WorldWideScience

Sample records for cisplatin-induced acute kidney

  1. Suramin protects from cisplatin-induced acute kidney injury

    Science.gov (United States)

    Dupre, Tess V.; Doll, Mark A.; Shah, Parag P.; Sharp, Cierra N.; Kiefer, Alex; Scherzer, Michael T.; Saurabh, Kumar; Saforo, Doug; Siow, Deanna; Casson, Lavona; Arteel, Gavin E.; Jenson, Alfred Bennett; Megyesi, Judit; Schnellmann, Rick G.; Beverly, Levi J.

    2015-01-01

    Cisplatin, a commonly used cancer chemotherapeutic, has a dose-limiting side effect of nephrotoxicity. Approximately 30% of patients administered cisplatin suffer from kidney injury, and there are limited treatment options for the treatment of cisplatin-induced kidney injury. Suramin, which is Federal Drug Administration-approved for the treatment of trypanosomiasis, improves kidney function after various forms of kidney injury in rodent models. We hypothesized that suramin would attenuate cisplatin-induced kidney injury. Suramin treatment before cisplatin administration reduced cisplatin-induced decreases in kidney function and injury. Furthermore, suramin attenuated cisplatin-induced expression of inflammatory cytokines and chemokines, endoplasmic reticulum stress, and apoptosis in the kidney cortex. Treatment of mice with suramin 24 h after cisplatin also improved kidney function, suggesting that the mechanism of protection is not by inhibition of tubular cisplatin uptake or its metabolism to nephrotoxic species. If suramin is to be used in the context of cancer, then it cannot prevent cisplatin-induced cytotoxicity of cancer cells. Suramin did not alter the dose-response curve of cisplatin in lung adenocarcinoma cells in vitro. In addition, suramin pretreatment of mice harboring lung adenocarcinomas did not alter the initial cytotoxic effects of cisplatin (DNA damage and apoptosis) on tumor cells. These results provide evidence that suramin has potential as a renoprotective agent for the treatment/prevention of cisplatin-induced acute kidney injury and justify future long-term preclinical studies using cotreatment of suramin and cisplatin in mouse models of cancer. PMID:26661653

  2. Protective Activity of Dendropanax Morbifera Against Cisplatin-Induced Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Eun-Sun Kim

    2015-01-01

    Full Text Available Background/Aims: Drug-induced acute kidney injury (AKI has been a severe threat to hospitalized patients, raising the urgent needs to develop strategies to reduce AKI. We investigated the protective activity of Dendropanax morbifera (DP, a medicinal plant which has been widely used to treat infectious and pain diseases, on acute kidney injury (AKI using cisplatin-induced nephropathic models. Methods: Both in vitro renal tubular cells (NRK-52E and in vivo rat models were used to demonstrate the nephroprotective effect of DP. Results: Methanolic extract from DP significantly reduced cisplatin-induced toxicity in renal tubular cells. Through successive liquid extraction, the extract of DP was separated into n-hexane, CHCl3, EtOAc, n-BuOH, and H2O fractions. Among these, the CHCl3 fraction (DPCF was found to be most potent. The protective activity of DPCF was found to be mediated through anti-oxidant, mitochondrial protective, and anti-apoptotic activities. In in vivo rat models of AKI, treatment with DPCF significantly reversed the cisplatin-induced increase in blood urea nitrogen and serum creatinine and histopathologic damage, recovered the level of anti-oxidant enzymes, and inhibited renal apoptosis. Conclusion: We demonstrated that DP extracts decreased cisplatin-induced renal toxicity, indicating its potential to ameliorate drug-associated acute kidney damage.

  3. Protocatechuic aldehyde attenuates cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation

    Directory of Open Access Journals (Sweden)

    Li Gao

    2016-12-01

    Full Text Available Cisplatin is a classic chemotherapeutic agent widely used to treat different types of cancers including ovarian, head and neck, testicular and uterine cervical carcinomas. However, cisplatin induces acute kidney injury by directly triggering an excessive inflammatory response, oxidative stress and programmed cell death of renal tubular epithelial cells. All of which lead to higher mortality rates in patients. In this study we examined the protective effect of protocatechuic aldehyde (PA in vitro in cisplatin-treated tubular epithelial cells and in vivo in cisplatin nephropathy. PA is a monomer of Traditional Chinese Medicine isolated from the root of S. miltiorrhiza. Results show that PA prevented cisplatin-induced decline of renal function and histological damage, which was confirmed by attenuation of KIM1 in both mRNA and protein levels. Moreover, PA reduced renal inflammation by suppressing oxidative stress and programmed cell death in response to cisplatin, which was further evidenced by in vitro data. Of note, PA suppressed NAPDH oxidases, including Nox2 and Nox4, in a dosage-dependent manner. Moreover, silencing Nox4, but not Nox2, removed the inhibitory effect of PA on cisplatin-induced renal injury, indicating that Nox4 may play a pivotal role in mediating the protective effect of PA in cisplatin-induced acute kidney injury. Collectively, our data indicate that PA largely blocked cisplatin-induced acute kidney injury by suppressing Nox-mediated oxidative stress and renal inflammation without compromising anti-tumor activity of cisplatin. These findings suggest that PA and its derivatives may serve as potential protective agents for cancer patients with cisplatin treatment.

  4. Developing better mouse models to study cisplatin-induced kidney injury.

    Science.gov (United States)

    Sharp, Cierra N; Siskind, Leah J

    2017-10-01

    Cisplatin is a potent chemotherapeutic used for the treatment of many types of cancer. However, its dose-limiting side effect is nephrotoxicity leading to acute kidney injury (AKI). Patients who develop AKI have an increased risk of mortality and are more likely to develop chronic kidney disease (CKD). Unfortunately, there are no therapeutic interventions for the treatment of AKI. It has been suggested that the lack of therapies is due in part to the fact that the established mouse model used to study cisplatin-induced AKI does not recapitulate the cisplatin dosing regimen patients receive. In recent years, work has been done to develop more clinically relevant models of cisplatin-induced kidney injury, with much work focusing on incorporation of multiple low doses of cisplatin administered over a period of weeks. These models can be used to recapitulate the development of CKD after AKI and, by doing so, increase the likelihood of identifying novel therapeutic targets for the treatment of cisplatin-induced kidney injury. Copyright © 2017 the American Physiological Society.

  5. Estrogen-related receptor α is essential for maintaining mitochondrial integrity in cisplatin-induced acute kidney injury.

    Science.gov (United States)

    Tsushida, Keigo; Tanabe, Katsuyuki; Masuda, Kana; Tanimura, Satoshi; Miyake, Hiromasa; Arata, Yuka; Sugiyama, Hitoshi; Wada, Jun

    2018-04-15

    Acute kidney injury (AKI) has been associated with not only higher in-hospital mortality but also the subsequent development of chronic kidney disease (CKD). Recent evidence has suggested the involvement of mitochondrial dysfunction and impaired dynamics in the pathogenesis of AKI. Estrogen-related receptor α (ERRα) is an orphan nuclear receptor that acts as a transcription factor to regulate the transcription of genes required for mitochondrial biogenesis and oxidative phosphorylation. In the present study, we examined the effects of ERRα deficiency on the progression of AKI induced by cisplatin. Male C57BL/6 J wild-type and ERRα -/- mice received a single intraperitoneal injection of 20 mg/kg cisplatin. Seventy-two hours after the injection, kidney function and morphology were evaluated. ERRα expression was observed in renal tubules, and cisplatin inhibited its translocation into nuclei. ERRα deficiency exacerbated cisplatin-induced renal dysfunction and tubular injury, as well as oxidative stress and apoptosis. ERRα -/- mice kidneys revealed lower mitochondrial DNA content and swollen mitochondria with reduced cristae. In addition, these mice had lower expression of the mitochondrial fusion protein mitofusin-2. The cisplatin-induced decrease in mitochondrial DNA and altered mitochondrial structure were more severe in ERRα -/- mice. In cultured mouse proximal tubular epithelial cells, the ERRα inverse agonist XCT-790 significantly inhibited mitofusin-2 expression and induced mitochondrial fragmentation. Taken together, our findings suggest the involvement of ERRα in the progression of cisplatin-induced AKI probably through impaired mitochondrial dynamics. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Ameliorative effects of pine bark extract on cisplatin-induced acute kidney injury in rats.

    Science.gov (United States)

    Lee, In-Chul; Ko, Je-Won; Park, Sung-Hyeuk; Shin, Na-Rae; Shin, In-Sik; Kim, Yun-Bae; Kim, Jong-Choon

    2017-11-01

    This study investigated the dose-response effects of pine bark extract (PBE, pycnogenol ® ) on oxidative stress-mediated apoptotic changes induced by cisplatin (Csp) in rats. The ameliorating potential of PBE was evaluated after orally administering PBE at doses of 10 or 20 mg/kg for 10 days. Acute kidney injury was induced by a single intraperitoneal injection of Csp at 7 mg/kg on test day 5. Csp treatment caused acute kidney injury manifested by elevated levels of serum blood urea nitrogen (BUN) and creatinine (CRE) with corresponding histopathological changes, including degeneration of tubular epithelial cells, hyaline casts in the tubular lumen, and inflammatory cell infiltration (interstitial nephritis). Csp also induced significant apoptotic changes in renal tubular cells. In addition, Csp treatment induced high levels of oxidative stress, as evidenced by an increased level of malondialdehyde, depletion of the reduced glutathione (GSH) content, and decreased activities of glutathione S-transferase, superoxide dismutase, and catalase in kidney tissues. On the contrary, PBE treatment lowered BUN and CRE levels and effectively attenuated histopathological alterations and apoptotic changes induced by Csp. Additionally, treatment with PBE suppressed lipid peroxidation, prevented depletion of GSH, and enhanced activities of the antioxidant enzymes in kidney tissue. These results indicate that PBE has a cytoprotective effect against oxidative stress-mediated apoptotic changes caused by Csp in the rat kidney, which may be attributed to both increase of antioxidant enzyme activities and inhibition of lipid peroxidation.

  7. Analysis of spatiotemporal metabolomic dynamics for sensitively monitoring biological alterations in cisplatin-induced acute kidney injury.

    Science.gov (United States)

    Irie, Miho; Hayakawa, Eisuke; Fujimura, Yoshinori; Honda, Youhei; Setoyama, Daiki; Wariishi, Hiroyuki; Hyodo, Fuminori; Miura, Daisuke

    2018-01-29

    Clinical application of the major anticancer drug, cisplatin, is limited by severe side effects, especially acute kidney injury (AKI) caused by nephrotoxicity. The detailed metabolic mechanism is still largely unknown. Here, we used an integrated technique combining mass spectrometry imaging (MSI) and liquid chromatography-mass spectrometry (LC-MS) to visualize the diverse spatiotemporal metabolic dynamics in the mouse kidney after cisplatin dosing. Biological responses to cisplatin was more sensitively detected within 24 h as a metabolic alteration, which is much earlier than possible with the conventional clinical chemistry method of blood urea nitrogen (BUN) measurement. Region-specific changes (e.g., medulla and cortex) in metabolites related to DNA damage and energy generation were observed over the 72-h exposure period. Therefore, this metabolomics approach may become a novel strategy for elucidating early renal responses to cisplatin, prior to the detection of kidney damage evaluated by conventional method. Copyright © 2018. Published by Elsevier Inc.

  8. Targeting Oct2 and P53: Formononetin prevents cisplatin-induced acute kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Di [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Wang, Chuangyuan [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian, Liaoning (China); Duan, Yingjie [General hospital of Fuxin mining (Group) Co., Ltd (China); Meng, Qiang; Liu, Zhihao; Huo, Xiaokui; Sun, Huijun; Ma, Xiaodong [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian, Liaoning (China); Liu, Kexin, E-mail: kexinliu@dlmedu.edu.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian, Liaoning (China)

    2017-07-01

    Nephrotoxicity is one of major side effects of cisplatin in chemotherapy. Therefore, there is an urgent medical need to develop drugs that may protect kidney from toxicity. In previous study, we found that it showed the protective effects of formononetin against apoptosis by upregulating Nrf2. In this study, we investigated the renoprotective effect of formononetin against cisplatin-induced AKI and tried to elucidate the possible mechanisms. The amelioration of renal function, histopathological changes, and apoptosis in tubular cells was observed after formononetin treatment. Formononetin decreased expression of organic cation transporter 2 (Oct2) and increased the expressions of multidrug resistance-associated proteins (Mrps), which might result in a decrease accumulation of cisplatin in tubular cells after AKI. 5-Bromo-2-deoxyuridine (BrdU) and Ki-67 staining assay indicated that formononetin could promote the renal tubular cells proliferation after cisplatin nephrotoxicity. Moreover, formononetin regulated cyclins and pro-apoptotic proteins to involve the regulation of cell cycle. Furthermore, formononetin decreased p53 expression via promoting the overexpression of murine double minute 2 (MDM2) and MDMX. Taken together, formononetin provided protective effects by promoting proliferation of surviving renal tubular cells and inhibiting apoptosis after cisplatin-induced AKI. - Highlights: • Formononetin ameliorated the cisplatin-induced AKI. • Oct2 were reduced by formononetin. • Protective effect of formononetin was closely related to the reduction of cisplatin.

  9. Targeting Oct2 and P53: Formononetin prevents cisplatin-induced acute kidney injury

    International Nuclear Information System (INIS)

    Huang, Di; Wang, Chuangyuan; Duan, Yingjie; Meng, Qiang; Liu, Zhihao; Huo, Xiaokui; Sun, Huijun; Ma, Xiaodong; Liu, Kexin

    2017-01-01

    Nephrotoxicity is one of major side effects of cisplatin in chemotherapy. Therefore, there is an urgent medical need to develop drugs that may protect kidney from toxicity. In previous study, we found that it showed the protective effects of formononetin against apoptosis by upregulating Nrf2. In this study, we investigated the renoprotective effect of formononetin against cisplatin-induced AKI and tried to elucidate the possible mechanisms. The amelioration of renal function, histopathological changes, and apoptosis in tubular cells was observed after formononetin treatment. Formononetin decreased expression of organic cation transporter 2 (Oct2) and increased the expressions of multidrug resistance-associated proteins (Mrps), which might result in a decrease accumulation of cisplatin in tubular cells after AKI. 5-Bromo-2-deoxyuridine (BrdU) and Ki-67 staining assay indicated that formononetin could promote the renal tubular cells proliferation after cisplatin nephrotoxicity. Moreover, formononetin regulated cyclins and pro-apoptotic proteins to involve the regulation of cell cycle. Furthermore, formononetin decreased p53 expression via promoting the overexpression of murine double minute 2 (MDM2) and MDMX. Taken together, formononetin provided protective effects by promoting proliferation of surviving renal tubular cells and inhibiting apoptosis after cisplatin-induced AKI. - Highlights: • Formononetin ameliorated the cisplatin-induced AKI. • Oct2 were reduced by formononetin. • Protective effect of formononetin was closely related to the reduction of cisplatin.

  10. Neural regulation of the kidney function in rats with cisplatin induced renal failure

    Science.gov (United States)

    Goulding, Niamh E.; Johns, Edward J.

    2015-01-01

    Aim: Chronic kidney disease (CKD) is often associated with a disturbed cardiovascular homeostasis. This investigation explored the role of the renal innervation in mediating deranged baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory function in cisplatin-induced renal failure. Methods: Rats were either intact or bilaterally renally denervated 4 days prior to receiving cisplatin (5 mg/kg i.p.) and entered a chronic metabolic study for 8 days. At day 8, other groups of rats were prepared for acute measurement of RSNA or renal function with either intact or denervated kidneys. Results: Following the cisplatin challenge, creatinine clearance was 50% lower while fractional sodium excretion and renal cortical and medullary TGF-β1 concentrations were 3–4 fold higher in both intact and renally denervated rats compared to control rats. In cisplatin-treated rats, the maximal gain of the high-pressure baroreflex curve was only 20% that of control rats, but following renal denervation not different from that of renally denervated control rats. Volume expansion reduced RSNA by 50% in control and in cisplatin-treated rats but only following bilateral renal denervation. The volume expansion mediated natriuresis/diuresis was absent in the cisplatin-treated rats but was normalized following renal denervation. Conclusions: Cisplatin-induced renal injury impaired renal function and caused a sympatho-excitation with blunting of high and low pressure baroreflex regulation of RSNA, which was dependent on the renal innervation. It is suggested that in man with CKD there is a dysregulation of the neural control of the kidney mediated by its sensory innervation. PMID:26175693

  11. Reduced kidney lipoprotein lipase and renal tubule triglyceride accumulation in cisplatin-mediated acute kidney injury

    NARCIS (Netherlands)

    Li, Shenyang; Nagothu, K.; Ranganathan, G.; Ali, S.M.; Shank, B.; Gokden, N.; Ayyadevara, S.; Megysi, J.; Olivecrona, G.; Chugh, S.S.; Kersten, A.H.; Portilla, D.

    2012-01-01

    Peroxisome proliferator-activated receptor-a (PPARa) activation attenuates cisplatin (CP)-mediated acute kidney injury by increasing fatty acid oxidation, but mechanisms leading to reduced renal triglyceride (TG) accumulation could also contribute. Here, we investigated the effects of PPARa and CP

  12. Activation of endoplasmic reticulum stress response by enhanced polyamine catabolism is important in the mediation of cisplatin-induced acute kidney injury.

    Directory of Open Access Journals (Sweden)

    Kamyar Zahedi

    Full Text Available Cisplatin-induced nephrotoxicity limits its use in many cancer patients. The expression of enzymes involved in polyamine catabolism, spermidine/spermine N1-acetyltransferase (SSAT and spermine oxidase (SMOX increase in the kidneys of mice treated with cisplatin. We hypothesized that enhanced polyamine catabolism contributes to tissue damage in cisplatin acute kidney injury (AKI. Using gene knockout and chemical inhibitors, the role of polyamine catabolism in cisplatin AKI was examined. Deficiency of SSAT, SMOX or neutralization of the toxic products of polyamine degradation, H2O2 and aminopropanal, significantly diminished the severity of cisplatin AKI. In vitro studies demonstrated that the induction of SSAT and elevated polyamine catabolism in cells increases the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α and enhances the expression of binding immunoglobulin protein BiP/GRP78 and CCAAT-enhancer-binding protein homologous protein (CHOP/GADD153. The increased expression of these endoplasmic reticulum stress response (ERSR markers was accompanied by the activation of caspase-3. These results suggest that enhanced polyamine degradation in cisplatin AKI may lead to tubular damage through the induction of ERSR and the consequent onset of apoptosis. In support of the above, we show that the ablation of the SSAT or SMOX gene, as well as the neutralization of polyamine catabolism products modulate the onset of ERSR (e.g. lower BiP and CHOP and apoptosis (e.g. reduced activated caspase-3. These studies indicate that enhanced polyamine catabolism and its toxic products are important mediators of ERSR and critical to the pathogenesis of cisplatin AKI.

  13. Assessment of cisplatin-induced kidney injury using an integrated rodent platform

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yafei [Global Safety Assessment, AstraZeneca R and D Waltham, MA 02451 (United States); Brott, David [Patient Safety, AstraZeneca R and D Wilmington, DE 19850 (United States); Luo, Wenli [Discovery Statistics, AstraZeneca R and D Waltham, MA 02451 (United States); Gangl, Eric [DMPK, AstraZeneca R and D Waltham, MA 02451 (United States); Kamendi, Harriet; Barthlow, Herbert; Lengel, David; Fikes, James; Kinter, Lewis [Global Safety Assessment, AstraZeneca R and D Waltham, MA 02451 (United States); Valentin, Jean-Pierre [Global Safety Assessment, AstraZeneca R and D Alderley Park, Macclesfield, SK10 4TG (United Kingdom); Bialecki, Russell, E-mail: russell.bialecki@astrazeneca.com [Global Safety Assessment, AstraZeneca R and D Waltham, MA 02451 (United States)

    2013-05-01

    Current diagnosis of drug-induced kidney injury (DIKI) primarily relies on detection of elevated plasma creatinine (Cr) or blood urea nitrogen (BUN) levels; however, both are indices of overall kidney function and changes are delayed with respect to onset of nephron injury. Our aim was to investigate whether early changes in new urinary DIKI biomarkers predict plasma Cr, BUN, renal hemodynamic and kidney morphological changes associated with kidney injury following a single dose of cisplatin (CDDP) using an integrated platform in rodent. Conscious surgically prepared male Han Wistar rats were given a single intraperitoneal dose of CDDP (15 mg/kg). Glomerular filtration rate (GFR), effective renal plasma flow (ERPF), urinalysis, DIKI biomarkers, CDDP pharmacokinetics, blood pressures, heart rate, body temperature and electroencephalogram (EEG) were measured in the same vehicle- or CDDP-treated animals over 72 h. Plasma chemistry (including Cr and BUN) and renal tissues were examined at study termination. Cisplatin caused progressive reductions of GFR, ERPF, heart rate and body temperature from day 1 (0–24 h). DIKI biomarkers including alpha-glutathione S-transferase (α-GST) significantly increased as early as 6 h post-dose, which preceded significant declines of GFR and ERPF (24 h), increased plasma Cr and BUN (72 h), and associated with renal acute tubular necrosis at 72 h post-dose. The present study adds to the current understanding of CDDP action by demonstrating that early increases in urinary excretion of α-GST predict DIKI risk following acute exposure to CDDP in rats, before changes in traditional DIKI markers are evident. - Highlights: ► CDDP causes direct damage to kidneys without affecting EEG or CVS function. ► α-GST and albumin detect DIKI earlier when compared with traditional indices. ► Integrated “cardiovascular-EEG-renal” model to better understand DIKI mechanisms ► Promotes 3R's principles in drug discovery and development.

  14. Assessment of cisplatin-induced kidney injury using an integrated rodent platform

    International Nuclear Information System (INIS)

    Chen, Yafei; Brott, David; Luo, Wenli; Gangl, Eric; Kamendi, Harriet; Barthlow, Herbert; Lengel, David; Fikes, James; Kinter, Lewis; Valentin, Jean-Pierre; Bialecki, Russell

    2013-01-01

    Current diagnosis of drug-induced kidney injury (DIKI) primarily relies on detection of elevated plasma creatinine (Cr) or blood urea nitrogen (BUN) levels; however, both are indices of overall kidney function and changes are delayed with respect to onset of nephron injury. Our aim was to investigate whether early changes in new urinary DIKI biomarkers predict plasma Cr, BUN, renal hemodynamic and kidney morphological changes associated with kidney injury following a single dose of cisplatin (CDDP) using an integrated platform in rodent. Conscious surgically prepared male Han Wistar rats were given a single intraperitoneal dose of CDDP (15 mg/kg). Glomerular filtration rate (GFR), effective renal plasma flow (ERPF), urinalysis, DIKI biomarkers, CDDP pharmacokinetics, blood pressures, heart rate, body temperature and electroencephalogram (EEG) were measured in the same vehicle- or CDDP-treated animals over 72 h. Plasma chemistry (including Cr and BUN) and renal tissues were examined at study termination. Cisplatin caused progressive reductions of GFR, ERPF, heart rate and body temperature from day 1 (0–24 h). DIKI biomarkers including alpha-glutathione S-transferase (α-GST) significantly increased as early as 6 h post-dose, which preceded significant declines of GFR and ERPF (24 h), increased plasma Cr and BUN (72 h), and associated with renal acute tubular necrosis at 72 h post-dose. The present study adds to the current understanding of CDDP action by demonstrating that early increases in urinary excretion of α-GST predict DIKI risk following acute exposure to CDDP in rats, before changes in traditional DIKI markers are evident. - Highlights: ► CDDP causes direct damage to kidneys without affecting EEG or CVS function. ► α-GST and albumin detect DIKI earlier when compared with traditional indices. ► Integrated “cardiovascular-EEG-renal” model to better understand DIKI mechanisms ► Promotes 3R's principles in drug discovery and development

  15. MicroRNA-140-5p attenuated oxidative stress in Cisplatin induced acute kidney injury by activating Nrf2/ARE pathway through a Keap1-independent mechanism.

    Science.gov (United States)

    Liao, Weitang; Fu, Zongjie; Zou, Yanfang; Wen, Dan; Ma, Hongkun; Zhou, Fangfang; Chen, Yongxi; Zhang, Mingjun; Zhang, Wen

    2017-11-15

    Oxidative stress was predominantly involved in the pathogenesis of acute kidney injury (AKI). Recent studies had reported the protective role of specific microRNAs (miRNAs) against oxidative stress. Hence, we investigated the levels of miR140-5p and its functional role in the pathogenesis of Cisplatin induced AKI. A mice Cisplatin induced-AKI model was established. We found that miR-140-5p expression was markedly increased in mice kidney. Bioinformatics analysis revealed nuclear factor erythroid 2-related factor (Nrf2) was a potential target of miR-140-5p, We demonstrated that miR-140-5p did not affect Kelch-like ECH-associated protein 1 (Keap1) level but directly targeted the 3'-UTR of Nrf2 mRNA and played a positive role in the regulation of Nrf2 expression which was confirmed by luciferase activity assay and western blot. What was more, consistent with miR140-5p expression, the mRNA and protein levels of Nrf2, as well as antioxidant response element (ARE)-driven genes Heme Oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase l (NQO1) were significantly increased in mice kidney tissues. In vitro study, Enforced expression of miR-140-5p in HK2 cells significantly attenuated oxidative stress by decreasing ROS level and increasing the expression of manganese superoxide dismutase (MnSOD). Simultaneously, miR-140-5p decreased lactate dehydrogenase (LDH) leakage and improved cell vitality in HK2 cells under Cisplatin-induced oxidative stress. However, HK2 cells transfected with a siRNA targeting Nrf2 abrogated the protective effects of miR-140-5p against oxidative stress. These results indicated that miR-140-5p might exert its anti-oxidative stress function via targeting Nrf2. Our findings showed the novel transcriptional role of miR140-5p in the expression of Nrf2 and miR-140-5p protected against Cisplatin induced oxidative stress by activating Nrf2-dependent antioxidant pathway, providing a potentially therapeutic target in acute kidney injury. Copyright © 2017

  16. Role of Bone Marrow Derived Mesenchymal Stem Cells and the Protective Effect of Silymarin in Cisplatin-Induced Acute Renal Failure in Rats.

    Science.gov (United States)

    Ibrahim, Mohamed El-Tantawy; Bana, Eman El; El-Kerdasy, Hanan I

    2018-01-01

    Cisplatin is a highly effective antitumor agent whose clinical application is limited by its nephrotoxicity, which is associated with high mortality and morbidity rates. We aimed to study the protective role of silymarin and mesenchymal stem cells as a therapeutic tool of cisplatin nephrotoxicity. We injected rats with cisplatin in a dose of 5mg/kg body weight for 5 days to induce acute renal failure (ARF). Silymarin was administrated 6 hours before cisplatin injection and mesenchymal stem cells were injected 24 hours after cisplatin-induced ARF. We assessed the ARF biochemically by elevation of kidney function tests and histopathologically by an alteration of the histological architecture of the renal cortex in the form of shrinkage of glomeruli, lobulated tufts and glomerular hypertrophy with narrowing capsular space. The tubules showed extensive tubular degeneration with cellular hyaline materials and debris in the lumen of the renal tubules. The renal blood vessels appeared sclerotic with marked thickened walls. When silymarin was given in different doses before cisplatin, it decreased the toxic effect of cisplatin in the kidney but sclerotic blood vessels remained. Injection of mesenchymal stem cells in rats with cisplatin-induced ARF improved the histopathological effects of cisplatin in renal tissues and kidney function tests were significantly improved. There was a significant improvement in kidney function tests and renal histopathology by using silymarin as protective mechanism in cisplatin-induced ARF. Administration of mesenchymal stem cells denoted a more remarkable therapeutic effect in ARF. Copyright © 2018 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  17. Dexamethasone Modifies Cystatin C-Based Diagnosis of Acute Kidney Injury During Cisplatin-Based Chemotherapy

    Directory of Open Access Journals (Sweden)

    Timothy J. Pianta

    2017-03-01

    Full Text Available Background/Aims: Plasma cystatin C (pCysC may be superior to serum creatinine (sCr as a surrogate of GFR. However, the performance of pCysC for diagnosing acute kidney injury (AKI after cisplatin-based chemotherapy is potentially affected by accompanying corticosteroid anti-emetic therapy and hydration. Methods: In a prospective observational study pCysC, sCr, urinary kidney injury molecule-1 (KIM-1, and urinary clusterin were measured over 2 weeks in 27 patients given first-cycle chemotherapy. The same variables were measured over 2 weeks in Sprague–Dawley rats given a single intraperitoneal injection of dexamethasone, cisplatin, or both, and in controls. Results: In patients, pCysC increases were greater than sCr 41% vs. 16%, mean paired difference 25% (95% CI: 16–34%], relative increases were ≥ 50% in 9 patients (35% for pCysC compared with 2 (8% for sCr (p = 0.04 and increases in sCr were accompanied by increased KIM-1 and clusterin excretion, but increases in pCysC alone were not. In rats, dexamethasone administration produced dose-dependent increases in pCysC (and augmented cisplatin-induced increases in pCysC, but did not augment histological injury, increases in sCr, or KIM-1 and clusterin excretion. Conclusions: In the presence of dexamethasone, elevation of pCysC does not reliably diagnose AKI after cisplatin-based chemotherapy.

  18. Paracrine Activation of the Wnt/β-Catenin Pathway by Bone Marrow Stem Cell Attenuates Cisplatin-Induced Kidney Injury

    Directory of Open Access Journals (Sweden)

    Xiaoyan Jiao

    2017-12-01

    Full Text Available Background/Aims: Cisplatin-induced acute kidney injury (AKI involves damage to tubular cells via excess reactive oxygen species (ROS generation. Stem cell-based therapies have shown great promise in AKI treatment. In this study, we aimed to assess the protective effect and mechanism of bone marrow mesenchymal stem cell (BMSC-derived conditioned medium (CM against cisplatin-induced AKI. Methods: In vitro, NRK-52E cells were incubated with cisplatin in the presence or absence of CM, followed by the assessment of cell viability, apoptosis and cell cycle distribution. Then, ICG-001 and IWR-1 were used to inhibit the wnt/β-catenin pathway. Furthermore, intracellular and mitochondrial ROS levels were evaluated using DCFH-DA and MitoSOX, respectively. In vivo, after cisplatin injection, rats were intravenously injected with CM or BMSCs. Sera and kidney tissues were collected on day 3 after cisplatin injection to evaluate changes in renal function and histology. Western blotting and qRT-PCR were employed to determine the expression of wnt/β-catenin pathway-related genes and proteins. Immunohistochemical staining was used to evaluate tubular β-catenin expression in kidney biopsy from AKI patients. Results: CM protected NRK-52E cells from cisplatin-induced injury by restoring the wnt4/β-catenin pathway. In response to ICG-001 and IWR-1, the protective effect of CM was attenuated, characterized by a decrease in cell proliferation and an increase in cell apoptosis and intracellular and mitochondrial ROS levels. Knockdown of β-catenin using siRNAs also suppressed the mitochondrial biogenesis regulators PGC-1α, TFAM and NRF-1. In the rat model, CM significantly alleviated renal function and histology associated with tubular injury and upregulated wnt4 and β-catenin. However, the renoprotective effect of CM was blocked by ICG-001, characterized by exacerbated renal function, suppressed PGC-1α expression and increased mitochondrial ROS. Clinical data

  19. Paracrine Activation of the Wnt/β-Catenin Pathway by Bone Marrow Stem Cell Attenuates Cisplatin-Induced Kidney Injury.

    Science.gov (United States)

    Jiao, Xiaoyan; Cai, Jieru; Yu, Xiaofang; Ding, Xiaoqiang

    2017-01-01

    Cisplatin-induced acute kidney injury (AKI) involves damage to tubular cells via excess reactive oxygen species (ROS) generation. Stem cell-based therapies have shown great promise in AKI treatment. In this study, we aimed to assess the protective effect and mechanism of bone marrow mesenchymal stem cell (BMSC)-derived conditioned medium (CM) against cisplatin-induced AKI. In vitro, NRK-52E cells were incubated with cisplatin in the presence or absence of CM, followed by the assessment of cell viability, apoptosis and cell cycle distribution. Then, ICG-001 and IWR-1 were used to inhibit the wnt/β-catenin pathway. Furthermore, intracellular and mitochondrial ROS levels were evaluated using DCFH-DA and MitoSOX, respectively. In vivo, after cisplatin injection, rats were intravenously injected with CM or BMSCs. Sera and kidney tissues were collected on day 3 after cisplatin injection to evaluate changes in renal function and histology. Western blotting and qRT-PCR were employed to determine the expression of wnt/β-catenin pathway-related genes and proteins. Immunohistochemical staining was used to evaluate tubular β-catenin expression in kidney biopsy from AKI patients. CM protected NRK-52E cells from cisplatin-induced injury by restoring the wnt4/β-catenin pathway. In response to ICG-001 and IWR-1, the protective effect of CM was attenuated, characterized by a decrease in cell proliferation and an increase in cell apoptosis and intracellular and mitochondrial ROS levels. Knockdown of β-catenin using siRNAs also suppressed the mitochondrial biogenesis regulators PGC-1α, TFAM and NRF-1. In the rat model, CM significantly alleviated renal function and histology associated with tubular injury and upregulated wnt4 and β-catenin. However, the renoprotective effect of CM was blocked by ICG-001, characterized by exacerbated renal function, suppressed PGC-1α expression and increased mitochondrial ROS. Clinical data showed that the tubular β-catenin level was lower in

  20. Honey feeding protects kidney against cisplatin nephrotoxicity through suppression of inflammation.

    Science.gov (United States)

    Hamad, Rania; Jayakumar, Calpurnia; Ranganathan, Punithavathi; Mohamed, Riyaz; El-Hamamy, Mahmoud M I; Dessouki, Amina A; Ibrahim, Abdelazim; Ramesh, Ganesan

    2015-08-01

    Cisplatin is a highly effective chemotherapeutic drug used to treat a wide variety of solid tumors. However, its use was limited due its dose-limiting toxicity to the kidney. Currently, there are no therapies available to treat or prevent cisplatin nephrotoxicity. Honey is a naturally occurring complex liquid and widely used in traditional Ayurvedic medicine to treat many illnesses. However, its effect on cisplatin nephrotoxicity is unknown. To determine the role of honey in cisplatin nephrotoxicity, animals were pretreated orally for a week and then cisplatin was administered. Honey feeding was continued for another 3 days. Our results show that animals with cisplatin-induced kidney dysfunction, as determined by increased serum creatinine, which received honey feeding had less kidney dysfunction. Improved kidney function was associated with better preservation of kidney morphology in honey-treated group as compared to the cisplatin alone-treated group. Interestingly, honey feeding significantly reduced cisplatin-induced tubular epithelial cell death, immune infiltration into the kidney as well as cytokine and chemokine expression and excretion as compared to cisplatin treated animals. Western blot analysis shows that cisplatin-induced increase in phosphorylation of NFkB was completely suppressed with honey feeding. In conclusion, honey feeding protects the kidney against cisplatin nephrotoxicity through suppression of inflammation and NFkB activation. © 2015 Wiley Publishing Asia Pty Ltd.

  1. Renoprotective mechanisms of chlorogenic acid in cisplatin-induced kidney injury

    International Nuclear Information System (INIS)

    Domitrović, Robert; Cvijanović, Olga; Šušnić, Vesna; Katalinić, Nataša

    2014-01-01

    Highlights: • Chlorogenic acid attenuated cisplatin-induced renal oxidative stress by reducing the expression of 4-HNE, HO-1 and CYP2E1. • The inhibition of inflammatory response was achieved through the reduction of TNF-α and COX-2 expression. • The expression of p53, Bax, active caspase-3 and LC3B was suppressed, suggesting the inhibition of apoptosis and autophagy. • Attenuation of Mrp1 and Mrp2 expression and the increase in Oct2 expression indicated reduced burden of tubular cells. • The recovery of kidneys form cisplatin injury was accompanied by the suppression of cyclin D1 and augmented PCNA expression. - Abstract: The aim of this study was to investigate the renoprotective activity of chlorogenic acid (CA) in a murine model of cisplatin (CP)-induced kidney injury. Male BALB/cN mice were gavaged daily with CA at 3, 10 and 30 mg/kg for two successive days, 48 h after intraperitoneal injection of CP (13 mg/kg). On the fifth day, serum creatinine and blood urea nitrogen (BUN) levels were significantly increased in CP-intoxicated mice, which was recovered by CA. Renal oxidative stress, evidenced by increased 4-hydroxynonenal (4-HNE) expression, was significantly reduced with CA. Simultaneously, the overexpression of heme oxygenase 1 (HO-1) and cytochrome P450 E1 (CYP2E1) was attenuated. The inhibition of inflammatory response by CA was achieved through the reduction of tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2) expression. Additionally, CA significantly suppressed p53, Bax active caspase-3, cyclin D1 and microtubule-associated protein 1 light chain 3 isoform B (LC3B) expression, suggesting the inhibition of both apoptosis and autophagy. The expression of multidrug resistance-associated proteins (Mrp1 and Mrp2) increased and organic cation transporter 2 (Oct2) decreased by CP, protecting the kidneys from nephrotoxicity by reducing the burden of tubular cells. CA dose-dependently restored Mrp1, Mrp2 and Oct2 expression. The recovery

  2. Protective effect of Heliotropium eichwaldi against cisplatin-induced nephrotoxicity in mice.

    Science.gov (United States)

    Sharma, Surendra Kr; Goyal, Naveen

    2012-05-01

    The aim of the present study was to evaluate the nephroprotective effect of methanolic extract of Heliotropium eichwaldii (MHE) in mice with cisplatin-induced acute renal damage. Nephrotoxicity was induced by a single intraperitoneal injection of cisplatin (16mg/kg). Swiss albino mice were injected with vehicle, cisplatin, cisplatin plus MHE 200 mg/kg and cisplatin plus MHE 400mg/kg, respectively. MHE was administered for 7 d at a dose of 200 and 400 mg/kg per day orally starting 4 d before cisplatin injection. Animals were sacrificed 3d after treatment and blood as well as kidney tissue was isolated and analyzed. The various parameters such as blood urea nitrogen (BUN), serum creatinine (CRE), malondialdehyde (MDA), and catalase (CAT) and superoxide dismutase (SOD) activities were analyzed. MHE treatment significantly reduced BUN and serum CRE levels elevated by cisplatin administration (P<0.05). Also, it significantly attenuated cisplatin-induced increase in MDA level and improved the decreased CAT and SOD activities in renal cortical homogenates (P<0.05). Additionally, histopathological examination and scoring showed that MHE markedly ameliorated cisplatin-induced renal tubular necrosis. MHE can be considered a potential candidate for protection of nephrotoxicity induced by cisplatin.

  3. Changes in expression of renal Oat1, Oat3 and Mrp2 in cisplatin-induced acute renal failure after treatment of JBP485 in rats

    International Nuclear Information System (INIS)

    Liu, Tao; Meng, Qiang; Wang, Changyuan; Liu, Qi; Guo, Xinjin; Sun, Huijun; Peng, Jinyong

    2012-01-01

    The purpose of this study is to investigate whether the effect of cyclo-trans-4-L-hydroxyprolyl-L-serine (JBP485) on acute renal failure (ARF) induced by cisplatin is related to change in expression of renal Oat1, Oat3 and Mrp2 in rats. JBP485 reduced creatinine, blood urea nitrogen (BUN) and indoxyl sulfate (IS) in plasma and malondialdehyde (MDA) in kidney, and recovered the glomerular filtration rate (GFR) and the activity of superoxide dismutase (SOD) in cisplatin-treated rats. The plasma concentration of PAH (para-aminohippurate) determined by LC–MS/MS was increased markedly after intravenous administration of cisplatin, whereas cumulative urinary excretion of PAH and the uptake of PAH in kidney slices were significantly decreased. qRT-PCR and Western-blot showed a decrease in mRNA and protein of Oat1 and Oat3, an increase in mRNA and protein of Mrp2 in cisplatin-treated rats, and an increase in IS (a uremic toxin) after co-treatment with JBP485. It indicated that JBP485 promoted urinary excretion of toxins by upregulating renal Mrp2. This therefore gives in part the explanation about the mechanism by which JBP485 improves ARF induced by cisplatin in rats. -- Highlights: ► Cisplatin induces acute renal failure (ARF). ► The expression of Oat1, Oat3 and Mrp2 were changed during ARF. ► The regulated expression of Oat1, Oat3 and Mrp2 is an adaptive protected response. ► JBP485 could facilitate the adaptive protective action.

  4. Changes in expression of renal Oat1, Oat3 and Mrp2 in cisplatin-induced acute renal failure after treatment of JBP485 in rats

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao, E-mail: liutaomedical@qq.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China); Meng, Qiang, E-mail: mengq531@yahoo.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University (China); Wang, Changyuan, E-mail: wangcyuan@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University (China); Liu, Qi, E-mail: llaqii@yahoo.com.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University (China); Guo, Xinjin, E-mail: guo.xinjin@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China); Sun, Huijun, E-mail: sunhuijun@hotmail.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University (China); Peng, Jinyong, E-mail: jinyongpeng2005@163.com [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044 (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Liaoning, Dalian Medical University (China); and others

    2012-11-01

    The purpose of this study is to investigate whether the effect of cyclo-trans-4-L-hydroxyprolyl-L-serine (JBP485) on acute renal failure (ARF) induced by cisplatin is related to change in expression of renal Oat1, Oat3 and Mrp2 in rats. JBP485 reduced creatinine, blood urea nitrogen (BUN) and indoxyl sulfate (IS) in plasma and malondialdehyde (MDA) in kidney, and recovered the glomerular filtration rate (GFR) and the activity of superoxide dismutase (SOD) in cisplatin-treated rats. The plasma concentration of PAH (para-aminohippurate) determined by LC–MS/MS was increased markedly after intravenous administration of cisplatin, whereas cumulative urinary excretion of PAH and the uptake of PAH in kidney slices were significantly decreased. qRT-PCR and Western-blot showed a decrease in mRNA and protein of Oat1 and Oat3, an increase in mRNA and protein of Mrp2 in cisplatin-treated rats, and an increase in IS (a uremic toxin) after co-treatment with JBP485. It indicated that JBP485 promoted urinary excretion of toxins by upregulating renal Mrp2. This therefore gives in part the explanation about the mechanism by which JBP485 improves ARF induced by cisplatin in rats. -- Highlights: ► Cisplatin induces acute renal failure (ARF). ► The expression of Oat1, Oat3 and Mrp2 were changed during ARF. ► The regulated expression of Oat1, Oat3 and Mrp2 is an adaptive protected response. ► JBP485 could facilitate the adaptive protective action.

  5. Protective effect of selenium on cisplatin induced nephrotoxicity: A double-blind controlled randomized clinical trial.

    Science.gov (United States)

    Ghorbani, Ali; Omidvar, Bita; Parsi, Abazar

    2013-04-01

    Renal injury is common following cisplatin infusion. Some agents have been used to attenuate cisplatin nephrotoxicity. However, except hydration, none of them has been proved to be effective. In this study selenium as an antioxidant supplement was tested on cisplatin induced renal injury. 122 cancerous patients (85 male and 37 female; age range of 14 to 82 years old) were enrolled to receive chemotherapy regimens consisting cisplatin. They were allocated into two groups using a random number list . Investigators, patients and analyzers all, were blinded in allocation by using sealed opaque envelopes. Intervention group received a single 400 mcg selenium tablet and patients in control group took a placebo tablet which was similar with selenium preparation in color, weight, shape and taste. Primary end points were an increase in plasma creatinine above 1.5 mg/dl in men and 1.4mg/dl in women, or increase of plasma creatinine more than 50% from baseline or urine flow rate less than 0.5 ml/kg/h. Creatinine level was measured initially and on the 5th day after cisplatin therapy. There was no difference in cumulative dose of cisplatin between the groups (p=0.54). There were not evidences of acute renal failure (ARF) in cases. While, among placebo group, 7 patients had criteria of acute kidney injury. Conclusions :selenium could probably prevent cisplatin-induced acute kidney injury, when it is added to hydration therapy in cancerous patients.

  6. The protective effect of pomegranate extract against cisplatin toxicity in rat liver and kidney tissue.

    Science.gov (United States)

    Bakır, Salih; Yazgan, Ümit Can; İbiloğlu, İbrahim; Elbey, Bilal; Kızıl, Murat; Kelle, Mustafa

    2015-01-01

    The purpose of this study was to perform a histopathological investigation, at the light microscopy level, of the protective effects of pomegranate extract in cisplatin-induced liver and kidney damage in rats. Twenty-eight adult male Wistar albino rats were randomly divided into four groups of seven animals: Group 1: Control; Group 2: Treated for 10 consecutive days by gavage with pomegranate juice (2 ml/kg/day); Group 3: Injected intraperitoneally with cisplatin (8 mg/kg body weight, single dose) onset of the day 5, and Group 4: Treated by gavage with pomegranate juice 10 days before and after a single injection of cisplatin onset of the day 5. After 10 days, the animals were sacrificed and their kidneys and liver tissue samples were removed from each animal after experimental procedures. Cisplatin-induced renal and hepatic toxicity and the effect of pomegranate juice were evaluated by histopatological examinations. In the kidney tissue, pomegranate juice significantly ameliorated cisplatin-induced structural alterations when compared with the cisplatin alone group. But in the liver tissue, although pomegranate juice attenuated the cisplatin-induced toxicity only in two rats, significant improvement was not observed. In conclusion, these results demonstrate that the anti-oxidant pomegranate juice might have a protective effect against cisplatin-induced toxicity in rat kidney, but not in liver. Pomegranate juice could be beneficial as a dietary supplement in patients receiving chemotherapy medications.

  7. Histone deacetylase mediated silencing of AMWAP expression contributes to cisplatin nephrotoxicity

    Science.gov (United States)

    Ranganathan, Punithavathi; Hamad, Rania; Mohamed, Riyaz; Jayakumar, Calpurnia; Muthusamy, Thangaraju; Ramesh, Ganesan

    2015-01-01

    Cisplatin-induced acute kidney injury is a serious problem in cancer patients during treatment of solid tumors. Currently, there are no therapies available to treat or prevent cisplatin nephrotoxicity. Since histone deacetylase (HDAC) inhibition augments cisplatin anti-tumor activity, we tested whether HDAC inhibitors can prevent cisplatin-induced nephrotoxicity and determined the underlying mechanism. Cisplatin up-regulated the expression of several HDACs in the kidney. Inhibition of HDAC with clinically used trichostatin A suppressed cisplatin-induced kidney injury, inflammation and epithelial cell apoptosis. Moreover, trichostatin A upregulated the novel anti-inflammatory protein, activated microglia/macrophage WAP domain protein (AMWAP), in epithelial cells which was enhanced with cisplatin treatment. Interestingly, HDAC1 and -2 specific inhibitors are sufficient to potently up-regulate AMWAP in epithelial cells. Administration of recombinant AMWAP or its epithelial cell-specific overexpression reduced cisplatin-induced kidney dysfunction. Moreover, AMWAP treatment suppressed epithelial cell apoptosis, and siRNA-based knockdown of AMWAP expression abolished trichostatin A-mediated suppression of epithelial cell apoptosis in vitro. Thus, HDAC-mediated silencing of AMWAP may contribute to cisplatin nephrotoxicity. Hence, HDAC1 and -2 specific inhibitors or AMWAP could be useful therapeutic agents for the prevention of cisplatin nephrotoxicity. PMID:26509586

  8. Protective effect of metalloporphyrins against cisplatin-induced kidney injury in mice.

    Directory of Open Access Journals (Sweden)

    Hao Pan

    Full Text Available Oxidative and nitrative stress is a well-known phenomenon in cisplatin-induced nephrotoxicity. The purpose of this work is to study the role of two metalloporphyrins (FeTMPyP and MnTBAP, water soluble complexes, in cisplatin-induced renal damage and their ability to scavenge peroxynitrite. In cisplatin-induced nephropathy study in mice, renal nitrative stress was evident by the increase in protein nitration. Cisplatin-induced nephrotoxicity was also evident by the histological damage from the loss of the proximal tubular brush border, blebbing of apical membranes, tubular epithelial cell detachment from the basement membrane, or intra-luminal aggregation of cells and proteins and by the increase in blood urea nitrogen and serum creatinine. Cisplatin-induced apoptosis and cell death as shown by Caspase 3 assessments, TUNEL staining and DNA fragmentation Cisplatin-induced nitrative stress, apoptosis and nephrotoxicity were attenuated by both metalloporphyrins. Heme oxygenase (HO-1 also plays a critical role in metalloporphyrin-mediated protection of cisplatin-induced nephrotoxicity. It is evident that nitrative stress plays a critical role in cisplatin-induced nephrotoxicity in mice. Our data suggest that peroxynitrite is involved, at least in part, in cisplatin-induced nephrotoxicity and protein nitration and cisplatin-induced nephrotoxicity can be prevented with the use of metalloporphyrins.

  9. Curcumin prevents cisplatin-induced renal alterations in mitochondrial bioenergetics and dynamic.

    Science.gov (United States)

    Ortega-Domínguez, Bibiana; Aparicio-Trejo, Omar Emiliano; García-Arroyo, Fernando E; León-Contreras, Juan Carlos; Tapia, Edilia; Molina-Jijón, Eduardo; Hernández-Pando, Rogelio; Sánchez-Lozada, Laura Gabriela; Barrera-Oviedo, Diana; Pedraza-Chaverri, José

    2017-09-01

    Cisplatin is widely used as chemotherapeutic agent for treatment of diverse types of cancer, however, acute kidney injury (AKI) is an important side effect of this treatment. Diverse mechanisms have been involved in cisplatin-induced AKI, such as oxidative stress, apoptosis and mitochondrial damage. On the other hand, curcumin is a polyphenol extracted from the rhizome of Curcuma longa L. Previous studies have shown that curcumin protects against the cisplatin-induced AKI; however, it is unknown whether curcumin can reduce alterations in mitochondrial bioenergetics and dynamic in this model. It was found that curcumin prevents cisplatin-induced: (a) AKI and (b) alterations in the following mitochondrial parameters: bioenergetics, ultrastructure, hydrogen peroxide production and dynamic. In fact, curcumin prevented the increase of mitochondrial fission 1 protein (FIS1), the decrease of optic atrophy 1 protein (OPA1) and the decrease of NAD + -dependent deacetylase sirtuin-3 (SIRT3), a mitochondrial dynamic regulator as well as the increase in the mitophagy associated proteins parkin and phosphatase and tensin homologue (PTEN)-induced putative kinase protein 1 (PINK1). In conclusion, the protective effect of curcumin in cisplatin-induced AKI was associated with the prevention of the alterations in mitochondrial bioenergetics, ultrastructure, redox balance, dynamic, and SIRT3 levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effect of Honey and Royal Jelly against Cisplatin-Induced Nephrotoxicity in Patients with Cancer.

    Science.gov (United States)

    Osama, Hasnaa; Abdullah, Aya; Gamal, Bassma; Emad, Dina; Sayed, Doha; Hussein, Eman; Mahfouz, Eman; Tharwat, Joy; Sayed, Sally; Medhat, Shrouk; Bahaa, Treza; Abdelrahim, Mohamed E A

    2017-07-01

    Cisplatin constitutes one of the most potent antineoplastic drugs; however, nephrotoxicity limited its eligibility for optimal clinical use. This study was designed to evaluate the role of honey and royal jelly with antioxidant properties in the protection of cisplatin-induced acute kidney injury in patients with cancer. Patients with cancer assigned for cisplatin chemotherapy were randomly divided into bee honey and royal jelly groups pretreated before the initiation and during cisplatin chemotherapeutic regimen and control group on cisplatin only. Serum creatinine and urea levels were measured before and after the chemotherapeutic cycle and over 2 cycles. Patients on crude bee honey and royal jelly capsules showed lower serum levels of renal injury products (creatinine and urea) compared to those in the control group. The changes in kidney parameters were significantly (p honey group before and after cisplatin treatment. Royal jelly was found to be effective; however, the difference in creatinine and urea levels before and after chemotherapy was not statistically significant. The use of bee honey and royal jelly as natural compounds is effective in reducing cisplatin nephrotoxicity and may offer a promising chance for clinically meaningful prevention. This study has potentially important implications for the treatment of cisplatin kidney side effects and is considered to be the first to investigate this effect of honey and royal jelly in human subjects. However, due to its small sample size, we recommend further investigation using a larger sample size.

  11. QiShenYiQi Pills, a Compound Chinese Medicine, Prevented Cisplatin Induced Acute Kidney Injury via Regulating Mitochondrial Function

    Directory of Open Access Journals (Sweden)

    Li Zhou

    2017-12-01

    Full Text Available Nephrotoxicity is a serious adverse effect of cisplatin chemotherapy that limits its clinical application, to deal with which no effective management is available so far. The present study was to investigate the potential protective effect of QiShenYiQi Pills (QSYQ, a compound Chinese medicine, against cisplatin induced nephrotoxicity in mice. Pretreatment with QSYQ significantly attenuated the cisplatin induced increase in plasma urea and creatinine, along with the histological damage, such as tubular necrosis, protein cast, and desquamation of epithelial cells, improved the renal microcirculation disturbance as indicated by renal blood flow, microvascular flow velocity, and the number of adherent leukocytes. Additionally, QSYQ prevented mitochondrial dysfunction by preventing the cisplatin induced downregulation of mitochondrial complex activity and the expression of NDUFA10, ATP5D, and Sirt3. Meanwhile, the cisplatin-increased renal thiobarbituric acid-reactive substances, caspase9, cleaved-caspase9, and cleaved-caspase3 were all diminished by QSYQ pretreatment. In summary, the pretreatment with QSYQ remarkably ameliorated the cisplatin induced nephrotoxicity in mice, possibly via the regulation of mitochondrial function, oxidative stress, and apoptosis.

  12. Inhibition of PKCδ reduces cisplatin-induced nephrotoxicity without blocking chemotherapeutic efficacy in mouse models of cancer

    Science.gov (United States)

    Pabla, Navjotsingh; Dong, Guie; Jiang, Man; Huang, Shuang; Kumar, M. Vijay; Messing, Robert O.; Dong, Zheng

    2011-01-01

    Cisplatin is a widely used cancer therapy drug that unfortunately has major side effects in normal tissues, notably nephrotoxicity in kidneys. Despite intensive research, the mechanism of cisplatin-induced nephrotoxicity remains unclear, and renoprotective approaches during cisplatin-based chemotherapy are lacking. Here we have identified PKCδ as a critical regulator of cisplatin nephrotoxicity, which can be effectively targeted for renoprotection during chemotherapy. We showed that early during cisplatin nephrotoxicity, Src interacted with, phosphorylated, and activated PKCδ in mouse kidney lysates. After activation, PKCδ regulated MAPKs, but not p53, to induce renal cell apoptosis. Thus, inhibition of PKCδ pharmacologically or genetically attenuated kidney cell apoptosis and tissue damage, preserving renal function during cisplatin treatment. Conversely, inhibition of PKCδ enhanced cisplatin-induced cell death in multiple cancer cell lines and, remarkably, enhanced the chemotherapeutic effects of cisplatin in several xenograft and syngeneic mouse tumor models while protecting kidneys from nephrotoxicity. Together these results demonstrate a role of PKCδ in cisplatin nephrotoxicity and support targeting PKCδ as an effective strategy for renoprotection during cisplatin-based cancer therapy. PMID:21633170

  13. Antioxidant protection of statins in acute kidney injury induced by sepsis

    Directory of Open Access Journals (Sweden)

    Franciele do Nascimento Santos

    2014-10-01

    Full Text Available Objective Evaluating the effect of preconditioning with simvastatin in acute kidney injury induced by sepsis. Method Male adult Wistar rats were divided into the following groups: SHAM (control; SHAM+Statin (0.5 mg/kg simvastatin, orally; Sepsis (cecal puncture ligation – CPL; Sepsis+Statin. Physiological parameters, peritoneal fluid culture, renal function, oxidative metabolites, severity of acute kidney injury and animal survival were evaluated. Results The treatment with simvastatin in induced sepsis showed elevation of creatinine clearance with attenuation of generation of oxidative metabolites, lower severity of acute kidney injury and reduced mortality. Conclusion This investigation confirmed the renoprotection with antioxidant principle of the simvastatin in acute kidney injury induced by sepsis in an experimental model.

  14. Coenzyme Q10 treatment ameliorates acute cisplatin nephrotoxicity in mice

    International Nuclear Information System (INIS)

    Fouad, Amr A.; Al-Sultan, Ali Ibrahim; Refaie, Shereen M.; Yacoubi, Mohamed T.

    2010-01-01

    The nephroprotective effect of coenzyme Q10 was investigated in mice with acute renal injury induced by a single i.p. injection of cisplatin (5 mg/kg). Coenzyme Q10 treatment (10 mg/kg/day, i.p.) was applied for 6 consecutive days, starting 1 day before cisplatin administration. Coenzyme Q10 significantly reduced blood urea nitrogen and serum creatinine levels which were increased by cisplatin. Coenzyme Q10 significantly compensated deficits in the antioxidant defense mechanisms (reduced glutathione level and superoxide dismutase activity), suppressed lipid peroxidation, decreased the elevations of tumor necrosis factor-α, nitric oxide and platinum ion concentration, and attenuated the reductions of selenium and zinc ions in renal tissue resulted from cisplatin administration. Also, histopathological renal tissue damage mediated by cisplatin was ameliorated by coenzyme Q10 treatment. Immunohistochemical analysis revealed that coenzyme Q10 significantly decreased the cisplatin-induced overexpression of inducible nitric oxide synthase, nuclear factor-κB, caspase-3 and p53 in renal tissue. It was concluded that coenzyme Q10 represents a potential therapeutic option to protect against acute cisplatin nephrotoxicity commonly encountered in clinical practice.

  15. Pre-stimulation of the kallikrein system in cisplatin-induced acute renal injury: An approach to renoprotection

    Energy Technology Data Exchange (ETDEWEB)

    Aburto, Andrés [Program of M.Sc., Faculty of Medicine, Universidad Austral de Chile, Valdivia (Chile); Barría, Agustín [School of Biochemistry, Faculty of Sciences, Universidad Austral de Chile, Valdivia (Chile); Cárdenas, Areli [Ph.D. Program, Faculty of Sciences, Universidad Austral de Chile, Valdivia (Chile); Carpio, Daniel; Figueroa, Carlos D. [Department of Anatomy, Histology and Pathology, Universidad Austral de Chile, Valdivia (Chile); Burgos, Maria E. [Department of Nephrology, Faculty of Medicine, Universidad Austral de Chile, Valdivia (Chile); Ardiles, Leopoldo, E-mail: leopoldoardiles@gmail.com [Department of Nephrology, Faculty of Medicine, Universidad Austral de Chile, Valdivia (Chile)

    2014-10-15

    Antineoplastic treatment with cisplatin is frequently complicated by nephrotoxicity. Although oxidative stress may be involved, the pathogenic mechanisms responsible for renal damage have not been completely clarified. In order to investigate the role of the renal kinin system in this condition, a group of rats was submitted to high potassium diet to stimulate the synthesis and excretion of tissue kallikrein 1 (rKLK1) previous to an intraperitoneal injection of 7 mg/kg cisplatin. A significant reduction in lipoperoxidation, evidenced by urinary excretion of malondialdehyde and renal immunostaining of hidroxy-nonenal, was accompanied by a decline in apoptosis. Coincident with these findings we observed a reduction in the expression of renal KIM-1 suggesting that renoprotection may be occurring. Stimulation or indemnity of the renal kinin system deserves to be evaluated as a complementary pharmacological measure to diminish cisplatin nephrotoxicity. - Highlights: • Mechanisms of cisplatin-induced-renal damage have not been completely clarified. • Cisplatin induces oxidative stress and apoptosis. • The renal kallikrein-kinin system is protective in experimental acute renal damage. • Kallikrein stimulation reduces oxidative stress and apoptosis induced by cisplatin. • Protection of the kallikrein-kinin system may reduce cisplatin toxicity.

  16. Pre-stimulation of the kallikrein system in cisplatin-induced acute renal injury: An approach to renoprotection

    International Nuclear Information System (INIS)

    Aburto, Andrés; Barría, Agustín; Cárdenas, Areli; Carpio, Daniel; Figueroa, Carlos D.; Burgos, Maria E.; Ardiles, Leopoldo

    2014-01-01

    Antineoplastic treatment with cisplatin is frequently complicated by nephrotoxicity. Although oxidative stress may be involved, the pathogenic mechanisms responsible for renal damage have not been completely clarified. In order to investigate the role of the renal kinin system in this condition, a group of rats was submitted to high potassium diet to stimulate the synthesis and excretion of tissue kallikrein 1 (rKLK1) previous to an intraperitoneal injection of 7 mg/kg cisplatin. A significant reduction in lipoperoxidation, evidenced by urinary excretion of malondialdehyde and renal immunostaining of hidroxy-nonenal, was accompanied by a decline in apoptosis. Coincident with these findings we observed a reduction in the expression of renal KIM-1 suggesting that renoprotection may be occurring. Stimulation or indemnity of the renal kinin system deserves to be evaluated as a complementary pharmacological measure to diminish cisplatin nephrotoxicity. - Highlights: • Mechanisms of cisplatin-induced-renal damage have not been completely clarified. • Cisplatin induces oxidative stress and apoptosis. • The renal kallikrein-kinin system is protective in experimental acute renal damage. • Kallikrein stimulation reduces oxidative stress and apoptosis induced by cisplatin. • Protection of the kallikrein-kinin system may reduce cisplatin toxicity

  17. Pharmacogenomic Variants May Influence the Urinary Excretion of Novel Kidney Injury Biomarkers in Patients Receiving Cisplatin

    Science.gov (United States)

    Chang, Cara; Hu, Yichun; Hogan, Susan L.; Mercke, Nickie; Gomez, Madeleine; O’Bryant, Cindy; Bowles, Daniel W.; George, Blessy; Wen, Xia; Aleksunes, Lauren M.; Joy, Melanie S.

    2017-01-01

    Nephrotoxicity is a dose limiting side effect associated with the use of cisplatin in the treatment of solid tumors. The degree of nephrotoxicity is dictated by the selective accumulation of cisplatin in renal tubule cells due to: (1) uptake by organic cation transporter 2 (OCT2) and copper transporter 1 (CTR1); (2) metabolism by glutathione S-transferases (GSTs) and γ-glutamyltransferase 1 (GGT1); and (3) efflux by multidrug resistance-associated protein 2 (MRP2) and multidrug and toxin extrusion protein 1 (MATE1). The purpose of this study was to determine the significance of single nucleotide polymorphisms that regulate the expression and function of transporters and metabolism genes implicated in development of acute kidney injury (AKI) in cisplatin treated patients. Changes in the kidney function were assessed using novel urinary protein biomarkers and traditional markers. Genotyping was conducted by the QuantStudio 12K Flex Real-Time PCR System using a custom open array chip with metabolism, transport, and transcription factor polymorphisms of interest to cisplatin disposition and toxicity. Traditional and novel biomarker assays for kidney toxicity were assessed for differences according to genotype by ANOVA. Allele and genotype frequencies were determined based on Caucasian population frequencies. The polymorphisms rs596881 (SLC22A2/OCT2), and rs12686377 and rs7851395 (SLC31A1/CTR1) were associated with renoprotection and maintenance of estimated glomerular filtration rate (eGFR). Polymorphisms in SLC22A2/OCT2, SLC31A1/CTRI, SLC47A1/MATE1, ABCC2/MRP2, and GSTP1 were significantly associated with increases in the urinary excretion of novel AKI biomarkers: KIM-1, TFF3, MCP1, NGAL, clusterin, cystatin C, and calbindin. Knowledge concerning which genotypes in drug transporters are associated with cisplatin-induced nephrotoxicity may help to identify at-risk patients and initiate strategies, such as using lower or fractionated cisplatin doses or avoiding

  18. Filipendula ulmaria extracts attenuate cisplatin-induced liver and kidney oxidative stress in rats: In vivo investigation and LC-MS analysis.

    Science.gov (United States)

    Katanić, Jelena; Matić, Sanja; Pferschy-Wenzig, Eva-Maria; Kretschmer, Nadine; Boroja, Tatjana; Mihailović, Vladimir; Stanković, Vesna; Stanković, Nevena; Mladenović, Milan; Stanić, Snežana; Mihailović, Mirjana; Bauer, Rudolf

    2017-01-01

    Filipendula ulmaria, known as meadowsweet, is a perennial herb found in wild and cultivated habitats in Europe and Asia. Usage of F. ulmaria in traditional medicine is based on diuretic, astringent, antirheumatic, and anti-inflammatory properties of this plant. Exposure to cisplatin at a dose of 7.5 mg/kg caused significant increase in serum parameters of liver and kidneys function and tissue oxidative stress markers along with some histopathological changes in liver and kidney tissues of experimental rats, as well as high level of genotoxicity. Administration of F. ulmaria extracts in three different concentrations (100, 200, and 400 mg/kg/day) for 10 days resulted in a reduction of oxidative stress in tissues and decrease of serum parameters. Moreover, tested extracts attenuated the genotoxicity of cisplatin in reverse dose-dependent manner. F. ulmaria extracts had no in vitro cytotoxic activity at all applied concentrations (IC 50  > 50 μg/mL). Tested extracts, rich in polyphenolic compounds, attenuate cisplatin-induced liver and kidney oxidative stress, reduce tissue damage, and enhance the antioxidative status of experimental animals during cisplatin application. Therefore, F. ulmaria extracts may be used as supportive agent for the prevention and amelioration of cisplatin side effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Hydrogen sulfide: A novel nephroprotectant against cisplatin-induced renal toxicity.

    Science.gov (United States)

    Dugbartey, George J; Bouma, Hjalmar R; Lobb, Ian; Sener, Alp

    2016-07-01

    Cisplatin is a potent chemotherapeutic agent for the treatment of various solid-organ cancers. However, a plethora of evidence indicates that nephrotoxicity is a major side effect of cisplatin therapy. While the antineoplastic action of cisplatin is due to formation of cisplatin-DNA cross-links, which damage rapidly dividing cancer cells upon binding to DNA, its nephrotoxic effect results from metabolic conversion of cisplatin into a nephrotoxin and production of reactive oxygen species, causing oxidative stress leading to renal tissue injury and potentially, kidney failure. Despite therapeutic targets in several pre-clinical and clinical studies, there is still incomplete protection against cisplatin-induced nephrotoxicity. Hydrogen sulfide (H2S), the third discovered gasotransmitter next to nitric oxide and carbon monoxide, has recently been identified in several in vitro and in vivo studies to possess specific antioxidant, anti-inflammatory and anti-apoptotic properties that modulate several pathogenic pathways involved in cisplatin-induced nephrotoxicity. The current article reviews the molecular mechanisms underlying cisplatin-induced nephrotoxicity and displays recent findings in the H2S field that could disrupt such mechanisms to ameliorate cisplatin-induced renal injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Action of (R)-sila-venlafaxine and reboxetine to antagonize cisplatin-induced acute and delayed emesis in the ferret

    International Nuclear Information System (INIS)

    Warneck, Julie B.; Cheng, Frankie H.M.; Barnes, Matthew J.; Mills, John S.; Montana, John G.; Naylor, Robert J.; Ngan, Man-P.; Wai, Man-K.; Daiss, Juergen O.; Tacke, Reinhold; Rudd, John A.

    2008-01-01

    The chemotherapeutic drug cisplatin is associated with severe gastrointestinal toxicity that can last for several days. A recent strategy to treat the nausea and emesis includes the combination of a 5-HT 3 receptor antagonist, a glucocorticoid, and an NK 1 receptor antagonist. The present studies explore the use of the selective noradrenaline reuptake inhibitors, (R)-sila-venlafaxine, (R,R)-reboxetine and (S,S)-reboxetine to prevent cisplatin (5 mg/kg, i.p.)-induced acute (0-24 h) and delayed (24-72 h) emesis in ferrets. The positive control regimen of ondansetron and dexamethasone, both at 1 mg/kg/8 h, reduced acute and delayed emesis by 100 (P 0.05). In conclusion, the studies provide the first evidence for an anti-emetic potential of noradrenaline reuptake inhibitors to reduce chemotherapy-induced acute and delayed emesis

  1. Xanthohumol attenuates cisplatin-induced nephrotoxicity through inhibiting NF-κB and activating Nrf2 signaling pathways.

    Science.gov (United States)

    Li, Fan; Yao, Yunyi; Huang, Hui; Hao, Hua; Ying, Mingzhong

    2018-06-12

    Cisplatin is a chemotherapeutic agent that widely used in the treatment of cancer. However, cisplatin has been reported to induce nephrotoxicity by directly inducing inflammatory response and oxidative stress. In this study, we aimed to investigate the protective effects and mechanism of xanthohumol on cisplatin-induced nephrotoxicity. The model of nephrotoxicity was induced by intraperitoneal injection of cisplatin and xanthohumol was given intraperitoneally for three consecutive days. The results showed that xanthohumol significantly attenuated kidney histological changes and serum creatinine and BUN production. The levels of TNF-α, IL-1ß and IL-6 in kidney tissues were suppressed by xanthohumol. The levels of malondialdehyde (MDA) and ROS were suppressed by treatment of xanthohumol. The activities of glutathione (GSH) and superoxide dismutase (SOD) decreased by cisplatin were reversed by xanthohumol. Furthermore, the expression of TLR4 and the activation of NF-κB induced by cisplatin were significantly inhibited by xanthohumol. The expression of Nrf2 and HO-1 were dose-dependently up-regulated by the treatment of xanthohumol. In conclusion, xanthohumol protects against cisplatin-induced nephrotoxicity by ameliorating inflammatory and oxidative responses. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Mitochondrial Modulation by Epigallocatechin 3-Gallate Ameliorates Cisplatin Induced Renal Injury through Decreasing Oxidative/Nitrative Stress, Inflammation and NF-kB in Mice

    Science.gov (United States)

    Wang, Xueping; Wang, Ping; Fu, Guanghou; Meng, Hongzhou; Wang, Yimin; Jin, Baiye

    2015-01-01

    Cancer chemotherapy drug cisplatin is known for its nephrotoxicity. The aim of this study is to investigate whether Epigallocatechin 3-Gallate (EGCG) can reduce cisplatin mediated side effect in kidney and to understand its mechanism of protection against tissue injury. We used a well-established 3-day cisplatin induced nephrotoxicity mice model where EGCG were administered. EGCG is a major active compound in Green Tea and have strong anti-oxidant and anti-inflammatory properties. EGCG protected against cisplatin induced renal dysfunction as measured by serum creatinine and blood urea nitrogen (BUN). EGCG improved cisplatin induced kidney structural damages such as tubular dilatation, cast formation, granulovaculoar degeneration and tubular cell necrosis as evident by PAS staining. Cisplatin induced kidney specific mitochondrial oxidative stress, impaired activities of mitochondrial electron transport chain enzyme complexes, impaired anti-oxidant defense enzyme activities such as glutathione peroxidase (GPX) and manganese superoxide dismutase (MnSOD) in mitochondria, inflammation (tumor necrosis factor α and interleukin 1β), increased accumulation of NF-κB in nuclear fraction, p53 induction, and apoptotic cell death (caspase 3 activity and DNA fragmentation). Treatment of mice with EGCG markedly attenuated cisplatin induced mitochondrial oxidative/nitrative stress, mitochondrial damages to electron transport chain activities and antioxidant defense enzyme activities in mitochondria. These mitochondrial modulations by EGCG led to protection mechanism against cisplatin induced inflammation and apoptotic cell death in mice kidney. As a result, EGCG improved renal function in cisplatin mediated kidney damage. In addition to that, EGCG attenuated cisplatin induced apoptotic cell death and mitochondrial reactive oxygen species (ROS) generation in human kidney tubular cell line HK-2. Thus, our data suggest that EGCG may represent new promising adjunct candidate for

  3. Luteolin ameliorates cisplatin-induced nephrotoxicity in mice through inhibition of platinum accumulation, inflammation and apoptosis in the kidney

    International Nuclear Information System (INIS)

    Domitrović, Robert; Cvijanović, Olga; Pugel, Ester Pernjak; Zagorac, Gordana Blagojević; Mahmutefendić, Hana; Škoda, Marko

    2013-01-01

    The aim of this study was to investigate the effects of flavone luteolin against cisplatin (CP)-induced kidney injury in mice. Luteolin at doses of 10 mg/kg was administered intraperitoneally (ip) once daily for 3 days following single CP (10 or 20 mg/kg) ip injection. Mice were sacrificed 24 h after the last dose of luteolin. The CP treatment significantly increased serum creatinine and blood urea nitrogen and induced pathohistological changes in the kidneys. Renal oxidative/nitrosative stress was evidenced by decreased glutathione (GSH) levels and increased 3-nitrotyrosine (3-NT) and 4-hydroxynonenal (4-HNE) formation as well as cytochrome P450 2E1 (CYP2E1) expression. The CP administration triggered inflammatory response in mice kidneys through activation of nuclear factor-kappaB (NF-κB) and overexpression of tumor necrosis factor-alpha (TNF-α) and cyclooxygenase-2 (COX-2). Simultaneously, the increase in renal p53 and caspase-3 expression indicated apoptosis of tubular cells. The administration of luteolin significantly reduced histological and biochemical changes induced by CP, decreased platinum (Pt) levels and suppressed oxidative/nitrosative stress, inflammation and apoptosis in the kidneys. These results suggest that luteolin is an effective nephroprotective agent, with potential to reduce Pt accumulation in the kidneys and ameliorate CP-induced nephrotoxicity

  4. Gastric myoelectric activity during cisplatin-induced acute and delayed emesis reveals a temporal impairment of slow waves in ferrets: effects not reversed by the GLP-1 receptor antagonist, exendin (9-39).

    Science.gov (United States)

    Lu, Zengbing; Ngan, Man P; Lin, Ge; Yew, David T W; Fan, Xiaodan; Andrews, Paul L R; Rudd, John A

    2017-11-17

    Preclinical studies show that the glucagon-like peptide-1 (GLP-1) receptor antagonist, exendin (9-39), can reduce acute emesis induced by cisplatin. In the present study, we investigate the effect of exendin (9-39) (100 nmol/24 h, i.c.v), on cisplatin (5 mg/kg, i.p.)-induced acute and delayed emesis and changes indicative of 'nausea' in ferrets. Cisplatin induced 37.2 ± 2.3 and 59.0 ± 7.7 retches + vomits during the 0-24 (acute) and 24-72 h (delayed) periods, respectively. Cisplatin also increased ( P Advanced multifractal detrended fluctuation analysis revealed that the slow wave signal shape became more simplistic during delayed emesis. Cisplatin did not affect blood pressure (BP), but transiently increased heart rate, and decreased heart rate variability (HRV) during acute emesis; HRV spectral analysis indicated a shift to 'sympathetic dominance'. A hyperthermic response was seen during acute emesis, but hypothermia occurred during delayed emesis and there was also a decrease in HR. Exendin (9-39) did not improve feeding and drinking but reduced cisplatin-induced acute emesis by ~59 % ( P waves may represent a novel approach to treat the side effects of chemotherapy.

  5. Therapeutic Potential and Molecular Mechanisms of Emblica officinalis Gaertn in countering nephrotoxicity in rats induced by the chemotherapeutic agent cisplatin

    Directory of Open Access Journals (Sweden)

    Salma Malik

    2016-10-01

    Full Text Available Emblica officinalis Gaertn. belonging to family Euphorbiaceae is commonly known as Indian gooseberry or Amla in India. It is used as a ‘rejuvenating herb’ in traditional system of Indian medicine. It has been shown to possess antioxidant, anti-inflammatory and anti-apoptotic effects. Thus, on the basis of its biological effects, the present study was undertaken to evaluate the protective effect of the dried fruit extract of the E. Officinalis (EO in cisplatin-induced nephrotoxicity in rats and also to evaluate the mechanism of its nephroprotection. The study was done on male albino Wistar rats. They were divided into 6 groups (n=6 viz. control, cisplatin-control, cisplatin and EO (150, 300 and 600 mg/kg; p.o. respectively in different groups and EO only (600 mg/kg; p.o. only. EO was administered orally to the rats for a period of 10 days and on the 7th day, a single injection of cisplatin (8 mg/kg; i.p. was administered to the cisplatin-control and EO treatment groups. The rats were sacrificed on the 10th day. Cisplatin-control rats had deranged renal function parameters and the kidney histology confirmed the presence of acute tubular necrosis. Furthermore, there were increased oxidative stress, apoptosis and inflammation along with higher expression of MAPK pathway proteins in the rat kidney from the cisplatin-control group. Contrary to this, EO (600 mg/kg significantly normalized renal function, bolstered antioxidant status and ameliorated histological alterations. The inflammation and apoptosis were markedly lower in comparison to cisplatin-control rats. Furthermore, EO (600 mg/kg inhibited MAPK phosphorylation which was instrumental in preserving renal function and morphology. In conclusion, the results of our study demonstrated that EO attenuated cisplatin-induced nephrotoxicity in rats through suppression of MAPK induced inflammation and apoptosis.

  6. Riboflavin ameliorates cisplatin induced toxicities under photoillumination.

    Directory of Open Access Journals (Sweden)

    Iftekhar Hassan

    Full Text Available BACKGROUND: Cisplatin is an effective anticancer drug that elicits many side effects mainly due to induction of oxidative and nitrosative stresses during prolonged chemotherapy. The severity of these side effects consequently restricts its clinical use under long term treatment. Riboflavin is an essential vitamin used in various metabolic redox reactions in the form of flavin adenine dinucleotide and flavin mononucleotide. Besides, it has excellent photosensitizing property that can be used to ameliorate these toxicities in mice under photodynamic therapy. METHODS AND FINDINGS: Riboflavin, cisplatin and their combinations were given to the separate groups of mice under photoilluminated condition under specific treatment regime. Their kidney and liver were excised for comet assay and histopathological studies. Furthermore, Fourier Transform Infrared Spectroscopy of riboflavin-cisplatin combination in vitro was also conducted to investigate any possible interaction between the two compounds. Their comet assay and histopathological examination revealed that riboflavin in combination with cisplatin was able to protect the tissues from cisplatin induced toxicities and damages. Moreover, Fourier Transform Infrared Spectroscopy analysis of the combination indicated a strong molecular interaction among their constituent groups that may be assigned for the protective effect of the combination in the treated animals. CONCLUSION: Inclusion of riboflavin diminishes cisplatin induced toxicities which may possibly make the cisplatin-riboflavin combination, an effective treatment strategy under chemoradiotherapy in pronouncing its antineoplastic activity and sensitivity towards the cancer cells as compared to cisplatin alone.

  7. A H2S Donor GYY4137 Exacerbates Cisplatin-Induced Nephrotoxicity in Mice

    Directory of Open Access Journals (Sweden)

    Mi Liu

    2016-01-01

    Full Text Available Accumulating evidence demonstrated that hydrogen sulfide (H2S is highly involved in inflammation, oxidative stress, and apoptosis and contributes to the pathogenesis of kidney diseases. However, the role of H2S in cisplatin nephrotoxicity is still debatable. Here we investigated the effect of GYY4137, a novel slow-releasing H2S donor, on cisplatin nephrotoxicity in mice. Male C57BL/6 mice were pretreated with GYY4137 for 72 h prior to cisplatin injection. After cisplatin treatment for 72 h, mice developed obvious renal dysfunction and kidney injury as evidenced by elevated blood urea nitrogen (BUN and histological damage. Consistently, these mice also showed increased proinflammatory cytokines such as TNF-α, IL-6, and IL-1β in circulation and/or kidney tissues. Meanwhile, circulating thiobarbituric aid-reactive substances (TBARS and renal apoptotic indices including caspase-3, Bak, and Bax were all elevated. However, application of GYY4137 further aggravated renal dysfunction and kidney structural injury in line with promoted inflammation, oxidative stress, and apoptotic response following cisplatin treatment. Taken together, our results suggested that GYY4137 exacerbated cisplatin-induced nephrotoxicity in mice possibly through promoting inflammation, oxidative stress, and apoptotic response.

  8. 4-Phenylbutyrate inhibits tunicamycin-induced acute kidney injury via CHOP/GADD153 repression.

    Directory of Open Access Journals (Sweden)

    Rachel E Carlisle

    Full Text Available Different forms of acute kidney injury (AKI have been associated with endoplasmic reticulum (ER stress; these include AKI caused by acetaminophen, antibiotics, cisplatin, and radiocontrast. Tunicamycin (TM is a nucleoside antibiotic known to induce ER stress and is a commonly used inducer of AKI. 4-phenylbutyrate (4-PBA is an FDA approved substance used in children who suffer from urea cycle disorders. 4-PBA acts as an ER stress inhibitor by aiding in protein folding at the molecular level and preventing misfolded protein aggregation. The main objective of this study was to determine if 4-PBA could protect from AKI induced by ER stress, as typified by the TM-model, and what mechanism(s of 4-PBA's action were responsible for protection. C57BL/6 mice were treated with saline, TM or TM plus 4-PBA. 4-PBA partially protected the anatomic segment most susceptible to damage, the outer medullary stripe, from TM-induced AKI. In vitro work showed that 4-PBA protected human proximal tubular cells from apoptosis and TM-induced CHOP expression, an ER stress inducible proapoptotic gene. Further, immunofluorescent staining in the animal model found similar protection by 4-PBA from CHOP nuclear translocation in the tubular epithelium of the medulla. This was accompanied by a reduction in apoptosis and GRP78 expression. CHOP(-/- mice were protected from TM-induced AKI. The protective effects of 4-PBA extended to the ultrastructural integrity of proximal tubule cells in the outer medulla. When taken together, these results indicate that 4-PBA acts as an ER stress inhibitor, to partially protect the kidney from TM-induced AKI through the repression of ER stress-induced CHOP expression.

  9. Prevention of cisplatin nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Hayati Fatemeh

    2016-01-01

    Full Text Available Cisplatin has a well-established role in the treatment of broad spectrum of malignancies; however its use is limited because of cisplatin-induced nephrotoxicity (CIN which can be progressive in more than 50% of cases. The most important risk factors for CIN include higher doses of cisplatin, previous cisplatin chemotherapy, underlying kidney damage and concurrent treatment with other potential nephrotoxin agents, such as aminoglycosides, nonsteroidal anti-inflammatory agents, or iodinated contrast media. Different strategies have been offered to diminish or prevent nephrotoxicity of cisplatin. The standard approach for prevention of CIN is the administration of lower doses of cisplatin in combination with full intravenous hydration prior and after cisplatin administration. Cisplatin-induced oxidative stress in the kidney may be prevented by natural antioxidant compounds. The results of this review show that many strategies for prevention of CIN exist, however, attention to the administration of these agent for CIN is necessary.

  10. Subclinical chronic kidney disease modifies the diagnosis of experimental acute kidney injury.

    Science.gov (United States)

    Succar, Lena; Pianta, Timothy J; Davidson, Trent; Pickering, John W; Endre, Zoltán H

    2017-09-01

    Extensive structural damage within the kidney must be present before serum creatinine increases. However, a subclinical phase of chronic kidney disease (CKD) usually goes undetected. Here we tested whether experimental subclinical CKD would modify functional and damage biomarker profiles of acute kidney injury (AKI). Subclinical CKD was induced in rats by adenine or aristolochic acid models but without increasing serum creatinine. After prolonged recovery (three to six weeks), AKI was induced with a subnephrotoxic dose of cisplatin. Urinary levels of kidney injury molecule-1 (KIM-1), cytochrome C, monocyte chemotactic protein-1 (MCP-1), clusterin, and interleukin-18 increased during CKD induction, without an increase in serum creatinine. After AKI in adenine-induced CKD, serum creatinine increased more rapidly, while increased urinary KIM-1, clusterin, and MCP-1 were delayed and reduced. Increased serum creatinine and biomarker excretion were associated with diffuse tubulointerstitial injury in the outer stripe of outer medulla coupled with over 50% cortical damage. Following AKI in aristolochic acid-induced CKD, increased serum creatinine, urinary KIM-1, clusterin, MCP-1, cytochrome C, and interleukin-18 concentrations and excretion were greater at day 21 than day 42 and inversely correlated with cortical injury. Subclinical CKD modified functional and damage biomarker profiles in diametrically opposite ways. Functional biomarker profiles were more sensitive, while damage biomarker diagnostic thresholds and increases were diminished and delayed. Damage biomarker concentrations and excretion were inversely linked to the extent of prior cortical damage. Thus, thresholds for AKI biomarkers may need to be lower or sampling delayed in the known presence of CKD. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  11. The synthesis, structure-toxicity relationship of cisplatin derivatives for the mechanism research of cisplatin-induced nephrotoxicity.

    Science.gov (United States)

    Hu, Jing; Wu, Tian-Ming; Li, Hong-Ze; Zuo, Ze-Ping; Zhao, Ying-Lan; Yang, Li

    2017-08-01

    Cisplatin is a widely used antineoplastic drug, while its nephrotoxicity limits the clinical application. Although several mechanisms contributing to nephrotoxicity have been reported, the direct protein targets are unclear. Herein we reported the synthesis of 29 cisplatin derivatives and the structure-toxicity relationship (STR) of these compounds with MTT assay in human renal proximal tubule cells (HK-2) and pig kidney epithelial cells (LLC-PK1). To the best of our knowledge, this study represented the first report regarding the structure-toxicity relationship (STR) of cisplatin derivatives. The potency of biotin-pyridine conjugated derivative 3 met the requirement for target identification, and the preliminary chemical proteomics results suggested that it is a promising tool for further target identification of cisplatin-induced nephrotoxicity. Copyright © 2017. Published by Elsevier Ltd.

  12. Royal Jelly Modulates Oxidative Stress and Apoptosis in Liver and Kidneys of Rats Treated with Cisplatin

    Directory of Open Access Journals (Sweden)

    Ali Karadeniz

    2011-01-01

    Full Text Available Cisplatin (CDDP is one of the most active cytotoxic agents in the treatment of cancer and has adverse side effects such as nephrotoxicity and hepatotoxicity. The present study was designed to determine the effects of royal jelly (RJ against oxidative stress caused by CDDP injury of the kidneys and liver, by measuring tissue biochemical and antioxidant parameters and investigating apoptosis immunohistochemically. Twenty-four Sprague Dawley rats were divided into four groups, group C: control group received 0.9% saline; group CDDP: injected i.p. with cisplatin (CDDP, 7 mg kg-1 body weight i.p., single dose; group RJ: treated for 15 consecutive days by gavage with RJ (300 mg/kg/day; group RJ + CDDP: treated by gavage with RJ 15 days following a single injection of CDDP. Malondialdehyde (MDA and glutathione (GSH levels, glutathione S-transferase (GST, glutathione peroxidase (GSH-Px, and superoxide dismutase (SOD activities were determined in liver and kidney homogenates, and the liver and kidney were also histologically examined. RJ elicited a significant protective effect towards liver and kidney by decreasing the level of lipid peroxidation (MDA, elevating the level of GSH, and increasing the activities of GST, GSH-Px, and SOD. In the immunohistochemical examinations were observed significantly enhanced apoptotic cell numbers and degenerative changes by cisplatin, but these histological changes were lower in the liver and kidney tissues of RJ + CDDP group. Besides, treatment with RJ lead to an increase in antiapoptotic activity hepatocytes and tubular epithelium. In conclusion, RJ may be used in combination with cisplatin in chemotherapy to improve cisplatin-induced oxidative stress parameters and apoptotic activity.

  13. Pre-treatment with cardamonin protects against cisplatin-induced nephrotoxicity in rats: Impact on NOX-1, inflammation and apoptosis

    International Nuclear Information System (INIS)

    El-Naga, Reem N.

    2014-01-01

    Cisplatin is an effective anti-cancer drug; however, its clinical use is usually associated with nephrotoxicity as a dose-limiting side effect. Several molecular mechanisms have been found to be involved in this nephrotoxicity such as oxidative stress, inflammation and apoptosis. The aim of this study was to explore the potential nephroprotective effect of cardamonin, a flavone found in Alpinia plant, in a rat model of cisplatin-induced nephrotoxicity. The possible mechanisms underlying this nephroprotective effect were investigated. Cardamonin was given at two different doses; 10 and 30 mg/kg orally for two weeks, starting one week before giving a single nephrotoxic dose of cisplatin (7 mg/kg). Acute nephrtoxicity was evident by significantly increased blood urea nitrogen and serum creatinine levels. Also, cisplatin increased lipid peroxidation and depleted reduced glutathione level and superoxide dismutase. Additionally, cisplatin showed a marked pro-inflammatory response as evidenced by significant increase in tissue levels of IL-1β, TNF-α, NF-kB, iNOS, ICAM-1 and MCP-1. Pre-treatment with cardamonin significantly attenuated the nephrotoxic effects, oxidative stress and inflammation induced by cisplatin, in a dose-dependent manner. Also, cardamonin decreased caspase-3 expression and Bax/Bcl-2 ratio as compared to cisplatin group. Besides, cradamonin reversed cisplatin-induced decrease in EGF. Furthermore, up-regulation of NOX-1 was found to be involved in cisplatin-induced nephrotoxicity and its expression was significantly reduced by cardamonin. Histopathological examination further confirmed the nephroprotective effect of cardamonin. Moreover, pre-treatment with subtoxic concentration of cardamonin has significantly enhanced cisplatin cytotoxic activity in four different human cancer cell lines; hela, hepG2, PC3 and HCT116 cancer cell lines. In conclusion, these findings suggest that cardamonin improves therapeutic index of cisplatin and that NOX-1 is

  14. Pre-treatment with cardamonin protects against cisplatin-induced nephrotoxicity in rats: Impact on NOX-1, inflammation and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    El-Naga, Reem N., E-mail: reemelnaga@hotmail.com

    2014-01-01

    Cisplatin is an effective anti-cancer drug; however, its clinical use is usually associated with nephrotoxicity as a dose-limiting side effect. Several molecular mechanisms have been found to be involved in this nephrotoxicity such as oxidative stress, inflammation and apoptosis. The aim of this study was to explore the potential nephroprotective effect of cardamonin, a flavone found in Alpinia plant, in a rat model of cisplatin-induced nephrotoxicity. The possible mechanisms underlying this nephroprotective effect were investigated. Cardamonin was given at two different doses; 10 and 30 mg/kg orally for two weeks, starting one week before giving a single nephrotoxic dose of cisplatin (7 mg/kg). Acute nephrtoxicity was evident by significantly increased blood urea nitrogen and serum creatinine levels. Also, cisplatin increased lipid peroxidation and depleted reduced glutathione level and superoxide dismutase. Additionally, cisplatin showed a marked pro-inflammatory response as evidenced by significant increase in tissue levels of IL-1β, TNF-α, NF-kB, iNOS, ICAM-1 and MCP-1. Pre-treatment with cardamonin significantly attenuated the nephrotoxic effects, oxidative stress and inflammation induced by cisplatin, in a dose-dependent manner. Also, cardamonin decreased caspase-3 expression and Bax/Bcl-2 ratio as compared to cisplatin group. Besides, cradamonin reversed cisplatin-induced decrease in EGF. Furthermore, up-regulation of NOX-1 was found to be involved in cisplatin-induced nephrotoxicity and its expression was significantly reduced by cardamonin. Histopathological examination further confirmed the nephroprotective effect of cardamonin. Moreover, pre-treatment with subtoxic concentration of cardamonin has significantly enhanced cisplatin cytotoxic activity in four different human cancer cell lines; hela, hepG2, PC3 and HCT116 cancer cell lines. In conclusion, these findings suggest that cardamonin improves therapeutic index of cisplatin and that NOX-1 is

  15. The effect of Hibiscus sabdariffa calyx extract on cisplatin-induced ...

    African Journals Online (AJOL)

    JTEkanem

    2008-12-14

    Dec 14, 2008 ... of reduced glutathione in the liver and kidney over controls (p < 0.05). Cisplatin also caused a ..... Hydroperoxide-induced hepatic toxicity in rats. Food Chem. ... effects of Artemisia absinthium on acetaminophen and CCl. 4. –.

