WorldWideScience

Sample records for classical stamping progression

  1. STAMP alters the growth of transformed and ovarian cancer cells

    International Nuclear Information System (INIS)

    He, Yuanzheng; Blackford, John A Jr; Kohn, Elise C; Simons, S Stoney Jr

    2010-01-01

    Steroid receptors play major roles in the development, differentiation, and homeostasis of normal and malignant tissue. STAMP is a novel coregulator that not only enhances the ability of p160 coactivator family members TIF2 and SRC-1 to increase gene induction by many of the classical steroid receptors but also modulates the potency (or EC 50 ) of agonists and the partial agonist activity of antisteroids. These modulatory activities of STAMP are not limited to gene induction but are also observed for receptor-mediated gene repression. However, a physiological role for STAMP remains unclear. The growth rate of HEK293 cells stably transfected with STAMP plasmid and overexpressing STAMP protein is found to be decreased. We therefore asked whether different STAMP levels might also contribute to the abnormal growth rates of cancer cells. Panels of different stage human cancers were screened for altered levels of STAMP mRNA. Those cancers with the greatest apparent changes in STAMP mRNA were pursued in cultured cancer cell lines. Higher levels of STAMP are shown to have the physiologically relevant function of reducing the growth of HEK293 cells but, unexpectedly, in a steroid-independent manner. STAMP expression was examined in eight human cancer panels. More extensive studies of ovarian cancers suggested the presence of higher levels of STAMP mRNA. Lowering STAMP mRNA levels with siRNAs alters the proliferation of several ovarian cancer tissue culture lines in a cell line-specific manner. This cell line-specific effect of STAMP is not unique and is also seen for the conventional effects of STAMP on glucocorticoid receptor-regulated gene transactivation. This study indicates that a physiological function of STAMP in several settings is to modify cell growth rates in a manner that can be independent of steroid hormones. Studies with eleven tissue culture cell lines of ovarian cancer revealed a cell line-dependent effect of reduced STAMP mRNA on cell growth rates. This

  2. ANCIENT BREAD STAMPS FROM JORDAN

    OpenAIRE

    Kakish, Randa

    2014-01-01

    Marking bread was an old practice performed in different parts of the old world. It was done for religious, magical, economic and identification purposes. Bread stamps differ from other groups of stamps. Accordingly, the aim of this article is to identify such stamps, displayed or stored, in a number of Jordanian Archaeological Museums. A col-lection of twelve ancient bread stamps were identified and studied. Two of the stamps were of unknown provenance while the others came from al-Shuneh, D...

  3. Nanostructured submicron block copolymer dots by sacrificial stamping: a potential preconcentration platform for locally resolved sensing, chemistry and cellular interactions

    OpenAIRE

    Hou, Peilong; Han, Weijia; Philippi, Michael; Schäfer, Helmut; Steinhart, Martin

    2018-01-01

    Classical contact lithography involves patterning of surfaces by embossing or by transfer of ink. We report direct lithographic transfer of parts of sacrificial stamps onto counterpart surfaces. Using sacrificial stamps consisting of the block copolymer polystyrene-block-poly(2-pyridine) (PS-b-P2VP), we deposited arrays of nanostructured submicron PS-b-P2VP dots with heights of about 100 nm onto silicon wafers and glass slides. The sacrificial PS-b-P2VP stamps were topographically patterned w...

  4. Rapid thermal processing by stamping

    Science.gov (United States)

    Stradins, Pauls; Wang, Qi

    2013-03-05

    A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

  5. Evolutions of Advanced Stamping CAE -- Technology Adventures and Business Impact on Automotive Dies and Stamping

    International Nuclear Information System (INIS)

    Wang Chuantao

    2005-01-01

    In the past decade, sheet metal forming and die development has been transformed to a science-based and technology-driven engineering and manufacturing enterprise from a tryout-based craft. Stamping CAE, especially the sheet metal forming simulation, as one of the core components in digital die making and digital stamping, has played a key role in this historical transition. The stamping simulation technology and its industrial applications have greatly impacted automotive sheet metal product design, die developments, die construction and tryout, and production stamping. The stamping CAE community has successfully resolved the traditional formability problems such as splits and wrinkles. The evolution of the stamping CAE technology and business demands opens even greater opportunities and challenges to stamping CAE community in the areas of (1) continuously improving simulation accuracy, drastically reducing simulation time-in-system, and improving operationalability (friendliness) (2) resolving those historically difficult-to-resolve problems such as dimensional quality problems (springback and twist) and surface quality problems (distortion and skid/impact lines) (3) resolving total manufacturability problems in line die operations including blanking, draw/redraw, trim/piercing, and flanging, and (4) overcoming new problems in forming new sheet materials with new forming techniques. In this article, the author first provides an overview of the stamping CAE technology adventures and achievements, and industrial applications in the past decade. Then the author presents a summary of increasing manufacturability needs from the formability to total quality and total manufacturability of sheet metal stampings. Finally, the paper outlines the new needs and trends for continuous improvements and innovations to meet increasing challenges in line die formability and quality requirements in automotive stamping

  6. CLASSiC: Cherenkov light detection with silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, Oscar [Physics Dept., University of Florence, Via Sansone 1, 50019, Sesto Fiorentino (Italy); INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Albergo, Sebastiano [Physics Dept., University of Catania, Via Santa Sofia 64, 95123 Catania (Italy); INFN dep. of Catania, Via Santa Sofia 64, 95123 Catania (Italy); D' Alessandro, Raffaello [Physics Dept., University of Florence, Via Sansone 1, 50019, Sesto Fiorentino (Italy); INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Lenzi, Piergiulio [INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Sciuto, Antonella [CNR-IMM, VIII Strada 5, Zona Industriale, Catania (Italy); INFN dep. of Catania, Via Santa Sofia 64, 95123 Catania (Italy); Starodubtsev, Oleksandr [INFN dep. of Florence, Via Bruno Rossi 1, 50019 Sesto Fiorentino (Italy); Tricomi, Alessia [Physics Dept., University of Catania, Via Santa Sofia 64, 95123 Catania (Italy); INFN dep. of Catania, Via Santa Sofia 64, 95123 Catania (Italy)

    2017-02-11

    We present the CLASSiC R&D for the development of a silicon carbide (SiC) based avalanche photodiode for the detection of Cherenkov light. SiC is a wide-bandgap semiconductor material, which can be used to make photodetectors that are insensitive to visible light. A SiC based light detection device has a peak sensitivity in the deep UV, making it ideal for Cherenkov light. Moreover, the visible blindness allows such a device to disentangle Cherenkov light and scintillation light in all those materials that scintillate above 400 nm. Within CLASSiC, we aim at developing a device with single photon sensitivity, having in mind two main applications. One is the use of the SiC APD in a new generation ToF PET scanner concept, using the Cherenov light emitted by the electrons following 511 keV gamma ray absorption as a time-stamp. Cherenkov is intrinsically faster than scintillation and could provide an unprecedentedly precise time-stamp. The second application concerns the use of SiC APD in a dual readout crystal based hadronic calorimeter, where the Cherenkov component is used to measure the electromagnetic fraction on an event by event basis. We will report on our progress towards the realization of the SiC APD devices, the strategies that are being pursued toward the realization of these devices and the preliminary results on prototypes in terms of spectral response, quantum efficiency, noise figures and multiplication.

  7. Evolutions of Advanced Stamping CAE — Technology Adventures and Business Impact on Automotive Dies and Stamping

    Science.gov (United States)

    Wang, Chuantao (C. T.)

    2005-08-01

    In the past decade, sheet metal forming and die development has been transformed to a science-based and technology-driven engineering and manufacturing enterprise from a tryout-based craft. Stamping CAE, especially the sheet metal forming simulation, as one of the core components in digital die making and digital stamping, has played a key role in this historical transition. The stamping simulation technology and its industrial applications have greatly impacted automotive sheet metal product design, die developments, die construction and tryout, and production stamping. The stamping CAE community has successfully resolved the traditional formability problems such as splits and wrinkles. The evolution of the stamping CAE technology and business demands opens even greater opportunities and challenges to stamping CAE community in the areas of (1) continuously improving simulation accuracy, drastically reducing simulation time-in-system, and improving operationalability (friendliness), (2) resolving those historically difficult-to-resolve problems such as dimensional quality problems (springback and twist) and surface quality problems (distortion and skid/impact lines), (3) resolving total manufacturability problems in line die operations including blanking, draw/redraw, trim/piercing, and flanging, and (4) overcoming new problems in forming new sheet materials with new forming techniques. In this article, the author first provides an overview of the stamping CAE technology adventures and achievements, and industrial applications in the past decade. Then the author presents a summary of increasing manufacturability needs from the formability to total quality and total manufacturability of sheet metal stampings. Finally, the paper outlines the new needs and trends for continuous improvements and innovations to meet increasing challenges in line die formability and quality requirements in automotive stamping.

  8. Stamp Verification for Automated Document Authentication

    DEFF Research Database (Denmark)

    Micenková, Barbora; van Beusekom, Joost; Shafait, Faisal

    Stamps, along with signatures, can be considered as the most widely used extrinsic security feature in paper documents. In contrast to signatures, however, for stamps little work has been done to automatically verify their authenticity. In this paper, an approach for verification of color stamps ...... and copied stamps. Sensitivity and specificity of up to 95% could be obtained on a data set that is publicly available....

  9. Usage and Recall of the Food Stamp Office Resource Kit (FSORK) by Food Stamp Applicants in 4 California Counties

    Science.gov (United States)

    Ghirardelli, Alyssa; Linares, Amanda; Fong, Amy

    2011-01-01

    Objective: To evaluate recall and usage of the Food Stamp Office Resource Kit (FSORK), a set of nutrition education materials designed for use in food stamp offices. Design: Client intercept exit surveys, an environmental scan, and individual observations of clients in the food stamp office. Setting: Four food stamp offices in California.…

  10. E-Commerce-Objected E-Stamp Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Boosting e-stamp's advantages are conduced to promote logistics to go forward and help postal departments to improve the quality of service, many other businesses add-valued can be developed in e-stamp systems. This paper analyzeds, designs e-commerce-objected e-stamp system, and discusseds crucial technologies involved in detail.

  11. Fabrication of Nanoimprint stamps for photonic crystals

    International Nuclear Information System (INIS)

    Kouba, J; Kubenz, M; Mai, A; Ropers, G; Eberhardt, W; Loechel, B

    2006-01-01

    We report on fabrication of nanoimprint stamps for fabrication of two dimensional photonic crystals in visible range of spectra. Nanoimprint stamps made of silicon and/or nickel were successfully fabricated using electron beam lithography and advanced dry etching techniques. The quality of the stamps was evaluated using scanning electron microscopy. The fabricated stamps were also evaluated by imprinting them into suitable polymer materials

  12. Stamping through astronomy

    CERN Document Server

    Dicati, Renato

    2013-01-01

    Stamps and other postal documents are an attractive vehicle for presenting astronomy and its development. Written with expertise and great enthusiasm, this unique book offers a historical and philatelic survey of astronomy and some related topics on space exploration. It contains more than 1300 color reproductions of stamps relating to the history of astronomy, ranging from the earliest observations of the sky to modern research conducted with satellites and space probes. Featured are the astronomers and astrophysicists who contributed to this marvelous story – not only Ptolemy, Copernicus, Kepler, Newton, Herschel, and Einstein but also hundreds of other minor protagonists who played an important role in the development of this, the most ancient yet the most modern of all the sciences. The book also examines in depth the diverse areas which have contributed to the history of astronomy, including the instrumentation, the theories, and the observations. Many stamps illustrate the beauty and the mystery of ce...

  13. Stamp in honour of CERN

    CERN Multimedia

    1966-01-01

    21 February 1966. The Swiss post office issued a stamp in CERN's honour. This stamp showed the flags of the thirteen Member States at the time arranged in the geometrical outline of Switzerland against a background of a track photograph.

  14. Comparison of the hot-stamped boron-alloyed steel and the warm-stamped medium-Mn steel on microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Li, Xiaodong; Chang, Ying; Wang, Cunyu; Hu, Ping; Dong, Han

    2017-01-01

    The application of high strength steels (HSS) for automotive structural parts is an effective way to realize lightweight and enhance safety. Therefore, improvements in mechanical properties of HSS are needed. In the present study, the warm stamping process of the third generation automotive medium-Mn steel was discussed, the characteristics of martensitic transformation were investigated, as well as the microstructure and mechanical properties were analyzed, compared to the popular hot-stamped 22MnB5 steel in the automotive industry. The results are indicated as follows. Firstly, the quenching rate of the medium-Mn steel can be selected in a wide range based on its CCT curves, which is beneficial to the control of forming process. Secondly, the influence of stamping temperature and pressure on the M s temperature of the medium-Mn steel is not obvious and can be neglected, which is favorable to the even distribution of martensitic microstructure and mechanical properties. Thirdly, the phenomenon of decarbonization is hardly found on the surface of the warm-stamped medium-Mn steel, and the ultra-fine-grained microstructure is found inside the medium-Mn steel after warm stamping. Besides, the warm-stamped medium-Mn steel holds the better comprehensive properties, such as a lower yield ratio, higher total elongation and higher tear toughness than the hot-stamped 22MnB5 steel. Furthermore, an actual warm-stamped B-pillar of medium-Mn steel is stamped and ultra-fine-grained martensitic microstructure is obtained. The mechanical properties are evenly distributed. As a result, this paper proves that the warm-stamped medium-Mn steel part can meet the requirements of lightweight and crash safety, and is promising for the industrial production of automotive structural parts.

  15. Comparison of the hot-stamped boron-alloyed steel and the warm-stamped medium-Mn steel on microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaodong [School of Automotive Engineering, State Key Lab of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Chang, Ying, E-mail: yingc@dlut.edu.cn [School of Automotive Engineering, State Key Lab of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Wang, Cunyu [East China Branch of Central Iron & Steel Research Institute (CISRI), Beijing 100081 (China); Hu, Ping [School of Automotive Engineering, State Key Lab of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024 (China); Dong, Han [East China Branch of Central Iron & Steel Research Institute (CISRI), Beijing 100081 (China)

    2017-01-02

    The application of high strength steels (HSS) for automotive structural parts is an effective way to realize lightweight and enhance safety. Therefore, improvements in mechanical properties of HSS are needed. In the present study, the warm stamping process of the third generation automotive medium-Mn steel was discussed, the characteristics of martensitic transformation were investigated, as well as the microstructure and mechanical properties were analyzed, compared to the popular hot-stamped 22MnB5 steel in the automotive industry. The results are indicated as follows. Firstly, the quenching rate of the medium-Mn steel can be selected in a wide range based on its CCT curves, which is beneficial to the control of forming process. Secondly, the influence of stamping temperature and pressure on the M{sub s} temperature of the medium-Mn steel is not obvious and can be neglected, which is favorable to the even distribution of martensitic microstructure and mechanical properties. Thirdly, the phenomenon of decarbonization is hardly found on the surface of the warm-stamped medium-Mn steel, and the ultra-fine-grained microstructure is found inside the medium-Mn steel after warm stamping. Besides, the warm-stamped medium-Mn steel holds the better comprehensive properties, such as a lower yield ratio, higher total elongation and higher tear toughness than the hot-stamped 22MnB5 steel. Furthermore, an actual warm-stamped B-pillar of medium-Mn steel is stamped and ultra-fine-grained martensitic microstructure is obtained. The mechanical properties are evenly distributed. As a result, this paper proves that the warm-stamped medium-Mn steel part can meet the requirements of lightweight and crash safety, and is promising for the industrial production of automotive structural parts.

  16. Sulforaphane inhibits osteoclast differentiation by suppressing the cell-cell fusion molecules DC-STAMP and OC-STAMP

    International Nuclear Information System (INIS)

    Takagi, Tomohiro; Inoue, Hirofumi; Takahashi, Nobuyuki; Katsumata-Tsuboi, Rie; Uehara, Mariko

    2017-01-01

    Sulforaphane (SFN), a kind of isothiocyanate, is derived from broccoli sprouts. It has anti-tumor, anti-inflammatory, and anti-oxidation activity. The molecular function of SFN in the inhibition of osteoclast differentiation is not well-documented. In this study, we assessed the effect of SFN on osteoclast differentiation in vitro. SFN inhibited osteoclast differentiation in both bone marrow cells and RAW264.7 cells. Key molecules involved in the inhibitory effects of SFN on osteoclast differentiation were determined using a microarray analysis, which showed that SFN inhibits osteoclast-associated genes, such as osteoclast-associated receptor (OSCAR), nuclear factor of activated T cells cytoplasmic-1, tartrate-resistant acid phosphatase, and cathepsin K. Moreover, the mRNA expression levels of the cell-cell fusion molecules dendritic cell specific transmembrane protein (DC-STAMP) and osteoclast stimulatory transmembrane protein (OC-STAMP) were strongly suppressed in cells treated with SFN. Furthermore, SFN increased the phosphorylation of signal transducer and activator of transcription 1 (STAT1), a regulator of macrophage and osteoclast cell fusion. Thus, our data suggested that SFN significantly inhibits the cell-cell fusion molecules DC-STAMP and OC-STAMP by inducing the phosphorylation of STAT1 (Tyr701), which might be regulated by interactions with OSCAR. - Highlights: • Sulforaphane inhibited osteoclast differentiation and osteoclast cell-fusion. • Sulforaphane suppressed not only NFATc1, but also cell-cell fusion molecules, DC-STAMP and OC-STAMP. • Sulforaphane decreased multinucleated osteoclasts, whereas increased mono-nucleated osteoclasts. • Sulforaphane inhibits the cell-cell fusion by inducing the phosphorylation of STAT1 (Tyr701).

  17. Hot stamping advanced manufacturing technology of lightweight car body

    CERN Document Server

    Hu, Ping; He, Bin

    2017-01-01

    This book summarizes the advanced manufacturing technology of original innovations in hot stamping of lightweight car body. A detailed description of the technical system and basic knowledge of sheet metal forming is given, which helps readers quickly understand the relevant knowledge in the field. Emphasis has been placed on the independently developed hot stamping process and equipment, which help describe the theoretical and experimental research on key problems involving stress field, thermal field and phase transformation field in hot stamping process. Also, a description of the formability at elevated temperature and the numerical simulation algorithms for high strength steel hot stamping is given in combination with the experiments. Finally, the book presents some application cases of hot stamping technology such as the lightweight car body design using hot stamping components and gradient hardness components, and the cooling design of the stamping tool. This book is intended for researchers, engineers...

  18. Influence of prepreg characteristics on stamp consolidation

    Science.gov (United States)

    Slange, T. K.; Warnet, L. L.; Grouve, W. J. B.; Akkerman, R.

    2017-10-01

    Stamp forming is a rapid manufacturing technology used to shape flat blanks of thermoplastic composite material into three-dimensional components. The development of automated lay-up technologies further extends the applicability of stamp forming by allowing rapid lay-up of tailored blanks and partial preconsolidation. This partial preconsolidation makes the influence of prepreg more critical compared to conventional preconsolidation methods which provide full preconsolidation. This paper aims to highlight consolidation challenges that can appear when stamp forming blanks manufactured by automated lay-up. Important prepreg characteristics were identified based on an experimental study where a comparison was made between various prepreg in their as-received, deconsolidated and stamp consolidated state. It was found that adding up small thickness variations across the width of a prepreg when stacking plies into a blank by automated lay-up can cause non-uniform consolidation. Additionally, deconsolidation of the prepreg does not seem to obstruct interlaminar bonding, while intralaminar voids initially present in a prepreg cannot be removed during stamp forming. An additional preconsolidation step after automated lay-up seems necessary to remove blank thickness variations and intralaminar voids for the current prepregs. Eliminating this process step and the successful combination of rapid automated lay-up and stamp forming requires prepregs which are void-free and have less thickness variation.

  19. Ex-Post : The Investment Performance of Collectible Stamps

    NARCIS (Netherlands)

    Dimson, E.; Spaenjers, C.

    2009-01-01

    This paper investigates the returns on British collectible postage stamps over the very long run, based on stamp catalogue prices. Between 1900 and 2008, we find an annualized return on stamps of 6.7% in nominal terms, which is equivalent to an average real return of 2.7% per annum. Prices have

  20. Tribological Behavior of Laser Textured Hot Stamping Dies

    Directory of Open Access Journals (Sweden)

    Andre Shihomatsu

    2016-01-01

    Full Text Available Hot stamping of high strength steels has been continuously developed in the automotive industry to improve mechanical properties and surface quality of stamped components. One of the main challenges faced by researchers and technicians is to improve stamping dies lifetime by reducing the wear caused by high pressures and temperatures present during the process. This paper analyzes the laser texturing of hot stamping dies and discusses how different surfaces textures influence the lubrication and wear mechanisms. To this purpose, experimental tests and numerical simulation were carried out to define the die region to be texturized and to characterize the textured surface topography before and after hot stamping tests with a 3D surface profilometer and scanning electron microscopy. Results showed that laser texturing influences the lubrication at the interface die-hot sheet and improves die lifetime. In this work, the best texture presented dimples with the highest diameter, depth, and spacing, with the surface topography and dimples morphology practically preserved after the hot stamping tests.

  1. The effect of cushion-ram pulsation on hot stamping

    Science.gov (United States)

    Landgrebe, Dirk; Rautenstrauch, Anja; Kunke, Andreas; Polster, Stefan; Kriechenbauer, Sebastian; Mauermann, Reinhard

    2016-10-01

    Hot stamping is an important technology for manufacturing high-strength components. This technology offers the possibility to achieve significant weight reductions. In this study, cushion-ram pulsation (CRP), a new technology for hot stamping on servo-screw presses, was investigated and applied for hot stamping. Compared to a conventional process, the tests yielded a significantly higher drawing depth. In this paper, the CRP technology and the first test results with hot stamping were described in comparison to the conventional process.

  2. 27 CFR 479.87 - Cancellation of stamp.

    Science.gov (United States)

    2010-04-01

    ... OTHER FIREARMS Transfer Tax Application and Order for Transfer of Firearm § 479.87 Cancellation of stamp. The method of cancellation of the stamp required by this subpart as prescribed in § 479.67 shall be used. Exemptions Relating to Transfers of Firearms ...

  3. Influence of Prepreg Characteristics on Stamp Consolidation

    NARCIS (Netherlands)

    Slange, T.K.; Warnet, L.L.; Grouve, W.J.B.; Akkerman, R.

    2017-01-01

    Stamp forming is a rapid manufacturing technology used to shape flat blanks of thermoplastic composite material into three-dimensional components. The development of automated lay-up technologies further extends the applicability of stamp forming by allowing rapid lay-up of tailored blanks and

  4. Analysis of alternative technologies stamping compressor blades of marine engines

    Directory of Open Access Journals (Sweden)

    Олександр Сергійович Аніщенко

    2015-10-01

    Full Text Available The author has made an analysis of several technologies stamping forgings compressor blades from titanium alloy ВT3-1. These technologies use different types of forming equipment: crank hot press, high-speed hammers, screw presses with hydraulic drive (SPHD, as well as isothermal forging hydraulic press. He pointed out the main advantages and disadvantages of the technology, noting that high-speed punching in the shipbuilding industry of Ukraine is not used for the manufacture of forgings blades. The article contains an economic analysis of the cost of forgings blades, which are made on four technologies: punching and calibration to crank hot press, stamping and calibration to press for isothermal forging, stamping and calibration on SPHD-press, stamping on SPHD-press and calibration to press for isothermal forging. The author has identified the effective use of these technologies. He showed that the use of SPHD-presses and hydraulic presses for isothermal forging reduces the cost of forging on the average 12% in comparison with the technology at the crank hot stamping press, increases the utilization of metal 1,3-1,5 times more, reduces power consumption 1,05-3,0 times less and complexity of manufacturing 1,8-4,2 times. However SPHD-press increases capital investment in the organization of stamping technology 2,6-5,3 times more and depreciation 2-4 times. Isothermal forging technology requires the cost of the stamps in 1,4-2,0 times higher than stamps for crank presses. The author argues that stamping forging blades technology improvement should be implemented saving basic materials first of all. Efficiency of isothermal stamping and calibration will be the higher, the more geometric dimensions of stamped forgings are

  5. DC-STAMP Is an Osteoclast Fusogen Engaged in Periodontal Bone Resorption.

    Science.gov (United States)

    Wisitrasameewong, W; Kajiya, M; Movila, A; Rittling, S; Ishii, T; Suzuki, M; Matsuda, S; Mazda, Y; Torruella, M R; Azuma, M M; Egashira, K; Freire, M O; Sasaki, H; Wang, C Y; Han, X; Taubman, M A; Kawai, T

    2017-06-01

    Dendritic cell-specific transmembrane protein (DC-STAMP) plays a key role in the induction of osteoclast (OC) cell fusion, as well as DC-mediated immune regulation. While DC-STAMP gene expression is upregulated in the gingival tissue with periodontitis, its pathophysiological roles in periodontitis remain unclear. To evaluate the effects of DC-STAMP in periodontitis, anti-DC-STAMP-monoclonal antibody (mAb) was tested in a mouse model of ligature-induced periodontitis ( n = 6-7/group) where Pasteurella pneumotropica ( Pp)-reactive immune response activated T cells to produce receptor activator of nuclear factor kappa-B ligand (RANKL), which, in turn, promotes the periodontal bone loss via upregulation of osteoclastogenesis. DC-STAMP was expressed on the cell surface of mature multinuclear OCs, as well as immature mononuclear OCs, in primary cultures of RANKL-stimulated bone marrow cells. Anti-DC-STAMP-mAb suppressed the emergence of large, but not small, multinuclear OCs, suggesting that DC-STAMP is engaged in the late stage of cell fusion. Anti-DC-STAMP-mAb also inhibited pit formation caused by RANKL-stimulated bone marrow cells. Attachment of ligature to a second maxillary molar induced DC-STAMP messenger RNA and protein, along with elevated tartrate-resistant acid phosphatase-positive (TRAP+) OCs and alveolar bone loss. As we expected, systemic administration of anti-DC-STAMP-mAb downregulated the ligature-induced alveolar bone loss. Importantly, local injection of anti-DC-STAMP-mAb also suppressed alveolar bone loss and reduced the total number of multinucleated TRAP+ cells in mice that received ligature attachment. Attachment of ligature induced significantly elevated tumor necrosis factor-α, interleukin-1β, and RANKL in the gingival tissue compared with the control site without ligature ( P < 0.05), which was unaffected by local injection with either anti-DC-STAMP-mAb or control-mAb. Neither in vivo anti- Pp IgG antibody nor in vitro anti- Pp T

  6. Using stamping punch force variation for the identification of changes in lubrication and wear mechanism

    Science.gov (United States)

    Voss, B. M.; Pereira, M. P.; Rolfe, B. F.; Doolan, M. C.

    2017-09-01

    The growth in use of Advanced High Strength Steels in the automotive industry for light-weighting and safety has increased the rates of tool wear in sheet metal stamping. This is an issue that adds significant costs to production in terms of manual inspection and part refinishing. To reduce these costs, a tool condition monitoring system is required and a firm understanding of process signal variation must form the foundation for any such monitoring system. Punch force is a stamping process signal that is widely collected by industrial presses and has been linked closely to part quality and tool condition, making it an ideal candidate as a tool condition monitoring signal. In this preliminary investigation, the variation of punch force due to different lubrication conditions and progressive wear are examined. Linking specific punch force signature changes to developing lubrication and wear events is valuable for die wear and stamping condition monitoring. A series of semi-industrial channel forming trials were conducted under different lubrication regimes and progressive die wear. Punch force signatures were captured for each part and Principal Component Analysis (PCA) was applied to determine the key Principal Components of the signature data sets. These Principal Components were linked to the evolution of friction conditions over the course of the stroke for the different lubrication regimes and mechanism of galling wear. As a result, variation in punch force signatures were correlated to the current mechanism of wear dominant on the formed part; either abrasion or adhesion, and to changes in lubrication mechanism. The outcomes of this study provide important insights into punch force signature variation, that will provide a foundation for future work into the development of die wear and lubrication monitoring systems for sheet metal stamping.

  7. Development of Methods and Equipment for Sheet Stamping

    Science.gov (United States)

    Botashev, A. Yu; Bisilov, N. U.; Malsugenov, R. S.

    2018-03-01

    New methods of sheet stamping were developed: the gas forming with double-sided heating of a blank part and the gas molding with backpressure. In case of the first method the blank part is heated to the set temperature by means of a double-sided impact of combustion products of gas mixtures, after which, under the influence of gas pressure a stamping process is performed. In case of gas molding with backpressure, the blank part is heated to the set temperature by one-sided impact of the combustion products, while backpressure is created on the opposite side of the blank part by compressed air. In both methods the deformation takes place in the temperature range of warm or hot treatment due to the heating of a blank part. This allows one to form parts of complicated shape within one technological operation, which significantly reduces the cost of production. To implement these methods, original devices were designed and produced, which are new types of forging and stamping equipment. Using these devices, an experimental research on the stamping process was carried out and high-quality parts were obtained, which makes it possible to recommend the developed methods of stamping in the industrial production. Their application in small-scale production will allow one to reduce the cost price of stamped parts 2 or 3 times.

  8. How Do Stamp Duties Affect the Housing Market?

    OpenAIRE

    Davidoff, Ian; Leigh, Andrew

    2013-01-01

    Land transfer taxes are a substantial portion of the cost of moving house in many developed countries. Since stamp duties are endogenous with respect to the house price, we create an instrumental variable that is the stamp duty on a property, given that postcode's starting house price and the national house price trend. In a specification with postcode and year fixed effects, this instrument effectively captures policy changes and nonlinearities in the stamp duty schedule. We find that the im...

  9. Postage stamps: A convergence of metallurgy, art, and history

    Science.gov (United States)

    Habashi, Fathi

    2002-04-01

    Postage stamps have been used around the world to commemorate, in miniature, significant events and people, including those of importance in the history of metals and mineral production. From the presence of gold artifacts in an ancient Egyptian tomb to the role of uranium in nuclear power, stamps have captured the evolution of metallurgical processes. This article highlights some of those stamps.

  10. Minerals on postage stamps: A mix of art, history, economics and geography

    Science.gov (United States)

    Glover, Paul

    2010-05-01

    Most people would agree that minerals represent some of the most beautiful natural objects known to mankind, especially in the form of precious and semi-precious gemstones. It is hardly surprising, therefore, that they are often illustrated on stamps. Examples are the fine crystalline forms represented as coloured etchings in the French 1986 issue, and the stylized simplicity of the mineral stamps that were part of the Swiss Pro Patria series, issued annually between 1958 and 1961. I aim in this presentation to introduce the beautiful world of mineral illustrations on stamps. The talk cannot be comprehensive because of the very large number of minerals and stamps concerned, but it will introduce the range of minerals depicted on stamps, then look in some greater detail at several sets from France, Southern Africa and East Germany. Minerals become the subject of sets of stamps for many reasons. In many cases, it is part of an attempt by the particular national post office to depict the whole of the natural history of their country in stamp form - a statement of nationality and politics. The 1986 French issue was an example which followed sets of stamps that had already portrayed insects, flowers, trees and birds native to France. We also find that certain countries have produced several sets of stamps to mark the importance to their economy of mining particular minerals. Many African states depend upon minerals for much of their wealth and economic power, explaining why, for instance, Sierra Leone issued over 35 stamps on the subject of diamonds between 1965 and 1978, and why over 77% of mineral stamps come from countries with major mining interests. Countries with traditional links with the history of the study of geology and mining also produce mineral stamps. These are usually European countries with a long record of the study of the Earth, such as Germany and Switzerland. Curiously enough, though, despite its fine tradition of geological observation and research

  11. Fast thermal nanoimprint lithography by a stamp with integrated heater

    DEFF Research Database (Denmark)

    Tormen, Massimo; Malureanu, Radu; Pedersen, Rasmus Haugstrup

    2008-01-01

    We propose fast nanoimprinting lithography (NIL) process based on the use of stamps with integrated heater. The latter consists of heavily ion implantation n-type doped silicon layer buried below the microstructured surface of the stamp. The stamp is heated by Joule effect, by 50 μs 25 Hz...

  12. Patterning of polymers: precise channel stamping by optimizing wetting properties

    International Nuclear Information System (INIS)

    Seemann, Ralf; Kramer, Edward J; Lange, Frederick F

    2004-01-01

    Channel stamping is a soft lithography technique that can be used to fabricate small structures of polymeric materials. This technique is cheap and easy but a considerable drawback is the fact that reproduction of the patterns of the stamp is often imprecise due to the wetting properties of liquid and stamp. In this paper, we report on experiments that reveal the parameters governing the behaviour of liquids in grooves and on edges. Optimizing these parameters leads to better-quality channel-stamped structures and enables the design of sophisticated structured polymeric materials, allowing channels as small as about 100 nm to be fabricated. Moreover, we show that it is even possible to build up a freestanding three-dimensional structure by stamping line patterns on top of each other

  13. 78 FR 10201 - Proposed Information Collection; Electronic Duck Stamp Program

    Science.gov (United States)

    2013-02-13

    ..., Interior. ACTION: Notice; request for comments. SUMMARY: We (U.S. Fish and Wildlife Service) will ask the... refuges where admission is charged. Duck Stamps and products that bear stamp images are also popular... fee the State will charge for issuance of an electronic stamp. Description of the process the State...

  14. SPS commemorative stamp

    CERN Multimedia

    1977-01-01

    The turn on of the SPS was commemorated in France by the issue of a CERN stamp. The date of issue, 22 Octber 1976, coincided with the first tests of the beam line taking particles to experiments in the West Hall. (CERN Courier 1976 p. 382)

  15. Why Stamp Duties are an Increasing Financial Burden on Australian Home Buyers

    OpenAIRE

    Wood, Gavin A.

    1994-01-01

    The purchaser of housing incurs stamp duty liabilities in all Australian States. These stamp duties are levied on the conveyance of residential property and mortgage sums secured. In general, stamp duties were a growing financial burden on home buyers during the period 1985-1991. This paper examines the role of house price inflation in causing increases in average rates of stamp duty, the responsiveness of average rates of stamp duty to future changes in the nominal tax base and the effective...

  16. Digital time stamping system based on open source technologies.

    Science.gov (United States)

    Miskinis, Rimantas; Smirnov, Dmitrij; Urba, Emilis; Burokas, Andrius; Malysko, Bogdan; Laud, Peeter; Zuliani, Francesco

    2010-03-01

    A digital time stamping system based on open source technologies (LINUX-UBUNTU, OpenTSA, OpenSSL, MySQL) is described in detail, including all important testing results. The system, called BALTICTIME, was developed under a project sponsored by the European Commission under the Program FP 6. It was designed to meet the requirements posed to the systems of legal and accountable time stamping and to be applicable to the hardware commonly used by the national time metrology laboratories. The BALTICTIME system is intended for the use of governmental and other institutions as well as personal bodies. Testing results demonstrate that the time stamps issued to the user by BALTICTIME and saved in BALTICTIME's archives (which implies that the time stamps are accountable) meet all the regulatory requirements. Moreover, the BALTICTIME in its present implementation is able to issue more than 10 digital time stamps per second. The system can be enhanced if needed. The test version of the BALTICTIME service is free and available at http://baltictime. pfi.lt:8080/btws/ and http://baltictime.lnmc.lv:8080/btws/.

  17. A compact system for large-area thermal nanoimprint lithography using smart stamps

    DEFF Research Database (Denmark)

    Pedersen, Rasmus Haugstrup; Hansen, Ole; Kristensen, Anders

    2008-01-01

    We present a simple apparatus for thermal nanoimprint lithography. In this work, the stamp is designed to significantly reduce the requirements for pressure application on the external imprint system. By MEMS-based processing, an air cavity inside the stamp is created, and the required pressure...... for successful imprint is reduced. Additionally, the stamp is capable of performing controlled demolding after imprint. Due to the complexity of the stamp, a compact and cost-effective imprint apparatus can be constructed. The design and fabrication of the advanced stamp as well as the simple imprint equipment...

  18. Programming the BasicStamp : using MacBS2

    NARCIS (Netherlands)

    Djajadiningrat, J.P.; Stienstra, M.

    2004-01-01

    This article explains how to program a BasicStamp microcontroller using a Macintosh. It takes an absolute beginner's perspective and talks you through the whole process including how to hook up a programmer board, how to write some programs in the BasisStamp language PBASIC, and how to do some

  19. Efficient methods of nanoimprint stamp cleaning based on imprint self-cleaning effect

    Energy Technology Data Exchange (ETDEWEB)

    Meng Fantao; Chu Jinkui [Key Laboratory for Micro/Nano Technology and System of Liaoning Province, Dalian University of Technology, 116024 Dalian (China); Luo Gang; Zhou Ye; Carlberg, Patrick; Heidari, Babak [Obducat AB, SE-20125 Malmoe (Sweden); Maximov, Ivan; Montelius, Lars; Xu, H Q [Division of Solid State Physics, Lund University, Box 118, S-22100 Lund (Sweden); Nilsson, Lars, E-mail: ivan.maximov@ftf.lth.se [Department of Food Technology, Engineering and Nutrition, Lund University, Box 117, S-22100 Lund (Sweden)

    2011-05-06

    Nanoimprint lithography (NIL) is a nonconventional lithographic technique that promises low-cost, high-throughput patterning of structures with sub-10 nm resolution. Contamination of nanoimprint stamps is one of the key obstacles to industrialize the NIL technology. Here, we report two efficient approaches for removal of typical contamination of particles and residual resist from stamps: thermal and ultraviolet (UV) imprinting cleaning-both based on the self-cleaning effect of imprinting process. The contaminated stamps were imprinted onto polymer substrates and after demolding, they were treated with an organic solvent. The images of the stamp before and after the cleaning processes show that the two cleaning approaches can effectively remove contamination from stamps without destroying the stamp structures. The contact angles of the stamp before and after the cleaning processes indicate that the cleaning methods do not significantly degrade the anti-sticking layer. The cleaning processes reported in this work could also be used for substrate cleaning.

  20. The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (Ⅲ) - Comparison on Laser Weldability of Boron Steel and Hot -Stamped Steel-

    Energy Technology Data Exchange (ETDEWEB)

    Choi, So Young; Kim, Jong Do [Korea Maritime and Ocean University, Busan (Korea, Republic of); Kim, Jong Su [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2015-01-15

    This study was conducted to compare the laser weldability of boron steel and hot-stamped steel. In general, boron steel is used in the hot-stamping process. Hot-stamping is a method for simultaneously forming and cooling boron steel in a press die after heating it to the austenitizing temperature. Hot-stamped steel has a strength of 1500 MPa or more. Thus, in this study, the laser weldability of boron steel and that of hot-stamped steel were investigated and compared. A continuous wave disk laser was used to produce butt and lap joints. In the butt welding, the critical cooling speed at which full penetration was obtained in the hot-stamped steel was lower than that of boron steel. In the lap welding, the joint widths were similar regardless of the welding speed when full penetration was obtained.

  1. The Study on Weldability of Boron Steel and Hot-Stamped Steel by Using Laser Heat Source (Ⅲ) - Comparison on Laser Weldability of Boron Steel and Hot -Stamped Steel-

    International Nuclear Information System (INIS)

    Choi, So Young; Kim, Jong Do; Kim, Jong Su

    2015-01-01

    This study was conducted to compare the laser weldability of boron steel and hot-stamped steel. In general, boron steel is used in the hot-stamping process. Hot-stamping is a method for simultaneously forming and cooling boron steel in a press die after heating it to the austenitizing temperature. Hot-stamped steel has a strength of 1500 MPa or more. Thus, in this study, the laser weldability of boron steel and that of hot-stamped steel were investigated and compared. A continuous wave disk laser was used to produce butt and lap joints. In the butt welding, the critical cooling speed at which full penetration was obtained in the hot-stamped steel was lower than that of boron steel. In the lap welding, the joint widths were similar regardless of the welding speed when full penetration was obtained

  2. Stamp Detection in Color Document Images

    DEFF Research Database (Denmark)

    Micenkova, Barbora; van Beusekom, Joost

    2011-01-01

    , moreover, it can be imprinted with a variable quality and rotation. Previous methods were restricted to detection of stamps of particular shapes or colors. The method presented in the paper includes segmentation of the image by color clustering and subsequent classification of candidate solutions...... by geometrical and color-related features. The approach allows for differentiation of stamps from other color objects in the document such as logos or texts. For the purpose of evaluation, a data set of 400 document images has been collected, annotated and made public. With the proposed method, recall of 83...

  3. Time Stamp Synchronization of PEFP Distributed Control Systems

    International Nuclear Information System (INIS)

    Song, Young Gi; An, Eun Mi; Kwon, Hyeok Jung; Cho, Yong Sub

    2010-01-01

    Proton Engineering Frontier Project (PEFP) proton linac consists of several types of control systems, such as soft Input Output Controllers (IOC) and embedded IOC based on Experimental Physics Industrial Control System (EPICS) for each subsection of PEFP facility. One of the important factors is that IOC's time clock is synchronized. The synchronized time and time stamp can be achieved with Network Time Protocol (NTP) and EPICS time stamp record without timing hardware. The requirement of the time accuracy of IOCs is less than 1 second. The main objective of this study is to configure a master clock and produce Process Variable (PV) time stamps using local CPU time synchronized from the master clock. The distributed control systems are attached on PEFP control network

  4. Disruption of Ttll5/stamp gene (tubulin tyrosine ligase-like protein 5/SRC-1 and TIF2-associated modulatory protein gene) in male mice causes sperm malformation and infertility.

    Science.gov (United States)

    Lee, Geun-Shik; He, Yuanzheng; Dougherty, Edward J; Jimenez-Movilla, Maria; Avella, Matteo; Grullon, Sean; Sharlin, David S; Guo, Chunhua; Blackford, John A; Awasthi, Smita; Zhang, Zhenhuan; Armstrong, Stephen P; London, Edra C; Chen, Weiping; Dean, Jurrien; Simons, S Stoney

    2013-05-24

    TTLL5/STAMP (tubulin tyrosine ligase-like family member 5) has multiple activities in cells. TTLL5 is one of 13 TTLLs, has polyglutamylation activity, augments the activity of p160 coactivators (SRC-1 and TIF2) in glucocorticoid receptor-regulated gene induction and repression, and displays steroid-independent growth activity with several cell types. To examine TTLL5/STAMP functions in whole animals, mice were prepared with an internal deletion that eliminated several activities of the Stamp gene. This mutation causes both reduced levels of STAMP mRNA and C-terminal truncation of STAMP protein. Homozygous targeted mutant (Stamp(tm/tm)) mice appear normal except for marked decreases in male fertility associated with defects in progressive sperm motility. Abnormal axonemal structures with loss of tubulin doublets occur in most Stamp(tm/tm) sperm tails in conjunction with substantial reduction in α-tubulin polyglutamylation, which closely correlates with the reduction in mutant STAMP mRNA. The axonemes in other structures appear unaffected. There is no obvious change in the organs for sperm development of WT versus Stamp(tm/tm) males despite the levels of WT STAMP mRNA in testes being 20-fold higher than in any other organ examined. This defect in male fertility is unrelated to other Ttll genes or 24 genes previously identified as important for sperm function. Thus, STAMP appears to participate in a unique, tissue-selective TTLL-mediated pathway for α-tubulin polyglutamylation that is required for sperm maturation and motility and may be relevant for male fertility.

  5. Direct stamping of silver nanoparticles toward residue-free thick electrode

    Directory of Open Access Journals (Sweden)

    Jiseok Kim, Kevin Wubs, Byeong-Soo Bae and Woo Soo Kim

    2012-01-01

    Full Text Available Direct stamping of functional materials has been developed for cost-effective and process-effective manufacturing of nano/micro patterns. However, there remain several challenging issues like the perfect removal of the residual layer and realization of high aspect ratio. We have demonstrated facile fabrication of flexible strain sensors that have microscale thick interdigitated capacitors with no residual layer by a simple direct stamping with silver nanoparticles (AgNPs. Polyurethane (PU prepolymer was utilized as an adhesive layer to transfer AgNPs more efficiently during the separation step of the flexible stamp from directly stamped AgNPs. Scanning electron microscopy images and energy dispersive x-ray spectroscopy analysis revealed residue-free transfer of microscale thick interdigitated electrodes onto two different flexible substrates (elastomeric and brittle for the application to highly sensitive strain sensors.

  6. A compact system for large-area thermal nanoimprint lithography using smart stamps

    International Nuclear Information System (INIS)

    Pedersen, R H; Hansen, O; Kristensen, A

    2008-01-01

    We present a simple apparatus for thermal nanoimprint lithography. In this work, the stamp is designed to significantly reduce the requirements for pressure application on the external imprint system. By MEMS-based processing, an air cavity inside the stamp is created, and the required pressure for successful imprint is reduced. Additionally, the stamp is capable of performing controlled demolding after imprint. Due to the complexity of the stamp, a compact and cost-effective imprint apparatus can be constructed. The design and fabrication of the advanced stamp as well as the simple imprint equipment is presented. Test imprints of micrometer- and nanometer-scale structures are performed and characterized with respect to uniformity across a large area (35 mm radius). State-of-the-art uniformity for µm-scale features is demonstrated

  7. Use of tobacco tax stamps to prevent and reduce illicit tobacco trade--United States, 2014.

    Science.gov (United States)

    Chriqui, Jamie; DeLong, Hillary; Gourdet, Camille; Chaloupka, Frank; Edwards, Sarah Matthes; Xu, Xin; Promoff, Gabbi

    2015-05-29

    Tobacco use is the leading cause of preventable disease and death in the United States. Increasing the unit price on tobacco products is the most effective tobacco prevention and control measure. Illicit tobacco trade (illicit trade) undermines high tobacco prices by providing tobacco users with cheaper-priced alternatives. In the United States, illicit trade primarily occurs when cigarettes are bought from states, jurisdictions, and federal reservation land with lower or no excise taxes, and sold in jurisdictions with higher taxes. Applying tax stamps to tobacco products, which provides documentation that taxes have been paid, is an important tool to combat illicit trade. Comprehensive tax stamping policy, which includes using digital, encrypted ("high-tech") stamps, applying stamps to all tobacco products, and working with tribes on stamping agreements, can further prevent and reduce illicit trade. This report describes state laws governing tax stamps on cigarettes, little cigars (cigarette-sized cigars), roll-your-own tobacco (RYOT), and tribal tobacco sales across the United States as of January 1, 2014, and assesses the extent of comprehensive tobacco tax stamping in the United States. Forty-four states (including the District of Columbia [DC]) applied traditional paper ("low-tech") tax stamps to cigarettes, whereas four authorized more effective high-tech stamps. Six states explicitly required stamps on other tobacco products (i.e., tobacco products other than cigarettes), and in approximately one third of states with tribal lands, tribes required tax stamping to address illicit purchases by nonmembers. No U.S. state had a comprehensive approach to tobacco tax stamping. Enhancing tobacco tax stamping across the country might further prevent and reduce illicit trade in the United States.

  8. Stamp duties in Indian states - a case for reform

    OpenAIRE

    Alm, James; Annez, Patricia; Modi, Arbind

    2004-01-01

    The authors review the options for reform of stamp duties on immovable property transfers collected by Indian state governments. After briefly reviewing some of the many administrative difficulties experienced with the tax, they turn to an examination of its economic impacts. A review of stamp duties internationally indicates that Indian rates are exceptionally high, at rates often above 1...

  9. METAMORPHOSES OF THE ENVIRONMENTAL STAMP IN ROMANIA

    Directory of Open Access Journals (Sweden)

    CARAUS MADALINA

    2015-12-01

    Full Text Available Romania's alignment to European standards is a difficult process with many legislative changes, with direct impact on taxpayers. The necessity of collecting substantial revenues to the State budget, which provide vital economic growth of the Romanian State, loses the substance when we are talking about taxes levied in relation to taxpayer. The environmental stamp, otherwise a controversial tax, represent for the State another way to earn revenue in advance, “as a loan", because in the end it's forced to repay the amounts concerned taxpayers, under the effect of a final and irrevocable court decision. The effects of the legislative changes bring every time complaints both from taxpayers, because they can demand repayment of the environmental stamp only during the period of prescription, as well as on the part of public servants who are grappling with a large volume of work, with the possibility of overcoming the term to handle requests. An equitable solution in solving these distortions would be the inclusion of the environmental stamp within the tax on means of transport, tax that is paid annually by vehicle owners. At the moment the level of the environmental stamp is calculated depending on the CO2 emissions, exhaust emissions and the age of the vehicle. Tax on means of transport is calculated based on engine capacity, an amount determined by CO2 emissions multiplying with each group of 200 cc or fraction on it. Therefore the unification of the two taxes would create a balance for all categories of vehicles.

  10. Application of Modified Digital Halftoning Techniques to Data Hiding in Personalized Stamps

    Institute of Scientific and Technical Information of China (English)

    Hsi-Chun Wang; Chi-Ming Lian; Pei-Chi Hsiao

    2004-01-01

    The objective of this research is to embed information in personalized stamps by modified digital halftoning techniques. The displaced and deformed halftone dots are used to encode data in the personalized stamps. Hidden information can be retrieved by either an optical decoder or digital image processing techniques.The results show that personalized stamps with value-added features like data hiding or digital watermarking can be successfully implemented.

  11. Analysis of roll-stamped light guide plate fabricated with laser-ablated stamper

    Science.gov (United States)

    Na, Hyunjun; Hong, Seokkwan; Kim, Jongsun; Hwang, Jeongho; Joo, Byungyun; Yoon, Kyunghwan; Kang, Jeongjin

    2017-12-01

    LGP (light guide plate) is one of the major components of LCD (liquid crystal display), and it makes surface illumination for LCD backlit. LGP is a transparent plastic plate usually produced by injection molding process. On the back of LGP there are micron size patterns for extraction of light. Recently a roll-stamping process has achieved the high mass productivity of thinner LGPs. In order to fabricate optical patterns on LGPs, a fabricating tool called as a stamper is used. Micro patterns on metallic stampers are made by several micro machining processes such as chemical etching, LIGA-reflow, and laser ablation. In this study, a roll-stamping process by using a laser ablated metallic stamper was dealt with in consideration of the compatibility with the roll-stamping process. LGP fabricating tests were performed using a roll-stamping process with four different roll pressures. Pattern shapes on the stamper fabricated by laser ablation and transcription ratios of the roll-stamping process were analyzed, and LGP luminance was evaluated. Based on the evaluation, optical simulation model for LGP was made and simulation accuracy was evaluated. Simulation results showed good agreements with optical performance of LGPs in the brightness and uniformity. It was also shown that the roll-stamped LGP has the possibility of better optical performance than the conventional injection molded LGP. It was also shown that the roll-stamped LGP with the laser ablated stamper is potential to have better optical performance than the conventional injection molded LGP.

  12. 27 CFR 70.332 - Unauthorized use or sale of stamps.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Unauthorized use or sale....332 Unauthorized use or sale of stamps. Any person who buys, sells, offers for sale, uses, transfers... Code or in regulations made pursuant thereto, any stamp, coupon, ticket, book, or other device...

  13. Carbon nanotube substrates and catalyzed hot stamp for polishing and patterning the substrates

    Science.gov (United States)

    Wang, Yuhuang [Evanston, IL; Hauge, Robert H [Houston, TX; Schmidt, Howard K [Houston, TX; Kim, Myung Jong [Houston, TX; Kittrell, W Carter [Houston, TX

    2009-09-08

    The present invention is generally directed to catalyzed hot stamp methods for polishing and/or patterning carbon nanotube-containing substrates. In some embodiments, the substrate, as a carbon nanotube fiber end, is brought into contact with a hot stamp (typically at 200-800.degree. C.), and is kept in contact with the hot stamp until the morphology/patterns on the hot stamp have been transferred to the substrate. In some embodiments, the hot stamp is made of material comprising one or more transition metals (Fe, Ni, Co, Pt, Ag, Au, etc.), which can catalyze the etching reaction of carbon with H.sub.2, CO.sub.2, H.sub.2O, and/or O.sub.2. Such methods can (1) polish the carbon nanotube-containing substrate with a microscopically smooth finish, and/or (2) transfer pre-defined patterns from the hot stamp to the substrate. Such polished or patterned carbon nanotube substrates can find application as carbon nanotube electrodes, field emitters, and field emitter arrays for displays and electron sources.

  14. Resistless Fabrication of Nanoimprint Lithography (NIL Stamps Using Nano-Stencil Lithography

    Directory of Open Access Journals (Sweden)

    Juergen Brugger

    2013-10-01

    Full Text Available In order to keep up with the advances in nano-fabrication, alternative, cost-efficient lithography techniques need to be implemented. Two of the most promising are nanoimprint lithography (NIL and stencil lithography. We explore here the possibility of fabricating the stamp using stencil lithography, which has the potential for a cost reduction in some fabrication facilities. We show that the stamps reproduce the membrane aperture patterns within ±10 nm and we validate such stamps by using them to fabricate metallic nanowires down to 100 nm in size.

  15. Stamping the Earth from space

    CERN Document Server

    Dicati, Renato

    2017-01-01

    This unique book presents a historical and philatelic survey of Earth exploration from space. It covers all areas of research in which artificial satellites have contributed in designing a new image of our planet and its environment: the atmosphere and ionosphere, the magnetic field, radiation belts and the magnetosphere, weather, remote sensing, mapping of the surface, observation of the oceans and marine environments, geodesy, and the study of life and ecological systems. Stamping the Earth from Space presents the results obtained with the thousands of satellites launched by the two former superpowers, the Soviet Union and the United States, and also those of the many missions carried out by the ESA, individual European countries, Japan, China, India, and the many emerging space nations. Beautifully illustrated, it contains almost 1100 color reproductions of philatelic items. In addition to topical stamps and thematic postal documents, the book provides an extensive review of astrophilatelic items. The most...

  16. POLYELECTROLYTE MULTILAYER STAMPING IN AQUEOUS PHASE AND NON-CONTACT MODE

    Science.gov (United States)

    Mehrotra, Sumit; Lee, Ilsoon; Liu, Chun; Chan, Christina

    2011-01-01

    Polyelectrolyte multilayer (PEM) transfer printing has been previously achieved by stamping under dry conditions. Here, we show for the first time, that PEM can be transferred from a stamp to the base substrate under aqueous conditions whereby the two surfaces are in a non-contact mode. Degradable multilayers of (PAA/PEG)10.5 followed by non-degradable multilayers of (PDAC/SPS)80.5 were fabricated under acidic pH conditions on either PDMS or glass (stamp), and subsequently transferred over top of another multilayer prepared on a different substrate (base substrate), with a spacing of ~ 200 μm between the stamping surface and the base substrate. This multilayer transfer was performed under physiological pH conditions. This process is referred to herein as non-contact, aqueous-phase multilayer (NAM) transfer. NAM transfer can be useful for applications such as fabricating three-dimensional (3-D) cellular scaffolds. We attempted to create a 3-D cellular scaffold using NAM transfer, and characterized the scaffolds with conventional and fluorescence microscopy. PMID:21860540

  17. Disruption of Ttll5/Stamp Gene (Tubulin Tyrosine Ligase-like Protein 5/SRC-1 and TIF2-associated Modulatory Protein Gene) in Male Mice Causes Sperm Malformation and Infertility*

    Science.gov (United States)

    Lee, Geun-Shik; He, Yuanzheng; Dougherty, Edward J.; Jimenez-Movilla, Maria; Avella, Matteo; Grullon, Sean; Sharlin, David S.; Guo, Chunhua; Blackford, John A.; Awasthi, Smita; Zhang, Zhenhuan; Armstrong, Stephen P.; London, Edra C.; Chen, Weiping; Dean, Jurrien; Simons, S. Stoney

    2013-01-01

    TTLL5/STAMP (tubulin tyrosine ligase-like family member 5) has multiple activities in cells. TTLL5 is one of 13 TTLLs, has polyglutamylation activity, augments the activity of p160 coactivators (SRC-1 and TIF2) in glucocorticoid receptor-regulated gene induction and repression, and displays steroid-independent growth activity with several cell types. To examine TTLL5/STAMP functions in whole animals, mice were prepared with an internal deletion that eliminated several activities of the Stamp gene. This mutation causes both reduced levels of STAMP mRNA and C-terminal truncation of STAMP protein. Homozygous targeted mutant (Stamptm/tm) mice appear normal except for marked decreases in male fertility associated with defects in progressive sperm motility. Abnormal axonemal structures with loss of tubulin doublets occur in most Stamptm/tm sperm tails in conjunction with substantial reduction in α-tubulin polyglutamylation, which closely correlates with the reduction in mutant STAMP mRNA. The axonemes in other structures appear unaffected. There is no obvious change in the organs for sperm development of WT versus Stamptm/tm males despite the levels of WT STAMP mRNA in testes being 20-fold higher than in any other organ examined. This defect in male fertility is unrelated to other Ttll genes or 24 genes previously identified as important for sperm function. Thus, STAMP appears to participate in a unique, tissue-selective TTLL-mediated pathway for α-tubulin polyglutamylation that is required for sperm maturation and motility and may be relevant for male fertility. PMID:23558686

  18. Mathematical Modeling of Hydroelastic Oscillations of the Stamp and the Plate, Resting on Pasternak Foundation

    Science.gov (United States)

    Mogilevich, L. I.; Popov, V. S.; Popova, A. A.; Christoforova, A. V.

    2018-01-01

    The forced oscillations of the elastic fixed stamp and the plate, resting on Pasternak foundation are studied. The oscillations are caused by pressure pulsation in liquid layer between the stamp and the plate. Pasternak model is chosen as an elastic foundation. The laws of the stamp movement, the plate deflection and pressure in the liquid are discovered on the basis of hydroelasticity problem analytical solution. The functions of amplitude deflection distribution and liquid pressure along the plate are constructed, as well as the stamp amplitude-frequency characteristic. The obtained mathematical model allows to investigate the dynamics of hydroelastic interaction of the stamp with the plate, resting on elastic foundation, to define resonance frequencies of the plate and the stamp and corresponding deflections amplitudes, as well as liquid presser amplitudes.

