the fracture to propagate at a lower speed. The sacrifice of a large diamond with the intention of creating thin plates, rather than a faceted gemstone, demonstrates how symbolism and beliefs associated with gemstones have changed over the centuries (Harlow GE. 1998 The nature

  19. Irradiation effects on fracture toughness of two high-copper submerged-arc welds, HSSI Series 5

    International Nuclear Information System (INIS)

    Nanstad, R.K.; Haggag, F.M.; McCabe, D.E.; Iskander, S.K.; Bowman, K.O.; Menke, B.H.

    1992-10-01

    The Fifth Irradiation Series in the Heavy-Section Steel Irradiation Program obtained a statistically significant fracture toughness data base on two high-copper (0.23 and 0.31 wt %) submerged-arc welds to determine the shift and shape of the K Ic curve as a consequence of irradiation. Compact specimens with thicknesses to 101.6 mm (4 in) in the irradiated condition and 203.2 mm (8 in) in the unirradiated condition were tested, in addition to Charpy impact, tensile, and drop-weight specimens. Irradiations were conducted at a nominal temperature of 288 degree C and an average fluence of 1.5 x 10 19 neutrons/cm 2 (>l MeV). The Charpy 41-J temperature shifts are about the same as the corresponding drop-weight NDT temperature shifts. The irradiated welds exhibited substantial numbers of cleavage pop-ins. Mean curve fits using two-parameter (with fixed intercept) nonlinear and linearized exponential regression analysis revealed that the fracture toughness 100 MPa lg-bullet √m shifts exceeded the Charpy 41-J shifts for both welds. Analyses of curve shape changes indicated decreases in the slopes of the fracture toughness curves, especially for the higher copper weld. Weibull analyses were performed to investigate development of lower bound curves to the data, including the use of a variable K min parameter which affects the curve shape

  20. SOCIAL CLEAVAGES IN THE AMERICAN SOCIETY AS A FACTOR OF 2016 PRESIDENTIAL CAMPAIGN

    Directory of Open Access Journals (Sweden)

    P. S. Kanevskiy

    2017-01-01

    Full Text Available Current article is dedicated to analysis of social cleavages in the American elections and the ways they influenced on presidential election in 2016. Originally developed by S. Rokkan and S.M. Lipset, social cleavages became a classic theme for contemporary political sociology. However, despite the fact that the theory has been developing primarily by Americans, it has been rarely used to analyze electoral system in the USA. Traditionally it’s been aimed at European and developing countries where electoral fragmentation is seen more clearly. But recent changes in the American society and the political system demonstrate the emergence of social cleavages that had not been inherent before. The article shows how American electoral space transformed since the 1980s and how it became more fragmented under the influence of social, economic and ideological factors. Elections in 2016 became a watershed for social cleavages that accumulated through time and aggravated even more considering internal crises in the Democratic and more so in the Republican parties. Donald Trump’s victory is an impersonation of the American party system crisis and of the mainstream politicians’ inability to find proper explanation of the changing electorate. Author shows that American society today is polarized even more than many European countries while group identification determines vectors of political change.

  1. Fractography

    International Nuclear Information System (INIS)

    Ipohorski, Miguel; Acuna Laje, Rodolfo

    1988-01-01

    The contribution of optical and electron fractography to failure analysis is described. In the first part, the main features of fracture surfaces of components are analyzed, especially the corresponding to components submitted to standard stress conditions and well defined geometries. The conclusions valid for these standard cases can be later extended to other shapes and stress configurations. In the second part, electron fractography techniques are described, involving higher magnification observations of the fracture surfaces. Main characteristics of ductile fracture, dimple formation and coalescence, stretch zones, ripples and elongated dimples are described, as well as standards of laboratory fractured surfaces. Brittle fast fracture surfaces are also analyzed. Examples of cleavage facets, river, patterns, steps, cleavage tonges, tire tracks, and quasi-cleavage surfaces are given. The contribution of micro-fractography (mainly electron fractography) to the study of fatigue surfaces is described. Finally, criteria for the determination of the fracture origin are discussed. Usually, the latter is possible, being the main contribution of fractography to failure analysis, avoiding future failures to occur in the replaced components. (Author) [es

  2. Electrostatic instability of some jellium model lattices of high symmetry to their plane cleavage

    International Nuclear Information System (INIS)

    Kholopov, Eugene V; Kalashnikova, Vita V

    2007-01-01

    Jellium model structures composed of regular lattices of equal point charges immersed in a neutralizing uniform background are considered. The symmetric description eliminating the effect of potentials without transverse structural modulation is extended to the events specified by alternating distances between point-charge planes. Based on modulated potentials typical of plane-wise lattice summation, the energy of interaction between two semi-infinite hemi-crystals divided by a plane is obtained for cubic and hexagonal crystals, where all the characteristic orientations of the cleavage plane are taken into account. We found that simple cubic and hexagonal lattices, as well as cubic and hexagonal diamond structures, turn out to be unstable for certain cleavage planes. The most favourable cleavage planes for the bcc, fcc and hcp structures are also emphasized

  3. Associations of early premenopausal fractures with subsequent fractures vary by sites and mechanisms of fractures.

    Science.gov (United States)

    Honkanen, R; Tuppurainen, M; Kroger, H; Alhava, E; Puntila, E

    1997-04-01

    In a retrospective population-based study we assessed whether and how self-reported former fractures sustained at the ages of 20-34 are associated with subsequent fractures sustained at the ages of 35-57. The 12,162 women who responded to fracture questions of the baseline postal enquiry (in 1989) of the Kuopio Osteoporosis Study, Finland formed the study population. They reported 589 former and 2092 subsequent fractures. The hazard ratio (HR), with 95% confidence interval (CI), of a subsequent fracture was 1.9 (1.6-2.3) in women with the history of a former fracture compared with women without such a history. A former low-energy wrist fracture was related to subsequent low-energy wrist [HR = 3.7 (2.0-6.8)] and high-energy nonwrist [HR = 2.4 (1.3-4.4)] fractures, whereas former high-energy nonwrist fractures were related only to subsequent high-energy nonwrist [HR = 2.8 (1.9-4.1)] but not to low-energy wrist [HR = 0.7 (0.3-1.8)] fractures. The analysis of bone mineral density (BMD) data of a subsample of premenopausal women who underwent dual x-ray absorptiometry (DXA) during 1989-91 revealed that those with a wrist fracture due to a fall on the same level at the age of 20-34 recorded 6.5% lower spinal (P = 0.140) and 10.5% lower femoral (P = 0.026) BMD than nonfractured women, whereas the corresponding differences for women with a former nonwrist fracture due to high-energy trauma were -1.8% (P = 0.721) and -2.4% (P = 0. 616), respectively. Our results suggest that an early premenopausal, low-energy wrist fracture is an indicator of low peak BMD which predisposes to subsequent fractures in general, whereas early high-energy fractures are mainly indicators of other and more specific extraskeletal factors which mainly predispose to same types of subsequent fractures only.

  4. Stimulation of topoisomerase II mediated DNA cleavage at specific sequence elements by the 2-nitroimidazole Ro 15-0216

    International Nuclear Information System (INIS)

    Sorensen, B.S.; Jensen, P.S.; Andersen, A.H.; Christiansen, K.; Alsner, J.; Thomsen, B.; Westergaard, O.

    1990-01-01

    The effect of the 2-nitroimidazole Ro 15-0216 upon the interaction between purified topoisomerase II and its DNA substrate was investigated. The cleavage reaction in the presence of this DNA-nonintercalative drug took place with the hallmarks of a regular topoisomerase II mediated cleavage reaction, including covalent linkage of the enzyme to the cleaved DNA. In the presence of Ro 15-0216, topoisomerase II mediated cleavage was extensively stimulated at major cleavage sites of which only one existed in the 4363 base pair pBR322 molecule. The sites stimulated by Ro 15-0216 shared a pronounced sequence homology, indicating that a specific nucleotide sequence is crucial for the action of this drug. The effect of Ro 15-0216 thus differs from that of the clinically important topoisomerase II targeted agents such as mAMSA, VM26, and VP16, which enhance enzyme-mediated cleavage at a multiple number of sites. In contrast to the previous described drugs, Ro 15-0216 did not exert any inhibitory effect on the enzyme's catalytic activity. This observation might be ascribed to the low stability of the cleavage complexes formed in the presence of Ro 15-0216 as compared to the stability of the ones formed in the presence of traditional topoisomerase II targeted drugs

  5. Kinetics of phycocyanobilin cleavage from C-phycocyanin by methanolysis

    DEFF Research Database (Denmark)

    Malwade, Chandrakant Ramkrishna; Roda Serrat, Maria Cinta; Christensen, Knud Villy

    2016-01-01

    Phycocyanobilin (PCB) is an important linear tetrapyrrolic molecule for food as well as pharmaceutical industry. It is obtained from blue-green algae, where it is attached covalently to phycobiliproteins (C-PC and APC) present in the light harvesting complexes. In this work, cleavage of PCB from...

  6. The large terminase DNA packaging motor grips DNA with its ATPase domain for cleavage by the flexible nuclease domain

    Science.gov (United States)

    Hilbert, Brendan J.; Hayes, Janelle A.; Stone, Nicholas P.; Xu, Rui-Gang

    2017-01-01

    Abstract Many viruses use a powerful terminase motor to pump their genome inside an empty procapsid shell during virus maturation. The large terminase (TerL) protein contains both enzymatic activities necessary for packaging in such viruses: the adenosine triphosphatase (ATPase) that powers DNA translocation and an endonuclease that cleaves the concatemeric genome at both initiation and completion of genome packaging. However, how TerL binds DNA during translocation and cleavage remains mysterious. Here we investigate DNA binding and cleavage using TerL from the thermophilic phage P74-26. We report the structure of the P74-26 TerL nuclease domain, which allows us to model DNA binding in the nuclease active site. We screened a large panel of TerL variants for defects in binding and DNA cleavage, revealing that the ATPase domain is the primary site for DNA binding, and is required for nuclease activity. The nuclease domain is dispensable for DNA binding but residues lining the active site guide DNA for cleavage. Kinetic analysis of DNA cleavage suggests flexible tethering of the nuclease domains during DNA cleavage. We propose that interactions with the procapsid during DNA translocation conformationally restrict the nuclease domain, inhibiting cleavage; TerL release from the capsid upon completion of packaging unlocks the nuclease domains to cleave DNA. PMID:28082398

  7. cis-Apa: a practical linker for the microwave-assisted preparation of cyclic pseudopeptides via RCM cyclative cleavage.

    Science.gov (United States)

    Baron, Alice; Verdié, Pascal; Martinez, Jean; Lamaty, Frédéric

    2011-02-04

    A new linker cis-5-aminopent-3-enoic acid (cis-Apa) was prepared for the synthesis of cyclic pseudopeptides by cyclization-cleavage by using ring-closing methatesis (RCM). We developed a new synthetic pathway for the preparation of the cis-Apa linker that was tested in the cyclization-cleavage process of different RGD peptide sequences. Different macrocyclic peptidomimetics were prepared by using this integrated microwave-assisted method, showing that the readily available cis-Apa amino acid is well adapted as a linker in the cyclization-cleavage process.

  8. The Conserved ATM Kinase RAG2-S365 Phosphorylation Site Limits Cleavage Events in Individual Cells Independent of Any Repair Defect

    Directory of Open Access Journals (Sweden)

    Susannah L. Hewitt

    2017-10-01

    Full Text Available Many DNA lesions associated with lymphoid malignancies are linked to off-target cleavage by the RAG1/2 recombinase. However, off-target cleavage has mostly been analyzed in the context of DNA repair defects, confounding any mechanistic understanding of cleavage deregulation. We identified a conserved SQ phosphorylation site on RAG2 365 to 366 that is involved in feedback control of RAG cleavage. Mutation of serine 365 to a non-phosphorylatable alanine permits bi-allelic and bi-locus RAG-mediated breaks in the same cell, leading to reciprocal translocations. This phenomenon is analogous to the phenotype we described for ATM kinase inactivation. Here, we establish deregulated cleavage itself as a driver of chromosomal instability without the associated repair defect. Intriguingly, a RAG2-S365E phosphomimetic rescues the deregulated cleavage of ATM inactivation, reducing the incidence of reciprocal translocations. These data support a model in which feedback control of cleavage and maintenance of genome stability involves ATM-mediated phosphorylation of RAG2.

  9. Coupling fibroblast growth factor 23 production and cleavage: iron deficiency, rickets, and kidney disease.

    Science.gov (United States)

    Wolf, Myles; White, Kenneth E

    2014-07-01

    High levels of fibroblast growth factor 23 (FGF23) cause the rare disorders of hypophosphatemic rickets and are a risk factor for cardiovascular disease and death in patients with chronic kidney disease (CKD). Despite major advances in understanding FGF23 biology, fundamental aspects of FGF23 regulation in health and in CKD remain mostly unknown. Autosomal dominant hypophosphatemic rickets (ADHR) is caused by gain-of-function mutations in FGF23 that prevent its proteolytic cleavage, but affected individuals experience a waxing and waning course of phosphate wasting. This led to the discovery that iron deficiency is an environmental trigger that stimulates FGF23 expression and hypophosphatemia in ADHR. Unlike osteocytes in ADHR, normal osteocytes couple increased FGF23 production with commensurately increased FGF23 cleavage to ensure that normal phosphate homeostasis is maintained in the event of iron deficiency. Simultaneous measurement of FGF23 by intact and C-terminal assays supported these breakthroughs by providing minimally invasive insight into FGF23 production and cleavage in bone. These findings also suggest a novel mechanism of FGF23 elevation in patients with CKD, who are often iron deficient and demonstrate increased FGF23 production and decreased FGF23 cleavage, consistent with an acquired state that mimics the molecular pathophysiology of ADHR. Iron deficiency stimulates FGF23 production, but normal osteocytes couple increased FGF23 production with increased cleavage to maintain normal circulating levels of biologically active hormone. These findings uncover a second level of FGF23 regulation within osteocytes, failure of which culminates in elevated levels of biologically active FGF23 in ADHR and perhaps CKD.

  10. Developing a capillary electrophoresis based method for dynamically monitoring enzyme cleavage activity using quantum dots-peptide assembly.

    Science.gov (United States)

    Wang, Jianhao; Fan, Jie; Liu, Li; Ding, Shumin; Liu, Xiaoqian; Wang, Jianpeng; Gao, Liqian; Chattopadhaya, Souvik; Miao, Peng; Xia, Jiang; Qiu, Lin; Jiang, Pengju

    2017-10-01

    Herein, a novel assay has been developed for monitoring PreScission protease (His-PSP) mediated enzyme cleavage of ATTO 590 labeled peptide substrate (ATTO-LEV). This novel method is based on combining the use of capillary electrophoresis and fluorescence detection (CE-FL) to dynamically monitor the enzyme cleavage activity. A multivalent peptide substrate was first constructed by immobilizing His-tagged ATTO 590 labeled peptide substrate (ATTO-LEVH6) onto the surface of CdSe/ZnS quantum dots (QDs). Once successfully immobilized, the novel multivalent peptide substrate resulted in the Förster resonance energy transfer (FRET) from QDs to ATTO 590. The ATTO-LEVH6-QD assembly was then incubated with His-PSP to study the proteolytic cleavage of surface bound ATTO-LEVH6 by CE-FL. Our data suggests that PreScission-mediated proteolytic cleavage is enzyme concentration- and incubation time-dependent. By combining capillary electrophoresis, QDs and FRET, our study herein not only provides a new method for the detection and dynamically monitoring of PSP enzyme cleavage activity, but also can be extended to the detection of many other enzymes and proteases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Ballistic fractures: indirect fracture to bone.

    Science.gov (United States)

    Dougherty, Paul J; Sherman, Don; Dau, Nathan; Bir, Cynthia

    2011-11-01

    Two mechanisms of injury, the temporary cavity and the sonic wave, have been proposed to produce indirect fractures as a projectile passes nearby in tissue. The purpose of this study is to evaluate the temporal relationship of pressure waves using strain gauge technology and high-speed video to elucidate whether the sonic wave, the temporary cavity, or both are responsible for the formation of indirect fractures. Twenty-eight fresh frozen cadaveric diaphyseal tibia (2) and femurs (26) were implanted into ordnance gelatin blocks. Shots were fired using 9- and 5.56-mm bullets traversing through the gelatin only, passing close to the edge of the bone, but not touching, to produce an indirect fracture. High-speed video of the impact event was collected at 20,000 frames/s. Acquisition of the strain data were synchronized with the video at 20,000 Hz. The exact time of fracture was determined by analyzing and comparing the strain gauge output and video. Twenty-eight shots were fired, 2 with 9-mm bullets and 26 with 5.56-mm bullets. Eight indirect fractures that occurred were of a simple (oblique or wedge) pattern. Comparison of the average distance of the projectile from the bone was 9.68 mm (range, 3-20 mm) for fractured specimens and 15.15 mm (range, 7-28 mm) for nonfractured specimens (Student's t test, p = 0.036). In this study, indirect fractures were produced after passage of the projectile. Thus, the temporary cavity, not the sonic wave, was responsible for the indirect fractures.

  12. Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2005-10-01

    The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been the focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.

  13. Hydraulic fracture propagation modeling and data-based fracture identification

    Science.gov (United States)

    Zhou, Jing

    Successful shale gas and tight oil production is enabled by the engineering innovation of horizontal drilling and hydraulic fracturing. Hydraulically induced fractures will most likely deviate from the bi-wing planar pattern and generate complex fracture networks due to mechanical interactions and reservoir heterogeneity, both of which render the conventional fracture simulators insufficient to characterize the fractured reservoir. Moreover, in reservoirs with ultra-low permeability, the natural fractures are widely distributed, which will result in hydraulic fractures branching and merging at the interface and consequently lead to the creation of more complex fracture networks. Thus, developing a reliable hydraulic fracturing simulator, including both mechanical interaction and fluid flow, is critical in maximizing hydrocarbon recovery and optimizing fracture/well design and completion strategy in multistage horizontal wells. A novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple nonplanar fractures' propagation in both homogeneous and heterogeneous reservoirs with or without pre-existing natural fractures. Initiation, growth, and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. This physics-based modeling approach leads to realistic fracture patterns without using the empirical rock failure and fracture propagation criteria required in conventional continuum methods. Based on this model, a sensitivity study is performed to investigate the effects of perforation spacing, in-situ stress anisotropy, rock properties (Young's modulus, Poisson's ratio, and compressive strength), fluid properties, and natural fracture properties on hydraulic fracture propagation. In addition, since reservoirs are buried thousands of feet below the surface, the

  14. Distinguishing stress fractures from pathologic fractures: a multimodality approach

    International Nuclear Information System (INIS)

    Fayad, Laura M.; Kamel, Ihab R.; Kawamoto, Satomi; Bluemke, David A.; Fishman, Elliot K.; Frassica, Frank J.

    2005-01-01

    Whereas stress fractures occur in normal or metabolically weakened bones, pathologic fractures occur at the site of a bone tumor. Unfortunately, stress fractures may share imaging features with pathologic fractures on plain radiography, and therefore other modalities are commonly utilized to distinguish these entities. Additional cross-sectional imaging with CT or MRI as well as scintigraphy and PET scanning is often performed for further evaluation. For the detailed assessment of a fracture site, CT offers a high-resolution view of the bone cortex and periosteum which aids the diagnosis of a pathologic fracture. The character of underlying bone marrow patterns of destruction can also be ascertained along with evidence of a soft tissue mass. MRI, however, is a more sensitive technique for the detection of underlying bone marrow lesions at a fracture site. In addition, the surrounding soft tissues, including possible involvement of adjacent muscle, can be well evaluated with MRI. While bone scintigraphy and FDG-PET are not specific, they offer a whole-body screen for metastases in the case of a suspected malignant pathologic fracture. In this review, we present select examples of fractures that underscore imaging features that help distinguish stress fractures from pathologic fractures, since accurate differentiation of these entities is paramount. (orig.)

  15. Double segmental tibial fractures - an unusual fracture pattern

    Directory of Open Access Journals (Sweden)

    Bali Kamal

    2012-02-01

    Full Text Available 【Abstract】A case of a 50-year-old pedestrian who was hit by a bike and suffered fractures of both bones of his right leg was presented. Complete clinical and radiographic assessment showed double segmental fractures of the tibia and multisegmental fractures of the fibula. Review of the literature revealed that this fracture pattern was unique and only a single case was reported so far. Moreover, we discussed the possible mechanisms which can lead to such an injury. We also discussed the management of segmental tibial fracture and the difficulties encountered with them. This case was managed by modern osteosynthesis tech- nique with a pleasing outcome. Key words: Fracture, bone; Tibia; Fibula; Nails

  16. Ankle fracture spur sign is pathognomonic for a variant ankle fracture.

    Science.gov (United States)

    Hinds, Richard M; Garner, Matthew R; Lazaro, Lionel E; Warner, Stephen J; Loftus, Michael L; Birnbaum, Jacqueline F; Burket, Jayme C; Lorich, Dean G

    2015-02-01

    The hyperplantarflexion variant ankle fracture is composed of a posterior tibial lip fracture with posterolateral and posteromedial fracture fragments separated by a vertical fracture line. This infrequently reported injury pattern often includes an associated "spur sign" or double cortical density at the inferomedial tibial metaphysis. The objective of this study was to quantitatively establish the association of the ankle fracture spur sign with the hyperplantarflexion variant ankle fracture. Our clinical database of operative ankle fractures was retrospectively reviewed for the incidence of hyperplantarflexion variant and nonvariant ankle fractures as determined by assessment of injury radiographs, preoperative advanced imaging, and intraoperative observation. Injury radiographs were then evaluated for the presence of the spur sign, and association between the spur sign and variant fractures was analyzed. The incidence of the hyperplantarflexion variant fracture among all ankle fractures was 6.7% (43/640). The spur sign was present in 79% (34/43) of variant fractures and absent in all nonvariant fractures, conferring a specificity of 100% in identifying variant fractures. Positive predictive value and negative predictive value were 100% and 99%, respectively. The ankle fracture spur sign was pathognomonic for the hyperplantarflexion variant ankle fracture. It is important to identify variant fractures preoperatively as patient positioning, operative approach, and fixation construct of variant fractures often differ from those employed for osteosynthesis of nonvariant fractures. Identification of the spur sign should prompt acquisition of advanced imaging to formulate an appropriate operative plan to address the variant fracture pattern. Level III, retrospective comparative study. © The Author(s) 2014.

  17. Association of Ipsilateral Rib Fractures With Displacement of Midshaft Clavicle Fractures.

    Science.gov (United States)

    Stahl, Daniel; Ellington, Matthew; Brennan, Kindyle; Brennan, Michael

    2017-04-01

    To determine whether the presence of ipsilateral rib fractures affects the rate of a clavicle fracture being unstable (>100% displacement). A retrospective review from 2002-2013 performed at a single level 1 trauma center evaluated 243 midshaft clavicle fractures. Single Level 1 trauma center. These fractures were subdivided into those with ipsilateral rib fractures (CIR; n = 149) and those without ipsilateral rib fractures (CnIR; n = 94). The amount of displacement was measured on the initial injury radiograph and subsequent follow-up radiographs. Fractures were classified into either 100% displacement, based on anteroposterior radiographs. Ipsilateral rib fractures were recorded based on which number rib was fractured and the total number of fractured ribs. One hundred sixteen (78%) of the CIR group and 51 (54%) of the CnIR group were found to have >100% displacement at follow-up (P = 0.0047). Seventy-two percent of the CIR group demonstrated progression from 100% displacement of the fracture compared with only 54% of the CnIR group (P fracture to >100% was 4.08 (P = 0.000194) when ribs 1-4 were fractured and not significant for rib fractures 5-8 or 9-12. The presence of concomitant ipsilateral rib fractures significantly increases the rate of midshaft clavicle fractures being >100% displaced. In addition, a fracture involving the upper one-third of the ribs significantly increases the rate of the clavicle fracture being >100% displaced on early follow-up. Clavicle fractures with associated ipsilateral rib fractures tend to demonstrate an increased amount of displacement on follow-up radiographs compared with those without ipsilateral rib fractures. Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence.

  18. [Cleavage of DNA fragments induced by UV nanosecond laser excitation at 193 nm].

    Science.gov (United States)

    Vtiurina, N N; Grokhovskiĭ, S L; Filimonov, I V; Medvedkov, O I; Nechipurenko, D Iu; Vasil'ev, S A; Nechipurenko, Iu D

    2011-01-01

    The cleavage of dsDNA fragments in aqueous solution after irradiation with UV laser pulses at 193 nm has been studied. Samples were investigated using polyacrylamide gel electrophoresis. The intensity of damage of particular phosphodiester bond after hot alkali treatment was shown to depend on the base pair sequence. It was established that the probability of cleavage is twice higher for sites of DNA containing two or more successively running guanine residues. A possible mechanism of damage to the DNA molecule connected with the migration of holes along the helix is discussed.

  19. Affect of Presenilin Mutations on APP Cleavage; Insights into the Pathogenesis of FAD

    Directory of Open Access Journals (Sweden)

    Nuomin eLi

    2016-03-01

    Full Text Available Alzheimer disease (AD is characterized by progressive memory loss, reduction in cognitive functions, and damage to the brain. The β-amyloid precursor protein can be sequentially cleaved by β- secretase and γ-secretase. Mutations in the presenilin1(PS1) are the most common cause of Familial Alzheimer’s disease ( FAD. PS1 mutations can alter the activity of γ-secretase on the cleavage of the β-amyloid precursor protein, causing increased Aβ production. Previous studies show that the βAPP-C-terminal fragment is first cleaved by β-scretase, primarily generating long fragments of Aβ48 and Aβ49, followed by the stepwise cleavage of every three amino acid residues at the C terminus, resulting in Aβ48-, 45-, 42 line and Aβ49-, 46-, 43-, 40 line. Here, we used LC-MS/MS to analyze unique peptides IAT, VVIA, ITL,TVI,IVI through sequential cleavage, combined with ELISA to test the level of Aβ42 and Aβ40 for validation. The results show that most FAD mutant PS1 can alter the level of Aβ42 and Aβ40 monitored by the Aβ42/Aβ40 ratio. Among them, 6 mutants (I143T, H163P, S170F, Q223R, M233V and G384A affect the Aβ42/40 ratio through both Aβ49-40 and Aβ48-38 lines; L166P through decreasing the Aβ49-40 line, 6 mutants (I143V, M146V, G217A, E280A, L381V and L392V through increasing the Aβ48-42 line. More importantly, we found some mutations can affect the γ-secretase cleavage preference of α-CTF and β-CTF. In conclusion, we found that the FAD PS1 mutations mainly increase the generation of Aβ42 by decreasing the cleavage of Aβ42-Aβ38 and Aβ43-Aβ40.

  20. High-resolution characterization of sequence signatures due to non-random cleavage of cell-free DNA.

    Science.gov (United States)

    Chandrananda, Dineika; Thorne, Natalie P; Bahlo, Melanie

    2015-06-17

    High-throughput sequencing of cell-free DNA fragments found in human plasma has been used to non-invasively detect fetal aneuploidy, monitor organ transplants and investigate tumor DNA. However, many biological properties of this extracellular genetic material remain unknown. Research that further characterizes circulating DNA could substantially increase its diagnostic value by allowing the application of more sophisticated bioinformatics tools that lead to an improved signal to noise ratio in the sequencing data. In this study, we investigate various features of cell-free DNA in plasma using deep-sequencing data from two pregnant women (>70X, >50X) and compare them with matched cellular DNA. We utilize a descriptive approach to examine how the biological cleavage of cell-free DNA affects different sequence signatures such as fragment lengths, sequence motifs at fragment ends and the distribution of cleavage sites along the genome. We show that the size distributions of these cell-free DNA molecules are dependent on their autosomal and mitochondrial origin as well as the genomic location within chromosomes. DNA mapping to particular microsatellites and alpha repeat elements display unique size signatures. We show how cell-free fragments occur in clusters along the genome, localizing to nucleosomal arrays and are preferentially cleaved at linker regions by correlating the mapping locations of these fragments with ENCODE annotation of chromatin organization. Our work further demonstrates that cell-free autosomal DNA cleavage is sequence dependent. The region spanning up to 10 positions on either side of the DNA cleavage site show a consistent pattern of preference for specific nucleotides. This sequence motif is present in cleavage sites localized to nucleosomal cores and linker regions but is absent in nucleosome-free mitochondrial DNA. These background signals in cell-free DNA sequencing data stem from the non-random biological cleavage of these fragments. This

  1. Embryo apoptosis identification: Oocyte grade or cleavage stage?

    Science.gov (United States)

    Bakri, Noraina Mohd; Ibrahim, Siti Fatimah; Osman, Nurul Atikah; Hasan, Nurhaslina; Jaffar, Farah Hanan Fathihah; Rahman, Zulaiha Abdul; Osman, Khairul

    2015-01-01

    Apoptosis is a programed cell death that is vital for tissue homeostasis. However, embryo apoptosis had been known to be related to embryo fragmentation which should be avoided in in vitro fertilization (IVF). The purpose of this study was to evaluate the relationship of embryo apoptosis with the grade of immature oocytes and cleavage stage of in vitro produced (IVP) cattle embryos. This study consisted of 345 oocytes collected through ovary slicing. Immature oocytes were graded as A, B and C. This grading was based on cumulus cell thickness and compactness. All oocytes then underwent an in vitro maturation (IVM) procedure. An IVF was done 24 h after IVM culture. Prior to staining, stage of cleaved embryos was determined and classified as either 2, 4, 8 or >8-cell embryo stage. Apoptosis status of cleaved IVP embryos was determined by using annexin V-FITC staining technique at 48 and 72 h post insemination (hpi). Apoptosis status for each embryo was classified as either early or late. The result showed that there was no significant difference (p > 0.05) of apoptosis status among grade A, B and C embryos. All grades of oocytes showed embryo apoptosis where 1.5% late apoptosis for grade A, 4.5% and 10.4% of early and late apoptosis for grade B and grade C. Early apoptosis was not seen in grade A embryo. We also noted no significant difference (p > 0.05) of apoptosis status between 2, 4, 8 and >8-cell embryo stage. Early apoptosis was also not seen in >8-cell stage. Even though there were no differences in apoptosis expression between the three classes, the cleavage rate of grade A oocytes was significantly higher (p < 0.01) than grade B and grade C. In conclusion, the apoptosis expression in the embryo can occur regardless of the oocyte quality and the cleavage stage of the embryo produced. PMID:26858565

  2. Flow characteristics through a single fracture of artificial fracture system

    International Nuclear Information System (INIS)

    Park, Byoung Yoon; Bae, Dae Seok; Kim, Chun Soo; Kim, Kyung Su; Koh, Young Kwon; Jeon, Seok Won

    2001-04-01

    Fracture flow in rock masses is one of the most important issues in petroleum engineering, geology, and hydrogeology. Especially, in case of the HLW disposal, groundwater flow in fractures is an important factor in the performance assessment of the repository because the radionuclides move along the flowing groundwater through fractures. Recently, the characterization of fractures and the modeling of fluid flow in fractures are studied by a great number of researchers. Among those studies, the hydraulic behavior in a single fracture is one of the basic issues for understanding of fracture flow in rockmass. In this study, a fluid flow test in the single fracture made of transparent epoxy replica was carried out to obtain the practical exponent values proposed from the Cubic law and to estimate the flow rates through a single fracture. Not only the relationship between flow rates and the geometry of fracture was studied, but also the various statistical parameters of fracture geometry were compared to the effective transmissivity data obtained from computer simulation.

  3. A Rare Nasal Bone Fracture: Anterior Nasal Spine Fracture

    Directory of Open Access Journals (Sweden)

    Egemen Kucuk

    2014-04-01

    Full Text Available Anterior nasal spine fractures are a quite rare type of nasal bone fractures. Associated cervical spine injuries are more dangerous than the nasal bone fracture. A case of the anterior nasal spine fracture, in a 18-year-old male was presented. Fracture of the anterior nasal spine, should be considered in the differential diagnosis of the midface injuries and also accompanying cervical spine injury should not be ignored.

  4. Acoustic emission measurements during impacts tests for determining ductile fracture data

    International Nuclear Information System (INIS)

    Richter, H.

    2000-09-01

    The document reports work for further development of methods and tests to obtain better information on the crack initiation toughness (J id ) under impact loading conditions, by acoustic emission measurements. The applicability of the acoustic emission tests for the given purpose was proven by instrumented Charpy tests using modified ISO-V specimens. The physical crack initiation toughness served as the reference value for reliable evaluation of the characteristic data obtained. This reference value is derived from the crack resistance curve determined by the multi-specimen cleavage fracture method combined with data from measurements of the stretching zone width. Verification of the acoustic emission-defined initiation value included a variety of tests, as e.g. additional dynamic single-specimen methods (L-COD, magnetic emission), and supplementary tests (D3PB, pendulum impact testing machine). The test materials are various steels with different strength/toughness properties. (orig./CB) [de

  5. Dual CRISPR-Cas9 Cleavage Mediated Gene Excision and Targeted Integration in Yarrowia lipolytica.

    Science.gov (United States)

    Gao, Difeng; Smith, Spencer; Spagnuolo, Michael; Rodriguez, Gabriel; Blenner, Mark

    2018-05-29

    CRISPR-Cas9 technology has been successfully applied in Yarrowia lipolytica for targeted genomic editing including gene disruption and integration; however, disruptions by existing methods typically result from small frameshift mutations caused by indels within the coding region, which usually resulted in unnatural protein. In this study, a dual cleavage strategy directed by paired sgRNAs is developed for gene knockout. This method allows fast and robust gene excision, demonstrated on six genes of interest. The targeted regions for excision vary in length from 0.3 kb up to 3.5 kb and contain both non-coding and coding regions. The majority of the gene excisions are repaired by perfect nonhomologous end-joining without indel. Based on this dual cleavage system, two targeted markerless integration methods are developed by providing repair templates. While both strategies are effective, homology mediated end joining (HMEJ) based method are twice as efficient as homology recombination (HR) based method. In both cases, dual cleavage leads to similar or improved gene integration efficiencies compared to gene excision without integration. This dual cleavage strategy will be useful for not only generating more predictable and robust gene knockout, but also for efficient targeted markerless integration, and simultaneous knockout and integration in Y. lipolytica. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Porcine deltacoronavirus nsp5 inhibits interferon-β production through the cleavage of NEMO.

    Science.gov (United States)

    Zhu, Xinyu; Fang, Liurong; Wang, Dang; Yang, Yuting; Chen, Jiyao; Ye, Xu; Foda, Mohamed Frahat; Xiao, Shaobo

    2017-02-01

    Porcine deltacoronavirus (PDCoV) causes acute enteric disease and mortality in seronegative neonatal piglets. Previously we have demonstrated that PDCoV infection suppresses the production of interferon-beta (IFN-β), while the detailed mechanisms are poorly understood. Here, we demonstrate that nonstructural protein 5 (nsp5) of PDCoV, the 3C-like protease, significantly inhibits Sendai virus (SEV)-induced IFN-β production by targeting the NF-κB essential modulator (NEMO), confirmed by the diminished function of NEMO cleaved by PDCoV. The PDCoV nsp5 cleavage site in the NEMO protein was identified as glutamine 231, and was identical to the porcine epidemic diarrhea virus nsp5 cleavage site, revealing the likelihood of a common target in NEMO for coronaviruses. Furthermore, this cleavage impaired the ability of NEMO to activate the IFN response and downstream signaling. Taken together, our findings reveal PDCoV nsp5 to be a newly identified IFN antagonist and enhance the understanding of immune evasion by deltacoronaviruses. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Cas9-catalyzed DNA Cleavage Generates Staggered Ends: Evidence from Molecular Dynamics Simulations

    Science.gov (United States)

    Zuo, Zhicheng; Liu, Jin

    2016-11-01

    The CRISPR-associated endonuclease Cas9 from Streptococcus pyogenes (spCas9) along with a single guide RNA (sgRNA) has emerged as a versatile toolbox for genome editing. Despite recent advances in the mechanism studies on spCas9-sgRNA-mediated double-stranded DNA (dsDNA) recognition and cleavage, it is still unclear how the catalytic Mg2+ ions induce the conformation changes toward the catalytic active state. It also remains controversial whether Cas9 generates blunt-ended or staggered-ended breaks with overhangs in the DNA. To investigate these issues, here we performed the first all-atom molecular dynamics simulations of the spCas9-sgRNA-dsDNA system with and without Mg2+ bound. The simulation results showed that binding of two Mg2+ ions at the RuvC domain active site could lead to structurally and energetically favorable coordination ready for the non-target DNA strand cleavage. Importantly, we demonstrated with our simulations that Cas9-catalyzed DNA cleavage produces 1-bp staggered ends rather than generally assumed blunt ends.

  8. Fracture of the styloid process associated with the mandible fracture

    Directory of Open Access Journals (Sweden)

    K N Dubey

    2013-01-01

    Full Text Available Fracture of the styloid process (SP of temporal bone is an uncommon injuries. Fracture of the SP can be associated with the facial injuries including mandible fracture. However, injury to the SP may be concealed and missed diagnosis may lead to the improper or various unnecessary treatments. A rare case of SP fracture associated with the ipsilateral mandibular fracture and also the diagnostic and management considerations of the SP fracture are discussed.

  9. Coupled processes in single fractures, double fractures and fractured porous media

    International Nuclear Information System (INIS)

    Tsang, C.F.

    1986-12-01

    The emplacement of a nuclear waste repository in a fractured porous medium provides a heat source of large dimensions over an extended period of time. It also creates a large cavity in the rock mass, changing significantly the stress field. Such major changes induce various coupled thermohydraulic, hydromechanic and hydrochemical transport processes in the environment around a nuclear waste repository. The present paper gives, first, a general overview of the coupled processes involving thermal, mechanical, hydrological and chemical effects. Then investigations of a number of specific coupled processes are described in the context of fluid flow and transport in a single fracture, two intersecting fractures and a fractured porous medium near a nuclear waste repository. The results are presented and discussed

  10. Facial Fractures.

    Science.gov (United States)

    Ghosh, Rajarshi; Gopalkrishnan, Kulandaswamy

    2018-06-01

    The aim of this study is to retrospectively analyze the incidence of facial fractures along with age, gender predilection, etiology, commonest site, associated dental injuries, and any complications of patients operated in Craniofacial Unit of SDM College of Dental Sciences and Hospital. This retrospective study was conducted at the Department of OMFS, SDM College of Dental Sciences, Dharwad from January 2003 to December 2013. Data were recorded for the cause of injury, age and gender distribution, frequency and type of injury, localization and frequency of soft tissue injuries, dentoalveolar trauma, facial bone fractures, complications, concomitant injuries, and different treatment protocols.All the data were analyzed using statistical analysis that is chi-squared test. A total of 1146 patients reported at our unit with facial fractures during these 10 years. Males accounted for a higher frequency of facial fractures (88.8%). Mandible was the commonest bone to be fractured among all the facial bones (71.2%). Maxillary central incisors were the most common teeth to be injured (33.8%) and avulsion was the most common type of injury (44.6%). Commonest postoperative complication was plate infection (11%) leading to plate removal. Other injuries associated with facial fractures were rib fractures, head injuries, upper and lower limb fractures, etc., among these rib fractures were seen most frequently (21.6%). This study was performed to compare the different etiologic factors leading to diverse facial fracture patterns. By statistical analysis of this record the authors come to know about the relationship of facial fractures with gender, age, associated comorbidities, etc.