  16. IN0523 (Urs-12-ene-3α,24β-diol) a plant based derivative of boswellic acid protect Cisplatin induced urogenital toxicity

    International Nuclear Information System (INIS)

    Singh, Amarinder; Arvinda, S; Singh, Surjeet; Suri, Jyotsna; Koul, Surinder; Mondhe, Dilip M.; Singh, Gurdarshan; Vishwakarma, Ram

    2017-01-01

    The limiting factor for the use of Cisplatin in the treatment of different type of cancers is its toxicity and more specifically urogenital toxicity. Oxidative stress is a well-known phenomenon associated with Cisplatin toxicity. However, in Cisplatin treated group, abnormal animal behavior, decreased body weight, cellular and sub-cellular changes in the kidney and sperm abnormality were observed. Our investigation revealed that Cisplatin when administered in combination with a natural product derivative (Urs-12-ene-3α,24β-diol, labeled as IN0523) resulted in significant restoration of body weight and protection against the pathological alteration caused by Cisplatin to kidney and testis. Sperm count and motility were significantly restored near to normal. Cisplatin caused depletion of defense system i.e. glutathione peroxidase, catalase and superoxide dismutase, which were restored close to normal by treatment of IN0523. Reduction in excessive lipid peroxidation induced by Cisplatin was also found by treatment with IN0523. The result suggests that IN0523 is a potential candidate for ameliorating Cisplatin induced toxicity in the kidney and testes at a dose of 100 mg/kg p.o. via inhibiting the oxidative stress/redox status imbalance and may be improving the efflux mechanism. - Highlights: • Synthesis of a novel boswellic acid derivative (IN0523) • Counter oxidative stress induced due to Cisplatin • Protect against urogenital toxicity induced by Cisplatin

  17. IN0523 (Urs-12-ene-3α,24β-diol) a plant based derivative of boswellic acid protect Cisplatin induced urogenital toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Amarinder [Academy of Scientific & Innovative Research (AcSIR), New Delhi (India); PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J& K (India); Arvinda, S [Deptt. of Pathology, Govt. Medical College, Jammu 180001, J& K (India); Singh, Surjeet [PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J& K (India); Suri, Jyotsna [Deptt. of Pathology, Govt. Medical College, Jammu 180001, J& K (India); Koul, Surinder [Bio-Organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J& K (India); Mondhe, Dilip M. [Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J& K (India); Singh, Gurdarshan, E-mail: singh_gd@iiim.ac.in [PK-PD-Toxicology and Formulation Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J& K (India); Vishwakarma, Ram [Bio-Organic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, J& K (India)

    2017-03-01

    The limiting factor for the use of Cisplatin in the treatment of different type of cancers is its toxicity and more specifically urogenital toxicity. Oxidative stress is a well-known phenomenon associated with Cisplatin toxicity. However, in Cisplatin treated group, abnormal animal behavior, decreased body weight, cellular and sub-cellular changes in the kidney and sperm abnormality were observed. Our investigation revealed that Cisplatin when administered in combination with a natural product derivative (Urs-12-ene-3α,24β-diol, labeled as IN0523) resulted in significant restoration of body weight and protection against the pathological alteration caused by Cisplatin to kidney and testis. Sperm count and motility were significantly restored near to normal. Cisplatin caused depletion of defense system i.e. glutathione peroxidase, catalase and superoxide dismutase, which were restored close to normal by treatment of IN0523. Reduction in excessive lipid peroxidation induced by Cisplatin was also found by treatment with IN0523. The result suggests that IN0523 is a potential candidate for ameliorating Cisplatin induced toxicity in the kidney and testes at a dose of 100 mg/kg p.o. via inhibiting the oxidative stress/redox status imbalance and may be improving the efflux mechanism. - Highlights: • Synthesis of a novel boswellic acid derivative (IN0523) • Counter oxidative stress induced due to Cisplatin • Protect against urogenital toxicity induced by Cisplatin.

  18. Sodium hypochlorite-induced acute kidney injury

    Directory of Open Access Journals (Sweden)

    Brandon W Peck

    2014-01-01

    Full Text Available Sodium hypochlorite (bleach is commonly used as an irrigant during dental proce-dures as well as a topical antiseptic agent. Although it is generally safe when applied topically, reports of accidental injection of sodium hypochlorite into tissue have been reported. Local necrosis, pain and nerve damage have been described as a result of exposure, but sodium hypo-chlorite has never been implicated as a cause of an acute kidney injury (AKI. In this report, we describe the first case of accidental sodium hypochlorite injection into the infraorbital tissue during a dental procedure that precipitated the AKI. We speculate that oxidative species induced by sodium hypochlorite caused AKI secondary to the renal tubular injury, causing mild acute tubular necrosis.

  19. CD4 T cell knockout does not protect against kidney injury and worsens cancer.

    Science.gov (United States)

    Ravichandran, Kameswaran; Wang, Qian; Ozkok, Abdullah; Jani, Alkesh; Li, Howard; He, Zhibin; Ljubanovic, Danica; Weiser-Evans, Mary C; Nemenoff, Raphael A; Edelstein, Charles L

    2016-04-01

    Most previous studies of cisplatin-induced acute kidney injury (AKI) have been in models of acute, high-dose cisplatin administration that leads to mortality in non-tumor-bearing mice. The aim of the study was to determine whether CD4 T cell knockout protects against AKI and cancer in a clinically relevant model of low-dose cisplatin-induced AKI in mice with cancer. Kidney function, serum neutrophil gelatinase-associated lipocalin (NGAL), acute tubular necrosis (ATN), and tubular apoptosis score were the same in wild-type and CD4 -/- mice with AKI. The lack of protection against AKI in CD4 -/- mice was associated with an increase in extracellular signal-regulated kinase (ERK), p38, CXCL1, and TNF-α, mediators of AKI and fibrosis, in both cisplatin-treated CD4 -/- mice and wild-type mice. The lack of protection was independent of the presence of cancer or not. Tumor size was double, and cisplatin had an impaired therapeutic effect on the tumors in CD4 -/- vs. wild-type mice. Mice depleted of CD4 T cells using the GK1.5 antibody were not protected against AKI and had larger tumors and lesser response to cisplatin. In summary, in a clinically relevant model of cisplatin-induced AKI in mice with cancer, (1) CD4 -/- mice were not protected against AKI; (2) ERK, p38, CXCL1, and TNF-α, known mediators of AKI, and interstitial fibrosis were increased in CD4 -/- kidneys; and (3) CD4 -/- mice had faster tumor growth and an impaired therapeutic effect of cisplatin on the tumors. The data warns against the use of CD4 T cell inhibition to attenuate cisplatin-induced AKI in patients with cancer. A clinically relevant low-dose cisplatin model of AKI in mice with cancer was used. CD4 -/- mice were not functionally or histologically protected against AKI. CD4 -/- mice had faster tumor growth. CD4 -/- mice had an impaired therapeutic effect of cisplatin on the tumors. Mice depleted of CD4 T cells were not protected against AKI and had larger tumors.

  20. Adenovirus-Mediated Over-Expression of Nrf2 Within Mesenchymal Stem Cells (MSCs Protected Rats Against Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadzadeh-Vardin

    2015-06-01

    Full Text Available Purpose: Recent developments in the field of cell therapy have led to a renewed interest in treatment of acute kidney injury (AKI. However, the early death of transplanted mesenchymal stem cells (MSCs in stressful microenvironment of a recipient tissue is a major problem with this kind of treatment. The objective of this study was to determine whether overexpression of a cytoprotective factor, nuclear factor erythroid-2 related factor 2 (Nrf2, in MSCs could protect rats against AKI. Methods: The Nrf2 was overexpressed in MSCs by recombinant adenoviruses, and the MSCs were implanted to rats suffering from cisplatin-induced AKI. Results: The obtained results showed that transplantation with the engineered MSCs ameliorates cisplatin-induced AKI. Morphologic features of the investigated kidneys showed that transplantation with the MSCs in which Nrf2 had been overexpressed significantly improved the complications of AKI. Conclusion: These findings suggested that the engineered MSCs might be a good candidate to be further evaluated in clinical trials. However, detailed studies must be performed to investigate the possible carcinogenic effect of Nrf2 overexpression.

  1. Drug induced acute kidney injury: an experimental animal study

    International Nuclear Information System (INIS)

    Khan, M.W.A.; Khan, B.T.; Qazi, R.A.; Ashraf, M.; Waqar, M.

    2017-01-01

    Objective: To assess the extent of drug induced nephrotoxicity in laboratory animals for determining the role and extent of iatrogenic kidney damage in patients exposed to nephrotoxic drugs in various clinical setups. Study Design: Randomized control trail. Place and Duration of study: Pharmacology department and animal house of Army Medical College from Jan 2011 to Aug 2011. Material and Methods: Thirty six mixed breed rabbits were used in this study. Animals were randomly divided into six groups consisting of six rabbits in each. Groups were named A, B, C, D, E and F. Group A was control group. Group B was given 0.9% normal saline. Group C rabbits were given acute nephrotoxic single dose of amphotericin B deoxycholate. Group D received 0.9% normal saline 10ml/kg followed by amphotericin B infusion. Group E was injected acute nephrotoxic regimen of cyclosporine and amphotericin B infusion. Group F received saline loading along with acute nephrotoxic regimen of cyclosporine and amphotericin B infusion. Results: Biochemical and histopathological analysis showed significant kidney injury in rabbits exposed to acute nephrotoxic doses of amphotericin B and cyclosporine. Toxicity was additive when the two drugs were administered simultaneously. Group of rabbits with saline loading had significantly lesser kidney damage. Conclusion: Iatrogenic acute kidney damage is a major cause of morbidity in experimental animals exposed to such nephrotoxic drugs like amphotericin B and cyclosporine, used either alone or in combination. Clinical studies are recommended to assess the extent of iatrogenic renal damage in patients and its economic burden. Efficient and cost effective protective measure may be adopted in clinical setups against such adverse effects. (author)

  2. Pharmacological inhibition of NADPH oxidase protects against cisplatin induced nephrotoxicity in mice by two step mechanism.

    Science.gov (United States)

    Wang, Yimin; Luo, Xiao; Pan, Hao; Huang, Wei; Wang, Xueping; Wen, Huali; Shen, Kezhen; Jin, Baiye

    2015-09-01

    Cisplatin induced nephrotoxicity is primarily caused by ROS (Reactive Oxygen Species) induced proximal tubular cell death. NADPH oxidase is major source of ROS production by cisplatin. Here, we reported that pharmacological inhibition of NADPH oxidase by acetovanillone (obtained from medicinal herb Picrorhiza kurroa) led to reduced cisplatin nephrotoxicity in mice. In this study we used various molecular biology and biochemistry methods a clinically relevant model of nephropathy, induced by an important chemotherapeutic drug cisplatin. Cisplatin-induced nephrotoxicity was evident by histological damage from loss of the tubular structure. The damage was also marked by the increase in blood urea nitrogen, creatinine, protein nitration as well as cell death markers such as caspase 3/7 activity and DNA fragmentation. Tubular cell death by cisplatin led to pro-inflammatory response by production of TNFα and IL1β followed by leukocyte/neutrophil infiltration which resulted in new wave of ROS involving more NADPH oxidases. Cisplatin-induced markers of kidney damage such as oxidative stress, cell death, inflammatory cytokine production and nephrotoxicity were attenuated by acetovanillone. In addition to that, acetovanillone enhanced cancer cell killing efficacy of cisplatin. Thus, pharmacological inhibition of NADPH oxidase can be protective for cisplatin-induced nephrotoxicity in mice. Copyright © 2015. Published by Elsevier Ltd.

  3. Cisplatin-Induced Eosinophilic Pneumonia

    Directory of Open Access Journals (Sweden)

    Hideharu Ideguchi

    2014-01-01

    Full Text Available A 67-year-old man suffering from esophageal cancer was admitted to our hospital complaining of dyspnea and hypoxemia. He had been treated with cisplatin, docetaxel, and fluorouracil combined with radiotherapy. Chest computed tomography revealed bilateral ground-glass opacity, and bronchoalveolar lavage fluid showed increased eosinophils. Two episodes of transient eosinophilia in peripheral blood were observed after serial administration of anticancer drugs before the admission, and drug-induced lymphocyte stimulation test to cisplatin was positive. Thus cisplatin-induced eosinophilic pneumonia was suspected, and corticosteroid was effectively administered. To our knowledge, this is the first reported case of cisplatin-induced eosinophilic pneumonia.

  4. Understanding the Risk Factors and Long-Term Consequences of Cisplatin-Associated Acute Kidney Injury: An Observational Cohort Study.

    Directory of Open Access Journals (Sweden)

    Zeenat Yousuf Bhat

    Full Text Available Acute kidney injury (AKI is a well-known complication of cisplatin-based chemotherapy; however, its impact on long-term patient survival is unclear. We sought to determine the incidence and risk factors for development of cisplatin-associated AKI and its impact on long-term renal function and patient survival. We identified 233 patients who received 629 cycles of high-dose cisplatin (99±9mg/m2 for treatment of head and neck cancer between 2005 and 2011. These subjects were reviewed for development of AKI. Cisplatin nephrotoxicity (CN was defined as persistent rise in serum creatinine, with a concomitant decline in serum magnesium and potassium, in absence of use of nephrotoxic agents and not reversed with hydration. All patients were hydrated per protocol and none had baseline glomerular filtration rate (GFR via CKD-EPI<60mL/min/1.73m2. The patients were grouped based on development of AKI and were staged for levels of injury, per KDIGO-AKI definition. Renal function was assessed via serum creatinine and estimated glomerular filtration rate (eGFR via CKD-EPI at baseline, 6- and 12-months. Patients with AKI were screened for the absence of nephrotoxic medication use and a temporal decline in serum potassium and magnesium levels. Logistic regression models were constructed to determine risk factors for cisplatin-associated AKI. Twelve-month renal function was compared among groups using ANOVA. Kaplan-Maier curves and Cox proportional hazard models were constructed to study its impact on patient survival. Of 233 patients, 158(68% developed AKI; 77 (49% developed stage I, 55 (35% developed stage II, and 26 (16% developed stage III AKI. Their serum potassium and magnesium levels correlated negatively with level of injury (p<0.05. African American race was a significant risk factor for cisplatin-associated AKI, OR 2.8 (95% CI 1.3 to 6.3 and 2.8 (95% CI 1.2 to 6.7 patients with stage III AKI had the lowest eGFR value at 12 months (p = 0.05 and long

  5. The renoprotective activity of hesperetin in cisplatin induced nephrotoxicity in rats: Molecular and biochemical evidence.

    Science.gov (United States)

    Kumar, Mukesh; Dahiya, Vicky; Kasala, Eshvendar Reddy; Bodduluru, Lakshmi Narendra; Lahkar, Mangala

    2017-05-01

    Nephrotoxicity remain a major life-threatening complication in cancer patients on cisplatin chemotherapy. In this study, we investigated the protective effect and possible cellular mechanism of the hesperetin, a naturally-occurring bioflavonoid against cisplatin-induced renal injury in rats. Hesperetin was administered at a dose of 50mg/kg and 100mg/kg orally for 10days and cisplatin (7.5mg/kg, ip) was administered on the 5th day of experiment. Cisplatin induced nephrotoxicity was evidenced by alteration in the level of markers such as blood urea nitrogen, creatinine, serum albumin and severe histopathological changes in kidney. Cisplatin administration also resulted in significant increase in the tissue oxidative stress and inflammatory cytokines. The level of antioxidants enzymes were decreased significantly in the cisplatin administered rats. Hesperetin treatment (50mg/kg and 100mg/kg) normalized the renal function by attenuation of the cisplatin-induced oxidative stress, lipid peroxidation, and inflammatory cytokines and histopathological alterations. On the basis of these experimental findings our present study postulate that co-administration of hesperetin with cisplatin chemotherapy may be promising preventive approach to limit the major mortal side effect of cisplatin. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  6. Arctigenin: A two-edged sword in ischemia/reperfusion induced acute kidney injury.

    Science.gov (United States)

    Han, Feng; Xia, Xin-Xin; Dou, Meng; Wang, Yu-Xiang; Xue, Wu-Jun; Ding, Xiao-Ming; Zheng, Jin; Ding, Chen-Guang; Tian, Pu-Xun

    2018-04-27

    Arctigenin (ATG) is one of the main active substances in fruit derived from Arctium lappa L. Previous studies have reported that ATG have antitumor, neuroprotective, antioxidant, antifibrosis and anti-inflammatory functions. However, the actions of ATG in kidney with acute injury following ischemia/ reperfusion (I/R) is still uncertain. In our study, mice were subjected to kidney I/R by having the kidney pedicles clamped and administered with vehicle or ATG (1, 3 or 9 mg/kg/d) via oral gavage for 7 consecutive days prior to I/R. Notably, ATG aggravated kidney I/R injury with the concentration increases. Multiple biochemical assays and histological examination showed ATG significantly alleviated the inflammatory response as reflected by a decreased expression of proinflammatory cytokine, TLR4/MyD88, and NF-κB, along with the infiltration of CD68 + macrophage and CD11b + Gr1 + neutrophil in the kidneys. Meanwhile, ATG alleviated I/R-induced oxidative stress proved by increasing kidney manganese superoxide dismutase and glutathione peroxidase activity but reducing levels of malonaldehyde and inducible nitric oxide synthase. On the contrary, apoptosis was significantly increased in kidneys of ATG-treated mice compared with vehicle-treated controls, especially in tubular cells. There were increased numbers of TUNEL positive cells and increased Bcl-2, Bax, cleaved-caspase-3, and cleaved-caspase-9 expression. The current study demonstrates that pretreatment of ATG aggravates I/R induced acute kidney injury by increasing apoptosis of tubular cells despite reducing infiltrating inflammatory cells and proinflammatory cytokine. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Tropisetron attenuates cisplatin-induced nephrotoxicity in mice.

    Science.gov (United States)

    Zirak, Mohammad Reza; Rahimian, Reza; Ghazi-Khansari, Mahmoud; Abbasi, Ata; Razmi, Ali; Mehr, Shahram Ejtemaei; Mousavizadeh, Kazem; Dehpour, Ahmad Reza

    2014-09-05

    Nephrotoxicity is one of the most important complications of cisplatin, a potent chemotherapeutic agent used in the treatment of various malignancies. 5-HT3 antagonists are widely used to counteract chemotherapy-induced emesis and new studies reveal that they poses notable anti-inflammatory properties. In current study, we investigated the effects of 5-HT3 antagonists on cisplatin induced nephrotoxicity in mice. To identify the underlying mechanism of renal protection by tropisetron, we investigated the probable involvement of alpha7 nicotinic acetylcholine receptor (α7nAChR). A single injection of cisplatin (20mg/kg; i.p) induced nephrotoxicity, 5-HT3 antagonists (tropisetron, granisetron and ondansetron,) were given twice daily for 3 day (3mg/kg; i.p). Finally animals were euthanized and blood sample was collected to measure urea and creatinin level. Also kidneys were removed for histopathological examination and biochemical measurements including glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD) activity, inducible nitric oxide synthase (iNOS) expression and inflammatory cytokines. Tropisetron decreased the expression of inflammatory molecules including tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and iNOS and improved histopathological damage and renal dysfunction. However other 5-HT3 antagonists, granisetron or ondansetron do not have any elicit effects on biochemical markers and histological damages. Since methyllycaconitine, antagonist of α7nAChR, was unable to reverse the beneficial effect of tropisetron, we concluded that this effect of tropisetron is not mediated by α7nAChR.Our results showed that tropisetron treatment markedly ameliorated the experimental cisplatin induced-nephrotoxicity and this effect might be 5-HT3 receptor and α7nAChR independent. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Nitrite-induced acute kidney injury with secondary hyperparathyroidism: Case report and literature review.

    Science.gov (United States)

    Peng, Tao; Hu, Zhao; Yang, Xiangdong; Gao, Yanxia; Ma, Chengjun

    2018-02-01

    Acute kidney injury (AKI) with hyperparathyroidism caused by nitrite was rare, and renal function and parathyroid hormone (PTH) decreased to normal range after therapy. Acute kidney injury was diagnosed in a 40-year-old male with hyperparathyroidism and cyanosis of his hands and both forearms. The patient ate some recently pickled vegetables, and he experienced nausea, vomiting and diarrhoea without oliguria or anuria; Additionally, his hands and both forearms had a typical blue ash appearance. After admission, the laboratory findings indicated theincreasing serum creatinine (Scr) and parathyroid hormone (PTH). He was diagnosed as acute kidney injury with hyperparathyroidism caused by nitrite. The patient stopped eating the pickled vegetables and was given rehydration, added calories and other supportive therapy without any glucocorticoids. According to his clinical manifestations, laboratory findings and imaging results, the patient was diagnosed with acute kidney injury with secondary hyperparathyroidism. He was given symptomatic supportive care therapy. After one week, the serum creatinine, parathyroid hormone (PTH), hypercalcemia, hyperphosphatemia, proteinuria, and urine red blood cell values decreased to normal range. Nitrite-induced acute kidney injury with secondary hyperparathyroidism was relatively rare. After therapy, the function of the kidney and parathyroid returned to normal. This case suggests that detailed collection of medical history, physical examination and correct symptomatic treatment is very important.

  9. Gamma-aminobutyric acid aggravates nephrotoxicity induced by cisplatin in female rats.

    Science.gov (United States)

    Peysepar, Elham; Soltani, Nepton; Nematbakhsh, Mehdi; Eshraghi-Jazi, Fatemeh; Talebi, Ardeshir

    2016-01-01

    Cisplatin (CP) is a major antineoplastic drug for treatment of solid tumors. CP-induced nephrotoxicity may be gender-related. This is while gamma-aminobutyric acid (GABA) is an inhibitory neurotransmitter in the central nervous system that has renoprotective impacts on acute renal injury. This study was designed to investigate the protective role of GABA against CP-induced nephrotoxicity in male and female rats. Sixty Wistar male and female rats were used in eight experimental groups. Both genders received GABA (50 μg/kg/day; i. p.) for 14 days and CP (2.5 mg/kg/day; i. p.) was added from day 8 to the end of the study, and they were compared with the control groups. At the end of the study, all animals were sacrificed and the serum levels of blood urea nitrogen (BUN), creatinine (Cr), nitrite, malondialdehyde (MDA), and magnesium (Mg) were measured. The kidney tissue damage was also determined via staining. CP significantly increased the serum levels of Cr and BUN, kidney weight, and kidney tissue damage score in both genders (PGABA did not attenuate these markers in males; even these biomarkers were intensified in females. Serum level of Mg, and testis and uterus weights did not alter in the groups. However, the groups were significantly different in terms of nitrite and MDA levels. It seems that GABA did not improve nephrotoxicity induced by CP-treated rats, and it exacerbated renal damage in female rats.

  10. IN0523 (Urs-12-ene-3α,24β-diol) a plant based derivative of boswellic acid protect Cisplatin induced urogenital toxicity.

    Science.gov (United States)

    Singh, Amarinder; Arvinda, S; Singh, Surjeet; Suri, Jyotsna; Koul, Surinder; Mondhe, Dilip M; Singh, Gurdarshan; Vishwakarma, Ram

    2017-03-01

    The limiting factor for the use of Cisplatin in the treatment of different type of cancers is its toxicity and more specifically urogenital toxicity. Oxidative stress is a well-known phenomenon associated with Cisplatin toxicity. However, in Cisplatin treated group, abnormal animal behavior, decreased body weight, cellular and sub-cellular changes in the kidney and sperm abnormality were observed. Our investigation revealed that Cisplatin when administered in combination with a natural product derivative (Urs-12-ene-3α,24β-diol, labeled as IN0523) resulted in significant restoration of body weight and protection against the pathological alteration caused by Cisplatin to kidney and testis. Sperm count and motility were significantly restored near to normal. Cisplatin caused depletion of defense system i.e. glutathione peroxidase, catalase and superoxide dismutase, which were restored close to normal by treatment of IN0523. Reduction in excessive lipid peroxidation induced by Cisplatin was also found by treatment with IN0523. The result suggests that IN0523 is a potential candidate for ameliorating Cisplatin induced toxicity in the kidney and testes at a dose of 100mg/kg p.o. via inhibiting the oxidative stress/redox status imbalance and may be improving the efflux mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Inhibition of HDAC6 protects against rhabdomyolysis-induced acute kidney injury.

    Science.gov (United States)

    Shi, Yingfeng; Xu, Liuqing; Tang, Jinhua; Fang, Lu; Ma, Shuchen; Ma, Xiaoyan; Nie, Jing; Pi, Xiaoling; Qiu, Andong; Zhuang, Shougang; Liu, Na

    2017-03-01

    Histone deacetylase 6 (HDAC6) inhibition has been reported to protect against ischemic stroke and prolong survival after sepsis in animal models. However, it remains unknown whether HDAC6 inhibition offers a renoprotective effect after acute kidney injury (AKI). In this study, we examined the effect of tubastatin A (TA), a highly selective inhibitor of HDAC6, on AKI in a murine model of glycerol (GL) injection-induced rhabdomyolysis. Following GL injection, the mice developed severe acute tubular injury as indicated by renal dysfunction; expression of neutrophil gelatinase-associated lipocalin (NGAL), an injury marker of renal tubules; and an increase of TdT-mediated dUTP nick-end labeling (TUNEL)-positive tubular cells. These changes were companied by increased HDAC6 expression in the cytoplasm of renal tubular cells. Administration of TA significantly reduced serum creatinine and blood urea nitrogen levels as well as attenuated renal tubular damage in injured kidneys. HDAC6 inhibition also resulted in decreased expression of NGAL, reduced apoptotic cell, and inactivated caspase-3 in the kidney after acute injury. Moreover, injury to the kidney increased phosphorylation of nuclear factor (NF)-κB and expression of multiple cytokines/chemokines including tumor necrotic factor-α and interleukin-6 and monocyte chemoattractant protein-1, as well as macrophage infiltration. Treatment with TA attenuated all those responses. Finally, HDAC6 inhibition reduced the level of oxidative stress by suppressing malondialdehyde (MDA) and preserving expression of superoxide dismutase (SOD) in the injured kidney. Collectively, these data indicate that HDAC6 contributes to the pathogenesis of rhabdomyolysis-induced AKI and suggest that HDAC6 inhibitors have therapeutic potential for AKI treatment. Copyright © 2017 the American Physiological Society.

  12. Plant-Derived Agents for Counteracting Cisplatin-Induced Nephrotoxicity

    OpenAIRE

    Ojha, Shreesh; Venkataraman, Balaji; Kurdi, Amani; Mahgoub, Eglal; Sadek, Bassem; Rajesh, Mohanraj

    2016-01-01

    Cisplatin (CSP) is a chemotherapeutic agent commonly used to treat a variety of malignancies. The major setback with CSP treatment is that its clinical efficacy is compromised by its induction of organ toxicity, particular to the kidneys and ears. Despite the significant strides that have been made in understanding the mechanisms underlying CSP-induced renal toxicity, advances in developing renoprotective strategies are still lacking. In addition, the renoprotective approaches described in th...

  13. Cellular Responses to Cisplatin-Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Alakananda Basu

    2010-01-01

    Full Text Available Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.

  14. Cisplatin Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Seyed Seifollah Beladi Mousavi

    2014-02-01

    The standard approach to prevent cisplatin-induced nephrotoxicity is the administration of lower doses of cisplatin in combination with the administration of full intravenous isotonic saline before and after cisplatin administration. Although a number of pharmacologic agents including sodium thiosulfate, N-acetylcysteine, theophylline and glycine have been evaluated for prevention of nephrotoxicity, none have proved to have an established role, thus, additional clinical studies will be required to confirm their probable effects.

  15. Beneficial Effects of Bioactive Compounds in Mulberry Fruits against Cisplatin-Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Dahae Lee

    2018-04-01

    Full Text Available Mulberry, the fruit of white mulberry tree (Morus alba L., Moraceae, is commonly used in traditional Chinese medicines as a sedative, tonic, laxative, and emetic. In our continuing research of the bioactive metabolites from mulberry, chemical analysis of the fruits led to the isolation of five compounds, 1–5. The compounds were identified as butyl pyroglutamate (1, quercetin 3-O-β-d-glucoside (2, kaempferol 3-O-β-d-rutinoside (3, rutin (4, and 2-phenylethyl d-rutinoside (5 by spectroscopic data analysis, comparing their nuclear magnetic resonance (NMR data with those in published literature, and liquid chromatography–mass spectrometry analysis. The isolated compounds 1–5 were evaluated for their effects on anticancer drug-induced side effects by cell-based assays. Compound 1 exerted the highest protective effect against cisplatin-induced kidney cell damage. This effect was found to be mediated through the attenuation of phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, p38, mitogen-activated protein kinase, and caspase-3 in cisplatin-induced kidney cell damage.

  16. Dexamethasone loaded nanoparticles exert protective effects against Cisplatin-induced hearing loss by systemic administration.

    Science.gov (United States)

    Sun, Changling; Wang, Xueling; Chen, Dongye; Lin, Xin; Yu, Dehong; Wu, Hao

    2016-04-21

    Ototoxicity is one of the most important adverse effects of cisplatin chemotherapy. As a common treatment of acute sensorineural hearing loss, systemic administration of steroids was demonstrated ineffective against cisplatin-induced hearing loss (CIHL) in published studies. The current study aimed to evaluate the potential protective effect of dexamethasone (DEX) encapsulated in polyethyleneglycol-coated polylactic acid (PEG-PLA) nanoparticles (DEX-NPs) against cisplatin-induced hearing loss following systemic administration. DEX was fabricated into PEG-PLA nanoparticles using emulsion and evaporation technique as previously reported. DEX or DEX-NPs was administered intraperitoneally to guinea pigs 1h before cisplatin administration. Auditory brainstem response (ABR) threshold shifts were measured at four frequencies (4, 8, 16, and 24kHz) 1 day before and three days after cisplatin injection. Cochlear morphology was examined to evaluate inner ear injury induced by cisplatin exposure. A single dose of DEX-NPs 1h before cisplatin treatment resulted in a significant preservation of the functional and structural properties of the cochlea, which was equivalent to the effect of multidose (3 days) DEX injection. In contrast, no significant protective effect was observed by single dose injection of DEX. The results of histological examination of the cochleae were consistent with the functional measurements. In conclusion, a single dose DEX-NPs significantly attenuated cisplatin ototoxicity in guinea pigs after systemic administration at both histological and functional levels indicating the potential therapeutic benefits of these nanoparticles for enhancing the delivery of DEX in acute sensorineural hearing loss. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Protective effect and mechanism of action of saponins isolated from the seeds of gac (Momordica cochinchinensis Spreng.) against cisplatin-induced damage in LLC-PK1 kidney cells.

    Science.gov (United States)

    Jung, Kiwon; Lee, Dahae; Yu, Jae Sik; Namgung, Hojin; Kang, Ki Sung; Kim, Ki Hyun

    2016-03-01

    This study was performed to investigate the renoprotective effect and mechanism of Momordicae Semen, gac seeds, against the cisplatin-induced damage in LLC-PK1 kidney cells. In order to identify the active components, three major saponins were isolated from extract of the gac seed, gypsogenin 3-O-β-d-galactopyranosyl(1→2)-[α-L-rhamnopyranosyl(1→3)]-β-d-glucuronopyranoside (1), quillaic acid 3-O-β-D-galactopyranosyl(1→2)-[α-L-rhamnopyranosyl(1→3)]-β-D-glucuronopyranoside (2), and momordica saponin I (3). Compounds 1 and 2 ameliorated cisplatin-induced nephrotoxicity up to 80% of the control value at both 5 and 25μM. Phosphorylation of MAPKs was decreased along cisplatin treatment after treatment with compounds 1 and 2. These results show that blocking the MAPKs signaling cascade plays a critical role in mediating the renoprotective effect of Momordicae Semen extract and compounds 1 and 2. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Acute kidney failure

    Science.gov (United States)

    ... Renal failure - acute; ARF; Kidney injury - acute Images Kidney anatomy References Devarajan P. Biomarkers for assessment of renal function during acute kidney injury. In: Alpern RJ, Moe OW, Caplan M, ...

  19. Single-dose-dexketoprofen-induced acute kidney injury due to massive rhabdomyolysis.

    Science.gov (United States)

    Sav, Tansu; Unal, Aydin; Erden, Abdulsamet; Gunal, Ali Ihsan

    2012-10-01

    A 70-year-old male patient was admitted complaining of weakness and pain in his arms and lower limbs. His serum creatine kinase and serum creatinine were markedly elevated (36,248 IU/L and 2.8 mg/dL, respectively). He had taken dexketoprofen trometamol because of a common cold, which had developed the previous night. Acute kidney injury caused by dexketoprofen-induced rhabdomyolysis was diagnosed by ruling out other possible causes, such as dermato/polymyositis, myxedema, brucellosis, and hepatitis. Dexketoprofen administration was stopped. As diuresis did not restore spontaneously, the patient was treated with I.V. alkaline solutions and mannitol. Hemodialysis was performed because of anuria and severe metabolic acidosis. The patient's renal function later recovered. In conclusion, dexketoprofen may be a potential risk factor for acute kidney injury and rhabdomyolysis.

  20. Ameliorative effect of fisetin on cisplatin-induced nephrotoxicity in rats via modulation of NF-κB activation and antioxidant defence.

    Directory of Open Access Journals (Sweden)

    Bidya Dhar Sahu

    Full Text Available Nephrotoxicity is a dose-dependent side effect of cisplatin limiting its clinical usage in the field of cancer chemotherapy. Fisetin is a bioactive flavonoid with recognized antioxidant and anti-inflammatory properties. In the present study, we investigated the potential renoprotective effect and underlying mechanism of fisetin using rat model of cisplatin-induced nephrotoxicity. The elevation in serum biomarkers of renal damage (blood urea nitrogen and creatinine; degree of histopathological alterations and oxidative stress were significantly restored towards normal in fisetin treated, cisplatin challenged animals. Fisetin treatment also significantly attenuated the cisplatin-induced IκBα degradation and phosphorylation and blocked the NF-κB (p65 nuclear translocation, with subsequent elevation of pro-inflammatory cytokine, TNF-α, protein expression of iNOS and myeloperoxidase activities. Furthermore, fisetin markedly attenuated the translocation of cytochrome c protein from the mitochondria to the cytosol; decreased the expression of pro-apoptotic proteins including Bax, cleaved caspase-3, cleaved caspase-9 and p53; and prevented the decline of anti-apoptotic protein, Bcl-2. The cisplatin-induced mRNA expression of NOX2/gp91phox and NOX4/RENOX and the NADPH oxidase enzyme activity were also significantly lowered by fisetin treatment. Moreover, the evaluated mitochondrial respiratory enzyme activities and mitochondrial antioxidants were restored by fisetin treatment. Estimation of platinum concentration in kidney tissues revealed that fisetin treatment along with cisplatin did not alter the cisplatin uptake in kidney tissues. In conclusion, these findings suggest that fisetin may be used as a promising adjunct candidate for cisplatin use.

  1. Ameliorative Effect of Fisetin on Cisplatin-Induced Nephrotoxicity in Rats via Modulation of NF-κB Activation and Antioxidant Defence

    Science.gov (United States)

    Sahu, Bidya Dhar; Kalvala, Anil Kumar; Koneru, Meghana; Mahesh Kumar, Jerald; Kuncha, Madhusudana; Rachamalla, Shyam Sunder; Sistla, Ramakrishna

    2014-01-01

    Nephrotoxicity is a dose-dependent side effect of cisplatin limiting its clinical usage in the field of cancer chemotherapy. Fisetin is a bioactive flavonoid with recognized antioxidant and anti-inflammatory properties. In the present study, we investigated the potential renoprotective effect and underlying mechanism of fisetin using rat model of cisplatin-induced nephrotoxicity. The elevation in serum biomarkers of renal damage (blood urea nitrogen and creatinine); degree of histopathological alterations and oxidative stress were significantly restored towards normal in fisetin treated, cisplatin challenged animals. Fisetin treatment also significantly attenuated the cisplatin-induced IκBα degradation and phosphorylation and blocked the NF-κB (p65) nuclear translocation, with subsequent elevation of pro-inflammatory cytokine, TNF-α, protein expression of iNOS and myeloperoxidase activities. Furthermore, fisetin markedly attenuated the translocation of cytochrome c protein from the mitochondria to the cytosol; decreased the expression of pro-apoptotic proteins including Bax, cleaved caspase-3, cleaved caspase-9 and p53; and prevented the decline of anti-apoptotic protein, Bcl-2. The cisplatin-induced mRNA expression of NOX2/gp91phox and NOX4/RENOX and the NADPH oxidase enzyme activity were also significantly lowered by fisetin treatment. Moreover, the evaluated mitochondrial respiratory enzyme activities and mitochondrial antioxidants were restored by fisetin treatment. Estimation of platinum concentration in kidney tissues revealed that fisetin treatment along with cisplatin did not alter the cisplatin uptake in kidney tissues. In conclusion, these findings suggest that fisetin may be used as a promising adjunct candidate for cisplatin use. PMID:25184746

  2. Acute pancreatitis induced by mycophenolate mofetil in a kidney transplant patient

    Directory of Open Access Journals (Sweden)

    Einollahi Behzad

    2015-04-01

    Full Text Available Acute pancreatitis is a rare life-threatening complication in patients after kidney transplantation. Here we described a 56-year-old man who had received a living related kidney transplant for an end-stage renal disease. In his regular follow-up, his serum creatinine was gradually increased and he underwent an allograft biopsy, which revealed an interstitial nephritis/tubular atrophy grade II. Mycophenolate mofetil (MMF was prescribed to control chronic allograft nephropathy. He presented with complaints of severe abdominal pain, vomiting, loss of appetite and fever requiring hospital admission twelve days later. Acute pancreatitis was diagnosed on the basis of laboratory data and imaging findings during hospital admission. There was no history of alcohol consumption in our patient. Unfortunately he died one week later and autopsy findings demonstrated acute necrotizing pancreatitis. The bladder drainage of this patients was normal. Laboratory findings in this patient did not endorse infections and other possibilities regarding the etiology of acute pancreatitis in this patient. Therefore, we concluded that acute pancreatitis in near the patient was induced by drugs and basis on our evidence, MMF is the most important suspect. This study suggests that acute pancreatitis can be considered as a side effect of MMF.

  3. Anthocyanin – Rich Red Dye of Hibiscus Sabdariffa Calyx Modulates Cisplatin-induced Nephrotoxicity and Oxidative Stress in Rats

    Science.gov (United States)

    Ademiluyi, Adedayo O.; Oboh, Ganiyu; Agbebi, Oluwaseun J.; Akinyemi, Ayodele J.

    2013-01-01

    This study sought to investigate the protective effect of dietary inclusion of Hibiscus sabdariffa calyx red dye on cisplatin-induced nephrotoxicity and antioxidant status in rats. Adult male rats were randomly divided into four groups of six animals each. Groups I and II were fed basal diet while groups III and IV were fed diets containing 0.5% and 1% of the dye respectively for 20 days prior to cisplatin administration. Nephrotoxicity was induced by a single dose intraperitoneal administration of cisplatin (7 mg/kg b.w) and the experiment was terminated 3 days after. The kidney and plasma were studied for nephrotoxicity and oxidative stress indices. Cisplatin administration caused a significant (Psabdariffa dye could be attributed to its anthocyanin content. PMID:24711761

  4. 5-Aminolevulinic acid protects against cisplatin-induced nephrotoxicity without compromising the anticancer efficiency of cisplatin in rats in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Yoshio Terada

    Full Text Available Nephrotoxicity is a frequent and major limitation in cisplatin (CDDP-based chemotherapy. 5-Aminolevulinic acid (ALA is widely distributed in animal cells, and it is a precursor of tetrapyrole compounds such as heme that is fundamentally important in aerobic energy metabolism. The aim of this study is to evaluate the protective role of ALA in CDDP-induced acute kidney injury (AKI.We used CDDP-induced AKI rat model and cultured renal tubular cells (NRK-52E. We divided four groups of rats: control, CDDP only, CDDP + ALA(post;(ALA 10 mg/kg + Fe in drinking water after CDDP, CDDP + ALA(pre & post.CDDP increased Cr up to 6.5 mg/dl, BUN up to 230 mg/dl, and ALA significantly reduced these changes. ALA ameliorates CDDP-induced morphological renal damages, and reduced tubular apoptosis evaluated by TUNEL staining and cleaved caspase 3. Protein and mRNA levels of ATP5α, complex(COX IV, UCP2, PGC-1α in renal tissue were significantly decreased by CDDP, and ALA ameliorates reduction of these enzymes. In contrast, Heme Oxigenase (HO-1 level is induced by CDDP treatment, and ALA treatment further up-regulates HO-1 levels. In NRK-52E cells, the CDDP-induced reduction of protein and mRNA levels of mitochondrial enzymes was significantly recovered by ALA + Fe. CDDP-induced apoptosis were ameliorated by ALA + Fe treatment. Furthermore, we evaluated the size of transplantated bladder carcinoma to the rat skin, and ALA did not change the anti cancer effects of CDDP.These data suggested that the protective role of ALA in cisplatin-induced AKI is via protection of mitochondrial viability and prevents tubular apoptosis. Also there are no significant effects of ALA on anticancer efficiency of CDDP in rats. Thus, ALA has the potential to prevent CDDP nephrotoxicity without compromising its anticancer efficacy.

  5. [Acute kidney injury

    NARCIS (Netherlands)

    Hageman, D.; Kooman, J.P.; Lance, M.D.; van Heurn, L.W.; Snoeijs, M.G.

    2012-01-01

    - 'Acute kidney injury' is modern terminology for a sudden decline in kidney function, and is defined by the RIFLE classification (RIFLE is an acronym for Risk, Injury, Failure, Loss and End-stage kidney disease).- Acute kidney injury occurs as a result of the combination of reduced perfusion in the

  6. An integrative view of cisplatin-induced renal and cardiac toxicities: molecular mechanisms, current treatment challenges and potential protective measures

    Science.gov (United States)

    Dugbartey, George J.; Peppone, Luke J.; de Graaf, Inge A.M.

    2017-01-01

    Cisplatin is currently one of the most widely-used chemotherapeutic agents against various malignancies. Its clinical application is limited, however, by inherent renal and cardiac toxicities and other side effects, of which the underlying mechanisms are only partly understood. Experimental studies show cisplatin generates reactive oxygen species, which impair the cell’s antioxidant defense system, causing oxidative stress and potentiating injury, thereby culminating in kidney and heart failure. Understanding the molecular mechanisms of cisplatin-induced renal and cardiac toxicities may allow clinicians to prevent or treat this problem better and may also provide a model for investigating drug-induced organ toxicity in general. This review discusses some of the major molecular mechanisms of cisplatin-induced renal and cardiac toxicities including disruption of ionic homeostasis and energy status of the cell leading to cell injury and cell death. We highlight clinical manifestations of both toxicities as well as (novel)biomarkers such as kidney injury molecule-1 (KIM-1), tissue inhibitor of metalloproteinase-1 (TIMP-1) and N-terminal pro-B-type natriuretic peptide (NT-proBNP). We also present some current treatment challenges and propose potential protective strategies with novel pharmacological compounds that might mitigate or prevent these toxicities, which include the use of hydrogen sulfide. PMID:27717837

  7. A randomized study to assess the efficacy of herbal product to prevent cisplatin-induced nephrotoxicity in a rat model.

    Science.gov (United States)

    Kucuk, Eyup Veli; Bindayi, Ahmet; Mese, Meral; Gulcu Bulmus, Funda; Parmaksiz, Ergun; Cetinel, Ali Cihangir; Bicik Bahcebasi, Zerrin; Sarica, Kemal

    2017-10-03

    This study aimed to investigate the protective effect and antioxidant activity of an herbal product that made from multiple plants in a rat model of kidney dysfunction induced by intraperitoneal cisplatin. Twenty-four rats were divided into four different groups namely: Group 1 - control healthy animals without any specific medication, Group 2 - Herbal product only 5 mg/kg, Group 3 - cisplatin only and Group 4 - Herbal product 5 mg/kg + cisplatin. Evaluation of our findings demonstrated a significant (p = 0.017) reduction in Catalase activities and a significant increase (p = 0.001) in renal tissue Malondialdehyde levels in cisplatin- treated rats when compared with the control group. Also, Glutathion and Glutathione peroxidase content revealed significant (p = 0.031) reduction in renal tissues of cisplatintreated rats compared with the control group. Pre-treatment of rats with the herbal product ameliorated these cisplatininduced changes of the antioxidant enzymes. No statistically significant changes were demonstrated in Superoxide dismutase activities in the tissue specimens of any group. This potent antioxidant herbal medicine was found to have potential antioxidant activity, which may in turn to be effective in the protection of kidney tissue resulting from cisplatin application. Therefore, much attention should be given to the possible role of natural dietary antioxidants for protecting the kidney.

  8. Antiemetic and Myeloprotective Effects of Rhus verniciflua Stoke in a Cisplatin-Induced Rat Model

    Directory of Open Access Journals (Sweden)

    Hyo-Seon Kim

    2017-01-01

    Full Text Available Rhus verniciflua Stoke has been commonly used in traditional medicine to treat gastrointestinal (GI dysfunction diseases. In order to investigate pharmacological properties of Rhus verniciflua Stoke water extract (RVX on cisplatin-induced amnesia, RVX (0, 25, 50, or 100 mg/kg was orally administrated for five consecutive days after a single intraperitoneal injection of cisplatin (6 mg/kg to SD rat. Cisplatin injection significantly increased the kaolin intake (emesis but reduced the normal diet intake (anorexia whereas the RVX treatment significantly improved these abnormal diet behaviors at both the acute and delayed phase. The serotonin concentration and the related gene expressions (5-HT3 receptors and SERT in small intestine tissue were abnormally altered by cisplatin injection, which were significantly attenuated by the RVX treatment. Histological findings of gastrointestinal tracts, as well as the proteins level of proinflammatory cytokines (TNF-α, IL-6, and IL-1β, revealed the beneficial effect of RVX on cisplatin-induced gastrointestinal inflammation. In addition, RVX significantly improved cisplatin-induced myelosuppression, as evidenced by the observation of leukopenia and by histological examinations in bone marrow. Our findings collectively indicated Rhus verniciflua Stoke improved the resistance of rats to chemotherapy-related adverse effects in the gastrointestinal track and bone marrow.

  9. A Role for Tubular Necroptosis in Cisplatin-Induced AKI

    Science.gov (United States)

    Xu, Yanfang; Ma, Huabin; Shao, Jing; Wu, Jianfeng; Zhou, Linying; Zhang, Zhirong; Wang, Yuze; Huang, Zhe; Ren, Junming; Liu, Suhuan; Chen, Xiangmei

    2015-01-01

    Cell death and inflammation in the proximal tubules are the hallmarks of cisplatin-induced AKI, but the mechanisms underlying these effects have not been fully elucidated. Here, we investigated whether necroptosis, a type of programmed necrosis, has a role in cisplatin-induced AKI. We found that inhibition of any of the core components of the necroptotic pathway—receptor-interacting protein 1 (RIP1), RIP3, or mixed lineage kinase domain-like protein (MLKL)—by gene knockout or a chemical inhibitor diminished cisplatin-induced proximal tubule damage in mice. Similar results were obtained in cultured proximal tubular cells. Furthermore, necroptosis of cultured cells could be induced by cisplatin or by a combination of cytokines (TNF-α, TNF-related weak inducer of apoptosis, and IFN-γ) that were upregulated in proximal tubules of cisplatin-treated mice. However, cisplatin induced an increase in RIP1 and RIP3 expression in cultured tubular cells in the absence of cytokine release. Correspondingly, overexpression of RIP1 or RIP3 enhanced cisplatin-induced necroptosis in vitro. Notably, inflammatory cytokine upregulation in cisplatin-treated mice was partially diminished in RIP3- or MLKL-deficient mice, suggesting a positive feedback loop involving these genes and inflammatory cytokines that promotes necroptosis progression. Thus, our data demonstrate that necroptosis is a major mechanism of proximal tubular cell death in cisplatin-induced nephrotoxic AKI. PMID:25788533

  10. Amisulpride in the prevention of nausea and vomiting induced by cisplatin-based chemotherapy

    DEFF Research Database (Denmark)

    Herrstedt, Jørn; Summers, Yvonne; Daugaard, Gedske

    2018-01-01

    PURPOSE: The purpose of this study was to investigate the antiemetic effect of the dopamine D2- and dopamine D3-receptor antagonist, amisulpride, in patients receiving cisplatin-based chemotherapy. METHODS: This dose-finding, non-comparative study investigated the antiemetic effect and safety...... of increasing doses (2.5, 7.5 and 20 mg) of amisulpride against acute nausea and vomiting in the period 0-24 h after initiation of cisplatin-based chemotherapy. The 20 mg dose was also investigated in combination with the 5-HT3-receptor antagonist, ondansetron. The primary parameter was complete response (0...... interval: 65-94%) had a CR and 14/23 (61%) had no nausea at all. CONCLUSIONS: Amisulpride has antiemetic effect against cisplatin-induced acute nausea and vomiting. The effect against nausea is of particular interest. Randomised studies are warranted to further explore the effect and safety of amisulpride....

  11. Andrographolide induced acute kidney injury: analysis of 26 cases reported in Chinese Literature.

    Science.gov (United States)

    Zhang, Wu-Xing; Zhang, Zhi-Min; Zhang, Zhi-Qiang; Wang, Yang; Zhou, Wei

    2014-01-01

    Some Chinese herbs have been known for their kidney toxicity. Andrographolide, the primary component of a traditional medicinal herb, Andrographis paniculata, is widely used in China for the treatment of upper and lower respiratory tract infection, and dysentery etc. The aim of the study was to identify and summarize any case of kidney injury attributed to its use in the Chinese literature. A systemic analysis of the Chinese literature from January 1978 to August 2013 was conducted of case reports of andrographolide induced acute kidney injury (AKI). We identified 26 cases of andrographolide induced AKI (22 males and four females), with an average age of 31.3 years (range: 21 months to 47 years). 100-750 mg (58% 500 mg) of andrographolide was administered in 100-500 mL 5% glucose solution or normal saline by intravenous drip once a day. The adverse event appeared after one to six doses (19 [73.1%] patients got only one dose; cumulative dose 690 ± 670 mg) of andrographolide was given, or 0-96 h (median 1 h) after andrographolide was given. The symptoms included flank pain in 23 cases (88.5%), decreased urine volume in five cases (19.2%), and nausea or vomiting in six cases (23.1%). Laboratory tests showed maximum creatinine 352.8 ± 184.1 (158-889) μmol/L and blood urea nitrogen 12.1 ± 7.6 (4.0-40.6) mmol/L. Urine analysis showed proteinuria in 10 (38.5%) cases and occult blood in eight (30.8%) cases. Kidney biopsy was carried out in two cases and both revealed acute tubular necrosis. Management of this adverse event included withdrawal of the culprit drug, conservative therapy, and renal replacement therapy (six cases, 23.1%). All the patients recovered and were discharged with a normal or close to normal serum creatinine. Their average length of hospital stay was 12.1 ± 4.8 days. Acute kidney injury may occur shortly after intravenous infusion of andrographolide, with symptoms including flank pain, decreased urine output, and

  12. The small-molecule TNF-alpha modulator, UTL-5g, reduces side effects induced by cisplatin and enhances the therapeutic effect of cisplatin in vivo.

    Science.gov (United States)

    Shaw, JiaJiu; Chen, Ben; Huang, Wen-Hsin; Lee, An-Rong; Media, Joseph; Valeriote, Frederick A

    2011-01-01

    We investigated a small-molecule modulator of tumor necrosis factor alpha (TNF-alpha), UTL-5g (also referred to as GBL-5g), as a potential chemoprotective agent against cisplatin-induced side effects including nephrotoxicity, hepatotoxicity and hematotoxicity. Pretreatment of UTL-5g i.p. in BDF1 mice reduced the levels of blood urea nitrogen (BUN) and creatinine induced by cisplatin treatment. The levels of both aspartate transaminase (AST) and alanine transaminase (ALT) in these animals were also reduced by UTL-5g. Pretreatment of UTL-5g did not significantly affect the number of white blood cells (WBC) under current experimental conditions, yet it markedly increased blood platelet counts by more than threefold. Therapeutic assessment in SCID mice inoculated with human HCT-15 tumor cells showed that UTL-5g did not attenuate the anti-tumor effect of cisplatin but increased the therapeutic efficacy of cisplatin. The LD50 of UTL-5g was determined to be > 2,000 mg/kg by an acute toxicity study. In summary, our studies showed that 1) UTL-5g significantly reduces nephrotoxicity and hepatotoxicity induced by cisplatin in mice, presumably by lowering the levels of TNF-alpha, 2) UTL-5g markedly increased blood platelet counts in mice and 3) UTL-5g treatment increased the therapeutic efficacy of cisplatin against HCT-15 cells inoculated in SCID mice.

  13. A randomized study to assess the efficacy of herbal product to prevent cisplatin-induced nephrotoxicity in a rat model

    Directory of Open Access Journals (Sweden)

    Eyup Veli Kucuk

    2017-10-01

    Full Text Available Objectives: This study aimed to investigate the protective effect and antioxidant activity of an herbal product that made from multiple plants in a rat model of kidney dysfunction induced by intraperitoneal cisplatin. Materials and methods: Twenty-four rats were divided into four different groups namely: Group 1 - control healthy animals without any specific medication, Group 2 - Herbal product only 5 mg/kg, Group 3 - cisplatin only and Group 4 - Herbal product 5 mg/kg + cisplatin. Results: Evaluation of our findings demonstrated a significant (p = 0.017 reduction in Catalase activities and a significant increase (p = 0.001 in renal tissue Malondialdehyde levels in cisplatin- treated rats when compared with the control group. Also, Glutathion and Glutathione peroxidase content revealed significant (p = 0.031 reduction in renal tissues of cisplatintreated rats compared with the control group. Pre-treatment of rats with the herbal product ameliorated these cisplatininduced changes of the antioxidant enzymes. No statistically significant changes were demonstrated in Superoxide dismutase activities in the tissue specimens of any group. Conclusions: This potent antioxidant herbal medicine was found to have potential antioxidant activity, which may in turn to be effective in the protection of kidney tissue resulting from cisplatin application. Therefore, much attention should be given to the possible role of natural dietary antioxidants for protecting the kidney.

  14. Application of small RNA sequencing to identify microRNAs in acute kidney injury and fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, Kathryn L. [Department of Medicine, Renal Division, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Gerlach, Cory V. [Department of Medicine, Renal Division, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA (United States); Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA (United States); Craciun, Florin L.; Ramachandran, Krithika [Department of Medicine, Renal Division, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Bijol, Vanesa [Department of Pathology, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Kissick, Haydn T. [Department of Surgery, Urology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (United States); Vaidya, Vishal S., E-mail: vvaidya@bwh.harvard.edu [Department of Medicine, Renal Division, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA (United States); Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA (United States)

    2016-12-01

    Establishing a microRNA (miRNA) expression profile in affected tissues provides an important foundation for the discovery of miRNAs involved in the development or progression of pathologic conditions. We conducted small RNA sequencing to generate a temporal profile of miRNA expression in the kidneys using a mouse model of folic acid-induced (250 mg/kg i.p.) kidney injury and fibrosis. From the 103 miRNAs that were differentially expressed over the time course (> 2-fold, p < 0.05), we chose to further investigate miR-18a-5p, which is expressed during the acute stage of the injury; miR-132-3p, which is upregulated during transition between acute and fibrotic injury; and miR-146b-5p, which is highly expressed at the peak of fibrosis. Using qRT-PCR, we confirmed the increased expression of these candidate miRNAs in the folic acid model as well as in other established mouse models of acute injury (ischemia/reperfusion injury) and fibrosis (unilateral ureteral obstruction). In situ hybridization confirmed high expression of miR-18a-5p, miR-132-3p and miR-146b-5p throughout the kidney cortex in mice and humans with severe kidney injury or fibrosis. When primary human proximal tubular epithelial cells were treated with model nephrotoxicants such as cadmium chloride (CdCl{sub 2}), arsenic trioxide, aristolochic acid (AA), potassium dichromate (K{sub 2}Cr{sub 2}O{sub 7}) and cisplatin, miRNA-132-3p was upregulated 4.3-fold after AA treatment and 1.5-fold after K{sub 2}Cr{sub 2}O{sub 7} and CdCl{sub 2} treatment. These results demonstrate the application of temporal small RNA sequencing to identify miR-18a, miR-132 and miR-146b as differentially expressed miRNAs during distinct phases of kidney injury and fibrosis progression. - Highlights: • We used small RNA sequencing to identify differentially expressed miRNAs in kidney. • Distinct patterns were found for acute injury and fibrotic stages in the kidney. • Upregulation of miR-18a, -132 and -146b was confirmed in mice

  15. Bardoxolone methyl (BARD) ameliorates aristolochic acid (AA)-induced acute kidney injury through Nrf2 pathway.

    Science.gov (United States)

    Wu, Juan; Liu, Xinhui; Fan, Jinjin; Chen, Wenfang; Wang, Juan; Zeng, Youjia; Feng, Xiaorang; Yu, Xueqing; Yang, Xiao

    2014-04-06

    Bardoxolone methyl (BARD) is an antioxidant modulator that acts through induction of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. This study aimed to investigate the role of BARD in protecting kidneys from aristolochic acid (AA)-induced acute kidney injury (AKI). Male C57BL/6 mice received intraperitoneal (i.p.) injections of aristolochic acid I (AAI) (5mg/kg/day) for 5 days to produce acute AA nephropathy (AAN) model. BARD (10mg/kg/day, i.p.) was applied for 7 consecutive days, starting 2 days prior to AAI administration. The mice in the AA group showed AKI as evidenced by worsening kidney function evaluated by blood urea nitrogen (BUN) and serum creatinine (SCr) levels, and severe tubulointerstitial injury marked by massive tubule necrosis in kidney tissues. BARD significantly reduced BUN and SCr levels which were elevated by AAI. Additionally, AAI-induced histopathological renal damage was ameliorated by BARD. Furthermore, the expression of Nrf2 was reduced, and its repressor Kelch-like ECH-associated protein 1 (Keap1) was increased significantly, whereas heme oxygenase-1 (HO-1) was upregulated and NAD(P)H quinone oxidoreductase-1 (NQO1) was barely increased in the cytoplasm of tubules in kidneys after treatment with AAI. BARD significantly upregulated renal Nrf2, NQO1 and HO-1 expression and downregulated Keap1 expression compared with those in the AA group. Moreover, it was found that Nrf2 was expressed both in the cytoplasm and nuclear of glomeruli and tubules, whereas NQO1 and HO-1 were localized in the cytoplasm of tubules only. In conclusion, AA-induced acute renal injury was associated with impaired Nrf2 activation and expression of its downstream target genes in renal tissues. BARD prevented renal damage induced by AAI, and this renoprotective effect may be exerted by activating the Nrf2 signaling pathway and increasing expression of the downstream target genes. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  16. Tempol, a superoxide dismutase mimetic agent, ameliorates cisplatin-induced nephrotoxicity through alleviation of mitochondrial dysfunction in mice.

    Directory of Open Access Journals (Sweden)

    Lamiaa A Ahmed

    Full Text Available Mitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on mitochondrial dysfunction and the subsequent damage induced by cisplatin nephrotoxicity in mice.Nephrotoxicity was assessed 72 h after a single i.p. injection of cisplatin (25 mg/kg with or without oral administration of tempol (100 mg/kg/day. Serum creatinine and urea as well as glucosuria and proteinuria were evaluated. Both kidneys were isolated for estimation of oxidative stress markers, adenosine triphosphate (ATP content and caspase-3 activity. Moreover, mitochondrial oxidative phosphorylation capacity, complexes I-IV activities and mitochondrial nitric oxide synthase (mNOS protein expression were measured along with histological examinations of renal tubular damage and mitochondrial ultrastructural changes. Tempol was effective against cisplatin-induced elevation of serum creatinine and urea as well as glucosuria and proteinuria. Moreover, pretreatment with tempol notably inhibited cisplatin-induced oxidative stress and disruption of mitochondrial function by restoring mitochondrial oxidative phosphorylation, complexes I and III activities, mNOS protein expression and ATP content. Tempol also provided significant protection against apoptosis, tubular damage and mitochondrial ultrastructural changes. Interestingly, tempol did not interfere with the cytotoxic effect of cisplatin against the growth of solid Ehrlich carcinoma.This study highlights the potential role of tempol in inhibiting cisplatin-induced nephrotoxicity without affecting its antitumor activity via amelioration of oxidative stress and mitochondrial dysfunction.

  17. Study of protective effects of melatonin on cisplatin-induced nephrotoxicity in rabbits

    International Nuclear Information System (INIS)

    Aslam, J.; Khan, W.; Bakhtiar, S.

    2017-01-01

    To evaluate the protective effects of melatonin on cisplatin-induced nephrotoxicity in rabbits. Study Design: Laboratory based randomized control trial. Place and Duration of Study: Department of Pharmacology and Therapeutics in collaboration with Clinico Pathologic Laboratory, Army Medical College, Rawalpindi, from Apr to Jun 2015. Material and Methods: Eighteen rabbits were divided into three groups, each consisting of six rabbits. Baseline serum urea, creatinine, sodium and potassium were measured. Rabbits were weighed for dose calculation. A single dose of cisplatin 10mg/kg was given as I/P injection to the toxic group. The protective group received 5 mg/kg I/P melatonin for three days. Rabbits were sacrificed 72 hours after the cisplatin dose and both kidneys were sent for histopathology. Statistical analysis was carried out by using Microsoft Office Excel 2010 and SPSS version 21. Student's t-test and one way ANOVA, followed by 'Post Hoc Tukey' test was used for biochemical parameters, while Chi Square' test was used for histopathological comparison. Results: Moderate nephrotoxicity (grade-II) was seen in the toxic group, with substantial elevations of serum urea and creatinine (p<0.001), and serum sodium and potassium (p<0.01). Melatonin ameliorated the renal injury. Conclusion: The protective effects of melatonin on cisplatin-induced nephrotoxicity were due to its antioxidant properties. (author)

  18. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial.

    Science.gov (United States)

    Brar, Somjot S; Aharonian, Vicken; Mansukhani, Prakash; Moore, Naing; Shen, Albert Y-J; Jorgensen, Michael; Dua, Aman; Short, Lindsay; Kane, Kevin

    2014-05-24

    The administration of intravenous fluid remains the cornerstone treatment for the prevention of contrast-induced acute kidney injury. However, no well-defined protocols exist to guide fluid administration in this treatment. We aimed to establish the efficacy of a new fluid protocol to prevent contrast-induced acute kidney injury. In this randomised, parallel-group, comparator-controlled, single-blind phase 3 trial, we assessed the efficacy of a new fluid protocol based on the left ventricular end-diastolic pressure for the prevention of contrast-induced acute kidney injury in patients undergoing cardiac catheterisation. The primary outcome was the occurrence of contrast-induced acute kidney injury, which was defined as a greater than 25% or greater than 0·5 mg/dL increase in serum creatinine concentration. Between Oct 10, 2010, and July 17, 2012, 396 patients aged 18 years or older undergoing cardiac catheterisation with an estimated glomerular filtration rate of 60 mL/min per 1·73 m(2) or less and one or more of several risk factors (diabetes mellitus, history of congestive heart failure, hypertension, or age older than 75 years) were randomly allocated in a 1:1 ratio to left ventricular end-diastolic pressure-guided volume expansion (n=196) or the control group (n=200) who received a standard fluid administration protocol. Four computer-generated concealed randomisation schedules, each with permuted block sizes of 4, were used for randomisation, and participants were allocated to the next sequential randomisation number by sealed opaque envelopes. Patients and laboratory personnel were masked to treatment assignment, but the physicians who did the procedures were not masked. Both groups received intravenous 0·9% sodium chloride at 3 mL/kg for 1 h before cardiac catheterisation. Analyses were by intention to treat. Adverse events were assessed at 30 days and 6 months and all such events were classified by staff who were masked to treatment assignment. This

  19. Mechanisms of cisplatin-induced muscle atrophy

    International Nuclear Information System (INIS)

    Sakai, Hiroyasu; Sagara, Atsunobu; Arakawa, Kazuhiko; Sugiyama, Ryoto; Hirosaki, Akiko; Takase, Kazuhide; Jo, Ara; Sato, Ken; Chiba, Yoshihiko; Yamazaki, Mitsuaki; Matoba, Motohiro; Narita, Minoru

    2014-01-01

    Fatigue is the most common side effect of chemotherapy. However, the mechanisms of “muscle fatigue” induced by anti-cancer drugs are not fully understood. We therefore investigated the muscle-atrophic effect of cisplatin, a platinum-based anti-cancer drug, in mice. C57BL/6J mice were treated with cisplatin (3 mg/kg, i.p.) or saline for 4 consecutive days. On Day 5, hindlimb and quadriceps muscles were isolated from mice. The loss of body weight and food intake under the administration of cisplatin was the same as those in a dietary restriction (DR) group. Under the present conditions, the administration of cisplatin significantly decreased not only the muscle mass of the hindlimb and quadriceps but also the myofiber diameter, compared to those in the DR group. The mRNA expression levels of muscle atrophy F-box (MAFbx), muscle RING finger-1 (MuRF1) and forkhead box O3 (FOXO3) were significantly and further increased by cisplatin treated group, compared to DR. Furthermore, the mRNA levels of myostatin and p21 were significantly upregulated by the administration of cisplatin, compared to DR. On the other hand, the phosphorylation of Akt and FOXO3a, which leads to the blockade of the upregulation of MuRF1 and MAFbx, was significantly and dramatically decreased by cisplatin. These findings suggest that the administration of cisplatin increases atrophic gene expression, and may lead to an imbalance between protein synthesis and protein degradation pathways, which would lead to muscle atrophy. This phenomenon could, at least in part, explain the mechanism of cisplatin-induced muscle fatigue. - Highlights: • Cisplatin decreased mass and myofiber diameter in quadriceps muscle. • The mRNA of MAFbx, MuRF1 and FOXO3 were increased by the cisplatin. • The mRNA of myostatin and p21 were upregulated by cisplatin. • The phosphorylation of Akt and FOXO3a was decreased by cisplatin

  20. Mechanisms of cisplatin-induced muscle atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Hiroyasu, E-mail: sakai@hoshi.ac.jp [Department of Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Division of Pharmacy Professional Development and Research, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Sagara, Atsunobu; Arakawa, Kazuhiko; Sugiyama, Ryoto; Hirosaki, Akiko; Takase, Kazuhide; Jo, Ara [Department of Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Sato, Ken [Department of Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Division of Pharmacy Professional Development and Research, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Chiba, Yoshihiko [Department of Biology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Yamazaki, Mitsuaki [Department of Anesthesiology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 9300194 (Japan); Matoba, Motohiro [Department of Palliative Medicine and Psychooncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 1040045 (Japan); Narita, Minoru, E-mail: narita@hoshi.ac.jp [Department of Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan)

    2014-07-15

    Fatigue is the most common side effect of chemotherapy. However, the mechanisms of “muscle fatigue” induced by anti-cancer drugs are not fully understood. We therefore investigated the muscle-atrophic effect of cisplatin, a platinum-based anti-cancer drug, in mice. C57BL/6J mice were treated with cisplatin (3 mg/kg, i.p.) or saline for 4 consecutive days. On Day 5, hindlimb and quadriceps muscles were isolated from mice. The loss of body weight and food intake under the administration of cisplatin was the same as those in a dietary restriction (DR) group. Under the present conditions, the administration of cisplatin significantly decreased not only the muscle mass of the hindlimb and quadriceps but also the myofiber diameter, compared to those in the DR group. The mRNA expression levels of muscle atrophy F-box (MAFbx), muscle RING finger-1 (MuRF1) and forkhead box O3 (FOXO3) were significantly and further increased by cisplatin treated group, compared to DR. Furthermore, the mRNA levels of myostatin and p21 were significantly upregulated by the administration of cisplatin, compared to DR. On the other hand, the phosphorylation of Akt and FOXO3a, which leads to the blockade of the upregulation of MuRF1 and MAFbx, was significantly and dramatically decreased by cisplatin. These findings suggest that the administration of cisplatin increases atrophic gene expression, and may lead to an imbalance between protein synthesis and protein degradation pathways, which would lead to muscle atrophy. This phenomenon could, at least in part, explain the mechanism of cisplatin-induced muscle fatigue. - Highlights: • Cisplatin decreased mass and myofiber diameter in quadriceps muscle. • The mRNA of MAFbx, MuRF1 and FOXO3 were increased by the cisplatin. • The mRNA of myostatin and p21 were upregulated by cisplatin. • The phosphorylation of Akt and FOXO3a was decreased by cisplatin.

  1. Role of TRPV1 channels in ischemia/reperfusion-induced acute kidney injury.

    Directory of Open Access Journals (Sweden)

    Lan Chen

    Full Text Available OBJECTIVES: Transient receptor potential vanilloid 1 (TRPV1 -positive sensory nerves are widely distributed in the kidney, suggesting that TRPV1-mediated action may participate in the regulation of renal function under pathophysiological conditions. Stimulation of TRPV1 channels protects against ischemia/reperfusion (I/R-induced acute kidney injury (AKI. However, it is unknown whether inhibition of these channels is detrimental in AKI or not. We tested the role of TRPV1 channels in I/R-induced AKI by modulating these channels with capsaicin (TRPV1 agonist, capsazepine (TRPV1 antagonist and using Trpv1-/- mice. METHODS AND RESULTS: Anesthetized C57BL/6 mice were subjected to 25 min of renal ischemia and 24 hrs of reperfusion. Mice were pretreated with capsaicin (0.3 mg/kg body weight or capsazepine (50 mg/kg body weight. Capsaicin ameliorated the outcome of AKI, as measured by serum creatinine levels, tubular damage,neutrophil gelatinase-associated lipocalin (NGAL abundance and Ly-6B.2 positive polymorphonuclear inflammatory cells in injured kidneys. Neither capsazepine nor deficiency of TRPV1 did deteriorate renal function or histology after AKI. Measurements of endovanilloids in kidney tissue indicate that 20-hydroxyeicosatetraeonic acid (20-HETE or epoxyeicosatrienoic acids (EETs are unlikely involved in the beneficial effects of capsaicin on I/R-induced AKI. CONCLUSIONS: Activation of TRPV1 channels ameliorates I/R-induced AKI, but inhibition of these channels does not affect the outcome of AKI. Our results may have clinical implications for long-term safety of renal denervation to treat resistant hypertension in man, with respect to the function of primary sensory nerves in the response of the kidney to ischemic stimuli.

  2. Cisplatin-induced hypokalemic paralysis.

    Science.gov (United States)

    Mohammadianpanah, Mohammad; Omidvari, Shapour; Mosalaei, Ahmad; Ahmadloo, Niloofar

    2004-08-01

    Profound hypokalemic conditions resulting from cisplatin therapy have been known to produce hypokalemic paralysis in rare cases. We describe such a case of cisplatin-induced hypokalemic paralysis. A 15-year-old Persian girl with ovarian dysgerminoma presented with severe generalized weakness and paraplegia 1 week after the fourth course of cisplatin-based chemotherapy. On physical examination, there was symmetric flaccid paralysis and areflexia in all of the extremities and particularly in the lower limbs. Her serum potassium concentration was 1.7 mmol/L. Metastatic disease was excluded by a comprehensive systemic evaluation. Complete clinical and paraclinical recovery was achieved after short-term administration of potassium supplement. Adverse drug reactions are common with cisplatin, but the drug is only rarely associated with hypokalemic paralysis. Based on the Naranjo causality algorithm, an objective assessment revealed cisplatin to be a probable cause of hypokalemic paralysis in this case. This adverse drug event--whether isolated or secondary to hypomagnesemia--may be deceptive, leading to a fatal mistake in the oncology setting, and should therefore be precisely differentiated from cancer-related complications. This case suggests that cisplatin should be added to the list of agents causing hypokalemic paralysis. Regular serum electrolyte measurement, the early detection of cation deficiency, and appropriate replacement of cations are all recommended.

  3. Hindbrain GLP-1 receptor mediation of cisplatin-induced anorexia and nausea.

    Science.gov (United States)

    De Jonghe, Bart C; Holland, Ruby A; Olivos, Diana R; Rupprecht, Laura E; Kanoski, Scott E; Hayes, Matthew R

    2016-01-01

    While chemotherapy-induced nausea and vomiting are clinically controlled in the acute (anorexia, nausea, fatigue, and other illness-type behaviors during the delayed phase (>24 h) of chemotherapy are largely uncontrolled. As the hindbrain glucagon-like peptide-1 (GLP-1) system contributes to energy balance and mediates aversive and stressful stimuli, here we examine the hypothesis that hindbrain GLP-1 signaling mediates aspects of chemotherapy-induced nausea and reductions in feeding behavior in rats. Specifically, hindbrain GLP-1 receptor (GLP-1R) blockade, via 4th intracerebroventricular (ICV) exendin-(9-39) injections, attenuates the anorexia, body weight reduction, and pica (nausea-induced ingestion of kaolin clay) elicited by cisplatin chemotherapy during the delayed phase (48 h) of chemotherapy-induced nausea. Additionally, the present data provide evidence that the central GLP-1-producing preproglucagon neurons in the nucleus tractus solitarius (NTS) of the caudal brainstem are activated by cisplatin during the delayed phase of chemotherapy-induced nausea, as cisplatin led to a significant increase in c-Fos immunoreactivity in NTS GLP-1-immunoreactive neurons. These data support a growing body of literature suggesting that the central GLP-1 system may be a potential pharmaceutical target for adjunct anti-emetics used to treat the delayed-phase of nausea and emesis, anorexia, and body weight loss that accompany chemotherapy treatments. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Significance of downregulation of renal organic cation transporter (SLC47A1 in cisplatin-induced proximal tubular injury

    Directory of Open Access Journals (Sweden)

    Mizuno T

    2015-07-01

    Full Text Available Tomohiro Mizuno,1–3 Waichi Sato,2,3 Kazuhiro Ishikawa,4 Yuki Terao,1 Kazuo Takahashi,2 Yukihiro Noda,5 Yukio Yuzawa,2 Tadashi Nagamatsu1 1Department of Analytical Pharmacology, Meijo University Faculty of Pharmacy, Nagoya, 2Department of Nephrology, School of Medicine, Fujita Health University, Toyoake, 3Department of Nephrology, Nagoya University School of Medicine, Nagoya, 4Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Nagoya, 5Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty of Pharmacy, Nagoya, Japan Background/aim: To elucidate the mechanism responsible for developing acute kidney injury in patients with diabetes mellitus, we also evaluated the issue of whether advanced glycation endproducts (AGEs influence the expressions of multi antimicrobial extrusion protein (MATE1/SLC47A1 in tubular cells. Materials and methods: To detect changing expression of MATE1/SLC47A1 in dose- and time-dependent manners, human proximal tubular epithelial cells were incubated with AGE-aggregated-human serum albumin. As a function assay for MATE1/SLC47A1, human proximal tubular epithelial cells were incubated with cisplatin or carboplatin. Results: On incubation with AGEs, the expressions of MATE1/SLC47A1 were decreased in tubular cells. In addition, the toxicities of cisplatin were increased in tubular cells that had been pretreated with AGEs. However, the toxicities of carboplatin were smaller than that of cisplatin in proximal tubular epithelial cells. Conclusion: The expression of the MATE1/SLC47A1 is decreased by AGEs, which increases the risk for proximal tubular injury. Keywords: advanced glycation endproducts, cisplatin, SLC47A1, diabetes mellitus, acute kidney injury

  5. Tempol, a Superoxide Dismutase Mimetic Agent, Ameliorates Cisplatin-Induced Nephrotoxicity through Alleviation of Mitochondrial Dysfunction in Mice

    Science.gov (United States)

    Ahmed, Lamiaa A.; Shehata, Nagwa I.; Abdelkader, Noha F.; Khattab, Mahmoud M.

    2014-01-01

    Background Mitochondrial dysfunction is a crucial mechanism by which cisplatin, a potent chemotherapeutic agent, causes nephrotoxicity where mitochondrial electron transport complexes are shifted mostly toward imbalanced reactive oxygen species versus energy production. In the present study, the protective role of tempol, a membrane-permeable superoxide dismutase mimetic agent, was evaluated on mitochondrial dysfunction and the subsequent damage induced by cisplatin nephrotoxicity in mice. Methods and Findings Nephrotoxicity was assessed 72 h after a single i.p. injection of cisplatin (25 mg/kg) with or without oral administration of tempol (100 mg/kg/day). Serum creatinine and urea as well as glucosuria and proteinuria were evaluated. Both kidneys were isolated for estimation of oxidative stress markers, adenosine triphosphate (ATP) content and caspase-3 activity. Moreover, mitochondrial oxidative phosphorylation capacity, complexes I–IV activities and mitochondrial nitric oxide synthase (mNOS) protein expression were measured along with histological examinations of renal tubular damage and mitochondrial ultrastructural changes. Tempol was effective against cisplatin-induced elevation of serum creatinine and urea as well as glucosuria and proteinuria. Moreover, pretreatment with tempol notably inhibited cisplatin-induced oxidative stress and disruption of mitochondrial function by restoring mitochondrial oxidative phosphorylation, complexes I and III activities, mNOS protein expression and ATP content. Tempol also provided significant protection against apoptosis, tubular damage and mitochondrial ultrastructural changes. Interestingly, tempol did not interfere with the cytotoxic effect of cisplatin against the growth of solid Ehrlich carcinoma. Conclusion This study highlights the potential role of tempol in inhibiting cisplatin-induced nephrotoxicity without affecting its antitumor activity via amelioration of oxidative stress and mitochondrial dysfunction

  6. Protective effect of riboflavin on cisplatin induced toxicities: a gender-dependent study.

    Science.gov (United States)

    Naseem, Imrana; Hassan, Iftekhar; Alhazza, Ibrahim M; Chibber, Sandesh

    2015-01-01

    The toxicity exerted by the anticancer drug, cisplatin in vivo is functional to many factors such as dose, duration, gender and age etc. The present study is aimed to investigate if ameliorative potential of riboflavin on cisplatin induced toxicity is gender dependent. Eighty four adult mice from male and female sex were divided into seven groups (n=6) for both sexes. They were treated with riboflavin (2mg/kg), cisplatin (2mg/kg) and their two different combinations (cisplatin at 2mg/kg with 1mg/kg and 2mg/kg of riboflavin) under photoillumination with their respective controls for the combination groups without photoillumination. After treatment, all groups were sacrificed and their kidney, liver and serum were collected for biochemical estimations, comet assay and histopathology. In the present investigation, it was evident from antioxidant and detoxification studies (SOD, CAT, GSH, GST, MDA and carbonyl level) that the female mice exhibited better tolerance towards cisplatin inducted toxicity and the ameliorative effect of riboflavin against cisplatin toxicity was found stronger in their combination groups as compared to the male groups as the activity of all antioxidant enzymes were found better concomitant with lower level of MDA and carbonyl contents in the female combination groups than their male counterparts. Furthermore, single cell gel electrophoresis and histopathological examination confirmed that restoration of normal nuclear and cellular integrity was more prominent in female with respect to the males after treatment in the combination groups in a dose-dependent manner. Hence, this study reveals that cisplatin is more toxic in male mice and the ameliorative effect of riboflavin against cisplatin toxicity is stronger in female mice. Copyright © 2014. Published by Elsevier GmbH.

  7. Nephroprotective effect of Bauhinia variegata (Linn.) whole stem extract against cisplatin-induced nephropathy in rats

    Science.gov (United States)

    Pani, Saumya R.; Mishra, Satyaranjan; Sahoo, Sabuj; Panda, Prasana K.

    2011-01-01

    The nephroprotective activity of the ethanolic extract of Bauhinia variegata (Linn.) whole stem against cisplatin-induced nephropathy was investigated by an in vivo method in rats. Acute nephrotoxicity was induced by i.p. injection of cisplatin (7 mg/kg of body weight (b.w.)). Administration of ethanol extract at dose levels of 400 and 200 mg/kg (b.w.) to cisplatin-intoxicated rats for 14 days attenuated the biochemical and histological signs of nephrotoxicity of cisplatin in a dose-dependent fashion. Ethanol extract at 400 mg/kg decreased the serum level of creatinine (0.65 ± 0.09; P<0.001) and urea (32.86 ± 5.88; P<0.001) associated with a significant increase in body weight (7.16 ± 1.10; P<0.001) and urine volume output (11.95 ± 0.79; P<0.05) as compared to the toxic control group. The ethanol extract of B. variegata at 400 mg/kg (b.w.) exhibited significant and comparable nephroprotective potential to that of the standard polyherbal drug cystone. The statistically (one-way-ANOVA followed by Tukey-Kramer multiple comparison) processed results suggested the protective action of B. variegate whole stem against cisplatin-induced nephropathy. PMID:21572659

  8. Protective effects of the Morus alba L. leaf extracts on cisplatin-induced nephrotoxicity in rat

    Science.gov (United States)

    Nematbakhsh, M; Hajhashemi, V; Ghannadi, A; Talebi, A; Nikahd, M

    2013-01-01

    Cisplatin (CP) as an important anti-tumor drug causes nephrotoxicity mainly by oxidative stress and renin-angiotensin system (RAS). Since flavonoids have high antioxidant activity and probable role in the inhibition of RAS, this study was designed to investigate the protective effect of hydroalcoholic extract and flavonoid fraction of Morus alba leaves on cisplatin-induced nephrotoxicity in rat. Extracts of Morus alba leaves were prepared and analyzed Phytochemically. Male rats (160-200 g) were used in this study (n=7-9). Normal group received 0.2 ml normal saline intraperitoneally (i.p.) once daily for ten days. Control animals received CP on the third day and saline in the remaining days. Other groups received either hydroalcoholic extract (200, 400 and 600 mg/kg, i.p.) or flavonoid fraction (50, 100 and 200 mg/kg, i.p.) for two days before CP administration and thereafter until tenth day. Serum concentrations of blood urea nitrogen (BUN), creatinine (Cr) and nitric oxide were measured using standard methods. Also left kidneys were prepared for pathological study. The serum levels of BUN and Cr increased in animals received CP. Hydroalcoholic extract was ineffective in reversing these alterations but flavonoid fraction (50 and 100 mg/kg) significantly inhibited CP-induced increases of BUN and Cr. None of the treatments could affect serum concentration of nitric oxide. Flavonoid fraction could also prevent CP-induced pathological damage of the kidney. It seems that concurrent use of flavonoid fraction of Morus alba with CP can protect kidneys from CP-induced nephrotoxicity. PMID:24019816

  9. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiao [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Shetty, Sreerama [Center for Biomedical Research, University of Texas Health Science Center at Tyler, Tyler, TX 75708 (United States); Zhang, Ping [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Gao, Rong; Hu, Yuxin [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Wang, Shuxia [Graduate Center for Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Li, Zhenyu [Division of Cardiovascular Medicine, University of Kentucky, Lexington, KY 40536 (United States); Fu, Jian, E-mail: jian.fu@uky.edu [Center for Research on Environmental Disease, University of Kentucky, Lexington, KY 40536 (United States); Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536 (United States)

    2014-06-01

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1 h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reduction in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia.

  10. Aspirin-triggered resolvin D1 down-regulates inflammatory responses and protects against endotoxin-induced acute kidney injury

    International Nuclear Information System (INIS)

    Chen, Jiao; Shetty, Sreerama; Zhang, Ping; Gao, Rong; Hu, Yuxin; Wang, Shuxia; Li, Zhenyu; Fu, Jian

    2014-01-01

    The presence of endotoxin in blood can lead to acute kidney injury (AKI) and septic shock. Resolvins, the endogenous lipid mediators derived from docosahexaenoic acid, have been reported to exhibit potent anti-inflammatory action. Using a mouse model of lipopolysaccharide (LPS)-induced AKI, we investigated the effects of aspirin-triggered resolvin D1 (AT-RvD1) on inflammatory kidney injury. Administration of AT-RvD1 1 h after LPS challenge protected the mice from kidney injury as indicated by the measurements of blood urea nitrogen, serum creatinine, and morphological alterations associated with tubular damage. The protective effects were evidenced by decreased neutrophil infiltration in the kidney indicating reduction in inflammation. AT-RvD1 treatment restored kidney cell junction protein claudin-4 expression, which was otherwise reduced after LPS challenge. AT-RvD1 treatment inhibited endotoxin-induced NF-κB activation and suppressed LPS-induced ICAM-1 and VCAM-1 expression in the kidney. Moreover, AT-RvD1 treatment markedly decreased LPS-induced IL-6 level in the kidney and blocked IL-6-mediated signaling including STAT3 and ERK phosphorylation. Our findings demonstrate that AT-RvD1 is a potent anti-inflammatory mediator in LPS-induced kidney injury, and AT-RvD1 has therapeutic potential against AKI during endotoxemia

  11. Atorvastatin attenuates experimental contrast-induced acute kidney injury: a role for TLR4/MyD88 signaling pathway.

    Science.gov (United States)

    Yue, Rongzheng; Zuo, Chuan; Zeng, Jing; Su, Baihai; Tao, Ye; Huang, Songmin; Zeng, Rui

    2017-11-01

    To investigate the protective effect of different atorvastatin doses on contrast-induced acute kidney injury and the related mechanism. Healthy male Sprague-Dawley (SD) rats were randomly divided into the blank control group, experimental control group and different-dose atorvastatin groups. A rat model of contrast-induced acute kidney injury was established. We detected changes in serum creatinine (Scr) and blood urea nitrogen (BUN) before and after model establishment, observed and scored renal tubular injury, analyzed rat renal cell apoptosis, and measure the expression of signal pathway proteins and downstream inflammatory factors. After contrast agent injection, the Scr and BUN levels of the experimental control group were significantly increased, the different doses applied in the atorvastatin group significantly reduced the Scr and BUN levels (p atorvastatin doses have protective effects on contrast-induced acute renal tubular injury in rats, possibly by targeting TLR4, suppressing TLR4 expression, regulating the TLR4/Myd88 signaling pathway, and inhibiting the expression of downstream inflammatory factors.

  12. Two cases of cisplatin-induced permanent renal failure following neoadjuvant chemotherapy for esophageal cancer.

    Science.gov (United States)

    Sasaki, Tomohiko; Motoyama, Satoru; Komatsuda, Atsushi; Shibata, Hiroyuki; Sato, Yusuke; Yoshino, Kei; Wakita, Akiyuki; Saito, Hajime; Anbai, Akira; Jin, Mario; Minamiya, Yoshihiro

    2016-01-01

    We experienced two esophageal cancer patients who developed severe acute renal failure after neoadjuvant chemotherapy with cisplatin and 5-fluorourasil. After administration of cisplatin, their serum creatinine increased gradually until they required hemodialysis and their renal failure was permanent. In both cases, renal biopsy examination indicated partial recovery of the proximal tubule, but renal function did not recover. After these events, one patient underwent definitive radiotherapy and the other underwent esophagectomy for their esophageal cancers, while continuing dialysis. Both patients are alive without cancer recurrence. In these two cases of cisplatin-induced renal failure, renal biopsy examination showed only slight disorder of proximal tubules and tendency to recover. Although cisplatin-related nephrotoxicity is a well-recognized complication, there have been few reports of renal failure requiring hemodialysis in cancer patients. In this report, we present their clinical courses and the pathological findings of cisplatin-related renal failure. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats

    NARCIS (Netherlands)

    L. Zafrani (Lara); B. Ergin (Bulent); Kapucu, A. (Aysegul); C. Ince (Can)

    2016-01-01

    textabstractBackground: The effects of blood transfusion on renal microcirculation during sepsis are unknown. This study aimed to investigate the effect of blood transfusion on renal microvascular oxygenation and renal function during sepsis-induced acute kidney injury. Methods: Twenty-seven Wistar

  14. Time- and sequence-dependent responses to cisplatin and radiation in the rat kidney

    International Nuclear Information System (INIS)

    Rongen, Eric van; Kuijpers, W.C.; Baten-Wittwer, Andrea

    1991-01-01

    The influence of time interval and sequence between administration of cisplatin and a radiation dose was studied in the rat kidney. Changes in glomerular function were only detected after 30 weeks following the higher drug dose (6.0 mg/kg). X-rays alone caused measurable alterations in both glomerular and tubular function after 16 weeks. In the combined treatment the influence of time and sequence was significant. If cisplatin was given at 7 to 1 days before X-rays the effect of time was minimal. Administration of cisplatin 12 h to 15 min before irradiation resulted in an increase of radiation damage with decreasing time interval. Total damage sharply decreased when both modalities were given at the same time, and decreased further with increasing time between irradiation and drug administration. (author)

  15. The potential use of biomarkers in predicting contrast-induced acute kidney injury

    Directory of Open Access Journals (Sweden)

    Andreucci M

    2016-09-01

    Full Text Available Michele Andreucci,1 Teresa Faga,1 Eleonora Riccio,2 Massimo Sabbatini,2 Antonio Pisani,2 Ashour Michael,1 1Department of Health Sciences, University “Magna Graecia” of Catanzaro, Catanzaro, 2Department of Public Health, University of Naples Federico II, Naples, Italy Abstract: Contrast-induced acute kidney injury (CI-AKI is a problem associated with the use of iodinated contrast media, causing kidney dysfunction in patients with preexisting renal failure. It accounts for 12% of all hospital-acquired kidney failure and increases the length of hospitalization, a situation that is worsening with increasing numbers of patients with comorbidities, including those requiring cardiovascular interventional procedures. So far, its diagnosis has relied upon the rise in creatinine levels, which is a late marker of kidney damage and is believed to be inadequate. Therefore, there is an urgent need for biomarkers that can detect CI-AKI sooner and more reliably. In recent years, many new biomarkers have been characterized for AKI, and these are discussed particularly with their use in known CI-AKI models and studies and include neutrophil gelatinase-associated lipocalin, cystatin C (Cys-C, kidney injury molecule-1, interleukin-18, N-acetyl-β-d-glucosaminidase, and L-type fatty acid-binding protein (L-FABP. The potential of miRNA and metabolomic technology is also mentioned. Early detection of CI-AKI may lead to early intervention and therefore improve patient outcome, and in future any one or a combination of several of these markers together with development in technology for their analysis may prove effective in this respect. Keywords: radiocontrast media, acute renal failure, markers, renal injury

  16. Snake-bite-induced Acute Kidney Injury

    International Nuclear Information System (INIS)

    Naqvi, R.

    2016-01-01

    Objective: To describe the clinical spectrum and outcome of patients presenting to a tertiary care kidney center, developing acute kidney injury (AKI) after snake-bite. Study Design: An observational study. Place and Duration of Study: Nephrology Department, Sindh Institute of Urology and Transplantation (SIUT), Karachi, from January 1990 to December 2014. Methodology: All patients coming to SIUT identified as having AKI after snake-bite during the study period were included. AKI was defined according to RIFLE criteria with sudden rise in creatinine or decline in urine output or both. Demographics, clinical presentation, laboratory profile, and final outcome was noted. Result: During the studied period, 115 cases of AKI, secondary to snake-bite, were registered at this institution. Median age of patients was 35.92 ±15.04 (range: 6 - 70) years and male to female ratio was 1.6:1. Time from bite and referral to this hospital ranged from 2 to 28 days (mean: 8.77 ±5.58 days). Oligo-anuria was the most common presentation, being found in 98 (93.90 percentage) patients. Bleeding diathesis was reported in 75 (65.21 percentage) patients on presentation. All patients had normal sized, non-obstructed kidneys on ultrasonography, with no previous comorbids. Renal replacement therapy (RRT) was required in 106 (92.17 percentage) patients. Complete recovery was seen in 59 (51.30 percentage), while 15 (13.04 percentage) patients expired during acute phase of illness, 4 (3.47 percentage) developed CKD, 11 (9.56 percentage) required dialysis beyond 90 days, and 26 (22.60 percentage) were lost to long-term follow-up. Conclusion: Snake-bite, leading to multiple complications including renal failure and death, is a major health issue in tropical countries. Late referral of these patients to specialized centres Result in undesirable outcome. (author)

  17. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats.

    Science.gov (United States)

    Zafrani, Lara; Ergin, Bulent; Kapucu, Aysegul; Ince, Can

    2016-12-20

    The effects of blood transfusion on renal microcirculation during sepsis are unknown. This study aimed to investigate the effect of blood transfusion on renal microvascular oxygenation and renal function during sepsis-induced acute kidney injury. Twenty-seven Wistar albino rats were randomized into four groups: a sham group (n = 6), a lipopolysaccharide (LPS) group (n = 7), a LPS group that received fluid resuscitation (n = 7), and a LPS group that received blood transfusion (n = 7). The mean arterial blood pressure, renal blood flow, and renal microvascular oxygenation within the kidney cortex were recorded. Acute kidney injury was assessed using the serum creatinine levels, metabolic cost, and histopathological lesions. Nitrosative stress (expression of endothelial (eNOS) and inducible nitric oxide synthase (iNOS)) within the kidney was assessed by immunohistochemistry. Hemoglobin levels, pH, serum lactate levels, and liver enzymes were measured. Fluid resuscitation and blood transfusion both significantly improved the mean arterial pressure and renal blood flow after LPS infusion. Renal microvascular oxygenation, serum creatinine levels, and tubular damage significantly improved in the LPS group that received blood transfusion compared to the group that received fluids. Moreover, the renal expression of eNOS was markedly suppressed under endotoxin challenge. Blood transfusion, but not fluid resuscitation, was able to restore the renal expression of eNOS. However, there were no significant differences in lactic acidosis or liver function between the two groups. Blood transfusion significantly improved renal function in endotoxemic rats. The specific beneficial effect of blood transfusion on the kidney could have been mediated in part by the improvements in renal microvascular oxygenation and sepsis-induced endothelial dysfunction via the restoration of eNOS expression within the kidney.