  19. Bifunctional, Chemically Patterned Flat Stamps for Microcontact Printing of Polar Inks

    NARCIS (Netherlands)

    Duan, X.; Sadhu, V.B.; Perl, A.; Péter, M.; Reinhoudt, David; Huskens, Jurriaan

    2008-01-01

    Different methods to create chemically patterned, flat PDMS stamps with two different chemical functionalities were compared. The best method for making such stamps, functionalized with 1H,1H,2H,2H-perfluorodecyltrichlorosilane (PFDTS) and 3-(aminopropyl)triethoxysilane (APTS), appeared to be full

  20. 41 CFR 101-25.103-3 - Trading stamps or bonus goods received from contractors.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Trading stamps or bonus... PROCUREMENT 25-GENERAL 25.1-General Policies § 101-25.103-3 Trading stamps or bonus goods received from contractors. When contracts contain a price reduction clause, any method (such as trading stamps or bonus...

  1. Influence of preconsolidation on consolidation quality after stamp forming of C/PEEK composites

    Science.gov (United States)

    Slange, T. K.; Warnet, L.; Grouve, W. J. B.; Akkerman, R.

    2016-10-01

    Stamp forming is a rapid manufacturing technology used to shape flat blanks of thermoplastic composite material into three-dimensional components. Currently, expensive autoclave and press consolidation are used to preconsolidate blanks. This study investigates the influence of preconsolidation on final consolidation quality after stamp forming and explores the potential of alternative blank manufacturing methods that could reduce part costs. Blanks were manufactured using various blank manufacturing methods and subsequently were stamp formed. The consolidation quality both before and after stamp forming was compared, where the focus was on void content as the main measure for consolidation quality. The void content was characterized through thickness and density measurements, as well as by microscopy analysis. Results indicate that preconsolidation quality does have an influence on the final consolidation quality. This is due to the severe deconsolidation and limited reconsolidation during stamp forming. Nevertheless, the potential of automated fiber placement and ultrasonic spot welding as alternative blank manufacturing methods was demonstrated.

  2. Progress in classical and quantum variational principles

    International Nuclear Information System (INIS)

    Gray, C G; Karl, G; Novikov, V A

    2004-01-01

    We review the development and practical uses of a generalized Maupertuis least action principle in classical mechanics in which the action is varied under the constraint of fixed mean energy for the trial trajectory. The original Maupertuis (Euler-Lagrange) principle constrains the energy at every point along the trajectory. The generalized Maupertuis principle is equivalent to Hamilton's principle. Reciprocal principles are also derived for both the generalized Maupertuis and the Hamilton principles. The reciprocal Maupertuis principle is the classical limit of Schroedinger's variational principle of wave mechanics and is also very useful to solve practical problems in both classical and semiclassical mechanics, in complete analogy with the quantum Rayleigh-Ritz method. Classical, semiclassical and quantum variational calculations are carried out for a number of systems, and the results are compared. Pedagogical as well as research problems are used as examples, which include nonconservative as well as relativistic systems. '... the most beautiful and important discovery of Mechanics.' Lagrange to Maupertuis (November 1756)

  3. Time-stamping system for nuclear physics experiments at RIKEN RIBF

    International Nuclear Information System (INIS)

    Baba, H.; Ichihara, T.; Ohnishi, T.; Takeuchi, S.; Yoshida, K.; Watanabe, Y.; Ota, S.; Shimoura, S.; Yoshinaga, K.

    2015-01-01

    A time-stamping system for nuclear physics experiments has been introduced at the RIKEN Radioactive Isotope Beam Factory. Individual trigger signals can be applied for separate data acquisition (DAQ) systems. After the measurements are complete, separately taken data are merged based on the time-stamp information. In a typical experiment, coincidence trigger signals are formed from multiple detectors to take desired events only. The time-stamping system allows the use of minimum bias triggers. Since coincidence conditions are given by software, a variety of physics events can be flexibly identified. The live time for a DAQ system is important when attempting to determine reaction cross-sections. However, the combined live time for separate DAQ systems is not clearly known because it depends not only on the DAQ dead time but also on the coincidence conditions. Using the proposed time-stamping system, all trigger timings can be acquired, so that the combined live time can be easily determined. The combined live time is also estimated using Monte Carlo simulations, and the results are compared with the directly measured values in order to assess the accuracy of the simulation

  4. Comparison between Laser and Stamping without Die (SWD for Micro Tapered Hole Forming

    Directory of Open Access Journals (Sweden)

    Yung-Chou Hung

    2016-03-01

    Full Text Available The forming of a micro tapered hole is based on nanosecond pulsed laser processing, which conforms to fast processing time and high throughput; however, the microhole quality should be improved. Micro stamping is a technology providing high precise size and speed. The greatest difficulty in forming a microhole by micro stamping is the precision alignment of the punch head to the lower die. In order to overcome the difficulty, we proposed a concept of stamping without die (SWD. Without a lower die, the tapered punch head was directly applied to the workpiece for micro stamping, and a thicker workpiece surrounding the punching area provides a better support to the stamping process. Thus, a successful forming of micro tapered holes is completed. The micro tapered hole depth is 300 μm, and the maximum ratio of inlet to outlet diameter is 18:1. In order to reduce the number of experiments, the finite element analysis software DEFORM-3D was used for forming analysis. The simulation forecast result was compared with the experimental processing, which was well validated. Under different experimental parameters of laser energy and defocusing distance, drilling results by two methods show that the microhole quality by stamping process is better than by laser processing.

  5. Characteristic Evaluation of Organic Light-Emitting Diodes Prepared with Stamp Printing Technique

    Directory of Open Access Journals (Sweden)

    Apisit Chittawanij

    2017-01-01

    Full Text Available We have reported on a stamp printing technique that uses PET release film as a printing stamp to deposit TPBi thin film served as the electron transport layer of the organic light-emitting diodes. TPBi thin film was printed with a good uniformity and resolution. Effect of deposition conditions on optical and electrical properties and surface roughness of TPBi thin film have been studied under spectroscopy and atomic force microscopy, respectively. It is found that characteristic of TPBi thin film is improved via controlled stamp temperature and time. Since TPBi thin film exhibits the surface morphology comparable to that of conventional spin-coating thin film, our findings suggest that PET release film-based stamp printing approach is possible to use as an alternative deposition of the organic thin film as compared with a traditional one.

  6. Determination of the interfacial heat transfer coefficient in the hot stamping of AA7075

    Directory of Open Access Journals (Sweden)

    Liu Xiaochuan

    2015-01-01

    Full Text Available The interfacial heat transfer coefficient (IHTC is a key parameter in hot stamping processes, in which a hot blank is formed and quenched by cold dies simultaneously. The IHTC should therefore be identified and used in FE models to improve the accuracy of simulation results of hot stamping processes. In this work, a hot stamping simulator was designed and assembled in a Gleeble 3800 thermo-mechanical testing system and a FE model was built in PAM-STAMP to determine the IHTC value between a hot aluminium alloy 7075 blank and cold dies. The IHTC was determined at different contact pressures under both dry and lubricated (Omega-35 conditions. In addition, a model to calculate the IHTC value at different contact pressures and area densities of lubricant was developed for the hot stamping process.

  7. Ben Franklin, America’s Postage Stamp Star — on the Wane?

    Directory of Open Access Journals (Sweden)

    François Brunet

    2010-01-01

    Full Text Available This paper is an assessment of Ben Franklin’s evolving figure in U.S. postage stamps, focusing especially on the contrast between the 2006 tercentennial Franklin 4-stamp panel, a rather high-brow representation of Franklin as an intellectual, and his traditional image as a homely, common face. The singular history of U.S. postage stamps, with their innovative choice of historical figures as subject matter and their broader emphasis on commemoration, is briefly summarized. The evolution of the Franklin figure — the most common postal image, along with George Washington — is then detailed, showing how the traditional image prevailed until the 1950s, before being progressively displaced by a more cultural and, lately, intellectual image of the nation’s “electrizer”.Cet article vise à interpréter l’évolution de la figure de Benjamin Franklin dans les timbres-poste des Etats-Unis, en se fondant notamment sur le contraste entre le bloc de quatre timbres émis lors du tricentenaire en 2006, qui représente Franklin dans les différents métiers d’un intellectuel des Lumières, et son image traditionnelle d’Américain simple et moyen. On retrace tout d’abord l’histoire singulière des timbres américains, caractérisée par le choix innovant de figures historiques comme sujets et plus généralement par la prééminence de la fonction commémorative. Puis on étudie en détail l’évolution de la figure de Franklin — sujet le plus fréquent des timbres américains avec George Washington — en montrant que l’image traditionnelle s’est perpétuée jusqu’aux années 1950, avant de céder progressivement à une image plus culturelle et, récemment, plus intellectuelle.

  8. Determination of the Interfacial Heat Transfer Coefficient in the Hot Stamping of AA7075

    Directory of Open Access Journals (Sweden)

    Ji Kang

    2016-01-01

    Full Text Available The interfacial heat transfer coefficient (IHTC is a key parameter in hot stamping processes, in which a hot blank is formed and quenched by cold dies simultaneously. The IHTC should therefore be identified and used in FE simulations to improve the accuracy of simulation results of hot stamping processes. In this work, a hot stamping simulator was designed and assembled in a Gleeble 3800 thermo-mechanical testing system and a FE model was built in PAM-STAMP to determine the IHTC values between a hot aluminium alloy 7075 blank and cold dies. The IHTC values were determined at different contact pressures under both dry and lubricated (Omega-35 conditions. In addition, a model to calculate the IHTC value at different contact pressures and area densities of lubricant was developed for the hot stamping process, which was proved to be working well with verification tests.

  9. A rapid co-culture stamping device for studying intercellular communication

    Science.gov (United States)

    Hassanzadeh-Barforoushi, Amin; Shemesh, Jonathan; Farbehi, Nona; Asadnia, Mohsen; Yeoh, Guan Heng; Harvey, Richard P.; Nordon, Robert E.; Warkiani, Majid Ebrahimi

    2016-10-01

    Regulation of tissue development and repair depends on communication between neighbouring cells. Recent advances in cell micro-contact printing and microfluidics have facilitated the in-vitro study of homotypic and heterotypic cell-cell interaction. Nonetheless, these techniques are still complicated to perform and as a result, are seldom used by biologists. We report here development of a temporarily sealed microfluidic stamping device which utilizes a novel valve design for patterning two adherent cell lines with well-defined interlacing configurations to study cell-cell interactions. We demonstrate post-stamping cell viability of >95%, the stamping of multiple adherent cell types, and the ability to control the seeded cell density. We also show viability, proliferation and migration of cultured cells, enabling analysis of co-culture boundary conditions on cell fate. We also developed an in-vitro model of endothelial and cardiac stem cell interactions, which are thought to regulate coronary repair after myocardial injury. The stamp is fabricated using microfabrication techniques, is operated with a lab pipettor and uses very low reagent volumes of 20 μl with cell injection efficiency of >70%. This easy-to-use device provides a general strategy for micro-patterning of multiple cell types and will be important for studying cell-cell interactions in a multitude of applications.

  10. Micromechanical exfoliation of two-dimensional materials by a polymeric stamp

    International Nuclear Information System (INIS)

    Costa, M C Ferraz da; Ribeiro, H B; Kessler, F; Souza, E A T de; Fechine, G J M

    2016-01-01

    In this work, an alternative technique to the traditional micromechanical exfoliation of two-dimensional materials is proposed, consisting of isolated flakes of graphite and molybdenum disulphide onto polymeric surfaces films. The set made up of polymer and flakes is fabricated by using a hot-press machine called polymeric stamp. The polymeric stamp was used to allocate flakes and also to allow the exfoliation process to take place just in one face of isolated flake. Optical microscopy, Raman spectroscopy and photoluminescence spectroscopy results showed that multilayers, bilayers and single layers of graphene and MoS 2 were obtained by using a polymeric stamp as tool for micromechanical exfoliation. These crystals were more easily found because the exfoliation process concentrates them in well-defined locations. The results prove the effectiveness of the method by embedding two-dimensional materials into polymers to fabricate fewer layers crystals in a fast, economic and clean way. (paper)

  11. Micromechanical exfoliation of two-dimensional materials by a polymeric stamp

    Science.gov (United States)

    Ferraz da Costa, M. C.; Ribeiro, H. B.; Kessler, F.; de Souza, E. A. T.; Fechine, G. J. M.

    2016-02-01

    In this work, an alternative technique to the traditional micromechanical exfoliation of two-dimensional materials is proposed, consisting of isolated flakes of graphite and molybdenum disulphide onto polymeric surfaces films. The set made up of polymer and flakes is fabricated by using a hot-press machine called polymeric stamp. The polymeric stamp was used to allocate flakes and also to allow the exfoliation process to take place just in one face of isolated flake. Optical microscopy, Raman spectroscopy and photoluminescence spectroscopy results showed that multilayers, bilayers and single layers of graphene and MoS2 were obtained by using a polymeric stamp as tool for micromechanical exfoliation. These crystals were more easily found because the exfoliation process concentrates them in well-defined locations. The results prove the effectiveness of the method by embedding two-dimensional materials into polymers to fabricate fewer layers crystals in a fast, economic and clean way.

  12. Diversity of Physicians’ Handwriting and Name Stamp in Chemotherapy Prescriptions: Potential Target for Fraud

    Directory of Open Access Journals (Sweden)

    Asiyeh Amouei

    2018-02-01

    Full Text Available BBackgrounds: Verification and authentication of the paper-based handwritten prescriptions is of great importance for antineoplastic medications that are good targets for forgery and fraud. Pharmacists usually investigate handwriting, signature and name stamp of prescribers to verify prescriptions in Iran. Anecdotal reports of variations in handwriting and name stamp of physicians who wrote antineoplastic prescriptions raised concerns in this regard. The aim of the study was to investigate the reported diversity and evaluate the quality of writing physician identity and required items in antineoplastic prescriptions.Methods: All insured hand-written prescriptions contained at least one antineoplastic medication and were dispensed by four main authorized community pharmacies dispensing antineoplastic medications in Tehran during one month were included. Prescriptions that were written by specialties other than oncology-related fields were excluded. Prescriptions of each physician were evaluated considering handwriting and name stamp by experienced pharmacy staff and the frequency of detected handwriting and name stamp types was recorded.Results: Of the 11022 included prescriptions, 10944 were eligible and written by 241 physicians. Median (third quartile number of physicians’ prescriptions was 17 (51. Maximum number of observed handwriting and name stamp types were eight and six respectively. High prescribers tended to have several handwriting and name stamp types.Conclusion: The observed diversity and variation in handwriting and name stamp of the physicians in antineoplastic prescriptions may facilitate the entrance of forged prescription and makes fraud detection difficult. Administrative and regulatory interventions in addition to notification of health care professionals about the observed potential might be necessary.

  13. High Thermal Conductivity and High Wear Resistance Tool Steels for cost-effective Hot Stamping Tools

    Science.gov (United States)

    Valls, I.; Hamasaiid, A.; Padré, A.

    2017-09-01

    In hot stamping/press hardening, in addition to its shaping function, the tool controls the cycle time, the quality of the stamped components through determining the cooling rate of the stamped blank, the production costs and the feasibility frontier for stamping a given component. During the stamping, heat is extracted from the stamped blank and transported through the tool to the cooling medium in the cooling lines. Hence, the tools’ thermal properties determine the cooling rate of the blank, the heat transport mechanism, stamping times and temperature distribution. The tool’s surface resistance to adhesive and abrasive wear is also an important cost factor, as it determines the tool durability and maintenance costs. Wear is influenced by many tool material parameters, such as the microstructure, composition, hardness level and distribution of strengthening phases, as well as the tool’s working temperature. A decade ago, Rovalma developed a hot work tool steel for hot stamping that features a thermal conductivity of more than double that of any conventional hot work tool steel. Since that time, many complimentary grades have been developed in order to provide tailored material solutions as a function of the production volume, degree of blank cooling and wear resistance requirements, tool geometries, tool manufacturing method, type and thickness of the blank material, etc. Recently, Rovalma has developed a new generation of high thermal conductivity, high wear resistance tool steel grades that enable the manufacture of cost effective tools for hot stamping to increase process productivity and reduce tool manufacturing costs and lead times. Both of these novel grades feature high wear resistance and high thermal conductivity to enhance tool durability and cut cycle times in the production process of hot stamped components. Furthermore, one of these new grades reduces tool manufacturing costs through low tool material cost and hardening through readily

  14. DOUBLE SHEAR DESIGN TO REDUCED STAMPING FORCE

    Directory of Open Access Journals (Sweden)

    Rudi Kurniawan Arief

    2017-12-01

    Full Text Available Ideally processing of part using stamping machine using only 70-80 % of available force to keep machine in good shape for a long periods. But in some certain case the force may equal to or exceed the available maximum force so the company must sent the process to another outsource company. A case found in a metal stamping company where a final product consist of 3 parts to assembly with one part exceeded the force of available machine. This part can only process in a 1000 tons machine while this company only have 2 of this machine with full workload. Sending this parts outsource will induce delivery problems because other parts are processed, assembled and paint inhouse, this also need additional transportation cost and extra supervision to ensure the quality and delivery schedule. The only exit action of this problem is by reducing the force tonnage. This paper using punch inclining method to reduce the force. The incline punch will distributed the force along the inclined surface that reduce stamping force as well. Inclined surface of punch also cause another major problems that the product becoming curved after process. This problems solved with additional flattening process that add more process cost but better than to outsource the process. Chisel type of inclining punch tip was choosen to avoid worst deformation of product. This paper will give the scientific recomendation to the company.

  15. Determination of Proper Austenitization Temperatures for Hot Stamping of AISI 4140 Steel

    Science.gov (United States)

    Samadian, Pedram; Parsa, Mohammad Habibi; Shakeri, Amid

    2014-04-01

    High strength steels are desirable materials for use in automobile bodies in order to reduce vehicle weight and increase the safety of car passengers, but steel grades with high strength commonly show poor formability. Recently, steels with controlled microstructures and compositions are used to gain adequate strength after hot stamping while maintaining good formability during processing. In this study, microstructure evolutions and changes in mechanical properties of AISI 4140 steel sheets resulting from the hot stamping process at different austenitization temperatures were investigated. To determine the proper austenitization temperatures, the results were compared with those of the cold-worked and cold-worked plus quench-tempered specimens. Comparisons showed that the austenitization temperatures of 1000 and 1100 °C are proper for hot stamping of 3-mm-thick AISI 4140 steel sheets due to the resultant martensitic microstructure which led to the yield and ultimate tensile strength of 1.3 and 2.1 GPa, respectively. Such conditions resulted in more favorable simultaneous strength and elongation than those of hot-stamped conventional boron steels.

  16. Multi-cycle rolled aluminum alloy 3103 sandwiches: mechanical properties and stamp ability

    Directory of Open Access Journals (Sweden)

    Nosova Ekaterina

    2017-01-01

    Full Text Available Constructional part producing by sheet stamping of multilayer composites requires the stamping ability data. The aim of a work is to estimate mechanical properties, stamping ratio and anisotropy indexes of 2, 4, 8 and 12 layer sandwiches produced from aluminium alloy AA3103. The pieces were received by the cold rolling. Interoperation annealing was at 500°C for 1 hour. Charts of tensile strength, yield stress, elongation depending on layer thickness were composed. It was found that cold strain hardening does not disappear after annealing if the foil’s thickness become 0.4 mm and less. Microstructure analysis has shown a good contact between layers for all samples and thicker outer layers.

  17. Limited indications of tax stamp discordance and counterfeiting on cigarette packs purchased in tobacco retailers, 97 counties, USA, 2012.

    Science.gov (United States)

    Lee, Joseph G L; Golden, Shelley D; Ribisl, Kurt M

    2017-12-01

    Increasing the per-unit cost of tobacco products is one of the strongest interventions for tobacco control. In jurisdictions with higher taxes in the U.S., however, cigarette pack litter studies show a substantial proportion of littered packs lack the appropriate tax stamp. More limited but still present counterfeiting also exists. We sought to examine the role of tobacco retailers as a source for untaxed and counterfeit products. Data collectors purchased Newport Green (menthol) or Marlboro Red cigarette packs in a national probability-based sample of tobacco retailers (in 97 counties) from June-October 2012. They made no effort to buy counterfeit or untaxed cigarettes. In this cross-sectional study, we assessed the presence, tax authority, and type (low-tech thermal vs. encrypted) of cigarette pack tax stamps; concordance of tax stamps with where the pack was purchased; and, for Marlboro cigarettes, publicly available visible indicators of counterfeiting. We purchased 2147 packs of which 2033 had tax stamps. Packs missing stamps were in states that do not require them. We found very limited discordance between store location and tax stamp(s) (tax stamps (13%). This occurred entirely with low-tech tax stamps and was not identified with encrypted tax stamps. We found no clear evidence of counterfeit products. Almost all tax stamps matched the location of purchase. Litter studies may be picking up legal tax avoidance instead of illegal tax evasion or, alternatively, purchase of illicit products requires special request by the purchaser.

  18. 27 CFR 46.116 - Issuance, distribution, and examination of special tax stamps.

    Science.gov (United States)

    2010-04-01

    ... multiple locations, TTB will send to the taxpayer's principal place of business (or principal office in the... attachment to TTB Form 5630.5t required by § 46.101(b)(2). (b) Distribution of special tax stamps for... for each location listed on the attachment to TTB Form 5630.5t and that the information on each stamp...

  19. Kinetic and kinematic analysis of stamping impacts during simulated rucking in rugby union.

    Science.gov (United States)

    Oudshoorn, Bodil Y; Driscoll, Heather F; Dunn, Marcus; James, David

    2018-04-01

    Laceration injuries account for up to 23% of injuries in rugby union. They are frequently caused by studded footwear as a result of a player stamping onto another player during the ruck. Little is known about the kinetics and kinematics of rugby stamping impacts; current test methods assessing laceration injury risk of stud designs therefore lack informed test parameters. In this study, twelve participants stamped on an anthropomorphic test device in a one-on-one simulated ruck setting. Velocity and inclination angle of the foot prior to impact was determined from high-speed video footage. Total stamping force and individual stud force were measured using pressure sensors. Mean foot inbound velocity was 4.3 m ∙ s -1 (range 2.1-6.3 m ∙ s -1 ). Mean peak total force was 1246 N and mean peak stud force was 214 N. The total mean effective mass during stamping was 6.6 kg (range: 1.6-13.5 kg) and stud effective mass was 1.2 kg (range: 0.5-2.9 kg). These results provide representative test parameters for mechanical test devices designed to assess laceration injury risk of studded footwear for rugby union.

  20. A Fully Automated and Robust Method to Incorporate Stamping Data in Crash, NVH and Durability Analysis

    Science.gov (United States)

    Palaniswamy, Hariharasudhan; Kanthadai, Narayan; Roy, Subir; Beauchesne, Erwan

    2011-08-01

    Crash, NVH (Noise, Vibration, Harshness), and durability analysis are commonly deployed in structural CAE analysis for mechanical design of components especially in the automotive industry. Components manufactured by stamping constitute a major portion of the automotive structure. In CAE analysis they are modeled at a nominal state with uniform thickness and no residual stresses and strains. However, in reality the stamped components have non-uniformly distributed thickness and residual stresses and strains resulting from stamping. It is essential to consider the stamping information in CAE analysis to accurately model the behavior of the sheet metal structures under different loading conditions. Especially with the current emphasis on weight reduction by replacing conventional steels with aluminum and advanced high strength steels it is imperative to avoid over design. Considering this growing need in industry, a highly automated and robust method has been integrated within Altair Hyperworks® to initialize sheet metal components in CAE models with stamping data. This paper demonstrates this new feature and the influence of stamping data for a full car frontal crash analysis.

  1. Characterization of thermoplastic composites for hot stamp forming

    NARCIS (Netherlands)

    Rietman, Bert; Grouve, Wouter; Akkerman, Remko

    2014-01-01

    This paper describes state-of-the-art characterization methods for thermoplastic composites at high processing temperature and provides a few examples of application in simulations of the hot stamp forming process.

  2. Fabrication of Ni stamp with high aspect ratio, two-leveled, cylindrical microstructures using dry etching and electroplating

    DEFF Research Database (Denmark)

    Petersen, Ritika Singh; Keller, Stephan Sylvest; Hansen, Ole

    2015-01-01

    obtained by defining a reservoir and a separating trench with different depths of 85 and 125 μm, respectively, in a single embossing step. The fabrication of the required two leveled stamp is done using a modified DEEMO (dry etching, electroplating and molding) process. Dry etching using the Bosch process...... and electroplating are optimized to obtain a stamp with smooth stamp surfaces and a positive sidewall profile. Using this stamp, hot embossing is performed successfully with excellent yield and high replication fidelity....

  3. Cooling Systems Design in Hot Stamping Tools by a Thermal-Fluid-Mechanical Coupled Approach

    Directory of Open Access Journals (Sweden)

    Tao Lin

    2014-06-01

    Full Text Available Hot stamping tools with cooling systems are the key facilities for hot stamping process of Ultrahigh strength steels (UHSS in automotive industry. Hot stamping tools have significant influence on the final microstructure and properties of the hot stamped parts. In serials production, the tools should be rapidly cooled by cooling water. Hence, design of hot stamping tools with cooling systems is important not only for workpieces of good quality but also for the tools with good cooling performance and long life. In this paper, a new multifield simulation method was proposed for the design of hot stamping tools with cooling system. The deformation of the tools was also analyzed by this method. Based on MpCCI (Mesh-based parallel Code Coupling Interface, thermal-fluid simulation and thermal-fluid-mechanical coupled simulation were performed. Subsequently, the geometrical parameters of the cooling system are investigated for the design. The results show that, both the distance between the ducts and the distance between the ducts and the tools loaded contour have significant influence on the quenching effect. And better quenching effect can be achieved with the shorter distance from the tool surface and with smaller distance between ducts. It is also shown that, thermal expansion is the main reason for deformation of the hot forming tools, which causes the distortion of the cooling ducts, and the stress concentration at corner of the ducts.

  4. Limited indications of tax stamp discordance and counterfeiting on cigarette packs purchased in tobacco retailers, 97 counties, USA, 2012

    Directory of Open Access Journals (Sweden)

    Joseph G.L. Lee

    2017-12-01

    Full Text Available Increasing the per-unit cost of tobacco products is one of the strongest interventions for tobacco control. In jurisdictions with higher taxes in the U.S., however, cigarette pack litter studies show a substantial proportion of littered packs lack the appropriate tax stamp. More limited but still present counterfeiting also exists. We sought to examine the role of tobacco retailers as a source for untaxed and counterfeit products. Data collectors purchased Newport Green (menthol or Marlboro Red cigarette packs in a national probability-based sample of tobacco retailers (in 97 counties from June–October 2012. They made no effort to buy counterfeit or untaxed cigarettes. In this cross-sectional study, we assessed the presence, tax authority, and type (low-tech thermal vs. encrypted of cigarette pack tax stamps; concordance of tax stamps with where the pack was purchased; and, for Marlboro cigarettes, publicly available visible indicators of counterfeiting. We purchased 2147 packs of which 2033 had tax stamps. Packs missing stamps were in states that do not require them. We found very limited discordance between store location and tax stamp(s (<1%. However, a substantial minority of cigarette packs had damaged tax stamps (13%. This occurred entirely with low-tech tax stamps and was not identified with encrypted tax stamps. We found no clear evidence of counterfeit products. Almost all tax stamps matched the location of purchase. Litter studies may be picking up legal tax avoidance instead of illegal tax evasion or, alternatively, purchase of illicit products requires special request by the purchaser. Keywords: Taxes, Smoking, Tobacco products, Government regulation, Government

  5. Soil Temperature and Moisture Profile (STAMP) System Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Cook, David R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-11-01

    The soil temperature and moisture profile system (STAMP) provides vertical profiles of soil temperature, soil water content (soil-type specific and loam type), plant water availability, soil conductivity, and real dielectric permittivity as a function of depth below the ground surface at half-hourly intervals, and precipitation at one-minute intervals. The profiles are measured directly by in situ probes at all extended facilities of the SGP climate research site. The profiles are derived from measurements of soil energy conductivity. Atmospheric scientists use the data in climate models to determine boundary conditions and to estimate the surface energy flux. The data are also useful to hydrologists, soil scientists, and agricultural scientists for determining the state of the soil. The STAMP system replaced the SWATS system in early 2016.

  6. Effects of surface coating on weld growth of resistance spot-welded hot-stamped boron steels

    International Nuclear Information System (INIS)

    Ji, Chang Wook; Lee, Hyun Ju; Kim, Yang Do; Jo, Il Guk; Choi, Il Dong; Park, Yeong Do

    2014-01-01

    Aluminum-silicon-based and zinc-based metallic coatings have been widely used for hot-stamped boron steel in automotive applications. In this study, resistance spot weldability was explored by investigating the effects of the properties of metallic coating layers on heat development and nugget growth during resistance spot welding. In the case of the aluminum-silicon-coated hot-stamped boron steel, the intermetallic coating transformed into a liquid film that covered the faying interface. A wide, weldable current range was obtained with slow heat development because of low contact resistance and large current passage. In the case of the zinc-coated hot-stamped boron steel, a buildup of liquid and vapor formation under large vapor pressure was observed at the faying interface because of the high contact resistance and low vaporization temperature of the intermetallic layers. With rapid heat development, the current passage was narrow because of the limited continuous layer at the faying interface. A more significant change in nugget growth was observed in the zinc coated hot-stamped boron steel than in the aluminum-silicon-coated hot-stamped boron steel.

  7. STAMP model and its application prospect in DCS safety analysis of nuclear power plant

    International Nuclear Information System (INIS)

    Yang Xiaohua; Liu Jie; Liu Zhaohui; Liu Hua; Yu Tonglan

    2013-01-01

    The application of DCS (Digit Control System) is a certain trend for the development of nuclear power. DCS not only improves the control capability of nuclear power system, but also increases the complexity of the system. Traditional safety analysis techniques based on event-chain model are facing challenges. In order to improve the safety performance of nuclear power DCS, the latest research achievement in the field of safety engineering should be focused, studied and applied into nuclear power safety. This paper introduces a new safety analysis model named STAMP (Systems-Theoretic Accident Modeling and Processes) based on the system theory, analyzes its advantages and disadvantages compared with the traditional ones, and explains the basic steps of STPA (STAMP-Based Hazard Analysis) technology. Finally, according to the application status of STAMP at home and abroad, it prospects the development of STAMP in China's nuclear power safety. (authors)

  8. Process control for sheet-metal stamping process modeling, controller design and shop-floor implementation

    CERN Document Server

    Lim, Yongseob; Ulsoy, A Galip

    2014-01-01

    Process Control for Sheet-Metal Stamping presents a comprehensive and structured approach to the design and implementation of controllers for the sheet metal stamping process. The use of process control for sheet-metal stamping greatly reduces defects in deep-drawn parts and can also yield large material savings from reduced scrap. Sheet-metal forming is a complex process and most often characterized by partial differential equations that are numerically solved using finite-element techniques. In this book, twenty years of academic research are reviewed and the resulting technology transitioned to the industrial environment. The sheet-metal stamping process is modeled in a manner suitable for multiple-input multiple-output control system design, with commercially available sensors and actuators. These models are then used to design adaptive controllers and real-time controller implementation is discussed. Finally, experimental results from actual shopfloor deployment are presented along with ideas for further...

  9. EFFECTS OF EBT CUSTOMER SERVICE WAIVERS ON FOOD STAMP RECIPIENTS: EXECUTIVE SUMMARY

    OpenAIRE

    Kirlin, John A.; Logan, Christopher

    2002-01-01

    Most State agencies are now using electronic benefits transfer (EBT) systems to issue food stamp benefits. To promote operational efficiency, some States have received waivers of certain rules governing EBT use. An exploratory study was conducted to ascertain the effects of these waivers on food stamp recipients. The results show that two of the waivers-those allowing recipients to select their own personal identification numbers and to receive EBT training by mail rather than in person-cause...

  10. Stamp design effect on 100 nm feature size for 8 inch NanoImprint lithography

    International Nuclear Information System (INIS)

    Landis, S; Chaix, N; Gourgon, C; Perret, C; Leveder, T

    2006-01-01

    Sub-100 nm resolution on a 200 mm silicon stamp has been hot embossed into commercial Sumitomo NEB 22 resist. A single pattern, exposed with electron beam lithography, has been considered to define the stamp and thus make it possible to point out the impact of stamp design on the printing. These results may be considered as a first attempt to define rules to solve the proximity printing effects (PPEs). Moreover, a large range of initial resist thickness, from 56 to 506 nm, has been spin coated to assess the effect of polymer flow properties for the stamp cavity filling and the printed defects. A detailed analysis of the printed resist in dense hole patterns showed that the application volume conservation is enough to calculate the residual layer thickness as the height of the printed resist feature. Good accordance has been obtained between the theoretical approach and experimental results. Moreover, the impact of the pattern symmetry breakdown on mould deformation is clearly shown in this paper in the printed areas as well as in the unprinted areas

  11. Stamping of Thin-Walled Structural Components with Magnesium Alloy AZ31 Sheets

    International Nuclear Information System (INIS)

    Chen, F.-K.; Chang, C.-K.

    2005-01-01

    In the present study, the stamping process for manufacturing cell phone cases with magnesium alloy AZ31 sheets was studied using both the experimental approach and the finite element analysis. In order to determine the proper forming temperature and set up a fracture criterion, tensile tests and forming limit tests were first conducted to obtain the mechanical behaviors of AZ31 sheets at various elevated temperatures. The mechanical properties of Z31 sheets obtained from the experiments were then adopted in the finite element analysis to investigate the effects of the process parameters on the formability of the stamping process of cell phone cases. The finite element simulation results revealed that both the fracture and wrinkle defects could not be eliminated at the same time by adjusting blank-holder force or blank size. A drawbead design was then performed using the finite element simulations to determine the size and the location of drawbead required to suppress the wrinkle defect. An optimum stamping process, including die geometry, forming temperature, and blank dimension, was then determined for manufacturing the cell phone cases. The finite element analysis was validated by the good agreement between the simulation results and the experimental data. It confirms that the cell phone cases can be produced with magnesium alloy AZ31 sheet by the stamping process at elevated temperatures

  12. MECHANICAL VIBRATION INHIBITS OSTEOCLAST FORMATION BY REDUCING DC-STAMP RECEPTOR EXPRESSION IN OSTEOCLAST PRECURSOR CELLS

    Science.gov (United States)

    Kulkarni, R.N.; Voglewede, P.A.; Liu, D.

    2014-01-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP), and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20 ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1 hour of mechanical vibration with 20 µm displacement at a frequency of 4 Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5 days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells were determined after 1 hour mechanical vibration, while protein production of the DC-STAMP was determined after 6 hours of post incubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduce DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation. PMID:23994170

  13. Mechanical vibration inhibits osteoclast formation by reducing DC-STAMP receptor expression in osteoclast precursor cells.

    Science.gov (United States)

    Kulkarni, Rishikesh N; Voglewede, Philip A; Liu, Dawei

    2013-12-01

    It is well known that physical inactivity leads to loss of muscle mass, but it also causes bone loss. Mechanistically, osteoclastogenesis and bone resorption have recently been shown to be regulated by vibration. However, the underlying mechanism behind the inhibition of osteoclast formation is yet unknown. Therefore, we investigated whether mechanical vibration of osteoclast precursor cells affects osteoclast formation by the involvement of fusion-related molecules such as dendritic cell-specific transmembrane protein (DC-STAMP) and P2X7 receptor (P2X7R). RAW264.7 (a murine osteoclastic-like cell line) cells were treated with 20ng/ml receptor activator of NF-κB ligand (RANKL). For 3 consecutive days, the cells were subjected to 1h of mechanical vibration with 20μm displacement at a frequency of 4Hz and compared to the control cells that were treated under the same condition but without the vibration. After 5days of culture, osteoclast formation was determined. Gene expression of DC-STAMP and P2X7R by RAW264.7 cells was determined after 1h of mechanical vibration, while protein production of the DC-STAMP was determined after 6h of postincubation after vibration. As a result, mechanical vibration of RAW264.7 cells inhibited the formation of osteoclasts. Vibration down-regulated DC-STAMP gene expression by 1.6-fold in the presence of RANKL and by 1.4-fold in the absence of RANKL. Additionally, DC-STAMP protein production was also down-regulated by 1.4-fold in the presence of RANKL and by 1.2-fold in the absence of RANKL in RAW264.7 cells in response to mechanical vibration. However, vibration did not affect P2X7R gene expression. Mouse anti-DC-STAMP antibody inhibited osteoclast formation in the absence of vibration. Our results suggest that mechanical vibration of osteoclast precursor cells reduces DC-STAMP expression in osteoclast precursor cells leading to the inhibition of osteoclast formation. © 2013 Elsevier Inc. All rights reserved.

  14. Silicon micro-masonry using elastomeric stamps for three-dimensional microfabrication

    International Nuclear Information System (INIS)

    Keum, Hohyun; Eisenhaure, Jeffrey D; Kim, Seok; Carlson, Andrew; Ning, Hailong; Mihi, Agustin; Braun, Paul V; Rogers, John A

    2012-01-01

    We present a micromanufacturing method for constructing microsystems, which we term ‘micro-masonry’ based on individual manipulation, influenced by strategies for deterministic materials assembly using advanced forms of transfer printing. Analogous to masonry in construction sites, micro-masonry consists of the preparation, manipulation, and binding of microscale units to assemble microcomponents and microsystems. In this paper, for the purpose of demonstration, we used microtipped elastomeric stamps as manipulators and built three dimensional silicon microstructures. Silicon units of varied shapes were fabricated in a suspended format on donors, retrieved, delivered, and placed on a target location on a receiver using microtipped stamps. Annealing of the assembled silicon units permanently bound them and completed the micro-masonry procedure. (paper)

  15. 49 CFR 238.119 - Rim-stamped straight-plate wheels.

    Science.gov (United States)

    2010-10-01

    ... input to the wheel during braking. (b) A rim-stamped straight-plate wheel shall not be used as a... that is periodically tread-braked for a short duration by automatic circuitry for the sole purpose of...

  16. Imprints of the Neolithic mind – clay stamps from the Republic of Macedonia

    Directory of Open Access Journals (Sweden)

    Goce Naumov

    2008-12-01

    Full Text Available The presence and unusual structure of clay stamps found in Neolithic settlements often give rise to multiple interpretations to define their character. The small dimensions and specific shape of the stamps suggests that these portable objects were important in the social relations and visual communication between members within the same community and, possibly, more distant communities. The definite patterns distinguishe their function in maintaining the visual traditions of the populations inhabiting southeastern Europe. They had an important role in building the Neolithic image modularity, so that they fitted into the comprehensive decorative structure of Neolithic iconography, and the patterns present on the stamps are related to several aspects of Neolithic material culture from the Balkans and Anatolia. This homogeneity of patterns indicates that they were actively included in the transposition of cognition into visual metaphors.

  17. Influence of Plastic Deformation on Martensitic Transformation During Hot Stamping of Complex Structure Auto Parts

    Science.gov (United States)

    Shen, Yuhan; Song, Yanli; Hua, Lin; Lu, Jue

    2017-04-01

    The ultra-high strength steel auto parts manufactured by hot stamping are widely applied for weight reduction and safety improvement. During the hot stamping process, hot forming and quenching are performed in one step wherein plastic deformation and phase transformation simultaneously take place and affect each other. Thereinto, the influence of deformation on martensitic transformation is of great importance. In the present paper, the influence of plastic deformation on martensitic transformation during hot stamping of complex structure auto parts was investigated. For this purpose, a B-pillar reinforced panel in B1500HS steel was manufactured by hot stamping, and the process was simulated by finite element software based on a thermo-mechanical-metallurgical coupled model. Considering various deformation degrees, the microstructures and mechanical properties at four typical locations of the hot stamped B-pillar reinforced panel were detected. The results show that the martensitic content and the microhardness increase with the increase in the deformation amount. There are two reasons causing this phenomenon: (1) the increase in mechanical driving force and (2) the increased probability of the martensitic nucleation at crystal defects. The x-ray diffraction analysis indicates the carbon enrichment in retained austenite which results from the carbon diffusion during the low-carbon martensite formation. Furthermore, the carbon content decreases with the increase in the deformation amount, because the deformation of austenite suppresses the carbon diffusion.

  18. Food Stamps and Food Insecurity: What Can Be Learned in the Presence of Nonclassical Measurement Error?

    Science.gov (United States)

    Gundersen, Craig; Kreider, Brent

    2008-01-01

    Policymakers have been puzzled to observe that food stamp households appear more likely to be food insecure than observationally similar eligible nonparticipating households. We reexamine this issue allowing for nonclassical reporting errors in food stamp participation and food insecurity. Extending the literature on partially identified…

  19. 45 CFR 205.25 - Eligibility of supplemental security income beneficiaries for food stamps or surplus commodities.

    Science.gov (United States)

    2010-10-01

    ... beneficiaries for food stamps or surplus commodities. 205.25 Section 205.25 Public Welfare Regulations Relating....25 Eligibility of supplemental security income beneficiaries for food stamps or surplus commodities... XVI of the Social Security Act, the State agency shall make the following determinations: (1) The...

  20. The collection of Tuvan stamps (1926–1943 in the National Museum of the Republic of Tuva and the prospects of philately in Tuva

    Directory of Open Access Journals (Sweden)

    Kaadyr-ool A. Bicheldey

    2016-09-01

    Full Text Available Stamps of the People’s Republic of Tuva (PRT, 1921-1944 as indicia and as items of collectors’ interest, are universally renowned, and as such have been the subject of a good deal of research. These works contain more than a mere story of Tuvan stamps – they provide a lot of useful information on Tuva, its history, including the history of postal service in the region. This article describes the collection of indicia (more than 500 pieces dated 1926-1943 and preserved at Aldan Maadyr National Museum of Tuva. On the basis of this analysis we have formulated the current problems and prospects of philately in the region. The stamp collection in the National Museum fills 4 albums of various sizes and a number of envelopes with 1-72 stamps in each. The compilers of 2 albums attempted to systematize stamps by issue date, but this work is far from complete. There is no definitive collection of Tuvan stamps to act as a model for others, regardless of the quality of the stamps preserved. The rest of the stamps in the museum collection is in unsorted state. Overall, the degree of preservation can be tentatively described as average. Given the great interest of scholars and collectors, Tuvan stamps are relatively little studies. The overall bulk of material on the uses of stamps in Tuva lacks an overarching study. We have summed up the main research problems that call for in-depth research, including studying Tuvan stamps as pieces of art, the financial and economic viability of issuing stamps in PRT, the official documentations licensing the issue, full catalogization of all existing issues, the study of individual stamps, etc. Especially urgent is the issue of propagating knowledge of history of Tuvan postal service as a precondition for collecting and preserving PRT stamps. Archives of many Tuvan families may contain unique stamps, rare envelopes or postcards – but few of their owners recognize the full value of what they have. This puts unique

  1. Impact of Electronic Signatures and Time Stamping for the Protection of Electronic Agreements

    Directory of Open Access Journals (Sweden)

    Tadas Limba

    2012-12-01

    Full Text Available The article e495 valuates the impact of e-signatures and time stamping on electronic contracts and electronic documents for performing e-business opportunities and goals, and analyses e-signature application for business cases. Various electronic services, virtual shopping, electronic cash transactions are becoming increasingly popular as they allow users to quickly perform different actions, operations and functions. It is important not only for convenience, but also to ensure consumer data security and reliability. Security reasons are not enough for security transmitted data, since this method does not allow clarification of information about sender identity.Use of electronic signatures, electronic identities, checgs and ensures a very high level of data security in interchange data processes. E-signature allows e-business companies to transfer the company’s operation business processes and their application to the organization and management in the electronic environment, also automate internal and external compans processes, includinggon-going business processes.The object of paper is .-signature and time stamping application in the theoretical and practical way.The goal of this paper while evaluating and estimating the .-signature and time stamping application, i’s regulation and legal implementation worldwidesand in Lithuania—is to provideluseful recommendations for more efficient impact developing -commerce and -business in situations when -signature and time stamping is used for ensuring electronic contracs security.

  2. Impact of Electronic Signatures and Time Stamping for the Protection of Electronic Agreements

    Directory of Open Access Journals (Sweden)

    Tadas Limba

    2013-02-01

    Full Text Available The article e495 valuates the impact of e-signatures and time stamping on electronic contracts and electronic documents for performing e-business opportunities and goals, and analyses e-signature application for business cases. Various electronic services, virtual shopping, electronic cash transactions are becoming increasingly popular as they allow users to quickly perform different actions, operations and functions. It is important not only for convenience, but also to ensure consumer data security and reliability. Security reasons are not enough for security transmitted data, since this method does not allow clarification of information about sender identity. Use of electronic signatures, electronic identities, checgs and ensures a very high level of data security in interchange data processes. E-signature allows e-business companies to transfer the company’s operation business processes and their application to the organization and management in the electronic environment, also automate internal and external compans processes, includinggon-going business processes. The object of paper is .-signature and time stamping application in the theoretical and practical way. The goal of this paper while evaluating and estimating the .-signature and time stamping application, i’s regulation and legal implementation worldwidesand in Lithuania—is to provideluseful recommendations for more efficient impact developing -commerce and -business in situations when -signature and time stamping is used for ensuring electronic contracs security.

  3. Solid-state superionic stamping with silver iodide-silver metaphosphate glass

    International Nuclear Information System (INIS)

    Jacobs, K E; Hsu, K H; Han, X; Azeredo, B P; Ferreira, P M; Kumar, A; Fang, N X

    2011-01-01

    This paper demonstrates and analyzes the new use of the glassy solid electrolyte AgI-AgPO 3 for direct nanopatterning of thin silver films with feature resolutions of 30 nm. AgI-AgPO 3 has a high room temperature ionic conductivity with Ag + as the mobile ion, leading to silver etch/patterning rates of up to 20 nm s -1 at an applied bias of 300 mV. The glass can be melt-processed at temperatures below 200 deg. C, providing a facile and economical pathway for creating large area stamps, including the 25 mm 2 stamps shown in this study. Further, the glass is sufficiently transparent to permit integration with existing tools such as aligners and imprint tools, enabling high overlay registration accuracy and facilitating insertion into multi-step fabrication recipes.

  4. Failure Mechanisms of the Protective Coatings for the Hot Stamping Applications

    Science.gov (United States)

    Zhao, Chen

    In the present study, four different nitriding techniques were carried on the ductile irons NAAMS-D6510 and cast steels NAAMS-S0050A, which are widely used stamping die materials; duplex treatments (PVD CrN coating+nitriding) were carried on H13 steels, which are common inserts for the hot stamping dies. Inclined impact-sliding wear tests were performed on the nitriding cases under simulated stamping conditions. Surface profilometer, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) were used to investigate the wear and failure mechanisms of the protective coatings. It was found that the nitrided ductile iron samples performed better than the nitrided cast steel specimens. High temperature inclined impact-sliding wear tests were carried out on the CrN coatings. It was found that the coating performed better at elevated temperature. XPS analysis indicated the top surface layer (about 3-4nm) of the coating was oxidized at 400 °C and formed a Cr2O3 protective film. The in-situ formation of the thin Cr2O3 protective layer likely led to the change of wear mechanisms from severe adhesive failure to mild abrasive wear.

  5. Martensitic microstructural transformations from the hot stamping, quenching and partitioning process

    International Nuclear Information System (INIS)

    Liu Heping; Jin Xuejun; Dong Han; Shi Jie

    2011-01-01

    Hot stamping, which combines forming and quenching in one process, produces high strength steels with limited ductility because the quenching is uncontrolled. A new processing technique has been proposed in which the hot stamping step is followed by a controlled quenching and partitioning process, producing a microstructure containing retained austenite and martensite. To investigate this microstructure, specimens were heated at a rate of 10 deg. C/s to the austenitizing temperature of 900 deg. C, held for 5 min to eliminate thermal gradients, and cooled at a rate of 50 deg. C/s to a quenching temperature of 300 deg. C, which is between the martensite start temperature and the martensite finish temperatures. The resulting microstructure was examined using optical microscope, scanning electron microscopy and transmission electron microscopy. The material produced contains irregular, fragmented martensite plates, a result of the improved strength of the austenite phase and the constraints imposed by a high dislocation density. - Research Highlights: → A novel heat treatment of advanced high strength steels is proposed. → The processing technique is hot stamping plus quenching and partitioning process. → The material produced contains irregular, fragmented martensite plates. → The reason is strength of austenite phase and constraint of dislocation density.

  6. Probabilistic Design in a Sheet Metal Stamping Process under Failure Analysis

    International Nuclear Information System (INIS)

    Buranathiti, Thaweepat; Cao, Jian; Chen, Wei; Xia, Z. Cedric

    2005-01-01

    Sheet metal stamping processes have been widely implemented in many industries due to its repeatability and productivity. In general, the simulations for a sheet metal forming process involve nonlinearity, complex material behavior and tool-material interaction. Instabilities in terms of tearing and wrinkling are major concerns in many sheet metal stamping processes. In this work, a sheet metal stamping process of a mild steel for a wheelhouse used in automobile industry is studied by using an explicit nonlinear finite element code and incorporating failure analysis (tearing and wrinkling) and design under uncertainty. Margins of tearing and wrinkling are quantitatively defined via stress-based criteria for system-level design. The forming process utilizes drawbeads instead of using the blank holder force to restrain the blank. The main parameters of interest in this work are friction conditions, drawbead configurations, sheet metal properties, and numerical errors. A robust design model is created to conduct a probabilistic design, which is made possible for this complex engineering process via an efficient uncertainty propagation technique. The method called the weighted three-point-based method estimates the statistical characteristics (mean and variance) of the responses of interest (margins of failures), and provide a systematic approach in designing a sheet metal forming process under the framework of design under uncertainty

  7. Quantum-to-classical transition and gravity-induced instabilities (in progress)

    International Nuclear Information System (INIS)

    Lima, William C.C.

    2013-01-01

    Full text: It has been argued that gravitational fields produced by realistic matter distributions can induce the vacuum fluctuations of some non-minimally coupled free scalar field to go through a phase of exponential amplification. For the particular case of the formation of a neutron star, the energy density of the field in its initial vacuum state rivals the one of the star in a lapse of just a few milliseconds after the effect has been triggered. From this point on back reaction effects must be taken into account in order to predict the fate of both the star and scalar field. Classical analyses have shown that, at least for some values of the mass-radius ratio of the star and the non-minimal coupling parameter, a non-null scalar field profile could stabilize the system. The aim of our study is to shed some light on the back reaction process from the perspective of the quantum-to-classical transition that will occur once the classical background spacetime reacts to the unstable quantum field. In particular, the transition to a classical regime requires the specification of a well-defined classical initial state for the field. This can be accomplished analyzing the quantum state of the field around the time back reaction effects become important. (author)

  8. Evaluation of Contact Heat Transfer Coefficient and Phase Transformation during Hot Stamping of a Hat-Type Part

    Science.gov (United States)

    Kim, Heung-Kyu; Lee, Seong Hyeon; Choi, Hyunjoo

    2015-01-01

    Using an inverse analysis technique, the heat transfer coefficient on the die-workpiece contact surface of a hot stamping process was evaluated as a power law function of contact pressure. This evaluation was to determine whether the heat transfer coefficient on the contact surface could be used for finite element analysis of the entire hot stamping process. By comparing results of the finite element analysis and experimental measurements of the phase transformation, an evaluation was performed to determine whether the obtained heat transfer coefficient function could provide reasonable finite element prediction for workpiece properties affected by the hot stamping process. PMID:28788046

  9. Development and introduction of stamping technique for large-size laterals of NPP pipelines

    International Nuclear Information System (INIS)

    Romashko, N.I.; Moshnin, E.N.; Timokhin, V.S.; Bryukhanov, Yu.V.; Lebedev, V.A.

    1984-01-01

    The results of development and introduction of stamping technique for large-size laterals of NPP high-pressure pipelines are presented. The main experimental data characterizing technological possibilities of the process are given. The technological process and design of the stamp assure production of laterals from ovalized bars per one heating of the bar and per one running of the press cronnhead. Introduction of new technology decreased labour input of lateral production, reliability and serviceability of pipelines increased in this case. Introduction of this technology gives a considerable benefit

  10. A framework for development of an intelligent system for design and manufacturing of stamping dies

    International Nuclear Information System (INIS)

    Hussein, H M A; Kumar, S

    2014-01-01

    An integration of computer aided design (CAD), computer aided process planning (CAPP) and computer aided manufacturing (CAM) is required for development of an intelligent system to design and manufacture stamping dies in sheet metal industries. In this paper, a framework for development of an intelligent system for design and manufacturing of stamping dies is proposed. In the proposed framework, the intelligent system is structured in form of various expert system modules for different activities of design and manufacturing of dies. All system modules are integrated with each other. The proposed system takes its input in form of a CAD file of sheet metal part, and then system modules automate all tasks related to design and manufacturing of stamping dies. Modules are coded using Visual Basic (VB) and developed on the platform of AutoCAD software

  11. A framework for development of an intelligent system for design and manufacturing of stamping dies

    Science.gov (United States)

    Hussein, H. M. A.; Kumar, S.

    2014-07-01

    An integration of computer aided design (CAD), computer aided process planning (CAPP) and computer aided manufacturing (CAM) is required for development of an intelligent system to design and manufacture stamping dies in sheet metal industries. In this paper, a framework for development of an intelligent system for design and manufacturing of stamping dies is proposed. In the proposed framework, the intelligent system is structured in form of various expert system modules for different activities of design and manufacturing of dies. All system modules are integrated with each other. The proposed system takes its input in form of a CAD file of sheet metal part, and then system modules automate all tasks related to design and manufacturing of stamping dies. Modules are coded using Visual Basic (VB) and developed on the platform of AutoCAD software.

  12. Numerical simulation of temperature field, microstructure evolution and mechanical properties of HSS during hot stamping

    International Nuclear Information System (INIS)

    Shi, Dongyong; Liu, Wenquan; Ying, Liang; Hu, Ping; Shen, Guozhe

    2013-01-01

    The hot stamping of boron steels is widely used to produce ultra high strength automobile components without any spring back. The ultra high strength of final products is attributed to the fully martensitic microstructure that is obtained through the simultaneous forming and quenching of the hot blanks after austenization. In the present study, a mathematical model incorporating both heat transfer and the transformation of austenite is presented. A FORTRAN program based on finite element technique has been developed which permits the temperature distribution and microstructure evolution of high strength steel during hot stamping process. Two empirical diffusion-dependent transformation models under isothermal conditions were employed respectively, and the prediction capability on mechanical properties of the models were compared with the hot stamping experiment of an automobile B-pillar part

  13. Some recent progress in classical general relativity

    Science.gov (United States)

    Finster, Felix; Smoller, Joel; Yau, Shing-Tung

    2000-06-01

    In this short survey paper, we shall discuss certain recent results in classical gravity. Our main attention will be restricted to two topics in which we have been involved; the positive mass conjecture and its extensions to the case with horizons, including the Penrose conjecture (Part I), and the interaction of gravity with other force fields and quantum-mechanical particles (Part II).

  14. Fabrication of a roller type PDMS stamp using SU-8 concave molds and its application for roll contact printing

    International Nuclear Information System (INIS)

    Park, Jongho; Kim, Beomjoon

    2016-01-01

    Continuous fabrication of micropatterns at low-cost is attracting attention in various applications within industrial fields. To meet such demands, we have demonstrated a roll contact printing technique, using roller type polydimethylsiloxane (PDMS) stamps with roll-to-flat and roll-to-roll stages. Roller type PDMS stamps for roll contact printing were fabricated using a custom-made metal support and SU-8 microstructures fabricated on concave substrates as a mold. The molding/casting method which we developed here provided faster and easier fabrication than conventional methods for roller type stamps. Next, roll contact printing was performed using fabricated roller type PDMS stamps with roll-to-flat and roll-to-roll stages. Patterns with minimum widths of 3 μm and 2.1 μm were continuously fabricated for each stage, respectively. In addition, the relationship between applied pressures and dimensional changes of roll contact printed patterns was investigated. Finally, we confirmed that roll contact printing and the new fabrication method for roller stamps presented in this study demonstrated the feasibility for industrial applications. (paper)

  15. design and development of a soap stamping and tableting machine

    African Journals Online (AJOL)

    2012-07-02

    Jul 2, 2012 ... for these two operations. The manual ... chine, the cutting and stamping operations were done at different .... slack side belt tensions Tj were determined as 131.66N and 162.71N for the .... vironmental Management, Vol. 6, No.

  16. Women Putting Our Stamp on America: Biographies and Activities for National Women's History Month, March 1999.

    Science.gov (United States)

    National Women's History Project, Windsor, CA.