  11. Predictors of hepatitis B cure using gene therapy to deliver DNA cleavage enzymes: a mathematical modeling approach.

    Directory of Open Access Journals (Sweden)

    Joshua T Schiffer

    Full Text Available Most chronic viral infections are managed with small molecule therapies that inhibit replication but are not curative because non-replicating viral forms can persist despite decades of suppressive treatment. There are therefore numerous strategies in development to eradicate all non-replicating viruses from the body. We are currently engineering DNA cleavage enzymes that specifically target hepatitis B virus covalently closed circular DNA (HBV cccDNA, the episomal form of the virus that persists despite potent antiviral therapies. DNA cleavage enzymes, including homing endonucleases or meganucleases, zinc-finger nucleases (ZFNs, TAL effector nucleases (TALENs, and CRISPR-associated system 9 (Cas9 proteins, can disrupt specific regions of viral DNA. Because DNA repair is error prone, the virus can be neutralized after repeated cleavage events when a target sequence becomes mutated. DNA cleavage enzymes will be delivered as genes within viral vectors that enter hepatocytes. Here we develop mathematical models that describe the delivery and intracellular activity of DNA cleavage enzymes. Model simulations predict that high vector to target cell ratio, limited removal of delivery vectors by humoral immunity, and avid binding between enzyme and its DNA target will promote the highest level of cccDNA disruption. Development of de novo resistance to cleavage enzymes may occur if DNA cleavage and error prone repair does not render the viral episome replication incompetent: our model predicts that concurrent delivery of multiple enzymes which target different vital cccDNA regions, or sequential delivery of different enzymes, are both potentially useful strategies for avoiding multi-enzyme resistance. The underlying dynamics of cccDNA persistence are unlikely to impact the probability of cure provided that antiviral therapy is given concurrently during eradication trials. We conclude by describing experiments that can be used to validate the model, which

  12. Chance Fracture Secondary to a Healed Kyphotic Compression Osteoporotic Fracture

    Directory of Open Access Journals (Sweden)

    Teh KK

    2009-11-01

    Full Text Available Chance fracture is an unstable vertebral fracture, which usually results from a high velocity injury. An elderly lady with a previously healed osteoporotic fracture of the T12 and L1 vertebra which resulted in a severe kyphotic deformity subsequently sustained a Chance fracture of the adjacent L2 vertebrae after a minor fall. The previously fracture left her with a deformity which resulted in significant sagittal imbalance therefore predisposing her to this fracture. This case highlights the importance of aggressive treatment of osteoporotic fractures in order to prevent significant sagittal imbalance from resultant (i.e. kyphotic deformity.

  13. Active site mutations change the cleavage specificity of neprilysin.

    Directory of Open Access Journals (Sweden)

    Travis Sexton

    Full Text Available Neprilysin (NEP, a member of the M13 subgroup of the zinc-dependent endopeptidase family is a membrane bound peptidase capable of cleaving a variety of physiological peptides. We have generated a series of neprilysin variants containing mutations at either one of two active site residues, Phe(563 and Ser(546. Among the mutants studied in detail we observed changes in their activity towards leucine(5-enkephalin, insulin B chain, and amyloid β(1-40. For example, NEP(F563I displayed an increase in preference towards cleaving leucine(5-enkephalin relative to insulin B chain, while mutant NEP(S546E was less discriminating than neprilysin. Mutants NEP(F563L and NEP(S546E exhibit different cleavage site preferences than neprilysin with insulin B chain and amyloid ß(1-40 as substrates. These data indicate that it is possible to alter the cleavage site specificity of neprilysin opening the way for the development of substrate specific or substrate exclusive forms of the enzyme with enhanced therapeutic potential.

  14. Cleavage of thymine N3-H bonds by low-energy electrons attached to base π* orbitals

    International Nuclear Information System (INIS)

    Theodore, Magali; Sobczyk, Monika; Simons, Jack

    2006-01-01

    In this work, we extend our earlier studies on single strand break (SSB) formation in DNA to consider the possibility of cleaving a thymine N 3 -H bond to generate a nitrogen-centered anion and a hydrogen radical which might proceed to induce further bond cleavages. In earlier studies, we considered SSBs induced by low-energy electrons that attach to DNA bases' π* orbitals or to phosphate P=O π* orbitals to cleave sugar-phosphate C-O bonds or base-sugar N 1 -C bonds. We also studied the effects of base π-stacking on the rates of such bond cleavages. To date, our results suggest that sugar-phosphate C-O bonds have the lowest barriers to cleavage, that attachment of electrons with energies below 2 eV most likely occurs at the base π* orbitals, that electrons with energy above 2 eV can also attach to phosphate P=O π* orbitals, and that base π stacking has a modest but slowing effect on the rates of SSB formation. However, we had not yet examined the possibility that base N 3 -H bonds could rupture subsequent to base π* orbital capture. In the present work, the latter possibility is considered and it is found that the barrier to cleavage of the N 3 -H bond in thymine is considerably higher than for cleaving sugar-phosphate C-O bonds, so our prediction that SSB formation is dominated by C-O bond cleavage remains intact

  15. Hip Fracture

    Science.gov (United States)

    ... hip fractures in people of all ages. In older adults, a hip fracture is most often a result of a fall from a standing height. In people with very weak bones, a hip fracture can occur simply by standing on the leg and twisting. Risk factors The rate of hip fractures increases substantially with ...

  16. Effects of Olive Metabolites on DNA Cleavage Mediated by Human Type II Topoisomerases

    Science.gov (United States)

    2016-01-01

    Several naturally occurring dietary polyphenols with chemopreventive or anticancer properties are topoisomerase II poisons. To identify additional phytochemicals that enhance topoisomerase II-mediated DNA cleavage, a library of 341 Mediterranean plant extracts was screened for activity against human topoisomerase IIα. An extract from Phillyrea latifolia L., a member of the olive tree family, displayed high activity against the human enzyme. On the basis of previous metabolomics studies, we identified several polyphenols (hydroxytyrosol, oleuropein, verbascoside, tyrosol, and caffeic acid) as potential candidates for topoisomerase II poisons. Of these, hydroxytyrosol, oleuropein, and verbascoside enhanced topoisomerase II-mediated DNA cleavage. The potency of these olive metabolites increased 10–100-fold in the presence of an oxidant. Hydroxytyrosol, oleuropein, and verbascoside displayed hallmark characteristics of covalent topoisomerase II poisons. (1) The activity of the metabolites was abrogated by a reducing agent. (2) Compounds inhibited topoisomerase II activity when they were incubated with the enzyme prior to the addition of DNA. (3) Compounds were unable to poison a topoisomerase IIα construct that lacked the N-terminal domain. Because hydroxytyrosol, oleuropein, and verbascoside are broadly distributed across the olive family, extracts from the leaves, bark, and fruit of 11 olive tree species were tested for activity against human topoisomerase IIα. Several of the extracts enhanced enzyme-mediated DNA cleavage. Finally, a commercial olive leaf supplement and extra virgin olive oils pressed from a variety of Olea europea subspecies enhanced DNA cleavage mediated by topoisomerase IIα. Thus, olive metabolites appear to act as topoisomerase II poisons in complex formulations intended for human dietary consumption. PMID:26132160

  17. Effects of degradation on the mechanical properties and fracture toughness of a steel pressure-vessel weld metal

    International Nuclear Information System (INIS)

    Wu, S.J.; Knott, J.F.

    2003-01-01

    A degradation procedure has been devised to simulate the effect of neutron irradiation on the mechanical properties of a steel pressure-vessel weld metal. The procedure combines the application of cold prestrain together with an embrittling heat treatment to produce an increase in yield stress, a decrease in strain hardening rate, and an increased propensity for brittle intergranular fracture. Fracture tests were carried out using blunt-notch four-point-bend specimens in slow bend over a range of temperatures and the brittle/ductile transition was shown to increase by approximately 110 deg. C as a result of the degradation. Fractographic analysis of specimens broken at low temperatures showed about 30% intergranular failure in combination with transgranular cleavage. Predictions have been made of the ductile-brittle transition curves for the weld metal (sharp crack) fracture toughness in degraded and non-degraded states, based on the notched-bar test results and on finite element analyses of the stress distributions ahead of the notches and sharp cracks. The ductile-brittle transition temperature shift (ΔT=110 deg. C) between non-degraded and degraded weld metal at a notch opening displacement of 0.31 mm was combined with the Ritchie, Knott and Rice (RKR) model to predict an equivalent shift of 115 deg. C for sharp-crack specimens at a toughness level of 70 MN/m 3/2

  18. Ankle fractures have features of an osteoporotic fracture.

    Science.gov (United States)

    Lee, K M; Chung, C Y; Kwon, S S; Won, S H; Lee, S Y; Chung, M K; Park, M S

    2013-11-01

    We report the bone attenuation of ankle joint measured on computed tomography (CT) and the cause of injury in patients with ankle fractures. The results showed age- and gender-dependent low bone attenuation and low-energy trauma in elderly females, which suggest the osteoporotic features of ankle fractures. This study was performed to investigate the osteoporotic features of ankle fracture in terms of bone attenuation and cause of injury. One hundred ninety-four patients (mean age 51.0 years, standard deviation 15.8 years; 98 males and 96 females) with ankle fracture were included. All patients underwent CT examination, and causes of injury (high/low-energy trauma) were recorded. Mean bone attenuations of the talus, medial malleolus, lateral malleolus, and distal tibial metaphysis were measured on CT images. Patients were divided into younger age (fractures than the younger age group. With increasing age, bone attenuations tended to decrease and the difference of bone attenuation between the genders tended to increase in the talus, medial malleolus, lateral malleolus, and distal tibial metaphysis. Ankle fracture had features of osteoporotic fracture that is characterized by age- and gender-dependent low bone attenuation. Ankle fracture should not be excluded from the clinical and research interest as well as from the benefit of osteoporosis management.

  19. A Rare Entity: Bilateral First Rib Fractures Accompanying Bilateral Scapular Fractures

    OpenAIRE

    Gulbahar, Gultekin; Kaplan, Tevfik; Turker, Hasan Bozkurt; Gundogdu, Ahmet Gokhan; Han, Serdar

    2015-01-01

    First rib fractures are scarce due to their well-protected anatomic locations. Bilateral first rib fractures accompanying bilateral scapular fractures are very rare, although they may be together with scapular and clavicular fractures. According to our knowledge, no case of bilateral first rib fractures accompanying bilateral scapular fractures has been reported, so we herein discussed the diagnosis, treatment, and complications of bone fractures due to thoracic trauma in bias of this rare en...

  20. A Rare Entity: Bilateral First Rib Fractures Accompanying Bilateral Scapular Fractures.

    Science.gov (United States)

    Gulbahar, Gultekin; Kaplan, Tevfik; Turker, Hasan Bozkurt; Gundogdu, Ahmet Gokhan; Han, Serdar

    2015-01-01

    First rib fractures are scarce due to their well-protected anatomic locations. Bilateral first rib fractures accompanying bilateral scapular fractures are very rare, although they may be together with scapular and clavicular fractures. According to our knowledge, no case of bilateral first rib fractures accompanying bilateral scapular fractures has been reported, so we herein discussed the diagnosis, treatment, and complications of bone fractures due to thoracic trauma in bias of this rare entity.

  1. Maximizing Selective Cleavages at Aspartic Acid and Proline Residues for the Identification of Intact Proteins

    Science.gov (United States)

    Foreman, David J.; Dziekonski, Eric T.; McLuckey, Scott A.

    2018-04-01

    A new approach for the identification of intact proteins has been developed that relies on the generation of relatively few abundant products from specific cleavage sites. This strategy is intended to complement standard approaches that seek to generate many fragments relatively non-selectively. Specifically, this strategy seeks to maximize selective cleavage at aspartic acid and proline residues via collisional activation of precursor ions formed via electrospray ionization (ESI) under denaturing conditions. A statistical analysis of the SWISS-PROT database was used to predict the number of arginine residues for a given intact protein mass and predict a m/z range where the protein carries a similar charge to the number of arginine residues thereby enhancing cleavage at aspartic acid residues by limiting proton mobility. Cleavage at aspartic acid residues is predicted to be most favorable in the m/z range of 1500-2500, a range higher than that normally generated by ESI at low pH. Gas-phase proton transfer ion/ion reactions are therefore used for precursor ion concentration from relatively high charge states followed by ion isolation and subsequent generation of precursor ions within the optimal m/z range via a second proton transfer reaction step. It is shown that the majority of product ion abundance is concentrated into cleavages C-terminal to aspartic acid residues and N-terminal to proline residues for ions generated by this process. Implementation of a scoring system that weights both ion fragment type and ion fragment area demonstrated identification of standard proteins, ranging in mass from 8.5 to 29.0 kDa. [Figure not available: see fulltext.

  2. The Generation of Dehydroalanine Residues in Protonated Polypeptides: Ion/Ion Reactions for Introducing Selective Cleavages

    Science.gov (United States)

    Peng, Zhou; Bu, Jiexun; McLuckey, Scott A.

    2017-09-01

    We examine a gas-phase approach for converting a subset of amino acid residues in polypeptide cations to dehydroalanine (Dha). Subsequent activation of the modified polypeptide ions gives rise to specific cleavage N-terminal to the Dha residue. This process allows for the incorporation of selective cleavages in the structural characterization of polypeptide ions. An ion/ion reaction within the mass spectrometer between a multiply protonated polypeptide and the sulfate radical anion introduces a radical site into the multiply protonated polypeptide reactant. Subsequent collisional activation of the polypeptide radical cation gives rise to radical side chain loss from one of several particular amino acid side chains (e.g., leucine, asparagine, lysine, glutamine, and glutamic acid) to yield a Dha residue. The Dha residues facilitate preferential backbone cleavages to produce signature c- and z-ions, demonstrated with cations derived from melittin, mechano growth factor (MGF), and ubiquitin. The efficiencies for radical side chain loss and for subsequent generation of specific c- and z-ions have been examined as functions of precursor ion charge state and activation conditions using cations of ubiquitin as a model for a small protein. It is noted that these efficiencies are not strongly dependent on ion trap collisional activation conditions but are sensitive to precursor ion charge state. Moderate to low charge states show the greatest overall yields for the specific Dha cleavages, whereas small molecule losses (e.g., water/ammonia) dominate at the lowest charge states and proton catalyzed amide bond cleavages that give rise to b- and y-ions tend to dominate at high charge states. [Figure not available: see fulltext.

  3. Characterization by notched and precracked Charpy tests of the in-service degradation of RPV steel fracture toughness

    International Nuclear Information System (INIS)

    Fabry, A.

    1997-01-01

    The current engineering and regulatory practice to estimate fracture toughness safety margins for nuclear reactor pressure vessels (RPVs) relies heavily on the CVN impact test. Techniques to estimate in-service toughness degradation directly using a variety of precracked specimens are under development worldwide. Emphasis is on their miniaturization. In the nuclear context, it is essential to address many issues such as representativity of the surveillance programs with respect to the vessel in terms of materials and environment, transferability of test results to the structure (constraint and size effects), lower bound toughness certification, creadibility relative to trends of exising databases. An enhanced RPV surveillance strategy in under development in Belgium. It combines state-of-the-art micromechanical and damage modelling to the evaluation of CVN load-deflection signals, tensile stress-strain curves and slow-bend tests of reconstituted precracked Charpy specimens. A probabilistic micromechanical model has been established for static and dynamic transgranular cleavage initiation fracture toughness in the ductile-brittle transition temperature range. This model allows to project toughness bounds for any steel embrittlement condition from the corresponding CVN and static tensile properties, using a single scaling factor defined by imposing agreement with toughness tests in a single condition. The outstanding finding incorporated by this toughness transfer model is that the microcleavage fracture stress is affected by temperature in the ductile-brittle transition and that this influence is strongly correlated to the flow stress: this explains the shape of the K Ic n K Id temperature curves as well as the actual magnitude of the strain rate and irradiation effects. Furthermore, CVN crack arrest loads and fracture appearance are also taken advantage of in order to estimate K Ia degradation. Finally, the CVN-tensile load-temperature diagram provides substantial

  4. ATP-Dependent C–F Bond Cleavage Allows the Complete Degradation of 4-Fluoroaromatics without Oxygen

    Directory of Open Access Journals (Sweden)

    Oliver Tiedt

    2016-08-01

    Full Text Available Complete biodegradation of the abundant and persistent fluoroaromatics requires enzymatic cleavage of an arylic C–F bond, probably the most stable single bond of a biodegradable organic molecule. While in aerobic microorganisms defluorination of fluoroaromatics is initiated by oxygenases, arylic C–F bond cleavage has never been observed in the absence of oxygen. Here, an oxygen-independent enzymatic aryl fluoride bond cleavage is described during the complete degradation of 4-fluorobenzoate or 4-fluorotoluene to CO2 and HF in the denitrifying Thauera aromatica: the ATP-dependent defluorination of 4-fluorobenzoyl-coenzyme A (4-F-BzCoA to benzoyl-coenzyme A (BzCoA and HF, catalyzed by class I BzCoA reductase (BCR. Adaptation to growth with the fluoroaromatics was accomplished by the downregulation of a promiscuous benzoate-CoA ligase and the concomitant upregulation of 4-F-BzCoA-defluorinating/dearomatizing BCR on the transcriptional level. We propose an unprecedented mechanism for reductive arylic C–F bond cleavage via a Birch reduction-like mechanism resulting in a formal nucleophilic aromatic substitution. In the proposed anionic 4-fluorodienoyl-CoA transition state, fluoride elimination to BzCoA is favored over protonation to a fluorinated cyclic dienoyl-CoA.

  5. Relationships between fractures

    Science.gov (United States)

    Peacock, D. C. P.; Sanderson, D. J.; Rotevatn, A.

    2018-01-01

    Fracture systems comprise many fractures that may be grouped into sets based on their orientation, type and relative age. The fractures are often arranged in a network that involves fracture branches that interact with one another. Interacting fractures are termed geometrically coupled when they share an intersection line and/or kinematically coupled when the displacements, stresses and strains of one fracture influences those of the other. Fracture interactions are characterised in terms of the following. 1) Fracture type: for example, whether they have opening (e.g., joints, veins, dykes), closing (stylolites, compaction bands), shearing (e.g., faults, deformation bands) or mixed-mode displacements. 2) Geometry (e.g., relative orientations) and topology (the arrangement of the fractures, including their connectivity). 3) Chronology: the relative ages of the fractures. 4) Kinematics: the displacement distributions of the interacting fractures. It is also suggested that interaction can be characterised in terms of mechanics, e.g., the effects of the interaction on the stress field. It is insufficient to describe only the components of a fracture network, with fuller understanding coming from determining the interactions between the different components of the network.

  6. A Rare Entity: Bilateral First Rib Fractures Accompanying Bilateral Scapular Fractures

    Directory of Open Access Journals (Sweden)

    Gultekin Gulbahar

    2015-01-01

    Full Text Available First rib fractures are scarce due to their well-protected anatomic locations. Bilateral first rib fractures accompanying bilateral scapular fractures are very rare, although they may be together with scapular and clavicular fractures. According to our knowledge, no case of bilateral first rib fractures accompanying bilateral scapular fractures has been reported, so we herein discussed the diagnosis, treatment, and complications of bone fractures due to thoracic trauma in bias of this rare entity.

  7. Proximal femoral fractures.

    Science.gov (United States)

    Webb, Lawrence X

    2002-01-01

    Fractures of the proximal femur include fractures of the head, neck, intertrochanteric, and subtrochanteric regions. Head fractures commonly accompany dislocations. Neck fractures and intertrochanteric fractures occur with greatest frequency in elderly patients with a low bone mineral density and are produced by low-energy mechanisms. Subtrochanteric fractures occur in a predominantly strong cortical osseous region which is exposed to large compressive stresses. Implants used to address these fractures must be able to accommodate significant loads while the fractures consolidate. Complications secondary to these injuries produce significant morbidity and include infection, nonunion, malunion, decubitus ulcers, fat emboli, deep venous thrombosis, pulmonary embolus, pneumonia, myocardial infarction, stroke, and death.

  8. Fracture mechanisms and fracture control in composite structures

    Science.gov (United States)

    Kim, Wone-Chul

    Four basic failure modes--delamination, delamination buckling of composite sandwich panels, first-ply failure in cross-ply laminates, and compression failure--are analyzed using linear elastic fracture mechanics (LEFM) and the J-integral method. Structural failures, including those at the micromechanical level, are investigated with the aid of the models developed, and the critical strains for crack propagation for each mode are obtained. In the structural fracture analyses area, the fracture control schemes for delamination in a composite rib stiffener and delamination buckling in composite sandwich panels subjected to in-plane compression are determined. The critical fracture strains were predicted with the aid of LEFM for delamination and the J-integral method for delamination buckling. The use of toughened matrix systems has been recommended for improved damage tolerant design for delamination crack propagation. An experimental study was conducted to determine the onset of delamination buckling in composite sandwich panel containing flaws. The critical fracture loads computed using the proposed theoretical model and a numerical computational scheme closely followed the experimental measurements made on sandwich panel specimens of graphite/epoxy faceskins and aluminum honeycomb core with varying faceskin thicknesses and core sizes. Micromechanical models of fracture in composites are explored to predict transverse cracking of cross-ply laminates and compression fracture of unidirectional composites. A modified shear lag model which takes into account the important role of interlaminar shear zones between the 0 degree and 90 degree piles in cross-ply laminate is proposed and criteria for transverse cracking have been developed. For compressive failure of unidirectional composites, pre-existing defects play an important role. Using anisotropic elasticity, the stress state around a defect under a remotely applied compressive load is obtained. The experimentally

  9. Mechanisms for lymphocytic choriomeningitis virus glycoprotein cleavage, transport, and incorporation into virions

    International Nuclear Information System (INIS)

    Kunz, Stefan; Edelmann, Kurt H.; Torre, Juan-Carlos de la; Gorney, Robert; Oldstone, Michael B.A.

    2003-01-01

    The glycoprotein (GP) of lymphocytic choriomeningitis virus (LCMV) serves as virus attachment protein to its receptor on host cells and is a key determinant for cell tropism, pathogenesis, and epidemiology of the virus. The GP of LCMV is posttranslationally cleaved by the subtilase SKI-1/S1P into two subunits, the peripheral GP1, which is implicated in receptor binding, and the transmembrane GP2 that is structurally similar to the fusion active membrane proximal portions of the glycoproteins of other enveloped viruses. The present study shows that cleavage by SKI-1/S1P is not required for cell surface expression of LCMVGP on infected cells but is essential for its incorporation into virions and for the production of infectious virus particles. In absence of SKI-1/S1P cleavage, cell-to-cell propagation of the virus was markedly reduced. Further, proteolytic processing of LCMVGP depends on the presence of a cluster of basic amino acids at the C-terminus of the cytoplasmic domain of GP2, a structural motif that is conserved in Old World arenaviruses. The effect of the truncation of the cytoplasmic tail on cleavage suggests a structural interdependence between the cytoplasmic domain and the ectodomains of LCMVGP

  10. Sequence specific inhibition of DNA restriction enzyme cleavage by PNA

    DEFF Research Database (Denmark)

    Nielsen, P.E.; Egholm, M.; Berg, R.H.

    1993-01-01

    Plasmids containing double-stranded 10-mer PNA (peptide nucleic acid chimera) targets proximally flanked by two restriction enzyme sites were challenged with the complementary PNA or PNAs having one or two mismatches, and the effect on the restriction enzyme cleavage of the flanking sites was ass...

  11. Cleavage of desmin by cysteine proteases: Calpains and cathepsin B

    DEFF Research Database (Denmark)

    Baron, Caroline; Jacobsen, S.; Purslow, P.P.

    2004-01-01

    The intermediate filament protein, desmin, was purified from pork longissimus dorsi and incubated with either P-calpain, m-calpain or cathepsin B. Proteolysis of desmin was followed using SDS-PAGE and Western blotting. After incubation of desmin with the proteases, cleavage sites on the desmin mo...

  12. Dating fractures and fracture movement in the Lac du Bonnet Batholith

    International Nuclear Information System (INIS)

    Gascoyne, M.; Brown, A.; Ejeckam, R.B.; Everitt, R.A.

    1997-04-01

    This report examines and summarizes all work that has been done from 1980 to the present in determining the age of rock crystallization, fracture initiation, fracture reactivation and rates of fracture movement in the Lac du Bonnet Batholith to provide information for Atomic Energy of Canada Limited's (AECL) Canadian Nuclear Fuel Waste Management Program. Geological and petrographical indicators of relative age (e.g. cross-cutting relationships, sequences of fracture infilling minerals, P-T characteristics of primary and secondary minerals) are calibrated with radiometric age determinations on minerals and whole rock samples, using 87 Rb- 87 Sr, 40 K- 39 Ar, 40 Ar- 39 Ar and fission track methods. Most fractures and fracture zones inclined at low angles are found to be ancient features, first formed in the Early Proterozoic under conditions of deuteric alteration. Following some movement on fractures in the Late Proterozoic and Early Paleozoic, reactivation of fractures during the Pleistocene is established from uranium-series dating methods and use of stable isotopic contents of fracture infilling minerals (mainly calcite). Some indication of movement on fracture zones during the Pleistocene is given by electron spin resonance dating techniques on fault gouge. The slow rate of propagation of fractures is indicated by mineral infillings, their P-T characteristics and U-series calcite ages in a fracture in sparsely fractured rock, accessible from AECL's Underground Research Laboratory. These results collectively indicate that deep fractures observed in the batholith are ancient features and the fracturing and jointing in the upper 200 m is relatively recent (< 1 Ma) and largely a result of stress release. (author)

  13. Warm pre-stress experiments on highly irradiated reactor pressure vessel steel

    International Nuclear Information System (INIS)

    Landron, C.; Ait-Bachir, M.; Moinereau, D.; Molinie, E.; Garbay, E.

    2015-01-01

    In the aim to justify in-service integrity of reactor pressure vessel beyond 40 years, experimental warm pre-stress (WPS) tests were performed on irradiated materials representative of RPV steels corresponding to 40 operating years. Different types of WPS loading path have been considered to cover typical postulated accidental transients. These results confirmed the beneficial effect of WPS on the cleavage fracture resistance of the irradiated materials. No fracture occurred during the cooling phase of the loading path and the fracture toughness values are higher than that measured with conventional isothermal tests. The analyses of the experiments, conducted using either simplified engineering models or more refined fracture models based on local approach to cleavage fracture, are in agreement with the experimental results. (authors)

  14. The dimer interfaces of protease and extra-protease domains influence the activation of protease and the specificity of GagPol cleavage.

    Science.gov (United States)

    Pettit, Steven C; Gulnik, Sergei; Everitt, Lori; Kaplan, Andrew H

    2003-01-01

    Activation of the human immunodeficiency virus type 1 (HIV-1) protease is an essential step in viral replication. As is the case for all retroviral proteases, enzyme activation requires the formation of protease homodimers. However, little is known about the mechanisms by which retroviral proteases become active within their precursors. Using an in vitro expression system, we have examined the determinants of activation efficiency and the order of cleavage site processing for the protease of HIV-1 within the full-length GagPol precursor. Following activation, initial cleavage occurs between the viral p2 and nucleocapsid proteins. This is followed by cleavage of a novel site located in the transframe domain. Mutational analysis of the dimer interface of the protease produced differential effects on activation and specificity. A subset of mutations produced enhanced cleavage at the amino terminus of the protease, suggesting that, in the wild-type precursor, cleavages that liberate the protease are a relatively late event. Replacement of the proline residue at position 1 of the protease dimer interface resulted in altered cleavage of distal sites and suggests that this residue functions as a cis-directed specificity determinant. In summary, our studies indicate that interactions within the protease dimer interface help determine the order of precursor cleavage and contribute to the formation of extended-protease intermediates. Assembly domains within GagPol outside the protease domain also influence enzyme activation.

  15. Can laccases catalyze bond cleavage in lignin?

    DEFF Research Database (Denmark)

    Munk, Line; Sitarz, Anna Katarzyna; Kalyani, Dayanand

    2015-01-01

    illustrations of the putative laccase catalyzed reactions, including the possible reactions of the reactive radical intermediates taking place after the initial oxidation of the phenol-hydroxyl groups, we show that i) Laccase activity is able to catalyze bond cleavage in low molecular weight phenolic lignin......-substituted phenols, benzenethiols, polyphenols, and polyamines, which may be oxidized. In addition, the currently available analytical methods that can be used to detect enzyme catalyzed changes in lignin are summarized, and an improved nomenclature for unequivocal interpretation of the action of laccases on lignin...

  16. Effects of mutations in the VP2/VP4 cleavage site of Swine vesicular disease virus on RNA encapsidation and viral infectivity

    NARCIS (Netherlands)

    Rebel, J.M.J.; Leendertse, C.H.; Dekker, A.; Moormann, R.J.M.

    2003-01-01

    We studied VP0 cleavage of Swine vesicular disease virus (SVDV), a member of the Picornaviridae using a full-length cDNA copy of the Dutch SVDV isolate. The influences of mutations, introduced at the cleavage site of SVDV, on VP0 cleavage, RNA encapsidation and viral infection were studied. Double

  17. Proteolytic cleavage orchestrates cofactor insertion and protein assembly in [NiFe]-hydrogenase biosynthesis.

    Science.gov (United States)

    Senger, Moritz; Stripp, Sven T; Soboh, Basem

    2017-07-14

    Metalloenzymes catalyze complex and essential processes, such as photosynthesis, respiration, and nitrogen fixation. For example, bacteria and archaea use [NiFe]-hydrogenases to catalyze the uptake and release of molecular hydrogen (H 2 ). [NiFe]-hydrogenases are redox enzymes composed of a large subunit that harbors a NiFe(CN) 2 CO metallo-center and a small subunit with three iron-sulfur clusters. The large subunit is synthesized with a C-terminal extension, cleaved off by a specific endopeptidase during maturation. The exact role of the C-terminal extension has remained elusive; however, cleavage takes place exclusively after assembly of the [NiFe]-cofactor and before large and small subunits form the catalytically active heterodimer. To unravel the functional role of the C-terminal extension, we used an enzymatic in vitro maturation assay that allows synthesizing functional [NiFe]-hydrogenase-2 of Escherichia coli from purified components. The maturation process included formation and insertion of the NiFe(CN) 2 CO cofactor into the large subunit, endoproteolytic cleavage of the C-terminal extension, and dimerization with the small subunit. Biochemical and spectroscopic analysis indicated that the C-terminal extension of the large subunit is essential for recognition by the maturation machinery. Only upon completion of cofactor insertion was removal of the C-terminal extension observed. Our results indicate that endoproteolytic cleavage is a central checkpoint in the maturation process. Here, cleavage temporally orchestrates cofactor insertion and protein assembly and ensures that only cofactor-containing protein can continue along the assembly line toward functional [NiFe]-hydrogenase. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. On the mechanism of action of ribonucleases: dinucleotide cleavage catalyzed by imidazole and Zn2+.

    OpenAIRE

    Breslow, R; Huang, D L; Anslyn, E

    1989-01-01

    Cyclization/cleavage of the 2-(p-nitrophenyl) phosphate ester of propylene glycol is catalyzed by imidazole and, much more effectively, by Zn2+ with imidazole. In the latter case, the mechanism involves simultaneous Lewis acid/base catalysis. Similar Zn2+ and imidazole catalysis of cyclization/cleavage is seen with the dinucleotide 3',5'-UpU (uridylyluridine). Again, the zinc system is much more effective than is catalysis by imidazole alone, and in this case simultaneous Lewis acid/base cata...

  19. Force-Induced Calpain Cleavage of Talin Is Critical for Growth, Adhesion Development, and Rigidity Sensing.

    Science.gov (United States)

    Saxena, Mayur; Changede, Rishita; Hone, James; Wolfenson, Haguy; Sheetz, Michael P

    2017-12-13

    Cell growth depends upon formation of cell-matrix adhesions, but mechanisms detailing the transmission of signals from adhesions to control proliferation are still lacking. Here, we find that the scaffold protein talin undergoes force-induced cleavage in early adhesions to produce the talin rod fragment that is needed for cell cycle progression. Expression of noncleavable talin blocks cell growth, adhesion maturation, proper mechanosensing, and the related property of EGF activation of motility. Further, the expression of talin rod in the presence of noncleavable full-length talin rescues cell growth and other functions. The cleavage of talin is found in early adhesions where there is also rapid turnover of talin that depends upon calpain and TRPM4 activity as well as the generation of force on talin. Thus, we suggest that an important function of talin is its control over cell cycle progression through its cleavage in early adhesions.

  20. A Subset of Membrane-Altering Agents and γ-Secretase Modulators Provoke Nonsubstrate Cleavage by Rhomboid Proteases

    Directory of Open Access Journals (Sweden)

    Siniša Urban

    2014-09-01

    Full Text Available Rhomboid proteases are integral membrane enzymes that regulate cell signaling, adhesion, and organelle homeostasis pathways, making substrate specificity a key feature of their function. Interestingly, we found that perturbing the membrane pharmacologically in living cells had little effect on substrate processing but induced inappropriate cleavage of nonsubstrates by rhomboid proteases. A subclass of drugs known to modulate γ-secretase activity acted on the membrane directly and induced nonsubstrate cleavage by rhomboid proteases but left true substrate cleavage sites unaltered. These observations highlight an active role for the membrane in guiding rhomboid selectivity and caution that membrane-targeted drugs should be evaluated for cross-activity against membrane-resident enzymes that are otherwise unrelated to the intended drug target. Furthermore, some γ-secretase-modulating activity or toxicity could partly result from global membrane effects.

  1. Fracture behavior of W based materials

    International Nuclear Information System (INIS)

    Hack, J.E.

    1991-01-01

    This report describes the results of a program to investigate the fracture properties of tungsten based materials. In particular, the role of crack velocity on crack instability was determined in a W-Fe-Ni-Co ''heavy alloy'' and pure polycrystalline tungsten. A considerable effort was expended on the development of an appropriate crack velocity gage for use on these materials. Having succeeded in that, the gage technology was employed to determine the crack velocity response to the applied level of stress intensity factor at the onset of crack instability in pre-cracked specimens. The results were also correlated to the failure mode observed in two material systems of interest. Major results include: (1) unstable crack velocity measurements on metallic specimens which require high spatial resolution require the use of brittle, insulating substrates, as opposed to the ductile, polymer based substrates employed in low spatial resolution measurements; and (2) brittle failure modes, such as cleavage, are characterized by relatively slow unstable crack velocities while evidence of high degrees of deformation are associated with failures which proceed at high unstable crack velocities. This latter behavior is consistent with the predictions of the modeling of Hack et al and may have a significant impact on the interpretation of fractographs in general

  2. Stress Fractures

    Science.gov (United States)

    Stress fractures Overview Stress fractures are tiny cracks in a bone. They're caused by repetitive force, often from overuse — such as repeatedly jumping up and down or running long distances. Stress fractures can also arise from normal use of ...

  3. DNA cleavage enzymes for treatment of persistent viral infections: Recent advances and the pathway forward

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Nicholas D., E-mail: nweber@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Department of Laboratory Medicine, University of Washington, Seattle, WA 98195 (United States); Aubert, Martine, E-mail: maubert@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Dang, Chung H., E-mail: cdang@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Stone, Daniel, E-mail: dstone2@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Jerome, Keith R., E-mail: kjerome@fhcrc.org [Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, E5-110, Seattle, WA 98109 (United States); Department of Laboratory Medicine, University of Washington, Seattle, WA 98195 (United States); Department of Microbiology, University of Washington, Seattle, WA 98195 (United States)

    2014-04-15

    Treatment for most persistent viral infections consists of palliative drug options rather than curative approaches. This is often because long-lasting viral DNA in infected cells is not affected by current antivirals, providing a source for viral persistence and reactivation. Targeting latent viral DNA itself could therefore provide a basis for novel curative strategies. DNA cleavage enzymes can be used to induce targeted mutagenesis of specific genes, including those of exogenous viruses. Although initial in vitro and even in vivo studies have been carried out using DNA cleavage enzymes targeting various viruses, many questions still remain concerning the feasibility of these strategies as they transition into preclinical research. Here, we review the most recent findings on DNA cleavage enzymes for human viral infections, consider the most relevant animal models for several human viral infections, and address issues regarding safety and enzyme delivery. Results from well-designed in vivo studies will ideally provide answers to the most urgent remaining questions, and allow continued progress toward clinical application. - Highlights: • Recent in vitro and in vivo results for DNA cleavage enzymes targeting persistent viral infections. • Analysis of the best animal models for testing enzymes for HBV, HSV, HIV and HPV. • Challenges facing in vivo delivery of therapeutic enzymes for persistent viral infections. • Safety issues to be addressed with proper animal studies.

  4. Hemoglobin cleavage site-specificity of the Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3.

    Directory of Open Access Journals (Sweden)

    Shoba Subramanian

    Full Text Available The Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3 degrade host hemoglobin to provide free amino acids for parasite protein synthesis. Hemoglobin hydrolysis has been described as an ordered process initiated by aspartic proteases, but cysteine protease inhibitors completely block the process, suggesting that cysteine proteases can also initiate hemoglobin hydrolysis. To characterize the specific roles of falcipains, we used three approaches. First, using random P(1 - P(4 amino acid substrate libraries, falcipain-2 and falcipain-3 demonstrated strong preference for cleavage sites with Leu at the P(2 position. Second, with overlapping peptides spanning alpha and beta globin and proteolysis-dependent (18O labeling, hydrolysis was seen at many cleavage sites. Third, with intact hemoglobin, numerous cleavage products were identified. Our results suggest that hemoglobin hydrolysis by malaria parasites is not a highly ordered process, but rather proceeds with rapid cleavage by falcipains at multiple sites. However, falcipain-2 and falcipain-3 show strong specificity for P(2 Leu in small peptide substrates, in agreement with the specificity in optimized small molecule inhibitors that was identified previously. These results are consistent with a principal role of falcipain-2 and falcipain-3 in the hydrolysis of hemoglobin by P. falciparum and with the possibility of developing small molecule inhibitors with optimized specificity as antimalarial agents.

