WorldWideScience

Sample records for circulation cooldown tests

  1. Feasibility test of the concept of long-term passive cooling system of emergency cooldown tank

    International Nuclear Information System (INIS)

    Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young In; Lee, Hee Joon

    2015-01-01

    Highlights: • The concept of long-term passive cooling system of emergency cooldown tank (ECT). • Existing natural circulation of steam from ECT and measurement of its condensing flow. • Evaluation of cooling capacity and heat transfer of air-cooled condensing heat exchanger. - Abstract: When a passive cooling system is activated in the accident of a nuclear reactor, the water in the emergency cooldown tank of that system will eventually be fully depleted by evaporation. If, however, the evaporating water could be returned to the tank through an air-cooled condensing heat exchanger mounted on top of the tank, the passive cooling system could provide cooling for an extended period. This feasibility of new concept of long-term passive cooling with an emergency cooldown tank was tested by performing an energy balance test with a scaled-down experimental setup. As a result, it was determined that a naturally circulating steam flow can be used to refill the tank. For an air-cooled heat exchanger, the cooling capacity and air-side natural convective heat transfer coefficient were obtained to be 37% of the heat load and between 9 and 10.2 W/m 2 /K depending on the heat load, respectively. Moreover, it was clearly verified that the water level in the emergency cooldown tank could be maintained over the long-term operation of the passive cooling system

  2. RETRAN-02 analysis of upper head cooling during controlled natural circulation cooldown of Yankee Nuclear Power Station

    International Nuclear Information System (INIS)

    Fujita, N.; Helrich, R.E.; Bergeron, P.A.

    1982-01-01

    RETRAN-02 is particularly well-suited for investigating the fluid conditions in the upper head during a natural circulation cooldown. The RETRAN input model was developed with four basic objectives: (1) accurate description of the upper head cooling mechanisms; (2) proper simulation of natural circulation; (3) respresentations of operator actions required to proceed from full-power to shutdown-cooling-system conditions using both automatic and manual controls; and (4) reduction of the computer cost of simulating this evolution of approximately 10-hour duration. The response of the upper head fluid temperature calculated by RETRAN was in close agreement with measured data obtained from a natural circulation cooldown experiment performed for the Connecticut Yankee Plant, whose design is very similar to the Yankee Nuclear Power Station

  3. Thermo-hydraulic analysis of the cool-down of the EDIPO test facility

    Science.gov (United States)

    Lewandowska, Monika; Bagnasco, Maurizio

    2011-09-01

    The first cool-down of the EDIPO (European DIPOle) test facility is foreseen to take place in 2011 by means of the existing 1.2 kW cryoplant at EPFL-CRPP Villigen. In this work, the thermo-hydraulic analysis of the EDIPO cool-down is performed in order both to assess the its duration and to optimize the procedure. The cool-down is driven by the helium flowing in both the outer cooling channel and in the windings connected hydraulically in parallel. We take into account limitations due to the pressure drop in the cooling circuit and the refrigerator capacity as well as heat conduction in the iron yoke. Two schemes of the hydraulic cooling circuit in the EDIPO windings are studied (coils connected in series and coils connected in parallel). The analysis is performed by means of an analytical model complemented by and numerical model. The results indicate that the cool-down to 5 K can be achieved in about 12 days.

  4. Natural circulation cooldown analysis for Yonggwang 3 and 4 per US NRC BTP RSB 5-1 requirements

    International Nuclear Information System (INIS)

    Seo, J.T.; Ko, C.S.; Ro, T.S.; Simoni, L.P.

    2004-01-01

    The Natural Circulation Cooldown (NCC) analysis from normal operations to shutdown cooling entry conditions for Yonggwang units 3 and 4 (YGN 3 and 4) was performed within the requirements of U.S. Nuclear Regulatory Commission (NRC) Branch Technical Position (BTP) RSB 5-1. The results showed that the YGN 3 and 4 can be cooled and depressurized to the shutdown entry conditions (350 deg F, 410 psia) within 16 hours under natural circulation condition requiring only 78% of the minimum condensate water storage capacity in conformance with BTP RSB 5-1 requirements. The results also demonstrated that the safety grade Reactor Coolant Gas Vent System (RCGVS) has sufficient capacity for the RCS depressurization as well as for the steam void control in the reactor vessel upper head region. (author)

  5. Cooldown of superconducting magnet strings

    International Nuclear Information System (INIS)

    Yuecel, A.; Carcagno, R.H.