    This booklet, intended for use by educators and by workplace and community organizers, introduces women who have been featured on U.S. postage stamps as well as a few of the women who clearly merit such honor in the future. Postage stamps featuring women have been relatively few and far between and have only skimmed the surface of U.S. women in…

  17. Draw-in Map - A Road Map for Simulation-Guided Die Tryout and Stamping Process Control

    International Nuclear Information System (INIS)

    Wang Chuantao; Zhang, Jimmy J.; Goan, Norman

    2005-01-01

    Sheet metal forming is a displacement or draw-in controlled manufacturing process in which a flat blank is drawn into die cavity to form an automotive body panel. Draw-in amount is the single most important stamping manufacturing index that controls all forming characteristics (strains, stresses, thinning, etc.), stamping failures (splits, wrinkles, surface distortion, etc.) and line die operations and automations. Draw-in Map is engineered for math-based die developments via advanced stamping simulation technology. Then the Draw-in Map is provided to die makers in plants as a road map for math-guided die tryout in which the die tryout workers follow the engineered tryout conditions and matches the engineered draw-in amount so that the tryout time and cost are greatly reduced, and quality is ensured. The Map can also be used as a math-based trouble-shooting tool to identify the causes of formability problems in stamping production. The engineered Draw-in Map has been applied to all draw die tryout for all GM vehicle programs since 1998. A minimum 50% reduction in both lead-time and cost and significant improvement in panel quality in tryout have been reported. This paper presents the concept and process to apply the engineered Draw-in Map in die tryout

  18. Corrosion resistance characteristics of stamped and hydroformed proton exchange membrane fuel cell metallic bipolar plates

    Energy Technology Data Exchange (ETDEWEB)

    Dundar, F. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); Department of Materials Science and Engineering, Gebze Institute of Technology (Turkey); Dur, Ender; Koc, M. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); Mahabunphachai, S. [NSF I/UCRC Center for Precision Forming (CPF), Virginia Commonwealth University, Richmond, VA (United States); National Metal and Materials Technology Center (MTEC), Pathumthani (Thailand)

    2010-06-01

    Metallic bipolar plates have several advantages over bipolar plates made from graphite and composites due to their high conductivity, low material and production costs. Moreover, thin bipolar plates are possible with metallic alloys, and hence low fuel cell stack volume and mass are. Among existing fabrication methods for metallic bipolar plates, stamping and hydroforming are seen as prominent approaches for mass production scales. In this study, the effects of important process parameters of these manufacturing processes on the corrosion resistance of metallic bipolar plates made of SS304 were investigated. Specifically, the effects of punch speed, pressure rate, stamping force and hydroforming pressure were studied as they were considered to inevitably affect the bipolar plate micro-channel dimensions, surface topography, and hence the corrosion resistance. Corrosion resistance under real fuel cell conditions was examined using both potentiodynamic and potentiostatic experiments. The majority of the results exhibited a reduction in the corrosion resistance for both stamped and hydroformed plates when compared with non-deformed blank plates of SS304. In addition, it was observed that there exist an optimal process window for punch speed in stamping and the pressure rate in hydroforming to achieve improved corrosion resistance at a faster production rate. (author)

  19. American Society of Mechanical Engineers' N stamp requirements

    International Nuclear Information System (INIS)

    Row, P.D.

    1977-01-01

    Incorporated with ASME Section III, Nuclear Power Plant Components, is an Appendix on Quality Assurance Systems which includes provision for ASME surveys. Manufacturers and installers passing the survey successfully receive an N Symbol Stamp and an ASME Certificate of Authorization. An outline is given of the prerequisites for a survey to be scheduled and of the requirements and procedures adopted by the survey team. (U.K.)

  20. Effect of Al-Si Coating on Weld Microstructure and Properties of 22MnB5 Steel Joints for Hot Stamping

    Science.gov (United States)

    Lin, Wenhu; Li, Fang; Wu, Dongsheng; Chen, Xiaoguan; Hua, Xueming; Pan, Hua

    2018-03-01

    22MnB5 hot stamping steels are gradually being used in tailor-welded blank applications. In this experiment, 1-mm-thick Al-Si coated and de-coated 22MnB5 steels were laser-welded and then hot-stamped. The chemical compositions, solidification process, microstructure and mechanical properties were investigated to reveal the effect of Al-Si coating and heat treatment. In the welded condition, the coated joints had an Al content of approximately 2.5 wt.% in the fusion zone and the de-coated joints had 0.5 wt.% Al. The aluminum promoted the δ-ferrite formation as the skeletal structure during solidification. In the high-aluminum weld, the microstructure consisted of martensite and long and band-like δ-ferrite. Meanwhile, the low-aluminum weld was full of lath martensite. After the hot stamping process, the δ-ferrite fraction increased from 10 to 24% in the coated joints and the lath martensite became finer in the de-coated joints. The tensile strengths of the coated joints or de-coated joints were similar to that before hot stamping, but the strength of the coated joints was reduced heavily after hot stamping compared to the de-coated joints and base material. The effect of δ-ferrite on the tensile properties became stronger when the fusion zone was soft and deformed first in the hot-stamped specimens. The coated weld showed a brittle fracture surface with many cleavage planes, and the de-coated weld showed a ductile fracture surface with many dimples in hot-stamped conditions.

  1. Elsa Baxter, head of the Swiss Post Office's Stamps and Philately Unit, presents to Robert Aymar, CERN's Director-General, the Swiss commemorative stamp dedicated to CERN

    CERN Multimedia

    Patrice Loiez

    2004-01-01

    'I am delighted to offer you a special stamp which commemorates your Laboratory's fifty-year history and pays tribute to its achievements, its pioneering spirit and its perseverance' said Mrs Baxter to Robert Aymar, CERN's Director-General.

  2. Characterization of the interfacial heat transfer coefficient for hot stamping processes

    Science.gov (United States)

    Luan, Xi; Liu, Xiaochuan; Fang, Haomiao; Ji, Kang; El Fakir, Omer; Wang, LiLiang

    2016-08-01

    In hot stamping processes, the interfacial heat transfer coefficient (IHTC) between the forming tools and hot blank is an essential parameter which determines the quenching rate of the process and hence the resulting material microstructure. The present work focuses on the characterization of the IHTC between an aluminium alloy 7075-T6 blank and two different die materials, cast iron (G3500) and H13 die steel, at various contact pressures. It was found that the IHTC between AA7075 and cast iron had values 78.6% higher than that obtained between AA7075 and H13 die steel. Die materials and contact pressures had pronounced effects on the IHTC, suggesting that the IHTC can be used to guide the selection of stamping tool materials and the precise control of processing parameters.

  3. 26 CFR 301.7209-1 - Unauthorized use or sale of stamps.

    Science.gov (United States)

    2010-04-01

    ..., transfers, takes or gives in exchange, or pledges or gives in pledge, except as authorized in the Code or in regulations made pursuant thereto, any stamp, coupon, ticket, book, or other device prescribed by the...

  4. Investigations on the Hot Stamping of AW-7921-T4 Alloy Sheet

    Directory of Open Access Journals (Sweden)

    M. Kumar

    2017-01-01

    Full Text Available AW-7xxx alloys have been nowadays considered for greater light weighting potential in automotive industry due to its higher strength compared to AW-5xxx and AW-6xxx alloys. However, due to their lower formability the forming processes are still in development. This paper investigates one such forming process called hot stamping. The investigation started by carrying out hot tensile testing of an AW-7xxx alloy, that is, AW-7921 at temperatures between 350°C and 475°C, to measure the strength and formability. Formability was found to improve with increasing temperature and was sensitive to the strain rate. Dynamic recovery is considered as usual reason for the formability improvement. However, examining the precipitation states of the as-received condition and after hot stamping using differential scanning calorimetry (DSC, the dissolution of precipitates was also believed to contribute to this increase in formability. Following solution heat treatment there was no precipitation during cooling across the cooling rates investigated (5–10°C/s. Samples taken from parts hot stamped at 10 and 20 mm s−1 had similar yield strengths. A 3-step paint baking heat treatment yielded a higher postpaint baking strength than a single step treatment.

  5. Size Effect Studies on Tensile Tests for Hot Stamping Steel

    Science.gov (United States)

    Chen, Xiaodu; Li, Yuanyuan; Han, Xianhong; Zhang, Junbo

    2018-02-01

    Tensile tests have been widely used to determine basic mechanical properties of materials. However, the properties measured may be related to geometrical factors of the tested samples especially for high-strength steels; this makes the properties' definitions and comparisons difficult. In this study, a series of tensile tests of ultra-high-strength hot-stamped steel were performed; the geometric shapes and sizes as well as the cutting direction were modified. The results demonstrate that the hot-stamped parts were isotropic and the cutting direction had no effect; the measured strengths were practically unrelated to the specimen geometries, including both size and shape. The elongations were slightly related to sample sizes within the studied range but highly depended on the sample shape, represented by the coefficient K. Such phenomena were analyzed and discussed based on microstructural observations and fracture morphologies. Moreover, two widely used elongation conversion equations, the Oliver formula and Barba's law, were introduced to verify their applicability, and a new interpolating function was developed and compared.

  6. Experimental Validation for Hot Stamping Process by Using Taguchi Method

    Science.gov (United States)

    Fawzi Zamri, Mohd; Lim, Syh Kai; Razlan Yusoff, Ahmad

    2016-02-01

    Due to the demand for reduction in gas emissions, energy saving and producing safer vehicles has driven the development of Ultra High Strength Steel (UHSS) material. To strengthen UHSS material such as boron steel, it needed to undergo a process of hot stamping for heating at certain temperature and time. In this paper, Taguchi method is applied to determine the appropriate parameter of thickness, heating temperature and heating time to achieve optimum strength of boron steel. The experiment is conducted by using flat square shape of hot stamping tool with tensile dog bone as a blank product. Then, the value of tensile strength and hardness is measured as response. The results showed that the lower thickness, higher heating temperature and heating time give the higher strength and hardness for the final product. In conclusion, boron steel blank are able to achieve up to 1200 MPa tensile strength and 650 HV of hardness.

  7. Stamping, Clapping and Chanting: An Ancient Learning Pathway?

    Directory of Open Access Journals (Sweden)

    Marion M. Long

    2006-04-01

    Full Text Available In this review I explore the effect of temporal integration as a means of improving learning in schoolchildren. I focus first on theorists that have linked physical activity with a positive effect on children’s learning and second to psychological studies that have established the existence of innate temporal patterns. These findings are related to a model of temporal integration that I have developed from Croce’s writings on aesthetics (1900. From philosophy to neurology, I discuss recent neurological findings relating to timing and conclude that an organ of temporal integration, regulation and coordination operates in the brain with respect to physical, intuitive and higher cognitive function. I link recent findings in neurophysiology to notably similar findings in recent biomusicological studies. The finding that humans have an involuntary physical response to loud, low-frequency sounds are attributed to an innate legacy of proto-music and proto-dance behaviour among hominids. I develop the model of temporal integration further by examining the literature on stamping and clapping patterns of ancient traditional dances in relation to Husserl’s writings on theoretical succession. From philosophy to pedagogy, I summarise the review by proposing stamping, clapping and chanting as a means of achieving improved temporal integration.

  8. Prediction of Proper Temperatures for the Hot Stamping Process Based on the Kinetics Models

    Science.gov (United States)

    Samadian, P.; Parsa, M. H.; Mirzadeh, H.

    2015-02-01

    Nowadays, the application of kinetics models for predicting microstructures of steels subjected to thermo-mechanical treatments has increased to minimize direct experimentation, which is costly and time consuming. In the current work, the final microstructures of AISI 4140 steel sheets after the hot stamping process were predicted using the Kirkaldy and Li kinetics models combined with new thermodynamically based models in order for the determination of the appropriate process temperatures. In this way, the effect of deformation during hot stamping on the Ae3, Acm, and Ae1 temperatures was considered, and then the equilibrium volume fractions of phases at different temperatures were calculated. Moreover, the ferrite transformation rate equations of the Kirkaldy and Li models were modified by a term proposed by Åkerström to consider the influence of plastic deformation. Results showed that the modified Kirkaldy model is satisfactory for the determination of appropriate austenitization temperatures for the hot stamping process of AISI 4140 steel sheets because of agreeable microstructure predictions in comparison with the experimental observations.

  9. Time stamp technique using a nuclear emulsion multi-stage shifter for gamma-ray telescope

    International Nuclear Information System (INIS)

    Takahashi, Satoru; Aoki, Shigeki; Rokujo, Hiroki; Hamada, Kaname; Komatsu, Masahiro; Morishima, Kunihiro; Nakamura, Mitsuhiro; Nakano, Toshiyuki; Niwa, Kimio; Sato, Osamu; Yoshioka, Teppei; Kodama, Koichi

    2010-01-01

    Nuclear emulsion has a potential use as a gamma-ray telescope with high angular resolution. For this application it is necessary to know the time when each track was recorded in the emulsion. In previous experiments using nuclear emulsion, various efforts were used to associate time to nuclear emulsion tracks and to improve the time resolution. Using a high speed readout system for nuclear emulsion together with a clock-based multi-stage emulsion shifter, we invented a technique to give a time-stamp to emulsion tracks and greatly improve the time resolution. A test experiment with a 2-stage shifter was used to demonstrate the principle of multi-stage shifting, and we achieved a time resolution 1.5 s for 12.1 h (about 1 part in 29 000) with the time stamp reliability 97% and the time stamp efficiency 98%. This multi-stage shifter can achieve the time resolution required for a gamma-ray telescope and can also be applied to another cosmic ray observations and accelerator experiments using nuclear emulsion.

  10. Vortex rings in classical and quantum systems

    International Nuclear Information System (INIS)

    Barenghi, C F; Donnelly, R J

    2009-01-01

    The study of vortex rings has been pursued for decades and is a particularly difficult subject. However, the discovery of quantized vortex rings in superfluid helium has greatly increased interest in vortex rings with very thin cores. While rapid progress has been made in the simulation of quantized vortex rings, there has not been comparable progress in laboratory studies of vortex rings in a viscous fluid such as water. This article overviews the history and current frontiers of classical and quantum vortex rings. After introducing the classical results, this review discusses thin-cored vortex rings in superfluid helium in section 2, and recent progress in understanding vortex rings of very thin cores propagating in water in section 3. (invited paper)

  11. Transfer printing of 3D hierarchical gold structures using a sequentially imprinted polymer stamp

    International Nuclear Information System (INIS)

    Zhang Fengxiang; Low, Hong Yee

    2008-01-01

    Complex three-dimensional (3D) hierarchical structures on polymeric materials are fabricated through a process referred to as sequential imprinting. In this work, the sequentially imprinted polystyrene film is used as a soft stamp to replicate hierarchical structures onto gold (Au) films, and the Au structures are then transferred to a substrate by transfer printing at an elevated temperature and pressure. Continuous and isolated 3D structures can be selectively fabricated with the assistance of thermo-mechanical deformation of the polymer stamp. Hierarchical Au structures are achieved without the need for a corresponding three-dimensionally patterned mold

  12. Stochastic analysis and robust optimization for a deck lid inner panel stamping

    International Nuclear Information System (INIS)

    Hou, Bo; Wang, Wurong; Li, Shuhui; Lin, Zhongqin; Xia, Z. Cedric

    2010-01-01

    FE-simulation and optimization are widely used in the stamping process to improve design quality and shorten development cycle. However, the current simulation and optimization may lead to non-robust results due to not considering the variation of material and process parameters. In this study, a novel stochastic analysis and robust optimization approach is proposed to improve the stamping robustness, where the uncertainties are involved to reflect manufacturing reality. A meta-model based stochastic analysis method is developed, where FE-simulation, uniform design and response surface methodology (RSM) are used to construct meta-model, based on which Monte-Carlo simulation is performed to predict the influence of input parameters variation on the final product quality. By applying the stochastic analysis, uniform design and RSM, the mean and the standard deviation (SD) of product quality are calculated as functions of the controllable process parameters. The robust optimization model composed of mean and SD is constructed and solved, the result of which is compared with the deterministic one to show its advantages. It is demonstrated that the product quality variations are reduced significantly, and quality targets (reject rate) are achieved under the robust optimal solution. The developed approach offers rapid and reliable results for engineers to deal with potential stamping problems during the early phase of product and tooling design, saving more time and resources.

  13. Causal Analysis to a Subway Accident: A Comparison of STAMP and RAIB

    Directory of Open Access Journals (Sweden)

    Zhou Yao

    2018-01-01

    Full Text Available Accident investigation and analysis after the accident, vital to prevent the occurrence of similar accident and improve the safety of the system. Different methods led to a different understanding of the accident. In this paper, a subway accident was analysed with a systemic accident analysis model – STAMP (System-Theoretic Accident Modelling and Processes. The hierarchical safety control structure was obtained, and the system-level safety constraints were obtained, controllers of the physical layer were analysed one by one, and put forward the relevant safety requirements and constraints, the dynamic analysis of the structure of the safety control is carried out, and the targeted recommendations are pointed out. In comparison with the analysis results obtained by the Rail Accident Investigation Branch (RAIB. Some useful findings have been concluded. STAMP treats safety as a control problem and reduces or eliminates causes of the accident from the controlling perspective. Whereas RAIB obtains causes of the accident by analysing the sequence of events related to the accident and reasons of these events, then chooses one(or moreevent(s as the immediate cause and some of the key events as causal factors. RAIB analysis is based on the sequential event models, but STAMP analysis provides us with a holistic, dynamic way to control system to maintain safety.

  14. Discrimination between authentic and false tax stamps from liquor bottles using laser-induced breakdown spectroscopy and chemometrics

    International Nuclear Information System (INIS)

    Gonzaga, Fabiano Barbieri; Rocha, Werickson Fortunato de Carvalho; Correa, Deleon Nascimento

    2015-01-01

    This work describes the preliminary application of a compact and low-cost laser-induced breakdown spectroscopy (LIBS) instrument for falsification detection of tax stamps used in alcoholic beverages. The new instrument was based on a diode-pumped passively Q-switched Nd:YLF microchip laser and a mini-spectrometer containing a Czerny–Turner polichromator coupled to a non-intensified, non-gated, and non-cooled 2048 pixel linear sensor array (200 to 850 nm spectral range). Twenty-three tax stamp samples were analyzed by firing laser pulses within two different regions of each sample: a hologram and a blank paper region. For each acquired spectrum, the emitted radiation was integrated for 3000 ms under the continuous application of laser pulses at 100 Hz (integration of 300 plasmas). Principal component analysis (PCA) or hierarchical cluster analysis (HCA) of all emission spectra from the hologram or blank paper region revealed two well-defined groups of authentic and false samples. Moreover, for the hologram data, three subgroups of false samples were found. Additionally, partial least squares discriminant analysis (PLS-DA) was successfully applied for the detection of the false tax stamps using all emission spectra from hologram or blank paper region. The discrimination between the samples was mostly ascribed to different levels of calcium concentration in the samples. - Highlights: • Compact and low-cost laser-induced breakdown spectrometer • Analysis of tax stamps used in alcoholic beverages • Detection of false tax stamps using the LIBS spectra and chemometrics • Falsification detection ascribed to different levels of calcium concentration

  15. Discrimination between authentic and false tax stamps from liquor bottles using laser-induced breakdown spectroscopy and chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Gonzaga, Fabiano Barbieri, E-mail: fbgonzaga@inmetro.gov.br [Chemical Metrology Division, National Institute of Metrology, Quality and Technology (INMETRO), Av. Nossa Senhora das Graças, 50, Xerém, 25250-020 Duque de Caxias, RJ (Brazil); Rocha, Werickson Fortunato de Carvalho [Chemical Metrology Division, National Institute of Metrology, Quality and Technology (INMETRO), Av. Nossa Senhora das Graças, 50, Xerém, 25250-020 Duque de Caxias, RJ (Brazil); Correa, Deleon Nascimento [Technical–Scientific Police Superintendency, Criminalistic Institute Dr. Octávio Eduardo de Brito Alvarenga—IC-SPTC-SP, 05507-060 São Paulo, SP (Brazil)

    2015-07-01

    This work describes the preliminary application of a compact and low-cost laser-induced breakdown spectroscopy (LIBS) instrument for falsification detection of tax stamps used in alcoholic beverages. The new instrument was based on a diode-pumped passively Q-switched Nd:YLF microchip laser and a mini-spectrometer containing a Czerny–Turner polichromator coupled to a non-intensified, non-gated, and non-cooled 2048 pixel linear sensor array (200 to 850 nm spectral range). Twenty-three tax stamp samples were analyzed by firing laser pulses within two different regions of each sample: a hologram and a blank paper region. For each acquired spectrum, the emitted radiation was integrated for 3000 ms under the continuous application of laser pulses at 100 Hz (integration of 300 plasmas). Principal component analysis (PCA) or hierarchical cluster analysis (HCA) of all emission spectra from the hologram or blank paper region revealed two well-defined groups of authentic and false samples. Moreover, for the hologram data, three subgroups of false samples were found. Additionally, partial least squares discriminant analysis (PLS-DA) was successfully applied for the detection of the false tax stamps using all emission spectra from hologram or blank paper region. The discrimination between the samples was mostly ascribed to different levels of calcium concentration in the samples. - Highlights: • Compact and low-cost laser-induced breakdown spectrometer • Analysis of tax stamps used in alcoholic beverages • Detection of false tax stamps using the LIBS spectra and chemometrics • Falsification detection ascribed to different levels of calcium concentration.

  16. Low temperature high density plasma nitriding of stainless steel molds for stamping of oxide glasses

    Directory of Open Access Journals (Sweden)

    Aizawa Tatsuhiko

    2016-01-01

    Full Text Available Various kinds of stainless steels have been widely utilized as a die for mold- and direct-stamping processes of optical oxide glasses. Since they suffered from high temperature transients and thermal cycles in practice, they must be surface-treated by dry and wet coatings, or, by plasma nitriding. Martensitic stainless steel mold was first wet plated by the nickel phosphate (NiP, which was unstable at the high temperature stamping condition; and, was easy to crystalize or to fracture by itself. This issue of nuisance significantly lowered the productivity in fabrication of optical oxide-glass elements. In the present paper, the stainless steel mold was surface-treated by the low-temperature plasma nitriding. The nitrided layer by this surface modification had higher nitrogen solute content than 4 mass%; the maximum solid-solubility of nitrogen is usually 0.1 mass% in the equilibrium phase diagram. Owing to this solid-solution with high nitrogen concentration, the nitrided layer had high hardness over 1400 HV within its thickness of 50 μm without any formation of nitrides after plasma nitriding at 693 K for 14.4 ks. This plasma-nitrided mold was utilized for mold-stamping of two colored oxide glass plates at 833 K; these plates were successfully deformed and joined into a single glass plate by this stamping without adhesion or galling of oxide glasses onto the nitrided mold surface.

  17. Polymer microlens replication by Nanoimprint Lithography using proton beam fabricated Ni stamp

    International Nuclear Information System (INIS)

    Dutta, R.K.; Kan, J.A. van; Bettiol, A.A.; Watt, F.

    2007-01-01

    It is essential to have a simplified and a rapid method for fabricating micro/nano structures in different kinds of polymeric materials. Though it is possible to fabricate arrays of microlens directly by P beam writing (PBW), it is restricted to a few types of resist materials. Therefore we have fabricated a Ni electroplated metallic stamp comprising of arrays of inverse/negative features of microlenses. The metallic stamp of about 500 μm thick is made on a silicon wafer coated with 10 μm thick polymethylglutarimide (PMGI) resist and the desired structures are written by PBW followed by thermal reflow and Ni electroplating. An array of microlenses is imprinted on a polycarbonate (PC) substrate by the Nanoimprint Lithography (NIL) technique and the replicated microlenses featuring various numerical apertures, diameters and pitches are characterized

  18. Citation classics in neuro-oncology: assessment of historical trends and scientific progress.

    Science.gov (United States)

    Hachem, Laureen D; Mansouri, Alireza; Juraschka, Kyle; Taslimi, Shervin; Pirouzmand, Farhad; Zadeh, Gelareh

    2017-09-01

    Citation classics represent the highest cited works in a field and are often regarded as the most influential literature. Analyzing thematic trends in citation classics across eras enables recognition of important historical advances within a field. We present the first analysis of the citation classics in neuro-oncology. The Web of Science database was searched using terms relevant to "neuro-oncology." Articles with >400 citations were identified and the top 100 cited articles were evaluated. The top 100 neuro-oncology citation classics consisted of 43 clinical studies (17 retrospective, 10 prospective, 16 randomized trials), 43 laboratory investigations, 8 reviews/meta-analyses, and 6 guidelines/consensus statements. Articles were classified into 4 themes: 13 pertained to tumor classification, 37 to tumor pathogenesis/clinical presentation, 6 to imaging, 44 to therapy (15 chemotherapy, 10 radiotherapy, 5 surgery, 14 new agents). Gliomas were the most common tumor type examined, with 70 articles. There was a significant increase in the number of citation classics in the late 1990s, which was paralleled by an increase in studies examining tumor pathogenesis, chemotherapy, and new agents along with laboratory and randomized studies. The majority of citation classics in neuro-oncology are related to gliomas and pertain to tumor pathogenesis and treatment. The rise in citation classics in recent years investigating tumor biology, new treatment agents, and chemotherapeutics may reflect increasing scientific interest in nonsurgical treatments for CNS tumors and the need for fundamental investigations into disease processes. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  19. Studying the Solar System Can Be More than Just "Stamp Collecting"

    Science.gov (United States)

    LoPresto, Michael C.

    2017-01-01

    While teaching his first-ever introductory college astronomy course, I heard a graduate student make the comment that compared to other areas of astronomy, studying the solar system is just "stamp collecting." Coverage of the solar system in an introductory college astronomy course certainly "could" consist mostly of showing…

  20. STAMPS: development and verification of swallowing kinematic analysis software.

    Science.gov (United States)

    Lee, Woo Hyung; Chun, Changmook; Seo, Han Gil; Lee, Seung Hak; Oh, Byung-Mo

    2017-10-17

    Swallowing impairment is a common complication in various geriatric and neurodegenerative diseases. Swallowing kinematic analysis is essential to quantitatively evaluate the swallowing motion of the oropharyngeal structures. This study aims to develop a novel swallowing kinematic analysis software, called spatio-temporal analyzer for motion and physiologic study (STAMPS), and verify its validity and reliability. STAMPS was developed in MATLAB, which is one of the most popular platforms for biomedical analysis. This software was constructed to acquire, process, and analyze the data of swallowing motion. The target of swallowing structures includes bony structures (hyoid bone, mandible, maxilla, and cervical vertebral bodies), cartilages (epiglottis and arytenoid), soft tissues (larynx and upper esophageal sphincter), and food bolus. Numerous functions are available for the spatiotemporal parameters of the swallowing structures. Testing for validity and reliability was performed in 10 dysphagia patients with diverse etiologies and using the instrumental swallowing model which was designed to mimic the motion of the hyoid bone and the epiglottis. The intra- and inter-rater reliability tests showed excellent agreement for displacement and moderate to excellent agreement for velocity. The Pearson correlation coefficients between the measured and instrumental reference values were nearly 1.00 (P software is expected to be useful for researchers who are interested in the swallowing motion analysis.

  1. Boron nitride stamp for ultra-violet nanoimprinting lithography fabricated by focused ion beam lithography

    International Nuclear Information System (INIS)

    Altun, Ali Ozhan; Jeong, Jun-Ho; Rha, Jong-Joo; Kim, Ki-Don; Lee, Eung-Sug

    2007-01-01

    Cubic boron nitride (c-BN) is one of the hardest known materials (second after diamond). It has a high level of chemical resistance and high UV transmittance. In this study, a stamp for ultra-violet nanoimprint lithography (UV-NIL) was fabricated using a bi-layered BN film deposited on a quartz substrate. Deposition of the BN was done using RF magnetron sputtering. A hexagonal boron nitride (h-BN) layer was deposited for 30 min before c-BN was deposited for 30 min. The thickness of the film was measured as 160 nm. The phase of the c-BN layer was investigated using Fourier transform infrared (FTIR) spectrometry, and it was found that the c-BN layer has a 40% cubic phase. The deposited film was patterned using focused ion beam (FIB) lithography for use as a UV-NIL stamp. Line patterns were fabricated with the line width and line distance set at 150 and 150 nm, respectively. The patterning process was performed by applying different currents to observe the effect of the current value on the pattern profile. The fabricated patterns were investigated using AFM, and it was found that the pattern fabricated by applying a current value of 50 picoamperes (pA) has a better profile with a 65 nm line depth. The UV transmittance of the 160 nm thick film was measured to be 70-86%. The hardness and modulus of the BN was measured to be 12 and 150 GPa, respectively. The water contact angle of the stamp surface was measured at 75 0 . The stamp was applied to UV-NIL without coating with an anti-adhesion layer. Successful imprinting was proved via scanning electron microscope (SEM) images of the imprinted resin

  2. Determination of Unit Pressure Force in Material Volume in the Course of Refractory Stamping Press Moulding

    Directory of Open Access Journals (Sweden)

    Orłowicz A.W.

    2016-06-01

    Full Text Available The paper presents results of assessment of the unit pressure force within the refractory material volume in the course press-moulding of stampings for refractory precast shapes. The force was evaluated with the use of physical simulation of deformation undergone by lead balls placed in the raw refractory mass subjected to pressing in a metal die. To determine the value of unit pressure force applied to the aggregate grains in the course of stamping press-moulding, physical model of deformation of a sphere induced by the uniaxial stress state was used.

  3. Silicon oxide nanoimprint stamp fabrication by edge lithography reinforced with silicon nitride

    NARCIS (Netherlands)

    Zhao, Yiping; Berenschot, Johan W.; de Boer, Meint J.; Jansen, Henricus V.; Tas, Niels Roelof; Huskens, Jurriaan; Elwenspoek, Michael Curt

    2007-01-01

    The fabrication of silicon oxide nanoimprint stamp employing edge lithography in combination with silicon nitride deposition is presented. The fabrication process is based on conventional photolithography an weg etching methods. Nanoridges with width dimension of sub-20 nm were fabricated by edge

  4. Improving the Quality of Hot Stamping Parts with Innovative Press Technology and Inline Process Control

    Science.gov (United States)

    Vollmer, R.; Palm, C.

    2017-09-01

    The increasing number of hot stamped parts in the automotive industry is challenging different process areas. This paper presents a method how to improve the production rates over the whole life cycle of a hot forming part. In the core element of a hot forming line, the hydraulic press, mainly two processing steps are performed. Forming and quenching of the sheet metal part. In addition to the forming operation, it is inevitable to optimize the quenching condition in the bottom dead centre in order to reach a fully martensitic structure and tight geometrical tolerances of the part. Deviations in the blank thickness, tool wear, polishing of classical tools impair the quenching condition and therefore the part quality over the time. A new press and tool design has been developed to counter this effect by providing homogenous contact pressure over the whole die. Especially with a multi cavity tool, the new method is advantageous. Test series have shown that the new tool and press concept can produce parts with a blank thickness of 1.0 mm within 8.0 s cycle time. The so called PCH flex principle makes it possible to produce such high output rates under reliable conditions.

  5. Progress in the application of classical S-matrix theory to inelastic collision processes

    International Nuclear Information System (INIS)

    McCurdy, C.W.; Miller, W.H.

    1980-01-01

    Methods are described which effectively solve two of the technical difficulties associated with applying classical S-matrix theory to inelastic/reactive scattering. Specifically, it is shown that rather standard numerical methods can be used to solve the ''root search'' problem (i.e., the nonlinear boundary value problem necessary to impose semiclassical quantum conditions at the beginning and the end of the classical trajectories) and also how complex classical trajectories, which are necessary to describe classically forbidden (i.e., tunneling) processes, can be computed in a numerically stable way. Application is made to vibrational relaxation of H 2 by collision with He (within the helicity conserving approximation). The only remaining problem with regard to applying classical S-matrix theory to complex collision processes has to do with the availability of multidimensional uniform asymptotic formulas for interpolating the ''primitive'' semiclassical expressions between their various regions of validity

  6. Cost-benefit analysis of providing a special subsistence allowance to military personnel who qualify for food stamps

    OpenAIRE

    Becker, Curtis A., Jr.

    2000-01-01

    Approved for public release, distribution is unlimited Recent reports cite that military Food Stamp Program beneficiaries may range from 6,400 to 20,000. The need for food stamps has been attributed to several factors, one of which is the perceived military "pay gap". Although, significant strides have been made in recent years to improve quality of life for our service men and women and their families, the military pay system tends to lag behind the civilian employment cost growth index. ...

  7. CLASSICAL AND NON-CLASSICAL PHILOSOPHICAL ANTHROPOLOGY: COMPARATIVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    T. A. Kozlova

    2018-01-01

    Full Text Available Introduction: The goals and values of human life, the search for the meaning of human existence contain the potential for a meaningful, progressive development of philosophical and anthropological ideas at any time in history. One of the tasks of philosophical anthropology is the formation of the image of man, the choice of ways to achieve the ideal, the methods of comprehension and resolution of universal problems. The increasing processes of differentiation in science led to the formation of different views on the nature of man, to the distinction between classical and non-classical philosophical anthropology. А comparative analysis of these trends is given in this article.Materials and methods: The dialectical method is preferred in the question of research methodology, the hermeneutic and phenomenological approaches are used.Results: The development of philosophical anthropology correlates with the challenges of modernity. By tracking the trends of human change, philosophical anthropology changes the approach to the consideration of its main subject of research. The whole array of disciplines that study man comes to new discoveries, new theories, and philosophical anthropology changes its view of the vision, challenging the principles of classical philosophical anthropology.Classical philosophical anthropology elevates the biological nature of man to a pedestal, non-classical philosophical anthropology actualizes questions of language, culture, thinking, understanding, actualizes the hermeneutic and phenomenological approaches. The desire to understand a person in classical philosophical anthropology is based on the desire to fully reveal the biological mechanisms in a person. The perspective of treating a person in nonclassical philosophical anthropology is polyformen: man as a text, as a dreaming self, as an eternal transition. Non-classical philosophical anthropology, goes from the idea of identity to the idea of variability, from

  8. Fabrication of a metallic roll stamp with low internal stress and high hardness for large area display applications by a pulse reverse current electroforming process

    International Nuclear Information System (INIS)

    Kim, Joongeok; Han, Jungjin; Kim, Taekyung; Kang, Shinill

    2014-01-01

    With the increasing demand for large scale micro/nano components in the fields of display, energy and electrical devices, etc, the establishment of a roll imprinting process has become a priority. The fabrication of a roll stamp with high dimensional accuracy and uniformity is one of the key issues in the roll imprinting process, because the roll stamp determines the properties of the replicated micro/nano structures. In this study, a method to fabricate a metallic roll stamp with low internal stress, high flatness, and high hardness was proposed by a pulse reverse current (PRC) electroforming process. The effects of PRC electroforming processes on the internal stress, hardness, and grain size of the electroformed stamp were examined, and the optimum process conditions were suggested. As a practical example of the proposed method, various micro-patterns for electronic circuits were fabricated via the roll imprinting process using a PRC electroformed stamp. (paper)

  9. A burial with a stamp seal depicting a Bes-like figure from Abusir

    Czech Academy of Sciences Publication Activity Database

    Dulíková, V.; Odler, M.; Březinová, Helena; Havelková, P.

    2015-01-01

    Roč. 2015, č. 15 (2015), s. 69-75 ISSN 1214-3189 Institutional support: RVO:67985912 Keywords : Abusir * Old Kingdom * First Intermediate Period * stamp seal * amulet * Bes * reed coffin * entheses Subject RIV: AC - Archeology, Anthropology, Ethnology

  10. On the measurement of a weak classical force coupled to a harmonic oscillator: experimental progress

    International Nuclear Information System (INIS)

    Bocko, M.F.; Onofrio, R.

    1996-01-01

    Several high-precision physics experiments are approaching a level of sensitivity at which the intrinsic quantum nature of the experimental apparatus is the dominant source of fluctuations limiting the sensitivity of the measurements. This quantum limit is embodied by the Heisenberg uncertainty principle, which prohibits arbitrarily precise simultaneous measurements of two conjugate observables of a system but allows one-time measurements of a single observable with any precision. The dynamical evolution of a system immediately following a measurement limits the class of observables that may be measured repeatedly with arbitrary precision, with the influence of the measurement apparatus on the system being confined strictly to the conjugate observables. Observables having this feature, and the corresponding measurements performed on them, have been named quantum nondemolition or back-action evasion observables. In a previous review (Caves et al., 1980, Rev. Mod. Phys. 52, 341) a quantum-mechanical analysis of quantum nondemolition measurements of a harmonic oscillator was presented. The present review summarizes the experimental progress on quantum nondemolition measurements and the classical models developed to describe and guide the development of practical implementations of quantum nondemolition measurements. The relationship between the classical and quantum theoretical models is also reviewed. The concept of quantum nondemolition and back-action evasion measurements originated in the context of measurements on a macroscopic mechanical harmonic oscillator, though these techniques may be useful in other experimental contexts as well, as is discussed in the last part of this review. copyright 1996 The American Physical Society

  11. Over, under, or about right: misperceptions of body weight among food stamp participants.

    Science.gov (United States)

    Ver Ploeg, Michele L; Chang, Hung-Hao; Lin, Biing-Hwan

    2008-09-01

    The purpose of this research was to investigate the associations between misperception of body weight and sociodemographic factors such as food stamp participation status, income, education, and race/ethnicity. National Health and Nutrition Examination Survey (NHANES) data from 1999-2004 and multivariate logistic regression are used to estimate how sociodemographic factors are associated with (i) the probability that overweight adults misperceive themselves as healthy weight; (ii) the probability that healthy-weight adults misperceive themselves as underweight; and (iii) the probability that healthy-weight adults misperceive themselves as overweight. NHANES data are representative of the US civilian noninstitutionalized population. The analysis included 4,362 men and 4,057 women. BMI derived from measured weight and height was used to classify individuals as healthy weight or overweight. These classifications were compared with self-reported categorical weight status. We find that differences across sociodemographic characteristics in the propensity to underestimate or overestimate weight status were more pronounced for women than for men. Overweight female food stamp participants were more likely to underestimate weight status than income-eligible nonparticipants. Among healthy-weight and overweight women, non-Hispanic black and Mexican-American women, and women with less education were more likely to underestimate actual weight status. We found few differences across sociodemographic characteristics for men. Misperceptions of weight are common among both overweight and healthy-weight individuals and vary across socioeconomic and demographic groups. The nutrition education component of the Food Stamp Program could increase awareness of healthy body weight among participants.

  12. Can laboratory and pilot recycling trials predict adhesive removal in commercial recycling systems? : results from the USPS environmentally benign stamp project

    Science.gov (United States)

    Carl Houtman; Daniel Seiter; Nancy Ross Sutherland; Donald Donermeyer

    2002-01-01

    The ultimate goal of the US Postal Service (USPS) Environmentally Benign Stamp Program is to develop stamp laminates, i.e., face paper, adhesive and siliconized liner, that do not cause difficulties in recycling mills. The criterion for success, and the USPS definition of benignity, is the avoidance of process and product quality hardships when such PSA laminates are...

  13. Investigation of the Phase Formation of AlSi-Coatings for Hot Stamping of Boron Alloyed Steel

    International Nuclear Information System (INIS)

    Veit, R.; Kolleck, R.; Hofmann, H.; Sikora, S.

    2011-01-01

    Hot stamping of boron alloyed steel is gaining more and more importance for the production of high strength automotive body parts. Within hot stamping of quenchenable steels the blank is heated up to austenitization temperature, transferred to the tool, formed rapidly and quenched in the cooled tool. To avoid scale formation during the heating process of the blank, the sheet metal can be coated with an aluminium-silicum alloy. The meltimg temperature of this coating is below the austenitization temperature of the base material. This means, that a diffusion process between base material and coating has to take place during heating, leading to a higher melting temperature of the coating.In conventional heating devices, like roller hearth furnaces, the diffusion process is reached by relatively low heating rates. New technologies, like induction heating, reach very high heating rates and offer great potentials for the application in hot stamping. Till now it is not proofed, that this technology can be used with aluminum-silicon coated materials. This paper will present the results of comparative heating tests with a conventional furnace and an induction heating device. For different time/temperature-conditions the phase formation within the coating will be described.

  14. Studies on the finite element simulation in sheet metal stamping processes

    Science.gov (United States)

    Huang, Ying

    The sheet metal stamping process plays an important role in modern industry. With the ever-increasing demand for shape complexity, product quality and new materials, the traditional trial and error method for setting up a sheet metal stamping process is no longer efficient. As a result, the Finite Element Modeling (FEM) method has now been widely used. From a physical point of view, the formability and the quality of a product are influenced by several factors. The design of the product in the initial stage and the motion of the press during the production stage are two of these crucial factors. This thesis focuses on the numerical simulation for these two factors using FEM. Currently, there are a number of commercial FEM software systems available in the market. These software systems are based on an incremental FEM process that models the sheet metal stamping process in small incremental steps. Even though the incremental FEM is accurate, it is not suitable for the initial conceptual design for its needing of detailed design parameters and enormous calculation times. As a result, another type of FEM, called the inverse FEM method or one-step FEM method, has been proposed. While it is less accurate than that of the incremental method, this method requires much less computation and hence, has a great potential. However, it also faces a number of unsolved problems, which limits its application. This motivates the presented research. After the review of the basic theory of the inverse method, a new modified arc-length search method is proposed to find better initial solution. The methods to deal with the vertical walls are also discussed and presented. Then, a generalized multi-step inverse FEM method is proposed. It solves two key obstacles: the first one is to determine the initial solution of the intermediate three-dimensional configurations and the other is to control the movement of nodes so they could only slide on constraint surfaces during the search by

  15. [Progressive visual agnosia].

    Science.gov (United States)

    Sugimoto, Azusa; Futamura, Akinori; Kawamura, Mitsuru

    2011-10-01

    Progressive visual agnosia was discovered in the 20th century following the discovery of classical non-progressive visual agnosia. In contrast to the classical type, which is caused by cerebral vascular disease or traumatic injury, progressive visual agnosia is a symptom of neurological degeneration. The condition of progressive visual loss, including visual agnosia, and posterior cerebral atrophy was named posterior cortical atrophy (PCA) by Benson et al. (1988). Progressive visual agnosia is also observed in semantic dementia (SD) and other degenerative diseases, but there is a difference in the subtype of visual agnosia associated with these diseases. Lissauer (1890) classified visual agnosia into apperceptive and associative types, and it in most cases, PCA is associated with the apperceptive type. However, SD patients exhibit symptoms of associative visual agnosia before changing to those of semantic memory disorder. Insights into progressive visual agnosia have helped us understand the visual system and discover how we "perceive" the outer world neuronally, with regard to consciousness. Although PCA is a type of atypical dementia, its diagnosis is important to enable patients to live better lives with appropriate functional support.

  16. Investigation of Hardness Change for Spot Welded Tailored Blank in Hot Stamping Using CCT and Deformation-CCT Diagrams

    Science.gov (United States)

    Yogo, Yasuhiro; Kurato, Nozomi; Iwata, Noritoshi

    2018-04-01

    When an outer panel of a B-pillar is manufactured with the hot stamping process, reinforcements are spot welded on its inner side. Before reinforcements are added, the microstructure of the outer panel is martensite. However, reheating during spot welding changes the martensite to ferrite, which has a lower hardness in the heat-affected zone than in other areas. If spot welding is conducted before hot stamping for making a spot welded tailored blank, the microstructure in the spot welded tailored blank after hot stamping is martensite. This sequence of processes avoids hardness reduction due to spot welding. In this study, the hardness and microstructure around spot welded parts of the tailored blank were investigated. The results clearly showed that areas close to the spot welded parts are severely stretched during hot stamping. In addition, stretching suppresses the martensitic phase transformation and reduces the hardness. To characterize this phenomenon, a simulation was conducted that considered the effects of pre-strain on the phase transformation. A continuous cooling transformation (CCT) diagram and a deformation continuous cooling transformation (DCCT) diagram were made in order to quantify the effect of the cooling rate and pre-strain on the phase transformation and hardness. The hardness was then calculated using the experimentally measured CCT and DCCT diagrams and the finite element analysis results. The calculated hardness was compared with the experimental hardness. Good agreement was found between the calculated and experimental results.

  17. Investigation of Hardness Change for Spot Welded Tailored Blank in Hot Stamping Using CCT and Deformation-CCT Diagrams

    Science.gov (United States)

    Yogo, Yasuhiro; Kurato, Nozomi; Iwata, Noritoshi

    2018-06-01

    When an outer panel of a B-pillar is manufactured with the hot stamping process, reinforcements are spot welded on its inner side. Before reinforcements are added, the microstructure of the outer panel is martensite. However, reheating during spot welding changes the martensite to ferrite, which has a lower hardness in the heat-affected zone than in other areas. If spot welding is conducted before hot stamping for making a spot welded tailored blank, the microstructure in the spot welded tailored blank after hot stamping is martensite. This sequence of processes avoids hardness reduction due to spot welding. In this study, the hardness and microstructure around spot welded parts of the tailored blank were investigated. The results clearly showed that areas close to the spot welded parts are severely stretched during hot stamping. In addition, stretching suppresses the martensitic phase transformation and reduces the hardness. To characterize this phenomenon, a simulation was conducted that considered the effects of pre-strain on the phase transformation. A continuous cooling transformation (CCT) diagram and a deformation continuous cooling transformation (DCCT) diagram were made in order to quantify the effect of the cooling rate and pre-strain on the phase transformation and hardness. The hardness was then calculated using the experimentally measured CCT and DCCT diagrams and the finite element analysis results. The calculated hardness was compared with the experimental hardness. Good agreement was found between the calculated and experimental results.

  18. Experimental Investigation About Stamping Behaviour of 3D Warp Interlock Composite Preforms

    Science.gov (United States)

    Dufour, Clément; Wang, Peng; Boussu, François; Soulat, Damien

    2014-10-01

    Forming of continuous fibre reinforcements and thermoplastic resin commingled prepregs can be performed at room temperature due to its similar textile structure. The "cool" forming stage is better controlled and more economical. The increase of temperature and the resin consolidation phases after the forming can be carried out under the isothermal condition thanks to a closed system. It can avoid the manufacturing defects easily experienced in the non-isothermal thermoforming, in particular the wrinkling [1]. Glass/Polypropylene commingled yarns have been woven inside different three-dimensional (3D) warp interlock fabrics and then formed using a double-curved shape stamping tool. The present study investigates the in-plane and through-thickness behaviour of the 3D warp interlock fibrous reinforcements during forming with a hemispherical punch. Experimental data allow analysing the forming behaviour in the warp and weft directions and on the influence of warp interlock architectures. The results point out that the layer to layer warp interlock preform has a better stamping behaviour, in particular no forming defects and good homogeneity in thickness.

  19. The comparison of two continuum damage mechanics-based material models for formability prediction of AA6082 under hot stamping conditions

    Science.gov (United States)

    Shao, Z.; Li, N.; Lin, J.

    2017-09-01

    The hot stamping and cold die quenching process has experienced tremendous development in order to obtain shapes of structural components with great complexity in automotive applications. Prediction of the formability of a metal sheet is significant for practical applications of forming components in the automotive industry. Since microstructural evolution in an alloy at elevated temperature has a large effect on formability, continuum damage mechanics (CDM)-based material models can be used to characterise the behaviour of metals when a forming process is conducted at elevated temperatures. In this paper, two sets of unified multi-axial constitutive equations based on material’s stress states and strain states, respectively, were calibrated and used to effectively predict the thermo-mechanical response and forming limits of alloys under complex hot stamping conditions. In order to determine and calibrate the two material models, formability tests of AA6082 using a developed novel biaxial testing system were conducted at various temperatures and strain rates under hot stamping conditions. The determined unified constitutive equations from experimental data are presented in this paper. It is found that both of the stress-state based and strain-state based material models can predict the formability of AA6082 under hot stamping conditions.

  20. Influence of temperature and friction on the 22MnB5 formability under hot stamping conditions

    Science.gov (United States)

    Venturato, G.; Ghiotti, A.; Bruschi, S.

    2018-05-01

    The need to increase the safety and decrease the weight of the car body-in-white has determined the success of the direct hot stamping process as a primary technology for the automotive sector. Thanks to this process, parts with high strength-to-weight ratio can be obtained along with high stiffness and increase of the crashworthiness properties. Moreover, the thinner metal sheets used to manufacture the pieces lead to a decrease of the total weight of the car body-in-white, with a consequent reduction of the CO2 emissions. The direct hot stamping process is becoming the key to obtain pieces with high mechanical properties, thanks to the quenching stage that allows the manufacture of complex shapes characterized by a fully martensitic structure, thanks to the forming stage at elevated temperature and subsequent hardening inside the cooled dies. The aim of this paper is the investigation of the influence that the forming temperature may have on the formability of 22MnB5 steel sheets, commonly used in the hot stamping process of automotive components. Nakajima tests were carried out at different temperatures and the Forming Limit Diagrams (FLDs) at rupture were obtained and analysed. The temperature influenced both the major and the minor strain at which the sheet failed, indicating that not only the formability increased at increasing temperature, but there was also a modification of the strain path, which means a modification of the strain states through which the part passes during the deformation process. Moreover, the influence of friction is studied using a model developed in the LS-Dyna FEM environment. The obtained data are of great importance for an accurate calibration of Finite Element (FE) models of the hot stamping of real components in order to get optimal process parameters to obtain defects-free pieces.

  1. CO2 Laser Cutting of Hot Stamping Boron Steel Sheets

    OpenAIRE

    Pasquale Russo Spena

    2017-01-01

    This study investigates the quality of CO2 laser cutting of hot stamping boron steel sheets that are employed in the fabrication of automotive body-in-white. For this purpose, experimental laser cutting tests were conducted on 1.2 mm sheets at varying levels of laser power, cutting speed, and oxygen pressure. The resulting quality of cut edges was evaluated in terms of perpendicularity tolerance, surface irregularity, kerf width, heat affected zone, and dross extension. Experimental tests wer...

  2. Tribological behavior of a new green industrial lubricant for stamping operations - Application to Stainless Steels

    Science.gov (United States)

    Buteri, A.; Borgeot, M.; Roizard, X.; Lallemand, F.; Melot, J.-M.; Morand, L.

    2016-11-01

    Thanks to a fruitful collaboration between different academic and industrial research entities, a new green lubricant solution AFULudine has been developed for stamping operations in substitution to the usual mineral oils, with the idea and the wish to combine different essential properties such as a low environmental impact and ease-of-use according to the market needs and the more and more restrictive environmental legislation (e.g. REACH). Based on the Self-Assembled-Monolayer (SAM) principle and so, on a perfect control of the chemical reaction between the solution and the substrate (grafting of molecules onto the surface), AFULudine offers an efficient technical answer for improving stamping processes. The present study, focused on stainless steel stampings (comparison between a 441-1.4509 grade and a 304-1.4301 grade), investigates the performances of this new green industrial lubricant at different levels: from laboratory tests to industrial conditions through the production of hundreds of parts. Additional results coming from tests made on a rotational pin- on-disk tribometer will allow us to appreciate and retrieve more local information about the tribofilm creation during sliding. Moreover, the comparison with different mineral oils currently used at industrial scale, will strengthen the AFULudine performances. Indeed, this new solution usually outperforms a majority of such oils whatever their viscosity and their own composition: formulation, content of extreme pressure additives (Cl, S, P)...

  3. Authentication, Time-Stamping and Digital Signatures

    Science.gov (United States)

    Levine, Judah

    1996-01-01

    Time and frequency data are often transmitted over public packet-switched networks, and the use of this mode of distribution is likely to increase in the near future as high-speed logical circuits transmitted via networks replace point-to-point physical circuits. ALthough these networks have many technical advantages, they are susceptible to evesdropping, spoofing, and the alteration of messages enroute using techniques that are relatively simple to implement and quite difficult to detect. I will discuss a number of solutions to these problems, including the authentication mechanism used in the Network Time Protocol (NTP) and the more general technique of signing time-stamps using public key cryptography. This public key method can also be used to implement the digital analog of a Notary Public, and I will discuss how such a system could be realized on a public network such as the Internet.

  4. CO2 Laser Cutting of Hot Stamping Boron Steel Sheets

    Directory of Open Access Journals (Sweden)

    Pasquale Russo Spena

    2017-10-01

    Full Text Available This study investigates the quality of CO2 laser cutting of hot stamping boron steel sheets that are employed in the fabrication of automotive body-in-white. For this purpose, experimental laser cutting tests were conducted on 1.2 mm sheets at varying levels of laser power, cutting speed, and oxygen pressure. The resulting quality of cut edges was evaluated in terms of perpendicularity tolerance, surface irregularity, kerf width, heat affected zone, and dross extension. Experimental tests were based on a L9(34 orthogonal array design, with the effects of the process parameters on the quality responses being determined by means of a statistical analysis of variance (ANOVA. Quadratic mathematical models were developed to determine the relationships between the cutting parameters and the quality responses. Finally, a routine based on an optimization criterion was employed to predict the optimal setting of cutting factors and its effect on the quality responses. A confirmation experiment was conducted to verify the appropriateness of the optimization routine. The results show that all of the examined process parameters have a key role in determining the cut quality of hot stamping boron steel sheets, with cutting speed and their interactions having the most influencing effects. Particularly, interactions can have an opposite behavior for different levels of the process parameters.

  5. Can Food Stamps Do More to Improve Food Choices? An Economic Perspective--Making Healthy Food Choices Easier: Ideas From Behavioral Economics

    OpenAIRE

    Mancino, Lisa; Andrews, Margaret S.

    2007-01-01

    With obesity the most prevalent nutrition problem facing Americans at all economic levels, promoting diets that provide adequate nutrition without too many calories has become an important objective for the Food Stamp Program. Findings from behavioral economics suggest innovative, low-cost ways to improve the diet quality of food stamp participants without restricting their freedom of choice. Unlike more traditional economic interventions, such as changing prices or banning specific foods, th...

  6. Extracting Hot spots of Topics from Time Stamped Documents

    Science.gov (United States)

    Chen, Wei; Chundi, Parvathi

    2011-01-01

    Identifying time periods with a burst of activities related to a topic has been an important problem in analyzing time-stamped documents. In this paper, we propose an approach to extract a hot spot of a given topic in a time-stamped document set. Topics can be basic, containing a simple list of keywords, or complex. Logical relationships such as and, or, and not are used to build complex topics from basic topics. A concept of presence measure of a topic based on fuzzy set theory is introduced to compute the amount of information related to the topic in the document set. Each interval in the time period of the document set is associated with a numeric value which we call the discrepancy score. A high discrepancy score indicates that the documents in the time interval are more focused on the topic than those outside of the time interval. A hot spot of a given topic is defined as a time interval with the highest discrepancy score. We first describe a naive implementation for extracting hot spots. We then construct an algorithm called EHE (Efficient Hot Spot Extraction) using several efficient strategies to improve performance. We also introduce the notion of a topic DAG to facilitate an efficient computation of presence measures of complex topics. The proposed approach is illustrated by several experiments on a subset of the TDT-Pilot Corpus and DBLP conference data set. The experiments show that the proposed EHE algorithm significantly outperforms the naive one, and the extracted hot spots of given topics are meaningful. PMID:21765568

  7. A Path-Independent Forming Limit Criterion for Stamping Simulations

    International Nuclear Information System (INIS)

    Zhu Xinhai; Chappuis, Laurent; Xia, Z. Cedric

    2005-01-01

    Forming Limit Diagram (FLD) has been proved to be a powerful tool for assessing necking failures in sheet metal forming analysis for majority of stamping operations over the last three decades. However, experimental evidence and theoretical analysis suggest that its applications are limited to linear or almost linear strain paths during its deformation history. Abrupt changes or even gradual deviations from linear strain-paths will shift forming limit curves from their original values, a situation that occurs in vast majority of sequential stamping operations such as where the drawing process is followed by flanging and re-strike processes. Various forming limit models have been put forward recently to provide remedies for the problem, noticeably stress-based and strain gradient-based forming limit criteria. This study presents an alternative path-independent forming limit criterion. Instead of traditional Forming Limit Diagrams (FLD) which are constructed in terms of major - minor principal strains throughout deformation history, the new criterion defines a critical effective strain ε-bar* as the limit strain for necking, and it is shown that ε-bar* can be expressed as a function of current strain rate state and material work hardening properties, without the need of explicitly considering strain-path effects. It is given by ε-bar* = f(β, k, n) where β = (dε 2 /dε 1 ) at current deformation state, and k and n are material strain hardening parameters if a power law is assumed. The analysis is built upon previous work by Storen and Rice [1975] and Zhu et al [2002] with the incorporation of anisotropic yield models such as Hill'48 for quadratic orthotropic yield and Hill'79 for non-quadratic orthotropic yield. Effects of anisotropic parameters such as R-values and exponent n-values on necking are investigated in detail for a variety of strain paths. Results predicted according to current analysis are compared against experimental data gathered from literature

  8. Organic thin film transistors and polymer light-emitting diodes patterned by polymer inking and stamping

    International Nuclear Information System (INIS)

    Li Dawen; Guo, L Jay

    2008-01-01

    To fully realize the advantages of organic flexible electronics, patterning is very important. In this paper we show that a purely additive patterning technique, termed polymer inking and stamping, can be used to pattern conductive polymer PEDOT and fabricate sub-micron channel length organic thin film transistors. In addition, we applied the technique to transfer a stack of metal/conjugated polymer in one step and fabricated working polymer light-emitting devices. Based on the polymer inking and stamping technique, a roll-to-roll printing for high throughput fabrication has been demonstrated. We investigated and explained the mechanism of this process based on the interfacial energy consideration and by using the finite element analysis. This technique can be further extended to transfer more complex stacked layer structures, which may benefit the research on patterning on flexible substrates

  9. Symmetries and Conservation Laws in Classical and Quantum ...

    Indian Academy of Sciences (India)

    (classical) field theory is quite elementary, in principle. In Part 1, we ... progression from elementary considerations to a com- prehensive ...... Pearson Education, Singapore, 2002. [5]. E J Saletan and ... Indian Institute of Technology. Madras ...

  10. Effects of Pre-Strain on the Aging Behavior of Al 7075 Alloy for Hot-Stamping Capability

    Directory of Open Access Journals (Sweden)

    Seon-Ho Jung

    2018-02-01

    Full Text Available The present study investigates the significance of pre-strain on the T6 aging behavior of an Al 7075 alloy for evaluating the applicability of hot stamping. In practice, the alloy was pre-strained up to 15% during solution heat treatment at 480 °C prior to quenching, and artificial aging was conducted at 120 °C. The peak aging time and precipitation behavior were compared with the alloy with pre-straining at room temperature after quenching but immediately before the artificial aging. The results showed that increasing amounts of pre-strain tend to reduce the aging time up to 50% for achieving peak hardness, which is consistent with the alloy at the T6 condition. There is a limitation for the maximum attainable amount of pre-strain of 10% for the homogeneous distribution of strain when the alloy is strained at room temperature (RT due to the low formability. The pre-strained alloy as hot stamping exhibited lowering of the peak reaction temperatures for dissolution and formation of Guinier–Preston (GP-Zones and precipitated with increasing amounts of pre-strain towards 15% through the differential scanning calorimetry analysis, thereby confirming the shortening of the peak aging time. The present study confirms the excellent potential of the hot-stamping process to extend the capability of an Al 7075 alloy.