  5. Transstyloid, transscaphoid, transcapitate fracture: a variant of scaphocapitate fractures.

    LENUS (Irish Health Repository)

    Burke, Neil G

    2014-01-01

    Transstyloid, transscaphoid, transcapitate fractures are uncommon. We report the case of a 28-year-old man who sustained this fracture following direct trauma. The patient was successfully treated by open reduction internal fixation of the scaphoid and proximal capitate fragment, with a good clinical outcome at 1-year follow-up. This pattern is a new variant of scaphocapitate fracture as involves a fracture of the radial styloid as well.

  6. Glutamic Acid Selective Chemical Cleavage of Peptide Bonds.

    Science.gov (United States)

    Nalbone, Joseph M; Lahankar, Neelam; Buissereth, Lyssa; Raj, Monika

    2016-03-04

    Site-specific hydrolysis of peptide bonds at glutamic acid under neutral aqueous conditions is reported. The method relies on the activation of the backbone amide chain at glutamic acid by the formation of a pyroglutamyl (pGlu) imide moiety. This activation increases the susceptibility of a peptide bond toward hydrolysis. The method is highly specific and demonstrates broad substrate scope including cleavage of various bioactive peptides with unnatural amino acid residues, which are unsuitable substrates for enzymatic hydrolysis.

  7. Risk of hip fracture after osteoporosis fractures. 451 women with fracture of lumbar spine, olecranon, knee or ankle

    DEFF Research Database (Denmark)

    Lauritzen, J B; Lund, B

    1993-01-01

    In a follow-up study during 1976-1984, the risk of a subsequent hip fracture was investigated in women aged 60-99 years, hospitalized for the following fractures: lumbar spine (n 70), olecranon (n 52), knee (n 129) and ankle (n 200). Follow-up ranged from 0 to 9 years. Observation time of the 4...... different fractures were 241, 180, 469, and 779, person-years, respectively. In women aged 60-79 years with one of the following fractures the relative risk of a subsequent hip fracture was increased by 4.8 (lumbar spine), 4.1 (olecranon), 3.5 (knee) and 1.5 (ankle). The relative risk of hip fracture showed...... a tendency to level off 3 years after the primary fracture....

  8. The Role of G-Protein-Coupled Receptor Proteolysis Site Cleavage of Polycystin-1 in Renal Physiology and Polycystic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Marie Trudel

    2016-01-01

    Full Text Available Polycystin-1 (PC1 plays an essential role in renal tubular morphogenesis, and PC1 dysfunction causes human autosomal dominant polycystic kidney disease. A fundamental characteristic of PC1 is post-translational modification via cleavage at the juxtamembrane GPCR proteolysis site (GPS motif that is part of the larger GAIN domain. Given the considerable biochemical complexity of PC1 molecules generated in vivo by this process, GPS cleavage has several profound implications on the intracellular trafficking and localization in association with their particular function. The critical nature of GPS cleavage is further emphasized by the increasing numbers of PKD1 mutations that significantly affect this cleavage process. The GAIN domain with the GPS motif therefore represents the key structural element with fundamental importance for PC1 and might be polycystic kidney disease’s (PKD Achilles’ heel in a large spectrum of PKD1 missense mutations. We highlight the central roles of PC1 cleavage for the regulation of its biogenesis, intracellular trafficking and function, as well as its significance in polycystic kidney disease.

  9. Cell elongation is an adaptive response for clearing long chromatid arms from the cleavage plane

    Science.gov (United States)

    Kotadia, Shaila; Montembault, Emilie; Sullivan, William

    2012-01-01

    Chromosome segregation must be coordinated with cell cleavage to ensure correct transmission of the genome to daughter cells. Here we identify a novel mechanism by which Drosophila melanogaster neuronal stem cells coordinate sister chromatid segregation with cleavage furrow ingression. Cells adapted to a dramatic increase in chromatid arm length by transiently elongating during anaphase/telophase. The degree of cell elongation correlated with the length of the trailing chromatid arms and was concomitant with a slight increase in spindle length and an enlargement of the zone of cortical myosin distribution. Rho guanine-nucleotide exchange factor (Pebble)–depleted cells failed to elongate during segregation of long chromatids. As a result, Pebble-depleted adult flies exhibited morphological defects likely caused by cell death during development. These studies reveal a novel pathway linking trailing chromatid arms and cortical myosin that ensures the clearance of chromatids from the cleavage plane at the appropriate time during cytokinesis, thus preserving genome integrity. PMID:23185030

  10. Metabolic cleavage of cell-penetrating peptides in contact with epithelial models

    DEFF Research Database (Denmark)

    Tréhin, Rachel; Nielsen, Hanne Mørck; Jahnke, Heinz-Georg

    2004-01-01

    We assessed the metabolic degradation kinetics and cleavage patterns of some selected CPP (cell-penetrating peptides) after incubation with confluent epithelial models. Synthesis of N-terminal CF [5(6)-carboxyfluorescein]-labelled CPP, namely hCT (human calcitonin)-derived sequences, Tat(47-57) a...

  11. High prevalence of simultaneous rib and vertebral fractures in patients with hip fracture.

    Science.gov (United States)

    Lee, Bong-Gun; Sung, Yoon-Kyoung; Kim, Dam; Choi, Yun Young; Kim, Hunchul; Kim, Yeesuk

    2017-02-01

    The purpose was to evaluate the prevalence and location of simultaneous fracture using bone scans in patients with hip fracture and to determine the risk factors associated with simultaneous fracture. One hundred eighty two patients with hip fracture were reviewed for this study. Clinical parameters and bone mineral density (BMD) of the lumbar vertebra and femoral neck were investigated. To identify acute simultaneous fracture, a bone scan was performed at 15.4±4.1days after hip fracture. The prevalence and location of simultaneous fracture were evaluated, and multivariate logistic regression analysis was performed to determine the risk factors. Simultaneous fracture was observed in 102 of 182 patients, a prevalence of 56.0%. Rib fracture was the most common type of simultaneous fracture followed by rib with vertebral fracture. The BMD of the lumbar vertebra was significantly lower in patients with simultaneous fracture (p=0.044) and was identified as an independent risk factor (odds ratio: OR 0.05, 95% confidence interval: CI 0.01-0.57). The prevalence of simultaneous fracture was relatively high among patients with hip fracture, and BMD was significantly lower in patients with simultaneous fracture than in patients without it. Surgeons should be aware of the possibility of simultaneous fracture in patients with hip fracture. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Carotenoid Cleavage Oxygenases from Microbes and Photosynthetic Organisms: Features and Functions

    Directory of Open Access Journals (Sweden)

    Oussama Ahrazem

    2016-10-01

    Full Text Available Apocarotenoids are carotenoid-derived compounds widespread in all major taxonomic groups, where they play important roles in different physiological processes. In addition, apocarotenoids include compounds with high economic value in food and cosmetics industries. Apocarotenoid biosynthesis starts with the action of carotenoid cleavage dioxygenases (CCDs, a family of non-heme iron enzymes that catalyze the oxidative cleavage of carbon–carbon double bonds in carotenoid backbones through a similar molecular mechanism, generating aldehyde or ketone groups in the cleaving ends. From the identification of the first CCD enzyme in plants, an increasing number of CCDs have been identified in many other species, including microorganisms, proving to be a ubiquitously distributed and evolutionarily conserved enzymatic family. This review focuses on CCDs from plants, algae, fungi, and bacteria, describing recent progress in their functions and regulatory mechanisms in relation to the different roles played by the apocarotenoids in these organisms.

  13. Base substitutions at scissile bond sites are sufficient to alter RNA-binding and cleavage activity of RNase III.

    Science.gov (United States)

    Kim, Kyungsub; Sim, Se-Hoon; Jeon, Che Ok; Lee, Younghoon; Lee, Kangseok

    2011-02-01

    RNase III, a double-stranded RNA-specific endoribonuclease, degrades bdm mRNA via cleavage at specific sites. To better understand the mechanism of cleavage site selection by RNase III, we performed a genetic screen for sequences containing mutations at the bdm RNA cleavage sites that resulted in altered mRNA stability using a transcriptional bdm'-'cat fusion construct. While most of the isolated mutants showed the increased bdm'-'cat mRNA stability that resulted from the inability of RNase III to cleave the mutated sequences, one mutant sequence (wt-L) displayed in vivo RNA stability similar to that of the wild-type sequence. In vivo and in vitro analyses of the wt-L RNA substrate showed that it was cut only once on the RNA strand to the 5'-terminus by RNase III, while the binding constant of RNase III to this mutant substrate was moderately increased. A base substitution at the uncleaved RNase III cleavage site in wt-L mutant RNA found in another mutant lowered the RNA-binding affinity by 11-fold and abolished the hydrolysis of scissile bonds by RNase III. Our results show that base substitutions at sites forming the scissile bonds are sufficient to alter RNA cleavage as well as the binding activity of RNase III. © 2010 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  14. External fixation of tibial pilon fractures and fracture healing.

    Science.gov (United States)

    Ristiniemi, Jukka

    2007-06-01

    Distal tibial fractures are rare and difficult to treat because the bones are subcutaneous. External fixation is commonly used, but the method often results in delayed union. The aim of the present study was to find out the factors that affect fracture union in tibial pilon fractures. For this purpose, prospective data collection of tibial pilon fractures was carried out in 1998-2004, resulting in 159 fractures, of which 83 were treated with external fixation. Additionally, 23 open tibial fractures with significant > 3 cm bone defect that were treated with a staged method in 2000-2004 were retrospectively evaluated. The specific questions to be answered were: What are the risk factors for delayed union associated with two-ring hybrid external fixation? Does human recombinant BMP-7 accelerate healing? What is the role of temporary ankle-spanning external fixation? What is the healing potential of distal tibial bone loss treated with a staged method using antibiotic beads and subsequent autogenous cancellous grafting compared to other locations of the tibia? The following risk factors for delayed healing after external fixation were identified: post-reduction fracture gap of >3 mm and fixation of the associated fibula fracture. Fracture displacement could be better controlled with initial temporary external fixation than with early definitive fixation, but it had no significant effect on healing time, functional outcome or complication rate. Osteoinduction with rhBMP-7 was found to accelerate fracture healing and to shorten the sick leave. A staged method using antibiotic beads and subsequent autogenous cancellous grafting proved to be effective in the treatment of tibial bone loss. Healing potential of the bone loss in distal tibia was at least equally good as in other locations of the tibia.

  15. Snake venom serine proteinases specificity mapping by proteomic identification of cleavage sites.

    Science.gov (United States)

    Zelanis, André; Huesgen, Pitter F; Oliveira, Ana Karina; Tashima, Alexandre K; Serrano, Solange M T; Overall, Christopher M

    2015-01-15

    Many snake venom toxins are serine proteases but their specific in vivo targets are mostly unknown. Various act on components of the coagulation cascade, and fibrinolytic and kallikrein-kinin systems to trigger various pathological effects observed in the envenomation. Despite showing high similarity in terms of primary structure snake venom serine proteinases (SVSPs) show exquisite specificity towards macromolecular substrates. Therefore, the characterization of their peptide bond specificity is important for understanding the active site preference associated with effective proteolysis as well as for the design of peptide substrates and inhibitors. Bothrops jararaca contains various SVSPs among which Bothrops protease A is a specific fibrinogenolytic agent and PA-BJ is a platelet-activating enzyme. In this study we used proteome derived peptide libraries in the Proteomic Identification of protease Cleavage Sites (PICS) approach to explore the peptide bond specificity of Bothrops protease A and PA-BJ in order to determine their individual peptide cleavage sequences. A total of 371 cleavage sites (208 for Bothrops protease A and 163 for PA-BJ) were detected and both proteinases displayed a clear preference for arginine at the P1 position. Moreover, the analysis of the specificity profiles of Bothrops protease A and PA-BJ revealed subtle differences in the preferences along P6-P6', despite a common yet unusual preference for Pro at P2. Taken together, these results map the subsite specificity of both SVSPs and shed light in the functional differences between these proteinases. Proteolysis is key to various pathological effects observed upon envenomation by viperid snakes. The use of the Proteomic Identification of protease Cleavage Sites (PICS) approach for the easy mapping of proteinase subsite preferences at both the prime- and non-prime sides concurrently gives rise to a fresh understanding of the interaction of the snake venom serine proteinases with peptide and

  16. Unconjugated Bilirubin Inhibits Proteolytic Cleavage of von Willebrand Factor by ADAMTS13 Protease

    Science.gov (United States)

    Lu, Rui-Nan; Yang, Shangbin; Wu, Haifeng M.; Zheng, X. Long

    2015-01-01

    Summary Background Bilirubin is a yellow breakdown product of heme catabolism. Increased serum levels of unconjugated bilirubin are conditions commonly seen in premature neonates and adults with acute hemolysis including thrombotic microangiopathy. Previous studies have shown that unconjugated bilirubin lowers plasma ADAMTS13 activity, but the mechanism is not fully understood. Objectives The study is to determine whether unconjugated bilirubin directly inhibits the cleavage of von Willebrand factor (VWF) and its analogs by ADAMTS13. Methods Fluorogenic, SELDI-TOF mass spectrometric assay, and Western blotting analyses were employed to address this question. Results Unconjugated bilirubin inhibits the cleavage of F485-rVWF73-H, D633-rVWF73-H, and GST-rVWF71-11K by ADAMTS13 in a concentration-dependent manner with a half-maximal inhibitory concentration (IC50) of ~13 μM, ~70 μM, and ~17 μM, respectively. Unconjugated bilirubin also dose-dependently inhibits the cleavage of multimeric VWF by ADAMTS13 under denaturing conditions. The inhibitory activity of bilirubin on the cleavage of D633-rVWF73-H and multimeric VWF, but not F485-rVWF73-H, was eliminated after incubation with bilirubin oxidase that converts bilirubin to biliverdin. Furthermore, plasma ADAMTS13 activity in patients with hyperbilirubinemia is lower prior to than after treatment with bilirubin oxidase. Conclusions unconjugated bilirubin directly inhibits ADAMTS13’s ability to cleave both peptidyl and native VWF substrates in addition to its interference with certain fluorogenic assays. Our findings may help proper interpretation of ADAMTS13 results under pathological conditions. Whether elevated serum unconjugated bilirubin has an adverse effect in vivo remains to be determined in our future study. PMID:25782102

  17. Radiographic anatomy of the proximal femur: femoral neck fracture vs. transtrochanteric fracture

    Directory of Open Access Journals (Sweden)

    Ana Lecia Carneiro Leão de Araújo Lima

    Full Text Available ABSTRACT OBJECTIVE: To evaluate the correlation between radiographic parameters of the proximal femur with femoral neck fractures or transtrochanteric fractures. METHODS: Cervicodiaphyseal angle (CDA, femoral neck width (FNW, hip axis length (HAL, and acetabular tear drop distance (ATD were analyzed in 30 pelvis anteroposterior view X-rays of patients with femoral neck fractures (n = 15 and transtrochanteric fractures (n = 15. The analysis was performed by comparing the results of the X-rays with femoral neck fractures and with transtrochanteric fractures. RESULTS: No statistically significant differences between samples were observed. CONCLUSION: There was no correlation between radiographic parameters evaluated and specific occurrence of femoral neck fractures or transtrochanteric fractures.

  18. Prior nonhip limb fracture predicts subsequent hip fracture in institutionalized elderly people.

    Science.gov (United States)

    Nakamura, K; Takahashi, S; Oyama, M; Oshiki, R; Kobayashi, R; Saito, T; Yoshizawa, Y; Tsuchiya, Y

    2010-08-01

    This 1-year cohort study of nursing home residents revealed that historical fractures of upper limbs or nonhip lower limbs were associated with hip fracture (hazard ratio = 2.14), independent of activities of daily living (ADL), mobility, dementia, weight, and type of nursing home. Prior nonhip fractures are useful for predicting of hip fracture in institutional settings. The aim of this study was to evaluate the utility of fracture history for the prediction of hip fracture in nursing home residents. This was a cohort study with a 1-year follow-up. Subjects were 8,905 residents of nursing homes in Niigata, Japan (mean age, 84.3 years). Fracture histories were obtained from nursing home medical records. ADL levels were assessed by caregivers. Hip fracture diagnosis was based on hospital medical records. Subjects had fracture histories of upper limbs (5.0%), hip (14.0%), and nonhip lower limbs (4.6%). Among historical single fractures, only prior nonhip lower limbs significantly predicted subsequent fracture (adjusted hazard ratio, 2.43; 95% confidence interval (CI), 1.30-4.57). The stepwise method selected the best model, in which a combined historical fracture at upper limbs or nonhip lower limbs (adjusted hazard ratio, 2.14; 95% CI, 1.30-3.52), dependence, ADL levels, mobility, dementia, weight, and type of nursing home independently predicted subsequent hip fracture. A fracture history at upper or nonhip lower limbs, in combination with other known risk factors, is useful for the prediction of future hip fracture in institutional settings.

  19. Investigation of the local fracture toughness and the elastic-plastic fracture behavior of NiAl and tungsten by means of micro-cantilever tests; Untersuchung der lokalen Bruchzaehigkeit und des elastisch-plastischen Bruchverhaltens von NiAl und Wolfram mittels Mikrobiegebalkenversuchen

    Energy Technology Data Exchange (ETDEWEB)

    Ast, Johannes

    2016-07-01

    The objective of this work was to get an improved understanding of the size dependence of the fracture toughness. For this purpose notched micro-cantilevers were fabricated ranging in dimensions from the submicron regime up to some tens of microns by means of a focused ion beam. B2-NiAl and tungsten were chosen as model materials as their brittle to ductile transition temperatures are well above room temperature. In that way, fracture processes accompanied by limited plastic deformation around the crack tip could be studied at the micro scale. For this size regime, new methods to describe the local elastic-plastic fracture behavior and to measure the fracture toughness were elaborated. Particular focus was set on the J-integral concept which was adapted to the micro scale to derive crack growth from stiffness measurements. This allowed a precise analysis of the transition from crack tip blunting to stable crack growth which is necessary to accurately measure the fracture toughness. Experiments in single crystalline NiAl showed for the two investigated crack systems, namely the hard and the soft orientation, that the fracture toughness at the micro scale is the same as the one known from macroscopic testing. Thus, size effects were not found for the tested length scale. The addition of little amounts of iron did not affect the fracture toughness considerably. Yet, it influenced the crack growth in those samples and consequently the resistance curve behavior. Concerning experiments in single crystalline tungsten, the fracture toughness showed a clear dependency on sample size. The smallest cantilevers fractured purely by cleavage. Larger samples exhibited stable crack growth along with plastic deformation which was recognizable in SEM-micrographs and quantified by means of EBSD measurements. Just as in macroscopic testing, the investigated crack system <100>{100} demonstrated a dependency on loading rate with higher loading rates leading to a more brittle behavior

  20. Mandible Fractures.

    Science.gov (United States)

    Pickrell, Brent B; Serebrakian, Arman T; Maricevich, Renata S

    2017-05-01

    Mandible fractures account for a significant portion of maxillofacial injuries and the evaluation, diagnosis, and management of these fractures remain challenging despite improved imaging technology and fixation techniques. Understanding appropriate surgical management can prevent complications such as malocclusion, pain, and revision procedures. Depending on the type and location of the fractures, various open and closed surgical reduction techniques can be utilized. In this article, the authors review the diagnostic evaluation, treatment options, and common complications of mandible fractures. Special considerations are described for pediatric and atrophic mandibles.

  1. Modeling Dynamic Fracture of Cryogenic Pellets

    Energy Technology Data Exchange (ETDEWEB)

    Parks, Paul [General Atomics, San Diego, CA (United States)

    2016-06-30

    of a rigorously derived profile) we derived the strain energy associated with the deflection and applied a virtual work principle to find a relationship between the impact (load) pressure to the measured wall deflection depth. The inferred impact pressure was in good agreement with the expected pressure for oblique cryogenic pellet impacts where the pellet shear stress causing cleavage fracture is well above the yield stress for pure shear. The section is concluded with additional discussion on how this wall deformation data lends further support to the analytical fracture model presented in Part I. In Part III we present three different size distribution models. A summary, with a few brief suggestions for a follow on study, is provided at the end of this report.

  2. Monoclonal antibodies to the reactive centre loop (RCL) of human corticosteroid-binding globulin (CBG) can protect against proteolytic cleavage.

    Science.gov (United States)

    Lewis, John G; Elder, Peter A

    2017-07-01

    Corticosteroid-binding globulin (CBG) binds most of the cortisol in circulation and is a non-functional member of the family of serine protease inhibitors (serpins) with an exposed elastase sensitive reactive centre loop (RCL). The RCL can be cleaved by human neutrophil elastase, released from activated neutrophils, and can also be cleaved at nearby site(s) by elastase released by Pseudomonas aeruginosa, and at two further sites, also within the RCL, by bovine chymotrypsin. Cleavage of the RCL results in a conformational change accompanied by a marked decrease in affinity for cortisol and hence its release at the site of proteolysis. These cleavages are irreversible and the similar half-lives of cleaved and intact CBG could mean that there may be some advantage in slowing the rate of CBG cleavage in acute inflammation thereby increasing the proportion of intact CBG in circulation. Here we show, for the first time, that pre-incubation of tethered human CBG with two monoclonal antibodies to the RCL of CBG protects against cleavage by all three enzymes. Furthermore, in plasma, pre-incubation with both RCL monoclonal antibodies delays neutrophil elastase cleavage of the RCL and one of these RCL monoclonal antibodies also delays bovine chymotrypsin cleavage of the RCL. These findings may provide a basis and rationale for the concept of the use of RCL antibodies as therapeutic agents to effectively increase the proportion of intact CBG in circulation which may be of benefit in acute inflammation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Photoenhanced Oxidative DNA Cleavage with Non-Heme Iron(II) Complexes

    NARCIS (Netherlands)

    Li, Qian; Browne, Wesley R.; Roelfes, Gerard

    2010-01-01

    The DNA cleavage activity of iron(II) complexes of a series of monotopic pentadentate N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine (N4Py)-derived ligands (1-5) was investigated under laser irradiation at 473, 400.8, and 355 nm in the absence of a reducing agent and compared to that under

  4. Determination of polyphenolic content, HPLC analyses and DNA cleavage activity of Malaysian Averrhoa carambola L. fruit extracts

    Directory of Open Access Journals (Sweden)

    Zakia Khanam

    2015-10-01

    Full Text Available In developing countries, the increasing gap between population growth and food supply has created renewed interest in finding reliable and cheap natural resources of nutraceutical value and health promoting properties. Therefore, the present study deals with the phytochemical analyses and DNA cleavage activity of Averrhoa carambola L. fruit (starfruit extracts. The phytochemical studies involve colour tests and quantification of phenolics and flavonoids of the prepared ethanolic and aqueous extracts. Identification of phenolic acids and flavonoids present in the extracts were conducted by high performance liquid chromatography (HPLC equipped with diode array detector (DAD. DNA cleavage activity of the extracts was evaluated through gel electrophoresis against plasmid Escherichia coli DNA at different concentrations (0.125–0.60 μg/μl. The results of the study exhibited that the starfruit is a rich source of polyphenols and all the extracts exhibited a dose dependent DNA cleavage activity, whereas ethanolic extract induced more cleavage as compared to the aqueous extract. In conclusion, the present study provides preliminary evidence with regard to nutraceutical value of the fruit. So, further extensive study is a prerequisite to exploit DNA cleaving properties of the fruit extracts for therapeutic application.

  5. Supplementary data for the mechanism for cleavage of three typical glucosidic bonds induced by hydroxyl free radical

    Directory of Open Access Journals (Sweden)

    Yujie Dai

    2017-12-01

    Full Text Available The data presented in this article are related to the research article entitled “The mechanism for cleavage of three typical glucosidic bonds induced by hydroxyl free radical” (Dai et al., 2017 [1]. This article includes the structures of three kinds of disaccharides such as maltose, fructose and cellobiose, the diagrammatic sketch of the hydrogen abstraction reaction of the disaccharides by hydroxyl radical, the structure of the transition states for pyran ring opening of moiety A and cleavage of α(1→2 glycosidic bond starting from the hydrogen abstraction of C6–H in moiety A of sucrose, the transition state structure for cleavage of α(1→2 glycosidic bond starting from the hydrogen abstraction of C1′-H in moiety B of sucrose, the transition state structure, sketch for the reaction process and relative energy change of the reaction pathway for direct cleavage of α(1→4 glycosidic bond starting from hydrogen abstraction of C6′–H of moiety B of maltose.

  6. Single-stranded DNA cleavage by divergent CRISPR-Cas9 enzymes

    Science.gov (United States)

    Ma, Enbo; Harrington, Lucas B.; O’Connell, Mitchell R.; Zhou, Kaihong; Doudna, Jennifer A.

    2015-01-01

    Summary Double-stranded DNA (dsDNA) cleavage by Cas9 is a hallmark of type II CRISPR-Cas immune systems. Cas9–guide RNA complexes recognize 20-base-pair sequences in DNA and generate a site-specific double-strand break, a robust activity harnessed for genome editing. DNA recognition by all studied Cas9 enzymes requires a protospacer adjacent motif (PAM) next to the target site. We show that Cas9 enzymes from evolutionarily divergent bacteria can recognize and cleave single-stranded DNA (ssDNA) by an RNA-guided, PAM-independent recognition mechanism. Comparative analysis shows that in contrast to the type II-A S. pyogenes Cas9 that is widely used for genome engineering, the smaller type II-C Cas9 proteins have limited dsDNA binding and unwinding activity and promiscuous guide-RNA specificity. These results indicate that inefficiency of type II-C Cas9 enzymes for genome editing results from a limited ability to cleave dsDNA, and suggest that ssDNA cleavage was an ancestral function of the Cas9 enzyme family. PMID:26545076

  7. Recognizing and reporting vertebral fractures: reducing the risk of future osteoporotic fractures

    International Nuclear Information System (INIS)

    Lentle, B.C.; Brown, J.P.; Khan, A.

    2007-01-01

    Given the increasing evidence that vertebral fractures are underdiagnosed and not acted on, Osteoporosis Canada and the Canadian Association of Radiologists initiated a project to develop and publish a set of recommendations to promote and facilitate the diagnosis and reporting of vertebral fractures. The identification of spinal fractures is not uniform. More than 65% of vertebral fractures cause no symptoms. It is also apparent that vertebral fractures are inadequately recognized when the opportunity for diagnosis arises fortuitously. It is to patients' benefit that radiologists report vertebral fractures evident on a chest or other radiograph, no matter how incidental to the immediate clinical indication for the examination. The present recommendations can help to close the gap in care in recognizing and treating vertebral fractures, to prevent future fractures and thus reduce the burden of osteoporosis-related morbidity and mortality, as well as fracture-related costs to the health care system. Several studies indicate that a gap exists in regard to the diagnosis of vertebral fractures and the clinical response following such diagnosis. All recommendations presented here are based on consensus. These recommendations were developed by a multidisciplinary working group under the auspices of the Scientific Advisory Council of Osteoporosis Canada and the Canadian Association of Radiologists. Prevalent vertebral fractures have important clinical implications in terms of future fracture risk. Recognizing and reporting fractures incidental to radiologic examinations done for other reasons has the potential to reduce health care costs by initiating further steps in osteoporosis diagnosis and appropriate therapy. Physicians should be aware of the importance of vertebral fracture diagnosis in assessing future osteoporotic fracture risk. Vertebral fractures incidental to radiologic examinations done for other reasons should be identified and reported. Vertebral fractures

  8. Two-dimensional NMR evidence for cleavage of lignin and xylan substituents in wheat straw through hydrothermal pretreatment and enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Yelle, Daniel J.; Kaparaju, Laxmi-Narasimha Prasad; Hunt, Christopher G.

    2013-01-01

    correlation spectroscopy, via an heteronuclear single quantum coherence experiment, revealed substantial lignin β-aryl ether cleavage, deacetylation via cleavage of the natural acetates at the 2-O- and 3-O-positions of xylan, and uronic acid depletion via cleavage of the (1 → 2)-linked 4-O....... g., further deacylation revealed by the depletion in ferulate and p-coumarate structures). Supplementary chemical analyses showed that the hydrothermal pretreatment increased the cellulose and lignin concentration with partial removal of extractives and hemicelluloses. The subsequent enzymatic...

  9. Copper-catalyzed transformation of ketones to amides via C(CO)-C(alkyl) bond cleavage directed by picolinamide.

    Science.gov (United States)

    Ma, Haojie; Zhou, Xiaoqiang; Zhan, Zhenzhen; Wei, Daidong; Shi, Chong; Liu, Xingxing; Huang, Guosheng

    2017-09-13

    Copper catalyzed chemoselective cleavage of the C(CO)-C(alkyl) bond leading to C-N bond formation with chelation assistance of N-containing directing groups is described. Inexpensive Cu(ii)-acetate serves as a convenient catalyst for this transformation. This method highlights the emerging strategy to transform unactivated alkyl ketones into amides in organic synthesis and provides a new strategy for C-C bond cleavage.

  10. Simulation of complex fracture networks influenced by natural fractures in shale gas reservoir

    Directory of Open Access Journals (Sweden)

    Zhao Jinzhou

    2014-10-01

    Full Text Available When hydraulic fractures intersect with natural fractures, the geometry and complexity of a fracture network are determined by the initiation and propagation pattern which is affected by a number of factors. Based on the fracture mechanics, the criterion for initiation and propagation of a fracture was introduced to analyze the tendency of a propagating angle and factors affecting propagating pressure. On this basis, a mathematic model with a complex fracture network was established to investigate how the fracture network form changes with different parameters, including rock mechanics, in-situ stress distribution, fracture properties, and frac treatment parameters. The solving process of this model was accelerated by classifying the calculation nodes on the extending direction of the fracture by equal pressure gradients, and solving the geometrical parameters prior to the iteration fitting flow distribution. With the initiation and propagation criterion as the bases for the propagation of branch fractures, this method decreased the iteration times through eliminating the fitting of the fracture length in conventional 3D fracture simulation. The simulation results indicated that the formation with abundant natural fractures and smaller in-situ stress difference is sufficient conditions for fracture network development. If the pressure in the hydraulic fractures can be kept at a high level by temporary sealing or diversion, the branch fractures will propagate further with minor curvature radius, thus enlarging the reservoir stimulation area. The simulated shape of fracture network can be well matched with the field microseismic mapping in data point range and distribution density, validating the accuracy of this model.

  11. ChloroP, a neural network-based method for predicting chloroplast transitpeptides and their cleavage sites

    DEFF Research Database (Denmark)

    Emanuelsson, O.; Nielsen, Henrik; von Heijne, Gunnar

    1999-01-01

    the cleavage sites given in SWISS-PROT. An analysis of 715 Arabidopsis thaliana sequences from SWISS-PROT suggests that the ChloroP method should be useful for the identification of putative transit peptides in genome-wide sequence data. The ChloroP predictor is available as a web-server at http......We present a neural network based method (ChloroP) for identifying chloroplast transit peptides and their cleavage sites. Using cross-validation, 88% of the sequences in our homology reduced training set were correctly classified as transit peptides or nontransit peptides. This performance level...

  12. Radiotherapy of pathologic fractures and skeletal lesions bearing the risk of fracture

    International Nuclear Information System (INIS)

    Rieden, K.; Kober, B.; Mende, U.; Zum Winkel, K.

    1986-01-01

    Radiotherapy is of great importance in the treatment of pathologic fractures and skeletal lesions bearing the risk of fracture which are induced by malignomas, especially if these are in an advanced stage. In dependence on site and extent of skeletal destruction as well as on the general tumor dissemination, it can be distinguished between palliative radiotherapy and curative radiotherapy aiming at analgesia and remineralization. A retrospective analysis of 27 pathologic fractures and 56 skeletal lesions bearing the risk of fracture in malignoma patients showed an analgetic effect obtained by radiotherapy in 67% of pathological fractures and in 80% of skeletal lesions bearing the risk of fracture, whereas a remineralization could be demonstrated for 33% of pathological fractures and 50% of destructions bearing the risk of fracture. A stabilization of destructions progressing before therapy was found in 55% of pathological fractures and 40% of skeletal lesions bearing the risk of fracture. Thus a partial loading, supported by orthopedic prostheses, was possible for more than 50% of all patients. (orig.) [de

  13. Parametrization in models of subcritical glass fracture: Activation offset and concerted activation

    Science.gov (United States)

    Rodrigues, Bruno Poletto; Hühn, Carolin; Erlebach, Andreas; Mey, Dorothea; Sierka, Marek; Wondraczek, Lothar

    2017-08-01

    There are two established but fundamentally different empirical approaches to parametrize the rate of subcritical fracture in brittle materials. While both are relying on a thermally activated reaction of bond rupture, the difference lies in the way as to how the externally applied stresses affect the local energy landscape. In the consideration of inorganic glasses, the strain energy is typically taken as an off-set on the activation barrier. As an alternative interpretation, the system’s volumetric strain-energy is added to its thermal energy. Such an interpretation is consistent with the democratic fiber bundle model. Here, we test this approach of concerted activation against macroscopic data of bond cleavage activation energy, and also against ab initio quantum chemical simulation of the energy barrier for cracking in silica. The fact that both models are able to reproduce experimental observation to a remarkable degree highlights the importance of a holistic consideration towards non-empirical understanding.

  14. Fast cleavage of phycocyanobilin from phycocyanin for use in food colouring.

    Science.gov (United States)

    Roda-Serrat, Maria Cinta; Christensen, Knud Villy; El-Houri, Rime Bahij; Fretté, Xavier; Christensen, Lars Porskjær

    2018-02-01

    Phycocyanins from cyanobacteria are possible sources for new natural blue colourants. Their chromophore, phycocyanobilin (PCB), was cleaved from the apoprotein by solvolysis in alcohols and alcoholic aqueous solutions. In all cases two PCB isomers were obtained, while different solvent adducts were formed upon the use of different reagents. The reaction is believed to take place via two competing pathways, a concerted E2 elimination and a S N 2 nucleophilic substitution. Three cleavage methods were compared in terms of yield and purity: conventional reflux, sealed vessel heated in an oil bath, and microwave assisted reaction. The sealed vessel method is a new approach for fast cleavage of PCB from phycocyanin and gave at 120°C the same yield within 30min compared to 16h by the conventional reflux method (P<0.05). In addition the sealed vessel method resulted in improved purity compared to the other methods. Microwave irradiation increased product degradation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. TRAIL-induced cleavage and inactivation of SPAK sensitizes cells to apoptosis

    International Nuclear Information System (INIS)

    Polek, Tara C.; Talpaz, Moshe; Spivak-Kroizman, Taly R.

    2006-01-01

    Ste20-related proline-alanine-rich kinase (SPAK) has been linked to various cellular processes, including proliferation, differentiation, and ion transport regulation. Recently, we showed that SPAK mediates signaling by the TNF receptor, RELT. The presence of a caspase cleavage site in SPAK prompted us to study its involvement in apoptotic signaling induced by another TNF member, TRAIL. We show that TRAIL stimulated caspase 3-like proteases that cleaved SPAK at two distinct sites. Cleavage had little effect on the activity of SPAK but removed its substrate-binding domain. In addition, TRAIL reduced the activity of SPAK in HeLa cells in a caspase-independent manner. Thus, TRAIL inhibited SPAK by two mechanisms: activation of caspases, which removed its substrate-binding domain, and caspase-independent down-regulation of SPAK activity. Furthermore, reducing the amount of SPAK by siRNA increased the sensitivity of HeLa cells to TRAIL-induced apoptosis. Thus, TRAIL down-regulation of SPAK is an important event that enhances its apoptotic effects

  16. [Trochanteric femoral fractures].

    Science.gov (United States)

    Douša, P; Čech, O; Weissinger, M; Džupa, V

    2013-01-01

    At the present time proximal femoral fractures account for 30% of all fractures referred to hospitals for treatment. Our population is ageing, the proportion of patients with post-menopausal or senile osteoporosis is increasing and therefore the number of proximal femoral fractures requiring urgent treatment is growing too. In the age category of 50 years and older, the incidence of these fractures has increased exponentially. Our department serves as a trauma centre for half of Prague and part of the Central Bohemia Region with a population of 1 150 000. Prague in particular has a high number of elderly citizens. Our experience is based on extensive clinical data obtained from the Register of Proximal Femoral Fractures established in 1997. During 14 years, 4280 patients, 3112 women and 1168 men, were admitted to our department for treatment of proximal femoral fractures. All patients were followed up until healing or development of complications. In the group under study, 82% were patients older than 70 years; 72% of those requiring surgery were in their seventies and eighties. Men were significantly younger than women (pfractures were 2.3-times more frequent in women than in men. In the category under 60 years, men significantly outnumbered women (pfractures were, on the average, eight years older than the patients with intertrochanteric fractures, which is a significant difference (pTrochanteric fractures accounted for 54.7% and femoral neck fractures for 45.3% of all fractures. The inter-annual increase was 5.9%, with more trochanteric than femoral neck fractures. There was a non-significant decrease in intertrochanteric (AO 31-A3) fractures. On the other hand, the number of pertrochanteric (AO 31-A1+2) fractures increased significantly (pfractures were treated with a proximal femoral nail; a short nail was used in 1260 and a long nail in 134 of them. A dynamic hip screw (DHS) was employed to treat 947 fractures. Distinguishing between pertrochanteric (21-A1

  17. Jogger's fracture and other stress fractures of the lumbo-sacral spine

    International Nuclear Information System (INIS)

    Abel, M.S.

    1985-01-01

    The posterior rings of the lower lumbo-sacral vertebrae are subject to stress fractures at any part - pedicle, pars, or lamina. The site of fracture is apparently determined by the axis of weight bearing. The three illustrative clinical examples cited include a jogger with a laminar fracture, a ballet dancer with pedicle fractures, and a nine-year-old boy with fractures of pars and lamina. Chronic low back pain is the typical complaint with stress fractures of the lower lumbo-sacral spine. Special imaging techniques are usually needed to demonstrate these lesions, including vertebral arch views, multi-directional tomography, and computed tomography (CT). (orig.)

  18. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    Energy Technology Data Exchange (ETDEWEB)

    Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.; Rinaldi, Vera D.; Marcano, Valerie C.; Whittaker, Gary R., E-mail: grw7@cornell.edu

    2014-07-25

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza.

  19. Inhibition of influenza virus infection and hemagglutinin cleavage by the protease inhibitor HAI-2

    International Nuclear Information System (INIS)

    Hamilton, Brian S.; Chung, Changik; Cyphers, Soreen Y.; Rinaldi, Vera D.; Marcano, Valerie C.; Whittaker, Gary R.