  18. Blood transfusion improves renal oxygenation and renal function in sepsis-induced acute kidney injury in rats

    NARCIS (Netherlands)

    Zafrani, Lara; Ergin, Bulent; Kapucu, Aysegul; Ince, Can

    2016-01-01

    The effects of blood transfusion on renal microcirculation during sepsis are unknown. This study aimed to investigate the effect of blood transfusion on renal microvascular oxygenation and renal function during sepsis-induced acute kidney injury. Twenty-seven Wistar albino rats were randomized into

  19. Acute Kidney Injury in the Elderly

    Science.gov (United States)

    Abdel-Kader, Khaled; Palevsky, Paul

    2009-01-01

    Synopsis The aging kidney undergoes a number of important anatomic and physiologic changes that increase the risk of acute kidney injury (formerly acute renal failure) in the elderly. This article reviews these changes and discusses the diagnoses frequently encountered in the elderly patient with acute kidney injury. The incidence, staging, evaluation, management, and prognosis of acute kidney injury are also examined with special focus given to older adults. PMID:19765485

  20. Compound list: cisplatin [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available cisplatin CSP 00132 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_v...itro/cisplatin.Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liv...er/Single/cisplatin.Rat.in_vivo.Liver.Single.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/...in_vivo/Liver/Repeat/cisplatin.Rat.in_vivo.Liver.Repeat.zip ftp://ftp.bioscienced...bc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Single/cisplatin.Rat.in_vivo.Kidney.Single.zip ftp://ft

  1. Possible (enzymatic) routes and biological sites for metabolic reduction of BNP7787, a new protector against cisplatin-induced side-effects.

    NARCIS (Netherlands)

    Verschraagen, M.; Boven, E.; Torun, E; Hausheer, FH; Vijgh, van der WJ

    2004-01-01

    Disodium 2,2'-dithio-bis-ethane sulfonate (BNP7787) is under investigation as a potential new chemoprotector against cisplatin-induced nephrotoxicity. The selective protection of BNP7787 appears to arise from the preferential uptake of the drug in the kidneys, where BNP7787 would undergo

  2. Rhabdomyolysis and Acute Kidney Injury Associated with Hypothyroidism and Statin Therapy

    Directory of Open Access Journals (Sweden)

    Pyoung Ahn

    2013-12-01

    Full Text Available Rhabdomyolysis is a syndrome involving the breakdown of skeletal muscle that causes myoglobin and other intracellular proteins to leak into the circulatory system, resulting in organ injury including acute kidney injury. We report a case of statin-induced rhabdomyolysis and acute kidney injury that developed in a 63-year-old woman with previously undiagnosed hypothyroidism. Untreated hypothyroidism may have caused her hypercholesterolemia requiring statin treatment, and it is postulated that statin-induced muscle injury was aggravated by hypothyroidism resulting in her full-blown rhabdomyolysis. Although this patient was successfully treated with continuous venovenous hemofiltration and L-thyroxin replacement, rhabdomyolysis with acute kidney injury is a potentially life-threatening disorder. Physicians must pay special attention to the possible presence of subclinical hypothyroidism when administering statins in patients with hypercholesterolemia.

  3. Coronary heart disease is not significantly linked to acute kidney injury identified using Acute Kidney Injury Group criteria.

    Science.gov (United States)

    Yayan, Josef

    2012-01-01

    Patients with unstable angina or myocardial infarction are at risk of acute kidney injury, which may be aggravated by the iodine-containing contrast agent used during coronary angiography; however, the relationship between these two conditions remains unclear. The current study investigated the relationship between acute kidney injury and coronary heart disease prior to coronary angiography. All patients were evaluated after undergoing coronary angiography in the cardiac catheterization laboratory of the Vinzentius Hospital in Landau, Germany, in 2011. The study group included patients with both acute coronary heart disease and acute kidney injury (as defined according to the classification of the Acute Kidney Injury Group); the control group included patients without acute coronary heart disease. Serum creatinine profiles were evaluated in all patients, as were a variety of demographic and health characteristics. Of the 303 patients examined, 201 (66.34%) had coronary artery disease. Of these, 38 (18.91%) also had both acute kidney injury and acute coronary heart disease prior to and after coronary angiography, and of which in turn 34 (16.91%) had both acute kidney injury and acute coronary heart disease only prior to the coronary angiography. However, the occurrence of acute kidney injury was not significantly related to the presence of coronary heart disease (P = 0.95, Chi-square test). The results of this study indicate that acute kidney injury is not linked to acute coronary heart disease. However, physicians should be aware that many coronary heart patients may develop kidney injury while hospitalized for angiography.

  4. Evaluation of the Role of Ginger, Cisplatin and Radiation in the Treatment of Chemically- Induced Cancer in Male Albino Rats

    International Nuclear Information System (INIS)

    Mohamed, Sh.M.G.

    2015-01-01

    This study aimed to investigate the effect of dietary supplementation with ginger to evaluate its therapeutic effect against lung and kidney cancer and in combination with cisplatin as chemotherapy and radiotherapy in male Wistar albino rats (Rattus norvegicus). Studies involve investigating the therapeutic role of ginger for better restoration of certain haematological parameters: (white blood cells count, red blood cells count, haemoglobin content, hematocrit value and platelets count ) Besides biochemical parameters (serum tumor necrosis factor alpha (TNF-α) level, advanced oxidative protein product (AOPP), urea, creatinine and uric acid ). Tissue parameters in both kidney and lung tissues: were estimated by determining the activity of antioxidant enzyme superoxide dismutase (SOD); as well as by determining the levels of reduced glutathione (GSH), Malondialdehyde (MDA) and Nitric oxide (NO) and histopathological changes of kidney and lung tissues. Cancer induced a significant decrease in WBCs, RBCs, Hb, Hct value and platelets count with a significant increase in the serum tumor necrosis factor alpha (TNF-α) level, advanced oxidative protein product (AOPP), urea, creatinine and uric acid. Besides, it produced high levels of lung and kidney Malondialdehyde (MDA) and Nitric oxide (NO) with significant decrease in reduced glutathione (GSH) and superoxide dismutase (SOD). Ginger + cisplatin + radiation manifested good amelioration against NDMA + CCl 4 group in the studied haematological and biochemical parameters. In histological investigation showed that rat groups treated with ginger alone showed no deviation from control group. While rats injected with NDMA + CCl 4 showed sever degenerative changes. On the other hand, groups injected with NDMA + CCl4 and treated with ginger + cisplatin + radiation group showed an even more remarkable effect showing histopathological lung and kidney profiles close to those of the control group when compared with NDMA + CCl 4

  5. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity

    Science.gov (United States)

    Karasawa, Takatoshi; Steyger, Peter S.

    2015-01-01

    Cisplatin is one of the most widely-used drugs to treat cancers. However, its nephrotoxic and ototoxic side-effects remain major clinical limitations. Recent studies have improved our understanding of the molecular mechanisms of cisplatin-induced nephrotoxicity and ototoxicity. While cisplatin binding to DNA is the major cytotoxic mechanism in proliferating (cancer) cells, nephrotoxicity and ototoxicity appear to result from toxic levels of reactive oxygen species and protein dysregulation within various cellular compartments. In this review, we discuss molecular mechanisms of cisplatin-induced nephrotoxicity and ototoxicity. We also discuss potential clinical strategies to prevent nephrotoxicity and ototoxicity and their current limitations. PMID:26101797

  6. Contrast-induced acute kidney injury in children with cardiovascular defects – results of a pilot study

    Directory of Open Access Journals (Sweden)

    Daria Tomczyk

    2016-12-01

    Full Text Available Introduction: Contrast-induced nephropathy – acute kidney injury is an acquired kidney injury that is an important factor in short- and long-term cardiovascular complications. Contrast-induced nephropathy – acute kidney injury continues to be diagnosed based on serum creatinine level. Serum creatinine, however, is a delayed indicator of contrast-induced nephropathy, as its levels typically peak between 1 and 3 days following contrast exposure. Currently, more sensitive biomarkers of kidney injury are sought, with human neutrophil lipocalin (also known as neutrophil gelatinase-associated lipocalin highlighted in literature as a troponin-like biomarker of early nephropathy. Aim of the study: Changes in serum and urine neutrophil gelatinase-associated lipocalin levels were assessed in children with congenital heart diseases, following a scheduled cardiac catheterization procedure. Material and methods: The group studied comprised 16 patients. The neutrophil gelatinaseassociated lipocalin and creatinine levels, along with urine and serum neutrophil gelatinase-associated lipocalin/creatinine ratio were evaluated five times at different time intervals from the procedure. The group did not vary in respect of kidney function, preprocedure management, and volume expansion (hydration therapy prior to the procedure. Results: In the assessed material, median neutrophil gelatinase-associated lipocalin rose as early as 2 hours after exposure to contrast as compared with baseline [median = 28.2 ng/mL (Quartile 1 = 22.8 – Quartile 3 = 33.77 vs. median = 25.87 ng/mL (Quartile 1 = 19.4 – Quartile 3 = 29.6]. Serum neutrophil gelatinase-associated lipocalin level peaked in hour 6 of our study: median – 30.6 ng/mL (Quartile 1 = 22.32 – Quartile 3 = 42.17, then reverting to normal. Urine neutrophil gelatinaseassociated lipocalin peaked in hour 24 of the study, subsequently dropping below baseline in hour 48

  7. Resveratrol influences platinum pharmacokinetics: A novel mechanism in protection against cisplatin-induced nephrotoxicity.

    Science.gov (United States)

    Darwish, Mostafa A; Abo-Youssef, Amira M; Khalaf, Marwa M; Abo-Saif, Ali A; Saleh, Ibrahim G; Abdelghany, Tamer M

    2018-06-15

    Cisplatin (CP) is a widely used drug in treatment of solid tumors. However, the use of CP was hampered by its serious side effects especially nephrotoxicity. This study aims to investigate the effect of resveratrol (RES) on CP-induced nephrotoxicity, particularly, the effect of RES on CP pharmacokinetics (PKs). Male white albino rats were divided to four group's six rats each. The first group received (1%) tween 80 in normal saline and served as control. The second group received RES (30 mg kg -1 ) per day for 14 consecutive day's i.p. The third and fourth groups were given a single i.p. injection of CP (6 mg kg -1 ) with or without pre-treatment of RES (30 mg kg -1 per day for 14 consecutive days), respectively. Following administration of CP, plasma, urine and kidney platinum concentration were monitored to study PKs of CP. Five days after the CP injection, rats were killed; blood samples were collected; kidneys were dissected; and biochemical, immunohistochemical, and histological examinations were performed. Our results revealed that CP treatment significantly deteriorated kidney functions with subsequent alteration in redox balance of the kidney. On the other hand, RES successfully ameliorated CP-induced kidney injury and recovered normal kidney tissue redox status. Importantly, while RES pre-treatment did not significantly alter the plasma CP level, it dramatically decreased the urine concentration of CP and lowered its accumulation into the kidneys. Moreover, it increased CP plasma half-life (t 1/2 ) with subsequent decrease in its elimination rate constant, indicating an important role of PKs modulation in RES protection against CP-induced renal damage. Taken together, RES may protect the kidney tissue from the deleterious effects of CP through constringe of CP renal accumulation and enhancement of CP-induced oxidative stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Regulation of apoptosis-inducing factor-mediated, cisplatin-induced apoptosis by Akt

    OpenAIRE

    Yang, X; Fraser, M; Abedini, M R; Bai, T; Tsang, B K

    2008-01-01

    Cisplatin is a first-line chemotherapeutic for ovarian cancer, although chemoresistance limits treatment success. Apoptosis, an important determinant of cisplatin sensitivity, occurs via caspase-dependent and -independent mechanisms. Activation of the protein kinase Akt, commonly observed in ovarian tumours, confers resistance to ovarian cancer cells via inhibition of caspase-dependent apoptosis. However, the effect of Akt on cisplatin-induced, caspase-independent apoptosis remains unclear. W...

  9. Therapeutic Efficacy of Ginger, Cisplatin and Radiation on Chemically-Induced Cancer in Male Albino Rats

    International Nuclear Information System (INIS)

    El-Beih, N.M.; Galal, S.M.; Fahmy, N.M.; Abd El-Azime, M.G.

    2015-01-01

    This study aimed to investigate the in vivo effect of dietary supplementation with ginger to evaluate its therapeutic effect against lung and kidney cancer and in combination with cisplatin as chemotherapy and radiotherapy in male albino rats. 54 male albino rats were divided into nine groups of 6 animals each, all animals were allowed to food and water ad libitum . Group I was treated with 0.5 ml saline, orlly for 12 consecutive weeks serve as con - trol group Group II injected with N-nitrosodimethylamine (NDMA) and carbon tetrachloride (CCl 4 ); all groups were injected with NDMA + CCl 4 for 6 weeks. Group III were given ginger for 6 consecutive weeks (200 mg/kg, b.wt./day). Group IV animals received cisplatin, group V irradiated with 2 Gy, group VI treated with ginger then irradiated, group VII treated with ginger then injected with cisplatin, group VIII injected with cisplatin then irradiated and group IX treated with ginger and cisplatin then irradiated. Antioxidant status in both kidney and lung tissues were estimated by determining the activity of antioxidant enzyme superoxide dismutase (SOD); as well as the level of reduced glutathione (GSH), Malondialdehyde (MDA) and Nitric oxide (NO). In parallel to histopathological investigations of lung and kidney tissues. In addition, Tumor Necrosis Factor Alpha (TNF-α) level, advanced oxidative protein product (AOPP), urea, creatinine and uric acid. Remarkable disturbances were observed in the levels of all tested parameters in NDMA + CCl 4 group. On the other hand, rats injected with the cancer agents then treated with cisplatin+radiation showed moderate improvements in the studied parameters while, treatment with ginger + cisplatin + radiation ameliorated the levels of the disturbed bio

  10. Transplantation of Kidneys From Donors With Acute Kidney Injury: Friend or Foe?

    NARCIS (Netherlands)

    Boffa, C.; van de Leemkolk, F.; Curnow, E.; Homan van der Heide, J.; Gilbert, J.; Sharples, E.; Ploeg, R. J.

    2017-01-01

    The gap between supply and demand in kidney transplantation has led to increased use of marginal kidneys; however, kidneys with acute kidney injury are often declined/discarded. To determine whether this policy is justified, we analyzed outcomes of donor kidneys with acute kidney injury (AKI) in a

  11. Chemopreventive effect of tadalafil in cisplatin-induced ...

    African Journals Online (AJOL)

    Summary: Nephrotoxicity remains a common untoward effect of cisplatin therapy with limited effective chemopreventive options available till date. This study aims to evaluate the possible chemopreventive effect and mechanism(s) of action of 2 mgkg-1 and 5 mgkg-1 of Tadalafil in cisplatin-induced nephrotoxic rats. In this ...

  12. Renal oxygenation and hemodynamics in acute kidney injury and chronic kidney disease

    Science.gov (United States)

    Singh, Prabhleen; Ricksten, Sven-Erik; Bragadottir, Gudrun; Redfors, Bengt; Nordquist, Lina

    2013-01-01

    Summary 1. Acute kidney injury (AKI) puts a major burden on health systems that may arise from multiple initiating insults, including ischemia-reperfusion injury, cardiovascular surgery, radio-contrast administration as well as sepsis. Similarly, the incidence and prevalence of chronic kidney disease (CKD) continues to increase with significant morbidity and mortality. Moreover, an increasing number of AKI patients survive to develop CKD and end-stage kidney disease (ESRD). 2. Although the mechanisms for development of AKI and progression of CKD remain poorly understood, initial impairment of oxygen balance is likely to constitute a common pathway, causing renal tissue hypoxia and ATP starvation that will in turn induce extracellular matrix production, collagen deposition and fibrosis. Thus, possible future strategies for one or both conditions may involve dopamine, loop-diuretics, inducible nitric oxide synthase inhibitors and atrial natriuretic peptide, substances that target kidney oxygen consumption and regulators of renal oxygenation such as nitric oxide and heme oxygenase-1. PMID:23360244

  13. Rare acute kidney injury secondary to hypothyroidism-induced rhabdomyolysis.

    Science.gov (United States)

    Cai, Ying; Tang, Lin

    2013-01-01

    Acute kidney injury (AKI) caused by hypothyroidism-induced rhabdomyolysis is a rare and potentially life-threatening syndrome. The aim of this study was to investigate the clinical characteristics of such patients. We retrospectively analyzed five patients treated at the Second Affiliated Hospital of Chongqing Medical University with AKI secondary to hypothyroidism- induced rhabdomyolysis from January 2006 to December 2010. Of the five cases reviewed (4 males, age range of 37 to 62 years), adult primary hypothyroidism was caused by amiodarone (1 case), chronic autoimmune thyroiditis (1 case), and by uncertain etiologies (3 cases). All patients presented with facial and lower extremity edema. Three patients presented with weakness, while two presented with blunted facies and oliguria. Only one patient reported experiencing myalgia and proximal muscle weakness, in addition to fatigue and chills. Creatine kinase, lactate dehydrogenase, and renal function normalized after thyroid hormone replacement, except in two patients who improved through blood purification. Hypothyroidism should be considered in patients presenting with renal impairment associated with rhabdomyolysis. Moreover, further investigation into the etiology of the hypothyroidism is warranted.

  14. Suppression of Cisplatin-Induced Vomiting by Cannabis sativa in Pigeons: Neurochemical Evidences

    Directory of Open Access Journals (Sweden)

    Ihsan Ullah

    2018-03-01

    Full Text Available Cannabis sativa (CS, family Cannabinaceae has been reported for its anti-emetic activity against cancer chemotherapy-induced emesis in animal models and in clinics. The current study was designed to investigate CS for potential effectiveness to attenuate cisplatin-induced vomiting in healthy pigeons and to study the impact on neurotransmitters involved centrally and peripherally in the act of vomiting. High-performance liquid chromatography system coupled with electrochemical detector was used for the quantification of neurotransmitters 5-hydroxytryptamine (5HT, dopamine (DA and their metabolites; Di-hydroxy Phenyl Acetic acid (Dopac, Homovanillic acid (HVA, and 5-hydroxy indole acetic acid (5HIAA centrally in specific brain areas (area postrema and brain stem while, peripherally in small intestine. Cisplatin (7 mg/kg i.v. induce emesis without lethality across the 24 h observation period. CS hexane fraction (CS-HexFr; 10 mg/kg attenuated cisplatin-induced emesis ∼ 65.85% (P < 0.05; the reference anti-emetic drug, metoclopramide (MCP; 30 mg/kg, produced ∼43.90% reduction (P < 0.05. At acute time point (3rd h, CS-HexFr decreased (P < 0.001 the concentration of 5HT and 5HIAA in the area postrema, brain stem and intestine, while at 18th h (delayed time point CS-HexFr attenuated (P < 0.001 the upsurge of 5HT caused by cisplatin in the brain stem and intestine and dopamine in the area postrema. CS-HexFr treatment alone did not alter the basal neurotransmitters and their metabolites in the brain areas and intestine except 5HIAA and HVA, which were decreased significantly. In conclusion the anti-emetic effect of CS-HexFr is mediated by anti-serotonergic and anti-dopaminergic components in a blended manner at the two different time points, i.e., 3rd and 18th h in pigeons.

  15. Ondansetron can enhance cisplatin-induced nephrotoxicity via inhibition of multiple toxin and extrusion proteins (MATEs)

    International Nuclear Information System (INIS)

    Li, Qing; Guo, Dong; Dong, Zhongqi; Zhang, Wei; Zhang, Lei; Huang, Shiew-Mei; Polli, James E.; Shu, Yan

    2013-01-01

    The nephrotoxicity limits the clinical application of cisplatin. Human organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins (MATEs) work in concert in the elimination of cationic drugs such as cisplatin from the kidney. We hypothesized that co-administration of ondansetron would have an effect on cisplatin nephrotoxicity by altering the function of cisplatin transporters. The inhibitory potencies of ondansetron on metformin accumulation mediated by OCT2 and MATEs were determined in the stable HEK-293 cells expressing these transporters. The effects of ondansetron on drug disposition in vivo were examined by conducting the pharmacokinetics of metformin, a classical substrate for OCTs and MATEs, in wild-type and Mate1−/− mice. The nephrotoxicity was assessed in the wild-type and Mate1−/− mice received cisplatin with and without ondansetron. Both MATEs, including human MATE1, human MATE2-K, and mouse Mate1, and OCT2 (human and mouse) were subject to ondansetron inhibition, with much greater potencies by ondansetron on MATEs. Ondansetron significantly increased tissue accumulation and pharmacokinetic exposure of metformin in wild-type but not in Mate1−/− mice. Moreover, ondansetron treatment significantly enhanced renal accumulation of cisplatin and cisplatin-induced nephrotoxicity which were indicated by increased levels of biochemical and molecular biomarkers and more severe pathohistological changes in mice. Similar increases in nephrotoxicity were caused by genetic deficiency of MATE function in mice. Therefore, the potent inhibition of MATEs by ondansetron enhances the nephrotoxicity associated with cisplatin treatment in mice. Potential nephrotoxic effects of combining the chemotherapeutic cisplatin and the antiemetic 5-hydroxytryptamine-3 (5-HT 3 ) receptor antagonists, such as ondansetron, should be investigated in patients. - Highlights: • Nephrotoxicity significantly limits clinical use of the chemotherapeutic cisplatin

  16. Ondansetron can enhance cisplatin-induced nephrotoxicity via inhibition of multiple toxin and extrusion proteins (MATEs)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qing [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Institute of Clinical Pharmacology, Central South University, Hunan 410078 (China); Guo, Dong [Institute of Clinical Pharmacology, Central South University, Hunan 410078 (China); Dong, Zhongqi [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Zhang, Wei [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Institute of Clinical Pharmacology, Central South University, Hunan 410078 (China); Zhang, Lei; Huang, Shiew-Mei [Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD (United States); Polli, James E. [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Shu, Yan, E-mail: yshu@rx.umaryland.edu [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States)

    2013-11-15

    The nephrotoxicity limits the clinical application of cisplatin. Human organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins (MATEs) work in concert in the elimination of cationic drugs such as cisplatin from the kidney. We hypothesized that co-administration of ondansetron would have an effect on cisplatin nephrotoxicity by altering the function of cisplatin transporters. The inhibitory potencies of ondansetron on metformin accumulation mediated by OCT2 and MATEs were determined in the stable HEK-293 cells expressing these transporters. The effects of ondansetron on drug disposition in vivo were examined by conducting the pharmacokinetics of metformin, a classical substrate for OCTs and MATEs, in wild-type and Mate1−/− mice. The nephrotoxicity was assessed in the wild-type and Mate1−/− mice received cisplatin with and without ondansetron. Both MATEs, including human MATE1, human MATE2-K, and mouse Mate1, and OCT2 (human and mouse) were subject to ondansetron inhibition, with much greater potencies by ondansetron on MATEs. Ondansetron significantly increased tissue accumulation and pharmacokinetic exposure of metformin in wild-type but not in Mate1−/− mice. Moreover, ondansetron treatment significantly enhanced renal accumulation of cisplatin and cisplatin-induced nephrotoxicity which were indicated by increased levels of biochemical and molecular biomarkers and more severe pathohistological changes in mice. Similar increases in nephrotoxicity were caused by genetic deficiency of MATE function in mice. Therefore, the potent inhibition of MATEs by ondansetron enhances the nephrotoxicity associated with cisplatin treatment in mice. Potential nephrotoxic effects of combining the chemotherapeutic cisplatin and the antiemetic 5-hydroxytryptamine-3 (5-HT{sub 3}) receptor antagonists, such as ondansetron, should be investigated in patients. - Highlights: • Nephrotoxicity significantly limits clinical use of the chemotherapeutic

  17. Renoprotective Effect of Egyptian Cape Gooseberry Fruit (Physalis peruviana L. against Acute Renal Injury in Rats

    Directory of Open Access Journals (Sweden)

    Lamiaa Ali Ahmed

    2014-01-01

    Full Text Available This study aimed to evaluate the renoprotective effect of Physalis peruviana L. extract (PPE on acute renal injury in rats. Adult male rats (n=36 were divided into six groups that were fed with basal diet throughout the experiment (33 days. The first group was normal group, the second and the third groups were administered orally with 100 and 150 mg PPE/kg body weight (BW respectively, the fourth group was injected intraperitoneally with 5 mg/kg BW cisplatin once on the 28th day to induced ARI, and the fifth and sixth groups were treated like the second and the third groups and were injected with cisplatin on the 28th day. Many bioactive compounds were found in PPE. PPE did not cause any changes in the second and third groups compared to normal control group. Administration of PPE prior to cisplatin injection caused significant reduction in relative kidney weight, serum creatinine, urea, blood urea nitrogen, and significant increments in body weight, feed intake, total protein, albumin, and total globulin compared to cisplatin group. Pretreatment with PPE improved kidney histology and diminished the level of thiobarbituric acid reactive substances and enhanced other antioxidant enzymes in kidney homogenate compared to cisplatin group.

  18. Renoprotective effect of Egyptian cape gooseberry fruit (Physalis peruviana L.) against acute renal injury in rats.

    Science.gov (United States)

    Ahmed, Lamiaa Ali

    2014-01-01

    This study aimed to evaluate the renoprotective effect of Physalis peruviana L. extract (PPE) on acute renal injury in rats. Adult male rats (n = 36) were divided into six groups that were fed with basal diet throughout the experiment (33 days). The first group was normal group, the second and the third groups were administered orally with 100 and 150 mg PPE/kg body weight (BW) respectively, the fourth group was injected intraperitoneally with 5 mg/kg BW cisplatin once on the 28th day to induced ARI, and the fifth and sixth groups were treated like the second and the third groups and were injected with cisplatin on the 28th day. Many bioactive compounds were found in PPE. PPE did not cause any changes in the second and third groups compared to normal control group. Administration of PPE prior to cisplatin injection caused significant reduction in relative kidney weight, serum creatinine, urea, blood urea nitrogen, and significant increments in body weight, feed intake, total protein, albumin, and total globulin compared to cisplatin group. Pretreatment with PPE improved kidney histology and diminished the level of thiobarbituric acid reactive substances and enhanced other antioxidant enzymes in kidney homogenate compared to cisplatin group.

  19. Cisplatin and doxorubicin induce distinct mechanisms of ovarian follicle loss; imatinib provides selective protection only against cisplatin.

    Directory of Open Access Journals (Sweden)

    Stephanie Morgan

    Full Text Available Chemotherapy treatment in premenopausal women has been linked to ovarian follicle loss and premature ovarian failure; the exact mechanism by which this occurs is uncertain. Here, two commonly used chemotherapeutic agents (cisplatin and doxorubicin were added to a mouse ovary culture system, to compare the sequence of events that leads to germ cell loss. The ability of imatinib mesylate to protect the ovary against cisplatin or doxorubicin-induced ovarian damage was also examined.Newborn mouse ovaries were cultured for a total of six days, exposed to a chemotherapeutic agent on the second day: this allowed for the examination of the earliest stages of follicle development. Cleaved PARP and TUNEL were used to assess apoptosis following drug treatment. Imatinib was added to cultures with cisplatin and doxorubicin to determine any protective effect.Histological analysis of ovaries treated with cisplatin showed oocyte-specific damage; in comparison doxorubicin preferentially caused damage to the granulosa cells. Cleaved PARP expression significantly increased for cisplatin (16 fold, p<0.001 and doxorubicin (3 fold, p<0.01. TUNEL staining gave little evidence of primordial follicle damage with either drug. Imatinib had a significant protective effect against cisplatin-induced follicle damage (p<0.01 but not against doxorubicin treatment.Cisplatin and doxorubicin both induced ovarian damage, but in a markedly different pattern, with imatinib protecting the ovary against damage by cisplatin but not doxorubicin. Any treatment designed to block the effects of chemotherapeutic agents on the ovary may need to be specific to the drug(s the patient is exposed to.

  20. Rhabdomyolysis and Acute Kidney Injury Associated with Hypothyroidism and Statin Therapy

    OpenAIRE

    Ahn, Pyoung; Min, Hyun-Jun; Park, Sang-Hyun; Lee, Byoung-Mu; Choi, Myung-Jin; Yoon, Jong-Woo; Koo, Ja-Ryong

    2013-01-01

    Rhabdomyolysis is a syndrome involving the breakdown of skeletal muscle that causes myoglobin and other intracellular proteins to leak into the circulatory system, resulting in organ injury including acute kidney injury. We report a case of statin-induced rhabdomyolysis and acute kidney injury that developed in a 63-year-old woman with previously undiagnosed hypothyroidism. Untreated hypothyroidism may have caused her hypercholesterolemia requiring statin treatment, and it is postulated that ...

  1. Synthesis of [13N]cisplatin

    International Nuclear Information System (INIS)

    Haber, M.T.; Risenspire, K.C.

    1985-01-01

    A method for the ''carrier-added'' synthesis of [ 13 N]cisplatin is described. Yields were approx.1-4 mCi from 20-40 mCi of [ 13 N]ammonia with a total synthesis time of 19-28 minutes. The product was approx.96% radiochemically pure as judged by HPLC analysis and had a specific activity of approx.100 mCi/mmole in 1.0 ml of saline. [ 13 N)Cisplatin was administered intraperitoneally to mice. Of the tissues investigated, concentration of label was highest in kidneys. At 10 min, considerable label in the blood, liver, and kidney was in a form other than cisplatin. However, no evidence was obtained that [ 13 N]ammonia was released from [ 13 N]cisplatin in vivo. [ 13 N]Cisplatin may be used to assess drug delivery to primary and metastatic brain tumors in patients receiving intravenous or intraarterial cisplatin chemotherapy. (author)

  2. T1-mapping for assessment of ischemia-induced acute kidney injury and prediction of chronic kidney disease in mice

    Energy Technology Data Exchange (ETDEWEB)

    Hueper, Katja; Gutberlet, Marcel; Wacker, Frank; Hartung, Dagmar [Hannover Medical School, Department of Radiology, Hannover (Germany); Hannover Medical School, REBIRTH Cluster of Excellence, Hannover (Germany); Peperhove, Matti; Tewes, Susanne; Barrmeyer, Amelie [Hannover Medical School, Department of Radiology, Hannover (Germany); Rong, Song [Hannover Medical School, Department of Nephrology, Hannover (Germany); Zunyi Medical College, Laboratory of Organ Transplantation, Zunyi (China); Gerstenberg, Jessica; Haller, Herman; Gueler, Faikah [Hannover Medical School, Department of Nephrology, Hannover (Germany); Mengel, Michael [University of Alberta, Department of Laboratory Medicine and Pathology, Edmonton (Canada); Meier, Martin [Hannover Medical School, REBIRTH Cluster of Excellence, Hannover (Germany); Hannover Medical School, Institute for Animal Science, Hannover (Germany); Chen, Rongjun [Hannover Medical School, Department of Nephrology, Hannover (Germany); Zhejiang University, The Kidney Disease Center of the First Affiliated Hospital, Hangzhou (China)

    2014-09-15

    To investigate whether T1-mapping allows assessment of acute kidney injury (AKI) and prediction of chronic kidney disease (CKD) in mice. AKI was induced in C57Bl/6N mice by clamping of the right renal pedicle for 35 min (moderate AKI, n = 26) or 45 min (severe AKI, n = 23). Sham animals served as controls (n = 9). Renal histology was assessed in the acute (day 1 + day 7; d1 + d7) and chronic phase (d28) after AKI. Furthermore, longitudinal MRI-examinations (prior to until d28 after surgery) were performed using a 7-Tesla magnet. T1-maps were calculated from a fat-saturated echoplanar inversion recovery sequence, and mean and relative T1-relaxation times were determined. Renal histology showed severe tubular injury at d1 + d7 in both AKI groups, whereas, at d28, only animals with prolonged 45-min ischemia showed persistent signs of AKI. Following both AKI severities T1-values significantly increased and peaked at d7. T1-times in the contralateral kidney without AKI remained stable. At d7 relative T1-values in the outer stripe of the outer medulla were significantly higher after severe than after moderate AKI (138 ± 2 % vs. 121 ± 3 %, p = 0.001). T1-elevation persisted until d28 only after severe AKI. Already at d7 T1 in the outer stripe of the outer medulla correlated with kidney volume loss indicating CKD (r = 0.83). T1-mapping non-invasively detects AKI severity in mice and predicts further outcome. (orig.)

  3. T1-mapping for assessment of ischemia-induced acute kidney injury and prediction of chronic kidney disease in mice

    International Nuclear Information System (INIS)

    Hueper, Katja; Gutberlet, Marcel; Wacker, Frank; Hartung, Dagmar; Peperhove, Matti; Tewes, Susanne; Barrmeyer, Amelie; Rong, Song; Gerstenberg, Jessica; Haller, Herman; Gueler, Faikah; Mengel, Michael; Meier, Martin; Chen, Rongjun

    2014-01-01

    To investigate whether T1-mapping allows assessment of acute kidney injury (AKI) and prediction of chronic kidney disease (CKD) in mice. AKI was induced in C57Bl/6N mice by clamping of the right renal pedicle for 35 min (moderate AKI, n = 26) or 45 min (severe AKI, n = 23). Sham animals served as controls (n = 9). Renal histology was assessed in the acute (day 1 + day 7; d1 + d7) and chronic phase (d28) after AKI. Furthermore, longitudinal MRI-examinations (prior to until d28 after surgery) were performed using a 7-Tesla magnet. T1-maps were calculated from a fat-saturated echoplanar inversion recovery sequence, and mean and relative T1-relaxation times were determined. Renal histology showed severe tubular injury at d1 + d7 in both AKI groups, whereas, at d28, only animals with prolonged 45-min ischemia showed persistent signs of AKI. Following both AKI severities T1-values significantly increased and peaked at d7. T1-times in the contralateral kidney without AKI remained stable. At d7 relative T1-values in the outer stripe of the outer medulla were significantly higher after severe than after moderate AKI (138 ± 2 % vs. 121 ± 3 %, p = 0.001). T1-elevation persisted until d28 only after severe AKI. Already at d7 T1 in the outer stripe of the outer medulla correlated with kidney volume loss indicating CKD (r = 0.83). T1-mapping non-invasively detects AKI severity in mice and predicts further outcome. (orig.)

  4. Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells.

    Science.gov (United States)

    Lin, Ji-Fan; Lin, Yi-Chia; Tsai, Te-Fu; Chen, Hung-En; Chou, Kuang-Yu; Hwang, Thomas I-Sheng

    2017-01-01

    Cisplatin-based chemotherapy is the first line treatment for several cancers including bladder cancer (BC). Autophagy induction has been implied to contribute to cisplatin resistance in ovarian cancer; and a high basal level of autophagy has been demonstrated in human bladder tumors. Therefore, it is reasonable to speculate that autophagy may account for the failure of cisplatin single treatment in BC. This study investigated whether cisplatin induces autophagy and the mechanism involved using human BC cell lines. Human BC cells (5637 and T24) were used in this study. Cell viability was detected using water soluble tetrazolium-8 reagents. Autophagy induction was detected by monitoring the levels of light chain 3 (LC3)-II and p62 by Western blot, LC3-positive puncta formation by immunofluorescence, and direct observation of the autophagolysosome (AL) formation by transmission electron microscopy. Inhibitors including bafilomycin A1 (Baf A1), chloroquine (CQ), and shRNA-based lentivirus against autophagy-related genes (ATG7 and ATG12) were utilized. Apoptosis level was detected by caspase 3/7 activity and DNA fragmentation. Cisplatin decreased cell viability and induced apoptosis of 5637 and T24 cells in a dose-and time-dependent manner. The increased LC3-II accumulation, p62 clearance, the number of LC3-positive puncta, and ALs in cisplatin-treated cells suggested that cisplatin indeed induces autophagy. Inhibition of cisplatin-induced autophagy using Baf A1, CQ, or ATG7/ATG12 shRNAs significantly enhanced cytotoxicity of cisplatin toward BC cells. These results indicated that cisplatin induced protective autophagy which may contribute to the development of cisplatin resistance and resulted in treatment failure. Mechanistically, upregulation of beclin-1 (BECN1) was detected in cisplatin-treated cells, and knockdown of BECN1 using shRNA attenuated cisplatin-induced autophagy and subsequently enhanced cisplatin-induced apoptosis. Collectively, the study results

  5. STUDY OF ACUTE KIDNEY INJURY IN SNAKE BITE PATIENTS

    Directory of Open Access Journals (Sweden)

    Suma Dasaraju

    2017-04-01

    Full Text Available BACKGROUND Snake venom is well known to cause toxic damage to the kidneys (Schreiner and Maher, 1965. This study is an attempt to evaluate the snakebite-induced Acute Kidney Injury (AKI. MATERIALS AND METHODS 50 patients with snakebite-induced acute kidney injury were selected randomly and their clinical profile was assessed. Acute kidney injury was evaluated using noninvasive laboratory methods. Inclusion Criteria- 1. History of snakebite; 2. Presence of AKI. Exclusion Criteria- Pre-existing renal diseases, after establishing the diagnosis, patients were started on conservative treatment including ASV, blood/blood products and haemodialysis as required. RESULTS Out of 50 patients included in the study, majority of them were males (62% with mean age of presentation 43.8 ± 12.63 years. The mean interval between snakebite and presentation to hospital was 15.37 hours. In them, 98% patients presented with local signs of inflammation, 52% of patients presented with coagulation abnormality and 60% with decreased urine output. Comparison between good outcome (recovered from AKI and poor outcome (not recovered from AKI shows significant pvalue for ‘lapse of time in hours’ in presenting to the hospital after snakebite (p value 0.005 and ‘alternative treatment taken’ before coming to the hospital (p value 0.001. CONCLUSION Poisonous snakebites have common manifestations of cellulitis, abnormal coagulation profile and decreased urine output. Overall mortality due to snakebite-induced AKI is 6%. Patients who did not recover from AKI had lapse of time in presenting to the hospital and abnormal coagulation profile.

  6. Clinical Relevance and Predictive Value of Damage Biomarkers of Drug-Induced Kidney Injury.

    Science.gov (United States)

    Kane-Gill, Sandra L; Smithburger, Pamela L; Kashani, Kianoush; Kellum, John A; Frazee, Erin

    2017-11-01

    Nephrotoxin exposure accounts for up to one-fourth of acute kidney injury episodes in hospitalized patients, and the associated consequences are as severe as acute kidney injury due to other etiologies. As the use of nephrotoxic agents represents one of the few modifiable risk factors for acute kidney injury, clinicians must be able to identify patients at high risk for drug-induced kidney injury rapidly. Recently, significant advancements have been made in the field of biomarker utilization for the prediction and detection of acute kidney injury. Such biomarkers may have a role both for detection of drug-induced kidney disease and implementation of preventative and therapeutic strategies designed to mitigate injury. In this article, basic principles of renal biomarker use in practice are summarized, and the existing evidence for six markers specifically used to detect drug-induced kidney injury are outlined, including liver-type fatty acid binding protein, neutrophil gelatinase-associated lipocalin, tissue inhibitor of metalloproteinase-2 times insulin-like growth factor-binding protein 7 ([TIMP-2]·[IGFBP7]), kidney injury molecule-1 and N-acetyl-β-D-glucosaminidase. The results of the literature search for these six kidney damage biomarkers identified 29 unique articles with none detected for liver-type fatty acid binding protein and [TIMP-2]·[IGFBP7]. For three biomarkers, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin and N-acetyl-β-D-glucosaminidase, the majority of the studies suggest utility in clinical practice. While many questions need to be answered to clearly articulate the use of biomarkers to predict drug-induced kidney disease, current data are promising.

  7. The dimethylthiourea-induced attenuation of cisplatin nephrotoxicity is associated with the augmented induction of heat shock proteins

    International Nuclear Information System (INIS)

    Tsuji, Takayuki; Kato, Akihiko; Yasuda, Hideo; Miyaji, Takehiko; Luo, Jinghui; Sakao, Yukitoshi; Ito, Hideaki; Fujigaki, Yoshihide; Hishida, Akira

    2009-01-01

    Dimethylthiourea (DMTU), a potent hydroxyl radical scavenger, affords protection against cisplatin (CDDP)-induced acute renal failure (ARF). Since the suppression of oxidative stress and the enhancement of heat shock proteins (HSPs) are both reported to protect against CDDP-induced renal damage, we tested whether increased HSP expression is involved in the underlying mechanisms of the DMTU-induced renal protection. We examined the effect of DMTU treatment on the expression of HSPs in the kidney until day 5 following a single injection of CDDP (5 mg/kg BW). DMTU significantly inhibited the CDDP-induced increments of serum creatinine, the number of 8-hydroxyl-2'-deoxyguanosine (8-OHdG)- and terminal deoxynucleotidyl transferase nick-end labeling (TUNEL)-positive tubular cells, and tubular damage score (p < 0.05). CDDP significantly increased renal abundances of HO-1, HSP60, HSP72 and HSP90 at days 1, 3, and 5. DMTU significantly augmented only the expression of HSP60 expression mainly in the cytoplasm of the proximal tubular cells at days 1 and 3 in CDDP-induced ARF. DMTU also inhibited the CDDP-induced increment of Bax, a pro-apoptotic protein, in the fraction of organelles/membranes at day 3. The findings suggest that DMTU may afford protection against CDDP-induced ARF, partially through the early induction of cytoplasmic HSP60, thereby preventing the Bax-mediated apoptosis in renal tubular cells

  8. New biomarkers of acute kidney injury

    Directory of Open Access Journals (Sweden)

    Ruya Ozelsancak

    2013-04-01

    Full Text Available Acute kidney injury is a clinical syndrome which is generally defined as an abrupt decline in glomerular filtration rate causing accumulation of nitrogenous products and rapid development of fluid, electrolyte and acid-base disorders. It is an important clinical problem increasing mortality in patient with several co-morbid conditions. The frequency of acute kidney injury occurrence varies from 5% on the inpatients wards to 30-50% in patients from intensive care units. Serial measurement of creatinine and urine volume do not make it possible to diagnose acute kidney injury at early stages. Serum creatinine may be influenced by age, weight, hydration status and become apparent only when the kidneys have lost 50% of their function. For that reasons we need new markers. Here, we are reviewing the most promising new acute kidney injury markers, neutrophil gelatinase associated lipocalin, cystatin-C, kidney injury molecule-1, liver fatty acid binding proteins and IL-18. [Archives Medical Review Journal 2013; 22(2.000: 221-229

  9. Impact of acute kidney injury defined by CTCAE v4.0 during first course of cisplatin-based chemotherapy on treatment outcomes in advanced urothelial cancer patients.

    Science.gov (United States)

    Ishitsuka, Ryutaro; Miyazaki, Jun; Ichioka, Daishi; Inoue, Takamitsu; Kageyama, Susumu; Sugimoto, Mikio; Mitsuzuka, Koji; Matsui, Yoshiyuki; Shiraishi, Yusuke; Kinoshita, Hidefumi; Wakeda, Hironobu; Nomoto, Takeshi; Kikuchi, Eiji; Kawai, Koji; Nishiyama, Hiroyuki

    2017-08-01

    The Kidney Disease: Improving Global Outcomes group (KDIGO) defined acute kidney injury (AKI) as an elevation of serum creatinine (sCR) exceeding 0.3 mg/dl within 48 h. The widely used adverse events criteria for chemotherapy, Common Toxicity Criteria for Adverse Events Version 4.0 (CTCAE v4.0), also defined AKI as sCR exceeding 0.3 mg/dl, but with no provision of a time course. Here, we attempted to clarify the impact of AKI (CTCAE v4.0) during cisplatin-based chemotherapy on clinical outcome of patients with advanced urothelial cancer (UC). This multicenter retrospective study included 230 UC patients who received cisplatin-based chemotherapy. During the first chemotherapy course, AKI (CTCAE v4.0) episodes were observed in 61 patients (26.5 %), whereas only four patients (1.5 %) experienced AKI (KDIGO) episodes. Both the pretreatment estimated glomerular filtration rate (eGFR) and creatinine clearance by Cockcroft-Gault formula were not efficient predictors for the development of AKI (CTCAE v4.0). AKI (CTCAE v4.0) impacted renal function: at the start of second-course chemotherapy, the average eGFR of the patients with AKI (CTCAE v4.0) was 54.1 ml/min/1.73 m 2 , significantly lower than that of patients without AKI (CTCAE v4.0) (63.4 ml/min/1.73 m 2 ). As a result, only 57.4 % of patients with AKI (CTCAE v4.0) received the planned treatment at the second course. The survival of the patients who developed AKI (CTCAE v4.0) was significantly worse than that of the patients who did not. The 3-year OSs were 10.3 and 21.4 %, respectively (P = 0.02). The present study demonstrated that AKI (CTCAE v4.0) during chemotherapy had a negative impact on both the intensity of subsequent chemotherapy and oncological outcomes.

  10. A novel therapy to attenuate acute kidney injury and ischemic allograft damage after allogenic kidney transplantation in mice.

    Directory of Open Access Journals (Sweden)

    Faikah Gueler

    Full Text Available Ischemia followed by reperfusion contributes to the initial damage to allografts after kidney transplantation (ktx. In this study we tested the hypothesis that a tetrapeptide EA-230 (AQGV, might improve survival and attenuate loss of kidney function in a mouse model of renal ischemia/reperfusion injury (IRI and ischemia-induced delayed graft function after allogenic kidney transplantation. IRI was induced in male C57Bl/6N mice by transient bilateral renal pedicle clamping for 35 min. Treatment with EA-230 (20-50mg/kg twice daily i.p. for four consecutive days was initiated 24 hours after IRI when acute kidney injury (AKI was already established. The treatment resulted in markedly improved survival in a dose dependent manner. Acute tubular injury two days after IRI was diminished and tubular epithelial cell proliferation was significantly enhanced by EA-230 treatment. Furthermore, CTGF up-regulation, a marker of post-ischemic fibrosis, at four weeks after IRI was significantly less in EA-230 treated renal tissue. To learn more about these effects, we measured renal blood flow (RBF and glomerular filtration rate (GFR at 28 hours after IRI. EA-230 improved both GFR and RBF significantly. Next, EA-230 treatment was tested in a model of ischemia-induced delayed graft function after allogenic kidney transplantation. The recipients were treated with EA-230 (50 mg/kg twice daily i.p. which improved renal function and allograft survival by attenuating ischemic allograft damage. In conclusion, EA-230 is a novel and promising therapeutic agent for treating acute kidney injury and preventing IRI-induced post-transplant ischemic allograft injury. Its beneficial effect is associated with improved renal perfusion after IRI and enhanced regeneration of tubular epithelial cells.

  11. S-Allylmercaptocysteine Attenuates  Cisplatin-Induced Nephrotoxicity through  Suppression of Apoptosis, Oxidative Stress, and  Inflammation.

    Science.gov (United States)

    Zhu, Xiaosong; Jiang, Xiaoyan; Li, Ang; Zhao, Zhongxi; Li, Siying

    2017-02-20

    Cisplatin is a potent chemotherapeutic agent, but its clinical usage is limited by nephrotoxicity. S-allylmercaptocysteine (SAMC), one of the water-soluble organosulfur garlic derivatives, has antioxidant and anti-inflammatory properties and plays an important role in protecting cells from apoptosis. This study aims to examine the protective effects of SAMC on cisplatin nephrotoxicity and to explore the mechanism of its renoprotection. Rats were treated with cisplatin with or without pre-treatment with SAMC. Renal function, histological change, oxidative stress markers and antioxidant enzyme activities were investigated. Apoptotic marker, nuclearfactor (NF)-κB activity, expression of nuclear factor erythroid 2-related factor 2 (Nrf2), NAD(P)H:quinone oxidoreductase 1 (NQO1) and inflammatory cytokines were also examined. The effect of SAMC on cell viability and apoptosis was examined in cultured human kidney (HK-2) cells. SAMC was confirmed to significantly attenuate cisplatin-induced renal damage by using histological pathology and molecular biological method. Pre-treatment with SAMC reduced NF-κB activity, up-regulated Nrf2 and NQO1 expression and down-regulated inflammatory cytokine levels after cisplatin administration. Cisplatin-induced apoptosis in HK-2 cells was significantly attenuated by SAMC. Thus our results suggest that SAMC could be a potential therapeutic agent in the treatment of the cisplatin-induced nephrotoxicity through its anti-apoptotic, anti-oxidant and anti-inflammatory effects.

  12. Secreted Factors from Bone Marrow Stromal Cells Upregulate IL-10 and Reverse Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Jack M. Milwid

    2012-01-01

    Full Text Available Acute kidney injury is a devastating syndrome that afflicts over 2,000,000 people in the US per year, with an associated mortality of greater than 70% in severe cases. Unfortunately, standard-of-care treatments are not sufficient for modifying the course of disease. Many groups have explored the use of bone marrow stromal cells (BMSCs for the treatment of AKI because BMSCs have been shown to possess unique anti-inflammatory, cytoprotective, and regenerative properties in vitro and in vivo. It is yet unresolved whether the primary mechanisms controlling BMSC therapy in AKI depend on direct cell infusion, or whether BMSC-secreted factors alone are sufficient for mitigating the injury. Here we show that BMSC-secreted factors are capable of providing a survival benefit to rats subjected to cisplatin-induced AKI. We observed that when BMSC-conditioned medium (BMSC-CM is administered intravenously, it prevents tubular apoptosis and necrosis and ameliorates AKI. In addition, we observed that BMSC-CM causes IL-10 upregulation in treated animals, which is important to animal survival and protection of the kidney. In all, these results demonstrate that BMSC-secreted factors are capable of providing support without cell transplantation, and the IL-10 increase seen in BMSC-CM-treated animals correlates with attenuation of severe AKI.

  13. DNA damage response in nephrotoxic and ischemic kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Mingjuan; Tang, Chengyuan [Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 (China); Ma, Zhengwei [Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA 30912 (United States); Huang, Shuang [Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL (United States); Dong, Zheng, E-mail: zdong@augusta.edu [Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011 (China); Department of Cellular Biology & Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, Augusta, GA 30912 (United States)

    2016-12-15

    DNA damage activates specific cell signaling cascades for DNA repair, cell cycle arrest, senescence, and/or cell death. Recent studies have demonstrated DNA damage response (DDR) in experimental models of acute kidney injury (AKI). In cisplatin-induced AKI or nephrotoxicity, the DDR pathway of ATR/Chk2/p53 is activated and contributes to renal tubular cell apoptosis. In ischemic AKI, DDR seems more complex and involves at least the ataxia telangiectasia mutated (ATM), a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, and p53; however, while ATM may promote DNA repair, p53 may trigger cell death. Targeting DDR for kidney protection in AKI therefore relies on a thorough elucidation of the DDR pathways in various forms of AKI.

  14. Galectin-1-Induced Autophagy Facilitates Cisplatin Resistance of Hepatocellular Carcinoma.

    Directory of Open Access Journals (Sweden)

    Yu-Chi Su

    Full Text Available Hepatocellular carcinoma (HCC is one of the most common cancers in Taiwan. Although chemotherapy is the primary treatment for HCC patients, drug resistance often leads to clinical failure. Galectin-1 is a beta-galactoside binding lectin which is up-regulated in HCC patients and promotes tumor growth by mediating cancer cell adhesion, migration and proliferation, but its role in chemoresistance of HCC is poorly understood. In this study we found that galectin-1 is able to lead to chemoresistance against cisplatin treatment, and subsequent inhibition has reversed the effect of cell death in HCC cells. Moreover, galectin-1 was found to induce autophagic flux in HCC cells. Inhibition of autophagy by inhibitors or knockdown of Atg5 cancels galectin-1-induced cisplatin resistance in HCC cells. Increase of mitophagy triggered by galectin-1 was found to reduce the mitochondrial potential loss and apoptosis induced by cisplatin treatment. Finally, using an in situ hepatoma mouse model, we clearly demonstrated that inhibition of galectin-1 by thiodigalactoside could significantly augment the anti-HCC effect of cisplatin. Taken together, our findings offer a new insight into the chemoresistance galectin-1 causes against cisplatin treatment, and points to a potential approach to improve the efficacy of cisplatin in the treatment of HCC patients.

  15. Plasmodium falciparum-induced severe malaria with acute kidney injury and jaundice: a case report

    Science.gov (United States)

    Baswin, A.; Siregar, M. L.; Jamil, K. F.

    2018-03-01

    P. falciparum-induced severe malaria with life-threatening complications like acute kidney injury (AKI), jaundice, cerebral malaria, severe anemia, acidosis, and acute respiratory distress syndrome (ARDS). A 31-year-old soldier man who works in Aceh Singkil, Indonesia which is an endemic malaria area presented with a paroxysm of fever, shaking chills and sweats over four days, headache, arthralgia, abdominal pain, pale, jaundice, and oliguria. Urinalysis showed hemoglobinuria. Blood examination showed hemolytic anemia, thrombocytopenia, and hyperbilirubinemia. Falciparum malaria was then confirmed by peripheral blood smear, antimalarial medications were initiated, and hemodialysis was performed for eight times. The patient’s condition and laboratory results were quickly normalized. We report a case of P. falciparum-induced severe malaria with AKI and jaundice. The present case suggests that P. falciparum may induce severe malaria with life-threatening complications, early diagnosis and treatment is important to improve the quality of life of patients. Physicians must be alert for correct diagnosis and proper management of imported tropical malaria when patients have travel history in endemic areas.

  16. Neferine reduces cisplatin-induced nephrotoxicity by enhancing autophagy via the AMPK/mTOR signaling pathway.

    Science.gov (United States)

    Li, Hui; Tang, Yuling; Wen, Long; Kong, Xianglong; Chen, Xuelian; Liu, Ping; Zhou, Zhiguo; Chen, Wenhang; Xiao, Chenggen; Xiao, Ping; Xiao, Xiangcheng

    2017-03-11

    Cisplatin is one of the most effective chemotherapeutic agents; however, its clinical use is limited by serious side effects of which nephrotoxicity is the most important. Nephrotoxicity induced by cisplatin is closely associated with autophagy reduction and caspase activation. In this study, we investigated whether neferine, an autophagy inducer, had a protective effect against cisplatin-induced nephrotoxicity. In an in vitro cisplatin-induced nephrotoxicity model, we determined that neferine was able to induce autophagy and that pretreatment with neferine not only attenuated cisplatin-induced cell apoptosis but further activated cell autophagy. This pro-survival effect was abolished by the autophagic flux inhibitor chloroquine. Furthermore, neferine pretreatment activated the AMPK/mTOR pathway; however, pharmacological inhibition of AMPK abolished neferine-mediated autophagy and nephroprotection against cisplatin-induced apoptosis. Collectively, our findings suggest for the first time the possible protective mechanism of neferine, which is crucial for its further development as a potential therapeutic agent for cisplatin-induced nephrotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Reduced ghrelin secretion in the hypothalamus of rats due to cisplatin-induced anorexia.

    Science.gov (United States)

    Yakabi, Koji; Sadakane, Chiharu; Noguchi, Masamichi; Ohno, Shino; Ro, Shoki; Chinen, Katsuya; Aoyama, Toru; Sakurada, Tomoya; Takabayashi, Hideaki; Hattori, Tomohisa

    2010-08-01

    Although chemotherapy with cisplatin is a widely used and effective cancer treatment, the undesirable gastrointestinal side effects associated with it, such as nausea, vomiting, and anorexia, markedly decrease patients' quality of life. To elucidate the mechanism underlying chemotherapy-induced anorexia, focusing on the hypothalamic ghrelin secretion-anorexia association, we measured hypothalamic ghrelin secretion in fasted and cisplatin-treated rats. Hypothalamic ghrelin secretion changes after vagotomy or administration of cisplatin. Cisplatin + rikkunshito, a serotonin 2C receptor antagonist or serotonin 3 receptor antagonist, was investigated. The effects of intracerebroventricular (icv) administration of ghrelin or the serotonin 2C receptor antagonist SB242084 on food intake were also evaluated in cisplatin-treated rats. Hypothalamic ghrelin secretion significantly increased in 24-h-fasted rats compared to freely fed rats and was markedly reduced 24 and 48 h after cisplatin treatment in cisplatin-treated rats compared to saline-treated rats, although their plasma ghrelin levels were comparable. In cisplatin-treated rats, icv ghrelin administration reversed the decrease in food intake, vagotomy partially restored hypothalamic ghrelin secretion, and hypothalamic serotonin 2C receptor mRNA expression increased significantly. Administration of rikkunshito (an endogenous ghrelin enhancer) or a serotonin 2C receptor antagonist reversed the decrease in hypothalamic ghrelin secretion and food intake 24 h after cisplatin treatment. Cisplatin-induced anorexia is mediated through reduced hypothalamic ghrelin secretion. Cerebral serotonin 2C receptor activation partially induces decrease in hypothalamic ghrelin secretion, and rikkunshito suppresses cisplatin-induced anorexia by enhancing this secretion.

  18. Tumour-cell apoptosis after cisplatin treatment is not telomere dependent.

    Science.gov (United States)

    Jeyapalan, Jessie C; Saretzki, Gabriele; Leake, Alan; Tilby, Michael J; von Zglinicki, Thomas

    2006-06-01

    Cisplatin is a major chemotherapeutic agent, especially for the treatment of neuroblastoma. Telomeres with their sequence (TTAGGG)n are probable targets for cisplatin intrastrand cross-linking, but the role of telomeres in mediating cisplatin cytotoxicity is not clear. After exposure to cisplatin as single dose or continuous treatment, we found no loss of telomeres in either SHSY5Y neuroblastoma cells (telomere length, approximately 4 kbp), HeLa 229 cells (telomere length, 20 kbp) or in the acute lymphoblastic T cell line 1301 (telomere length, approximately 80 kbp). There was no induction of telomeric single strand breaks, telomeric overhangs were not degraded and telomerase activity was down-regulated only after massive onset of apoptosis. In contrast, cisplatin induced a delayed formation of DNA strand breaks and induced DNA damage foci containing gamma-H2A.X at nontelomeric sites. Interstitial DNA damage appears to be more important than telomere loss or telomeric damage as inducer of the signal pathway towards apoptosis and/or growth arrest in cisplatin-treated tumour cells.

  19. Acute kidney injury due to star fruit ingestion: A case report

    Directory of Open Access Journals (Sweden)

    Mehruba Alam Ananna

    2016-08-01

    Full Text Available Star fruit (Avarrhoa carambola is a fruit from oxalidace family. lt is found in many countries of the world including Bangladesh. But its ingestion or drinking star fruit juice may lead to intoxication especially in patients with chronic kidney disease and manifestations might be neurological or nephrological. lt may also cause acute kidney injury in patients with previously normal renal function. Here we are presenting a case who presented with acute kidney injury after star fruit ingestion with previously unknown renal function impairment. The etiology was confirmed by histopathological exami­nation after doing renal biopsy. This renal function impairment is mainly due to oxalate crystal induce nephropathy which is richly abundant in star fruit. His renal function was improved ·with conservative management. Physicians should be alert to consider the ingestion of star fruit as a cause of acute kidney injury in a patient even in the absence of previous renal function impairment.

  20. Inhibition of cisplatin-induced vomiting by selective 5-hydroxytryptamine M-receptor antagonism.

    OpenAIRE

    Miner, W. D.; Sanger, G. J.

    1986-01-01

    MDL 72222, the selective 5-hydroxytryptamine (5-HT) M-receptor antagonist, prevented or reduced cisplatin-induced emesis in ferrets. It is suggested that cisplatin-induced, and possibly other cytotoxic drug-induced vomiting may involve a 5-HT M-receptor mechanism.

  1. Amelioration of cisplatin-induced nephrotoxicity by ethanolic extract of Bauhinia purpurea: An in vivo study in rats.

    Science.gov (United States)

    Rana, Md Azmat; Khan, Rahat Ali; Nasiruddin, Mohammad; Khan, Aijaz Ahmed

    2016-01-01

    Our objective is to study the nephroprotective activity and antioxidant potential of Bauhinia purpurea unripe pods and bark against cisplatin-induced nephrotoxicity. Healthy adult albino rats of either sex (150-200 g) were randomly divided into six groups of six animals each Group I (vehicle control) and Group II (negative control). Group III (BBE200) and Group IV (BBE400) were administered the ethanolic extract of Bauhinia purpurea bark in doses of 200 and 400 mg/kg/day p.o., respectively, and Group V (BPE200) and Group VI (BPE400) were administered the ethanolic extract of Bauhinia purpurea unripe pods at doses of 200 and 400 mg/kg/day p.o., respectively. All the treatments were given for nine days. Cisplatin in a single dose of 6 mg/kg i.p. was given on the 4 th day to all groups, except the vehicle control group. On the 10 th day, blood and urine were collected for biochemical tests and the rats were sacrificed. The kidney was removed for histology and lipid peroxidation-antioxidant test. Cisplatin caused nephrotoxicity as evidenced by elevated blood urea, serum creatinine and urine glucose, and there was decreased creatinine clearance in Group II as compared with Group I. Administration of BBE and BPE at doses of 200 and 400 mg/kg in Group III and Group VI caused a dose-dependant reduction in the rise of blood urea, serum creatinine and urine glucose, and there was a dose-dependant increase in creatinine clearance compared with Group II. There was increased catalase and glutathione and decreased malondialdehyde levels in Group II, while BBE 400 (Group IV) and BPE 400 (Group VI) treatments significantly reversed the changes toward normal values. Histological examination of the kidney revealed protection in Group IV and Group VI compared with Group II. The ethanolic extract of Bauhinia purpurea unripe pods and bark has a nephroprotective activity against cisplatin-induced nephrotoxicity in rats.

  2. Effects of Schizolobium parahyba extract on experimental Bothrops venom-induced acute kidney injury.

    Directory of Open Access Journals (Sweden)

    Monique Silva Martines

    Full Text Available BACKGROUND: Venom-induced acute kidney injury (AKI is a frequent complication of Bothrops snakebite with relevant morbidity and mortality. The aim of this study was to assess the effects of Schizolobium parahyba (SP extract, a natural medicine with presumed anti-Bothrops venom effects, in an experimental model of Bothrops jararaca venom (BV-induced AKI. METHODOLOGY: Groups of 8 to 10 rats received infusions of 0.9% saline (control, C, SP 2 mg/kg, BV 0.25 mg/kg and BV immediately followed by SP (treatment, T in the doses already described. After the respective infusions, animals were assessed for their glomerular filtration rate (GFR, inulin clearance, renal blood flow (RBF, Doppler, blood pressure (BP, intra-arterial transducer, renal vascular resistance (RVR, urinary osmolality (UO, freezing point, urinary neutrophil gelatinase-associated lipocalin (NGAL, enzyme-linked immunosorbent assay [ELISA], lactate dehydrogenase (LDH, kinetic method, hematocrit (Hct, microhematocrit, fibrinogen (Fi, Klauss modified and blinded renal histology (acute tubular necrosis score. PRINCIPAL FINDINGS: BV caused significant decreases in GFR, RBF, UO, HcT and Fi; significant increases in RVR, NGAL and LDH; and acute tubular necrosis. SP did not prevent these changes; instead, it caused a significant decrease in GFR when used alone. CONCLUSION: SP administered simultaneously with BV, in an approximate 10∶1 concentration, did not prevent BV-induced AKI, hemolysis and fibrinogen consumption. SP used alone caused a decrease in GFR.

  3. Curcuma longa (curcumin) decreases in vivo cisplatin-induced ototoxicity through heme oxygenase-1 induction.

    Science.gov (United States)

    Fetoni, Anna R; Eramo, Sara L M; Paciello, Fabiola; Rolesi, Rolando; Podda, Maria Vittoria; Troiani, Diana; Paludetti, Gaetano

    2014-06-01

    To investigate whether curcumin may have in vivo protective effects against cisplatin ototoxicity by its direct scavenger activity and/or by curcumin-mediated upregulation of HO-1. Cisplatin-induced ototoxicity is a major dose-limiting side effect in anticancer chemotherapy. A protective approach to decrease cisplatin ototoxicity without compromising its therapeutic efficacy remains a critical goal for anticancer therapy. Recent evidences indicate that curcumin exhibits antioxidant, anti-inflammatory, and chemosensitizer activities. In male adult Wistar rats, a curcumin dose of 200 mg/kg, selected from a dose-response curve, was injected 1 hour before cisplatin administration and once daily for the following 3 days. A single dose of cisplatin (16 mg/kg) was administered intraperitoneally. Rats were divided as follows: 1) control, 2) curcumin control, 3) vehicle control, 4) cisplatin, 5) cisplatin+ vehicle, and 6) curcumin+cisplatin. ABRs were measured before and at Days 3 and 5 after cisplatin administration. Rhodamine-phalloidin staining, 4-hydroxy-2-nonenal and heme-oxigenase-1 immunostainings, and Western blot analyses were performed to assess and quantify OHC loss, lipid peroxidation, and the endogenous response to cisplatin-induced damage and to curcumin protection. Curcumin treatment attenuated hearing loss induced by cisplatin, increased OHC survival, decreased 4-HNE expression, and increased HO-1 expression. This preclinical study demonstrates that systemic curcumin attenuates ototoxicity and provides molecular evidence for a role of HO-1 as an additional mediator in attenuating cisplatin-induced damage.

  4. Cisplatin induces protective autophagy through activation of BECN1 in human bladder cancer cells

    Directory of Open Access Journals (Sweden)

    Lin JF

    2017-05-01

    Full Text Available Ji-Fan Lin,1 Yi-Chia Lin,2 Te-Fu Tsai,2,3 Hung-En Chen,2 Kuang-Yu Chou,2,3 Thomas I-Sheng Hwang2–4 1Central Laboratory, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 2Division of Urology, School of Medicine, Fu-Jen Catholic University, New Taipei, 3Division of Urology, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, 4Department of Urology, Taipei Medical University, Taipei, Taiwan Purpose: Cisplatin-based chemotherapy is the first line treatment for several cancers including bladder cancer (BC. Autophagy induction has been implied to contribute to cisplatin resistance in ovarian cancer; and a high basal level of autophagy has been demonstrated in human bladder tumors. Therefore, it is reasonable to speculate that autophagy may account for the failure of cisplatin single treatment in BC. This study investigated whether cisplatin induces autophagy and the mechanism involved using human BC cell lines.Materials and methods: Human BC cells (5637 and T24 were used in this study. Cell viability was detected using water soluble tetrazolium-8 reagents. Autophagy induction was detected by monitoring the levels of light chain 3 (LC3-II and p62 by Western blot, LC3-positive puncta formation by immunofluorescence, and direct observation of the autophagolysosome (AL formation by transmission electron microscopy. Inhibitors including bafilomycin A1 (Baf A1, chloroquine (CQ, and shRNA-based lentivirus against autophagy-related genes (ATG7 and ATG12 were utilized. Apoptosis level was detected by caspase 3/7 activity and DNA fragmentation.Results: Cisplatin decreased cell viability and induced apoptosis of 5637 and T24 cells in a dose- and time-dependent manner. The increased LC3-II accumulation, p62 clearance, the number of LC3-positive puncta, and ALs in cisplatin-treated cells suggested that cisplatin indeed induces autophagy. Inhibition of cisplatin-induced autophagy using Baf A1, CQ, or ATG7/ATG12 shRNAs significantly enhanced cytotoxicity of

  5. Erythropoietin protects against rhabdomyolysis-induced acute kidney injury by modulating macrophage polarization

    Science.gov (United States)

    Wang, Shuo; Zhang, Chao; Li, Jiawei; Niyazi, Sidikejiang; Zheng, Long; Xu, Ming; Rong, Ruiming; Yang, Cheng; Zhu, Tongyu

    2017-01-01

    Erythropoietin (EPO) is a well-known hormone that is clinically used for the treatment of anemia. Very recently, an increasing body of evidence showed that EPO could still regulate bioactivities of macrophages. However, the details about the immunomodulatory effect of EPO on macrophages are not fully delineated, particularly in the setting of renal damages. Therefore, in the present study, we determined whether EPO could exert an impact on the dynamics of macrophages in a well-established model of rhabdomyolysis-induced acute kidney injury and explored the potential mechanisms. EPO was found to ameliorate kidney injuries by reducing macrophages recruitment and promoting phenotype switch toward M2 macrophages in vivo. It was also confirmed that EPO could directly suppress pro-inflammatory responses of M1 macrophages and promote M2 marker expression in vitro. Data indicated the possible involvement of Jak2/STAT3/STAT6 pathway in the augmentation of EPO on M2 polarization. These results improved the understanding of the immunoregulatory capacity of EPO on macrophages, which might optimize the therapeutic modalities of EPO. PMID:28383559

  6. Protective effects of edaravone against cisplatin-induced hair cell damage in zebrafish.

    Science.gov (United States)

    Hong, Seok Jin; Im, Gi Jung; Chang, Jiwon; Chae, Sung Won; Lee, Seung Hoon; Kwon, Soon Young; Jung, Hak Hyun; Chung, Ah Young; Park, Hae Chul; Choi, June

    2013-06-01

    Edaravone is known to have a potent free radical scavenging effect. The objective of the present study was to evaluate the effects of edaravone on cisplatin-induced ototoxicity in transgenic zebrafish (Brn3C: EGFP). Five day post-fertilization zebrafish larvae were exposed to 1000 μM cisplatin and 50 μM, 100 μM, 250 μM, 500 μM, 750 μM, and 1000 μM concentrations of edaravone for 4h. Hair cells within neuromasts of the supraorbital (SO1 and SO2), otic (O1), and occipital (OC1) lateral lines were analyzed by fluorescence microscopy and confocal microscopy (n=10). Hair cell survival was calculated as a percentage of the hair cells in the control group that were not exposed to cisplatin. Ultrastructural changes were evaluated using scanning electron microscopy and transmission electron microscopy. Edaravone protected cisplatin-induced hair cell loss of neuromasts (edaravone 750 μM: 8.7 ± 1.5 cells, cisplatin 1000 μM only: 3.7 ± 0.9 cells; n=10, pedaravone for 4h. Edaravone attenuated cisplatin-induced hair cell damage in zebrafish. The results of the current study suggest that cisplatin induces apoptosis, and the apoptotic cell death can be prevented by treatment with edaravone in zebrafish. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Efficacy of atorvastatin on the prevention of contrast-induced acute kidney injury: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Liu L

    2018-03-01

    Full Text Available Ling-Yun Liu,1 Yang Liu,2 Mei-Yan Wu,2 Yan-Yan Sun,3 Fu-Zhe Ma2 1Department of Andrology, 2Department of Nephrology, the First Hospital of Jilin University, 3Department of Nephrology, the Fourth Hospital of Jilin University, Changchun, China Background: Results of studies on the efficacy of atorvastatin pretreatment on reducing the prevalence of contrast-induced acute kidney injury (CIAKI in patients undergoing coronary angiography (CAG or percutaneous coronary intervention (PCI have been controversial.Objective: We undertook a meta-analysis to evaluate the efficacy of atorvastatin on contrast-induced nephropathy (CIN after CAG or PCI.Materials and methods: We undertook a systematic search of electronic databases (PubMed, Embase, and the Cochrane Library up to June 2017. A meta-analysis was carried out including randomized controlled trials (RCTs that compared atorvastatin pretreatment with pretreatment with a low-dose statin or placebo for CIAKI prevention in patients undergoing CAG. The main endpoint was CIN prevalence.Results: Nine RCTs were included in our meta-analysis. Atorvastatin pretreatment reduced the prevalence of CIN significantly (odds ratio [OR] 0.46; 95% confidence interval [95% CI] 0.27–0.79; p=0.004. The benefit of high-dose atorvastatin pretreatment was consistent when compared with the control group (OR 0.45; 95% CI 0.21–0.95; p=0.04.Conclusion: At high doses, atorvastatin pretreatment was associated with a significant reduction in the prevalence of CIAKI in patients undergoing CAG. Pretreatment with high-dose atorvastatin could be employed to prevent CIAKI. Keywords: atorvastatin, contrast-induced acute kidney injury, coronary angiography, percutaneous coronary intervention, contrast-induced nephropathy, meta-analysis

  8. Impact of Acute Kidney Injury in Patients Hospitalized With Pneumonia.

    Science.gov (United States)

    Chawla, Lakhmir S; Amdur, Richard L; Faselis, Charles; Li, Ping; Kimmel, Paul L; Palant, Carlos E

    2017-04-01

    Pneumonia is a common cause of hospitalization and can be complicated by the development of acute kidney injury. Acute kidney injury is associated with major adverse kidney events (death, dialysis, and durable loss of renal function [chronic kidney disease]). Because pneumonia and acute kidney injury are in part mediated by inflammation, we hypothesized that when acute kidney injury complicates pneumonia, major adverse kidney events outcomes would be exacerbated. We sought to assess the frequency of major adverse kidney events after a hospitalization for either pneumonia, acute kidney injury, or the combination of both. We conducted a retrospective database analysis of the national Veterans Affairs database for patients with a admission diagnosis of International Classification of Diseases-9 code 584.xx (acute kidney injury) or 486.xx (pneumonia) between October 1, 1999, and December 31, 2005. Three groups of patients were created, based on the diagnosis of the index admission and serum creatinine values: 1) acute kidney injury, 2) pneumonia, and 3) pneumonia with acute kidney injury. Patients with mean baseline estimated glomerular filtration rate less than 45 mL/min/1.73 m were excluded. The primary endpoint was major adverse kidney events defined as the composite of death, chronic dialysis, or a permanent loss of renal function after the primary discharge. The observations of 54,894 subjects were analyzed. Mean age was 68.7 ± 12.3 years. The percentage of female was 2.4, 73.3% were Caucasian, and 19.7% were African-American. Differences across the three diagnostic groups were significant for death, 25% decrease in estimated glomerular filtration rate from baseline, major adverse kidney events following admission, and major adverse kidney events during admission (all p pneumonia + acute kidney injury group (51% died and 62% reached major adverse kidney events). In both unadjusted and adjusted time to event analyses, patients with pneumonia + acute kidney injury

  9. Acute Kidney Injury by Radiographic Contrast Media: Pathogenesis and Prevention

    Science.gov (United States)

    Faga, Teresa; Pisani, Antonio; Michael, Ashour

    2014-01-01

    It is well known that iodinated radiographic contrast media may cause kidney dysfunction, particularly in patients with preexisting renal impairment associated with diabetes. This dysfunction, when severe, will cause acute renal failure (ARF). We may define contrast-induced Acute Kidney Injury (AKI) as ARF occurring within 24–72 hrs after the intravascular injection of iodinated radiographic contrast media that cannot be attributed to other causes. The mechanisms underlying contrast media nephrotoxicity have not been fully elucidated and may be due to several factors, including renal ischaemia, particularly in the renal medulla, the formation of reactive oxygen species (ROS), reduction of nitric oxide (NO) production, and tubular epithelial and vascular endothelial injury. However, contrast-induced AKI can be prevented, but in order to do so, we need to know the risk factors. We have reviewed the risk factors for contrast-induced AKI and measures for its prevention, providing a long list of references enabling readers to deeply evaluate them both. PMID:25197639

  10. Comparison of methods for estimating glomerular filtration rate in head and neck cancer patients treated with cisplatin

    DEFF Research Database (Denmark)

    Lindberg, Lotte; Brødbæk, Kasper; Hägerström, Erik G

    2017-01-01

    Cisplatin is a chemotherapeutic agent widely used in the treatment of various solid tumors. Cisplatin induces nephrotoxicity and may lead to long-term reduction of kidney function. Consequently, determination of glomerular filtration rate (GFR) is used to monitor potential kidney damage. This study...... aimed to compare two commonly used algorithms for estimating GFR (eGFR) from plasma creatinine (PCr) with 51Cr-EDTA clearance (CrCl) as a reference method. This was a retrospective single center study of 94 head and neck cancer patients treated with cisplatin. CrCl was performed once before, during......, and after treatment, and PCr was measured concurrently. eGFR was assessed from PCr applying the Cockcroft-Gault (CG) and the Chronic Kidney Disease-Epidemiology Collaboration (CKD-EPI) equations. Agreement was assessed applying the statistical methods of Bland and Altman. A predefined limit of clinically...

  11. Consensus Guideline for Use of Glucarpidase in Patients with High-Dose Methotrexate Induced Acute Kidney Injury and Delayed Methotrexate Clearance

    DEFF Research Database (Denmark)

    Ramsey, Laura B; Balis, Frank M; O'Brien, Maureen M

    2018-01-01

    Acute kidney injury due to high-dose methotrexate (HDMTX) is a serious, life-threatening toxicity that can occur in pediatric and adult patients. Glucarpidase is a treatment approved by the Food and Drug Administration for high methotrexate concentrations in the context of kidney dysfunction...... is above 30 µM, 42-hour concentration is above 10 µM, or 48-hour concentration is above 5 µM and the serum creatinine is significantly elevated relative to the baseline measurement (indicative of HDMTX-induced acute kidney injury), glucarpidase may be indicated. After a 36- to 42-hour HDMTX infusion......: Glucarpidase is a rarely used medication that is less effective when given after more than 60 hours of exposure to high-dose methotrexate, so predicting early which patients will need it is imperative. There are no currently available consensus guidelines for the use of this medication. The indication...

  12. Mesenchymal stem cells ameliorate rhabdomyolysis-induced acute kidney injury via the activation of M2 macrophages

    Science.gov (United States)

    2014-01-01

    Introduction The mortality of rhabdomyolysis-induced acute kidney injury (AKI) is still high, as there is no effective therapy. It has been shown that bone marrow-derived mesenchymal stem cells (MSCs) can induce M2 macrophages, which mediate MSC protection in other experimental inflammation-related organ injury. This study was designed to investigate the protective effects of macrophage activation in MSC therapy of rhabdomyolysis-induced AKI. Methods MSCs were injected into glycerol-induced rhabdomyolysis mice. Renal injury was evaluated using the serum creatinine, urea nitrogen, renal pathology and acute tubular necrosis score. The distribution of MSCs was detected using two-photon fluorescence confocal imaging. Immunofluorescence of anti-F4/80 and anti-CD206 was performed to determine macrophages and M2 macrophages in the tissues of the kidney, and M2 macrophage infiltration was also evaluated using western blotting analyses. After depletion of macrophages using clodronate liposomes at the phase of kidney repair, renal injury was re-evaluated. RAW 264.7 macrophages were incubated with lipopolysaccharide and co-cultured with MSCs and subsequently visualised using immunofluorescence staining and flow cytometry analysis. Finally, disparate phenotype macrophages, including normal macrophages (M0), lipopolysaccharide-stimulated macrophages (M1), and MSC-co-cultured macrophages (M2), were infused into mice with AKI, which were pre-treated with liposomal clodronate. Results In vivo infusion of MSCs protected AKI mice from renal function impairment and severe tubular injury, which was accompanied by a time-dependent increase in CD206-positive M2 macrophage infiltration. In addition, depleting macrophages with clodronate delayed restoration of AKI. In vitro, macrophages co-cultured with MSCs acquired an anti-inflammatory M2 phenotype, which was characterised by an increased expression of CD206 and the secretory cytokine interleukin (IL)-10. The concentrations of IL-10, IL

  13. Involvement of caspase-dependent and -independent apoptotic pathways in cisplatin-induced apoptosis

    Science.gov (United States)

    Liu, Lei; Zhang, Yingjie; Wang, Xianwang

    2009-02-01

    Cisplatin, an efficient anticancer agent, can trigger multiple apoptotic pathways in cancer cells. However, the signal transduction pathways in response to cisplatin-based chemotherapy are complicated, and the mechanism is not fully understood. In current study, we showed that, during cisplatin-induced apoptosis of human lung adenocarcinoma cells, both the caspase-dependent and -independent pathways were activated. Herein, we reported that after cisplatin treatment, the activities of caspase-9/-3 were sharply increased; pre-treatment with Z-LEHD-fmk (inhibitor of caspase-9), Z-DEVD-fmk (inhibitor of caspase-3), and Z-VAD-fmk (a pan-caspase inhibitor) increased cell viability and decreased apoptosis, suggesting that caspase-mediated apoptotic pathway was activated following cisplatin treatment. Confocal imaging of the cells transfected with AIF-GFP demonstrated that AIF release occurred about 9 h after cisplatin treatment. The event proceeded progressively over time, coinciding with a nuclear translocation and lasting for more than 2 hours. Down-regulation of AIF by siRNA also significantly increased cell viability and decreased apoptosis, these results suggested that AIF-mediated caspase-independent apoptotic pathway was involved in cispatin-induced apoptosis. In conclusion, the current study demonstrated that both caspase-dependent and -independent apoptotic pathways were involved in cisplatin-induced apoptosis in human lung adenocarcinoma cells.

  14. Cisplatin-Induced Renal Salt Wasting Requiring over 12 Liters of 3% Saline Replacement

    Directory of Open Access Journals (Sweden)

    Phuong-Chi Pham

    2017-01-01

    Full Text Available Cisplatin is known to induce Fanconi syndrome and renal salt wasting (RSW. RSW typically only requires transient normal saline (NS support. We report a severe RSW case that required 12 liters of 3% saline. A 57-year-old woman with limited stage small cell cancer was admitted for cisplatin (80 mg/m2 and etoposide (100 mg/m2 therapy. Patient’s serum sodium (SNa decreased from 138 to 133 and 125 mEq/L within 24 and 48 hours of cisplatin therapy, respectively. A diagnosis of syndrome of inappropriate antidiuretic hormone secretion (SIADH was initially made. Despite free water restriction, patient’s SNa continued to decrease in association with acute onset of headaches, nausea, and dizziness. Three percent saline (3%S infusion with rates up to 1400 mL/day was required to correct and maintain SNa at 135 mEq/L. Studies to evaluate Fanconi syndrome revealed hypophosphatemia and glucosuria in the absence of serum hyperglycemia. The natriuresis slowed down by 2.5 weeks, but 3%S support was continued for a total volume of 12 liters over 3.5 weeks. Attempts of questionable benefits to slow down glomerular filtration included the administration of ibuprofen and benazepril. To our knowledge, this is the most severe case of RSW ever reported with cisplatin.

  15. Mitochondria-Targeted Antioxidant Mitoquinone Reduces Cisplatin-Induced Ototoxicity in Guinea Pigs.

    Science.gov (United States)

    Tate, Alan D; Antonelli, Patrick J; Hannabass, Kyle R; Dirain, Carolyn O

    2017-03-01

    Objective To determine if mitoquinone (MitoQ) attenuates cisplatin-induced hearing loss in guinea pigs. Study Design Prospective and controlled animal study. Setting Academic, tertiary medical center. Subjects and Methods Guinea pigs were injected subcutaneously with either 5 mg/kg MitoQ (n = 9) or normal saline (control, n = 9) for 7 days and 1 hour before receiving a single dose of 10 mg/kg cisplatin. Auditory brainstem response thresholds were measured before MitoQ or saline administration and 3 to 4 days after cisplatin administration. Results Auditory brainstem response threshold shifts after cisplatin treatment were smaller by 28 to 47 dB in guinea pigs injected with MitoQ compared with those in the control group at all tested frequencies (4, 8, 16, and 24 kHz, P = .0002 to .04). Scanning electron microscopy of cochlear hair cells showed less outer hair cell loss and damage in the MitoQ group. Conclusion MitoQ reduced cisplatin-induced hearing loss in guinea pigs. MitoQ appears worthy of further investigation as a means of preventing cisplatin ototoxicity in humans.

  16. Acute myeloid leukemia after kidney transplantation: a case report and literature review

    Directory of Open Access Journals (Sweden)

    Francesca Cardarelli

    Full Text Available Abstract The incidence of malignancy is greater in kidney transplant recipients compared to the general population, though the higher risk is not equally distributed to all types of cancers. In face of the increased longevity of renal transplant recipients, certain cancers, such as acute leukemias, are becoming more prevalent. Acute myeloid leukemia (AML typically presents with cytopenias and infections, both common findings after kidney transplantation. Therefore, the diagnosis of AML may be initially overlooked in these patients. We report the case of a 33-year-old man who presented with fever, pancytopenia and acute worsening of his renal allograft function 9 years after a living unrelated kidney transplant. After initial negative infectious work-up, a kidney biopsy revealed C4d-positive antibody-mediated rejection in combination with scattered atypical inflammatory cells. A subsequent bone marrow biopsy confirmed AML. He underwent successful induction chemotherapy with daunorubucin and cytarabine and ultimately achieved a complete remission. However, he developed a Page kidney with worsening renal function and abdominal pain three weeks after biopsy in the setting of chemotherapy-induced thrombocytopenia. Herein, we discuss the prevalence, risk factors, presentation and management of leukemia after kidney transplantation.

  17. Transient Receptor Potential Vanilloid 1 is essential for cisplatin-induced heat hyperalgesia in mice

    Directory of Open Access Journals (Sweden)

    Carlton Susan M

    2010-03-01

    Full Text Available Abstract Background Cisplatin is primarily used for treatment of ovarian and testicular cancer. Oxaliplatin is the only effective treatment for metastatic colorectal cancer. Both are known to cause dose related, cumulative toxic effects on the peripheral nervous system and thirty to forty percent of cancer patients receiving these agents experience painful peripheral neuropathy. The mechanisms underlying painful platinum-induced neuropathy remain poorly understood. Previous studies have demonstrated important roles for TRPV1, TRPM8, and TRPA1 in inflammation and nerve injury induced pain. Results In this study, using real-time, reverse transcriptase, polymerase chain reaction (RT-PCR, we analyzed the expression of TRPV1, TRPM8, and TRPA1 induced by cisplatin or oxaliplatin in vitro and in vivo. For in vitro studies, cultured E15 rat dorsal root ganglion (DRG neurons were treated for up to 48 hours with cisplatin or oxaliplatin. For in vivo studies, trigeminal ganglia (TG were isolated from mice treated with platinum drugs for three weeks. We show that cisplatin and oxaliplatin-treated DRG neurons had significantly increased in TRPV1, TRPA1, and TRPM8 mRNA expression. TG neurons from cisplatin treated mice had significant increases in TRPV1 and TRPA1 mRNA expression while oxaliplatin strongly induced only TRPA1. Furthermore, compared to the cisplatin-treated wild-type mice, cisplatin-treated TRPV1-null mice developed mechanical allodynia but did not exhibit enhancement of noxious heat- evoked pain responses. Immunohistochemistry studies showed that cisplatin-treated mice had no change in the proportion of the TRPV1 immunopositive TG neurons. Conclusion These results indicate that TRPV1 and TRPA1 could contribute to the development of thermal hyperalgesia and mechanical allodynia following cisplatin-induced painful neuropathy but that TRPV1 has a crucial role in cisplatin-induced thermal hyperalgesia in vivo.

  18. Evaluation of Temporal Changes in Urine-based Metabolomic and Kidney Injury Markers to Detect Compound Induced Acute Kidney Tubular Toxicity in Beagle Dogs.

    Science.gov (United States)

    Wagoner, M P; Yang, Y; McDuffie, J E; Klapczynski, M; Buck, W; Cheatham, L; Eisinger, D; Sace, F; Lynch, K M; Sonee, M; Ma, J-Y; Chen, Y; Marshall, K; Damour, M; Stephen, L; Dragan, Y P; Fikes, J; Snook, S; Kinter, L B

    2017-01-01

    Urinary protein biomarkers and metabolomic markers have been leveraged to detect acute Drug Induced Kidney Injury (DIKI) in rats; however, the utility of these indicators to enable early detection of DIKI in canine models has not been well documented. Therefore, we evaluated temporal changes in biomarkers and metabolites in urine from male and female beagle dogs. Gentamicin- induced kidney lesions in male dogs were characterized by moderate to severe tubular epithelial cell degeneration/necrosis, epithelial cell regeneration and dilation; and a unique urinebased metabolomic fingerprint. These metabolite changes included time and treatment-dependent increases in lactate, taurine, glucose, lactate, alanine, and citrate as well as 9 other known metabolites. As early as 3 days post dose, gentamicin induced increases in urinary albumin, clusterin, neutrophil gelatinase associated protein (NGAL) and total protein concentrations. Urinary albumin, clusterin, and NGAL showed earlier and more robust elevations than traditional kidney safety biomarkers, blood urea nitrogen and serum creatinine. Elevations in urinary kidney injury molecule 1 (KIM-1) were less reliable for detection of gentamicin nephrotoxicity in dogs based on values generated utilizing multiple first-generation, canine-specific KIM-1 immunoassays. The metabolic fingerprint was further evaluated in male and female dogs that received Compound A which induced slightly reversible renal tubular alterations characterized as degeneration/necrosis and concurrent significant increases in urinary taurine amongst other markers. These data support further investigations to demonstrate the value of urinary metabolites, albumin, clusterin, NGAL and taurine as promising markers to enable early detection of DIKI in dogs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Caveolin-1 sensitizes cisplatin-induced lung cancer cell apoptosis via superoxide anion-dependent mechanism.

    Science.gov (United States)

    Pongjit, Kanittha; Chanvorachote, Pithi

    2011-12-01

    Caveolin-1 (Cav-1) expression frequently found in lung cancer was linked with disease prognosis and progression. This study reveals for the first time that Cav-1 sensitizes cisplatin-induced lung carcinoma cell death by the mechanism involving oxidative stress modulation. We established stable Cav-1 overexpressed (H460/Cav-1) cells and investigated their cisplatin susceptibility in comparison with control-transfected cells and found that Cav-1 expression significantly enhanced cisplatin-mediated cell death. Results indicated that the different response to cisplatin between these cells was resulted from different level of superoxide anion induced by cisplatin. Inhibitory study revealed that superoxide anion inhibitor MnTBAP could inhibit cisplatin-mediated toxicity only in H460/Cav-1 cells while had no effect on H460 cells. Further, superoxide anion detected by DHE probe indicated that H460/Cav-1 cells generated significantly higher superoxide anion level in response to cisplatin than that of control cells. The role of Cav-1 in regulating cisplatin sensitivity was confirmed in shRNA-mediated Cav-1 down-regulated (H460/shCav-1) cells and the cells exhibited decreased cisplatin susceptibility and superoxide generation. In summary, these findings reveal novel aspects regarding role of Cav-1 in modulating oxidative stress induced by cisplatin, possibly providing new insights for cancer biology and cisplatin-based chemotherapy.

  20. Allicin protects against cisplatin-induced vestibular dysfunction by inhibiting the apoptotic pathway.

    Science.gov (United States)

    Wu, Xianmin; Cai, Jing; Li, Xiaofei; Li, He; Li, Jianfeng; Bai, Xiaohui; Liu, Wenwen; Han, Yuechen; Xu, Lei; Zhang, Daogong; Wang, Haibo; Fan, Zhaomin

    2017-06-15

    Cisplatin is an anticancer drug that causes the impairment of inner ear function as side effects, including hearing loss and balance dysfunction. The purpose of this study was to investigate the effects of allicin against cisplatin-induced vestibular dysfunction in mice and to make clear the mechanism underlying the protective effects of allicin on oto-vestibulotoxicity. Mice intraperitoneally injected with cisplatin exhibited vestibular dysfunction in swimming test, which agreed with impairment in vestibule. However, these impairments were significantly prevented by pre-treatment with allicin. Allicin markedly reduced cisplatin-activated expression of cleaved-caspase-3 in hair cells and vascular layer cells of utricule, saccule and ampulla, but also decreased AIF nuclear translocation of hair cells in utricule, saccule and ampulla. These results showed that allicin played an effective role in protecting vestibular dysfunction induced by cisplatin via inhibiting caspase-dependent and caspase-independent apoptotic pathways. Therefore, allicin may be useful in preventing oto-vestibulotoxicity mediated by cisplatin. Copyright © 2017. Published by Elsevier B.V.

  1. Investigation of Acute Toxicity of a Chemical Warfare Agent in Kidneys

    Directory of Open Access Journals (Sweden)

    Turgut Topal

    2007-08-01

    Full Text Available One of the most important chemical warfare agents, sulfur mustard (SM causes crucial acute and chronic toxic effects. Lung, skin, eye and kidneys are the most affected organs. In this work, it was investigated if increased nitric oxide (NO and peroxynitrite are involved in nitrogen mustard (NM induced kidney damage. In this experimen, aminoguanidine (AG as inducible nitric oxide synthase (iNOS inhibitor and ebselen as peroxynitrite scavenger were used. NM administration resulted in important oxidant and antioxidant changes as well as tissue damage in kidneys. Therapeutic agents showed significant protection and reduced oxidant parameteres leading to tissue healing was observed. Results of this study suggest that drugs with similar properties can be used to protect kidney damage caused by NM. [TAF Prev Med Bull. 2007; 6(4: 227-232

  2. Investigation of Acute Toxicity of a Chemical Warfare Agent in Kidneys

    Directory of Open Access Journals (Sweden)

    Turgut Topal

    2007-08-01

    Full Text Available One of the most important chemical warfare agents, sulfur mustard (SM causes crucial acute and chronic toxic effects. Lung, skin, eye and kidneys are the most affected organs. In this work, it was investigated if increased nitric oxide (NO and peroxynitrite are involved in nitrogen mustard (NM induced kidney damage. In this experimen, aminoguanidine (AG as inducible nitric oxide synthase (iNOS inhibitor and ebselen as peroxynitrite scavenger were used. NM administration resulted in important oxidant and antioxidant changes as well as tissue damage in kidneys. Therapeutic agents showed significant protection and reduced oxidant parameteres leading to tissue healing was observed. Results of this study suggest that drugs with similar properties can be used to protect kidney damage caused by NM. [TAF Prev Med Bull 2007; 6(4.000: 227-232

  3. Acute rejection after kidney transplantation promotes graft fibrosis with elevated adenosine level in rat.

    Directory of Open Access Journals (Sweden)

    Mingliang Li

    Full Text Available Chronic allograft nephropathy is a worldwide issue with the major feature of progressive allograft fibrosis, eventually ending with graft loss. Adenosine has been demonstrated to play an important role in process of fibrosis. Our study aimed to investigate the relationship between adenosine and fibrosis in renal allograft acute rejection in rat.Wistar rats and SD rats were selected as experimental animals. Our study designed two groups. In the allograft transplantation group, kidneys of Wistar rats were orthotopically transplanted into SD rat recipients, the same species but not genetically identical, to induce acute rejection. Kidney transplantations of SD rats to SD rats which were genetically identical were served as the control. We established rat models and detected a series of indicators. All data were analyzed statistically. P<0.05 was considered statistically significant.Compared with the control group, levels of adenosine increased significantly in the allograft transplantation group, in which acute rejection was induced (P<0.05. Progressive allograft fibrosis as well as collagen deposition were observed.These findings suggested that level of adenosine was upregulated in acute rejection after kidney allograft transplantation in rat. Acute rejection may promote renal allograft fibrosis via the adenosine signaling pathways.