  11. Comparison of the methods for calculating the interfacial heat transfer coefficient in hot stamping

    International Nuclear Information System (INIS)

    Zhao, Kunmin; Wang, Bin; Chang, Ying; Tang, Xinghui; Yan, Jianwen

    2015-01-01

    This paper presents a hot stamping experimentation and three methods for calculating the Interfacial Heat Transfer Coefficient (IHTC) of 22MnB5 boron steel. Comparison of the calculation results shows an average error of 7.5% for the heat balance method, 3.7% for the Beck's nonlinear inverse estimation method (the Beck's method), and 10.3% for the finite-element-analysis-based optimization method (the FEA method). The Beck's method is a robust and accurate method for identifying the IHTC in hot stamping applications. The numerical simulation using the IHTC identified by the Beck's method can predict the temperature field with a high accuracy. - Highlights: • A theoretical formula was derived for direct calculation of IHTC. • The Beck's method is a robust and accurate method for identifying IHTC. • Finite element method can be used to identify an overall equivalent IHTC

  12. Can Food Stamps Do More to Improve Food Choices? An Economic Perspective--Higher Cost of Food in Some Areas May Affect Food Stamp Households' Ability To Make Healthy Food Choices

    OpenAIRE

    Nord, Mark; Hopwood, Heather

    2007-01-01

    The cost of “enough food,” estimated from the amount that low- and medium-income households in a geographic area report needing to spend to just meet their food needs, differs substantially across States and among metropolitan areas. In areas with high food costs, many food-stamp recipients are likely to have inadequate food resources to support healthy food choices.

  13. Titanium nitride stamps replicating nanoporous anodic alumina films

    International Nuclear Information System (INIS)

    Navas, D; Sanchez, O; Asenjo, A; Jaafar, M; Baldonedo, J L; Vazquez, M; Hernandez-Velez, M

    2007-01-01

    Fabrication of nanostructured TiN films by magnetron sputtering using nanoporous anodic alumina films (NAAF) as substrates is reported. These hard nanostructured films could be used for pre-patterning aluminium foils and to obtain nanoporous films replicating the starting NAAF over a wide range of pore diameters and spacings. Pre-patterned Al foils are obtained by compression with pressures lower than those previously reported, then a new NAAF can be fabricated by means of only one anodization process. As an example, one of the TiN stamps was used for pre-patterning an Al foil at a pressure of 200 kg cm -2 and then it was anodized in oxalic acid solution obtaining the corresponding replica of the starting NAAF

  14. Development of Core Competencies for Paraprofessional Nutrition Educators Who Deliver Food Stamp Nutrition Education

    Science.gov (United States)

    Baker, Susan S.; Pearson, Meredith; Chipman, Helen

    2009-01-01

    The purpose of this project was to describe the process used for the development of core competencies for paraprofessional nutrition educators in Food Stamp Nutrition Education (FSNE). The development process included the efforts of an expert panel of state and multicounty FSNE leaders to draft the core competencies and the validation of those…

  15. Classical and semiclassical aspects of chemical dynamics

    International Nuclear Information System (INIS)

    Gray, S.K.

    1982-08-01

    Tunneling in the unimolecular reactions H 2 C 2 → HC 2 H, HNC → HCN, and H 2 CO → H 2 + CO is studied with a classical Hamiltonian that allows the reaction coordinate and transverse vibrational modes to be considered directly. A combination of classical perturbation theory and the semiclassical WKB method allows tunneling probabilities to be obtained, and a statistical theory (RRKM) is used to construct rate constants for these reactions in the tunneling regime. In this fashion, it is found that tunneling may be important, particularly for low excitation energies. Nonadiabatic charge transfer in the reaction Na + I → Na + + I - is treated with classical trajectories based on a classical Hamiltonian that is the analogue of a quantum matrix representation. The charge transfer cross section obtained is found to agree reasonably well with the exact quantum results. An approximate semiclassical formula, valid at high energies, is also obtained. The interaction of radiation and matter is treated from a classical viewpoint. The excitation of an HF molecule in a strong laser is described with classical trajectories. Quantum mechanical results are also obtained and compared to the classical results. Although the detailed structure of the pulse time averaged energy absorption cannot be reproduced classically, classical mechanics does predict the correct magnitude of energy absorption, as well as certain other qualitative features. The classical behavior of a nonrotating diatomic molecule in a strong laser field is considered further, by generating a period advance map that allows the solution over many periods of oscillation of the laser to be obtained with relative ease. Classical states are found to form beautiful spirals in phase space as time progresses. A simple pendulum model is found to describe the major qualitative features

  16. Mapping between Classical Risk Management and Game Theoretical Approaches

    OpenAIRE

    Rajbhandari , Lisa; Snekkenes , Einar ,

    2011-01-01

    Part 2: Work in Progress; International audience; In a typical classical risk assessment approach, the probabilities are usually guessed and not much guidance is provided on how to get the probabilities right. When coming up with probabilities, people are generally not well calibrated. History may not always be a very good teacher. Hence, in this paper, we explain how game theory can be integrated into classical risk management. Game theory puts emphasis on collecting representative data on h...

  17. Microstructure, Mechanical Properties, and Toughening Mechanisms of a New Hot Stamping-Bake Toughening Steel

    Science.gov (United States)

    Lin, Tao; Song, Hong-Wu; Zhang, Shi-Hong; Cheng, Ming; Liu, Wei-Jie; Chen, Yun

    2015-09-01

    In this article, the hot stamping-bake toughening process has been proposed following the well-known concept of bake hardening. The influences of the bake time on the microstructure and the mechanical properties of the hot stamped-baked part were studied by means of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and mechanical tests at room temperature. The results show that the amount of the retained austenite was nearly not changed by the bake process. Also observed were spherical Cu-rich precipitates of about 15 nm in martensite laths. According to the Orowan mechanism, their contribution of the Cu-rich precipitates to the strength is approximately 245 MPa. With the increase of the bake time, the tensile strength of the part was decreased, whereas both the ductility and the product of the tensile strength and ductility were increased then decreased. The tensile strength and ductility product and the tensile strength are as high as 21.9 GPa pct, 2086 MPa, respectively. The excellent combined properties are due to the transformation-induced plasticity effect caused by retained austenite.

  18. Determination of stamp deformation during imprinting on semi-spherical surfaces

    DEFF Research Database (Denmark)

    Kafka, Jan; Matschuk, Maria; Pranov, Henrik

    of sol-gel was applied onto spherical injection mold inserts and subsequently imprinted using a flexible stamp. A hard curing step transformed the sol-gel into a quartz-like and durable material. As an example, we present theory and results regarding the imprint of pillar nanostructures on semi......-spherical mold surfaces. Imprints were realized on three different radii of circumferenceof the spherical mold: R = 0.5 mm, R = 1.0 mm, and R = 2 mm. After hard-curing of theimprinted sol-gel, the inserts were used for cold-mold as well as vario-therm injection molding.The polymer replicas and the inserts were...

  19. Fabrication of Glass Microchannel via Glass Imprinting using a Vitreous Carbon Stamp for Flow Focusing Droplet Generator

    Science.gov (United States)

    Refatul Haq, Muhammad; Kim, Youngkyu; Kim, Jun; Oh, Pyoung-hwa; Ju, Jonghyun; Kim, Seok-Min; Lim, Jiseok

    2017-01-01

    This study reports a cost-effective method of replicating glass microfluidic chips using a vitreous carbon (VC) stamp. A glass replica with the required microfluidic microstructures was synthesized without etching. The replication method uses a VC stamp fabricated by combining thermal replication using a furan-based, thermally-curable polymer with carbonization. To test the feasibility of this method, a flow focusing droplet generator with flow-focusing and channel widths of 50 µm and 100 µm, respectively, was successfully fabricated in a soda-lime glass substrate. Deviation between the geometries of the initial shape and the vitreous carbon mold occurred because of shrinkage during the carbonization process, however this effect could be predicted and compensated for. Finally, the monodispersity of the droplets generated by the fabricated microfluidic device was evaluated. PMID:29286341

  20. Fabrication of Glass Microchannel via Glass Imprinting using a Vitreous Carbon Stamp for Flow Focusing Droplet Generator

    Directory of Open Access Journals (Sweden)

    Hyungjun Jang

    2017-12-01

    Full Text Available This study reports a cost-effective method of replicating glass microfluidic chips using a vitreous carbon (VC stamp. A glass replica with the required microfluidic microstructures was synthesized without etching. The replication method uses a VC stamp fabricated by combining thermal replication using a furan-based, thermally-curable polymer with carbonization. To test the feasibility of this method, a flow focusing droplet generator with flow-focusing and channel widths of 50 µm and 100 µm, respectively, was successfully fabricated in a soda-lime glass substrate. Deviation between the geometries of the initial shape and the vitreous carbon mold occurred because of shrinkage during the carbonization process, however this effect could be predicted and compensated for. Finally, the monodispersity of the droplets generated by the fabricated microfluidic device was evaluated.

  1. Stamping SERS for creatinine sensing

    Science.gov (United States)

    Li, Ming; Du, Yong; Zhao, Fusheng; Zeng, Jianbo; Santos, Greggy M.; Mohan, Chandra; Shih, Wei-Chuan

    2015-03-01

    Urine can be obtained easily, readily and non-invasively. The analysis of urine can provide metabolic information of the body and the condition of renal function. Creatinine is one of the major components of human urine associated with muscle metabolism. Since the content of creatinine excreted into urine is relatively constant, it is used as an internal standard to normalize water variations. Moreover, the detection of creatinine concentration in urine is important for the renal clearance test, which can monitor the filtration function of kidney and health status. In more details, kidney failure can be imminent when the creatinine concentration in urine is high. A simple device and protocol for creatinine sensing in urine samples can be valuable for point-of-care applications. We reported quantitative analysis of creatinine in urine samples by using stamping surface enhanced Raman scattering (S-SERS) technique with nanoporous gold disk (NPGD) based SERS substrate. S-SERS technique enables label-free and multiplexed molecular sensing under dry condition, while NPGD provides a robust, controllable, and high-sensitivity SERS substrate. The performance of S-SERS with NGPDs is evaluated by the detection and quantification of pure creatinine and creatinine in artificial urine within physiologically relevant concentration ranges.

  2. Human factors science and safety engineering : can the STAMP model serve in establishing a common language?

    NARCIS (Netherlands)

    Karanikas, Nektarios; Schwarz, M; Harfmann, J

    2017-01-01

    A symbiotic relationship between human factors and safety scientists is needed to ensure the provision of holistic solutions for problems emerging in modern socio-technical systems. System Theoretic Accident Model and Processes (STAMP) tackles both interactions and individual failures of human and

  3. Time stamp generation with inverse FIR filters for Positron Emission Tomography

    International Nuclear Information System (INIS)

    Namias, Mauro

    2009-01-01

    Photon coincidence detection is the process by which Positron Emission Tomography (PET) works. This requires the determination of the time of impact of each coincident photon at the detector system, also known as time stamp. In this work, the timestamp was generated by means of digital time-domain deconvolution with FIR filters for a INa(Tl) based system. The detector deadtime was reduced from 350 ns to 175 ns while preserving the system's energy resolution and a direct relation between the amount of light collected and the temporal resolution was found.(author)

  4. Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) Spectroscopy as a Forensic Method to Determine the Composition of Inks Used to Print the United States One-cent Blue Benjamin Franklin Postage Stamps of the 19th Century.

    Science.gov (United States)

    Brittain, Harry G

    2016-01-01

    Through the combined use of infrared (IR) absorption spectroscopy and attenuated total reflectance (ATR) sampling, the composition of inks used to print the many different types of one-cent Benjamin Franklin stamps of the 19th century has been established. This information permits a historical evaluation of the formulations used at various times, and also facilitates the differentiation of the various stamps from each other. In two instances, the ink composition permits the unambiguous identification of stamps whose appearance is identical, and which (until now) have only been differentiated through estimates of the degree of hardness or softness of the stamp paper, or through the presence or absence of a watermark in the paper. In these instances, the use of ATR Fourier transform infrared spectroscopy (FT-IR) spectroscopy effectively renders irrelevant two 100-year-old practices of stamp identification. Furthermore, since the use of ATR sampling makes it possible to obtain the spectrum of a stamp still attached to its cover, it is no longer necessary to identify these blue Franklin stamps using their cancellation dates. © The Author(s) 2015.

  5. All-silica nanofluidic devices for DNA-analysis fabricated by imprint of sol-gel silica with silicon stamp

    DEFF Research Database (Denmark)

    Mikkelsen, Morten Bo Lindholm; Letailleur, Alban A; Søndergård, Elin

    2011-01-01

    We present a simple and cheap method for fabrication of silica nanofluidic devices for single-molecule studies. By imprinting sol-gel materials with a multi-level stamp comprising micro- and nanofeatures, channels of different depth are produced in a single process step. Calcination of the imprin......We present a simple and cheap method for fabrication of silica nanofluidic devices for single-molecule studies. By imprinting sol-gel materials with a multi-level stamp comprising micro- and nanofeatures, channels of different depth are produced in a single process step. Calcination...... of the imprinted hybrid sol-gel material produces purely inorganic silica, which has very low autofluorescence and can be fusion bonded to a glass lid. Compared to top-down processing of fused silica or silicon substrates, imprint of sol-gel silica enables fabrication of high-quality nanofluidic devices without...

  6. Classical and Non-Classical Roles for Pre-Receptor Control of DHT Metabolism in Prostate Cancer Progression.

    Science.gov (United States)

    Zhang, Ailin; Zhang, Jiawei; Plymate, Stephen; Mostaghel, Elahe A

    2016-04-01

    Androgens play an important role in prostate cancer (PCa) development and progression. Accordingly, androgen deprivation therapy remains the front-line treatment for locally recurrent or advanced PCa, but patients eventually relapse with the lethal form of the disease termed castration resistant PCa (CRPC). Importantly, castration does not eliminate androgens from the prostate tumor microenvironment which is characterized by elevated tissue androgens that are well within the range capable of activating the androgen receptor (AR). In this mini-review, we discuss emerging data that suggest a role for the enzymes mediating pre-receptor control of dihydrotestosterone (DHT) metabolism, including AKR1C2, HSD17B6, HSD17B10, and the UGT family members UGT2B15 and UGT2B17, in controlling intratumoral androgen levels, and thereby influencing PCa progression. We review the expression of steroidogenic enzymes involved in this pathway in primary PCa and CRPC, the activity and regulation of these enzymes in PCa experimental models, and the impact of genetic variation in genes mediating pre-receptor DHT metabolism on PCa risk. Finally, we discuss recent data that suggests several of these enzymes may also play an unrecognized role in CRPC progression separate from their role in androgen inactivation.

  7. Analysis Of Die Design For The Stamping Of A Bathtub

    Directory of Open Access Journals (Sweden)

    Hojny M.

    2015-06-01

    Full Text Available The paper presents example results of numerical and photogrammetric analysis leading to identify the causes of cracking and wrinkling during bathtub W1200 production. The verification of tools for the stamping of bathtub W1200 was performed using finite element method and photogrammetric system ATOS Triple Scan. A series of industrial tests was conducted to identify the model parameters. The major and minor strain distributions obtained from the finite element simulations were used in conjunction with the forming limit diagram to predict the onset of fracture. In addition, the effects of blank holder pressure and friction on the occurrence of fracture and wrinkling were investigated.

  8. An interactive and flexible approach to stamping design and optimization

    International Nuclear Information System (INIS)

    Roy, Subir; Kunju, Ravi; Kirby, David

    2004-01-01

    This paper describes an efficient method that integrates finite element analysis (FEA), mesh morphing and response surface based optimization in order to implement an automated and flexible software tool to optimize stamping tool and process design. For FEA, a robust and extremely fast inverse solver is chosen. For morphing, a state of the art mesh morpher that interactively generates shape variables for optimization studies is used. The optimization algorithm utilized in this study enables a global search for a multitude of parameters and is highly flexible with regards to the choice of objective functions. A quality function that minimizes formability defects resulting from stretching and compression is implemented

  9. Ramón y Cajal erroneously identified as Camillo Golgi on a souvenir postage stamp.

    Science.gov (United States)

    Triarhou, Lazaros C; del Cerro, Manuel

    2012-01-01

    Focusing on a philatelic oddity that erringly identifies a picture of Santiago Ramón y Cajal as that of Camillo Golgi, this brief article examines official and unofficial stamp issues honoring the two great neuroanatomists, one from Spain and the other from Italy, who were early Nobel Prize winners in Physiology or Medicine.

  10. Defect detection and classification of galvanized stamping parts based on fully convolution neural network

    Science.gov (United States)

    Xiao, Zhitao; Leng, Yanyi; Geng, Lei; Xi, Jiangtao

    2018-04-01

    In this paper, a new convolution neural network method is proposed for the inspection and classification of galvanized stamping parts. Firstly, all workpieces are divided into normal and defective by image processing, and then the defective workpieces extracted from the region of interest (ROI) area are input to the trained fully convolutional networks (FCN). The network utilizes an end-to-end and pixel-to-pixel training convolution network that is currently the most advanced technology in semantic segmentation, predicts result of each pixel. Secondly, we mark the different pixel values of the workpiece, defect and background for the training image, and use the pixel value and the number of pixels to realize the recognition of the defects of the output picture. Finally, the defect area's threshold depended on the needs of the project is set to achieve the specific classification of the workpiece. The experiment results show that the proposed method can successfully achieve defect detection and classification of galvanized stamping parts under ordinary camera and illumination conditions, and its accuracy can reach 99.6%. Moreover, it overcomes the problem of complex image preprocessing and difficult feature extraction and performs better adaptability.

  11. The classical parafermion algebra, its generalization and its quantization

    International Nuclear Information System (INIS)

    Bardakci, K.

    1992-01-01

    The Poisson bracket algebra of the classical parafermions derived earlier from the lagrangian description of conformal coset models is generalized. It is also shown how to quantize models with commutative monodromy matrices, and progress is made in quantizing the non-commutative case. (orig.)

  12. Fabrication of a silicon oxide stamp by edge lithography reinforced with silicon nitride for nanoimprint lithography

    NARCIS (Netherlands)

    Zhao, Yiping; Berenschot, Johan W.; de Boer, M.; de Boer, Meint J.; Jansen, Henricus V.; Tas, Niels Roelof; Huskens, Jurriaan; Elwenspoek, Michael Curt

    2008-01-01

    The fabrication of a stamp reinforced with silicon nitride is presented for its use in nanoimprint lithography. The fabrication process is based on edge lithography using conventional optical lithography and wet anisotropic etching of 110 silicon wafers. SiO2 nano-ridges of 20 nm in width were

  13. The ambiguity of simplicity in quantum and classical simulation

    International Nuclear Information System (INIS)

    Aghamohammadi, Cina; Mahoney, John R.; Crutchfield, James P.

    2017-01-01

    Highlights: • Simplicity depends on whether a system is represented classically or quantally. • We demonstrate that simplicity is unavoidably ambiguous. • Relative simplicity changes order moving between classical and quantum descriptions. • Ambiguity of simplicity bears directly on model selection. - Abstract: A system's perceived simplicity depends on whether it is represented classically or quantally. This is not so surprising, as classical and quantum physics are descriptive frameworks built on different assumptions that capture, emphasize, and express different properties and mechanisms. What is surprising is that, as we demonstrate, simplicity is ambiguous: the relative simplicity between two systems can change sign when moving between classical and quantum descriptions. Here, we associate simplicity with small model-memory. We see that the notions of absolute physical simplicity at best form a partial, not a total, order. This suggests that appeals to principles of physical simplicity, via Ockham's Razor or to the “elegance” of competing theories, may be fundamentally subjective. Recent rapid progress in quantum computation and quantum simulation suggest that the ambiguity of simplicity will strongly impact statistical inference and, in particular, model selection.

  14. Quantum Models of Classical World

    Directory of Open Access Journals (Sweden)

    Petr Hájíček

    2013-02-01

    Full Text Available This paper is a review of our recent work on three notorious problems of non-relativistic quantum mechanics: realist interpretation, quantum theory of classical properties, and the problem of quantum measurement. A considerable progress has been achieved, based on four distinct new ideas. First, objective properties are associated with states rather than with values of observables. Second, all classical properties are selected properties of certain high entropy quantum states of macroscopic systems. Third, registration of a quantum system is strongly disturbed by systems of the same type in the environment. Fourth, detectors must be distinguished from ancillas and the states of registered systems are partially dissipated and lost in the detectors. The paper has two aims: a clear explanation of all new results and a coherent and contradiction-free account of the whole quantum mechanics including all necessary changes of its current textbook version.

  15. Investigating β-adrenergic-induced cardiac hypertrophy through computational approach: classical and non-classical pathways.

    Science.gov (United States)

    Khalilimeybodi, Ali; Daneshmehr, Alireza; Sharif-Kashani, Babak

    2018-07-01

    The chronic stimulation of β-adrenergic receptors plays a crucial role in cardiac hypertrophy and its progression to heart failure. In β-adrenergic signaling, in addition to the well-established classical pathway, Gs/AC/cAMP/PKA, activation of non-classical pathways such as Gi/PI3K/Akt/GSK3β and Gi/Ras/Raf/MEK/ERK contribute in cardiac hypertrophy. The signaling network of β-adrenergic-induced hypertrophy is very complex and not fully understood. So, we use a computational approach to investigate the dynamic response and contribution of β-adrenergic mediators in cardiac hypertrophy. The proposed computational model provides insights into the effects of β-adrenergic classical and non-classical pathways on the activity of hypertrophic transcription factors CREB and GATA4. The results illustrate that the model captures the dynamics of the main signaling mediators and reproduces the experimental observations well. The results also show that despite the low portion of β2 receptors out of total cardiac β-adrenergic receptors, their contribution in the activation of hypertrophic mediators and regulation of β-adrenergic-induced hypertrophy is noticeable and variations in β1/β2 receptors ratio greatly affect the ISO-induced hypertrophic response. The model results illustrate that GSK3β deactivation after β-adrenergic receptor stimulation has a major influence on CREB and GATA4 activation and consequent cardiac hypertrophy. Also, it is found through sensitivity analysis that PKB (Akt) activation has both pro-hypertrophic and anti-hypertrophic effects in β-adrenergic signaling.

  16. Improvement in current density of nano- and micro-structured Si solar cells by cost-effective elastomeric stamp process

    Science.gov (United States)

    Jeon, Kiseok; Jee, Hongsub; Lim, Sangwoo; Park, Min Joon; Jeong, Chaehwan

    2018-03-01

    Effective incident light should be controlled for improving the current density of solar cells by employing nano- and micro-structures on silicon surface. The elastomeric stamp process, which is more cost effective and simpler than conventional photolithography, was proposed for the fabrication of nano- and micro-structures. Polydimethylsiloxane (PDMS) was poured on a mother pattern with a diameter of 6 μm and a spacing of 2 μm; then, curing was performed to create a PDMS mold. The regular micropattern was stamped on a low-viscosity resin-coated silicon surface, followed by the simple reactive ion etching process. Nano-structures were formed using the Ag-based electroless etching process. As etching time was increased to 6 min, reflectance decreased to 4.53% and current density improved from 22.35 to 34.72 mA/cm2.

  17. Micropatterning of a stretchable conductive polymer using inkjet printing and agarose stamping

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Hassager, Ole; Larsen, Niels Bent

    2007-01-01

    A highly conducting stretchable polymer material has been patterned using additive inkjet printing and by subtractive agarose stamping of a deactivation agent (hypochlorite). The material consisted of elastomeric polyurethane combined in an interpenetrating network with a conductive polymer, poly(3....... Inkjet printing of the material was only possible if a short-chain polyurethane was used as elastomer to overcome strain hardening at the neck of the droplets produced for printing. Reproducible line widths down to 200 μm could be achieved by inkjet printing. Both methods were used to fabricate test...

  18. Event for the launch of the Georges Charpak postage stamp | 26-27 February | Prévessin site

    CERN Multimedia

    2016-01-01

    At the end of February, the French post office is releasing a new €0.70 stamp featuring an image of Georges Charpak. CERN is taking part in this event by hosting a temporary post office on the Prévessin site, which will sell the stamp with a special “first day” postmark before it goes on general sale.     Georges Charpak arrived at CERN in 1959 and, in the late 1960s, revolutionised particle detection technology by developing the multiwire proportional chamber. This technique brought particle detectors into the electronic era, setting physicists free from the laborious task of studying photographs one by one. In 1992, he was awarded the Nobel Prize in Physics for his invention. Charpak chambers are still used today in the LHC detectors and have paved the way for the technology in numerous other modern detectors. In the 1990s, Charpak was involved in developing medical applications based on particle detection technology. He was als...

  19. The ambiguity of simplicity in quantum and classical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Aghamohammadi, Cina, E-mail: caghamohammadi@ucdavis.edu; Mahoney, John R., E-mail: jrmahoney@ucdavis.edu; Crutchfield, James P., E-mail: chaos@ucdavis.edu

    2017-04-11

    Highlights: • Simplicity depends on whether a system is represented classically or quantally. • We demonstrate that simplicity is unavoidably ambiguous. • Relative simplicity changes order moving between classical and quantum descriptions. • Ambiguity of simplicity bears directly on model selection. - Abstract: A system's perceived simplicity depends on whether it is represented classically or quantally. This is not so surprising, as classical and quantum physics are descriptive frameworks built on different assumptions that capture, emphasize, and express different properties and mechanisms. What is surprising is that, as we demonstrate, simplicity is ambiguous: the relative simplicity between two systems can change sign when moving between classical and quantum descriptions. Here, we associate simplicity with small model-memory. We see that the notions of absolute physical simplicity at best form a partial, not a total, order. This suggests that appeals to principles of physical simplicity, via Ockham's Razor or to the “elegance” of competing theories, may be fundamentally subjective. Recent rapid progress in quantum computation and quantum simulation suggest that the ambiguity of simplicity will strongly impact statistical inference and, in particular, model selection.

  20. Clinical features of Friedreich's ataxia: classical and atypical phenotypes.

    Science.gov (United States)

    Parkinson, Michael H; Boesch, Sylvia; Nachbauer, Wolfgang; Mariotti, Caterina; Giunti, Paola

    2013-08-01

    One hundred and fifty years since Nikolaus Friedreich's first description of the degenerative ataxic syndrome which bears his name, his description remains at the core of the classical clinical phenotype of gait and limb ataxia, poor balance and coordination, leg weakness, sensory loss, areflexia, impaired walking, dysarthria, dysphagia, eye movement abnormalities, scoliosis, foot deformities, cardiomyopathy and diabetes. Onset is typically around puberty with slow progression and shortened life-span often related to cardiac complications. Inheritance is autosomal recessive with the vast majority of cases showing an unstable intronic GAA expansion in both alleles of the frataxin gene on chromosome 9q13. A small number of cases are caused by a compound heterozygous expansion with a point mutation or deletion. Understanding of the underlying molecular biology has enabled identification of atypical phenotypes with late onset, or atypical features such as retained reflexes. Late-onset cases tend to have slower progression and are associated with smaller GAA expansions. Early-onset cases tend to have more rapid progression and a higher frequency of non-neurological features such as diabetes, cardiomyopathy, scoliosis and pes cavus. Compound heterozygotes, including those with large deletions, often have atypical features. In this paper, we review the classical and atypical clinical phenotypes of Friedreich's ataxia. © 2013 International Society for Neurochemistry.

  1. The ambiguity of simplicity in quantum and classical simulation

    Science.gov (United States)

    Aghamohammadi, Cina; Mahoney, John R.; Crutchfield, James P.

    2017-04-01

    A system's perceived simplicity depends on whether it is represented classically or quantally. This is not so surprising, as classical and quantum physics are descriptive frameworks built on different assumptions that capture, emphasize, and express different properties and mechanisms. What is surprising is that, as we demonstrate, simplicity is ambiguous: the relative simplicity between two systems can change sign when moving between classical and quantum descriptions. Here, we associate simplicity with small model-memory. We see that the notions of absolute physical simplicity at best form a partial, not a total, order. This suggests that appeals to principles of physical simplicity, via Ockham's Razor or to the ;elegance; of competing theories, may be fundamentally subjective. Recent rapid progress in quantum computation and quantum simulation suggest that the ambiguity of simplicity will strongly impact statistical inference and, in particular, model selection.

  2. Modeling and simulation of stamp deflections in nanoimprint lithography: Exploiting backside grooves to enhance residual layer thickness uniformity

    DEFF Research Database (Denmark)

    Taylor, Hayden; Smistrup, Kristian; Boning, Duane

    2011-01-01

    We describe a model for the compliance of a nanoimprint stamp etched with a grid of backside grooves. We integrate the model with a fast simulation technique that we have previously demonstrated, to show how etched grooves help reduce the systematic residual layer thickness (RLT) variations...

  3. Classical swine fever in pigs: recent developments and future perspectives.

    Science.gov (United States)

    Chander, Vishal; Nandi, S; Ravishankar, C; Upmanyu, V; Verma, Rishendra

    2014-06-01

    Classical swine fever (CSF) is one of the most devastating epizootic diseases of pigs, causing high morbidity and mortality worldwide. The diversity of clinical signs and similarity in disease manifestations to other diseases make CSF difficult to diagnose with certainty. The disease is further complicated by the presence of a number of different strains belonging to three phylogenetic groups. Advanced diagnostic techniques allow detection of antigens or antibodies in clinical samples, leading to implementation of proper and effective control programs. Polymerase chain reaction (PCR)-based methods, including portable real-time PCR, provide diagnosis in a few hours with precision and accuracy, even at the point of care. The disease is controlled by following a stamping out policy in countries where vaccination is not practiced, whereas immunization with live attenuated vaccines containing the 'C' strain is effectively used to control the disease in endemic countries. To overcome the problem of differentiation of infected from vaccinated animals, different types of marker vaccines, with variable degrees of efficacy, along with companion diagnostic assays have been developed and may be useful in controlling and even eradicating the disease in the foreseeable future. The present review aims to provide an overview and status of CSF as a whole with special reference to swine husbandry in India.

  4. Springback Reduction in Stamping of Front Side Member with a Response Surface Method

    International Nuclear Information System (INIS)

    Song, Jung-Han; Huh, Hoon; Kim, Se-Ho; Park, Sung-Ho

    2005-01-01

    Springback is a common phenomenon in sheet metal forming since the elastic recovery of the internal stresses is induced after removal of the tooling. The numerical analysis of springback is a complicated time-consuming job and its result is greatly effected by a type of the yield function, finite elements used and the constraint condition for eliminating a rigid body motion. In this paper, optimization of the draw-bead force is carried out utilizing the response surface method in order to reduce springback and improve shape accuracy of a deep drawn product. In the optimization process, the tendency of springback is evaluated qualitatively without springback simulation usually done with the implicit solving scheme. Instead of springback simulation, the amount of stress deviation along the thickness direction in the deep drawn product is used as an indicator of springback. The stamping process is analyzed for a front side member formed with advanced high strength steel (AHSS) sheets such as DP60. The analysis procedure fully covers the binder-wrap, stamping, trimming and springback processes with the commercial elasto-plastic finite element code LS-DYNA 3D. The effect of the restraining force of draw-beads is confirmed with the decreased stress deviation. The analysis result shown in the final springback simulation demonstrates that the present analysis provides a guideline for controlling the evolution of springback based on the finite element simulation of complicated auto-body members

  5. Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition for AFM bio-experiments

    International Nuclear Information System (INIS)

    Dague, E; Jauvert, E; Laplatine, L; Thibault, C; Viallet, B; Ressier, L

    2011-01-01

    Immobilization of live micro-organisms on solid substrates is an important prerequisite for atomic force microscopy (AFM) bio-experiments. The method employed must immobilize the cells firmly enough to enable them to withstand the lateral friction forces exerted by the tip during scanning but without denaturing the cell interface. In this work, a generic method for the assembly of living cells on specific areas of substrates is proposed. It consists in assembling the living cells within the patterns of microstructured, functionalized poly-dimethylsiloxane (PDMS) stamps using convective/capillary deposition. This versatile approach is validated by applying it to two systems of foremost importance in biotechnology and medicine: Saccharomyces cerevisiae yeasts and Aspergillus fumigatus fungal spores. We show that this method allows multiplexing AFM nanomechanical measurements by force spectroscopy on S. cerevisiae yeasts and high-resolution AFM imaging of germinated Aspergillus conidia in buffer medium. These two examples clearly demonstrate the immense potential of micro-organism assembly on functionalized, microstructured PDMS stamps by convective/capillary deposition for performing rigorous AFM bio-experiments on living cells.

  6. Experimental study on the warm forming and quenching behavior for hot stamping of high-strength aluminum alloys

    Science.gov (United States)

    Degner, J.; Horn, A.; Merklein, M.

    2017-09-01

    Within the last decades, stringent regulations on fuel consumption, CO2 emissions and product recyclability forced the automotive sector to implement new strategies within the field of car body manufacturing. Due to their low density and good corrosion resistance, aluminum became one of the most relevant lightweight materials. Recently, especially high- strength aluminum alloys for structural components gained importance. Since the low formability of these alloys limits their application, there is a need for novel process strategies in order to enhance the forming behavior. One promising approach is the hot stamping of aluminum alloys. The combination of quenching and forming in one step after solution heat treatment leads to a significant improvement of the formability. Furthermore, higher manufacturing accuracy can be achieved due to reduced spring back. Within this contribution, the influence of forming temperature on the subsequent material behavior and the heat transfer during quenching will be analyzed. Therefore, the mechanical and thermal material characteristics such as flow behavior and heat transfer coefficient during hot stamping are investigated.

  7. Auto-représentations de l’Irlande à travers les timbres et la monnaie Self-representations of Ireland through Stamps and Coinage

    Directory of Open Access Journals (Sweden)

    Alexandra Dilys-Slaby

    2009-11-01

    Full Text Available The representation of Ireland on stamps and coinage is the locus of the formulation by the government of national identity—a crucial stage in the development of a newly independent state. Charles Sanders Peirce’s semiotic trilogy—symbol, icon and index—enables one to better understand the intentions and the evolution informing the State’s self-representation. The stakes vary from one medium to another. Coins and notes are images of Ireland which circulate inside the country only and last longer, the government intervening only occasionally to change those images. It can be noted that these media, which are more apolitical and atemporal, retain a symbolic function longer. As for stamps, they are meant to represent Ireland inside the country as well as abroad. They are then particularly entitled to representing the events or characters which Ireland includes in the development of its identity as a young State. Thus, stamps display a general evolution from being symbols to being indexes as the government acknowledges as foundations of its identity no longer merely nationalism and religion, but also scientific development, sports and art. On the level of the form, this evolution is backed by a movement towards simplification and universal legibility.

  8. Microstructure and Properties of a New Cr - Mn Steel without Boron Additions for Use in Hot Stamping

    Science.gov (United States)

    Zhou, H.; Zhu, G.; Li, Q.; Chen, Q.

    2015-09-01

    Anew hot-stamping steel that is alloyed with chromium and manganese and does not contain boron additions has been developed. The effect of reheating temperature and cooling rates on the mechanical properties and structure of the steel is determined. Atreatment regime that increases the ductility of the steel without a noticeable decrease in its strength is proposed.

  9. Památky starověké Núbie na známkách světa // Monuments of Ancient Nubia on postage stamps of the modern world

    Directory of Open Access Journals (Sweden)

    Břetislav Vachala

    2015-06-01

    Full Text Available The successful International UNESCO Campaign to Save the Monuments of (Egyptian and Sudanese Nubia became an important motif on the postage stamps of 47 countries of the world in the years 1960–1980. The stamps host famous rescued temples (listed here according to frequency of the used motifs, including general views, details of architecture and relief decoration of Abu Simbel, Philae, Wadi es-Sebua, and Dakka, the Kiosk of Qertassi and the South - ern temple of Buhen. Moreover, some of the unique painted murals found in the episcopal cathedral at Faras were reproduced on Polish stamps. The philatelic contribution to the campaign was far from symbolic. The total philatelic revenue (including income from the Philae Medals reached 112,665.64 US dollars. The philatelic activity of 47 countries substantially contributed to the publicity of the UNESCO Nubia Campaign around the world.

  10. Stamps, Stickers and Stigmata. A Social Practice of Antisemitism Presented in a Slide-show

    Directory of Open Access Journals (Sweden)

    Isabel Enzenbach

    2012-07-01

    Full Text Available Antisemitic stickers were disseminated in Germany from the 1880s/1890s onwards. They were glued on letters or postcards, placed visibly in public space or collected in the private sphere. In rethinking antisemitism as a social practice, these stickers, stamps and adhesive labels can be seen as a prototypical source demonstrating the performative dimension of antisemtism. The antisemitic movement used various media such as leaflets, cartoons, speeches, historical novels, articles or newspapers to mobilize people and to build up a community.

  11. Construction of classical and non-classical coherent photon states

    International Nuclear Information System (INIS)

    Honegger, Reinhard; Rieckers, Alfred

    2001-01-01

    It is well known that the diagonal matrix elements of all-order coherent states for the quantized electromagnetic field have to constitute a Poisson distribution with respect to the photon number. The present work gives first the summary of a constructive scheme, developed previously, which determines in terms of an auxiliary Hilbert space all possible off-diagonal elements for the all-order coherent density operators in Fock space and which identifies all extremal coherent states. In terms of this formalism it is then demonstrated that each pure classical coherent state is a uniformly phase locked (quantum) coherent superposition of number states. In a mixed classical coherent state the exponential of the locked phase is shown to be replaced by a rather arbitrary unitary operator in the auxiliary Hilbert space. On the other hand classes for density operators--and for their normally ordered characteristic functions--of non-classical coherent states are obtained, especially by rather weak perturbations of classical coherent states. These illustrate various forms of breaking the classical uniform phase locking and exhibit rather peculiar properties, such as asymmetric fluctuations for the quadrature phase operators. Several criteria for non-classicality are put forward and applied to the elaborated non-classical coherent states, providing counterexamples against too simple arguments for classicality. It is concluded that classicality is only a stable concept for coherent states with macroscopic intensity

  12. Classical, Semi-classical and Quantum Noise

    CERN Document Server

    Poor, H; Scully, Marlan

    2012-01-01

    David Middleton was a towering figure of 20th Century engineering and science and one of the founders of statistical communication theory. During the second World War, the young David Middleton, working with Van Fleck, devised the notion of the matched filter, which is the most basic method used for detecting signals in noise. Over the intervening six decades, the contributions of Middleton have become classics. This collection of essays by leading scientists, engineers and colleagues of David are in his honor and reflect the wide  influence that he has had on many fields. Also included is the introduction by Middleton to his forthcoming book, which gives a wonderful view of the field of communication, its history and his own views on the field that he developed over the past 60 years. Focusing on classical noise modeling and applications, Classical, Semi-Classical and Quantum Noise includes coverage of statistical communication theory, non-stationary noise, molecular footprints, noise suppression, Quantum e...

  13. New technique for laryngotracheal mucosa transplantation. 'Stamp' welding using indocyanine green dye and albumin interaction with diode laser.

    Science.gov (United States)

    Wang, Z; Pankratov, M M; Gleich, L L; Rebeiz, E E; Shapshay, S M

    1995-07-01

    To investigate (1) the possibility of survival of free mucosa "stamp" grafts fixed in the airway with a new technique using indocyanine green-dyed albumin solder activated with a diode laser and (2) the degree of improvement of wound healing in the airway by applying modified microskin transplantation techniques from burn surgery to cover a relatively large wound with a few small pieces of mucosa anchored in place with the previously mentioned technique. Three (one control and two experimental) rectangular (10 x 8 mm) wounds in tracheal mucosa were produced in four experimental animals (dogs) using a carbon dioxide laser. The control wound was left uncovered. In the first experimental wound, a mucosal flap was raised and then fixed in place by a trapdoor flap method. In the second experimental wound, two small (each 2 x 3 mm) autogenous mucosa grafts were anchored onto the surface with indocyanine green-dyed albumin activated with an 810-nm diode laser. Histomorphologically, the postoperative results from three wounds were compared. The experimental wounds were completely covered by regenerated squamous cells in 1 week and by ciliated epithelium in 2 weeks after the operation despite the discrepancy in size of the graft to wound area (1:6.7) covered with the stamp mucosa. No thermal damage from the diode laser was noted in the second experimental wounds. In the control wounds, no coverage was observed at 1 week, and only squamous cells were noted 2 weeks postoperatively. All the wounds had normal ciliated epithelium coverage at 4 weeks. Transplanted stamp grafts provided similar or better healing than trapdoor flap transplants. This new technique made endoscopic mucosal grafting possible and offers a potential breakthrough in the management of laryngotracheal stenosis.

  14. Investigation into the Fiber Orientation Effect on the Formability of GLARE Materials in the Stamp Forming Process

    Science.gov (United States)

    Liu, Shichen; Lang, Lihui; Sherkatghanad, Ehsan; Wang, Yao; Xu, Wencai

    2018-04-01

    Glass-reinforced aluminum laminate (GLARE) is a new class of fiber metal laminates (FMLs) which has the advantages such as high tensile strength, outstanding fatigue, impact resistance, and excellent corrosion properties. GLARE has been extensively applied in advanced aerospace and automobile industries. However, the deformation behavior of the glass fiber during forming must be studied to the benefits of the good-quality part we form. In this research, we focus on the effect of fiber layer orientation on the GLARE laminate formability in stamp forming process. Experimental and numerical analysis of stamping a hemisphere part in different fiber orientation is investigated. The results indicate that unidirectional and multi-directional fiber in the middle layer make a significant effect on the thinning and also surface forming quality of the three layer sheet. Furthermore, the stress-strain distribution of the aluminum alloy and the unique anisotropic property of the fiber layer exhibit that fiber layer orientation can also affect the forming depths as well as the fracture modes of the laminate. According to the obtained results, it is revealed that multi-directional fiber layers are a good alternative compared to the unidirectional fibers especially when a better formability is the purpose.

  15. On the Determination of the Blank Shape Contour for Thin Precision Parts Obtained by Stamping

    International Nuclear Information System (INIS)

    Azaouzi, M.; Delameziere, A.; Naceur, H.; Batoz, J. L.; Sibaud, D.; Belouettar, S.

    2007-01-01

    The present study deals with the 'automatic' determination of the initial blank shape contour for 3D thin metallic precision parts obtained by stamping, knowing the 3D CAD geometry of the final part (the desired product). The forming process can involve several steps presented in this paper that consists in applying a heuristic method of optimization to find out the initial blank shape of thin precision metallic part in order to obtain a final part, with a required 3D geometry (specified). The purpose of the present approach is to replace the experimental trial and error optimization method used currently, which is expensive and time consuming. The principle of the 'heuristic' optimization method is to first estimate the blank shape using the Inverse Approach, then to compensate the shape error calculated in each node of the blank contour. The 'heuristic' optimization loop is done using a precise incremental code (Abaqus Explicit or Stampack) and, the iterations loop is stopped when the shape errors are within some initially fixed tolerances. The method is tested in the case of a special stamping process where the parts are pressed in one or more steps using a manual press, without blank holder and by the mean of tools having complex shape. The sensitivities of the process parameters regarding the optimal solution are investigated

  16. The new Swiss commemorative stamp dedicated to CERN available at the Organization's Meyrin post office on Tuesday, 9 March!

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    For some people, the stamp's rays are spreading outwards towards the infinitely large, while for others they focus inwards towards the infinitely small. It's a bit like the proverbial half-full or half-empty glass or a picture that conveys two different images, depending on how you look at it.

  17. Impact of Simulation Technology on Die and Stamping Business

    Science.gov (United States)

    Stevens, Mark W.

    2005-08-01

    Over the last ten years, we have seen an explosion in the use of simulation-based techniques to improve the engineering, construction, and operation of GM production tools. The impact has been as profound as the overall switch to CAD/CAM from the old manual design and construction methods. The changeover to N/C machining from duplicating milling machines brought advances in accuracy and speed to our construction activity. It also brought significant reductions in fitting sculptured surfaces. Changing over to CAD design brought similar advances in accuracy, and today's use of solid modeling has enhanced that accuracy gain while finally leading to the reduction in lead time and cost through the development of parametric techniques. Elimination of paper drawings for die design, along with the process of blueprinting and distribution, provided the savings required to install high capacity computer servers, high-speed data transmission lines and integrated networks. These historic changes in the application of CAE technology in manufacturing engineering paved the way for the implementation of simulation to all aspects of our business. The benefits are being realized now, and the future holds even greater promise as the simulation techniques mature and expand. Every new line of dies is verified prior to casting for interference free operation. Sheet metal forming simulation validates the material flow, eliminating the high costs of physical experimentation dependent on trial and error methods of the past. Integrated forming simulation and die structural analysis and optimization has led to a reduction in die size and weight on the order of 30% or more. The latest techniques in factory simulation enable analysis of automated press lines, including all stamping operations with corresponding automation. This leads to manufacturing lines capable of running at higher levels of throughput, with actual results providing the capability of two or more additional strokes per

  18. Experimental analysis of electro-pneumatic optimization of hot stamping machine control systems with on-delay timer

    OpenAIRE

    Bankole I. Oladapo; Vincent A. Balogun; Adeyinka O.M. Adeoye; Ige E. Olubunmi; Samuel O. Afolabi

    2017-01-01

    The sustainability criterion in the manufacturing industries is imperative, especially in the automobile industries. Currently, efforts are being made by the industries to mitigate CO2 emission by the total vehicle weight optimization, machine utilization and resource efficiency. In lieu of this, it is important to understudy the manufacturing machines adopted in the automobile industries. One of such machine is the hot stamping machine that is used for about 35% of the manufacturing operatio...

  19. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping

    International Nuclear Information System (INIS)

    Castellanos-Gomez, Andres; Buscema, Michele; Molenaar, Rianda; Singh, Vibhor; Janssen, Laurens; Van der Zant, Herre S J; Steele, Gary A

    2014-01-01

    The deterministic transfer of two-dimensional crystals constitutes a crucial step towards the fabrication of heterostructures based on the artificial stacking of two-dimensional materials. Moreover, controlling the positioning of two-dimensional crystals facilitates their integration in complex devices, which enables the exploration of novel applications and the discovery of new phenomena in these materials. To date, deterministic transfer methods rely on the use of sacrificial polymer layers and wet chemistry to some extent. Here, we develop an all-dry transfer method that relies on viscoelastic stamps and does not employ any wet chemistry step. This is found to be very advantageous to freely suspend these materials as there are no capillary forces involved in the process. Moreover, the whole fabrication process is quick, efficient, clean and it can be performed with high yield. (letter)

  20. Recognition of Time Stamps on Full-Disk Hα Images Using Machine Learning Methods

    Science.gov (United States)

    Xu, Y.; Huang, N.; Jing, J.; Liu, C.; Wang, H.; Fu, G.

    2016-12-01

    Observation and understanding of the physics of the 11-year solar activity cycle and 22-year magnetic cycle are among the most important research topics in solar physics. The solar cycle is responsible for magnetic field and particle fluctuation in the near-earth environment that have been found increasingly important in affecting the living of human beings in the modern era. A systematic study of large-scale solar activities, as made possible by our rich data archive, will further help us to understand the global-scale magnetic fields that are closely related to solar cycles. The long-time-span data archive includes both full-disk and high-resolution Hα images. Prior to the widely use of CCD cameras in 1990s, 35-mm films were the major media to store images. The research group at NJIT recently finished the digitization of film data obtained by the National Solar Observatory (NSO) and Big Bear Solar Observatory (BBSO) covering the period of 1953 to 2000. The total volume of data exceeds 60 TB. To make this huge database scientific valuable, some processing and calibration are required. One of the most important steps is to read the time stamps on all of the 14 million images, which is almost impossible to be done manually. We implemented three different methods to recognize the time stamps automatically, including Optical Character Recognition (OCR), Classification Tree and TensorFlow. The latter two are known as machine learning algorithms which are very popular now a day in pattern recognition area. We will present some sample images and the results of clock recognition from all three methods.

  1. Expression of the c-Met oncogene by tumor cells predicts a favorable outcome in classical Hodgkin's lymphoma.

    Science.gov (United States)

    Xu, Chuanhui; Plattel, Wouter; van den Berg, Anke; Rüther, Nele; Huang, Xin; Wang, Miao; de Jong, Debora; Vos, Hans; van Imhoff, Gustaaf; Viardot, Andreas; Möller, Peter; Poppema, Sibrand; Diepstra, Arjan; Visser, Lydia

    2012-04-01

    The c-Met signaling pathway regulates a variety of biological processes, including proliferation, survival and migration. Deregulated c-Met activation has been implicated in the pathogenesis and prognosis of many human malignancies. We studied the function and prognostic significance of c-Met and hepatocyte growth factor protein expression in patients with classical Hodgkin's lymphoma. Expression of c-Met and its ligand, hepatocyte growth factor, were determined by immunohistochemistry. Prognostic values were defined in cohorts of German and Dutch patients with classical Hodgkin's lymphoma. Functional studies were performed on Hodgkin's lymphoma cell lines. Expression of c-Met was detected in the tumor cells of 52% (80/153) of the patients and expression of its ligand, hepatocyte growth factor, in 8% (10/121) of the patients. c-Met expression correlated with a 5-year freedom from tumor progression of 94%, whereas lack of expression correlated with a 5-year freedom from tumor progression of 73% (Pfreedom from tumor progression. In functional studies activation with hepatocyte growth factor did not affect cell growth, while the c-Met inhibitor SU11274 suppressed cell growth by inducing G2/M cell cycle arrest. Although functional studies showed an oncogenic role of the hepatocyte growth factor/c-Met signaling pathway in cell cycle progression, expression of c-Met in tumor cells from patients with classical Hodgkin's lymphoma strongly correlated with a favorable prognosis in two independent cohorts.

  2. Behavioral Finances versus Technical and Fundamental Analysis

    Directory of Open Access Journals (Sweden)

    Ion Stancu

    2007-01-01

    Full Text Available Although the field of modern finance has progressed impressively, it is still hard to explain on a scientific basis why people behave nonrationally when dealing with money. The classic finance assumes people rationalize and optimize their financial decisions. Behavioral Finance adds the importance of what investors should do and complements the mantra of classic finance with what people actually do, in terms of economic decisions. The new field of Neuroeconomy investigates the subtle and profound interactions within the human brain when faced with uncertainties of an economic decision. The most basic psychological traits of human being (fear, anger, greed and altruism stamp an indelible mark on our decisions about money. The intellect (understanding a situation, reason (long term consequences of the contemplated action and emotion (the judge of the course of action are all intercorrelated resorts behind human decision making.

  3. Nowcasting and Forecasting the Monthly Food Stamps Data in the US Using Online Search Data

    Science.gov (United States)

    Fantazzini, Dean

    2014-01-01

    We propose the use of Google online search data for nowcasting and forecasting the number of food stamps recipients. We perform a large out-of-sample forecasting exercise with almost 3000 competing models with forecast horizons up to 2 years ahead, and we show that models including Google search data statistically outperform the competing models at all considered horizons. These results hold also with several robustness checks, considering alternative keywords, a falsification test, different out-of-samples, directional accuracy and forecasts at the state-level. PMID:25369315

  4. Food Safety Knowledge and Practices of Older Adult Participants of the Food Stamp Nutrition Education Program

    OpenAIRE

    Rasnake, Crystal Michelle

    2000-01-01

    The purpose of this study was to determine food safety knowledge and practices of older adult participants in the Food Stamp Nutrition Education Program (FSNEP) in Virginia. One hundred and sixty-five FSNEP participants were assigned to two possible intervention groups, group one received the food safety lesson from the Healthy Futures Series currently used in FSNEP, while group two received the food safety lesson plus an additional food safety video. FSNEP participants completed food safet...

  5. Theoretical research in nuclear collective motion. Progress report

    International Nuclear Information System (INIS)

    1984-01-01

    Progress is summarized on the following research projects: generalized density matrix method, large amplitude collective motion, boson mappings for the Interacting Boson Model, and semi-classical method for testing IBM hypothesis

  6. Classic-Ada(TM)

    Science.gov (United States)

    Valley, Lois

    1989-01-01

    The SPS product, Classic-Ada, is a software tool that supports object-oriented Ada programming with powerful inheritance and dynamic binding. Object Oriented Design (OOD) is an easy, natural development paradigm, but it is not supported by Ada. Following the DOD Ada mandate, SPS developed Classic-Ada to provide a tool which supports OOD and implements code in Ada. It consists of a design language, a code generator and a toolset. As a design language, Classic-Ada supports the object-oriented principles of information hiding, data abstraction, dynamic binding, and inheritance. It also supports natural reuse and incremental development through inheritance, code factoring, and Ada, Classic-Ada, dynamic binding and static binding in the same program. Only nine new constructs were added to Ada to provide object-oriented design capabilities. The Classic-Ada code generator translates user application code into fully compliant, ready-to-run, standard Ada. The Classic-Ada toolset is fully supported by SPS and consists of an object generator, a builder, a dictionary manager, and a reporter. Demonstrations of Classic-Ada and the Classic-Ada Browser were given at the workshop.

  7. ABOUT THE RELATIONSHIP BETWEEN THE ISSUES SIGN OF LANGUAGE SYSTEM AND STAMP OF LANGUAGE SYSTEM DİLİN İŞARET SİSTEMİYLE DİLİN DAMGA SİSTEMİ ARASINDAKİ MESELELERİN İLİŞKİSİ HAKKINDA

    Directory of Open Access Journals (Sweden)

    Bekmağanbetov ŞANJARHAN

    2012-01-01

    Full Text Available In this article, it is elaborated that ‘stamp system’ which is considered as one of basic issues of linguistics. Stamps of language and some particular features of these stamps are mentioned. In Turkish consideration, there are dimension, size of stamp and the stamp’s being profound and substantive. In modern linguistics, notion of stamp is used instead of notion znak ‘symbol’ in Russian, and notion sign ‘sign’ in English. In the article, after the explanation of the notion of UP (flat universe emerged with worldly basis, it is made mention that language is all associated with the stamp system(s. Bu makalede, genel dil bilimin temel konularından biri kabul edilen dilin ‘damga sistemi’ üzerinde durulmuştur. Dil damgalarından ve bu damgaların belli özelliklerinden söz edilmiştir. Türk’ün düşüncesinde damganın genişliği, büyüklüğü, derin ve anlamlı oluşu vardır. Çağdaş dil biliminde damga kavramı, Rusçada znak ‘simge’, İngilizcede sign ‘işaret’ kavramının yerine kullanılmaktadır. Makalede, dünyevî temel ile ortaya çıkan UP (âlem daire kavramı açıklandıktan sonra dilin damga/lar sistemi üzerine oturtulduğundan söz edilmiştir.

  8. Rubber stamp templates for improving clinical documentation: A paper-based, m-Health approach for quality improvement in low-resource settings.

    Science.gov (United States)

    Kleczka, Bernadette; Musiega, Anita; Rabut, Grace; Wekesa, Phoebe; Mwaniki, Paul; Marx, Michael; Kumar, Pratap

    2018-06-01

    The United Nations' Sustainable Development Goal #3.8 targets 'access to quality essential healthcare services'. Clinical practice guidelines are an important tool for ensuring quality of clinical care, but many challenges prevent their use in low-resource settings. Monitoring the use of guidelines relies on cumbersome clinical audits of paper records, and electronic systems face financial and other limitations. Here we describe a unique approach to generating digital data from paper using guideline-based templates, rubber stamps and mobile phones. The Guidelines Adherence in Slums Project targeted ten private sector primary healthcare clinics serving informal settlements in Nairobi, Kenya. Each clinic was provided with rubber stamp templates to support documentation and management of commonly encountered outpatient conditions. Participatory design methods were used to customize templates to the workflows and infrastructure of each clinic. Rubber stamps were used to print templates into paper charts, providing clinicians with checklists for use during consultations. Templates used bubble format data entry, which could be digitized from images taken on mobile phones. Besides rubber stamp templates, the intervention included booklets of guideline compilations, one Android phone for digitizing images of templates, and one data feedback/continuing medical education session per clinic each month. In this paper we focus on the effect of the intervention on documentation of three non-communicable diseases in one clinic. Seventy charts of patients enrolled in the chronic disease program (hypertension/diabetes, n=867; chronic respiratory diseases, n=223) at one of the ten intervention clinics were sampled. Documentation of each individual patient encounter in the pre-intervention (January-March 2016) and post-intervention period (May-July) was scored for information in four dimensions - general data, patient assessment, testing, and management. Control criteria included

  9. Loire Classics: Reviving Classicism in some Loire Poets

    Directory of Open Access Journals (Sweden)

    Wim Verbaal

    2017-06-01

    Full Text Available The term 'Loire poets' has come to refer to a rather undefinable group of poets that in the second half of the eleventh century distinguishes itself through its refined poetics. They are often characterized as medieval humanists thanks to their renewed interest in the classics. Sometimes their movement is labelled a 'classicist' one. But what does this 'classicism' mean? Is it even permitted to speak of medieval 'classicisms'? This contribution approaches the question of whether we can apply this modern label to pre-modern phenomena. Moreover, it explores the changes in attitude towards the classics that sets the Loire poets off from their predecessors and contemporaries. The article focuses on poems by Hildebert of Lavardin, Baudri of Bourgueil, Marbod of Rennes, and Geoffrey of Reims. They are compared with some contemporary poets, such as Reginald of Canterbury and Sigebert of Gembloux.