    1995-01-01

    A numerical model for the cooldown of the superconducting magnet strings in the Accelerator System String Test (ASST) Facility at the Superconducting Super Collider (SSC) Laboratory is presented. Numerical results are compared with experimental data from the ASST test runs. Agreement between the numerical predictions and experiments is very good over the entire range from room temperature to liquid helium temperatures. The model can be readily adapted to predict the cooldown and warmup behavior of other superconducting magnets or cold masses

  6. Test results of the SMES model coil. Cool-down and thermal characteristics

    International Nuclear Information System (INIS)

    Hamada, Kazuya; Kato, Takashi; Kawano, Katsumi

    1998-01-01

    A model coil of a superconducting magnetic energy storage (SMES) device, which is a forced-cooled Nb-Ti coil, has been fabricated and a performance test at cryogenic temperatures has been carried out. The SMES model coil is composed of 4 dual pancakes and its total weight is 4.5 t. The applied conductors are cable-in-conduit conductors cooled by supercritical helium (SHe) at 4.5 K and 0.7 MPa. SHe is supplied to the SMES model coil and the structure by a reciprocating bellows pump. The test facility is located at the International Thermonuclear Experimental Reactor (ITER) common test facility, was constructed for the testing of an ITER central solenoid model coil. In the experiments, cool-down was finished within 10 days under controlled temperature differences in the SMES model coil. During cool-down and 4.5 K operation, pressure drop characteristics of the conductor were measured and the friction factor estimated. The pressure drop characteristics of the SMES model coil were in good agreement with those of the previous cable-in-conduit conductor. During static operation without current, the heat load and refrigerator operation conditions were measured. The heat load of the SMES model coil is 7.5 W, which is within the expected value. (author)

  7. Analysis of cooldown performance for Isabelle helium refrigerator

    International Nuclear Information System (INIS)

    Wu, K.C.; Brown, D.P.; Moore, R.W.

    1982-01-01

    The cooldown performance for the ISABELLE Helium refrigerator is analyzed in terms of the relationship between refrigerator and its load. The flow diagram for ISABELLE with its redundant turbines and heat exchangers is given. Cycle description and procedure for cooldown is described with the relationship between a refrigerator and its load illustrated. Pressure vs. temperature for ISABELLE load and the efficiency for a turbine are illustrated. The procedure for modeling the refrigerator and the concepts of maximizing the cooldown capacity are described. The results and discussion are accompanied with T-S diagrams for initial stage of cooldown and refrigerator characteristic at various return temperatures. The ISABELLE refrigerator with its reduncant expanders properly used achieves cooldown capacity well beyond its steady-state capacity. The cooldown rate at this stage relies on the design safety margin, which for the ISABELLE is 50%

  8. Design and performance tests of gas circulation heating of JT-60U vacuum vessel

    International Nuclear Information System (INIS)

    Yotsuga, M.; Masuzaki, T.; Sago, H.; Nishikane, M.; Uchikawa, T.; Iritani, Y.; Murakami, T.; Horiike, H.; Neyatani, Y.; Ninomiya, H.; Matsukawa, M.; Ando, T.; Miyachi, I.

    1992-01-01

    This paper reports that in the final stage of construction of the upgraded JT-60 device (JT-60U), baking tests of the vacuum vessel was performed. The vessel torus was heated-up to 300 degrees C by means of the nitrogen gas circulation system and electric heaters mounted on the outboard solid wall of the vessel. The design of the gas flow channels inside the double-wall structure of the vessel was done based on flow model tests, fluid analysis, and flow network analysis. The results of the baking tests were satisfactory. In maintaining 300 degrees C bake-out temperature, required heating power of the gas circulation system and outboard heaters was 520kW and 50kW, respectively. The temperature distribution over the vessel wall was within 300 ± 30 degrees C. It was also shown or suggested that heat-up and cool-down time is about 30 hours. The baking tests data have been reflected on operations for plasma experiments

  9. Feasibility analysis of aggressive cooldown in OPR-1000 nuclear power plants

    International Nuclear Information System (INIS)