  4. Oxidative stress caused by activation of NADPH oxidase 4 promotes contrast-induced acute kidney injury.

    Directory of Open Access Journals (Sweden)

    Bo Young Jeong

    Full Text Available Contrast-induced acute kidney injury (CIAKI is a leading cause of acute kidney injury following radiographic procedures. Intrarenal oxidative stress plays a critical role in CIAKI. Nicotinamide adenine dinucleotide 3-phosphate (NADPH oxidases (Noxs are important sources of reactive oxygen species (ROS. Among the various types of Noxs, Nox4 is expressed predominantly in the kidney in rodents. Here, we evaluated the role of Nox4 and benefit of Nox4 inhibition on CIAKI using in vivo and in vitro models. HK-2 cells were treated with iohexol, with or without Nox4 knockdown, or the most specific Nox1/4 inhibitor (GKT137831. Effects of Nox4 inhibition on CIAKI mice were examined. Expression of Nox4 in HK-2 cells was significantly increased following iohexol exposure. Silencing of Nox4 rescued the production of ROS, downregulated pro-inflammatory markers (particularly phospho-p38 implicated in CIAKI, and reduced Bax and caspase 3/7 activity, which resulted in increased cellular survival in iohexol-treated HK-2 cells. Pretreatment with GKT137831 replicated these effects by decreasing levels of phospho-p38. In a CIAKI mouse model, even though the improvement of plasma blood urea nitrogen was unclear, pretreatment with GKT137831 resulted in preserved structure, reduced expression of 8-hydroxy-2'-deoxyguanosine (8OHdG and kidney injury molecule-1 (KIM-1, and reduced number of TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells. These results suggest Nox4 as a key source of reactive oxygen species responsible for CIAKI and provide a novel potential option for prevention of CIAKI.

  5. Enhancement of Cisplatin Nephrotoxicity by Morphine and Its Attenuation by the Opioid Antagonist Naltrexone

    Directory of Open Access Journals (Sweden)

    Atefeh Aminian

    2016-07-01

    Full Text Available Nephrotoxicity is a major side effect of cisplatin, a widely used chemotherapy agent. Morphine and other opioids are also used extensively in different types of cancer for the clinical management of pain associated with local or metastatic neoplastic lesions. In addition to its analgesic effects, morphine has also been reported to possess potential immunomodulatory and antioxidant properties. Herein, we investigated the effects of morphine in a rat model of cisplatin-induced nephrotoxicity. Following administration of a single dose of cisplatin (5 mg/kg, animals received intraperitoneal injections of morphine (5 mg/kg/day and/or naltrexone (20 mg/kg/day, an opioid antagonist, for 5 days. Cisplatin-induced nephrotoxicity was detected by a significant increase in plasma urea and creatinine levels in addition to alterations in kidney tissue morphology. Levels of TNF-α and IL-1β were significantly increased in the renal tissue in cisplatin group. Moreover, glutathione (GSH concentration and superoxide dismutase activity were significantly reduced in renal tissue in cisplatin group compared with control animals. Treatment with morphine aggravated the deleterious effects of cisplatin at clinical, biochemical and histopathological levels; whereas naltrexone diminished the detrimental effects of morphine in animals receiving morphine and cisplatin. Morphine or naltrexone alone had no effect on the mentioned parameters. Our findings indicate that concomitant treatment with morphine might intensify cisplatin-induced renal damage in rats. These findings suggest that morphine and other opioids should be administered cautiously in patients receiving cisplatin chemotherapy.

  6. The Protective Effects of Sika Deer Antler Protein on Cisplatin-Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Huihai Yang

    2017-08-01

    Full Text Available Background/Aims: This study measured the effect of Sika deer (Cervus nippon Temminck antler protein (SDAPR, glycoproteins (SDAG, and polysaccharides (SDAPO on cisplatin-induced cytotoxicity in HEK 293 cells, and investigated the effect of SDAPR against cisplatin-induced nephrotoxicity in mice. Methods: Cell viability was measured by MTT assay. ICR mice were randomly divided into five groups: control, cisplatin with vehicle, and cisplatin with SDAPR at three concentrations: 5, 10, or 20 mg/kg, p.o., 10 d. Cisplatin was injected on 7th day (25 mg/kg, i.p.. Renal function, oxidative stress, levels of inflammatory factors, and expression of apoptosis-related proteins were measured in vivo. Renal tissues were stained with TUNEL and H&E to observe renal cell apoptosis and pathological changes. Results: Pretreatment with SDAPR (125-2000 µg/mL significantly improved cell viability, with an EC50 of approximately 1000 µg/mL. SDAPR also ameliorated cisplatin-induced histopatholo- gic changes, and decreased blood urea nitrogen (BUN and creatinine (Cr (P < 0.05. Western blotting analysis showed SDAPR clearly decreased expression levels of cleaved-caspase-3 and Bax, and increased the expression level of Bcl-2 (P < 0.01. Additionally, SDAPR markedly regulated oxidative stress markers and inflammatory cytokines (P<0.05. TUNEL staining showed decreased apoptosis after SDAPR treatment (P < 0.01. Conclusions: These results indicate that SDAPR can be an effective dietary supplement, to relieve cisplatin-induced nephrotoxicity by improved antioxidase activity, suppressed inflammation, and inhibited apoptosis in vivo.

  7. Causes and Outcome of Acute Kidney Injury: Gezira Experience ...

    African Journals Online (AJOL)

    Introduction: A precise operational definition of acute kidney injury remains elusive. Conceptually, acute kidney injury is defined as the loss of renal function, measured by decline in glomerular filtration rate, developing over a period of hours to days. Clinical manifestations of acute kidney injury (AKI) are highly variable; ...

  8. Serum uric acid and acute kidney injury: A mini review

    Directory of Open Access Journals (Sweden)

    Kai Hahn

    2017-09-01

    Full Text Available Acute kidney injury causes great morbidity and mortality in both the community and hospital settings. Understanding the etiological factors and the pathophysiological principles resulting in acute kidney injury is essential in prompting appropriate therapies. Recently hyperuricemia has been recognized as a potentially modifiable risk factor for acute kidney injury, including that associated with cardiovascular surgery, radiocontrast administration, rhabdomyolysis, and associated with heat stress. This review discussed the evidence that repeated episodes of acute kidney injury from heat stress and dehydration may also underlie the pathogenesis of the chronic kidney disease epidemic that is occurring in Central America (Mesoamerican nephropathy. Potential mechanisms for how uric acid might contribute to acute kidney injury are also discussed, including systemic effects on renal microvasculature and hemodynamics, and local crystalline and noncrystalline effects on the renal tubules. Pilot clinical trials also show potential benefits of lowering uric acid on acute kidney injury associated with a variety of insults. In summary, there is mounting evidence that hyperuricemia may have a significant role in the development of acute kidney injury. Prospective, placebo controlled, randomized trials are needed to determine the potential benefit of uric acid lowering therapy on kidney and cardio-metabolic diseases.

  9. Valsartan Protects Against Contrast-Induced Acute Kidney Injury in Rats by Inhibiting Endoplasmic Reticulum Stress-Induced Apoptosis.

    Science.gov (United States)

    Sun, Yan; Peng, Ping-An; Ma, Yue; Liu, Xiao-Li; Yu, Yi; Jia, Shuo; Xu, Xiao-Han; Wu, Si-Jing; Zhou, Yu-Jie

    2017-01-01

    Contrast-induced acute kidney injury (CI-AKI) is a serious complication of the administration of iodinated contrast media (CM) for diagnostic and interventional cardiovascular procedures and is associated with substantial morbidity and mortality. While the preventative measures can mitigate the risk of CI-AKI, there remains a need for novel and effective therapeutic approaches. The pathogenesis of CI-AKI is complex and not completely understood. CM-induced renal tubular cell apoptosis caused by the activation of endoplasmic reticulum (ER) stress is involved in CIAKI. We previously demonstrated that valsartan alleviated CM-induced human renal tubular cell apoptosis by inhibiting ER stress in vitro. However, the nephroprotective effect of valsartan on CI-AKI in vivo has not been investigated. Therefore, the aim of this study was to explore the protective effect of valsartan in a rat model of CI-AKI by measuring the amelioration of renal damage and the changes in ER stressrelated biomarkers. Our results showed that the radiocontrast agent meglumine diatrizoate caused significant renal insufficiency, renin-angiotensin system (RAS) activation, and renal tubular apoptosis by triggering ER stress through activation of glucose-regulated protein 78 (GRP78), activating transcription factor 4 (ATF4), caspase 12, CCAAT/enhancer-binding protein-homologous protein (CHOP) and c-Jun N-terminal protein kinase (JNK) (Pvalsartan significantly alleviated renal dysfunction, pathological injury, and apoptosis along with the inhibition of ER stressrelated biomarkers (PValsartan could protect against meglumine diatrizoate-induced kidney injury in rats by inhibiting the ER stress-induced apoptosis, making it a promising strategy for preventing CI-AKI. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Chemopreventive Effect of Tadalafil in Cisplatin-Induced ...

    African Journals Online (AJOL)

    olayemitoyin

    mgkg-1 and 5 mgkg-1 of Tadalafil in cisplatin-induced nephrotoxic rats. In this study, twenty-five male ... mitochondria, and reduced nicotinamide adenine dinucletide .... Laboratory Centrifuge (Model SM 112, Surgifriend. Medicals, England) at ...

  11. Loxosceles gaucho venom-induced acute kidney injury--in vivo and in vitro studies.

    Directory of Open Access Journals (Sweden)

    Rui V Lucato

    Full Text Available BACKGROUND: Accidents caused by Loxosceles spider may cause severe systemic reactions, including acute kidney injury (AKI. There are few experimental studies assessing Loxosceles venom effects on kidney function in vivo. METHODOLOGY/PRINCIPAL FINDINGS: In order to test Loxosceles gaucho venom (LV nephrotoxicity and to assess some of the possible mechanisms of renal injury, rats were studied up to 60 minutes after LV 0.24 mg/kg or saline IV injection (control. LV caused a sharp and significant drop in glomerular filtration rate, renal blood flow and urinary output and increased renal vascular resistance, without changing blood pressure. Venom infusion increased significantly serum creatine kinase and aspartate aminotransferase. In the LV group renal histology analysis found acute epithelial tubular cells degenerative changes, presence of cell debris and detached epithelial cells in tubular lumen without glomerular or vascular changes. Immunohistochemistry disclosed renal deposition of myoglobin and hemoglobin. LV did not cause injury to a suspension of fresh proximal tubules isolated from rats. CONCLUSIONS/SIGNIFICANCE: Loxosceles gaucho venom injection caused early AKI, which occurred without blood pressure variation. Changes in glomerular function occurred likely due to renal vasoconstriction and rhabdomyolysis. Direct nephrotoxicity could not be demonstrated in vitro. The development of a consistent model of Loxosceles venom-induced AKI and a better understanding of the mechanisms involved in the renal injury may allow more efficient ways to prevent or attenuate the systemic injury after Loxosceles bite.

  12. Dunnione ameliorates cisplatin-induced small intestinal damage by modulating NAD{sup +} metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Arpana; Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; Lee, Su-Bin; Khadka, Dipendra; Lee, SeungHoon [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Shim, Hyeok; Yang, Sei-Hoon; Cho, Eun-Young [Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kwon, Kang-Beom [Department of Oriental Medical Physiology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kwak, Tae Hwan [PAEAN Biotechnology, 160 Techno-2 Street, Yuseong-gu, Daejeon 305-500 (Korea, Republic of); Choe, Seong-Kyu; Park, Raekil [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); So, Hong-Seob, E-mail: jeanso@wku.ac.kr [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2015-11-27

    Although cisplatin is a widely used anticancer drug for the treatment of a variety of tumors, its use is critically limited because of adverse effects such as ototoxicity, nephrotoxicity, neuropathy, and gastrointestinal damage. Cisplatin treatment increases oxidative stress biomarkers in the small intestine, which may induce apoptosis of epithelial cells and thereby elicit damage to the small intestine. Nicotinamide adenine dinucleotide (NAD{sup +}) is a cofactor for various enzymes associated with cellular homeostasis. In the present study, we demonstrated that the hyper-activation of poly(ADP-ribose) polymerase-1 (PARP-1) is closely associated with the depletion of NAD{sup +} in the small intestine after cisplatin treatment, which results in downregulation of sirtuin1 (SIRT1) activity. Furthermore, a decrease in SIRT1 activity was found to play an important role in cisplatin-mediated small intestinal damage through nuclear factor (NF)-κB p65 activation, facilitated by its acetylation increase. However, use of dunnione as a strong substrate for the NADH:quinone oxidoreductase 1 (NQO1) enzyme led to an increase in intracellular NAD{sup +} levels and prevented the cisplatin-induced small intestinal damage correlating with the modulation of PARP-1, SIRT1, and NF-κB. These results suggest that direct modulation of cellular NAD{sup +} levels by pharmacological NQO1 substrates could be a promising therapeutic approach for protecting against cisplatin-induced small intestinal damage. - Highlights: • NAD{sup +} acts as a cofactor for numerous enzymes including Sirtuins and PARP. • Up-regulation of SIRT1 could attenuate the cisplatin-induced intestinal damage. • Modulation of the cellular NAD{sup +} could be a promising therapeutic approach.

  13. Cisplatin Induces Cytotoxicity through the Mitogen-Activated Protein Kinase Pathways ana Activating Transcription Factor 3

    Directory of Open Access Journals (Sweden)

    Carly St. Germain

    2010-07-01

    Full Text Available The mechanisms underlying the proapoptotic effect of the chemotherapeutic agent, cisplatin, are largely undefined. Understanding the mechanisms regulating cisplatin cytotoxicity may uncover strategies to enhance the efficacy of this important therapeutic agent. This study evaluates the role of activating transcription factor 3 (ATF3 as a mediator of cisplatin-induced cytotoxicity. Cytotoxic doses of cisplatin and carboplatin treatments consistently induced ATF3 expression in five tumor-derived cell lines. Characterization of this induction revealed a p53, BRCA1, and integrated stress response-independent mechanism, all previously implicated in stress-mediated ATF3 induction. Analysis of mitogenactivated protein kinase (MAPK pathway involvement in ATF3 induction by cisplatin revealed a MAPK-dependent mechanism. Cisplatin treatment combined with specific inhibitors to each MAPK pathway (c-Jun N-terminal kinase, extracellularsignal-regulated kinase, and p38 resulted in decreasedATF3 induction at the protein level. MAPK pathway inhibition led to decreased ATF3 messenger RNA expression and reduced cytotoxic effects of cisplatin as measured by the 3-(4,5-dimethylthiazol-2-ylF2,5-diphenyltetrazolium bromide cell viability assay. In A549 lung carcinoma cells, targeting ATF3 with specific small hairpin RNA also attenuated the cytotoxic effects of cisplatin. Similarly, ATF3-/murine embryonic fibroblasts (MEFs were shown to be less sensitive to cisplatin-induced cytotoxicity compared with ATF3+/+ MEFs. This study identifies cisplatin as a MAPK pathway-dependent inducer of ATF3, whose expression influences cisplatin’s cytotoxic effects.

  14. Heart block and acute kidney injury due to hyperparathyroidism-induced hypercalcemic crisis.

    Science.gov (United States)

    Brown, Taylor C; Healy, James M; McDonald, Mary J; Hansson, Joni H; Quinn, Courtney E

    2014-12-01

    We describe a patient who presented with multi-system organ failure due to extreme hypercalcemia (serum calcium 19.8 mg/dL), resulting from primary hyperparathyroidism. He was found to have a 4.8 cm solitary atypical parathyroid adenoma. His course was complicated by complete heart block, acute kidney injury, and significant neurocognitive disturbances. Relevant literature was reviewed and discussed. Hyperparathyroidism-induced hypercalcemic crisis (HIHC) is a rare presentation of primary hyperparathyroidism and only a small minority of these patients develop significant cardiac and renal complications. In cases of HIHC, a multidisciplinary effort can facilitate rapid treatment of life-threatening hypercalcemia and definitive treatment by surgical resection. As such, temporary transvenous cardiac pacing and renal replacement therapy can provide a life-saving bridge to definitive parathyroidectomy in cases of HIHC.

  15. A case of acute kidney injury by near-drowning.

    Science.gov (United States)

    Amir, A; Lee, Y L

    2013-01-01

    Acute kidney injury following immersion or near-drowning is rarely described and no data from Malaysia have been found. We report a case of acute kidney injury following a near-drowning event. A 20-year-old man who recovered from near-drowning in a swimming pool 5 days earlier presented to our clinic with abdominal pain, anorexia, nausea and polyuria. Dipstick urinalysis showed a trace of blood. The serum creatinine level was 10-fold higher than the normal range. A bedside ultrasound showed features suggestive of acute tubular necrosis. He is then referred to the hospital with the diagnosis of acute kidney injury with the possibility of acute tubular necrosis secondary to near-drowning. We suggest that any patient presenting after immersion or near-drowning to be should assessed for potential acute kidney injury.

  16. Contrast-induced acute kidney injury: how much contrast is safe?

    LENUS (Irish Health Repository)

    Keaney, John J

    2013-02-14

    Iodinated contrast media (CM) are used in many investigations that a patient may undergo during the course of an in-patient stay. For the vast majority of patients, exposure to CM has no sequelae; however, in a small percentage, it can result in a worsening in renal function termed contrast-induced acute kidney injury (CI-AKI). CI-AKI is one of the leading causes of in-hospital renal dysfunction. It is associated with a significant increase in morbidity and mortality as well as an increased length of hospital stay and costs. Unfortunately, the results of extensive research into pharmacological inventions to prevent CI-AKI remain disappointing. In this article, we briefly outline the pathophysiological mechanisms by which iodinated CM may cause CI-AKI and discuss the evidence for reducing CI-AKI by limiting contrast volumes. In particular, we review the data surrounding the use of contrast volume to glomerular filtration rate ratios, which can be used by clinicians to effectively lower the incidence of CI-AKI in their patients.

  17. Cisplatin-induced apoptosis inhibits autophagy, which acts as a pro-survival mechanism in human melanoma cells.

    Science.gov (United States)

    Del Bello, Barbara; Toscano, Marzia; Moretti, Daniele; Maellaro, Emilia

    2013-01-01

    The interplay between a non-lethal autophagic response and apoptotic cell death is still a matter of debate in cancer cell biology. In the present study performed on human melanoma cells, we investigate the role of basal or stimulated autophagy in cisplatin-induced cytotoxicity, as well as the contribution of cisplatin-induced activation of caspases 3/7 and conventional calpains. The results show that, while down-regulating Beclin-1, Atg14 and LC3-II, cisplatin treatment inhibits the basal autophagic response, impairing a physiological pro-survival response. Consistently, exogenously stimulated autophagy, obtained with trehalose or calpains inhibitors (MDL-28170 and calpeptin), protects from cisplatin-induced apoptosis, and such a protection is reverted by inhibiting autophagy with 3-methyladenine or ATG5 silencing. In addition, during trehalose-stimulated autophagy, the cisplatin-induced activation of calpains is abrogated, suggesting the existence of a feedback loop between the autophagic process and calpains. On the whole, our results demonstrate that in human melanoma cells autophagy may function as a beneficial stress response, hindered by cisplatin-induced death mechanisms. In a therapeutic perspective, these findings suggest that the efficacy of cisplatin-based polychemotherapies for melanoma could be potentiated by inhibitors of autophagy.

  18. A case of acute kidney injury by near-drowning

    Directory of Open Access Journals (Sweden)

    Amirah Amir

    2013-12-01

    Full Text Available Acute kidney injury following immersion or near-drowning is rarely described and no data from Malaysia have been found. We report a case of acute kidney injury following a near-drowning event. A 20-yearold man who recovered from near-drowning in a swimming pool 5 days earlier presented to our clinic with abdominal pain, anorexia, nausea and polyuria. Dipstick urinalysis showed a trace of blood. The serum creatinine level was 10-fold higher than the normal range. A bedside ultrasound showed features suggestive of acute tubular necrosis. He is then referred to the hospital with the diagnosis of acute kidney injury with the possibility of acute tubular necrosis secondary to near-drowning. We suggest that any patient presenting after immersion or near-drowning to be should assessed for potential acute kidney injury

  19. Taurine protects cisplatin induced cardiotoxicity by modulating inflammatory and endoplasmic reticulum stress responses.

    Science.gov (United States)

    Chowdhury, Sayantani; Sinha, Krishnendu; Banerjee, Sharmistha; Sil, Parames C

    2016-11-12

    Oxidative stress, ER stress, inflammation, and apoptosis results in the pathogenesis of cisplatin-induced cardiotoxicity. The present study was designed to investigate the signaling mechanisms involved in the ameliorating effect of taurine, a conditionally essential amino acid, against cisplatin-mediated cardiac ER stress dependent apoptotic death and inflammation. Mice were simultaneously treated with taurine (150 mg kg -1 body wt, i.p.) and cisplatin (10 mg kg -1 body wt, i.p.) for a week. Cisplatin exposure significantly altered serum creatine kinase and troponin T levels. In addition, histological studies revealed disintegration in the normal radiation pattern of cardiac muscle fibers. However, taurine administration could abate such adverse effects of cisplatin. Taurine administration significantly mitigated the reactive oxygen species production, alleviated the overexpression of nuclear factor-κB (NF-κB), and inhibited the elevation of proinflammatoy cytokines, adhesion molecules, and chemokines. Cisplatin exposure resulted in the unfolded protein response (UPR)-regulated CCAAT/enhancer binding protein (CHOP) up-regulation, induction of GRP78: a marker of ER stress and eIF2α signaling. Increase in calpain-1 expression level, activation of caspase-12 and caspase-3, cleavage of the PARP protein as well as the inhibition of antiapoptotic protein Bcl-2 were reflected on cisplatin-triggered apoptosis. Taurine could, however, combat against such cisplatin induced cardiac-abnormalities. The above mentioned findings suggest that taurine plays a beneficial role in providing protection against cisplatin-induced cardiac damage by modulating inflammatory responses and ER stress. © 2016 BioFactors, 42(6):647-664, 2016. © 2016 International Union of Biochemistry and Molecular Biology.

  20. Biodegradable polymeric system for cisplatin delivery: Development, in vitro characterization and investigation of toxicity profile

    International Nuclear Information System (INIS)

    Alam, Noor; Khare, Vaibhav; Dubey, Ravindra; Saneja, Ankit; Kushwaha, Manoj; Singh, Gurdarshan; Sharma, Neelam; Chandan, Balkrishan; Gupta, Prem N.

    2014-01-01

    Cisplatin is one of the most potent anticancer agent used in the treatment of various solid tumors, however, its clinical use is limited due to severe adverse effects including nephrotoxicity. In this investigation cisplatin loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles were developed and characterized for various in vitro characteristics including size distribution, zeta potential, drug loading and release profile. PLGA nanoparticles were successfully developed as investigated using scanning electron microscopy and exhibited average particles size and zeta potential as 284.8 nm and − 15.8 mV, respectively. Fourier transform infrared spectroscopy and differential scanning calorimetry indicated an absence of any polymer–drug interactions. Cisplatin nanoparticles exhibited in vitro anticancer activity against A549 cells comparable to that of cisplatin solution. The biodistribution study in mice indicated that the kidney cisplatin level was significantly (p < 0.01) lower with cisplatin nanoparticles than cisplatin solution. Following two cycles of cisplatin treatment, a week apart, blood urea nitrogen level was found to be higher in case of cisplatin solution as compared to cisplatin nanoparticles. Further, there was a significant (p < 0.01) increase in plasma creatinine level in case of cisplatin solution as compared to cisplatin nanoparticles. Histopathological examination of kidney from cisplatin nanoparticles treated group revealed no kidney damage, however, a sign of nephrotoxicity was observed in the case of cisplatin solution. The results suggest that PLGA nanoparticle based formulation could be a potential option for cisplatin delivery. - Highlights: • Cisplatin is detected by LCMS following complexation with DDTC. • Nanoparticles showed lower cisplatin accumulation in the kidney. • Nephrotoxicity was evaluated by BUN and creatinine level and by histopathology. • Nanoparticles exhibited lower nephrotoxicity

  1. Cisplatin Induces a Mitochondrial-ROS Response That Contributes to Cytotoxicity Depending on Mitochondrial Redox Status and Bioenergetic Functions

    Science.gov (United States)

    Marullo, Rossella; Werner, Erica; Degtyareva, Natalya; Moore, Bryn; Altavilla, Giuseppe; Ramalingam, Suresh S.; Doetsch, Paul W.

    2013-01-01

    Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA replication and transcription blockage. However, the ability of cisplatin to induce nuclear DNA (nDNA) damage per se is not sufficient to explain its high degree of effectiveness nor the toxic effects exerted on normal, post-mitotic tissues. Oxidative damage has been observed in vivo following exposure to cisplatin in several tissues, suggesting a role for oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the mechanism of cisplatin-induced generation of ROS and their contribution to cisplatin cytotoxicity in normal and cancer cells is still poorly understood. By employing a panel of normal and cancer cell lines and the budding yeast Saccharomyces cerevisiae as model system, we show that exposure to cisplatin induces a mitochondrial-dependent ROS response that significantly enhances the cytotoxic effect caused by nDNA damage. ROS generation is independent of the amount of cisplatin-induced nDNA damage and occurs in mitochondria as a consequence of protein synthesis impairment. The contribution of cisplatin-induced mitochondrial dysfunction in determining its cytotoxic effect varies among cells and depends on mitochondrial redox status, mitochondrial DNA integrity and bioenergetic function. Thus, by manipulating these cellular parameters, we were able to enhance cisplatin cytotoxicity in cancer cells. This study provides a new mechanistic insight into cisplatin-induced cell killing and may lead to the design of novel therapeutic strategies to improve anticancer drug efficacy. PMID:24260552

  2. Acute antibody-mediated rejection in pancreas and kidney transplantation

    NARCIS (Netherlands)

    Kort, Hanneke de

    2013-01-01

    In this thesis, acute rejection after kidney, simultaneous pancreas and kidney (SPKT), and islets of Langerhans transplantation was addressed. The focus is on acute antibody-mediated rejection (AMR) after transplantation and on a potential strategy using cellular immune modulation to prevent acute

  3. Protective effect of gallic acid against cisplatin-induced ototoxicity in rats.

    Science.gov (United States)

    Kilic, Korhan; Sakat, Muhammed Sedat; Akdemir, Fazile Nur Ekinci; Yildirim, Serkan; Saglam, Yavuz Selim; Askin, Seda

    2018-04-07

    Cisplatin is an antineoplastic agent widely used in the treatment of a variety of cancers. Ototoxicity is one of the main side-effects restricting the use of cisplatin. The purpose of this study was to investigate the protective efficacy of gallic acid, in biochemical, functional and histopathological terms, against ototoxicity induced by cisplatin. Twenty-eight female Sprague Dawley rats were included. Rats were randomly assigned into four groups of seven animals each. Cisplatin group received a single intraperitoneal dose of 15mg/kg cisplatin. Gallic acid group received intraperitoneal gallic acid at 100mg/kg for five consecutive days. Cisplatin+Gallic acid group received intraperitoneal gallic acid at 100mg/kg for five consecutive days and a single intraperitoneal dose of 15mg/kg cisplatin at 3rd day. A control group received 1mL intraperitoneal saline solution for five consecutive days. Prior to drug administration, all rats were exposed to the distortion product otoacoustic emissions test. The test was repeated on the 6th day of the study. All rats were then sacrificed; the cochleas were removed and set aside for biochemical and histopathological analyses. In Cisplatin group, Day 6 signal noise ratio values were significantly lower than those of the other groups. Also, malondialdehyde levels in cochlear tissues were significantly higher, superoxide dismutase and glutathione peroxidase activities were significantly lower compared to the control group. Histopathologic evaluation revealed erosion in the stria vascularis, degeneration and edema in the connective tissue layer in endothelial cells, impairment of outer hair cells and a decrease in the number of these calls. In the Cisplatin+Gallic acid group, this biochemical, histopathological and functional changes were reversed. In the light of our findings, we think that gallic acid may have played a protective role against cisplatin-induced ototoxicity in rats, as indicated by the distortion product otoacoustic

  4. Combined acute hyperglycemic and hyperinsulinemic clamp induced profibrotic and proinflammatory responses in the kidney.

    Science.gov (United States)

    Mariappan, Meenalakshmi M; DeSilva, Kristin; Sorice, Gian Pio; Muscogiuri, Giovanna; Jimenez, Fabio; Ahuja, Seema; Barnes, Jefferey L; Choudhury, Goutam Ghosh; Musi, Nicolas; DeFronzo, Ralph; Kasinath, Balakuntalam S

    2014-02-01

    Increase in matrix protein content in the kidney is a cardinal feature of diabetic kidney disease. While renal matrix protein content is increased by chronic hyperglycemia, whether it is regulated by acute elevation of glucose and insulin has not been addressed. In this study, we aimed to evaluate whether short duration of combined hyperglycemia and hyperinsulinemia, mimicking the metabolic environment of prediabetes and early type 2 diabetes, induces kidney injury. Normal rats were subjected to either saline infusion (control, n = 4) or 7 h of combined hyperglycemic-hyperinsulinemic clamp (HG+HI clamp; n = 6). During the clamp, plasma glucose and plasma insulin were maintained at about 350 mg/dl and 16 ng/ml, respectively. HG+HI clamp increased the expression of renal cortical transforming growth factor-β (TGF-β) and renal matrix proteins, laminin and fibronectin. This was associated with the activation of SMAD3, Akt, mammalian target of rapamycin (mTOR) complexes, and ERK signaling pathways and their downstream target events in the initiation and elongation phases of mRNA translation, an important step in protein synthesis. Additionally, HG+HI clamp provoked renal inflammation as shown by the activation of Toll-like receptor 4 (TLR4) and infiltration of CD68-positive monocytes. Urinary F2t isoprostane excretion, an index of renal oxidant stress, was increased in the HG+HI clamp rats. We conclude that even a short duration of hyperglycemia and hyperinsulinemia contributes to activation of pathways that regulate matrix protein synthesis, inflammation, and oxidative stress in the kidney. This finding could have implications for the control of short-term rises in blood glucose in diabetic individuals at risk of developing kidney disease.

  5. The genome-wide expression profile of Curcuma longa-treated cisplatin-stimulated HEK293 cells

    Science.gov (United States)

    Sohn, Sung-Hwa; Ko, Eunjung; Chung, Hwan-Suck; Lee, Eun-Young; Kim, Sung-Hoon; Shin, Minkyu; Hong, Moochang; Bae, Hyunsu

    2010-01-01

    AIM The rhizome of turmeric, Curcuma longa (CL), is a herbal medicine used in many traditional prescriptions. It has previously been shown that CL treatment showed greater than 47% recovery from cisplatin-induced cell damage in human kidney HEK 293 cells. This study was conducted to evaluate the recovery mechanisms of CL that occur during cisplatin induced nephrotoxicity by examining the genome wide mRNA expression profiles of HEK 293 -cells. METHOD Recovery mechanisms of CL that occur during cisplatin-induced nephrotoxicity were determined by microarray, real-time PCR, immunofluorescent confocal microscopy and Western blot analysis. RESULTS The results of microarray analysis and real-time PCR revealed that NFκB pathway-related genes and apoptosis-related genes were down-regulated in CL-treated HEK 293 cells. In addition, immunofluorescent confocal microscopy and Western blot analysis revealed that NFκB p65 nuclear translocation was inhibited in CL-treated HEK 293 cells. Therefore, the mechanism responsible for the effects of CL on HEK 293 cells is closely associated with regulation of the NFκB pathway. CONCLUSION CL possesses novel therapeutic agents that can be used for the prevention or treatment of cisplatin-induced renal disorders. PMID:20840446

  6. Pharmacological Inhibition of Macrophage Toll-like Receptor 4/Nuclear Factor-kappa B Alleviates Rhabdomyolysis-induced Acute Kidney Injury.

    Science.gov (United States)

    Huang, Rong-Shuang; Zhou, Jiao-Jiao; Feng, Yu-Ying; Shi, Min; Guo, Fan; Gou, Shen-Ju; Salerno, Stephen; Ma, Liang; Fu, Ping

    2017-09-20

    Acute kidney injury (AKI) is the most common and life-threatening systemic complication of rhabdomyolysis. Inflammation plays an important role in the development of rhabdomyolysis-induced AKI. This study aimed to investigate the kidney model of AKI caused by rhabdomyolysis to verify the role of macrophage Toll-like receptor 4/nuclear factor-kappa B (TLR4/NF-κB) signaling pathway. C57BL/6 mice were injected with a 50% glycerin solution at bilateral back limbs to induce rhabdomyolysis, and CLI-095 or pyrrolidine dithiocarbamate (PDTC) was intraperitoneally injected at 0.5 h before molding. Serum creatinine levels, creatine kinase, the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, and hematoxylin and eosin stainings of kidney tissues were tested. The infiltration of macrophage, mRNA levels, and protein expression of TLR4 and NF-κB were investigated by immunofluorescence double-staining techniques, reverse transcriptase-quantitative polymerase chain reaction, and Western blotting, respectively. In vitro, macrophage RAW264.7 was stimulated by ferrous myoglobin; the cytokines, TLR4 and NF-κB expressions were also detected. In an in vivo study, using CLI-095 or PDTC to block TLR4/NF-κB, functional and histologic results showed that the inhibition of TLR4 or NF-κB alleviated glycerol-induced renal damages (P rhabdomyolysis-induced AKI by the regulation of proinflammatory cytokine production and macrophage infiltration.

  7. Oridonin effectively reverses the drug resistance of cisplatin involving induction of cell apoptosis and inhibition of MMP expression in human acute myeloid leukemia cells

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    2017-03-01

    Full Text Available Cisplatin is the first generation platinum-based chemotherapy agent. However, the extensive application of cisplatin inevitably causes drug resistance, which is a major obstacle to cancer chemotherapy. Oridonin is a diterpenoid isolated from Rabdosia rubescens with potent anticancer activity. The aim of our study is to investigate the role of oridonin to reverse the cisplatin-resistance in human acute myeloid leukemia (AML cells. The effect of oridonin on human AML cell proliferation was evaluated by MTT assay, cell migration and invasion were evaluated by transwell migration and invasion assays in cisplatin-resistant human AML cells. Furthermore, cell apoptosis was examined by flow cytometry. The inhibitive effect of oridonin in vivo was determined using xenografted nude mice. In addition, the expressions of MMP2 and MMP9 were detected by Western blot. There was a synergistic antitumor effect between cisplatin and oridonin on cisplatin-resistant human AML cells in vitro and in vivo. In addition, the combination of cisplatin and oridonin synergistically induced cell apoptosis. Furthermore, the combination treatment not only inhibited AML cell migration and invasion, but more significantly, decreased the expressions of MMP2 and MMP9 proteins. Our results suggest that the synergistic effect between both agents is likely to be driven by the inhibition of MMP expression and the resulting increased apoptosis.

  8. Acute Superoxide Radical Scavenging Reduces Blood Pressure but Does Not Influence Kidney Function in Hypertensive Rats with Postischemic Kidney Injury

    Directory of Open Access Journals (Sweden)

    Zoran Miloradović

    2014-01-01

    Full Text Available Acute kidney injury (AKI is associated with significant morbidity and mortality in hypertensive surroundings. We investigated superoxide radical molecules influence on systemic haemodynamic and kidney function in spontaneously hypertensive rats (SHR with induced postischemic AKI. Experiment was performed in anesthetized adult male SHR. The right kidney was removed, and left renal artery was subjected to ischemia by clamping for 40 minutes. The treated group received synthetic superoxide dismutase mimetic TEMPOL in the femoral vein 5 minutes before, during, and 175 minutes after the period of reperfusion, while the control AKI group received the vehicle via the same route. All parameters were measured 24 h after renal reperfusion. TEMPOL treatment significantly decreased mean arterial pressure and total peripheral resistance P<0.05 compared to AKI control. It also increased cardiac output and catalase activity P<0.05. Lipid peroxidation and renal vascular resistance were decreased in TEMPOL P<0.05. Plasma creatinine and kidney morphological parameters were unchanged among TEMPOL treated and control groups. Our study shows that superoxide radicals participate in haemodynamic control, but acute superoxide scavenging is ineffective in glomerular and tubular improvement, probably due to hypertension-induced strong endothelial dysfunction which neutralizes beneficial effects of O2− scavenging.

  9. Acute liver failure and acute kidney injury: Definitions, prognosis, and outcome

    NARCIS (Netherlands)

    Włodzimirow, K.A.

    2013-01-01

    The objective of this thesis was to investigate definitions, prognostic indicators and their association with adverse events, mainly mortality for acute liver failure (ALF), acute-on-chronic liver failure (ACLF) and acute kidney injury (AKI).

  10. Benfotiamine enhances antioxidant defenses and protects against cisplatin-induced DNA damage in nephrotoxic rats.

    Science.gov (United States)

    Harisa, Gamaleldin I

    2013-08-01

    The objective of the present study was to assess superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), paraoxonase (PON1), glutathione reductase (GR), and catalase (CAT) activities ratio and their relationship with DNA oxidative damage in rats treated with cisplatin (3 mg/kg bwt/day) in the presence and absence of benfotiamine (100 mg/kg/day) for 25 days. Cisplatin-induced renal damage was evidenced by renal dysfunction and elevated oxidative stress markers. SOD activity and levels of nitric oxide, protein carbonyl, malondialdehyde, and 8-hydroxy-2'-deoxyguanosine were significantly increased by cisplatin treatment. Moreover, the ratios of GPx/GR, SOD/GPx, SOD/CAT, and SOD/PON1 were significantly increased compared to control. In contrast, glutathione levels were significantly decreased by cisplatin treatment. Simultaneous treatment of rats with cisplatin and benfotiamine ameliorate these variables to values near to those of control rats. This study suggests that benfotiamine can prevent cisplatin-induced nephrotoxicity by inhibiting formation reactive species of oxygen and nitrogen. © 2013 Wiley Periodicals, Inc.

  11. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects

    International Nuclear Information System (INIS)

    Florea, Ana-Maria; Büsselberg, Dietrich

    2011-01-01

    Platinum complexes are clinically used as adjuvant therapy of cancers aiming to induce tumor cell death. Depending on cell type and concentration, cisplatin induces cytotoxicity, e.g., by interference with transcription and/or DNA replication mechanisms. Additionally, cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways, including calcium signaling, death receptor signaling, and the activation of mitochondrial pathways. Unfortunately, neither cytotoxicity nor apoptosis are exclusively induced in cancer cells, thus, cisplatin might also lead to diverse side-effects such as neuro- and/or renal-toxicity or bone marrow-suppression. Moreover, the binding of cisplatin to proteins and enzymes may modulate its biochemical mechanism of action. While a combination-chemotherapy with cisplatin is a cornerstone for the treatment of multiple cancers, the challenge is that cancer cells could become cisplatin-resistant. Numerous mechanisms of cisplatin resistance were described including changes in cellular uptake, drug efflux, increased detoxification, inhibition of apoptosis and increased DNA repair. To minimize cisplatin resistance, combinatorial therapies were developed and have proven more effective to defeat cancers. Thus, understanding of the biochemical mechanisms triggered by cisplatin in tumor cells may lead to the design of more efficient platinum derivates (or other drugs) and might provide new therapeutic strategies and reduce side effects

  12. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects

    Energy Technology Data Exchange (ETDEWEB)

    Florea, Ana-Maria [Department of Neuropathology, Heinrich-Heine University, Düsseldorf (Germany); Büsselberg, Dietrich, E-mail: dib2015@qatar-med.cornell.edu [Weil Cornell Medical College in Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha (Qatar)

    2011-03-15

    Platinum complexes are clinically used as adjuvant therapy of cancers aiming to induce tumor cell death. Depending on cell type and concentration, cisplatin induces cytotoxicity, e.g., by interference with transcription and/or DNA replication mechanisms. Additionally, cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways, including calcium signaling, death receptor signaling, and the activation of mitochondrial pathways. Unfortunately, neither cytotoxicity nor apoptosis are exclusively induced in cancer cells, thus, cisplatin might also lead to diverse side-effects such as neuro- and/or renal-toxicity or bone marrow-suppression. Moreover, the binding of cisplatin to proteins and enzymes may modulate its biochemical mechanism of action. While a combination-chemotherapy with cisplatin is a cornerstone for the treatment of multiple cancers, the challenge is that cancer cells could become cisplatin-resistant. Numerous mechanisms of cisplatin resistance were described including changes in cellular uptake, drug efflux, increased detoxification, inhibition of apoptosis and increased DNA repair. To minimize cisplatin resistance, combinatorial therapies were developed and have proven more effective to defeat cancers. Thus, understanding of the biochemical mechanisms triggered by cisplatin in tumor cells may lead to the design of more efficient platinum derivates (or other drugs) and might provide new therapeutic strategies and reduce side effects.

  13. The optimal timing of continuous renal replacement therapy for patients with sepsis-induced acute kidney injury.

    Science.gov (United States)

    Tian, Huanhuan; Sun, Ting; Hao, Dong; Wang, Tao; Li, Zhi; Han, Shasha; Qi, Zhijiang; Dong, Zhaoju; Lv, Changjun; Wang, Xiaozhi

    2014-10-01

    High mortality in the intensive care unit (ICU) is probably associated with sepsis-induced acute kidney injury (AKI). The aim of this study is to explore which stage of AKI may be the optimal timing for continuous renal replacement therapy (CRRT). A retrospective analysis of 160 critically ill patients with septic AKI, treated with or without CRRT was performed in Binzhou medical college affiliated hospital ICU. The parameters including 28-days mortality rate, renal recovery, ventilation time and ICU stay between CRRT group and control group were assessed. Renal recovery, defined as independence from dialysis at discharge, was documented for 64/76 (84.2 %) of the surviving patients (48.1 % of total subjects included in the study). The mortality rate increased proportionally with acute kidney injury Network stages in CRRT subgroups (P = 0.001) and control groups (P = 0.029). CRRT initiation at stage 2 of AKI significantly reduced the 28-day mortality (P = 0.048) and increased the 28-day survival rate (P = 0.036) compared with those in control group. In addition, the ICU stay and ventilation time were shorter in CRRT group than that of control group in stage 2 of AKI. The stage 2 AKI might be the optimal timing for performing CRRT.

  14. Hypothyroidism causing paralytic ileus and acute kidney injury - case report

    Directory of Open Access Journals (Sweden)

    Rodrigo Chaturaka

    2011-02-01

    Full Text Available Abstract We present a patient with severe hypothyroidism complicated by paralytic ileus and acute kidney injury. A 65 year old male patient, diagnosed with hypothyroidism one year ago was transferred to our unit in a state of drowsiness and confusion. He was severely hypothyroid and had paralytic ileus and impaired renal function at the time of transfer. Hypokalaemia was present, and was likely to have contributed to the paralytic ileus and this together with dehydration was likely to have contributed to renal injury. Nonetheless, hypothyroidism is very likely to have been the principal precipitant of both these complications, and both paralytic ileus and acute kidney injury improved with thyroxine replacement. Unfortunately, the patient died unexpectedly eight days after admission to the unit. Hypothyroidism may induce de novo acute kidney injury or it may exacerbate ongoing chronic kidney disease. This rare complication is assumed to be due to the hypodynamic circulatory state created by thyroid hormone deficiency. Paralytic ileus is an even rarer fatal manifestation of hypothyroidism and is thought to be due to an autonomic neuropathy affecting the intestines that is reversible with thyroxine replacement. To our knowledge, both these complications have not been observed in a single patient so far. It is important that clinicians are aware of these rare manifestations of hypothyroidism as in most occasions, thyroxine deficiency may be missed, and treatment can reverse the complications.

  15. Cisplatin Induces Bmi-1 and Enhances the Stem Cell Fraction in Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    Carolina Nör

    2014-02-01

    Full Text Available Recent evidence has unveiled a subpopulation of highly tumorigenic, multipotent cells capable of self-renewal in head and neck squamous cell carcinomas (HNSCCs. These unique cells, named here cancer stem cells (CSCs, proliferate slowly and might be involved in resistance to conventional chemotherapy. We have shown that CSCs are found in perivascular niches and rely on endothelial cell-secreted factors [particularly interleukin-6 (IL-6] for their survival and self-renewal in HNSCC. Here, we hypothesized that cisplatin enhances the stem cell fraction in HNSCC. To address this hypothesis, we generated xenograft HNSCC tumors with University of Michigan-squamous cell carcinoma 22B (UM-SCC-22B cells and observed that cisplatin treatment increased (P = .0013 the fraction of CSCs [i.e., aldehyde dehydrogenase activity high and cluster of differentiation 44 high (ALDHhighCD44high]. Cisplatin promoted self-renewal and survival of CSCs in vitro, as seen by an increase in the number of orospheres in ultralow attachment plates and induction in B lymphoma Mo-MLV insertion region 1 homolog (Bmi-1 and octamer-binding transcription factor 4 expression. Cisplatin-resistant cells expressed more Bmi-1 than cisplatinsensitive cells. IL-6 potentiated cisplatin-induced orosphere formation generated when primary human HNSCC cells were sorted for ALDHhighCD44high immediately after surgery and plated onto ultralow attachment plates. IL-6-induced signal transducer and activator of transcription 3 (STAT3 phosphorylation (indicative of stemness was unaffected by treatment with cisplatin in UM-SCC-22B cells, whereas IL-6-induced extracellular signal-regulated kinase (ERK phosphorylation (indicative of differentiation processes was partially inhibited by cisplatin. Notably, cisplatin-induced Bmi-1 was inhibited by interleukin-6 receptor blockade in parental and cisplatin-resistant cells. Taken together, these results demonstrate that cisplatin enhances the fraction of CSCs

  16. Cisplatin upregulates mitochondrial nitric oxide synthase and peroxynitrite formation to promote renal injury

    International Nuclear Information System (INIS)

    Jung, Michaela; Hotter, Georgina; Vinas, Jose Luis; Sola, Anna

    2009-01-01

    The mitochondria are a critical target for cisplatin-associated nephrotoxicity. Though nitric oxide formation has been implicated in the toxicity of cisplatin, this formation has not so far been related to a possible activation of mitochondrial nitric oxide synthase (mNOS). We show here that the upregulation of oxide mNOS and peroxynitrite formation in cisplatin treatment are key events that influence the development of the harmful parameters described in cisplatin-associated kidney failure. We confirm this by isolating the mitochondrial fraction of the kidney and across different access routes such as the use of a specific inhibitor of neuronal NOS, L-NPA, a peroxynitrite scavenger, FeTMPyP, and a peroxynitrite donor, SIN-1. The in vitro studies corroborated the information obtained in the in vivo experiments. The administration of cisplatin reveals a clear upregulation in the transcription of neuronal NOS and an increase in the levels of nitrites in the mitochondrial fractions of the kidneys. The upregulated transcription directly affects the cytoskeleton structure and the apoptosis. The inhibition of neuronal NOS reduces the levels of nitrites, cell death, and cytoskeleton derangement. Peroxynitrite is involved in the mechanism promoting the NOS transcription. In addition, in controls SIN-1 imitates the effects of cisplatin. In summary, we demonstrate that upregulation of mNOS in cisplatin treatment is a key component in both the initiation and the spread of cisplatin-associated damage in the kidney. Furthermore, peroxynitrite formation is directly involved in this process

  17. Genetic modification of mesenchymal stem cells to overexpress CXCR4 and CXCR7 does not improve the homing and therapeutic potentials of these cells in experimental acute kidney injury.

    Science.gov (United States)

    Gheisari, Yousof; Azadmanesh, Kayhan; Ahmadbeigi, Naser; Nassiri, Seyed Mahdi; Golestaneh, Azadeh Fahim; Naderi, Mahmood; Vasei, Mohammad; Arefian, Ehsan; Mirab-Samiee, Siamak; Shafiee, Abbas; Soleimani, Masoud; Zeinali, Sirous

    2012-11-01

    The therapeutic potential of bone marrow mesenchymal stem cells (MSCs) in kidney failure has been examined in some studies. However, recent findings indicate that after transplantation, these cells home to kidneys at very low levels. Interaction of stromal derived factor-1 (SDF-1) with its receptor, CXCR4, is of pivotal importance in migration and homing. Recently, CXCR7 has also been recognized as another SDF-1 receptor that interacts with CXCR4 and modulates its functions. In this study, CXCR4 and CXCR7 were separately and simultaneously overexpressed in BALB/c bone marrow MSCs by using a lentiviral vector system and the homing and renoprotective potentials of these cells were evaluated in a mouse model of cisplatin-induced acute kidney injury. Using flow cytometry, immunohistochemistry, and real-time PCR methods for detection of GFP-labeled MSCs, we found that although considerably entrapped in lungs, native MSCs home very rarely to kidneys and bone marrow and this rate cannot be significantly affected by CXCR4 and/or CXCR7 upregulation. Transplantation of neither native nor genetically engineered MSCs ameliorated kidney failure. We concluded that overexpression of CXCR4 and CXCR7 receptors in murine MSCs cannot improve the homing and therapeutic potentials of these cells and it can be due to severe chromosomal abnormalities that these cells bear during ex vivo expansion.

  18. Protective effect of hydroalcoholic extract of tribulus terrestris on Cisplatin induced renal tissue damage in male mice.

    Science.gov (United States)

    Raoofi, Amir; Khazaei, Mozafar; Ghanbari, Ali

    2015-01-01

    According beneficial effects of Tribulus terrestris (TT) extract on tissue damage, the present study investigated the influence of hydroalcoholic extract of TT plant on cisplatin (CIS) (EBEWE Pharma, Unterach, Austria) induced renal tissue damage in male mice. Thirty mice were divided into five groups (n = 6). The first group (control) was treated with normal saline (0.9% NaCl) and experimental groups with CIS (E1), CIS + 100 mg/kg extract of TT (E2), CIS + 300 mg/kg extract of TT (E3), CIS + 500 mg/kg extract of TT (E4) intraperitoneally. The kidneys were removed after 4 days of injections, and histological evaluations were performed. The data were analyzed using one-way analysis of variance followed by Tukey's post-hoc test, paired-sample t-test, Kruskal-Wallis and Mann-Whitney tests. In the CIS treated group, the whole kidney tissue showed an increased dilatation of Bowman's capsule, medullar congestion, and dilatation of collecting tubules and a decreased in the body weight and kidney weight. These parameters reached to the normal range after administration of fruit extracts of TT for 4 days. The results suggested that the oral administration of TT fruit extract at dose 100, 300 and 500 mg/kg body weight provided protection against the CIS induced toxicity in the mice.

  19. Acute kidney injury with hypoxic respiratory failure

    OpenAIRE

    Neubert, Zachary; Hoffmann, Paul; Owshalimpur, David

    2014-01-01

    A 27-year-old Caucasian man was transferred from a remote clinic with acute kidney injury for the prior 7–10 days preceded by gastroenteritis. His kidney biopsy showed non-specific mesangiopathic glomerular changes, minimal tubulointerstitial disease without sclerosis, crescents, nor evidence of vasculitis. On his third hospital day, he developed acute hypoxic respiratory failure requiring intubation and mechanical ventilation. Pulmonary renal syndromes ranked highest on his differential diag...

  20. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies.

    Science.gov (United States)

    Pabla, N; Dong, Z

    2008-05-01

    Cisplatin is one of the most widely used and most potent chemotherapy drugs. However, side effects in normal tissues and organs, notably nephrotoxicity in the kidneys, limit the use of cisplatin and related platinum-based therapeutics. Recent research has shed significant new lights on the mechanism of cisplatin nephrotoxicity, especially on the signaling pathways leading to tubular cell death and inflammation. Renoprotective approaches are being discovered, but the protective effects are mostly partial, suggesting the need for combinatorial strategies. Importantly, it is unclear whether these approaches would limit the anticancer effects of cisplatin in tumors. Examination of tumor-bearing animals and identification of novel renoprotective strategies that do not diminish the anticancer efficacy of cisplatin are essential to the development of clinically applicable interventions.

  1. Vinpocetine reduces diclofenac-induced acute kidney injury through inhibition of oxidative stress, apoptosis, cytokine production, and NF-κB activation in mice.

    Science.gov (United States)

    Fattori, Victor; Borghi, Sergio M; Guazelli, Carla F S; Giroldo, Andressa C; Crespigio, Jefferson; Bussmann, Allan J C; Coelho-Silva, Letícia; Ludwig, Natasha G; Mazzuco, Tânia L; Casagrande, Rubia; Verri, Waldiceu A

    2017-06-01

    Acute kidney injury (AKI) represents a complex clinical condition associated with significant morbidity and mortality. Approximately, 19-33% AKI episodes in hospitalized patients are related to drug-induced nephrotoxicity. Although, considered safe, non-steroidal anti-inflammatory drugs such as diclofenac have received special attention in the past years due to the potential risk of renal damage. Vinpocetine is a nootropic drug known to have anti-inflammatory properties. In this study, we investigated the effect and mechanisms of vinpocetine in a model of diclofenac-induced AKI. We observed that diclofenac increased proteinuria and blood urea, creatinine, and oxidative stress levels 24h after its administration. In renal tissue, diclofenac also increased oxidative stress and induced morphological changes consistent with renal damage. Moreover, diclofenac induced kidney cells apoptosis, up-regulated proinflammatory cytokines, and induced the activation of NF-κB in renal tissue. On the other hand, vinpocetine reduced diclofenac-induced blood urea and creatinine. In the kidneys, vinpocetine inhibited diclofenac-induced oxidative stress, morphological changes, apoptosis, cytokine production, and NF-κB activation. To our knowledge, this is the first study demonstrating that diclofenac-induced AKI increases NF-κB activation, and that vinpocetine reduces the nephrotoxic effects of diclofenac. Therefore, vinpocetine is a promising molecule for the treatment of diclofenac-induced AKI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Hydrogen Inhalation Protects against Ototoxicity Induced by Intravenous Cisplatin in the Guinea Pig

    Directory of Open Access Journals (Sweden)

    Anette E. Fransson

    2017-09-01

    Full Text Available Introduction: Permanent hearing loss and tinnitus as side-effects from treatment with the anticancer drug cisplatin is a clinical problem. Ototoxicity may be reduced by co-administration of an otoprotective agent, but the results in humans have so far been modest.Aim: The present preclinical in vivo study aimed to explore the protective efficacy of hydrogen (H2 inhalation on ototoxicity induced by intravenous cisplatin.Materials and Methods: Albino guinea pigs were divided into four groups. The Cispt (n = 11 and Cispt+H2 (n = 11 groups were given intravenous cisplatin (8 mg/kg b.w., injection rate 0.2 ml/min. Immediately after, the Cispt+H2 group also received gaseous H2 (2% in air, 60 min. The H2 group (n = 5 received only H2 and the Control group (n = 7 received neither cisplatin nor H2. Ototoxicity was assessed by measuring frequency specific ABR thresholds before and 96 h after treatment, loss of inner (IHCs and outer (OHCs hair cells, and by performing densitometry-based immunohistochemistry analysis of cochlear synaptophysin, organic transporter 2 (OCT2, and copper transporter 1 (CTR1 at 12 and 7 mm from the round window. By utilizing metabolomics analysis of perilymph the change of metabolites in the perilymph was assessed.Results: Cisplatin induced electrophysiological threshold shifts, hair cell loss, and reduced synaptophysin immunoreactivity in the synapse area around the IHCs and OHCs. H2 inhalation mitigated all these effects. Cisplatin also reduced the OCT2 intensity in the inner and outer pillar cells and in the stria vascularis as well as the CTR1 intensity in the synapse area around the IHCs, the Deiters' cells, and the stria vascularis. H2 prevented the majority of these effects.Conclusion: H2 inhalation can reduce cisplatin-induced ototoxicity on functional, cellular, and subcellular levels. It is proposed that synaptopathy may serve as a marker for cisplatin ototoxicity. The effect of H2 on the antineoplastic activity of

  3. Neuro-protective effect of rutin against Cisplatin-induced neurotoxic rat model.

    Science.gov (United States)

    Almutairi, Mashal M; Alanazi, Wael A; Alshammari, Musaad A; Alotaibi, Moureq Rashed; Alhoshani, Ali R; Al-Rejaie, Salim Salah; Hafez, Mohamed M; Al-Shabanah, Othman A

    2017-09-29

    Cisplatin is widely used chemotherapeutic agent for cancer treatment with limited uses due to its neurotoxic side effect. The aim of this study was to determine the potential preventive effects of rutin on the brain of cisplatin- neurotoxic rat model. Forty rats were divided into four groups. Group-1 (control group) was intra-peritoneal (IP) injected with 2.5 ml/kg saline. Group-2 (rutin group) was orally administrated 30 mg/kg rutin dissolved in water for 14 days. Group-3 (cisplatin group) was IP received 5 mg/kg cisplatin single dose. Group-4 (rutin and cisplatin group) was orally administrated 30 mg/kg rutin dissolved in water for 14 days with a single dose of 5 mg/kg cisplatin IP on day ten. Brain tissues from frontal cortex was used to extract RNA, the gene expression levels of paraoxonase-1 (PON-1), PON-2, PON-3, peroxisome proliferator-activated receptor delta (PPAR-δ), and glutathione peroxidase (GPx) was investigated by Real-time PCR. Cisplatin significantly decreased the expression levels of PON-1, PON-3, PPAR-δ and GPX whereas significantly increased PON-2 expression levels. Co-administration of Rutin prevented the cisplatin-induced toxicity by restoring the alteration in the studied genes to normal values as in the control group. This study showed that Rutin has neuroprotective effect and reduces cisplatin- neurotoxicity with possible mechanism via the antioxidant pathway.

  4. COAST (Cisplatin ototoxicity attenuated by aspirin trial): A phase II double-blind, randomised controlled trial to establish if aspirin reduces cisplatin induced hearing-loss.

    Science.gov (United States)

    Crabb, Simon J; Martin, Karen; Abab, Julia; Ratcliffe, Ian; Thornton, Roger; Lineton, Ben; Ellis, Mary; Moody, Ronald; Stanton, Louise; Galanopoulou, Angeliki; Maishman, Tom; Geldart, Thomas; Bayne, Mike; Davies, Joe; Lamb, Carolynn; Popat, Sanjay; Joffe, Johnathan K; Nutting, Chris; Chester, John; Hartley, Andrew; Thomas, Gareth; Ottensmeier, Christian; Huddart, Robert; King, Emma

    2017-12-01

    Cisplatin is one of the most ototoxic chemotherapy drugs, resulting in a permanent and irreversible hearing loss in up to 50% of patients. Cisplatin and gentamicin are thought to damage hearing through a common mechanism, involving reactive oxygen species in the inner ear. Aspirin has been shown to minimise gentamicin-induced ototoxicity. We, therefore, tested the hypothesis that aspirin could also reduce ototoxicity from cisplatin-based chemotherapy. A total of 94 patients receiving cisplatin-based chemotherapy for multiple cancer types were recruited into a phase II, double-blind, placebo-controlled trial and randomised in a ratio of 1:1 to receive aspirin 975 mg tid and omeprazole 20 mg od, or matched placebos from the day before, to 2 days after, their cisplatin dose(s), for each treatment cycle. Patients underwent pure tone audiometry before and at 7 and 90 days after their final cisplatin dose. The primary end-point was combined hearing loss (cHL), the summed hearing loss at 6 kHz and 8 kHz, in both ears. Although aspirin was well tolerated, it did not protect hearing in patients receiving cisplatin (p-value = 0.233, 20% one-sided level of significance). In the aspirin arm, patients demonstrated mean cHL of 49 dB (standard deviation [SD] 61.41) following cisplatin compared with placebo patients who demonstrated mean cHL of 36 dB (SD 50.85). Women had greater average hearing loss than men, and patients treated for head and neck malignancy experienced the greatest cHL. Aspirin did not protect from cisplatin-related ototoxicity. Cisplatin and gentamicin may therefore have distinct ototoxic mechanisms, or cisplatin-induced ototoxicity may be refractory to the aspirin regimen used here. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Effect of Taurine on Cisplatin -Induced Nephrotoxicity and Hepatoxicity in Male Rat

    Directory of Open Access Journals (Sweden)

    Noruzi M.

    2010-06-01

    Full Text Available Background and Objectives: Cisplatin, Platinum co-ordinate complex is a widely used antineaplastic agent for treatment of metastatic tumors. Taurine is an organic acid and an endogenous antioxidant. In this study we investigated the protective effect of taurine as an endogenous antioxidant against cisplatin induced nephrotoxicity and hepatotexicity.Methods: 24 male albino rats (180-220 grams were divided into 4 groups (n=6: (1: saline-treated group (2: cisplatin-treated group (10mg/kg, ip (3: group that received taurine (400mg/kg, ip 1hr before cisplatin (10mg/kg, ip administration (4: taurine (400mg/kg, ip. The animals were killed 7days after treatment and then blood samples were collected.Results: The results of this study indicated that cisplatin significantly increased CRATININ, URE, ALT, AST levels as compared to control group. Moreover, taurine significantly decreased CRATININ, URE, ALT and AST levels compared to cisplatin group.Conclusion: According to this study taurine prevents the incease of Creatinin, BUN, ALT and AST levels assisted by cisplatin, which may be due to its antioxidant properties.Keywords: Cisplatin; Taurine; Hepatoxicity; Nephrotoxicity; Nephrons.

  6. Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest.

    Directory of Open Access Journals (Sweden)

    Navin Sarin

    Full Text Available The efficacy of cisplatin-based chemotherapy in cancer is limited by the occurrence of innate and acquired drug resistance. In order to better understand the mechanisms underlying acquired cisplatin resistance, we have compared the adenocarcinoma-derived non-small cell lung cancer (NSCLC cell line A549 and its cisplatin-resistant sub-line A549rCDDP2000 with regard to cisplatin resistance mechanisms including cellular platinum accumulation, DNA-adduct formation, cell cycle alterations, apoptosis induction and activation of key players of DNA damage response. In A549rCDDP2000 cells, a cisplatin-induced G2/M cell cycle arrest was lacking and apoptosis was reduced compared to A549 cells, although equitoxic cisplatin concentrations resulted in comparable platinum-DNA adduct levels. These differences were accompanied by changes in the expression of proteins involved in DNA damage response. In A549 cells, cisplatin exposure led to a significantly higher expression of genes coding for proteins mediating G2/M arrest and apoptosis (mouse double minute 2 homolog (MDM2, xeroderma pigmentosum complementation group C (XPC, stress inducible protein (SIP and p21 compared to resistant cells. This was underlined by significantly higher protein levels of phosphorylated Ataxia telangiectasia mutated (pAtm and p53 in A549 cells compared to their respective untreated control. The results were compiled in a preliminary model of resistance-associated signaling alterations. In conclusion, these findings suggest that acquired resistance of NSCLC cells against cisplatin is the consequence of altered signaling leading to reduced G2/M cell cycle arrest and apoptosis.

  7. Central Diabetes Insipidus and Cisplatin-Induced Renal Salt Wasting Syndrome: A Challenging Combination.

    Science.gov (United States)

    Cortina, Gerard; Hansford, Jordan R; Duke, Trevor

    2016-05-01

    We describe a 2-year-old female with a suprasellar primitive neuroectodermal tumor and central diabetes insipidus (DI) who developed polyuria with natriuresis and subsequent hyponatremia 36 hr after cisplatin administration. The marked urinary losses of sodium in combination with a negative sodium balance led to the diagnosis of cisplatin-induced renal salt wasting syndrome (RSWS). The subsequent clinical management is very challenging. Four weeks later she was discharged from ICU without neurological sequela. The combination of cisplatin-induced RSWS with DI can be confusing and needs careful clinical assessment as inaccurate diagnosis and management can result in increased neurological injury. © 2016 Wiley Periodicals, Inc.

  8. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-κB p65 subunit and cytotoxicity in renal proximal tubule cells

    International Nuclear Information System (INIS)

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin; Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang; Lee, Sang Yong; Han, Myung Kwan; Kim, Duk Hoon; Kim, Won

    2012-01-01

    Highlights: ► Cisplatin increases acetylation of NF-κB p65 subunit in HK2 cells. ► SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. ► Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-κB (NF-κB) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD + )-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistance in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-κB and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-κB and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-κB p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-κB during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-κB p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-κB through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.

  9. Unfolding the mechanism of cisplatin induced pathophysiology in spleen and its amelioration by carnosine.

    Science.gov (United States)

    Banerjee, Sharmistha; Sinha, Krishnendu; Chowdhury, Sayantani; Sil, Parames C

    2018-01-05

    cis-Diamminedichloroplatinum (cisplatin) is an effective chemotherapeutic and is widely used for the treatment of various types of solid tumors. Bio-distribution of cisplatin to other organs due to poor targeting towards only cancer cells constitutes the backbone of cisplatin-induced toxicity. The adverse effect of this drug on spleen is not well characterized so far. Therefore, we have set our goal to explore the mechanism of the cisplatin-induced pathophysiology of the spleen and would also like to evaluate whether carnosine, an endogenous neurotransmitter and antioxidant, can ameliorate this pathophysiological response. We found a dose and time-dependent increase of the pro-inflammatory cytokine, TNF-α, in the spleen tissue of the experimental mice exposed to 10 and 20 mg/kg body weight of cisplatin. The increase in inflammatory cytokine can be attributed to the activation of the transcription factor, NF-ĸB. This also aids in the transcription of other pro-inflammatory cytokines and cellular adhesion molecules. Exposure of animals to cisplatin at both the doses resulted in ROS and NO production leading to oxidative stress. The MAP Kinase pathway, especially JNK activation, was also triggered by cisplatin. Eventually, the persistence of inflammatory response and oxidative stress lead to apoptosis through extrinsic pathway. Carnosine has been found to restore the expression of inflammatory molecules and catalase to normal levels through inhibition of pro-inflammatory cytokines, oxidative stress, NF-ĸB and JNK. Carnosine also protected the splenic cells from apoptosis. Our study elucidated the detailed mechanism of cisplatin-induced spleen toxicity and use of carnosine as a protective agent against this cytotoxic response. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Risk of developing acute kidney injury associated to contrast media in patients with severe acute pancreatitis, Unidad de Cuidados Intensivos, Hospital Rafael Angel Calderon Guardia, September 2006 to December 2012

    International Nuclear Information System (INIS)

    Nunez Delgado, Karla

    2014-01-01

    The risk of acute kidney injury associated to contrast media is described in patients with severe acute pancreatitis in the Unidad de Cuidados Intensivos of the Hospital Rafael Angel Calderon Guardia of September 2006 to December 2012. The sociodemographic and clinical characteristics of the population studied are identified by data collecting, obtained from clinical records and statistical database of the Intensive Care Unit. The magnitude of the problem is determined by calculating the prevalence of acute kidney injury and possible complications in the study group. Radiologic studies realized by intravascular contrast media were used for diagnostic and therapeutic purposes. The incidence of acute renal injury induced by contrast media has been of the 48.1%, similar to that reported by other authors. Acute kidney injury induced by contrast media is associated with an increase use of health resources, prolonged hospital stay and increased of the hospital mortality. The diagnostic process is described from admission of the patient to hospital [es

  11. Efficacy of piroxicam plus cisplatin-loaded PLGA nanoparticles in inducing apoptosis in mesothelioma cells.

    Science.gov (United States)

    Menale, Ciro; Piccolo, Maria Teresa; Favicchia, Ilaria; Aruta, Maria Grazia; Baldi, Alfonso; Nicolucci, Carla; Barba, Vincenzo; Mita, Damiano Gustavo; Crispi, Stefania; Diano, Nadia

    2015-02-01

    Combined treatment based on cisplatin-loaded Poly(D,L-lactic-co-glicolic)acid (PLGA) nanoparticles (NP-C) plus the NSAID piroxicam was used as novel treatment for mesothelioma to reduce side effects related to cisplatin toxicity. PLGA nanoparticles were prepared by double emulsion solvent evaporation method. Particle size, drug release profile and in vitro cellular uptake were characterized by TEM, DLS, LC/MS and fluorescence microscopy. MSTO-211H cell line was used to analyse NP-C biological efficacy by FACS and protein analysis. Cisplatin was encapsulated in 197 nm PLGA nanoparticles with 8.2% drug loading efficiency and 47% encapsulation efficiency. Cisplatin delivery from nanoparticles reaches 80% of total encapsulated drug in 14 days following a triphasic trend. PLGA nanoparticles in MSTO-211H cells were localized in the perinuclear space NP-C in combination with piroxicam induced apoptosis using a final cisplatin concentration 1.75 fold less than free drug. Delivered cisplatin cooperated with piroxicam in modulating cell cycle regulators as caspase-3, p53 and p21. Cisplatin loaded PLGA nanoparticles plus piroxicam showed a good efficacy in exerting cytotoxic activity and inducing the same molecular apoptotic effects of the free drugs. Sustained cisplatin release allowed to use less amount of drug, decreasing toxic side effects. This novel approach could represent a new strategy for mesothelioma treatment.

  12. Renoprotective effect of paricalcitol via a modulation of the TLR4-NF-κB pathway in ischemia/reperfusion-induced acute kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Won, E-mail: maestro97@hanmail.net; Kim, Sun Chul, E-mail: linefe99@hanmail.net; Ko, Yoon Sook, E-mail: rainboweyes@hanmail.net; Lee, Hee Young, E-mail: cell1023@hanmail.net; Cho, Eunjung, E-mail: icdej@naver.com; Kim, Myung-Gyu, E-mail: gyu219@hanmail.net; Jo, Sang-Kyung, E-mail: sang-kyung@korea.ac.kr; Cho, Won Yong, E-mail: wonyong@korea.ac.kr; Kim, Hyoung Kyu, E-mail: hyoung@korea.ac.kr

    2014-02-07

    Highlights: • Paricalcitol. • Attenuation of renal inflammation. • Modulation of TLR4-NF-κB signaling. - Abstract: Background: The pathophysiology of ischemic acute kidney injury (AKI) is thought to include a complex interplay between vascular endothelial cell dysfunction, inflammation, and tubular cell damage. Several lines of evidence suggest a potential anti-inflammatory effect of vitamin D in various kidney injury models. In this study, we investigated the effect of paricalcitol, a synthetic vitamin D analog, on renal inflammation in a mouse model of ischemia/reperfusion (I/R) induced acute kidney injury (AKI). Methods: Paricalcitol was administered via intraperitoneal (IP) injection at 24 h before ischemia, and then I/R was performed through bilateral clamping of the renal pedicles. Twenty-four hours after I/R, mice were sacrificed for the evaluation of injury and inflammation. Additionally, an in vitro experiment using HK-2 cells was also performed to examine the direct effect of paricalcitol on tubular cells. Results: Pre-treatment with paricalcitol attenuated functional deterioration and histological damage in I/R induced AKI, and significantly decreased tissue neutrophil and macrophage infiltration and the levels of chemokines, the pro-inflammatory cytokine interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1). It also decreased IR-induced upregulation of Toll-like receptor 4 (TLR4), and nuclear translocation of p65 subunit of NF-κB. Results from the in vitro study showed pre-treatment with paricalcitol suppressed the TNF-α-induced depletion of cytosolic IκB in HK-2 cells. Conclusion: These results demonstrate that pre-treatment with paricalcitol has a renoprotective effect in ischemic AKI, possibly by suppressing TLR4-NF-κB mediated inflammation.

  13. EFFECT OF ACUTE RENAL FAILURE ON KIDNEY AMIDINOTRANSFERASE ACTIVITY

    Directory of Open Access Journals (Sweden)

    Jelenka Nikolic

    2004-04-01

    Full Text Available L-Arginine-:glycine amidinotransferase (EC 2.1.4.1 catalyzes the transfer of an amidino group from arginine to glycine to form guanidinoacetate, precursor in creatine synthesis. The kidneys are major site of the creatine synthesis and primary target organs for mercury toxicity. In evaluation of molecular mechanisms of mercury chloride intoxication relating to creatine metabolism we have investigated the enzyme activity in kidney tissue after mercury chloride administration. Acute renal failure was induced by i.p administration of mercury chloride in a dose of 3 mg/kg to male Spraque Dawley rats weighing about 200 g. The results of our study indicate an acute renal failure 24 hours after mercury chloride administration. Urea and creatinine levels in blood plasma were significantly elevated compared to control group (p<0.001. Amidinotransferase activity in kidney tissue was depressed, while, in plasma of intoxicated rats activity of enzyme was increased (p<0.001. The obtained results indicate that mercury chloride has strong nephrotoxic effect. Depressed amidinotransferase activity and decreased production of guanidinoacetate, initial product in creatine synthesis, may be implicated in neurotoxicity, cardiotoxicity and muscle damage in mercury intoxication, because creatine and its phosphorylated form creatine phosphate play an important role in the energy metabolism.

  14. Acute ciprofloxacin-induced crystal nephropathy with granulomatous interstitial nephritis

    Directory of Open Access Journals (Sweden)

    R Goli

    2017-01-01

    Full Text Available Crystal-induced acute kidney injury (AKI is caused by the intratubular precipitation of crystals, which results in obstruction and kidney injury. Ciprofloxacin, a commonly used antibiotic, causes AKI secondary to immune-mediated interstitial injury. Rare mechanisms of ciprofloxacin-induced renal injury include crystalluria, rhabdomyolysis, and granulomatous interstitial nephritis. Clinical and experimental studies have suggested that crystalluria and crystal nephropathy due to ciprofloxacin occur in alkaline urine. Preexisting kidney function impairment, high dose of the medication, and advanced age predispose to this complication. We report a case of ciprofloxacin-induced crystal nephropathy and granulomatous interstitial nephritis in a young patient with no other predisposing factors. The patient responded to conservative treatment without the need for glucocorticoids.

  15. The protective effect of infliximab on cisplatin-induced intestinal tissue toxicity.

    Science.gov (United States)

    Aydin, I; Kalkan, Y; Ozer, E; Yucel, A F; Pergel, A; Cure, E; Cure, M C; Sahin, D A

    2014-01-01

    Cisplatin (CP) is a popular chemotherapeutic agent. However, high doses of CP may lead to severe side effects to the gastrointestinal system. The aim of this study was to investigate the protective effects of infliximab on small intestine injury induced by high doses of CP. The A total of 30 rats were equally divided into three groups, including sham (C), cisplatin (CP), and cisplatin + infliximab (CPI). The CP group was treated with 7 mg/kg intraperitoneal cisplatin, and a laparotomy was performed 5 days later. The CPI group received 7 mg/kg infliximab intraperitoneally, were administered 7 mg/kg cisplatin 4 days later, and a laparotomy was performed 5 days after receiving cisplatin. Histopathological and immunohistochemical analysis of small intestine tissue sections were performed, and superoxide dismutase, malondialdehyde, and TNF-α levels were measured. Histopathological evaluation revealed that the CP group had damage in the epithelium and connective tissue, but this damage was significantly improved in the CPI group (p < 0.05). In addition, these histopathological findings were confirmed by biochemical analyses. These results suggest that infliximab is protective against the adverse effects of CP.

  16. Failure of Elevating Calcium Induces Oxidative Stress Tolerance and Imparts Cisplatin Resistance in Ovarian Cancer Cells

    OpenAIRE

    Ma, Liwei; Wang, Hongjun; Wang, Chunyan; Su, Jing; Xie, Qi; Xu, Lu; Yu, Yang; Liu, Shibing; Li, Songyan; Xu, Ye; Li, Zhixin

    2016-01-01

    Cisplatin is a commonly used chemotherapeutic drug, used for the treatment of malignant ovarian cancer, but acquired resistance limits its application. There is therefore an overwhelming need to understand the mechanism of cisplatin resistance in ovarian cancer, that is, ovarian cancer cells are insensitive to cisplatin treatment. Here, we show that failure of elevating calcium and oxidative stress tolerance play key roles in cisplatin resistance in ovarian cancer cell lines. Cisplatin induce...

  17. Ebselen attenuates cisplatin-induced ROS generation through Nrf2 activation in auditory cells.

    Science.gov (United States)

    Kim, Se-Jin; Park, Channy; Han, A Lum; Youn, Myung-Ja; Lee, Jeong-Han; Kim, Yunha; Kim, Eun-Sook; Kim, Hyung-Jin; Kim, Jin-Kyung; Lee, Ho-Kyun; Chung, Sang-Young; So, Hongseob; Park, Raekil

    2009-05-01

    Ebselen, an organoselenium compound that acts as a glutathione peroxidase mimetic, has been demonstrated to possess antioxidant and anti-inflammatory activities. However, the molecular mechanism underlying this effect is not fully understood in auditory cells. The purpose of the present study is to investigate the protective effect of ebselen against cisplatin-induced toxicity in HEI-OC1 auditory cells, organotypic cultures of cochlear explants from two-day postnatal rats (P(2)) and adult Balb/C mice. Pretreatment with ebselen ameliorated apoptotic death induced by cisplatin in HEI-OC1 cells and organotypic cultures of Corti's organ. Ebselen pretreatment also significantly suppressed cisplatin-induced increases in intracellular reactive oxygen species (ROS), intracellular reactive nitrogen species (RNS) and lipid peroxidation levels. Ebselen dose-dependently increased the expression level of an antioxidant response element (ARE)-luciferase reporter in HEI-OC1 cells through the translocation of Nrf2 into the nucleus. Furthermore, we found that pretreatment with ebselen significantly restored Nrf2 function, whereas it ameliorated the cytotoxicity of cisplatin in cells transfectants with either a pcDNA3.1 (control) or a DN-Nrf2 (dominant-negative) plasmid. We also observed that Nrf2 activation by ebselen increased the expression of phase II antioxidant genes, including heme oxygenase (HO-1), NAD(P)H:quinine oxidoreductase, and gamma-glutamylcysteine synthetase (gamma-GCS). Treatment with ebselen resulted in an increased expression of HO-1 and intranuclear Nrf2 in hair cells of organotypic cultured cochlea. After intraperitoneal injection with cisplatin, auditory brainstem responses (ABRs) threshold was measured on 8th day in Balb/C mice. ABR threshold shift was marked occurred in mice injected with cisplatin (16 mg/kg, n=5; Click and 8-kHz stimuli, pebselen was not significantly changed. These results suggest that ebselen activates the Nrf2-ARE signaling pathway

  18. Thrombotic microangiopathies and acute kidney injury induced by ...

    African Journals Online (AJOL)

    2013-07-29

    Jul 29, 2013 ... Nigerian Journal of Clinical Practice • May-Jun 2014 • Vol 17 • Issue 3 ... swelling and luminal stenosis or fibrin‑containing thrombi in the glomeruli ... Key words: Acute renal failure, case studies, induced abortion, pregnancy, ...

  19. SIRT1 overexpression decreases cisplatin-induced acetylation of NF-{kappa}B p65 subunit and cytotoxicity in renal proximal tubule cells

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yu Jin; Lee, Jung Eun; Lee, Ae Sin [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kang, Kyung Pyo; Lee, Sik; Park, Sung Kwang [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Lee, Sang Yong [Department of Diagnostic Radiology, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Han, Myung Kwan [Department of Microbiology, Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Kim, Duk Hoon [Division of Forensic Medicine, National Forensic Service, Seoul (Korea, Republic of); Kim, Won, E-mail: kwon@jbnu.ac.kr [Department of Internal Medicine, Chonbuk National University Medical School, Jeonju (Korea, Republic of); Institute for Medical Sciences, Chonbuk National University Medical School, Jeonju (Korea, Republic of)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Cisplatin increases acetylation of NF-{kappa}B p65 subunit in HK2 cells. Black-Right-Pointing-Pointer SIRT1 overexpression decreases cisplatin-induced p65 acetylation and -cytotoxicity. Black-Right-Pointing-Pointer Resveratrol decreased cisplatin-induced cell viability through deacetylation of p65. -- Abstract: As the increased acetylation of p65 is linked to nuclear factor-{kappa}B (NF-{kappa}B) activation, the regulation of p65 acetylation can be a potential target for the treatment of inflammatory injury. Cisplatin-induced nephrotoxicity is an important issue in chemotherapy of cancer patients. SIRT1, nicotinamide adenine dinucleotide (NAD{sup +})-dependent protein deacetylase, has been implicated in a variety of cellular processes such as inflammatory injury and the control of multidrug resistance in cancer. However, there is no report on the effect of SIRT1 overexpression on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury. To investigate the effect of SIRT1 in on cisplatin-induced acetylation of p65 subunit of NF-{kappa}B and cell injury, HK2 cells were exposed with SIRT1 overexpression, LacZ adenovirus or dominant negative adenovirus after treatment with cisplatin. While protein expression of SIRT1 was decreased by cisplatin treatment compared with control buffer treatment, acetylation of NF-{kappa}B p65 subunit was significantly increased after treatment with cisplatin. Overexpression of SIRT1 ameliorated the increased acetylation of p65 of NF-{kappa}B during cisplatin treatment and cisplatin-induced cytotoxicity. Further, treatment of cisplatin-treated HK2 cells with resveratrol, a SIRT1 activator, also decreased acetylation of NF-{kappa}B p65 subunit and cisplatin-induced increase of the cell viability in HK2 cells. Our findings suggests that the regulation of acetylation of p65 of NF-{kappa}B through SIRT1 can be a possible target to attenuate cisplatin-induced renal cell damage.

  20. Voluntary Exercise Prevents Cisplatin-Induced Muscle Wasting during Chemotherapy in Mice

    DEFF Research Database (Denmark)

    Hojman, Pernille; Fjelbye, Jonas; Zerahn, Bo

    2014-01-01

    , food intake as well as muscle mass, strength and signalling. Mice were treated weekly with 4 mg/kg cisplatin or saline for 6 weeks, and randomized to voluntary wheel running or not. Cisplatin treatment induced loss of body weight (29.8%, P ... as anorexia, impaired muscle strength (22.5% decrease, P wheel running during treatment attenuated body weight...... loss by 50% (P wheel running, nor was glucose tolerance improved. Exercise...

  1. Protective effects of Tribulus terrestris L extract against acute kidney injury induced by reperfusion injury in rats.

    Science.gov (United States)

    Najafi, Houshang; Firouzifar, Mohammad Reza; Shafaat, Omid; Changizi Ashtiyani, Saeed; Hosseini, Nasser

    2014-07-01

    This study aimed to investigate the protective effect of aerial parts of the Tribulus terrestris L extract on acute kidney injury (AKI) induced by ischemia for 30 minutes and reperfusion for 24 hours in rats. Ten male Sprague-Dawley rats in the AKI and 10 in the Tribulus terrestris groups received the extract solvent and extract of the plant (11 mg/kg), respectively, for 13 days (oral administration). On day 14, ischemia for 30 minutes and reperfusion for 24 hours were induced on the rats. In the last 6 hours of the reperfusion period (24 hours), urine samples were collected in metabolic cages. At the end of this period, blood samples were also taken to determine plasma urea nitrogen, creatinine, and electrolyte concentrations. The kidney tissues were collected for measuring the level of oxidative stress and histological studies. They were compared with the sham operation group and a control group with normal diet and no operation. In the Tribulus terrestris group, the increase in plasma creatinine and urea nitrogen concentrations was significantly less following reperfusion, and their values reached the same level as that in the sham group. Creatinine clearance and urine osmolarity in the Tribulus terrestris group was higher in comparison with the AKI group, whereas sodium absolute excretion, fractional excretion of potassium, oxidative stress, and cellular damages were less. Oral administration of Tribulus terrestris extract for 2 weeks can decrease kidney functional disturbance, oxidative stress, and cellular damages following reperfusion injury in rats.

  2. Possible mechanism of PNS protection against cisplatin-induced nephrotoxicity in rat models.

    Science.gov (United States)

    Liu, Xinwen; Huang, Zhenguang; Zou, Xiaoqin; Yang, Yufang; Qiu, Yue; Wen, Yan

    2015-01-01

    This study investigates the mechanism of the protective effect of Panax notoginsenosides (PNS) against cisplatin-induced nephrotoxicity via the hypoxia inducible factor 1 (HIF-1)/Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) pathway of autophagy. The rats underwent intraperitoneal injection with a single dose of cisplatin and a subset of rats were also intraperitoneally injected with 31.35 mg/kg PNS once a day. After 24 h exposure to cisplatin, the concentrations of urinary N-acetyl-β-D-glucosaminidase (NAG), blood urea nitrogen (BUN) and serum creatinine (Scr) were determined. The rat renal tissue was examined using H&E-staining, and the mitochondria of renal tubular epithelial cells were observed using transmission electron microscopy. The expressions of microtubule-associated protein-1 light chain (LC)3, autophagy-related gene (Atg)5, Beclin-1 and BNIP3 in rat renal tissue were detected using western blotting. The expression of HIF-1 was detected by immunohistochemistry. The results showed that PNS significantly protected against cisplatin-induced nephrotoxicity, as evidenced by decreasing the concentration of blood BUN and Scr, the attenuation of renal histopathological changes and the mitochondrial damages of renal cells, and the increase of mitochondria autophagosome in renal tubular epithelial cells. Additionally, PNS significantly increased the expression of LC3 and the ratio of LC3II/LC3I in rat renal tissue. Moreover, PNS significantly increased the expression of HIF-1α, BNIP3, Atg5 and Beclin-1 in rat renal tissue. In conclusion, the protective effect of PNS on cisplatin-induced nephrotoxicity was mainly due to its ability to enhancing the mitochondrial autophagy of renal tissue via the HIF-1α/BNIP3 pathway, and here is the first demonstration about it.

  3. Protective effect of hydroalcoholic extract of tribulus terrestris on cisplatin induced renal tissue damage in male mice

    Directory of Open Access Journals (Sweden)

    Amir Raoofi

    2015-01-01

    Full Text Available Background: According beneficial effects of Tribulus terrestris (TT extract on tissue damage, the present study investigated the influence of hydroalcoholic extract of TT plant on cisplatin (CIS (EBEWE Pharma, Unterach, Austria induced renal tissue damage in male mice. Methods: Thirty mice were divided into five groups (n = 6. The first group (control was treated with normal saline (0.9% NaCl and experimental groups with CIS (E1, CIS + 100 mg/kg extract of TT (E2, CIS + 300 mg/kg extract of TT (E3, CIS + 500 mg/kg extract of TT (E4 intraperitoneally. The kidneys were removed after 4 days of injections, and histological evaluations were performed. Results: The data were analyzed using one-way analysis of variance followed by Tukey′s post-hoc test, paired-sample t-test, Kruskal-Wallis and Mann-Whitney tests. In the CIS treated group, the whole kidney tissue showed an increased dilatation of Bowman′s capsule, medullar congestion, and dilatation of collecting tubules and a decreased in the body weight and kidney weight. These parameters reached to the normal range after administration of fruit extracts of TT for 4 days. Conclusions: The results suggested that the oral administration of TT fruit extract at dose 100, 300 and 500 mg/kg body weight provided protection against the CIS induced toxicity in the mice.

  4. Protective Effect of Hydroalcoholic Extract of Tribulus Terrestris on Cisplatin Induced Renal Tissue Damage in Male Mice

    Science.gov (United States)

    Raoofi, Amir; Khazaei, Mozafar; Ghanbari, Ali

    2015-01-01

    Background: According beneficial effects of Tribulus terrestris (TT) extract on tissue damage, the present study investigated the influence of hydroalcoholic extract of TT plant on cisplatin (CIS) (EBEWE Pharma, Unterach, Austria) induced renal tissue damage in male mice. Methods: Thirty mice were divided into five groups (n = 6). The first group (control) was treated with normal saline (0.9% NaCl) and experimental groups with CIS (E1), CIS + 100 mg/kg extract of TT (E2), CIS + 300 mg/kg extract of TT (E3), CIS + 500 mg/kg extract of TT (E4) intraperitoneally. The kidneys were removed after 4 days of injections, and histological evaluations were performed. Results: The data were analyzed using one-way analysis of variance followed by Tukey's post-hoc test, paired-sample t-test, Kruskal–Wallis and Mann–Whitney tests. In the CIS treated group, the whole kidney tissue showed an increased dilatation of Bowman's capsule, medullar congestion, and dilatation of collecting tubules and a decreased in the body weight and kidney weight. These parameters reached to the normal range after administration of fruit extracts of TT for 4 days. Conclusions: The results suggested that the oral administration of TT fruit extract at dose 100, 300 and 500 mg/kg body weight provided protection against the CIS induced toxicity in the mice. PMID:25789143

  5. Evaluation of the usefulness of novel biomarkers for drug-induced acute kidney injury in beagle dogs

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xiaobing [National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176 (China); Graduate School of Peking Union Medical College, Dongcheng District, Beijing, 100730 (China); Ma, Ben; Lin, Zhi; Qu, Zhe; Huo, Yan; Wang, Jufeng [National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176 (China); Li, Bo, E-mail: libo@nifdc.org.cn [National Center for Safety Evaluation of Drugs, National Institutes for Food and Drug Control, A8 Hongda Middle Street, Beijing Economic-Technological Development Area, Beijing 100176 (China); Graduate School of Peking Union Medical College, Dongcheng District, Beijing, 100730 (China)

    2014-10-01

    As kidney is a major target organ affected by drug toxicity, early detection of renal injury is critical in preclinical drug development. In past decades, a series of novel biomarkers of drug-induced nephrotoxicity were discovered and verified in rats. However, limited data regarding the performance of novel biomarkers in non-rodent species are publicly available. To increase the applicability of these biomarkers, we evaluated the performance of 4 urinary biomarkers including neutrophil gelatinase-associated lipocalin (NGAL), clusterin, total protein, and N-acetyl-β-D-glucosaminidase (NAG), relative to histopathology and traditional clinical chemistry in beagle dogs with acute kidney injury (AKI) induced by gentamicin. The results showed that urinary NGAL and clusterin levels were significantly elevated in dogs on days 1 and 3 after administration of gentamicin, respectively. Gene expression analysis further provided mechanistic evidence to support that NGAL and clusterin are potential biomarkers for the early assessment of drug-induced renal damage. Furthermore, the high area (both AUCs = 1.000) under receiver operator characteristics (ROC) curve also indicated that NGAL and clusterin were the most sensitive biomarkers for detection of gentamicin-induced renal proximal tubular toxicity. Our results also suggested that NAG may be used in routine toxicity testing due to its sensitivity and robustness for detection of tissue injury. The present data will provide insights into the preclinical use of these biomarkers for detection of drug-induced AKI in non-rodent species. - Highlights: • Urinary NGAL, clusterin and NAG levels were significantly elevated in canine AKI. • NGAL and clusterin gene expression were increased following treatment with gentamicin. • NGAL and clusterin have high specificity and sensitivity for detection of AKI.

  6. VCC-1 over-expression inhibits cisplatin-induced apoptosis in HepG2 cells

    International Nuclear Information System (INIS)

    Zhou, Zhitao; Lu, Xiao; Zhu, Ping; Zhu, Wei; Mu, Xia; Qu, Rongmei; Li, Ming

    2012-01-01

    Highlights: ► VCC-1 is hypothesized to be associated with carcinogenesis. ► Levels of VCC-1 are increased significantly in HCC. ► Over-expression of VCC-1 could promotes cellular proliferation rate. ► Over-expression of VCC-1 inhibit the cisplatin-provoked apoptosis in HepG2 cells. ► VCC-1 plays an important role in control the tumor growth and apoptosis. -- Abstract: Vascular endothelial growth factor-correlated chemokine 1 (VCC-1), a recently described chemokine, is hypothesized to be associated with carcinogenesis. However, the molecular mechanisms by which aberrant VCC-1 expression determines poor outcomes of cancers are unknown. In this study, we found that VCC-1 was highly expressed in hepatocellular carcinoma (HCC) tissue. It was also associated with proliferation of HepG2 cells, and inhibition of cisplatin-induced apoptosis of HepG2 cells. Conversely, down-regulation of VCC-1 in HepG2 cells increased cisplatin-induced apoptosis of HepG2 cells. In summary, these results suggest that VCC-1 is involved in cisplatin-induced apoptosis of HepG2 cells, and also provides some evidence for VCC-1 as a potential cellular target for chemotherapy.