    2014-01-01

    Highlights: • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza HA cleavage activation. • Biochemical and cell biological analysis of HAI-2 as an inhibitor of influenza virus infection. • Comparative analysis of HAI-2 for vesicular stomatitis virus and human parainfluenza virus type-1. • Analysis of the activity of HAI-2 in a mouse model of influenza. - Abstract: Influenza virus remains a significant concern to public health, with the continued potential for a high fatality pandemic. Vaccination and antiviral therapeutics are effective measures to circumvent influenza virus infection, however, multiple strains have emerged that are resistant to the antiviral therapeutics currently on the market. With this considered, investigation of alternative antiviral therapeutics is being conducted. One such approach is to inhibit cleavage activation of the influenza virus hemagglutinin (HA), which is an essential step in the viral replication cycle that permits viral-endosome fusion. Therefore, targeting trypsin-like, host proteases responsible for HA cleavage in vivo may prove to be an effective therapeutic. Hepatocyte growth factor activator inhibitor 2 (HAI-2) is naturally expressed in the respiratory tract and is a potent inhibitor of trypsin-like serine proteases, some of which have been determined to cleave HA. In this study, we demonstrate that HAI-2 is an effective inhibitor of cleavage of HA from the human-adapted H1 and H3 subtypes. HAI-2 inhibited influenza virus H1N1 infection in cell culture, and HAI-2 administration showed protection in a mouse model of influenza. HAI-2 has the potential to be an effective, alternative antiviral therapeutic for influenza

  20. Imaging of insufficiency fractures

    Energy Technology Data Exchange (ETDEWEB)

    Krestan, Christian [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)], E-mail: christian.krestan@meduniwien.ac.at; Hojreh, Azadeh [Department of Radiology, Medical University of Vienna, Vienna General Hospital, Waehringerstr. 18-20, 1090 Vienna (Austria)

    2009-09-15

    This review focuses on the occurrence, imaging and differential diagnosis of insufficiency fractures. Prevalence, the most common sites of insufficiency fractures and their clinical implications are discussed. Insufficiency fractures occur with normal stress exerted on weakened bone. Postmenopausal osteoporosis is the most common cause of insufficiency fractures. Other conditions which affect bone turnover include osteomalacia, hyperparathyroidism, chronic renal failure and high-dose glucocorticoid therapy. It is a challenge for the radiologist to detect and diagnose insufficiency fractures, and to differentiate them from other bone lesions. Radiographs are still the most widely used imaging method for identification of insufficiency fractures, but sensitivity is limited, depending on the location of the fractures. Magnetic resonance imaging (MRI) is a very sensitive tool to visualize bone marrow abnormalities associated with insufficiency fractures. Thin section, multi-detector computed tomography (MDCT) depicts subtle fracture lines allowing direct visualization of cortical and trabecular bone. Bone scintigraphy still plays a role in detecting fractures, with good sensitivity but limited specificity. The most important differential diagnosis is underlying malignant disease leading to pathologic fractures. Bone densitometry and clinical history may also be helpful in confirming the diagnosis of insufficiency fractures.

  1. Influence of structures on fracture and fracture toughness of cemented tungsten carbides

    International Nuclear Information System (INIS)

    Zhao, W.; Zhang, X.

    1987-01-01

    A study was made of the influence of structures on fracture and fracture toughness of cemented tungsten carbides with different compositions and grain sizes. The measurement of the fracture toughness of cemented tungsten carbide was carried out using single edge notched beam. The microstructural parameters and the proportion for each fracture mode on the fracture surface were obtained. The brittle fracture of the alloy is mainly due to the interfacial decohesion fracture following the interface of the carbide crystals. It has been observed that there are localized fractures region ahead of the crack tip. The morphology of the crack propagation path as well as the slip structure in the cobalt phase of the deformed region have been investigated. In addition, a study of the correlation between the plane strain fracture toughness and microstructural parameters, such as mean free path of the cobalt phase, tungsten carbide grain size and the contiguity of tungsten carbide crystals was also made

  2. Missed cleavage opportunities by FEN1 lead to Okazaki fragment maturation via the long-flap pathway

    KAUST Repository

    Zaher, Manal S.; Rashid, Fahad; Song, Bo; Joudeh, Luay I; Sobhy, Mohamed Abdelmaboud; Tehseen, Muhammad; Hingorani, Manju M; Hamdan, Samir

    2018-01-01

    RNA-DNA hybrid primers synthesized by low fidelity DNA polymerase α to initiate eukaryotic lagging strand synthesis must be removed efficiently during Okazaki fragment (OF) maturation to complete DNA replication. In this process, each OF primer is displaced and the resulting 5'-single-stranded flap is cleaved by structure-specific 5'-nucleases, mainly Flap Endonuclease 1 (FEN1), to generate a ligatable nick. At least two models have been proposed to describe primer removal, namely short- and long-flap pathways that involve FEN1 or FEN1 along with Replication Protein A (RPA) and Dna2 helicase/nuclease, respectively. We addressed the question of pathway choice by studying the kinetic mechanism of FEN1 action on short- and long-flap DNA substrates. Using single molecule FRET and rapid quench-flow bulk cleavage assays, we showed that unlike short-flap substrates, which are bound, bent and cleaved within the first encounter between FEN1 and DNA, long-flap substrates can escape cleavage even after DNA binding and bending. Notably, FEN1 can access both substrates in the presence of RPA, but bending and cleavage of long-flap DNA is specifically inhibited. We propose that FEN1 attempts to process both short and long flaps, but occasional missed cleavage of the latter allows RPA binding and triggers the long-flap OF maturation pathway.

  3. Missed cleavage opportunities by FEN1 lead to Okazaki fragment maturation via the long-flap pathway

    KAUST Repository

    Zaher, Manal S.

    2018-01-27

    RNA-DNA hybrid primers synthesized by low fidelity DNA polymerase α to initiate eukaryotic lagging strand synthesis must be removed efficiently during Okazaki fragment (OF) maturation to complete DNA replication. In this process, each OF primer is displaced and the resulting 5\\'-single-stranded flap is cleaved by structure-specific 5\\'-nucleases, mainly Flap Endonuclease 1 (FEN1), to generate a ligatable nick. At least two models have been proposed to describe primer removal, namely short- and long-flap pathways that involve FEN1 or FEN1 along with Replication Protein A (RPA) and Dna2 helicase/nuclease, respectively. We addressed the question of pathway choice by studying the kinetic mechanism of FEN1 action on short- and long-flap DNA substrates. Using single molecule FRET and rapid quench-flow bulk cleavage assays, we showed that unlike short-flap substrates, which are bound, bent and cleaved within the first encounter between FEN1 and DNA, long-flap substrates can escape cleavage even after DNA binding and bending. Notably, FEN1 can access both substrates in the presence of RPA, but bending and cleavage of long-flap DNA is specifically inhibited. We propose that FEN1 attempts to process both short and long flaps, but occasional missed cleavage of the latter allows RPA binding and triggers the long-flap OF maturation pathway.

  4. SKI2 mediates degradation of RISC 5'-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis.

    Science.gov (United States)

    Branscheid, Anja; Marchais, Antonin; Schott, Gregory; Lange, Heike; Gagliardi, Dominique; Andersen, Stig Uggerhøj; Voinnet, Olivier; Brodersen, Peter

    2015-12-15

    Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20-24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5', but not 3'-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5' to the cleavage site, but several examples of 3'-spreading were also identified. These observations suggest that siRNAs do not simply derive from RDR6 action on stable 5'-cleavage fragments and hence that SKI2 has a direct role in limiting secondary siRNA production in addition to its function in mediating degradation of 5'-cleavage fragments. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Rib fractures predict incident limb fractures: results from the European prospective osteoporosis study.

    Science.gov (United States)

    Ismail, A A; Silman, A J; Reeve, J; Kaptoge, S; O'Neill, T W

    2006-01-01

    Population studies suggest that rib fractures are associated with a reduction in bone mass. While much is known about the predictive risk of hip, spine and distal forearm fracture on the risk of future fracture, little is known about the impact of rib fracture. The aim of this study was to determine whether a recalled history of rib fracture was associated with an increased risk of future limb fracture. Men and women aged 50 years and over were recruited from population registers in 31 European centres for participation in a screening survey of osteoporosis (European Prospective Osteoporosis Study). Subjects were invited to complete an interviewer-administered questionnaire that included questions about previous fractures including rib fracture, the age of their first fracture and also the level of trauma. Lateral spine radiographs were performed and the presence of vertebral deformity was determined morphometrically. Following the baseline survey, subjects were followed prospectively by annual postal questionnaire to determine the occurrence of clinical fractures. The subjects included 6,344 men, with a mean age of 64.2 years, and 6,788 women, with a mean age of 63.6 years, who were followed for a median of 3 years (range 0.4-5.9 years), of whom 135 men (2.3%) and 101 women (1.6%) reported a previous low trauma rib fracture. In total, 138 men and 391 women sustained a limb fracture during follow-up. In women, after age adjustment, those with a recalled history of low trauma rib fracture had an increased risk of sustaining 'any' limb fracture [relative hazard (RH)=2.3; 95% CI 1.3, 4.0]. When stratified by fracture type the predictive risk was more marked for hip (RH=7.7; 95% CI 2.3, 25.9) and humerus fracture (RH=4.5; 95% CI 1.4, 14.6) than other sites (RH=1.6; 95% CI 0.6, 4.3). Additional adjustment for prevalent vertebral deformity and previous (non-rib) low trauma fractures at other sites slightly reduced the strength of the association between rib fracture and

  6. Hip fracture - discharge

    Science.gov (United States)

    ... neck fracture repair - discharge; Trochanteric fracture repair - discharge; Hip pinning surgery - discharge ... in the hospital for surgery to repair a hip fracture, a break in the upper part of ...

  7. Quantifying Discrete Fracture Network Connectivity in Hydraulic Fracturing Stimulation

    Science.gov (United States)

    Urbancic, T.; Ardakani, E. P.; Baig, A.

    2017-12-01

    Hydraulic fracture stimulations generally result in microseismicity that is associated with the activation or extension of pre-existing microfractures and discontinuities. Microseismic events acquired under 3D downhole sensor coverage provide accurate event locations outlining hydraulic fracture growth. Combined with source characteristics, these events provide a high quality input for seismic moment tensor inversion and eventually constructing the representative discrete fracture network (DFN). In this study, we investigate the strain and stress state, identified fracture orientation, and DFN connectivity and performance for example stages in a multistage perf and plug completion in a North American shale play. We use topology, the familiar concept in many areas of structural geology, to further describe the relationships between the activated fractures and their effectiveness in enhancing permeability. We explore how local perturbations of stress state lead to the activation of different fractures sets and how that effects the DFN interaction and complexity. In particular, we observe that a more heterogeneous stress state shows a higher percentage of sub-horizontal fractures or bedding plane slips. Based on topology, the fractures are evenly distributed from the injection point, with decreasing numbers of connections by distance. The dimensionless measure of connection per branch and connection per line are used for quantifying the DFN connectivity. In order to connect the concept of connectivity back to productive volume and stimulation efficiency, the connectivity is compared with the character of deformation in the reservoir as deduced from the collective behavior of microseismicity using robustly determined source parameters.

  8. Relationship between synthesis and cleavage of poliovirus-specific proteins.

    OpenAIRE

    Thomas, A A; Voorma, H O; Boeye, A

    1983-01-01

    Poliovirus proteinase was studied in vitro in lysates from poliovirus-infected HeLa cells. Preincubation of these lysates caused (i) a reduction in poliovirus proteinase activity and (ii) a partial dependence on exogenous mRNA for optimal translation. Proteins translated from endogenous poliovirus RNA in preincubated extracts from virus-infected HeLa cells are poorly cleaved. This cleavage deficiency is alleviated by adding fresh poliovirus RNA to the translation system, thus, allowing re-ini...

  9. Fracture network growth for prediction of fracture characteristics and connectivity in tight reservoir rocks

    NARCIS (Netherlands)

    Barnhoorn, A.; Cox, S.F.

    2012-01-01

    Fracturing experiments on very low-porosity dolomite rocks shows a difference in growth of fracture networks by stress-driven fracturing and fluid-driven fracturing. Stress-driven fracture growth, in the absence of fluid pressure, initially forms fractures randomly throughout the rocks followed by

  10. Cleavage of influenza RNA by using a human PUF-based artificial RNA-binding protein–staphylococcal nuclease hybrid

    International Nuclear Information System (INIS)

    Mori, Tomoaki; Nakamura, Kento; Masaoka, Keisuke; Fujita, Yusuke; Morisada, Ryosuke; Mori, Koichi; Tobimatsu, Takamasa; Sera, Takashi

    2016-01-01

    Various viruses infect animals and humans and cause a variety of diseases, including cancer. However, effective methodologies to prevent virus infection have not yet been established. Therefore, development of technologies to inactivate viruses is highly desired. We have already demonstrated that cleavage of a DNA virus genome was effective to prevent its replication. Here, we expanded this methodology to RNA viruses. In the present study, we used staphylococcal nuclease (SNase) instead of the PIN domain (PilT N-terminus) of human SMG6 as an RNA-cleavage domain and fused the SNase to a human Pumilio/fem-3 binding factor (PUF)-based artificial RNA-binding protein to construct an artificial RNA restriction enzyme with enhanced RNA-cleavage rates for influenzavirus. The resulting SNase-fusion nuclease cleaved influenza RNA at rates 120-fold greater than the corresponding PIN-fusion nuclease. The cleaving ability of the PIN-fusion nuclease was not improved even though the linker moiety between the PUF and RNA-cleavage domain was changed. Gel shift assays revealed that the RNA-binding properties of the PUF derivative used was not as good as wild type PUF. Improvement of the binding properties or the design method will allow the SNase-fusion nuclease to cleave an RNA target in mammalian animal cells and/or organisms. - Highlights: • A novel RNA restriction enzyme using SNase was developed tor cleave viral RNA. • Our enzyme cleaved influenza RNA with rates >120-fold higher rates a PIN-fusion one. • Our artificial enzyme with the L5 linker showed the highest RNA cleavage rate. • Our artificial enzyme site-selectively cleaved influenza RNA in vitro.

  11. Scaphoid Fracture

    Directory of Open Access Journals (Sweden)

    Esther Kim, BS

    2018-04-01

    Full Text Available History of present illness: A 25-year-old, right-handed male presented to the emergency department with left wrist pain after falling from a skateboard onto an outstretched hand two-weeks prior. He otherwise had no additional concerns, including no complaints of weakness or loss of sensation. On physical exam, there was tenderness to palpation within the anatomical snuff box. The neurovascular exam was intact. Plain films of the left wrist and hand were obtained. Significant findings: The anteroposterior (AP plain film of this patient demonstrates a full thickness fracture through the middle third of the scaphoid (red arrow, with some apparent displacement (yellow lines and subtle angulation of the fracture fragments (blue line. Discussion: The scaphoid bone is the most commonly fractured carpal bone accounting for 70%-80% of carpal fractures.1 Classically, it is sustained following a fall onto an outstretched hand (FOOSH. Patients should be evaluated for tenderness with palpation over the anatomical snuffbox, which has a sensitivity of 100% and specificity of 40%.2 Plain films are the initial diagnostic modality of choice and have a sensitivity of 70%, but are commonly falsely negative in the first two to six weeks of injury (false negative of 20%.3 The Mayo classification organizes scaphoid fractures as involving the proximal, mid, and distal portions of the scaphoid bone with mid-fractures being the most common.3 The proximal scaphoid is highly susceptible to vascular compromise because it depends on retrograde blood flow from the radial artery. Therefore, disruption can lead to serious sequelae including osteonecrosis, arthrosis, and functional impairment. Thus, a low threshold should be maintained for neurovascular evaluation and surgical referral. Patients with non-displaced scaphoid fractures should be placed in a thumb spica splint.3 Patients with even suspected scaphoid fractures should be placed in a thumb spica splint and re

  12. Surrogate-based optimization of hydraulic fracturing in pre-existing fracture networks

    Science.gov (United States)

    Chen, Mingjie; Sun, Yunwei; Fu, Pengcheng; Carrigan, Charles R.; Lu, Zhiming; Tong, Charles H.; Buscheck, Thomas A.

    2013-08-01

    Hydraulic fracturing has been used widely to stimulate production of oil, natural gas, and geothermal energy in formations with low natural permeability. Numerical optimization of fracture stimulation often requires a large number of evaluations of objective functions and constraints from forward hydraulic fracturing models, which are computationally expensive and even prohibitive in some situations. Moreover, there are a variety of uncertainties associated with the pre-existing fracture distributions and rock mechanical properties, which affect the optimized decisions for hydraulic fracturing. In this study, a surrogate-based approach is developed for efficient optimization of hydraulic fracturing well design in the presence of natural-system uncertainties. The fractal dimension is derived from the simulated fracturing network as the objective for maximizing energy recovery sweep efficiency. The surrogate model, which is constructed using training data from high-fidelity fracturing models for mapping the relationship between uncertain input parameters and the fractal dimension, provides fast approximation of the objective functions and constraints. A suite of surrogate models constructed using different fitting methods is evaluated and validated for fast predictions. Global sensitivity analysis is conducted to gain insights into the impact of the input variables on the output of interest, and further used for parameter screening. The high efficiency of the surrogate-based approach is demonstrated for three optimization scenarios with different and uncertain ambient conditions. Our results suggest the critical importance of considering uncertain pre-existing fracture networks in optimization studies of hydraulic fracturing.

  13. XFEM modeling of hydraulic fracture in porous rocks with natural fractures

    Science.gov (United States)

    Wang, Tao; Liu, ZhanLi; Zeng, QingLei; Gao, Yue; Zhuang, Zhuo

    2017-08-01

    Hydraulic fracture (HF) in porous rocks is a complex multi-physics coupling process which involves fluid flow, diffusion and solid deformation. In this paper, the extended finite element method (XFEM) coupling with Biot theory is developed to study the HF in permeable rocks with natural fractures (NFs). In the recent XFEM based computational HF models, the fluid flow in fractures and interstitials of the porous media are mostly solved separately, which brings difficulties in dealing with complex fracture morphology. In our new model the fluid flow is solved in a unified framework by considering the fractures as a kind of special porous media and introducing Poiseuille-type flow inside them instead of Darcy-type flow. The most advantage is that it is very convenient to deal with fluid flow inside the complex fracture network, which is important in shale gas extraction. The weak formulation for the new coupled model is derived based on virtual work principle, which includes the XFEM formulation for multiple fractures and fractures intersection in porous media and finite element formulation for the unified fluid flow. Then the plane strain Kristianovic-Geertsma-de Klerk (KGD) model and the fluid flow inside the fracture network are simulated to validate the accuracy and applicability of this method. The numerical results show that large injection rate, low rock permeability and isotropic in-situ stresses tend to lead to a more uniform and productive fracture network.

  14. Cleavage of spike protein of SARS coronavirus by protease factor Xa is associated with viral infectivity

    International Nuclear Information System (INIS)

    Du, Lanying; Kao, Richard Y.; Zhou, Yusen; He, Yuxian; Zhao, Guangyu; Wong, Charlotte; Jiang, Shibo; Yuen, Kwok-Yung; Jin, Dong-Yan; Zheng, Bo-Jian

    2007-01-01

    The spike (S) protein of SARS coronavirus (SARS-CoV) has been known to recognize and bind to host receptors, whose conformational changes then facilitate fusion between the viral envelope and host cell membrane, leading to viral entry into target cells. However, other functions of SARS-CoV S protein such as proteolytic cleavage and its implications to viral infection are incompletely understood. In this study, we demonstrated that the infection of SARS-CoV and a pseudovirus bearing the S protein of SARS-CoV was inhibited by a protease inhibitor Ben-HCl. Also, the protease Factor Xa, a target of Ben-HCl abundantly expressed in infected cells, was able to cleave the recombinant and pseudoviral S protein into S1 and S2 subunits, and the cleavage was inhibited by Ben-HCl. Furthermore, this cleavage correlated with the infectivity of the pseudovirus. Taken together, our study suggests a plausible mechanism by which SARS-CoV cleaves its S protein to facilitate viral infection

  15. Mortality Following Periprosthetic Proximal Femoral Fractures Versus Native Hip Fractures.

    Science.gov (United States)

    Boylan, Matthew R; Riesgo, Aldo M; Paulino, Carl B; Slover, James D; Zuckerman, Joseph D; Egol, Kenneth A

    2018-04-04

    The number of periprosthetic proximal femoral fractures is expected to increase with the increasing prevalence of hip arthroplasties. While native hip fractures have a well-known association with mortality, there are currently limited data on this outcome among the subset of patients with periprosthetic proximal femoral fractures. Using the New York Statewide Planning and Research Cooperative System, we identified patients from 60 to 99 years old who were admitted to a hospital in the state with a periprosthetic proximal femoral fracture (n = 1,655) or a native hip (femoral neck or intertrochanteric) fracture (n = 97,231) between 2006 and 2014. Within the periprosthetic fracture cohort, the indication for the existing implant was not available in the data set. We used mixed-effects regression models to compare mortality at 1 and 6 months and 1 year for periprosthetic compared with native hip fractures. The risk of mortality for patients who sustained a periprosthetic proximal femoral fracture was no different from that for patients who sustained a native hip fracture at 1 month after injury (3.2% versus 4.6%; odds ratio [OR], 0.90; 95% confidence interval [CI], 0.68 to 1.19; p = 0.446), but was lower at 6 months (3.8% versus 6.5%; OR, 0.74; 95% CI, 0.57 to 0.95; p = 0.020) and 1 year (9.7% versus 15.9%; OR, 0.71; 95% CI, 0.60 to 0.85; p accounting for age and comorbidities. Prognostic Level III. See Instructions for Authors for a complete description of levels of evidence.

  16. Cleavage/alteration of interleukin-8 by matrix metalloproteinase-9 in the female lower genital tract.

    Science.gov (United States)

    Zariffard, M Reza; Anastos, Kathryn; French, Audrey L; Munyazesa, Elisaphane; Cohen, Mardge; Landay, Alan L; Spear, Gregory T

    2015-01-01

    Interleukin-8 (IL-8, CXCL8) plays important roles in immune responses at mucosal sites including in the lower genital tract. Since several types of bacteria produce proteases that cleave IL-8 and many types of bacteria can be present in lower genital tract microbiota, we assessed genital fluids for IL-8 cleavage/alteration. Genital fluids collected by lavage from 200 women (23 HIV-seronegative and 177 HIV-seropositive) were tested for IL-8 cleavage/alteration by ELISA. IL-8 cleaving/altering activity was observed in fluids from both HIV-positive (28%) and HIV-negative women (35%). There was no clear relationship between the activity and the types of bacteria present in the lower genital tract as determined by high-throughput sequencing of the 16S rRNA gene. Protease inhibitors specific for matrix metalloproteinases (MMPs) reduced the activity and a multiplex assay that detects both inactive and active MMPs showed the presence of multiple MMPs, including MMP-1, -3, -7, -8, -9, -10 and -12 in genital secretions from many of the women. The IL-8-cleaving/altering activity significantly correlated with active MMP-9 as well as with cleavage of a substrate that is acted on by several active MMPs. These studies show that multiple MMPs are present in the genital tract of women and strongly suggest that MMP-9 in genital secretions can cleave IL-8 at this mucosal site. These studies suggest that MMP-mediated cleavage of IL-8 can modulate inflammatory responses in the lower genital tract.

  17. Assessment of fracture risk

    International Nuclear Information System (INIS)

    Kanis, John A.; Johansson, Helena; Oden, Anders; McCloskey, Eugene V.

    2009-01-01

    Fractures are a common complication of osteoporosis. Although osteoporosis is defined by bone mineral density at the femoral neck, other sites and validated techniques can be used for fracture prediction. Several clinical risk factors contribute to fracture risk independently of BMD. These include age, prior fragility fracture, smoking, excess alcohol, family history of hip fracture, rheumatoid arthritis and the use of oral glucocorticoids. These risk factors in conjunction with BMD can be integrated to provide estimates of fracture probability using the FRAX tool. Fracture probability rather than BMD alone can be used to fashion strategies for the assessment and treatment of osteoporosis.

  18. The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. Ductility and fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Margolin, B., E-mail: mail@crism.ru; Sorokin, A.; Shvetsova, V.; Minkin, A.; Potapova, V.; Smirnov, V.

    2016-11-15

    The radiation swelling effect on the fracture properties of irradiated austenitic steels under static loading has been studied and analyzed from the mechanical and physical viewpoints. Experimental data on the stress-strain curves, fracture strain, fracture toughness and fracture mechanisms have been represented for austenitic steel of 18Cr-10Ni-Ti grade (Russian analog of AISI 321 steel) irradiated up to neutron dose of 150 dpa with various swelling. Some phenomena in mechanical behaviour of irradiated austenitic steels have been revealed and explained as follows: a sharp decrease of fracture toughness with swelling growth; untypical large increase of fracture toughness with decrease of the test temperature; some increase of fracture toughness after preliminary cyclic loading. Role of channel deformation and channel fracture has been clarified in the properties of irradiated austenitic steel and different tendencies to channel deformation have been shown and explained for the same austenitic steel irradiated at different temperatures and neutron doses.

  19. Characterization by notched and precracked Charpy tests of the in-service degradation of RPV steel fracture toughness

    Energy Technology Data Exchange (ETDEWEB)

    Fabry, A.

    1997-01-01

    The current engineering and regulatory practice to estimate fracture toughness safety margins for nuclear reactor pressure vessels (RPVs) relies heavily on the CVN impact test. Techniques to estimate in-service toughness degradation directly using a variety of precracked specimens are under development worldwide. Emphasis is on their miniaturization. In the nuclear context, it is essential to address many issues such as representativity of the surveillance programs with respect to the vessel in terms of materials and environment, transferability of test results to the structure (constraint and size effects), lower bound toughness certification, creadibility relative to trends of exising databases. An enhanced RPV surveillance strategy in under development in Belgium. It combines state-of-the-art micromechanical and damage modelling to the evaluation of CVN load-deflection signals, tensile stress-strain curves and slow-bend tests of reconstituted precracked Charpy specimens. A probabilistic micromechanical model has been established for static and dynamic transgranular cleavage initiation fracture toughness in the ductile-brittle transition temperature range. This model allows to project toughness bounds for any steel embrittlement condition from the corresponding CVN and static tensile properties, using a single scaling factor defined by imposing agreement with toughness tests in a single condition. The outstanding finding incorporated by this toughness transfer model is that the microcleavage fracture stress is affected by temperature in the ductile-brittle transition and that this influence is strongly correlated to the flow stress: this explains the shape of the K{sub Ic}n K{sub Id} temperature curves as well as the actual magnitude of the strain rate and irradiation effects. Furthermore, CVN crack arrest loads and fracture appearance are also taken advantage of in order to estimate K{sub Ia} degradation. Finally, the CVN-tensile load-temperature diagram

  20. Simulation of counter-current imbibition in water-wet fractured reservoirs based on discrete-fracture model

    Directory of Open Access Journals (Sweden)

    Wang Yueying

    2017-08-01

    Full Text Available Isolated fractures usually exist in fractured media systems, where the capillary pressure in the fracture is lower than that of the matrix, causing the discrepancy in oil recoveries between fractured and non-fractured porous media. Experiments, analytical solutions and conventional simulation methods based on the continuum model approach are incompetent or insufficient in describing media containing isolated fractures. In this paper, the simulation of the counter-current imbibition in fractured media is based on the discrete-fracture model (DFM. The interlocking or arrangement of matrix and fracture system within the model resembles the traditional discrete fracture network model and the hybrid-mixed-finite-element method is employed to solve the associated equations. The Behbahani experimental data validates our simulation solution for consistency. The simulation results of the fractured media show that the isolated-fractures affect the imbibition in the matrix block. Moreover, the isolated fracture parameters such as fracture length and fracture location influence the trend of the recovery curves. Thus, the counter-current imbibition behavior of media with isolated fractures can be predicted using this method based on the discrete-fracture model.

  1. Fracture characteristics in Japanese rock

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Akahori, Kuniaki

    1999-11-01

    It is crucial for the performance assessment of geosphere to evaluate the characteristics of fractures that can be dominant radionuclide migration pathways from a repository to biosphere. This report summarizes the characteristics of fractures obtained from broad literature surveys and the fields surveys at the Kamaishi mine in northern Japan and at outcrops and galleries throughout the country. The characteristics of fractures described in this report are fracture orientation, fracture shape, fracture frequency, fracture distribution in space, transmissivity of fracture, fracture aperture, fracture fillings, alteration halo along fracture, flow-wetted surface area in fracture, and the correlation among these characteristics. Since granitic rock is considered the archetype fractured media, a large amount of fracture data is available in literature. In addition, granitic rock has been treated as a potential host rock in many overseas programs, and has JNC performed a number of field observations and experiments in granodiorite at the Kamaishi mine. Therefore, the characteristics of fractures in granitic rock are qualitatively and quantitatively clarified to some extent in this report, while the characteristics of fractures in another rock types are not clarified. (author)

  2. Cough-induced rib fractures.

    Science.gov (United States)

    Hanak, Viktor; Hartman, Thomas E; Ryu, Jay H

    2005-07-01

    To define the demographic, clinical, and radiological features of patients with cough-induced rib fractures and to assess potential risk factors. For this retrospective, single-center study, we identified all cases of cough-induced rib fractures diagnosed at the Mayo Clinic in Rochester, Minn, over a 9-year period between January 1, 1996, and January 31, 2005. Bone densitometry data from patients' medical records were analyzed, and T scores were used to classify patients into bone density categories. The mean +/- SD age of the 54 study patients at presentation was 55+/-17 years, and 42 patients (78%) were female. Patients presented with chest wall pain after onset of cough. Rib fracture was associated with chronic cough (> or =3 weeks' duration) in 85% of patients. Rib fractures were documented by chest radiography, rib radiography, computed tomography, or bone scan. Chest radiography had been performed in 52 patients and revealed rib fracture in 30 (58%). There were 112 fractured ribs in 54 patients. One half of patients had more than one fractured rib. Right-sided rib fractures alone were present in 17 patients (26 fractured ribs), left-sided in 23 patients (35 fractured ribs), and bilateral in 14 patients (51 fractured ribs). The most commonly fractured rib on both sides was rib 6. The fractures were most common at the lateral aspect of the rib cage. Bone densitometry was done in 26 patients and revealed osteopenia or osteoporosis in 17 (65%). Cough-induced rib fractures occur primarily in women with chronic cough. Middle ribs along the lateral aspect of the rib cage are affected most commonly. Although reduced bone density is likely a risk factor, cough-induced rib fractures can occur in the presence of normal bone density.

  3. Influence of perforation erosion on multiple growing hydraulic fractures in multi-stage fracturing

    Directory of Open Access Journals (Sweden)

    Yongming Li

    2018-02-01

    Full Text Available In multi-stage hydraulic fracturing, the limited-entry method is widely used to promote uniform growth of multiple fractures. However, this method's effectiveness may be lost because the perforations will be eroded gradually during the fracturing period. In order to study the influence of perforation erosion on multiple growing hydraulic fractures, we combined the solid–fluid coupled model of hydraulic fracture growth with an empirical model of perforation erosion to implement numerical simulation. The simulations show clearly that the erosion of perforation will significantly deteriorate the non-uniform growth of multiple fractures. Based on the numerical model, we also studied the influences of proppant concentration and injection rates on perforation erosion in multi-stage hydraulic fracturing. The results indicate that the initial erosion rates become higher with the rising proppant concentration, but the growth of multiple hydraulic fractures is not sensitive to the varied proppant concentration. In addition, higher injection rates are beneficial significantly to the limited-entry design, leading to more uniform growth of fractures. Thus, in multi-stage hydraulic fracturing enough high injection rates are proposed to keep uniform growths. Keywords: Unconventional oil and gas reservoir, Horizontal well, Perforation friction, Perforation erosion, Multi-stage hydraulic fracturing, Numerical simulation, Mathematic model, Uniform growth of fractures

  4. Two tandem RNase III cleavage sites determine betT mRNA stability in response to osmotic stress in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Minji Sim

    Full Text Available While identifying genes regulated by ribonuclease III (RNase III in Escherichia coli, we observed that steady-state levels of betT mRNA, which encodes a transporter mediating the influx of choline, are dependent on cellular concentrations of RNase III. In the present study, we also observed that steady-state levels of betT mRNA are dependent on RNase III activity upon exposure to osmotic stress, indicating the presence of cis-acting elements controlled by RNase III in betT mRNA. Primer extension analyses of betT mRNA revealed two tandem RNase III cleavage sites in its stem-loop region, which were biochemically confirmed via in vitro cleavage assays. Analyses of cleavage sites suggested the stochastic selection of cleavage sites by RNase III, and mutational analyses indicated that RNase III cleavage at either site individually is insufficient for efficient betT mRNA degradation. In addition, both the half-life and abundance of betT mRNA were significantly increased in association with decreased RNase III activity under hyper-osmotic stress conditions. Our findings demonstrate that betT mRNA stability is controlled by RNase III at the post-transcriptional level under conditions of osmotic stress.

  5. A camel-derived MERS-CoV with a variant spike protein cleavage site and distinct fusion activation properties

    Science.gov (United States)

    Millet, Jean Kaoru; Goldstein, Monty E; Labitt, Rachael N; Hsu, Hung-Lun; Daniel, Susan; Whittaker, Gary R

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) continues to circulate in both humans and camels, and the origin and evolution of the virus remain unclear. Here we characterize the spike protein of a camel-derived MERS-CoV (NRCE-HKU205) identified in 2013, early in the MERS outbreak. NRCE-HKU205 spike protein has a variant cleavage motif with regard to the S2′ fusion activation site—notably, a novel substitution of isoleucine for the otherwise invariant serine at the critical P1′ cleavage site position. The substitutions resulted in a loss of furin-mediated cleavage, as shown by fluorogenic peptide cleavage and western blot assays. Cell–cell fusion and pseudotyped virus infectivity assays demonstrated that the S2′ substitutions decreased spike-mediated fusion and viral entry. However, cathepsin and trypsin-like protease activation were retained, albeit with much reduced efficiency compared with the prototypical EMC/2012 human strain. We show that NRCE-HKU205 has more limited fusion activation properties possibly resulting in more restricted viral tropism and may represent an intermediate in the complex pattern of MERS-CoV ecology and evolution. PMID:27999426

  6. Characteristic fracture spacing in primary and secondary recovery for naturally fractured reservoirs

    NARCIS (Netherlands)

    Gong, J.; Rossen, W.R.

    2018-01-01

    If the aperture distribution is broad enough in a naturally fractured reservoir, even one where the fracture network is highly inter-connected, most fractures can be eliminated without significantly affecting the flow through the fracture network. During a waterflood or enhanced-oil-recovery

  7. Refinement and fracture mechanisms of as-cast QT700-6 alloy by alloying method

    Directory of Open Access Journals (Sweden)

    Min-qiang Gao

    2017-01-01

    Full Text Available The as-cast QT700-6 alloy was synthesized with addition of a certain amount of copper, nickel, niobium and stannum elements by alloying method in a medium frequency induction furnace, aiming at improving its strength and toughness. Microstructures of the as-cast QT700-6 alloy were observed using a scanning-electron microscope (SEM and the mechanical properties were investigated using a universal tensile test machine. Results indicate that the ratio of pearlite/ferrite is about 9:1 and the graphite size is less than 40 μm in diameter in the as-cast QT700-6 alloy. The predominant refinement mechanism is attributed to the formation of niobium carbides, which increases the heterogeneous nucleus and hinders the growth of graphite. Meanwhile, niobium carbides also exist around the grain boundaries, which improve the strength of the ductile iron. The tensile strength and elongation of the as-cast QT700-6 alloy reach over 700 MPa and 6%, respectively, when the addition amount of niobium is 0.8%. The addition of copper and nickel elements contributed to the decrease of eutectoid transformation temperature, resulting in the decrease of pearlite lamellar spacing (about 248 nm, which is also beneficial to enhancing the tensile strength. The main fracture mechanism is cleavage fracture with the appearance of a small amount of dimples.

  8. Fracture mechanical materials characterisation

    International Nuclear Information System (INIS)

    Wallin, K.; Planman, T.; Nevalainen, M.

    1998-01-01

    The experimental fracture mechanics development has been focused on the determination of reliable lower-bound fracture toughness estimates from small and miniature specimens, in particular considering the statistical aspects and loading rate effects of fracture mechanical material properties. Additionally, materials aspects in fracture assessment of surface cracks, with emphasis on the transferability of fracture toughness data to structures with surface flaws have been investigated. Further a modified crack-arrest fracture toughness test method, to increase the effectiveness of testing, has been developed. (orig.)

  9. Fracture Mechanics

    CERN Document Server

    Zehnder, Alan T

    2012-01-01

    Fracture mechanics is a vast and growing field. This book develops the basic elements needed for both fracture research and engineering practice. The emphasis is on continuum mechanics models for energy flows and crack-tip stress- and deformation fields in elastic and elastic-plastic materials. In addition to a brief discussion of computational fracture methods, the text includes practical sections on fracture criteria, fracture toughness testing, and methods for measuring stress intensity factors and energy release rates. Class-tested at Cornell, this book is designed for students, researchers and practitioners interested in understanding and contributing to a diverse and vital field of knowledge. Alan Zehnder joined the faculty at Cornell University in 1988. Since then he has served in a number of leadership roles including Chair of the Department of Theoretical and Applied Mechanics, and Director of the Sibley School of Mechanical and Aerospace Engineering.  He teaches applied mechanics and his research t...

  10. Fractures and fracture infillings of the Eye-Dashwa Lakes pluton, Atikokan, Ontario

    International Nuclear Information System (INIS)

    Stone, Denver; Kamineni, D.C.

    1982-01-01

    Fractures in the Eye-Dashwa pluton near Atikokan, Ontario can be subdivided on the basis of their filling materials. These materials include aplite, epidote, chlorite, and gypsum-carbonate-clay, listed in order of decreasing age established from crosscutting relations. Textues indicate that infilling occurred during fracture growth. Continuous cooling of the pluton during fracturing is inferred from the expected crystallization temperatures of fillings. Fracturing began before the pluton was completely solidified (650-600 0 C) and continued to temperatures below 100 0 C. Many fractures appear to have been sealed by the filling materials after initiation but were subsequently sheared and filled by lower temperatue materials. Apparently the majority of fractures formed during or immediately after pluton solidification and new fractures became smaller and more restricted in location as cooling progressed. Fractures and filling materials are seen as important features in assessing the possibility of movement of radionuclides in aqueous solutions away from a nuclear fuel waste repository

  11. Discrete population balance models of random agglomeration and cleavage in polymer pyrolysis

    Directory of Open Access Journals (Sweden)

    John E. J. Staggs

    2017-05-01

    Full Text Available The processes of random agglomeration and cleavage (both of which are important for the development of new models of polymer combustion, but are also applicable in a wide range of fields including atmospheric physics, radiation modelling and astrophysics are analysed using population balance methods. The evolution of a discrete distribution of particles is considered within this framework, resulting in a set of ordinary differential equations for the individual particle concentrations. Exact solutions for these equations are derived, together with moment generating functions. Application of the discrete Laplace transform (analogous to the Z-transform is found to be effective in these problems, providing both exact solutions for particle concentrations and moment generating functions. The combined agglomeration-cleavage problem is also considered. Unfortunately, it has been impossible to find an exact solution for the full problem, but a stable steady state has been identified and computed.