    Kim, Man Cheol; Jerng, Dong Wook

    2014-01-01

    Highlights: • We examine the feasibility of aggressive cooldown, particularly in OPR-1000 plants. • We review experimental and simulation results, EOPs, and time estimates. • Aggressive cooldown is, in general, expected to be performed successfully. • There is potential for failure to initiate aggressive cooldown in a timely manner. • Investigation on allowing higher cooldown rate in OPR-1000 plants is recommended. - Abstract: Aggressive cooldown is the action taken by main control room (MCR) operators to rapidly cool down and depressurize the reactor coolant system at the maximum allowed cooldown rate during a small break loss of coolant accident (SBLOCA) or a steam generator tube rupture accident with failure of high-pressure safety injection (HPSI) in a pressurized water reactor. We examined the feasibility of aggressive cooldown in OPR-1000 nuclear power plants by establishing success criteria based on experimental results and thermal–hydraulic code simulations, reviewing emergency operating procedures, and estimating the necessary time for MCR operators to initiate aggressive cooldown based on experimental results with licensed nuclear power plant operators. For an SBLOCA with a break size of 0.02 ft 2 combined with total failure of HPSI, we found that aggressive cooldown can generally be performed successfully, but there is potential for failure to initiate aggressive cooldown in a timely manner. We discuss the potential effects of introducing the Ultimate Procedure on reducing the core damage potential. Detailed analysis and further discussion are necessary to reduce uncertainties associated with aggressive cooldown and its positive effect on the safety of nuclear power plants

  10. Intentional back flow effects on ruptured steam generator cooldown during a SGTR event for KSNP

    International Nuclear Information System (INIS)

    Kim, C.W.; Park, S.J.; Choi, C.J.; Seo, J.T.

    2004-01-01

    For an optimum recovery from a steam generator tube rupture (SGTR) event, the operators are directed to isolate the steam generator (SG) with ruptured tube as early as possible to minimize the radioactive material release. However, the reactor coolant system (RCS) cooldown and depressurization to the shutdown cooling system (SCS) operation conditions using the intact SG only are hard to achieve unless the ruptured SG is properly cooled since the ruptured SG, which is isolated by operator, remains at high temperature even though the RCS has been cooled down. The effects of intentional back flow from the SG secondary side to the RCS through the ruptured U-tube on the the ruptured SG cooldown were evaluated for the pressurized light water reactor, especially for the Korean standard nuclear power plant (KSNP). In order to evaluate the back flow effect, a series of analyses was conducted using the RELAP5/MOD3 computer code. For the first stage of the analysis, the cooldown process by natural circulation in the SG secondary side was simulated for the initial conditions of the ruptured SG cooldown. In the next analysis stage, two methods of the ruptured SG cooldown by using back flow after RCS cooldown were evaluated. One utilizes the steam condensation on the uncovered U-tube surface, and the other is a SG drain and fill. In the former method, SG tubes are exposed to the steam space by draining SG secondary water into the RCS in order to condense the steam directly onto the uncovered tubes. This method showed that the steam condensation decreased SG secondary pressure and temperature rapidly, demonstrating its effectiveness for cooling. However, this process has a limited applicability if the rupture is located at the lower region. The latter method, draining by back flow and filling using the feedwater system was also found to be effective in ruptured SG cooldown and depressurization even if the rupture occurred at the top of the U-tube. It is concluded that the

  11. Analysis of the NPP-V1 primary circuit fast cooldown

    International Nuclear Information System (INIS)

    Filo, J.; Bazso, Z.; Vranka, L.

    1994-01-01

    Results of thermal-hydraulic calculations of the NPP-V1 primary circuit fast cooldown during small leakage through openings of diameter 20, 32 and 50 mm as well as analyses of cooldown following the steam pipeline break at nominal and null reactor power are given in this paper. 4 refs, 24 figs, 1 tab

  12. Study of the Cooldown and Warmup for the Eight Sectors of the Large Hadron Collider

    CERN Document Server

    Liu, L; Tavian, L

    2004-01-01

    The LHC cryogenic system is based on a five-point feed scheme with eight refrigerators serving the eight sectors of the LHC machine. The paper presents the simplified flow scheme of the eight sectors and the mathematical methods including the program flowchart and the boundary conditions to simulate the cooldown and warmup of these sectors. The methods take into account the effect of the pressure drop across the valves as well as the pressure evolution in the different headers of the cryogenic distribution line. The simulated pressure and temperature profiles of headers of the LHC sector during the cooldown and warmup are given and the temperature evolutions of entire processes of cooldown and warmup are presented. As a conclusion, the functions of the input temperature for the normal and fast cooldown and warmup, the cooldown and warmup time of each sector and the distributions of mass flow rates in each sector are summarized. The results indicate that it is possible to cool down any of the LHC sector within...