  7. Rhabdomyolysis-Associated Acute Kidney Injury With Normal Creatine Phosphokinase.

    Science.gov (United States)

    Kamal, Faisal; Snook, Lindsay; Saikumar, Jagannath H

    2018-01-01

    Rhabdomyolysis is a syndrome characterized by the breakdown of skeletal muscle and leakage of intracellular myocyte contents, such as creatine phosphokinase (CPK) and myoglobin, into the interstitial space and plasma resulting in acute kidney injury (AKI). Elevated CPK of at least 5 times the upper limit of normal is an important diagnostic marker of Rhabdomyolysis. We present a case of rhabdomyolysis with severe AKI with a normal CPK at presentation. A 32-year-old man presented with acute respiratory failure and AKI after an overdose of recreational drugs. Urinalysis at presentation showed trace amounts of blood, identified as rare red blood cells under microscopy. CPK was 156 U/L at presentation. Workup for glomerulonephritis and vasculitis was negative. He was initiated on renal replacement therapy, and a kidney biopsy showed severe acute tubular injury with positive myoglobin casts. Supportive management and renal replacement therapy was provided, and renal function spontaneously improved after a few weeks. This is an uncommon clinical presentation of severe rhabdomyolysis complicated by AKI. This suggests that CPK alone may not be a sensitive marker for rhabdomyolysis-induced AKI in some cases. Copyright © 2018 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  8. Antioxidantes da dieta como inibidores da nefrotoxicidade induzida pelo antitumoral cisplatina Dietary antioxidants as inhibitors of cisplatin-induced nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Lusânia Maria Greggi Antunes

    2004-03-01

    Full Text Available A cisplatina é uma droga antineoplásica altamente efetiva contra vários tipos de cânceres humanos, tais como tumores do testículo e ovário, câncer da cabeça e pescoço e câncer do pulmão. Entretanto, a nefrotoxicidade é um dos principais efeitos colaterais da terapia com a cisplatina. A gravidade da nefrotoxicidade induzida pela cisplatina está relacionada com a concentração de platina nos rins. As evidências mostram que a nefrotoxicidade induzida pela cisplatina é atribuída ao dano oxidativo resultante da geração de radicais livres, e que a administração de antioxidantes é eficiente na inibição destes efeitos colaterais. Uma abordagem alternativa para proteger os roedores dos efeitos colaterais da cisplatina é o uso de conhecidos antioxidantes da dieta. Alguns estudos têm sido realizados para diminuir a peroxidação lipídica e os efeitos citotóxicos induzidos pela cisplatina, com o emprego de antioxidantes da dieta, tais como, selenito de sódio, vitaminas C e E, curcumina e o carotenóide bixina. Nós sugerimos que aqueles antioxidantes da dieta têm efeito nefroprotetor, e que os mecanismos antioxidantes destes compostos deveriam ser explorados durante a quimioterapia com a cisplatina.Cisplatin is a highly effective antineoplastic drug used against several types of human cancers, such as testicular and ovarian tumors; head and neck; and lung cancer. However, nephrotoxicity is one of the most important side-effects of cisplatin therapy. The severity of cisplatin nephrotoxicity is related to platinum concentration in the kidneys. There is a growing amount of evidence that cisplatin-induced nephrotoxicity is ascribed to oxidative damage resulting from free radical generation and that the administration of antioxidants is efficient in inhibiting these side effects. An alternative approach aiming to protect rodents against cisplatin side-effects is the introduction of known dietary antioxidants. Some studies have been

  9. Everolimus-associated acute kidney injury in patients with metastatic breast cancer

    Directory of Open Access Journals (Sweden)

    A Chandra

    2017-01-01

    Full Text Available Recently, everolimus (Evl has been introduced in the management of hormone receptor-positive metastatic breast cancer, in combination with aromatase inhibitors. Evl-induced acute kidney injury has hitherto been described in other malignancies, especially renal cell cancer, but only once before in a patient with breast cancer. We describe two cases of Evl-associated nephrotoxicity in patients with breast cancer, one of whom underwent a renal biopsy showing acute tubular necrosis. Both our patients improved after withdrawal of the offending agent and have normal renal functions on follow-up.

  10. Insulin-like growth factor-1 sustains stem cell mediated renal repair.

    NARCIS (Netherlands)

    Imberti, B.; Morigi, M.; Tomasoni, S.; Rota, C.; Corna, D.; Longaretti, L.; Rottoli, D.; Valsecchi, F.; Benigni, A.; Wang, J.; Abbate, M.; Zoja, C.; Remuzzi, G.

    2007-01-01

    In mice with cisplatin-induced acute kidney injury, administration of bone marrow-derived mesenchymal stem cells (MSC) restores renal tubular structure and improves renal function, but the underlying mechanism is unclear. Here, we examined the process of kidney cell repair in co-culture experiments

  11. Acute kidney injury from herbal vaginal remedy in Ilorin: a case report

    African Journals Online (AJOL)

    Acute kidney injury from herbal vaginal remedy in Ilorin: a case report. TO Olanrewaju, A Chijioke, IQ Ameh, AA Adewale. Abstract. The use of traditional herbal remedy is very common worldwide, and it is associated with complications such as acute kidney injury. Herbal remedy accounts for 35% of acute kidney injury in ...

  12. Renoprotective effects of antioxidants against cisplatin nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Hajian Shabnam

    2014-04-01

    Full Text Available Nephrotoxicity is the major limitation for the clinical use of cisplatin as an anti-tumoural drug. Intracellular effects of cisplatin cause tubular damage and tubular dysfunction with sodium, potassium, and magnesium wasting. Renoperotective strategies against cisplatin are classified on 8 targets: 1 Decrease of cisplatin uptake by renal cell, 2 Inhibition of cisplatin metabolism, 3 Blocking cell death pathways, 4 Cyclin-dependent kinase inhibitors, 5 Pharmacologic, molecular, and genetic blockade of p53, 6 Inhibition of specific Mitogen-activated protein kinase, 7 Antioxidants usage for renoprotection against cisplatin injury and inhibit of oxidative stress, 8 Suppress of inflammation. The oxidation reactions can produce free radicals, which start chain reactions and subsequently can cause a large number of diseases in humans. Antioxidant from natural products have attracted the physicians’ attentions, nowadays. The natural product antioxidants detoxify reactive oxygen species (ROS in kidneys, without affecting the anticancer efficacy of cisplatin. Hence, antioxidants have potential therapeutic applications.

  13. Protective Effect of Aqueous and Ethanolic Extracts of Portulaca Oleracea Against Cisplatin Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Gholamreza Karimi

    2010-04-01

    Full Text Available Objective(sPortulaca oleracea L. is a herbaceous weed from portulacaceae family. It can be found in many parts of the world. Modern pharmacological studies have demonstrated that P. oleracea have antioxidant effects. The protective effect of aqueous and ethanolic extract of P. oleracea against cisplatin-induced renal toxicity was studied in rats.Materials and MethodsSingle intraperitoneal injection of 4 mg/kg cisplatin was administrated to rats. After 5 days, blood urea nitrogen (BUN and serum creatinine (Scr concentration were determined. Effect of aqueous and ethanolic extracts, before and after cisplatin injection on BUN and Scr, as well as morphological renal damage, was evaluated. ResultsIt was indicated that treatment with aqueous and ethanolic extracts of P. oleracea in the highest dose (0.8 and 2 g/ kg, 6 and 12 hr before cisplatin injection reduced BUN and Scr. Tubular necrotic damage was not observed either. ConclusionResults suggest that P. oleracea extract may protect against cisplatin-induced renal toxicity and might serve as a novel combination agent with cisplan to limit renal injury.

  14. The response of hypoxic cells in SCCVII murine tumors to treatment with cisplatin and x rays

    International Nuclear Information System (INIS)

    Yan, R.D.; Durand, R.E.

    1991-01-01

    Possible mechanisms of enhancement of radiation effects by cisplatin, including radiosensitization of hypoxic cells, drug-induced tumor reoxygenation, and inhibition of repair of sublethal radiation damage, were examined in the murine SCCVII model. Combination radiation/drug treatments were most effective when drug exposure preceded irradiation of animals breathing a reduced oxygen atmosphere, indicating that the primary interaction between the modalities was a cisplatin-induced increase in the oxygenation status of the acutely hypoxic cells in those tumors. Delivering cisplatin prior to or immediately after the first of two 5 Gy fractions was more effective than combinations with a single x-ray exposure, suggesting that proper sequences of the combined modalities may augment natural reoxygenation processes

  15. The Development of a Machine Learning Inpatient Acute Kidney Injury Prediction Model.

    Science.gov (United States)

    Koyner, Jay L; Carey, Kyle A; Edelson, Dana P; Churpek, Matthew M

    2018-03-28

    To develop an acute kidney injury risk prediction model using electronic health record data for longitudinal use in hospitalized patients. Observational cohort study. Tertiary, urban, academic medical center from November 2008 to January 2016. All adult inpatients without pre-existing renal failure at admission, defined as first serum creatinine greater than or equal to 3.0 mg/dL, International Classification of Diseases, 9th Edition, code for chronic kidney disease stage 4 or higher or having received renal replacement therapy within 48 hours of first serum creatinine measurement. None. Demographics, vital signs, diagnostics, and interventions were used in a Gradient Boosting Machine algorithm to predict serum creatinine-based Kidney Disease Improving Global Outcomes stage 2 acute kidney injury, with 60% of the data used for derivation and 40% for validation. Area under the receiver operator characteristic curve (AUC) was calculated in the validation cohort, and subgroup analyses were conducted across admission serum creatinine, acute kidney injury severity, and hospital location. Among the 121,158 included patients, 17,482 (14.4%) developed any Kidney Disease Improving Global Outcomes acute kidney injury, with 4,251 (3.5%) developing stage 2. The AUC (95% CI) was 0.90 (0.90-0.90) for predicting stage 2 acute kidney injury within 24 hours and 0.87 (0.87-0.87) within 48 hours. The AUC was 0.96 (0.96-0.96) for receipt of renal replacement therapy (n = 821) in the next 48 hours. Accuracy was similar across hospital settings (ICU, wards, and emergency department) and admitting serum creatinine groupings. At a probability threshold of greater than or equal to 0.022, the algorithm had a sensitivity of 84% and a specificity of 85% for stage 2 acute kidney injury and predicted the development of stage 2 a median of 41 hours (interquartile range, 12-141 hr) prior to the development of stage 2 acute kidney injury. Readily available electronic health record data can be used

  16. Derivation and External Validation of Prediction Models for Advanced Chronic Kidney Disease Following Acute Kidney Injury.

    Science.gov (United States)

    James, Matthew T; Pannu, Neesh; Hemmelgarn, Brenda R; Austin, Peter C; Tan, Zhi; McArthur, Eric; Manns, Braden J; Tonelli, Marcello; Wald, Ron; Quinn, Robert R; Ravani, Pietro; Garg, Amit X

    2017-11-14

    Some patients will develop chronic kidney disease after a hospitalization with acute kidney injury; however, no risk-prediction tools have been developed to identify high-risk patients requiring follow-up. To derive and validate predictive models for progression of acute kidney injury to advanced chronic kidney disease. Data from 2 population-based cohorts of patients with a prehospitalization estimated glomerular filtration rate (eGFR) of more than 45 mL/min/1.73 m2 and who had survived hospitalization with acute kidney injury (defined by a serum creatinine increase during hospitalization > 0.3 mg/dL or > 50% of their prehospitalization baseline), were used to derive and validate multivariable prediction models. The risk models were derived from 9973 patients hospitalized in Alberta, Canada (April 2004-March 2014, with follow-up to March 2015). The risk models were externally validated with data from a cohort of 2761 patients hospitalized in Ontario, Canada (June 2004-March 2012, with follow-up to March 2013). Demographic, laboratory, and comorbidity variables measured prior to discharge. Advanced chronic kidney disease was defined by a sustained reduction in eGFR less than 30 mL/min/1.73 m2 for at least 3 months during the year after discharge. All participants were followed up for up to 1 year. The participants (mean [SD] age, 66 [15] years in the derivation and internal validation cohorts and 69 [11] years in the external validation cohort; 40%-43% women per cohort) had a mean (SD) baseline serum creatinine level of 1.0 (0.2) mg/dL and more than 20% had stage 2 or 3 acute kidney injury. Advanced chronic kidney disease developed in 408 (2.7%) of 9973 patients in the derivation cohort and 62 (2.2%) of 2761 patients in the external validation cohort. In the derivation cohort, 6 variables were independently associated with the outcome: older age, female sex, higher baseline serum creatinine value, albuminuria, greater severity of acute kidney injury, and higher

  17. Acute kidney injury in symptomatic primary Epstein-Barr virus infectious mononucleosis: Systematic review.

    Science.gov (United States)

    Moretti, Milena; Lava, Sebastiano A G; Zgraggen, Lorenzo; Simonetti, Giacomo D; Kottanattu, Lisa; Bianchetti, Mario G; Milani, Gregorio P

    2017-06-01

    Textbooks and reviews do not mention the association of symptomatic primary Epstein-Barr virus infectious mononucleosis with acute kidney injury in subjects without immunodeficiency or autoimmunity. Stimulated by our experience with two cases, we performed a review of the literature. The literature documents 38 cases (26 male and 12 female individuals ranging in age from 0.3 to 51, median 18 years) of symptomatic primary Epstein-Barr virus infectious mononucleosis complicated by acute kidney injury: 27 acute interstitial nephritides, 1 jaundice-associated nephropathy, 7 myositides and 3 hemolytic uremic syndromes. Acute kidney injury requiring renal replacement therapy was observed in 18 (47%) cases. Acute kidney injury did not resolve in one patient with acute interstitial nephritis. Two patients died because of systemic complications. The remaining 35 cases fully recovered. In individuals with acute symptomatic Epstein-Barr virus infectious mononucleosis, a relevant kidney injury is rare but the outcome potentially fatal. It results from interstitial nephritis, myositis-associated acute kidney injury, hemolytic uremic syndrome or jaundice-associated nephropathy. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Abrogation of cisplatin-induced hepatotoxicity in mice by xanthorrhizol is related to its effect on the regulation of gene transcription

    International Nuclear Information System (INIS)

    Hwan Kim, Seong; Ok Hong, Kyoung; Chung, Won-Yoon; Kwan Hwang, Jae; Park, Kwang-Kyun

    2004-01-01

    Cisplatin is a widely used anticancer drug, but at high dose, it can produce undesirable side effects such as hepatotoxicity. Because Curcuma xanthorrhiza Roxb. (Zingiberaceae) has been traditionally used to treat liver disorders, the protective effect of xanthorrhizol, which is isolated from C. xanthorrhiza, on cisplatin-induced hepatotoxicity was evaluated in mice. The pretreatment of xanthorrhizol (200 mg/kg/day, po) for 4 days prevented the hepatotoxicity induced by cisplatin (45 mg/kg, ip) with statistical significance. Interestingly, it abrogated cisplatin-induced DNA-binding activity of nuclear factor-kappaB (NF-κB), which consequently affected mRNA expression levels of NF-κB-dependent genes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), even in part. It also attenuated the cisplatin-suppressed DNA-binding activity of activator protein 1 (AP-1). Using differential display reverse transcription-polymerase chain reaction (DDRT-PCR), seven upregulated genes including S100 calcium binding protein A9 (S100A9) mRNA and antigenic determinant for rec-A protein mRNA and five downregulated genes including caseinolytic protease X (ClpX) mRNA and ceruloplasmin (CP) mRNA by cisplatin were identified. Although these mRNA expression patterns were not totally consistent with gel shift patterns, altered expression levels by cisplatin were reversed by the pretreatment of xanthorrhizol. In conclusion, the ability of xanthorrhizol to regulate the DNA-binding activities of transcription factors, NF-κB and AP-1, could be one possible mechanism to elucidate the preventive effect of xanthorrhizol on cisplatin-induced hepatotoxicity. Furthermore, genes identified in this study could be helpful to understand the mechanism of cisplatin-induced hepatotoxicity. Finally, the combination treatment of xanthorrhizol and cisplatin may provide more advantage than single treatment of cisplatin in cancer therapy

  19. A case of severe acute kidney injury by near-drowning.

    Science.gov (United States)

    Seong, Eun Young; Rhee, Harin; Lee, Naria; Lee, Sung Jun; Song, Sang Heon; Lee, Dong Won; Lee, Soo Bong; Sol, Mee Young; Kwak, Ihm Soo

    2012-02-01

    Acute kidney injury (AKI) secondary to near-drowning is rarely described and poorly understood. Only few cases of severe isolated AKI resulting from near-drowning exist in the literature. We report a case of near-drowning who developed to isolated AKI due to acute tubular necrosis (ATN) requiring dialysis. A 21-yr-old man who recovered from near-drowning in freshwater 3 days earlier was admitted to our hospital with anuria and elevated level of serum creatinine. He needed five sessions of hemodialysis and then renal function recovered spontaneously. Renal biopsy confirmed ATN. We review the existing literature on near-drowning-induced AKI and discuss the possible pathogenesis.

  20. UPregulated single-stranded DNA-binding protein 1 induces cell chemoresistance to cisplatin in lung cancer cell lines.

    Science.gov (United States)

    Zhao, Xiang; He, Rong; Liu, Yu; Wu, Yongkai; Kang, Leitao

    2017-07-01

    Cisplatin and its analogues are widely used as anti-tumor drugs in lung cancer but many cisplatin-resistant lung cancer cases have been identified in recent years. Single-stranded DNA-binding protein 1 (SSDBP1) can effectively induce H69 cell resistance to cisplatin in our previous identification; thus, it is necessary to explore the mechanism underlying the effects of SSDBP1-induced resistance to cisplatin. First, SSDBP1-overexpressed or silent cell line was constructed and used to analyze the effects of SSDBP1 on chemoresistance of lung cancer cells to cisplatin. SSDBP1 expression was assayed by real-time PCR and Western blot. Next, the effects of SSDBP1 on cisplatin sensitivity, proliferation, and apoptosis of lung cancer cell lines were assayed by MTT and flow cytometry, respectively; ABC transporters, apoptosis-related genes, and cell cycle-related genes by real-time PCR, and DNA wound repair by comet assay. Low expression of SSDBP1 was observed in H69 cells, while increased expression in cisplatin-resistant H69 cells. Upregulated expression of SSDBP1 in H69AR cells was identified to promote proliferation and cisplatin resistance and inhibit apoptosis, while downregulation of SSDBP1 to inhibit cisplatin resistance and proliferation and promoted apoptosis. Moreover, SSDBP1 promoted the expression of P2gp, MRP1, Cyclin D1, and CDK4 and inhibited the expression of caspase 3 and caspase 9. Furthermore, SSDBP1 promoted the DNA wound repair. These results indicated that SSDBP1 may induce cell chemoresistance of cisplatin through promoting DNA repair, resistance-related gene expression, cell proliferation, and inhibiting apoptosis.

  1. MiR-30c regulates cisplatin-induced apoptosis of renal tubular epithelial cells by targeting Bnip3L and Hspa5.

    Science.gov (United States)

    Du, Bin; Dai, Xiao-Meng; Li, Shuang; Qi, Guo-Long; Cao, Guang-Xu; Zhong, Ying; Yin, Pei-di; Yang, Xue-Song

    2017-08-10

    As a common anticancer drug, cisplatin has been widely used for treating tumors in the clinic. However, its side effects, especially its nephrotoxicity, noticeably restrict the application of cisplatin. Therefore, it is imperative to investigate the mechanism of renal injury and explore the corresponding remedies. In this study, we showed the phenotypes of the renal tubules and epithelial cell death as well as elevated cleaved-caspase3- and TUNEL-positive cells in rats intraperitoneally injected with cisplatin. Similar cisplatin-induced cell apoptosis was found in HK-2 and NRK-52E cells exposed to cisplatin as well. In both models of cisplatin-induced apoptosis in vivo and in vitro, quantitative PCR data displayed reductions in miR-30a-e expression levels, indicating that miR-30 might be involved in regulating cisplatin-induced cell apoptosis. This was further confirmed when the effects of cisplatin-induced cell apoptosis were found to be closely correlated with alterations in miR-30c expression, which were manipulated by transfection of either the miR-30c mimic or miR-30c inhibitor in HK-2 and NRK-52E cells. Using bioinformatics tools, including TargetScan and a gene expression database (Gene Expression Omnibus), Adrb1, Bnip3L, Hspa5 and MAP3K12 were predicted to be putative target genes of miR-30c in cisplatin-induced apoptosis. Subsequently, Bnip3L and Hspa5 were confirmed to be the target genes after determining the expression of these putative genes following manipulation of miR-30c expression levels in HK-2 cells. Taken together, our current experiments reveal that miR-30c is certainly involved in regulating the renal tubular cell apoptosis induced by cisplatin, which might supply a new strategy to minimize cisplatin-induced nephrotoxicity.

  2. In vitro toxicity assay of cisplatin on mouse acute lymphoblastic leukaemia and spermatogonial stem cells.

    Science.gov (United States)

    Shabani, R; Ashtari, K; Behnam, B; Izadyar, F; Asgari, H; Asghari Jafarabadi, M; Ashjari, M; Asadi, E; Koruji, M

    2016-06-01

    Testicular cancer is the most common cancer affecting men in reproductive age, and cisplatin is one of the major helpful chemotherapeutic agents for treatment of this cancer. In addition, exposure of testes cancer cells to cisplatin could potentially eliminate tumour cells from germ cells in patients. The aim of this study was to evaluate the effect of cisplatin on viability of mouse acute lymphoblastic leukaemia cell line (EL-4) and neonatal mouse spermatogonial cells in vitro. In this study, the isolated spermatogonial stem cells (SSC) and EL-4 were divided into six groups including control (received medium), sham (received DMSO in medium) and experimental groups which received different doses of cisplatin (0.5, 5, 10 and 15 μg ml(-1) ). Cells viability was evaluated with MTT assay. The identity of the cultured cells was confirmed by the expression of specific markers. Our finding showed that viability of both SSC and EL-4 cells was reduced with the dose of 15 μg/ml when compared to the control group (P ≤ 0.05). Also, the differences between the IC50 in doses 10 and 15 μg/ml at different time were significant (P ≤ 0.05). The number of TUNEL-positive cells was increased, and the BAX and caspase-3 expressions were upregulated in EL4 cells for group that received an effective dose of cisplatin). In conclusion, despite the dramatic effects of cisplatin on both cells, spermatogonial stem cells could form colony in culture. © 2015 Blackwell Verlag GmbH.

  3. Protective role of edaravone against cisplatin-induced ototoxicity in an auditory cell line.

    Science.gov (United States)

    Im, Gi Jung; Chang, Jiwon; Lee, Sehee; Choi, June; Jung, Hak Hyun; Lee, Hyung Min; Ryu, Sung Hoon; Park, Su Kyoung; Kim, Jin Hwan; Kim, Hyung-Jong

    2015-12-01

    Edaravone is a neuroprotective agent with a potent free radical scavenging and antioxidant actions. In the present study we investigated the influence of edaravone on cisplatin ototoxicity in auditory cells. Cell viability was determined using a 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide cell proliferation assay. Oxidative stress and apoptosis were assessed by reactive oxygen species (ROS) measurement, Hoechst 33258 staining, caspase-3 activity assay, and immunoblotting of PARP. Pretreatment with 100 μM of edaravone prior to application of 15 μM of cisplatin increased cell viability after 48 h of incubation in HEI-OC1 cells (from 51.9% to 64. 6% viability) and also, attenuated the cisplatin-induced increase in reactive oxygen species (ROS) (from 2.3 fold to 1.9 fold). Edaravone also decreased the activation of caspase-3 and reduced levels of cleaved poly-ADP-ribose polymerase (PARP). We propose that edaravone protects against cisplatin-induced ototoxicity by preventing apoptosis, and limiting ROS production in HEI-OC1 cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell

    International Nuclear Information System (INIS)

    Xu, Ning; Zhang, Jianjun; Shen, Conghuan; Luo, Yi; Xia, Lei; Xue, Feng; Xia, Qiang

    2012-01-01

    Highlights: ► miR-199a-5p levels were significantly decreased after cisplatin treatment. ► Cisplatin treatment induced autophagy activation. ► Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. -- Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.

  5. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ning; Zhang, Jianjun; Shen, Conghuan; Luo, Yi; Xia, Lei; Xue, Feng [Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, People' s Republic of China (China); Xia, Qiang, E-mail: xiaqiang1@yahoo.com.cn [Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, People' s Republic of China (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer miR-199a-5p levels were significantly decreased after cisplatin treatment. Black-Right-Pointing-Pointer Cisplatin treatment induced autophagy activation. Black-Right-Pointing-Pointer Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. -- Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.

  6. Dialysis-Requiring Acute Kidney Injury in Denmark 2000-2012

    DEFF Research Database (Denmark)

    Carlson, Nicholas; Hommel, Kristine; Olesen, Jonas Bjerring

    2016-01-01

    INTRODUCTION: Dialysis-requiring acute kidney injury is a severe illness associated with poor prognosis. However, information pertaining to incidence rates and prevalence of risk factors remains limited in spite of increasing focus. We evaluate time trends of incidence rates and changing patterns...... in prevalence of comorbidities, concurrent medication, and other risk factors in nationwide retrospective cohort study. MATERIALS AND METHODS: All patients with dialysis-requiring acute kidney injury were identified between January 1st 2000 and December 31st 2012. By cross-referencing data from national...... administrative registries, the association of changing patterns in dialysis treatment, comorbidity, concurrent medication and demographics with incidence of dialysis-requiring acute kidney injury was evaluated. RESULTS: A total of 18,561 adult patients with dialysis-requiring AKI were identified between 2000...

  7. Fluid management in acute kidney injury

    DEFF Research Database (Denmark)

    Perner, Anders; Prowle, John; Joannidis, Michael

    2017-01-01

    Acute kidney injury (AKI) and fluids are closely linked through oliguria, which is a marker of the former and a trigger for administration of the latter. Recent progress in this field has challenged the physiological and clinical rational of using oliguria as a trigger for the administration...... of crystalloids and colloids on kidney function and the effect of various resuscitation and de-resuscitation strategies on the course and outcome of AKI....

  8. Reduced expression of bax in small cell lung cancer cells is not sufficient to induce cisplatin-resistance

    Directory of Open Access Journals (Sweden)

    Biagosch J

    2010-10-01

    Full Text Available Abstract Resistance to cisplatin in the course of chemotherapy contributes to the poor prognosis of small cell lung cancer (SCLC. B cell lymphoma-2 is the founding member of a large family of proteins that either promote or inhibit apoptosis. We aimed at investigating if the pro-apoptotic members Bad, Bax, Bim and Bid are involved in cisplatin-resistance. Cisplatin-resistance in the SCLC cell line H1339 was induced by repetitive exposure to cisplatin. Protein expression was quantified by Western Blot and immuno-fluorescence analysis. Protein expression was altered using siRNA interference. Four "cycles" of 0.5 μg/ml cisplatin led to partial cisplatin-resistance in H1339 cells. The expression of Bad, Bim and Bid was comparable in naïve and resistant cells while the expression of Bax was reduced in the resistant clone. But, reducing Bax expression in naïve cells did not lead to altered cisplatin sensitivity neither in H1339 nor in H187 SCLC cells. We conclude that the reduced Bax expression after exposure to cisplatin is not sufficient to induce cis-platin-resistance in SCLC cells.

  9. Pharmacological Protection From Radiation ± Cisplatin-Induced Oral Mucositis

    International Nuclear Information System (INIS)

    Cotrim, Ana P.; Yoshikawa, Masanobu; Sunshine, Abraham N.; Zheng Changyu; Sowers, Anastasia L.; Thetford, Angela D.; Cook, John A.; Mitchell, James B.; Baum, Bruce J.

    2012-01-01

    Purpose: To evaluate if two pharmacological agents, Tempol and D-methionine (D-met), are able to prevent oral mucositis in mice after exposure to ionizing radiation ± cisplatin. Methods and Materials: Female C3H mice, ∼8 weeks old, were irradiated with five fractionated doses ± cisplatin to induce oral mucositis (lingual ulcers). Just before irradiation and chemotherapy, mice were treated, either alone or in combination, with different doses of Tempol (by intraperitoneal [ip] injection or topically, as an oral gel) and D-met (by gavage). Thereafter, mice were sacrificed and tongues were harvested and stained with a solution of Toluidine Blue. Ulcer size and tongue epithelial thickness were measured. Results: Significant lingual ulcers resulted from 5 × 8 Gy radiation fractions, which were enhanced with cisplatin treatment. D-met provided stereospecific partial protection from lingual ulceration after radiation. Tempol, via both routes of administration, provided nearly complete protection from lingual ulceration. D-met plus a suboptimal ip dose of Tempol also provided complete protection. Conclusions: Two fairly simple pharmacological treatments were able to markedly reduce chemoradiation-induced oral mucositis in mice. This proof of concept study suggests that Tempol, alone or in combination with D-met, may be a useful and convenient way to prevent the severe oral mucositis that results from head-and-neck cancer therapy.

  10. Ibuprofen-associated acute kidney injury in dehydrated children with acute gastroenteritis.

    Science.gov (United States)

    Balestracci, Alejandro; Ezquer, Mauricio; Elmo, María Eugenia; Molini, Andrea; Thorel, Claudia; Torrents, Milagros; Toledo, Ismael

    2015-10-01

    Non-steroidal anti-inflammatory drugs (NSAIDs) induce acute kidney injury (AKI) in volume-depleted patients; however the prevalence of this complication is likely underestimated. We assessed the impact of ibuprofen exposure on renal function among dehydrated children with acute gastroenteritis (AGE) to further characterize NSAID-associated AKI. Over a 1-year period dehydrated children with AGE (n = 105) were prospectively enrolled and grouped as cases, presenting with AKI (n = 46) or controls, not presenting with AKI (n = 59). AKI was defined by pediatric RIFLE (pRIFLE) criteria. Among the children enrolled in the study, AKI prevalence was 44 %, and 34 (54 %) of the 63 patients who received ibuprofen developed renal impairment. Relative to the controls, children presenting with AKI were younger (median age 0.66 vs. 1.74 years; p dehydration, ibuprofen exposure remained an independent risk factor for AKI (p dehydrated children with AGE. Drug exposure increased the risk for developing AKI by more than twofold, independent of the magnitude of the dehydration.

  11. [C1q/tumor necrosis factor related protein 6 (CTRP6) is involved in gentamicin-induced acute kidney injury in rats].

    Science.gov (United States)

    Li, Rong; Yang, Xiaoxia; Yu, Yan; Zhou, Meilan; Tian, Xiujuan; Feng, Shidong; Wang, Hanmin

    2016-11-01

    Objective To explore the role of the anti-inflammatory cytokine C1q/tumor necrosis factor related protein 6 (CTRP6) in gentamicin-induced acute kidney injury in rats. Methods SD rats were divided into 5 groups including control group, model group and the other 3 experimental groups. The rats in model group and experimental groups were subcutaneously injected with gentamicin at the dose of 400 mg/(kg.d) for consecutive 2 days to induce acute renal injury. Two days before gentamicin injection, the rats in the 3 experimental groups were given pAd-CTRP6 at the doses of 0.5, 5 and 50 mg/kg, respectively. The serum levels of blood urea nitrogen (BUN) and creatinine (Cr) were respectively assayed with picric acid colorimetry and ultraviolet spectrophotometry; ELISA was used to detect serum CTRP6 content and the production of interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) in the kidney homogenate; Western blotting was performed to detect the expressions of CTRP6, caspase-1 and pyrin domain containing 3 (NLRP3) proteins in the renal tissues of rats. Results Compared with control group, serum BUN and Cr contents increased in the model rats; the secretion of inflammatory factors IL-1β and TNF-α, as well as the expressions of caspase-1 and NLRP3 were also enhanced in the model group. Compared with the model group, serum BUN and Cr contents decreased in the experimental groups; the secretion of IL-1β and TNF-α, as well as the expressions of caspase-1 and NLRP3 were also attenuated in the experimental groups. Moreover, with the increase of the injection dosage of pAd-CTRP6, the suppressive effect was gradually strengthened. Conclusion CTRP6 can attenuate gentamicin-induced acute renal injury in rats in a dose-dependent manner.

  12. Ultrastructural morphology and localisation of cisplatin-induced platinum-DNA adducts in a cisplatin-sensitive and -resistant human small cell lung cancer cell line using electron microscopy

    NARCIS (Netherlands)

    Meijer, C; van Luyn, MJA; Nienhuis, EF; Blom, N; Mulder, NH; de Vries, EGE

    2001-01-01

    Ultrastructural morphology (transmission electron microscopy) and localisation of cisplatin-induced platinum (Pt)-DNA adducts (immunoelectron microscopy) were analysed in the human small cell lung cancer cell line GLC(4) and its 40-fold in vitro acquired cisplatin-resistant subline GLC(4)-CDDP,

  13. Does hypokalemia contribute to acute kidney injury in chronic laxative abuse?

    Directory of Open Access Journals (Sweden)

    Eun-Young Lee

    2015-06-01

    Full Text Available Prolonged hypokalemia from chronic laxative abuse is recognized as the cause of chronic tubulointerstitial disease, known as “hypokalemic nephropathy,” but it is not clear whether it contributes to acute kidney injury (AKI. A 42-year-old woman with a history of chronic kidney disease as a result of chronic laxative abuse from a purging type of anorexia nervosa (AN-P, developed an anuric AKI requiring hemodialysis and a mild AKI 2 months later. Both episodes of AKI involved severe to moderate hypokalemia (1.2 and 2.7 mmol/L, respectively, volume depletion, and mild rhabdomyolysis. The histologic findings of the first AKI revealed the remnants of acute tubular necrosis with advanced chronic tubulointerstitial nephritis and ischemic glomerular injury. Along with these observations, the intertwined relationship among precipitants of recurrent AKI in AN-P is discussed, and then we postulate a contributory role of hypokalemia involved in the pathophysiology of the renal ischemia-induced AKI.

  14. Flavonoids in Kidney Health and Disease

    Directory of Open Access Journals (Sweden)

    Félix Vargas

    2018-04-01

    Full Text Available This review summarizes the latest advances in knowledge on the effects of flavonoids on renal function in health and disease. Flavonoids have antihypertensive, antidiabetic, and antiinflammatory effects, among other therapeutic activities. Many of them also exert renoprotective actions that may be of interest in diseases such as glomerulonephritis, diabetic nephropathy, and chemically-induced kidney insufficiency. They affect several renal factors that promote diuresis and natriuresis, which may contribute to their well-known antihypertensive effect. Flavonoids prevent or attenuate the renal injury associated with arterial hypertension, both by decreasing blood pressure and by acting directly on the renal parenchyma. These outcomes derive from their interference with multiple signaling pathways known to produce renal injury and are independent of their blood pressure-lowering effects. Oral administration of flavonoids prevents or ameliorates adverse effects on the kidney of elevated fructose consumption, high fat diet, and types I and 2 diabetes. These compounds attenuate the hyperglycemia-disrupted renal endothelial barrier function, urinary microalbumin excretion, and glomerular hyperfiltration that results from a reduction of podocyte injury, a determinant factor for albuminuria in diabetic nephropathy. Several flavonoids have shown renal protective effects against many nephrotoxic agents that frequently cause acute kidney injury (AKI or chronic kidney disease (CKD, such as LPS, gentamycin, alcohol, nicotine, lead or cadmium. Flavonoids also improve cisplatin- or methotrexate-induced renal damage, demonstrating important actions in chemotherapy, anticancer and renoprotective effects. A beneficial prophylactic effect of flavonoids has been also observed against AKI induced by surgical procedures such as ischemia/reperfusion (I/R or cardiopulmonary bypass. In several murine models of CKD, impaired kidney function was significantly improved by

  15. X-ray analysis of the effect of the 5-HT3 receptor antagonist granisetron on gastrointestinal motility in rats repeatedly treated with the antitumoral drug cisplatin.

    Science.gov (United States)

    Vera, Gema; López-Pérez, Ana Esther; Martínez-Villaluenga, María; Cabezos, Pablo Antonio; Abalo, Raquel

    2014-08-01

    Cancer chemotherapy is associated with the development of numerous adverse effects, including nausea, emesis and other alterations in gastrointestinal (GI) motility. The administration of 5-HT3 receptor antagonists has provided a clinical advance in the treatment of chemotherapy-induced vomiting but these drugs lose efficacy throughout chronic treatment. The effects of these drugs in experimental animals under chronic administration are not well known. Our aim was to study, using radiographic methods, the effect of the 5-HT3 receptor antagonist granisetron on GI dysmotility induced in the rat by repeated cisplatin administration. First, invasive methods were used to select a dose of granisetron capable of reducing increased stomach weight due to acute cisplatin administration (6 mg/kg, ip). Second, rats received two intraperitoneal (ip) injections once a week for 4 weeks: granisetron (1 mg/kg, ip) or saline and, thirty min later, saline or cisplatin (2 mg/kg, ip). Body weight gain was measured throughout treatment. Radiological techniques were used to determine the acute (after first dose) and chronic (after last dose) effects of cisplatin and/or granisetron on GI motility. Repeated cisplatin-induced weight loss which granisetron did not prevent. Gastric emptying was delayed after the first cisplatin administration. Granisetron completely prevented this effect. After weekly administration, cisplatin-induced gastric dysmotility was enhanced and granisetron was not capable of completely preventing this effect. Granisetron prevents gastric emptying alterations, but its efficacy decreases throughout antineoplastic treatment. This might be due to the enhanced effect of cisplatin.

  16. Rhabdomyolysis-Induced Acute Kidney Injury Under Hypoxia and Deprivation of Food and Water

    Directory of Open Access Journals (Sweden)

    Jingwen Wang

    2013-10-01

    Full Text Available Background: To investigate the renal pathophysiologyin rhabdomyolysis-induced acute kidney injury (AKI in rats under hypoxia and deprivation of food and water (HDFW, thus broadening the knowledge about rhabdomyolysis-induced AKI in massive earthquake. Methods: Male Wistar rats weighing 200-230g were randomized into control, rhabdomyolysis (R, HDFW and rhabdomyolysis in combination with HDFW (R/HDFW group. Experimental rhabdomyolysis rat model was established through clamping hind limb muscles, HDFW model rats were kept in 10% hypoxic chamber unavailable to food and water. At 1, 3, 5, 7, 9, 11d after treatment, serum creatinine (Scr level, renal index, renal structural changes and cell apoptosis were analyzed. Results: After R, HDFW, R/HDFW treatment, the animals showed significantly higher Scr levels than the control group. Renal index in R and R/HDFW groups elevated remarkably compared with that in control and HDFW group. The results of histopathology, ultra-structure and apoptosis assay suggested that rhabdomyolysis caused renal tubular injury, HDFW treatment resulted in renal vascular dilation, tissue congestion and tubular cell damage. In addition, more severe renal lesion appeared in R/HDFW. Conclusions: We conclude that the association of experimental rhabdomyolysis with HDFW results in a different functional and histological pattern. The rhabdomyolysis-HDFW combination causes more severe renal injury.

  17. Cisplatin in cancer therapy: molecular mechanisms of action

    Science.gov (United States)

    Dasari, Shaloam; Tchounwou, Paul Bernard

    2014-01-01

    Cisplatin, cisplatinum, or cis-diamminedichloroplatinum (II), is a well-known chemotherapeutic drug. It has been used for treatment of numerous human cancers including bladder, head and neck, lung, ovarian, and testicular cancers. It is effective against various types of cancers, including carcinomas, germ cell tumors, lymphomas, and sarcomas. Its mode of action has been linked to its ability to crosslink with the purine bases on the DNA; interfering with DNA repair mechanisms, causing DNA damage, and subsequently inducing apoptosis in cancer cells. However, because of drug resistance and numerous undesirable side effects such as severe kidney problems, allergic reactions, decrease immunity to infections, gastrointestinal disorders, hemorrhage, and hearing loss especially in younger patients, other platinum-containing anti-cancer drugs such as carboplatin, oxaliplatin and others, have also been used. Furthermore, combination therapies of cisplatin with other drugs have been highly considered to overcome drug-resistance and reduce toxicity. This comprehensive review highlights the physicochemical properties of cisplatin and related platinum-based drugs, and discusses its uses (either alone or in combination with other drugs) for the treatment of various human cancers. A special attention is given to its molecular mechanisms of action, and its undesirable side effects. PMID:25058905

  18. The optimal definition of contrast-induced acute kidney injury for prediction of inpatient mortality in patients undergoing percutaneous coronary interventions.

    Science.gov (United States)

    Parsh, Jessica; Seth, Milan; Briguori, Carlo; Grossman, Paul; Solomon, Richard; Gurm, Hitinder S

    2016-05-01

    It is unknown which definition of contrast-induced acute kidney injury (CI-AKI) in the setting of percutaneous coronary interventions is best associated with inpatient mortality and whether this association is stable across patients with various preprocedural serum creatinine (SCr) values. We applied logistic regression models to multiple CI-AKI definitions used by the Kidney Disease Improving Global Outcomes guidelines and previously published studies to examine the impact of preprocedural SCr on a candidate definition's correlation with the adverse outcome of inpatient mortality. We used likelihood ratio tests to examine candidate definitions and identify those where association with inpatient mortality remained constant regardless of preprocedural SCr. These definitions were assessed for specificity, sensitivity, and positive and negative predictive values to identify an optimal definition. Our study cohort included 119,554 patients who underwent percutaneous coronary intervention in Michigan between 2010 and 2014. Most commonly used definitions were not associated with inpatient mortality in a constant fashion across various preprocedural SCr values. Of the 266 candidate definitions examined, 16 definition's association with inpatient mortality was not significantly altered by preprocedural SCr. Contrast-induced acute kidney injury defined as an absolute increase of SCr ≥0.3 mg/dL and a relative SCr increase ≥50% was selected as the optimal candidate using Perkins and Shisterman decision theoretic optimality criteria and was highly predictive of and specific for inpatient mortality. We identified the optimal definition for CI-AKI to be an absolute increase in SCr ≥0.3 mg/dL and a relative SCr increase ≥50%. Further work is needed to validate this definition in independent studies and to establish its utility for clinical trials and quality improvement efforts. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Synthetic marijuana and acute kidney injury: an unforeseen association.

    Science.gov (United States)

    Kazory, Amir; Aiyer, Ravi

    2013-06-01

    Synthetic cannabinoids (SCs) have emerged as drugs of abuse with increasing popularity among young adults. The potential renal complication related to the abuse of SC was not recognized until recently. Here, we present a case of severe acute kidney injury (AKI) that developed after inhalation of SC in an otherwise healthy young patient. A kidney biopsy revealed severe acute tubular necrosis, and supportive management resulted in the recovery of the kidney function. Herein, we briefly summarize the only two previous reports (a total of 21 cases) on the association between SC abuse and renal dysfunction and identify the common aspects in all observations.

  20. Rescue therapy with Tanshinone IIA hinders transition of acute kidney injury to chronic kidney disease via targeting GSK3β

    Science.gov (United States)

    Jiang, Chunming; Zhu, Wei; Yan, Xiang; Shao, Qiuyuan; Xu, Biao; Zhang, Miao; Gong, Rujun

    2016-01-01

    Acute kidney injury (AKI) remains challenging for clinical practice and poses a risk of developing progressive chronic kidney disease (CKD) with no definitive treatment available yet. Tanshinone IIA, an active ingredient of Chinese herbal Salvia miltiorrhiza, has been widely used in Asia for the remarkable organoprotective activities. Its effect on established AKI, however, remains unknown. In mice with folic acid-induced AKI, delayed treatment with Tanshinone IIA, commenced early or late after injury, diminished renal expression of kidney injury markers, reduced apoptosis and improved kidney dysfunction, concomitant with mitigated histologic signs of AKI to CKD transition, including interstitial fibrosis and tubular atrophy, and with an ameliorated inflammatory infiltration in tubulointerstitium and a favored M2-skewed macrophage polarization. Mechanistically, Tanshinone IIA blunted glycogen synthase kinase (GSK)3β overactivity and hyperactivation of its downstream mitogen-activated protein kinases that are centrally implicated in renal fibrogenesis and inflammation. Inhibition of GSK3β is likely a key mechanism mediating the therapeutic activity of Tanshinone IIA, because sodium nitroprusside, a GSK3β activator, largely offset its renoprotective effect. In confirmatory studies, rescue treatment with Tanshinone IIA likewise ameliorated ischemia/reperfusion-induced kidney destruction in mice. Our data suggest that Tanshinone IIA represents a valuable treatment that improves post-AKI kidney salvage via targeting GSK3β. PMID:27857162

  1. Acute fibrinous and organising pneumonia: a rare histopathological variant of chemotherapy-induced lung injury.

    Science.gov (United States)

    Gupta, Arjun; Sen, Shiraj; Naina, Harris

    2016-04-06

    Bleomycin-induced lung injury is the most common chemotherapy-associated lung disease, and is linked with several histopathological patterns. Acute fibrinous and organising pneumonia (AFOP) is a relatively new and rare histological pattern of diffuse lung injury. We report the first known case of bleomycin-induced AFOP. A 36-year-old man with metastatic testicular cancer received three cycles of bleomycin, etoposide and cisplatin, before being transitioned to paclitaxel, ifosfamide and cisplatin. He subsequently presented with exertional dyspnoea, cough and pleuritic chest pain. CT of the chest demonstrated bilateral ground glass opacities with peribronchovascular distribution and pulmonary function tests demonstrated a restrictive pattern of lung disease with impaired diffusion. Transbronchial biopsy revealed intra-alveolar fibrin deposits with organising pneumonia, consisting of intraluminal loose connective tissue consistent with AFOP. The patient received high-dose corticosteroids with symptomatic and radiographic improvement. AFOP should be recognised as a histopathological variant of bleomycin-induced lung injury. 2016 BMJ Publishing Group Ltd.

  2. Squalene Selectively Protects Mouse Bone Marrow Progenitors Against Cisplatin and Carboplatin-Induced Cytotoxicity In Vivo Without Protecting Tumor Growth

    Directory of Open Access Journals (Sweden)

    Bikul Das

    2008-10-01

    Full Text Available Squalene, an isoprenoid antioxidant is a potential cytoprotective agent against chemotherapy-induced toxicity. We have previously published that squalene protects light-density bone marrow cells against cis-diamminedichloroplatinum( II (cisplatin-induced toxicity without protecting tumor cells in vitro. Here, we developed an in vivo mouse model of cisplatin and cis-diammine (cyclobutane-1,1-dicarboxylato platinum(II (carboplatin-induced toxicity to further investigate squalene-mediated LD-BM cytoprotection including the molecular mechanism behind selective cytoprotection. We found that squalene significantly reduced the body weight loss of cisplatin and carboplatin-treated mice. Light-density bone marrow cells from squalene-treated mice exhibited improved formation of hematopoietic colonies (colony-forming unit-granulocyte macrophage. Furthermore, squalene also protected mesenchymal stem cell colonies (colony-forming unit-fibroblast from cisplatin and carboplatin-induced toxicity. Squalene-induced protection was associated with decreased reactive oxygen species and increased levels of glutathione and glutathione peroxidase/glutathione-S-transferase. Importantly, squalene did not protect neuroblastoma, small cell carcinoma, or medulloblastoma xenografts against cisplatin-induced toxicity. These results suggest that squalene is a potential candidate for future development as a cytoprotective agent against chemotherapeutic toxicity.

  3. Differences in immunolocalization of Kim-1, RPA-1, and RPA-2 in kidneys of gentamicin-, cisplatin-, and valproic acid-treated rats: potential role of iNOS and nitrotyrosine.

    Science.gov (United States)

    Zhang, Jun; Goering, Peter L; Espandiari, Parvaneh; Shaw, Martin; Bonventre, Joseph V; Vaidya, Vishal S; Brown, Ronald P; Keenan, Joe; Kilty, Cormac G; Sadrieh, Nakissa; Hanig, Joseph P

    2009-08-01

    The present study compared the immunolocalization of Kim-1, renal papillary antigen (RPA)-1, and RPA-2 with that of inducible nitric oxide synthase (iNOS) and nitrotyrosine in kidneys of gentamicin sulfate (Gen)- and cisplatin (Cis)-treated rats. The specificity of acute kidney injury (AKI) biomarkers, iNOS, and nitrotyrosine was evaluated by dosing rats with valproic acid (VPA). Sprague-Dawley (SD) rats were injected subcutaneously (sc) with 100 mg/kg/day of Gen for six or fourteen days; a single intraperitoneal (ip) dose of 1, 3, or 6 mg/kg of Cis; or 650 mg/kg/day of VPA (ip) for four days. In Gen-treated rats, Kim-1 was expressed in the epithelial cells, mainly in the S1/S2 segments but less so in the S3 segment, and RPA-1 was increased in the epithelial cells of collecting ducts (CD) in the cortex. Spatial expression of iNOS or nitrotyrosine with Kim-1 or RPA-1 was detected. In Cis-treated rats, Kim-1 was expressed only in the S3 segment cells, and RPA-1 and RPA-2 were increased in the epithelial cells of medullary CD or medullary loop of Henle (LH), respectively. Spatial expression of iNOS or nitrotyrosine with RPA-1 or RPA-2 was also identified. These findings suggest that peroxynitrite formation may be involved in the pathogenesis of Gen and Cis nephrotoxicity and that Kim-1, RPA-1, and RPA-2 have the potential to serve as site-specific biomarkers for Gen or Cis AKI.

  4. Evaluation of the protective effect of agmatine against cisplatin nephrotoxicity with 99mTc-DMSA renal scintigraphy and cystatin-C.

    Science.gov (United States)

    Salihoglu, Yavuz Sami; Elri, Tarik; Gulle, Kanat; Can, Murat; Aras, Mustafa; Ozacmak, Hale Sayan; Cabuk, Mehmet

    2016-10-01

    The aim of the current study was to investigate whether agmatine (AGM) has a protective effect against cisplatin-induced nephrotoxicity. Thirty-two rats were randomly divided into four groups: (1) Saline (control); (2) Cisplatin (CDDP; 7.5 mg/kg intraperitoneally); (3) Agmatine (AGM; 10 mg/kg intraperitoneally); (4) Cisplatin plus agmatine (CDDP + AGM). Agmatine was given before and two consecutive days after cisplatin injection. All the animals underwent renal scintigraphy with 99mTc-DMSA. The levels of serum creatinine, cystatin C, and blood urea nitrogen (BUN) were measured in addition to examination of the tissue samples with light microscopy. Acute renal injury was assessed with biochemical analyses, scintigraphic imaging, and histopathological evaluation. In the cisplatin group, the levels of BUN, creatinine, and cystatin C were significantly higher than that of the controls. Histopathological examination showed remarkable damage of tubular and glomerular structures. Additionally, cisplatin caused markedly decreased renal 99mTc-DMSA uptake. AGM administration improved renal functions. Serum creatinine, BUN, and cystatin C levels had a tendency to normalize and, scintigraphic and histopathological findings showed significantly less evidence of renal toxicity than those observed in animals receiving cisplatin alone. Our data indicate that AGM has a protective effect against cisplatin-induced nephrotoxicity. Therefore, it may improve the therapeutic index of cisplatin. In addition, the early renal damage induced by cisplatin and protective effects of AGM against cisplatin nephrotoxicity was accurately demonstrated with 99mTc-DMSA renal scintigraphy.

  5. The Preinterventional Cystatin-Creatinine-Ratio: A Prognostic Marker for Contrast Medium-Induced Acute Kidney Injury and Long-Term All-Cause Mortality.

    Science.gov (United States)

    Lüders, Florian; Meyborg, Matthias; Malyar, Nasser; Reinecke, Holger

    2015-01-01

    Contrast medium-induced acute kidney injury (CI-AKI) is an important iatrogenic complication following the injection of iodinated contrast media. The level of serum creatinine (SCr) is the currently accepted 'gold standard' to diagnose CI-AKI. Cystatin C (CyC) has been detected as a more sensitive marker for renal dysfunction. Both have their limitations. The role of the preinterventional CyC-SCr ratio for evaluating the risk for CI-AKI and long-term all-cause mortality was retrospectively analyzed in the prospective single-center 'Dialysis-versus-Diuresis trial'. CI-AKI was defined and staged according to the Acute Kidney Injury Network classification. Three hundred and seventy-three patients were included (average age 67.4 ± 10.2 years, 16.4% women, 29.2% with diabetes mellitus, mean baseline glomerular filtration rate 56.3 ± 20.2 ml/min/1.73 m(2) [as estimated by Chronic Kidney Disease Epidemiology Collaboration Serum Creatinine Cystatin C equation], 5.1% ejection fraction high significant association between preinterventional CyC-SCr ratio and long-term all-cause mortality (mean follow-up 649 days, hazards ratio 4.096, 95% CI 1.625-10.329, p = 0.003). The preinterventional CyC-SCr ratio is independently associated with CI-AKI and highly significant associated with long-term mortality after heart catheterization. © 2015 S. Karger AG, Basel.

  6. miR-203 inhibits cell proliferation and promotes cisplatin induced cell death in tongue squamous cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jiong; Lin, Yao [Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055 (China); Fan, Li [Department of Pharmaceutical Analysis, School of Pharmacy, The Fourth Military Medical University, Xi' an, Shaanxi, 710032 (China); Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, 510055 (China); Kuang, Wei [Department of Stomatology, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou, 510010 (China); Zheng, Liwei [State Key Laboratory of Oral Diseases, Sichuan University, Wuhou District, Chengdu, 610041 (China); Wu, Jiahua [Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055 (China); Shang, Peng [Patient-specific Orthopedic Technology Research Center in GuangDong Research Centre for Neural Engineering, 1068 Xueyuan Boulevard, University Town of Shenzhen, Xili, Nanshan, Shenzhen, 518055 (China); Wang, Qiaofeng [Department of Pharmaceutical Chemistry, School of Pharmacy, The Fourth Military Medical University, Xi' an, Shanxi, 710032 (China); Tan, Jiali, E-mail: jasminenov@163.com [Guangdong Provincial Key Laboratory of Stomatology, Department of Orthodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055 (China)

    2016-04-29

    Oral squamous cell carcinoma (OSCC) is one of the most common types of the head and neck cancer. Chemo resistance of OSCC has been identified as a substantial therapeutic hurdle. In this study, we analyzed the role of miR-203 in the OSCC and its effects on cisplatin-induced cell death in an OSCC cell line, Tca8113. There was a significant decrease of miR-203 expression in OSCC samples, compared with the adjacent normal, non-cancerous tissue. After 3 days cisplatin treatment, the survived Tca8113 cells had a lower expression of miR-203 than that in the untreated control group. In contrast, PIK3CA showed an inverse expression in cancer and cisplatin survived Tca8113 cells. Transfection of Tca8113 cells with miR-203 mimics greatly reduced PIK3CA expression and Akt activation. Furthermore, miR-203 repressed PIK3CA expression through targeting the 3′UTR. Restoration of miR-203 not only suppressed cell proliferation, but also sensitized cells to cisplatin induced cell apoptosis. This effect was absent in cells that were simultaneously treated with PIK3CA RNAi. In summary, these findings suggest miR-203 plays an important role in cisplatin resistance in OSCC, and furthermore delivery of miR-203 analogs may serve as an adjuvant therapy for OSCC. - Highlights: • Much lower miR-203 expression in cisplatin resistant Tca8113 cells is discovered. • Delivery of miR-203 can sensitize the Tca8113 cells to cisplatin induced cell death. • MiR-203 can downregulate PIK3CA through the 3′UTR. • The effects of miR-203 on cisplatin sensitivity is mainly through PIK3CA pathway.

  7. Dynamic computed tomography (CT) in the rat kidney and application to acute renal failure models

    International Nuclear Information System (INIS)

    Ishikawa, Isao; Saito, Tadashi; Ishii, Hirofumi; Bansho, Junichi; Koyama, Yukinori; Tobita, Akira

    1995-01-01

    Renal dynamic CT scanning is suitable for determining the excretion of contrast medium in the cortex and medulla of the kidney, which is valuable for understanding the pathogenesis of disease processes in various conditions. This form of scanning would be convenient for use, if a method of application to the rat kidney were available. Therefore, we developed a method of applying renal dynamic CT to rats and evaluated the cortical and medullary curves, e.g., the corticomedullary junction time which is correlated to creatinine clearance, in various rat models of acute renal failure. The rat was placed in a 10deg oblique position and a bilateral hilar slice was obtained before and 5, 10, 15, 20, 25, 30, 40, 50, 60, 80, 100, 120, 140, 160 and 180 sec after administering 0.5 ml of contrast medium using Somatom DR. The width of the slice was 4 mm and the scan time was 3 sec. The corticomedullary junction time in normal rats was 23.0±10.5 sec, the peak value of the cortical curve was 286.3±76.7 Hounsfield Unit (HU) and the peak value of the medullary curve was 390.1±66.2 HU. Corticomedullary junction time after exposure of the kidney was prolonged compared to that of the unexposed kidney. In rats with acute renal failure, the excretion pattern of contrast medium was similar in both the glycerol- and HgCl2-induced acute renal failure models. The peak values of the cortical curve were maintained three hours after a clamp was placed at the hilar region of the kidney for one hour, and the peak values of the medullary curve were maintained during the administration of 10μg/kg/min of angiotensin II. Dynamic CT curves in the acute renal failure models examined were slightly different from those in human acute renal failure. These results suggest that rats do not provide an ideal model for human acute renal failure. However, the application of dynamic CT to the rat kidney models was valuable for estimating the pathogenesis of various human kidney diseases. (author)

  8. Cisplatin-induced Casepase-3 activation in different tumor cells

    Science.gov (United States)

    Shi, Hua; Li, Xiao; Su, Ting; Zhang, Yu-Hai

    2008-12-01

    Apoptosis plays an essential role in normal organism development which is one of the main types of programmed cell death to help tissues maintain homeostasis. Defective apoptosis can result in cell accumulation and therefore effects on tumor pathogenesis, progression and therapy resistance. A family of proteins, known as caspases, is typically activated in the early stages of apoptosis. Therefore, studying the kinetics of activation of caspases induced by antitumor drugs can contribute to antitumor drug discovery and explanation of the molecular mechanisms. This paper detected the Caspase-3 activity induced by cisplatin in human adenoid cystic carcinoma cell line (ACC-M), human hepatocellular liver carcinoma cell line (HepG2) and human epithelial carcinoma cell line (Hela) with stably expressing ECFP-DEVDDsRed (CD3) probe, a fluorescent probe consisting of Enhanced Cyan Fluorescent Protein (ECFP), red fluorescent protein (DsRed) and a linker with a recognition site of Caspase-3, by using the capillary electrophoresis (CE) and fluorescence resonance energy transfer (FRET) imaging system. Under the same concentration of cisplatin, ACC-M cells responded the most rapidly, and then HepG2 cells and Hela cells, respectively, in the early 30 hours. Later, HepG2 cells represented acceleration in the Caspase-3 activation speed and reached full activation the earliest comparing to other two cell types. The results demonstrated that ACC-M cell is more sensitive than the other two cell types under the treatment of cisplatin.

  9. Edaravone alleviates cisplatin-induced neurobehavioral deficits via modulation of oxidative stress and inflammatory mediators in the rat hippocampus.

    Science.gov (United States)

    Jangra, Ashok; Kwatra, Mohit; Singh, Tavleen; Pant, Rajat; Kushwah, Pawan; Ahmed, Sahabuddin; Dwivedi, Durgesh; Saroha, Babita; Lahkar, Mangala

    2016-11-15

    Cisplatin is a chemotherapeutic agent used in the treatment of malignant tumors. A major clinical limitation of cisplatin is its potential toxic effects, including neurotoxicity. Edaravone, a potent free radical scavenger, has been reported to have the neuroprotective effect against neurological deficits. The aim of the present study was to determine the neuroprotective effect of edaravone against cisplatin-induced behavioral and biochemical anomalies in male Wistar rats. Our results showed that cisplatin (5mg/kg/week, i.p.) administration for seven weeks caused marked cognitive deficits and motor incoordination in rats. This was accompanied by oxido-nitrosative stress, neuroinflammation, NF-κB activation and down-regulation of Nrf2/HO-1 gene expression level in the hippocampus. Edaravone (10mg/kg/week, i.p.) treatment for seven weeks inhibited the aforementioned neurobehavioral and neurochemical deficits. Furthermore, edaravone was found to up-regulate the gene expression level of Nrf2/HO-1 and prevented the cisplatin-induced NF-κB activation. These findings demonstrated that oxido-nitrosative stress and inflammatory signaling mediators play a key role in the development of cisplatin-induced neurobehavioral deficits which were prevented by edaravone treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Anti-emetic mechanisms of Zingiber officinale against cisplatin induced emesis in the pigeon; behavioral and neurochemical correlates.

    Science.gov (United States)

    Ullah, Ihsan; Subhan, Fazal; Ayaz, Muhammad; Shah, Rehmat; Ali, Gowhar; Haq, Ikram Ul; Ullah, Sami

    2015-02-26

    Zingiber officinale (ZO, family Zingiberaceae) has been reported for its antiemetic activity against cancer chemotherapy induced emesis in animal models and in clinics. Current study was designed to investigate ZO for potential usefulness against cisplatin induced vomiting in pigeon and its effects on central and peripheral neurotransmitters involved in the act of vomiting. Zingiber officinale acetone fraction (ZO-ActFr) was investigated for attenuation of emesis induced by cisplatin in healthy pigeons. Neurotransmitters DA, 5HT and their metabolites DOPAC, HVA and 5HIAA were analyzed using High Performance Liquid Chromatography system coupled with electrochemical detector in area postrema, brain stem and intestine. Antiemetic effect of ZO-ActFr was correlated with central and intestinal neurotransmitters levels in pigeon. Cisplatin (7 mg/kg i.v.) induced emesis without lethality upto the observation period. ZO-ActFr (25, 50 & 100 mg/kg) attenuated cisplatin induced emesis ~ 44.18%, 58.13% (P < 0.05) and 27.9%, respectively; the reference drug, metoclopramide (MCP; 30 mg/kg), produced ~ 48.83% reduction (P < 0.05). ZO-ActFr reduced (P < 0.05 - 0.001) 5-hydroxytryptamine (5HT) concentration in the area postrema, brain stem and intestine at 3(rd) hour of cisplatin administration, while at the 18(th) hour ZO treatments attenuated the dopamine upsurge (P < 0.001) caused by cisplatin in the area postrema and 5HT concentration (P < 0.01 - 0.001) in the brain stem and intestine. ZO treatments alone did not altered the basal neurotransmitters and their metabolites in the brain areas and intestine. The behavioral study verify the antiemetic profile of ZO against cisplatin induced emesis in the pigeon, where central and peripheral neural evidences advocate the involvement of serotonergic mechanism at initial time point (3(rd) hr), while the later time point (18(th) hr) is associated with serotonergic and dopaminergic component in the mediation

  11. Hyperin protects against LPS-induced acute kidney injury by inhibiting TLR4 and NLRP3 signaling pathways

    Science.gov (United States)

    Chunzhi, Gong; Zunfeng, Li; Chengwei, Qin; Xiangmei, Bu; Jingui, Yu

    2016-01-01

    Hyperin is a flavonoid compound derived from Ericaceae, Guttifera, and Celastraceae that has been shown to have various biological effects, such as anti-inflammatory and anti-oxidant effects. However, there is no evidence to show the protective effects of hyperin on lipopolysaccharide (LPS)-induced acute kidney injury (AKI). Therefore, we investigated the protective effects and mechanism of hyperin on LPS-induced AKI in mice. The levels of TNF-α, IL-6, and IL-1β were tested by ELISA. The effects of hyperin on blood urea nitrogen (BUN) and serum creatinine were also detected. In addition, the expression of TLR4, NF-κB, and NLRP3 were detected by western blot analysis. The results showed that hyperin significantly inhibited LPS-induced TNF-α, IL-6, and IL-1β production. The levels of BUN and creatinine were also suppressed by hyperin. Furthermore, LPS-induced TLR4 expression and NF-κB activation were also inhibited by hyperin. In addition, treatment of hyperin dose-dependently inhibited LPS-induced NLRP3 signaling pathway. In conclusion, the results showed that hyperin inhibited LPS-induced inflammatory response by inhibiting TLR4 and NLRP3 signaling pathways. Hyperin has potential application prospects in the treatment of sepsis-induced AKI. PMID:27813491

  12. Milk fat globule-epidermal growth factor-factor VIII attenuates sepsis-induced acute kidney injury.

    Science.gov (United States)

    Cen, Cindy; Aziz, Monowar; Yang, Weng-Lang; Zhou, Mian; Nicastro, Jeffrey M; Coppa, Gene F; Wang, Ping

    2017-06-01

    Acute kidney injury (AKI) is most commonly caused by sepsis in critically ill patients, and it is associated with high morbidity and mortality. The pathophysiology of sepsis-induced AKI is generally accepted to include direct inflammatory injury, endothelial cell dysfunction, and apoptosis. Milk fat globule-epidermal growth factor-factor VIII (MFG-E8) is a secretory glycoprotein with a known role in the enhancement of apoptotic cell clearance and regulation of inflammation. We hypothesize that administration of recombinant mouse MFG-E8 (rmMFG-E8) can protect mice from kidney injuries caused by sepsis. Sepsis was induced in 8-wk-old male C57BL/6 mice by cecal ligation and puncture (CLP). rmMFG-E8 or phosphate-buffered saline (vehicle) was injected intravenously at a dosage of 20 μg/kg body weight at time of CLP (n = 5-8 mice per group). After 20 h, serum and renal tissue were harvested for various analyses. The renal injury markers blood urea nitrogen (BUN) and creatinine were determined by enzymatic and chemical reactions, respectively. The gene expression analysis was carried out by real-time quantitative polymerase chain reaction. At 20 h after CLP, serum levels of BUN and creatinine were both significantly increased in the vehicle group compared with the sham group, whereas the mice treated with rmMFG-E8 had a significant reduction in BUN and creatinine levels by 28% and 24.1%, respectively (BUN: 197.7 ± 23.6 versus 142.3 ± 20.7 mg/dL; creatinine: 0.83 ± 0.12 versus 0.63 ± 0.06 mg/dL; P sepsis through inhibiting the production of proinflammatory cytokines and chemokine, as well as through the activation of endothelial cells. Thus, MFG-E8 may have a therapeutic potential for treating AKI induced by sepsis. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Hepatitis B virus enhances cisplatin-induced hepatotoxicity via a mechanism involving suppression of glucose-regulated protein of 78 Kda.

    Science.gov (United States)

    Zhang, Xiaoxue; Zhang, Rui; Yang, HuiOu; Xiang, Qian; Jiang, Qing; He, Qi; Zhang, Ting; Chen, Chen; Zhu, Huifen; Wang, Qiang; Ning, Qin; Li, Yiwu; Lei, Ping; Shen, Guanxin

    2016-07-25

    Cisplatin is a classical platinum-based chemotherapeutic drug used in the treatment of many cancer types, including hepatocellular carcinoma (HCC). The application of cisplatin is significantly limited by its toxicity, which may be affected by various biological factors. Persistence of Hepatitis B virus (HBV) infection leads to HCC development and may be associated with higher incidence of severe hepatitis during chemotherapy. However, whether HBV alters the susceptibility of hepatocytes to cisplatin remains poorly understood. Here, we demonstrate that HBV transfection enhanced cisplatin-induced hepatotoxicity via a mechanism involving suppression of glucose-regulated protein of 78 KDa (Grp78), a major stress-induced chaperone that localizes to the endoplasmic reticulum. Silencing Grp78 gene increased the susceptibility of HepG2 to cisplatin by activating caspase-3. Grp78 expression was down-regulated by HBV infection both in vitro and in liver tissues of patients. We compared the cisplatin sensitivity of hepatoma cells either expressing (HepG2.2.15 cells) or not expressing the entire Hepatitis B Virus genome (HepG2). HepG2.2.15 cells showed increased sensitivity to cisplatin and a higher apoptosis rate. Overexpression of Grp78 counteracted the increase of sensitivity of HepG2.215 cells to cisplatin. Furthermore, we found that HBV disrupted Grp78 synthesis in response to cisplatin stimulation, which may trigger severe and prolonged endoplasmic reticulum (ER) stress that can induce cellular apoptosis. Our findings provide new information into the effect of HBV in the modulation of Grp78 expression, and, consequently on cisplatin-induced hepatotoxicity during viral infection. Copyright © 2016. Published by Elsevier Ireland Ltd.

  14. Acute kidney injury in pediatric patients: diagnosis and management in the emergency department [digest].

    Science.gov (United States)

    Mohrer, Daniel; Langhan, Melissa; Chaudhari, Pradip

    2017-05-22

    Pediatric acute kidney injury is a condition that is underdiagnosed among children seen in the emergency department, and it has been associated with significant morbidity and mortality, including increased risk for chronic kidney disease. The most common etiologies in pediatric patients are now known to be due to hypovolemia, sepsis, shock, and cardiac dysfunction. This issue compares 3 classification systems for the diagnosis and staging of acute kidney injury and reviews the etiologies that lead to kidney injury in children. The management of pediatric acute kidney injury focuses on identifying patients at high risk, monitoring intravascular volume status, avoiding nephrotoxic medication exposure, and involving a pediatric nephrologist once acute kidney injury is diagnosed. [Points & Pearls is a digest of Pediatric Emergency Medicine Practice].

  15. Mechanism of gastrointestinal abnormal motor activity induced by cisplatin in conscious dogs.

    Science.gov (United States)

    Ando, Hiroyuki; Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Ogata, Kyoichi; Tabe, Yuichi; Aihara, Ryuusuke; Nakabayashi, Toshihiro; Asao, Takayuki; Kuwano, Hiroyuki

    2014-11-14

    To investigate whether 5-hydroxytryptamine (serotonin; 5-HT) is involved in mediating abnormal motor activity in dogs after cisplatin administration. After the dogs had been given a 2-wk recovery period, all of them were administered cisplatin, and the motor activity was recorded using strain gauge force transducers. Blood and intestinal fluid samples were collected to measure 5-HT for 24 h. To determine whether 5-HT in plasma or that in intestinal fluids is more closely related to abnormal motor activity we injected 5-HT into the bloodstream and the intestinal tract of the dogs. Cisplatin given intravenously produced abnormal motor activity that lasted up to 5 h. From 3 to 4 h after cisplatin administration, normal intact dogs exhibited retropropagation of motor activity accompanied by emesis. The concentration of 5-HT in plasma reached the peak at 4 h, and that in intestinal fluids reached the peak at 3 h. In normal intact dogs with resection of the vagus nerve that were administered kytril, cisplatin given intravenously did not produce abnormal motor activity. Intestinal serotonin administration did not produce abnormal motor activity, but intravenous serotonin administration did. After the intravenous administration of cisplatin, abnormal motor activity was produced in the involved vagus nerve and in the involved serotonergic neurons via another pathway. This study was the first to determine the relationship between 5-HT and emesis-induced motor activity.

  16. Radiochemotherapy including cisplatin alone versus cisplatin + 5-fluorouracil for locally advanced unresectable stage IV squamous cell carcinoma of the head and neck

    Energy Technology Data Exchange (ETDEWEB)

    Tribius, Silke; Kilic, Yasemin [Dept. of Radiation Oncology, Univ. Medical Center Hamburg-Eppendorf, Hamburg (Germany); Kronemann, Stefanie [Dept. of Radiation Oncology, Univ. Hospital Schleswig-Holstein, Campus Luebeck (Germany); Schroeder, Ursula [Dept. of Head and Neck Surgery, Univ. Hospital Schleswig-Holstein, Campus Luebeck (Germany); Hakim, Samer [Dept. of Oro-Maxillo-Facial Surgery, Univ. Hospital Schleswig-Holstein, Campus Luebeck (Germany); Schild, Steven E. [Dept. of Radiation Oncology, Mayo Clinic, Scottsdale, AZ (United States); Rades, Dirk [Dept. of Radiation Oncology, Univ. Medical Center Hamburg-Eppendorf, Hamburg (Germany); Dept. of Radiation Oncology, Univ. Hospital Schleswig-Holstein, Campus Luebeck (Germany)

    2009-10-15

    Background and purpose: the optimal radiochemotherapy regimen for advanced head-and-neck cancer is still debated. This nonrandomized study compares two cisplatin-based radiochemotherapy regimens in 128 patients with locally advanced unresectable stage IV squamous cell carcinoma of the head and neck (SCCHN). Patients and methods: concurrent chemotherapy consisted of either two courses cisplatin (20 mg/m{sup 2}/d1-5 + 29-33; n = 54) or two courses cisplatin (20 mg/m{sup 2}/d1-5 + 29-33) + 5-fluorouracil (5-FU; 600 mg/m{sup 2}/d1-5 + 29-33; n = 74). Results: at least one grade 3 toxicity occurred in 25 of 54 patients (46%) receiving cisplatin alone and in 52 of 74 patients (70%) receiving cisplatin + 5-FU. The latter regimen was particularly associated with increased rates of mucositis (p = 0.027) and acute skin toxicity (p = 0.001). Seven of 54 (13%) and 20 of 74 patients (27%) received only one chemotherapy course due to treatment-related acute toxicity. Late toxicity in terms of xerostomia, neck fibrosis, skin toxicity, and lymphedema was not significantly different. The 2-year locoregional control rates were 67% after cisplatin alone and 52% after cisplatin + 5-FU (p = 0.35). The metastases-free survival rates were 79% and 69%, respectively (p = 0.65), and the overall survival rates 70% and 51%, respectively (p = 0.10). On multivariate analysis, outcome was significantly associated with performance status, T-category, N-category, hemoglobin level prior to radiotherapy, and radiotherapy break > 1 week. Conclusion: two courses of fractionated cisplatin (20 mg/m{sup 2}/day) alone appear preferable, as this regimen resulted in similar outcome and late toxicity as two courses of cisplatin + 5-FU, but in significantly less acute toxicity. (orig.)

  17. Renal sarcoidosis presenting as acute kidney injury with granulomatous interstitial nephritis and vasculitis.

    Science.gov (United States)

    Agrawal, Varun; Crisi, Giovanna M; D'Agati, Vivette D; Freda, Benjamin J

    2012-02-01

    Among the various renal manifestations of sarcoidosis, granulomatous inflammation confined to the tubulointerstitial compartment is the most commonly reported finding. We present the case of a 66-year-old man with acute kidney injury, hypercalcemia, mild restrictive pulmonary disease, and neurologic signs of parietal lobe dysfunction. Kidney biopsy showed diffuse interstitial inflammation with noncaseating granulomas that exhibited the unusual feature of infiltrating the walls of small arteries with destruction of the elastic lamina, consistent with granulomatous vasculitis. The findings of granulomatous interstitial nephritis on kidney biopsy, hypercalcemia, and possible cerebral and pulmonary involvement in the absence of other infectious, drug-induced, or autoimmune causes of granulomatous disease established the diagnosis of sarcoidosis. Pulse methylprednisolone followed by maintenance prednisone therapy led to improvement in kidney function, hypercalcemia, and neurologic symptoms. Vasculocentric granulomatous interstitial nephritis with granulomatous vasculitis is a rare and under-recognized manifestation of renal sarcoidosis. Copyright © 2012 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  18. Bone Marrow-Derived Mesenchymal Stem Cells Repaired but Did Not Prevent Gentamicin-Induced Acute Kidney Injury through Paracrine Effects in Rats

    OpenAIRE

    Reis, Luciana A.; Borges, Fernanda T.; Simões, Manuel J.; Borges, Andrea A.; Sinigaglia-Coimbra, Rita; Schor, Nestor

    2012-01-01

    This study evaluated the effects of bone marrow-derived mesenchymal stem cells (BMSCs) or their conditioned medium (CM) on the repair and prevention of Acute Kidney Injury (AKI) induced by gentamicin (G). Animals received daily injections of G up to 20 days. On the 10(th) day, injections of BMSCs, CM, CM+trypsin, CM+RNase or exosome-like microvesicles extracted from the CM were administered. In the prevention groups, the animals received the BMSCs 24 h before or on the 5(th) day of G treatmen...

  19. Star fruit toxicity: a cause of both acute kidney injury and chronic kidney disease: a report of two cases.

    Science.gov (United States)

    Abeysekera, R A; Wijetunge, S; Nanayakkara, N; Wazil, A W M; Ratnatunga, N V I; Jayalath, T; Medagama, A

    2015-12-17

    Star fruit (Averrhoa carambola) is commonly consumed as a herbal remedy for various ailments in tropical countries. However, the dangers associated with consumption of star fruit are not commonly known. Although star fruit induced oxalate nephrotoxicity in those with existing renal impairment is well documented, reports on its effect on those with normal renal function are infrequent. We report two unique clinical presentation patterns of star fruit nephrotoxicity following consumption of the fruit as a remedy for diabetes mellitus-the first, in a patient with normal renal function and the second case which we believe is the first reported case of chronic kidney disease (CKD) due to prolonged and excessive consumption of star fruits. The first patient is a 56-year-old female diabetic patient who had normal renal function prior to developing acute kidney injury (AKI) after consuming large amount of star fruit juice at once. The second patient, a 60-year-old male, also diabetic presented with acute on chronic renal failure following ingestion of a significant number of star fruits in a short duration with a background history of regular star fruit consumption over the past 2-3 years. Both had histologically confirmed oxalate induced renal injury. The former had histological features of acute tubulo-interstitial disease whilst the latter had acute-on-chronic interstitial disease; neither had histological evidence of diabetic nephropathy. Both recovered over 2 weeks without the need for haemodialysis. These cases illustrate the importance of obtaining the patient's detailed history with respect to ingestion of herbs, traditional medication and health foods such as star fruits especially in AKI or CKD of unknown cause.

  20. Real-time monitoring of cisplatin-induced cell death.

    Directory of Open Access Journals (Sweden)

    Hamed Alborzinia

    Full Text Available Since the discovery of cisplatin more than 40 years ago and its clinical introduction in the 1970s an enormous amount of research has gone into elucidating the mechanism of action of cisplatin on tumor cells. With a novel cell biosensor chip system allowing continuous monitoring of respiration, glycolysis, and impedance we followed cisplatin treatment of different cancer cell lines in real-time. Our measurements reveal a first effect on respiration, in all cisplatin treated cell lines, followed with a significant delay by interference with glycolysis in HT-29, HCT-116, HepG2, and MCF-7 cells but not in the cisplatin-resistant cell line MDA-MB-231. Most strikingly, cell death started in all cisplatin-sensitive cell lines within 8 to 11 h of treatment, indicating a clear time frame from exposure, first response to cisplatin lesions, to cell fate decision. The time points of most significant changes were selected for more detailed analysis of cisplatin response in the breast cancer cell line MCF-7. Phosphorylation of selected signal transduction mediators connected with cellular proliferation, as well as changes in gene expression, were analyzed in samples obtained directly from sensor chips at the time points when changes in glycolysis and impedance occurred. Our online cell biosensor measurements reveal for the first time the time scale of metabolic response until onset of cell death under cisplatin treatment, which is in good agreement with models of p53-mediated cell fate decision.

  1. The small-molecule TNF-α inhibitor, UTL-5g, delays deaths and increases survival rates for mice treated with high doses of cisplatin.

    Science.gov (United States)

    Shaw, Jiajiu; Media, Joseph; Chen, Ben; Valeriote, Fredrick

    2013-09-01

    UTL-5g is a novel small-molecule chemoprotector that lowers hepatotoxicity, nephrotoxicity, and myelotoxicity induced by cisplatin through TNF-α inhibition among other factors. The objective of this study was to investigate whether UTL-5g can reduce the overall acute toxicity of cisplatin and increase cisplatin tolerability in mice. BDF1 female mice were treated individually with UTL-5g (suspended in Ora-Plus) by oral gavage at 60 mg/kg, 30 min before i.p. injection of cisplatin at 10, 15, and 20 mg/kg, respectively, on Day 0. Starting from Day 1, individual mice were again treated daily by the same dose of UTL-5g for 4 consecutive days. Survivals and body weights were monitored. UTL-5g treatment increased the survival rate and delayed the time to death for mice treated with 150 % of the maximum tolerated dose (MTD) of cisplatin (15 mg/kg). Likewise, at 200 % of the MTD of cisplatin (20 mg/kg), treatment of UTL-5g increased the survival rate and delayed the time to death. Treatment of UTL-5g did not have a significant effect on weight loss induced by cisplatin, indicating that body weight may not be a sensitive-enough measure for chemoprotection of UTL-5g against cisplatin. In summary, UTL-5g delayed deaths and increased survival rates of mice treated by high doses of cisplatin, indicating that UTL-5g is capable of reducing the overall acute toxicity of cisplatin and increased cisplatin tolerability in mice; this is in line with the specific chemoprotective effects of UTL-5g previously reported. Further investigation of UTL-5g in combination with cisplatin is warranted.

  2. Unique sex- and age-dependent effects in protective pathways in acute kidney injury.

    Science.gov (United States)

    Boddu, Ravindra; Fan, Chunlan; Rangarajan, Sunil; Sunil, Bhuvana; Bolisetty, Subhashini; Curtis, Lisa M

    2017-09-01

    Sex and age influence susceptibility to acute kidney injury (AKI), with young females exhibiting lowest incidence. In these studies, we investigated mechanisms which may underlie the sex/age-based dissimilarities. Cisplatin (Cp)-induced AKI resulted in morphological evidence of injury in all groups. A minimal rise in plasma creatinine (PCr) was seen in Young Females, whereas in Aged Females, PCr rose precipitously. Relative to Young Males, Aged Males showed significantly, but temporally, comparably elevated PCr. Notably, Aged Females showed significantly greater mortality, whereas Young Females exhibited none. Tissue KIM-1 and plasma NGAL were significantly lower in Young Females than all others. IGFBP7 levels were modestly increased in both Young groups. IGFBP7 levels in Aged Females were significantly elevated at baseline relative to Aged Males, and increased linearly through day 3 , when these levels were comparable in both Aged groups. Plasma cytokine levels similarly showed a pattern of protective effects preferentially in Young Females. Expression of the drug transporter MATE2 did not explain the sex/age distinctions. Heme oxygenase-1 (HO-1) levels (~28-kDa species) showed elevation at day 1 in all groups with highest levels seen in Young Males. Exclusively in Young Females, these levels returned to baseline on day 3 , suggestive of a more efficient recovery. In aggregate, we demonstrate, for the first time, a distinctive pattern of response to AKI in Young Females relative to males which appears to be significantly altered in aging. These distinctions may offer novel targets to exploit therapeutically in both females and males in the treatment of AKI.

  3. Dose escalation of cisplatin with 5-fluorouracil in concurrent chemoradiotherapy for esophageal carcinoma

    International Nuclear Information System (INIS)

    Lin Qiang; Gao Xianshu; Qiao Xueying; Zhou Zhiguo; Zhang Jun; Yang Xiangran; Wan Xin

    2006-01-01

    Objective: To define the maximum-tolerated dose (MTD) and observe the side effect of escalating cisplatin with 5-fluorouracil in concurrent chemoradiotherapy for esophageal carcinoma in Chinese, with toxicity studied. Methods: Previously untreated fifteen Chinese patients suffering from esophageal carcinoma received conventional fractionation radiotherapy, with 5 daily fractions of 2.0 Gy per week. The total radiation dose was 60 Gy. Concurrent chemotherapy dose escalation was given by the relatively safe and kidney-sparing modified Fibonacci sequence. The starting dose was cisplatin 37.5 mg/m 2 D1 and 5-fluorouracil 500 mg/m 2 D1-5, respectively. This regimen was repeated 4 times every 28 days. Escalation dose was cisplatin 7.5 mg/m 2 and 5- fluorouracil 100 mg/m 2 . Every. cohort contained at least 3 patients. If no dose-limiting toxicity(DLT) was observed, the next dose level was opened for entry. These courses were repeated until DLT appeared. MTD was declared as one dose level below which DLT appeared. Results: DLT was defined as grade 3 radiation-induced esophagitis at the level of cisplatin 60 mg/m2, 5-fluorouracil 700 mg/m 2 . MTD was defined as cisplatin 52.5 mg/m 2 , 5- fiuorouracil 700 mg/m 2 . The major side effect were radiation-induced esophagitis, leucopenia, nausea, vomiting and anorexia. Conclusion: Maximun tolerated dose of cisplatin with 5-fiuorouracil in concurrent ehemoradiotherapy in the Chinese people with esophageal carcinoma were eisplatin 52.5 mg/m2 D1,5-fluorouracil 700 mg/m 2 D1-5, repeated 4 times every 28 days. (authors)

  4. Ulinastatin Protects against Acute Kidney Injury in Infant Piglets Model Undergoing Surgery on Hypothermic Low-Flow Cardiopulmonary Bypass.

    Directory of Open Access Journals (Sweden)

    Xiaocou Wang

    Full Text Available Infants are more vulnerable to kidney injuries induced by inflammatory response syndrome and ischemia-reperfusion injury following cardiopulmonary bypass especially with prolonged hypothermic low-flow (HLF. This study aims to evaluate the protective role of ulinastatin, an anti-inflammatory agent, against acute kidney injuries in infant piglets model undergoing surgery on HLF cardiopulmonary bypass.Eighteen general-type infant piglets were randomly separated into the ulinastatin group (Group U, n = 6, the control group (Group C, n = 6, and the sham operation group (Group S, n = 6, and anaesthetized. The groups U and C received following experimental procedure: median thoracotomy, routine CPB and HLF, and finally weaned from CPB. The group S only underwent sham median thoracotomy. Ulinastatin at a dose of 5,000 units/kg body weight and a certain volume of saline were administrated to animals of the groups U and C at the beginning of CPB and at aortic declamping, respectively. Venous blood samples were collected at 3 different time points: after anesthesia induction in all experimental groups, 5 minutes, and 120 minutes after CPB in the Groups U and C. Markers for inflammation and acute kidney injury were tested in the collected plasma. N-acetyl-β-D-glucosaminidase (NAG from urine, markers of oxidative stress injury and TUNEL-positive cells in kidney tissues were also detected.The expressions of plasma inflammatory markers and acute kidney injury markers increased both in Group U and Group C at 5 min and 120 min after CPB. Also, numbers of TUNEL-positive cells and oxidative stress markers in kidney rose in both groups. At the time point of 120-min after CPB, compared with the Group C, some plasma inflammatory and acute kidney injury markers as well as TUNEL-positive cells and oxidative stress markers in kidney were significantly reduced in the Group U. Histologic analyses showed that HLF promoted acute tubular necrosis and dilatation

  5. The Effects of Pretreatment with Various Doses of L-Arginine on Cisplatin-Induced Nephropathy of Male Rats

    Directory of Open Access Journals (Sweden)

    B Rasoulian

    2016-09-01

    Full Text Available Introduction: Cisplatin is a widely used anti-cancer drug, which its application is limited by nephrotoxicity. In this study, the effect of pretreatment with different l-arginine doses on Cisplatin-induced renal functional injury was investigated. Methods: 63 male rats were divided into 7 groups: In groups 3, 4, 5 and 6, 60 min before the Cisplatin injection (5mg/kg; L-Arginine with doses of 50,100,200 or 400mg/kg was injected, respectively. In group7, normal saline was injected before Cisplatin administration. In groups 1 and 2, normal saline was injected instead of Cisplatin. In group 2, 60min before normal saline injection, 400mg/kg L-Arginine was administered and in group1, instead of L-arginine, normal saline was injected too. Injections were intraperitoneal. 72h after Cisplatin injection, blood sampling and plasma separation were done. Urine sample was collected 24 hours before blood sampling by metabolic cage. The mean of plasma urea and creatinine levels and creatinine clearance (ml/day.kg and fractional excretion of Na (FENa, % were compared among different groups as renal functional parameters. Results: In comparison to group 7, L-arginine injection in a dose of 400mg/kg led to significant amelioration of all parameters. 200 mg/kg L-arginine administration led to significant decrease in plasma urea level and FENa. 100mg/kg L-arginine caused significant improvement in fractional excretion of sodium. L-arginine injection with 50mg/kg dose, significantly ameliorate all renal function tests instead of creatinine clearance. Conclusion: Pretreatment with L-arginine administration with 400 or 50 mg/kg doses, respectively, had the highest effect on reducing Cisplatin-induced nephropathy. L-arginine injection with intermediate doses i.e. 200 or 100 mg/kg had less effect in reducing Cisplatin-induced nephropathy and it needs more investigations.

  6. Predicting outcome of acute kidney transplant rejection using

    NARCIS (Netherlands)

    Rekers, Niels Vincent

    2014-01-01

    Acute kidney transplant rejection is an important risk factors for adverse graft outcome. Once diagnosed, it remains difficult to predict the risk of graft loss and the response to anti-rejection treatment. The aim of this thesis was to identify biomarkers during acute rejection, which predict the

  7. Cisplatin toxicity reduced in human cultured renal tubular cells by oxygen pretreatment.

    Science.gov (United States)

    Kaeidi, Ayat; Rasoulian, Bahram; Hajializadeh, Zahra; Pourkhodadad, Soheila; Rezaei, Maryam

    2013-01-01

    Cisplatin is an effective and widely used chemotherapy agent and its side effects, particularly nephrotoxicity, limit its usage and related platinum-based drugs. Cisplatin nephrotoxicity is mainly due to extremely increase in reactive oxygen species (ROS) generation leading to kidney tubular cell death. Preconditioning with oxidative stress has been demonstrated to stimulate the cellular adaptation to subsequent severe oxidative stress. Short term oxygen pre-exposure as a mild oxidative stress may enhance some endogenous defense mechanisms, so its effect on Cisplatin induced cell death was investigated in present research. We studied the effects of hyperoxic environment pre-exposure on Cisplatin toxicity in an in-vitro model of cultured human embryonic tubular epithelial cells (AD293). Viability of AD293 cells, as evaluated by MTT-assay, was affected by Cisplatin in a time (1-4 h) dependent model. Biochemical markers of cell apoptosis were evaluated using immunoblotting. Pretreatment with nearly pure oxygen (≥90%) for 2 h significantly reduced the level of cell damage. Activated caspase 3 and Bax/Bcl-2 ratio were significantly increased in Cisplatin-treated cells. Oxygen pretreatment inhibited caspase 3 activation and decreased Bax/Bcl-2 ratio. Oxygen pre-treatment itself not showed any cytotoxicity in exposure times up to 3 h. Our data indicate that hyperoxic preconditioning reduces Cisplatin toxicity in cultured human tubular epithelial cells. The exact mechanism of protection is unclear, though enhancement of some endogenous defense mechanisms and subsequently scavenging of free oxygen radicals may play an important role.

  8. Cisplatin in cancer therapy: molecular mechanisms of action.

    Science.gov (United States)

    Dasari, Shaloam; Tchounwou, Paul Bernard

    2014-10-05

    Cisplatin, cisplatinum, or cis-diamminedichloroplatinum (II), is a well-known chemotherapeutic drug. It has been used for treatment of numerous human cancers including bladder, head and neck, lung, ovarian, and testicular cancers. It is effective against various types of cancers, including carcinomas, germ cell tumors, lymphomas, and sarcomas. Its mode of action has been linked to its ability to crosslink with the purine bases on the DNA; interfering with DNA repair mechanisms, causing DNA damage, and subsequently inducing apoptosis in cancer cells. However, because of drug resistance and numerous undesirable side effects such as severe kidney problems, allergic reactions, decrease immunity to infections, gastrointestinal disorders, hemorrhage, and hearing loss especially in younger patients, other platinum-containing anti-cancer drugs such as carboplatin, oxaliplatin and others, have also been used. Furthermore, combination therapies of cisplatin with other drugs have been highly considered to overcome drug-resistance and reduce toxicity. This comprehensive review highlights the physicochemical properties of cisplatin and related platinum-based drugs, and discusses its uses (either alone or in combination with other drugs) for the treatment of various human cancers. A special attention is paid to its molecular mechanisms of action, and its undesirable side effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Role of annexin A5 in cisplatin-induced toxicity in renal cells: molecular mechanism of apoptosis.

    Science.gov (United States)

    Jeong, Jin-Joo; Park, Nahee; Kwon, Yeo-Jung; Ye, Dong-Jin; Moon, Aree; Chun, Young-Jin

    2014-01-24

    Annexin A5 belongs to a large family of calcium-binding and phospholipid-binding proteins and may act as an endogenous regulator of various pathophysiological processes. There is increasing evidence that annexin A5 is related to cytotoxicity, but the precise function of this protein has yet to be elucidated. In this study, we aimed to verify the function of annexin A5 in the apoptosis of renal epithelial cells. Real-time PCR and Western blot analysis, together with immunofluorescence analysis, showed that the expression of annexin A5 significantly increased in the presence of cisplatin in both human and rat renal epithelial cells. With regard to the mechanism of cisplatin-induced apoptosis, apoptosis-inducing factor (AIF) release into the cytosol was observed, and the underlying mechanism was identified as voltage-dependent anion channel (VDAC) oligomerization. Mitochondrial membrane potential (Δψm) was found to be greatly disrupted in cisplatin-treated cells. Moreover, cisplatin strongly induced translocation of annexin A5 into mitochondria. To understand the functional significance of annexin A5 in renal cell death, we used a siRNA-mediated approach to knock down annexin A5. Annexin A5 depletion by siRNA led to decreased annexin A5 translocation into mitochondria and significantly reduced VDAC oligomerization and AIF release. Annexin A5 siRNA also increased cell viability compared with the control. Moreover, expression of annexin A5 was induced by other nephrotoxicants such as CdCl2 and bacitracin. Taken together, our data suggest that annexin A5 may play a crucial role in cisplatin-induced toxicity by mediating the mitochondrial apoptotic pathway via the induction and oligomerization of VDAC.