  10. Physical break-down of the classical view on cancer cell invasion and metastasis.

    Science.gov (United States)

    Mierke, Claudia T

    2013-03-01

    Eight classical hallmarks of cancer have been proposed and are well-defined by using biochemical or molecular genetic methods, but are not yet precisely defined by cellular biophysical processes. To define the malignant transformation of neoplasms and finally reveal the functional pathway, which enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific biomechanical properties of cancer cells and their microenvironment such as the extracellular matrix and embedded cells such as fibroblasts, macrophages or endothelial cells. Nonetheless a main novel ninth hallmark of cancer is still elusive in classical tumor biological reviews, which is the aspect of physics in cancer disease by the natural selection of an aggressive (highly invasive) subtype of cancer cells. The physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present current cancer research in a different light and will focus on novel physical methods to investigate the aggressiveness of cancer cells from a biophysicist's point of view. This may lead to novel insights into cancer disease and will overcome classical views on cancer. In addition, this review will discuss how physics of cancer can help to reveal whether cancer cells will invade connective tissue and metastasize. In particular, this review will point out how physics can improve, break-down or support classical approaches to examine tumor growth even across primary tumor boundaries, the invasion of single or collective cancer cells, transendothelial migration of cancer cells and metastasis in targeted organs. Finally, this review will show how physical measurements can be integrated into classical tumor biological analysis approaches. The insights into physical interactions between cancer cells, the primary tumor and the microenvironment may help to solve some "old" questions in cancer disease progression and may finally lead to novel

  11. Classical antiparticles

    International Nuclear Information System (INIS)

    Costella, J.P.; McKellar, B.H.J.; Rawlinson, A.A.

    1997-03-01

    We review how antiparticles may be introduced in classical relativistic mechanics, and emphasize that many of their paradoxical properties can be more transparently understood in the classical than in the quantum domain. (authors)

  12. Sarcoma de Kaposi clássico fatal Fatal outcome in classic Kaposi's sarcoma

    Directory of Open Access Journals (Sweden)

    Eugênia Maria Damásio N. Ohe

    2010-06-01

    Full Text Available Descrito em 1872, o sarcoma de Kaposi é neoplasia multicêntrica rara originária de células endoteliais com manifestação cutânea e extracutânea. A forma clássica é muito mais frequente em homens idosos, com evolução prolongada e boa resposta a quimioterapia e radioterapia. Apresentaremos um caso de sarcoma de Kaposi clássico com comprometimento cutâneo e visceral em paciente do sexo feminino com rápida evolução fatal.First described in 1872, Kaposi's sarcoma is defined as a rare multifocal tumor that originates in the endothelial cells and presents with cutaneous and extracutaneous manifestations. The classic form is most common in elderly men and progression is slow. This tumor responds well to chemotherapy and radiotherapy. This report describes a classic case of Kaposi's sarcoma in a woman with skin and visceral manifestations in whom the disease rapidly progressed to a fatal outcome.

  13. Time-stamp correction of magnetic observatory data acquired during unavailability of time-synchronization services

    Science.gov (United States)

    Coïsson, Pierdavide; Telali, Kader; Heumez, Benoit; Lesur, Vincent; Lalanne, Xavier; Jiang Xin, Chang

    2017-09-01

    During magnetic observatory data acquisition, the data time stamp is kept synchronized with a precise source of time. This is usually done using a GPS-controlled pulse per second (PPS) signal. For some observatories located in remote areas or where internet restrictions are enforced, only the magnetometer data are transmitted, limiting the capabilities of monitoring the acquisition operations. The magnetic observatory in Lanzhou (LZH), China, experienced an unnoticed interruption of the GPS PPS starting 7 March 2013. The data logger clock drifted slowly in time: in 6 months a lag of 27 s was accumulated. After a reboot on 2 April 2014 the drift became faster, -2 s per day, before the GPS PPS could be restored on 8 July 2014. To estimate the time lags that LZH time series had accumulated, we compared it with data from other observatories located in East Asia. A synchronization algorithm was developed. Natural sources providing synchronous events could be used as markers to obtain the time lag between the observatories. The analysis of slices of 1 h of 1 s data at arbitrary UTC allowed estimating time lags with an uncertainty of ˜ 11 s, revealing the correct trends of LZH time drift. A precise estimation of the time lag was obtained by comparing data from co-located instruments controlled by an independent PPS. In this case, it was possible to take advantage of spikes and local noise that constituted precise time markers. It was therefore possible to determine a correction to apply to LZH time stamps to correct the data files and produce reliable 1 min averaged definitive magnetic data.

  14. Will the digital computer transform classical mathematics?

    Science.gov (United States)

    Rotman, Brian

    2003-08-15

    Mathematics and machines have influenced each other for millennia. The advent of the digital computer introduced a powerfully new element that promises to transform the relation between them. This paper outlines the thesis that the effect of the digital computer on mathematics, already widespread, is likely to be radical and far-reaching. To articulate this claim, an abstract model of doing mathematics is introduced based on a triad of actors of which one, the 'agent', corresponds to the function performed by the computer. The model is used to frame two sorts of transformation. The first is pragmatic and involves the alterations and progressive colonization of the content and methods of enquiry of various mathematical fields brought about by digital methods. The second is conceptual and concerns a fundamental antagonism between the infinity enshrined in classical mathematics and physics (continuity, real numbers, asymptotic definitions) and the inherently real and material limit of processes associated with digital computation. An example which lies in the intersection of classical mathematics and computer science, the P=NP problem, is analysed in the light of this latter issue.

  15. Fabrication of a Ni nano-imprint stamp for an anti-reflective layer using an anodic aluminum oxide template.

    Science.gov (United States)

    Park, Eun-Mi; Lim, Seung-Kyu; Ra, Senug-Hyun; Suh, Su-Jung

    2013-11-01

    Aluminum anodizing can alter pore diameter, density distribution, periodicity and layer thickness in a controlled way. Because of this property, porous type anodic aluminum oxide (AAO) was used as a template for nano-structure fabrication. The alumina layer generated at a constant voltage increased the pore size from 120 nm to 205 nm according to an increasing process time from 60 min to 150 min. The resulting fabricated AAO templates had pore diameters at or less than 200 nm. Ni was sputtered as a conductive layer onto this AAO template and electroplated using DC and pulse power. Comparing these Ni stamps, those generated from electroplating using on/reverse/off pulsing had an ordered pillar array and maintained the AAO template morphology. This stamp was used for nano-imprinting on UV curable resin coated glass wafer. Surface observations via electron microscopy showed that the nano-imprinted patterned had the same shape as the AAO template. A soft mold was subsequently fabricated and nano-imprinted to form a moth-eye structure on the glass wafer. An analysis of the substrate transmittance using UV-VIS/NIR spectroscopy showed that the transmittance of the substrate with the moth-eye structure was 5% greater that the non-patterned substrate.

  16. Design and implementation of a nanosecond time-stamping readout system-on-chip for photo-detectors

    International Nuclear Information System (INIS)

    Anvar, Shebli; Château, Frédéric; Le Provost, Hervé; Louis, Frédéric; Manolopoulos, Konstantinos; Moudden, Yassir; Vallage, Bertrand; Zonca, Eric

    2014-01-01

    A readout system suitable for a large number of synchronized photo-detection units has been designed. Each unit embeds a specifically designed fully integrated communicating system based on Xilinx FPGA SoC technology. It runs the VxWorks real-time OS and a custom data acquisition software designed within the Ice middleware framework, resulting in a highly flexible, controllable and scalable distributed application. Clock distribution and delay calibration over customized fixed latency gigabit Ethernet links enable synchronous time-stamping of events with nanosecond precision. The implementation of this readout system on several data-collecting units as well as its performances are described

  17. Using a classic paper by Robin Fahraeus and Torsten Lindqvist to teach basic hemorheology

    DEFF Research Database (Denmark)

    Toksvang, Linea Natalie; Berg, Ronan M G

    2013-01-01

    "The viscosity of the blood in narrow capillary tubes" by Robin Fåhraeus and Torsten Lindqvist (Am J Physiol 96: 562-568, 1931) can be a valuable opportunity for teaching basic hemorheological principles in undergraduate cardiovascular physiology. This classic paper demonstrates that a progressive...

  18. Experimental nuclear and radiochemistry. Progress report, 1981

    International Nuclear Information System (INIS)

    Karol, P.J.

    1981-09-01

    Research progress is reported on the following topics: (1) the importance of classical nucleon-nucleon spatial correlations on nuclear interactions; (2) mathematical development of properly behaved skewed Gaussian function; (3) cluster interactions and true pion absorption; and (4) anomalous relativistic heavy-ion projectile fragments

  19. Micro-patterned ZnO semiconductors for high performance thin film transistors via chemical imprinting with a PDMS stamp.

    Science.gov (United States)

    Seong, Kieun; Kim, Kyongjun; Park, Si Yun; Kim, Youn Sang

    2013-04-07

    Chemical imprinting was conducted on ZnO semiconductor films via a chemical reaction at the contact regions between a micro-patterned PDMS stamp and ZnO films. In addition, we applied the chemical imprinting on Li doped ZnO thin films for high performance TFTs fabrication. The representative micro-patterned Li doped ZnO TFTs showed a field effect mobility of 4.2 cm(2) V(-1) s(-1) after sintering at 300 °C.

  20. Large-area fabrication of patterned ZnO-nanowire arrays using light stamping lithography.

    Science.gov (United States)

    Hwang, Jae K; Cho, Sangho; Seo, Eun K; Myoung, Jae M; Sung, Myung M

    2009-12-01

    We demonstrate selective adsorption and alignment of ZnO nanowires on patterned poly(dimethylsiloxane) (PDMS) thin layers with (aminopropyl)siloxane self-assembled monolayers (SAMs). Light stamping lithography (LSL) was used to prepare patterned PDMS thin layers as neutral passivation regions on Si substrates. (3-Aminopropyl)triethoxysilane-based SAMs were selectively formed only on regions exposing the silanol groups of the Si substrates. The patterned positively charged amino groups define and direct the selective adsorption of ZnO nanowires with negative surface charges in the protic solvent. This procedure can be adopted in automated printing machines that generate patterned ZnO-nanowire arrays on large-area substrates. To demonstrate its usefulness, the LSL method was applied to prepare ZnO-nanowire transistor arrays on 4-in. Si wafers.

  1. The Wigner representation of classical mechanics, quantization and classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Bolivar, A.O. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2001-08-01

    Starting from the Liouvillian formulation of classical physics it is possible by means of a Fourier transform to introduce the Wigner representation and to derive an operator structure to classical mechanisms. The importance of this new representation lies on the fact that it turns out to be suitable route to establish a general method of quantization directly from the equations of motion without alluding to the existence of Hamiltonian and Lagrangian functions. Following this approach we quantize only the motion of a Browian particle with non-linear friction in the Markovian approximation - the thermal bath may be quantum or classical -, thus when the bath is classically described we obtain a master equation which reduces to Caldeira-Legget equation for the linear friction case, and when the reservoir is quantum we get an equation reducing to the one found by Caldeira et al. By neglecting the environmental influence we show that the system can be approximately described by equations of motion in terms of wave function, such as the Schrodinger-Langevin equation and equations of the Caldirola-Kanai type. Finally to make the present study self-consistent we evaluate the classical limit of these dynamical equations employing a new classical limiting method h/2{pi} {yields} 0. (author)

  2. The Wigner representation of classical mechanics, quantization and classical limit

    International Nuclear Information System (INIS)

    Bolivar, A.O.

    2001-08-01

    Starting from the Liouvillian formulation of classical physics it is possible by means of a Fourier transform to introduce the Wigner representation and to derive an operator structure to classical mechanisms. The importance of this new representation lies on the fact that it turns out to be suitable route to establish a general method of quantization directly from the equations of motion without alluding to the existence of Hamiltonian and Lagrangian functions. Following this approach we quantize only the motion of a Browian particle with non-linear friction in the Markovian approximation - the thermal bath may be quantum or classical -, thus when the bath is classically described we obtain a master equation which reduces to Caldeira-Legget equation for the linear friction case, and when the reservoir is quantum we get an equation reducing to the one found by Caldeira et al. By neglecting the environmental influence we show that the system can be approximately described by equations of motion in terms of wave function, such as the Schrodinger-Langevin equation and equations of the Caldirola-Kanai type. Finally to make the present study self-consistent we evaluate the classical limit of these dynamical equations employing a new classical limiting method h/2π → 0. (author)

  3. Integrated Stamping Simulation Using State Of The Art Techniques To Fulfill Quality Assessment Requirements

    International Nuclear Information System (INIS)

    Ling, David; Lambriks, Marc; El Khaldi, Fouad

    2005-01-01

    The last few years have seen the use of stamping simulation evolve to the extent that it is now a mainstream activity; a core part of the press tool engineering process. Now, new requirements for the use of challenging materials like Dual phase / Complex phase steel, VHSS, and aluminum, together with more stringent quality expectations, and shorter development cycles, there is a need to assess the panel quality in a wider context, before committing to tool manufacture.The integrated approach from ESI Group allows early up-front feasibility assessment, geometry and process optimization, and detailed process validation all within one system. Rapid die design and quick forming simulation modules play an essential role in the early stages of the process. A seamless connection between simulation and geometry is a vital characteristic, with the accurate simulation being used to validate and fine tune the process in order to assess final component quality in unprecedented detail, utilizing some of the most accurate material models available today. The combination of the distributed memory processing (DMP) solver together with new cost effective cluster based compute servers provide a practical solution to the problems of 'one million element' model sizes, and more sophisticated modeling methodologies become realistic for the first time.It is no longer sufficient to merely focus on the draw die, forming simulation must now consider the entire die line up. Typically, around half of forming issues arise from the draw die, so the time has now come to address the other half as well! This paper will discuss how the PAM-STAMP 2G TM integrated solution is successfully used to deliver a positive business impact, by providing virtual panel quality assessment, tolerance control, and springback compensation. The paper will also discuss how other forming processes can be accurately modeled using the new modules

  4. Why aortic elasticity differs among classical and non-classical mitral valve prolapsed?

    Science.gov (United States)

    Unlu, Murat; Demirkol, Sait; Aparci, Mustafa; Arslan, Zekeriya; Balta, Sevket; Dogan, Umuttan; Kilicarslan, Baris; Ozeke, Ozcan; Celik, Turgay; Iyisoy, Atila

    2014-01-01

    Mitral valve prolapse (MVP) is the most common valvular heart disease and characterized by the displacement of an abnormally thickened mitral valve leaflet into the left atrium during systole. There are two types of MVP, broadly classified as classic (thickness ≥5 mm) and non-classic (thickness elastic properties of the aorta in young male patients with classical and non-classical MVP. In the present study, 63 young adult males (mean age: 22.7 ± 4.2) were included. Patients were divided into classic MVP (n = 27) and non-classic MVP (n = 36) groups. Aortic strain, aortic distensibility and aortic stiffness index were calculated by using aortic diameters obtained by echocardiography and blood pressures measured by sphygmomanometer. There was no significant difference between the groups in terms of age, body mass index, left ventricular mass and ejection fraction. When comparing the MVP group it was found that aortic strain and aortic distensibility were increased (p = 0.0027, p = 0.016, respectively) whereas the aortic stiffness index was decreased (p = 0.06) in the classical MVP group. We concluded that the elastic properties of the aorta is increased in patients with classic MVP. Further large scale studies should be performed to understand of morphological and physiological properties of the aorta in patients with MVP.

  5. Study of mechanical properties on powdermetalurgy aluminium matrix composites fabricated by stamping or extrusion

    International Nuclear Information System (INIS)

    Busquets, D.; Gomez, L.; Amigo, V.; Salvador-Moya, M. D.

    2005-01-01

    We have developed composite materials from AA6061 aluminium alloy powders used as matrix and ceramics powders of boron carbide, silicon carbide and boron nitride, used as reinforcements in 2.5, 5.0, 7.5 and 10% vol. by mechanical mixing and milling in planetary mill at 360 rpm vial velocity for 4 h followed of hot stamping and extrusion process on green compacts. Mechanical properties obtained from tensile tests are influenced by the heat treatment, reinforcement fractions and nature. Moreover, these mechanical characteristic are dependent from the processing route. Optical and Scanning Electron Microscopy analysis revealed the microstructure of materials and let describe the tripartite relation; structure-processing-properties, of the developed materials. (Author) 20 refs

  6. Classicality in quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Olaf [Theoretical Physics, Blackett Laboratory, Imperial College London, London, SW7 2AZ (United Kingdom)

    2007-05-15

    In this article we propose a solution to the measurement problem in quantum mechanics. We point out that the measurement problem can be traced to an a priori notion of classicality in the formulation of quantum mechanics. If this notion of classicality is dropped and instead classicality is defined in purely quantum mechanical terms the measurement problem can be avoided. We give such a definition of classicality. It identifies classicality as a property of large quantum system. We show how the probabilistic nature of quantum mechanics is a result of this notion of classicality. We also comment on what the implications of this view are for the search of a quantum theory of gravity.

  7. Classicality in quantum mechanics

    International Nuclear Information System (INIS)

    Dreyer, Olaf

    2007-01-01

    In this article we propose a solution to the measurement problem in quantum mechanics. We point out that the measurement problem can be traced to an a priori notion of classicality in the formulation of quantum mechanics. If this notion of classicality is dropped and instead classicality is defined in purely quantum mechanical terms the measurement problem can be avoided. We give such a definition of classicality. It identifies classicality as a property of large quantum system. We show how the probabilistic nature of quantum mechanics is a result of this notion of classicality. We also comment on what the implications of this view are for the search of a quantum theory of gravity

  8. Random electrodynamics: the theory of classical electrodynamics with classical electromagnetic zero-point radiation

    International Nuclear Information System (INIS)

    Boyer, T.H.

    1975-01-01

    The theory of classical electrodynamics with classical electromagnetic zero-point radiation is outlined here under the title random electrodynamics. The work represents a reanalysis of the bounds of validity of classical electron theory which should sharpen the understanding of the connections and distinctions between classical and quantum theories. The new theory of random electrodynamics is a classical electron theory involving Newton's equations for particle motion due to the Lorentz force, and Maxwell's equations for the electromagnetic fields with point particles as sources. However, the theory departs from the classical electron theory of Lorentz in that it adopts a new boundary condition on Maxwell's equations. It is assumed that the homogeneous boundary condition involves random classical electromagnetic radiation with a Lorentz-invariant spectrum, classical electromagnetic zero-point radiation. The implications of random electrodynamics for atomic structure, atomic spectra, and particle-interference effects are discussed on an order-of-magnitude or heuristic level. Some detailed mathematical connections and some merely heuristic connections are noted between random electrodynamics and quantum theory. (U.S.)

  9. J. Genet. classic 101

    Indian Academy of Sciences (India)

    Journal of Genetics, Vol. 85, No. 2, August 2006. 101. Page 2. J. Genet. classic. 102. Journal of Genetics, Vol. 85, No. 2, August 2006. Page 3. J. Genet. classic. Journal of Genetics, Vol. 85, No. 2, August 2006. 103. Page 4. J. Genet. classic. 104. Journal of Genetics, Vol. 85, No. 2, August 2006. Page 5. J. Genet. classic.

  10. J. Genet. classic 37

    Indian Academy of Sciences (India)

    Unknown

    Journal of Genetics, Vol. 84, No. 1, April 2005. 37. Page 2. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 38. Page 3. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 39. Page 4. J. Genet. classic. Journal of Genetics, Vol. 84, No. 1, April 2005. 40. Page 5. J. Genet. classic. Journal of ...

  11. The use of cryogenic helium for classical turbulence: Promises and hurdles

    International Nuclear Information System (INIS)

    Niemela, J.J.; Sreenivasan, K.R.

    2006-12-01

    Fluid turbulence is a paradigm for non-linear systems with many degrees of freedom and important in numerous applications. Because the analytical understanding of the equations of motion is poor, experiments and, lately, direct numerical simulations of the equations of motion, have been fundamental to making progress. In this vein, a concerted experimental effort has been made to take advantage of the unique properties of liquid and gaseous helium at low temperatures near or below the critical point. We discuss the promise and impact of results from recent helium experiments and identify the current technical barriers which can perhaps be removed by low temperature researchers. We focus mainly on classical flows that utilize helium above the lambda line, but touch on those aspects below that exhibit quasi-classical behavior. (author)

  12. Impact of Si on Microstructure and Mechanical Properties of 22MnB5 Hot Stamping Steel Treated by Quenching & Partitioning (Q&P)

    Science.gov (United States)

    Linke, Bernd M.; Gerber, Thomas; Hatscher, Ansgar; Salvatori, Ilaria; Aranguren, Iñigo; Arribas, Maribel

    2018-01-01

    Based on 22MnB5 hot stamping steel, three model alloys containing 0.5, 0.8, and 1.5 wt pct Si were produced, heat treated by quenching and partitioning (Q&P), and characterized. Aided by DICTRA calculations, the thermal Q&P cycles were designed to fit into industrial hot stamping by keeping partitioning times ≤ 30 seconds. As expected, Si increased the amount of retained austenite (RA) stabilized after final cooling. However, for the intermediate Si alloy the heat treatment exerted a particularly pronounced influence with an RA content three times as high for the one-step process compared to the two-step process. It appeared that 0.8 wt pct Si sufficed to suppress direct cementite formation from within martensite laths but did not sufficiently stabilize carbon-soaked RA at higher temperatures. Tensile and bending tests showed strongly diverging effects of austenite on ductility. Total elongation improved consistently with increasing RA content independently from its carbon content. In contrast, the bending angle was not impacted by high-carbon RA but deteriorated almost linearly with the amount of low-carbon RA.

  13. Quantum Computing's Classical Problem, Classical Computing's Quantum Problem

    OpenAIRE

    Van Meter, Rodney

    2013-01-01

    Tasked with the challenge to build better and better computers, quantum computing and classical computing face the same conundrum: the success of classical computing systems. Small quantum computing systems have been demonstrated, and intermediate-scale systems are on the horizon, capable of calculating numeric results or simulating physical systems far beyond what humans can do by hand. However, to be commercially viable, they must surpass what our wildly successful, highly advanced classica...

  14. Research on optimization design of conformal cooling channels in hot stamping tool based on response surface methodology and multi-objective optimization

    Directory of Open Access Journals (Sweden)

    He Bin

    2016-01-01

    Full Text Available In order to optimize the layout of the conformal cooling channels in hot stamping tools, a response surface methodology and multi-objective optimization technique are proposed. By means of an Optimal Latin Hypercube experimental design method, a design matrix with 17 factors and 50 levels is generated. Three kinds of design variables, the radius Rad of the cooling channel, the distance H from the channel center to tool work surface and the ratio rat of each channel center, are optimized to determine the layout of cooling channels. The average temperature and temperature deviation of work surface are used to evaluate the cooling performance of hot stamping tools. On the basis of the experimental design results, quadratic response surface models are established to describe the relationship between the design variables and the evaluation objectives. The error analysis is performed to ensure the accuracy of response surface models. Then the layout of the conformal cooling channels is optimized in accordance with a multi-objective optimization method to find the Pareto optimal frontier which consists of some optimal combinations of design variables that can lead to an acceptable cooling performance.

  15. Springback Prediction, Compensation and Correlation for Automotive Stamping

    International Nuclear Information System (INIS)

    Xu Siguang; Zhao Kunmin; Lanker, Terry; Zhang, Jimmy; Wang, C.T.

    2005-01-01

    To reduce weight and increase fuel efficiency and safety, more and more automotive sheet stamping parts are being made of aluminum and high strength steels. Forming of such materials encounters not just reduced formability but also dimensional quality problems. Springback prediction accuracy and compensation effectiveness have been the major challenge to die development, construction and tryout. In this paper, the factors that affect the accuracy of springback prediction are discussed, which includes the effect of material models, the selection of element size, and the contact algorithms. Springback predictions of several automotive aluminum and high strength panels are compared with measurement data. The examples show that the prediction correlates with measurement data in both springback trend and magnitude. The effect of springback on final product can be reduced or eliminated through process control and die face compensation. The process control method involves finding the root causes of springback and eliminating them through process modification. The geometrical compensation of die surface is a direct way to eliminate the springback effect. The global scaling compensation method is normally limited to parts with relatively small springback. For large springback and twisting, a new approach is discussed, which takes into account of the effect of deformation and springback history. The compensation is achieved iteratively by solving a system of non-linear equations. Production dies were cut to the compensated surface, which shows that the die compensation is an efficient way to reduce springback-induced geometry deviation

  16. Verification of human actions in SBO sequences with LOCA stamps in Westinghouse PWRs

    International Nuclear Information System (INIS)

    Queral, C.; Mena Rosell, L.; Jimenez Varas, G.

    2013-01-01

    The Fukushima accident has shown the need for tools and methodologies able to analyze human activities and / or capabilities of portable systems that has given the Spanish plants as a result of the stress tests . In this work we have applied the methodology of integrated safety analysis developed by the CSN , to SBO sequences with LOCA stamp. The aim is to show a methodology for testing the performances of the Emergency Operating Procedures and Guides Severe Accident Management. The simulations were performed with the tool SCAIS coupled to MAAP . The results show that there are human activities that may be beneficial in certain sequences but harmful in others. This type of problem is already known and referred to in the GGAS . However, FSR shows a practical way to check human actions cannot be obtained with other methods.

  17. Fermions from classical statistics

    International Nuclear Information System (INIS)

    Wetterich, C.

    2010-01-01

    We describe fermions in terms of a classical statistical ensemble. The states τ of this ensemble are characterized by a sequence of values one or zero or a corresponding set of two-level observables. Every classical probability distribution can be associated to a quantum state for fermions. If the time evolution of the classical probabilities p τ amounts to a rotation of the wave function q τ (t)=±√(p τ (t)), we infer the unitary time evolution of a quantum system of fermions according to a Schroedinger equation. We establish how such classical statistical ensembles can be mapped to Grassmann functional integrals. Quantum field theories for fermions arise for a suitable time evolution of classical probabilities for generalized Ising models.

  18. Classical mechanics

    CERN Document Server

    Benacquista, Matthew J

    2018-01-01

    This textbook provides an introduction to classical mechanics at a level intermediate between the typical undergraduate and advanced graduate level. This text describes the background and tools for use in the fields of modern physics, such as quantum mechanics, astrophysics, particle physics, and relativity. Students who have had basic undergraduate classical mechanics or who have a good understanding of the mathematical methods of physics will benefit from this book.

  19. Iterative quantum-classical path integral with dynamically consistent state hopping

    Energy Technology Data Exchange (ETDEWEB)

    Walters, Peter L.; Makri, Nancy [Department of Chemistry, University of Illinois, Urbana, Illinois 61801 (United States)

    2016-01-28

    We investigate the convergence of iterative quantum-classical path integral calculations in sluggish environments strongly coupled to a quantum system. The number of classical trajectories, thus the computational cost, grows rapidly (exponentially, unless filtering techniques are employed) with the memory length included in the calculation. We argue that the choice of the (single) trajectory branch during the time preceding the memory interval can significantly affect the memory length required for convergence. At short times, the trajectory branch associated with the reactant state improves convergence by eliminating spurious memory. We also introduce an instantaneous population-based probabilistic scheme which introduces state-to-state hops in the retained pre-memory trajectory branch, and which is designed to choose primarily the trajectory branch associated with the reactant at early times, but to favor the product state more as the reaction progresses to completion. Test calculations show that the dynamically consistent state hopping scheme leads to accelerated convergence and a dramatic reduction of computational effort.

  20. J. Genet. classic 235

    Indian Academy of Sciences (India)

    Unknown

    Journal of Genetics, Vol. 83, No. 3, December 2004. 235. Page 2. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 236. Page 3. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 237. Page 4. J. Genet. classic. Journal of Genetics, Vol. 83, No. 3, December 2004. 238. Page 5 ...

  1. Optimal search behavior and classic foraging theory

    International Nuclear Information System (INIS)

    Bartumeus, F; Catalan, J

    2009-01-01

    Random walk methods and diffusion theory pervaded ecological sciences as methods to analyze and describe animal movement. Consequently, statistical physics was mostly seen as a toolbox rather than as a conceptual framework that could contribute to theory on evolutionary biology and ecology. However, the existence of mechanistic relationships and feedbacks between behavioral processes and statistical patterns of movement suggests that, beyond movement quantification, statistical physics may prove to be an adequate framework to understand animal behavior across scales from an ecological and evolutionary perspective. Recently developed random search theory has served to critically re-evaluate classic ecological questions on animal foraging. For instance, during the last few years, there has been a growing debate on whether search behavior can include traits that improve success by optimizing random (stochastic) searches. Here, we stress the need to bring together the general encounter problem within foraging theory, as a mean for making progress in the biological understanding of random searching. By sketching the assumptions of optimal foraging theory (OFT) and by summarizing recent results on random search strategies, we pinpoint ways to extend classic OFT, and integrate the study of search strategies and its main results into the more general theory of optimal foraging.

  2. Spectral analysis of postage stamps and banknotes from the region of Rijeka in Croatia

    Science.gov (United States)

    Jelovica Badovinac, I.; Orlić, N.; Lofrumento, C.; Dobrinić, J.; Orlić, M.

    2010-07-01

    Micro-Raman spectroscopy and X-ray emission spectroscopy induced using radioactive source have been applied to analyze two types of samples important for the history of Rijeka, Croatian port on the Adriatic Sea. In this paper we will present study of thirty-three original Hungarian postage stamps issued for Rijeka and overprinted with the word FIUME in 1918, after the World War I and the one-Lira banknotes (one original brown banknote and four trial prints: brown, blue, green and dark green) from Economy bank for Rijeka, Istria and Slovenian Littoral (1945-1947), the so-called Jugolire. This investigation was carried out to determine the differences between the original machine, original hand-made and fake overprints FIUME and to compare the pigments used on original banknote from circulation with the pigments on the trial prints.

  3. Spectral analysis of postage stamps and banknotes from the region of Rijeka in Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Jelovica Badovinac, I., E-mail: ijelov@phy.uniri.h [Department of Physics, University of Rijeka, Omladinska 14, 51000 Rijeka (Croatia); Orlic, N. [Department of Physics, University of Rijeka, Omladinska 14, 51000 Rijeka (Croatia); Lofrumento, C. [Dipartimento di Chimica, Universita di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); Dobrinic, J. [Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka (Croatia); Orlic, M. [Department of Civil Engineering, Polytechnic of Zagreb, Av. V. Holjevca 15, 10000 Zagreb (Croatia)

    2010-07-21

    Micro-Raman spectroscopy and X-ray emission spectroscopy induced using radioactive source have been applied to analyze two types of samples important for the history of Rijeka, Croatian port on the Adriatic Sea. In this paper we will present study of thirty-three original Hungarian postage stamps issued for Rijeka and overprinted with the word FIUME in 1918, after the World War I and the one-Lira banknotes (one original brown banknote and four trial prints: brown, blue, green and dark green) from Economy bank for Rijeka, Istria and Slovenian Littoral (1945-1947), the so-called Jugolire. This investigation was carried out to determine the differences between the original machine, original hand-made and fake overprints FIUME and to compare the pigments used on original banknote from circulation with the pigments on the trial prints.

  4. Spectral analysis of postage stamps and banknotes from the region of Rijeka in Croatia

    International Nuclear Information System (INIS)

    Jelovica Badovinac, I.; Orlic, N.; Lofrumento, C.; Dobrinic, J.; Orlic, M.

    2010-01-01

    Micro-Raman spectroscopy and X-ray emission spectroscopy induced using radioactive source have been applied to analyze two types of samples important for the history of Rijeka, Croatian port on the Adriatic Sea. In this paper we will present study of thirty-three original Hungarian postage stamps issued for Rijeka and overprinted with the word FIUME in 1918, after the World War I and the one-Lira banknotes (one original brown banknote and four trial prints: brown, blue, green and dark green) from Economy bank for Rijeka, Istria and Slovenian Littoral (1945-1947), the so-called Jugolire. This investigation was carried out to determine the differences between the original machine, original hand-made and fake overprints FIUME and to compare the pigments used on original banknote from circulation with the pigments on the trial prints.

  5. Dynamics of unitarization by classicalization

    International Nuclear Information System (INIS)

    Dvali, Gia; Pirtskhalava, David

    2011-01-01

    We study dynamics of the classicalization phenomenon suggested in G. Dvali et al. , according to which a class of non-renormalizable theories self-unitarizes at very high-energies via creation of classical configurations (classicalons). We study this phenomenon in an explicit model of derivatively-self-coupled scalar that serves as a prototype for a Nambu-Goldstone-Stueckelberg field. We prepare the initial state in form of a collapsing wave-packet of a small occupation number but of very high energy, and observe that the classical configuration indeed develops. Our results confirm the previous estimates, showing that because of self-sourcing the wave-packet forms a classicalon configuration with radius that increases with center of mass energy. Thus, classicalization takes place before the waves get any chance of probing short-distances. The self-sourcing by energy is the crucial point, which makes classicalization phenomenon different from the ordinary dispersion of the wave-packets in other interacting theories. Thanks to this, unlike solitons or other non-perturbative objects, the production of classicalons is not only unsuppressed, but in fact dominates the high-energy scattering. In order to make the difference between classicalizing and non-classicalizing theories clear, we use a language in which the scattering cross section in a generic theory can be universally understood as a geometric cross section set by a classical radius down to which waves can propagate freely, before being scattered. We then show, that in non-classicalizing examples this radius shrinks with increasing energy and becomes microscopic, whereas in classicalizing theories expands and becomes macroscopic. We study analogous scattering in a Galileon system and discover that classicalization also takes place there, although somewhat differently. We thus observe, that classicalization is source-sensitive and that Goldstones pass the first test.

  6. Quantum mechanics from classical statistics

    International Nuclear Information System (INIS)

    Wetterich, C.

    2010-01-01

    Quantum mechanics can emerge from classical statistics. A typical quantum system describes an isolated subsystem of a classical statistical ensemble with infinitely many classical states. The state of this subsystem can be characterized by only a few probabilistic observables. Their expectation values define a density matrix if they obey a 'purity constraint'. Then all the usual laws of quantum mechanics follow, including Heisenberg's uncertainty relation, entanglement and a violation of Bell's inequalities. No concepts beyond classical statistics are needed for quantum physics - the differences are only apparent and result from the particularities of those classical statistical systems which admit a quantum mechanical description. Born's rule for quantum mechanical probabilities follows from the probability concept for a classical statistical ensemble. In particular, we show how the non-commuting properties of quantum operators are associated to the use of conditional probabilities within the classical system, and how a unitary time evolution reflects the isolation of the subsystem. As an illustration, we discuss a classical statistical implementation of a quantum computer.

  7. Classical and semi-classical solutions of the Yang--Mills theory

    International Nuclear Information System (INIS)

    Jackiw, R.; Nohl, C.; Rebbi, C.

    1977-12-01

    This review summarizes what is known at present about classical solutions to Yang-Mills theory both in Euclidean and Minkowski space. The quantal meaning of these solutions is also discussed. Solutions in Euclidean space expose multiple vacua and tunnelling of the quantum theory. Those in Minkowski space-time provide a semi-classical spectrum for a conformal generator

  8. Spectrum of purpura fulminans: report of three classical prototypes and review of management strategies.

    Science.gov (United States)

    Talwar, Ankur; Kumar, Sharath; Gopal, M G; Nandini, A S

    2012-01-01

    Purpura fulminans is a rare syndrome of intravascular thrombosis and hemorrhagic infarction of the skin that is rapidly progressive and is accompanied by vascular collapse and disseminated intravascular coagulation. It usually occurs in children, but this syndrome has also been noted in adults. The three forms of this disease are classified by the triggering mechanisms. We describe three classical cases of purpura fulminans of the three classical prototypes treated at our center and their varied clinical outcomes. We also describe a case of acute infectious purpura fulminans secondary to systemic leptospirosis which to our best knowledge is the first reported case in world literature. The various treatment options for purpura fulminans have also been reviewed.

  9. Spectrum of purpura fulminans: Report of three classical prototypes and review of management strategies

    Directory of Open Access Journals (Sweden)

    Ankur Talwar

    2012-01-01

    Full Text Available Purpura fulminans is a rare syndrome of intravascular thrombosis and hemorrhagic infarction of the skin that is rapidly progressive and is accompanied by vascular collapse and disseminated intravascular coagulation. It usually occurs in children, but this syndrome has also been noted in adults. The three forms of this disease are classified by the triggering mechanisms. We describe three classical cases of purpura fulminans of the three classical prototypes treated at our center and their varied clinical outcomes. We also describe a case of acute infectious purpura fulminans secondary to systemic leptospirosis which to our best knowledge is the first reported case in world literature. The various treatment options for purpura fulminans have also been reviewed.

  10. Quantum flesh on classical bones: Semiclassical bridges across the quantum-classical divide

    Energy Technology Data Exchange (ETDEWEB)

    Bokulich, Alisa [Center for Philosophy and History of Science, Boston University, Boston, MA (United States)

    2014-07-01

    Traditionally quantum mechanics is viewed as having made a sharp break from classical mechanics, and the concepts and methods of these two theories are viewed as incommensurable with one another. A closer examination of the history of quantum mechanics, however, reveals that there is a strong sense in which quantum mechanics was built on the backbone of classical mechanics. As a result, there is a considerable structural continuity between these two theories, despite their important differences. These structural continuities provide a ground for semiclassical methods in which classical structures, such as trajectories, are used to investigate and model quantum phenomena. After briefly tracing the history of semiclassical approaches, I show how current research in semiclassical mechanics is revealing new bridges across the quantum-classical divide.

  11. A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology

    Science.gov (United States)

    Huang, Che-Wei; Huang, Yu-Jie; Lu, Shey-Shi; Lin, Chih-Ting

    2012-01-01

    A fully integrated humidity sensor chip was designed, implemented, and tested. Utilizing the micro-stamping technology, the pseudo-3D sensor system-on-chip (SSoC) architecture can be implemented by stacking sensing materials directly on the top of a CMOS-fabricated chip. The fabricated sensor system-on-chip (2.28 mm × 2.48 mm) integrated a humidity sensor, an interface circuit, a digital controller, and an On-Off Keying (OOK) wireless transceiver. With low power consumption, i.e., 750 μW without RF operation, the sensitivity of developed sensor chip was experimentally verified in the relative humidity (RH) range from 32% to 60%. The response time of the chip was also experimentally verified to be within 5 seconds from RH 36% to RH 64%. As a consequence, the implemented humidity SSoC paves the way toward the an ultra-small sensor system for various applications.

  12. Thermal quantum time-correlation functions from classical-like dynamics

    Science.gov (United States)

    Hele, Timothy J. H.

    2017-07-01

    Thermal quantum time-correlation functions are of fundamental importance in quantum dynamics, allowing experimentally measurable properties such as reaction rates, diffusion constants and vibrational spectra to be computed from first principles. Since the exact quantum solution scales exponentially with system size, there has been considerable effort in formulating reliable linear-scaling methods involving exact quantum statistics and approximate quantum dynamics modelled with classical-like trajectories. Here, we review recent progress in the field with the development of methods including centroid molecular dynamics , ring polymer molecular dynamics (RPMD) and thermostatted RPMD (TRPMD). We show how these methods have recently been obtained from 'Matsubara dynamics', a form of semiclassical dynamics which conserves the quantum Boltzmann distribution. We also apply the Matsubara formalism to reaction rate theory, rederiving t → 0+ quantum transition-state theory (QTST) and showing that Matsubara-TST, like RPMD-TST, is equivalent to QTST. We end by surveying areas for future progress.

  13. Quantum remnants in the classical limit

    International Nuclear Information System (INIS)

    Kowalski, A.M.; Plastino, A.

    2016-01-01

    We analyze here the common features of two dynamical regimes: a quantum and a classical one. We deal with a well known semi-classic system in its route towards the classical limit, together with its purely classic counterpart. We wish to ascertain i) whether some quantum remnants can be found in the classical limit and ii) the details of the quantum-classic transition. The so-called mutual information is the appropriate quantifier for this task. Additionally, we study the Bandt–Pompe's symbolic patterns that characterize dynamical time series (representative of the semi-classical system under scrutiny) in their evolution towards the classical limit. - Highlights: • We investigate the classical limit (CL) of a well known semi classical model. • The study is made by reference to the Bandt Pompe symbolic approach. • The number and type of associated symbols changes as one proceeds towards the CL. • We ascertain which symbols pertaining to the quantum zone remain in the CL.

  14. Quantum remnants in the classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, A.M., E-mail: kowalski@fisica.unlp.edu.ar [Instituto de Física (IFLP-CCT-Conicet), Universidad Nacional de La Plata, C.C. 727, 1900 La Plata (Argentina); Comision de Investigaciones Científicas (CIC) (Argentina); Plastino, A., E-mail: plastino@fisica.unlp.edu.ar [Instituto de Física (IFLP-CCT-Conicet), Universidad Nacional de La Plata, C.C. 727, 1900 La Plata (Argentina); Argentina' s National Research Council (CONICET) (Argentina); SThAR, EPFL Innovation Park, Lausanne (Switzerland)

    2016-09-16

    We analyze here the common features of two dynamical regimes: a quantum and a classical one. We deal with a well known semi-classic system in its route towards the classical limit, together with its purely classic counterpart. We wish to ascertain i) whether some quantum remnants can be found in the classical limit and ii) the details of the quantum-classic transition. The so-called mutual information is the appropriate quantifier for this task. Additionally, we study the Bandt–Pompe's symbolic patterns that characterize dynamical time series (representative of the semi-classical system under scrutiny) in their evolution towards the classical limit. - Highlights: • We investigate the classical limit (CL) of a well known semi classical model. • The study is made by reference to the Bandt Pompe symbolic approach. • The number and type of associated symbols changes as one proceeds towards the CL. • We ascertain which symbols pertaining to the quantum zone remain in the CL.

  15. Reflective Practice in the Ballet Class: Bringing Progressive Pedagogy to the Classical Tradition

    Science.gov (United States)

    Zeller, Jessica

    2017-01-01

    This research seeks to broaden the dialogue on progressive ballet pedagogy through an examination of reflective practices in the ballet class. Ballet's traditional model of instruction has long required students to quietly comply with the pedagogue's directives, and it has thus become notorious for promoting student passivity. Despite strong…

  16. Use of the Performance Diagnostic Checklist to Select an Intervention Designed to Increase the Offering of Promotional Stamps at Two Sites of a Restaurant Franchise

    Science.gov (United States)

    Rodriguez, Manuel; Wilder, David A.; Therrien, Kelly; Wine, Byron; Miranti, Reylissa; Daratany, Kenneth; Salume, Gloria; Baranovsky, Greg; Rodriquez, Matias

    2006-01-01

    The performance diagnostic checklist (PDC) was administered to examine the variables influencing the offering of promotional stamps by employees at two sites of a restaurant franchise. PDC results suggested that a lack of appropriate antecedents, equipment and processes, and consequences were responsible for the deficits. Based on these results,…

  17. Quantum models of classical systems

    International Nuclear Information System (INIS)

    Hájíček, P

    2015-01-01

    Quantum statistical methods that are commonly used for the derivation of classical thermodynamic properties are extended to classical mechanical properties. The usual assumption that every real motion of a classical mechanical system is represented by a sharp trajectory is not testable and is replaced by a class of fuzzy models, the so-called maximum entropy (ME) packets. The fuzzier are the compared classical and quantum ME packets, the better seems to be the match between their dynamical trajectories. Classical and quantum models of a stiff rod will be constructed to illustrate the resulting unified quantum theory of thermodynamic and mechanical properties. (paper)

  18. Capillary-Force-Assisted Clean-Stamp Transfer of Two-Dimensional Materials.

    Science.gov (United States)

    Ma, Xuezhi; Liu, Qiushi; Xu, Da; Zhu, Yangzhi; Kim, Sanggon; Cui, Yongtao; Zhong, Lanlan; Liu, Ming

    2017-11-08

    A simple and clean method of transferring two-dimensional (2D) materials plays a critical role in the fabrication of 2D electronics, particularly the heterostructure devices based on the artificial vertical stacking of various 2D crystals. Currently, clean transfer techniques rely on sacrificial layers or bulky crystal flakes (e.g., hexagonal boron nitride) to pick up the 2D materials. Here, we develop a capillary-force-assisted clean-stamp technique that uses a thin layer of evaporative liquid (e.g., water) as an instant glue to increase the adhesion energy between 2D crystals and polydimethylsiloxane (PDMS) for the pick-up step. After the liquid evaporates, the adhesion energy decreases, and the 2D crystal can be released. The thin liquid layer is condensed to the PDMS surface from its vapor phase, which ensures the low contamination level on the 2D materials and largely remains their chemical and electrical properties. Using this method, we prepared graphene-based transistors with low charge-neutral concentration (3 × 10 10 cm -2 ) and high carrier mobility (up to 48 820 cm 2 V -1 s -1 at room temperature) and heterostructure optoelectronics with high operation speed. Finally, a capillary-force model is developed to explain the experiment.

  19. Intracranial dural arterio-venous fistula presenting with progressive myelopathy.

    LENUS (Irish Health Repository)

    Ogbonnaya, Ebere Sunny

    2011-01-01

    Spinal dural arterio-venous fistula (DAVF) is rare and usually involves the thoracic segments. The classical presentation is a slowly progressive ataxia. Clinical presentation of intracranial DAVF depends on the site of the DAVF, as well as the vessels involved. Patients may present with pulsatile tinnitus, occipital bruit, headache, dementia, visual impairment as well as neurological deterioration distant from the DAVF as a result of venous hypertension and cortical haemorrhage. The authors present a rare case of progressive myelopathy secondary to an intracranial DAVF.

  20. Sum rules in classical scattering

    International Nuclear Information System (INIS)

    Bolle, D.; Osborn, T.A.

    1981-01-01

    This paper derives sum rules associated with the classical scattering of two particles. These sum rules are the analogs of Levinson's theorem in quantum mechanics which provides a relationship between the number of bound-state wavefunctions and the energy integral of the time delay of the scattering process. The associated classical relation is an identity involving classical time delay and an integral over the classical bound-state density. We show that equalities between the Nth-order energy moment of the classical time delay and the Nth-order energy moment of the classical bound-state density hold in both a local and a global form. Local sum rules involve the time delay defined on a finite but otherwise arbitrary coordinate space volume S and the bound-state density associated with this same region. Global sum rules are those that obtain when S is the whole coordinate space. Both the local and global sum rules are derived for potentials of arbitrary shape and for scattering in any space dimension. Finally the set of classical sum rules, together with the known quantum mechanical analogs, are shown to provide a unified method of obtaining the high-temperature expansion of the classical, respectively the quantum-mechanical, virial coefficients

  1. Finite element analysis and optimization of process parameters during stamp forming of composite materials

    International Nuclear Information System (INIS)

    Venkatesan, S; Kalyanasundaram, S

    2010-01-01

    In the manufacture of parts for high performance structures using composite materials, the quality and robustness of the parts is of utmost importance. The quality of the produced parts depends largely on the process parameters and manufacturing methodologies. This study presents the use of a temperature dependant orthotropic material for a coupled structural-thermal analysis of the stamp forming process. The study investigated the effects of process parameters such as pre-heat temperature, blank holder force and process time on the formability of composite materials. Temperature was found to be the dominant factor governing the formability of the composite material while higher blank holder forces were deemed to be important for achieving high quality of the parts manufactured. Finally, an optimum set of parameters was used to compare the simulations with experimental results using an optical strain measurement system.

  2. Functional Basis for Efficient Physical Layer Classical Control in Quantum Processors

    Science.gov (United States)

    Ball, Harrison; Nguyen, Trung; Leong, Philip H. W.; Biercuk, Michael J.

    2016-12-01

    The rapid progress seen in the development of quantum-coherent devices for information processing has motivated serious consideration of quantum computer architecture and organization. One topic which remains open for investigation and optimization relates to the design of the classical-quantum interface, where control operations on individual qubits are applied according to higher-level algorithms; accommodating competing demands on performance and scalability remains a major outstanding challenge. In this work, we present a resource-efficient, scalable framework for the implementation of embedded physical layer classical controllers for quantum-information systems. Design drivers and key functionalities are introduced, leading to the selection of Walsh functions as an effective functional basis for both programing and controller hardware implementation. This approach leverages the simplicity of real-time Walsh-function generation in classical digital hardware, and the fact that a wide variety of physical layer controls, such as dynamic error suppression, are known to fall within the Walsh family. We experimentally implement a real-time field-programmable-gate-array-based Walsh controller producing Walsh timing signals and Walsh-synthesized analog waveforms appropriate for critical tasks in error-resistant quantum control and noise characterization. These demonstrations represent the first step towards a unified framework for the realization of physical layer controls compatible with large-scale quantum-information processing.

  3. A general dead-time correction method based on live-time stamping. Application to the measurement of short-lived radionuclides.

    Science.gov (United States)

    Chauvenet, B; Bobin, C; Bouchard, J

    2017-12-01

    Dead-time correction formulae are established in the general case of superimposed non-homogeneous Poisson processes. Based on the same principles as conventional live-timed counting, this method exploits the additional information made available using digital signal processing systems, and especially the possibility to store the time stamps of live-time intervals. No approximation needs to be made to obtain those formulae. Estimates of the variances of corrected rates are also presented. This method is applied to the activity measurement of short-lived radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The reduction of irregularities in the use of “process fmea”: a study for a cold stamping process

    Directory of Open Access Journals (Sweden)

    Carla Estorilio

    2011-12-01

    Full Text Available The Failure Mode and Effect Analysis (FMEA is a requirement for ISO/TS 16949. However, researches show nonconformities in its use by automotive suppliers. The objective of this study is to identify these nonconformities, aiming to suggest methods for minimizing this problem. Therefore, questionnaires were applied in seven automotive suppliers and, for each one, ten FMEA`s were analysed. The research identified nonconformities in the use of FMEA for the stamping process and highlighted seven influencing factors. Based on this data, a strategy is suggested. A partially parameterised FMEA spreadsheet is suggested and tested in three suppliers, showing significant improvements.

  5. Mathematical physics classical mechanics

    CERN Document Server

    Knauf, Andreas

    2018-01-01

    As a limit theory of quantum mechanics, classical dynamics comprises a large variety of phenomena, from computable (integrable) to chaotic (mixing) behavior. This book presents the KAM (Kolmogorov-Arnold-Moser) theory and asymptotic completeness in classical scattering. Including a wealth of fascinating examples in physics, it offers not only an excellent selection of basic topics, but also an introduction to a number of current areas of research in the field of classical mechanics. Thanks to the didactic structure and concise appendices, the presentation is self-contained and requires only knowledge of the basic courses in mathematics. The book addresses the needs of graduate and senior undergraduate students in mathematics and physics, and of researchers interested in approaching classical mechanics from a modern point of view.

  6. Estimation of the inverse Weibull distribution based on progressively censored data: Comparative study

    International Nuclear Information System (INIS)

    Musleh, Rola M.; Helu, Amal

    2014-01-01

    In this article we consider statistical inferences about the unknown parameters of the Inverse Weibull distribution based on progressively type-II censoring using classical and Bayesian procedures. For classical procedures we propose using the maximum likelihood; the least squares methods and the approximate maximum likelihood estimators. The Bayes estimators are obtained based on both the symmetric and asymmetric (Linex, General Entropy and Precautionary) loss functions. There are no explicit forms for the Bayes estimators, therefore, we propose Lindley's approximation method to compute the Bayes estimators. A comparison between these estimators is provided by using extensive simulation and three criteria, namely, Bias, mean squared error and Pitman nearness (PN) probability. It is concluded that the approximate Bayes estimators outperform the classical estimators most of the time. Real life data example is provided to illustrate our proposed estimators. - Highlights: • We consider progressively type-II censored data from the Inverse Weibull distribution (IW). • We derive MLEs, approximate MLEs, LS and Bayes estimate methods of scale and shape parameters of the IW. • Bayes estimator of shape parameter cannot be expressed in closed forms. • We suggest using Lindley's approximation. • We conclude that the Bayes estimates outperform the classical methods

  7. A Fully Integrated Humidity Sensor System-on-Chip Fabricated by Micro-Stamping Technology

    Directory of Open Access Journals (Sweden)

    Chih-Ting Lin

    2012-08-01

    Full Text Available A fully integrated humidity sensor chip was designed, implemented, and tested. Utilizing the micro-stamping technology, the pseudo-3D sensor system-on-chip (SSoC architecture can be implemented by stacking sensing materials directly on the top of a CMOS-fabricated chip. The fabricated sensor system-on-chip (2.28 mm × 2.48 mm integrated a humidity sensor, an interface circuit, a digital controller, and an On-Off Keying (OOK wireless transceiver. With low power consumption, i.e., 750 μW without RF operation, the sensitivity of developed sensor chip was experimentally verified in the relative humidity (RH range from 32% to 60%. The response time of the chip was also experimentally verified to be within 5 seconds from RH 36% to RH 64%. As a consequence, the implemented humidity SSoC paves the way toward the an ultra-small sensor system for various applications.

  8. Study of the motion of electrons in non polar classical liquids. Measurement of Hall effect and f.i.r. search for low energy traps. Progress report

    International Nuclear Information System (INIS)

    1981-01-01

    Progress is reported on experiments aimed at the measurement of the Hall mobility of injected electrons in classical non polar insulating liquids and the optical absorption associated with electrons captured by shallow traps in the liquefied rare gases. Theoretical work aimed at a better understanding of the trapping kinetics of electrons by SF 6 and O 2 dissolved in rare gas liquids was also carried out. Its conclusion is that the electric field dependence of the trapping probability can be explained, basically without adjustable parameters, by considering the Poole-Frenkel-Schotky ionization of the excited state of the traps. From the analysis of published data on the motion of electrons in liquid ethane it is tentatively concluded that at low temperatures the trapping of electrons in the liquid involves a Jahn-Teller like distortion of a single ethane molecule while at higher temperatures it is necessary to consider a small molecular cluster, possibly made up of 2 molecules

  9. Structure of the Kaoko Belt, Namibia: progressive evolution of a classic transpressional orogen

    Science.gov (United States)

    Goscombe, Ben; Hand, Martin; Gray, David

    2003-07-01

    The Kaoko Belt portion of the Damara Orogen, Namibia, is the deeply eroded core of a sinistral transpressional orogen that has half-flower structure geometry centred on the major, 4-5-km-wide Purros Mylonite Zone. Formed between the Congo Craton in the east and Rio De La Plata Craton in Brazil, the Kaoko Belt represents the northern coastal arm of a triple junction within the Pan-African Orogenic System. Consisting of reworked Archaean, Palaeoproterozoic and Mesoproterozoic basement and a cover of Neoproterozoic Damara Sequence, the Kaoko Belt can be sub-divided structurally into three parallel NNW-trending zones. The Eastern Kaoko Zone comprises sub-greenschist facies shelf carbonates that have been uprightly folded. The Central Kaoko Zone contains a slope and deep basin facies succession that has experienced intense deformation, including pervasive reworking of basement into large-scale east-vergent nappes. The Western Kaoko Zone is predominantly deep basin facies of high metamorphic grade intruded by numerous granites. It has experienced intense wrench-style deformation with formation of upright isoclines and steep, crustal-scale shear zones. The Kaoko Belt evolved through three distinct phases of a protracted Pan-African Orogeny in the late Neoproterozoic to Cambrian. (1) An early Thermal Phase (M 1) was responsible for pervasive partial melting and granite emplacement in the Western Kaoko Zone from 656 Ma. (2) The Transpressional Phase produced the geometry of the belt by progressive sinistral shearing between 580 and 550 Ma. Deformation was continuously progressive through two stages and involved both temporal and spatial migration of deformation outwards towards the margin. The early strike-slip Wrench-Stage produced a high-strain L-S fabric by sub-horizontal transport. Deformation became progressively more transpressive, with high-angle convergence and flattening strains during the Convergent-Stage. In this stage, strike-slip movements evolved through

  10. Mathieu Progressive Waves

    International Nuclear Information System (INIS)

    Utkin, Andrei B.

    2011-01-01

    A new family of exact solutions to the wave equation representing relatively undistorted progressive waves is constructed using separation of variables in the elliptic cylindrical coordinates and one of the Bateman transforms. The general form of this Bateman transform in an orthogonal curvilinear cylindrical coordinate system is discussed and a specific problem of physical feasibility of the obtained solutions, connected with their dependence on the cyclic coordinate, is addressed. The limiting case of zero eccentricity, in which the elliptic cylindrical coordinates turn into their circular cylindrical counterparts, is shown to correspond to the focused wave modes of the Bessel-Gauss type. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. The classical limit in the framework of stochastic mechanics

    International Nuclear Information System (INIS)

    Claverie, P.

    1976-01-01

    Thorough qualitative understanding of microphysical phenomena is not really obtained by usual quantum mechanics (QM), whereas statistical mechanics (SM) appears able to bring in substantial conceptual progress. These conceptual improvements in a fringe area of quantum mechanics, namely the so-called transition region to classical mechanics, are described. The difficulties which appear in the framework of usual QM are surveyed and then it is shown how they would disappear in the framework of SM, provided that appropriate dynamical laws are found such that, by using them, SM actually gives the main results of QM (position and velocity probability distributions, mean values of energy, angular momentum, etc.)

  12. Classical and quantum dynamics from classical paths to path integrals

    CERN Document Server

    Dittrich, Walter

    2017-01-01

    Graduate students who wish to become familiar with advanced computational strategies in classical and quantum dynamics will find in this book both the fundamentals of a standard course and a detailed treatment of the time-dependent oscillator, Chern-Simons mechanics, the Maslov anomaly and the Berry phase, to name just a few topics. Well-chosen and detailed examples illustrate perturbation theory, canonical transformations and the action principle, and demonstrate the usage of path integrals. The fifth edition has been revised and enlarged to include chapters on quantum electrodynamics, in particular, Schwinger’s proper time method and the treatment of classical and quantum mechanics with Lie brackets and pseudocanonical transformations. It is shown that operator quantum electrodynamics can be equivalently described with c-numbers, as demonstrated by calculating the propagation function for an electron in a prescribed classical electromagnetic field.

  13. Inequality reducing properties of progressive income tax schedules: The case of endogenous income

    OpenAIRE

    Carbonell-Nicolau, Oriol; Llavador, Humberto

    2016-01-01

    The case for progressive income taxation is often based on the classic result of Jakobsson (1976) and Fellman (1976), according to which progressive and only progressive income taxes - in the sense of increasing average tax rates on income - ensure a reduction in income inequality. This result has been criticized on the ground that it ignores the possible disincentive effect of taxation on work effort, and the resolution of this critique has been a long-standing problem in public finance. Thi...