  13. Cooldown and Warmup Studies for the Large Hadron Collider

    CERN Document Server

    Lebrun, P; Tavian, L; Wagner, U

    1998-01-01

    The Large Hadron Collider (LHC), currently under construction at CERN, will make use of superconducting magnets operating in superfluid helium below 2 K. The LHC ring is divided in 8 sectors, each of them cooled by a refrigerator of 18 kW at 4.5 K equivalent cooling power. For the cooldown and warmup of a 3.3 km long LHC sector, the flow available above 80 K per refrigerator is 770 g/s and the cor responding capacity is 600 kW. This paper presents the results of cooldown and warmup simulations, as concerns time delays, temperature difference across magnets, available power and flow-rates, and estimates of energy and liquid nitrogen consumption.

  14. Effect of cooldown and residual magnetic field on the performance of niobium–copper clad superconducting radio-frequency cavity

    International Nuclear Information System (INIS)

    Dhakal, Pashupati; Ciovati, Gianluigi

    2017-01-01

    Here, we present the results of rf measurements on a niobium–copper clad superconducting radio-frequency cavity with different cooldown conditions and residual magnetic field in a vertical test Dewar in order to explore the effect of thermal current induced magnetic field and its trapping on the performance of the cavity. The residual resistance, extracted from the Q 0 (T) curves in the temperature range 4.3–1.5 K, showed no dependence on a temperature gradient along the cavity during the cooldown across the critical temperature up to ~50 K m –1 . The rf losses due to the trapping of residual magnetic field during the cavity cooldown were found to be ~4.3 nΩ μT –1 , comparable to the values measured in bulk niobium cavities. An increase of residual resistance following multiple cavity quenches was observed along with evidence of trapping of magnetic flux generated by thermoelectric currents.

  15. Removal of salt from high-level waste tanks by density-driven circulation or mechanical agitation

    International Nuclear Information System (INIS)

    Kiser, D.L.

    1981-01-01

    Twenty-two high-level waste storage tanks at the Savannah River Plant are to be retired in the tank replacement/waste transfer program. The salt-removal portion of this program requires dissolution of about 19 million liters of salt cake. Steam circulation jets were originally proposed to dissolve the salt cake. However, the jets heated the waste tank to 80 to 90 0 C. This high temperature required a long cooldown period before transfer of the supernate by jet, and increased the risk of stress-corrosion cracking in these older tanks. A bench-scale investigation at the Savannah River Laboratory developed two alternatives to steam-jet circulation. One technique was density-driven circulation, which in bench tests dissolved salt at the same rate as a simulated steam circulation jet but at a lower temperature. The other technique was mechanical agitation, which dissolved the salt cake faster and required less fresh water than either density-driven circulation or the simulated steam circulation jet. Tests in an actual waste tank verified bench-scale results and demonstrated the superiority of mechanical agitation

  16. Cooldown stresses on the coldmass of SSC dipole magnets

    International Nuclear Information System (INIS)

    Aksel, B.; Leung, K.

    1991-05-01

    Cooldown rate is one of the critical factors determining the availability of the Superconducting Super Collider ring because of its large size. Considerable time saving is possible with different cooldown scenarios which generate large temperature gradients on the magnets. Purpose of this study is to understand the stresses generated due to largest possible temperature gradients that can be supplied by the cryogenic system and to predict the relation between the cooling rate and the coil stresses. Under the assumptions made in this study, it is found that maximum coil stress is independent of cooling rate. This result is in contradiction with the general belief and more investigation needs to be done before reaching a definite conclusion. 2 refs., 6 figs

  17. Study of the Cooldown and Warmup for the Eight Sectors of the Large Hadron Collider

    Science.gov (United States)

    Liu, L.; Riddone, G.; Tavian, L.