  10. Differences in gene expression profiles and signaling pathways in rhabdomyolysis-induced acute kidney injury.

    Science.gov (United States)

    Geng, Xiaodong; Wang, Yuanda; Hong, Quan; Yang, Jurong; Zheng, Wei; Zhang, Gang; Cai, Guangyan; Chen, Xiangmei; Wu, Di

    2015-01-01

    Rhabdomyolysis is a threatening syndrome because it causes the breakdown of skeletal muscle. Muscle destruction leads to the release of myoglobin, intracellular proteins, and electrolytes into the circulation. The aim of this study was to investigate the differences in gene expression profiles and signaling pathways upon rhabdomyolysis-induced acute kidney injury (AKI). In this study, we used glycerol-induced renal injury as a model of rhabdomyolysis-induced AKI. We analyzed data and relevant information from the Gene Expression Omnibus database (No: GSE44925). The gene expression data for three untreated mice were compared to data for five mice with rhabdomyolysis-induced AKI. The expression profiling of the three untreated mice and the five rhabdomyolysis-induced AKI mice was performed using microarray analysis. We examined the levels of Cyp3a13, Rela, Aldh7a1, Jun, CD14. And Cdkn1a using RT-PCR to determine the accuracy of the microarray results. The microarray analysis showed that there were 1050 downregulated and 659 upregulated genes in the rhabdomyolysis-induced AKI mice compared to the control group. The interactions of all differentially expressed genes in the Signal-Net were analyzed. Cyp3a13 and Rela had the most interactions with other genes. The data showed that Rela and Aldh7a1 were the key nodes and had important positions in the Signal-Net. The genes Jun, CD14, and Cdkn1a were also significantly upregulated. The pathway analysis classified the differentially expressed genes into 71 downregulated and 48 upregulated pathways including the PI3K/Akt, MAPK, and NF-κB signaling pathways. The results of this study indicate that the NF-κB, MAPK, PI3K/Akt, and apoptotic pathways are regulated in rhabdomyolysis-induced AKI.

  11. Urinary NGAL in patients with and without acute kidney injury in a cardiology intensive care unit

    Science.gov (United States)

    Watanabe, Mirian; Silva, Gabriela Fulan e; da Fonseca, Cassiane Dezoti; Vattimo, Maria de Fatima Fernandes

    2014-01-01

    Objective To assess the diagnostic and prognostic efficacy of urine neutrophil gelatinase-associated lipocalin in patients admitted to an intensive care unit. Methods Longitudinal, prospective cohort study conducted in a cardiology intensive care unit. The participants were divided into groups with and without acute kidney injury and were followed from admission to the intensive care unit until hospital discharge or death. Serum creatinine, urine output and urine neutrophil gelatinase-associated lipocalin were measured 24 and 48 hours after admission. Results A total of 83 patients admitted to the intensive care unit for clinical reasons were assessed, most being male (57.8%). The participants were divided into groups without acute kidney injury (N=18), with acute kidney injury (N=28) and with severe acute kidney injury (N=37). Chronic diseases, mechanical ventilation and renal replacement therapy were more common in the groups with acute kidney injury and severe acute kidney injury, and those groups exhibited longer intensive care unit stay and hospital stay and higher mortality. Serum creatinine did not change significantly in the group with acute kidney injury within the first 24 hours of admission to the intensive care unit, although, urine neutrophil gelatinase-associated lipocalin was high in the groups with acute kidney injury and severe acute kidney injury (p<0.001). Increased urine neutrophil gelatinase-associated lipocalin was associated with death. Conclusion An increase in urine neutrophil gelatinase-associated lipocalin precedes variations in serum creatinine in patients with acute kidney injury and may be associated with death. PMID:25607262

  12. MicroRNA-106b-5p regulates cisplatin chemosensitivity by targeting polycystic kidney disease-2 in non-small-cell lung cancer.

    Science.gov (United States)

    Yu, Shaorong; Qin, Xiaobing; Chen, Tingting; Zhou, Leilei; Xu, Xiaoyue; Feng, Jifeng

    2017-09-01

    Systemic therapy with cytotoxic agents remains one of the main treatment methods for non-small-cell lung cancer (NSCLC). Cisplatin is a commonly used chemotherapeutic agent, that, when combined with other drugs, is an effective treatment for NSCLC. However, effective cancer therapy is hindered by a patient's resistance to cisplatin. Unfortunately, the potential mechanism underlying such resistance remains unclear. In this study, we explored the mechanism of microRNA-106b-5p (miR-106b-5p), which is involved in the resistance to cisplatin in the A549 cell line of NSCLC. Quantitative real-time PCR was used to test the expression of miR-106-5p in the A549 and the A549/DDP cell line of NSCLC. The cell counting kit-8 assay was used to detect cell viability. Flow cytometry was used to measure cell cycle and cell apoptosis. Luciferase reporter assays and western blot were performed to confirm whether polycystic kidney disease-2 (PKD2) is a direct target gene of miR-106b-5p. Immunohistochemistry was performed to examine the distribution of PKD2 expression in patients who are sensitive and resistant to cisplatin. The experiments indicated that the expression of miR-106b-5p was significantly decreased in A549/DDP compared with that in A549. MiR-106b-5p affected the tolerance of cells to cisplatin by negatively regulating PKD2. Upregulation of miR-106b-5p or downregulation of PKD2 expression can cause A549/DDP cells to become considerably more sensitive to cisplatin. The results showed that miR-106b-5p enhanced the sensitivity of A549/DDP cells to cisplatin by targeting the expression of PKD2. These findings suggest that the use of miR-106b-5p may be a promising clinical strategy in the treatment of NSCLC.

  13. Acute Kidney Injury as a Risk Factor for Delirium and Coma during Critical Illness.

    Science.gov (United States)

    Siew, Edward D; Fissell, William H; Tripp, Christina M; Blume, Jeffrey D; Wilson, Matthew D; Clark, Amanda J; Vincz, Andrew J; Ely, E Wesley; Pandharipande, Pratik P; Girard, Timothy D

    2017-06-15

    Acute kidney injury may contribute to distant organ dysfunction. Few studies have examined kidney injury as a risk factor for delirium and coma. To examine whether acute kidney injury is associated with delirium and coma in critically ill adults. In a prospective cohort study of intensive care unit patients with respiratory failure and/or shock, we examined the association between acute kidney injury and daily mental status using multinomial transition models adjusting for demographics, nonrenal organ failure, sepsis, prior mental status, and sedative exposure. Acute kidney injury was characterized daily using the difference between baseline and peak serum creatinine and staged according to Kidney Disease Improving Global Outcomes criteria. Mental status (normal vs. delirium vs. coma) was assessed daily with the Confusion Assessment Method for the ICU and Richmond Agitation-Sedation Scale. Among 466 patients, stage 2 acute kidney injury was a risk factor for delirium (odds ratio [OR], 1.55; 95% confidence interval [CI], 1.07-2.26) and coma (OR, 2.04; 95% CI, 1.25-3.34) as was stage 3 injury (OR for delirium, 2.56; 95% CI, 1.57-4.16) (OR for coma, 3.34; 95% CI, 1.85-6.03). Daily peak serum creatinine (adjusted for baseline) values were also associated with delirium (OR, 1.35; 95% CI, 1.18-1.55) and coma (OR, 1.44; 95% CI, 1.20-1.74). Renal replacement therapy modified the association between stage 3 acute kidney injury and daily peak serum creatinine and both delirium and coma. Acute kidney injury is a risk factor for delirium and coma during critical illness.

  14. D-Methionine attenuated cisplatin-induced vestibulotoxicity through altering ATPase activities and oxidative stress in guinea pigs

    International Nuclear Information System (INIS)

    Cheng, P.-W.; Liu, S.-H.; Young, Y.-H.; Lin-Shiau, Shoei-Yn

    2006-01-01

    Cisplatin has been used as a chemotherapeutic agent to treat many kinds of malignancies. Its damage to the vestibulo-ocular reflex (VOR) system has been reported. However, the underlying biochemical change in the inner ear or central vestibular nervous system is not fully understood. In this study, we attempted to examine whether cisplatin-induced vestibulotoxicity and D-methionine protection were correlated with the changes of ATPase activities and oxidative stress of ampullary tissue of vestibules as well as cerebellar cortex (the inhibitory center of VOR system) of guinea pigs. By means of a caloric test coupled with electronystagmographic recordings, we found that cisplatin exposure caused a dose-dependent (1, 3, or 5 mg/kg) vestibular dysfunction as revealed by a decrease of slow phase velocity (SPV). In addition, cisplatin significantly inhibited the Na + , K + -ATPase and Ca 2+ -ATPase activities in the ampullary tissue with a good dose-response relationship but not those of cerebellar cortex. Regression analysis indicated that a decrease of SPV was well correlated with the reduction of Na + , K + -ATPase and Ca 2+ -ATPase activities of the ampullary tissue. D-Methionine (300 mg/kg) reduced both abnormalities of SPV and ATPase activities in a correlated manner. Moreover, cisplatin exposure led to a significant dose-dependent increase of lipid peroxidation and nitric oxide concentrations of the vestibules, which could be significantly suppressed by D-methionine. However, cisplatin did not alter the levels of lipid peroxidation and nitric oxide of the cerebellum. In conclusion, cisplatin inhibited ATPase activities and increased oxidative stress in guinea pig vestibular labyrinths. D-Methionine attenuated cisplatin-induced vestibulotoxicity associated with ionic disturbance through its antioxidative property

  15. Perioperative aspirin and clonidine and risk of acute kidney injury

    DEFF Research Database (Denmark)

    Garg, Amit X; Kurz, Andrea; Sessler, Daniel I

    2014-01-01

    IMPORTANCE: Acute kidney injury, a common complication of surgery, is associated with poor outcomes and high health care costs. Some studies suggest aspirin or clonidine administered during the perioperative period reduces the risk of acute kidney injury; however, these effects are uncertain...... and each intervention has the potential for harm. OBJECTIVE: To determine whether aspirin compared with placebo, and clonidine compared with placebo, alters the risk of perioperative acute kidney injury. DESIGN, SETTING, AND PARTICIPANTS: A 2 × 2 factorial randomized, blinded, clinical trial of 6905...... patients undergoing noncardiac surgery from 88 centers in 22 countries with consecutive patients enrolled between January 2011 and December 2013. INTERVENTIONS: Patients were assigned to take aspirin (200 mg) or placebo 2 to 4 hours before surgery and then aspirin (100 mg) or placebo daily up to 30 days...

  16. Modulation of cisplatin-induced reactive oxygen species production by fullerene C(60 in normal and transformed lymphoid cells

    Directory of Open Access Journals (Sweden)

    D. V. Franskevych

    2016-02-01

    Full Text Available The early response of normal (Wistar rat thymocytes and transformed (mice lymphoid leukemia L1210 cells to treatment with anticancer drug cisplatin or to combined treatment with cisplatin and carbon nanostructure fullerene C60 was studied. We demonstrated with fluorescent probes DCFH-DA and TMRE that cisplatin at concentration 1 μg/ml induced reactive oxygen species (ROS production and decreased the value of mitochondrial membrane potential in both cell types. The combined treatment with cisplatin (1 μg/ml and fullerene C60 (7.2 μg/ml was shown to be followed by oppositely directed modulation of ROS production in thymocytes and L1210 cells. Cisplatin-induced ROS production was intensified in L1210 cells, while in thymocytes it was decreased. It is supposed that the different effects of combined treatment are associated with peculiarities of fullerene C60 accumulation and localization in normal and cancer cells.

  17. Glutamate Receptors in the Central Nucleus of the Amygdala Mediate Cisplatin-Induced Malaise and Energy Balance Dysregulation through Direct Hindbrain Projections.

    Science.gov (United States)

    Alhadeff, Amber L; Holland, Ruby A; Nelson, Alexandra; Grill, Harvey J; De Jonghe, Bart C

    2015-08-05

    Cisplatin chemotherapy is used commonly to treat a variety of cancers despite severe side effects such as nausea, vomiting, and anorexia that compromise quality of life and limit treatment adherence. The neural mechanisms mediating these side effects remain elusive despite decades of clinical use. Recent data highlight the dorsal vagal complex (DVC), lateral parabrachial nucleus (lPBN), and central nucleus of the amygdala (CeA) as potential sites of action in mediating the side effects of cisplatin. Here, results from immunohistochemical studies in rats identified a population of cisplatin-activated DVC neurons that project to the lPBN and a population of cisplatin-activated lPBN calcitonin gene-related peptide (CGRP, a marker for glutamatergic neurons in the lPBN) neurons that project to the CeA, outlining a neuroanatomical circuit that is activated by cisplatin. CeA gene expressions of AMPA and NMDA glutamate receptor subunits were markedly increased after cisplatin treatment, suggesting that CeA glutamate receptor signaling plays a role in mediating cisplatin side effects. Consistent with gene expression results, behavioral/pharmacological data showed that CeA AMPA/kainate receptor blockade attenuates cisplatin-induced pica (a proxy for nausea/behavioral malaise in nonvomiting laboratory rodents) and that CeA NMDA receptor blockade attenuates cisplatin-induced anorexia and body weight loss in addition to pica, demonstrating that glutamate receptor signaling in the CeA is critical for the energy balance dysregulation caused by cisplatin treatment. Together, these data highlight a novel circuit and CGRP/glutamatergic mechanism through which cisplatin-induced malaise and energy balance dysregulation are mediated. To treat cancer effectively, patients must follow prescribed chemotherapy treatments without interruption, yet most cancer treatments produce side effects that devastate quality of life (e.g., nausea, vomiting, anorexia, weight loss). Although hundreds of

  18. Glutamate Receptors in the Central Nucleus of the Amygdala Mediate Cisplatin-Induced Malaise and Energy Balance Dysregulation through Direct Hindbrain Projections

    Science.gov (United States)

    Alhadeff, Amber L.; Holland, Ruby A.; Nelson, Alexandra; Grill, Harvey J.

    2015-01-01

    Cisplatin chemotherapy is used commonly to treat a variety of cancers despite severe side effects such as nausea, vomiting, and anorexia that compromise quality of life and limit treatment adherence. The neural mechanisms mediating these side effects remain elusive despite decades of clinical use. Recent data highlight the dorsal vagal complex (DVC), lateral parabrachial nucleus (lPBN), and central nucleus of the amygdala (CeA) as potential sites of action in mediating the side effects of cisplatin. Here, results from immunohistochemical studies in rats identified a population of cisplatin-activated DVC neurons that project to the lPBN and a population of cisplatin-activated lPBN calcitonin gene-related peptide (CGRP, a marker for glutamatergic neurons in the lPBN) neurons that project to the CeA, outlining a neuroanatomical circuit that is activated by cisplatin. CeA gene expressions of AMPA and NMDA glutamate receptor subunits were markedly increased after cisplatin treatment, suggesting that CeA glutamate receptor signaling plays a role in mediating cisplatin side effects. Consistent with gene expression results, behavioral/pharmacological data showed that CeA AMPA/kainate receptor blockade attenuates cisplatin-induced pica (a proxy for nausea/behavioral malaise in nonvomiting laboratory rodents) and that CeA NMDA receptor blockade attenuates cisplatin-induced anorexia and body weight loss in addition to pica, demonstrating that glutamate receptor signaling in the CeA is critical for the energy balance dysregulation caused by cisplatin treatment. Together, these data highlight a novel circuit and CGRP/glutamatergic mechanism through which cisplatin-induced malaise and energy balance dysregulation are mediated. SIGNIFICANCE STATEMENT To treat cancer effectively, patients must follow prescribed chemotherapy treatments without interruption, yet most cancer treatments produce side effects that devastate quality of life (e.g., nausea, vomiting, anorexia, weight loss

  19. Attenuation of cisplatin-induced nephrotoxicity in rats using ...

    African Journals Online (AJOL)

    The rats received a single dose injection of 10 mg/kg cisplatin. Other groups of rats received zerumbone (100 and 200 mg/kg), corn oil or the vehicle, dimethyl sulfoxide (DMSO) intraperitoneally for 4 days prior to cisplatin-injections. All animals were decapitated 16 h after cisplatin injection. Trunk blood was collected and ...

  20. Hederagenin Induces Apoptosis in Cisplatin-Resistant Head and Neck Cancer Cells by Inhibiting the Nrf2-ARE Antioxidant Pathway.

    Science.gov (United States)

    Kim, Eun Hye; Baek, Seungho; Shin, Daiha; Lee, Jaewang; Roh, Jong-Lyel

    2017-01-01

    Acquired resistance to cisplatin is the most common reason for the failure of cisplatin chemotherapy. Hederagenin, triterpenoids extracted from ivy leaves, exhibits antitumor activity in various types of cancer. However, the therapeutic potential of hederagenin in head and neck cancer (HNC) has remained unclear. Therefore, we examined the effects of hederagenin in cisplatin-resistant HNC cells and characterized its molecular mechanisms of action in this context. We evaluated the effects of hederagenin treatment on cell viability, apoptosis, reactive oxygen species (ROS) production, glutathione levels, mitochondrial membrane potential (Δ Ψ m), and protein and mRNA expression in HNC cells. The antitumor effect of hederagenin in mouse tumor xenograft models was also analyzed. Hederagenin selectively induced cell death in both cisplatin-sensitive and cisplatin-resistant HNC cells by promoting changes in Δ Ψ m and inducing apoptosis. Hederagenin inhibited the Nrf2-antioxidant response element (ARE) pathway and activated p53 in HNC cells, thereby enhancing ROS production and promoting glutathione depletion. These effects were reversed by the antioxidant trolox. Hederagenin activated intrinsic apoptotic pathways via cleaved PARP, cleaved caspase-3, and Bax. The selective inhibitory effects of hederagenin were confirmed in cisplatin-resistant HNC xenograft models. These data suggest that hederagenin induces cell death in resistant HNC cells via the Nrf2-ARE antioxidant pathway.

  1. Rationally engineered polymeric cisplatin nanoparticles for improved antitumor efficacy

    International Nuclear Information System (INIS)

    Paraskar, Abhimanyu; Soni, Shivani; Basu, Sudipta; Srivats, Shyam; Roy, Rituparna Sinha; Sengupta, Shiladitya; Amarasiriwardena, Chitra J; Lupoli, Nicola

    2011-01-01

    The use of cisplatin, a first line chemotherapy for most cancers, is dose-limited due to nephrotoxicity. While this toxicity can be addressed through nanotechnology, previous attempts at engineering cisplatin nanoparticles have been limited by the impact on the potency of cisplatin. Here we report the rational engineering of a novel cisplatin nanoparticle by harnessing a novel polyethylene glycol-functionalized poly-isobutylene-maleic acid (PEG-PIMA) copolymer, which can complex with cis-platinum (II) through a monocarboxylato and a coordinate bond. We show that this complex self-assembles into a nanoparticle, and exhibits an IC 50 = 0.77 ± 0.11 μM comparable to that of free cisplatin (IC 50 = 0.44 ± 0.09 μM). The nanoparticles are internalized into the endolysosomal compartment of cancer cells, and release cisplatin in a pH-dependent manner. Furthermore, the nanoparticles exhibit significantly improved antitumor efficacy in a 4T1 breast cancer model in vivo, with limited nephrotoxicity, which can be explained by preferential biodistribution in the tumor with reduced kidney concentrations. Our results suggest that the PEG-PIMA-cisplatin nanoparticle can emerge as an attractive solution to the challenges in cisplatin chemotherapy.

  2. Modification of Measures of Acute Kidney Injury to Risk Stratify Combat Casualties

    Science.gov (United States)

    2017-08-26

    REPORT TYPE 08/26/2017 Poster 4. TJTLE AND SUBTITLE t\\.1odification of l’vfeasures,of Acute Kidney Injury to Risk Stratify Cotnbat Casualties 6...profiles and potential future conflicts , identifying acute kidney injury (AKI) early can help us determine the need for rapidity of evacuation

  3. Aprepitant plus granisetron and dexamethasone for prevention of chemotherapy-induced nausea and vomiting in patients with gastric cancer treated with S-1 plus cisplatin.

    Science.gov (United States)

    Oyama, Katsunobu; Fushida, Sachio; Kaji, Masahide; Takeda, Toshiya; Kinami, Shinichi; Hirono, Yasuo; Yoshimoto, Katsuhiro; Yabushita, Kazuhisa; Hirosawa, Hisashi; Takai, Yuki; Nakano, Tatsuo; Kimura, Hironobu; Yasui, Toshiaki; Tsuneda, Atsushi; Tsukada, Tomoya; Kinoshita, Jun; Fujimura, Takashi; Ohta, Tetsuo

    2013-11-01

    We aimed to evaluate the efficacy of a new combination antiemetic therapy comprising aprepitant, granisetron, and dexamethasone in gastric cancer patients undergoing chemotherapy with cisplatin and S-1. Gastric cancer patients scheduled to receive their first course of chemotherapy with cisplatin (60 mg/m(2)) and S-1 (80 mg/m(2)) were treated with a new combination antiemetic therapy aprepitant, granisetron, and dexamethasone on day 1; aprepitant and dexamethasone on days 2 and 3; and dexamethasone on day 4. The patients reported vomiting, nausea, use of rescue therapy, and change in the amount of diet intake, and completed the Functional Living Index-Emesis (FLIE) questionnaire. The primary endpoint was complete response (CR; no emesis and use of no rescue antiemetics) during the overall study phase (0-120 h after cisplatin administration). The secondary endpoints included complete protection (CP; CR plus no significant nausea); change in the amount of diet intake; and the impact of chemotherapy-induced nausea and vomiting (CINV) on daily life during the overall, acute (0-24 h), and delayed (24-120 h) phases. Fifty-three patients were included. CR was achieved in 88.7, 98.1, and 88.7% of patients in the overall, acute, and delayed phases, respectively. The corresponding rates of CP were 67.9, 96.2, and 67.9%. Approximately half of the patients had some degree of anorexia. FLIE results indicated that 79.5% of patients reported "minimal or no impact of CINV on daily life". Addition of aprepitant to standard antiemetic therapy was effective in gastric cancer patients undergoing treatment with cisplatin and S-1.

  4. Effects of a histamine H4 receptor antagonist on cisplatin-induced anorexia in mice.

    Science.gov (United States)

    Yamamoto, Kouichi; Okui, Rikuya; Yamatodani, Atsushi

    2018-04-12

    Cancer chemotherapy often induces gastrointestinal symptoms such as anorexia, nausea, and vomiting. Antiemetic agents are effective in inhibiting nausea and vomiting, but patients still experience anorexia. We previously reported that chemotherapeutic agent-induced anorexia is associated with an increase of inflammatory cytokines. Other studies also reported that antagonism of the histamine H 4 receptor is anti-inflammatory. In this study, we investigated the involvement of the H 4 receptor in the development of chemotherapy-induced anorexia in mice. Cisplatin-induced anorexia occurred within 24 h of its administration and continued for 3 days. The early phase (day 1), but not the delayed phase (days 2 and 3), of anorexia was inhibited by the daily injection of a 5-HT 3 receptor antagonist (granisetron). However, a corticosteroid (dexamethasone) or selective H 4 receptor antagonist (JNJ7777120) abolished the delayed phases of anorexia. Cisplatin significantly increased TNF-α mRNA expression in the hypothalamus and spleen, and the period of expression increase paralleled the onset period of anorexia. In addition, pretreatment with JNJ7777120 completely inhibited the increased expression. These results suggest that TNF-α mRNA expression via H 4 receptors may contribute to the development of cisplatin-induced anorexia, and that H 4 receptor antagonists are potentially useful treatments. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Mutations in Cockayne Syndrome-Associated Genes (Csa and Csb) Predispose to Cisplatin-Induced Hearing Loss in Mice

    Science.gov (United States)

    Rainey, Robert N.; Ng, Sum-yan; Llamas, Juan; van der Horst, Gijsbertus T. J.

    2016-01-01

    Cisplatin is a common and effective chemotherapeutic agent, yet it often causes permanent hearing loss as a result of sensory hair cell death. The causes of sensitivity to DNA-damaging agents in nondividing cell populations, such as cochlear hair and supporting cells, are poorly understood, as are the specific DNA repair pathways that protect these cells. Nucleotide excision repair (NER) is a conserved and versatile DNA repair pathway for many DNA-distorting lesions, including cisplatin-DNA adducts. Progressive sensorineural hearing loss is observed in a subset of NER-associated DNA repair disorders including Cockayne syndrome and some forms of xeroderma pigmentosum. We investigated whether either of the two overlapping branches that encompass NER, transcription-coupled repair or global genome repair, which are implicated in Cockayne syndrome and xeroderma pigmentosum group C, respectively, modulates cisplatin-induced hearing loss and cell death in the organ of Corti, the auditory sensory epithelium of mammals. We report that cochlear hair cells and supporting cells in transcription-coupled repair-deficient Cockayne syndrome group A (Csa−/−) and group B (Csb−/−) mice are hypersensitive to cisplatin, in contrast to global genome repair-deficient Xpc−/− mice, both in vitro and in vivo. We show that sensory hair cells in Csa−/− and Csb−/− mice fail to remove cisplatin-DNA adducts efficiently in vitro; and unlike Xpc−/− mice, Csa−/− and Csb−/− mice lose hearing and manifest outer hair cell degeneration after systemic cisplatin treatment. Our results demonstrate that Csa and Csb deficiencies predispose to cisplatin-induced hearing loss and hair/supporting cell damage in the mammalian organ of Corti, and emphasize the importance of transcription-coupled DNA repair in the protection against cisplatin ototoxicity. SIGNIFICANCE STATEMENT The utility of cisplatin in chemotherapy remains limited due to serious side effects, including

  6. Determinants of postoperative acute kidney injury.

    Science.gov (United States)

    Abelha, Fernando José; Botelho, Miguela; Fernandes, Vera; Barros, Henrique

    2009-01-01

    Development of acute kidney injury (AKI) during the perioperative period is associated with increases in morbidity and mortality. Our aim was to evaluate the incidence and determinants of postoperative AKI after major noncardiac surgery in patients with previously normal renal function. This retrospective cohort study was carried out in the multidisciplinary Post-Anaesthesia Care Unit (PACU) with five intensive care beds. The study population consisted of 1166 patients with no previous renal insufficiency who were admitted to these intensive care unit (ICU) beds over 2 years. After admission patients were followed for the development of AKI, defined as proposed by The Acute Kidney Injury Network (increment of serum creatinine [greater than or equal to] 0.3 mg/dL or 50% from baseline within 48 hours or urine output 6 hours despite fluid resuscitation when applicable). Patient preoperative characteristics, intraoperative management and outcome were evaluated for associations with acute kidney injury using an univariate and multiple logistic regression model. A total of 1597 patients were admitted to the PACU and of these, 1166 met the inclusion criteria. Eighty-seven patients (7.5%) met AKI criteria. Univariate analysis identified age, American Society of Anesthesiologists (ASA) physical status, emergency surgery, high risk surgery, ischemic heart disease, congestive heart disease and Revised Cardiac Risk Index (RCRI) score as independent preoperative determinants for AKI in the postoperative period. Multivariate analysis identified ASA physical status, RCRI score, high risk surgery and congestive heart disease as preoperative determinants for AKI in the postoperative period. Patients that developed AKI had higher Simplified Acute Physiology Score (SAPS) II and Acute Physiology and Chronic Health Evaluation (APACHE) II, higher PACU length of stay (LOS), higher PACU mortality, higher hospital mortality and higher mortality at 6 months follow-up. AKI was an independent

  7. Twist2 Is Upregulated in Early Stages of Repair Following Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Grunz-Borgmann

    2017-02-01

    Full Text Available The aging kidney is a marked by a number of structural and functional changes, including an increased susceptibility to acute kidney injury (AKI. Previous studies from our laboratory have shown that aging male Fischer 344 rats (24 month are more susceptible to apoptosis-mediated injury than young counterparts. In the current studies, we examined the initial injury and early recovery phases of mercuric chloride-induced AKI. Interestingly, the aging kidney had decreased serum creatinine compared to young controls 1 day following mercuric chloride injury, but by day 4, serum creatinine was significantly elevated, suggesting that the aging kidney did not recover from injury. This conclusion is supported by the findings that serum creatinine and kidney injury molecule-1 (Kim-1 gene expression remain elevated compared to young controls at 10 days post-injury. To begin to elucidate mechanism(s underlying dysrepair in the aging kidney, we examined the expression of Twist2, a helix-loop-helix transcription factor that may mediate renal fibrosis. Interestingly, Twist2 gene expression was elevated following injury in both young and aged rats, and Twist2 protein expression is elevated by mercuric chloride in vitro.

  8. Antioxidant and antigenotoxic role of recombinant human erythropoeitin against alkylating agents: cisplatin and mitomycin C in cultured Vero cells.

    Science.gov (United States)

    Rjiba-Touati, Karima; Ayed-Boussema, Imen; Soualeh, Nidhal; Achour, Abdellatif; Bacha, Hassen; Abid, Salwa

    2013-08-01

    Cisplatin (CDDP) and mitomycin C (MMC), two alkylating agents used against various solid tumours, are a common source of acute kidney injury. Thus, strategies for minimizing CDDP and MMC toxicity are of a clinical interest. In this study, we aimed to investigate the protective role of recombinant human erythropoietin (rhEPO) against oxidative stress and genotoxicity induced by CDDP and MMC in cultured Vero cells. Three types of treatments were performed: (i) cells were treated with rhEPO 24 h before exposure to CDDP/MMC (pre-treatment), (ii) cells were treated with rhEPO and CDDP/MMC simultaneously (co-treatment), (iii) cells were treated with rhEPO 24 h after exposure to CDDP/MMC (post-treatment). Our results showed that rhEPO decreased the reactive oxygen species levels, the malondialdehyde levels and ameliorated glutathione (reduced and oxidized glutathione) modulation induced by CDDP and MMC in cultured Vero cells. Furthermore, rhEPO administration prevented alkylating agents-induced DNA damage accessed by comet test. Altogether, our results suggested a protective role of rhEPO, against CDDP- and MMC-induced oxidative stress and genotoxicity, especially in pre-treatment condition.

  9. Diabetes increases the susceptibility to acute kidney injury after myocardial infarction through augmented activation of renal Toll-like receptors in rats.

    Science.gov (United States)

    Ohno, Kouhei; Kuno, Atsushi; Murase, Hiromichi; Muratsubaki, Shingo; Miki, Takayuki; Tanno, Masaya; Yano, Toshiyuki; Ishikawa, Satoko; Yamashita, Tomohisa; Miura, Tetsuji

    2017-12-01

    Acute kidney injury (AKI) after acute myocardial infarction (MI) worsens the prognosis of MI patients. Although type 2 diabetes mellitus (DM) is a major risk factor of AKI after MI, the underlying mechanism remains unclear. Here, we examined the roles of renal Toll-like receptors (TLRs) in the impact of DM on AKI after MI. MI was induced by coronary artery ligation in Otsuka-Long-Evans-Tokushima fatty (OLETF) rats, a rat DM model, and Long-Evans-Tokushima-Otsuka (LETO) rats, nondiabetic controls. Sham-operated rats served as no-MI controls. Renal mRNA levels of TLR2 and myeloid differentiation factor 88 (MyD88) were significantly higher in sham-operated OLETF rats than in sham-operated LETO rats, although levels of TLR1, TLR3, and TLR4 were similar. At 12 h after MI, protein levels of kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) in the kidney were elevated by 5.3- and 4.0-fold, respectively, and their mRNA levels were increased in OLETF but not LETO rats. The increased KIM-1 and NGAL expression levels after MI in the OLETF kidney were associated with upregulated expression of TLR1, TLR2, TLR4, MyD88, IL-6, TNF-α, chemokine (C-C motif) ligand 2, and transforming growth factor-β 1 and also with activation of p38 MAPK, JNK, and NF-κB. Cu-CPT22, a TLR1/TLR2 antagonist, administered before MI significantly suppressed MI-induced upregulation of KIM-1, TLR2, TLR4, MyD88, and chemokine (C-C motif) ligand 2 levels and activation of NF-κB, whereas NGAL levels and IL-6 and TNF-α expression levels were unchanged. The results suggest that DM increases the susceptibility to AKI after acute MI by augmented activation of renal TLRs and that TLR1/TLR2-mediated signaling mediates KIM-1 upregulation after MI. NEW & NOTEWORTHY This is the first report to demonstrate the involvement of Toll-like recpetors (TLRs) in diabetes-induced susceptibility to acute kidney injury after acute myocardial infarction. We propose that the TLR1/TLR2

  10. Bone marrow-derived mesenchymal stem cells repaired but did not prevent gentamicin-induced acute kidney injury through paracrine effects in rats.

    Directory of Open Access Journals (Sweden)

    Luciana A Reis

    Full Text Available This study evaluated the effects of bone marrow-derived mesenchymal stem cells (BMSCs or their conditioned medium (CM on the repair and prevention of Acute Kidney Injury (AKI induced by gentamicin (G. Animals received daily injections of G up to 20 days. On the 10(th day, injections of BMSCs, CM, CM+trypsin, CM+RNase or exosome-like microvesicles extracted from the CM were administered. In the prevention groups, the animals received the BMSCs 24 h before or on the 5(th day of G treatment. Creatinine (Cr, urea (U, FENa and cytokines were quantified. The kidneys were evaluated using hematoxylin/eosin staining and immunohystochemistry. The levels of Cr, U and FENa increased during all the periods of G treatment. The BMSC transplantation, its CM or exosome injections inhibited the increase in Cr, U, FENa, necrosis, apoptosis and also increased cell proliferation. The pro-inflammatory cytokines decreased while the anti-inflammatory cytokines increased compared to G. When the CM or its exosomes were incubated with RNase (but not trypsin, these effects were blunted. The Y chromosome was not observed in the 24-h prevention group, but it persisted in the kidney for all of the periods analyzed, suggesting that the injury is necessary for the docking and maintenance of BMSCs in the kidney. In conclusion, the BMSCs and CM minimized the G-induced renal damage through paracrine effects, most likely through the RNA carried by the exosome-like microvesicles. The use of the CM from BMSCs can be a potential therapeutic tool for this type of nephrotoxicity, allowing for the avoidance of cell transplantations.

  11. Ghrelin Partially Protects Against Cisplatin-Induced Male Murine Gonadal Toxicity in a GHSR-1a-Dependent Manner1

    Science.gov (United States)

    Whirledge, Shannon D.; Garcia, Jose M.; Smith, Roy G.; Lamb, Dolores J.

    2015-01-01

    ABSTRACT The chemotherapeutic drug cisplatin causes a number of dose-dependent side effects, including cachexia and testicular damage. Patients receiving a high cumulative dose of cisplatin may develop permanent azoospermia and subsequent infertility. Thus, the development of chemotherapeutic regimens with the optimal postsurvival quality of life (fertility) is of high importance. This study tested the hypothesis that ghrelin administration can prevent or minimize cisplatin-induced testicular damage and cachexia. Ghrelin and its receptor, the growth hormone secretagogue receptor (GHSR-1a), are expressed and function in the testis. Targeted deletion of ghrelin, or its receptor, significantly increases the rate of cell death in the testis, suggesting a protective role. Intraperitoneal administration of vehicle, ghrelin, or cisplatin alone or in combination with ghrelin, in cycles of 9 or 18 days, to adult male C57Bl/6 mice was performed. Body weight was measured daily and testicular and epididymal weight, sperm density and motility, testicular histology, and testicular cell death were analyzed at the time of euthanization. Ghrelin coadministration decreased the severity of cisplatin-induced cachexia and gonadal toxicity. Body, testicular, and epididymal weights significantly increased as testicular cell death decreased with ghrelin coadministration. The widespread damage to the seminiferous epithelium induced by cisplatin administration was less severe in mice simultaneously treated with ghrelin. Furthermore, ghrelin diminished the deleterious effects of cisplatin on testis and body weight homeostasis in wild-type but not Ghsr−/− mice, showing that ghrelin's actions are mediated via GHSR. Ghrelin or more stable GHSR agonists potentially offer a novel therapeutic approach to minimize the testicular damage that occurs after gonadotoxin exposure. PMID:25631345

  12. Anatomical and physiological basis for the allometric scaling of cisplatin clearance in dogs.

    Science.gov (United States)

    Achanta, S; Sewell, A; Ritchey, J W; Broaddus, K; Bourne, D W A; Clarke, C R; Maxwell, L K

    2016-06-01

    Cisplatin is a platinum-containing cytotoxic drug indicated for the treatment of solid tumors in veterinary and human patients. Several of the algorithms used to standardize the doses of cytotoxic drugs utilize allometry, or the nonproportional relationships between anatomical and physiological variables, but the underlying basis for these relationships is poorly understood. The objective of this proof of concept study was to determine whether allometric equations explain the relationships between body weight, kidney weight, renal physiology, and clearance of a model, renally cleared anticancer agent in dogs. Postmortem body, kidney, and heart weights were collected from 364 dogs (127 juveniles and 237 adults, including 51 dogs ≥ 8 years of age). Renal physiological and cisplatin pharmacokinetic studies were conducted in ten intact male dogs including two juvenile and eight adult dogs (4-55 kg). Glomerular filtration rate (GFR), effective renal plasma flow, effective renal blood flow, renal cisplatin clearance, and total cisplatin clearance were allometrically related to body weight with powers of 0.75, 0.59, 0.61, 0.71, and 0.70, respectively. The similar values of these diverse mass exponents suggest a common underlying basis for the allometry of kidney size, renal physiology, and renal drug handling. © 2015 John Wiley & Sons Ltd.

  13. Pediatric Acute Kidney Injury.

    Science.gov (United States)

    Fragasso, Tiziana; Ricci, Zaccaria; Goldstein, Stuart L

    2018-01-01

    Acute kidney injury (AKI) in children is a serious condition with an important impact on morbidity and mortality. Onset can be insidious and it is frequently unrecognized in the early phase when the therapeutic opportunities are theoretically more effective. The present review focuses on the most recent epidemiology studies and the progress in pediatric AKI (pAKI) research. Standardization of definition (presented in the Kidney Disease: Improving Global Outcomes) and novel biomarkers have been developed to help clinicians recognize kidney injury in a timely manner, both in adult and pediatric populations. Strengths and weaknesses of these diagnostic tools are discussed and the clinical scoring system (Renal Angina Index), which aims to provide a rational context for biomarker utilization, is also presented. Even if effective treatments are not currently available for established AKI, specific preventive approaches and some promising pharmacological treatments will be detailed. Renal replacement therapy is currently considered the most effective way to manage fluid balance when severe AKI occurs. Key Messages: Great efforts in pAKI research have today led to new strategies for early AKI detection and prevention strategies. Further studies have to be conducted in the next future in order to definitely improve the outcomes of pediatric patients experiencing this deadly syndrome. © 2018 S. Karger AG, Basel.

  14. N-octanoyl dopamine treatment exerts renoprotective properties in acute kidney injury but not in renal allograft recipients

    NARCIS (Netherlands)

    Klotz, Sarah; Pallavi, Prama; Tsagogiorgas, Charalambos; Zimmer, Fabian; Zoellner, Frank G.; Binzen, Uta; Greffrath, Wolfgang; Treede, Rolf-Detlef; Walter, Jakob; Harmsen, Martin C.; Kraemer, Bernhard K.; Hafner, Mathias; Yard, Benito A.; Hoeger, Simone

    N-octanoyl dopamine (NOD) treatment improves renal function when applied to brain dead donors and in the setting of warm ischaemia-induced acute kidney injury (AKI). Because it also activates transient receptor potential vanilloid type 1 (TRPV1) channels, we first assessed if NOD conveys its

  15. Protective effects of vitamins E, B and C and L-carnitine in the prevention of cisplatin-induced ototoxicity in rats.

    Science.gov (United States)

    Tokgöz, S Alicura; Vuralkan, E; Sonbay, N D; Çalişkan, M; Saka, C; Beşalti, Ö; Akin, İ

    2012-05-01

    This experimental study aimed to investigate the effects of vitamins E, B and C and L-carnitine in preventing cisplatin-induced ototoxicity. Twenty-five adult, male, Wistar albino rats were randomly allocated to receive intraperitoneal cisplatin either alone or preceded by vitamins B, E or C or L-carnitine. Auditory brainstem response (i.e. hearing thresholds and wave I-IV intervals) and distortion product otoacoustic emissions (i.e. signal-to-noise ratios) were recorded before and 72 hours after cisplatin administration. The following statistically significant differences were seen: control group pre- vs post-treatment wave I-IV interval values (p vitamin E and B groups' I-IV interval values (p vitamin E vs vitamin B and C and L-carnitine groups' hearing thresholds (p vitamin B vs vitamin C and L-carnitine groups' hearing thresholds (p vitamin B and L-carnitine groups (2000 and 3000 Hz; p Vitamins B, E and C and L-carnitine appear to reduce cisplatin-induced ototoxicity in rats. The use of such additional treatments to decrease cisplatin-induced ototoxicity in humans is still under discussion.

  16. Mechanism of Cisplatin-Induced Cytotoxicity Is Correlated to Impaired Metabolism Due to Mitochondrial ROS Generation.

    Science.gov (United States)

    Choi, Yong-Min; Kim, Han-Kyul; Shim, Wooyoung; Anwar, Muhammad Ayaz; Kwon, Ji-Woong; Kwon, Hyuk-Kwon; Kim, Hyung Joong; Jeong, Hyobin; Kim, Hwan Myung; Hwang, Daehee; Kim, Hyung Sik; Choi, Sangdun

    2015-01-01

    The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis- and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player.

  17. Hederagenin Induces Apoptosis in Cisplatin-Resistant Head and Neck Cancer Cells by Inhibiting the Nrf2-ARE Antioxidant Pathway

    Directory of Open Access Journals (Sweden)

    Eun Hye Kim

    2017-01-01

    Full Text Available Acquired resistance to cisplatin is the most common reason for the failure of cisplatin chemotherapy. Hederagenin, triterpenoids extracted from ivy leaves, exhibits antitumor activity in various types of cancer. However, the therapeutic potential of hederagenin in head and neck cancer (HNC has remained unclear. Therefore, we examined the effects of hederagenin in cisplatin-resistant HNC cells and characterized its molecular mechanisms of action in this context. We evaluated the effects of hederagenin treatment on cell viability, apoptosis, reactive oxygen species (ROS production, glutathione levels, mitochondrial membrane potential (ΔΨm, and protein and mRNA expression in HNC cells. The antitumor effect of hederagenin in mouse tumor xenograft models was also analyzed. Hederagenin selectively induced cell death in both cisplatin-sensitive and cisplatin-resistant HNC cells by promoting changes in ΔΨm and inducing apoptosis. Hederagenin inhibited the Nrf2-antioxidant response element (ARE pathway and activated p53 in HNC cells, thereby enhancing ROS production and promoting glutathione depletion. These effects were reversed by the antioxidant trolox. Hederagenin activated intrinsic apoptotic pathways via cleaved PARP, cleaved caspase-3, and Bax. The selective inhibitory effects of hederagenin were confirmed in cisplatin-resistant HNC xenograft models. These data suggest that hederagenin induces cell death in resistant HNC cells via the Nrf2-ARE antioxidant pathway.

  18. Inhaling Difluoroethane Computer Cleaner Resulting in Acute Kidney Injury and Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Kristen Calhoun

    2018-01-01

    Full Text Available Difluoroethane is the active ingredient in various computer cleaners and is increasingly abused by teenagers due to its ease of access, quick onset of euphoric effects, and lack of detectability on current urine drug screens. The substance has detrimental effects on various organ systems; however, its effects on the kidneys remain largely unreported. The following case report adds new information to the developing topic of acute kidney injury in patients abusing difluoroethane inhalants. In addition, it is one of the first to show a possible relationship between prolonged difluoroethane abuse and the development of chronic kidney disease in the absence of other predisposing risk factors.

  19. Acute kidney injury in the newborn: the role of the perinatal pathologist

    Directory of Open Access Journals (Sweden)

    Daniela Fanni

    2014-06-01

    Full Text Available Neonatal acute kidney injury (AKI, that becomes acute renal failure (when renal replacement is needed, represents a common clinical problem in critically ill infants admitted to neonatal intensive care unit (NICU centers. This article is aimed at reviewing the most important histological renal changes generally considered typical of AKI, useful to confirm, at morphological level, the structural and cell lesions responsible for the clinical picture. In the first part a simple schematic approach to the elementary lesions of the developing kidney will be proposed, aimed to decipher the renal lesions. In the second part, the typical lesions of AKI in the neonate will be presented and discussed. In the final part, we’ll prospect the necessity for a more accurate microscopic analysis of the kidney in every neonate undergoing asphyxia or sepsis, in order to reveal subtle renal changes that might allow a pathological diagnosis of AKI even in newborns in which the clinical and laboratory pictures were not representative of a severe kidney damage. Finally, the role of the clinical-pathological discussion between the pathologist and the neonatologist will be underlined, in order to reach a final diagnosis, based on the clinical history, the laboratory findings, and the histological lesions. In this article, the role of the pathologist in the evaluation of a neonatal kidney in a newborn with the clinical diagnosis of AKI is described, with particular attention to the differences existing between the preterm and the at term kidney, focusing on the differentiation between developmental changes occurring in the kidney in the perinatal period and the histological lesions induced by pathological events occurring around birth. Proceedings of the International Course on Perinatal Pathology (part of the 10th International Workshop on Neonatology · October 22nd-25th, 2014 · Cagliari (Italy · October 25th, 2014 · The role of the clinical pathological

  20. Meclofenamic Acid Reduces Reactive Oxygen Species Accumulation and Apoptosis, Inhibits Excessive Autophagy, and Protects Hair Cell-Like HEI-OC1 Cells From Cisplatin-Induced Damage

    Directory of Open Access Journals (Sweden)

    He Li

    2018-05-01

    Full Text Available Hearing loss is the most common sensory disorder in humans, and a significant number of cases is due to the ototoxicity of drugs such as cisplatin that cause hair cell (HC damage. Thus, there is great interest in finding agents and mechanisms that protect HCs from ototoxic drug damage. It has been proposed that epigenetic modifications are related to inner ear development and play a significant role in HC protection and HC regeneration; however, whether the m6A modification and the ethyl ester form of meclofenamic acid (MA2, which is a highly selective inhibitor of FTO (fatmass and obesity-associated enzyme, one of the primary human demethylases, can affect the process of HC apoptosis induced by ototoxic drugs remains largely unexplored. In this study, we took advantage of the HEI-OC1 cell line, which is a cochlear HC-like cell line, to investigate the role of epigenetic modifications in cisplatin-induced cell death. We found that cisplatin injury caused reactive oxygen species accumulation and increased apoptosis in HEI-OC1 cells, and the cisplatin injury was reduced by co-treatment with MA2 compared to the cisplatin-only group. Further investigation showed that MA2 attenuated cisplatin-induced oxidative stress and apoptosis in HEI-OC1 cells. We next found that the cisplatin-induced upregulation of autophagy was significantly inhibited after MA2 treatment, indicating that MA2 inhibited the cisplatin-induced excessive autophagy. Our findings show that MA2 has a protective effect and improves the viability of HEI-OC1 cells after cisplatin treatment, and they provide new insights into potential therapeutic targets for the amelioration of cisplatin-induced ototoxicity.

  1. Acute cold hypersensitivity characteristically induced by oxaliplatin is caused by the enhanced responsiveness of TRPA1 in mice

    Directory of Open Access Journals (Sweden)

    Zhao Meng

    2012-07-01

    Full Text Available Abstract Background Oxaliplatin, a platinum-based chemotherapeutic agent, causes an unusual acute peripheral neuropathy. Oxaliplatin-induced acute peripheral neuropathy appears in almost all patients rapidly after infusion, and is triggered or exacerbated by cold, while its mechanisms are poorly understood. In this study, the involvement of thermosensitive transient receptor potential channels (TRPA1, TRPM8 and TRPV1 in oxaliplatin-induced acute hypersensitivity was investigated in mice. Results A single intraperitoneal administration of oxaliplatin (1–10 mg/kg induced cold but not mechanical hypersensitivity within 2 h in a dose-dependent manner. Infusion of the oxaliplatin metabolite, oxalate (1.7 mg/kg, also induced acute cold hypersensitivity, while another platinum-based chemotherapeutic agent, cisplatin (5 mg/kg, or the non-platinum-containing chemotherapeutic agent, paclitaxel (6 mg/kg failed to induce mechanical or cold hypersensitivity. The oxaliplatin-induced acute cold hypersensitivity was abolished by the TRPA1 antagonist HC-030031 (100 mg/kg and by TRPA1 deficiency. The nocifensive behaviors evoked by intraplantar injections of allyl-isothiocyanate (AITC; TRPA1 agonist were significantly enhanced in mice treated for 2 h with oxaliplatin (1–10 mg/kg in a dose-dependent manner, while capsaicin (TRPV1 agonist-evoked nocifensive behaviors were not affected. Menthol (TRPM8/TRPA1 agonist-evoked nocifensive-like behaviors were also enhanced by oxaliplatin pretreatment, which were inhibited by TRPA1 deficiency. Similarly, oxalate enhanced, but neither cisplatin nor paclitaxel affected AITC-evoked nocifensive behaviors. Pretreatment of cultured mouse dorsal root ganglia (DRG neurons with oxaliplatin (30–300 μM for 1, 2, or 4 h significantly increased the number of AITC-sensitive neurons in a concentration-dependent manner whereas there was no change in the number of menthol- or capsaicin-sensitive neurons

  2. Hypothyroidism and acute kidney injury: an unusual association.

    Science.gov (United States)

    Neves, Precil Diego Miranda de Menezes; Bridi, Ramaiane Aparecida; Balbi, André Luis; Ponce, Daniela

    2013-08-09

    Association between severe hypothyroidism and acute kidney injury (AKI) is rare. A 40-year-old woman presented with 15 days history of generalised muscle pain, weakness, weight gain and oedema. hypertension and hypothyroidism. dry skin, peripheral/periorbital oedema, slow thought and speaking, thyroid increased. Laboratory examinations: high levels of creatine kinase , creatinine, uric acid and lactate dehydrogenase. Free T4 was very low (hypothyroidism-induced rhabdomyolysis. Intravenous fluids were started, urinary alkalisation and increased l-thyroxine dose replacement. On the day after admission, forced diuresis with furosemide was introduced leading to a progressive improvement of symptoms. Although hypothyroidism and AKI is unusual, it should be suspected in patients presenting decrease of renal function and high creatine kinase in the absence of other causes of rhabdomyolysis.

  3. Hydrogen sulfide : A novel nephroprotectant against cisplatin-induced renal toxicity

    NARCIS (Netherlands)

    Dugbartey, George J.; Bouma, Hjalmar R.; Lobb, Ian; Sener, Alp

    2016-01-01

    Cisplatin is a potent chemotherapeutic agent for the treatment of various solid-organ cancers. However, a plethora of evidence indicates that nephrotoxicity is a major side effect of cisplatin therapy. While the antineoplastic action of cisplatin is due to formation of cisplatin-DNA cross-links,

  4. Cetuximab enhances cisplatin-induced endoplasmic reticulum stress-associated apoptosis in laryngeal squamous cell carcinoma cells by inhibiting expression of TXNDC5.

    Science.gov (United States)

    Peng, Fusen; Zhang, Hailin; Du, Youhong; Tan, Pingqing

    2018-03-01

    Cisplatin and cetuximab, an anti‑epidermal growth factor receptor (EGFR) monoclonal humanized antibody, have been used for treatment of laryngeal squamous cell carcinoma (LSCC). It has been demonstrated that cisplatin and inhibition of EGFR signaling may induce endoplasmic reticulum (ER) stress‑associated apoptosis. However, ER protein thioredoxin domain‑containing protein 5 (TXNDC5) reportedly protects cells from ER stress‑associated apoptosis. The present study investigated the interaction between cisplatin, cetuximab and TXNDC5 on ER stress‑associated apoptosis in LSCC cells. AMC‑HN‑8 human LSCC cells with or without TXNDC5 overexpression or knockdown were treated with cisplatin (5, 10, 20 and 40 µM) and/or cetuximab (10, 50, 100 and 150 µg/ml), for 12, 24, 36 and 48 h. Cisplatin and cetuximab concentration‑ and time‑dependently increased and decreased the expression of TXNDC5 in AMC‑HN‑8 cells, respectively. Knockdown of TXNDC5 markedly augmented cisplatin‑induced levels of CCAAT/enhancer‑binding protein homologous protein (CHOP), caspase‑3 activity and apoptosis; while overexpression of TXNDC5 largely eliminated cetuximab‑induced levels of CHOP, caspase‑3 activity and apoptosis. Cisplatin and cetuximab demonstrated a combinatorial effect on increasing the levels of CHOP, caspase‑3 activity and apoptosis, which was largely eliminated by overexpression of TXNDC5 or a reactive oxygen species (ROS) scavenger/antagonist. In addition, promoter/luciferase reporter assays revealed that cisplatin and cetuximab regulated the expression of TXNDC5 at the gene transcription/promoter level. In conclusion, the findings suggested that ER stress‑associated apoptosis is a major mechanism underlying the apoptotic effect of cisplatin and cetuximab on LSCC cells; cetuximab enhanced cisplatin‑induced ER stress‑associated apoptosis in LSCC cells largely by inhibiting the expression of TXNDC5 and thereby increasing ROS production

  5. P2X7 receptor blockade protects against cisplatin-induced nephrotoxicity in mice by decreasing the activities of inflammasome components, oxidative stress and caspase-3

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuanyuan; Yuan, Fahuan; Cao, Xuejiao [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China); Zhai, Zhifang [Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing 400038 (China); Gang Huang [Department of Medical Genetics, Third Military Medical University, Chongqing 430038 (China); Du, Xiang; Wang, Yiqin; Zhang, Jingbo; Huang, Yunjian; Zhao, Jinghong [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China); Hou, Weiping, E-mail: hwp0518@aliyun.com [Department of Nephrology, Xinqiao Hospital, PLA, Third Military Medical University, Chongqing 400037 (China)

    2014-11-15

    Nephrotoxicity is a common complication of cisplatin chemotherapy and thus limits the use of cisplatin in clinic. The purinergic 2X7 receptor (P2X7R) plays important roles in inflammation and apoptosis in some inflammatory diseases; however, its roles in cisplatin-induced nephrotoxicity remain unclear. In this study, we first assessed the expression of P2X7R in cisplatin-induced nephrotoxicity in C57BL/6 mice, and then we investigated the changes of renal function, histological injury, inflammatory response, and apoptosis in renal tissues after P2X7R blockade in vivo using an antagonist A-438079. Moreover, we measured the changes of nod-like receptor family, pyrin domain containing proteins (NLRP3) inflammasome components, oxidative stress, and proapoptotic genes in renal tissues in cisplatin-induced nephrotoxicity after treatment with A-438079. We found that the expression of P2X7R was significantly upregulated in the renal tubular epithelial cells in cisplatin-induced nephrotoxicity compared with that of the normal control group. Furthermore, pretreatment with A-438079 markedly attenuated the cisplatin-induced renal injury while lightening the histological damage, inflammatory response and apoptosis in renal tissue, and improved the renal function. These effects were associated with the significantly reduced levels of NLRP3 inflammasome components, oxidative stress, p53 and caspase-3 in renal tissues in cisplatin-induced nephrotoxicity. In conclusions, our studies suggest that the upregulated activity of P2X7R might play important roles in the development of cisplatin-induced nephrotoxicity, and P2X7R blockade might become an effective therapeutic strategy for this disease. - Highlights: • The P2X7R expression was markedly upregulated in cisplatin-induced nephrotoxicity. • P2X7R blockade significantly attenuated the cisplatin-induced renal injury. • P2X7R blockade reduced activities of NLRP3 inflammasome components in renal tissue. • P2X7R blockade

  6. A randomized, double-blind, multicentre study comparing daily 2 and 5 mg of tropisetron for the control of nausea and vomiting induced by low-dose cisplatin- or non-cisplatin-containing chemotherapy

    NARCIS (Netherlands)

    Wymenga, ANM; vanderGraaf, WTA; Wils, JA; vanHeukelom, LS; vanderLinden, GHM; DullemondWestland, AC; Nooy, M; vanderHeul, C; deBruijn, KM; deVries, EGE

    Background: This study compares efficacy safety and tolerability of 2 and 5 mg tropisetron in prevention of nausea and vomiting induced by low-dose cisplatin- or non-cisplatin-containing chemotherapy. Patients and methods: 152 chemotherapy-naive cancer patients were randomized in a double-blind

  7. Renoprotective Effect of Lactoferrin against Chromium-Induced Acute Kidney Injury in Rats: Involvement of IL-18 and IGF-1 Inhibition.

    Directory of Open Access Journals (Sweden)

    Rehab Hegazy

    Full Text Available Hexavalent chromium (CrVI is a heavy metal widely used in more than 50 industries. Nephrotoxicity is a major adverse effect of chromium poisoning. The present study investigated the potential renoprotective effect of lactoferrin (Lf against potassium dichromate (PDC-induced acute kidney injury (AKI in rats. Beside, because previous studies suggest that interlukin-18 (IL-18 and insulin-like growth factor-1 (IGF-1 play important roles in promoting kidney damage, the present work aimed to evaluate the involvement of these two cytokines in PDC model of AKI and in the potential renoprotective effect of lactoferrin. Adult male albino Wistar rats were pretreated with Lf (200 mg/kg/day, p.o. or (300 mg/kg/day, p.o.; the doses that are usually used in the experiment studies, for 14 days followed by a single dose of PDC (15 mg/kg, s.c.. PDC caused significant increase in serum urea, creatinine, and total protein levels. This was accompanied with decreased renal glutathione content, and increased renal malondialdehyde, IL-18, IL-4, nuclear factor kappa B (NFκB, IGF-1, and the phosphorylated form of forkhead box protein O1 (FoxO1 levels. Moreover, normal expression IFN-γ mRNA and enhanced expression of TNF-α mRNA was demonstrated in renal tissues. Histopathological investigations provoked deleterious changes in the renal tissues. Tubular epithelial hyperplasia and apoptosis were demonstrated immunohistochemically by positive proliferating cell nuclear antigen (PCNA, Bax, and Caspase-3 expression, respectively. Pretreatment of rats with Lf in both doses significantly corrected all previously mentioned PDC-induced changes with no significant difference between both doses. In conclusion, the findings of the present study demonstrated the involvement of oxidative stress, inflammatory reactions, tubular hyperplasia and apoptosis in PDC-induced AKI. It suggested a role of IL-18 through stimulation of IL-4-induced inflammatory pathway, and IGF-1 through

  8. The effects of a selective inhibitor of c-Fos/activator protein-1 on endotoxin-induced acute kidney injury in mice

    Directory of Open Access Journals (Sweden)

    Miyazaki Hiroyuki

    2012-11-01

    Full Text Available Abstract Background Sepsis has been identified as the most common cause of acute kidney injury (AKI in intensive care units. Lipopolysaccharide (LPS induces the production of several proinflammatory cytokines including tumor necrosis factor (TNF-alpha, a major pathogenetic factor in septic AKI. c-Fos/activator protein (AP-1 controls the expression of these cytokines by binding directly to AP-1 motifs in the cytokine promoter regions. T-5224 is a new drug developed by computer-aided drug design that selectively inhibits c-Fos/AP-1 binding to DNA. In this study, we tested whether T-5224 has a potential inhibitory effect against LPS-induced AKI, by suppressing the TNF-alpha inflammatory response and other downstream effectors. Methods To test this hypothesis, male C57BL/6 mice at 7 weeks old were divided into three groups (control, LPS and T-5224 groups. Mice in the control group received saline intraperitoneally and polyvinylpyrrolidone solution orally. Mice in the LPS group were injected intraperitoneally with a 6 mg/kg dose of LPS and were given polyvinylpyrrolidone solution immediately after LPS injection. In the T-5224 group, mice were administered T-5224 orally at a dose of 300 mg/kg immediately after LPS injection. Serum concentrations of TNF-alpha, interleukin (IL-1beta, IL-6 and IL-10 were measured by ELISA. Moreover, the expression of intercellular adhesion molecule (ICAM-1 mRNA in kidney was examined by quantitative real-time RT-PCR. Finally, we evaluated renal histological changes. Results LPS injection induced high serum levels of TNF-alpha, IL-1beta and IL-6. However, the administration of T-5224 inhibited the LPS-induced increase in these cytokine levels. The serum levels of IL-10 in the LPS group and T-5224 group were markedly elevated compared with the control group. T-5224 also inhibited LPS-induced ICAM-1 mRNA expression. Furthermore histological studies supported an anti-inflammatory role of T-5224. Conclusions In endotoxin-induced

  9. Leukocytoclastic vasculitis complicating cisplatin + radiation treatment for laryngeal cancer: a case report.

    Science.gov (United States)

    Quintanilha, Júlia Coelho França; Visacri, Marília Berlofa; Amaral, Laís Sampaio; Lima, Carmen Silvia Passos; Cintra, Maria Letícia; Moriel, Patricia

    2017-12-06

    Leukocytoclastic vasculitis is typically mediated by deposition of immune complexes and is related to many causes, including medication. To the best of our knowledge, leukocytoclastic vasculitis related to cisplatin has not yet been described in the scientific literature. We report a rare case of leukocytoclastic vasculitis after the first cycle of high-dose cisplatin chemotherapy in a patient with larynx carcinoma. A 48-year-old Caucasian man with larynx carcinoma received a high-dose of cisplatin monochemotherapy (100 mg/m 2 every 21 days), along with 70 Gy of radiotherapy divided into 35 sessions, as a therapeutic schedule. Twelve days after the first chemotherapy administration and after 8 sessions of radiotherapy (total of 16 Gy), the patient presented with acute onset of palpable purpura in the lower limbs. The patient was hospitalized for 10 days, and during this period, he underwent several examinations to rule out infectious, autoimmune, and neoplastic disorders. A skin biopsy showed leukocytoclastic vasculitis with a positive pattern for IgM and C3, as detected through direct immunofluorescence. Twenty-five days after cisplatin administration, the chemotherapy regimen was changed to carboplatin AUC 5, and the episodes of purpura ceased, reinforcing the hypothesis of an adverse reaction to cisplatin. Cisplatin can induce leukocytoclastic vasculitis and clinicians should be aware of this potential effect for better case management and diagnosis.

  10. Effects of pituitary adenylate cyclase activating polypeptide in the urinary system, with special emphasis on its protective effects in the kidney.

    Science.gov (United States)

    Reglodi, Dora; Kiss, Peter; Horvath, Gabriella; Lubics, Andrea; Laszlo, Eszter; Tamas, Andrea; Racz, Boglarka; Szakaly, Peter

    2012-04-01

    Pituitary adenylate cyclase activating polypeptide (PACAP) is a widespread neuropeptide with diverse effects in the nervous system and peripheral organs. One of the most well-studied effects of PACAP is its cytoprotective action, against different harmful stimuli in a wide variety of cells and tissues. PACAP occurs in the urinary system, from the kidney to the lower urinary tract. The present review focuses on the nephroprotective effects of PACAP and summarizes data obtained regarding the protective effects of PACAP in different models of kidney pathologies. In vitro data show that PACAP protects tubular cells against oxidative stress, myeloma light chain, cisplatin, cyclosporine-A and hypoxia. In vivo data provide evidence for its protective effects in ischemia/reperfusion, cisplatin, cyclosporine-A, myeloma kidney injury, diabetic nephropathy and gentamicin-induced kidney damage. Results accumulated on the renoprotective effects of PACAP suggest that PACAP is an emerging candidate for treatment of human kidney pathologies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Emblica extract prevents cisplatin-induced apoptosis in dermal papilla fibroblasts

    OpenAIRE

    Sudjit Luanpitpong; Varisa Pongrakhananon; Ubonthip Nimmannit; Pithi Chanvorachote

    2008-01-01

    Cisplatin is a widely prescribed anticancer agent that causes hair loss in patients. Since the dermal papilla (DP) fibroblasts are known to be a key mediator in controlling hair growth and loss, understanding the effect and underlying mechanism of cisplatin on these cells may lead to new strategy for hair loss protection in chemotherapy patients. Less is known regarding the effect of cisplatin on DP fibroblasts. We thus treated DP cells with cisplatin (0-250 mmol/L) and found that cisplatin i...

  12. Assessment of D-methionine protecting cisplatin-induced otolith toxicity by vestibular-evoked myogenic potential tests, ATPase activities and oxidative state in guinea pigs.

    Science.gov (United States)

    Lo, Wu-Chia; Chang, Chih-Ming; Liao, Li-Jen; Wang, Chi-Te; Young, Yi-Ho; Chang, Yih-Leong; Cheng, Po-Wen

    2015-01-01

    To date, inadequate study has been devoted to the toxic vestibular effects caused by cisplatin. In addition, no electrophysiological examination has been conducted to assess cisplatin-induced otolith toxicity. The purposes of this study are thus two-fold: 1) to determine whether cervical vestibular-evoked myogenic potentials (VEMPs) and ocular VEMPs are practical electrophysiological methods of testing for cisplatin-induced otolith toxicity and 2) to examine if D-methionine (D-met) pre-injection would protect the otolith organs against cisplatin-induced changes in enzyme activities and/or oxidative status. Guinea pigs were intraperitoneally treated once daily with the following injections for seven consecutive days: sterile 0.9% saline control, cisplatin (5 mg/kg) only, D-met (300 mg/kg) only, or a combination of d-met (300 mg/kg) and cisplatin (5 mg/kg), respectively, with a 30 minute window in between. Each animal underwent the oVEMP and cVEMP tests before and after treatment. The changes in the biochemistry of the otolith organs, including membranous Na(+), K(+)-ATPase and Ca(2+)-ATPase, lipid peroxidation (LPO) levels and nitric oxide (NO) levels, were also evaluated. In the cisplatin-only treated guinea pigs, the mean amplitudes of the oVEMP tests were significantly (potolith dysfunction. D-Met attenuated the reduced ATPase activities and increased oxidative stress induced by cisplatin toxicity in the otolith organs. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Pharmacological management of acute kidney injury and chronic kidney disease in neonates.

    Science.gov (United States)

    Jetton, Jennifer G; Sorenson, Mark

    2017-04-01

    Both acute kidney injury (AKI) and chronic kidney disease (CKD) are seen more frequently in the neonatal intensive care unit (NICU) as advances in supportive care improve the survival of critically ill infants as well as those with severe, congenital kidney and urinary tract anomalies. Many aspects of the infant's care, including fluid balance, electrolyte and mineral homeostasis, acid-base balance, and growth and nutrition require close monitoring by and collaboration among neonatologists, nephrologists, dieticians, and pharmacologists. This educational review summarizes the therapies widely used for neonates with AKI and CKD. Use of these therapies is extrapolated from data in older children and adults or based on clinical experience and case series. There is a critical need for more research on the use of therapies in infants with kidney disease as well as for the development of drug delivery systems and preparations scaled more appropriately for these small patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Linking acute kidney injury to chronic kidney disease: the missing links.

    Science.gov (United States)

    Kaballo, Mohammed A; Elsayed, Mohamed E; Stack, Austin G

    2017-08-01

    Acute kidney injury (AKI) is considered to be a major public health problem around the globe, and it is associated with major adverse clinical outcomes and significant health care costs. There is growing evidence suggesting that AKI is associated with the subsequent development of chronic kidney disease (CKD). While recovery of kidney function occurs in the majority of patients surviving an AKI episode, a large number of patients do not recover completely. Similarly, CKD is a well-known risk factor for the development of AKI. Recent studies suggest that both AKI and CKD are not separate disease entities but are in fact components of a far more closely interconnected disease continuum. However, the true nature of this relationship is complex and poorly understood. This review explores potential relationships between AKI and CKD, and seeks to uncover a number of "missing links" in this tentative emerging relationship.

  15. Herbal and dietary supplements related to diarrhea and acute kidney injury: a case report.

    Science.gov (United States)

    Wanitsriphinyo, Suphamat; Tangkiatkumjai, Mayuree

    2017-03-01

    Background There is very little evidence relating to the association of herbal medicine with diarrhea and the development of acute kidney injury (AKI). This study reports a case of diarrhea-induced AKI, possibly related to an individual ingesting copious amounts of homemade mixed fruit and herb puree. Case presentation A 45-year-old Thai man with diabetes had diarrhea for 2 days, as a result of taking high amounts of a puree made up of eight mixed fruits and herbs over a 3-day period. He developed dehydration and stage 2 AKI, with a doubling of his serum creatinine. He had been receiving enalapril, as a prescribed medication, over one year. After he stopped taking both the puree and enalapril, and received fluid replacement therapy, within a week his serum creatinine had gradually decreased. The combination of puree, enalapril and AKI may also have induced hyperkalemia in this patient. Furthermore, the patient developed hyperphosphatemia due to his worsening kidney function, exacerbated by regularly taking some dietary supplements containing high levels of phosphate. His serum levels of potassium and phosphate returned to normal within a week, once the patient stopped both the puree and all dietary supplements, and had begun receiving treatment for hyperkalemia. Results The mixed fruit and herb puree taken by this man may have led to his diarrhea due to its effect; particularly if the patient was taking a high concentration of such a drink. Both the puree and enalapril are likely to attenuate the progression of kidney function. The causal relationship between the puree and AKI was probable (5 scores) assessed by the modified Naranjo algorithm. This is the first case report, as far as the authors are aware, relating the drinking of a mixed fruit and herbal puree to diarrhea and AKI in a patient with diabetes. Conclusions This case can alert health care providers to the possibility that herbal medicine could induce diarrhea and develop acute kidney injury.

  16. Post-infectious acute glomerulonephritis with podocytopathy induced by parvovirus B19 infection.

    Science.gov (United States)

    Hara, Satoshi; Hirata, Masayoshi; Ito, Kiyoaki; Mizushima, Ichiro; Fujii, Hiroshi; Yamada, Kazunori; Nagata, Michio; Kawano, Mitsuhiro

    2018-03-01

    Human parvovirus B19 infection causes a variety of glomerular diseases such as post-infectious acute glomerulonephritis and collapsing glomerulopathy. Although each of these appears independently, it has not been fully determined why parvovirus B19 provokes such a variety of different glomerular phenotypes. Here, we report a 68-year-old Japanese man who showed endocapillary proliferative glomerulonephritis admixed with podocytopathy in association with parvovirus B19 infection. The patient showed acute onset of heavy proteinuria, microscopic hematuria and kidney dysfunction with arthralgia and oliguria after close contact with a person suffering from erythema infectiosum. In the kidney biopsy specimen, glomeruli revealed diffuse and global endocapillary infiltration of inflammatory cells, with some also showing tuft collapse with aberrant vacuolation, swelling, and hyperplasia of glomerular epithelial cells. Immunofluorescence revealed dense granular C3 deposition that resembled the "starry sky pattern". Intravenous glucocorticoid pulse therapy followed by oral prednisolone and cyclosporine combination therapy resulted in considerable amelioration of the kidney dysfunction and urinary abnormalities. The present case reveals that parvovirus B19 infection can induce different glomerular phenotypes even in the same kidney structure. This finding may provide hints useful for the further elucidation of the pathogenesis of parvovirus B19-induced glomerular lesions. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  17. Nonpharmacological Strategies to Prevent Contrast-Induced Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Paweena Susantitaphong

    2014-01-01

    Full Text Available Contrast-induced AKI (CI-AKI has been one of the leading causes for hospital-acquired AKI and is associated with independent risk for adverse clinical outcomes including morbidity and mortality. The aim of this review is to provide a brief summary of the studies that focus on nonpharmacological strategies to prevent CI-AKI, including routine identification of at-risk patients, use of appropriate hydration regimens, withdrawal of nephrotoxic drugs, selection of low-osmolar contrast media or isoosmolar contrast media, and using the minimum volume of contrast media as possible. There is no need to schedule dialysis in relation to injection of contrast media or injection of contrast agent in relation to dialysis program. Hemodialysis cannot protect the poorly functioning kidney against CI-AKI.

  18. Prevalence and outcomes of acute kidney injury in term neonates ...

    African Journals Online (AJOL)

    Background: The kidney is the most damaged organ in asphyxiated full-term infants. The severity of its damage is correlated with the severity of neurological damage. We determined the prevalence of perinatal asphyxia-associated acute kidney injury (AKI). Methods: We conducted a prospective cohort study including 60 ...

  19. Chrysin protects against cisplatin-induced colon. toxicity via amelioration of oxidative stress and apoptosis: Probable role of p38MAPK and p53

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Rehan; Khan, Abdul Quaiyoom; Qamar, Wajhul; Lateef, Abdul; Tahir, Mir; Rehman, Muneeb U; Ali, Farrah; Sultana, Sarwat, E-mail: sarwat786@rediffmail.com

    2012-02-01

    Cisplatin, an antineoplastic drug, is widely used as a foremost therapy against numerous forms of cancer but it has pronounced adverse effects viz., nephrotoxicity, ototoxicity etc. CDDP-induced emesis and diarrhea are also marked toxicities that may be due to intestinal injury. Chrysin (5,7-dihydroxyflavone), a natural flavone commonly found in many plants possesses multiple biological activities, such as antioxidant, anti-inflammatory and anti-cancer effects. In the present study, we investigated the protective effect of chrysin against CDDP-induced colon toxicity. The plausible mechanism of CDDP-induced colon toxicity and damage includes oxidative stress, activation of p38MAPK and p53, and colonic epithelial cell apoptosis via upregulating the expression of Bak and cleaved caspase-3. Chrysin was administered to Wistar rats once daily for 14 consecutive days at the doses of 25 and 50 mg/kg body weight orally in corn oil. On day 14, a single intraperitoneal injection of cisplatin was given at the dose of 7.5 mg/kg body weight and animals were euthanized after 24 h of cisplatin injection. Chrysin ameliorated CDDP-induced lipid peroxidation, xanthine oxidase activity, glutathione depletion, decrease in antioxidant (catalase, glutathione reductase, glutathione peroxidase and glucose-6 phosphate dehydrogenase) and phase-II detoxifying (glutathione-S-transferase and quinone reductase) enzyme activities. Chrysin also attenuated goblet cell disintegration, expression of phospho-p38MAPK and p53, and apoptotic tissue damage which were induced by CDDP. Histological findings further supported the protective effects of chrysin against CDDP-induced colonic damage. The results of the present study suggest that the protective effect of chrysin against CDDP-induced colon toxicity was related with attenuation of oxidative stress, activation of p38MAPK and p53, and apoptotic tissue damage. Highlights: ► Cisplatin-induced colon toxicity is associated with oxidative stress and

  20. Chrysin protects against cisplatin-induced colon. toxicity via amelioration of oxidative stress and apoptosis: Probable role of p38MAPK and p53

    International Nuclear Information System (INIS)

    Khan, Rehan; Khan, Abdul Quaiyoom; Qamar, Wajhul; Lateef, Abdul; Tahir, Mir; Rehman, Muneeb U; Ali, Farrah; Sultana, Sarwat

    2012-01-01

    Cisplatin, an antineoplastic drug, is widely used as a foremost therapy against numerous forms of cancer but it has pronounced adverse effects viz., nephrotoxicity, ototoxicity etc. CDDP-induced emesis and diarrhea are also marked toxicities that may be due to intestinal injury. Chrysin (5,7-dihydroxyflavone), a natural flavone commonly found in many plants possesses multiple biological activities, such as antioxidant, anti-inflammatory and anti-cancer effects. In the present study, we investigated the protective effect of chrysin against CDDP-induced colon toxicity. The plausible mechanism of CDDP-induced colon toxicity and damage includes oxidative stress, activation of p38MAPK and p53, and colonic epithelial cell apoptosis via upregulating the expression of Bak and cleaved caspase-3. Chrysin was administered to Wistar rats once daily for 14 consecutive days at the doses of 25 and 50 mg/kg body weight orally in corn oil. On day 14, a single intraperitoneal injection of cisplatin was given at the dose of 7.5 mg/kg body weight and animals were euthanized after 24 h of cisplatin injection. Chrysin ameliorated CDDP-induced lipid peroxidation, xanthine oxidase activity, glutathione depletion, decrease in antioxidant (catalase, glutathione reductase, glutathione peroxidase and glucose-6 phosphate dehydrogenase) and phase-II detoxifying (glutathione-S-transferase and quinone reductase) enzyme activities. Chrysin also attenuated goblet cell disintegration, expression of phospho-p38MAPK and p53, and apoptotic tissue damage which were induced by CDDP. Histological findings further supported the protective effects of chrysin against CDDP-induced colonic damage. The results of the present study suggest that the protective effect of chrysin against CDDP-induced colon toxicity was related with attenuation of oxidative stress, activation of p38MAPK and p53, and apoptotic tissue damage. Highlights: ► Cisplatin-induced colon toxicity is associated with oxidative stress and

  1. Cisplatin-Induced Conditioned Taste Aversion: Attenuation by Dexamethasone but not Zacopride or GR38032F

    Science.gov (United States)

    1992-01-01

    SR2-1 Cisplatin-induced conditioned taste aversion: ateuto by dexamethasone but not zacopride or GR38032F Nm I- Paul C Mele, John R. McDonough, David...to 5-H1’, receptor blockade. 5-HT., receptor antagonists; Zacopridc: GR38032F; Desamethasone: Cisplatin: Taste aversion (conditioned) I. Introductlon...intake) was used as the area known as the chemoreceptor trigger zone (Borri- index of the CTA. son, 1974). Moreover. the findings that rats, ferrets

  2. Fentanyl induces autophagy via activation of the ROS/MAPK pathway and reduces the sensitivity of cisplatin in lung cancer cells.

    Science.gov (United States)

    Yao, Jiaqi; Ma, Chi; Gao, Wei; Liang, Jinxiao; Liu, Chang; Yang, Hongfang; Yan, Qiu; Wen, Qingping

    2016-12-01

    Cancer pain is the most common complication of lung carcinoma. Opioid agonist fentanyl is widely used for relieving pain in cancer patients, and cisplatin (DDP)‑based chemotherapy is commonly used for the treatment of advanced lung cancer; these two drugs are always used together in lung carcinoma patients. However, the mechanisms and related biological pathways by which fentanyl influences cisplatin sensitivity are relatively poorly reported. Here, we found that fentanyl reduces the sensitivity of cisplatin in human lung cancer cells and induces autophagy. Fentanyl induced reactive oxygen species (ROS) generation and JNK activation. N-acetyl‑L‑cysteine is a ROS scavenger and antioxidant, and the inhibition of JNK with SP600125 prevented fentanyl‑induced autophagy. We also found that 3-methyladenine (3-MA; an autophagy inhibitor) increased the sensitivity of DDP and weakened the inhibition of fentanyl. In conclusion, fentanyl reduces the sensitivity of cisplatin in lung cancer cells through the ROS-JNK-autophagy pathway, whereas the autophagy inhibitor 3-MA may weaken this effect.

  3. Cell cycle arrest and the evolution of chronic kidney disease from acute kidney injury.

    Science.gov (United States)

    Canaud, Guillaume; Bonventre, Joseph V

    2015-04-01

    For several decades, acute kidney injury (AKI) was generally considered a reversible process leading to complete kidney recovery if the individual survived the acute illness. Recent evidence from epidemiologic studies and animal models, however, have highlighted that AKI can lead to the development of fibrosis and facilitate the progression of chronic renal failure. When kidney injury is mild and baseline function is normal, the repair process can be adaptive with few long-term consequences. When the injury is more severe, repeated, or to a kidney with underlying disease, the repair can be maladaptive and epithelial cell cycle arrest may play an important role in the development of fibrosis. Indeed, during the maladaptive repair after a renal insult, many tubular cells that are undergoing cell division spend a prolonged period in the G2/M phase of the cell cycle. These tubular cells recruit intracellular pathways leading to the synthesis and the secretion of profibrotic factors, which then act in a paracrine fashion on interstitial pericytes/fibroblasts to accelerate proliferation of these cells and production of interstitial matrix. Thus, the tubule cells assume a senescent secretory phenotype. Characteristic features of these cells may represent new biomarkers of fibrosis progression and the G2/M-arrested cells may represent a new therapeutic target to prevent, delay or arrest progression of chronic kidney disease. Here, we summarize recent advances in our understanding of the biology of the cell cycle and how cell cycle arrest links AKI to chronic kidney disease. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  4. High risk of rhabdomyolysis and acute kidney injury after traumatic limb compartment syndrome.

    Science.gov (United States)

    Tsai, Wei-Hsuan; Huang, Shih-Tsai; Liu, Wen-Chung; Chen, Lee-Wei; Yang, Kuo-Chung; Hsu, Kuei-Chang; Lin, Cheng-Ta; Ho, Yen-Yi

    2015-05-01

    Rhabdomyolysis often occurs after traumatic compartment syndrome, and high morbidity and mortality have been reported with the acute kidney injury that develops subsequently. We focused on the risk factors for rhabdomyolysis and acute kidney injury in patients with traumatic compartment syndrome. We also analyzed the relation between renal function and rhabdomyolysis in these patients. A retrospective chart review was conducted from January 2006 to March 2012. Inpatients with traumatic compartment syndrome were included. We evaluated patients' demographics, history of illicit drugs use or alcohol consumption, mechanism of injury, symptoms, serum creatine kinase levels, and kidney function. A total of 52 patients with a mean age of 40.9 years were included; 23 patients had rhabdomyolysis (44.2%), of which 9 patients developed acute kidney injury (39.1%). Significant predictive factors for rhabdomyolysis were history of illicit drugs or alcohol use (P=0.039; odds ratio, 5.91) and ischemic injury (P=0.005). We found a moderate correlation between serum creatine kinase levels and serum creatinine levels (R=0.57; PRhabdomyolysis was a predisposing factor for acute kidney injury (P=0.011; odds ratio, 8.68). Four patients with rhabdomyolysis required a short period of renal replacement therapy. A high percentage of patients with traumatic compartment syndrome developed rhabdomyolysis (44.2%). Patients with rhabdomyolysis had a higher possibility of developing acute kidney injury (39.1%), and rhabdomyolysis was correlated to renal function. Early diagnosis, frequent monitoring, and aggressive treatment are suggested once compartment syndrome is suspected. The overall prognosis is good with early diagnosis and proper treatment.

  5. Pinpointing differences in cisplatin-induced apoptosis in adherent and non-adherent cancer cells

    DEFF Research Database (Denmark)

    Tastesen, Hanne Sørup; Holm, Jacob Bak; Poulsen, Kristian Arild

    2010-01-01

    Platinum compounds are used in the treatment of cancer. We demonstrate that cisplatin-induced (10 µM) apoptosis (caspase-3 activity) is pronounced within 18 hours in non-adherent Ehrlich ascites tumour cells (EATC), whereas there is no increase in caspase-3 activity in the adherent Ehrlich Lettré...... ascites tumour cells (ELA). Loss of KCl and cell shrinkage are hallmarks in apoptosis and has been shown in EATC. However, we find no reduction in cell volume and only a minor loss of K(+) which is accompanied by net uptake of Na(+) following 18 hours cisplatin exposure in ELA. Glutathione and taurine...

  6. Alpha2,3-sialyltransferase III knockdown sensitized ovarian cancer cells to cisplatin-induced apoptosis.

    Science.gov (United States)

    Wang, Xiaoyu; Zhang, Yiting; Lin, Haiyingjie; Liu, Yan; Tan, Yi; Lin, Jie; Gao, Fenze; Lin, Shaoqiang

    2017-01-22

    Emerging evidence indicates that β-galactoside-α2,3-sialyltransferase III (ST3Gal3) involves in development, inflammation, neoplastic transformation, and metastasis. However, the role of ST3Gal3 in regulating cancer chemoresistance remains elusive. Herein, we investigated the functional effects of ST3Gal3 in cisplatin-resistant ovarian cancer cells. We found that the levels of ST3Gal3 mRNA differed significantly among ovarian cancer cell lines. HO8910PM cells that have high invasive and metastatic capacity express elevated ST3Gal3 mRNA and are resistant to cisplatin, comparing to SKOV3 cells that have a lower level of ST3Gal3 expression and are more chemosensitive to cisplatin. We found that the expression of ST3Gal3 has reverse correlation with the dosage of cisplatin used in both SKOV3 and HO8910PM cells, and high dose of cisplatin could down-regulate ST3Gal3 expression. We then examined the functional effects of ST3Gal3 knockdown in cancer cell lines using FACS analysis. The number of apoptotic cells was much higher in cells if ST3Gal3 expression was knocked down by siRNA and/or by treating cells with higher dosage of cisplatin in comparison to control cells. Interestingly, in HO8910PM cells with ST3Gal3 knockdown, the levels of caspase 8 and caspase 3 proteins increased, which was more obvious in cells treated with both ST3Gal3 knockdown and cisplatin, suggesting that ST3Gal3 knockdown synergistically enhanced cisplatin-induced apoptosis in ovarian cancer cells. Taken together, these results uncover an alternative mechanism of cisplatin-resistance through ST3Gal3 and open a window for effective prevention of chemoresistance and relapse of ovarian cancer by targeting ST3Gal3. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Metformin induces an intracellular reductive state that protects oesophageal squamous cell carcinoma cells against cisplatin but not copper-bis(thiosemicarbazones)

    International Nuclear Information System (INIS)

    Damelin, Leonard Howard; Jivan, Rupal; Veale, Robin Bruce; Rousseau, Amanda Louise; Mavri-Damelin, Demetra

    2014-01-01

    Oesophageal squamous cell carcinoma (OSCC) is a highly aggressive carcinoma with a poor survival rate. One of the most commonly used chemotherapeutic drugs, cisplatin, displays varied and often poor efficacy in vivo. Therefore, alternative, cost-effective and more efficacious treatments are required. Metformin has been previously shown to reduce proliferative rates in various carcinoma cell lines. We report for the first time, the effect of metformin on OSCC cell proliferation and show that it antagonises cisplatin-induced but not copper-bis(thiosemicarbazone)-induced cytotoxicity in OSCC cells. Cell proliferation and stage of the cell cycle were quantified by trypan blue counts and flow cytometry, respectively. All cytotoxicity measurements were made using the tetrazolium based MTT assay. Metabolic alterations to cells were determined as follows: glycolysis via a lactate dehydrogenase assay, reducing equivalents by MTT reduction and reduced intracellular thiols by monobromobimane-thiol fluorescence, and glutathione depletion using buthionine sulfoximine. Inductively coupled plasma mass spectrometry was used to quantify cisplatin-DNA adduct formation. Metformin was found to reduce cell proliferation significantly in all OSCC cell lines, with an accumulation of cells in G0/G1 phase of the cell cycle. However, metformin significantly protected OSCC cells against cisplatin toxicity. Our results indicate that a major mechanism of metformin-induced cisplatin resistance results from a significant increase in glycolysis, intracellular NAD(P)H levels with a concomitant increase in reduced intracellular thiols, leading to decreased cisplatin-DNA adduct formation. The glutathione synthesis inhibitor buthionine sulfoximine significantly ablated the protective effect of metformin. We subsequently show that the copper-bis(thiosemicarbazones), Cu-ATSM and Cu-GTSM, which are trapped in cells under reducing conditions, cause significant OSCC cytotoxicity, both alone and in

  8. Protective mechanism of Korean Red Ginseng in cisplatin-induced ototoxicity through attenuation of nuclear factor-κB and caspase-1 activation.

    Science.gov (United States)

    Kim, Su-Jin; Kwak, Hyun Jeong; Kim, Dae-Seung; Choi, Hyun-Myung; Sim, Jung-Eun; Kim, Sung-Hoon; Um, Jae-Young; Hong, Seung-Heon

    2015-07-01

    Cisplatin is an effective anti-cancer drug; however, one of its side effects is irreversible sensorineural hearing damage. Korean Red Ginseng (KRG) has been used clinically for the treatment of various diseases; however, the underlying mechanism of KRG treatment of ototoxicity has not been studied extensively. The present study aimed to further investigate the mechanism of KRG on cisplatin-induced toxicity in auditory HEI-OC1 cells in vitro, as well as in vivo. The pharmacological effects of KRG on cisplatin-induced changes in the hearing threshold of mice were determined, as well as the effect on the impairment of hair cell arrays. In addition, in order to elucidate the protective mechanisms of KRG, the regulatory effects of KRG on cisplatin-induced apoptosis-associated gene levels and nuclear factor-κB (NF-κB) activation were investigated in auditory cells. The results revealed that KRG prevented cisplatin-induced alterations in the hearing threshold of mice as well as the destruction of hair cell arrays in rat organ of Corti primary explants. In addition, KRG inhibited cisplatin-mediated cell toxicity, reactive oxygen species generation, interleukin-6 production, cytochrome c release and activation of caspases-3 in the HEI-OC1 auditory cell line. Furthermore, the results demonstrated that KRG inhibited the activation of NF-κB and caspase-1. In conclusion, these results provided a model for the pharmacological mechanism of KRG and provided evidence for potential therapies against ototoxicity.

  9. Chronic kidney disease: an inherent risk factor for acute kidney injury?

    Science.gov (United States)

    Singh, Prabhleen; Rifkin, Dena E; Blantz, Roland C

    2010-09-01

    Epidemiologic evidence suggests that chronic kidney disease (CKD) is a risk factor for acute kidney injury (AKI) due to the prevalence of CKD in patients who have episodes of AKI. However, the high burden of comorbidities such as age, diabetes, peripheral vascular, cardiovascular, and liver disease accompanying CKD, and the difficulties of defining AKI in the setting of CKD make these observations difficult to interpret. These comorbidities not only could alter the course of AKI but also may be the driving force behind the epidemiologic association between CKD and AKI because of systemic changes and/or increased exposure to potential nephrotoxic risks. Here, we contend that studies suggesting that CKD is a risk factor for AKI may suffer from residual confounding and reflect an overall susceptibility to illness rather than biologic susceptibility of the kidney parenchyma to injury. In support of our argument, we discuss the clinical evidence from epidemiologic studies, and the knowledge obtained from animal models on the pathophysiology of AKI and CKD, demonstrating a preconditioning influence of the previously impaired kidneys against subsequent injury. We conclude that, under careful analysis, factors apart from the inherent pathophysiology of the diseased kidney may be responsible for the increased frequency of AKI in CKD patients, and the impact of CKD on the risk and severity of AKI needs further investigation. Moreover, certain elements in the pathophysiology of a previously injured kidney may, surprisingly, bear out to be protective against AKI.

  10. Neo-adjuvant chemotherapy with cisplatin induces low expression of NMDA receptors and postoperative cognitive impairment.

    Science.gov (United States)

    Cheng, Jing; Liu, Xiaoqing; Cao, Longhui; Zhang, Tianhua; Li, Huiting; Lin, Wenqian

    2017-01-10

    Whether Neo-adjuvant chemotherapy can affect patients' postoperative brain function is not clear. In this study, we investigated the effect of preoperative cisplatin treatment on postoperative cognitive function and its possible mechanism in rats. Moreover, we also tested whether the NMDAR inhibitor memantine could attenuate cisplatin-induced alterations. 12-month-oldSprague-Dawley rats randomly received an intraperitoneal injection of either cisplatin once a week at a dose of 3mg/kg for three consecutive weeks or an equivalent volume of normal saline. After the injections, the normal saline injection group was divided into 3 groups (n=5 each): a normal saline group (group S), normal saline+pentobarbital group (group SP), and normal saline+pentobarbital+operation group (group SPO).The cisplatin injection group was divided into 3 groups: a cisplatin group (group C), cisplatin+pentobarbital group (group CP), and cisplatin+pentobarbital+operation group (group CPO).Rats in the group SP, SPO,CP and CPO were anaesthetized with sodium pentobarbital and then the SPO and CPO groups underwent a simple laparotomy operation. The effects of memantine were tested through two additional groups of rats (cisplatin+memantine group (group CM) and cisplatin+pentobarbital+operation+memantine group (group CPOM)). A Morris water maze test was performed to evaluate the spatial learning and memory ability five days after anesthesia or operation. After the test, the hippocampi were removed for detection of the expression of NMDAR by western bloting. The relevant protein expression levels of PSD95 and ERK1/2 were detected by western blot analysis. Rats treated with cisplatin had a longer mean escape latency and spent a shorter amount of time in the target quadrant than did the normal saline injection rats. Furthermore, the protein expression levels of NMDA receptors, PSD95 and ERK1/2 were decreased in cisplatin group and memantine could up-regulate their expression. These results suggest

  11. The Flavonoid Apigenin Ameliorates Cisplatin-Induced Nephrotoxicity through Reduction of p53 Activation and Promotion of PI3K/Akt Pathway in Human Renal Proximal Tubular Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Sung Min Ju

    2015-01-01

    Full Text Available Apigenin is a member of the flavone subclass of flavonoids present in fruits and vegetables. Apigenin has long been considered to have various biological activities, such as antioxidant, anti-inflammatory, and antitumorigenic properties, in various cell types. Cisplatin was known to exhibit cytotoxic effect to renal cells by inducing apoptosis through activation of p53. The present study investigated the antiapoptotic effects of apigenin on the cisplatin-treated human renal proximal tubular epithelial (HK-2 cells. HK-2 cells were pretreated with apigenin (5, 10, 20 μM for 1 h and then treated with 40 μM cisplatin for various times. Apigenin inhibited the cisplatin-induced apoptosis of HK-2 cells. Interestingly, apigenin itself exerted cytostatic activity because of its ability to induce cell cycle arrest. Apigenin inhibited caspase-3 activity and PARP cleavage in cisplatin-treated cells. Apigenin reduced cisplatin-induced phosphorylation and expression of p53, with no significant influence on production of ROS that is known to induce p53 activation. Furthermore, apigenin promoted cisplatin-induced Akt phosphorylation, suggesting that enhanced Akt activation may be involved in cytoprotection. Taken together, these results suggest that apigenin ameliorates cisplatin-induced apoptosis through reduction of p53 activation and promotion of PI3K/Akt pathway in HK-2 cells.