  12. Computed tomograms of blowout fracture

    International Nuclear Information System (INIS)

    Ito, Haruhide; Hayashi, Minoru; Shoin, Katsuo; Hwang, Wen-Zern; Yamamoto, Shinjiro; Yonemura, Taizo.

    1985-01-01

    We studied 18 cases of orbital fractures, excluding optic canal fracture. There were 11 cases of pure blowout fracture and 3 of the impure type. The other 4 cases were orbital fractures without blowout fracture. The cardinal syndromes were diplopia, enophthalmos, and sensory disturbances of the trigeminal nerve in the pure type of blowout fracture. Many cases of the impure type of blowout fracture or of orbital fracture showed black eyes or a swelling of the eyelids which masked enophthalmos. Axial and coronal CT scans demonstrated: 1) the orbital fracture, 2) the degree of enophthalmos, 3) intraorbital soft tissue, such as incarcerated or prolapsed ocular muscles, 4) intraorbital hemorrhage, 5) the anatomical relation of the orbital fracture to the lacrimal canal, the trochlea, and the trigeminal nerve, and 6) the lesions of the paranasal sinus and the intracranial cavity. CT scans play an important role in determining what surgical procedures might best be employed. Pure blowout fractures were classified by CT scans into these four types: 1) incarcerating linear fracture, 2) trapdoor fracture, 3) punched-out fracture, and 4) broad fracture. Cases with severe head injury should be examined to see whether or not blowout fracture is present. If the patients are to hope to return to society, a blowout fracture should be treated as soon as possible. (author)

  13. Computed tomograms of blowout fracture

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Haruhide; Hayashi, Minoru; Shoin, Katsuo; Hwang, Wen-Zern; Yamamoto, Shinjiro; Yonemura, Taizo

    1985-02-01

    We studied 18 cases of orbital fractures, excluding optic canal fracture. There were 11 cases of pure blowout fracture and 3 of the impure type. The other 4 cases were orbital fractures without blowout fracture. The cardinal syndromes were diplopia, enophthalmos, and sensory disturbances of the trigeminal nerve in the pure type of blowout fracture. Many cases of the impure type of blowout fracture or of orbital fracture showed black eyes or a swelling of the eyelids which masked enophthalmos. Axial and coronal CT scans demonstrated: 1) the orbital fracture, 2) the degree of enophthalmos, 3) intraorbital soft tissue, such as incarcerated or prolapsed ocular muscles, 4) intraorbital hemorrhage, 5) the anatomical relation of the orbital fracture to the lacrimal canal, the trochlea, and the trigeminal nerve, and 6) the lesions of the paranasal sinus and the intracranial cavity. CT scans play an important role in determining what surgical procedures might best be employed. Pure blowout fractures were classified by CT scans into these four types: 1) incarcerating linear fracture, 2) trapdoor fracture, 3) punched-out fracture, and 4) broad fracture. Cases with severe head injury should be examined to see whether or not blowout fracture is present. If the patients are to hope to return to society, a blowout fracture should be treated as soon as possible. (author).

  14. Facial Fractures.

    Science.gov (United States)

    Ricketts, Sophie; Gill, Hameet S; Fialkov, Jeffery A; Matic, Damir B; Antonyshyn, Oleh M

    2016-02-01

    After reading this article, the participant should be able to: 1. Demonstrate an understanding of some of the changes in aspects of facial fracture management. 2. Assess a patient presenting with facial fractures. 3. Understand indications and timing of surgery. 4. Recognize exposures of the craniomaxillofacial skeleton. 5. Identify methods for repair of typical facial fracture patterns. 6. Discuss the common complications seen with facial fractures. Restoration of the facial skeleton and associated soft tissues after trauma involves accurate clinical and radiologic assessment to effectively plan a management approach for these injuries. When surgical intervention is necessary, timing, exposure, sequencing, and execution of repair are all integral to achieving the best long-term outcomes for these patients.

  15. Evidence of Alternative Cystatin C Signal Sequence Cleavage Which Is Influenced by the A25T Polymorphism.

    Directory of Open Access Journals (Sweden)

    Annie Nguyen

    Full Text Available Cystatin C (Cys C is a small, potent, cysteine protease inhibitor. An Ala25Thr (A25T polymorphism in Cys C has been associated with both macular degeneration and late-onset Alzheimer's disease. Previously, studies have suggested that this polymorphism may compromise the secretion of Cys C. Interestingly, we found that untagged A25T, A25T tagged C-terminally with FLAG, or A25T FLAG followed by green fluorescent protein (GFP, were all secreted as efficiently from immortalized human cells as their wild-type (WT counterparts (e.g., 112%, 100%, and 88% of WT levels from HEK-293T cells, respectively. Supporting these observations, WT and A25T Cys C variants also showed similar intracellular steady state levels. Furthermore, A25T Cys C did not activate the unfolded protein response and followed the same canonical endoplasmic reticulum (ER-Golgi trafficking pathway as WT Cys C. WT Cys C has been shown to undergo signal sequence cleavage between residues Gly26 and Ser27. While the A25T polymorphism did not affect Cys C secretion, we hypothesized that it may alter where the Cys C signal sequence is preferentially cleaved. Under normal conditions, WT and A25T Cys C have the same signal sequence cleavage site after Gly26 (referred to as 'site 2' cleavage. However, in particular circumstances when the residues around site 2 are modified (such as by the presence of an N-terminal FLAG tag immediately after Gly26, or by a Gly26Lys (G26K mutation, A25T has a significantly higher likelihood than WT Cys C of alternative signal sequence cleavage after Ala20 ('site 1' or even earlier in the Cys C sequence. Overall, our results indicate that the A25T polymorphism does not cause a significant reduction in Cys C secretion, but instead predisposes the protein to be cleaved at an alternative signal sequence cleavage site if site 2 is hindered. Additional N-terminal amino acids resulting from alternative signal sequence cleavage may, in turn, affect the protease

  16. SKI2 mediates degradation of RISC 5′-cleavage fragments and prevents secondary siRNA production from miRNA targets in Arabidopsis

    Science.gov (United States)

    Branscheid, Anja; Marchais, Antonin; Schott, Gregory; Lange, Heike; Gagliardi, Dominique; Andersen, Stig Uggerhøj; Voinnet, Olivier; Brodersen, Peter

    2015-01-01

    Small regulatory RNAs are fundamental in eukaryotic and prokaryotic gene regulation. In plants, an important element of post-transcriptional control is effected by 20–24 nt microRNAs (miRNAs) and short interfering RNAs (siRNAs) bound to the ARGONAUTE1 (AGO1) protein in an RNA induced silencing complex (RISC). AGO1 may cleave target mRNAs with small RNA complementarity, but the fate of the resulting cleavage fragments remains incompletely understood. Here, we show that SKI2, SKI3 and SKI8, subunits of a cytoplasmic cofactor of the RNA exosome, are required for degradation of RISC 5′, but not 3′-cleavage fragments in Arabidopsis. In the absence of SKI2 activity, many miRNA targets produce siRNAs via the RNA-dependent RNA polymerase 6 (RDR6) pathway. These siRNAs are low-abundant, and map close to the cleavage site. In most cases, siRNAs were produced 5′ to the cleavage site, but several examples of 3′-spreading were also identified. These observations suggest that siRNAs do not simply derive from RDR6 action on stable 5′-cleavage fragments and hence that SKI2 has a direct role in limiting secondary siRNA production in addition to its function in mediating degradation of 5′-cleavage fragments. PMID:26464441

  17. Mechanics of Hydraulic Fractures

    Science.gov (United States)

    Detournay, Emmanuel

    2016-01-01

    Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.

  18. Fracture in Soft Materials

    DEFF Research Database (Denmark)

    Hassager, Ole

    Fracture is a phenomenon that is generally associated with solids. A key element in fracture theory is the so-called weakest link idea that fracture initiates from the largest pre-existing material imperfection. However, recent work has demonstrated that fracture can also happen in liquids, where...... surface tension will act to suppress such imperfections. Therefore, the weakest link idea does not seem immediately applicable to fracture in liquids. This presentation will review fracture in liquids and argue that fracture in soft liquids is a material property independent of pre-existing imperfections....... The following questions then emerge: What is the material description needed to predict crack initiation, crack speed and crack shape in soft materials and liquids....

  19. Identification of Cleavage Sites Recognized by the 3C-Like Cysteine Protease within the Two Polyproteins of Strawberry Mottle Virus

    Directory of Open Access Journals (Sweden)

    Hélène Sanfaçon

    2017-04-01

    Full Text Available Strawberry mottle virus (SMoV, family Secoviridae, order Picornavirales is one of several viruses found in association with strawberry decline disease in Eastern Canada. The SMoV genome consists of two positive-sense single-stranded RNAs, each encoding one large polyprotein. The RNA1 polyprotein (P1 includes the domains for a putative helicase, a VPg, a 3C-like cysteine protease and an RNA-dependent RNA polymerase at its C-terminus, and one or two protein domains at its N-terminus. The RNA2 polyprotein (P2 is predicted to contain the domains for a movement protein (MP and one or several coat proteins at its N-terminus, and one or more additional domains for proteins of unknown function at its C-terminus. The RNA1-encoded 3C-like protease is presumed to cleave the two polyproteins in cis (P1 and in trans (P2. Using in vitro processing assays, we systematically scanned the two polyproteins for cleavage sites recognized by this protease. We identified five cis-cleavage sites in P1, with cleavage between the putative helicase and VPg domains being the most efficient. The presence of six protein domains in the SMoV P1, including two upstream of the putative helicase domain, is a feature shared with nepoviruses but not with comoviruses. Results from trans-cleavage assays indicate that the RNA1-encoded 3C-like protease recognized a single cleavage site, which was between the predicted MP and coat protein domains in the P2 polyprotein. The cleavage site consensus sequence for the SMoV 3C-like protease is AxE (E or Q/(G or S.

  20. Seismic characteristics of tensile fracture growth induced by hydraulic fracturing

    Science.gov (United States)

    Eaton, D. W. S.; Van der Baan, M.; Boroumand, N.

    2014-12-01

    Hydraulic fracturing is a process of injecting high-pressure slurry into a rockmass to enhance its permeability. Variants of this process are used for unconventional oil and gas development, engineered geothermal systems and block-cave mining; similar processes occur within volcanic systems. Opening of hydraulic fractures is well documented by mineback trials and tiltmeter monitoring and is a physical requirement to accommodate the volume of injected fluid. Numerous microseismic monitoring investigations acquired in the audio-frequency band are interpreted to show a prevalence of shear-dominated failure mechanisms surrounding the tensile fracture. Moreover, the radiated seismic energy in the audio-frequency band appears to be a miniscule fraction (<< 1%) of the net injected energy, i.e., the integral of the product of fluid pressure and injection rate. We use a simple penny-shaped crack model as a predictive framework to describe seismic characteristics of tensile opening during hydraulic fracturing. This model provides a useful scaling relation that links seismic moment to effective fluid pressure within the crack. Based on downhole recordings corrected for attenuation, a significant fraction of observed microseismic events are characterized by S/P amplitude ratio < 5. Despite the relatively small aperture of the monitoring arrays, which precludes both full moment-tensor analysis and definitive identification of nodal planes or axes, this ratio provides a strong indication that observed microseismic source mechanisms have a component of tensile failure. In addition, we find some instances of periodic spectral notches that can be explained by an opening/closing failure mechanism, in which fracture propagation outpaces fluid velocity within the crack. Finally, aseismic growth of tensile fractures may be indicative of a scenario in which injected energy is consumed to create new fracture surfaces. Taken together, our observations and modeling provide evidence that

  1. Pathological fractures in children

    Science.gov (United States)

    De Mattos, C. B. R.; Binitie, O.; Dormans, J. P.

    2012-01-01

    Pathological fractures in children can occur as a result of a variety of conditions, ranging from metabolic diseases and infection to tumours. Fractures through benign and malignant bone tumours should be recognised and managed appropriately by the treating orthopaedic surgeon. The most common benign bone tumours that cause pathological fractures in children are unicameral bone cysts, aneurysmal bone cysts, non-ossifying fibromas and fibrous dysplasia. Although pathological fractures through a primary bone malignancy are rare, these should be recognised quickly in order to achieve better outcomes. A thorough history, physical examination and review of plain radiographs are crucial to determine the cause and guide treatment. In most benign cases the fracture will heal and the lesion can be addressed at the time of the fracture, or after the fracture is healed. A step-wise and multidisciplinary approach is necessary in caring for paediatric patients with malignancies. Pathological fractures do not have to be treated by amputation; these fractures can heal and limb salvage can be performed when indicated. PMID:23610658

  2. Coupled Fracture and Flow in Shale in Hydraulic Fracturing

    Science.gov (United States)

    Carey, J. W.; Mori, H.; Viswanathan, H.

    2014-12-01

    Production of hydrocarbon from shale requires creation and maintenance of fracture permeability in an otherwise impermeable shale matrix. In this study, we use a combination of triaxial coreflood experiments and x-ray tomography characterization to investigate the fracture-permeability behavior of Utica shale at in situ reservoir conditions (25-50 oC and 35-120 bars). Initially impermeable shale core was placed between flat anvils (compression) or between split anvils (pure shear) and loaded until failure in the triaxial device. Permeability was monitored continuously during this process. Significant deformation (>1%) was required to generate a transmissive fracture system. Permeability generally peaked at the point of a distinct failure event and then dropped by a factor of 2-6 when the system returned to hydrostatic failure. Permeability was very small in compression experiments (fashion as pressure increased. We also observed that permeability decreased with increasing fluid flow rate indicating that flow did not follow Darcy's Law, possibly due to non-laminar flow conditions, and conformed to Forscheimer's law. The coupled deformation and flow behavior of Utica shale, particularly the large deformation required to initiate flow, indicates the probable importance of activation of existing fractures in hydraulic fracturing and that these fractures can have adequate permeability for the production of hydrocarbon.

  3. Fluid-driven fracture propagation in heterogeneous media: Probability distributions of fracture trajectories.

    Science.gov (United States)

    Santillán, David; Mosquera, Juan-Carlos; Cueto-Felgueroso, Luis

    2017-11-01

    Hydraulic fracture trajectories in rocks and other materials are highly affected by spatial heterogeneity in their mechanical properties. Understanding the complexity and structure of fluid-driven fractures and their deviation from the predictions of homogenized theories is a practical problem in engineering and geoscience. We conduct a Monte Carlo simulation study to characterize the influence of heterogeneous mechanical properties on the trajectories of hydraulic fractures propagating in elastic media. We generate a large number of random fields of mechanical properties and simulate pressure-driven fracture propagation using a phase-field model. We model the mechanical response of the material as that of an elastic isotropic material with heterogeneous Young modulus and Griffith energy release rate, assuming that fractures propagate in the toughness-dominated regime. Our study shows that the variance and the spatial covariance of the mechanical properties are controlling factors in the tortuousness of the fracture paths. We characterize the deviation of fracture paths from the homogenous case statistically, and conclude that the maximum deviation grows linearly with the distance from the injection point. Additionally, fracture path deviations seem to be normally distributed, suggesting that fracture propagation in the toughness-dominated regime may be described as a random walk.

  4. Traumatic thoracolumbar spine fractures

    NARCIS (Netherlands)

    J. Siebenga (Jan)

    2013-01-01

    textabstractTraumatic spinal fractures have the lowest functional outcomes and the lowest rates of return to work after injury of all major organ systems.1 This thesis will cover traumatic thoracolumbar spine fractures and not osteoporotic spine fractures because of the difference in fracture

  5. Experimental and Numerical Studies on Development of Fracture Process Zone (FPZ) in Rocks under Cyclic and Static Loadings

    Science.gov (United States)

    Ghamgosar, M.; Erarslan, N.

    2016-03-01

    The development of fracture process zones (FPZ) in the Cracked Chevron Notched Brazilian Disc (CCNBD) monsonite and Brisbane tuff specimens was investigated to evaluate the mechanical behaviour of brittle rocks under static and various cyclic loadings. An FPZ is a region that involves different types of damage around the pre-existing and/or stress-induced crack tips in engineering materials. This highly damaged area includes micro- and meso-cracks, which emerge prior to the main fracture growth or extension and ultimately coalescence to macrofractures, leading to the failure. The experiments and numerical simulations were designed for this study to investigate the following features of FPZ in rocks: (1) ligament connections and (2) microcracking and its coalescence in FPZ. A Computed Tomography (CT) scan technique was also used to investigate the FPZ behaviour in selected rock specimens. The CT scan results showed that the fracturing velocity is entirely dependent on the appropriate amount of fracture energy absorbed in rock specimens due to the change of frequency and amplitudes of the dynamic loading. Extended Finite Element Method (XFEM) was used to compute the displacements, tensile stress distribution and plastic energy dissipation around the propagating crack tip in FPZ. One of the most important observations, the shape of FPZ and its extension around the crack tip, was made using numerical and experimental results, which supported the CT scan results. When the static rupture and the cyclic rupture were compared, the main differences are twofold: (1) the number of fragments produced is much greater under cyclic loading than under static loading, and (2) intergranular cracks are formed due to particle breakage under cyclic loading compared with smooth and bright cracks along cleavage planes under static loading.

  6. Superelastic behavior and fracture of a Cu-11.8%wAl-0.5%wBe alloy as used in seismic energy dispersors

    International Nuclear Information System (INIS)

    Montecinos, S; Sepulveda, A; Moroni, M; Lund, F

    2004-01-01

    Some results are shown of the characterization of the super elastic behavior and fracturing of a polycrystalline alloy Cu-11.8% w Al-0.5% w Be. It was submitted to monotonic traction and cyclic (at 1 Hz) tests. The alloy was provided by Trefim aux, in the form of 3 and 6 mm diameter wires. This work aims to present a preliminary mechanical definition of this alloy, with a view to its eventual use in seismic energy absorption devices in civil constructions. Similar behavior trends were found for the two diameters, although some differences were detected in the values of the measured properties. The material is super elastic within a deformation range of 2.3% for the 3mm wire and 3.1% for the 6 mm wire. Increasing the grain size increased the material's super elastic range. When the maximum applied deformation was increased, the temperature of the test pieces went up and a change occurred in the form of the cycles, increasing the absorption (with values of 5% in the super elastic limit) and decreasing the K parameter and the rigidity of the cycles. With the monotonic traction tests, the material presents a transgranular fracture from a mixed mechanism of cleavage and micropores, elongating the larger fracture by 15% and a maximum force (UTS) greater than 5000 kg cm 2 (CW)

  7. Cleavage and protection of locked nucleic acid-modified DNA by restriction endonucleases

    DEFF Research Database (Denmark)

    Crouzier, Lucile; Dubois, Camille; Wengel, Jesper

    2012-01-01

    Locked nucleic acid (LNA) is one of the most prominent nucleic acid analogues reported so far. We herein for the first time report cleavage by restriction endonuclease of LNA-modified DNA oligonucleotides. The experiments revealed that RsaI is an efficient enzyme capable of recognizing and cleaving...

  8. Epidemiology of rib fractures in older men: Osteoporotic Fractures in Men (MrOS) prospective cohort study.

    Science.gov (United States)

    Barrett-Connor, Elizabeth; Nielson, Carrie M; Orwoll, Eric; Bauer, Douglas C; Cauley, Jane A

    2010-03-15

    To study the causes and consequences of radiologically confirmed rib fractures (seldom considered in the context of osteoporosis) in community dwelling older men. Prospective cohort study (Osteoporotic Fractures in Men (MrOS) Study). 5995 men aged 65 or over recruited in 2000-2 from six US sites; 99% answered mailed questionnaires about falls and fractures every four months for a mean 6.2 (SD 1.3) year follow-up. New fractures validated by radiology reports; multivariate Cox proportional hazard ratios were used to evaluate factors independently associated with time to incident rib fracture; associations between baseline rib fracture and incident hip and wrist fracture were also evaluated. The incidence of rib fracture was 3.5/1000 person years, and 24% (126/522) of all incident non-spine fractures were rib fractures. Nearly half of new rib fractures (48%; n=61) followed falling from standing height or lower. Independent risk factors for an incident rib fracture were age 80 or above, low bone density, difficulty with instrumental activities of daily living, and a baseline history of rib/chest fracture. Men with a history of rib/chest fracture had at least a twofold increased risk of an incident rib fracture (adjusted hazard ratio 2.71, 95% confidence interval 1.86 to 3.95), hip fracture (2.05, 1.33 to 3.15), and wrist fracture (2.06, 1.14 to 3.70). Only 14/82 of men reported being treated with bone specific drugs after their incident rib fracture. Rib fracture, the most common incident clinical fracture in men, was associated with classic risk markers for osteoporosis, including old age, low hip bone mineral density, and history of fracture. A history of rib fracture predicted a more than twofold increased risk of future fracture of the rib, hip, or wrist, independent of bone density and other covariates. Rib fractures should be considered to be osteoporotic fractures in the evaluation of older men for treatment to prevent future fracture.

  9. Analysis of fracture patterns and local stress field variations in fractured reservoirs

    Science.gov (United States)

    Deckert, Hagen; Drews, Michael; Fremgen, Dominik; Wellmann, J. Florian

    2010-05-01

    A meaningful qualitative evaluation of permeabilities in fractured reservoirs in geothermal or hydrocarbon industry requires the spatial description of the existing discontinuity pattern within the area of interest and an analysis how these fractures might behave under given stress fields. This combined information can then be used for better estimating preferred fluid pathway directions within the reservoir, which is of particular interest for defining potential drilling sites. A description of the spatial fracture pattern mainly includes the orientation of rock discontinuities, spacing relationships between single fractures and their lateral extent. We have examined and quantified fracture patterns in several outcrops of granite at the Costa Brava, Spain, and in the Black Forest, Germany, for describing reservoir characteristics. For our analysis of fracture patterns we have used photogrammetric methods to create high-resolution georeferenced digital 3D images of outcrop walls. The advantage of this approach, compared to conventional methods for fracture analysis, is that it provides a better 3D description of the fracture geometry as the entity of position, extent and orientation of single fractures with respect to their surrounding neighbors is conserved. Hence for instance, the method allows generating fracture density maps, which can be used for a better description of the spatial distribution of discontinuities in a given outcrop. Using photogrammetric techniques also has the advantage to acquire very large data sets providing statistically sound results. To assess whether the recorded discontinuities might act as fluid pathways information on the stress field is needed. A 3D model of the regional tectonic structure was created and the geometry of the faults was put into a mechanical 3D Boundary Element (BE) Model. The model takes into account the elastic material properties of the geological units and the orientation of single fault segments. The

  10. Cleavage sites in the polypeptide precursors of poliovirus protein P2-X

    International Nuclear Information System (INIS)

    Selmer, B.L.; Hanecak, R.; Anderson, C.W.; Wimmer, E.

    1981-01-01

    Partial amino-terminal sequence analysis has been performed on the three major polypeptide products (P2-3b, P2-5b, and P2-X) from the central region (P2) of the poliovirus polyprotein, and this analysis precisely locates the amino termini of these products with respect to the nucleotide sequence of the poliovirus RNA genome. Like most of the products of the replicase region (P3), the amino termini of P2-5b and P2-X are generated by cleavage between glutamine and glycine residues. Thus, P2-5b and P2-X are probably both produced by the action of a singly (virus-encoded.) proteinase. The amino terminus of P2-3b, on the other hand, is produced by a cleavage between the carboxy-terminal tyrosine of VP1 and the glycine encoded by nucleotides 3381-3383. This result may suggest that more than one proteolytic activity is required for the complete processing of the poliovirus polyprotein

  11. Radiological classification of mandibular fractures

    International Nuclear Information System (INIS)

    Mihailova, H.

    2009-01-01

    Mandibular fractures present the biggest part (up to 97%) of the facial bone fractures. Method of choice for diagnosing of mandibular fractures is conventional radiography. The aim of the issue is to present an unified radiological classification of mandibular fractures for the clinical practice. This classification includes only those clinical symptoms of mandibular fracture which could be radiologically objectified: exact anatomical localization (F1-F6), teeth in fracture line (Ta,Tb), grade of dislocation (D I, D II), occlusal disturbances (O(+), O(-)). Radiological symptoms expressed by letter and number symbols are systematized in a formula - FTDO of mandibular fractures similar to TNM formula for tumours. FTDO formula expresses radiological diagnose of each mandibular fracture but it doesn't include neither the site (left or right) of the fracture, nor the kind and number of fractures. In order to express topography and number of fractures the radiological formula is transformed into a decimal fraction. The symbols (FTD) of right mandible fracture are written in the numerator and those of the left site - in the denominator. For double and multiple fractures between the symbols for each fracture we put '+'. Symbols for occlusal disturbances are put down opposite, the fractional line. So topographo-anatomical formula (FTD/FTD)xO is formed. In this way the whole radiological information for unilateral, bilateral, single or multiple fractures of the mandible is expressed. The information in the radiological topography anatomic formula, resp. from the unified topography-anatomic classification ensures a quick and exact X-ray diagnose of mandibular fracture. In this way contributes to get better, make easier and faster X-ray diagnostic process concerning mandibular fractures. And all these is a precondition for prevention of retardation of the diagnosis mandibular fracture. (author)

  12. Electron spectroscopy of the interface carbon layer formation on the cleavage surfaces of the layered semiconductor In4Se3 crystals

    International Nuclear Information System (INIS)

    Galiy, P.V.; Musyanovych, A.V.; Nenchuk, T.M.

    2005-01-01

    The results of the quantitative X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) of the interface carbon layer formation on the cleavage surfaces of the layered semiconductor In 4 Se 3 crystals are presented. The carbon coating formation occurs as the result of interaction of the air and residual gases atmosphere in ultra high vacuum (UHV) Auger spectrometer chamber with atomic clean interlayer cleavage surfaces of the crystals. The kinetics and peculiarities of interfacial carbon layer formation on the cleavage surfaces of the crystals, elemental and phase composition of the interface have been studied by quantitative XPS, AES and mass-spectroscopy

  13. AE characterisation of damage in burn resistant β-Titanium alloy (Tl-25V-15CR-2AL-0.2C)

    International Nuclear Information System (INIS)

    Shukri Mohd; Bowen, P.

    2003-01-01

    Acoustic Emission (AE) has been used to monitor cleavage cracking in Beta Titanium alloys to gain a detailed understanding of damage mechanisms in such alloys. Damage has been characterised in situ by AE and fractography for fracture toughness and fatigue crack growth resistance tests. During fracture toughness testing, the formation of cleavage facets in as received and heat treated specimens has been monitored by using AE. The values of fracture toughness have also been compared. For as received specimens, loads were applied until fracture while for heat treated specimens, three different test sequences were employed. For the first test, the load was again applied until failure. This test was carried out to give the overall clip gauge displacement curve for this specimen and also to estimate the load at which 5% offset and any pop-in occurs. For the second test, the load was applied to the specimens and then stopped at the 5 % offset and for the last test the applied-load was removed just after pop-in. Both of these latter specimens were then post fatigued until failure and then the fractured surfaces of all specimens were analysed using SEM. For fatigue crack growth resistance tests, the tests were started at ΔK of 20 MPam 1/2 until failure. A test was also stopped at ΔK of 40 MPam 1/2 . During such tests, crack growth was monitored by measuring the potential drop across the crack. It is found that the AE technique allows the investigation of the onset of cleavage fracture in this Beta-Ti alloy. It is, in principle, possible to use this technique to monitor online the formation of such unstable cleavage cracking of this alloy. (Author)

  14. Characterization of fracture and deformation mechanism in a high strength beta titanium alloy Ti-10-2-3 using EBSD technique

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Jalaj, E-mail: jalaj@dmrl.drdo.in; Singh, Vajinder; Ghosal, Partha; Kumar, Vikas

    2015-01-19

    In the present study, fracture toughness tested specimens in longitudinal (LT) and transverse loading (TL) directions of beta titanium alloy have been investigated using Electron Back Scattered Diffraction (EBSD) technique. The orientation images captured at three different locations i.e. machine notch, fatigue pre-crack and final fracture have been compared. The LT sample exhibits with more facets than TL sample. The faceted aspect of the crack is generally associated with quasi-cleavage mechanism. The EBSD analysis clearly points out that in the LT specimen, the hexagonal orientation has moved towards near basal during the test. This may be the reason for the observance of facets in the LT specimen. The cracking in TL specimen might have been taken over by the bcc phase as it is oriented with harder planes of cubic {001} planes. Further, the Schmid factor has also been computed based on the defined loading conditions. Significant variation has been observed in the slip plane orientations and distributions at these three locations. The Schmid analysis has highlighted the significant contribution of different slip systems towards deformation and cracking in LT and TL specimens.

  15. An unusual stress fracture: Bilateral posterior longitudinal stress fracture of tibia.

    Science.gov (United States)

    Malkoc, Melih; Korkmaz, Ozgur; Ormeci, Tugrul; Oltulu, Ismail; Isyar, Mehmet; Mahirogulları, Mahir

    2014-01-01

    Stress fractures (SF) occur when healthy bone is subjected to cyclic loading, which the normal carrying range capacity is exceeded. Usually, stress fractures occur at the metatarsal bones, calcaneus, proximal or distal tibia and tends to be unilateral. This article presents a 58-year-old male patient with bilateral posterior longitudinal tibial stress fractures. A 58 years old male suffering for persistent left calf pain and decreased walking distance for last one month and after imaging studies posterior longitudinal tibial stress fracture was detected on his left tibia. After six months the patient was admitted to our clinic with the same type of complaints in his right leg. All imaging modalities and blood counts were performed and as a result longitudinal posterior tibial stress fractures were detected on his right tibia. Treatment of tibial stress fracture includes rest and modified activity, followed by a graded return to activity commensurate with bony healing. We have applied the same treatment protocol and our results were acceptable but our follow up time short for this reason our study is restricted for separate stress fractures of the posterior tibia. Although the main localization of tibial stress fractures were unilateral, anterior and transverse pattern, rarely, like in our case, the unusual bilateral posterior localization and longitudinal pattern can be seen. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. The breakage behaviour of Aspirin under quasi-static indentation and single particle impact loading: effect of crystallographic anisotropy.

    Science.gov (United States)

    Olusanmi, D; Roberts, K J; Ghadiri, M; Ding, Y

    2011-06-15

    The influence of crystallographic structural anisotropy on the breakage behaviour of Aspirin under impact loading is highlighted. Under both quasi-static testing conditions, using nano-indentation, and dynamic impact tests, Aspirin demonstrates clear anisotropy in its slip and fracture behaviour. During nano-indentation on the (100) and (001) faces, cracks were propagated along the [010] direction. While the hardness was found to be comparatively similar for both these faces, it was observed that slip due to plastic deformation occurred more readily on the (100) than the (001) crystal planes suggesting the former as the preferred slip plane. Furthermore, the fracture toughness on the (001) planes was found to be distinctly lower than that of the (100) planes, indicating the former as the preferred cleavage plane. Observations of the crystal morphology of damaged particles after dynamic impact testing showed that both the chipping and fragmentation of Aspirin mostly occurred via cleavage in a manner consistent with the observed fracture behaviour following nano-indentation. This work highlights the importance of cleavage as a dominant factor underpinning the fracture mechanism of Aspirin under both quasi-static and impact loading conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. RecA-mediated cleavage activates UmuD for mutagenesis: Mechanistic relationship between transcriptional derepression and posttranslational activation

    International Nuclear Information System (INIS)

    Nohmi, Takehiko; Battista, J.R.; Dodson, L.A.; Walker, G.C.

    1988-01-01

    The products of the SOS-regulated umuDC operon are required for most UV and chemical mutagenesis in Escherichia coli. It has been shown that the UmuD protein shares homology with LexA, the repressor of the SOS genes. In this paper the authors describe a series of genetic experiments that indicate that the purpose of RecA-mediated cleavage of UmuD at its bond between Cys-24 and Gly-25 is to activate UmuD for its role in mutagenesis and that the COOH-terminal fragment of UmuD is necessary and sufficient for the role of UmuD in UV mutagenesis. Other genetic experiments are presented that (i) support the hypothesis that the primary role of Ser-60 in UmuD function is to act as a nucleophile in the RecA-mediated cleavage reaction and (ii) raise the possibility that RecA has a third role in UV mutagenesis besides mediating the cleavage of LexA and UmuD

  18. Targeted cleavage of hepatitis E virus 3' end RNA mediated by hammerhead ribozymes inhibits viral RNA replication

    International Nuclear Information System (INIS)

    Sriram, Bandi; Thakral, Deepshi; Panda, Subrat Kumar

    2003-01-01

    The 3' end of hepatitis E virus (HEV) contains cis-acting regulatory element, which plays an important role in viral replication. To develop specific replication inhibitor at the molecular level, mono- and di-hammerhead ribozymes (Rz) were designed and synthesized against the conserved 3' end sequences of HEV, which cleave at nucleotide positions 7125 and 7112/7125, respectively. Di-hammerhead ribozyme with two catalytic motifs in tandem was designed to cleave simultaneously at two sites spaced 13 nucleotides apart, which increases the overall cleavage efficiency and prevents the development of escape mutants. Specific cleavage products were obtained with both the ribozymes in vitro at physiological conditions. The inactive control ribozymes showed no cleavage. The ribozymes showed specific inhibition of HEV 3' end fused-luciferase reporter gene expression by ∼37 and ∼60%, respectively in HepG2 cells. These results demonstrate a feasible approach to inhibit the HEV replication to a limited extent by targeting the cis-acting 3' end of HEV with hammerhead ribozymes

  19. Effect of Albendazole at different concentrations on fertilization and early cleavage in Tetrapygus niger “sea urchin”

    Directory of Open Access Journals (Sweden)

    Gina Zavaleta Espejo

    2013-09-01

    Full Text Available In this study we evaluated the effect of Albendazole at different concentrations and exposure times on the process of fertilization and early cleavage in Tetrapygus niger "sea urchin". Each experimental group consisted of 200 mL, of previously filtered seawater at pH 7.3 and temperature of 20 ± 2 °C, plus five drops of eggs and two drops of spermatozoa exposed to different concentrations of Albendazole 400 ppm, 800 ppm and 1200 ppm. Determining the effect of Albendazole was conducted by counting the number of cones of fertilization, as well as the number of cleaving embryos with normal and abnormal. The ANOVA and multiple comparison test Tukey averages showed significant differences between the treatments, namely that increasing the concentration of Albendazole fertilization rate decreases and increases the percentage of embryos with abnormal cleavage, so therefore concluded that the Albendazole at different concentrations and exposure times affects the process of fertilization and early cleavage in T, niger "sea urchin"

  20. Determinants of the VP1/2A junction cleavage by the 3C protease in foot-and-mouth disease virus-infected cells.

    Science.gov (United States)

    Kristensen, Thea; Normann, Preben; Gullberg, Maria; Fahnøe, Ulrik; Polacek, Charlotta; Rasmussen, Thomas Bruun; Belsham, Graham J

    2017-03-01

    The foot-and-mouth disease virus (FMDV) capsid precursor, P1-2A, is cleaved by FMDV 3C protease to yield VP0, VP3, VP1 and 2A. Cleavage of the VP1/2A junction is the slowest. Serotype O FMDVs with uncleaved VP1-2A (having a K210E substitution in VP1; at position P2 in cleavage site) have been described previously and acquired a second site substitution (VP1 E83K) during virus rescue. Furthermore, introduction of the VP1 E83K substitution alone generated a second site change at the VP1/2A junction (2A L2P, position P2' in cleavage site). These virus adaptations have now been analysed using next-generation sequencing to determine sub-consensus level changes in the virus; this revealed other variants within the E83K mutant virus population that changed residue VP1 K210. The construction of serotype A viruses with a blocked VP1/2A cleavage site (containing K210E) has now been achieved. A collection of alternative amino acid substitutions was made at this site, and the properties of the mutant viruses were determined. Only the presence of a positively charged residue at position P2 in the cleavage site permitted efficient cleavage of the VP1/2A junction, consistent with analyses of diverse FMDV genome sequences. Interestingly, in contrast to the serotype O virus results, no second site mutations occurred within the VP1 coding region of serotype A viruses with the blocked VP1/2A cleavage site. However, some of these viruses acquired changes in the 2C protein that is involved in enterovirus morphogenesis. These results have implications for the testing of potential antiviral agents targeting the FMDV 3C protease.

  1. Evaluation of Fibular Fracture Type vs Location of Tibial Fixation of Pilon Fractures.

    Science.gov (United States)

    Busel, Gennadiy A; Watson, J Tracy; Israel, Heidi

    2017-06-01

    Comminuted fibular fractures can occur with pilon fractures as a result of valgus stress. Transverse fibular fractures can occur with varus deformation. No definitive guide for determining the proper location of tibial fixation exists. The purpose of this study was to identify optimal plate location for fixation of pilon fractures based on the orientation of the fibular fracture. One hundred two patients with 103 pilon fractures were identified who were definitively treated at our institution from 2004 to 2013. Pilon fractures were classified using the AO/OTA classification and included 43-A through 43-C fractures. Inclusion criteria were age of at least 18 years, associated fibular fracture, and definitive tibial plating. Patients were grouped based on the fibular component fracture type (comminuted vs transverse), and the location of plate fixation (medial vs lateral) was noted. Radiographic outcomes were assessed for mechanical failures. Forty fractures were a result of varus force as evidenced by transverse fracture of the fibula and 63 were due to valgus force with a comminuted fibula. For the transverse fibula group, 14.3% mechanical complications were noted for medially placed plate vs 80% for lateral plating ( P = .006). For the comminuted fibular group, 36.4% of medially placed plates demonstrated mechanical complications vs 16.7% for laterally based plates ( P = .156). Time to weight bearing as tolerated was also noted to be significant between groups plated medially and laterally for the comminuted group ( P = .013). Correctly assessing the fibular component for pilon fractures provides valuable information regarding deforming forces. To limit mechanical complications, tibial plates should be applied in such a way as to resist the original deforming forces. Level of Evidence Level III, comparative study.