  14. v-Ha-ras oncogene insertion: A model for tumor progression of human small cell lung cancer

    International Nuclear Information System (INIS)

    Mabry, M.; Nakagawa, Toshitaro; Nelkin, B.D.; McDowell, E.; Gesell, M.; Eggleston, J.C.; Casero, R.A. Jr.; Baylin, S.B.

    1988-01-01

    Small cell lung cancer (SCLC) manifests a range of phenotypes in culture that may be important in understanding its relationship to non-SCLCs and to tumor progression events in patients. Most SCLC-derived cell lines, termed classic SCLC lines, have properties similar to SCLC tumors in patients. To delineate further the relationships between these phenotypes and the molecular events involved, the authors inserted the v-Ha-ras gene in SCLC cell lines with (biochemical variant) and without (classic) an amplified c-myc gene. These two SCLC subtypes had markedly different phenotypic responses to similar levels of expression of v-Ha-ras RNA. No biochemical or morphologic changes were observed in classic SCLC cells. In contrast, in biochemical variant SCLC cells, v-Ha-ras expression induced features typical of large cell undifferentiated lung carcinoma. Expression of v-Ha-ras in biochemical variant SCLC cells directly demonstrates that important transitions can occur between phenotypes of human lung cancer cells and that these may play a critical role in tumor progression events in patients. The finding provide a model system to study molecular events involved in tumor progression steps within a series of related tumor types

  15. Classical trajectory methods in molecular collisions

    International Nuclear Information System (INIS)

    Porter, R.N.; Raff, L.M.

    1976-01-01

    The discussion of classical trajectory methods in molecular collisions includes classical dynamics, Hamiltonian mechanics, classical scattering cross sections and rate coefficients, statistical averaging, the selection of initial states, integration of equations of motion, analysis of final states, consecutive collisions, and the prognosis for classical molecular scattering calculations. 61 references

  16. Zwitters: Particles between quantum and classical

    International Nuclear Information System (INIS)

    Wetterich, C.

    2012-01-01

    We describe both quantum particles and classical particles in terms of a classical statistical ensemble, with a probability distribution in phase space. By use of a wave function in phase space both can be treated in the same quantum formalism. Quantum particles are characterized by a specific choice of observables and time evolution of the probability density. Then interference and tunneling are found within classical statistics. Zwitters are (effective) one-particle states for which the time evolution interpolates between quantum and classical particles. Experimental bounds on a small parameter can test quantum mechanics. -- Highlights: ► Quantum particles can be described within classical statistics. ► Classical particles are formulated in quantum formalism. ► Zwitters interpolate between classical and quantum particles. ► Zwitters allow for quantitative tests of quantum mechanics. ► Zwitters could be effective one-particle descriptions of droplets.

  17. Using the fibre structure of paper to determine authenticity of the documents: analysis of transmitted light images of stamps and banknotes.

    Science.gov (United States)

    Takalo, Jouni; Timonen, Jussi; Sampo, Jouni; Rantala, Maaria; Siltanen, Samuli; Lassas, Matti

    2014-11-01

    A novel method is presented for distinguishing postal stamp forgeries and counterfeit banknotes from genuine samples. The method is based on analyzing differences in paper fibre networks. The main tool is a curvelet-based algorithm for measuring overall fibre orientation distribution and quantifying anisotropy. Using a couple of more appropriate parameters makes it possible to distinguish forgeries from genuine originals as concentrated point clouds in two- or three-dimensional parameter space. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Classical Trajectories and Quantum Spectra

    Science.gov (United States)

    Mielnik, Bogdan; Reyes, Marco A.

    1996-01-01

    A classical model of the Schrodinger's wave packet is considered. The problem of finding the energy levels corresponds to a classical manipulation game. It leads to an approximate but non-perturbative method of finding the eigenvalues, exploring the bifurcations of classical trajectories. The role of squeezing turns out decisive in the generation of the discrete spectra.

  19. Risk and economic consequences of contagious animal disease introduction

    NARCIS (Netherlands)

    Horst, H.S.

    1998-01-01

    Introduction

    Within the European Union, epidemics of contagious animal diseases such as Classical Swine Fever (CSF) and Foot-and-Mouth Disease (FMD) are to be eradicated according to strict EU- prescriptions including stamping-out of infected herds,

  20. The classic: Bone morphogenetic protein.

    Science.gov (United States)

    Urist, Marshall R; Strates, Basil S

    2009-12-01

    This Classic Article is a reprint of the original work by Marshall R. Urist and Basil S. Strates, Bone Morphogenetic Protein. An accompanying biographical sketch of Marshall R. Urist, MD is available at DOI 10.1007/s11999-009-1067-4; a second Classic Article is available at DOI 10.1007/s11999-009-1069-2; and a third Classic Article is available at DOI 10.1007/s11999-009-1070-9. The Classic Article is copyright 1971 by Sage Publications Inc. Journals and is reprinted with permission from Urist MR, Strates BS. Bone morphogenetic protein. J Dent Res. 1971;50:1392-1406.

  1. The fundamental role of mechanical properties in the progression of cancer disease and inflammation

    International Nuclear Information System (INIS)

    Mierke, Claudia Tanja

    2014-01-01

    The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in

  2. The fundamental role of mechanical properties in the progression of cancer disease and inflammation

    Science.gov (United States)

    Mierke, Claudia Tanja

    2014-07-01

    The role of mechanical properties in cancer disease and inflammation is still underinvestigated and even ignored in many oncological and immunological reviews. In particular, eight classical hallmarks of cancer have been proposed, but they still ignore the mechanics behind the processes that facilitate cancer progression. To define the malignant transformation of neoplasms and finally reveal the functional pathway that enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific mechanical properties of cancer cells and their microenvironment such as the extracellular matrix as well as embedded cells such as fibroblasts, macrophages or endothelial cells. Thus, this review will present current cancer research from a biophysical point of view and will therefore focus on novel physical aspects and biophysical methods to investigate the aggressiveness of cancer cells and the process of inflammation. As cancer or immune cells are embedded in a certain microenvironment such as the extracellular matrix, the mechanical properties of this microenvironment cannot be neglected, and alterations of the microenvironment may have an impact on the mechanical properties of the cancer or immune cells. Here, it is highlighted how biophysical approaches, both experimental and theoretical, have an impact on the classical hallmarks of cancer and inflammation. It is even pointed out how these biophysical approaches contribute to the understanding of the regulation of cancer disease and inflammatory responses after tissue injury through physical microenvironmental property sensing mechanisms. The recognized physical signals are transduced into biochemical signaling events that guide cellular responses, such as malignant tumor progression, after the transition of cancer cells from an epithelial to a mesenchymal phenotype or an inflammatory response due to tissue injury. Moreover, cell adaptation to mechanical alterations, in

  3. Quantum classical correspondence in nonrelativistic electrodynamics

    International Nuclear Information System (INIS)

    Ritchie, B.; Weatherford, C.A.

    1999-01-01

    A form of classical electrodynamic field exists which gives exact agreement with the operator field of quantum electrodynamics (QED) for the Lamb shift of a harmonically bound point electron. Here it is pointed out that this form of classical theory, with its physically acceptable interpretation, is the result of an unconventional resolution of a mathematically ambiguous term in classical field theory. Finally, a quantum classical correspondence principle is shown to exist in the sense that the classical field and expectation value of the QED operator field are identical, if retardation is neglected in the latter

  4. Observational study of differences in head position for high notes in famous classical and non-classical male singers.

    Science.gov (United States)

    Amarante Andrade, Pedro; Švec, Jan G

    2016-07-01

    Differences in classical and non-classical singing are due primarily to aesthetic style requirements. The head position can affect the sound quality. This study aimed at comparing the head position for famous classical and non-classical male singers performing high notes. Images of 39 Western classical and 34 non-classical male singers during live performances were obtained from YouTube. Ten raters evaluated the frontal rotational head position (depression versus elevation) and transverse head position (retraction versus protraction) visually using a visual analogue scale. The results showed a significant difference for frontal rotational head position. Most non-classical singers in the sample elevated their heads for high notes while the classical singers were observed to keep it around the neutral position. This difference may be attributed to different singing techniques and phonatory system adjustments utilized by each group.

  5. SOCIAL RESPONSIBILITY SCORE: COMPARATIVE STUDY BETWEEN PUBLIC And PRIVATE COMPANIES, BASED In ibase SOCIAL stamp

    Directory of Open Access Journals (Sweden)

    Alexandre Reis

    2008-01-01

    Full Text Available The present article intends to arguing the existing differences and similarities between Social Responsibility actions and praticals developed by the private and public companies. This comparative study of exploring character was carried with the companies owners of Social Stamp IBASE, wich published its Social Balances in the model considered for the institute in the year of 2004. For such, beyond the documentary research involving the published balances, a conceptual revision over the main subjects was necessary and also it constitutes part of the study. The joined results supply measurable and representative information about the main characteristics of social action of the companies, propitiating a comparative analysis and the emission of critical considerations, that do not finish themselves, but establishes a possibility of different readings concerning the models of social responsible management undertaken by companies from public and private segments.

  6. Markkinointiviestintäsuunnitelma : Classic Coffee Oy

    OpenAIRE

    Eerola, Laura

    2015-01-01

    Opinnäytetyön aiheena oli laatia markkinointiviestintäsuunnitelma kalenterivuodelle 2016 vuosikellon muodossa, toimintansa jo vakiinnuttaneelle Classic Coffee Oy:lle. Classic Coffee Oy on vuonna 2011 perustettu, Tampereella toimiva kahvila-alan yritys joka tarjoaa lounaskahvilatoiminnan lisäksi laadukkaita konditoria-palveluita, yritys- ja kokoustarjoiluja sekä tilavuokrausta. Classic Coffee Oy:llä on yksi kahvila, Classic Coffee Tampella. Kahvila sijaitsee Tampellassa, Tampereen keskustan vä...

  7. Classical higher-order processes

    DEFF Research Database (Denmark)

    Montesi, Fabrizio

    2017-01-01

    Classical Processes (CP) is a calculus where the proof theory of classical linear logic types processes à la Π-calculus, building on a Curry-Howard correspondence between session types and linear propositions. We contribute to this research line by extending CP with process mobility, inspired by ...

  8. Functional contribution of elevated circulating and hepatic non-classical CD14CD16 monocytes to inflammation and human liver fibrosis.

    Directory of Open Access Journals (Sweden)

    Henning W Zimmermann

    Full Text Available BACKGROUND: Monocyte-derived macrophages critically perpetuate inflammatory responses after liver injury as a prerequisite for organ fibrosis. Experimental murine models identified an essential role for the CCR2-dependent infiltration of classical Gr1/Ly6C(+ monocytes in hepatic fibrosis. Moreover, the monocyte-related chemokine receptors CCR1 and CCR5 were recently recognized as important fibrosis modulators in mice. In humans, monocytes consist of classical CD14(+CD16(- and non-classical CD14(+CD16(+ cells. We aimed at investigating the relevance of monocyte subpopulations for human liver fibrosis, and hypothesized that 'non-classical' monocytes critically exert inflammatory as well as profibrogenic functions in patients during liver disease progression. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed circulating monocyte subsets from freshly drawn blood samples of 226 patients with chronic liver disease (CLD and 184 healthy controls by FACS analysis. Circulating monocytes were significantly expanded in CLD-patients compared to controls with a marked increase of the non-classical CD14(+CD16(+ subset that showed an activated phenotype in patients and correlated with proinflammatory cytokines and clinical progression. Correspondingly, CD14(+CD16(+ macrophages massively accumulated in fibrotic/cirrhotic livers, as evidenced by immunofluorescence and FACS. Ligands of monocyte-related chemokine receptors CCR2, CCR1 and CCR5 were expressed at higher levels in fibrotic and cirrhotic livers, while CCL3 and CCL4 were also systemically elevated in CLD-patients. Isolated monocyte/macrophage subpopulations were functionally characterized regarding cytokine/chemokine expression and interactions with primary human hepatic stellate cells (HSC in vitro. CD14(+CD16(+ monocytes released abundant proinflammatory cytokines. Furthermore, CD14(+CD16(+, but not CD14(+CD16(- monocytes could directly activate collagen-producing HSC. CONCLUSIONS/SIGNIFICANCE: Our data

  9. Local quantum channels preserving classical correlations

    International Nuclear Information System (INIS)

    Guo Zhihua; Cao Huaixin

    2013-01-01

    The aim of this paper is to discuss local quantum channels that preserve classical correlations. First, we give two equivalent characterizations of classical correlated states. Then we obtain the relationships among classical correlation-preserving local quantum channels, commutativity-preserving local quantum channels and commutativity-preserving quantum channels on each subsystem. Furthermore, for a two-qubit system, we show the general form of classical correlation-preserving local quantum channels. (paper)

  10. Information Technology Progress in North Korea and Its Prospects

    Science.gov (United States)

    2005-08-01

    North Korean company agreed to develop a Korean- Chinese language-interpretation software together with a South Korean company, L&I Soft. The North...Chosun cuisine , and Chosun stamps. Furthermore, governmental agencies and university research institutes developed roughly 10 programs for the Science

  11. Construction of Time-Stamped Mobility Map for Path Tracking via Smith-Waterman Measurement Matching

    Directory of Open Access Journals (Sweden)

    Mu Zhou

    2014-01-01

    Full Text Available Path tracking in wireless and mobile environments is a fundamental technology for ubiquitous location-based services (LBSs. In particular, it is very challenging to develop highly accurate and cost-efficient tracking systems applied to the anonymous areas where the floor plans are not available for security and privacy reasons. This paper proposes a novel path tracking approach for large Wi-Fi areas based on the time-stamped unlabeled mobility map which is constructed from Smith-Waterman received signal strength (RSS measurement matching. Instead of conventional location fingerprinting, we construct mobility map with the technique of dimension reduction from the raw measurement space into a low-dimensional embedded manifold. The feasibility of our proposed approach is verified by the real-world experiments in the HKUST campus Wi-Fi networks, sMobileNet. The experimental results prove that our approach is adaptive and capable of achieving an adequate precision level in path tracking.

  12. Classicalization of Gravitons and Goldstones

    CERN Document Server

    Dvali, Gia; Kehagias, Alex

    2011-01-01

    We establish a close parallel between classicalization of gravitons and derivatively-coupled Nambu-Goldstone-type scalars. We show, that black hole formation in high energy scattering process represents classicalization with the classicalization radius given by Schwarzschild radius of center of mass energy, and with the precursor of black hole entropy being given by number of soft quanta composing this classical configuration. Such an entropy-equivalent is defined for scalar classicalons also and is responsible for exponential suppression of their decay into small number of final particles. This parallel works in both ways. For optimists that are willing to hypothesize that gravity may indeed self-unitarize at high energies via black hole formation, it illustrates that the Goldstones may not be much different in this respect, and they classicalize essentially by similar dynamics as gravitons. In the other direction, it may serve as an useful de-mystifier of via-black-hole-unitarization process and of the role...

  13. Classical dynamics a modern perspective

    CERN Document Server

    Sudarshan, Ennackal Chandy George

    2016-01-01

    Classical dynamics is traditionally treated as an early stage in the development of physics, a stage that has long been superseded by more ambitious theories. Here, in this book, classical dynamics is treated as a subject on its own as well as a research frontier. Incorporating insights gained over the past several decades, the essential principles of classical dynamics are presented, while demonstrating that a number of key results originally considered only in the context of quantum theory and particle physics, have their foundations in classical dynamics.Graduate students in physics and practicing physicists will welcome the present approach to classical dynamics that encompasses systems of particles, free and interacting fields, and coupled systems. Lie groups and Lie algebras are incorporated at a basic level and are used in describing space-time symmetry groups. There is an extensive discussion on constrained systems, Dirac brackets and their geometrical interpretation. The Lie-algebraic description of ...

  14. Classical spins in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, H [Tokyo Univ.; Maki, K

    1968-08-01

    It is shown that there exists a localized excited state in the energy gap in a superconductor with a classical spin. At finite concentration localized excited states around classical spins form an impurity band. The process of growth of the impurity band and its effects on observable quantities are investigated.

  15. CLASSICS

    Indian Academy of Sciences (India)

    2013-11-11

    Nov 11, 2013 ... Polanyi's classic paper, co-authored by Henry Eyring, reproduced in this ... spatial conf guration of the atoms in terms of the energy function of the diatomic .... The present communication deals with the construction of such .... These three contributions are complemented by a fourth term if one takes into.

  16. Mechanical Properties and Microstructure of High-Strength Steel Controlled by Hot Stamping Process

    Science.gov (United States)

    Ou, Hang; Zhang, Xu; Xu, Junrui; Li, Guangyao; Cui, Junjia

    2018-03-01

    A novel design and manufacturing method, dubbed "precast," of the cooling system and tools for a hot forming process was proposed in this paper. The integrated structures of the punch and blank holder were determined by analyzing the bending and reverse-bending deformation of the forming parts. The desired crashworthiness performance of an automotive front bumper constructed with this process was obtained by a tailored phase transformation, which generated martensite-bainite in the middle and full martensite transformation in the corner areas. Varying cooling effects in the formed parts caused the highest temperature to be located in the bottom and the lowest on the end of the formed parts. Moreover, the microstructural distributions demonstrated that the bottom possessed a relatively lower content of martensite, while, conversely, the end possessed a higher content. This was precisely the most desired phase distributions for the hot formed parts. For the six-process cycle stamping, the temperatures reached a stable status after an initial rapid increase in the first three process cycles. The microstructural results verified the feasibility of the hot forming tools under multiprocess cycles.

  17. 5-bp Classical Satellite DNA Loci from Chromosome-1 Instability in Cervical Neoplasia Detected by DNA Breakage Detection/Fluorescence in Situ Hybridization (DBD-FISH

    Directory of Open Access Journals (Sweden)

    Jaime Gosálvez

    2013-02-01

    Full Text Available We aimed to evaluate the association between the progressive stages of cervical neoplasia and DNA damage in 5-bp classical satellite DNA sequences from chromosome-1 in cervical epithelium and in peripheral blood lymphocytes using DNA breakage detection/fluorescence in situ hybridization (DBD-FISH. A hospital-based unmatched case-control study was conducted in 2011 with a sample of 30 women grouped according to disease stage and selected according to histological diagnosis; 10 with low-grade squamous intraepithelial lesions (LG-SIL, 10 with high-grade SIL (HG-SIL, and 10 with no cervical lesions, from the Unidad Medica de Alta Especialidad of The Mexican Social Security Institute, IMSS, Mexico. Specific chromosome damage levels in 5-bp classical satellite DNA sequences from chromosome-1 were evaluated in cervical epithelium and peripheral blood lymphocytes using the DBD-FISH technique. Whole-genome DNA hybridization was used as a reference for the level of damage. Results of Kruskal-Wallis test showed a significant increase according to neoplastic development in both tissues. The instability of 5-bp classical satellite DNA sequences from chromosome-1 was evidenced using chromosome-orientation FISH. In conclusion, we suggest that the progression to malignant transformation involves an increase in the instability of 5-bp classical satellite DNA sequences from chromosome-1.

  18. 5-bp Classical Satellite DNA Loci from Chromosome-1 Instability in Cervical Neoplasia Detected by DNA Breakage Detection/Fluorescence in Situ Hybridization (DBD-FISH).

    Science.gov (United States)

    Cortés-Gutiérrez, Elva I; Ortíz-Hernández, Brenda L; Dávila-Rodríguez, Martha I; Cerda-Flores, Ricardo M; Fernández, José Luis; López-Fernández, Carmen; Gosálvez, Jaime

    2013-02-19

    We aimed to evaluate the association between the progressive stages of cervical neoplasia and DNA damage in 5-bp classical satellite DNA sequences from chromosome-1 in cervical epithelium and in peripheral blood lymphocytes using DNA breakage detection/fluorescence in situ hybridization (DBD-FISH). A hospital-based unmatched case-control study was conducted in 2011 with a sample of 30 women grouped according to disease stage and selected according to histological diagnosis; 10 with low-grade squamous intraepithelial lesions (LG-SIL), 10 with high-grade SIL (HG-SIL), and 10 with no cervical lesions, from the Unidad Medica de Alta Especialidad of The Mexican Social Security Institute, IMSS, Mexico. Specific chromosome damage levels in 5-bp classical satellite DNA sequences from chromosome-1 were evaluated in cervical epithelium and peripheral blood lymphocytes using the DBD-FISH technique. Whole-genome DNA hybridization was used as a reference for the level of damage. Results of Kruskal-Wallis test showed a significant increase according to neoplastic development in both tissues. The instability of 5-bp classical satellite DNA sequences from chromosome-1 was evidenced using chromosome-orientation FISH. In conclusion, we suggest that the progression to malignant transformation involves an increase in the instability of 5-bp classical satellite DNA sequences from chromosome-1.

  19. Is it possible to diagnose Rett syndrome before classical symptoms become obvious?

    DEFF Research Database (Denmark)

    Bisgaard, Anne-Marie; Schönewolf-Greulich, Bitten; Ravn, Kirstine

    2015-01-01

    BACKGROUND/PURPOSE: Rett syndrome (RTT) is a neurodevelopmental disorder that affects mainly females; it results in multiple disabilities and carries a risk of medical comorbidities. Early diagnosis is important to help establish the best treatment opportunities and preventive care in order to slow...... down the progression of symptoms. We wanted to test our hypothesis that it is possible to diagnose RTT before the classical symptoms become obvious. METHODS: We analysed development and symptoms before and at the time of the RTT diagnosis, as well as the symptoms that triggered MECP2 mutation analysis...

  20. [Etiologies of cerebral palsy and classical treatment possibilities].

    Science.gov (United States)

    Maurer, Ute

    2002-01-01

    Cerebral palsy is a non-progressive disorder of the developing brain with different etiologies in the pre-, peri- or postnatal period. The most important of these diseases is cystic periventricular leukomalacia (PVL), followed by intra- and periventricular hemorrhage, hypoxic-ischemic encephalopathy, vascular disorders, infections or brain malformations. The underlying cause is always a damage of the first motor neuron. Prevalence of cerebral palsy in Europe is 2-3 per 1000 live births with a broad spectrum in different birth weight groups. Our own data concerning only pre-term infants in the NICU with birth weight below 1500 g (VLBW) are between 10%-20%. Established classical treatment methods include physiotherapy (Bobath, Vojta, Hippotherapy), methods of speech and occupational therapists (Castillo-Morales, Sensory Integration) and other therapeutical concepts (Petö, Affolter, Frostig).

  1. StaMPS Improvement for Deformation Analysis in Mountainous Regions: Implications for the Damavand Volcano and Mosha Fault in Alborz

    Directory of Open Access Journals (Sweden)

    Sanaz Vajedian

    2015-06-01

    Full Text Available Interferometric Synthetic Aperture Radar (InSAR capability to detect slow deformation over terrain areas is limited by temporal decorrelation, geometric decorrelation and atmospheric artefacts. Multitemporal InSAR methods such as Persistent Scatterer (PS-InSAR and Small Baseline Subset (SBAS have been developed to deal with various aspects of decorrelation and atmospheric problems affecting InSAR observations. Nevertheless, the applicability of both PS-InSAR and SBAS in mountainous regions is still challenging. Correct phase unwrapping in both methods is hampered due to geometric decorrelation in particular when using C-band SAR data for deformation analysis. In this paper, we build upon the SBAS method implemented in StaMPS software and improved the technique, here called ISBAS, to assess tectonic and volcanic deformation in the center of the Alborz Mountains in Iran using both Envisat and ALOS SAR data. We modify several aspects within the chain of the processing including: filtering prior to phase unwrapping, topographic correction within three-dimensional phase unwrapping, reducing the atmospheric noise with the help of additional GPS data, and removing the ramp caused by ionosphere turbulence and/or orbit errors to better estimate crustal deformation in this tectonically active region. Topographic correction is done within the three-dimensional unwrapping in order to improve the phase unwrapping process, which is in contrast to previous methods in which DEM error is estimated before/after phase unwrapping. Our experiments show that our improved SBAS approach is able to better characterize the tectonic and volcanic deformation in the center of the Alborz region than the classical SBAS. In particular, Damavand volcano shows an average uplift rate of about 3 mm/year in the year 2003–2010. The Mosha fault illustrates left-lateral motion that could be explained with a fault that is locked up to 17–18 km depths and slips with 2–4 mm

  2. Micromechanics-based modeling of stress–strain and fracture behavior of heat-treated boron steels for hot stamping process

    Energy Technology Data Exchange (ETDEWEB)

    Srithananan, P.; Kaewtatip, P.; Uthaisangsuk, V., E-mail: vitoon.uth@kmutt.ac.th

    2016-06-14

    In the automotive industry, hot stamped parts with tailored properties have shown advantageous safety performance. Such components are produced by applying different heat treatment conditions after forming for different zones in order to obtain various combinations of hard and soft microstructures. In this work, pure martensitic, pure bainitic, and three martensitic/bainitic phase microstructures were initially generated from the boron steel grade 22MnB5 by a two-step quenching procedure in which different holding times in the bainitic temperature range were varied. Increased phase fraction of bainite due to longer holding time led to decreased yield and tensile strength; however, elongation and resulting energy absorbability became significantly higher. To describe mechanical properties and failure behavior of hot stamped parts containing multiphase microstructures, influences of microstructure characteristics should be considered on the micro-scale. Using modeling, 2-D representative volume elements (RVE) were generated from observed real microstructures and flow curves of the individual single phases were defined, taking into account a dislocation theory based model and local chemical compositions. Then, effective stress–strain curves of the heat-treated boron steels were calculated by using the isostrain and non-isostrain methods and compared with tensile test results. Regarding fracture behavior, damage curves of fully martensitic and bainitic structures were determined by means of tensile tests of different notched samples and a hybrid digital image correlation (DIC)–finite element (FE) approach. 2-D RVE simulations of a martensite/bainite mixture were carried out under various states of stress, in which the obtained damage curves were individually applied for each phase. The predicted damage curve from RVE simulations for two-phase boron steel fairly agreed with experimental fracture strains. Moreover, correspondingly normalized Lode angle could be

  3. Experimental verification of tailor welded joining partners for hot stamping and analytical modeling of TWBs rheological constitutive in austenitic state

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Bingtao, E-mail: tbtsh@hotmail.com [School of Materials Science and Engineering, Shandong Jianzhu University, Shandong, Jinan 250101 (China); State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Hunan, Changsha 410082 (China); Yuan, Zhengjun; Cheng, Gang [School of Mechanical and Electronic Engineering, Shandong Jianzhu University, Jinan 250101 (China); Huang, Lili; Zheng, Wei [School of Materials Science and Engineering, Shandong Jianzhu University, Shandong, Jinan 250101 (China); Xie, Hui [State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Hunan, Changsha 410082 (China)

    2013-11-15

    Hot stamping of quenchable ultra high strength steels currently represents a standard forming technology in the automotive industry for the manufacture of safety and crash relevant components. Recently, hot stamping of Tailor-Welded Blanks (TWBs) is proposed to meet the environmental and safety requirements by supplying car structural body components with functionally optimized and tailored mechanical properties. In this paper, an appropriate partner material for the quenchenable boron steel B1500HS based on the phase transformation and deformation behavior under process relevant conditions is determined. It is generally accepted that the mechanical properties for joint partner after quenching process should meet the following requirements. The value of yield strength (YS) should be between 350 and 500 MPa. The ultimate tensile strength (UTS) should be within the limits of 500–650 MPa, and the total elongation (TEL) until rupture should be higher than 13%. Two kinds of High Strength Low Alloy (HSLA) cold rolled steels B340LA and B410LA are chosen for verification of which one is appropriate as joint partner. Microhardness is measured and metallographic is investigated on different base materials and corresponding weld seams. It is pointed out that the B340LA steel is an appropriate joint partner with ideal thermal and mechanical properties. An optimized Arrhenius constitutive law is implemented to improve the characterization and description of the mechanical properties of the base and joint partner, as well as the weld seam in austenitic state. The comparisons with simplified Hensel–Spittel constitutive model show the optimized Arrhenius constitutive law describes the experimental data fairly well.

  4. Experimental verification of tailor welded joining partners for hot stamping and analytical modeling of TWBs rheological constitutive in austenitic state

    International Nuclear Information System (INIS)

    Tang, Bingtao; Yuan, Zhengjun; Cheng, Gang; Huang, Lili; Zheng, Wei; Xie, Hui

    2013-01-01

    Hot stamping of quenchable ultra high strength steels currently represents a standard forming technology in the automotive industry for the manufacture of safety and crash relevant components. Recently, hot stamping of Tailor-Welded Blanks (TWBs) is proposed to meet the environmental and safety requirements by supplying car structural body components with functionally optimized and tailored mechanical properties. In this paper, an appropriate partner material for the quenchenable boron steel B1500HS based on the phase transformation and deformation behavior under process relevant conditions is determined. It is generally accepted that the mechanical properties for joint partner after quenching process should meet the following requirements. The value of yield strength (YS) should be between 350 and 500 MPa. The ultimate tensile strength (UTS) should be within the limits of 500–650 MPa, and the total elongation (TEL) until rupture should be higher than 13%. Two kinds of High Strength Low Alloy (HSLA) cold rolled steels B340LA and B410LA are chosen for verification of which one is appropriate as joint partner. Microhardness is measured and metallographic is investigated on different base materials and corresponding weld seams. It is pointed out that the B340LA steel is an appropriate joint partner with ideal thermal and mechanical properties. An optimized Arrhenius constitutive law is implemented to improve the characterization and description of the mechanical properties of the base and joint partner, as well as the weld seam in austenitic state. The comparisons with simplified Hensel–Spittel constitutive model show the optimized Arrhenius constitutive law describes the experimental data fairly well

  5. Twisted classical Poincare algebras

    International Nuclear Information System (INIS)

    Lukierski, J.; Ruegg, H.; Tolstoy, V.N.; Nowicki, A.

    1993-11-01

    We consider the twisting of Hopf structure for classical enveloping algebra U(g), where g is the inhomogeneous rotations algebra, with explicite formulae given for D=4 Poincare algebra (g=P 4 ). The comultiplications of twisted U F (P 4 ) are obtained by conjugating primitive classical coproducts by F element of U(c)xU(c), where c denotes any Abelian subalgebra of P 4 , and the universal R-matrices for U F (P 4 ) are triangular. As an example we show that the quantum deformation of Poincare algebra recently proposed by Chaichian and Demiczev is a twisted classical Poincare algebra. The interpretation of twisted Poincare algebra as describing relativistic symmetries with clustered 2-particle states is proposed. (orig.)

  6. Trends and progress in system identification

    CERN Document Server

    Eykhoff, Pieter

    1981-01-01

    Trends and Progress in System Identification is a three-part book that focuses on model considerations, identification methods, and experimental conditions involved in system identification. Organized into 10 chapters, this book begins with a discussion of model method in system identification, citing four examples differing on the nature of the models involved, the nature of the fields, and their goals. Subsequent chapters describe the most important aspects of model theory; the """"classical"""" methods and time series estimation; application of least squares and related techniques for the e

  7. The Relation between Classical and Quantum Electrodynamics

    Directory of Open Access Journals (Sweden)

    Mario Bacelar Valente

    2011-01-01

    Full Text Available Quantum electrodynamics presents intrinsic limitations in the description of physical processes that make it impossible to recover from it the type of description we have in classical electrodynamics. Hence one cannot consider classical electrodynamics as reducing to quantum electrodynamics and being recovered from it by some sort of limiting procedure. Quantum electrodynamics has to be seen not as an more fundamental theory, but as an upgrade of classical electrodynamics, which permits an extension of classical theory to the description of phenomena that, while being related to the conceptual framework of the classical theory, cannot be addressed from the classical theory.

  8. Quantum symmetries of classical spaces

    OpenAIRE

    Bhowmick, Jyotishman; Goswami, Debashish; Roy, Subrata Shyam

    2009-01-01

    We give a general scheme for constructing faithful actions of genuine (noncommutative as $C^*$ algebra) compact quantum groups on classical topological spaces. Using this, we show that: (i) a compact connected classical space can have a faithful action by a genuine compact quantum group, and (ii) there exists a spectral triple on a classical connected compact space for which the quantum group of orientation and volume preserving isometries (in the sense of \\cite{qorient}) is a genuine quantum...

  9. Doing classical theology in context

    Directory of Open Access Journals (Sweden)

    Gerrit Neven

    2007-05-01

    Full Text Available This article is about doing classical theology in context. The weight of my argument is that classical text of Karl Barth’s theology is great intellectual text means: being addressed by this text in the context in which one lives. The basic keywords that constitute a rule for reading those texts are “equality”, “event” and “re-contextualisation”. The article contains two sections: The first section elaborates statements about the challenge of the event and the project of rereading classics by way of recontextualisation. The word “event” refers to true and innovating moments in history which one can share, or which one can betray. Classical texts always share in those liberative moments. The question then is in what sense do they present a challenge to the contemporary reader. The second section elaborates the position of man as central and all decisive for doing theology in context now. In this section, the author appeals for a renewal of the classical anthropology as an anthropology of hope. This anthropology contradicts postmodern concepts of otherness.

  10. Classical approach in atomic physics

    International Nuclear Information System (INIS)

    Solov'ev, E.A.

    2011-01-01

    The application of a classical approach to various quantum problems - the secular perturbation approach to quantization of a hydrogen atom in external fields and a helium atom, the adiabatic switching method for calculation of a semiclassical spectrum of a hydrogen atom in crossed electric and magnetic fields, a spontaneous decay of excited states of a hydrogen atom, Gutzwiller's approach to Stark problem, long-lived excited states of a helium atom discovered with the help of Poincare section, inelastic transitions in slow and fast electron-atom and ion-atom collisions - is reviewed. Further, a classical representation in quantum theory is discussed. In this representation the quantum states are treated as an ensemble of classical states. This approach opens the way to an accurate description of the initial and final states in classical trajectory Monte Carlo (CTMC) method and a purely classical explanation of tunneling phenomenon. The general aspects of the structure of the semiclassical series such as renormalization group symmetry, criterion of accuracy and so on are reviewed as well. (author)

  11. Quantum dynamics in open quantum-classical systems.

    Science.gov (United States)

    Kapral, Raymond

    2015-02-25

    Often quantum systems are not isolated and interactions with their environments must be taken into account. In such open quantum systems these environmental interactions can lead to decoherence and dissipation, which have a marked influence on the properties of the quantum system. In many instances the environment is well-approximated by classical mechanics, so that one is led to consider the dynamics of open quantum-classical systems. Since a full quantum dynamical description of large many-body systems is not currently feasible, mixed quantum-classical methods can provide accurate and computationally tractable ways to follow the dynamics of both the system and its environment. This review focuses on quantum-classical Liouville dynamics, one of several quantum-classical descriptions, and discusses the problems that arise when one attempts to combine quantum and classical mechanics, coherence and decoherence in quantum-classical systems, nonadiabatic dynamics, surface-hopping and mean-field theories and their relation to quantum-classical Liouville dynamics, as well as methods for simulating the dynamics.

  12. Quantum-Classical Correspondence: Dynamical Quantization and the Classical Limit

    International Nuclear Information System (INIS)

    Turner, L

    2004-01-01

    In only 150 pages, not counting appendices, references, or the index, this book is one author's perspective of the massive theoretical and philosophical hurdles in the no-man's-land separating the classical and quantum domains of physics. It ends with him emphasizing his own theoretical contribution to this area. In his own words, he has attempted to answer: 1. How can we obtain the quantum dynamics of open systems initially described by the equations of motion of classical physics (quantization process) 2. How can we retrieve classical dynamics from the quantum mechanical equations of motion by means of a classical limiting process (dequantization process). However, this monograph seems overly ambitious. Although the publisher's description refers to this book as an accessible entre, we find that this author scrambles too hastily over the peaks of information that are contained in his large collection of 272 references. Introductory motivating discussions are lacking. Profound ideas are glossed over superficially and shoddily. Equations morph. But no new convincing understanding of the physical world results. The author takes the viewpoint that physical systems are always in interaction with their environment and are thus not isolated and, therefore, not Hamiltonian. This impels him to produce a method of quantization of these stochastic systems without the need of a Hamiltonian. He also has interest in obtaining the classical limit of the quantized results. However, this reviewer does not understand why one needs to consider open systems to understand quantum-classical correspondence. The author demonstrates his method using various examples of the Smoluchowski form of the Fokker--Planck equation. He then renders these equations in a Wigner representation, uses what he terms an infinitesimality condition, and associates with a constant having the dimensions of an action. He thereby claims to develop master equations, such as the Caldeira-Leggett equation, without

  13. Locking classical correlations in quantum States.

    Science.gov (United States)

    DiVincenzo, David P; Horodecki, Michał; Leung, Debbie W; Smolin, John A; Terhal, Barbara M

    2004-02-13

    We show that there exist bipartite quantum states which contain a large locked classical correlation that is unlocked by a disproportionately small amount of classical communication. In particular, there are (2n+1)-qubit states for which a one-bit message doubles the optimal classical mutual information between measurement results on the subsystems, from n/2 bits to n bits. This phenomenon is impossible classically. However, states exhibiting this behavior need not be entangled. We study the range of states exhibiting this phenomenon and bound its magnitude.

  14. Citation Classics from Industrial Marketing Management

    DEFF Research Database (Denmark)

    Lindgreen, Adam; Di Benedetto, C. Anthony

    2017-01-01

    , system sellers and systems integrator, third-party logistics providers, and value). Finally, each of the 30 citation classics is introduced, and the classics' theoretical implications to business-to-business marketing management and fields related to (e.g., supply chain management, strategic management......This article proposes a categorization of what constitutes a citation classic. General observations reveal, with regard to the top 30 citation classics from Industrial Marketing Management, the number of authors per article, country of origin of the lead author, and type of article (literature...... review, qualitative methodology, or quantitative methodology). In addition, these citation classics can be classified by topic (firm performance, goods-dominant and service-dominant logics, Internet and high-technology markets, product innovation, relationships and business networks, supply chains...

  15. Elementary classical hydrodynamics

    CERN Document Server

    Chirgwin, B H; Langford, W J; Maxwell, E A; Plumpton, C

    1967-01-01

    Elementary Classical Hydrodynamics deals with the fundamental principles of elementary classical hydrodynamics, with emphasis on the mechanics of inviscid fluids. Topics covered by this book include direct use of the equations of hydrodynamics, potential flows, two-dimensional fluid motion, waves in liquids, and compressible flows. Some general theorems such as Bernoulli's equation are also considered. This book is comprised of six chapters and begins by introducing the reader to the fundamental principles of fluid hydrodynamics, with emphasis on ways of studying the motion of a fluid. Basic c

  16. Gauge-fields and integrated quantum-classical theory

    International Nuclear Information System (INIS)

    Stapp, H.P.

    1986-01-01

    Physical situations in which quantum systems communicate continuously to their classically described environment are not covered by contemporary quantum theory, which requires a temporary separation of quantum degrees of freedom from classical ones. A generalization would be needed to cover these situations. An incomplete proposal is advanced for combining the quantum and classical degrees of freedom into a unified objective description. It is based on the use of certain quantum-classical structures of light that arise from gauge invariance to coordinate the quantum and classical degrees of freedom. Also discussed is the question of where experimenters should look to find phenomena pertaining to the quantum-classical connection. 17 refs

  17. Classical limit for quantum mechanical energy eigenfunctions

    International Nuclear Information System (INIS)

    Sen, D.; Sengupta, S.

    2004-01-01

    The classical limit problem is discussed for the quantum mechanical energy eigenfunctions using the Wentzel-Kramers-Brillouin approximation, free from the problem at the classical turning points. A proper perspective of the whole issue is sought to appreciate the significance of the discussion. It is observed that for bound states in arbitrary potential, appropriate limiting condition is definable in terms of a dimensionless classical limit parameter leading smoothly to all observable classical results. Most important results are the emergence of classical phase space, keeping the observable distribution functions non-zero only within the so-called classical region at the limit point and resolution of some well-known paradoxes. (author)

  18. H-classic: a new method to identify classic articles in Implant Dentistry, Periodontics, and Oral Surgery.

    Science.gov (United States)

    De la Flor-Martínez, Maria; Galindo-Moreno, Pablo; Sánchez-Fernández, Elena; Piattelli, Adriano; Cobo, Manuel Jesus; Herrera-Viedma, Enrique

    2016-10-01

    The study of classic papers permits analysis of the past, present, and future of a specific area of knowledge. This type of analysis is becoming more frequent and more sophisticated. Our objective was to use the H-classics method, based on the h-index, to analyze classic papers in Implant Dentistry, Periodontics, and Oral Surgery (ID, P, and OS). First, an electronic search of documents related to ID, P, and OS was conducted in journals indexed in Journal Citation Reports (JCR) 2014 within the category 'Dentistry, Oral Surgery & Medicine'. Second, Web of Knowledge databases were searched using Mesh terms related to ID, P, and OS. Finally, the H-classics method was applied to select the classic articles in these disciplines, collecting data on associated research areas, document type, country, institutions, and authors. Of 267,611 documents related to ID, P, and OS retrieved from JCR journals (2014), 248 were selected as H-classics. They were published in 35 journals between 1953 and 2009, most frequently in the Journal of Clinical Periodontology (18.95%), the Journal of Periodontology (18.54%), International Journal of Oral and Maxillofacial Implants (9.27%), and Clinical Oral Implant Research (6.04%). These classic articles derived from the USA in 49.59% of cases and from Europe in 47.58%, while the most frequent host institution was the University of Gothenburg (17.74%) and the most frequent authors were J. Lindhe (10.48%) and S. Socransky (8.06%). The H-classics approach offers an objective method to identify core knowledge in clinical disciplines such as ID, P, and OS. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Seven steps towards the classical world

    International Nuclear Information System (INIS)

    Allori, Valia; Duerr, Detlef; Goldstein, Shelly; Zanghi, Nino

    2002-01-01

    Classical physics is about real objects, like apples falling from trees, whose motion is governed by Newtonian laws. In standard quantum mechanics only the wavefunctions or the results of measurements exist, and to answer the question of how the classical world can be part of the quantum world is a rather formidable task. However, this is not the case for Bohmian mechanics which, like classical mechanics, is a theory about real objects. In Bohmian terms, the problem of the classical limit becomes very simple: when do the Bohmian trajectories look Newtonian?

  20. Progressive Supranuclear Palsy: an Update.

    Science.gov (United States)

    Armstrong, Melissa J

    2018-02-17

    Progressive supranuclear palsy (PSP) is a 4R tau neuropathologic entity. While historically defined by the presence of a vertical supranuclear gaze palsy and falls in the first symptomatic year, clinicopathologic studies identify alternate presenting phenotypes. This article reviews the new PSP diagnostic criteria, diagnostic approaches, and treatment strategies. The 2017 International Parkinson and Movement Disorder Society PSP criteria outline 14 core clinical features and 4 clinical clues that combine to diagnose one of eight PSP phenotypes with probable, possible, or suggestive certainty. Evidence supports the use of select imaging approaches in the classic PSP-Richardson syndrome phenotype. Recent trials of putative disease-modifying agents showed no benefit. The new PSP diagnostic criteria incorporating the range of presenting phenotypes have important implications for diagnosis and research. More work is needed to understand how diagnostic evaluations inform phenotype assessment and identify expected progression. Current treatment is symptomatic, but tau-based therapeutics are in active clinical trials.

  1. Quantum formalism for classical statistics

    Science.gov (United States)

    Wetterich, C.

    2018-06-01

    In static classical statistical systems the problem of information transport from a boundary to the bulk finds a simple description in terms of wave functions or density matrices. While the transfer matrix formalism is a type of Heisenberg picture for this problem, we develop here the associated Schrödinger picture that keeps track of the local probabilistic information. The transport of the probabilistic information between neighboring hypersurfaces obeys a linear evolution equation, and therefore the superposition principle for the possible solutions. Operators are associated to local observables, with rules for the computation of expectation values similar to quantum mechanics. We discuss how non-commutativity naturally arises in this setting. Also other features characteristic of quantum mechanics, such as complex structure, change of basis or symmetry transformations, can be found in classical statistics once formulated in terms of wave functions or density matrices. We construct for every quantum system an equivalent classical statistical system, such that time in quantum mechanics corresponds to the location of hypersurfaces in the classical probabilistic ensemble. For suitable choices of local observables in the classical statistical system one can, in principle, compute all expectation values and correlations of observables in the quantum system from the local probabilistic information of the associated classical statistical system. Realizing a static memory material as a quantum simulator for a given quantum system is not a matter of principle, but rather of practical simplicity.

  2. Metaheuristics progress in complex systems optimization

    CERN Document Server

    Doerner, Karl F; Greistorfer, Peter; Gutjahr, Walter; Hartl, Richard F; Reimann, Marc

    2007-01-01

    The aim of ""Metaheuristics: Progress in Complex Systems Optimization"" is to provide several different kinds of information: a delineation of general metaheuristics methods, a number of state-of-the-art articles from a variety of well-known classical application areas as well as an outlook to modern computational methods in promising new areas. Therefore, this book may equally serve as a textbook in graduate courses for students, as a reference book for people interested in engineering or social sciences, and as a collection of new and promising avenues for researchers working in this field.

  3. Diminuendo: Classical Music and the Academy

    Science.gov (United States)

    Asia, Daniel

    2010-01-01

    How is the tradition of Western classical music faring on university campuses? Before answering this question, it is necessary to understand what has transpired with classical music in the wider culture, as the relationship between the two is so strong. In this article, the author discusses how classical music has taken a big cultural hit in…

  4. Black Holes at the LHC: Progress since 2002

    International Nuclear Information System (INIS)

    Park, Seong Chan

    2008-01-01

    We review the recent noticeable progresses in black hole physics focusing on the up-coming super-collider, the LHC. We discuss the classical formation of black holes by particle collision, the greybody factors for higher dimensional rotating black holes, the deep implications of black hole physics to the 'energy-distance' relation, the security issues of the LHC associated with black hole formation and the newly developed Monte-Carlo generators for black hole events.

  5. Autologous hematopoietic stem cell transplantation in classical Hodgkin's lymphoma

    Directory of Open Access Journals (Sweden)

    Afonso José Pereira Cortez

    2011-02-01

    Full Text Available BACKGROUND: Hodgkin's lymphoma has high rates of cure, but in 15% to 20% of general patients and between 35% and 40% of those in advanced stages, the disease will progress or will relapse after initial treatment. For this group, hematopoietic stem cell transplantation is considered one option of salvage therapy. OBJECTIVES: To evaluate a group of 106 patients with Hodgkin's lymphoma, who suffered relapse or who were refractory to treatment, submitted to autologous hematopoietic stem cell transplantation in a single transplant center. METHODS: A retrospective study was performed with data collected from patient charts. The analysis involved 106 classical Hodgkin's lymphoma patients who were consecutively submitted to high-dose chemotherapy followed by autologous transplants in a single institution from April 1993 to December 2006. RESULTS: The overall survival rates of this population at five and ten years were 86% and 70%, respectively. The disease-free survival was approximately 60% at five years. Four patients died of procedure-related causes but relapse of classical Hodgkin's lymphoma after transplant was the most frequent cause of death. Univariate analysis shows that sensitivity to pre-transplant treatment and hemoglobin < 10 g/dL at diagnosis had an impact on patient survival. Unlike other studies, B-type symptoms did not seem to affect overall survival. Lactic dehydrogenase and serum albumin concentrations analyzed at diagnosis did not influence patient survival either. CONCLUSION: Autologous hematopoietic stem cell transplantation is an effective treatment strategy for early and late relapse in classical Hodgkin's lymphoma for cases that were responsive to pre-transplant chemotherapy. Refractory to treatment is a sign of worse prognosis. Additionally, a hemoglobin concentration below 10 g/dL at diagnosis of Hodgkin's lymphoma has a negative impact on the survival of patients after transplant. As far as we know this relationship has not

  6. Development of low-friction and wear-resistant surfaces for low-cost Al hot stamping tools

    Directory of Open Access Journals (Sweden)

    Dong Y.

    2015-01-01

    Full Text Available In this study, advanced surfaces and coatings have been developed using plasma thermochemical treatment, PVD coating, electroless Ni-BN plating and duplex surface engineering to produce low-friction and wear-resistant surfaces for cast iron stamping tools. Their microstructural and nano-mechanical properties were systematically analysed and the tribological behaviour of these new surfaces and coatings were evaluated. The experimental results have shown that under dry sliding condition, the tribological behaviour of aluminium differed great from that of steel regardless of the counterpart material. Highly reactive aluminium had a strong tendency to solder with tool surfaces during dry sliding. However, the lubricity of gray cast irons can be significantly improved by Ni-BN and DLC coatings. The coefficient of friction reduced from about 0.5 for untreated cast irons to about 0.2 sliding against aluminium. Duplex treatment combining plasma nitrocarburising with low-friction coatings showed superior durability than both DLC and Ni-BN coatings.

  7. Loss of E-Cadherin-Dependent Cell-Cell Adhesion and the Development and Progression of Cancer.

    Science.gov (United States)

    Bruner, Heather C; Derksen, Patrick W B

    2018-03-01

    Classical cadherins are the key molecules that control cell-cell adhesion. Notwithstanding this function, it is also clear that classical cadherins are more than just the "glue" that keeps the cells together. Cadherins are essential regulators of tissue homeostasis that govern multiple facets of cellular function and development, by transducing adhesive signals to a complex network of signaling effectors and transcriptional programs. In cancer, cadherins are often inactivated or functionally inhibited, resulting in disease development and/or progression. This review focuses on E-cadherin and its causal role in the development and progression of breast and gastric cancer. We provide a summary of the biochemical consequences and consider the conceptual impact of early (mutational) E-cadherin loss in cancer. We advocate that carcinomas driven by E-cadherin loss should be considered "actin-diseases," caused by the specific disruption of the E-cadherin-actin connection and a subsequent dependence on sustained actomyosin contraction for tumor progression. Based on the available data from mouse and human studies we discuss opportunities for targeted clinical intervention. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  8. 'Leonard pairs' in classical mechanics

    International Nuclear Information System (INIS)

    Zhedanov, Alexei; Korovnichenko, Alyona

    2002-01-01

    Leonard pairs (LP) are matrices with the property of mutual tri-diagonality. We introduce and study a classical analogue of LP. We show that corresponding classical 'Leonard' dynamical variables satisfy non-linear relations of the AW-type with respect to Poisson brackets. (author)

  9. Complex Virus-Host Interactions Involved in the Regulation of Classical Swine Fever Virus Replication: A Minireview.

    Science.gov (United States)

    Li, Su; Wang, Jinghan; Yang, Qian; Naveed Anwar, Muhammad; Yu, Shaoxiong; Qiu, Hua-Ji

    2017-07-05

    Classical swine fever (CSF), caused by classical swine fever virus (CSFV), is one of the most devastating epizootic diseases of pigs in many countries. Viruses are small intracellular parasites and thus rely on the cellular factors for replication. Fundamental aspects of CSFV-host interactions have been well described, such as factors contributing to viral attachment, modulation of genomic replication and translation, antagonism of innate immunity, and inhibition of cell apoptosis. However, those host factors that participate in the viral entry, assembly, and release largely remain to be elucidated. In this review, we summarize recent progress in the virus-host interactions involved in the life cycle of CSFV and analyze the potential mechanisms of viral entry, assembly, and release. We conclude with future perspectives and highlight areas that require further understanding.

  10. Classical Limit and Quantum Logic

    Science.gov (United States)

    Losada, Marcelo; Fortin, Sebastian; Holik, Federico

    2018-02-01

    The analysis of the classical limit of quantum mechanics usually focuses on the state of the system. The general idea is to explain the disappearance of the interference terms of quantum states appealing to the decoherence process induced by the environment. However, in these approaches it is not explained how the structure of quantum properties becomes classical. In this paper, we consider the classical limit from a different perspective. We consider the set of properties of a quantum system and we study the quantum-to-classical transition of its logical structure. The aim is to open the door to a new study based on dynamical logics, that is, logics that change over time. In particular, we appeal to the notion of hybrid logics to describe semiclassical systems. Moreover, we consider systems with many characteristic decoherence times, whose sublattices of properties become distributive at different times.

  11. Tribological performances of new steel grades for hot stamping tools

    Science.gov (United States)

    Medea, F.; Venturato, G.; Ghiotti, A.; Bruschi, S.

    2017-09-01

    In the last years, the use of High Strength Steels (HSS) as structural parts in car body-in-white manufacturing has rapidly increased thanks to their favourable strength-to-weight ratio and stiffness, which allow a reduction of the fuel consumption to accommodate the new restricted regulations for CO2 emissions control. The survey of the technical and scientific literature shows a large interest in the development of different coatings for the blanks from the traditional Al-Si up to new Zn-based coatings and on the analysis of hard PVD, CVD coatings and plasma nitriding applied on the tools. By contrast, fewer investigations have been focused on the development and test of new tools steels grades capable to improve the wear resistance and the thermal properties that are required for the in-die quenching during forming. On this base, the paper deals with the analysis and comparison the tribological performances in terms of wear, friction and heat transfer of new tool steel grades for high-temperature applications, characterized by a higher thermal conductivity than the commonly used tools. Testing equipment, procedures as well as measurements analyses to evaluate the friction coefficient, the wear and heat transfer phenomena are presented. Emphasis is given on the physical simulation techniques that were specifically developed to reproduce the thermal and mechanical cycles on the metal sheets and dies as in the industrial practice. The reference industrial process is the direct hot stamping of the 22MnB5 HSS coated with the common Al-Si coating for automotive applications.

  12. Classical-driving-assisted entanglement dynamics control

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ying-Jie, E-mail: yingjiezhang@qfnu.edu.cn [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Han, Wei [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Xia, Yun-Jie, E-mail: yjxia@qfnu.edu.cn [Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165 (China); Fan, Heng, E-mail: hfan@iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing, 100190 (China)

    2017-04-15

    We propose a scheme of controlling entanglement dynamics of a quantum system by applying the external classical driving field for two atoms separately located in a single-mode photon cavity. It is shown that, with a judicious choice of the classical-driving strength and the atom–photon detuning, the effective atom–photon interaction Hamiltonian can be switched from Jaynes–Cummings model to anti-Jaynes–Cummings model. By tuning the controllable atom–photon interaction induced by the classical field, we illustrate that the evolution trajectory of the Bell-like entanglement states can be manipulated from entanglement-sudden-death to no-entanglement-sudden-death, from no-entanglement-invariant to entanglement-invariant. Furthermore, the robustness of the initial Bell-like entanglement can be improved by the classical driving field in the leaky cavities. This classical-driving-assisted architecture can be easily extensible to multi-atom quantum system for scalability.

  13. Identification of a process window for tailored carburization of sheet metals in hot stamping

    Science.gov (United States)

    Horn, Alexander; Merklein, Marion

    2018-05-01

    Due to governmental regulations concerning the reduction of CO2 emissions and increasing safety standards, hot stamping of high strength boron manganese steel sheets has evolved into a state of the art process for manufacturing structural car body parts. The combined forming and in-die quenching process enables the formation of a fully martensitic microstructure. Therefore, press hardened steels offer high strength, but low ductility. In order to further improve passenger safety, a tailored configuration of mechanical properties is desired. Besides state of the art methods, like the application of locally different heat treatment temperatures or varying quenching rates, the adjustment of mechanical properties of sheet metals by a tailored carburization is a novel approach. For the carburization process, the specimens are first coated with graphite and subsequently heat treated. Within this contribution, different coating strategies as well as heat treatment temperatures and dwell times are investigated. For the determination of a process window, mechanical properties such as tensile strength and microhardness will be analyzed and correlated with the resulting microstructure.

  14. Classicality of quantum information processing

    International Nuclear Information System (INIS)

    Poulin, David

    2002-01-01

    The ultimate goal of the classicality program is to quantify the amount of quantumness of certain processes. Here, classicality is studied for a restricted type of process: quantum information processing (QIP). Under special conditions, one can force some qubits of a quantum computer into a classical state without affecting the outcome of the computation. The minimal set of conditions is described and its structure is studied. Some implications of this formalism are the increase of noise robustness, a proof of the quantumness of mixed state quantum computing, and a step forward in understanding the very foundation of QIP

  15. Digital Classics Outside the Echo-Chamber

    OpenAIRE

    Bodard, Gabriel; Romanello, Matteo

    2016-01-01

    This volume, edited by the organizers of the “Digital Classicist” seminars series, presents research in classical studies, digital classics and digital humanities, bringing together scholarship that addresses the impact of the study of classical antiquity through computational methods on audiences such as scientists, heritage professionals, students and the general public. Within this context, chapters tackle particular aspects, from epigraphy, papyrology and manuscripts, via Greek language, ...

  16. Origin of classical structure in the Universe

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, Claus [Institut fuer Theoretische Physik, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Cologne (Germany); Lohmar, Ingo [Institut fuer Theoretische Physik, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Cologne (Germany); Polarski, David [Laboratoire de Physique Theorique et Astroparticules, UMR 5207 CNRS, Universite de Montpellier II, 34095 Montpellier (France); Starobinsky, Alexei A [Landau Institute for Theoretical Physics, Kosygina St. 2, Moscow 119334 (Russian Federation)

    2007-05-15

    We address the quantum-to-classical transition for primordial fluctuations, that is, the emergence of classical stochastic properties for these fluctuations. We discuss in particular the entanglement entropy for these fluctuations, the decoherence time, and the question of the classical basis (pointer basis) for them. The decoherence time for modes outside the Hubble scale is set by the Hubble parameter. The classical states are narrow Gaussians in the field amplitude.