  12. Na+/Ca2+ exchange inhibitor, KB-R7943, attenuates contrast-induced acutekidney injury.

    Science.gov (United States)

    Yang, Dingwei; Yang, Dingping; Jia, Ruhan; Tan, Jin

    2013-01-01

    Intracellular Ca2+ overload is considered to be a key factor in contrast-induced acute kidney injury (CI-AKI). The Na+/Ca2+ exchanger (NCX) system is one of the main pathways of intracellular Ca2+ overload. We investigated the effects of KB-R7943, an inhibitor of the reverse mode of NCX, on CI-AKI in a rat model. Rats were divided into control group, CI-AKI group and pretreatment groups (with KB-R7943 dose of 5 or 10 mg/kg). CI-AKI was induced by diatrizoate administration in rats with cholesterol-supplemented diet for 8 weeks. Renal function and renal hemodynamics were determined 1 day following contrast medium administration. Renal histopathology was observed by light microscope. Renal tubular apoptosis was examined by TUNEL. Renal endothelin-1 (ET-1) was measured by radioimmunoassay. Renal malondialdehyde (MDA) and catalase (CAT) were measured as oxidative markers. Levels of serum creatinine (Scr), renal ET-1, MDA and CAT, and resistance index (RI) of renal blood vessels increased significantly in CI-AKI rats. The 
increases in Scr and RI of renal blood vessels induced by diatrizoate were suppressed significantly and 
dose-dependently by pretreatment with KB-R7943. Histopathological and TUNEL results showed that 
the contrast medium-induced severe renal tubular 
necrosis and apoptosis were significantly and dose-dependently attenuated by KB-R7943. KB-R7943 significantly suppressed the increment of renal ET-1 content and MDA and CAT level induced by contrast medium administration. Activation of the reverse mode of NCX, followed by ET-1 overproduction and increased oxidative stress, seems to play an important role in the pathogenesis of CI-AKI. The inhibitor of the reverse mode of NCX, KB-R7943, has renoprotective effects on CI-AKI.

  13. Infliximab Modulates Cisplatin-Induced Hepatotoxicity in Rats

    Directory of Open Access Journals (Sweden)

    Medine Cumhur Cüre

    2016-10-01

    Full Text Available Background: Cisplatin (Cis is one of the most commonly used antineoplastic drugs. It is used as chemotherapy for many solid organ malignancies such as brain, neck, male and female urogenital, vesical and pulmonary cancers. Infliximab blocks tumor necrosis factor alpha (TNF-α. Several studies have reported that infliximab ameliorates cell damage by reducing cytokine levels. Aims: We aimed to investigate whether infliximab has a preventive effect against cisplatin-induced hepatotoxicity and whether it has a synergistic effect when combined with Cis. Study Design: Animal experimentation. Methods: Male Wistar albino rats were divided in three groups as follows: Cis group, infliximab + Cis (CIN group and the control group. Each group comprised 10 animals. Animals in the Cis group received an intraperitoneal single-dose injection of Cis (7 mg/kg. In the CIN group, a single dose of infliximab (7 mg/kg was administered 72 h prior to the Cis injection. After 72 h, a single dose of Cis (7 mg/kg was administered. All rats were sacrificed five days after Cis injection. Results: TNF-α levels in the Cis group were significantly higher (345.5±40.0 pg/mg protein than those of the control (278.7±62.1 pg/mg protein, p=0.003 and CIN groups (239.0±64.2 pg/mg protein, p=0.013. The Cis group was found to have high carbonic anhydrase (CA-II and low carbamoyl phosphate synthetase-1 (CPS-1 levels. Aspartate transaminase (AST and alanine transaminase (ALT levels were lower in the CIN group as compared to the Cis group. Total histological damage was greater in the Cis group as compared to the control and CIN groups. Conclusion: Cis may lead to liver damage by increasing cytokine levels. It may increase oxidative stress-induced tissue damage by increasing carbonic anhydrase II (CA-II enzyme levels and decreasing CPS-1 enzyme levels. Infliximab decreases Cis-induced hepatic damage by blocking TNF-α and it may also protect against liver damage by regulating CPS-1 and

  14. Perioperative Aspirin and Clonidine and Risk of Acute Kidney Injury A Randomized Clinical Trial

    NARCIS (Netherlands)

    Garg, Amit X.; Kurz, Andrea; Sessler, Daniel I.; Cuerden, Meaghan; Robinson, Andrea; Mrkobrada, Marko; Parikh, Chirag R.; Mizera, Richard; Jones, Philip M.; Tiboni, Maria; Font, Adrià; Cegarra, Virginia; Gomez, Maria Fernanda Rojas; Meyhoff, Christian S.; VanHelder, Tomas; Chan, Matthew T. V.; Torres, David; Parlow, Joel; de Nadal Clanchet, Miriam; Amir, Mohammed; Bidgoli, Seyed Javad; Pasin, Laura; Martinsen, Kristian; Malaga, German; Myles, Paul; Acedillo, Rey; Roshanov, Pavel S.; Walsh, Michael; Dresser, George; Kumar, Priya; Fleischmann, Edith; Villar, Juan Carlos; Painter, Thomas; Biccard, Bruce; Bergese, Sergio; Srinathan, Sadeesh; Cata, Juan P.; Chan, Vincent; Mehra, Bhupendra; Wijeysundera, Duminda N.; Leslie, Kate; Forget, Patrice; Whitlock, Richard; Yusuf, Salim; Devereaux, P. J.; Alvarez, A.; Bulach, R.; Hannon, S.; Ives, K.; de Hert, S.

    2014-01-01

    IMPORTANCE Acute kidney injury, a common complication of surgery, is associated with poor outcomes and high health care costs. Some studies suggest aspirin or clonidine administered during the perioperative period reduces the risk of acute kidney injury; however, these effects are uncertain and each

  15. The Protective Role of Zinc Sulphate on Ethanol -Induced Liver and Kidney Damages in Rats

    International Nuclear Information System (INIS)

    Al-Damegh, Mona Abdalla

    2007-01-01

    Around the world more and more people suffer from alcoholism. Addiction problems, alcoholism and excessive use of drugs both medical and nonmedical, are major causes of liver and kidney damage in adults. The purpose of this study was to investigate on the protective role of zinc sulphate on liver and kidney in rats with acute alcoholism. Wistar albino rats were divided into four groups. Group I; control group, group 2; given only Zinc Sulphate (100 mg/kg/day for 3days), group 3; rats given absolute ethanol (1 ml of absolute ethanol administrated by gavage technique to each rat), group 4 given Zinc sulphate prior to the administration of absolute ethanol. The results of this study revealed that acute ethanol exposure caused degenerative morphological changes in the liver and kidney. Significant difference were found in the levels of serum, liver, kidney super oxide dismutase(SOD), catalase (CAT), nitric oxide(NO), and malondialdehyde (MDA) in the ethanol group compared to the control group. Moreover ,serum urea, creatnine, uric acid, alkaline phoshpatase and transaminases activities (GOTand GPT) were increased in the ethanol group compared to the control group. On the other hand,administration of zinc sulphate in the ethanol group caused a significant decrease in the degenerative changes, lipid peroxidation, antioxidant enzymes, and nitric oxide in serum, liver, and kidney. It can be concluded that zinc Sulphate has a protective role on the ethanol induced liver and kidney injury. In addition ,nitric oxide is involved in the mechanism of acute alcohol intoxication. (author)

  16. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy

    International Nuclear Information System (INIS)

    Feng, Xue; Li, Ling; Jiang, Hong; Jiang, Keping; Jin, Ye; Zheng, Jianhua

    2014-01-01

    Highlights: • Phosphorylation of mTOR is abnormal activation in SKOV3/DDP ovarian cancer cells. • Downregulation of mTOR by DHA helps to sensitize the SKOV3/DDP cells to chemotherapy. • DHA has the potential of induce autophagy in cancer cells. - Abstract: Dihydroartemisinin (DHA) exhibits anticancer activity in tumor cells but its mechanism of action is unclear. Cisplatin (DDP) is currently the best known chemotherapeutic available for ovarian cancer. However, tumors return de novo with acquired resistance over time. Mammalian target of rapamycin (mTOR) is an important kinase that regulates cell apoptosis and autophagy, and its dysregulation has been observed in chemoresistant human cancers. Here, we show that compared with control ovarian cancer cells (SKOV3), mTOR phosphorylation was abnormally activated in cisplatin-resistant ovarian cancer cells (SKOV3/DDP) following cisplatin monotherapy. Treatment with cisplatin combined with DHA could enhance cisplatin-induced proliferation inhibition in SKOV3/DDP cells. This mechanism is at least partially due to DHA deactivation of mTOR kinase and promotion of apoptosis. Although autophagy was also induced by DHA, the reduced cell death was not found by suppressing autophagic flux by Bafilomycin A1 (BAF). Taken together, we conclude that inhibition of cisplatin-induced mTOR activation is one of the main mechanisms by which DHA dramatically promotes its anticancer effect in cisplatin-resistant ovarian cancer cells

  17. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xue [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Li, Ling [Department of Brain Cognition Computing Lab, University of Kent, Kent CT2 7NZ (United Kingdom); Jiang, Hong; Jiang, Keping; Jin, Ye [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zheng, Jianhua, E-mail: zhengjianhua1115@126.com [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China)

    2014-02-14

    Highlights: • Phosphorylation of mTOR is abnormal activation in SKOV3/DDP ovarian cancer cells. • Downregulation of mTOR by DHA helps to sensitize the SKOV3/DDP cells to chemotherapy. • DHA has the potential of induce autophagy in cancer cells. - Abstract: Dihydroartemisinin (DHA) exhibits anticancer activity in tumor cells but its mechanism of action is unclear. Cisplatin (DDP) is currently the best known chemotherapeutic available for ovarian cancer. However, tumors return de novo with acquired resistance over time. Mammalian target of rapamycin (mTOR) is an important kinase that regulates cell apoptosis and autophagy, and its dysregulation has been observed in chemoresistant human cancers. Here, we show that compared with control ovarian cancer cells (SKOV3), mTOR phosphorylation was abnormally activated in cisplatin-resistant ovarian cancer cells (SKOV3/DDP) following cisplatin monotherapy. Treatment with cisplatin combined with DHA could enhance cisplatin-induced proliferation inhibition in SKOV3/DDP cells. This mechanism is at least partially due to DHA deactivation of mTOR kinase and promotion of apoptosis. Although autophagy was also induced by DHA, the reduced cell death was not found by suppressing autophagic flux by Bafilomycin A1 (BAF). Taken together, we conclude that inhibition of cisplatin-induced mTOR activation is one of the main mechanisms by which DHA dramatically promotes its anticancer effect in cisplatin-resistant ovarian cancer cells.

  18. Salinomycin enhances cisplatin-induced cytotoxicity in human lung cancer cells via down-regulation of AKT-dependent thymidylate synthase expression.

    Science.gov (United States)

    Ko, Jen-Chung; Zheng, Hao-Yu; Chen, Wen-Ching; Peng, Yi-Shuan; Wu, Chia-Hung; Wei, Chia-Li; Chen, Jyh-Cheng; Lin, Yun-Wei

    2016-12-15

    Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore and has anticancer activity on various cancer cell lines. Cisplatin has been proved as chemotherapy drug for advanced human non-small cell lung cancer (NSCLC). Thymidylate synthase (TS) is a key enzyme in the pyrimidine salvage pathway, and increased expression of TS is thought to be associated with resistance to cisplatin. In this study, we showed that salinomycin (0.5-2μg/mL) treatment down-regulating of TS expression in an AKT inactivation manner in two NSCLC cell lines, human lung adenocarcinoma A549 and squamous cell carcinoma H1703 cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting AKT activity with PI3K inhibitor LY294002 enhanced the cytotoxicity and cell growth inhibition of salinomycin. A combination of cisplatin and salinomycin resulted in synergistic enhancement of cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced activation of phospho-AKT, and TS expression. Overexpression of a constitutive active AKT (AKT-CA) expression vector reversed the salinomycin and cisplatin-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in salinomycin and cisplatin cotreated cells. Our findings suggested that the down-regulation of AKT-mediated TS expression by salinomycin enhanced the cisplatin-induced cytotoxicity in NSCLC cells. These results may provide a rationale to combine salinomycin with cisplatin for lung cancer treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Dynamic changes in Bach1 expression in the kidney of rhabdomyolysis-associated acute kidney injury.

    Directory of Open Access Journals (Sweden)

    Masakazu Yamaoka

    Full Text Available Free heme, a pro-oxidant released from myoglobin, is thought to contribute to the pathogenesis of rhabdomyolysis-associated acute kidney injury (RM-AKI, because renal overexpression of heme oxygenase-1 (HO-1, the rate-limiting enzyme in heme catabolism, confers protection against RM-AKI. BTB and CNC homology 1 (Bach1 is a heme-responsive transcription factor that represses HO-1. Here, we examined the changes with time in the gene expression of Bach1, HO-1, and δ-aminolevulinate synthase (ALAS1, a heme biosynthetic enzyme in the rat kidney using an RM-AKI model induced by the injection of 50% glycerol (10 mL/kg body weight into bilateral limbs. We also examined the protein expression of Bach1 in the nucleus and cytosol, and HO-1 in the rat kidney. Glycerol treatment induced significant elevation of serum creatinine kinase and aspartate aminotransferase levels followed by the marked elevation of serum blood urea nitrogen and creatinine levels, which caused serious damage to renal tubules. Following glycerol treatment, HO-1 mRNA and protein levels were significantly up-regulated, while ALAS1 mRNA expression was down-regulated, suggesting an increase in the free renal heme concentration. The Bach1 mRNA level was drastically increased 3 h after glycerol treatment, and the increased level was maintained for 12 h. Nuclear Bach1 protein levels were significantly decreased 3 h after treatment. Conversely, cytosolic Bach1 protein levels abruptly increased after 6 h. In conclusion, we demonstrate the dynamic changes in Bach1 expression in a rat model of RM-AKI. Our findings suggest that the increase in Bach1 mRNA and cytosolic Bach1 protein expression may reflect de novo Bach1 protein synthesis to compensate for the depletion of nuclear Bach1 protein caused by the induction of HO-1 by free heme.

  20. Bradykinin receptor blockade restores the baroreflex control of renal sympathetic nerve activity in cisplatin-induced renal failure rats.

    Science.gov (United States)

    Abdulla, M H; Duff, M; Swanton, H; Johns, E J

    2016-11-01

    This study investigated the effect of renal bradykinin B1 and B2 receptor blockade on the high- and low-pressure baroreceptor reflex regulation of renal sympathetic nerve activity (RSNA) in rats with cisplatin-induced renal failure. Cisplatin (5 mg/kg) or saline was given intraperitoneally 4 days prior to study. Following chloralose/urethane anaesthesia, rats were prepared for measurement of mean arterial pressure (MAP), heart rate and RSNA and received intrarenal infusions of either Lys-[des-Arg 9 , Leu 8 ]-bradykinin (LBK), a bradykinin B1 receptor blocker, or bradyzide (BZ), a bradykinin B2 receptor blocker. RSNA baroreflex gain curves and renal sympatho-inhibitory responses to volume expansion (VE) were obtained. In the control and renal failure groups, basal MAP (89 ± 3 vs. 80 ± 8 mmHg) and RSNA (2.0 ± 0.3 vs. 1.7 ± 0.6 μV.s) were similar but HR was lower in the latter group (331 ± 8 vs. 396 ± 9 beats/min). The baroreflex gain for RSNA in the renal failure rats was 39% (P renal failure rats. Intrarenal LBK infusion in the renal failure rats normalized the VE induced renal sympatho-inhibition whereas BZ only partially restored the response. These findings suggest that pro-inflammatory bradykinin acting at different receptors within the kidney generates afferent neural signals which impact differentially within the central nervous system on high- and low-pressure regulation of RSNA. © 2016 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  1. Acute kidney injury secondary to iatrogenic bilateral ureteric ligation ...

    African Journals Online (AJOL)

    Acute kidney injury secondary to iatrogenic bilateral ureteric ligation following emergency abdominal hysterectomy. Oluseyi A. Adejumo, Olurotimi S. Ogundiniyi, Ayodeji A. Akinbodewa, Lawrence A. Adesunloro, Oladimeji J. Olafisoye ...

  2. ACUTE RENAL FAILURE WITH NORMAL PLASMA UREA LEVEL SECONDARY TO ACUTE PYELONEPHITIS IN A SINGLE KIDNEY PATIENT

    Directory of Open Access Journals (Sweden)

    Algranati L

    2007-04-01

    Full Text Available SUMMARY: Acute renal failure is a syndrome that usually runs with an increase in creatinine and urea plasma levels. However, there are clinical situations in which this syndrome may run with an increase in plasma creatinine keeping normal the urea one. In this report we present a case of acute renal failure with normal plasma urea level secondary to an acute pyelonephritis in a single kidney patient. The patient had an increased fractional excretion of urea which could explain the normal plasma urea levels found despite of his reduced glomerular filtration. This increased urea excretion state was interpreted as a consequence of the nephrogenic diabetes insipidus and alteration of the intra-renal urea reciclying process that the acute pyelonephritis induced. In conclusion: Acute pyelonephritis in a single kidney patient can appear as a pattern of acute renal failure with normal plasma urea levels.RESUMEN: La insuficiencia renal aguda es un sindrome que característicamente cursa con niveles plasmáticos elevados de urea y creatinina. Sin embargo, hay situaciones clínicas en las cuales este sindrome puede cursar con un incremento de la creatininemia sin presentar elevación de la uremia. En este reporte presentamos un caso clínico de una insuficiencia renal aguda con uremia normal secundaria a una pielonefritis aguda en un paciente con riñón único. El paciente presentaba una elevada excreción fraccional de urea lo cual podía explicar su uremia normal pese a estar cursando una caída del filtrado gomerular. Dicha excreción de urea elevada fue interpretada como secundaria a una diabetes insipida nefrogénica y una alteración en el recirculado intra-renal de la urea ambos producto de la pielonefritis aguda. Concluimos que la pielonefritis aguda en un paciente mono-reno puede presentarse con un patrón de insuficiencia renal aguda con uremia normal.

  3. Hemoglobin A1c Levels Predicts Acute Kidney Injury after Coronary Artery Bypass Surgery in Non-Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Cevdet Ugur Kocogulları

    Full Text Available Abstract INTRODUCTION: Elevated hemoglobin A1c levels in patients with diabetes mellitus have been known as a risk factor for acute kidney injury after coronary artery bypass grafting. However, the relationship between hemoglobin A1c levels in non-diabetics and acute kidney injury is under debate. We aimed to investigate the association of preoperative hemoglobin A1c levels with acute kidney injury in non-diabetic patients undergoing isolated coronary artery bypass grafting. METHODS: 202 non-diabetic patients with normal renal function (serum creatinine <1.4 mg/dl who underwent isolated coronary bypass were analyzed. Hemoglobin A1c level was measured at the baseline examination. Patients were separated into two groups according to preoperative Hemoglobin A1c level. Group 1 consisted of patients with preoperative HbA1c levels of < 5.6% and Group 2 consisted of patients with preoperative HbA1c levels of ≥ 5.6%. Acute kidney injury diagnosis was made by comparing baseline and postoperative serum creatinine to determine the presence of predefined significant change based on the Kidney Disease Improving Global Outcomes (KDIGO definition. RESULTS: Acute kidney injury occurred in 19 (10.5% patients after surgery. The incidence of acute kidney injury was 3.6% in Group 1 and 16.7% in Group 2. Elevated baseline hemoglobin A1c level was found to be associated with acute kidney injury (P=0.0001. None of the patients became hemodialysis dependent. The cut off value for acute kidney injury in our group of patients was 5.75%. CONCLUSION: Our findings suggest that, in non-diabetics, elevated preoperative hemoglobin A1c level may be associated with acute kidney injury in patients undergoing coronary artery bypass grafting. Prospective randomized studies in larger groups are needed to confirm these results.

  4. Evidence for different mechanisms of ‘unhooking’ for melphalan and cisplatin-induced DNA interstrand cross-links in vitro and in clinical acquired resistant tumour samples

    International Nuclear Information System (INIS)

    Spanswick, Victoria J; Hartley, John A; Lowe, Helen L; Newton, Claire; Bingham, John P; Bagnobianchi, Alessia; Kiakos, Konstantinos; Craddock, Charles; Ledermann, Jonathan A; Hochhauser, Daniel

    2012-01-01

    DNA interstrand cross-links (ICLs) are critical lesions produced by several cancer chemotherapy agents including platinum drugs and nitrogen mustards. We have previously shown in haematological (multiple myeloma) and solid tumours (ovarian cancer) that clinical sensitivity to such agents can result from a defect in DNA ICL processing leading to their persistence. Conversely, enhanced repair can result in clinical acquired resistance following chemotherapy. The repair of ICLs is complex but it is assumed that the ‘unhooking’ step is common to all ICLs. Using a modification of the single cell gel electrophoresis (Comet) assay we measured the formation and unhooking of melphalan and cisplatin-induced ICLs in cell lines and clinical samples. DNA damage response in the form of γ-H2AX foci formation and the formation of RAD51 foci as a marker of homologous recombination were also determined. Real-time PCR of 84 genes involved in DNA damage signalling pathways was also examined pre- and post-treatment. Plasma cells from multiple myeloma patients known to be clinically resistant to melphalan showed significant unhooking of melphalan-induced ICLs at 48 hours, but did not unhook cisplatin-induced ICLs. In ovarian cancer cells obtained from patients following platinum-based chemotherapy, unhooking of cisplatin-induced ICLs was observed at 48 hours, but no unhooking of melphalan-induced ICLs. In vitro, A549 cells were proficient at unhooking both melphalan and cisplatin-induced ICLs. γ-H2AX foci formation closely followed the formation of ICLs for both drugs, and rapidly declined following the peak of formation. RPMI8226 cells unhooked melphalan, but not cisplatin-induced ICLs. In these cells, although cross-links form with cisplatin, the γ-H2AX response is weak. In A549 cells, addition of 3nM gemcitabine resulted in complete inhibition of cisplatin-induced ICL unhooking but no effect on repair of melphalan ICLs. The RAD51 foci response was both drug and cell line

  5. The p53-reactivating small-molecule RITA enhances cisplatin-induced cytotoxicity and apoptosis in head and neck cancer.

    Science.gov (United States)

    Roh, Jong-Lyel; Ko, Jung Ho; Moon, Soo Jin; Ryu, Chang Hwan; Choi, Jun Young; Koch, Wayne M

    2012-12-01

    We evaluated whether the restoration of p53 function by the p53-reactivating small molecule RITA (reactivation of p53 and induction of tumor cell apoptosis enhances cisplatin-induced cytotoxicity and apoptosis in head-and-neck cancer (HNC). RITA induced prominent accumulation and reactivation of p53 in a wild-type TP53-bearing HNC cell line. RITA showed maximal growth suppression in tumor cells showing MDM2-dependent p53 degradation. RITA promoted apoptosis in association with upregulation of p21, BAX, and cleaved caspase-3; notably, the apoptotic response was blocked by pifithrin-α, demonstrating its p53 dependence. With increasing concentrations, RITA strongly induced apoptosis rather than G2-phase arrest. In combination therapy, RITA enhanced cisplatin-induced growth inhibition and apoptosis of HNC cells invitro and in vivo. Our data suggest that the restoration of p53 tumor-suppressive function by RITA enhances the cytotoxicity and apoptosis of cisplatin, an action that may offer an attractive strategy for treating HNC. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Fas Ligand Has a Greater Impact than TNF-α on Apoptosis and Inflammation in Ischemic Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Kengo Furuichi

    2012-02-01

    Full Text Available Background/Aim: Fas ligand (FasL and tumor necrosis factor (TNF-α are major pro-apoptotic molecules and also induce inflammation through cytokine and chemokine production. Although precise intracellular mechanisms of action have been reported for each molecule, the differential impact of these molecules on kidney injury in vivo still requires clarification. Methods: We explored the differential impact of FasL and TNF-α upon apoptosis and inflammation in ischemic acute kidney injury using neutralizing anti-FasL antibodies and TNF-α receptor 1 (TNFR1-deficient mice. Results: TNFR1 deficiency was associated with a lesser anti-inflammatory effect upon leukocyte infiltration and tubular necrosis than treatment with anti-FasL antibody. Furthermore, the number of TUNEL-positive cells was significantly reduced in anti-FasL antibody-treated mice, whereas it was only partially diminished in TNFR1-deficient mice. In vitro studies confirmed these findings. FasL administration induced both apoptosis and cytokine/chemokine production from cultured tubular epithelial cells. However, TNF-α had a limited effect upon tubular epithelial cells. Conclusion: In ischemic acute kidney injury, FasL has a greater impact than TNF-α on the apoptosis and inflammatory reaction through cytokine/chemokine production from tubular epithelial cells.

  7. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    International Nuclear Information System (INIS)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhiro; Uehara, Takeki; Kato, Yuki; Kono, Hiroshi; Bataller, Ramon; Rusyn, Ivan

    2016-01-01

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl 4 )-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl 4 (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day for 3 weeks) and with continued CCl 4 . We observed that combined treatment with CCl 4 and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis

  8. Serum beta-2 microglobulin levels for predicting acute kidney injury complicating aortic valve replacement.

    Science.gov (United States)

    Zaleska-Kociecka, Marta; Skrobisz, Anna; Wojtkowska, Izabela; Grabowski, Maciej; Dabrowski, Maciej; Kusmierski, Krzysztof; Piotrowska, Katarzyna; Imiela, Jacek; Stepinska, Janina

    2017-10-01

    Acute kidney injury complicating both transcatheter and surgical aortic valve replacement is associated with high rates of morbidity and mortality. The aim of this study was to investigate the role of serum beta 2 (β2) microglobulin, cystatin C and neutrophil gelatinase-associated lipocalin levels in detecting periprocedural acute kidney injury. Eighty consecutive patients who were 70 years of age or older and who were having surgical (n = 40) or transcatheter (n = 40) aortic valve replacement were recruited in a prospective study. The biomarkers were tested before the procedure, 6 times afterwards, at discharge and at a 6-month follow-up visit. The baseline β2-microglobulin level was the strongest predictor of acute kidney injury as a complication of transcatheter aortic valve replacement [odds ratio (OR) 5.277, P = 0.009]. Its level 24 h after the procedure reached the largest area under the curve (AUC) of 0.880 (P regression analysis, the levels of β2-microglobulin and cystatin C 24 h after the procedure were significantly associated with acute kidney injury after transcatheter valve replacement (OR 38.15, P = 0.044; OR 1782, P = 0.019, respectively). In the surgical aortic valve replacement group, the highest AUCs belonged to β2-microglobulin and cystatin C at 24 h (AUC = 0.808, P = 0.003 and AUC = 0.854, P = 0.001, respectively). Their higher values were also associated with acute kidney injury (OR 17.2, P = 0.018; OR 965.6, P = 0.02, respectively). A persistent increase in the postoperative levels of β2-microglobulin following acute kidney injury was associated with the progression of chronic kidney disease for 6 months after both transcatheter (OR 6.56, P = 0.030) and surgical (OR 7.67, P = 0.03) aortic valve replacements. Serum β2-microglobulin had the potential to predict acute kidney injury complicating transcatheter valve replacement and to diagnose it as early as 24 h after both the

  9. RF Ablation of Giant Hemangiomas Inducing Acute Renal Failure: A Report of Two Cases

    Energy Technology Data Exchange (ETDEWEB)

    Tilborg, Aukje A. J. M. van, E-mail: a.vantilborg@vumc.nl [VU University Medical Center, Departments of Radiology and Nuclear Medicine (Netherlands); Dresselaars, Helena F. [VU University Medical Center, Department of Nefrology (Netherlands); Scheffer, Hester J. [VU University Medical Center, Departments of Radiology and Nuclear Medicine (Netherlands); Nielsen, Karin [VU University Medical Center (Netherlands); Sietses, Colin [Gelderse Vallei Hospital, Department of Surgical Oncology (Netherlands); Tol, Petrousjka M. van den [VU University Medical Center (Netherlands); Meijerink, Martijn R. [VU University Medical Center, Departments of Radiology and Nuclear Medicine (Netherlands)

    2016-11-15

    ObjectiveIn patients that require treatment for hepatic giant cavernous hemangiomas (GCH), radiofrequency ablation (RFA) has been suggested to represent a safe and effective alternative to invasive surgery. In a recent report of bipolar RFA, using two expandable needle electrodes, was uneventfully performed in patients with large GCH (>10 cm). The objective of this report is to present two cases in which bipolar RFA of symptomatic GCH was complicated by acute kidney injury.Materials and methodsIn 2015 we treated two patients for very large symptomatic GCH (15.7 and 25.0 cm) with bipolar RFA during open laparotomy.ResultsIn both patients the urine showed a red–brown discoloration directly after the ablation. They became anuric and presented with progressive dyspnea, tachypnea, and tachycardia, requiring hemodialysis for a period of 1 month in one case. Lab results revealed hemepigment-induced acute kidney. Both patients fully recovered and both showed a complete relief of symptoms at 3 months following the procedure.ConclusionRFA for large GCHs can cause hemepigment-induced acute kidney injury due to massive intravascular hemolysis. The presented cases suggest that caution is warranted and advocate an upper limit regarding the volume of GCHs that can be safely ablated.

  10. Cisplatin induces expression of drug resistance-related genes through c-jun N-terminal kinase pathway in human lung cancer cells.

    Science.gov (United States)

    Xu, Li; Fu, Yingya; Li, Youlun; Han, Xiaoli

    2017-08-01

    Change of multidrug resistance-related genes (e.g., lung resistance protein, LRP) and overexpression of anti-apoptotic genes (Bcl-2, Bcl-Xl, XIAP, Survivin) are responsible for cisplatin resistance. In our study, we investigated the mechanism by which cisplatin induces LRP, Bcl-2, Bcl-xL, XIAP, and Survivin expression in human lung adenocarcinoma A549 cells and human H446 small cell lung cancer cells at mRNA and protein levels. In our study, cell proliferation was assessed with CCK-8 assays, and cell apoptosis was assessed with flow cytometric analysis and Annexin-V/PI staining. qPCR was used to complete RNA experiments. Protein expression was assessed with Western blotting. Cisplatin increased Bcl-2, LRP, and Survivin expression, but decreased Bcl-xL and XIAP expression in a dose-dependent manner. Preincubation with JNK-specific inhibitor, SP600125, significantly inhibited these genes' expression at mRNA and protein levels, enhanced chemosensitivity of lung cancer cells to cisplatin, and promoted cisplatin-induced apoptosis. Our data suggest that the JNK signaling pathway plays an important role in cisplatin resistance. Lung resistance protein (LRP) and anti-apoptotic genes (Bcl-2, Bcl-Xl, XIAP, Survivin) are involved in the process. The results reminded us of a novel therapy target for lung cancer treatment.

  11. Acute kidney injury in children – not just for the nephrologist

    African Journals Online (AJOL)

    REVIEW. Introduction. The phrase “acute renal failure” has given way to the term “acute ... The staging of AKI is based on the estimated glomerular filtration rate and urine output. AKI from any .... a non-specific predictor of AKI in critically ill children with septic .... KDIGO clinical practice guidelines for acute kidney injury.

  12. Amelioration of Cisplatin-Induced Nephrotoxicity in Rats by Curcumin

    African Journals Online (AJOL)

    Keywords: Cisplatin, Oxidative stress, Curcumin, α-Tocopherol, Nephrotoxicity. Tropical ... exerts various side effects in several organs particularly in ... Previous study provides evidence which ..... chemotherapy by cisplatin but further in vivo.

  13. Detecting acute neurotoxicity during platinum chemotherapy by neurophysiological assessment of motor nerve hyperexcitability

    International Nuclear Information System (INIS)

    Hill, Andrew; Bergin, Peter; Hanning, Fritha; Thompson, Paul; Findlay, Michael; Damianovich, Dragan; McKeage, Mark J

    2010-01-01

    Platinum-based drugs, such as cisplatin and oxaliplatin, are well-known for inducing chronic sensory neuropathies but their acute and motor neurotoxicities are less well characterised. Use was made of nerve conduction studies and needle electromyography (EMG) to assess motor nerve excitability in cancer patients during their first treatment cycle with platinum-based chemotherapy in this study. Twenty-nine adult cancer patients had a neurophysiological assessment either before oxaliplatin plus capecitabine, on days 2 to 4 or 14 to 20 after oxaliplatin plus capecitabine, or on days 2 to 4 after carboplatin plus paclitaxel or cisplatin, undertaken by a neurophysiologist who was blinded to patient and treatment details. Patients completed a symptom questionnaire at the end of the treatment cycle. Abnormal spontaneous high frequency motor fibre action potentials were detected in 100% of patients (n = 6) and 72% of muscles (n = 22) on days 2 to 4 post-oxaliplatin, and in 25% of patients (n = 8) and 13% of muscles (n = 32) on days 14 to 20 post-oxaliplatin, but in none of the patients (n = 14) or muscles (n = 56) tested prior to oxaliplatin or on days 2 to 4 after carboplatin plus paclitaxel or cisplatin. Repetitive compound motor action potentials were less sensitive and less specific than spontaneous high frequency motor fibre action potentials for detection of acute oxaliplatin-induced motor nerve hyperexcitability but were present in 71% of patients (n = 7) and 32% of muscles (n = 32) on days 2 to 4 after oxaliplatin treatment. Acute neurotoxicity symptoms, most commonly cold-induced paraesthesiae and jaw or throat tightness, were reported by all patients treated with oxaliplatin (n = 22) and none of those treated with carboplatin plus paclitaxel or cisplatin (n = 6). Abnormal spontaneous high frequency motor fibre activity is a sensitive and specific endpoint of acute oxaliplatin-induced motor nerve hyperexcitability, detectable on EMG on days 2 to 4 post

  14. Detecting acute neurotoxicity during platinum chemotherapy by neurophysiological assessment of motor nerve hyperexcitability

    Directory of Open Access Journals (Sweden)

    Hill Andrew

    2010-08-01

    Full Text Available Abstract Background Platinum-based drugs, such as cisplatin and oxaliplatin, are well-known for inducing chronic sensory neuropathies but their acute and motor neurotoxicities are less well characterised. Use was made of nerve conduction studies and needle electromyography (EMG to assess motor nerve excitability in cancer patients during their first treatment cycle with platinum-based chemotherapy in this study. Methods Twenty-nine adult cancer patients had a neurophysiological assessment either before oxaliplatin plus capecitabine, on days 2 to 4 or 14 to 20 after oxaliplatin plus capecitabine, or on days 2 to 4 after carboplatin plus paclitaxel or cisplatin, undertaken by a neurophysiologist who was blinded to patient and treatment details. Patients completed a symptom questionnaire at the end of the treatment cycle. Results Abnormal spontaneous high frequency motor fibre action potentials were detected in 100% of patients (n = 6 and 72% of muscles (n = 22 on days 2 to 4 post-oxaliplatin, and in 25% of patients (n = 8 and 13% of muscles (n = 32 on days 14 to 20 post-oxaliplatin, but in none of the patients (n = 14 or muscles (n = 56 tested prior to oxaliplatin or on days 2 to 4 after carboplatin plus paclitaxel or cisplatin. Repetitive compound motor action potentials were less sensitive and less specific than spontaneous high frequency motor fibre action potentials for detection of acute oxaliplatin-induced motor nerve hyperexcitability but were present in 71% of patients (n = 7 and 32% of muscles (n = 32 on days 2 to 4 after oxaliplatin treatment. Acute neurotoxicity symptoms, most commonly cold-induced paraesthesiae and jaw or throat tightness, were reported by all patients treated with oxaliplatin (n = 22 and none of those treated with carboplatin plus paclitaxel or cisplatin (n = 6. Conclusions Abnormal spontaneous high frequency motor fibre activity is a sensitive and specific endpoint of acute oxaliplatin-induced motor nerve

  15. Acute kidney injury and edaravone in acute ischemic stroke: the Fukuoka Stroke Registry.

    Science.gov (United States)

    Kamouchi, Masahiro; Sakai, Hironori; Kiyohara, Yutaka; Minematsu, Kazuo; Hayashi, Kunihiko; Kitazono, Takanari

    2013-11-01

    A free radical scavenger, edaravone, which has been used for the treatment of ischemic stroke, was reported to cause acute kidney injury (AKI) as a fatal adverse event. The aim of the present study was to clarify whether edaravone is associated with AKI in patients with acute ischemic stroke. From the Fukuoka Stroke Registry database, 5689 consecutive patients with acute ischemic stroke who were hospitalized within 24 hours of the onset of symptoms were included in this study. A logistic regression analysis for the Fukuoka Stroke Registry cohort was done to identify the predictors for AKI. A propensity score-matched nested case-control study was also performed to elucidate any association between AKI and edaravone. Acute kidney injury occurred in 128 of 5689 patients (2.2%) with acute ischemic stroke. A multivariate analysis revealed that the stroke subtype, the basal serum creatinine level, and the presence of infectious complications on admission were each predictors of developing AKI. In contrast, a free radical scavenger, edaravone, reduced the risk of developing AKI (multivariate-adjusted odds ratio [OR] .45, 95% confidence interval [CI] .30-.67). Propensity score-matched case-control study confirmed that edaravone use was negatively associated with AKI (propensity score-adjusted OR .46, 95% CI .29-.74). Although AKI has a significant impact on the clinical outcome of hospital inpatients, edaravone has a protective effect against the development of AKI in patients with acute ischemic stroke. Copyright © 2013 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  16. Constitutively active ErbB2 regulates cisplatin-induced cell death in breast cancer cells via pro- and antiapoptotic mechanisms

    DEFF Research Database (Denmark)

    Sigurðsson, Haraldur H; Olesen, Christina Wilkens; Dybboe, Rie

    2015-01-01

    cancer cell death, and determine how NHE1 regulates this process. Cisplatin treatment elicited apoptosis, ATM phosphorylation, upregulation of p53, Noxa (PMAIP1), and PUMA (BBC3), and cleavage of caspase-9, -7, fodrin, and PARP-1 in MCF-7 cells. Inducible ΔNErbB2 expression strongly reduced cisplatin...

  17. [The relationship between acute rejection and expression of sCD30 for the patients after kidney transplantation].

    Science.gov (United States)

    Yang, Jian-Lin; Hao, Hong-Jun; Qin, Bin; Bang, Ling-Qing; Zhang, Zhi-Hong; Xin, Dian-Qi; Guo, Ying-Lu; Na, Yan-Qun

    2005-03-16

    To study the relationship between the sCD30 and acute rejection. We tested the sCD30 level in serum for 58 cases with kidney transplantation before and the 7th day and 28th day after operation by ELISA. 31 healthy individual for control group, and simultaneously recorded the incidence of rejection after kidney transplantation. The results showed that there is an obviously relation before kidney transplantation between the sCD30 level in serum and the incidence of acute rejection (chi = 4.843, P = 0.028, P kidney transplantation between the sCD30 level in serum and the incidence of acute rejection (chi = 7.201, P = 0.007, P kidney transplantation between the sCD30 level in serum and the incidence of acute rejection (chi = 2.095, P = 0.148, P > 0.05). The results suggested that the expressions of sCD30 are related to acute rejection. We speculated that the expressions of sCD30 could play an important role in acute rejection.

  18. Contrast induced-acute kidney injury following peripheral angiography with carbon dioxide versus iodinated contrast media: A meta-analysis and systematic review of current literature.

    Science.gov (United States)

    Ghumman, Saad S; Weinerman, Jonathan; Khan, Aazib; Cheema, Mubeen S; Garcia, Marlene; Levin, Daniel; Suri, Rajeev; Prasad, Anand

    2017-09-01

    We conducted a meta-analysis to compare the incidence of acute kidney injury (AKI) with carbon dioxide (CO 2 ) versus iodinated contrast media (ICM). Contrast induced-acute kidney injury (CI-AKI) is a known complication following endovascular procedures with ICM. CO 2 has been employed as an alternative imaging medium as it is nontoxic to the kidneys. Search of indexed databases was performed and 1,732 references were retrieved. Eight studies (7 observational, 1 Randomized Controlled Trial) formed the meta-analysis. Primary outcome was AKI. Fixed effect model was used when possible in addition to analysis of publication bias. In this meta-analysis, 677 patients underwent 754 peripheral angiographic procedures. Compared with ICM, CO 2 was associated with a decreased incidence of AKI (4.3% vs. 11.1%; OR 0.465, 95% CI: 0.218-0.992; P = 0.048). Subgroup analysis of four studies that included granular data for patients with chronic kidney disease (CKD) did not demonstrate a decreased incidence of AKI with CO 2 (4.1% vs. 10.0%; OR 0.449, 95% CI: 0.165-1.221, P = 0.117). Patients undergoing CO 2 angiography experienced a higher number of nonrenal events including limb/abdominal pain (11 vs. 0; P = 0.001) and nausea/vomiting (9 vs. 1; P = 0.006). In comparison to ICM, CO 2 use is associated with a modestly reduced rate of AKI with more frequent adverse nonrenal events. In studies that use CO 2 as the primary imaging agent, the average incidence of AKI remained high at 6.2%-supporting the concept that factors other than renal toxicity from ICM may contribute to renal impairment following peripheral angiography. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Unilateral Renal Ischemia as a Model of Acute Kidney Injury and Renal Fibrosis in Cats.

    Science.gov (United States)

    Schmiedt, C W; Brainard, B M; Hinson, W; Brown, S A; Brown, C A

    2016-01-01

    The objectives of this study were to define the acute and chronic effects of 1-hour unilateral in vivo renal ischemia on renal function and histology in cats. Twenty-one adult purpose-bred research cats were anesthetized, and 1 kidney underwent renal artery and vein occlusion for 1 hour. Serum creatinine and urea concentrations, urine protein:creatinine ratio, urine-specific gravity, glomerular filtration rate, hematocrit, platelet concentration and function, and white blood cell count were measured at baseline and variable time points after ischemia. Renal histopathology was evaluated on days 3, 6, 12, 21, 42, and 70 postischemia; changes in smooth muscle actin and interstitial collagen were examined. Following ischemia, whole animal glomerular filtration rate was significantly reduced (57% of baseline on day 6; P < .05). At the early time points, the ischemic kidneys exhibited severe acute epithelial necrosis accompanied by evidence of regeneration of tubules predominantly within the corticomedullary junction. At later periods, postischemic kidneys had evidence of tubular atrophy and interstitial inflammation with significantly more smooth muscle actin and interstitial collagen staining and interstitial fibrosis when compared with the contralateral control kidneys. This study characterizes the course of ischemic acute kidney injury in cats and demonstrates that ischemic acute kidney injury triggers chronic fibrosis, interstitial inflammation, and tubular atrophy in feline kidneys. These late changes are typical of those observed in cats with naturally occurring chronic kidney disease. © The Author(s) 2015.

  20. Acute kidney injury is independently associated with higher mortality after cardiac surgery

    DEFF Research Database (Denmark)

    Kandler, Kristian; Jensen, Mathias E; Nilsson, Jens C

    2014-01-01

    OBJECTIVES: To investigate the incidence of acute kidney injury after cardiac surgery and its association with mortality in a patient population receiving ibuprofen and gentamicin perioperatively. DESIGN: Retrospective study with Cox regression analysis to control for possible preoperative......, intraoperative and postoperative confounders. SETTING: University hospital-based single-center study. PARTICIPANTS: All patients who underwent coronary artery bypass grafting ± valve surgery during 2012. INTERVENTIONS: None. MEASUREMENT AND MAIN RESULTS: Acute surgery within 24 hours of coronary angiography.......21-4.51, p = 0.011) and 5.62 (95% CI: 2.42-13.06), psurgery developed AKI in this contemporary cohort. Furthermore, acute kidney injury was an independent...

  1. Vitamin D deficiency aggravates chronic kidney disease progression after ischemic acute kidney injury.

    Directory of Open Access Journals (Sweden)

    Janaína Garcia Gonçalves

    pathways and involvement of TGF-β1 growth factor, VDD could be considered as an aggravating factor for tubulointerstitial damage and fibrosis progression following acute kidney injury induced by ischemia/reperfusion.

  2. CCR9 interactions support ovarian cancer cell survival and resistance to cisplatin-induced apoptosis in a PI3K-dependent and FAK-independent fashion

    Directory of Open Access Journals (Sweden)

    Johnson Erica L

    2010-06-01

    Full Text Available Abstract Background Cisplatin is more often used to treat ovarian cancer (OvCa, which provides modest survival advantage primarily due to chemo-resistance and up regulated anti-apoptotic machineries in OvCa cells. Therefore, targeting the mechanisms responsible for cisplatin resistance in OvCa cell may improve therapeutic outcomes. We have shown that ovarian cancer cells express CC chemokine receptor-9 (CCR9. Others have also shown that CCL25, the only natural ligand for CCR9, up regulates anti-apoptotic proteins in immature T lymphocytes. Hence, it is plausible that CCR9-mediated cell signals might be involved in OvCa cell survival and inhibition of cisplatin-induced apoptosis. In this study, we investigated the potential role and molecular mechanisms of CCR9-mediated inhibition of cisplatin-induced apoptosis in OvCa cells. Methods Cell proliferation, vibrant apoptosis, and TUNEL assays were performed with or without cisplatin treatment in presence or absence of CCL25 to determine the role of the CCR9-CCL25 axis in cisplatin resistance. In situ Fast Activated cell-based ELISA (FACE assays were performed to determine anti-apoptotic signaling molecules responsible for CCL25-CCR9 mediated survival. Results Our results show interactions between CCR9 and CCL25 increased anti-apoptotic signaling cascades in OvCa cells, which rescued cells from cisplatin-induced cell death. Specifically, CCL25-CCR9 interactions mediated Akt, activation as well as GSK-3β and FKHR phosphorylation in a PI3K-dependent and FAK-independent fashion. Conclusions Our results suggest the CCR9-CCL25 axis plays an important role in reducing cisplatin-induced apoptosis of OvCa cells.

  3. Kidney Disease and the Nexus of Chronic Kidney Disease and Acute Kidney Injury: The Role of Novel Biomarkers as Early and Accurate Diagnostics.

    Science.gov (United States)

    Yerramilli, Murthy; Farace, Giosi; Quinn, John; Yerramilli, Maha

    2016-11-01

    Chronic kidney disease (CKD) and acute kidney injury (AKI) are interconnected and the presence of one is a risk for the other. CKD is an important predictor of AKI after exposure to nephrotoxic drugs or major surgery, whereas persistent or repetitive injury could result in the progression of CKD. This brings new perspectives to the diagnosis and monitoring of kidney diseases highlighting the need for a panel of kidney-specific biomarkers that reflect functional as well as structural damage and recovery, predict potential risk and provide prognosis. This article discusses the kidney-specific biomarkers, symmetric dimethylarginine (SDMA), clusterin, cystatin B, and inosine. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Serial Manifestation of Acute Kidney Injury and Nephrotic Syndrome in a Patient with TAFRO syndrome.

    Science.gov (United States)

    Ito, Seigo; Uchida, Takahiro; Itai, Hiroki; Yamashiro, Aoi; Yamagata, Akira; Matsubara, Hidehito; Imakiire, Toshihiko; Shimazaki, Hideyuki; Kumagai, Hiroo; Oshima, Naoki

    2018-06-06

    A 76-year-old woman suddenly developed anasarca and a fever, and an examination revealed thrombocytopenia, reticulin fibrosis, and acute kidney injury, yielding the diagnosis of TAFRO syndrome. Renal replacement therapy and steroid treatment were soon started. Her proteinuria was minor at first; however, once the kidney function improved, nephrotic syndrome occurred. A kidney biopsy showed membranoproliferative glomerulonephritis-like glomerulopathy with massive macrophage infiltration. Although kidney dysfunction is often observed in TAFRO syndrome patients, its detailed mechanism is unclear. This case suggests that TAFRO syndrome involves both acute kidney injury with minor proteinuria and nephrotic syndrome, and these disorders can develop serially in the same patient.

  5. Evidence for different mechanisms of ‘unhooking’ for melphalan and cisplatin-induced DNA interstrand cross-links in vitro and in clinical acquired resistant tumour samples

    Directory of Open Access Journals (Sweden)

    Spanswick Victoria J

    2012-09-01

    Full Text Available Abstract Background DNA interstrand cross-links (ICLs are critical lesions produced by several cancer chemotherapy agents including platinum drugs and nitrogen mustards. We have previously shown in haematological (multiple myeloma and solid tumours (ovarian cancer that clinical sensitivity to such agents can result from a defect in DNA ICL processing leading to their persistence. Conversely, enhanced repair can result in clinical acquired resistance following chemotherapy. The repair of ICLs is complex but it is assumed that the ‘unhooking’ step is common to all ICLs. Methods Using a modification of the single cell gel electrophoresis (Comet assay we measured the formation and unhooking of melphalan and cisplatin-induced ICLs in cell lines and clinical samples. DNA damage response in the form of γ-H2AX foci formation and the formation of RAD51 foci as a marker of homologous recombination were also determined. Real-time PCR of 84 genes involved in DNA damage signalling pathways was also examined pre- and post-treatment. Results Plasma cells from multiple myeloma patients known to be clinically resistant to melphalan showed significant unhooking of melphalan-induced ICLs at 48 hours, but did not unhook cisplatin-induced ICLs. In ovarian cancer cells obtained from patients following platinum-based chemotherapy, unhooking of cisplatin-induced ICLs was observed at 48 hours, but no unhooking of melphalan-induced ICLs. In vitro, A549 cells were proficient at unhooking both melphalan and cisplatin-induced ICLs. γ-H2AX foci formation closely followed the formation of ICLs for both drugs, and rapidly declined following the peak of formation. RPMI8226 cells unhooked melphalan, but not cisplatin-induced ICLs. In these cells, although cross-links form with cisplatin, the γ-H2AX response is weak. In A549 cells, addition of 3nM gemcitabine resulted in complete inhibition of cisplatin-induced ICL unhooking but no effect on repair of melphalan ICLs. The

  6. The role of the uncertainty of measurement of serum creatinine concentrations in the diagnosis of acute kidney injury.

    Science.gov (United States)

    Kin Tekce, Buket; Tekce, Hikmet; Aktas, Gulali; Uyeturk, Ugur

    2016-01-01

    Uncertainty of measurement is the numeric expression of the errors associated with all measurements taken in clinical laboratories. Serum creatinine concentration is the most common diagnostic marker for acute kidney injury. The goal of this study was to determine the effect of the uncertainty of measurement of serum creatinine concentrations on the diagnosis of acute kidney injury. We calculated the uncertainty of measurement of serum creatinine according to the Nordtest Guide. Retrospectively, we identified 289 patients who were evaluated for acute kidney injury. Of the total patient pool, 233 were diagnosed with acute kidney injury using the AKIN classification scheme and then were compared using statistical analysis. We determined nine probabilities of the uncertainty of measurement of serum creatinine concentrations. There was a statistically significant difference in the number of patients diagnosed with acute kidney injury when uncertainty of measurement was taken into consideration (first probability compared to the fifth p = 0.023 and first probability compared to the ninth p = 0.012). We found that the uncertainty of measurement for serum creatinine concentrations was an important factor for correctly diagnosing acute kidney injury. In addition, based on the AKIN classification scheme, minimizing the total allowable error levels for serum creatinine concentrations is necessary for the accurate diagnosis of acute kidney injury by clinicians.

  7. Sodium selenosulfate at an innocuous dose markedly prevents cisplatin-induced gastrointestinal toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Sun, Kang [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China); Ni, Lijuan; Wang, Xufang [School of Chemistry and Materials of Science, University of Science and Technology of China, Hefei 230052, Anhui (China); Wang, Dongxu [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China); Zhang, Jinsong, E-mail: zjs@ahau.edu.cn [School of Tea and Food Science, Anhui Agricultural University, Hefei 230036, Anhui (China)

    2012-02-01

    Our previous studies in mice revealed that two weeks short-term toxicity of sodium selenosulfate was significantly lower than that of sodium selenite, but selenium repletion efficacy of both compounds was equivalent. In addition, we showed that sodium selenosulfate reduced nephrotoxicity of cisplatin (CDDP) without compromising its anticancer activity, thus leading to a dramatic increase of cancer cure rate from 25% to 75%. Hydration has been used in clinical practice to reduce CDDP-induced nephrotoxicity, but it cannot mitigate CDDP-induced gastrointestinal toxicity. The present work investigated whether sodium selenosulfate is a potential preventive agent for the gastrointestinal toxicity. In tumor-bearing mice, sodium selenosulfate was administered at a dose of 9.5 μmol/kg daily for 11 days, CDDP alone resulted in diarrhea by 88% on day 12, whereas the co-administration of CDDP and sodium selenosulfate dramatically reduced diarrhea to 6% (p < 0.0001). Such a prominent protective effect promoted us to evaluate the safety potential of long-term sodium selenosulfate application. Mice were administered with sodium selenosulfate or sodium selenite for 55 days at the doses of 12.7 and 19 μmol/kg. The low-dose sodium selenite caused growth suppression and hepatotoxicity which were aggravated by the high-dose, leading to 40% mortality rate, but no toxic symptoms were observed in the two sodium selenosulfate groups. Altogether these results clearly show that sodium selenosulfate at an innocuous dose can markedly prevent CDDP-induced gastrointestinal toxicity. -- Highlights: ►Cisplatin resulted in diarrhea in mice by 88%. ►i.p. selenosulfate at 9.5 μmol/kg daily for 11 days reduced diarrhea to 6%. ►i.p. selenosulfate at 19 μmol/kg daily for 55 days was not toxic. ►i.p. selenite at 19 μmol/kg daily for 55 days was lethal. ►Innocuous dose of selenosulfate greatly prevents cisplatin-induced diarrhea.

  8. Sodium selenosulfate at an innocuous dose markedly prevents cisplatin-induced gastrointestinal toxicity

    International Nuclear Information System (INIS)

    Li, Jun; Sun, Kang; Ni, Lijuan; Wang, Xufang; Wang, Dongxu; Zhang, Jinsong

    2012-01-01

    Our previous studies in mice revealed that two weeks short-term toxicity of sodium selenosulfate was significantly lower than that of sodium selenite, but selenium repletion efficacy of both compounds was equivalent. In addition, we showed that sodium selenosulfate reduced nephrotoxicity of cisplatin (CDDP) without compromising its anticancer activity, thus leading to a dramatic increase of cancer cure rate from 25% to 75%. Hydration has been used in clinical practice to reduce CDDP-induced nephrotoxicity, but it cannot mitigate CDDP-induced gastrointestinal toxicity. The present work investigated whether sodium selenosulfate is a potential preventive agent for the gastrointestinal toxicity. In tumor-bearing mice, sodium selenosulfate was administered at a dose of 9.5 μmol/kg daily for 11 days, CDDP alone resulted in diarrhea by 88% on day 12, whereas the co-administration of CDDP and sodium selenosulfate dramatically reduced diarrhea to 6% (p < 0.0001). Such a prominent protective effect promoted us to evaluate the safety potential of long-term sodium selenosulfate application. Mice were administered with sodium selenosulfate or sodium selenite for 55 days at the doses of 12.7 and 19 μmol/kg. The low-dose sodium selenite caused growth suppression and hepatotoxicity which were aggravated by the high-dose, leading to 40% mortality rate, but no toxic symptoms were observed in the two sodium selenosulfate groups. Altogether these results clearly show that sodium selenosulfate at an innocuous dose can markedly prevent CDDP-induced gastrointestinal toxicity. -- Highlights: ►Cisplatin resulted in diarrhea in mice by 88%. ►i.p. selenosulfate at 9.5 μmol/kg daily for 11 days reduced diarrhea to 6%. ►i.p. selenosulfate at 19 μmol/kg daily for 55 days was not toxic. ►i.p. selenite at 19 μmol/kg daily for 55 days was lethal. ►Innocuous dose of selenosulfate greatly prevents cisplatin-induced diarrhea.

  9. Acute kidney injury in the cancer patient.

    Science.gov (United States)

    Campbell, G Adam; Hu, Daniel; Okusa, Mark D

    2014-01-01

    Acute kidney injury (AKI) is a frequent and significant complication of cancer and cancer therapy. Cancer patients frequently encounter risk factors for AKI including older age, CKD, prerenal conditions, sepsis, exposure to nephrotoxins, and obstructive physiology. AKI can also be secondary to paraneoplastic conditions, including glomerulonephritis and microangiopathic processes. This complication can have significant consequences, including effects on patients' ability to continue to receive therapy for their malignancy. This review will serve to summarize potential etiologies of AKI that present in patients with cancer as well as to highlight specific patient populations, such as the critically ill cancer patient. Copyright © 2014 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  10. Protective effect and mechanism of action of lupane triterpenes from Cornus walteri in cisplatin-induced nephrotoxicity.

    Science.gov (United States)

    Lee, Seulah; Jung, Kiwon; Lee, Dahae; Lee, Seoung Rak; Lee, Kang Ro; Kang, Ki Sung; Kim, Ki Hyun

    2015-12-01

    The present study reports a renoprotective effect and the mechanism of action of lupane triterpenes isolated from Cornus walteri in cisplatin-induced renal toxicity. A phytochemical investigation of the MeOH extract of the stems and stem bark of C. walteri resulted in the isolation and identification of twelve lupane triterpenes. Among these, betulinic acid, 29-oxobetulinic acid, betulin 3-acetate, and lupeol ameliorated cisplatin-induced nephrotoxicity to 80% of the control value at 125 μM. Upregulated phosphorylation of JNK, ERK, and p38 following cisplatin treatment were markedly decreased after co-treatment with betulinic acid, 29-oxobetulinic acid, betulin 3-acetate, and lupeol. In addition, the protein expression level of cleaved caspase-3 and the percentage of apoptotic cells were also significantly reduced after co-treatment with betulinic acid, 29-oxobetulinic acid, betulin 3-acetate, and lupeol. These results show that blocking the MAPK signaling cascade plays a critical role in mediating the renoprotective effect of betulinic acid, 29-oxobetulinic acid, betulin 3-acetate, and lupeol isolated from C. walteri extract. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. ACUTE RENAL FAILURE WITH NORMAL PLASMA UREA LEVEL SECONDARY TO ACUTE PYELONEPHITIS IN A SINGLE KIDNEY PATIENT

    Directory of Open Access Journals (Sweden)

    Imperiali N

    2006-03-01

    Full Text Available SUMMARYAcute renal failure is a syndrome that usually runs with an increase in creatinine and urea plasma levels. However, there are clinical situations in which this syndrome may run with an increase in plasma creatinine keeping normal the urea one.In this report we present a case of acute renal failure with normal plasma urea level secondary to an acute pyelonephritis in a single kidney patient. The patient had an increased fractional excretion of urea which could explain the normal plasma urea levels found despite of his reduced glomerular filtration. This increased urea excretion state was interpreted as a consequence of the nephrogenic diabetes insipidus and alteration of the intra-renal urea reciclying process that the acute pyelonephritis induced. In conclusion: Acute pyelonephritis in a single kidney patient can appear as a pattern of acute renal failure with normal plasma urea levels. RESUMEN:La insuficiencia renal aguda es un sindrome que característicamente cursa con niveles plasmáticos elevados de urea y creatinina. Sin embargo, hay situaciones clínicas en las cuales este sindrome puede cursar con un incremento de la creatininemia sin presentar elevación de la uremia.En este reporte presentamos un caso clínico de una insuficiencia renal aguda con uremia normal secundaria a una pielonefritis aguda en un paciente con riñón único. El paciente presentaba una elevada excreción fraccional de urea lo cual podía explicar su uremia normal pese a estar cursando una caída del filtrado gomerular. Dicha excreción de urea elevada fue interpretada como secundaria a una diabetes insipida nefrogénica y una alteración en el recirculado intra-renal de la urea ambos producto de la pielonefritis aguda. Concluimos que la pielonefritis aguda en un paciente mono-reno puede presentarse con un patrón de insuficiencia renal aguda con uremia normal.

  12. A mouse model of alcoholic liver fibrosis-associated acute kidney injury identifies key molecular pathways

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Shinji; Chappell, Grace A.; Iwata, Yasuhiro [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX (United States); Uehara, Takeki; Kato, Yuki [Laboratory of Veterinary Pathology, Osaka Prefecture University, Osaka (Japan); Kono, Hiroshi [First Department of Surgery, University of Yamanashi, Yamanashi (Japan); Bataller, Ramon [Division of Gastroenterology & Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, NC (United States); Rusyn, Ivan, E-mail: irusyn@tamu.edu [Department of Veterinary Integrative Biosciences, Texas A& M University, College Station, TX (United States)

    2016-11-01

    Clinical data strongly indicate that acute kidney injury (AKI) is a critical complication in alcoholic hepatitis, an acute-on-chronic form of liver failure in patients with advanced alcoholic fibrosis. Development of targeted therapies for AKI in this setting is hampered by the lack of an animal model. To enable research into molecular drivers and novel therapies for fibrosis- and alcohol-associated AKI, we aimed to combine carbon tetrachloride (CCl{sub 4})-induced fibrosis with chronic intra-gastric alcohol feeding. Male C57BL/6J mice were administered a low dose of CCl{sub 4} (0.2 ml/kg 2 × week/6 weeks) followed by alcohol intragastrically (up to 25 g/kg/day for 3 weeks) and with continued CCl{sub 4}. We observed that combined treatment with CCl{sub 4} and alcohol resulted in severe liver injury, more pronounced than using each treatment alone. Importantly, severe kidney injury was evident only in the combined treatment group. This mouse model reproduced distinct pathological features consistent with AKI in human alcoholic hepatitis. Transcriptomic analysis of kidneys revealed profound effects in the combined treatment group, with enrichment for damage-associated pathways, such as apoptosis, inflammation, immune-response and hypoxia. Interestingly, Havcr1 and Lcn2, biomarkers of AKI, were markedly up-regulated. Overall, this study established a novel mouse model of fibrosis- and alcohol-associated AKI and identified key mechanistic pathways. - Highlights: • Acute kidney injury (AKI) is a critical complication in alcoholic hepatitis • We developed a novel mouse model of fibrosis- and alcohol-associated AKI • This model reproduces key molecular and pathological features of human AKI • This animal model can help identify new targeted therapies for alcoholic hepatitis.

  13. Malaria induced acute renal failure: A single center experience

    International Nuclear Information System (INIS)

    KV Kanodia; AV Vanikar

    2010-01-01

    Malaria has protean clinical manifestations and renal complications, particularly acute renal failure that could be life threatening. To evaluate the incidence, clinical profile, ou come and predictors of mortality in patients with malarial acute renal failure, we retrospectively studied the last two years records of malaria induced acute renal failure in patients with peripheral smear positive for malarial parasites. One hundred (10.4%) (63 males, 37 females) malaria induced acute renal failure amongst 958 cases of acute renal failure were evaluated. Plasmodium (P). falciparum was reported in 85%, P. vivax in 2%, and both in 13% patients. The mean serum creatinine was 9.2 ± 4.2 mg%, and oligo/anuria was present in 82%; 78% of the patients required hemodialysis. Sixty four percent of the patients recovered completely, 10% incompletely, and 5% developed chronic kidney failure; mortality occurred in 21% of the patients. Low hemoglobin, oligo/anuria on admission, hyperbilirubinemia, cerebral malaria, disseminated intravascular coagulation, and high serum creatinine were the main predictors of mortality. We conclude that malaria is associated with acute renal failure, which occurs most commonly in plasmodium falciparum infected patients. Early diagnosis and prompt dialysis with supportive management can reduce morality and enhance recovery of renal function (Author).

  14. Prognosis of Acute Kidney Injury and Hepatorenal Syndrome in Patients with Cirrhosis: A Prospective Cohort Study

    Directory of Open Access Journals (Sweden)

    Andrew S. Allegretti

    2015-01-01

    Full Text Available Background/Aims. Acute kidney injury is a common problem for patients with cirrhosis and is associated with poor survival. We aimed to examine the association between type of acute kidney injury and 90-day mortality. Methods. Prospective cohort study at a major US liver transplant center. A nephrologist’s review of the urinary sediment was used in conjunction with the 2007 Ascites Club Criteria to stratify acute kidney injury into four groups: prerenal azotemia, hepatorenal syndrome, acute tubular necrosis, or other. Results. 120 participants with cirrhosis and acute kidney injury were analyzed. Ninety-day mortality was 14/40 (35% with prerenal azotemia, 20/35 (57% with hepatorenal syndrome, 21/36 (58% with acute tubular necrosis, and 1/9 (11% with other (p=0.04 overall. Mortality was the same in hepatorenal syndrome compared to acute tubular necrosis (p=0.99. Mortality was lower in prerenal azotemia compared to hepatorenal syndrome (p=0.05 and acute tubular necrosis (p=0.04. Ten participants (22% were reclassified from hepatorenal syndrome to acute tubular necrosis because of granular casts on urinary sediment. Conclusions. Hepatorenal syndrome and acute tubular necrosis result in similar 90-day mortality. Review of urinary sediment may add important diagnostic information to this population. Multicenter studies are needed to validate these findings and better guide management.

  15. Acute Kidney Injury: Epidemiology, Diagnosis, Prognosis, and Future Directions

    Directory of Open Access Journals (Sweden)

    Joana Briosa Neves

    2015-07-01

    Full Text Available Acute kidney injury (AKI is a common problem highly associated with hospitalisation. AKI is the cause of harmful short-term consequences: longer hospital stays, greater disability after discharge, and greater risk of in-hospital mortality, as well as adverse long-term outcomes, such as progression to chronic kidney disease, development of cardiovascular disease, and increased risk of long-term mortality. The concept of AKI has changed since the introduction of the ‘Risk, Injury, Failure, Loss of kidney function, End-stage kidney disease’ (RIFLE classification. More recently, the ‘Kidney Disease Improving Global Outcomes’ (KDIGO classification appears to have provided increased diagnostic sensitivity and outcome-prediction capability. Novel biomarkers and further research on the role of the immune system in AKI may help improve the diagnosis, severity, outcome evaluation, and treatment of the condition. In this review we describe the epidemiology, diagnosis, and prognosis of AKI, as well as possible future directions for its clinical management.

  16. Outcome of pregnancy related acute kidney injury requiring ...

    African Journals Online (AJOL)

    Background: Pregnancy related acute kidney injury (AKI) severe enough to require dialysis is now rare in developed countries but is still a significant cause of maternal mortality in many resource constrained countries. However, there is scanty information from many sub-Saharan countries about outcomes of patient who ...

  17. [Decursin reduces reactive oxygen species and inhibits cisplatin-induced apoptosis in rat renal tubular epithelial cells].

    Science.gov (United States)

    Li, Cuiqiong; Li, Jianchun; Fan, Junming; Meng, Lifeng; Cao, Ling

    2017-10-01

    Objective To study the mechanism underlying the inhibitory effect of decursin on the apoptosis of rat renal tubular epithelial cells NRK-52E induced by cisplatin. Methods First, CCK-8 assay was used to detect the effects of 0, 10, 20, 40, 80, 100, 150, 200 μmol/L decursin and 0, 5, 10, 20, 30, 40, 50 μg/mL cispatin treatment for 24 hours on cell proliferation in NRK-52E cells via determining the half inhibitory concentration (IC 50 ). Then, NRK-52E cells were stimulated with 20 μg/mL cisplatin combined with 10, 50, 100 μmol/L decursin, and cell activity was detected by CCK-8 assay. The cells were divided into normal control group, 20 μg/mL cisplatin stimulation group, and 10, 50, 100 μmol/L decursin treated groups. Cell morphological changes was observed under inverted microscope, morphological changes of nucleus was detected by DAPI staining, cell apoptosis was detected by flow cytometry, the level of intracellular ROS was detected by DCFH-DA staining, and the apoptosis marker proteins cleaved-caspase-3 and cleaved-PARP were examined by Western blot analysis. Results Compared with the normal control group, cisplatin significantly inhibited the activity of the cells, and IC 50 was about 20 μg/mL; compared with the model group, in the decursin pretreatment groups, the level of intracellular ROS decreased remarkably, the expressions of cleaved-casspase-3 and cleaved-PARP proteins were reduced, and cell apoptosis was depressed. Conclusion Decursin can decrease the intracellular ROS level and inhibit the apoptosis of NRK-52E cells induced by cisplatin.

  18. Recovery of renal function after seven weeks of anuric acute kidney ...

    African Journals Online (AJOL)

    Background: Acute Kidney Injury (AKI) is rapid decline in kidney function with rising creatinine and/or reduced urinary output. The urinary manifestation ranges from oliguria to anuria. Although the anuric AKI tends to have prolonged course, most are expected to recover within two to three weeks. We present the case of a 2 ...

  19. Stressful life events and acute kidney injury in intensive and semi-intensive care unities.

    Science.gov (United States)

    Diniz, Denise Para; Marques, Daniella Aparecida; Blay, Sérgio Luis; Schor, Nestor

    2012-03-01

    Several studies point out that pathophysiological changes related to stress may influence renal function and are associated with disease onset and evolution. However, we have not found any studies about the influence of stress on renal function and acute kidney injury. To evaluate the association between stressful life events and acute kidney injury diagnosis, specifying the most stressful classes of events for these patients in the past 12 months. Case-control study. The study was carried out at Hospital São Paulo, in Universidade Federal de São Paulo and at Hospital dos Servidores do Estado de São Paulo, in Brazil. Patients with acute kidney injury and no chronic disease, admitted to the intensive or semi-intensive care units were included. Controls included patients in the same intensive care units with other acute diseases, except for the acute kidney injury, and also with no chronic disease. Out of the 579 patients initially identified, 475 answered to the Social Readjustment Rating Scale (SRRS) questionnaire and 398 were paired by age and gender (199 cases and 199 controls). The rate of stressful life events was statistically similar between cases and controls. The logistic regression analysis to detect associated effects of the independent variables to the stressful events showed that: increasing age and economic classes A and B in one of the hospitals (Hospital São Paulo - UNIFESP) increased the chance of a stressful life event (SLE). This study did not show association between the Acute Kidney Injury Group with a higher frequency of stressful life events, but that old age, higher income, and type of clinical center were associated.

  20. Is prolonged cold ischemia a contraindication to using kidneys from acute kidney injury donors?

    Science.gov (United States)

    Orlando, Giuseppe; Khan, Muhammad A; El-Hennawy, Hany; Farney, Alan C; Rogers, Jeffrey; Reeves-Daniel, Amber; Gautreaux, Michael D; Doares, William; Kaczmorski, Scott; Stratta, Robert J

    2018-03-01

    To determine the impact of prolonged cold ischemia time (CIT) on the outcome of acute kidney injury (AKI) renal grafts, we therefore performed a single-center retrospective analysis in adult patients receiving kidney transplantation (KT) from AKI donors. Outcomes were stratified according to duration of CIT. A total of 118 patients receiving AKI grafts were enrolled. Based on CIT, patients were stratified as follows: (i) 20 hours (P = NS). In the nine patients with CIT >40 hours, the 4-year DCGS rate was 100%. We conclude that prolonged CIT in AKI grafts may not adversely influence outcomes and so discard of AKI kidneys because of projected long CIT is not warranted when donors are wisely triaged. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Human agonistic TRAIL receptor antibodies Mapatumumab and Lexatumumab induce apoptosis in malignant mesothelioma and act synergistically with cisplatin

    Directory of Open Access Journals (Sweden)

    Felley-Bosco Emanuela

    2007-10-01

    Full Text Available Abstract Background The incidence of malignant pleural mesothelioma (MPM is associated with exposure to asbestos, and projections suggest that the yearly number of deaths in Western Europe due to MPM will increase until 2020. Despite progress in chemo- and in multimodality therapy, MPM remains a disease with a poor prognosis. Inducing apoptosis by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL or agonistic monoclonal antibodies which target TRAIL-receptor 1 (TRAIL-R1 or TRAIL-R2 has been thought to be a promising cancer therapy. Results We have compared the sensitivity of 13 MPM cell lines or primary cultures to TRAIL and two fully human agonistic monoclonal antibodies directed to TRAIL-R1 (Mapatumumab and TRAIL-R2 (Lexatumumab and examined sensitization of the MPM cell lines to cisplatin-induced by the TRAIL-receptor antibodies. We found that sensitivity of MPM cells to TRAIL, Mapatumumab and Lexatumumab varies largely and is independent of TRAIL-receptor expression. TRAIL-R2 contributes more than TRAIL-R1 to death-receptor mediated apoptosis in MPM cells that express both receptors. The combination of cisplatin with Mapatumumab or Lexatumumab synergistically inhibited the cell growth and enhanced apoptotic death. Furthermore, pre-treatment with cisplatin followed by Mapatumumab or Lexatumumab resulted in significant higher cytotoxic effects as compared to the reverse sequence. Combination-induced cell growth inhibition was significantly abrogated by pre-treatment of the cells with the antioxidant N-acetylcysteine. Conclusion Our results suggest that the sequential administration of cisplatin followed by Mapatumumab or Lexatumumab deserves investigation in the treatment of patients with MPM.

  2. Cisplatin ototoxicity involves cytokines and STAT6 signaling network

    Institute of Scientific and Technical Information of China (English)

    Hyung-Jin Kim; Jeong-Dug Sul; Channy Park; Sang-Young Chung; Sung-Kyun Moon; David J Lim; Hong-Seob So; Raekil Park; Gi-Su Oh; Jeong-Han Lee; Ah-Ra Lyu; Hye-Min Ji; Sang-Heon Lee; Jeho Song; Sung-Joo Park; Yong-Ouk You

    2011-01-01

    We herein investigated the role of the STAT signaling cascade in the production of pro-inflammatory cytokines and cisplatin ototoxicity. A significant hearing impairment caused by cisplatin injection was observed in Balb/c (wild type,WT) and STAT4-/-,but not in STAT6-/- mice. Moreover,the expression levels of the protein and mRNA of proinflammatory cytokines,including TNF-α,IL-1β,and IL-6,were markedly increased in the serum and cochlea of WT and STAT4+,but not STAT6-/- mice. Organotypic culture revealed that the shape of stereocilia bundles and arrays of sensory hair cell layers in the organ of Corti from STAT6-/- mice were intact after treatment with cisplatin,whereas those from WT and STAT4-/- mice were highly distorted and disarrayed after the treatment. Cisplatin induced the phosphorylation of STAT6 in HEI-OC1 auditory cells,and the knockdown of STAT6 by STAT6-specific siRNA significantly protected HEI-OC1 auditory cells from cisplatin-induced cell death and inhibited pro-inflammatory cytokine production. We further demonstrated that IL-4 and IL-13 induced by cisplatin modulated the phosphorylation of STAT6 by binding with IL-4 receptor alpha and IL-13Rα1. These findings suggest that STAT6 signaling plays a pivotal role in cisplatin-mediated pro-inflammatory cytokine production and ototoxicity.

  3. USP22 Induces Cisplatin Resistance in Lung Adenocarcinoma by Regulating γH2AX-Mediated DNA Damage Repair and Ku70/Bax-Mediated Apoptosis

    Directory of Open Access Journals (Sweden)

    Aman Wang

    2017-05-01

    Full Text Available Resistance to platinum-based chemotherapy is one of the most important reasons for treatment failure in advanced non-small cell lung cancer, but the underlying mechanism is extremely complex and unclear. The present study aimed to investigate the correlation of ubiquitin-specific peptidase 22 (USP22 with acquired resistance to cisplatin in lung adenocarcinoma. In this study, we found that overexpression of USP22 could lead to cisplatin resistance in A549 cells. USP22 and its downstream proteins γH2AX and Sirt1 levels are upregulated in the cisplatin- resistant A549/CDDP cell line. USP22 enhances DNA damage repair and induce cisplatin resistance by promoting the phosphorylation of histone H2AX via deubiquitinating histone H2A. In addition, USP22 decreases the acetylation of Ku70 by stabilizing Sirt1, thus inhibiting Bax-mediated apoptosis and inducing cisplatin resistance. The cisplatin sensitivity in cisplatin-resistant A549/CDDP cells was restored by USP22 inhibition in vivo and vitro. In summary, our findings reveal the dual mechanism of USP22 involvement in cisplatin resistance that USP22 can regulate γH2AX-mediated DNA damage repair and Ku70/Bax-mediated apoptosis. USP22 is a potential target in cisplatin-resistant lung adenocarcinoma and should be considered in future therapeutic practice.

  4. Acute Kidney Injury Complicated Epstein-Barr Virus Infection in Infancy

    Directory of Open Access Journals (Sweden)

    Gamze Ozgurhan

    2015-01-01

    Full Text Available Infectious mononucleosis is an acute lymphoproliferative disorder caused by the Epstein-Barr virus (EBV and seen most commonly in children and young adults. Clinical presentation of the disease is characterized by fever, tonsillopharyngitis, lymphadenopathy, and hepatosplenomegaly, whereas serological findings of this benign disorder include positive heterophilic antibody formation (transient increase in heterophilic antibodies and prominence of hematological lymphocytosis of more than 10% of atypical lymphocytes. An EBV infection is usually asymptomatic in childhood, but acute kidney injury can be a rare complication during its course. Most cases recover from the disease completely. Early recognition of EBV infection and estimation of its complication are important for its prognosis. In light of previous literature, we discuss the case evaluated as an EBV infection complicated by acute kidney injury in early childhood and results of tubulointerstitial nephritis shown on a renal biopsy that was later diagnosed as an EBV infection by serological examination.

  5. Prevention of chemotherapy-induced nephrotoxicity in children with cancer

    Directory of Open Access Journals (Sweden)

    Fatemeh Ghane Sharbaf

    2017-01-01

    Full Text Available Children with cancer treated with cytotoxic drugs are frequently at risk of developing renal dysfunction. The cytotoxic drugs that are widely used for cancer treatment in children are cisplatin (CPL, ifosfamide (IFO, carboplatin, and methotrexate (MTX. Mechanisms of anticancer drug-induced renal disorders are different and include acute kidney injury (AKI, tubulointerstitial disease, vascular damage, hemolytic uremic syndrome (HUS, and intrarenal obstruction. CPL nephrotoxicity is dose-related and is often demonstrated with hypomagnesemia, hypokalemia, and impaired renal function with rising serum creatinine and blood urea nitrogen levels. CPL, mitomycin C, and gemcitabine treatment cause vascular injury and HUS. High-dose IFO, streptozocin, and azacitidine cause renal tubular dysfunction manifested by Fanconi syndrome, rickets, and osteomalacia. AKI is a common adverse effect of MTX, interferon-alpha, and nitrosourea compound treatment. These strategies to reduce the cytotoxic drug-induced nephrotoxicity should include adequate hydration, forced diuresis, and urinary alkalization. Amifostine, sodium thiosulfate, and diethyldithiocarbamate provide protection against CPL-induced renal toxicity.

  6. Cisplatin-induced caspase activation mediates PTEN cleavage in ovarian cancer cells: a potential mechanism of chemoresistance

    International Nuclear Information System (INIS)

    Singh, Mohan; Chaudhry, Parvesh; Fabi, Francois; Asselin, Eric

    2013-01-01

    The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor protein is a central negative regulator of the PI3K/AKT signaling cascade and suppresses cell survival as well as cell proliferation. PTEN is found to be either inactivated or mutated in various human malignancies. In the present study, we have investigated the regulation of PTEN during cisplatin induced apoptosis in A2780, A270-CP (cisplatin resistant), OVCAR-3 and SKOV3 ovarian cancer cell lines. Cells were treated with 10μM of cisplatin for 24h. Transcript and protein levels were analysed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and western blotting, respectively. Immunofluorescence microscopy was used to assess the intracellular localization of PTEN. Proteasome inhibitor and various caspases inhibitors were used to find the mechanism of PTEN degradation. PTEN protein levels were found to be decreased significantly in A2780 cells; however, there was no change in PTEN protein levels in A2780-CP, OVCAR-3 and SKOV3 cells with cisplatin treatment. The decrease in PTEN protein was accompanied with an increase in the levels of AKT phosphorylation (pAKT) in A2780 cells and a decrease of BCL-2. Cisplatin treatment induced the activation/cleavage of caspase-3, -6, -7, -8, -9 in all cell lines tested in this study except the resistant variant A2780-CP cells. In A2780 cells, restoration of PTEN levels was achieved upon pre-treatment with Z-DEVD-FMK (broad range caspases inhibitor) and not with MG132 (proteasome inhibitor) and by overexpression of BCL-2, suggesting that caspases and BCL-2 are involved in the decrease of PTEN protein levels in A2780 cells. The decrease in pro-apoptotic PTEN protein levels and increase in survival factor pAKT in A2780 ovarian cancer cells suggest that cisplatin treatment could further exacerbate drug resistance in A2780 ovarian cancer cells

  7. Cisplatin-induced caspase activation mediates PTEN cleavage in ovarian cancer cells: a potential mechanism of chemoresistance.

    Science.gov (United States)

    Singh, Mohan; Chaudhry, Parvesh; Fabi, Francois; Asselin, Eric

    2013-05-10

    The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor protein is a central negative regulator of the PI3K/AKT signaling cascade and suppresses cell survival as well as cell proliferation. PTEN is found to be either inactivated or mutated in various human malignancies. In the present study, we have investigated the regulation of PTEN during cisplatin induced apoptosis in A2780, A270-CP (cisplatin resistant), OVCAR-3 and SKOV3 ovarian cancer cell lines. Cells were treated with 10μM of cisplatin for 24h. Transcript and protein levels were analysed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) and western blotting, respectively. Immunofluorescence microscopy was used to assess the intracellular localization of PTEN. Proteasome inhibitor and various caspases inhibitors were used to find the mechanism of PTEN degradation. PTEN protein levels were found to be decreased significantly in A2780 cells; however, there was no change in PTEN protein levels in A2780-CP, OVCAR-3 and SKOV3 cells with cisplatin treatment. The decrease in PTEN protein was accompanied with an increase in the levels of AKT phosphorylation (pAKT) in A2780 cells and a decrease of BCL-2. Cisplatin treatment induced the activation/cleavage of caspase-3, -6, -7, -8, -9 in all cell lines tested in this study except the resistant variant A2780-CP cells. In A2780 cells, restoration of PTEN levels was achieved upon pre-treatment with Z-DEVD-FMK (broad range caspases inhibitor) and not with MG132 (proteasome inhibitor) and by overexpression of BCL-2, suggesting that caspases and BCL-2 are involved in the decrease of PTEN protein levels in A2780 cells. The decrease in pro-apoptotic PTEN protein levels and increase in survival factor pAKT in A2780 ovarian cancer cells suggest that cisplatin treatment could further exacerbate drug resistance in A2780 ovarian cancer cells.

  8. From body piercing to acute kidney injury – a case report

    Directory of Open Access Journals (Sweden)

    Irena Wikiera-Magott

    2017-12-01

    Full Text Available Acute kidney injury is an abrupt decline of renal function interfering with the body’s homeostasis. It most commonly occurs in neonates and children treated in intensive care units and undergoing extensive surgical procedures, especially cardiac surgery. Its aetiology is frequently complex, with infectious factors, toxic chemical activity and hydration and electrolyte imbalance occurring simultaneously and aggravating kidney injury. This study reports a case of a 17-year-old female patient in whom acute kidney injury was caused by a combination of factors, including sepsis, adverse effects of analgesic drugs and dehydration. Staphylococcus aureus infection caused by multiple-site piercings performed in a home setting resulted in the development of multiple skin abscesses, myometrial abscesses and a generalised infection. The patient’s condition warranted intensive antibiotic therapy and drainage of the myometrial abscesses. The therapy facilitated eradication of the infection foci and normalising renal function.

  9. Mechanisms of Cisplatin-Induced Apoptosis and of Cisplatin Sensitivity: Potential of BIN1 to Act as a Potent Predictor of Cisplatin Sensitivity in Gastric Cancer Treatment

    OpenAIRE

    Tanida, Satoshi; Mizoshita, Tsutomu; Ozeki, Keiji; Tsukamoto, Hironobu; Kamiya, Takeshi; Kataoka, Hiromi; Sakamuro, Daitoku; Joh, Takashi

    2012-01-01

    Cisplatin is the most important and efficacious chemotherapeutic agent for the treatment of advanced gastric cancer. Cisplatin forms inter- and intrastrand crosslinked DNA adducts and its cytotoxicity is mediated by propagation of DNA damage recognition signals to downstream pathways involving ATR, p53, p73, and mitogen-activated protein kinases, ultimately resulting in apoptosis. Cisplatin resistance arises through a multifactorial mechanism involving reduced drug uptake, increased drug inac...

  10. Derivation of a Predictive Model for Graft Loss Following Acute Kidney Injury in Kidney Transplant Recipients.

    Science.gov (United States)

    Molnar, Amber O; van Walraven, Carl; Fergusson, Dean; Garg, Amit X; Knoll, Greg

    2017-01-01

    Acute kidney injury (AKI) is common in the kidney transplant population. To derive a multivariable survival model that predicts time to graft loss following AKI. Retrospective cohort study using health care administrative and laboratory databases. Southwestern Ontario (1999-2013) and Ottawa, Ontario, Canada (1996-2013). We included first-time kidney only transplant recipients who had a hospitalization with AKI 6 months or greater following transplant. AKI was defined using the Acute Kidney Injury Network criteria (stage 1 or greater). The first episode of AKI was included in the analysis. Graft loss was defined by return to dialysis or repeat kidney transplant. We performed a competing risk survival regression analysis using the Fine and Gray method and modified the model into a simple point system. Graft loss with death as a competing event was the primary outcome of interest. A total of 315 kidney transplant recipients who had a hospitalization with AKI 6 months or greater following transplant were included. The median (interquartile range) follow-up time was 6.7 (3.3-10.3) years. Graft loss occurred in 27.6% of the cohort. The final model included 6 variables associated with an increased risk of graft loss: younger age, increased severity of AKI, failure to recover from AKI, lower baseline estimated glomerular filtration rate, increased time from kidney transplant to AKI admission, and receipt of a kidney from a deceased donor. The risk score had a concordance probability of 0.75 (95% confidence interval [CI], 0.69-0.82). The predicted 5-year risk of graft loss fell within the 95% CI of the observed risk more than 95% of the time. The CIs of the estimates were wide, and model overfitting is possible due to the limited sample size; the risk score requires validation to determine its clinical utility. Our prognostic risk score uses commonly available information to predict the risk of graft loss in kidney transplant patients hospitalized with AKI. If validated

  11. Dunnione ameliorates cisplatin ototoxicity through modulation of NAD(+) metabolism.

    Science.gov (United States)

    Kim, Hyung-Jin; Pandit, Arpana; Oh, Gi-Su; Shen, AiHua; Lee, Su-Bin; Khadka, Dipendra; Lee, SeungHoon; Shim, Hyeok; Yang, Sei-Hoon; Cho, Eun-Young; Kwak, Tae Hwan; Choe, Seong-Kyu; Park, Raekil; So, Hong-Seob

    2016-03-01

    Ototoxicity is an important issue in patients receiving cisplatin chemotherapy. Numerous studies have demonstrated that cisplatin-induced ototoxicity is related to oxidative stress and DNA damage. However, the precise mechanism underlying cisplatin-associated ototoxicity is still unclear. The cofactor nicotinamide adenine dinucleotide (NAD(+)) has emerged as an important regulator of energy metabolism and cellular homeostasis. Here, we demonstrate that the levels and activities of sirtuin-1 (SIRT1) are suppressed by the reduction of intracellular NAD(+) levels in cisplatin-mediated ototoxicity. We provide evidence that the decreases in SIRT1 activity and expression facilitated by increasing poly(ADP-ribose) polymerase-1 (PARP-1) activation and microRNA-34a levels through cisplatin-mediated p53 activation aggravate the associated ototoxicity. Furthermore, we show that the induction of cellular NAD(+) levels using dunnione, which targets intracellular NQO1, prevents the toxic effects of cisplatin through the regulation of PARP-1 and SIRT1 activity. These results suggest that direct modulation of cellular NAD(+) levels by pharmacological agents could be a promising therapeutic approach for protection from cisplatin-induced ototoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Acute Kidney Injury Classification in Neuro-ICU Patient Group

    Directory of Open Access Journals (Sweden)

    Canan Akıncı

    2012-12-01

    Full Text Available Objective: To investigate the role of acute kidney injury (AKI classification system for kidney injury outcome in neuro-Intensive care unit (ICU patients. Material and Method: Total 432 patients who admitted to ICU between 2005 and 2009 evaluated in this study. All patients’ AKI stage, Acute Physiology and Chronic Health Evaluation (APACHE-II, Sequential Organ Failure Assessment Score (SOFA, Glasgow Coma Score (GCS, Glasgow Outcome Score (GOS, mortality rate, length of ICU stay, need for intubation, and mechanical ventilation were recorded. Results: AKI was found in 24 of all 432 patents’ (5.5%. We found that, patients with AKI had higher APHACE-II score, SOFA score and mortality rates; longer ICU stay, duration of mechanical ventilation and intubation and lower GCS and GOS than without AKI group. Conclusion: Length of ICU stay and mortality rate were higher in AKI positive group.

  13. Effect of cisplatin on renal haemodynamics and tubular function in the dog kidney

    DEFF Research Database (Denmark)

    Daugaard, G; Abildgaard, U; Holstein-Rathlou, N H

    1987-01-01

    Administration of cisplatin (5 mg/kg) to dogs results in polyuric renal failure due initially to a proximal tubular functional impairment. 48-72 h after the cisplatin administration the depressed renal function can be attributed to impairment of proximal as well as distal tubular reabsorptive cap...... capacities associated with increased renal vascular resistance. The polyuria seems to be due to the impaired reabsorption rate in the distal nephron segments....

  14. Acute kidney injury due to tropical infectious diseases and animal venoms: a tale of 2 continents.

    Science.gov (United States)

    Burdmann, Emmanuel A; Jha, Vivekanand

    2017-05-01

    South and Southeast Asia and Latin American together comprise 46 countries and are home to approximately 40% of the world population. The sociopolitical and economic heterogeneity, tropical climate, and malady transitions characteristic of the region strongly influence disease behavior and health care delivery. Acute kidney injury epidemiology mirrors these inequalities. In addition to hospital-acquired acute kidney injury in tertiary care centers, these countries face a large preventable burden of community-acquired acute kidney injury secondary to tropical infectious diseases or animal venoms, affecting previously healthy young individuals. This article reviews the epidemiology, clinical picture, prevention, risk factors, and pathophysiology of acute kidney injury associated with tropical diseases (malaria, dengue, leptospirosis, scrub typhus, and yellow fever) and animal venom (snakes, bees, caterpillars, spiders, and scorpions) in tropical regions of Asia and Latin America, and discusses the potential future challenges due to emerging issues. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  15. Albumin infusion improves renal blood flow autoregulation in patients with acute decompensation of cirrhosis and acute kidney injury.