  2. Prediction of cleavage crack propagation and arrest in a nuclear pressure vessel steel (16MND5) under thermal shock

    International Nuclear Information System (INIS)

    Yang, Xiaoyu

    2015-01-01

    The purpose of this PhD study is to predict the propagation and arrest of cleavage cracks in a French PWR vessel steel (16MND5). This is accomplished through use of a local criterion based on the critical stress calculated ahead of crack tip. Previous work has shown that fracture mechanism was cleavage associated with the ductile shear zone between the different planes of cracking. Thus, the critical stress at crack tip depends on stain rate. This thesis consists of numerical optimization, identification and validation of a local criterion based on experiments which have complex thermomechanical loads. The criterion accounts for various crack paths, deepening the knowledge about micro mechanisms during crack propagation in order to justify the established criterion. Criterion identification was carried out by using numerical simulations of tension tests performed on CT (Compact Tension) specimens at four different temperatures (-150 C, -125 C, -100 C and -75 C). The eXtended Finite Element Method (X-FEM) was used in CAST3M FE software to model dynamic crack propagation and arrest. The analysis results in 2D and 3D showed that the critical stress at crack tip increased with the inelastic strain rate. Therefore, a criterion based on the critical stress was established. An analytical model was developed to justify the identified criterion. The critical stress given by the local criterion was considered as the sum of the critical cleavage stress and the stress generated by the deformation of ligaments behind the crack tip. In order to quantify this phenomenon, measurements of ligaments' characteristics have been performed on fracture surfaces and on cross-sections of the specimens. The stress profile of the crack lips generated by ligaments was calculated by modeling of multi-cracks on specimen's cross-section. The contribution of stress generated by ligaments to the critical stress at crack tip was obtained with this method, and then the analytical model of

  3. Fractures in multiple sclerosis

    DEFF Research Database (Denmark)

    Stenager, E; Jensen, K

    1991-01-01

    In a cross-sectional study of 299 MS patients 22 have had fractures and of these 17 after onset of MS. The fractures most frequently involved the femoral neck and trochanter (41%). Three patients had had more than one fracture. Only 1 patient had osteoporosis. The percentage of fractures increase...

  4. Reversible Heterolytic Cleavage of the H-H Bond by Molybdenum Complexes: Controlling the Dynamics of Exchange Between Proton and Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shaoguang; Appel, Aaron M.; Bullock, R. Morris

    2017-05-18

    Controlling the heterolytic cleavage of the H-H bond of dihydrogen is critically important in catalytic hydrogenations and in the catalytic oxidation of H2. We show how the rate of reversible heterolytic cleavage of H2 can be controlled over nearly four orders of magnitude at 25 °C, from 2.1 × 103 s-1 to ≥107 s-1. Bifunctional Mo complexes, [CpMo(CO)(κ3-P2N2)]+ (P2N2 = 1,5-diaza-3,7-diphosphacyclooctane with alkyl/aryl groups on N and P), have been developed for heterolytic cleavage of H2 into a proton and a hydride, akin to Frustrated Lewis Pairs. The H-H bond cleavage is enabled by the basic amine in the second coordination sphere. The products of heterolytic cleavage of H2, Mo hydride complexes bearing protonated amines, [CpMo(H)(CO)(P2N2H)]+, were characterized by spectroscopic studies and by X-ray crystallography. Variable temperature 1H, 15N and 2-D 1H-1H ROESY NMR spectra indicated rapid exchange of the proton and hydride. The exchange rates are in the order [CpMo(H)(CO)(PPh2NPh2H)]+ > [CpMo(H)(CO)(PtBu2NPh2H)]+ > [CpMo(H)(CO)(PPh2NBn2H)]+ > [CpMo(H)(CO)(PtBu2NBn2H)]+ > [CpMo(H)(CO)(PtBu2NtBu2H)]+. The pKa values determined in acetonitrile range from 9.3 to 17.7, and show a linear correlation with the logarithm of the exchange rates. Thus the exchange dynamics are controlled through the relative acidity of the [CpMo(H)(CO)(P2N2H)]+ and [CpMo(H2)(CO)(P2N2)]+ isomers, providing a design principle for controlling heterolytic cleavage of H2.

  5. TIBIAL SHAFT FRACTURES.

    Science.gov (United States)

    Kojima, Kodi Edson; Ferreira, Ramon Venzon

    2011-01-01

    The long-bone fractures occur most frequently in the tibial shaft. Adequate treatment of such fractures avoids consolidation failure, skewed consolidation and reoperation. To classify these fractures, the AO/OTA classification method is still used, but it is worthwhile getting to know the Ellis classification method, which also includes assessment of soft-tissue injuries. There is often an association with compartmental syndrome, and early diagnosis can be achieved through evaluating clinical parameters and constant clinical monitoring. Once the diagnosis has been made, fasciotomy should be performed. It is always difficult to assess consolidation, but the RUST method may help in this. Radiography is assessed in two projections, and points are scored for the presence of the fracture line and a visible bone callus. Today, the dogma of six hours for cleaning the exposed fracture is under discussion. It is considered that an early start to intravenous antibiotic therapy and the lesion severity are very important. The question of early or late closure of the lesion in an exposed fracture has gone through several phases: sometimes early closure has been indicated and sometimes late closure. Currently, whenever possible, early closure of the lesion is recommended, since this diminishes the risk of infection. Milling of the canal when the intramedullary nail is introduced is still a controversial subject. Despite strong personal positions in favor of milling, studies have shown that there may be some advantage in relation to closed fractures, but not in exposed fractures.

  6. Treatment of mandibular symphyseal fracture combined with dislocated intracapsular condylar fractures.

    Science.gov (United States)

    Xu, Xiaofeng; Shi, Jun; Xu, Bing; Dai, Jiewen; Zhang, Shilei

    2015-03-01

    To evaluate the treatment methods of mandibular symphyseal fracture combined with dislocated intracapsular condylar fractures (MSF&DICF) and to compare the effect of different treatment methods of condylar fractures. Twenty-eight patients with MSF&DICF were included in this study. Twenty-two sites were treated by open reduction, and all the medial condylar fragments were fixed with titanium screws; whereas the other 22 sites underwent close treatment. The surgical effect between these 2 groups was compared based on clinical examination and radiographic examination results. Seventeen of 22 condyle fractures were repositioned in the surgery group, whereas 4 of 22 condyle fractures were repositioned in the close treatment group. Statistical difference was observed between these 2 groups (P condyle fractures should be treated by surgical reduction with the maintenance of the attachment of lateral pterygoid muscle, which is beneficial to repositioning the dislocated condyle to its original physiological position, to closure of the mandibular lingual gap, to restore the mandibular width.

  7. Classification of Porcine Cranial Fracture Patterns Using a Fracture Printing Interface,.

    Science.gov (United States)

    Wei, Feng; Bucak, Serhat Selçuk; Vollner, Jennifer M; Fenton, Todd W; Jain, Anil K; Haut, Roger C

    2017-01-01

    Distinguishing between accidental and abusive head trauma in children can be difficult, as there is a lack of baseline data for pediatric cranial fracture patterns. A porcine head model has recently been developed and utilized in a series of studies to investigate the effects of impact energy level, surface type, and constraint condition on cranial fracture patterns. In the current study, an automated pattern recognition method, or a fracture printing interface (FPI), was developed to classify cranial fracture patterns that were associated with different impact scenarios documented in previous experiments. The FPI accurately predicted the energy level when the impact surface type was rigid. Additionally, the FPI was exceedingly successful in determining fractures caused by skulls being dropped with a high-level energy (97% accuracy). The FPI, currently developed on the porcine data, may in the future be transformed to the task of cranial fracture pattern classification for human infant skulls. © 2016 American Academy of Forensic Sciences.

  8. Hydrajet fracturing: an effective method for placing many fractures in openhole horizontal wells

    Energy Technology Data Exchange (ETDEWEB)

    Surjaatmadja, J. B.; Grundmann, S. R.; McDaniel, B.; Deeg, W. F. J.; Brumley, J. L.; Swor, L. C.

    1998-12-31

    A new method for openhole horizontal well fracturing that combines hydrajetting and fracturing techniques, which was developed on the basis of Bernoulli`s theorem, is described. This theorem has been effectively proven in many applications such as jet pumps, additive injection systems and jet aircraft engines. By using this method, operators can position a jetting tool, without the use of sealing elements, at the exact point where fracture is required. The method also permits the use of multiple fractures in the same well, which can be spaced evenly or unevenly as prescribed by the fracturing program. Damage can be avoided by placing hundreds of small fractures in a long horizontal section, or operators can use acid and/or propped sand techniques to place a combination of two fracture types in the well. The paper describes the basic principles of horizontal hydrajet fracturing, and elements of a laboratory model which was developed to demonstrate the effectiveness of the method.

  9. Characterisation of hydraulically-active fractures in a fractured ...

    African Journals Online (AJOL)

    ... in the initial stage of a site investigation to select the optimal site location or to evaluate the hydrogeological properties of fractures in underground exploration studies, such as those related geothermal reservoir evaluation and radioactive waste disposal. Keywords: self-potential method, hydraulically-conductive fractures, ...

  10. Investigation of irradiation embrittlement and annealing behaviour of JRQ pressure vessel steel by instrumented impact tests

    Energy Technology Data Exchange (ETDEWEB)

    Valo, M; Rintamaa, R; Nevalainen, M; Wallin, K; Torronen, K [Technical Research Centre of Finland, Espoo (Finland); Tipping, P [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1994-12-31

    Seven series of A533-B type pressure vessel steel specimens irradiated as well as irradiated - annealed - re-irradiated to different fast neutron fluences (up to 5.10{sup 19}/cm{sup 2}) have been tested with a new type of instrumented impact test machine. The radiation embrittlement and the effect of the intermediate annealing was assessed by using the ductile and cleavage fracture initiation toughness. Although the ductile fracture initiation toughness exhibited scatter, the transition temperature shift corresponding to the dynamic cleavage fracture initiation agreed well with the 41 J Charpy-V shift. The results indicate that annealing is beneficial in restoring mechanical properties in an irradiated nuclear pressure vessel steel. (authors). 8 refs., 11 figs., 1 tab.

  11. Fracture propagation in sandstone and slate – Laboratory experiments, acoustic emissions and fracture mechanics

    Directory of Open Access Journals (Sweden)

    Ferdinand Stoeckhert

    2015-06-01

    Full Text Available Fracturing of highly anisotropic rocks is a problem often encountered in the stimulation of unconventional hydrocarbon or geothermal reservoirs by hydraulic fracturing. Fracture propagation in isotropic material is well understood but strictly isotropic rocks are rarely found in nature. This study aims at the examination of fracture initiation and propagation processes in a highly anisotropic rock, specifically slate. We performed a series of tensile fracturing laboratory experiments under uniaxial as well as triaxial loading. Cubic specimens with edge lengths of 150 mm and a central borehole with a diameter of 13 mm were prepared from Fredeburg slate. An experiment using the rather isotropic Bebertal sandstone as a rather isotropic rock was also performed for comparison. Tensile fractures were generated using the sleeve fracturing technique, in which a polymer tube placed inside the borehole is pressurized to generate tensile fractures emanating from the borehole. In the uniaxial test series, the loading was varied in order to observe the transition from strength-dominated fracture propagation at low loading magnitudes to stress-dominated fracture propagation at high loading magnitudes.

  12. Rib Fractures

    Science.gov (United States)

    ... Video) Achilles Tendon Tear Additional Content Medical News Rib Fractures By Thomas G. Weiser, MD, MPH, Associate Professor, ... Tamponade Hemothorax Injury to the Aorta Pulmonary Contusion Rib Fractures Tension Pneumothorax Traumatic Pneumothorax (See also Introduction to ...

  13. Orbital fractures: a review

    Directory of Open Access Journals (Sweden)

    Jeffrey M Joseph

    2011-01-01

    Full Text Available Jeffrey M Joseph, Ioannis P GlavasDivision of Ophthalmic Plastic and Reconstructive Surgery, Department of Ophthalmology, School of Medicine, New York University, New York, NY, USA; Manhattan Eye, Ear, and Throat Hospital, New York, NY, USAAbstract: This review of orbital fractures has three goals: 1 to understand the clinically relevant orbital anatomy with regard to periorbital trauma and orbital fractures, 2 to explain how to assess and examine a patient after periorbital trauma, and 3 to understand the medical and surgical management of orbital fractures. The article aims to summarize the evaluation and management of commonly encountered orbital fractures from the ophthalmologic perspective and to provide an overview for all practicing ophthalmologists and ophthalmologists in training.Keywords: orbit, trauma, fracture, orbital floor, medial wall, zygomatic, zygomatic complex, zmc fracture, zygomaticomaxillary complex fractures 

  14. Orbital wall fractures

    International Nuclear Information System (INIS)

    Iinuma, Toshitaka; Ishio, Ken-ichirou; Yoshinami, Hiroyoshi; Kuriyama, Jun-ichi; Hirota, Yoshiharu.

    1993-01-01

    A total of 59 cases of mild facial fractures (simple orbital wall fractures, 34 cases, other facial fractures, 25 cases) with the clinical suspects of orbital wall fractures were evaluated both by conventional views (Waters' and Caldwell views) and coronal CT scans. Conventional views were obtained, as an average, after 4 days and CT after 7 days of injuries. Both the medial wall and the floor were evaluated at two sites, i.e., anterior and posterior. The ethmoid-maxillary plate was also included in the study. The degree of fractures was classified as, no fractures, fractures of discontinuity, dislocation and fragmentation. The coronal CT images in bone window condition was used as reference and the findings were compared between conventional views and CT. The correct diagnosis was obtained as follows: orbital floor (anterior, 78%, posterior, 73%), medial orbital wall (anterior, 72%, posterior, 72%) and ethmoid-maxillary plate (64%). The false positive diagnosis was as follows: orbital floor (anterior only, 13%), medial orbital wall (anterior only, 7%) and ethmoid-maxillary plate (11%). The false negative diagnosis was as follows: orbital floor (anterior, 9%, posterior, 10%), medial orbital wall (anterior, 21%, posterior, 28%) and ethmoid-maxillary plate (21%). The results were compared with those of others in the past. (author)

  15. Alkali metal control over N-N cleavage in iron complexes.

    Science.gov (United States)

    Grubel, Katarzyna; Brennessel, William W; Mercado, Brandon Q; Holland, Patrick L

    2014-12-03

    Though N2 cleavage on K-promoted Fe surfaces is important in the large-scale Haber-Bosch process, there is still ambiguity about the number of Fe atoms involved during the N-N cleaving step and the interactions responsible for the promoting ability of K. This work explores a molecular Fe system for N2 reduction, particularly focusing on the differences in the results obtained using different alkali metals as reductants (Na, K, Rb, Cs). The products of these reactions feature new types of Fe-N2 and Fe-nitride cores. Surprisingly, adding more equivalents of reductant to the system gives a product in which the N-N bond is not cleaved, indicating that the reducing power is not the most important factor that determines the extent of N2 activation. On the other hand, the results suggest that the size of the alkali metal cation can control the number of Fe atoms that can approach N2, which in turn controls the ability to achieve N2 cleavage. The accumulated results indicate that cleaving the triple N-N bond to nitrides is facilitated by simultaneous approach of least three low-valent Fe atoms to a single molecule of N2.

  16. Multi-zone coupling productivity of horizontal well fracturing with complex fracture networks in shale gas reservoirs

    Directory of Open Access Journals (Sweden)

    Weiyao Zhu

    2018-02-01

    Full Text Available In this paper, a series of specific studies were carried out to investigate the complex form of fracture networks and figure out the multi-scale flowing laws of nano/micro pores–complex fracture networks–wellbore during the development of shale reservoirs by means of horizontal well fracturing. First, hydraulic fractures were induced by means of Brazilian splitting tests. Second, the forms of the hydraulic fractures inside the rock samples were observed by means of X-ray CT scanning to measure the opening of hydraulic fractures. Third, based on the multi-scale unified flowing model, morphological description of fractures and gas flowing mechanism in the matrix–complex fracture network–wellbore, the productivity equation of single-stage horizontal well fracturing which includes diffusion, slipping and desorption was established. And fourthly, a productivity prediction model of horizontal well multi-stage fracturing in the shale reservoir was established considering the interference between the multi-stage fracturing zones and the pressure drop in the horizontal wellbore. The following results were obtained. First, hydraulic fractures are in the form of a complex network. Second, the measured opening of hydraulic fractures is in the range of 4.25–453 μm, averaging 112 μm. Third, shale gas flowing in different shapes of fracture networks follows different nonlinear flowing laws. Forth, as the fracture density in the strongly stimulated zones rises and the distribution range of the hydraulic fractures in strongly/weakly stimulated zones enlarges, gas production increases gradually. As the interference occurs in the flowing zones of fracture networks between fractured sections, the increasing amplitude of gas production rates decreases. Fifth, when the length of a simulated horizontal well is 1500 m and the half length of a fracture network in the strongly stimulated zone is 100 m, the productivity effect of stage 10 fracturing is the

  17. Epidemiology of metatarsal stress fractures versus tibial and femoral stress fractures during elite training.

    Science.gov (United States)

    Finestone, Aharon; Milgrom, Charles; Wolf, Omer; Petrov, Kaloyan; Evans, Rachel; Moran, Daniel

    2011-01-01

    The training of elite infantry recruits takes a year or more. Stress fractures are known to be endemic in their basic training and the clinical presentation of tibial, femoral, and metatarsal stress fractures are different. Stress fracture incidence during the subsequent progressively more demanding training is not known. The study hypothesis was that after an adaptation period, the incidence of stress fractures during the course of 1 year of elite infantry training would fall in spite of the increasingly demanding training. Seventy-six male elite infantry recruits were followed for the development of stress fractures during a progressively more difficult training program composed of basic training (1 to 14 weeks), advanced training (14 to 26 weeks), and unit training (26 to 52 weeks). Subjects were reviewed regularly and those with clinical suspicion of stress fracture were assessed using bone scan and X-rays. The incidence of stress fractures was 20% during basic training, 14% during advanced training and 23% during unit training. There was a statistically significant difference in the incidence of tibial and femoral stress fractures versus metatarsal stress fractures before and after the completion of phase II training at week 26 (p=0.0001). Seventy-eight percent of the stress fractures during phases I and II training were either tibial or femoral, while 91% of the stress fractures in phase III training were metatarsal. Prior participation in ball sports (p=0.02) and greater tibial length (p=0.05) were protective factors for stress fracture. The study hypothesis that after a period of soldier adaptation, the incidence of stress fractures would decrease in spite of the increasingly demanding elite infantry training was found to be true for tibial and femoral fractures after 6 months of training but not for metatarsal stress fractures. Further studies are required to understand the mechanism of this difference but physicians and others treating stress fractures

  18. Reduction of femoral fractures in long-term care facilities: the Bavarian fracture prevention study.

    Directory of Open Access Journals (Sweden)

    Clemens Becker

    Full Text Available BACKGROUND: Hip fractures are a major public health burden. In industrialized countries about 20% of all femoral fractures occur in care dependent persons living in nursing care and assisted living facilities. Preventive strategies for these groups are needed as the access to medical services differs from independent home dwelling older persons at risk of osteoporotic fractures. It was the objective of the study to evaluate the effect of a fall and fracture prevention program on the incidence of femoral fracture in nursing homes in Bavaria, Germany. METHODS: In a translational intervention study a fall prevention program was introduced in 256 nursing homes with 13,653 residents. The control group consisted of 893 nursing homes with 31,668 residents. The intervention consisted of staff education on fall and fracture prevention strategies, progressive strength and balance training, and on institutional advice on environmental adaptations. Incident femoral fractures served as outcome measure. RESULTS: In the years before the intervention risk of a femoral fracture did not differ between the intervention group (IG and control group (CG. During the one-year intervention period femoral fracture rates were 33.6 (IG and 41.0/1000 person years (CG, respectively. The adjusted relative risk of a femoral fracture was 0.82 (95% CI 0.72-0.93 in residents exposed to the fall and fracture prevention program compared to residents from CG. CONCLUSIONS: The state-wide dissemination of a multi-factorial fall and fracture prevention program was able to reduce femoral fractures in residents of nursing homes.

  19. Pre-fracture individual characteristics associated with high total health care costs after hip fracture.

    Science.gov (United States)

    Schousboe, J T; Paudel, M L; Taylor, B C; Kats, A M; Virnig, B A; Dowd, B E; Langsetmo, L; Ensrud, K E

    2017-03-01

    Older women with pre-fracture slow walk speed, high body mass index, and/or a high level of multimorbidity have significantly higher health care costs after hip fracture compared to those without those characteristics. Studies to investigate if targeted health care interventions for these individuals can reduce hip fracture costs are warranted. The aim of this study is to estimate the associations of individual pre-fracture characteristics with total health care costs after hip fracture, using Study of Osteoporotic Fractures (SOF) cohort data linked to Medicare claims. Our study population was 738 women age 70 and older enrolled in Medicare Fee for Service (FFS) who experienced an incident hip fracture between January 1, 1992 and December 31, 2009. We assessed pre-fracture individual characteristics at SOF study visits and estimated costs of hospitalizations, skilled nursing facility and inpatient rehabilitation stays, home health care visits, and outpatient utilization from Medicare FFS claims. We used generalized linear models to estimate the associations of predictor variables with total health care costs (2010 US dollars) after hip fracture. Median total health care costs for 1 year after hip fracture were $35,536 (inter-quartile range $24,830 to $50,903). Multivariable-adjusted total health care costs for 1 year after hip fracture were 14 % higher ($5256, 95 % CI $156 to $10,356) in those with walk speed total health care costs after hip fracture in older women. Studies to investigate if targeted health care interventions for these individuals can reduce the costs of hip fractures are warranted.

  20. Fracture mechanics

    CERN Document Server

    Perez, Nestor

    2017-01-01

    The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing. Explains computational and engineering approaches for solving crack-related problems using straightforward mathematics that facilitate comprehension of the physical meaning of crack growth processes; Expands computational understandin...

  1. Root fractures

    DEFF Research Database (Denmark)

    Andreasen, Jens Ove; Christensen, Søren Steno Ahrensburg; Tsilingaridis, Georgios

    2012-01-01

    The purpose of this study was to analyze tooth loss after root fractures and to assess the influence of the type of healing and the location of the root fracture. Furthermore, the actual cause of tooth loss was analyzed....

  2. Characterization of an extensin-modifying metalloprotease: N-terminal processing and substrate cleavage pattern of Pectobacterium carotovorum Prt1.

    Science.gov (United States)

    Feng, Tao; Nyffenegger, Christian; Højrup, Peter; Vidal-Melgosa, Silvia; Yan, Kok-Phen; Fangel, Jonatan Ulrik; Meyer, Anne S; Kirpekar, Finn; Willats, William G; Mikkelsen, Jørn D

    2014-12-01

    Compared to other plant cell wall-degrading enzymes, proteases are less well understood. In this study, the extracellular metalloprotease Prt1 from Pectobacterium carotovorum (formerly Erwinia carotovora) was expressed in Escherichia coli and characterized with respect to N-terminal processing, thermal stability, substrate targets, and cleavage patterns. Prt1 is an autoprocessing protease with an N-terminal signal pre-peptide and a pro-peptide which has to be removed in order to activate the protease. The sequential cleavage of the N-terminus was confirmed by mass spectrometry (MS) fingerprinting and N-terminus analysis. The optimal reaction conditions for the activity of Prt1 on azocasein were at pH 6.0, 50 °C. At these reaction conditions, K M was 1.81 mg/mL and k cat was 1.82 × 10(7) U M(-1). The enzyme was relatively stable at 50 °C with a half-life of 20 min. Ethylenediaminetetraacetic acid (EDTA) treatment abolished activity; Zn(2+) addition caused regain of the activity, but Zn(2+)addition decreased the thermal stability of the Prt1 enzyme presumably as a result of increased proteolytic autolysis. In addition to casein, the enzyme catalyzed degradation of collagen, potato lectin, and plant extensin. Analysis of the cleavage pattern of different substrates after treatment with Prt1 indicated that the protease had a substrate cleavage preference for proline in substrate residue position P1 followed by a hydrophobic residue in residue position P1' at the cleavage point. The activity of Prt1 against plant cell wall structural proteins suggests that this enzyme might become an important new addition to the toolbox of cell-wall-degrading enzymes for biomass processing.

  3. Clinical outcome of fresh and vitrified-warmed blastocyst and cleavage-stage embryo transfers in ethnic Chinese ART patients

    Directory of Open Access Journals (Sweden)

    Tong Guo

    2012-10-01

    Full Text Available Abstract Objectives This study sought to evaluate the outcome of fresh and vitrified-warmed cleavage-stage and blastocyst-stage embryo transfers in patients undergoing ART treatment within an ethnic Chinese population. Study design We compared the clinical results of embryo transfer on the 3rd (cleavage stage or 5th (blastocyst stage day after oocyte retrieval, including clinical pregnancy rates, implantation rates and multiple pregnancy rates. Results Our data showed that blastocyst transfer on day 5 did not significantly increase clinical pregnancy rate (41.07% vs 47.08%, p>0.05 and implantation rate (31.8% vs 31.2%, p>0.05 in patients under 35 years of age, in comparison with day 3 cleavage stage embryo transfer. In patients older than 35 years of age, the clinical pregnancy rate after blastocyst transfer was slightly decreased compared with cleavage stage embryo transfer (33.33% vs 42.31%, p>0.05. Unexpectedly, It was found that vitrified-warmed blastocyst transfer resulted in significantly higher clinical pregnancy rate (56.8% and implantation rate (47% compared with fresh blastocyst transfer in controlled stimulation cycles (41.07% and 31.8%, respectively. For patients under 35 years of age, the cumulative clinical pregnancy rate combining fresh and vitrified-warmed blastocyst transfer cycles were significantly higher compared to just cleavage-stage embryo transfer (70.1% versus 51.8%, p Conclusions In an ethnic Chinese patient population, fresh blastocyst transfer does not significantly increase clinical pregnancy rate. However, subsequent vitrified-warmed blastocyst transfer in a non-controlled ovarian hyperstimulation cycle dramatically improves clinical outcomes. Therefore, blastocyst culture in tandem with vitrified-warmed blastocyst transfer is recommended as a favourable and promising protocol in human ART treatment, particularly for ethnic Chinese patients.

  4. Clinical outcome of fresh and vitrified-warmed blastocyst and cleavage-stage embryo transfers in ethnic Chinese ART patients.

    Science.gov (United States)

    Tong, Guo Qing; Cao, Shan Ren; Wu, Xun; Zhang, Jun Qiang; Cui, Ji; Heng, Boon Chin; Ling, Xiu Feng

    2012-10-05

    This study sought to evaluate the outcome of fresh and vitrified-warmed cleavage-stage and blastocyst-stage embryo transfers in patients undergoing ART treatment within an ethnic Chinese population. We compared the clinical results of embryo transfer on the 3rd (cleavage stage) or 5th (blastocyst stage) day after oocyte retrieval, including clinical pregnancy rates, implantation rates and multiple pregnancy rates. Our data showed that blastocyst transfer on day 5 did not significantly increase clinical pregnancy rate (41.07% vs 47.08%, p>0.05) and implantation rate (31.8% vs 31.2%, p>0.05) in patients under 35 years of age, in comparison with day 3 cleavage stage embryo transfer. In patients older than 35 years of age, the clinical pregnancy rate after blastocyst transfer was slightly decreased compared with cleavage stage embryo transfer (33.33% vs 42.31%, p>0.05). Unexpectedly, It was found that vitrified-warmed blastocyst transfer resulted in significantly higher clinical pregnancy rate (56.8%) and implantation rate (47%) compared with fresh blastocyst transfer in controlled stimulation cycles (41.07% and 31.8%, respectively). For patients under 35 years of age, the cumulative clinical pregnancy rate combining fresh and vitrified-warmed blastocyst transfer cycles were significantly higher compared to just cleavage-stage embryo transfer (70.1% versus 51.8%, p<0.05). However, the cumulative multiple pregnancy rates showed no significant difference between the two groups. In an ethnic Chinese patient population, fresh blastocyst transfer does not significantly increase clinical pregnancy rate. However, subsequent vitrified-warmed blastocyst transfer in a non-controlled ovarian hyperstimulation cycle dramatically improves clinical outcomes. Therefore, blastocyst culture in tandem with vitrified-warmed blastocyst transfer is recommended as a favourable and promising protocol in human ART treatment, particularly for ethnic Chinese patients.

  5. Fracturing process and effect of fracturing degree on wave velocity of a crystalline rock

    Directory of Open Access Journals (Sweden)

    Charalampos Saroglou

    2017-10-01

    Full Text Available The present paper investigates the effect of fracturing degree on P- and S-wave velocities in rock. The deformation of intact brittle rocks under loading conditions is characterized by a microcracking procedure, which occurs due to flaws in their microscopic structure and propagates through the intact rock, leading to shear fracture. This fracturing process is of fundamental significance as it affects the mechanical properties of the rock and hence the wave velocities. In order to determine the fracture mechanism and the effect of fracturing degree, samples were loaded at certain percentages of peak strength and ultrasonic wave velocity was recorded after every test. The fracturing degree was recorded on the outer surface of the sample and quantified by the use of the indices P10 (traces of joints/m, P20 (traces of joints/m2 and P21 (length of fractures/m2. It was concluded that the wave velocity decreases exponentially with increasing fracturing degree. Additionally, the fracturing degree is described adequately with the proposed indices. Finally, other parameters concerning the fracture characteristics, rock type and scale influence were found to contribute to the velocity decay and need to be investigated further.

  6. Identification of succinimide sites in proteins by N-terminal sequence analysis after alkaline hydroxylamine cleavage.

    Science.gov (United States)

    Kwong, M. Y.; Harris, R. J.

    1994-01-01

    Under favorable conditions, Asp or Asn residues can undergo rearrangement to a succinimide (cyclic imide), which may also serve as an intermediate for deamidation and/or isoaspartate formation. Direct identification of such succinimides by peptide mapping is hampered by their lability at neutral and alkaline pH. We determined that incubation in 2 M hydroxylamine, 0.2 M Tris buffer, pH 9, for 2 h at 45 degrees C will specifically cleave on the C-terminal side of succinimides without cleavage at Asn-Gly bonds; yields are typically approximately 50%. N-terminal sequence analysis can then be used to identify an internal sequence generated by cleavage of the succinimide, hence identifying the succinimide site. PMID:8142891

  7. Coronavirus 3CL(pro) proteinase cleavage sites: Possible relevance to SARS virus pathology

    DEFF Research Database (Denmark)

    Kiemer, Lars; Lund, Ole; Brunak, Søren

    2004-01-01

    the picornaviruses it is known that pathology is related to proteolytic cleavage of host proteins by viral proteinases. Furthermore, several studies indicate that virus proliferation can be arrested using specific proteinase inhibitors supporting the belief that proteinases are indeed important during infection...

  8. Tibial Plateau Fractures

    DEFF Research Database (Denmark)

    Elsøe, Rasmus

    This PhD thesis reported an incidence of tibial plateau fractures of 10.3/100,000/year in a complete Danish regional population. The results reported that patients treated for a lateral tibial plateau fracture with bone tamp reduction and percutaneous screw fixation achieved a satisfactory level...... with only the subgroup Sport significantly below the age matched reference population. The thesis reports a level of health related quality of life (Eq5d) and disability (KOOS) significantly below established reference populations for patients with bicondylar tibial plateau fracture treated with a ring...... fixator, both during treatment and at 19 months following injury. In general, the thesis demonstrates that the treatment of tibial plateau fractures are challenging and that some disabilities following these fractures must be expected. Moreover, the need for further research in the area, both with regard...

  9. Leakage losses from a hydraulic fracture and fracture propagation

    International Nuclear Information System (INIS)

    Johnson, R.E.; Gustafson, C.W.

    1988-01-01

    The fluid mechanics of viscous fluid injection into a fracture embedded in a permeable rock formation is studied. Coupling between flow in the fracture and flow in the rock is retained. The analysis is based on a perturbation scheme that assumes the depth of penetration of the fluid into the rock is small compared to the characteristic length w 3 0 /k, where w 0 is the characteristic crack width and k is the permeability. This restriction, however, is shown to be minor. The spatial dependence of the leakage rate per unit length from the fracture is found to be linear, decreasing from the well bore to the fracture tip where it vanishes. The magnitude of the leakage rate per unit length is found to decay in time as t -1 /sup // 3 if the injection rate at the well bore is constant, and as t -1 /sup // 2 if the well bore pressure is held constant. The results cast considerable doubt on the validity of Carter's well-known leakage formula (Drilling Prod. Prac. API 1957, 261) derived from a one-dimensional theory. Using the simple fracture propagation model made popular by Carter, the present work also predicts that the fracture grows at a rate proportional to t 1 /sup // 3 for a fixed well bore injection rate and a rate proportional to t 1 /sup // 4 for a fixed well bore pressure

  10. Recent Advances in Ring-Opening Functionalization of Cycloalkanols by C-C σ-Bond Cleavage.

    Science.gov (United States)

    Wu, Xinxin; Zhu, Chen

    2018-06-01

    Cycloalkanols prove to be privileged precursors for the synthesis of distally substituted alkyl ketones and polycyclic aromatic hydrocarbons (PAHs) by virtue of cleavage of their cyclic C-C bonds. Direct functionalization of cyclobutanols to build up other chemical bonds (e. g., C-F, C-Cl, C-Br, C-N, C-S, C-Se, C-C, etc.) has been achieved by using the ring-opening strategy. Mechanistically, the C-C cleavage of cyclobutanols can be involved in two pathways: (a) transition-metal catalyzed β-carbon elimination; (b) radical-mediated 'radical clock'-type ring opening. The recent advances of our group for the ring-opening functionalization of tertiary cycloalkanols are described in this account. © 2018 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Urokinase links plasminogen activation and cell adhesion by cleavage of the RGD motif in vitronectin.

    Science.gov (United States)

    De Lorenzi, Valentina; Sarra Ferraris, Gian Maria; Madsen, Jeppe B; Lupia, Michela; Andreasen, Peter A; Sidenius, Nicolai

    2016-07-01

    Components of the plasminogen activation system including urokinase (uPA), its inhibitor (PAI-1) and its cell surface receptor (uPAR) have been implicated in a wide variety of biological processes related to tissue homoeostasis. Firstly, the binding of uPA to uPAR favours extracellular proteolysis by enhancing cell surface plasminogen activation. Secondly, it promotes cell adhesion and signalling through binding of the provisional matrix protein vitronectin. We now report that uPA and plasmin induces a potent negative feedback on cell adhesion through specific cleavage of the RGD motif in vitronectin. Cleavage of vitronectin by uPA displays a remarkable receptor dependence and requires concomitant binding of both uPA and vitronectin to uPAR Moreover, we show that PAI-1 counteracts the negative feedback and behaves as a proteolysis-triggered stabilizer of uPAR-mediated cell adhesion to vitronectin. These findings identify a novel and highly specific function for the plasminogen activation system in the regulation of cell adhesion to vitronectin. The cleavage of vitronectin by uPA and plasmin results in the release of N-terminal vitronectin fragments that can be detected in vivo, underscoring the potential physiological relevance of the process. © 2016 The Authors.

  12. ADAM13 cleavage of cadherin-11 promotes CNC migration independently of the homophilic binding site.

    Science.gov (United States)

    Abbruzzese, Genevieve; Becker, Sarah F; Kashef, Jubin; Alfandari, Dominique

    2016-07-15

    The cranial neural crest (CNC) is a highly motile population of cells that is responsible for forming the face and jaw in all vertebrates and perturbing their migration can lead to craniofacial birth defects. Cell motility requires a dynamic modification of cell-cell and cell-matrix adhesion. In the CNC, cleavage of the cell adhesion molecule cadherin-11 by ADAM13 is essential for cell migration. This cleavage generates a shed extracellular fragment of cadherin-11 (EC1-3) that possesses pro-migratory activity via an unknown mechanism. Cadherin-11 plays an important role in modulating contact inhibition of locomotion (CIL) in the CNC to regulate directional cell migration. Here, we show that while the integral cadherin-11 requires the homophilic binding site to promote CNC migration in vivo, the EC1-3 fragment does not. In addition, we show that increased ADAM13 activity or expression of the EC1-3 fragment increases CNC invasiveness in vitro and blocks the repulsive CIL response in colliding cells. This activity requires the presence of an intact homophilic binding site on the EC1-3 suggesting that the cleavage fragment may function as a competitive inhibitor of cadherin-11 adhesion in CIL but not to promote cell migration in vivo. Copyright © 2015. Published by Elsevier Inc.

  13. Analysis of the Proteolytic Processing of ABCA3: Identification of Cleavage Site and Involved Proteases.

    Directory of Open Access Journals (Sweden)

    Nicole Hofmann

    Full Text Available ABCA3 is a lipid transporter in the limiting membrane of lamellar bodies in alveolar type II cells. Mutations in the ABCA3 gene cause respiratory distress syndrome in new-borns and childhood interstitial lung disease. ABCA3 is N-terminally cleaved by an as yet unknown protease, a process believed to regulate ABCA3 activity.The exact site where ABCA3 is cleaved was localized using mass spectrometry (MS. Proteases involved in ABCA3 processing were identified using small molecule inhibitors and siRNA mediated gene knockdown. Results were verified by in vitro digestion of a synthetic peptide substrate mimicking ABCA3's cleavage region, followed by MS analysis.We found that cleavage of ABCA3 occurs after Lys174 which is located in the proteins' first luminal loop. Inhibition of cathepsin L and, to a lesser extent, cathepsin B resulted in attenuation of ABCA3 cleavage. Both enzymes showed activity against the ABCA3 peptide in vitro with cathepsin L being more active.We show here that, like some other proteins of the lysosomal membrane, ABCA3 is a substrate of cathepsin L. Therefore, cathepsin L may represent a potential target to therapeutically influence ABCA3 activity in ABCA3-associated lung disease.

  14. Spontaneous rib fractures.

    Science.gov (United States)

    Katrancioglu, Ozgur; Akkas, Yucel; Arslan, Sulhattin; Sahin, Ekber

    2015-07-01

    Other than trauma, rib fracture can occur spontaneously due to a severe cough or sneeze. In this study, patients with spontaneous rib fractures were analyzed according to age, sex, underlying pathology, treatment, and complications. Twelve patients who presented between February 2009 and February 2011 with spontaneous rib fracture were reviewed retrospectively. The patients' data were evaluated according to anamnesis, physical examination, and chest radiographs. The ages of the patients ranged from 34 to 77 years (mean 55.91 ± 12.20 years), and 7 (58.4%) were male. All patients had severe cough and chest pain. The fractures were most frequently between 4th and 9th ribs; multiple rib fractures were detected in 5 (41.7%) patients. Eight (66.7%) patients had chronic obstructive pulmonary disease, 2 (16.7%) had bronchial asthma, and 2 (16.7%) had osteoporosis. Bone densitometry revealed a high risk of bone fracture in all patients. Patients with chronic obstructive pulmonary disease or bronchial asthma had been treated with high-dose steroids for over a year. Spontaneous rib fracture due to severe cough may occur in patients with osteoporosis, chronic obstructive pulmonary disease, or bronchial asthma, receiving long-term steroid therapy. If these patients have severe chest pain, chest radiography should be performed to check for bone lesions. © The Author(s) 2015.