  17. About the modern house - and the classical

    DEFF Research Database (Denmark)

    Hauberg, Jørgen

    2010-01-01

    In text and illustrations describes the classical house and the classical city, represented by Andrea Palladio (1508-80), and the modern house, the modern city and building task, represented by Le Corbusier (1857-1965).......In text and illustrations describes the classical house and the classical city, represented by Andrea Palladio (1508-80), and the modern house, the modern city and building task, represented by Le Corbusier (1857-1965)....

  18. Classical algebraic chromodynamics

    International Nuclear Information System (INIS)

    Adler, S.L.

    1978-01-01

    I develop an extension of the usual equations of SU(n) chromodynamics which permits the consistent introduction of classical, noncommuting quark source charges. The extension involves adding a singlet gluon, giving a U(n) -based theory with outer product P/sup a/(u,v) = (1/2)(d/sup a/bc + if/sup a/bc)(u/sup b/v/sup c/ - v/sup b/u/sup c/) which obeys the Jacobi identity, inner product S (u,v) = (1/2)(u/sup a/v/sup a/ + v/sup a/u/sup a/), and with the n 2 gluon fields elevated to algebraic fields over the quark color charge C* algebra. I show that provided the color charge algebra satisfies the condition S (P (u,v),w) = S (u,P (v,w)) for all elements u,v,w of the algebra, all the standard derivations of Lagrangian chromodynamics continue to hold in the algebraic chromodynamics case. I analyze in detail the color charge algebra in the two-particle (qq, qq-bar, q-barq-bar) case and show that the above consistency condition is satisfied for the following unique (and, interestingly, asymmetric) choice of quark and antiquark charges: Q/sup a//sub q/ = xi/sup a/, Q/sup a//sub q/ = xi-bar/sup a/ + delta/sup a/0(n/2)/sup 3/2/1, with xi/sup a/xi/sup b/ = (1/2)(d/sup a/bc + if/sup a/bc) xi/sup c/, xi-bar/sup a/xi-bar/sup b/ = -(1/2)(d/sup a/bc - if/sup a/bc) xi-bar/sup c/. The algebraic structure of the two-particle U(n) force problem, when expressed on an appropriately diagonalized basis, leads for all n to a classical dynamics problem involving an ordinary SU(2) Yang-Mills field with uniquely specified classical source charges which are nonparallel in the color-singlet state. An explicit calculation shows that local algebraic U(n) gauge transformations lead only to a rigid global rotation of axes in the overlying classical SU(2) problem, which implies that the relative orientations of the classical source charges have physical significance

  19. Nation and Classical Music

    DEFF Research Database (Denmark)

    Brincker, Benedikte

    The last book Anthony D. Smith wrote before he died, and which will be published in Spring 2017, has the title Nation and Classical Music. Smith had for a long time been intrigued by the intimate relationship between the nation and classical music. At the most manifest level it involves...... them into their compositions thus challenging the romantic musical style searching for an authentic national musical expression. Against the backdrop of the extensive research carried out by Anthony Smith into the relationship between the nation and classical music, the present paper seeks to add...... cultural centers. In doing this, the paper seeks to unfold how composers channeled musical inspiration embedded in cultural environments that cut across national boundaries into national musical traditions thus catering to specific national audiences. The paper is written as a tribute to a great mentor...

  20. Identifying plant cell-surface receptors: combining 'classical' techniques with novel methods.

    Science.gov (United States)

    Uebler, Susanne; Dresselhaus, Thomas

    2014-04-01

    Cell-cell communication during development and reproduction in plants depends largely on a few phytohormones and many diverse classes of polymorphic secreted peptides. The peptide ligands are bound at the cell surface of target cells by their membranous interaction partners representing, in most cases, either receptor-like kinases or ion channels. Although knowledge of both the extracellular ligand and its corresponding receptor(s) is necessary to describe the downstream signalling pathway(s), to date only a few ligand-receptor pairs have been identified. Several methods, such as affinity purification and yeast two-hybrid screens, have been used very successfully to elucidate interactions between soluble proteins, but most of these methods cannot be applied to membranous proteins. Experimental obstacles such as low concentration and poor solubility of membrane receptors, as well as instable transient interactions, often hamper the use of these 'classical' approaches. However, over the last few years, a lot of progress has been made to overcome these problems by combining classical techniques with new methodologies. In the present article, we review the most promising recent methods in identifying cell-surface receptor interactions, with an emphasis on success stories outside the field of plant research.

  1. On detecting the playing/non-playing activity of musicians in symphonic music videos

    NARCIS (Netherlands)

    Bazzica, A.; Liem, C.C.S.; Hanjalic, A.

    2016-01-01

    Information on whether a musician in a large symphonic orchestra plays her instrument at a given time stamp or not is valuable for a wide variety of applications aiming at mimicking and enriching the classical music concert experience on modern multimedia platforms. In this work, we propose a novel

  2. Quantum locking of classical correlations and quantum discord of classical-quantum states

    OpenAIRE

    BOIXO, S.; AOLITA, L.; CAVALCANTI, D.; MODI, K.; WINTER, A.

    2011-01-01

    A locking protocol between two parties is as follows: Alice gives an encrypted classical message to Bob which she does not want Bob to be able to read until she gives him the key. If Alice is using classical resources, and she wants to approach unconditional security, then the key and the message must have comparable sizes. But if Alice prepares a quantum state, the size of the key can be comparatively negligible. This effect is called quantum locking. Entanglement does not play a role in thi...

  3. Classical and post-classical stages of development of ideas on global conflicts

    Directory of Open Access Journals (Sweden)

    Y. S. Pilipenko

    2016-06-01

    Thus, in the history of the development of ideas about the nature of the conflict, it is possible to allocate three stages. The first stage is a classic, it representatives of which are O. Conte, K. Marx, G. Zimmel. The second stage is post-classical, represented by such scholars as P. Sztompka, G. lutsishin, N. Luhmann, M. Zelenkov, V. Zavalniuk. The third stage is multi-paradigmal, not formed yet, but actively developed by modern sociologists as I. Bekeshkina, Ye. Golovakha, A. Ruchka and other.

  4. Classical correlations, Bell inequalities, and communication complexity

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, Johannes; Alber, Gernot [Institut fuer Angewandte Physik, Technische Universitaet Darmstadt, D-64289 Darmstadt (Germany); Percival, Ian C. [Department of Physics, Univ. of London (United Kingdom)

    2007-07-01

    A computer program is presented which is capable of exploring generalizations of Bell-type inequalities for arbitrary numbers of classical inputs and outputs. Thereby, polytopes can be described which represent classical local realistic theories, classical theories without signaling, or classical theories with explicit signaling. These latter polytopes may also be of interest for exploring basic problems of communication complexity. As a first application the influence of non-perfect detectors is discussed in simple Bell experiments.

  5. Interaction between classical and quantum systems

    International Nuclear Information System (INIS)

    Sherry, T.N.; Sudarshan, E.C.G.

    1977-10-01

    An unconventional approach to the measurement problem in quantum mechanics is considered--the apparatus is treated as a classical system, belonging to the macro-world. In order to have a measurement the apparatus must interact with the quantum system. As a first step, the classical apparatus is embedded into a large quantum mechanical structure, making use of a superselection principle. The apparatus and system are coupled such that the apparatus remains classical (principle of integrity), and unambiguous information of the values of a quantum observable are transferred to the variables of the apparatus. Further measurement of the classical apparatus can be done, causing no problems of principle. Thus interactions causing pointers to move (which are not treated) can be added. The restrictions placed by the principle of integrity on the form of the interaction between classical and quantum systems are examined and illustration is given by means of a simple example in which one sees the principle of integrity at work

  6. COMPETITION: CLASSICAL VERSUS NEOCLASSICAL VIEW

    OpenAIRE

    Mihaela Cornelia Sandu

    2013-01-01

    Competition is an important element from economical theory. Over time it has experienced several definitions and classifications much of them being contradictory. In this paper I will make a parallel between classical and neoclassical point of view according to competition. Keywords. Competition; neoclassical theory; classical theory; monopolistic; perfect competition.

  7. Optimum stamping die structure based on analytical method of die deformation during draw process; Seikei katei no kanagata henkei kaiseki ni motozuku, press kanagata kozo no saitekika

    Energy Technology Data Exchange (ETDEWEB)

    Nakahara, T; Tamai, H [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    We measured an actual deformation and pressure distribution in draw process of bending cam, and analyzed deformation process of die structure, in order to eliminate adjusting work considering die deformation by stamping force. We studied die structure improvement with simulation based on analytical method. This report describes a sample of die structure improvement based on a simulation and actual measurement. 1 ref., 11 figs., 1 tab.

  8. Beyond quantum-classical analogies: high time for agreement?

    Science.gov (United States)

    Marrocco, Michele

    Lately, many quantum-classical analogies have been investigated and published in many acknowledged journals. Such a surge of research on conceptual connections between quantum and classical physics forces us to ask whether the correspondence between the quantum and classical interpretation of the reality is deeper than the correspondence principle stated by Bohr. Here, after a short introduction to quantum-classical analogies from the recent literature, we try to examine the question from the perspective of a possible agreement between quantum and classical laws. A paradigmatic example is given in the striking equivalence between the classical Mie theory of electromagnetic scattering from spherical scatterers and the corresponding quantum-mechanical wave scattering analyzed in terms of partial waves. The key features that make the correspondence possible are examined and finally employed to deal with the fundamental blackbody problem that marks the initial separation between classical and quantum physics. The procedure allows us to recover the blackbody spectrum in classical terms and the proof is rich in consequences. Among them, the strong analogy between the quantum vacuum and its classical counterpart.

  9. Quantum manifestations of classical resonance zones

    International Nuclear Information System (INIS)

    De Leon, N.; Davis, M.J.; Heller, E.J.

    1984-01-01

    We examine the concept of nodal breakup of wave functions as a criterion for quantum mechanical ergodicity. We find that complex nodal structure of wave functions is not sufficient to determine quantum mechanical ergodicity. The influence of classical resonances [which manifest themselves as classical resonance zones (CRZ)] may also be responsible for the seeming complexity of nodal structure. We quantify this by reexamining one of the two systems studied by Stratt, Handy, and Miller [J. Chem. Phys. 71, 3311 (1974)] from both a quantum mechanical and classical point of view. We conclude that quasiperiodic classical motion can account for highly distorted quantum eigenstates. One should always keep this in mind when addressing questions regarding quantum mechanical ergodicity

  10. The classical limit of W-algebras

    International Nuclear Information System (INIS)

    Figueroa-O'Farrill, J.M.; Ramos, E.

    1992-01-01

    We define and compute explicitly the classical limit of the realizations of W n appearing as hamiltonian structures of generalized KdV hierarchies. The classical limit is obtained by taking the commutative limit of the ring of pseudodifferential operators. These algebras - denoted w n - have free field realizations in which the generators are given by the elementary symmetric polynomials in the free fields. We compute the algebras explicitly and we show that they are all reductions of a new algebra w KP , which is proposed as the universal classical W-algebra for the w n series. As a deformation of this algebra we also obtain w 1+∞ , the classical limit of W 1+∞ . (orig.)

  11. Immunomodulation of classical and non-classical HLA molecules by ionizing radiation.

    Science.gov (United States)

    Gallegos, Cristina E; Michelin, Severino; Dubner, Diana; Carosella, Edgardo D

    2016-05-01

    Radiotherapy has been employed for the treatment of oncological patients for nearly a century, and together with surgery and chemotherapy, radiation oncology constitutes one of the three pillars of cancer therapy. Ionizing radiation has complex effects on neoplastic cells and on tumor microenvironment: beyond its action as a direct cytotoxic agent, tumor irradiation triggers a series of alterations in tumoral cells, which includes the de novo synthesis of particular proteins and the up/down-regulation of cell surface molecules. Additionally, ionizing radiation may induce the release of "danger signals" which may, in turn lead to cellular and molecular responses by the immune system. This immunomodulatory action of ionizing radiation highlights the importance of the combined use (radiotherapy plus immunotherapy) for cancer healing. Major histocompatibility complex antigens (also called Human Leukocyte Antigens, HLA in humans) are one of those molecules whose expression is modulated after irradiation. This review summarizes the modulatory properties of ionizing radiation on the expression of HLA class I (classical and non-classical) and class II molecules, with special emphasis in non-classical HLA-I molecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Mathematical methods of classical physics

    CERN Document Server

    Cortés, Vicente

    2017-01-01

    This short primer, geared towards students with a strong interest in mathematically rigorous approaches, introduces the essentials of classical physics, briefly points out its place in the history of physics and its relation to modern physics, and explains what benefits can be gained from a mathematical perspective. As a starting point, Newtonian mechanics is introduced and its limitations are discussed. This leads to and motivates the study of different formulations of classical mechanics, such as Lagrangian and Hamiltonian mechanics, which are the subjects of later chapters. In the second part, a chapter on classical field theories introduces more advanced material. Numerous exercises are collected in the appendix.

  13. Dynamics of quantum-classical differences for chaotic systems

    International Nuclear Information System (INIS)

    Ballentine, L.E.

    2002-01-01

    The differences between quantum and classical dynamics can be studied through the moments and correlations of the position and momentum variables in corresponding quantum and classical statistical states. In chaotic states the quantum-classical differences grow exponentially with an exponent that exceeds the classical Lyapunov exponent. It is shown analytically that the quantum-classical differences scale as (ℎ/2π) 2 , and that the exponent for the growth of these differences is independent of (ℎ/2π). The quantum-classical difference exponent is studied for two quartic potential models, and the results are compared with previous work on the Henon-Heiles model

  14. Quantum-classical hybrid dynamics – a summary

    International Nuclear Information System (INIS)

    Elze, Hans-Thomas

    2013-01-01

    A summary of a recently proposed description of quantum-classical hybrids is presented, which concerns quantum and classical degrees of freedom of a composite object that interact directly with each other. This is based on notions of classical Hamiltonian mechanics suitably extended to quantum mechanics.

  15. Mathematical intelligence developed in math learning with classical backsound music of the classical era

    Science.gov (United States)

    Karlimah

    2018-05-01

    This study examines the application of classical music backsound in mathematics learning. The method used is quasi experimental design nonequivalent pretest-posttest control group in elementary school students in Tasikmalaya city, Indonesia. The results showed that classical music contributed significantly to the mathematical intelligence of elementary school students. The mathematical intelligence shown is in the cognitive ability ranging from the level of knowledge to evaluation. High level mathematical intelligence is shown by students in reading and writing integers with words and numbers. The low level of mathematical intelligence exists in projecting the story into a mathematical problem. The implication of this research is the use of classical music backsound on learning mathematics should pay attention to the level of difficulty of mathematics material being studied.

  16. Emergence of quantum mechanics from classical statistics

    International Nuclear Information System (INIS)

    Wetterich, C

    2009-01-01

    The conceptual setting of quantum mechanics is subject to an ongoing debate from its beginnings until now. The consequences of the apparent differences between quantum statistics and classical statistics range from the philosophical interpretations to practical issues as quantum computing. In this note we demonstrate how quantum mechanics can emerge from classical statistical systems. We discuss conditions and circumstances for this to happen. Quantum systems describe isolated subsystems of classical statistical systems with infinitely many states. While infinitely many classical observables 'measure' properties of the subsystem and its environment, the state of the subsystem can be characterized by the expectation values of only a few probabilistic observables. They define a density matrix, and all the usual laws of quantum mechanics follow. No concepts beyond classical statistics are needed for quantum physics - the differences are only apparent and result from the particularities of those classical statistical systems which admit a quantum mechanical description. In particular, we show how the non-commuting properties of quantum operators are associated to the use of conditional probabilities within the classical system, and how a unitary time evolution reflects the isolation of the subsystem.

  17. Classical and anaplastic seminoma: Difference in survival

    International Nuclear Information System (INIS)

    Bobba, V.S.; Mittal, B.B.; Hoover, S.V.; Kepka, A.

    1987-01-01

    The authors undertook a retrospective study of seminoma patients treated with radiation therapy between 1961 and 1985. The classical group consisted of 66 patients, of whom 47 were stage I and 19 were stage II. The anaplastic group consisted of 21 patients, of whom 11 were stage I, nine were stage II, and one was stage III. The median follow-up was 66 months. The five-year crude survival rate for the entire group was 92%, for classical 96%, and for anaplastic 78% (P<.005). Similarly, there was a significant difference (P<.005) in actuarial relapse-free survival at 5 years between classical and anaplastic seminoma. For classical stage I, the relapse-free actuarial 5-year survival rate was 96; for classical stage II, 84%. For anaplastic stage I the relapse-free actuarial 5-year survival rate was 82%, and for stage II 75%. Six patients in the classical group (9%) failed treatment. In the anaplastic group, five patients or 24 failed treatment. Therefore, the authors' data suggest a difference in survival and failure rate between classical and anaplastic seminoma. Extratesticular seminoma with anaplastic histology has an even worse prognosis

  18. Systems thinking, the Swiss Cheese Model and accident analysis: a comparative systemic analysis of the Grayrigg train derailment using the ATSB, AcciMap and STAMP models.

    Science.gov (United States)

    Underwood, Peter; Waterson, Patrick

    2014-07-01

    The Swiss Cheese Model (SCM) is the most popular accident causation model and is widely used throughout various industries. A debate exists in the research literature over whether the SCM remains a viable tool for accident analysis. Critics of the model suggest that it provides a sequential, oversimplified view of accidents. Conversely, proponents suggest that it embodies the concepts of systems theory, as per the contemporary systemic analysis techniques. The aim of this paper was to consider whether the SCM can provide a systems thinking approach and remain a viable option for accident analysis. To achieve this, the train derailment at Grayrigg was analysed with an SCM-based model (the ATSB accident investigation model) and two systemic accident analysis methods (AcciMap and STAMP). The analysis outputs and usage of the techniques were compared. The findings of the study showed that each model applied the systems thinking approach. However, the ATSB model and AcciMap graphically presented their findings in a more succinct manner, whereas STAMP more clearly embodied the concepts of systems theory. The study suggests that, whilst the selection of an analysis method is subject to trade-offs that practitioners and researchers must make, the SCM remains a viable model for accident analysis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Surfactant enhanced non-classical extraction

    International Nuclear Information System (INIS)

    Szymanowski, J.

    2000-01-01

    Surfactant enhanced non-classical extractions are presented and discussed. They include micellar enhanced ultrafiltration and cloud point extraction. The ideas of the processes are given and the main features are presented. They are compared to the classical solvent extraction. The fundamental of micellar solutions and their solubilisation abilities are also discussed. (author)

  20. Surfactant enhanced non-classical extraction

    International Nuclear Information System (INIS)

    Szymanowski, J.

    1999-01-01

    Surfactant enhanced non-classical extractions are presented and discussed. They include micellar enhanced ultrafiltration and cloud point extraction. The ideas of the processes are given and the main features are presented. They are compared to the classical solvent extraction. The fundamental of micellar solutions and their solubilization abilities are also discussed. (author)

  1. The CLASSIC Project

    CERN Document Server

    Iselin, F Christoph

    1996-01-01

    Exchange of data and algorithms among accelerator physics programs is difficult because of unnecessary differences in input formats and internal data structures. To alleviate these problems a C++ class library called CLASSIC (Clas Library for Accelerator System Simulation and Control) is being developed with the goal to provide standard building blocks for computer programs used in accelerator lattice structures in computer memory using a standard input language, a graphical user interface, or a programmed algorithm. It also provides simulation algorithms. These can easily be replaced by modules which communicate with the control system of the accelerator. Exchange of both data and algorithm between different programs using the CLASSIC library should present no difficulty.

  2. Classical region of a trapped Bose gas

    Energy Technology Data Exchange (ETDEWEB)

    Blakie, P Blair [Jack Dodd Centre for Photonics and Ultra-Cold Atoms, University of Otago, Dunedin (New Zealand); Davis, Matthew J [ARC Centre of Excellence for Quantum-Atom Optics, School of Physical Sciences, University of Queensland, Brisbane, QLD 4072 (Australia)

    2007-06-14

    The classical region of a Bose gas consists of all single particle modes that have a high average occupation and are well described by a classical field. Highly occupied modes only occur in massive Bose gases at ultra-cold temperatures, in contrast to the photon case where there are highly occupied modes at all temperatures. For the Bose gas the number of these modes is dependent on the temperature, the total number of particles and their interaction strength. In this paper, we characterize the classical region of a harmonically trapped Bose gas over a wide parameter regime. We use a Hartree-Fock approach to account for the effects of interactions, which we observe to significantly change the classical region as compared to the idealized case. We compare our results to full classical field calculations and show that the Hartree-Fock approach provides a qualitatively accurate description of a classical region for the interacting gas.

  3. Classical field approach to quantum weak measurements.

    Science.gov (United States)

    Dressel, Justin; Bliokh, Konstantin Y; Nori, Franco

    2014-03-21

    By generalizing the quantum weak measurement protocol to the case of quantum fields, we show that weak measurements probe an effective classical background field that describes the average field configuration in the spacetime region between pre- and postselection boundary conditions. The classical field is itself a weak value of the corresponding quantum field operator and satisfies equations of motion that extremize an effective action. Weak measurements perturb this effective action, producing measurable changes to the classical field dynamics. As such, weakly measured effects always correspond to an effective classical field. This general result explains why these effects appear to be robust for pre- and postselected ensembles, and why they can also be measured using classical field techniques that are not weak for individual excitations of the field.

  4. Kuang's Semi-Classical Formalism for Calculating Electron Capture Cross Sections: A Space- Physics Application

    Science.gov (United States)

    Barghouty, A. F.

    2014-01-01

    Accurate estimates of electroncapture cross sections at energies relevant to the modeling of the transport, acceleration, and interaction of energetic neutral atoms (ENA) in space (approximately few MeV per nucleon) and especially for multi-electron ions must rely on detailed, but computationally expensive, quantum-mechanical description of the collision process. Kuang's semi-classical approach is an elegant and efficient way to arrive at these estimates. Motivated by ENA modeling efforts for apace applications, we shall briefly present this approach along with sample applications and report on current progress.

  5. Classical Dimensional Transmutation and Confinement

    CERN Document Server

    Dvali, Gia; Mukhanov, Slava

    2011-01-01

    We observe that probing certain classical field theories by external sources uncovers the underlying renormalization group structure, including the phenomenon of dimensional transmutation, at purely-classical level. We perform this study on an example of $\\lambda\\phi^{4}$ theory and unravel asymptotic freedom and triviality for negative and positives signs of $\\lambda$ respectively. We derive exact classical $\\beta$ function equation. Solving this equation we find that an isolated source has an infinite energy and therefore cannot exist as an asymptotic state. On the other hand a dipole, built out of two opposite charges, has finite positive energy. At large separation the interaction potential between these two charges grows indefinitely as a distance in power one third.

  6. Progress and pitfalls in Shigella vaccine research

    Science.gov (United States)

    Barry, Eileen M.; Pasetti, Marcela F.; Sztein, Marcelo B.; Fasano, Alessio; Kotloff, Karen L.; Levine, Myron M.

    2013-01-01

    Renewed awareness of the significant morbidity and mortality that Shigella causes among young children in developing countries combined with technological innovations in vaccinology has led to the development of novel vaccine strategies in the past five years. Along with advancement of classical vaccines in clinical trials and new sophisticated measurements of immunological responses, much new data has been produced lending promise to the potential for production of safe and effective Shigella vaccines. Herein we review the recent progress in Shigella vaccine development within the framework of persistent obstacles. PMID:23419287

  7. Classical models for Regge trajectories

    International Nuclear Information System (INIS)

    Biedenharn, L.C.; Van Dam, H.; Marmo, G.; Morandi, G.; Mukunda, N.; Samuel, J.; Sudarshan, E.C.G.

    1987-01-01

    Two classical models for particles with internal structure and which describe Regge trajectories are developed. The remarkable geometric and other properties of the two internal spaces are highlighted. It is shown that the conditions of positive time-like four-velocity and energy momentum for the classical system imply strong and physically reasonable conditions on the Regge mass-spin relationship

  8. Classic romance in electronic arrangement

    Directory of Open Access Journals (Sweden)

    Kizin M.M.

    2017-03-01

    Full Text Available this article analyses the transformation of the performing arts of classical romance in the terms of electronic sound and performance via electronic sounds arrangements. The author focuses on the problem of synthesis of electronic sound arrangements and classical romance, offering to acquire the skills of the creative process in constantly changing conditions of live performances.

  9. Dispersions in Semi-Classical Dynamics

    International Nuclear Information System (INIS)

    Zielinska-Pfabe, M.; Gregoire, C.

    1987-01-01

    Dispersions around mean values of one-body observables are obtained by restoring classical many-body correlations in Vlasov and Landau-Vlasov dynamics. The method is applied to the calculation of fluctuations in mass, charge and linear momentum in heavy-ion collisions. Results are compared to those obtained by the Balian-Veneroni variational principle in semi-classical approximation

  10. Progressivity, horizontal equity and reranking in health care finance: a decomposition analysis for the Netherlands

    NARCIS (Netherlands)

    A. Wagstaff (Adam); E.K.A. van Doorslaer (Eddy)

    1997-01-01

    textabstractThis paper employs the method of Aronson et al. (1994) to decompose the redistributive effect of the Dutch health care financing system into three components: a progressivity component, a classical horizontal equity component and a reranking component. Results are presented for the

  11. Discovery of a New Classical Nova Shell Around a Nova-like Cataclysmic Variable

    Science.gov (United States)

    Guerrero, Martín A.; Sabin, Laurence; Tovmassian, Gagik; Santamaría, Edgar; Michel, Raul; Ramos-Larios, Gerardo; Alarie, Alexandre; Morisset, Christophe; Bermúdez Bustamante, Luis C.; González, Chantal P.; Wright, Nick J.

    2018-04-01

    The morphology and optical spectrum of IPHASX J210204.7+471015, a nebula classified as a possible planetary nebula are, however, strikingly similar to those of AT Cnc, a classical nova shell around a dwarf nova. To investigate its true nature, we have obtained high-resolution narrowband [O III] and [N II] images and deep optical spectra. The nebula shows an arc of [N II]-bright knots notably enriched in nitrogen, while an [O III]-bright bow shock is progressing throughout the ISM. Diagnostic line ratios indicate that shocks are associated with the arc and bow shock. The central star of this nebula has been identified by its photometric variability. Time-resolved photometric and spectroscopic data of this source reveal a period of 4.26 hr, which is attributed to a binary system. The optical spectrum is notably similar to that of RW Sex, a cataclysmic variable star (CV) of the UX UMa nova-like (NL) type. Based on these results, we propose that IPHASX J210204.7 + 471015 is a classical nova shell observed around a CV-NL system in quiescence.

  12. Classical Mechanics as Nonlinear Quantum Mechanics

    International Nuclear Information System (INIS)

    Nikolic, Hrvoje

    2007-01-01

    All measurable predictions of classical mechanics can be reproduced from a quantum-like interpretation of a nonlinear Schroedinger equation. The key observation leading to classical physics is the fact that a wave function that satisfies a linear equation is real and positive, rather than complex. This has profound implications on the role of the Bohmian classical-like interpretation of linear quantum mechanics, as well as on the possibilities to find a consistent interpretation of arbitrary nonlinear generalizations of quantum mechanics

  13. Classical Humanism and the Challenge of Modernity. Debates on classical education in Germany c. 1770-1860

    NARCIS (Netherlands)

    van Bommel, S.P.

    2013-01-01

    Classical humanism was a living tradition until far into the nineteenth century. In scholarship, classical (Renaissance) humanism is usually strictly distinguished from so-called ‘neo-humanism,’ which, especially in Germany, reigned supreme at the beginning of the nineteenth century. While most

  14. Driven topological systems in the classical limit

    Science.gov (United States)

    Duncan, Callum W.; Öhberg, Patrik; Valiente, Manuel

    2017-03-01

    Periodically driven quantum systems can exhibit topologically nontrivial behavior, even when their quasienergy bands have zero Chern numbers. Much work has been conducted on noninteracting quantum-mechanical models where this kind of behavior is present. However, the inclusion of interactions in out-of-equilibrium quantum systems can prove to be quite challenging. On the other hand, the classical counterpart of hard-core interactions can be simulated efficiently via constrained random walks. The noninteracting model, proposed by Rudner et al. [Phys. Rev. X 3, 031005 (2013), 10.1103/PhysRevX.3.031005], has a special point for which the system is equivalent to a classical random walk. We consider the classical counterpart of this model, which is exact at a special point even when hard-core interactions are present, and show how these quantitatively affect the edge currents in a strip geometry. We find that the interacting classical system is well described by a mean-field theory. Using this we simulate the dynamics of the classical system, which show that the interactions play the role of Markovian, or time-dependent disorder. By comparing the evolution of classical and quantum edge currents in small lattices, we find regimes where the classical limit considered gives good insight into the quantum problem.

  15. Semi-classical quantization of chaotic billiards

    International Nuclear Information System (INIS)

    Smilansky, U.

    1992-02-01

    The semi-classical quantization of chaotic billiards will be developed using scattering theory approach. This will be used to introduce and explain the inherent difficulties in the semi-classical quantization of chaos, and to show some of the modern tools which were developed recently to overcome these difficulties. To this end, we shall first obtain a semi-classical secular equation which is based on a finite number of classical periodic orbits. We shall use it to derive some spectral properties, and in particular to investigate the relationship between spectral statistics of quantum chaotic systems and the predictions of random-matrix theory. We shall finally discuss an important family of chaotic billiard, whose statistics does not follow any of the canonical ensembles, (GOE,GUE,...) but rather, corresponds to a new universality class. (author)

  16. Does classical liberalism imply democracy?

    Directory of Open Access Journals (Sweden)

    David Ellerman

    2015-12-01

    Full Text Available There is a fault line running through classical liberalism as to whether or not democratic self-governance is a necessary part of a liberal social order. The democratic and non-democratic strains of classical liberalism are both present today—particularly in the United States. Many contemporary libertarians and neo-Austrian economists represent the non-democratic strain in their promotion of non-democratic sovereign city-states (start-up cities or charter cities. We will take the late James M. Buchanan as a representative of the democratic strain of classical liberalism. Since the fundamental norm of classical liberalism is consent, we must start with the intellectual history of the voluntary slavery contract, the coverture marriage contract, and the voluntary non-democratic constitution (or pactum subjectionis. Next we recover the theory of inalienable rights that descends from the Reformation doctrine of the inalienability of conscience through the Enlightenment (e.g. Spinoza and Hutcheson in the abolitionist and democratic movements. Consent-based governments divide into those based on the subjects’ alienation of power to a sovereign and those based on the citizens’ delegation of power to representatives. Inalienable rights theory rules out that alienation in favor of delegation, so the citizens remain the ultimate principals and the form of government is democratic. Thus the argument concludes in agreement with Buchanan that the classical liberal endorsement of sovereign individuals acting in the marketplace generalizes to the joint action of individuals as the principals in their own organizations.

  17. Emerging Connections: Quantum & Classical Optics Incubator Program Book

    Energy Technology Data Exchange (ETDEWEB)

    Lesky, Marcia [Optical Society of America, Washington, DC (United States)

    2016-11-06

    The Emerging Connections: Quantum & Classical Optics Incubator was a scientific meeting held in Washington, DC on 6-8 November 2016. This Incubator provided unique and focused experiences and valuable opportunities to discuss advances, challenges and opportunities regarding this important area of research. Quantum optics and classical optics have coexisted for nearly a century as two distinct, but consistent descriptions of light in their respective domains. Recently, a number of detailed examinations of the structure of classical light beams have revealed that effects widely thought to be solely quantum in origin also have a place in classical optics. These new quantum-classical connections are informing classical optics in meaningful ways specifically by expanding understanding of optical coherence. Simultaneously, relationships discovered with classical light beams now also serve as a vehicle to illuminate concepts that no longer solely belong to the quantum realm. Interference, polarization, coherence, complementarity and entanglement are a partial list of elementary notions that now appear to belong to both quantum and classical optics. The goal of this meeting was to bring emerging quantum-classical links into wider view and to indicate directions in which forthcoming and future work would promote discussion and lead to a more unified understanding of optics.

  18. Pseudoclassical fermionic model and classical solutions

    International Nuclear Information System (INIS)

    Smailagic, A.

    1981-08-01

    We study classical limit of fermionic fields seen as Grassmann variables and deduce the proper quantization prescription using Dirac's method for constrained systems and investigate quantum meaning of classical solutions for the Thirring model. (author)

  19. The Effect of Process and Model Parameters in Temperature Prediction for Hot Stamping of Boron Steel

    Directory of Open Access Journals (Sweden)

    Chaoyang Sun

    2013-01-01

    Full Text Available Finite element models of the hot stamping and cold die quenching process for boron steel sheet were developed using either rigid or elastic tools. The effect of tool elasticity and process parameters on workpiece temperature was investigated. Heat transfer coefficient between blank and tools was modelled as a function of gap and contact pressure. Temperature distribution and thermal history in the blank were predicted, and thickness distribution of the blank was obtained. Tests were carried out and the test results are used for the validation of numerical predictions. The effect of holding load and the size of cooling ducts on temperature distribution during the forming and the cool die quenching process was also studied by using two models. The results show that higher accuracy predictions of blank thickness and temperature distribution during deformation were obtained using the elastic tool model. However, temperature results obtained using the rigid tool model were close to those using the elastic tool model for a range of holding load.

  20. On the role of classical and novel forms of vitamin D in melanoma progression and management.

    Science.gov (United States)

    Slominski, Andrzej T; Brożyna, Anna A; Skobowiat, Cezary; Zmijewski, Michal A; Kim, Tae-Kang; Janjetovic, Zorica; Oak, Allen S; Jozwicki, Wojciech; Jetten, Anton M; Mason, Rebecca S; Elmets, Craig; Li, We; Hoffman, Robert M; Tuckey, Robert C

    2018-03-01

    Melanoma represents a significant clinical problem affecting a large segment of the population with a relatively high incidence and mortality rate. Ultraviolet radiation (UVR) is an important etiological factor in malignant transformation of melanocytes and melanoma development. UVB, while being a full carcinogen in melanomagenesis, is also necessary for the cutaneous production of vitamin D3 (D3). Calcitriol (1,25(OH) 2 D3) and novel CYP11A1-derived hydroxyderivatives of D3 show anti-melanoma activities and protective properties against damage induced by UVB. The former activities include inhibitory effects on proliferation, plating efficiency and anchorage-independent growth of cultured human and rodent melanomas in vitro, as well as the in vivo inhibition of tumor growth by 20(OH)D3 after injection of human melanoma cells into immunodeficient mice. The literature indicates that low levels of 25(OH)D3 are associated with more advanced melanomas and reduced patient survivals, while single nucleotide polymorphisms of the vitamin D receptor or the D3 binding protein gene affect development or progression of melanoma, or disease outcome. An inverse correlation of VDR and CYP27B1 expression with melanoma progression has been found, with low or undetectable levels of these proteins being associated with poor disease outcomes. Unexpectedly, increased expression of CYP24A1 was associated with better melanoma prognosis. In addition, decreased expression of retinoic acid orphan receptors α and γ, which can also bind vitamin D3 hydroxyderivatives, showed positive association with melanoma progression and shorter disease-free and overall survival. Thus, inadequate levels of biologically active forms of D3 and disturbances in expression of the target receptors, or D3 activating or inactivating enzymes, can affect melanomagenesis and disease progression. We therefore propose that inclusion of vitamin D into melanoma management should be beneficial for patients, at least as

  1. The classic project

    International Nuclear Information System (INIS)

    Iselin, F. Christoph

    1997-01-01

    Exchange of data and algorithms among accelerator physics programs is difficult because of unnecessary differences in input formats and internal data structures. To alleviate these problems a C++ class library called CLASSIC (Class Library for Accelerator System Simulation and Control) is being developed with the goal to provide standard building blocks for computer programs used in accelerator design. It includes modules for building accelerator lattice structures in computer memory using a standard input language, a graphical user interface, or a programmed algorithm. It also provides simulation algorithms. These can easily be replaced by modules which communicate with the control system of the accelerator. Exchange of both data and algorithm between different programs using the CLASSIC library should present no difficulty

  2. A Comparative Study of Quantum and Classical Deletion

    International Nuclear Information System (INIS)

    Shen Yao; Hao Liang; Long Guilu

    2010-01-01

    Here in this letter, we study the difference between quantum and classical deletion. We point out that the linear mapping deletion operation used in the impossibility proof for quantum systems applies also to classical system. The general classical deletion operation is a combined operation of measurement and transformation, i.e., first read the state and then transfer the state to the standard blank state. Though both quantum information and classical information can be deleted in an open system, quantum information cannot be recovered while classical information can be recovered. (general)

  3. Classical and quantum fingerprinting strategies

    International Nuclear Information System (INIS)

    Scott, A.; Walgate, J.; Sanders, B.

    2005-01-01

    Full text: Fingerprinting enables two parties to infer whether the messages they hold are the same or different when the cost of communication is high: each message is associated with a smaller fingerprint and comparisons between messages are made in terms of their fingerprints alone. When the two parties are forbidden access to a public coin, it is known that fingerprints composed of quantum information can be made exponentially smaller than those composed of classical information. We present specific constructions of classical fingerprinting strategies through the use of constant-weight codes and provide bounds on the worst-case error probability with the help of extremal set theory. These classical strategies are easily outperformed by quantum strategies constructed from line packings and equiangular tight frames. (author)

  4. Scaling, scattering, and blackbody radiation in classical physics

    International Nuclear Information System (INIS)

    Boyer, Timothy H

    2017-01-01

    Here we discuss blackbody radiation within the context of classical theory. We note that nonrelativistic classical mechanics and relativistic classical electrodynamics have contrasting scaling symmetries which influence the scattering of radiation. Also, nonrelativistic mechanical systems can be accurately combined with relativistic electromagnetic radiation only provided the nonrelativistic mechanical systems are the low-velocity limits of fully relativistic systems. Application of the no-interaction theorem for relativistic systems limits the scattering mechanical systems for thermal radiation to relativistic classical electrodynamic systems, which involve the Coulomb potential. Whereas the naive use of nonrelativistic scatterers or nonrelativistic classical statistical mechanics leads to the Rayleigh–Jeans spectrum, the use of fully relativistic scatterers leads to the Planck spectrum for blackbody radiation within classical physics. (paper)

  5. Classical mechanics with Maxima

    CERN Document Server

    Timberlake, Todd Keene

    2016-01-01

    This book guides undergraduate students in the use of Maxima—a computer algebra system—in solving problems in classical mechanics. It functions well as a supplement to a typical classical mechanics textbook. When it comes to problems that are too difficult to solve by hand, computer algebra systems that can perform symbolic mathematical manipulations are a valuable tool. Maxima is particularly attractive in that it is open-source, multiple-platform software that students can download and install free of charge. Lessons learned and capabilities developed using Maxima are easily transferred to other, proprietary software.

  6. Learning Classical Music Club

    CERN Multimedia

    Learning Classical Music Club

    2010-01-01

    There is a new CERN Club called “Learning Classical Music at CERN”. We are aiming to give classical music lessons for different instruments (see link) for students from 5 to 100 years old. We are now ready to start our activities in the CERN barracks. We are now in the enrollment phase and hope to start lessons very soon ! Club info can be found in the list of CERN Club: http://user.web.cern.ch/user/Communication/SocialLifeActivities/Clubs/Clubs.html Salvatore Buontempo Club President

  7. The classical nova outburst

    International Nuclear Information System (INIS)

    Starrfield, S.G.

    1988-01-01

    The classical nova outburst occurs on the white dwarf component in a close binary system. Nova systems are members of the general class of cataclysmic variables and other members of the class are the Dwarf Novae, AM Her variables, Intermediate Polars, Recurrent Novae, and some of the Symbiotic variables. Although multiwavelength observations have already provided important information about all of these systems, in this review I will concentrate on the outbursts of the classical and recurrent novae and refer to other members of the class only when necessary. 140 refs., 1 tab

  8. Classic Problems of Probability

    CERN Document Server

    Gorroochurn, Prakash

    2012-01-01

    "A great book, one that I will certainly add to my personal library."—Paul J. Nahin, Professor Emeritus of Electrical Engineering, University of New Hampshire Classic Problems of Probability presents a lively account of the most intriguing aspects of statistics. The book features a large collection of more than thirty classic probability problems which have been carefully selected for their interesting history, the way they have shaped the field, and their counterintuitive nature. From Cardano's 1564 Games of Chance to Jacob Bernoulli's 1713 Golden Theorem to Parrondo's 1996 Perplexin

  9. Estimating Bus Loads and OD Flows Using Location-Stamped Farebox and Wi-Fi Signal Data

    Directory of Open Access Journals (Sweden)

    Yuxiong Ji

    2017-01-01

    Full Text Available Electronic fareboxes integrated with Automatic Vehicle Location (AVL systems can provide location-stamped records to infer passenger boarding at individual stops. However, bus loads and Origin-Destination (OD flows, which are useful for route planning, design, and real-time controls, cannot be derived directly from farebox data. Recently, Wi-Fi sensors have been used to collect passenger OD flow information. But the data are insufficient to capture the variation of passenger demand across bus trips. In this study, we propose a hierarchical Bayesian model to estimate trip-level OD flow matrices and a period-level OD flow matrix using sampled OD flow data collected by Wi-Fi sensors and boarding data provided by fareboxes. Bus loads on each bus trip are derived directly from the estimated trip-level OD flow matrices. The proposed method is evaluated empirically on an operational bus route and the results demonstrate that it provides good and detailed transit route-level passenger demand information by combining farebox and Wi-Fi signal data.

  10. Can classical noise enhance quantum transmission?

    International Nuclear Information System (INIS)

    Wilde, Mark M

    2009-01-01

    A modified quantum teleportation protocol broadens the scope of the classical forbidden-interval theorems for stochastic resonance. The fidelity measures performance of quantum communication. The sender encodes the two classical bits for quantum teleportation as weak bipolar subthreshold signals and sends them over a noisy classical channel. Two forbidden-interval theorems provide a necessary and sufficient condition for the occurrence of the nonmonotone stochastic resonance effect in the fidelity of quantum teleportation. The condition is that the noise mean must fall outside a forbidden interval related to the detection threshold and signal value. An optimal amount of classical noise benefits quantum communication when the sender transmits weak signals, the receiver detects with a high threshold and the noise mean lies outside the forbidden interval. Theorems and simulations demonstrate that both finite-variance and infinite-variance noise benefit the fidelity of quantum teleportation.

  11. A classical model for the electron

    International Nuclear Information System (INIS)

    Visser, M.

    1989-01-01

    The construction of classical and semi-classical models for the electron has had a long and distinguished history. Such models are useful more for what they teach us about field theory than what they teach us about the electron. In this Letter I exhibit a classical model of the electron consisting of ordinary electromagnetism coupled with a self-interacting version of Newtonian gravity. The gravitational binding energy of the system balances the electrostatic energy in such a manner that the total rest mass of the electron is finite. (orig.)

  12. Classical dynamics of particles and systems

    CERN Document Server

    Marion, Jerry B

    1965-01-01

    Classical Dynamics of Particles and Systems presents a modern and reasonably complete account of the classical mechanics of particles, systems of particles, and rigid bodies for physics students at the advanced undergraduate level. The book aims to present a modern treatment of classical mechanical systems in such a way that the transition to the quantum theory of physics can be made with the least possible difficulty; to acquaint the student with new mathematical techniques and provide sufficient practice in solving problems; and to impart to the student some degree of sophistication in handl

  13. Quantum and classical behavior in interacting bosonic systems

    Energy Technology Data Exchange (ETDEWEB)

    Hertzberg, Mark P. [Institute of Cosmology & Department of Physics and Astronomy, Tufts University,Medford, MA 02155 (United States)

    2016-11-21

    It is understood that in free bosonic theories, the classical field theory accurately describes the full quantum theory when the occupancy numbers of systems are very large. However, the situation is less understood in interacting theories, especially on time scales longer than the dynamical relaxation time. Recently there have been claims that the quantum theory deviates spectacularly from the classical theory on this time scale, even if the occupancy numbers are extremely large. Furthermore, it is claimed that the quantum theory quickly thermalizes while the classical theory does not. The evidence for these claims comes from noticing a spectacular difference in the time evolution of expectation values of quantum operators compared to the classical micro-state evolution. If true, this would have dramatic consequences for many important phenomena, including laboratory studies of interacting BECs, dark matter axions, preheating after inflation, etc. In this work we critically examine these claims. We show that in fact the classical theory can describe the quantum behavior in the high occupancy regime, even when interactions are large. The connection is that the expectation values of quantum operators in a single quantum micro-state are approximated by a corresponding classical ensemble average over many classical micro-states. Furthermore, by the ergodic theorem, a classical ensemble average of local fields with statistical translation invariance is the spatial average of a single micro-state. So the correlation functions of the quantum and classical field theories of a single micro-state approximately agree at high occupancy, even in interacting systems. Furthermore, both quantum and classical field theories can thermalize, when appropriate coarse graining is introduced, with the classical case requiring a cutoff on low occupancy UV modes. We discuss applications of our results.

  14. Supersymmetric classical mechanics

    International Nuclear Information System (INIS)

    Biswas, S.N.; Soni, S.K.

    1986-01-01

    The purpose of the paper is to construct a supersymmetric Lagrangian within the framework of classical mechanics which would be regarded as a candidate for passage to supersymmetric quantum mechanics. 5 refs. (author)

  15. SPRED: A machine learning approach for the identification of classical and non-classical secretory proteins in mammalian genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kandaswamy, Krishna Kumar [Institute for Neuro- and Bioinformatics, University of Luebeck, 23538 Luebeck (Germany); Graduate School for Computing in Medicine and Life Sciences, University of Luebeck, 23538 Luebeck (Germany); Pugalenthi, Ganesan [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Hartmann, Enno; Kalies, Kai-Uwe [Centre for Structural and Cell Biology in Medicine, Institute of Biology, University of Luebeck, 23538 Luebeck (Germany); Moeller, Steffen [Institute for Neuro- and Bioinformatics, University of Luebeck, 23538 Luebeck (Germany); Suganthan, P.N. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Martinetz, Thomas, E-mail: martinetz@inb.uni-luebeck.de [Institute for Neuro- and Bioinformatics, University of Luebeck, 23538 Luebeck (Germany)

    2010-01-15

    Eukaryotic protein secretion generally occurs via the classical secretory pathway that traverses the ER and Golgi apparatus. Secreted proteins usually contain a signal sequence with all the essential information required to target them for secretion. However, some proteins like fibroblast growth factors (FGF-1, FGF-2), interleukins (IL-1 alpha, IL-1 beta), galectins and thioredoxin are exported by an alternative pathway. This is known as leaderless or non-classical secretion and works without a signal sequence. Most computational methods for the identification of secretory proteins use the signal peptide as indicator and are therefore not able to identify substrates of non-classical secretion. In this work, we report a random forest method, SPRED, to identify secretory proteins from protein sequences irrespective of N-terminal signal peptides, thus allowing also correct classification of non-classical secretory proteins. Training was performed on a dataset containing 600 extracellular proteins and 600 cytoplasmic and/or nuclear proteins. The algorithm was tested on 180 extracellular proteins and 1380 cytoplasmic and/or nuclear proteins. We obtained 85.92% accuracy from training and 82.18% accuracy from testing. Since SPRED does not use N-terminal signals, it can detect non-classical secreted proteins by filtering those secreted proteins with an N-terminal signal by using SignalP. SPRED predicted 15 out of 19 experimentally verified non-classical secretory proteins. By scanning the entire human proteome we identified 566 protein sequences potentially undergoing non-classical secretion. The dataset and standalone version of the SPRED software is available at (http://www.inb.uni-luebeck.de/tools-demos/spred/spred).

  16. SPRED: A machine learning approach for the identification of classical and non-classical secretory proteins in mammalian genomes

    International Nuclear Information System (INIS)

    Kandaswamy, Krishna Kumar; Pugalenthi, Ganesan; Hartmann, Enno; Kalies, Kai-Uwe; Moeller, Steffen; Suganthan, P.N.; Martinetz, Thomas

    2010-01-01

    Eukaryotic protein secretion generally occurs via the classical secretory pathway that traverses the ER and Golgi apparatus. Secreted proteins usually contain a signal sequence with all the essential information required to target them for secretion. However, some proteins like fibroblast growth factors (FGF-1, FGF-2), interleukins (IL-1 alpha, IL-1 beta), galectins and thioredoxin are exported by an alternative pathway. This is known as leaderless or non-classical secretion and works without a signal sequence. Most computational methods for the identification of secretory proteins use the signal peptide as indicator and are therefore not able to identify substrates of non-classical secretion. In this work, we report a random forest method, SPRED, to identify secretory proteins from protein sequences irrespective of N-terminal signal peptides, thus allowing also correct classification of non-classical secretory proteins. Training was performed on a dataset containing 600 extracellular proteins and 600 cytoplasmic and/or nuclear proteins. The algorithm was tested on 180 extracellular proteins and 1380 cytoplasmic and/or nuclear proteins. We obtained 85.92% accuracy from training and 82.18% accuracy from testing. Since SPRED does not use N-terminal signals, it can detect non-classical secreted proteins by filtering those secreted proteins with an N-terminal signal by using SignalP. SPRED predicted 15 out of 19 experimentally verified non-classical secretory proteins. By scanning the entire human proteome we identified 566 protein sequences potentially undergoing non-classical secretion. The dataset and standalone version of the SPRED software is available at (http://www.inb.uni-luebeck.de/tools-demos/spred/spred).

  17. Bohmian mechanics and the emergence of classicality

    International Nuclear Information System (INIS)

    Matzkin, A

    2009-01-01

    Bohmian mechanics is endowed with an ontological package that supposedly allows to solve the main interpretational problems of quantum mechanics. We are concerned in this work by the emergence of classicality from the quantum mechanical substrate. We will argue that although being superficially attractive, the de Broglie-Bohm interpretation does not shed new light on the quantum-to-classical transition. This is due to nature of the dynamical law of Bohmian mechanics by which the particles follow the streamlines of the probability flow. As a consequence, Bohmian trajectories can be highly non-classical even when the wavefunction propagates along classical trajectories, as happens in semiclassical systems. In order to account for classical dynamics, Bohmian mechanics needs non-spreading and non-interfering wave packets: this is achieved for practical purposes by having recourse to decoherence and dense measurements. However one then faces the usual fundamental problems associated with the meaning of reduced density matrices. Moreover the specific assets of the de Broglie-Bohm interpretation - in particular the existence of point-like particles pursuing well-defined trajectories - would play no role in accounting for the emergence of classical dynamics.

  18. On obtaining classical mechanics from quantum mechanics

    International Nuclear Information System (INIS)

    Date, Ghanashyam

    2007-01-01

    Constructing a classical mechanical system associated with a given quantum-mechanical one entails construction of a classical phase space and a corresponding Hamiltonian function from the available quantum structures and a notion of coarser observations. The Hilbert space of any quantum-mechanical system naturally has the structure of an infinite-dimensional symplectic manifold ('quantum phase space'). There is also a systematic, quotienting procedure which imparts a bundle structure to the quantum phase space and extracts a classical phase space as the base space. This works straightforwardly when the Hilbert space carries weakly continuous representation of the Heisenberg group and one recovers the linear classical phase space R 2N . We report on how the procedure also allows extraction of nonlinear classical phase spaces and illustrate it for Hilbert spaces being finite dimensional (spin-j systems), infinite dimensional but separable (particle on a circle) and infinite dimensional but non-separable (polymer quantization). To construct a corresponding classical dynamics, one needs to choose a suitable section and identify an effective Hamiltonian. The effective dynamics mirrors the quantum dynamics provided the section satisfies conditions of semiclassicality and tangentiality

  19. The Diversity of Classical Archaeology

    DEFF Research Database (Denmark)

    , settlement patterns, landscape archaeology, historiography, and urban archaeology. Additionally, essays on topics such as the early Islamic period and portraiture in the Near East serve to broaden the themes encompassed by this work, and demonstrate the importance of interdisciplinary knowledge in the field......This book is the first volume in the series Studies in Classical Archaeology, founded and edited by professors of classical archaeology, Achim Lichtenberger and Rubina Raja. This volume sets out the agenda for this series. It achieves this by familiarizing readers with a wide range of themes...... and material groups, and highlighting them as core areas of traditional classical archaeology, despite the fact that some have hitherto been neglected. Themes presented in this volume include Greek and Roman portraiture and sculpture, iconography, epigraphy, archaeology, numismatics, the Mediterranean...

  20. Some Remarks on Classical and Classical-Quantum Sphere Packing Bounds: Rényi vs. Kullback–Leibler

    Directory of Open Access Journals (Sweden)

    Marco Dalai

    2017-07-01

    Full Text Available We review the use of binary hypothesis testing for the derivation of the sphere packing bound in channel coding, pointing out a key difference between the classical and the classical-quantum setting. In the first case, two ways of using the binary hypothesis testing are known, which lead to the same bound written in different analytical expressions. The first method historically compares output distributions induced by the codewords with an auxiliary fixed output distribution, and naturally leads to an expression using the Renyi divergence. The second method compares the given channel with an auxiliary one and leads to an expression using the Kullback–Leibler divergence. In the classical-quantum case, due to a fundamental difference in the quantum binary hypothesis testing, these two approaches lead to two different bounds, the first being the “right” one. We discuss the details of this phenomenon, which suggests the question of whether auxiliary channels are used in the optimal way in the second approach and whether recent results on the exact strong-converse exponent in classical-quantum channel coding might play a role in the considered problem.

  1. Quantum Communication Attacks on Classical Cryptographic Protocols

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre

    , one can show that the protocol remains secure even under such an attack. However, there are also cases where the honest players are quantum as well, even if the protocol uses classical communication. For instance, this is the case when classical multiparty computation is used as a “subroutine......In the literature on cryptographic protocols, it has been studied several times what happens if a classical protocol is attacked by a quantum adversary. Usually, this is taken to mean that the adversary runs a quantum algorithm, but communicates classically with the honest players. In several cases......” in quantum multiparty computation. Furthermore, in the future, players in a protocol may employ quantum computing simply to improve efficiency of their local computation, even if the communication is supposed to be classical. In such cases, it no longer seems clear that a quantum adversary must be limited...

  2. Quantum Communication Attacks on Classical Cryptographic Protocols

    DEFF Research Database (Denmark)

    Damgård, Ivan Bjerre

    , one can show that the protocol remains secure even under such an attack. However, there are also cases where the honest players are quantum as well, even if the protocol uses classical communication. For instance, this is the case when classical multiparty computation is used as a “subroutine......” in quantum multiparty computation. Furthermore, in the future, players in a protocol may employ quantum computing simply to improve efficiency of their local computation, even if the communication is supposed to be classical. In such cases, it no longer seems clear that a quantum adversary must be limited......In the literature on cryptographic protocols, it has been studied several times what happens if a classical protocol is attacked by a quantum adversary. Usually, this is taken to mean that the adversary runs a quantum algorithm, but communicates classically with the honest players. In several cases...

  3. Classics in the Cloud : A discussion of the problems of classical music and streaming

    OpenAIRE

    Olsen, Tone Cecilie

    2017-01-01

    Master's thesis Music Management MU501 - University of Agder 2017 Streaming services have become the main method of music consumption the last couple of years, and the classical audience have moved to the cloud as well. This paper aims to uncover some of the issues that classical consumers encounter while using streaming services, what the reasons may be that there are problems, and discussing possible solution to benefit either the connoisseur or the novice listener. It brings...

  4. The classicality and quantumness of a quantum ensemble

    International Nuclear Information System (INIS)

    Zhu Xuanmin; Pang Shengshi; Wu Shengjun; Liu Quanhui

    2011-01-01

    In this Letter, we investigate the classicality and quantumness of a quantum ensemble. We define a quantity called ensemble classicality based on classical cloning strategy (ECCC) to characterize how classical a quantum ensemble is. An ensemble of commuting states has a unit ECCC, while a general ensemble can have a ECCC less than 1. We also study how quantum an ensemble is by defining a related quantity called quantumness. We find that the classicality of an ensemble is closely related to how perfectly the ensemble can be cloned, and that the quantumness of the ensemble used in a quantum key distribution (QKD) protocol is exactly the attainable lower bound of the error rate in the sifted key. - Highlights: → A quantity is defined to characterize how classical a quantum ensemble is. → The classicality of an ensemble is closely related to the cloning performance. → Another quantity is also defined to investigate how quantum an ensemble is. → This quantity gives the lower bound of the error rate in a QKD protocol.

  5. There is no quantum ontology without classical ontology

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Helmut [Institut fuer Theoretische Physik, Univ. Erlangen-Nuernberg (Germany)

    2011-07-01

    The relation between quantum physics and classical physics is still under debate. In his recent book ''Rational Reconstructions of Modern Physics'', Peter Mittelstaedt explores a route from classical to quantum mechanics by reduction and elimination of (some of) the ontological hypotheses underlying classical mechanics. While, according to Mittelstaedt, classical mechanics describes a fictitious world that does not exist in reality, he claims to achieve a universal quantum ontology that can be improved by incorporating unsharp properties and equipped with Planck's constant without any need to refer to classical concepts. In this talk, we argue that quantum ontology in Mittelstaedt's sense is not enough. Quantum ontology can never be universal as long as the difference between potential and real properties is not represented adequately. Quantum properties are potential, not (yet) real, be they sharp or unsharp. Hence, preparation and measurement presuppose classical concepts, even in quantum theory. We end up with a classical-quantum sandwich ontology, which is still less extravagant than Bohmian or many-worlds ontologies are.

  6. Quantum money with classical verification

    Energy Technology Data Exchange (ETDEWEB)

    Gavinsky, Dmitry [NEC Laboratories America, Princeton, NJ (United States)

    2014-12-04

    We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it.