    Science.gov (United States)

    Garcia-Martinez, Rita; Noiret, Lorette; Sen, Sambit; Mookerjee, Rajeshwar; Jalan, Rajiv

    2015-02-01

    In cirrhotic patients with renal failure, renal blood flow autoregulation curve is shifted to the right, which is consequent upon sympathetic nervous system activation and endothelial dysfunction. Albumin infusion improves renal function in cirrhosis by mechanisms that are incompletely understood. We aimed to determine the effect of albumin infusion on systemic haemodynamics, renal blood flow, renal function and endothelial function in patients with acute decompensation of cirrhosis and acute kidney injury. Twelve patients with refractory ascites and 10 patients with acute decompensation of cirrhosis and acute kidney injury were studied. Both groups were treated with intravenous albumin infusion, 40-60 g/days over 3-4 days. Cardiac and renal haemodynamics were measured. Endothelial activation/dysfunction was assessed using von Willebrand factor and serum nitrite levels. F2α Isoprostanes, resting neutrophil burst and noradrenaline levels were quantified as markers of oxidative stress, endotoxemia and sympathetic activation respectively. Albumin infusion leads to a shift in the renal blood flow autoregulation curve towards normalization, which resulted in a significant increase in renal blood flow. Accordingly, improvement of renal function was observed. In parallel, a significant decrease in sympathetic activation, inflammation/oxidative stress and endothelial activation/dysfunction was documented. Improvement of renal blood flow correlated with improvement in endothelial activation (r = 0.741, P renal function in acutely decompensated cirrhotic patients with acute kidney injury by impacting on renal blood flow autoregulation. This is possibly achieved through endothelial stabilization and a reduction in the sympathetic tone, endotoxemia and oxidative stress. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Case report: An unusual case of cisplatin induced paralytic ileus

    Directory of Open Access Journals (Sweden)

    Rosdiana Abd Rahim

    2017-12-01

    Full Text Available Background: Ileus is a failure of normal intestinal motility in the absence of mechanical obstruction. Ileus is thought to result from an imbalance between sympathetic and parasympathetic motor activity, resulting in intestinal atony. Few anti-cancer therapies reported to be associated with paralytic ileus, such as vincristine, vinblastine and paclitaxel. It is thought as a consequences of autonomic neuropathy. Here we present a paralytic ileus experience during cisplatin therapy. Case presentation: We present a case of 57 years old gentleman with diagnosis of metastatic nasopharyngeal carcinoma to lung and multiple bones who develop paralytic ileus following chemotherapy cisplatin and fluorouracil. The patient complained of abdominal discomfort with bloating and not tolerating Ryle tube feeding started 3 days after completion of cycle 2 cisplatin & fluorouracil infusion chemotherapy. No vomiting and still passing out small amount of stool everyday. Physical examination revealed abdominal distension, lower abdominal tenderness, sluggish bowel sound and empty rectum. The blood investigations for electrolyte, renal and hepatic function, and amylase were normal. Abdominal computerized tomography showed diffuse dilatation of small and large bowels extending to the rectum, without any obstructive pathology which was consistent with paralytic ileus. He was hospitalized and treated with nasogastric decompression and partial parenteral nutrition started. The symptoms improved after few days of decompression. Conclusion: Peripheral neuropathy due to cisplatin has been well described, however paralytic ileus has not previously been reported in medical literature. From patient self-reported outcome study, however, this complication was not that uncommon, and was reported by 0.76% of patients receiving cisplatin, especially people who are male, 60 years old and more, have been taking the drug for more than 1 month, also take medication dexamethasone. The

  17. Hymenoptera Stings and the Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Yashad Dongol

    2013-07-01

    Full Text Available Hymenoptera stings are a health concern. Apidae (bees, Vespidae (hornets, yellow jackets and wasps and Formicidae (ants are medically-important stinging insects under the order Hymenoptera. Clinical features from simple skin manifestations to severe and fatal organ injury are due to the hypersensitivity reactions and/ or the toxic effects of the venom inoculated. Here we discuss on Hymenoptera stings involving apids (honey bees and vespids (wasps, hornets and yellow jackets and their effect on renal function and associated morphological changes in the kidney. Despite the differences in venom composition and quantity released per sting in two insect groups, both lead to similar medical consequences, such as localised normal allergic reactions, mild to severe anaphylaxis and shock and multiple organ and tissue injury leading to multiple organ failure. Acute kidney injury (AKI is one of the unusual complications of Hymenoptera stings and has the basis of both immune-mediated and toxic effects. Evidence has proven that supportive therapy along with the standard medication is very efficient in completely restoring the kidney function without any recurrence.

  18. Assessment of knowledge of acute kidney injury among non ...

    African Journals Online (AJOL)

    Background: Adequate knowledge of acute kidney injury (AKI) among doctors is essential for its prevention, early diagnosis and management. Assessing knowledge of AKI among doctors is necessary to identify areas of deficiencies and key areas to be emphasized when organizing educational programs aimed at ...

  19. Protein kinase C β inhibits autophagy and sensitizes cervical cancer Hela cells to cisplatin.

    Science.gov (United States)

    Li, Na; Zhang, Wei

    2017-04-28

    Recently, autophagy has been indicated to play an essential role in various biological events, such as the response of cervical cancer cells to chemotherapy. However, the exact signalling mechanism that regulates autophagy during chemotherapy remains unclear. In the present study, we investigated the regulation by cisplatin on protein kinase C β (PKC β), on B-cell lymphoma 2 (Bcl-2) and on apoptosis in cervical cancer Hela cells. And then we examined the regulation by cisplatin on autophagy and the role of autophagy on the chemotherapy in Hela cells. In addition, the regulation of the PKC β on the autophagy was also investigated. Our results indicated that cisplatin promoted PKC β in Hela cells. The PKC β inhibitor reduced the cisplatin-induced apoptosis, whereas increased the cisplatin-induced autophagy in Hela cells. On the other side, the PKC β overexpression aggravated the cisplatin-induced apoptosis, whereas down-regulated the cisplatin-induced autophagy. Taken together, our study firstly recognized the involvement of PKC β in the cytotoxicity of cisplatin via inhibiting autophagy in cervical cancer cells. We propose that PKC β would sensitize cervical cancer cells to chemotherapy via reducing the chemotherapy induced autophagy in cancer cells. © 2017 The Author(s).

  20. Autophagy Limits Endotoxemic Acute Kidney Injury and Alters Renal Tubular Epithelial Cell Cytokine Expression.

    Directory of Open Access Journals (Sweden)

    Jeremy S Leventhal

    Full Text Available Sepsis related acute kidney injury (AKI is a common in-hospital complication with a dismal prognosis. Our incomplete understanding of disease pathogenesis has prevented the identification of hypothesis-driven preventive or therapeutic interventions. Increasing evidence in ischemia-reperfusion and nephrotoxic mouse models of AKI support the theory that autophagy protects renal tubular epithelial cells (RTEC from injury. However, the role of RTEC autophagy in septic AKI remains unclear. We observed that lipopolysaccharide (LPS, a mediator of gram-negative bacterial sepsis, induces RTEC autophagy in vivo and in vitro through TLR4-initiated signaling. We modeled septic AKI through intraperitoneal LPS injection in mice in which autophagy-related protein 7 was specifically knocked out in the renal proximal tubules (ATG7KO. Compared to control littermates, ATG7KO mice developed more severe renal dysfunction (24hr BUN 100.1mg/dl +/- 14.8 vs 54.6mg/dl +/- 11.3 and parenchymal injury. After injection with LPS, analysis of kidney lysates identified higher IL-6 expression and increased STAT3 activation in kidney lysates from ATG7KO mice compared to controls. In vitro experiments confirmed an altered response to LPS in RTEC with genetic or pharmacological impairment of autophagy. In conclusion, RTEC autophagy protects against endotoxin induced injury and regulates downstream effects of RTEC TLR4 signaling.

  1. Zataria multiflora ameliorates testicular and spermatological damages induced by cisplatin in mice model

    Directory of Open Access Journals (Sweden)

    2017-11-01

    Full Text Available Background and objectives: Cisplatin (CP, a highly effective antineoplastic drug, causes testicular damage. Zataria multiflora Boiss. (ZM, a medicinal plant, has antioxidant and anti-inflammatory properties. The aim of this study was to investigate the effects of ZM against cisplatin-induced testicular toxicity. Methods: Thirty-two adult male mice were randomly divided into four groups. The control group received normal saline with oral gavage during 7 days; ZM group received ZM (200 mg/kg during 7 days by gavage; CP group received CP (10 mg/kg i.p. in 5th day of study; ZM + CP group received ZM during 7 days and CP was injected in 5th day. Sperm parameters (including motility, sperm count, sperm viability rate and morphological sperm abnormalities, biochemical (malondialdehyde (MDA, glutathione (GSH and protein carbonyl (PC levels, serum testosterone levels, histological and immunochemistry assays of testis were examined one day after the last receipt of the drug. Results: CP treatment caused significant damage via changed of sperm parameters, increased oxidative stress (increased MDA, PC levels and decreased GSH level, histological changes (degeneration, necrosis, arrest of spermatogenesis, congestion and decrease in thickness of the germinal epithelium, diameter of seminiferous tubules and Johnsen’s Score, decreased serum testosterone level and increased caspase-3 immunoreactivity. ZM preserved spermatogenesis and mitigated the toxic effects of CP on the testis tissue. In addition, pretreatment with ZM significantly reduced caspase-3 immunoreactivity. Conclusion: The findings of this study suggested ZM as a potential antioxidant compound which showed protective effect against cisplatin-induced testicular toxicity.

  2. Resolvin D1 Protects Lipopolysaccharide-induced Acute Kidney Injury by Down-regulating Nuclear Factor-kappa B Signal and Inhibiting Apoptosis

    Directory of Open Access Journals (Sweden)

    Yu-Liang Zhao

    2016-01-01

    Conclusion: In LPS-induced AKI, RvD1 could decrease TNF-α level, ameliorate kidney pathological injury, protect kidney function, and improve animal survival by down-regulating NF-κB inflammatory signal as well as inhibiting renal cell apoptosis.

  3. Lycium barbarum polysaccharide attenuates cisplatin- induced ...

    African Journals Online (AJOL)

    effects on the life quality of cancer patients. Cisplatin is ... response and hormone balance [12,13]. However not ..... through facilitation of cytochrome C across the mitochondrial ... No conflict of interest associated with this work. Contribution of ...

  4. National Veterans Health Administration inpatient risk stratification models for hospital-acquired acute kidney injury

    OpenAIRE

    Cronin, Robert M; VanHouten, Jacob P; Siew, Edward D; Eden, Svetlana K; Fihn, Stephan D; Nielson, Christopher D; Peterson, Josh F; Baker, Clifton R; Ikizler, T Alp; Speroff, Theodore; Matheny, Michael E

    2015-01-01

    Objective Hospital-acquired acute kidney injury (HA-AKI) is a potentially preventable cause of morbidity and mortality. Identifying high-risk patients prior to the onset of kidney injury is a key step towards AKI prevention.

  5. Concurrent cetuximab, cisplatin, and radiation for squamous cell carcinoma of the head and neck in vitro

    International Nuclear Information System (INIS)

    Zhang Na; Erjala, Kaisa; Kulmala, Jarmo; Qiu Xueshan; Sundvall, Maria; Elenius, Klaus; Grenman, Reidar

    2009-01-01

    Background and purpose: For locoregionally advanced HNSCC, chemoradiotherapy with cisplatin or another platinum compound is considered as one of the standard treatment regimes. Cisplatin has improved the loco-regional control, but also increased especially the acute side effects. Cetuximab blocks ligand binding and receptor activation by binding to the extracellular domain of the EGFR. The blockade of EGFR signaling in combination with cytotoxic drugs or with radiotherapy could be a novel effective management with a relatively favourable toxicity for HNSCC. In the present study we have examined in vitro a potentially novel effective management for HNSCC, cetuximab combined with cisplatin and radiotherapy. Materials and methods: Seven head and neck SCC cell lines were studied. Cetuximab concentrations of 0.22-8.20 nM and cisplatin concentrations of 0.038-0.220 μg/ml were used. In order to test the concurrent use of cetuximab, cisplatin and radiation, the cells were treated with the desired drug concentrations immediately after irradiation, plated into 96-well culture plates, and incubated for 4 weeks. The number of positive wells was counted. The PE was calculated and fraction survival data were fitted to the LQ model. AUC value was obtained with numerical integration. The types of interaction were analyzed. Results: Cetuximab and cisplatin constantly induced an additive or supra-additive effect when combined with irradiation in the seven HNSCC cell lines tested. Conclusions: We evaluated concurrent cetuximab, cisplatin, and radiation for HNSCC cell lines. Preliminary efficacy results are encouraging, and further development of this targeted combined modality paradigm is warranted.

  6. Clinical Course of Acute Pancreatitis in Chronic Kidney Disease ...

    African Journals Online (AJOL)

    Introduction: The aim of this study was to assess the clinical course, etiology and complications of acute pancreatitis among chronic kidney disease (CKD) patients in a tertiary care renal center in Karachi. Methods: We retrospectively evaluated the clinical course of CKD patients who presented to our emergency room with ...

  7. Protective effect of curcumin and vitamin C each alone and in combination on cisplatin-induced sperm abnormalities in male albino rats

    Directory of Open Access Journals (Sweden)

    Sabha Elsayed Elballat

    2016-08-01

    The results of the present investigation concluded that the combination between curcumin and vitamin C in cisplatin treatment afforded the best ameliorative effect on cisplatin induced sperm shape abnormalities. This may be due to the synergistic effect between curcumin and vitamin C as both of them have antioxidant properties which in turn lead to repairing of sperm abnormalities.

  8. Are diuretics harmful in the management of acute kidney injury?

    Science.gov (United States)

    Ejaz, A Ahsan; Mohandas, Rajesh

    2014-03-01

    To assess the role of diuretics in acute kidney injury (AKI) and their effectiveness in preventing AKI, achieving fluid balance, and decreasing progression to chronic kidney disease (CKD). Diuretics are associated with increased risk for AKI. The theoretical advantage of diuretic-induced preservation of renal medullary oxygenation to prevent AKI has not been proven. A higher cumulative diuretic dose during the dialysis period can cause hypotension and increase mortality in a dose-dependent manner. Data on the use of forced euvolemic diuresis to prevent AKI remains controversial. Positive fluid balance has emerged as an independent predictor of adverse outcomes. Post-AKI furosemide dose had a favorable effect on mortality due in part to the reduction of positive fluid balance. There are exciting experimental data suggesting that spironolactone may prevent AKI once an ischemic insult has occurred and thus prevent the progression to CKD. Diuretics are ineffective and even detrimental in the prevention and treatment of AKI, and neither shorten the duration of AKI, nor reduce the need for renal replacement therapy. Diuretics have an important role in volume management in AKI, but they are not recommended for the prevention of AKI. There is increased emphasis on the prevention of progression of AKI to CKD.

  9. Receptor interactive protein kinase 3 promotes Cisplatin-triggered necrosis in apoptosis-resistant esophageal squamous cell carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Yang Xu

    Full Text Available Cisplatin-based chemotherapy is currently the standard treatment for locally advanced esophageal cancer. Cisplatin has been shown to induce both apoptosis and necrosis in cancer cells, but the mechanism by which programmed necrosis is induced remains unknown. In this study, we provide evidence that cisplatin induces necrotic cell death in apoptosis-resistant esophageal cancer cells. This cell death is dependent on RIPK3 and on necrosome formation via autocrine production of TNFα. More importantly, we demonstrate that RIPK3 is necessary for cisplatin-induced killing of esophageal cancer cells because inhibition of RIPK1 activity by necrostatin or knockdown of RIPK3 significantly attenuates necrosis and leads to cisplatin resistance. Moreover, microarray analysis confirmed an anti-apoptotic molecular expression pattern in esophageal cancer cells in response to cisplatin. Taken together, our data indicate that RIPK3 and autocrine production of TNFα contribute to cisplatin sensitivity by initiating necrosis when the apoptotic pathway is suppressed or absent in esophageal cancer cells. These data provide new insight into the molecular mechanisms underlying cisplatin-induced necrosis and suggest that RIPK3 is a potential marker for predicting cisplatin sensitivity in apoptosis-resistant and advanced esophageal cancer.

  10. Sensitivity and specificity of a single emergency department measurement of urinary neutrophil gelatinase-associated lipocalin for diagnosing acute kidney injury.

    Science.gov (United States)

    Nickolas, Thomas L; O'Rourke, Matthew J; Yang, Jun; Sise, Meghan E; Canetta, Pietro A; Barasch, Nicholas; Buchen, Charles; Khan, Faris; Mori, Kiyoshi; Giglio, James; Devarajan, Prasad; Barasch, Jonathan

    2008-06-03

    A single serum creatinine measurement cannot distinguish acute kidney injury from chronic kidney disease or prerenal azotemia. To test the sensitivity and specificity of a single measurement of urinary neutrophil gelatinase-associated lipocalin (NGAL) and other urinary proteins to detect acute kidney injury in a spectrum of patients. Prospective cohort study. Emergency department of Columbia University Medical Center, New York, New York. 635 patients admitted to the hospital with acute kidney injury, prerenal azotemia, chronic kidney disease, or normal kidney function. Diagnosis of acute kidney injury was based on the RIFLE (risk, injury, failure, loss, and end-stage) criteria and assigned by researchers who were blinded to experimental measurements. Urinary NGAL was measured by immunoblot, N-acetyl-beta-d-glucosaminidase (NAG) by enzyme measurement, alpha1-microglobulin and alpha(1)-acid glycoprotein by immunonephelometry, and serum creatinine by Jaffe kinetic reaction. Experimental measurements were not available to treating physicians. Patients with acute kidney injury had a significantly elevated mean urinary NGAL level compared with the other kidney function groups (416 microg/g creatinine [SD, 387]; P = 0.001). At a cutoff value of 130 microg/g creatinine, sensitivity and specificity of NGAL for detecting acute injury were 0.900 (95% CI, 0.73 to 0.98) and 0.995 (CI, 0.990 to 1.00), respectively, and positive and negative likelihood ratios were 181.5 (CI, 58.33 to 564.71) and 0.10 (CI, 0.03 to 0.29); these values were superior to those for NAG, alpha1-microglobulin, alpha1-acid glycoprotein, fractional excretion of sodium, and serum creatinine. In multiple logistic regression, urinary NGAL level was highly predictive of clinical outcomes, including nephrology consultation, dialysis, and admission to the intensive care unit (odds ratio, 24.71 [CI, 7.69 to 79.42]). All patients came from a single center. Few kidney biopsies were performed. A single measurement

  11. Correlation study of podocyte injur y and kidney function in patients with acute kidney injur y

    Directory of Open Access Journals (Sweden)

    You-Gang Feng

    2016-11-01

    Full Text Available Objective: To investigate the correlation between the podocyte injury indexes in urine such as nephrin, desmin, P-cadherin, podocin, podocalyxin and CD2-associated protein (CD2AP and the kidney function in patients with acute kidney injury (AKI. Methods: A total of 120 severe postsurgical patients treated in the Intensive Care Unit of our hospital from May 2012 to October 2015 were selected and divided into AKI group (n = 38 and non-AKI group (n = 82 according to the diagnostic criteria of AKI. After admission to the Intensive Care Unit for 24 h, their blood samples were collected to detect the contents of serum creatinine (Scr, serum urea (SUrea, b2-microglobulin (b2-MG and cystatin C (Cys-C, and urine samples were collected to detect the contents of kidney injury molecule-1 (KIM-1, liver-type fatty acid binding protein (L-FABP, Netrin-1, nephrin, desmin, P-cadherin, podocin, podocalyxin and CD2AP. Results: For patients in AKI group, the contents of Scr, SUrea, b2-MG and Cys-C in their blood samples and the contents of KIM-1, L-FABP, Netrin-1, nephrin, desmin, Pcadherin, podocin, podocalyxin and CD2AP in their urine samples were both significantly higher than those in non-AKI group. The contents of nephrin, desmin, P-cadherin, podocin, podocalyxin and CD2AP in urine samples and contents of Scr, SUrea, b2-MG, Cys-C and neutrophil gelatinase associated lipocalin in blood samples were positively correlated with the contents of KIM-1, L-FABP, and Netrin-1 in urine. Conclusions: Contents of podocyte injury molecules in urine of patients with acute kidney injury such as nephrin, desmin, P-cadherin, podocin, podocalyxin and CD2AP raised remarkably and the changes were consistent with the changes of kidney function indexes in the blood and urine samples.

  12. Multiparametric analysis of cisplatin-induced changes in cancer cells using FLIM

    Science.gov (United States)

    Shirmanova, Marina V.; Sergeeva, Tatiana F.; Gavrina, Alena I.; Dudenkova, Varvara V.; Lukyanov, Konstantin A.; Zagaynova, Elena V.

    2018-02-01

    Cisplatin is an effective anticancer drug commonly used in the treatment of solid tumors. Although DNA is considered as the primary target, the cisplatin action at the cellular level remains unknown. Advanced fluorescence microscopy techniques allow probing various physiological and physicochemical parameters in living cells and tissues with unsurpassed sensitivity in real time. This study was focused on the investigation of cellular bioenergetics and cytosolic pH in colorectal cancer cells during chemotherapy with cisplatin. Special attention was given to the changes in cisplatininduced apoptosis that was identified using genetically encoded FLIM/FRET sensor of caspase-3 activity. Metabolic measurements using FLIM of the metabolic cofactor NAD(P)H showed decreased contribution from free NAD(P)H (a1, %) in all treated cells with more pronounced alterations in the cells undergoing apoptosis. Analysis of cytosolic pH using genetically encoded fluorescent sensor SypHer1 revealed a rapid increase of the pH value upon cisplatin exposure irrespective of the induction of apoptosis. To the best of our knowledge, a simultaneous assessment of metabolic state, cytosolic pH and caspase-3 activity after treatment with cisplatin was performed for the first time. These findings improve our understanding of the cell response to chemotherapy and mechanisms of cisplatin action.

  13. Reversible p53 inhibition prevents cisplatin ototoxicity without blocking chemotherapeutic efficacy.

    Science.gov (United States)

    Benkafadar, Nesrine; Menardo, Julien; Bourien, Jérôme; Nouvian, Régis; François, Florence; Decaudin, Didier; Maiorano, Domenico; Puel, Jean-Luc; Wang, Jing

    2017-01-01

    Cisplatin is a widely used chemotherapy drug, despite its significant ototoxic side effects. To date, the mechanism of cisplatin-induced ototoxicity remains unclear, and hearing preservation during cisplatin-based chemotherapy in patients is lacking. We found activation of the ATM-Chk2-p53 pathway to be a major determinant of cisplatin ototoxicity. However, prevention of cisplatin-induced ototoxicity is hampered by opposite effects of ATM activation upon sensory hair cells: promoting both outer hair cell death and inner hair cell survival. Encouragingly, however, genetic or pharmacological ablation of p53 substantially attenuated cochlear cell apoptosis, thus preserving hearing. Importantly, systemic administration of a p53 inhibitor in mice bearing patient-derived triple-negative breast cancer protected auditory function, without compromising the anti-tumor efficacy of cisplatin. Altogether, these findings highlight a novel and effective strategy for hearing protection in cisplatin-based chemotherapy. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  14. Acute Kidney Injury – An Update

    Directory of Open Access Journals (Sweden)

    Matt Varrier

    2015-07-01

    Full Text Available The syndrome of acute kidney injury (AKI occurs frequently in hospitalised patients, leading to increased morbidity, mortality, and healthcare expenditure. In the context of a precipitating insult, disturbances in both global and microcirculatory renal blood flow, tubular cell damage, and activation of pro- inflammatory pathways lead to impairment of numerous elements of renal function. Classification systems, including the recent ‘Kidney Disease: Improving Global Outcomes’ (KDIGO classification, typically define and stage AKI in terms of the magnitude of rise in serum creatinine (SCr and the presence of oliguria. At present there is no cure for AKI and the key principles of its management include early recognition, haemodynamic optimisation, correction of hypovolaemia, ceasing and avoidance of nephrotoxic medications, and treatment of the underlying cause. Recent data show that the type and volume of fluid therapy can affect renal function and that further guidance is required. In the future it is hoped that novel technologies, including biomarkers and real-time measurement of glomerular filtration rate will allow the earlier identification of patients with AKI, whilst a greater understanding of the pathogenesis of AKI will lead to the identification of new therapeutic targets. Despite SCr usually recovering after an episode of AKI, there is growing recognition that survivors of AKI are at an increased risk of subsequent chronic kidney disease, including end-stage renal failure and premature death.

  15. Studies of radioactive cisplatin (191Pt) for tumour imaging and therapy

    International Nuclear Information System (INIS)

    Areberg, J.

    2000-01-01

    A radioactive variant of the cytostatic agent cis-dichlorodiammineplatinum(II), cisplatin, was synthesised from 191 PtCl 4 . The 191 Pt-cisplatin was found to be a sterile product of high radionuclide, radiochemical and chemical purity. The pharmacokinetics of platinum in tumour tissue and organs at risk of fourteen patients undergoing treatment with cisplatin were studied by exchanging a small fraction of the prescribed amount of cisplatin with 191 Pt-cisplatin. The uptake and retention of platinum were investigated by gamma camera measurements up to ten days after infusion of 191 Pt-cisplatin. Highest concentration of platinum was found in the liver, on average 5.7 ± 0.5 μg/g normalised to a given amount of 180 mg cisplatin. Corresponding value for the kidneys was 1.9 ± 0.3 μg/g. Uptake of platinum in tumours was visualised in five patients with an average maximum concentration of 4.9 ± 1.0 μg/g normalised to a given amount of 180 mg cisplatin. The data from the pharmacokinetic study was used together with data from the literature to estimate the absorbed dose and effective dose to patients receiving radioactive cisplatin. The effective doses were calculated to be 0.10 ± 0.02 mSv/MBq, 0.17 ± 0.04 mSv/MBq and 0.23 ± 0.05 mSv/MBq for 191 Pt-, 193m Pt-, and 195m Pt-cisplatin respectively. The combined effect of the radio- and chemotoxicity from 191 Pt-cisplatin was investigated both in vitro and in vivo. A cervical cancer cell line was incubated with cisplatin or 191 Pt-cisplatin with various concentrations and specific activities. It was shown that the surviving fraction was smaller for cells treated with 191 Pt-cisplatin than for cells treated with the same concentration of non-radioactive cisplatin. The surviving fraction decreased with increasing specific activity. Isobologram technique showed that the radio- and chemotoxicity interacted in a supra-additive (synergistic) manner. In an in vivo model, nude mice with xenografted tumours were given

  16. Recent developments in epigenetics of acute and chronic kidney diseases.

    Science.gov (United States)

    Reddy, Marpadga A; Natarajan, Rama

    2015-08-01

    The growing epidemic of obesity and diabetes, the aging population as well as prevalence of drug abuse has led to significant increases in the rates of the closely associated acute and chronic kidney diseases, including diabetic nephropathy. Furthermore, evidence shows that parental behavior and diet can affect the phenotype of subsequent generations via epigenetic transmission mechanisms. These data suggest a strong influence of the environment on disease susceptibility and that, apart from genetic susceptibility, epigenetic mechanisms need to be evaluated to gain critical new information about kidney diseases. Epigenetics is the study of processes that control gene expression and phenotype without alterations in the underlying DNA sequence. Epigenetic modifications, including cytosine DNA methylation and covalent post-translational modifications of histones in chromatin, are part of the epigenome, the interface between the stable genome and the variable environment. This dynamic epigenetic layer responds to external environmental cues to influence the expression of genes associated with disease states. The field of epigenetics has seen remarkable growth in the past few years with significant advances in basic biology, contributions to human disease, as well as epigenomics technologies. Further understanding of how the renal cell epigenome is altered by metabolic and other stimuli can yield novel new insights into the pathogenesis of kidney diseases. In this review, we have discussed the current knowledge on the role of epigenetic mechanisms (primarily DNAme and histone modifications) in acute and chronic kidney diseases, and their translational potential to identify much needed new therapies.

  17. The protective effect of melanocortins on cisplatin-induced hearing loss

    NARCIS (Netherlands)

    Wolters, Francisca Louisa Carolina

    2003-01-01

    Cisplatin is widely used for the treatment of a variety of tumors. Unfortunately, the therapeutic effect of cisplatin is limited because patients can develop a high frequency hearing loss in both ears. Recovery of this hearing loss is observed sporadically. Animal studies have shown that chronic

  18. Urinary aminopeptidase activities as early and predictive biomarkers of renal dysfunction in cisplatin-treated rats.

    Directory of Open Access Journals (Sweden)

    Andrés Quesada

    Full Text Available This study analyzes the fluorimetric determination of alanyl- (Ala, glutamyl- (Glu, leucyl-cystinyl- (Cys and aspartyl-aminopeptidase (AspAp urinary enzymatic activities as early and predictive biomarkers of renal dysfunction in cisplatin-treated rats. Male Wistar rats (n = 8 each group received a single subcutaneous injection of either saline or cisplatin 3.5 or 7 mg/kg, and urine samples were taken at 0, 1, 2, 3 and 14 days after treatment. In urine samples we determined Ala, Glu, Cys and AspAp activities, proteinuria, N-acetyl-β-D-glucosaminidase (NAG, albumin, and neutrophil gelatinase-associated lipocalin (NGAL. Plasma creatinine, creatinine clearance and renal morphological variables were measured at the end of the experiment. CysAp, NAG and albumin were increased 48 hours after treatment in the cisplatin 3.5 mg/kg treated group. At 24 hours, all urinary aminopeptidase activities and albuminuria were significantly increased in the cisplatin 7 mg/kg treated group. Aminopeptidase urinary activities correlated (p0.259 with plasma creatinine, creatinine clearance and/or kidney weight/body weight ratio at the end of the experiment and they could be considered as predictive biomarkers of renal injury severity. ROC-AUC analysis was made to study their sensitivity and specificity to distinguish between treated and untreated rats at day 1. All aminopeptidase activities showed an AUC>0.633. We conclude that Ala, Cys, Glu and AspAp enzymatic activities are early and predictive urinary biomarkers of the renal dysfunction induced by cisplatin. These determinations can be very useful in the prognostic and diagnostic of renal dysfunction in preclinical research and clinical practice.

  19. Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin-induced cachexia.

    Science.gov (United States)

    Conte, Elena; Camerino, Giulia Maria; Mele, Antonietta; De Bellis, Michela; Pierno, Sabata; Rana, Francesco; Fonzino, Adriano; Caloiero, Roberta; Rizzi, Laura; Bresciani, Elena; Ben Haj Salah, Khoubaib; Fehrentz, Jean-Alain; Martinez, Jean; Giustino, Arcangela; Mariggiò, Maria Addolorata; Coluccia, Mauro; Tricarico, Domenico; Lograno, Marcello Diego; De Luca, Annamaria; Torsello, Antonio; Conte, Diana; Liantonio, Antonella

    2017-06-01

    Cachexia is a wasting condition associated with cancer types and, at the same time, is a serious and dose-limiting side effect of cancer chemotherapy. Skeletal muscle loss is one of the main characteristics of cachexia that significantly contributes to the functional muscle impairment. Calcium-dependent signaling pathways are believed to play an important role in skeletal muscle decline observed in cachexia, but whether intracellular calcium homeostasis is affected in this situation remains uncertain. Growth hormone secretagogues (GHS), a family of synthetic agonists of ghrelin receptor (GHS-R1a), are being developed as a therapeutic option for cancer cachexia syndrome; however, the exact mechanism by which GHS interfere with skeletal muscle is not fully understood. By a multidisciplinary approach ranging from cytofluorometry and electrophysiology to gene expression and histology, we characterized the calcium homeostasis in fast-twitch extensor digitorum longus (EDL) muscle of adult rats with cisplatin-induced cachexia and established the potential beneficial effects of two GHS (hexarelin and JMV2894) at this level. Additionally, in vivo measures of grip strength and of ultrasonography recordings allowed us to evaluate the functional impact of GHS therapeutic intervention. Cisplatin-treated EDL muscle fibres were characterized by a ~18% significant reduction of the muscle weight and fibre diameter together with an up-regulation of atrogin1/Murf-1 genes and a down-regulation of Pgc1-a gene, all indexes of muscle atrophy, and by a two-fold increase in resting intracellular calcium, [Ca 2+ ] i , compared with control rats. Moreover, the amplitude of the calcium transient induced by caffeine or depolarizing high potassium solution as well as the store-operated calcium entry were ~50% significantly reduced in cisplatin-treated rats. Calcium homeostasis dysregulation parallels with changes of functional ex vivo (excitability and resting macroscopic conductance) and in

  20. Loading cisplatin onto 6-mercaptopurine covalently modified MSNS: a nanomedicine strategy to improve the outcome of cisplatin therapy

    Directory of Open Access Journals (Sweden)

    Lv X

    2016-12-01

    Full Text Available Xiaojie Lv,1 Ming Zhao,1,2 Yuiji Wang,1 Xi Hu,1 Jianhui Wu,1 Xueyun Jiang,1 Shan Li,1 Chunying Cui,1 Shiqi Peng1 1Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China; 2Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan Abstract: In the treatment of cancer patients, cisplatin (CDDP exhibits serious cardiac and renal toxicities, while classical combinations related to CDDP are unable to solve these problems and may result in worse prognosis. Alternately, this study covalently conjugated 6-mercaptopurine (6MP onto the surface of mercapto-modified mesoporous silica nanoparticles (MSNS to form MSNS-6MP and loaded CDDP into the holes on the surface of MSNS-6MP to form MSNS-6MP/CDDP, a tumor-targeting nano-releasing regime for CDDP and 6MP specifically. In the S180 mouse model, the anti-tumor activity and overall survival of MSNS-6MP/CDDP (50 mg·kg-1·day-1, corresponding to 1 mg·kg-1·day-1 of 6MP and 5 mg·kg-1·day-1 of CDDP were significantly higher than those of CDDP alone (5 mg·kg-1·day-1 or CDDP (5 mg·kg-1·day-1 plus 6MP (1 mg·kg-1·day-1. The assays of serum alanine aminotransferase, aspartate aminotransferase and creatinine, as well as the images of myocardium and kidney histology, support that MSNS-6MP/CDDP is able to completely eliminate liver, kidney and heart toxicities induced by CDDP alone or CDDP plus 6MP. Keywords: 6-mercaptopurine, cisplatin, mesoporous silica nanoparticles, cancer therapy, nanomedicine

  1. A case of tacrolimus-induced encephalopathy after kidney transplantation

    Directory of Open Access Journals (Sweden)

    Myoung Uk Kim

    2011-01-01

    Full Text Available We present a case of tacrolimus-induced encephalopathy after successful kidney transplantation. An 11-year-old girl presented with sudden onset of neurologic symptoms, hypertension, and psychiatric symptoms, with normal kidney function, after kidney transplantation. The symptoms improved after cessation of tacrolimus. Magnetic resonance imaging (MRI showed acute infarction of the middle cerebral artery (MCA territory in the right frontal lobe. Three days later, she had normal mental function and maintained normal blood pressure with left hemiparesis. Follow-up MRI was performed on D19, showing new infarct lesions at both cerebral hemispheres. Ten days later, MRI showed further improvement, but brain single photon emission computed tomography (SPECT showed mild reduction of uptake in both the anterior cingulate gyrus and the left thalamus. One month after onset of symptoms, angiography showed complete resolution of stenosis. However, presenting as a mild fine motor disability of both hands and mild dysarthria, what had been atrophy at both centrum semiovale at 4 months now showed progression to encephalomalacia. There are two points of interest in this case. First, encephalopathy occurred after administration of tacrolimus and improved after discontinuation of the drug. Second, the development of right-side hemiplegia could not be explained by conventional MRI; but through diffusion tensor imaging (DTI and diffusion tensor tractography (DTT of white matter tract, visualization was possible.

  2. Nephroprotective Effect of Bauhinia tomentosa Linn against Cisplatin-Induced Renal Damage.

    Science.gov (United States)

    Kannan, Narayanan; Sakthivel, Kunnathur Murugesan; Guruvayoorappan, Chandrasekaran

    2016-01-01

    Cisplatin (CP) is an important chemotherapeutic drug used for the treatment of a wide variety of solid tumors. However, clinical use of CP has been limited due to its adverse effect of nephrotoxicity. In the present study, we evaluate the nephroprotective effect of Bauhinia tomentosa against CP-induced renal damage in rats. Administration of methonolic extract of B. tomentosa (250 mg/kg b.w.) results in a significant increase in antioxidant enzymes including superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT). Furthermore, treatment with B. tomentosa increased body weight and relative organ weight when compared with that of the CP-induced control group. Moreover, treatment with B. tomentosa extract significantly decreased lipid peroxidation(LPO), serum urea, and creatinine when compared with the CP-induced control group. Thus, the present study highlights the potential role of B. tomentosa and its use as a new protective strategy against CP-induced nephrotoxicity.

  3. Anti-Inflammatory Effects of Licorice and Roasted Licorice Extracts on TPA-Induced Acute Inflammation and Collagen-Induced Arthritis in Mice

    Directory of Open Access Journals (Sweden)

    Ki Rim Kim

    2010-01-01

    Full Text Available The anti-inflammatory activity of licorice (LE and roated licorice (rLE extracts determined in the murine phorbol ester-induced acute inflammation model and collagen-induced arthritis (CIA model of human rheumatoid arthritis. rLE possessed greater activity than LE in inhibiting phorbol ester-induced ear edema. Oral administration of LE or rLE reduced clinical arthritis score, paw swelling, and histopathological changes in a murine CIA. LE and rLE decreased the levels of proinflammatory cytokines in serum and matrix metalloproteinase-3 expression in the joints. Cell proliferation and cytokine secretion in response to type II collagen or lipopolysaccharide stimulation were suppressed in spleen cells from LE or rLE-treated CIA mice. Furthermore, LE and rLE treatment prevented oxidative damages in liver and kidney tissues of CIA mice. Taken together, LE and rLE have benefits in protecting against both acute inflammation and chronic inflammatory conditions including rheumatoid arthritis. rLE may inhibit the acute inflammation more potently than LE.

  4. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Kim Sung-Ho

    2009-03-01

    Full Text Available Abstract Background Although cisplatin is one of the most effective chemotherapeutic agents, cisplatin alone does not achieve a satisfactory therapeutic outcome. Also cisplatin accumulation shows toxicity to normal tissues. In this study, we examined the possibility of HemoHIM both to enhance anticancer effect with cisplatin and to reduce the side effects of cisplatin in melanoma-bearing mice. Methods HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of 3 edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Anticancer effects of HemoHIM with cisplatin were evaluated in melanoma-bearing mice. We used a Cr51-release assay to measure the activity of NK/Tc cell and ELISA to evaluate the production of cytokines. Results In melanoma-bearing mice, cisplatin (4 mg/kg B.W. reduced the size and weight of the solid tumors, and HemoHIM supplementation with cisplatin enhanced the decrease of both the tumor size (p in vitro, and did not disturb the effects of cisplatin in vitro. However HemoHIM administration enhanced both NK cell and Tc cell activity in mice. Interestingly, HemoHIM increased the proportion of NK cells in the spleen. In melanoma-bearing mice treated with cisplatin, HemoHIM administration also increased the activity of NK cells and Tc cells and the IL-2 and IFN-γ secretion from splenocytes, which seemed to contribute to the enhanced efficacy of cisplatin by HemoHIM. Also, HemoHIM reduced nephrotoxicity as seen by tubular cell of kidney destruction. Conclusion HemoHIM may be a beneficial supplement during cisplatin chemotherapy for enhancing the anti-tumor efficacy and reducing the toxicity of cisplatin.

  5. Usefulness of antiemetic therapy with aprepitant, palonosetron, and dexamethasone for lung cancer patients on cisplatin-based or carboplatin-based chemotherapy.

    Science.gov (United States)

    Kitazaki, Takeshi; Fukuda, Yuichi; Fukahori, Susumu; Oyanagi, Kazuhiko; Soda, Hiroshi; Nakamura, Yoichi; Kohno, Shigeru

    2015-01-01

    The purpose of the study is to investigate the usefulness of the triplet regimen comprising aprepitant, palonosetron, and dexamethasone in patients treated with highly emetogenic chemotherapy (HEC) and moderately emetogenic chemotherapy (MEC). Patients with lung cancer (aged 65.8 ± 8.4 years) who received carboplatin-based MEC and those treated with cisplatin-based HEC were enrolled. The antiemetic regimen for both types of chemotherapy consisted of aprepitant, palonosetron, and dexamethasone based on the May 2010 guidelines prepared by the Japan Society of Clinical Oncology. The incidence of chemotherapy-induced nausea and vomiting (CINV) and the use of salvage treatment were assessed. The primary endpoints were the percentage of patients with a complete response (CR: no nausea and no salvage treatment) during the entire study period (5 days) after chemotherapy, during the acute phase (day 1), and during the delayed phase (days 2-5). CR rates for the entire period were 86 and 71% in patients receiving carboplatin-based and cisplatin-based chemotherapy, respectively. CR rates were respectively 98 and 100% in the acute phase versus 87 and 71% in the delayed phase. Most of the patients could ingest food throughout the entire period after chemotherapy. Assessment of various risk factors for acute and delayed CINV (gender, age, prior vomiting due to antineoplastic therapy, prior experience of motion sickness, and history of drinking) revealed no significant influence of these factors on the CR rate for the entire period in patients receiving either carboplatin-based or cisplatin-based chemotherapy. The present triple therapy can be recommended for supporting both carboplatin-based and cisplatin-based chemotherapy regimens.

  6. Association Between Contrast Media Volume-Glomerular Filtration Rate Ratio and Contrast-Induced Acute Kidney Injury After Primary Percutaneous Coronary Intervention.

    Science.gov (United States)

    Celik, Omer; Ozturk, Derya; Akin, Fatih; Ayca, Burak; Yalcın, Ahmet Arif; Erturk, Mehmet; Bıyık, Ismail; Ayaz, Ahmet; Akturk, Ibrahim Faruk; Enhos, Asım; Aslan, Serkan

    2015-07-01

    We hypothesized that contrast media volume-estimated glomerular filtration rate (CV-e-GFR) ratio may be a predictor of contrast media-induced acute kidney injury (CI-AKI). We investigated the associations between CV-e-GFR ratio and CI-AKI in 597 patients undergoing primary percutaneous coronary intervention (pPCI). An absolute ≥0.3 mg/dL increase in serum creatinine compared with baseline levels within 48 hours after the procedure was considered as CI-AKI; 78 (13.1%) of the 597 patients experienced CI-AKI. The amount of contrast during procedure was higher in the CI-AKI group than in those without CI-AKI (153 vs 135 mL, P = .003). The CV-e-GFR ratio was significantly higher in patients with CI-AKI than without (2.3 vs 1.5, P 2 (P < .001, OR = 5.917). In conclusion, CV-e-GFR ratio is significantly associated with CI-AKI after pPCI. © The Author(s) 2014.

  7. Indoxyl Sulfate as a Mediator Involved in Dysregulation of Pulmonary Aquaporin-5 in Acute Lung Injury Caused by Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Nozomi Yabuuchi

    2016-12-01

    Full Text Available High mortality of acute kidney injury (AKI is associated with acute lung injury (ALI, which is a typical complication of AKI. Although it is suggested that dysregulation of lung salt and water channels following AKI plays a pivotal role in ALI, the mechanism of its dysregulation has not been elucidated. Here, we examined the involvement of a typical oxidative stress-inducing uremic toxin, indoxyl sulfate (IS, in the dysregulation of the pulmonary predominant water channel, aquaporin 5 (AQP-5, in bilateral nephrectomy (BNx-induced AKI model rats. BNx evoked AKI with the increases in serum creatinine (SCr, blood urea nitrogen (BUN and serum IS levels and exhibited thickening of interstitial tissue in the lung. Administration of AST-120, clinically-used oral spherical adsorptive carbon beads, resulted in a significant decrease in serum IS level and thickening of interstitial tissue, which was accompanied with the decreases in IS accumulation in various tissues, especially lung. Interestingly, a significant decrease in AQP-5 expression of lung was observed in BNx rats. Moreover, the BNx-induced decrease in pulmonary AQP-5 protein expression was markedly restored by oral administration of AST-120. These results suggest that BNx-induced AKI causes dysregulation of pulmonary AQP-5 expression, in which IS could play a toxico-physiological role as a mediator involved in renopulmonary crosstalk.

  8. Nuclear thioredoxin-1 is required to suppress cisplatin-mediated apoptosis of MCF-7 cells

    International Nuclear Information System (INIS)

    Chen, Xiao-Ping; Liu, Shou; Tang, Wen-Xin; Chen, Zheng-Wang

    2007-01-01

    Different cell line with increased thioredoxin-1 (Trx-1) showed a decreased or increased sensitivity to cell killing by cisplatin. Recently, several studies found that the subcellular localization of Trx-1 is closely associated with its functions. In this study, we explored the association of the nuclear Trx-1 with the cisplatin-mediated apoptosis of breast cancer cells MCF-7. Firstly, we found that higher total Trx-1 accompanied by no change of nuclear Trx-1 can not influence apoptosis induced by cisplatin in MCF-7 cells transferred with Trx-1 cDNA. Secondly, higher nuclear Trx-1 accompanied by no change of total Trx-1 can protect cells from apoptosis induced by cisplatin. Thirdly, high nuclear Trx-1 involves in the cisplatin-resistance in cisplatin-resistive cells. Meanwhile, we found that the mRNA level of p53 is closely correlated with the level of nuclear Trx-1. In summary, we concluded that the nuclear Trx-1 is required to resist apoptosis of MCF-7 cells induced by cisplatin, probably through up-regulating the anti-apoptotic gene, p53

  9. Cisplatin Targeting of Bacterial Ribosomal RNA Hairpins

    Directory of Open Access Journals (Sweden)

    Gayani N. P. Dedduwa-Mudalige

    2015-09-01

    Full Text Available Cisplatin is a clinically important chemotherapeutic agent known to target purine bases in nucleic acids. In addition to major deoxyribonucleic acid (DNA intrastrand cross-links, cisplatin also forms stable adducts with many types of ribonucleic acid (RNA including siRNA, spliceosomal RNAs, tRNA, and rRNA. All of these RNAs play vital roles in the cell, such as catalysis of protein synthesis by rRNA, and therefore serve as potential drug targets. This work focused on platination of two highly conserved RNA hairpins from E. coli ribosomes, namely pseudouridine-modified helix 69 from 23S rRNA and the 790 loop of helix 24 from 16S rRNA. RNase T1 probing, MALDI mass spectrometry, and dimethyl sulfate mapping revealed platination at GpG sites. Chemical probing results also showed platination-induced RNA structural changes. These findings reveal solvent and structural accessibility of sites within bacterial RNA secondary structures that are functionally significant and therefore viable targets for cisplatin as well as other classes of small molecules. Identifying target preferences at the nucleotide level, as well as determining cisplatin-induced RNA conformational changes, is important for the design of more potent drug molecules. Furthermore, the knowledge gained through studies of RNA-targeting by cisplatin is applicable to a broad range of organisms from bacteria to human.

  10. A Phase II study of palonosetron, aprepitant, dexamethasone and olanzapine for the prevention of cisplatin-based chemotherapy-induced nausea and vomiting in patients with thoracic malignancy.

    Science.gov (United States)

    Nakashima, Kazuhisa; Murakami, Haruyasu; Yokoyama, Kouichi; Omori, Shota; Wakuda, Kazushige; Ono, Akira; Kenmotsu, Hirotsugu; Naito, Tateaki; Nishiyama, Fumie; Kikugawa, Mami; Kaneko, Masayo; Iwamoto, Yumiko; Koizumi, Satomi; Mori, Keita; Isobe, Takeshi; Takahashi, Toshiaki

    2017-09-01

    The three-drug combination of a 5-hydroxytryptamine type 3 receptor antagonist, a neurokinin 1 receptor antagonist and dexamethasone is recommended for patients receiving highly emetogenic chemotherapy. However, standard antiemetic therapy is not completely effective in all patients. We conducted an open-label, single-center, single-arm Phase II study to evaluate the efficacy of olanzapine in combination with standard antiemetic therapy in preventing chemotherapy-induced nausea and vomiting in patients with thoracic malignancy receiving their first cycle of cisplatin-based chemotherapy. Patients received 5 mg oral olanzapine on Days 1-5 in combination with standard antiemetic therapy. The primary endpoint was complete response (no vomiting and no use of rescue therapy) during the overall Phase (0-120 h post-chemotherapy). Twenty-three men and seven women were enrolled between May and October 2015. The median age was 64 years (range: 36-75 years). The most common chemotherapy regimen was 75 mg/m2 cisplatin and 500 mg/m2 pemetrexed, which was administered to 14 patients. Complete response rates in acute (0-24 h post-chemotherapy), delayed (24-120 h post-chemotherapy) and overall phases were 100%, 83% and 83% (90% confidence interval: 70-92%; 95% confidence interval: 66-93%), respectively. There were no Grade 3 or Grade 4 adverse events. Although four patients (13%) experienced Grade 1 somnolence, no patients discontinued olanzapine. The addition of 5 mg oral olanzapine to standard antiemetic therapy demonstrates promising efficacy in preventing cisplatin-based chemotherapy-induced nausea and vomiting and an acceptable safety profile in patients with thoracic malignancy. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Possible role of mtDNA depletion and respiratory chain defects in aristolochic acid I-induced acute nephrotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhenzhou, E-mail: jiangcpu@yahoo.com.cn; Bao, Qingli, E-mail: bao_ql@126.com; Sun, Lixin, E-mail: slxcpu@126.com; Huang, Xin, E-mail: huangxinhx66@sohu.com; Wang, Tao, E-mail: wangtao1331@126.com; Zhang, Shuang, E-mail: cat921@sina.com; Li, Han, E-mail: hapo1101@163.com; Zhang, Luyong, E-mail: lyzhang@cpu.edu.cn

    2013-01-15

    This report describes an investigation of the pathological mechanism of acute renal failure caused by toxic tubular necrosis after treatment with aristolochic acid I (AAI) in Sprague–Dawley (SD) rats. The rats were gavaged with AAI at 0, 5, 20, or 80 mg/kg/day for 7 days. The pathologic examination of the kidneys showed severe acute tubular degenerative changes primarily affecting the proximal tubules. Supporting these results, we detected significantly increased concentrations of blood urea nitrogen (BUN) and creatinine (Cr) in the rats treated with AAI, indicating damage to the kidneys. Ultrastructural examination showed that proximal tubular mitochondria were extremely enlarged and dysmorphic with loss and disorientation of their cristae. Mitochondrial function analysis revealed that the two indicators for mitochondrial energy metabolism, the respiratory control ratio (RCR) and ATP content, were reduced in a dose-dependent manner after AAI treatment. The RCR in the presence of substrates for complex I was reduced more significantly than in the presence of substrates for complex II. In additional experiments, the activity of respiratory complex I, which is partly encoded by mitochondrial DNA (mtDNA), was more significantly impaired than that of respiratory complex II, which is completely encoded by nuclear DNA (nDNA). A real-time PCR assay revealed a marked reduction of mtDNA in the kidneys treated with AAI. Taken together, these results suggested that mtDNA depletion and respiratory chain defects play critical roles in the pathogenesis of kidney injury induced by AAI, and that the same processes might contribute to aristolochic acid-induced nephrotoxicity in humans. -- Highlights: ► AAI-induced acute renal failure in rats and the proximal tubule was the target. ► Tubular mitochondria were morphologically aberrant in ultrastructural examination. ► AAI impair mitochondrial bioenergetic function and mtDNA replication.

  12. Acute kidney injury with granulomatous interstitial nephritis and vasculitis revealing sarcoidosis

    OpenAIRE

    Amel Harzallah; Hayet Kaaroud; Karima Boubaker; Samia Barbouch; Rim Goucha; Fethi Ben Hamida; Taieb Ben Abdallah

    2017-01-01

    Sarcoidosis is an inflammatory disease that affects mostly the lungs and lymph glands. Renal involvement is rare and especially vasculitis. We report a case who presented an acute kidney failure and had sarcoidosis with vasculitis and nodular splenic involvement. A 35-year-old woman presenting a Lofgren syndrome was hospitalized for acute renal failure with cervical lymphadenopathy without other clinical findings. Laboratory data disclosed elevated angiotensin converting enzyme serum level. A...

  13. Peritoneal dialysis vs. haemodialysis in the management of paediatric acute kidney injury in Kano, Nigeria: a cost analysis.

    Science.gov (United States)

    Obiagwu, Patience N; Abdu, Aliyu

    2015-01-01

    To determine the cost of the dialytic management of paediatric acute kidney injury in a low-income country. All children under the age of 15 years, who had either peritoneal dialysis or haemodialysis for acute kidney injury in Aminu Kano Teaching Hospital over a 1-year period, were studied. The average cost of each dialysis modality was estimated. Of 20 children, who had dialysis for acute kidney injury, 12 (60%) had haemodialysis and 8 (40%) had peritoneal dialysis. The mean cost for haemodialysis exceeded that of peritoneal dialysis ($363.33 vs. $311.66, t = 1.04, P = 0.313) with the mean cost of consumables significantly accounting for most of the cost variation ($248.49 vs. $164.73, t = 2.91, P = 0.009). Mean costs of nephrologist visit and nursing were not found to be significant. Peritoneal dialysis is the less costly alternative for managing acute kidney injury in children in our environment. © 2014 John Wiley & Sons Ltd.

  14. Monitoring cisplatin-induced ototoxicity.

    Directory of Open Access Journals (Sweden)

    Ana SÁNCHEZ-MARTÍNEZ

    2018-03-01

    Full Text Available Introduction and objective: The ototoxic damage goes unnoticed to disabling levels, being justified to apply control for its early detection procedures, make it possible to a therapeutic change and if necessary, a speech and auditory rehabilitation. The objective of this study will consist to present Protocol we did at the Hospital Clínico Universitario de Valladolid for the follow-up of the patients treated with cisplatin. Method: Ototoxicity monitoring means serially collect hearing thresholds. It is identified on a visit if hearing has worsened in some ear. The comparison allows to detect the change and indicate if it is significant or not in relation to some criteria. We will also evaluate the occurrence of vestibular damage. As auditory monitoring procedures, we will use high frequency audiometry and acoustic oto-emissions. Results: After giving informed consent and a brief medical history we started with baseline assessment of hearing, prior to treatment, continuing with periodic reviews before each cycle. If any change is detected it is reported to the physician and the patient. To grade the ototoxicity, we apply the Brock and Chang criteria. We maintain post-treatment control. Discussion and conclusion: The incidence of ototoxicity of cisplatin is unknown in our country and it is not possible to predict which patients will experience. The increase in the survival rate for cancer involves improving comorbidity, which in the case of its early ototoxicity supposed to find the best solutions to restore the quality of life of patient’s detection.

  15. Long-term follow-up of patients after acute kidney injury: patterns of renal functional recovery.

    Directory of Open Access Journals (Sweden)

    Etienne Macedo

    Full Text Available BACKGROUND AND OBJECTIVES: Patients who survive acute kidney injury (AKI, especially those with partial renal recovery, present a higher long-term mortality risk. However, there is no consensus on the best time to assess renal function after an episode of acute kidney injury or agreement on the definition of renal recovery. In addition, only limited data regarding predictors of recovery are available. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: From 1984 to 2009, 84 adult survivors of acute kidney injury were followed by the same nephrologist (RCRMA for a median time of 4.1 years. Patients were seen at least once each year after discharge until end stage renal disease (ESRD or death. In each consultation serum creatinine was measured and glomerular filtration rate estimated. Renal recovery was defined as a glomerular filtration rate value ≥60 mL/min/1.73 m2. A multiple logistic regression was performed to evaluate factors independently associated with renal recovery. RESULTS: The median length of follow-up was 50 months (30-90 months. All patients had stabilized their glomerular filtration rates by 18 months and 83% of them stabilized earlier: up to 12 months. Renal recovery occurred in 16 patients (19% at discharge and in 54 (64% by 18 months. Six patients died and four patients progressed to ESRD during the follow up period. Age (OR 1.09, p<0.0001 and serum creatinine at hospital discharge (OR 2.48, p = 0.007 were independent factors associated with non renal recovery. The acute kidney injury severity, evaluated by peak serum creatinine and need for dialysis, was not associated with non renal recovery. CONCLUSIONS: Renal recovery must be evaluated no earlier than one year after an acute kidney injury episode. Nephrology referral should be considered mainly for older patients and those with elevated serum creatinine at hospital discharge.

  16. A Mechanism for the Temporal Potentiation of Genipin to the Cytotoxicity of Cisplatin in Colon Cancer Cells.

    Science.gov (United States)

    Wang, Ruihua; MoYung, K C; Zhao, Y J; Poon, Karen

    2016-01-01

    To investigate the potentiation effect of Genipin to Cisplatin induced cell senescence in HCT-116 colon cancer cells in vitro. Cell viability was estimated by Propidium iodide and Hoechst 3342, reactive oxygen species (ROS) with DHE, mitochondrial membrane potential (MMP) with JC-1 MMP assay Kit and electron current production with microbial fuel cells (MFC). Genipin inhibited the UCP2 mediated anti-oxidative proton leak significantly promoted the Cisplatin induced ROS and subsequent cell death, which was similar to that of UCP2-siRNA. Cells treated with Cisplatin alone or combined with Genipin, ROS negatively, while MMP positively correlated with cell viability. Cisplatin induced ROS was significantly decreased by detouring electrons to MFC, or increased by Genipin combined treatment. Compensatory effects of UCP2 up-regulation with time against Genipin treatment were suggested. Shorter the Genipin treatment before Cisplatin better promoted the Cisplatin induced ROS and subsequent cell death. The interaction of leaked electron with Cisplatin was important during ROS generation. Inhibition of UCP2-mediated proton leak with Genipin potentiated the cytotoxicity of Cisplatin. Owing to the compensatory effects against Genipin, shorter Genipin treatment before Cisplatin was recommended in order to achieve better potentiation effect.

  17. Cisplatin Induces Up-Regulation of KAI1, a Metastasis Suppressor ...

    African Journals Online (AJOL)

    Purpose: To investigate the effect of cisplatin on cell toxicity and metastasis through modulation of KAI1 gene expression. Methods: MCF-7cells were incubated with different concentrations of cisplatin for 24 h. RNA was extracted by trizol and cDNA synthesized. KAI1 and TBP were chosen as target and internal control ...

  18. Effects of a human recombinant alkaline phosphatase on renal hemodynamics, oxygenation and inflammation in two models of acute kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Esther, E-mail: esther.peters@radboudumc.nl [Department of Intensive Care Medicine, Radboud university medical center, PO Box 9101, Internal Mailbox 710, 6500 HB, Nijmegen (Netherlands); Department of Pharmacology and Toxicology, Radboud university medical center, PO Box 9101, Internal Mailbox 149, 6500 HB, Nijmegen (Netherlands); Ergin, Bülent, E-mail: b.ergin@amc.uva.nl [Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Kandil, Asli, E-mail: aslikandil@istanbul.edu.tr [Department of Biology, Faculty of Science, Istanbul University, PK 34134, Vezneciler, Istanbul (Turkey); Gurel-Gurevin, Ebru, E-mail: egurelgurevin@gmail.com [Department of Biology, Faculty of Science, Istanbul University, PK 34134, Vezneciler, Istanbul (Turkey); Elsas, Andrea van, E-mail: a.vanelsas@am-pharma.com [AM-Pharma, Rumpsterweg 6, 3981 AK, Bunnik (Netherlands); Masereeuw, Rosalinde, E-mail: r.masereeuw@uu.nl [Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, PO Box 80082, 3508 TB Utrecht (Netherlands); Pickkers, Peter, E-mail: peter.pickkers@radboudumc.nl [Department of Intensive Care Medicine, Radboud university medical center, PO Box 9101, Internal Mailbox 710, 6500 HB, Nijmegen (Netherlands); Ince, Can, E-mail: c.ince@amc.uva.nl [Department of Translational Physiology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands)

    2016-12-15

    Two small clinical trials indicated that administration of bovine intestinal alkaline phosphatase (AP) improves renal function in critically ill patients with sepsis-associated acute kidney injury (AKI), for which the mechanism of action is not completely understood. Here, we investigated the effects of a newly developed human recombinant AP (recAP) on renal oxygenation and hemodynamics and prevention of kidney damage and inflammation in two in vivo AKI models. To induce AKI, male Wistar rats (n = 18) were subjected to renal ischemia (30 min) and reperfusion (I/R), or sham-operated. In a second model, rats (n = 18) received a 30 min infusion of lipopolysaccharide (LPS; 2.5 mg/kg), or saline, and fluid resuscitation. In both models, recAP (1000 U/kg) was administered intravenously (15 min before reperfusion, or 90 min after LPS). Following recAP treatment, I/R-induced changes in renal blood flow, renal vascular resistance and oxygen delivery at early, and cortical microvascular oxygen tension at late reperfusion were no longer significantly affected. RecAP did not influence I/R-induced effects on mean arterial pressure. During endotoxemia, recAP treatment did not modulate the LPS-induced changes in systemic hemodynamics and renal oxygenation. In both models, recAP did exert a clear renal protective anti-inflammatory effect, demonstrated by attenuated immunostaining of inflammatory, tubular injury and pro-apoptosis markers. Whether this renal protective effect is sufficient to improve outcome of patients suffering from sepsis-associated AKI is being investigated in a large clinical trial. - Highlights: • Human recombinant alkaline phosphatase (recAP) is a potential new therapy for sepsis-associated acute kidney injury (AKI). • RecAP can modulate renal oxygenation and hemodynamics immediately following I/R-induced AKI. • RecAP did not modulate endotoxemia-induced changes in systemic hemodynamics and renal oxygenation. • RecAP did exert a clear renal protective

  19. Sensitivity and Specificity of a Single Emergency Department Measurement of Urinary Neutrophil Gelatinase–Associated Lipocalin for Diagnosing Acute Kidney Injury

    Science.gov (United States)

    Nickolas, Thomas L.; O’Rourke, Matthew J.; Yang, Jun; Sise, Meghan E.; Canetta, Pietro A.; Barasch, Nicholas; Buchen, Charles; Khan, Faris; Mori, Kiyoshi; Giglio, James; Devarajan, Prasad; Barasch, Jonathan

    2010-01-01

    Background A single serum creatinine measurement cannot distinguish acute kidney injury from chronic kidney disease or prerenal azotemia. Objective To test the sensitivity and specificity of a single measurement of urinary neutrophil gelatinase–associated lipocalin (NGAL) and other urinary proteins to detect acute kidney injury in a spectrum of patients. Design Prospective cohort study. Setting Emergency department of Columbia University Medical Center, New York, New York. Participants 635 patients admitted to the hospital with acute kidney injury, prerenal azotemia, chronic kidney disease, or normal kidney function. Measurements Diagnosis of acute kidney injury was based on the RIFLE (risk, injury, failure, loss, and end-stage) criteria and assigned by researchers who were blinded to experimental measurements. Urinary NGAL was measured by immunoblot, N-acetyl-β-D-glucosaminidase (NAG) by enzyme measurement, α1-microglobulin and α1-acid glycoprotein by immunonephelometry, and serum creatinine by Jaffe kinetic reaction. Experimental measurements were not available to treating physicians. Results Patients with acute kidney injury had a significantly elevated mean urinary NGAL level compared with the other kidney function groups (416 μg/g creatinine [SD, 387]; P = 0.001). At a cutoff value of 130 μg/g creatinine, sensitivity and specificity of NGAL for detecting acute injury were 0.900 (95% CI, 0.73 to 0.98) and 0.995 (CI, 0.990 to 1.00), respectively, and positive and negative likelihood ratios were 181.5 (CI, 58.33 to 564.71) and 0.10 (CI, 0.03 to 0.29); these values were superior to those for NAG, α1-microglobulin, α1-acid glycoprotein, fractional excretion of sodium, and serum creatinine. In multiple logistic regression, urinary NGAL level was highly predictive of clinical outcomes, including nephrology consultation, dialysis, and admission to the intensive care unit (odds ratio, 24.71 [CI, 7.69 to 79.42]). Limitations All patients came from a single

  20. Cystatin C as an early marker of acute kidney injury in septic shock.

    Science.gov (United States)

    Ortuño-Andériz, F; Cabello-Clotet, N; Vidart-Simón, N; Postigo-Hernández, C; Domingo-Marín, S; Sánchez-García, M

    2015-03-01

    To describe the utility of determining plasma cystatinC concentrations in the diagnosis of acute incident kidney injury in septic shock. Prospective series of 50 patients with septic shock and plasma creatinine levels <2mg/dL hospitalized in an intensive care unit. Clinical and laboratory follow-ups were conducted, with measurements of cystatinC, urea and plasma creatinine levels from the diagnosis of septic shock to 5days later. The severity of the septic shock was assessed with the RIFLE scale. Twenty patients (40%) developed acute kidney injury: 8 (16%) were categorized as RIFLE-R, 5 (10%) as RIFLE-I and 7 (14%) as RIFLE-F. All patients categorized as RIFLE-F required extracorporeal renal clearance. Eighteen (36%) patients died, 8 (20%) of whom had developed acute kidney injury in their evolution. There was poor correlation between plasma creatinine and cystatin C levels (r=.501; P=.001), which disappeared upon reaching any degree of renal impairment on the RIFLE scale. CystatinC levels increased earlier and were better able to identify patients who would develop serious renal function impairment (RIFLE-F) than creatinine and urea levels. The initial cystatinC levels were related to mortality at 30days (OR=1.16; 95%CI: 03-.85). For patients who developed acute septic kidney injury, the plasma cystatinC levels increased before the classical markers of renal function. CystatinC also constitutes a severity biomarker that correlates with progression to RIFLE-F, the need for extrarenal clearance and, ultimately, mortality. This precocity could be useful for starting measures that prevent the progression of renal dysfunction. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  1. Impact of real-time electronic alerting of acute kidney injury on therapeutic intervention and progression of RIFLE class.

    Science.gov (United States)

    Colpaert, Kirsten; Hoste, Eric A; Steurbaut, Kristof; Benoit, Dominique; Van Hoecke, Sofie; De Turck, Filip; Decruyenaere, Johan

    2012-04-01

    To evaluate whether a real-time electronic alert system or "AKI sniffer," which is based on the RIFLE classification criteria (Risk, Injury and Failure), would have an impact on therapeutic interventions and acute kidney injury progression. Prospective intervention study. Surgical and medical intensive care unit in a tertiary care hospital. A total of 951 patients having in total 1,079 admission episodes were admitted during the study period (prealert control group: 227, alert group: 616, and postalert control group: 236). Three study phases were compared: A 1.5-month prealert control phase in which physicians were blinded for the acute kidney injury sniffer and a 3-month intervention phase with real-time alerting of worsening RIFLE class through the Digital Enhanced Cordless Technology telephone system followed by a second 1.5-month postalert control phase. A total of 2593 acute kidney injury alerts were recorded with a balanced distribution over all study phases. Most acute kidney injury alerts were RIFLE class risk (59.8%) followed by RIFLE class injury (34.1%) and failure (6.1%). A higher percentage of patients in the alert group received therapeutic intervention within 60 mins after the acute kidney injury alert (28.7% in alert group vs. 7.9% and 10.4% in the pre- and postalert control groups, respectively, p μ .001). In the alert group, more patients received fluid therapy (23.0% vs. 4.9% and 9.2%, p μ .01), diuretics (4.2% vs. 2.6% and 0.8%, p μ .001), or vasopressors (3.9% vs. 1.1% and 0.8%, p μ .001). Furthermore, these patients had a shorter time to intervention (p μ .001). A higher proportion of patients in the alert group showed return to a baseline kidney function within 8 hrs after an acute kidney injury alert "from normal to risk" compared with patients in the control group (p = .048). The real-time alerting of every worsening RIFLE class by the acute kidney injury sniffer increased the number and timeliness of early therapeutic interventions

  2. Renal Toxicity of Adjuvant Chemoradiotherapy With Cisplatin in Gastric Cancer

    International Nuclear Information System (INIS)

    Welz, Stefan; Hehr, Thomas; Kollmannsberger, Christian; Bokemeyer, Carsten; Belka, Claus; Budach, Wilfried

    2007-01-01

    Purpose: Adjuvant, 5-fluorouracil (5-FU)-based chemoradiotherapy for completely resected high-risk gastric adenocarcinoma has been shown to improve survival in a randomized Intergroup trial. However, the results still showed an unsatisfactory outcome. On the basis of previously reported results of a Phase II trial using a more aggressive, cisplatin-containing chemoradiotherapy schedule, we investigated the effects of this approach on long-term renal function. Patients and Methods: Between December 2000 and September 2003, 27 patients were treated at Tuebingen University in a Phase II multicenter trial investigating adjuvant chemoradiotherapy. The adjuvant chemoradiotherapy consisted of two cycles of adjuvant 5-FU, folinic acid, cisplatin (200 mg/m 2 ), and paclitaxel before and after radiotherapy (45 Gy in 1.8-Gy fractions) with daily concomitant 5-FU (225 mg/m 2 /24 h). A dose constraint of ≤12 Gy for 37.5% of the functional volume of both kidneys was used. Renal function was assessed by the changes in creatinine and creatinine clearance during follow-up. Results: The prescribed 45 Gy was administered to 100% of the patients, and the cumulative cisplatin dose was 200 mg/m 2 in 74% of all patients. In 89%, the constraints concerning the renal absorbed doses were met. The median follow-up for the creatinine and clearance values was 30 and 26 months, respectively. The creatinine values tended to worsen over time without reaching critical levels. We were unable to demonstrate a significant dose-response relationship for renal damage in the tested dose range. Conclusions: Using a dose constraint of ≤12 Gy for 37.5% of the functional volume of both kidneys appears to be safe at a median follow-up of 2 years for a cumulative cisplatin dose of 200 mg/m 2 administered before and after simultaneous 5-FU and radiotherapy

  3. Studies of radioactive cisplatin ({sup 191}Pt) for tumour imaging and therapy

    Energy Technology Data Exchange (ETDEWEB)

    Areberg, J

    2000-01-01

    A radioactive variant of the cytostatic agent cis-dichlorodiammineplatinum(II), cisplatin, was synthesised from {sup 191}PtCl{sub 4}. The {sup 191}Pt-cisplatin was found to be a sterile product of high radionuclide, radiochemical and chemical purity. The pharmacokinetics of platinum in tumour tissue and organs at risk of fourteen patients undergoing treatment with cisplatin were studied by exchanging a small fraction of the prescribed amount of cisplatin with {sup 191}Pt-cisplatin. The uptake and retention of platinum were investigated by gamma camera measurements up to ten days after infusion of {sup 191}Pt-cisplatin. Highest concentration of platinum was found in the liver, on average 5.7 {+-} 0.5 {mu}g/g normalised to a given amount of 180 mg cisplatin. Corresponding value for the kidneys was 1.9 {+-} 0.3 {mu}g/g. Uptake of platinum in tumours was visualised in five patients with an average maximum concentration of 4.9 {+-} 1.0 {mu}g/g normalised to a given amount of 180 mg cisplatin. The data from the pharmacokinetic study was used together with data from the literature to estimate the absorbed dose and effective dose to patients receiving radioactive cisplatin. The effective doses were calculated to be 0.10 {+-} 0.02 mSv/MBq, 0.17 {+-} 0.04 mSv/MBq and 0.23 {+-} 0.05 mSv/MBq for {sup 191}Pt-, {sup 193m}Pt-, and {sup 195m}Pt-cisplatin respectively. The combined effect of the radio- and chemotoxicity from {sup 191}Pt-cisplatin was investigated both in vitro and in vivo. A cervical cancer cell line was incubated with cisplatin or {sup 191}Pt-cisplatin with various concentrations and specific activities. It was shown that the surviving fraction was smaller for cells treated with {sup 191}Pt-cisplatin than for cells treated with the same concentration of non-radioactive cisplatin. The surviving fraction decreased with increasing specific activity. Isobologram technique showed that the radio- and chemotoxicity interacted in a supra-additive (synergistic) manner. In

  4. Measurement of renal blood flow by phase-contrast magnetic resonance imaging during septic acute kidney injury: a pilot investigation.

    Science.gov (United States)

    Prowle, John R; Molan, Maurice P; Hornsey, Emma; Bellomo, Rinaldo

    2012-06-01

    In septic patients, decreased renal perfusion is considered to play a major role in the pathogenesis of acute kidney injury. However, the accurate measurement of renal blood flow in such patients is problematic and invasive. We sought to overcome such obstacles by measuring renal blood flow in septic patients with acute kidney injury using cine phase-contrast magnetic resonance imaging. Pilot observational study. University-affiliated general adult intensive care unit. Ten adult patients with established septic acute kidney injury and 11 normal volunteers. Cine phase-contrast magnetic resonance imaging measurement of renal blood flow and cardiac output. The median age of the study patients was 62.5 yrs and eight were male. At the time of magnetic resonance imaging, eight patients were mechanically ventilated, nine were on continuous hemofiltration, and five required vasopressors. Cine phase-contrast magnetic resonance imaging examinations were carried out without complication. Median renal blood flow was 482 mL/min (range 335-1137) in septic acute kidney injury and 1260 mL/min (range 791-1750) in healthy controls (p = .003). Renal blood flow indexed to body surface area was 244 mL/min/m2 (range 165-662) in septic acute kidney injury and 525 mL/min/m2 (range 438-869) in controls (p = .004). In patients with septic acute kidney injury, median cardiac index was 3.5 L/min/m2 (range 1.6-8.7), and median renal fraction of cardiac output was only 7.1% (range 4.4-10.8). There was no rank correlation between renal blood flow index and creatinine clearance in patients with septic acute kidney injury (r = .26, p = .45). Cine phase-contrast magnetic resonance imaging can be used to noninvasively and safely assess renal perfusion during critical illness in man. Near-simultaneous accurate measurement of cardiac output enables organ blood flow to be assessed in the context of the global circulation. Renal blood flow seems consistently reduced as a fraction of cardiac output in

  5. Nursing Activities Score and Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Filipe Utuari de Andrade Coelho

    Full Text Available ABSTRACT Objective: to evaluate the nursing workload in intensive care patients with acute kidney injury (AKI. Method: A quantitative study, conducted in an intensive care unit, from April to August of 2015. The Nursing Activities Score (NAS and Kidney Disease Improving Global Outcomes (KDIGO were used to measure nursing workload and to classify the stage of AKI, respectively. Results: A total of 190 patients were included. Patients who developed AKI (44.2% had higher NAS when compared to those without AKI (43.7% vs 40.7%, p <0.001. Patients with stage 1, 2 and 3 AKI showed higher NAS than those without AKI. A relationship was identified between stage 2 and 3 with those without AKI (p = 0.002 and p <0.001. Conclusion: The NAS was associated with the presence of AKI, the score increased with the progression of the stages, and it was associated with AKI, stage 2 and 3.

  6. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice.

    Science.gov (United States)

    Park, Hae-Ran; Ju, Eun-Jin; Jo, Sung-Kee; Jung, Uhee; Kim, Sung-Ho; Yee, Sung-Tae

    2009-03-17

    Although cisplatin is one of the most effective chemotherapeutic agents, cisplatin alone does not achieve a satisfactory therapeutic outcome. Also cisplatin accumulation shows toxicity to normal tissues. In this study, we examined the possibility of HemoHIM both to enhance anticancer effect with cisplatin and to reduce the side effects of cisplatin in melanoma-bearing mice. HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of 3 edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Anticancer effects of HemoHIM with cisplatin were evaluated in melanoma-bearing mice. We used a Cr51-release assay to measure the activity of NK/Tc cell and ELISA to evaluate the production of cytokines. In melanoma-bearing mice, cisplatin (4 mg/kg B.W.) reduced the size and weight of the solid tumors, and HemoHIM supplementation with cisplatin enhanced the decrease of both the tumor size (p HemoHIM itself did not inhibit melanoma cell growth in vitro, and did not disturb the effects of cisplatin in vitro. However HemoHIM administration enhanced both NK cell and Tc cell activity in mice. Interestingly, HemoHIM increased the proportion of NK cells in the spleen. In melanoma-bearing mice treated with cisplatin, HemoHIM administration also increased the activity of NK cells and Tc cells and the IL-2 and IFN-gamma secretion from splenocytes, which seemed to contribute to the enhanced efficacy of cisplatin by HemoHIM. Also, HemoHIM reduced nephrotoxicity as seen by tubular cell of kidney destruction. HemoHIM may be a beneficial supplement during cisplatin chemotherapy for enhancing the anti-tumor efficacy and reducing the toxicity of cisplatin.

  7. Kidney transplantation from donors with rhabdomyolysis and acute renal failure.

    Science.gov (United States)

    Chen, Chuan-Bao; Zheng, Yi-Tao; Zhou, Jian; Han, Ming; Wang, Xiao-Ping; Yuan, Xiao-Peng; Wang, Chang-Xi; He, Xiao-Shun

    2017-08-01

    Rhabdomyolysis in deceased donors usually causes acute renal failure (ARF), which may be considered a contraindication for kidney transplantation. From January 2012 to December 2016, 30 kidneys from 15 deceased donors with severe rhabdomyolysis and ARF were accepted for transplantation at our center. The peak serum creatinine (SCr) kinase, myoglobin, and SCr of the these donors were 15 569±8597 U/L, 37 092±42 100 μg/L, and 422±167 μmol/L, respectively. Two donors received continuous renal replacement therapy due to anuria. Six kidneys exhibited a discolored appearance (from brown to glossy black) due to myoglobin casts. The kidney transplant results from the donors with rhabdomyolysis donors were compared with those of 90 renal grafts from standard criteria donors (SCD). The estimated glomerular filtration rate at 2 years was similar between kidney transplants from donors with rhabdomyolysis and SCD (70.3±14.6 mL/min/1.73 m 2 vs 72.3±15.1 mL/min/1.73 m 2 ). We conclude that excellent graft function can be achieved from kidneys donors with ARF caused by rhabdomyolysis. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Effects of cisplatin on potassium currents in CT26 cells

    Directory of Open Access Journals (Sweden)

    Naveen Sharma

    2016-01-01

    Conclusion: Potassium currents were detected in CT26 cells and the currents were reduced by the application of tetraethylammonium (TEA chloride, iberiotoxin, a big conductance calcium-activated potassium channel blocker and barium. The potassium currents were enhanced to 192< by the application of cisplatin (0.5 mM. Moreover, the increase of potassium currents by cisplatin was further inhibited by the application of TEA confirming the action of cisplatin on potassium channels. In addition, relative current induced by cisplatin in CT26 cells was bit larger than in normal IEC-6 cells.

  9. Cardiac-surgery associated acute kidney injury requiring renal replacement therapy. A Spanish retrospective case-cohort study

    Directory of Open Access Journals (Sweden)

    Garcia-Fernandez Nuria

    2009-09-01

    Full Text Available Abstract Background Acute kidney injury is among the most serious complications after cardiac surgery and is associated with an impaired outcome. Multiple factors may concur in the development of this disease. Moreover, severe renal failure requiring renal replacement therapy (RRT presents a high mortality rate. Consequently, we studied a Spanish cohort of patients to assess the risk factors for RRT in cardiac surgery-associated acute kidney injury (CSA-AKI. Methods A retrospective case-cohort study in 24 Spanish hospitals. All cases of RRT after cardiac surgery in 2007 were matched in a crude ratio of 1:4 consecutive patients based on age, sex, treated in the same year, at the same hospital and by the same group of surgeons. Results We analyzed the data from 864 patients enrolled in 2007. In multivariate analysis, severe acute kidney injury requiring postoperative RRT was significantly associated with the following variables: lower glomerular filtration rates, less basal haemoglobin, lower left ventricular ejection fraction, diabetes, prior diuretic treatment, urgent surgery, longer aortic cross clamp times, intraoperative administration of aprotinin, and increased number of packed red blood cells (PRBC transfused. When we conducted a propensity analysis using best-matched of 137 available pairs of patients, prior diuretic treatment, longer aortic cross clamp times and number of PRBC transfused were significantly associated with CSA-AKI. Patients requiring RRT needed longer hospital stays, and suffered higher mortality rates. Conclusion Cardiac-surgery associated acute kidney injury requiring RRT is associated with worse outcomes. For this reason, modifiable risk factors should be optimised and higher risk patients for acute kidney injury should be identified before undertaking cardiac surgery.

  10. Case report of cold-weather-induced radiation recall dermatitis after chemoradiotherapy with cisplatin

    Energy Technology Data Exchange (ETDEWEB)

    Kindts, Isabelle; Stellamans, Karin; Planckaert, Nikie; Goethals, Laurence [AZ Groeninge Hospital, Department of Radiation Oncology, Kortrijk (Belgium); Bonny, Michiel [AZ Groeninge Hospital, Department of Dermatology, Kortrijk (Belgium)

    2014-08-15

    The radiation recall reaction (RRR) is an inflammatory reaction that occurs in previously irradiated areas. The phenomenon is probably due to an idiosyncratic hypersensitivity reaction, in which a second agent can recall the inflammatory reaction. This case report documents a cold-weather-induced radiation recall dermatitis (RRD). We observed a severe RRD in a patient after chemoradiotherapy treatment with cisplatin for a nasopharyngeal carcinoma, precipitated by cold temperatures, which developed 9 days after completion of therapy. In the medical literature, RRD following extreme cold temperatures seems to be a peculiar event. Until further information on the interaction is available, future studies on combined chemotherapy with cisplatin should be carefully monitored and any side effects clearly documented. This case suggests that environmental conditions may play a contributing role in the development of RRD. This case also implies that neither fraction size nor total radiation dose is a determining factor in the development of the dermatologic reaction. (orig.) [German] Die ''Radiation-Recall-Reaktion'' (RRR) ist eine Entzuendungsreaktion, die in zuvor bestrahlten Bereichen auftritt. Das Phaenomen wird wahrscheinlich durch eine spezifische Ueberempfindlichkeitsreaktion verursacht, bei der ein zweites Agens die Entzuendungsreaktion hervorruft. Dieser Fallbericht beschreibt eine kaltwetterinduzierte RR-Hautentzuendung. Wir beobachteten bei dem Patienten nach einer Radiochemotherapie mit Cisplatin aufgrund eines Nasopharynxkarzinoms eine heftige RR-Dermatitis (RRD) aufgrund kalter Temperaturen, die sich 9 Tage nach Therapiebeendigung entwickelte. In der medizinischen Literatur scheint eine RRD infolge extrem kalter Temperaturen ein besonderes Ereignis. Bis weitere Informationen zu der Interaktion verfuegbar sind, sollten zukuenftige Studien zur Kombinationstherapie mit Cisplatin sorgfaeltig ueberwacht und Nebenwirkungen eindeutig dokumentiert

  11. The effects of contrast media volume on acute kidney injury after transcatheter aortic valve replacement: a systematic review and meta-analysis.

    Science.gov (United States)

    Thongprayoon, Charat; Cheungpasitporn, Wisit; Podboy, Alexander J; Gillaspie, Erin A; Greason, Kevin L; Kashani, Kianoush B

    2016-11-01

    The goal of this systematic review was to assess the effects of contrast media volume on transcatheter aortic valve replacement-related acute kidney injury. A literature search was performed using Medline, EMbase, the Cochrane Database of Systematic Reviews, and clinicaltrials.gov from the inception of these databases through December 2015. Studies that reported relative risk, odds ratio, or hazard ratio comparing the risks of acute kidney injury following transcatheter aortic valve replacement in patients who received high contrast media volume were included. Pooled risk ratio (RR) and 95% confidence intervals (95% CI) were calculated using a random-effect, generic inverse variance method. Four cohort studies composed of 891 patients were included in the analyses to assess the risk of acute kidney injury after transcatheter aortic valve replacement in patients who received high contrast media volume. The pooled RR of acute kidney injury after transcatheter aortic valve replacement in patients who received a large volume of contrast media was 1.41 (95% CI, 0.87 to 2.28) compared with low contrast media volume. The meta-analysis was limited to studies using standard acute kidney injury definitions, and the pooled RR of acute kidney injury in patients who received high contrast media volume is 1.12 (95% CI, 0.78 to 1.62). Our meta-analysis shows no significant association between contrast media volume and risk of acute kidney injury after transcatheter aortic valve replacement. © 2016 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.

  12. Renal Support for Acute Kidney Injury in the Developing World

    Directory of Open Access Journals (Sweden)

    Rajeev A. Annigeri

    2017-07-01

    Full Text Available There is wide variation in the management of acute kidney injury (AKI and the practice of renal replacement therapy (RRT around the world. Clinicians in developing countries face additional challenges due to limited resources, reduced availability of trained staff and equipment, cultural and socioeconomic aspects, and administrative and governmental barriers. In this article, we report the consensus recommendations from the 18th Acute Dialysis Quality Initiative conference in Hyderabad, India. We provide the minimal requirements for provision of acute RRT in developing countries, including patient selection, choice of RRT modality and monitoring, transition, and termination of acute RRT. We also discuss areas of uncertainty and propose themes for future research. These recommendations can serve as a foundation for clinicians to implement renal support for AKI in low resource settings.

  13. Case report of cold-weather-induced radiation recall dermatitis after chemoradiotherapy with cisplatin

    International Nuclear Information System (INIS)

    Kindts, Isabelle; Stellamans, Karin; Planckaert, Nikie; Goethals, Laurence; Bonny, Michiel

    2014-01-01

    The radiation recall reaction (RRR) is an inflammatory reaction that occurs in previously irradiated areas. The phenomenon is probably due to an idiosyncratic hypersensitivity reaction, in which a second agent can recall the inflammatory reaction. This case report documents a cold-weather-induced radiation recall dermatitis (RRD). We observed a severe RRD in a patient after chemoradiotherapy treatment with cisplatin for a nasopharyngeal carcinoma, precipitated by cold temperatures, which developed 9 days after completion of therapy. In the medical literature, RRD following extreme cold temperatures seems to be a peculiar event. Until further information on the interaction is available, future studies on combined chemotherapy with cisplatin should be carefully monitored and any side effects clearly documented. This case suggests that environmental conditions may play a contributing role in the development of RRD. This case also implies that neither fraction size nor total radiation dose is a determining factor in the development of the dermatologic reaction. (orig.) [de

  14. Determinants of modality of management of acute kidney injury in ...

    African Journals Online (AJOL)

    Background: The cost of taking care of children with acute kidney injury (AKI) is enormous and beyond the reach of many caregivers in sub-Saharan Africa which are largely resource poor. It is therefore imperative to determine those who may benefit from conservative management which is comparatively cheaper to the ...

  15. Possible Protective Effect of Sertraline against Cisplatin-Induced Ototoxicity: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Murat Ozturk

    2013-01-01

    Full Text Available Background/Objective. Cisplatin is a widely used chemotherapeutic agent, but its ototoxicity side effect can occur in the majority of patients. Lots of agents were tried to prevent this, but there is not a routine treatment modality yet. The aim of this study was to evaluate the otoprotective effect of sertraline, which is an antidepressant with neuroprotective effects, against cisplatin, in rats. Design. Experimental animal study. Material and Methods. Forty-eight rats were randomly separated in two groups as groups I and II. Group I was identified as the control group and only a single dose of intraperitoneal cisplatin was administered. In group II, in addition to cisplatin, sertraline was administered to the rats through an oral cannula for ten-day period. Distortion product otoacoustic emission measurements were performed at the first day and the 10th day. Results. When the ototoxicity rates after cisplatin in group I and group II in distortion product otoacoustic emission measurements were compared, it was statistically significantly lower in group II in frequencies of 5652, 6165, 6726, 7336, and 7996 Hz (. Conclusion. Sertraline seems to have a protective effect on cisplatin ototoxicity and could be used to prevent the ototoxicity and also to treat the depression that occurred in cancer patients together.

  16. Metabolomics analysis reveals elevation of 3-indoxyl sulfate in plasma and brain during chemically-induced acute kidney injury in mice: Investigation of nicotinic acid receptor agonists

    International Nuclear Information System (INIS)

    Zgoda-Pols, Joanna R.; Chowdhury, Swapan; Wirth, Mark; Milburn, Michael V.; Alexander, Danny C.; Alton, Kevin B.

    2011-01-01

    An investigative renal toxicity study using metabolomics was conducted with a potent nicotinic acid receptor (NAR) agonist, SCH 900424. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques were used to identify small molecule biomarkers of acute kidney injury (AKI) that could aid in a better mechanistic understanding of SCH 900424-induced AKI in mice. The metabolomics study revealed 3-indoxyl sulfate (3IS) as a more sensitive marker of SCH 900424-induced renal toxicity than creatinine or urea. An LC-MS assay for quantitative determination of 3IS in mouse matrices was also developed. Following treatment with SCH 900424, 3IS levels were markedly increased in murine plasma and brain, thereby potentially contributing to renal- and central nervous system (CNS)-related rapid onset of toxicities. Furthermore, significant decrease in urinary excretion of 3IS in those animals due to compromised renal function may be associated with the elevation of 3IS in plasma and brain. These data suggest that 3IS has a potential to be a marker of renal and CNS toxicities during chemically-induced AKI in mice. In addition, based on the metabolomic analysis other statistically significant plasma markers including p-cresol-sulfate and tryptophan catabolites (kynurenate, kynurenine, 3-indole-lactate) might be of toxicological importance but have not been studied in detail. This comprehensive approach that includes untargeted metabolomic and targeted bioanalytical sample analyses could be used to investigate toxicity of other compounds that pose preclinical or clinical development challenges in a pharmaceutical discovery and development. - Research highlights: → Nicotinic acid receptor agonist, SCH 900424, caused acute kidney injury in mice. → MS-based metabolomics was conducted to identify potential small molecule markers of renal toxicity. → 3-indoxyl-sulfate was found to be as a more sensitive marker of renal toxicity than

  17. Aciclovir-induced acute kidney injury in patients with 'suspected viral encephalitis' encountered on a liaison neurology service.

    Science.gov (United States)

    Bogdanova-Mihaylova, Petya; Burke, David; O'Dwyer, John P; Bradley, David; Williams, Jennifer A; Cronin, Simon J; Smyth, Shane; Murphy, Raymond P; Murphy, Sinead M; Wall, Catherine; McCabe, Dominick J H

    2018-01-06

    Patients with 'suspected viral encephalitis' are frequently empirically treated with intravenous aciclovir. Increasing urea and creatinine are 'common', but rapidly progressive renal failure is reported to be 'very rare'. To describe the clinical course and outcome of cases of aciclovir-induced acute kidney injury (AKI) encountered by the Liaison Neurology Service at AMNCH and to highlight the importance of surveillance and urgent treatment of this iatrogenic complication. Retrospectively and prospectively collected data from the Liaison Neurology Service at AMNCH on patients who received IV aciclovir for suspected viral encephalitis and developed AKI were analysed. Aciclovir-induced AKI was defined by a consultant nephrologist in all cases as a rise in serum creatinine of > 26 μmol/L in 48 h or by ≥ 1.5 times the baseline value. Renal function, haematocrit, and fluid balance were monitored following AKI onset. Data from 10 patients were analysed. Median time to AKI onset was 3.5 days (range: 1-6 days). Aciclovir was stopped or the dose adjusted. All patients recovered with IV normal saline, aiming for a urine output > 100-150 ml/h. The interval between first rise in creatinine and return to normal levels varied between 5 and 19 days. Liaison neurologists and general physicians need to be aware that aciclovir may cause AKI attributed to distal intra-tubular crystal nephropathy. Daily fluid balance and renal function monitoring are essential because AKI may arise even with intensive pre-hydration. Prognosis is good if identified early and actively treated.

  18. Nuclear proteome analysis of cisplatin-treated HeLa cells

    International Nuclear Information System (INIS)

    Wu Wei; Yan Chunlan; Gan Tieer; Chen Zhanghui; Lu Xianghong; Duerksen-Hughes, Penelope J.; Zhu Xinqiang; Yang Jun

    2010-01-01

    Cisplatin has been widely accepted as one of the most efficient anticancer drugs for decades. However, the mechanisms for the cytotoxic effects of cisplatin are still not fully understood. Cisplatin primarily targets DNA, resulting in the formation of DNA double strand breaks and eventually causing cell death. In this study, we applied two-dimensional electrophoresis coupled with LC-MS/MS to analyze the nuclear proteome of HeLa cells treated with cisplatin, in an effort to uncover new mechanistic clues regarding the cellular response to cisplatin. A total of 19 proteins were successfully identified, and these proteins are involved in a variety of basal metabolic and biological processes in cells, including biosynthesis, cell cycle, glycolysis and apoptosis. Six were related to the regulation of mRNA splicing, and we therefore asked whether the Fas gene might undergo alternative splicing following cisplatin treatment. This proved to be the case, as the splicing forms of Fas were modified in cisplatin-treated HeLa cells. This work provides novel information, from the perspective of the nuclear response, for understanding the cytotoxicity caused by cisplatin-induced DNA damage.

  19. The experimental investigation of fibrinolytic system under the influence of flocalin in conditions of acute hypoxic kidney injury

    Directory of Open Access Journals (Sweden)

    A. I. Gozhenko

    2017-08-01

    Full Text Available In the experiments on rats subjected to acute hypoxic histochemical nephropathy, caused by sodium nitrite and 2,4-dinitrophenol, fibrinolytic activities of blood plasma, urine, renal cortex, medulla, and papilla after treatment with flocalin – the activator of KATP channels, were studied­. It was shown that in the conditions of acute kidney hypoxic injury flocalin administration resulted in the increase and essential restoration of fibrinolysis in blood plasma diminished under hypoxia, which was due to the growth of non-enzymatic fibrinolysis, whereas in urine and renal medulla the appreciable increase of enzymatic fibrinolytic activity took place. Moreover, the treatment of hypoxic nephropathy animals by flocalin resulted in the marked restoration of kidney ion regulatory and protein excretory functions that proves the positive influence of KATP channels activation on the one of the biochemical mechanisms of acute kidney injury as well as the protective effect of flocalin in relation to tubular cells of nephron. The obtained results testify to the beneficial effects of KATP channels activation in the conditions of acute hypoxic kidneys injury.

  20. Acute abdomen and ascites as presenting features of autosomal dominant polycystic kidney disease.

    Science.gov (United States)

    Chaudhary, Sanjay; Qian, Qi

    2012-12-27

    We describe a patient with sudden onset of abdominal pain and ascites, leading to the diagnosis of autosomal dominant polycystic kidney disease (ADPKD). Her presentation was consistent with acute liver cyst rupture as the cause of her acute illness. A review of literature on polycystic liver disease in patients with ADPKD and current management strategies are presented. This case alerts physicians that ADPKD could occasionally present as an acute abdomen; cyst rupture related to ADPKD may be considered in the differential diagnoses of acute abdomen.