  15. DNA-binding, DNA cleavage and cytotoxicity studies of two anthraquinone derivatives.

    Science.gov (United States)

    Gholivand, M B; Kashanian, S; Peyman, H

    2012-02-15

    The interaction of native calf thymus DNA (CT-DNA) with two anthraquinones including quinizarin (1,4-dihydroxy anthraquinone) and danthron (1,8-dihydroxy anthraquinone) in a mixture of 0.04M Brittone-Robinson buffer and 50% of ethanol were studied at physiological pH by spectrofluorometric and cyclic voltammetry techniques. The former technique was used to calculate the binding constants of anthraquinones-DNA complexes at different temperatures. Thermodynamic study indicated that the reactions of both anthraquinone-DNA systems are predominantly entropically driven. Furthermore, the binding mechanisms on the reaction of the two anthraquinones with DNA and the effect of ionic strength on the fluorescence property of the system have also been investigated. The results of the experiments indicated that the binding modes of quinizarin and danthron with DNA were evaluated to be groove binding. Moreover, the cytotoxic activity of both compounds against human chronic myelogenous leukemia K562 cell line and DNA cleavage were investigated. The results indicated that these compounds slightly cleavage pUC18 plasmid DNA and showed minor antitumor activity against K562 (human chronic myeloid leukemia) cell line. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Cough-induced rib fractures.

    Science.gov (United States)

    Sano, Atsushi; Tashiro, Ken; Fukuda, Tsutomu

    2015-10-01

    Occasionally, patients who complain of chest pain after the onset of coughing are diagnosed with rib fractures. We investigated the characteristics of cough-induced rib fractures. Between April 2008 and December 2013, 17 patients were referred to our hospital with chest pain after the onset of coughing. Rib radiography was performed, focusing on the location of the chest pain. When the patient had other signs and symptoms such as fever or persistent cough, computed tomography of the chest was carried out. We analyzed the data retrospectively. Rib fractures were found in 14 of the 17 patients. The age of the patients ranged from 14 to 86 years (median 39.5 years). Ten patients were female and 4 were male. Three patients had chronic lung disease. There was a single rib fracture in 9 patients, and 5 had two or more fractures. The middle and lower ribs were the most commonly involved; the 10th rib was fractured most frequently. Cough-induced rib fractures occur in every age group regardless of the presence or absence of underlying disease. Since rib fractures often occur in the lower and middle ribs, rib radiography is useful for diagnosis. © The Author(s) 2015.

  17. Determination of the toughness of a low alloy steel from the Charpy V-notch impact testing

    International Nuclear Information System (INIS)

    Rossoll, A.

    1998-12-01

    Charpy V-notch (CVN) impact testing is widely used to characterize the resistance of a material to brittle fracture, by measuring the energy consumed by a specimen during impact. Notably materials undergoing a ductile-to-brittle transition, e.g. ferritic steels, are quality controlled by means of CVN testing, and their ductile-to-brittle transition temperature can be determined. Charpy testing is also widely used in the toughness assessment of large forged components, e.g. pressure vessels for pressurised water reactors (PWR). However, currently no satisfactory link between the Charpy impact energy CVN and the fracture toughness KIc exists. This study aims to establish a non-empirical relationship between the Charpy V-notch energy CVN, and the fracture toughness KIc, on the lower shelf of fracture toughness and the onset of the ductile-to-brittle transition of a A508 Cl.3 steel. The methodology employed is based on the so-called 'local approach'. Brittle cleavage fracture is modelled in terms of the Beremin (1983) model based on 'weakest link' statistics, whereas ductile crack advance preceding cleavage in the transition region is accounted for with the GTN model (Gurson, 1977; Tvergaard, 1982; Tvergaard and Needleman, 1984). Mechanical testing at different strain rates allowed for the establishment of the constitutive equations of the material in an elastic-viscoplastic formulation. Fracture tests on different specimen geometries provided the large data set necessary for statistical evaluation. All specimen types have been modelled with finite element analysis. However, the dynamic nature of the Charpy test requires special consideration. The origin of these dynamic effects was studied, as well as their implications on interpretation of experimental results and on modeling. After a proper modeling procedure had been defined, the local approach was employed for studying fracture. It is found that the fracture toughness can be predicted from the Charpy impact test

  18. Identification of fracture zones and its application in automatic bone fracture reduction.

    Science.gov (United States)

    Paulano-Godino, Félix; Jiménez-Delgado, Juan J

    2017-04-01

    The preoperative planning of bone fractures using information from CT scans increases the probability of obtaining satisfactory results, since specialists are provided with additional information before surgery. The reduction of complex bone fractures requires solving a 3D puzzle in order to place each fragment into its correct position. Computer-assisted solutions may aid in this process by identifying the number of fragments and their location, by calculating the fracture zones or even by computing the correct position of each fragment. The main goal of this paper is the development of an automatic method to calculate contact zones between fragments and thus to ease the computation of bone fracture reduction. In this paper, an automatic method to calculate the contact zone between two bone fragments is presented. In a previous step, bone fragments are segmented and labelled from CT images and a point cloud is generated for each bone fragment. The calculated contact zones enable the automatic reduction of complex fractures. To that end, an automatic method to match bone fragments in complex fractures is also presented. The proposed method has been successfully applied in the calculation of the contact zone of 4 different bones from the ankle area. The calculated fracture zones enabled the reduction of all the tested cases using the presented matching algorithm. The performed tests show that the reduction of these fractures using the proposed methods leaded to a small overlapping between fragments. The presented method makes the application of puzzle-solving strategies easier, since it does not obtain the entire fracture zone but the contact area between each pair of fragments. Therefore, it is not necessary to find correspondences between fracture zones and fragments may be aligned two by two. The developed algorithms have been successfully applied in different fracture cases in the ankle area. The small overlapping error obtained in the performed tests

  19. Fracture analysis

    International Nuclear Information System (INIS)

    Ueng, Tzoushin; Towse, D.

    1991-01-01

    Fractures are not only the weak planes of a rock mass, but also the easy passages for the fluid flow. Their spacing, orientation, and aperture will affect the deformability, strength, heat transmittal, and fluid transporting properties of the rock mass. To understand the thermomechanical and hydrological behaviors of the rock surrounding the heater emplacement borehole, the location, orientation, and aperture of the fractures of the rock mass should be known. Borehole television and borescope surveys were performed to map the location, orientation, and aperture of the fractures intersecting the boreholes drilled in the Prototype Engineered Barrier System Field Tests (PEBSFT) at G-Tunnel. Core logging was also performed during drilling. However, because the core was not oriented and the depth of the fracture cannot be accurately determined, the results of the core logging were only used as reference and will not be discussed here

  20. Scaphoid fractures in children

    Directory of Open Access Journals (Sweden)

    Gajdobranski Đorđe

    2014-01-01

    Full Text Available Introduction. Scaphoid fractures are rare in childhood. Diagnosis is very difficult to establish because carpal bones are not fully ossified. In suspected cases comparative or delayed radiography is used, as well as computerized tomography, magnetic resonance imaging, ultrasound and bone scintigraphy. Majority of scaphoid fractures are treated conservatively with good results. In case of delayed fracture healing various types of treatment are available. Objective. To determine the mechanism of injury, clinical healing process, types and outcome of treatment of scaphoid fractures in children. Methods. We retrospectively analyzed patients with traumatic closed fracture of the scaphoid bone over a ten-year period (2002-2011. The outcome of the treatment of “acute” scaphoid fracture was evaluated using the Mayo Wrist Score. Results. There were in total 34 patients, of mean age 13.8 years, with traumatic closed fracture of the scaphoid bone, whose bone growth was not finished yet. Most common injury mechanism was fall on outstretched arm - 76% of patients. During the examined period 31 children with “acute” fracture underwent conservative treatment, with average immobilization period of 51 days. Six patients were lost to follow-up. In the remaining 25 patients, after completed rehabilitation, functional results determined by the Mayo Wrist Score were excellent. Conclusion. Conservative therapy of “acute” scaphoid fractures is an acceptable treatment option for pediatric patients with excellent functional results.

  1. Copper-Catalyzed Oxidative Reaction of β-Keto Sulfones with Alcohols via C-S Bond Cleavage: Reaction Development and Mechanism Study.

    Science.gov (United States)

    Du, Bingnan; Wang, Wenmin; Wang, Yang; Qi, Zhenghang; Tian, Jiaqi; Zhou, Jie; Wang, Xiaochen; Han, Jianlin; Ma, Jing; Pan, Yi

    2018-02-16

    A Cu-catalyzed cascade oxidative radical process of β-keto sulfones with alcohols has been achieved by using oxygen as an oxidant. In this reaction, β-keto sulfones were converted into sulfinate esters under the oxidative conditions via cleavage of C-S bond. Experimental and computational studies demonstrate that a new pathway is involved in this reaction, which proceeds through the formation of the key four-coordinated Cu II intermediate, O-O bond homolysis induced C-S bond cleavage and Cu-catalyzed esterification to form the final products. This reaction provides a new strategy to sulfonate esters and enriches the research content of C-S bond cleavage and transformations. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Fluid driven fracture mechanics in highly anisotropic shale: a laboratory study with application to hydraulic fracturing

    Science.gov (United States)

    Gehne, Stephan; Benson, Philip; Koor, Nick; Enfield, Mark

    2017-04-01

    The finding of considerable volumes of hydrocarbon resources within tight sedimentary rock formations in the UK led to focused attention on the fundamental fracture properties of low permeability rock types and hydraulic fracturing. Despite much research in these fields, there remains a scarcity of available experimental data concerning the fracture mechanics of fluid driven fracturing and the fracture properties of anisotropic, low permeability rock types. In this study, hydraulic fracturing is simulated in a controlled laboratory environment to track fracture nucleation (location) and propagation (velocity) in space and time and assess how environmental factors and rock properties influence the fracture process and the developing fracture network. Here we report data on employing fluid overpressure to generate a permeable network of micro tensile fractures in a highly anisotropic shale ( 50% P-wave velocity anisotropy). Experiments are carried out in a triaxial deformation apparatus using cylindrical samples. The bedding planes are orientated either parallel or normal to the major principal stress direction (σ1). A newly developed technique, using a steel guide arrangement to direct pressurised fluid into a sealed section of an axially drilled conduit, allows the pore fluid to contact the rock directly and to initiate tensile fractures from the pre-defined zone inside the sample. Acoustic Emission location is used to record and map the nucleation and development of the micro-fracture network. Indirect tensile strength measurements at atmospheric pressure show a high tensile strength anisotropy ( 60%) of the shale. Depending on the relative bedding orientation within the stress field, we find that fluid induced fractures in the sample propagate in two of the three principal fracture orientations: Divider and Short-Transverse. The fracture progresses parallel to the bedding plane (Short-Transverse orientation) if the bedding plane is aligned (parallel) with the

  3. Effect of oxygen and nitroaromatic cell radiosensitizers on radiation-induced cleavage of internucleotide bonds: ApA, dApA, and poly(A)

    International Nuclear Information System (INIS)

    Raleigh, J.A.; Kremers, W.; Whitehouse, R.

    1975-01-01

    Irradiation of the dinucleoside monophosphates ApA and dApA in deoxygenated solution leads to a preferential cleavage of the 3' end of the internucleotide bond. Cleavage at the 3' bond is favored to the extent of 2 to 1 over 5' cleavage. Oxygen and nitroaromatic compounds inhibit 3' bond breaking in ApA and dApA in agreement with earlier findings from studies of 3'- and 5'-mononucleotides. In contrast to the mononucleotide results, no enhancement of 5' cleavage is observed for ApA and dApA irradiated in the presence of oxygen or the nitroaromatic additives. The over-all effect of the additives is to decrease the combined (3' and 5') yield of internucleotide bond breaking in ApA and dApA. This phenomenon is also observed for polyadenylic acid in the presence of the nitroaromatics. Oxygen marginally enhances internucleotide bond breaking in polyadenylic acid (factor 1.1) over that seen in deoxygenated solution. Postirradiation alkaline hydrolysis of dApA leads to further ester cleavage revealing the presence of radiation-induced alkali-labile bonds. The number of these bonds decreases in the order oxygen greater than nitrofurans greater than nitrobenzenes approximately irradiation in the absence of additives

  4. Radiological study of the mandibular fractures

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Won; Kim, Kyoung A; Koh, Kwang Jun [Department of Oral and Maxillofacial Radiology, School of Dentistry, and Institute of Oral Bio Science, Chonbuk National University, Jeonju (Korea, Republic of)

    2009-06-15

    To classify and evaluate mandibular fractures. The author classified mandibular fractures of 284 patients who were referred to the Chonbuk National University Dental Hospital during the period from March 2004 to June 2007. This study was based on the conventional radiographs as well as computed tomographs which were pertained to the 284 patients who have had the mandibular fractures including the facial bone fractures. And mandibular fractures were classified with respect to gender, age, site and type of the fractures. More frequently affected gender with mandibular fracture was male with the ratio of 3.3 : 1. The most frequently affected age with mandibular fracture was third decade (38%), followed by fourth decade (16%), second decade (15%), fifth decade (11%), sixth decade (7%), seventh decade (5%), eighth decade (4%), first decade (4%), and ninth decade (0.3%). The most frequent type of mandibular fracture was single fracture (58%), followed by double fracture (39%), triple fracture (3%). The most common site of mandibular fracture was mandibular condyle as 113 cases (27.7%) and the next was mandibular symphysis as 109 cases (26.7%), mandibular angle as 103 cases (25.3%), mandibular body as 83 cases (20.3%) in order. The sum of fracture sites were 408 sites and there were 1.4 fracture sites per one patient. The number of mandible fractures accompanied with facial bone fractures were 41 cases (14.4%). The results showed the most frequent type and common site of mandibular fracture was single fracture and mandibular condyle respectively.

  5. Radiological study of the mandibular fractures

    International Nuclear Information System (INIS)

    Kim, Ju Won; Kim, Kyoung A; Koh, Kwang Jun

    2009-01-01

    To classify and evaluate mandibular fractures. The author classified mandibular fractures of 284 patients who were referred to the Chonbuk National University Dental Hospital during the period from March 2004 to June 2007. This study was based on the conventional radiographs as well as computed tomographs which were pertained to the 284 patients who have had the mandibular fractures including the facial bone fractures. And mandibular fractures were classified with respect to gender, age, site and type of the fractures. More frequently affected gender with mandibular fracture was male with the ratio of 3.3 : 1. The most frequently affected age with mandibular fracture was third decade (38%), followed by fourth decade (16%), second decade (15%), fifth decade (11%), sixth decade (7%), seventh decade (5%), eighth decade (4%), first decade (4%), and ninth decade (0.3%). The most frequent type of mandibular fracture was single fracture (58%), followed by double fracture (39%), triple fracture (3%). The most common site of mandibular fracture was mandibular condyle as 113 cases (27.7%) and the next was mandibular symphysis as 109 cases (26.7%), mandibular angle as 103 cases (25.3%), mandibular body as 83 cases (20.3%) in order. The sum of fracture sites were 408 sites and there were 1.4 fracture sites per one patient. The number of mandible fractures accompanied with facial bone fractures were 41 cases (14.4%). The results showed the most frequent type and common site of mandibular fracture was single fracture and mandibular condyle respectively.

  6. Regulation of proteolytic cleavage of brain-derived neurotrophic factor precursor by antidepressants in human neuroblastoma cells

    Directory of Open Access Journals (Sweden)

    Lin PY

    2015-10-01

    Full Text Available Pao-Yen Lin1,2 1Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 2Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan Abstract: Evidence has supported the role of brain-derived neurotrophic factor (BDNF in antidepressant effect. The precursor of BDNF (proBDNF often exerts opposing biological effects on mature BDNF (mBDNF. Hence, the balance between proBDNF and mBDNF might be critical in total neurotrophic effects, leading to susceptibility to or recovery from depression. In the current study, we measured the protein expression levels of proBDNF, and its proteolytic products, truncated BDNF, and mBDNF, in human SH-SY5Y cells treated with different antidepressants. We found that the treatment significantly increased the production of mBDNF, but decreased the production of truncated BDNF and proBDNF. These results support that antidepressants can promote proBDNF cleavage. Further studies are needed to clarify whether proBDNF cleavage plays a role in antidepressant mechanisms. Keywords: antidepressant, mature BDNF, neurotrophic effect, proBDNF cleavage 

  7. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites

    DEFF Research Database (Denmark)

    Nielsen, Henrik; Engelbrecht, Jacob; Brunak, Søren

    1997-01-01

    We have developed a new method for the identification of signal peptides and their cleavage based on neural networks trained on separate sets of prokaryotic and eukaryotic sequence. The method performs significantly better than previous prediction schemes and can easily be applied on genome...

  8. [Periprosthetic knee fractures].

    Science.gov (United States)

    Mittlmeier, T; Beck, M; Bosch, U; Wichelhaus, A

    2016-01-01

    The cumulative incidence of periprosthetic fractures around the knee is increasing further because of an extended indication for knee replacement, previous revision arthroplasty, rising life expectancy and comorbidities. The relevance of local parameters such as malalignment, osseous defects, neighbouring implants, aseptic loosening and low-grade infections may sometimes be hidden behind the manifestation of a traumatic fracture. A differentiated diagnostic approach before the treatment of a periprosthetic fracture is of paramount importance, while the physician in-charge should also have particular expertise in fracture treatment and in advanced techniques of revision endoprosthetics. The following work gives an overview of this topic. Valid classifications are available for categorising periprosthetic fractures of the femur, the tibia and the patella respectively, which are helpful for the selection of treatment. With the wide-ranging modern treatment portfolio bearing in mind the substantial rate of complications and the heterogeneous functional outcome, the adequate analysis of fracture aetiology and the corresponding transformation into an individualised treatment concept offer the chance of an acceptable functional restoration of the patient at early full weight-bearing and prolonged implant survival. The management of complications is crucial to the final outcome.

  9. Fracture sacrum.

    Directory of Open Access Journals (Sweden)

    Dogra A

    1995-04-01

    Full Text Available An extremely rare case of combined transverse and vertical fracture of sacrum with neurological deficit is reported here with a six month follow-up. The patient also had an L1 compression fracture. The patient has recovered significantly with conservative management.

  10. Management of Hip Fractures in Lateral Position without a Fracture Table

    Directory of Open Access Journals (Sweden)

    Hamid Pahlavanhosseini

    2014-09-01

    Full Text Available Background:  Hip fracture Management in supine position on a fracture table with biplane fluoroscopic views has some difficulties which leads to prolongation of surgery and increasing x- rays’ dosage. The purpose of this study was to report the results and complications of hip fracture management in lateral position on a conventional operating table with just anteroposterior fluoroscopic view.  Methods:  40 hip fractures (31 trochanteric and 9 femoral neck fractures were operated in lateral position between Feb 2006 and Oct 2012. Age, gender, fracture classification, operation time, intra-operation blood loss, reduction quality, and complications were extracted from patients’ medical records. The mean follow-up time was 30.78±22.73 months (range 4-83. Results: The mean operation time was 76.50 ± 16.88 min (range 50 – 120 min.The mean intra-operative blood loss was 628.75 ± 275.00 ml (range 250-1300ml. Anatomic and acceptable reduction was observed in 95%of cases. The most important complications were malunion (one case in trochanteric group, avascular necrosis of oral head and nonunion (each one case in femoral neck group.  Conclusions:  It sounds that reduction and fixation of hip fractures in lateral position with fluoroscopy in just anteroposterior view for small rural hospitals may be executable and probably safe.

  11. Dynamic fracture characterization of material

    International Nuclear Information System (INIS)

    Kobayashi, A.S.; Emery, A.F.; Liaw, B.M.

    1981-01-01

    The influences of a wide range of material properties, i.e. of A533B steel, a silicon nitride ceramic and a Homalite-100 photoelastic polymer, as well as the influences of the specimen sizes on the dynamic fracture response of fracture specimens are presented in this paper. The results of a numerical study show that the dynamic fracture responses of these fracture specimens of proportional dimensions were indistinguishable provided the normalized dynamic fracture toughness versus normalized crack velocity relations of the three materials coincide. The limited results suggest that should the normalized dynamic fracture toughness versus normalized crack velocity relations between prototype and model materials coincide, then dynamic fracture experiments on scaled models can be used to infer the dynamic fracture response of the prototype. (orig./HP)

  12. [Hip Fracture--Epidemiology, Management and Liaison Service. Risk factor for hip fracture].

    Science.gov (United States)

    Fujiwara, Saeko

    2015-04-01

    Many risk factors have been identified for hip fracture, including female, advanced age, osteoporosis, previous fractures, low body weight or low body mass index, alcohol drinking, smoking, family history of fractures, use of glucocorticoid, factors related to falls, and bone strength. The factors related to falls are number of fall, frail, post stroke, paralysis, muscle weakness, anti-anxiety drugs, anti-depression drugs, and sedatives. Dementia and respiratory disease and others have been reported to be risk factors for secondary hip fracture.

  13. Change in radiosensitivity on the development of sea urchin eggs during the early cleavage stage, 2

    International Nuclear Information System (INIS)

    Nakamura, Izumi

    1975-01-01

    The effect of cysteamine on the fluctuation of X-ray sensitivity during early cleavage stage of sea urchin eggs expressed by pluteus formation rate was examined. Sea urchin eggs were very resistant to radiation immediately after insemination or after S phase of the cleavage. When irradiation was given just prior to S phase or in the phase of cytokinesis, the eggs were very sensitive. In these sensitive stages, existence of cysteamine during X-irradiation apparently protected eggs against radiation effect. Dose modifying factor increased linearly from 1.8 to 3.4 with increasing dose of cysteamine (25mM-75mM) added. (auth.)

  14. Enhancing Protein Disulfide Bond Cleavage by UV Excitation and Electron Capture Dissociation for Top-Down Mass Spectrometry.

    Science.gov (United States)

    Wongkongkathep, Piriya; Li, Huilin; Zhang, Xing; Loo, Rachel R Ogorzalek; Julian, Ryan R; Loo, Joseph A

    2015-11-15

    The application of ion pre-activation with 266 nm ultraviolet (UV) laser irradiation combined with electron capture dissociation (ECD) is demonstrated to enhance top-down mass spectrometry sequence coverage of disulfide bond containing proteins. UV-based activation can homolytically cleave a disulfide bond to yield two separated thiol radicals. Activated ECD experiments of insulin and ribonuclease A containing three and four disulfide bonds, respectively, were performed. UV-activation in combination with ECD allowed the three disulfide bonds of insulin to be cleaved and the overall sequence coverage to be increased. For the larger sized ribonuclease A with four disulfide bonds, irradiation from an infrared laser (10.6 µm) to disrupt non-covalent interactions was combined with UV-activation to facilitate the cleavage of up to three disulfide bonds. Preferences for disulfide bond cleavage are dependent on protein structure and sequence. Disulfide bonds can reform if the generated radicals remain in close proximity. By varying the time delay between the UV-activation and the ECD events, it was determined that disulfide bonds reform within 10-100 msec after their UV-homolytic cleavage.

  15. Mechanisms of Bond Cleavage during Manganese Oxide and UV Degradation of Glyphosate: Results from Phosphate Oxygen Isotopes and Molecular Simulations.

    Science.gov (United States)

    Jaisi, Deb P; Li, Hui; Wallace, Adam F; Paudel, Prajwal; Sun, Mingjing; Balakrishna, Avula; Lerch, Robert N

    2016-11-16

    Degradation of glyphosate in the presence of manganese oxide and UV light was analyzed using phosphate oxygen isotope ratios and density function theory (DFT). The preference of C-P or C-N bond cleavage was found to vary with changing glyphosate/manganese oxide ratios, indicating the potential role of sorption-induced conformational changes on the composition of intermediate degradation products. Isotope data confirmed that one oxygen atom derived solely from water was incorporated into the released phosphate during glyphosate degradation, and this might suggest similar nucleophilic substitution at P centers and C-P bond cleavage both in manganese oxide- and UV light-mediated degradation. The DFT results reveal that the C-P bond could be cleaved by water, OH - or • OH, with the energy barrier opposing bond dissociation being lowest in the presence of the radical species, and that C-N bond cleavage is favored by the formation of both nitrogen- and carbon-centered radicals. Overall, these results highlight the factors controlling the dominance of C-P or C-N bond cleavage that determines the composition of intermediate/final products and ultimately the degradation pathway.

  16. Di-µ-hydroxo Bridge Cleavage Reactions between [Co(nta)(µ-OH)] 2 ...

    African Journals Online (AJOL)

    NJD

    2004-04-22

    Apr 22, 2004 ... subsequent rate determining steps to form presumably a ligand-substituted, mono-bridged complex, [(nta)(OH)Co-µ-. OH-Co(nta)(L)]2– (L = py/dmap). The latter decomposes rapidly to form the products. The preferred pathway for these bridge cleavage seemed to be the reaction of the mono-µ-hydroxo-.

  17. Fractures (Broken Bones): First Aid

    Science.gov (United States)

    First aid Fractures (broken bones) Fractures (broken bones): First aid By Mayo Clinic Staff A fracture is a ... 10, 2018 Original article: http://www.mayoclinic.org/first-aid/first-aid-fractures/basics/ART-20056641 . Mayo Clinic ...

  18. Image diagnosis of nasal bone fracture

    International Nuclear Information System (INIS)

    Hirota, Yoshiharu; Shimizu, Yayoi; Iinuma, Toshitaka.

    1988-01-01

    Twenty cases of nasal bone fractures were evaluated as to the types of fractures based upon HRCT findings. Conventional X-Ray films for nasal bones were analyzed and compared with HRCT findings. Nasal bone fractures were classified into lateral and frontal fractures. HRCT images were evaluated in three planes including upper, middle and lower portions of the nasal bone. Fractures favored males of teens. Lateral fracture gave rise to the fractures of the nasal bone opposite to the external force, loosening of the ipsilateral nasomaxillary sutures and fractures of the frontal process of the maxilla. Conventional X-Ray films were reevaluated after HRCT evaluation and indications of nasal bone fractures were determined. In addition to the discontinuity of the nasal dorsum, fracture lines parallel to and beneath the nasal dorsum and indistinct fracture lines along the nasomaxillary sutures are the indication of nasal bone fractures by conventional X-Ray films. (author)

  19. Polymer liquids fracture like solids

    DEFF Research Database (Denmark)

    Huang, Qian; Hassager, Ole

    2017-01-01

    While fracture in brittle solids has been studied for centuries until today, there are few studies on fracture in polymer liquids. Recent developments in experimental techniques, especially the combination of controlled filament stretching rheometry and high speed imaging, have opened new windows...... into the detailed study of fracture processes for polymer liquids. High speed imaging shows that polymer liquids fracture like solids with initiation and propagation of an edge fracture. However, remarkable features such as highly reproducible critical stress, independent appearance of multiple fractures...

  20. Traumatic subchondral fracture of the femoral head in a healed trochanteric fracture.

    Science.gov (United States)

    Lee, Sang Yang; Niikura, Takahiro; Iwakura, Takashi; Kurosaka, Masahiro

    2014-07-11

    An 82-year-old woman sustained a trochanteric fracture of the left femur after a fall. Fracture fixation was performed using proximal femoral nail antirotation (PFNA) II, and she was able to walk with a T-cane after 3 months. Eleven months following the operation, the patient presented with left hip pain after a fall. Radiographs showed a subchondral collapse of the femoral head located above the blade tip. The authors removed the PFNA-II and subsequently performed cemented bipolar hemiarthroplasty. Histological evaluation of the femoral head showed osteoporosis with no evidence of osteonecrosis. Repair tissue, granulation tissue and callus formation were seen at the collapsed subchondral area. Based on these findings, a traumatic subchondral fracture of the femoral head in a healed trochanteric fracture was diagnosed. A traumatic subchondral fracture of the femoral head may need to be considered as a possible diagnosis after internal fixation of the trochanteric fracture. 2014 BMJ Publishing Group Ltd.

  1. Evaluation of scale effects on hydraulic characteristics of fractured rock using fracture network model

    International Nuclear Information System (INIS)

    Ijiri, Yuji; Sawada, Atsushi; Uchida, Masahiro; Ishiguro, Katsuhiko; Umeki, Hiroyuki; Sakamoto, Kazuhiko; Ohnishi, Yuzo

    2001-01-01

    It is important to take into account scale effects on fracture geometry if the modeling scale is much larger than the in-situ observation scale. The scale effect on fracture trace length, which is the most scale dependent parameter, is investigated using fracture maps obtained at various scales in tunnel and dam sites. We found that the distribution of fracture trace length follows negative power law distribution in regardless of locations and rock types. The hydraulic characteristics of fractured rock is also investigated by numerical analysis of discrete fracture network (DFN) model where power law distribution of fracture radius is adopted. We found that as the exponent of power law distribution become larger, the hydraulic conductivity of DFN model increases and the travel time in DFN model decreases. (author)

  2. A study of complex defects failing by fatigue, ductile tearing and cleavage

    International Nuclear Information System (INIS)

    Bezensek, B.; Ren, Z.; Hancock, J.W.

    2001-01-01

    Defect assessment procedures ensure the structural integrity of plant, which may contain complex defects. The present work addresses complex defects with re-entrant sectors, which develop from the interaction of two co-planar surface breaking defects in fatigue. Experimental studies show rapid fatigue growth and amplified crack driving forces in the re-entrant sector. This leads to the rapid evolution of the complex crack into a bounding semielliptical defect. Experiments involving ductile tearing of cracks with a re-entrant sector show that tearing initiates in the re-entrant sector and that the defect evolves into a bounding semielliptical defect. Cleavage failures of defects with re-entrant sectors indicate the re-characterisation procedure is only conservative after invoking constraint arguments. The study confirms the conservatism inherent in the re-characterisation rules of assessment procedures, such as BS 7910 [1] and ASME Section XI [2] for complex defects extending by fatigue or ductile tearing. A potentially non-conservative situation exists for defects with re-entrant sectors failing by cleavage at small fractions of the limit load.(author)

  3. Current Concepts in the Mandibular Condyle Fracture Management Part I: Overview of Condylar Fracture

    Directory of Open Access Journals (Sweden)

    Kang-Young Choi

    2012-07-01

    Full Text Available The incidence of condylar fractures is high, but the management of fractures of the mandibular condyle continues to be controversial. Historically, maxillomandibular fixation, external fixation, and surgical splints with internal fixation systems were the techniques commonly used in the treatment of the fractured mandible. Condylar fractures can be extracapsular or intracapsular, undisplaced, deviated, displaced, or dislocated. Treatment depends on the age of the patient, the co-existence of other mandibular or maxillary fractures, whether the condylar fracture is unilateral or bilateral, the level and displacement of the fracture, the state of dentition and dental occlusion, and the surgeonnds on the age of the patient, the co-existence of othefrom which it is difficult to recover aesthetically and functionally;an appropriate treatment is required to reconstruct the shape and achieve the function ofthe uninjured status. To do this, accurate diagnosis, appropriate reduction and rigid fixation, and complication prevention are required. In particular, as mandibular condyle fracture may cause long-term complications such as malocclusion, particularly open bite, reduced posterior facial height, and facial asymmetry in addition to chronic pain and mobility limitation, great caution should be taken. Accordingly, the authors review a general overview of condyle fracture.

  4. Current Concepts in the Mandibular Condyle Fracture Management Part I: Overview of Condylar Fracture

    Directory of Open Access Journals (Sweden)

    Kang-Young Choi

    2012-07-01

    Full Text Available The incidence of condylar fractures is high,but the management of fractures of the mandibularcondyle continues to be controversial. Historically, maxillomandibular fixation, externalfixation, and surgical splints with internal fixation systems were the techniques commonlyused in the treatment of the fractured mandible. Condylar fractures can be extracapsularor intracapsular, undisplaced, deviated, displaced, or dislocated. Treatment depends on theage of the patient, the co-existence of other mandibular or maxillary fractures, whether thecondylar fracture is unilateral or bilateral, the level and displacement of the fracture, thestate of dentition and dental occlusion, and the surgeonnds on the age of the patient, theco-existence of othefrom which it is difficult to recover aesthetically and functionally;anappropriate treatment is required to reconstruct the shape and achieve the function oftheuninjured status. To do this, accurate diagnosis, appropriate reduction and rigid fixation, andcomplication prevention are required. In particular, as mandibular condyle fracture may causelong-term complications such as malocclusion, particularly open bite, reduced posterior facialheight, and facial asymmetry in addition to chronic pain and mobility limitation, great cautionshould be taken. Accordingly, the authors review a general overview of condyle fracture.

  5. Current Concepts in the Mandibular Condyle Fracture Management Part I: Overview of Condylar Fracture

    Science.gov (United States)

    Yang, Jung-Dug; Chung, Ho-Yun; Cho, Byung-Chae

    2012-01-01

    The incidence of condylar fractures is high, but the management of fractures of the mandibular condyle continues to be controversial. Historically, maxillomandibular fixation, external fixation, and surgical splints with internal fixation systems were the techniques commonly used in the treatment of the fractured mandible. Condylar fractures can be extracapsular or intracapsular, undisplaced, deviated, displaced, or dislocated. Treatment depends on the age of the patient, the co-existence of other mandibular or maxillary fractures, whether the condylar fracture is unilateral or bilateral, the level and displacement of the fracture, the state of dentition and dental occlusion, and the surgeonnds on the age of the patient, the co-existence of othefrom which it is difficult to recover aesthetically and functionally;an appropriate treatment is required to reconstruct the shape and achieve the function ofthe uninjured status. To do this, accurate diagnosis, appropriate reduction and rigid fixation, and complication prevention are required. In particular, as mandibular condyle fracture may cause long-term complications such as malocclusion, particularly open bite, reduced posterior facial height, and facial asymmetry in addition to chronic pain and mobility limitation, great caution should be taken. Accordingly, the authors review a general overview of condyle fracture. PMID:22872830

  6. 3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

    1997-08-01

    Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

  7. Why ductile fracture mechanics

    International Nuclear Information System (INIS)

    Ritchie, R.O.

    1983-01-01

    Until recently, the engineering application of fracture mechanics has been specific to a description of macroscopic fracture behavior in components and structural parts which remain nominally elastic under loading. While this approach, termed linear elastic fracture mechanics, has been found to be invaluable for the continuum analysis of crack growth in brittle and high strength materials, it is clearly inappropriate for characterizing failure in lower strength ductile alloys where extensive inelastic deformation precedes and accompanies crack initiation and subsequent propagation. Accordingly, much effort has been devoted in recent years toward the development of nonlinear or ductile fracture mechanics methodology to characterize fracture behavior under elastic/plastic conditions; an effort which has been principally motivated by problems in nuclear industry. In this paper, the concepts of ductile (elastic/plastic) fracture mechanics are introduced and applied to the problem of both stationary and nonstationary cracks. Specifically, the limitations inherent in this approach are defined, together with a description of the microstructural considerations and applications relevant to the failure of ductile materials by fracture, fatigue, and creep

  8. Dynamic fracture toughness and evaluation of fracture in a ferritic nodular cast iron for casks

    International Nuclear Information System (INIS)

    Yasunaka, T.; Nakano, K.

    1993-01-01

    The effect of loading rate and temperature on fracture toughness of a ferritic nodular cast iron obtained from a thick-walled cylindrical casting has been investigated. Based upon this result, the cast iron is evaluated as a material for casks. (1) In the ductile fracture region, fracture toughness increases with increases in loading rate. (2) Ductile-brittle transition temperature is linearly related to the logarithm of stress intensity rate. (3) In the ductile fracture region, converted plain strain fracture toughness divided by yield stress can be adopted as a material constant which is independent of loading rate and temperature. From the result of a static fracture toughness test, the evaluation of fracture in high loading rate can be made. (4) In the ductile fracture region of the material investigated, the maximum allowable flaw depth exceeded the minimum detectable flaw size by a nondestructive inspection. Ferritic nodular cast iron can be used as a material for casks in the ductile fracture region at least. (J.P.N.)

  9. Survival times of patients with a first hip fracture with and without subsequent major long-bone fractures.

    Science.gov (United States)

    Angthong, Chayanin; Angthong, Wirana; Harnroongroj, Thos; Naito, Masatoshi; Harnroongroj, Thossart

    2013-01-01

    Survival rates are poorer after a second hip fracture than after a first hip fracture. Previous survival studies have included in-hospital mortality. Excluding in-hospital deaths from the analysis allows survival times to be evaluated in community-based patients. There is still a lack of data regarding the effects of subsequent fractures on survival times after hospital discharge following an initial hip fracture. This study compared the survival times of community-dwelling patients with hip fracture who had or did not have a subsequent major long-bone fracture. Hazard ratios and risk factors for subsequent fractures and mortality rates with and without subsequent fractures were calculated. Of 844 patients with hip fracture from 2000 through 2008, 71 had a subsequent major long-bone fracture and 773 did not. Patients who died of other causes, such as perioperative complications, during hospitalization were excluded. Such exclusion allowed us to determine the effect of subsequent fracture on the survival of community-dwelling individuals after hospital discharge or after the time of the fracture if they did not need hospitalization. Demographic data, causes of death, and mortality rates were recorded. Differences in mortality rates between the patient groups and hazard ratios were calculated. Mortality rates during the first year and from 1 to 5 years after the most recent fracture were 5.6% and 1.4%, respectively, in patients with subsequent fractures, and 4.7% and 1.4%, respectively, in patients without subsequent fractures. These rates did not differ significantly between the groups. Cox regression analysis and calculation of hazard ratios did not show significant differences between patients with subsequent fractures and those without. On univariate and multivariate analyses, age fracture. This study found that survival times did not differ significantly between patients with and without subsequent major long-bone fractures after hip fracture. Therefore, all

  10. Fracture Characterization in Reactive Fluid-Fractured Rock Systems Using Tracer Transport Data

    Science.gov (United States)

    Mukhopadhyay, S.