  7. Quantum money with classical verification

    International Nuclear Information System (INIS)

    Gavinsky, Dmitry

    2014-01-01

    We propose and construct a quantum money scheme that allows verification through classical communication with a bank. This is the first demonstration that a secure quantum money scheme exists that does not require quantum communication for coin verification. Our scheme is secure against adaptive adversaries - this property is not directly related to the possibility of classical verification, nevertheless none of the earlier quantum money constructions is known to possess it

  8. Quantum-Classical Correspondence Principle for Work Distributions

    Directory of Open Access Journals (Sweden)

    Christopher Jarzynski

    2015-09-01

    Full Text Available For closed quantum systems driven away from equilibrium, work is often defined in terms of projective measurements of initial and final energies. This definition leads to statistical distributions of work that satisfy nonequilibrium work and fluctuation relations. While this two-point measurement definition of quantum work can be justified heuristically by appeal to the first law of thermodynamics, its relationship to the classical definition of work has not been carefully examined. In this paper, we employ semiclassical methods, combined with numerical simulations of a driven quartic oscillator, to study the correspondence between classical and quantal definitions of work in systems with 1 degree of freedom. We find that a semiclassical work distribution, built from classical trajectories that connect the initial and final energies, provides an excellent approximation to the quantum work distribution when the trajectories are assigned suitable phases and are allowed to interfere. Neglecting the interferences between trajectories reduces the distribution to that of the corresponding classical process. Hence, in the semiclassical limit, the quantum work distribution converges to the classical distribution, decorated by a quantum interference pattern. We also derive the form of the quantum work distribution at the boundary between classically allowed and forbidden regions, where this distribution tunnels into the forbidden region. Our results clarify how the correspondence principle applies in the context of quantum and classical work distributions and contribute to the understanding of work and nonequilibrium work relations in the quantum regime.

  9. A Classical Introduction to Galois Theory

    CERN Document Server

    Newman, Stephen C

    2012-01-01

    This book provides an introduction to Galois theory and focuses on one central theme - the solvability of polynomials by radicals. Both classical and modern approaches to the subject are described in turn in order to have the former (which is relatively concrete and computational) provide motivation for the latter (which can be quite abstract). The theme of the book is historically the reason that Galois theory was created, and it continues to provide a platform for exploring both classical and modern concepts. This book examines a number of problems arising in the area of classical mathematic

  10. Bohmian measures and their classical limit

    KAUST Repository

    Markowich, Peter

    2010-09-01

    We consider a class of phase space measures, which naturally arise in the Bohmian interpretation of quantum mechanics. We study the classical limit of these so-called Bohmian measures, in dependence on the scale of oscillations and concentrations of the sequence of wave functions under consideration. The obtained results are consequently compared to those derived via semi-classical Wigner measures. To this end, we shall also give a connection to the theory of Young measures and prove several new results on Wigner measures themselves. Our analysis gives new insight on oscillation and concentration effects in the semi-classical regime. © 2010 Elsevier Inc.

  11. Lagrangian formulation of classical BMT-theory

    International Nuclear Information System (INIS)

    Pupasov-Maksimov, Andrey; Deriglazov, Alexei; Guzman, Walberto

    2013-01-01

    Full text: The most popular classical theory of electron has been formulated by Bargmann, Michel and Telegdi (BMT) in 1959. The BMT equations give classical relativistic description of a charged particle with spin and anomalous magnetic momentum moving in homogeneous electro-magnetic field. This allows to study spin dynamics of polarized beams in uniform fields. In particular, first experimental measurements of muon anomalous magnetic momentum were done using changing of helicity predicted by BMT equations. Surprisingly enough, a systematic formulation and the analysis of the BMT theory are absent in literature. In the present work we particularly fill this gap by deducing Lagrangian formulation (variational problem) for BMT equations. Various equivalent forms of Lagrangian will be discussed in details. An advantage of the obtained classical model is that the Lagrangian action describes a relativistic spinning particle without Grassmann variables, for both free and interacting cases. This implies also the possibility of canonical quantization. In the interacting case, an arbitrary electromagnetic background may be considered, which generalizes the BMT theory formulated to the case of homogeneous fields. The classical model has two local symmetries, which gives an interesting example of constrained classical dynamics. It is surprising, that the case of vanishing anomalous part of the magnetic momentum is naturally highlighted in our construction. (author)

  12. A Case of Classic Raymond Syndrome

    Directory of Open Access Journals (Sweden)

    Nicholas George Zaorsky

    2012-01-01

    Full Text Available Classic Raymond syndrome consists of ipsilateral abducens impairment, contralateral central facial paresis, and contralateral hemiparesis. However, subsequent clinical observations argued on the presentation of facial involvement. To validate this entity, we present a case of classic Raymond syndrome with contralateral facial paresis. A 50 year-old man experienced acute onset of horizontal diplopia, left mouth drooling and left-sided weakness. Neurological examination showed he had right abducens nerve palsy, left-sided paresis of the lower part of the face and limbs, and left hyperreflexia. A brain MRI showed a subacute infarct in the right mid-pons. The findings were consistent with those of classic Raymond syndrome. To date, only a few cases of Raymond syndrome, commonly without facial involvement, have been reported. Our case is a validation of classic Raymond syndrome with contralateral facial paresis. We propose the concept of two types of Raymond syndrome: (1 the classic type, which may be produced by a lesion in the mid-pons involving the ipsilateral abducens fascicle and undecussated corticofacial and corticospinal fibers; and (2 the common type, which may be produced by a lesion involving the ipsilateral abducens fascicle and undecussated corticospinal fibers but sparing the corticofacial fibers.

  13. Connections between classical and parametric network entropies.

    Directory of Open Access Journals (Sweden)

    Matthias Dehmer

    Full Text Available This paper explores relationships between classical and parametric measures of graph (or network complexity. Classical measures are based on vertex decompositions induced by equivalence relations. Parametric measures, on the other hand, are constructed by using information functions to assign probabilities to the vertices. The inequalities established in this paper relating classical and parametric measures lay a foundation for systematic classification of entropy-based measures of graph complexity.

  14. Expert Western Classical Music Improvisers' Strategies

    Science.gov (United States)

    Després, Jean-Philippe; Burnard, Pamela; Dubé, Francis; Stévance, Sophie

    2017-01-01

    The growing interest in musical improvisation is exemplified by the body of literatures evidencing the positive impacts of improvisation learning on the musical apprentice's aptitudes and the increasing presence of improvisation in Western classical concert halls and competitions. However, high-level Western classical music improvisers' thinking…

  15. Mimicking anti-correlations with classical interference

    International Nuclear Information System (INIS)

    Godoy, S; Seifert, B; Wallentowitz, S

    2013-01-01

    It is shown how classical laser light impinging on a beam splitter with internal reflections may mimic anti-correlations of the detected outputs, similar to those observed for anti-bunched light. The experimentally observed anti-correlation may be interpreted as a classical Hong–Ou–Mandel dip. (paper)

  16. Quantum scattering from classical field theory

    International Nuclear Information System (INIS)

    Gould, T.M.; Poppitz, E.R.

    1995-01-01

    We show that scattering amplitudes between initial wave packet states and certain coherent final states can be computed in a systematic weak coupling expansion about classical solutions satisfying initial-value conditions. The initial-value conditions are such as to make the solution of the classical field equations amenable to numerical methods. We propose a practical procedure for computing classical solutions which contribute to high energy two-particle scattering amplitudes. We consider in this regard the implications of a recent numerical simulation in classical SU(2) Yang-Mills theory for multiparticle scattering in quantum gauge theories and speculate on its generalization to electroweak theory. We also generalize our results to the case of complex trajectories and discuss the prospects for finding a solution to the resulting complex boundary value problem, which would allow the application of our method to any wave packet to coherent state transition. Finally, we discuss the relevance of these results to the issues of baryon number violation and multiparticle scattering at high energies. ((orig.))

  17. Persistent entanglement in the classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Everitt, M J [Centre for Physical Electronics and Quantum Technology, School of Science and Technology, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Clark, T D [Centre for Physical Electronics and Quantum Technology, School of Science and Technology, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Stiffell, P B [Centre for Physical Electronics and Quantum Technology, School of Science and Technology, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom); Ralph, J F [Department of Electrical and Electronic Engineering, Liverpool University, Brownlow Hill, Liverpool L69 3GJ (United Kingdom); Bulsara, A R [Space and Naval Warfare Systems Center, Code 2363, 53560 Hull Street, San Diego, CA 92152-5001 (United States); Harland, C J [Centre for Physical Electronics and Quantum Technology, School of Science and Technology, University of Sussex, Falmer, Brighton BN1 9QT (United Kingdom)

    2005-02-01

    The apparent difficulty in recovering classical nonlinear dynamics and chaos from standard quantum mechanics has been the subject of a great deal of interest over the last 20 years. For open quantum systems-those coupled to a dissipative environment and/or a measurement device-it has been demonstrated that chaotic-like behaviour can be recovered in the appropriate classical limit. In this paper, we investigate the entanglement generated between two nonlinear oscillators, coupled to each other and to their environment. Entanglement-the inability to factorize coupled quantum systems into their constituent parts-is one of the defining features of quantum mechanics. Indeed, it underpins many of the recent developments in quantum technologies. Here, we show that the entanglement characteristics of two 'classical' states (chaotic and periodic solutions) differ significantly in the classical limit. In particular, we show that significant levels of entanglement are preserved only in the chaotic-like solutions.

  18. Quantum machine learning: a classical perspective

    Science.gov (United States)

    Ciliberto, Carlo; Herbster, Mark; Ialongo, Alessandro Davide; Pontil, Massimiliano; Severini, Simone; Wossnig, Leonard

    2018-01-01

    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in ML are identified as promising directions for the field. Practical questions, such as how to upload classical data into quantum form, will also be addressed. PMID:29434508

  19. Quantum machine learning: a classical perspective.

    Science.gov (United States)

    Ciliberto, Carlo; Herbster, Mark; Ialongo, Alessandro Davide; Pontil, Massimiliano; Rocchetto, Andrea; Severini, Simone; Wossnig, Leonard

    2018-01-01

    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in ML are identified as promising directions for the field. Practical questions, such as how to upload classical data into quantum form, will also be addressed.

  20. The classical theory of fields electromagnetism

    CERN Document Server

    Helrich, Carl S

    2012-01-01

    The study of classical electromagnetic fields is an adventure. The theory is complete mathematically and we are able to present it as an example of classical Newtonian experimental and mathematical philosophy. There is a set of foundational experiments, on which most of the theory is constructed. And then there is the bold theoretical proposal of a field-field interaction from James Clerk Maxwell. This textbook presents the theory of classical fields as a mathematical structure based solidly on laboratory experiments. Here the student is introduced to the beauty of classical field theory as a gem of theoretical physics. To keep the discussion fluid, the history is placed in a beginning chapter and some of the mathematical proofs in the appendices. Chapters on Green’s Functions and Laplace’s Equation and a discussion of Faraday’s Experiment further deepen the understanding. The chapter on Einstein’s relativity is an integral necessity to the text. Finally, chapters on particle motion and waves in a dis...

  1. Quantum machine learning: a classical perspective

    Science.gov (United States)

    Ciliberto, Carlo; Herbster, Mark; Ialongo, Alessandro Davide; Pontil, Massimiliano; Rocchetto, Andrea; Severini, Simone; Wossnig, Leonard

    2018-01-01

    Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in ML are identified as promising directions for the field. Practical questions, such as how to upload classical data into quantum form, will also be addressed.

  2. A new approach for improved time and position measurements for TOF-PET: Time-stamping of the photo-electrons using analogue SiPMs

    CERN Document Server

    Doroud, K

    2017-01-01

    Measurement of the Time-of-Flight (TOF) of the 511 keV gammas brings an important reduction of statistical noise in the PET image, with higher precision time measurements producing clearer images. The common method of coupling a photodetector to scintillating crystals is to have two matching matrices, with a one-to-one coupling between the crystal and the photodetector. We propose a new geometry based on analogue strip SiPMs reading out a scintillator cut into slabs. This technique allows the time stamping of individual photo-electrons and extracts the best time resolution using a specific algorithm. Here we present the results from the first ‘slab module’ test.

  3. A new approach for improved time and position measurements for TOF-PET: Time-stamping of the photo-electrons using analogue SiPMs

    Energy Technology Data Exchange (ETDEWEB)

    Doroud, K., E-mail: Katayoun.Doroud@cern.ch [CERN Geneva (Switzerland); Williams, M.C.S. [CERN Geneva (Switzerland); INFN, Bologna (Italy)

    2017-03-21

    Measurement of the Time-of-Flight (TOF) of the 511 keV gammas brings an important reduction of statistical noise in the PET image, with higher precision time measurements producing clearer images. The common method of coupling a photodetector to scintillating crystals is to have two matching matrices, with a one-to-one coupling between the crystal and the photodetector. We propose a new geometry based on analogue strip SiPMs reading out a scintillator cut into slabs. This technique allows the time stamping of individual photo-electrons and extracts the best time resolution using a specific algorithm. Here we present the results from the first ‘slab module’ test.

  4. Continuous quantum measurement and the quantum to classical transition

    International Nuclear Information System (INIS)

    Bhattacharya, Tanmoy; Habib, Salman; Jacobs, Kurt

    2003-01-01

    While ultimately they are described by quantum mechanics, macroscopic mechanical systems are nevertheless observed to follow the trajectories predicted by classical mechanics. Hence, in the regime defining macroscopic physics, the trajectories of the correct classical motion must emerge from quantum mechanics, a process referred to as the quantum to classical transition. Extending previous work [Bhattacharya, Habib, and Jacobs, Phys. Rev. Lett. 85, 4852 (2000)], here we elucidate this transition in some detail, showing that once the measurement processes that affect all macroscopic systems are taken into account, quantum mechanics indeed predicts the emergence of classical motion. We derive inequalities that describe the parameter regime in which classical motion is obtained, and provide numerical examples. We also demonstrate two further important properties of the classical limit: first, that multiple observers all agree on the motion of an object, and second, that classical statistical inference may be used to correctly track the classical motion

  5. Complement is activated in progressive multiple sclerosis cortical grey matter lesions.

    Science.gov (United States)

    Watkins, Lewis M; Neal, James W; Loveless, Sam; Michailidou, Iliana; Ramaglia, Valeria; Rees, Mark I; Reynolds, Richard; Robertson, Neil P; Morgan, B Paul; Howell, Owain W

    2016-06-22

    The symptoms of multiple sclerosis (MS) are caused by damage to myelin and nerve cells in the brain and spinal cord. Inflammation is tightly linked with neurodegeneration, and it is the accumulation of neurodegeneration that underlies increasing neurological disability in progressive MS. Determining pathological mechanisms at play in MS grey matter is therefore a key to our understanding of disease progression. We analysed complement expression and activation by immunocytochemistry and in situ hybridisation in frozen or formalin-fixed paraffin-embedded post-mortem tissue blocks from 22 progressive MS cases and made comparisons to inflammatory central nervous system disease and non-neurological disease controls. Expression of the transcript for C1qA was noted in neurons and the activation fragment and opsonin C3b-labelled neurons and glia in the MS cortical and deep grey matter. The density of immunostained cells positive for the classical complement pathway protein C1q and the alternative complement pathway activation fragment Bb was significantly increased in cortical grey matter lesions in comparison to control grey matter. The number of cells immunostained for the membrane attack complex was elevated in cortical lesions, indicating complement activation to completion. The numbers of classical (C1-inhibitor) and alternative (factor H) pathway regulator-positive cells were unchanged between MS and controls, whilst complement anaphylatoxin receptor-bearing microglia in the MS cortex were found closely apposed to cortical neurons. Complement immunopositive neurons displayed an altered nuclear morphology, indicative of cell stress/damage, supporting our finding of significant neurodegeneration in cortical grey matter lesions. Complement is activated in the MS cortical grey matter lesions in areas of elevated numbers of complement receptor-positive microglia and suggests that complement over-activation may contribute to the worsening pathology that underlies the

  6. Hilbert space theory of classical electrodynamics

    Indian Academy of Sciences (India)

    Furthermore, following Bondar et al, {\\it Phys. Rev.} A 88, 052108 (2013), it is pointed out that quantum processes that preserve the positivity or nonpositivity of theWigner function can be implemented by classical optics. This may be useful in interpreting quantum information processing in terms of classical optics.

  7. Classical dynamics and its quantum analogues

    International Nuclear Information System (INIS)

    Park, D.

    1979-01-01

    In this book the author establishes mathematical connections between classical and quantum mechanics, between ray optics and wave optics. The approach is to consider classical mechanics as a limiting case of quantum mechanics, and ray optics as a limiting case of wave optics. The conceptual background is discussed where necessary, so the reader should be already fairly familiar with it. The main goal of this approach is the revelation that classical and quantum theory are not so different conceptually as one thinks at first exposure. The first chapters recall the basic facts about light waves and light rays and demonstrate the construction of Newtonian orbits from Schroedinger waves. In the following the Lagrangian and Hamiltonian formulation of few-body system is developed showing as often as possible the relations to the corresponding quantum systems. To illustrate the theory planetary motion using perturbation theory is treated in some detail and several calculations in general relativity such as the deflection and retardation of light by the sun and the precession of planetary perikelia are included. The final parts deal with the motions of systems of many particles. The quantum mechanics of rigid bodies is presented in analogy with the classical theory and contrasts are noted. There is also a discussion of the roles of spinors in the two theories. The book is intended as a text in classical mechanics for readers which have already some knowledge in classical and quantum mechanics. It may help to deepen their understanding of the relation between the old and new theory and show something of the ways in which new discoveries are made. (orig.) 891 HJ/orig. 892 BRE

  8. The relation between classical and quantum mechanics

    International Nuclear Information System (INIS)

    Taylor, Peter.

    1984-01-01

    The thesis examines the relationship between classical and quantum mechanics from philosophical, mathematical and physical standpoints. Arguments are presented in favour of 'conjectural realism' in scientific theories, distinguished by explicit contextual structure and empirical testability. The formulations of classical and quantum mechanics, based on a general theory of mechanics is investigated, as well as the mathematical treatments of these subjects. Finally the thesis questions the validity of 'classical limits' and 'quantisations' in intertheoretic reduction. (UK)

  9. Quantum-classical correspondence in the vicinity of periodic orbits

    Science.gov (United States)

    Kumari, Meenu; Ghose, Shohini

    2018-05-01

    Quantum-classical correspondence in chaotic systems is a long-standing problem. We describe a method to quantify Bohr's correspondence principle and calculate the size of quantum numbers for which we can expect to observe quantum-classical correspondence near periodic orbits of Floquet systems. Our method shows how the stability of classical periodic orbits affects quantum dynamics. We demonstrate our method by analyzing quantum-classical correspondence in the quantum kicked top (QKT), which exhibits both regular and chaotic behavior. We use our correspondence conditions to identify signatures of classical bifurcations even in a deep quantum regime. Our method can be used to explain the breakdown of quantum-classical correspondence in chaotic systems.

  10. Emerging interpretations of quantum mechanics and recent progress in quantum measurement

    International Nuclear Information System (INIS)

    Clarke, M L

    2014-01-01

    The focus of this paper is to provide a brief discussion on the quantum measurement process, by reviewing select examples highlighting recent progress towards its understanding. The areas explored include an outline of the measurement problem, the standard interpretation of quantum mechanics, quantum to classical transition, types of measurement (including weak and projective measurements) and newly emerging interpretations of quantum mechanics (decoherence theory, objective reality, quantum Darwinism and quantum Bayesianism). (paper)

  11. Helium-hydrogen microplasma device (MPD) on postage-stamp-size plastic-quartz chips.

    Science.gov (United States)

    Weagant, Scott; Karanassios, Vassili

    2009-10-01

    A new design of a miniaturized, atmospheric-pressure, low-power (e.g., battery-operated), self-igniting, planar-geometry microplasma device (MPD) for use with liquid microsamples is described. The inexpensive MPD was a hybrid, three-substrate quartz-plastic-plastic structure and it was formed on chips with area the size of a small postage stamp. The substrates were chosen for rapid prototyping and for speedy device-geometry testing and evaluation. The approximately 700-microm (diameter) and 7-mm (long) He-H(2) (3% H(2)) microplasma was formed by applying high-voltage ac between two needle electrodes. Operating conditions were found to be critical in sustaining stable microplasma on plastic substrates. Spectral interference from the electrode materials was not observed. A small-size, electrothermal vaporization system was used for introduction of microliter volumes of liquids into the MPD. The microplasma was operated from an inexpensive power supply. And, operation from a 14.4-V battery has been demonstrated. Microplasma background emission in the spectral range between 200 and 850 nm obtained using a portable, fiber-optic spectrometer is reported. Analyte emission from microliter volumes of dilute single-element standard solutions of Cd, Cu, K, Li, Mg, Mn, Na, Pb, and Zn is documented. Element-dependent precision was between 10-25% (the average was 15%) and detection limits ranged between 1.5 and 350 ng. The system was used for the determination of Na in diluted bottled-water samples.

  12. Classical higher-order processes

    DEFF Research Database (Denmark)

    Montesi, Fabrizio

    2017-01-01

    Classical Processes (CP) is a calculus where the proof theory of classical linear logic types processes à la Π-calculus, building on a Curry-Howard correspondence between session types and linear propositions. We contribute to this research line by extending CP with process mobility, inspired...... by the Higher-Order Π-calculus. The key to our calculus is that sequents are asymmetric: one side types sessions as in CP and the other types process variables, which can be instantiated with process values. The controlled interaction between the two sides ensures that process variables can be used at will......, but always respecting the linear usage of sessions expected by the environment....

  13. Overview of Classical Swine Fever (Hog Cholera, Classical Swine fever)

    Science.gov (United States)

    Classical swine fever is a contagious often fatal disease of pigs clinically characterized by high body temperature, lethargy, yellowish diarrhea, vomits and purple skin discoloration of ears, lower abdomen and legs. It was first described in the early 19th century in the USA. Later, a condition i...

  14. Classical geometry from the quantum Liouville theory

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew; Piaţek, Marcin

    2005-09-01

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.

  15. Classical geometry from the quantum Liouville theory

    International Nuclear Information System (INIS)

    Hadasz, Leszek; Jaskolski, Zbigniew; Piatek, Marcin

    2005-01-01

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere

  16. Classical theory of radiating strings

    Science.gov (United States)

    Copeland, Edmund J.; Haws, D.; Hindmarsh, M.

    1990-01-01

    The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.

  17. Classical logic and logicism in human thought

    OpenAIRE

    Elqayam, Shira

    2012-01-01

    This chapter explores the role of classical logic as a theory of human reasoning. I distinguish between classical logic as a normative, computational and algorithmic system, and review its role is theories of human reasoning since the 1960s. The thesis I defend is that psychological theories have been moving further and further away from classical logic on all three levels. I examine some prominent example of logicist theories, which incorporate logic in their psychological account, includin...

  18. Qadar in Classical and Modern Islamic Discourses: Commending a Futuristic Perspective

    Directory of Open Access Journals (Sweden)

    WAN FARIZA ALYATI WAN ZAKARIA

    2015-06-01

    Full Text Available In classical Islamic era, the discussion on the concept of fate (divine predestination or qadar has created various debates with regard to its relationship to the problem of freedom (hurriya, choice (ikhtiyar and free will (irada. The word qadar has been treated differently by various Islamic thinkers such as the jurists, the Sufis, the philosophers and the theologians (mutakkalimun according to their respective concern. Classical discourse on qadar is found predominantly in debates between two main sects, the Murji’ites and the Jabarites who believe that God had predetermined the human life at one hand, and the others, the Muktazilites and the Qadarites who believe in human’s free will. The modern discourse on qadar shifts to different tunes. It is believed that qadar was responsible for paralyzing the energies of the Muslims and was the chief cause of their moral degeneration. The doctrine of qadar causes the Muslims to regard all their actions and achievements as dependent on the will of God and, for the same reason, they were unable to safeguard their rights and protect their countries from tyranny – thus obstructing their overall progress. This paper attempts at discussing both the classical and modern Islamic conceptions of qadar and its dynamism as the source of strength for Muslims to think about the future in positive attitude - that it is the only space which they could actively participate and operate in order to choose their destiny, be it good or bad, whether on the earth as God’s servants and vicegerents, as well as in the hereafter where they will taste the consequences of their actions. Understanding the true concept of qadar and also its dynamic association with the organic concept of time is about knowing the consequences of human actions and this is the very basic of futures thinking in Muslim mind.

  19. Classicism and Romanticism.

    Science.gov (United States)

    Huddleston, Gregory H.

    1993-01-01

    Describes one teacher's methods for introducing to secondary English students the concepts of Classicism and Romanticism in relation to pictures of gardens, architecture, music, and literary works. Outlines how the unit leads to a writing assignment based on collected responses over time. (HB)

  20. Teaching Tomorrow's Classics.

    Science.gov (United States)

    Tighe, Mary Ann; Avinger, Charles

    1994-01-01

    Describes young adult novels that may prove to be classics of the genre. Discusses "The "Chocolate War" by Robert Cormier, "The Outsiders" by S. E. Hinton, "The Witch of Blackbird Pond" by Elizabeth George Speare, and "On Fortune's Wheel" by Cynthia Voight. (HB)

  1. Citation classics in central nervous system inflammatory demyelinating disease.

    Science.gov (United States)

    Kim, Jee-Eun; Park, Kang M; Kim, Yerim; Yoon, Dae Y; Bae, Jong S

    2017-06-01

    To identify and analyze the characteristics of the most influential articles about central nervous system (CNS) inflammatory demyelinating disease. The Institute for Scientific Information (ISI) Web of Science database and the 2014 Journal Citation Reports Science Edition were used to retrieve the top 100 cited articles on CNS inflammatory demyelinating disease. The citation numbers, journals, years of publication, authorships, article types, subjects and main issues were analyzed. For neuromyelitis optica (NMO), articles that were cited more than 100 times were regarded as a citation classic and described separately. The top 100 cited articles were published between 1972 and 2011 in 13 journals. The highest number of articles ( n  = 24) was published in Brain, followed by The New England Journal of Medicine ( n  = 21). The average number of citations was 664 (range 330-3,897), and 64% of the articles were from the United States and the United Kingdom. The majority of the top 100 cited articles were related to multiple sclerosis ( n  = 87), and only a few articles reported on other topics such as NMO ( n  = 9), acute disseminated encephalomyelitis ( n  = 2) and optic neuritis ( n  = 2). Among the top 100 cited articles, 77% were original articles. Forty-one citation classics were found for NMO. Our study provides a historical perspective on the research progress on CNS inflammatory demyelinating disease and may serve as a guide for important advances and trends in the field for associated researchers.

  2. Nonlinear effects in evolution - an ab initio study: A model in which the classical theory of evolution occurs as a special case.

    Science.gov (United States)

    Clerc, Daryl G

    2016-07-21

    An ab initio approach was used to study the molecular-level interactions that connect gene-mutation to changes in an organism׳s phenotype. The study provides new insights into the evolutionary process and presents a simplification whereby changes in phenotypic properties may be studied in terms of the binding affinities of the chemical interactions affected by mutation, rather than by correlation to the genes. The study also reports the role that nonlinear effects play in the progression of organs, and how those effects relate to the classical theory of evolution. Results indicate that the classical theory of evolution occurs as a special case within the ab initio model - a case having two attributes. The first attribute: proteins and promoter regions are not shared among organs. The second attribute: continuous limiting behavior exists in the physical properties of organs as well as in the binding affinity of the associated chemical interactions, with respect to displacements in the chemical properties of proteins and promoter regions induced by mutation. Outside of the special case, second-order coupling contributions are significant and nonlinear effects play an important role, a result corroborated by analyses of published activity levels in binding and transactivation assays. Further, gradations in the state of perfection of an organ may be small or large depending on the type of mutation, and not necessarily closely-separated as maintained by the classical theory. Results also indicate that organs progress with varying degrees of interdependence, the likelihood of successful mutation decreases with increasing complexity of the affected chemical system, and differences between the ab initio model and the classical theory increase with increasing complexity of the organism. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  3. Optimal Classical Simulation of State-Independent Quantum Contextuality

    Science.gov (United States)

    Cabello, Adán; Gu, Mile; Gühne, Otfried; Xu, Zhen-Peng

    2018-03-01

    Simulating quantum contextuality with classical systems requires memory. A fundamental yet open question is what is the minimum memory needed and, therefore, the precise sense in which quantum systems outperform classical ones. Here, we make rigorous the notion of classically simulating quantum state-independent contextuality (QSIC) in the case of a single quantum system submitted to an infinite sequence of measurements randomly chosen from a finite QSIC set. We obtain the minimum memory needed to simulate arbitrary QSIC sets via classical systems under the assumption that the simulation should not contain any oracular information. In particular, we show that, while classically simulating two qubits tested with the Peres-Mermin set requires log224 ≈4.585 bits, simulating a single qutrit tested with the Yu-Oh set requires, at least, 5.740 bits.

  4. Teaching Classical Mechanics using Smartphones

    OpenAIRE

    Chevrier, Joel; Madani, Laya; Ledenmat, Simon; Bsiesy, Ahmad

    2012-01-01

    Using a personal computer and a smartphone, iMecaProf is a software that provides a complete teaching environment for practicals associated to a Classical Mechanics course. iMecaProf proposes a visual, real time and interactive representation of data transmitted by a smartphone using the formalism of Classical Mechanics. Using smartphones is more than using a set of sensors. iMecaProf shows students that important concepts of physics they here learn, are necessary to control daily life smartp...

  5. Dynamical systems in classical mechanics

    CERN Document Server

    Kozlov, V V

    1995-01-01

    This book shows that the phenomenon of integrability is related not only to Hamiltonian systems, but also to a wider variety of systems having invariant measures that often arise in nonholonomic mechanics. Each paper presents unique ideas and original approaches to various mathematical problems related to integrability, stability, and chaos in classical dynamics. Topics include… the inverse Lyapunov theorem on stability of equilibria geometrical aspects of Hamiltonian mechanics from a hydrodynamic perspective current unsolved problems in the dynamical systems approach to classical mechanics

  6. Classical geometry from the quantum Liouville theory

    Energy Technology Data Exchange (ETDEWEB)

    Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagellonian University, Reymonta 4, 30-059 Cracow (Poland)]. E-mail: hadasz@th.if.uj.edu.pl; Jaskolski, Zbigniew [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: jask@ift.uni.wroc.pl; Piatek, Marcin [Institute of Theoretical Physics, University of WrocIaw, pl. M. Borna, 950-204 WrocIaw (Poland)]. E-mail: piatek@ift.uni.wroc.pl

    2005-09-26

    Zamolodchikov's recursion relations are used to analyze the existence and approximations to the classical conformal block in the case of four parabolic weights. Strong numerical evidence is found that the saddle point momenta arising in the classical limit of the DOZZ quantum Liouville theory are simply related to the geodesic length functions of the hyperbolic geometry on the 4-punctured Riemann sphere. Such relation provides new powerful methods for both numerical and analytical calculations of these functions. The consistency conditions for the factorization of the 4-point classical Liouville action in different channels are numerically verified. The factorization yields efficient numerical methods to calculate the 4-point classical action and, by the Polyakov conjecture, the accessory parameters of the Fuchsian uniformization of the 4-punctured sphere.

  7. Imaging the Ejecta in Classical Novae

    Science.gov (United States)

    Linford, Justin

    2016-10-01

    A nova outburst results when sufficient mass accretes from a companion star onto the surface of a white dwarf, triggering a thermonuclear explosion. In classical novae the bulk of the emission comes from the warm, expanding ejecta. The prevailing theories assume that the explosion occurs as a single, spherically symmetric ejection event and predict a simple relationship between the white dwarf mass, the accretion rate, and the mass loss and energetics of the explosion. However, observations with modern instruments indicate that nova eruptions are far from simple. There is now evidence for multiple ejection events, common envelopes, non-spherical geometry, and even jet-like structures in the ejecta. Our ENova collaboration combines radio, mm, optical, and X-ray observations and detailed theoretical modelling to study the most common major explosions in the universe. Among our results so far are the direct demonstration of the importance of shocks in novae, including the detection of gamma-ray producing shocks in several sources, and the realization that multiple, long-lived outflows are much more common than previously assumed. Here we propose to continue these highly successful observations with coordinated detailed VLA radio interferometry and HST optical imaging and spectroscropy of several recent novae with substantial VLA monitoring already in progress.

  8. [Today's meaning of classical authors of political thinking].

    Science.gov (United States)

    Weinacht, Paul-Ludwig

    2005-01-01

    How can classical political authors be actualised? The question is asked in a discipline which is founded in old traditions: the political science. One of its great matters is the history of political ideas. Classic authors are treated in many books, but they are viewed in different perspectives; colleagues do not agree with shining and bad examples. For actualising classic we have to go a methodically reflected way: historic not historicistic, with sensibility for classic and christian norms without dogmatism or scepticism. Searching the permanent problems we try to translate the original concepts of the classic authors carefully in our time. For demonstrating our method of actualising, we choose the French classical author Montesquieu. His famous concept of division of powers is misunderstood as a "liberal" mechanism which works in itself in favour of freedom (such as Kant made work a "natural mechanism" in a people of devils in favour of their legality); in reality Montesquieu acknoledges that constitutional und organisational work cannot stabilise themselves but must be found in social character and in human virtues.

  9. Classical and Quantum-Mechanical State Reconstruction

    Science.gov (United States)

    Khanna, F. C.; Mello, P. A.; Revzen, M.

    2012-01-01

    The aim of this paper is to present the subject of state reconstruction in classical and in quantum physics, a subject that deals with the experimentally acquired information that allows the determination of the physical state of a system. Our first purpose is to explain a method for retrieving a classical state in phase space, similar to that…

  10. Tarnished Gold: Classical Music in America

    Science.gov (United States)

    Asia, Daniel

    2010-01-01

    A few articles have appeared recently regarding the subject of the health of classical music (or more broadly, the fine arts) in America. These include "Classical Music's New Golden Age," by Heather Mac Donald, in the "City Journal" and "The Decline of the Audience," by Terry Teachout, in "Commentary." These articles appeared around the time of…

  11. Classical counterexamples to Bell's inequalities

    International Nuclear Information System (INIS)

    Orlov, Yuri F.

    2002-01-01

    This paper shows that a classical system containing a conventional yes/no decision-making component can behave like a quantum system of spin measurements in many ways (although it lacks a wave function) when, in principle, there are no deterministic decision procedures to govern the decision making, and when probabilistic decision procedures consistent with the system are introduced. Most notably, the system violates Bell's inequalities. Moreover, since the system is simple and macroscopic, its similarities to quantum systems arguably provide an insight into quantum mechanics and, in particular, EPR experiments. Thus, from the qualitative correspondences, decisions↔quantum measurements and the impossibility of deterministic decision procedures↔quantum noncommutativity, we conclude that the violation of Bell's inequalities in quantum mechanics does not require the existence of an unknown nonclassical nonlocality. It can merely be a result of local noncommutativity combined with nonlocalities of the classical type. The proposed classical decision-making system is a nonquantum theoretical construct possessing complementarity features in Bohr's sense

  12. Assessing learning outcomes in middle-division classical mechanics: The Colorado Classical Mechanics and Math Methods Instrument

    Science.gov (United States)

    Caballero, Marcos D.; Doughty, Leanne; Turnbull, Anna M.; Pepper, Rachel E.; Pollock, Steven J.

    2017-06-01

    Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level classical mechanics and math methods course (CM 1) at CU Boulder, we have developed a tool to assess student learning of CM 1 concepts in the upper division. The Colorado Classical Mechanics and Math Methods Instrument (CCMI) builds on faculty consensus learning goals and systematic observations of student difficulties. The result is a 9-question open-ended post test that probes student learning in the first half of a two-semester classical mechanics and math methods sequence. In this paper, we describe the design and development of this instrument, its validation, and measurements made in classes at CU Boulder and elsewhere.

  13. Classical realizability in the CPS target language

    DEFF Research Database (Denmark)

    Frey, Jonas

    2016-01-01

    Motivated by considerations about Krivine's classical realizability, we introduce a term calculus for an intuitionistic logic with record types, which we call the CPS target language. We give a reformulation of the constructions of classical realizability in this language, using the categorical...... techniques of realizability triposes and toposes. We argue that the presentation of classical realizability in the CPS target language simplifies calculations in realizability toposes, in particular it admits a nice presentation of conjunction as intersection type which is inspired by Girard's ludics....

  14. Surfaces in classical geometries a treatment by moving frames

    CERN Document Server

    Jensen, Gary R; Nicolodi, Lorenzo

    2016-01-01

    Designed for intermediate graduate studies, this text will broaden students' core knowledge of differential geometry providing foundational material to relevant topics in classical differential geometry. The method of moving frames, a natural means for discovering and proving important results, provides the basis of treatment for topics discussed. Its application in many areas helps to connect the various geometries and to uncover many deep relationships, such as the Lawson correspondence. The nearly 300 problems and exercises range from simple applications to open problems. Exercises are embedded in the text as essential parts of the exposition. Problems are collected at the end of each chapter; solutions to select problems are given at the end of the book. Mathematica®, Matlab™, and Xfig are used to illustrate selected concepts and results. The careful selection of results serves to show the reader how to prove the most important theorems in the subject, which may become the foundation of future progress...

  15. Classical resonances and quantum scarring

    International Nuclear Information System (INIS)

    Manderfeld, Christopher

    2003-01-01

    We study the correspondence between phase-space localization of quantum (quasi-)energy eigenstates and classical correlation decay, given by Ruelle-Pollicott resonances of the Frobenius-Perron operator. It will be shown that scarred (quasi-)energy eigenstates are correlated: pairs of eigenstates strongly overlap in phase space (scar in same phase-space regions) if the difference of their eigenenergies is close to the phase of a leading classical resonance. Phase-space localization of quantum states will be measured by L 2 norms of their Husimi functions

  16. Functional methods underlying classical mechanics, relativity and quantum theory

    International Nuclear Information System (INIS)

    Kryukov, A

    2013-01-01

    The paper investigates the physical content of a recently proposed mathematical framework that unifies the standard formalisms of classical mechanics, relativity and quantum theory. In the framework states of a classical particle are identified with Dirac delta functions. The classical space is ''made'' of these functions and becomes a submanifold in a Hilbert space of states of the particle. The resulting embedding of the classical space into the space of states is highly non-trivial and accounts for numerous deep relations between classical and quantum physics and relativity. One of the most striking results is the proof that the normal probability distribution of position of a macroscopic particle (equivalently, position of the corresponding delta state within the classical space submanifold) yields the Born rule for transitions between arbitrary quantum states.

  17. Classical field theory

    CERN Document Server

    Franklin, Joel

    2017-01-01

    Classical field theory, which concerns the generation and interaction of fields, is a logical precursor to quantum field theory, and can be used to describe phenomena such as gravity and electromagnetism. Written for advanced undergraduates, and appropriate for graduate level classes, this book provides a comprehensive introduction to field theories, with a focus on their relativistic structural elements. Such structural notions enable a deeper understanding of Maxwell's equations, which lie at the heart of electromagnetism, and can also be applied to modern variants such as Chern–Simons and Born–Infeld. The structure of field theories and their physical predictions are illustrated with compelling examples, making this book perfect as a text in a dedicated field theory course, for self-study, or as a reference for those interested in classical field theory, advanced electromagnetism, or general relativity. Demonstrating a modern approach to model building, this text is also ideal for students of theoretic...

  18. Classical mirror symmetry

    CERN Document Server

    Jinzenji, Masao

    2018-01-01

    This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold. First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold. On the B-model side, the process of construct...

  19. Classical Diophantine equations

    CERN Document Server

    1993-01-01

    The author had initiated a revision and translation of "Classical Diophantine Equations" prior to his death. Given the rapid advances in transcendence theory and diophantine approximation over recent years, one might fear that the present work, originally published in Russian in 1982, is mostly superseded. That is not so. A certain amount of updating had been prepared by the author himself before his untimely death. Some further revision was prepared by close colleagues. The first seven chapters provide a detailed, virtually exhaustive, discussion of the theory of lower bounds for linear forms in the logarithms of algebraic numbers and its applications to obtaining upper bounds for solutions to the eponymous classical diophantine equations. The detail may seem stark--- the author fears that the reader may react much as does the tourist on first seeing the centre Pompidou; notwithstanding that, Sprind zuk maintainsa pleasant and chatty approach, full of wise and interesting remarks. His emphases well warrant, ...

  20. A triggerless digital data acquisition system for nuclear decay experiments

    Energy Technology Data Exchange (ETDEWEB)

    Agramunt, J.; Tain, J. L.; Albiol, F.; Algora, A.; Estevez, E.; Giubrone, G.; Jordan, M. D.; Molina, F.; Rubio, B.; Valencia, E. [Instituto de Fisica Corpuscular, Centro Mixto C.S.I.C. - Univ. Valencia, Apdo. Correos 22085, 46071 Valencia (Spain)

    2013-06-10

    In nuclear decay experiments an important goal of the Data Acquisition (DAQ) system is to allow the reconstruction of time correlations between signals registered in different detectors. Classically DAQ systems are based in a trigger that starts the event acquisition, and all data related with the event of that trigger are collected as one compact structure. New technologies and electronics developments offer new possibilities to nuclear experiments with the use of sampling ADC-s. This type of ADC-s is able to provide the pulse shape, height and a time stamp of the signal. This new feature (time stamp) allows new systems to run without an event trigger. Later, the event can be reconstructed using the time stamp information. In this work we present a new DAQ developed for {beta}-delayed neutron emission experiments. Due to the long moderation time of neutrons, we opted for a self-trigger DAQ based on commercial digitizers. With this DAQ a negligible acquisition dead time was achieved while keeping a maximum of event information and flexibility in time correlations.

  1. Quantum-classical correspondence for the inverted oscillator

    Science.gov (United States)

    Maamache, Mustapha; Ryeol Choi, Jeong

    2017-11-01

    While quantum-classical correspondence for a system is a very fundamental problem in modern physics, the understanding of its mechanism is often elusive, so the methods used and the results of detailed theoretical analysis have been accompanied by active debate. In this study, the differences and similarities between quantum and classical behavior for an inverted oscillator have been analyzed based on the description of a complete generalized Airy function-type quantum wave solution. The inverted oscillator model plays an important role in several branches of cosmology and particle physics. The quantum wave packet of the system is composed of many sub-packets that are localized at different positions with regular intervals between them. It is shown from illustrations of the probability density that, although the quantum trajectory of the wave propagation is somewhat different from the corresponding classical one, the difference becomes relatively small when the classical excitation is sufficiently high. We have confirmed that a quantum wave packet moving along a positive or negative direction accelerates over time like a classical wave. From these main interpretations and others in the text, we conclude that our theory exquisitely illustrates quantum and classical correspondence for the system, which is a crucial concept in quantum mechanics. Supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A1A09919503)

  2. Emergence of classical theories from quantum mechanics

    International Nuclear Information System (INIS)

    Hájícek, P

    2012-01-01

    Three problems stand in the way of deriving classical theories from quantum mechanics: those of realist interpretation, of classical properties and of quantum measurement. Recently, we have identified some tacit assumptions that lie at the roots of these problems. Thus, a realist interpretation is hindered by the assumption that the only properties of quantum systems are values of observables. If one simply postulates the properties to be objective that are uniquely defined by preparation then all difficulties disappear. As for classical properties, the wrong assumption is that there are arbitrarily sharp classical trajectories. It turns out that fuzzy classical trajectories can be obtained from quantum mechanics by taking the limit of high entropy. Finally, standard quantum mechanics implies that any registration on a quantum system is disturbed by all quantum systems of the same kind existing somewhere in the universe. If one works out systematically how quantum mechanics must be corrected so that there is no such disturbance, one finds a new interpretation of von Neumann's 'first kind of dynamics', and so a new way to a solution of the quantum measurement problem. The present paper gives a very short review of this work.

  3. Classical- and quantum mechanical Coulomb scattering

    International Nuclear Information System (INIS)

    Gratzl, W.

    1987-01-01

    Because in textbooks the quantum mechanical Coulomb scattering is either ignored or treated unsatisfactory, the present work attempts to present a physically plausible, mathematically correct but elementary treatment in a way that it can be used in textbooks and lectures on quantum mechanics. Coulomb scattering is derived as a limiting case of a screened Coulomb potential (finite range) within a time dependent quantum scattering theory. The difference in the asymptotic conditions for potentials of finite versus infinite range leads back to the classical Coulomb scattering. In the classical framework many concepts of the quantum theory can be introduced and are useful in an intuitive understanding of the quantum theory. The differences between classical and quantum scattering theory are likewise useful for didactic purposes. (qui)

  4. Stereotactic Radiosurgery for Classical Trigeminal Neuralgia

    Directory of Open Access Journals (Sweden)

    Henry Kodrat

    2016-04-01

    Full Text Available Trigeminal neuralgia is a debilitating pain syndrome with a distinct symptom mainly excruciating facial pain that tends to come and go unpredictably in sudden shock-like attacks. Medical management remains the primary treatment for classical trigeminal neuralgia. When medical therapy failed, surgery with microvascular decompression can be performed. Radiosurgery can be offered for classical trigeminal neuralgia patients who are not surgical candidate or surgery refusal and they should not in acute pain condition. Radiosurgery is widely used because of good therapeutic result and low complication rate. Weakness of this technique is a latency period, which is time required for pain relief. It usually ranges from 1 to 2 months. This review enlightens the important role of radiosurgery in the treatment of classical trigeminal neuralgia.

  5. Classical-physics applications for Finsler b space

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Joshua [Physics Department, Indiana University, Bloomington, IN 47405 (United States); Lehnert, Ralf, E-mail: ralehner@indiana.edu [Indiana University Center for Spacetime Symmetries, Bloomington, IN 47405 (United States)

    2015-06-30

    The classical propagation of certain Lorentz-violating fermions is known to be governed by geodesics of a four-dimensional pseudo-Finsler b space parametrized by a prescribed background covector field. This work identifies systems in classical physics that are governed by the three-dimensional version of Finsler b space and constructs a geodesic for a sample non-constant choice for the background covector. The existence of these classical analogues demonstrates that Finsler b spaces possess applications in conventional physics, which may yield insight into the propagation of SME fermions on curved manifolds.

  6. Optimum Onager: The Classical Mechanics of a Classical Siege Engine

    Science.gov (United States)

    Denny, Mark

    2009-01-01

    The onager is a throwing weapon of classical antiquity, familiar to both the ancient Greeks and Romans. Here we analyze the dynamics of onager operation and derive the optimum angle for launching a projectile to its maximum range. There is plenty of scope for further considerations about increasing onager range, and so by thinking about how this…

  7. Assessing learning outcomes in middle-division classical mechanics: The Colorado Classical Mechanics and Math Methods Instrument

    Directory of Open Access Journals (Sweden)

    Marcos D. Caballero

    2017-04-01

    Full Text Available Reliable and validated assessments of introductory physics have been instrumental in driving curricular and pedagogical reforms that lead to improved student learning. As part of an effort to systematically improve our sophomore-level classical mechanics and math methods course (CM 1 at CU Boulder, we have developed a tool to assess student learning of CM 1 concepts in the upper division. The Colorado Classical Mechanics and Math Methods Instrument (CCMI builds on faculty consensus learning goals and systematic observations of student difficulties. The result is a 9-question open-ended post test that probes student learning in the first half of a two-semester classical mechanics and math methods sequence. In this paper, we describe the design and development of this instrument, its validation, and measurements made in classes at CU Boulder and elsewhere.

  8. Classical limit of diagonal form factors and HHL correlators

    Energy Technology Data Exchange (ETDEWEB)

    Bajnok, Zoltan [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary); Janik, Romuald A. [Institute of Physics, Jagiellonian University,ul. Łojasiewicza 11, 30-348 Kraków (Poland)

    2017-01-16

    We propose an expression for the classical limit of diagonal form factors in which we integrate the corresponding observable over the moduli space of classical solutions. In infinite volume the integral has to be regularized by proper subtractions and we present the one, which corresponds to the classical limit of the connected diagonal form factors. In finite volume the integral is finite and can be expressed in terms of the classical infinite volume diagonal form factors and subvolumes of the moduli space. We analyze carefully the periodicity properties of the finite volume moduli space and found a classical analogue of the Bethe-Yang equations. By applying the results to the heavy-heavy-light three point functions we can express their strong coupling limit in terms of the classical limit of the sine-Gordon diagonal form factors.

  9. Derivation of the blackbody radiation spectrum from the equivalence principle in classical physics with classical electromagnetic zero-point radiation

    International Nuclear Information System (INIS)

    Boyer, T.H.

    1984-01-01

    A derivation of Planck's spectrum including zero-point radiation is given within classical physics from recent results involving the thermal effects of acceleration through classical electromagnetic zero-point radiation. A harmonic electric-dipole oscillator undergoing a uniform acceleration a through classical electromagnetic zero-point radiation responds as would the same oscillator in an inertial frame when not in zero-point radiation but in a different spectrum of random classical radiation. Since the equivalence principle tells us that the oscillator supported in a gravitational field g = -a will respond in the same way, we see that in a gravitational field we can construct a perpetual-motion machine based on this different spectrum unless the different spectrum corresponds to that of thermal equilibrium at a finite temperature. Therefore, assuming the absence of perpetual-motion machines of the first kind in a gravitational field, we conclude that the response of an oscillator accelerating through classical zero-point radiation must be that of a thermal system. This then determines the blackbody radiation spectrum in an inertial frame which turns out to be exactly Planck's spectrum including zero-point radiation

  10. Classical planning and causal implicatures

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Benotti, Luciana

    In this paper we motivate and describe a dialogue manager (called Frolog) which uses classical planning to infer causal implicatures. A causal implicature is a type of Gricean relation implicature, a highly context dependent form of inference. As we shall see, causal implicatures are important...... to generate clarification requests"; as a result we can model task-oriented dialogue as an interactive process locally structured by negotiation of the underlying task. We give several examples of Frolog-human dialog, discuss the limitations imposed by the classical planning paradigm, and indicate...

  11. On the paramagnetism of spin in the classical limit

    International Nuclear Information System (INIS)

    Hogreve, H.

    1985-12-01

    We consider particles with spin 1/2 in external electromagnetic fields. Although in many quantum mechanical situations they show a paramagnetic behaviour, within non-relativistic quantum theory a universal paramagnetic influence of spin fails to be true in general. Here we investigate the paramagnetism of spin in the framework of a classical theory. Applying previous results for the classical limit slash-h→O we obtain a classical expression corresponding to the quantum partition function of Hamiltonians with spin variables. For this classical partition function simple estimates lead to a paramagnetic inequality which demonstrates that indeed in the classical limit the spin shows a general paramagnetic behaviour. (author)

  12. Reinventing classics: the hidden design strategies of renowned chefs

    OpenAIRE

    Agogué , Marine; Hatchuel , Armand

    2015-01-01

    International audience; Reinventing classics is a well-used yet complex design pattern. Indeed, a reinterpreted classic needs to relate to the original object while simultaneously challenging the initial model and providing a new and fresh look to the well established classic. However, this design strategy remains understudied, and we aimed to contribute to the literature by addressing the lack of theoretical models for reinventing classics. Reinterpreting tradition is a key process for chefs...

  13. New derivation of quantum equations from classical stochastic arguments

    OpenAIRE

    Bergeron, H.

    2003-01-01

    In a previous article [H. Bergeron, J. Math. Phys. 42, 3983 (2001)], we presented a method to obtain a continuous transition from classical to quantum mechanics starting from the usual phase space formulation of classical mechanics. This procedure was based on a Koopman-von Neumann approach where classical equations are reformulated into a quantumlike form. In this article, we develop a different derivation of quantum equations, based on purely classical stochastic arguments, taking some elem...

  14. Associations of food stamp participation with dietary quality and obesity in children.

    Science.gov (United States)

    Leung, Cindy W; Blumenthal, Susan J; Hoffnagle, Elena E; Jensen, Helen H; Foerster, Susan B; Nestle, Marion; Cheung, Lilian W Y; Mozaffarian, Dariush; Willett, Walter C

    2013-03-01

    To determine if obesity and dietary quality in low-income children differed by participation in the Supplemental Nutrition Assistance Program (SNAP), formerly the Food Stamp Program. The study population included 5193 children aged 4 to 19 with household incomes ≤130% of the federal poverty level from the 1999-2008 NHANES. Diet was measured by using 24-hour recalls. Among low-income US children, 28% resided in households currently receiving SNAP benefits. After adjusting for sociodemographic differences, SNAP participation was not associated with a higher rate of childhood obesity (odds ratio = 1.11, 95% confidence interval [CI]: 0.71-1.74). Both SNAP participants and low-income nonparticipants were below national recommendations for whole grains, fruits, vegetables, fish, and potassium, while exceeding recommended limits for processed meat, sugar-sweetened beverages, saturated fat, and sodium. Zero percent of low-income children met at least 7 of 10 dietary recommendations. After multivariate adjustment, compared with nonparticipants, SNAP participants consumed 43% more sugar-sweetened beverages (95% CI: 8%-89%), 47% more high-fat dairy (95% CI: 7%, 101%), and 44% more processed meats (95% CI: 9%-91%), but 19% fewer nuts, seeds, and legumes (95% CI: -35% to 0%). In part due to these differences, intakes of calcium, iron, and folate were significantly higher among SNAP participants. Significant differences by SNAP participation were not evident in total energy, macronutrients, Healthy Eating Index 2005 scores, or Alternate Healthy Eating Index scores. The diets of low-income children are far from meeting national dietary recommendations. Policy changes should be considered to restructure SNAP to improve children's health.

  15. Linguistic Investigations into Ellipsis in Classical Sanskrit

    Science.gov (United States)

    Gillon, Brendan S.

    Ellipsis is a common phenomenon of Classical Sanskrit prose. No inventory of the forms of ellipsis in Classical Sanskrit has been made. This paper presents an inventory, based both on a systematic investigation of one text and on examples based on sundry reading.

  16. Quantum vertex model for reversible classical computing.

    Science.gov (United States)

    Chamon, C; Mucciolo, E R; Ruckenstein, A E; Yang, Z-C

    2017-05-12

    Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.

  17. Classical Curriculum Design

    Science.gov (United States)

    George, Judith W.

    2009-01-01

    The article identifies some key findings in pedagogical research over recent decades, placing them within a framework of logical curriculum development and current practice in quality assurance and enhancement. Throughout, the ideas and comments are related to the practice of teaching classics in university. (Contains 1 figure and 3 notes.)

  18. Classical and non-classical effective medium theories: New perspectives

    International Nuclear Information System (INIS)

    Tsukerman, Igor

    2017-01-01

    Highlights: • Advanced non-asymptotic and nonlocal homogenization theories of metamaterials, valid in electrostatics and electrodynamics. • Classical theories (Clausius–Mossotti, Lorenz–Lorentz, Maxwell Garnett) fit well into the proposed framework. • Nonlocal effects can be included in the model, making order-of-magnitude accuracy improvements possible. • A challenging problem for future research is to determine what effective tensors are attainable for given constituents of a metamaterial. - Abstract: Future research in electrodynamics of periodic electromagnetic composites (metamaterials) can be expected to produce sophisticated homogenization theories valid for any composition and size of the lattice cell. The paper outlines a promising path in that direction, leading to non-asymptotic and nonlocal homogenization models, and highlights aspects of homogenization that are often overlooked: the finite size of the sample and the role of interface boundaries. Classical theories (e.g. Clausius–Mossotti, Maxwell Garnett), while originally derived from a very different set of ideas, fit well into the proposed framework. Nonlocal effects can be included in the model, making an order-of-magnitude accuracy improvements possible. One future challenge is to determine what effective parameters can or cannot be obtained for a given set of constituents of a metamaterial lattice cell, thereby delineating the possible from the impossible in metamaterial design.

  19. Classical and non-classical effective medium theories: New perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Tsukerman, Igor, E-mail: igor@uakron.edu

    2017-05-18

    Highlights: • Advanced non-asymptotic and nonlocal homogenization theories of metamaterials, valid in electrostatics and electrodynamics. • Classical theories (Clausius–Mossotti, Lorenz–Lorentz, Maxwell Garnett) fit well into the proposed framework. • Nonlocal effects can be included in the model, making order-of-magnitude accuracy improvements possible. • A challenging problem for future research is to determine what effective tensors are attainable for given constituents of a metamaterial. - Abstract: Future research in electrodynamics of periodic electromagnetic composites (metamaterials) can be expected to produce sophisticated homogenization theories valid for any composition and size of the lattice cell. The paper outlines a promising path in that direction, leading to non-asymptotic and nonlocal homogenization models, and highlights aspects of homogenization that are often overlooked: the finite size of the sample and the role of interface boundaries. Classical theories (e.g. Clausius–Mossotti, Maxwell Garnett), while originally derived from a very different set of ideas, fit well into the proposed framework. Nonlocal effects can be included in the model, making an order-of-magnitude accuracy improvements possible. One future challenge is to determine what effective parameters can or cannot be obtained for a given set of constituents of a metamaterial lattice cell, thereby delineating the possible from the impossible in metamaterial design.

  20. Colors of Inner Disk Classical Kuiper Belt Objects

    Science.gov (United States)

    Romanishin, W.; Tegler, S. C.; Consolmagno, G. J.

    2010-07-01

    We present new optical broadband colors, obtained with the Keck 1 and Vatican Advanced Technology telescopes, for six objects in the inner classical Kuiper Belt. Objects in the inner classical Kuiper Belt are of interest as they may represent the surviving members of the primordial Kuiper Belt that formed interior to the current position of the 3:2 resonance with Neptune, the current position of the plutinos, or, alternatively, they may be objects formed at a different heliocentric distance that were then moved to their present locations. The six new colors, combined with four previously published, show that the ten inner belt objects with known colors form a neutral clump and a reddish clump in B-R color. Nonparametric statistical tests show no significant difference between the B-R color distribution of the inner disk objects compared to the color distributions of Centaurs, plutinos, or scattered disk objects. However, the B-R color distribution of the inner classical Kuiper Belt Objects does differ significantly from the distribution of colors in the cold (low inclination) main classical Kuiper Belt. The cold main classical objects are predominately red, while the inner classical belt objects are a mixture of neutral and red. The color difference may reveal the existence of a gradient in the composition and/or surface processing history in the primordial Kuiper Belt, or indicate that the inner disk objects are not dynamically analogous to the cold main classical belt objects.