    2014-12-01

    Fractures, whether natural or engineered, exert significant controls over resource exploitation from contemporary energy sources including enhanced geothermal systems and unconventional oil and gas reserves. Consequently, fracture characterization, i.e., estimating the permeability, connectivity, and spacing of the fractures is of critical importance for determining the viability of any energy recovery program. While some progress has recently been made towards estimating these critical fracture parameters, significant uncertainties still remain. A review of tracer technology, which has a long history in fracture characterization, reveals that uncertainties exist in the estimated parameters not only because of paucity of scale-specific data but also because of knowledge gaps in the interpretation methods, particularly in interpretation of tracer data in reactive fluid-rock systems. We have recently demonstrated that the transient tracer evolution signatures in reactive fluid-rock systems are significantly different from those in non-reactive systems (Mukhopadhyay et al., 2013, 2014). For example, the tracer breakthrough curves in reactive fluid-fractured rock systems are expected to exhibit a long pseudo-state condition, during which tracer concentration does not change by any appreciable amount with passage of time. Such a pseudo-steady state condition is not observed in a non-reactive system. In this paper, we show that the presence of this pseudo-steady state condition in tracer breakthrough patterns in reactive fluid-rock systems can have important connotations for fracture characterization. We show that the time of onset of the pseudo-steady state condition and the value of tracer concentration in the pseudo-state condition can be used to reliably estimate fracture spacing and fracture-matrix interface areas.

  11. Degradation of tropoelastin by matrix metalloproteinases--cleavage site specificities and release of matrikines

    DEFF Research Database (Denmark)

    Heinz, Andrea; Jung, Michael C; Duca, Laurent

    2010-01-01

    To provide a basis for the development of approaches to treat elastin-degrading diseases, the aim of this study was to investigate the degradation of the natural substrate tropoelastin by the elastinolytic matrix metalloproteinases MMP-7, MMP-9, and MMP-12 and to compare the cleavage site...

  12. Osteoporotic fractures in older adults

    OpenAIRE

    Colón-Emeric, Cathleen S.; Saag, Kenneth G.

    2006-01-01

    Osteoporotic fractures are emerging as a major public health problem in the aging population. Fractures result in increased morbidity, mortality and health expenditures. This article reviews current evidence for the management of common issues following osteoporotic fractures in older adults including: (1) thromboembolism prevention; (2) delirium prevention; (3) pain management; (4) rehabilitation; (5) assessing the cause of fracture; and (6) prevention of subsequent fractures. Areas for prac...

  13. Dependence of fracture mechanical and fluid flow properties on fracture roughness and sample size

    International Nuclear Information System (INIS)

    Tsang, Y.W.; Witherspoon, P.A.

    1983-01-01

    A parameter study has been carried out to investigate the interdependence of mechanical and fluid flow properties of fractures with fracture roughness and sample size. A rough fracture can be defined mathematically in terms of its aperture density distribution. Correlations were found between the shapes of the aperture density distribution function and the specific fractures of the stress-strain behavior and fluid flow characteristics. Well-matched fractures had peaked aperture distributions that resulted in very nonlinear stress-strain behavior. With an increasing degree of mismatching between the top and bottom of a fracture, the aperture density distribution broadened and the nonlinearity of the stress-strain behavior became less accentuated. The different aperture density distributions also gave rise to qualitatively different fluid flow behavior. Findings from this investigation make it possible to estimate the stress-strain and fluid flow behavior when the roughness characteristics of the fracture are known and, conversely, to estimate the fracture roughness from an examination of the hydraulic and mechanical data. Results from this study showed that both the mechanical and hydraulic properties of the fracture are controlled by the large-scale roughness of the joint surface. This suggests that when the stress-flow behavior of a fracture is being investigated, the size of the rock sample should be larger than the typical wave length of the roughness undulations

  14. High-fat diet feeding causes rapid, non-apoptotic cleavage of caspase-3 in astrocytes.

    Science.gov (United States)

    Guyenet, Stephan J; Nguyen, Hong T; Hwang, Bang H; Schwartz, Michael W; Baskin, Denis G; Thaler, Joshua P

    2013-05-28

    Astrocytes respond to multiple forms of central nervous system (CNS) injury by entering a reactive state characterized by morphological changes and a specific pattern of altered protein expression. Termed astrogliosis, this response has been shown to strongly influence the injury response and functional recovery of CNS tissues. This pattern of CNS inflammation and injury associated with astrogliosis has recently been found to occur in the energy homeostasis centers of the hypothalamus during diet-induced obesity (DIO) in rodent models, but the characterization of the astrocyte response remains incomplete. Here, we report that astrocytes in the mediobasal hypothalamus respond robustly and rapidly to purified high-fat diet (HFD) feeding by cleaving caspase-3, a protease whose cleavage is often associated with apoptosis. Although obesity develops in HFD-fed rats by day 14, caspase-3 cleavage occurs by day 3, prior to the development of obesity, suggesting the possibility that it could play a causal role in the hypothalamic neuropathology and fat gain observed in DIO. Caspase-3 cleavage is not associated with an increase in the rate of apoptosis, as determined by TUNEL staining, suggesting it plays a non-apoptotic role analogous to the response to excitotoxic neuron injury. Our results indicate that astrocytes in the mediobasal hypothalamus respond rapidly and robustly to HFD feeding, activating caspase-3 in the absence of apoptosis, a process that has the potential to influence the course of DIO. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Effects of fracture distribution and length scale on the equivalent continuum elastic compliance of fractured rock masses

    Directory of Open Access Journals (Sweden)

    Marte Gutierrez

    2015-12-01

    Full Text Available Fracture systems have strong influence on the overall mechanical behavior of fractured rock masses due to their relatively lower stiffness and shear strength than those of the rock matrix. Understanding the effects of fracture geometrical distribution, such as length, spacing, persistence and orientation, is important for quantifying the mechanical behavior of fractured rock masses. The relation between fracture geometry and the mechanical characteristics of the fractured rock mass is complicated due to the fact that the fracture geometry and mechanical behaviors of fractured rock mass are strongly dependent on the length scale. In this paper, a comprehensive study was conducted to determine the effects of fracture distribution on the equivalent continuum elastic compliance of fractured rock masses over a wide range of fracture lengths. To account for the stochastic nature of fracture distributions, three different simulation techniques involving Oda's elastic compliance tensor, Monte Carlo simulation (MCS, and suitable probability density functions (PDFs were employed to represent the elastic compliance of fractured rock masses. To yield geologically realistic results, parameters for defining fracture distributions were obtained from different geological fields. The influence of the key fracture parameters and their relations to the overall elastic behavior of the fractured rock mass were studied and discussed. A detailed study was also carried out to investigate the validity of the use of a representative element volume (REV in the equivalent continuum representation of fractured rock masses. A criterion was also proposed to determine the appropriate REV given the fracture distribution of the rock mass.

  16. Basic principles of fracture treatment in children.

    Science.gov (United States)

    Ömeroğlu, Hakan

    2018-04-01

    This review aims to summarize the basic treatment principles of fractures according to their types and general management principles of special conditions including physeal fractures, multiple fractures, open fractures, and pathologic fractures in children. Definition of the fracture is needed for better understanding the injury mechanism, planning a proper treatment strategy, and estimating the prognosis. As the healing process is less complicated, remodeling capacity is higher and non-union is rare, the fractures in children are commonly treated by non-surgical methods. Surgical treatment is preferred in children with multiple injuries, in open fractures, in some pathologic fractures, in fractures with coexisting vascular injuries, in fractures which have a history of failed initial conservative treatment and in fractures in which the conservative treatment has no/little value such as femur neck fractures, some physeal fractures, displaced extension and flexion type humerus supracondylar fractures, displaced humerus lateral condyle fractures, femur, tibia and forearm shaft fractures in older children and adolescents and unstable pelvis and acetabulum fractures. Most of the fractures in children can successfully be treated by non-surgical methods.

  17. Plain film analysis of acetabular fracture

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Soo; Han, Sang Suk; Yoon, Eu Giene; Cha, Seong Sook; Eun, Tchoong Kie; Chung, Duck Hwan [Inje Medical College Paik Hospital, Pusan (Korea, Republic of)

    1986-02-15

    Acetabular fracture can result in severe limitation of the motion of the hip joint, which supports total weight of human body. Because of different methods of surgical approach according to fracture type, precise interpretation of X-ray films of acetabular fracture is required. We reviewed 38 cases of simple X-ray films showing acetabular fracture. The results were as follows: 1. Almost 60% of the cases-were in their 2nd and 3rd decades. 2. Twenty cases were male, and 18 cases were female. 3. The most common cause of the injury was traffic accident (33 cases, 86.8%), followed by fall down (4 cases, 10.5%), and slip down (1 case, 2.7%). 4. Elementary fractures were 21 cases (55.3%), and associated fractures were 17 cases (44.7%). 5. Among elementary fractures, posterior wall fractures were 9 cases (23.7%), followed by anterior column fractures (8 cases, 21.1%), anterior wall fractures (4 cases, 10.5%). 6. Among associated fractures, T-shaped fractures were 8 cases (21.1%), followed by both column fractures (6 cases, 15.8%), anterior and hemitransverse fractures (3 cases, 7.8%). 7. Other pelvic bone fractures associated with the acetabular fracture were as follows: fractures of contralateral pubic rami (6 cases, 15.8%) contralateral iliac bone (1 case, 2.6%) and ipsilateral iliac bone (1 case, 2.6%). 8. Injuries of other organs adjacent to the acetabulum were as follows: rupture of the bladder (3 cases, 7.9%), urethra (2 cases, 5.3%) and uterus (1 cases, 2.6%)

  18. Plain film analysis of acetabular fracture

    International Nuclear Information System (INIS)

    Kim, Chang Soo; Han, Sang Suk; Yoon, Eu Giene; Cha, Seong Sook; Eun, Tchoong Kie; Chung, Duck Hwan

    1986-01-01

    Acetabular fracture can result in severe limitation of the motion of the hip joint, which supports total weight of human body. Because of different methods of surgical approach according to fracture type, precise interpretation of X-ray films of acetabular fracture is required. We reviewed 38 cases of simple X-ray films showing acetabular fracture. The results were as follows: 1. Almost 60% of the cases-were in their 2nd and 3rd decades. 2. Twenty cases were male, and 18 cases were female. 3. The most common cause of the injury was traffic accident (33 cases, 86.8%), followed by fall down (4 cases, 10.5%), and slip down (1 case, 2.7%). 4. Elementary fractures were 21 cases (55.3%), and associated fractures were 17 cases (44.7%). 5. Among elementary fractures, posterior wall fractures were 9 cases (23.7%), followed by anterior column fractures (8 cases, 21.1%), anterior wall fractures (4 cases, 10.5%). 6. Among associated fractures, T-shaped fractures were 8 cases (21.1%), followed by both column fractures (6 cases, 15.8%), anterior and hemitransverse fractures (3 cases, 7.8%). 7. Other pelvic bone fractures associated with the acetabular fracture were as follows: fractures of contralateral pubic rami (6 cases, 15.8%) contralateral iliac bone (1 case, 2.6%) and ipsilateral iliac bone (1 case, 2.6%). 8. Injuries of other organs adjacent to the acetabulum were as follows: rupture of the bladder (3 cases, 7.9%), urethra (2 cases, 5.3%) and uterus (1 cases, 2.6%).

  19. Paediatric talus fracture.

    LENUS (Irish Health Repository)

    Byrne, Ann-Maria

    2012-01-01

    Paediatric talus fractures are rare injuries resulting from axial loading of the talus against the anterior tibia with the foot in dorsiflexion. Skeletally immature bone is less brittle, with higher elastic resistance than adult bone, thus the paediatric talus can sustain higher forces before fractures occur. However, displaced paediatric talus fractures and those associated with high-energy trauma have been associated with complications including avascular necrosis, arthrosis, delayed union, neurapraxia and the need for revision surgery. The authors present the rare case of a talar neck fracture in a skeletally immature young girl, initially missed on radiological review. However, clinical suspicion on the part of the emergency physician, repeat examination and further radiographic imaging revealed this rare paediatric injury.

  20. Comparison of surgical techniques of 111 medial malleolar fractures classified by fracture geometry.

    Science.gov (United States)

    Ebraheim, Nabil A; Ludwig, Todd; Weston, John T; Carroll, Trevor; Liu, Jiayong

    2014-05-01

    Evaluation of operative techniques used for medial malleolar fractures by classifying fracture geometry has not been well documented. One hundred eleven patients with medial malleolar fractures (transverse n = 63, oblique n = 29, vertical n = 7, comminuted n = 12) were included in this study. Seventy-two patients had complicating comorbidities. All patients were treated with buttress plate, lag screw, tension band, or K-wire fixation. Treatment outcomes were evaluated on the basis of radiological outcome (union, malunion, delayed union, or nonunion), need for operative revision, presence of postoperative complications, and AOFAS Ankle-Hindfoot score. For transverse fractures, tension band fixation showed the highest rate of union (79%), highest average AOFAS score (86), lowest revision rate (5%), and lowest complication rate (16%). For oblique fractures, lag screws showed the highest rate of union (71%), highest average AOFAS score (80), lowest revision rate (19%), and lowest complication rate (33%) of the commonly used fixation techniques. For vertical fractures, buttress plating was used in every case but 1, achieving union (whether normal or delayed) in all cases with an average AOFAS score of 84, no revisions, and a 17% complication rate. Comminuted fractures had relatively poor outcomes regardless of fixation method. The results of this study suggest that both tension bands and lag screws result in similar rates of union for transverse fractures of the medial malleolus, but that tension band constructs are associated with less need for revision surgery and fewer complications. In addition, our data demonstrate that oblique fractures were most effectively treated with lag screws and that vertical fractures attained superior outcomes with buttress plating. Level III, retrospective comparative series.

  1. Streaming potential modeling in fractured rock: Insights into the identification of hydraulically active fractures

    Science.gov (United States)

    Roubinet, D.; Linde, N.; Jougnot, D.; Irving, J.

    2016-05-01

    Numerous field experiments suggest that the self-potential (SP) geophysical method may allow for the detection of hydraulically active fractures and provide information about fracture properties. However, a lack of suitable numerical tools for modeling streaming potentials in fractured media prevents quantitative interpretation and limits our understanding of how the SP method can be used in this regard. To address this issue, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid flow and associated self-potential problems in fractured rock. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.

  2. Mixed-mode fracture of ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, J.J.

    1985-01-01

    The mixed-mode fracture behavior of ceramic materials is of importance for monolithic ceramics in order to predict the onset of fracture under generalized loading conditions and for ceramic composites to describe crack deflection toughening mechanisms. Experimental data on surface flaw mixed-mode fracture in various ceramics indicate that the flaw-plane normal stress at fracture decreases with increasing in-flaw-plane shear stress, although present data exhibit a fairly wide range in details of this sigma - tau relationship. Fracture from large cracks suggests that Mode II has a greater effect on Mode I fracture than Mode III. A comparison of surface flaw and large crack mixed-mode I-II fracture responses indicated that surface flaw behavior is influenced by shear resistance effects.

  3. Hydrologic behavior of fracture networks

    International Nuclear Information System (INIS)

    Long, J.C.S.; Endo, H.K.; Karasaki, K.; Pyrak, L.; MacLean, P.; Witherspoon, P.A.

    1985-01-01

    This paper reviews recent research on the nature of flow and transport in discontinuous fracture networks. The hydrologic behavior of these networks has been examined using two- and three-dimensional numerical models. The numerical models represent random realizations of fracture networks based on statistical field measurements of fracture geometry and equivalent hydraulic aperture. The authors have compared the flux and mechanical transported behavior of these networks to the behavior of equivalent continua. In this way they were able to determine whether a given fracture network could be modeled as an equivalent porous media in both flux and advective transport studies. They have examined departures from porous media behavior both as a function of interconnectivity and heterogeneity. Parameter studies have revealed behavior patterns such as: given a fracture frequency that can be measured in the field, porous media like behavior and the magnitude of permeability are both enhanced if the fractures are longer and the standard deviation of fracture permeabilities is smaller. The behavior of well tests in fractured networks has been modeled and compared to a new analytical well test solution which accounts for the early time dominance of the fractures intersecting the well. Finally, a three-dimensional fracture flow model has been constructed which assumes fractures are randomly located discs. This model has been constructed which assumes fractures are randomly located discs. This model uses a semi-analytical solution for flow such that it is relatively easy to use the model as a tool for stochastic analysis. 13 references, 12 figures

  4. Metatarsal stress fractures - aftercare

    Science.gov (United States)

    ... Metatarsal stress fracture. In: Safran MR, Zachazewski J, Stone DA, eds. Instructions for Sports Medicine Patients . 2nd ed. Elsevier Saunders; 2012:648-652. Smith MS. Metatarsal fractures. In: Eiff PM, Hatch R, eds. Fracture Management for Primary Care . 3rd ed. ...

  5. KLONING GEN PUTATIVE CLEAVAGE PROTEIN 1 (PCP-1 PADA UDANG VANAME (Litopenaeus vannamei YANG TERSERANG INFECTIOUS MYONECROSIS VIRUS

    Directory of Open Access Journals (Sweden)

    Hessy Novita

    2016-12-01

    Full Text Available Penanggulangan penyakit ikan dapat dilakukan dengan cara meningkatkan kekebalan tubuh ikan melalui program vaksinasi. Namun vaksinasi tidak tepat untuk udang, karena udang tidak mempunyai immunological memory seperti ikan. Oleh karena itu, perlindungan udang terhadap serangan penyakit viral dengan menggunakan RNA interference (RNAi. Teknologi RNAi digunakan untuk menghalangi (interfere proses replikasi infectious myonecrosis virus (IMNV pada udang vaname dengan cara menon-aktifkan gen putative cleavage protein 1 (PCP-1, yang berfungsi dalam pembentukan capsid dan proses transkripsi RNA IMNV. Penelitian ini bertujuan untuk melakukan kloning gen putative cleavage protein 1 dalam rangka perakitan teknologi RNAi untuk pengendalian penyakit IMNV pada udang vaname. Tahapan penelitian meliputi koleksi sampel, isolasi RNA, sintesis cDNA, amplifikasi PCR, purifikasi DNA, transformasi, isolasi plasmid, serta sekuensing dan analisis data. Hasil isolasi plasmid cDNA PCP-1 memperlihatkan semua koloni bakteri terseleksi ternyata membawa plasmid hasil insersi DNA gen PCP–1, hasil sekuen dengan nilai homologinya mencapai 100% dan 99% yang dibandingkan dengan sekuen di Genebank. Hasil penelitian menunjukkan bahwa kloning gen putative cleavage protein 1 (PCP-1 dari udang vaname yang terserang Infectious Myonecrosis Virus berhasil dikloning yang nantinya digunakan untuk perakitan RNAi. The prevention of fish diseases can be done by increasing of the fish immune through vaccination programs. However, the vaccination can not be done for the shrimp,due to the absence of  immunological memory. Therefore, the protection of shrimp against viral diseases was done by using of RNA interference (RNAi. RNAi technology is used to interfere infectious myonecrosis virus (IMNV replication process on white shrimp by disabling of putative cleavage protein 1 (PCP-1gene, which functions in capsid formation and RNA transcription process. The study was conducted to perform putative

  6. Acetabular fractures: anatomic and clinical considerations.

    Science.gov (United States)

    Lawrence, David A; Menn, Kirsten; Baumgaertner, Michael; Haims, Andrew H

    2013-09-01

    Classifying acetabular fractures can be an intimidating topic. However, it is helpful to remember that there are only three basic types of acetabular fractures: column fractures, transverse fractures, and wall fractures. Within this framework, acetabular fractures are classified into two broad categories: elementary or associated fractures. We will review the osseous anatomy of the pelvis and provide systematic approaches for reviewing both radiographs and CT scans to effectively evaluate the acetabulum. Although acetabular fracture classification may seem intimidating, the descriptions and distinctions discussed and shown in this article hopefully make the topic simpler to understand. Approach the task by recalling that there are only three basic types of acetabular fractures: column fractures (coronally oriented on CT images), transverse fractures (sagittally oriented on CT images), and wall fractures (obliquely oriented on CT images). We have provided systematic approaches for reviewing both conventional radiographs and CT scans to effectively assess the acetabulum. The clinical implications of the different fracture patterns have also been reviewed because it is critically important to include pertinent information for our clinical colleagues to provide the most efficient and timely clinical care.

  7. Subtrochanteric femoral fracture during trochanteric nailing for the treatment of femoral shaft fracture.

    Science.gov (United States)

    Yun, Ho Hyun; Oh, Chi Hun; Yi, Ju Won

    2013-09-01

    We report on three cases of subtrochanteric femoral fractures during trochanteric intramedullary nailing for the treatment of femoral shaft fractures. Trochanteric intramedullary nails, which have a proximal lateral bend, are specifically designed for trochanteric insertion. When combined with the modified insertion technique, trochanteric intramedullary nails reduce iatrogenic fracture comminution and varus malalignment. We herein describe technical aspects of trochanteric intramedullary nailing for femoral shaft fractures to improve its application and prevent implant-derived complications.

  8. Growth Kinematics of Opening-Mode Fractures

    Science.gov (United States)

    Eichhubl, P.; Alzayer, Y.; Laubach, S.; Fall, A.

    2014-12-01

    Fracture aperture is a primary control on flow in fractured reservoirs of low matrix permeability including unconventional oil and gas reservoirs and most geothermal systems. Guided by principles of linear elastic fracture mechanics, fracture aperture is generally assumed to be a linear function of fracture length and elastic material properties. Natural opening-mode fractures with significant preserved aperture are observed in core and outcrop indicative of fracture opening strain accommodated by permanent solution-precipitation creep. Fracture opening may thus be decoupled from length growth if the material effectively weakens after initial elastic fracture growth by either non-elastic deformation processes or changes in elastic properties. To investigate the kinematics of fracture length and aperture growth, we reconstructed the opening history of three opening-mode fractures that are bridged by crack-seal quartz cement in Travis Peak Sandstone of the SFOT-1 well, East Texas. Similar crack-seal cement bridges had been interpreted to form by repeated incremental fracture opening and subsequent precipitation of quartz cement. We imaged crack-seal cement textures for bridges sampled at varying distance from the tips using scanning electron microscope cathodoluminescence, and determined the number and thickness of crack-seal cement increments as a function of position along the fracture length and height. Observed trends in increment number and thickness are consistent with an initial stage of fast fracture propagation relative to aperture growth, followed by a stage of slow propagation and pronounced aperture growth. Consistent with fluid inclusion observations indicative of fracture opening and propagation occurring over 30-40 m.y., we interpret the second phase of pronounced aperture growth to result from fracture opening strain accommodated by solution-precipitation creep and concurrent slow, possibly subcritical, fracture propagation. Similar deformation

  9. Rare stress fracture: longitudinal fracture of the femur.

    Science.gov (United States)

    Pérez González, M; Velázquez Fragua, P; López Miralles, E; Abad Moretón, M M

    42-year-old man with pain in the posterolateral region of the right knee that began while he was running. Initially, it was diagnosed by magnetic resonance (MR) as a possible aggressive process (osteosarcoma or Ewing's sarcoma) but with computed tomography it was noted a cortical hypodense linear longitudinal image with a continuous, homogeneous and solid periosteal reaction without clear soft tissue mass that in this patient suggest a longitudinal distal femoral fatigue stress fracture. This type of fracture at this location is very rare. Stress fractures are entities that can be confused with an agressive process. MR iscurrently the most sensitive and specific imaging method for its diagnosis. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  10. The mitochondrion-like organelle of Trimastix pyriformis contains the complete glycine cleavage system

    Czech Academy of Sciences Publication Activity Database

    Zubáčová, Z.; Novák, L.; Bublíková, J.; Vacek, V.; Fousek, Jan; Rídl, Jakub; Tachezy, J.; Doležal, P.; Vlček, Čestmír; Hampl, V.

    2013-01-01

    Roč. 8, č. 3 (2013), e55417 E-ISSN 1932-6203 R&D Projects: GA ČR GAP506/12/1010 Institutional support: RVO:68378050 Keywords : transcriptome sequencing * Trimastix * mitochondrion -like organelle * glycine cleavage complex Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.534, year: 2013

  11. Fracturing formations in wells

    Energy Technology Data Exchange (ETDEWEB)

    Daroza, R A

    1964-05-15

    This well stimulation method comprises introducing through the well bore a low-penetrating, dilatant fluid, and subjecting the fluid to sufficient pressure to produce fractures in the formation. The fluid is permitted to remain in contact with the formation so as to become diluted by the formation fluids, and thereby lose its properties of dilatancy. Also, a penetrating fluid, containing a propping agent suspended therein, in introduced into contact with the fractures at a pressure substantially reduced with respect to that pressure which would have been required, prior to the fracturing operation performed using the low-penetrating dilatant fluid. The propping agent is deposited within the fractures, and thereafter, fluid production is resumed from the fractured formation. (2 claims)

  12. Research on fracture analysis, groundwater flow and sorption processes in fractured rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dae Ha [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    Due to increasing demand for numerous industrial facilities including nuclear power plants and waste repositories, the feasibility of rocks masses as sites for the facilities has been a geological issue of concern. Rock masses, in general, comprises systems of fractures which can provide pathways for groundwater flow and may also affect the stability of engineered structures. such properties of fractures stimulate a synthetic study on (1) analyses of fracture systems, and (2) characterization of groundwater flow and sorption processes in fractured rocks to establish a preliminary model for assessing suitable sites for industrial facilities. The analyses of fracture systems cover (1) reconstruction of the Cenozoic tectonic movements and estimation of frequency indices for the Holocene tectonic movements, (2) determination of distributions and block movements of the Quaternary marine terraces, (3) investigation of lithologic and geotechnical nature of study area, and (4) examination of the Cenozoic volcanic activities and determination of age of the dike swarms. Using data obtained from above mentioned analyses along with data related to earthquakes and active faults, probabilistic approach is performed to determine various potential hazards which may result from the Quaternary or the Holocene tectonic movements. In addition, stepwise and careful integration of various data obtained from field works and laboratory experiments are carried out to analyze groundwater flow in fractures rocks as follows; (1) investigation of geological feature of the site, (2) identification and characterization of fracture systems using core and televiewer logs, (3) determination of conductive fractures using electrical conductivity, temperature, and flow logs, (4) identification of hydraulic connections between fractures using televiewer logs with tracer tests within specific zones. The results obtained from these processes allow a qualitative interpretation of groundwater flow patterns

  13. The timing of pronuclear formation, DNA synthesis and cleavage in the human 1-cell embryo.

    Science.gov (United States)

    Capmany, G; Taylor, A; Braude, P R; Bolton, V N

    1996-05-01

    The timing of pronuclear formation and breakdown, DNA synthesis and cleavage during the first cell cycle of human embryogenesis are described. Pronuclei formed between 3 and 10 h post-insemination (hpi; median 8 hpi). S-phase commenced between 8 and 14 hpi, and was completed between 10 and 18 hpi. M-phase was observed between 22 and 31 hpi (median duration 3 h), and cleavage to the 2-cell stage took place between 25 and 33 hpi. The timing of the same events was determined in 1-cell embryos derived from re-inseminated human oocytes that had failed to fertilize during therapeutic in-vitro fertilization (IVF). In these embryos, pronuclei formed between 3 and 8 h post-re-insemination (hpr-i), coinciding with the beginning of S-phase. While S-phase was completed as early as 10 hpr-i in some embryos, it extended until at least 16 hpr-i in others. Pronuclear breakdown and cleavage occurred from 23 and 26 hpr-i respectively; however, they did not occur in some embryos until after 46 hpr-i. The results demonstrate a markedly greater degree of variation in the timing of these events in embryos derived from re-inseminated oocytes compared with embryos derived from conventional IVF, and thus throw into question the validity of using the former as models for studies of the first cell cycle of human embryogenesis.

  14. A New Method for Fracturing Wells Reservoir Evaluation in Fractured Gas Reservoir

    Directory of Open Access Journals (Sweden)

    Jianchun Guo

    2014-01-01

    Full Text Available Natural fracture is a geological phenomenon widely distributed in tight formation, and fractured gas reservoir stimulation effect mainly depends on the communication of natural fractures. Therefore it is necessary to carry out the evaluation of this reservoir and to find out the optimal natural fractures development wells. By analyzing the interactions and nonlinear relationships of the parameters, it establishes three-level index system of reservoir evaluation and proposes a new method for gas well reservoir evaluation model in fractured gas reservoir on the basis of fuzzy logic theory and multilevel gray correlation. For this method, the Gaussian membership functions to quantify the degree of every factor in the decision-making system and the multilevel gray relation to determine the weight of each parameter on stimulation effect. Finally through fuzzy arithmetic operator between multilevel weights and fuzzy evaluation matrix, score, rank, the reservoir quality, and predicted production will be gotten. Result of this new method shows that the evaluation of the production coincidence rate reaches 80%, which provides a new way for fractured gas reservoir evaluation.

  15. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis

    KAUST Repository

    Frusciante, Sarah; Diretto, Gianfranco; Bruno, Mark; Ferrante, Paola; Pietrella, Marco; Prado-Cabrero, Alfonso; Rubio-Moraga, Á ngela L.; Beyer, Peter D.; Gó mez-Gó mez, Lourdes; Al-Babili, Salim; Giuliano, Giovanni

    2014-01-01

    Crocus sativus stigmas are the source of the saffron spice and accumulate the apocarotenoids crocetin, crocins, picrocrocin, and safranal, responsible for its color, taste, and aroma. Through deep transcriptome sequencing, we identified a novel dioxygenase, carotenoid cleavage dioxygenase 2 (CCD2), expressed early during stigma development and closely related to, but distinct from, the CCD1 dioxygenase family. CCD2 is the only identified member of a novel CCD clade, presents the structural features of a bona fide CCD, and is able to cleave zeaxanthin, the presumed precursor of saffron apocarotenoids, both in Escherichia coli and in maize endosperm. The cleavage products, identified through high-resolution mass spectrometry and comigration with authentic standards, are crocetin dialdehyde and crocetin, respectively. In vitro assays show that CCD2 cleaves sequentially the 7,8 and 7′,8′ double bonds adjacent to a 3-OH-β-ionone ring and that the conversion of zeaxanthin to crocetin dialdehyde proceeds via the C30 intermediate 3-OH-β-apo-8′-carotenal. In contrast, zeaxanthin cleavage dioxygenase (ZCD), an enzyme previously claimed to mediate crocetin formation, did not cleave zeaxanthin or 3-OH-β-apo-8′-carotenal in the test systems used. Sequence comparison and structure prediction suggest that ZCD is an N-truncated CCD4 form, lacking one blade of the β-propeller structure conserved in all CCDs. These results constitute strong evidence that CCD2 catalyzes the first dedicated step in crocin biosynthesis. Similar to CCD1, CCD2 has a cytoplasmic localization, suggesting that it may cleave carotenoids localized in the chromoplast outer envelope.

  16. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis

    KAUST Repository

    Frusciante, Sarah

    2014-08-05

    Crocus sativus stigmas are the source of the saffron spice and accumulate the apocarotenoids crocetin, crocins, picrocrocin, and safranal, responsible for its color, taste, and aroma. Through deep transcriptome sequencing, we identified a novel dioxygenase, carotenoid cleavage dioxygenase 2 (CCD2), expressed early during stigma development and closely related to, but distinct from, the CCD1 dioxygenase family. CCD2 is the only identified member of a novel CCD clade, presents the structural features of a bona fide CCD, and is able to cleave zeaxanthin, the presumed precursor of saffron apocarotenoids, both in Escherichia coli and in maize endosperm. The cleavage products, identified through high-resolution mass spectrometry and comigration with authentic standards, are crocetin dialdehyde and crocetin, respectively. In vitro assays show that CCD2 cleaves sequentially the 7,8 and 7′,8′ double bonds adjacent to a 3-OH-β-ionone ring and that the conversion of zeaxanthin to crocetin dialdehyde proceeds via the C30 intermediate 3-OH-β-apo-8′-carotenal. In contrast, zeaxanthin cleavage dioxygenase (ZCD), an enzyme previously claimed to mediate crocetin formation, did not cleave zeaxanthin or 3-OH-β-apo-8′-carotenal in the test systems used. Sequence comparison and structure prediction suggest that ZCD is an N-truncated CCD4 form, lacking one blade of the β-propeller structure conserved in all CCDs. These results constitute strong evidence that CCD2 catalyzes the first dedicated step in crocin biosynthesis. Similar to CCD1, CCD2 has a cytoplasmic localization, suggesting that it may cleave carotenoids localized in the chromoplast outer envelope.

  17. Fracture surfaces of granular pastes.

    Science.gov (United States)

    Mohamed Abdelhaye, Y O; Chaouche, M; Van Damme, H

    2013-11-01

    Granular pastes are dense dispersions of non-colloidal grains in a simple or a complex fluid. Typical examples are the coating, gluing or sealing mortars used in building applications. We study the cohesive rupture of thick mortar layers in a simple pulling test where the paste is initially confined between two flat surfaces. After hardening, the morphology of the fracture surfaces was investigated, using either the box counting method to analyze fracture profiles perpendicular to the mean fracture plane, or the slit-island method to analyze the islands obtained by cutting the fracture surfaces at different heights, parallel to the mean fracture plane. The fracture surfaces were shown to exhibit scaling properties over several decades. However, contrary to what has been observed in the brittle or ductile fracture of solid materials, the islands were shown to be mass fractals. This was related to the extensive plastic flow involved in the fracture process.

  18. Change in fracture risk and fracture pattern after bariatric surgery: nested case-control study.

    Science.gov (United States)

    Rousseau, Catherine; Jean, Sonia; Gamache, Philippe; Lebel, Stéfane; Mac-Way, Fabrice; Biertho, Laurent; Michou, Laëtitia; Gagnon, Claudia

    2016-07-27

     To investigate whether bariatric surgery increases the risk of fracture.  Retrospective nested case-control study.  Patients who underwent bariatric surgery in the province of Quebec, Canada, between 2001 and 2014, selected using healthcare administrative databases.  12 676 patients who underwent bariatric surgery, age and sex matched with 38 028 obese and 126 760 non-obese controls.  Incidence and sites of fracture in patients who had undergone bariatric surgery compared with obese and non-obese controls. Fracture risk was also compared before and after surgery (index date) within each group and by type of surgery from 2006 to 2014. Multivariate conditional Poisson regression models were adjusted for fracture history, number of comorbidities, sociomaterial deprivation, and area of residence.  Before surgery, patients undergoing bariatric surgery (9169 (72.3%) women; mean age 42 (SD 11) years) were more likely to fracture (1326; 10.5%) than were obese (3065; 8.1%) or non-obese (8329; 6.6%) controls. A mean of 4.4 years after surgery, bariatric patients were more susceptible to fracture (514; 4.1%) than were obese (1013; 2.7%) and non-obese (3008; 2.4%) controls. Postoperative adjusted fracture risk was higher in the bariatric group than in the obese (relative risk 1.38, 95% confidence interval 1.23 to 1.55) and non-obese (1.44, 1.29 to 1.59) groups. Before surgery, the risk of distal lower limb fracture was higher, upper limb fracture risk was lower, and risk of clinical spine, hip, femur, or pelvic fractures was similar in the bariatric and obese groups compared with the non-obese group. After surgery, risk of distal lower limb fracture decreased (relative risk 0.66, 0.56 to 0.78), whereas risk of upper limb (1.64, 1.40 to 1.93), clinical spine (1.78, 1.08 to 2.93), pelvic, hip, or femur (2.52, 1.78 to 3.59) fractures increased. The increase in risk of fracture reached significance only for biliopancreatic diversion.  Patients undergoing bariatric

  19. Pubic insufficiency fracture: MRI findings

    International Nuclear Information System (INIS)

    Min, Tae Kyu; Lee, Yeon Soo; Park, Jeong Mi; Kim, Jee Young; Chung, Hong Jun; Lee, Eun Hee; Lee, Eun Ja; Kang, So Won; Han Tae Il

    2000-01-01

    To evaluate the characteristic MRI findings of pubic insufficiency fracture. In nine cases of pubic insufficiency fracture, the findings of plain radiography (n=9), MRI (n=9), and bone scintigraphy (n=8) were reviewed. We retrospectively analyzed, with regard to fracture site, the destructive pattern revealed by plain radiography, and uptake by other pelvic bones, as demonstrated by RI bone scanning. The MR findings evaluated were the fracture gap and its signal intensity, the site and signal intensity of the soft tissue mass, and other pelvic bone fractures. Plain radiography revealed osteolysis and sclerosis of pubic bone in eight of nine cases (89%), and parasymphyseal fractures in seven (78%). RI indicated uptake by the sacrum in six cases (66%), and by the ilium in three (33%). MR findings of fracture gap (seven cases, 78%) were hypo to isointensity on T1WI, hyper intensity on T2WI and the absence of contrast enhancement. Soft tissue masses were found in seven cases (78%); in four of these the location was parasymphyseal, and in three, surrounding muscle was involved. Hypo to isointensity was revealed by T1WI, hyperintensity by T2WI, and there was peripheral enhancement. Other associated pelvic bone fractures involved the sacrum in seven cases and the ilium in four. The characteristic MR findings of pubic insufficiency fracture were parasymphyseal location, fracture gap, peripherally enhanced soft tissue mass formation, and fractures of other pelvic bones, namely the sacrum and ilium

  20. Effects of simplifying fracture network representation on inert chemical migration in fracture-controlled aquifers

    Science.gov (United States)

    Wellman, Tristan; Shapiro, Allen M.; Hill, Mary C.

    2009-01-01

    While it is widely recognized that highly permeable 'large-scale' fractures dominate chemical migration in many fractured aquifers, recent studies suggest that the pervasive 'small-scale' fracturing once considered of less significance can be equally important for characterizing the spatial extent and residence time associated with transport processes. A detailed examination of chemical migration through fracture-controlled aquifers is used to advance this conceptual understanding. The influence of fracture structure is evaluated by quantifying the effects to transport caused by a systematic removal of fractures from three-dimensional discrete fracture models whose attributes are derived from geologic and hydrologic conditions at multiple field sites. Results indicate that the effects to transport caused by network simplification are sensitive to the fracture network characteristics, degree of network simplification, and plume travel distance, but primarily in an indirect sense since correlation to individual attributes is limited. Transport processes can be 'enhanced' or 'restricted' from network simplification meaning that the elimination of fractures may increase or decrease mass migration, mean travel time, dispersion, and tailing of the concentration plume. The results demonstrate why, for instance, chemical migration may not follow the classic advection-dispersion equation where dispersion approximates the effect of the ignored geologic structure as a strictly additive process to the mean flow. The analyses further reveal that the prediction error caused by fracture network simplification is reduced by at least 50% using the median estimate from an ensemble of simplified fracture network models, and that the error from network simplification is at least 70% less than the stochastic variability from multiple realizations. Copyright 2009 by the American Geophysical Union.