    2004-06-01

    The LHC cryogenic system is based on a five-point feed scheme with eight refrigerators serving the eight sectors of the LHC machine. The paper presents the simplified flow scheme of the eight sectors and the mathematical methods including the program flowchart and the boundary conditions to simulate the cooldown and warmup of these sectors. The methods take into account the effect of the pressure drop across the valves as well as the pressure evolution in the different headers of the cryogenic distribution line. The simulated pressure and temperature profiles of headers of the LHC sector during the cooldown and warmup are given and the temperature evolutions of entire processes of cooldown and warmup are presented. As a conclusion, the functions of the input temperature for the normal and fast cooldown and warmup, the cooldown and warmup time of each sector and the distributions of mass flow rates in each sector are summarized. The results indicate that it is possible to cool down any of the LHC sector within 12.7 days in normal operation and 6.8 days in case of fast operation.

  18. Cooldown and warmup computer simulations of the SSC ring

    International Nuclear Information System (INIS)

    Carcagno, R.H.; Schiesser, W.E.; Yuecel, A.

    1991-06-01

    The Superconducting Super Collider (SSC) consists of two stacked rings of superconducting magnets; each ring is about 86 km in circumference. The total mass to be cooled to liquid helium temperature amounts to about 1 x 10 8 kg, and the total helium inventory under nominal operating conditions (4.15 K and 4 atm) is about 2.8 x 10 5 kg. The cooldown and warmup process of a long string of magnets has to be well understood in order to design a cryogenic system that can satisfy the requirements of helium inventory handling, magnet temperature gradients, and process time for the different cooldown and warmup scenarios being planned for the SSC. A system that can be convincingly simulated can be understood, controlled, operated and improved in a systematic way. In this paper, we introduce two numerical models, a lumped model and a distributed model, for cooldown and warmup of the SSC ring, and present simulation results for an SSC string (4320 m long, or 1/20th of the full ring circumference). The models cover the temperature range between room and liquid helium temperature; the distributed model includes radial temperature distribution in the cold mass. Low temperature range simulations are particularly important to study inventory handling strategies because of the relationship between rapid changes in density and the system mass flow rate. 9 refs., 9 figs

  19. Experiments on the Heat Transfer and Natural Circulation Characteristics of the Passive Residual Heat Removal System for the Advanced Integral Type Reactor

    International Nuclear Information System (INIS)

    Park, Hyun-Sik; Choi, Ki-Yong; Cho, Seok; Park, Choon-Kyung; Lee, Sung-Jae; Song, Chul-Hwa; Chung, Moon-Ki; Lee, Un-Chul

    2004-01-01

    Experiments on the heat transfer characteristics and natural circulation performance of the passive residual heat removal system (PRHRS) for the SMART-P have been performed using the high temperature/high pressure thermal-hydraulic test facility (VISTA). The VISTA facility consists of the primary loop, the secondary loop, the PRHRS loop, and auxiliary systems to simulate the SMART-P, a pilot plant of the SMART. The primary loop is composed of the steam generator (SG) primary side, a simulated core, a main coolant pump, and loop piping, and the PRHRS loop consists of the SG secondary side, a PRHRS heat exchanger, and loop piping. The natural circulation performance of the PRHRS, the heat transfer characteristics of the PRHRS heat exchangers and the emergency cooldown tank (ECT), and the thermal-hydraulic behavior of the primary loop are intensively investigated. The experimental results show that the coolant flows steadily in the PRHRS loop and the heat transfers through the PRHRS heat exchanger and the emergency cooldown tank are sufficient enough to enable the natural circulation of the coolant. The results also show that the core decay heat can be sufficiently removed from the primary loop with the operation of the PRHRS. (authors)

  20. First Cool-down and Test at 4.5 K of the ATLAS Superconducting Barrel Toroid Assembled in the LHC Experimental Cavern

    CERN Document Server

    Barth, K; Dudarev, A; Passardi, Giorgio; Pengo, R; Pezzetti, M; Pirrote, O; Ten Kate, H; Baynham, E; Mayri, C

    2008-01-01

    The large ATLAS superconducting magnets system consists of the Barrel, two End-Caps Toroids and the Central Solenoid. The eight separate coils making the Barrel Toroid (BT) have been individually tested with success in a dedicated surface test facility in 2004 and 2005 and afterwards assembled in the underground cavern of the ATLAS experiment. In order to fulfil all the cryogenic scenarios foreseen for these magnets with a cold mass of 370 tons, two separate helium refrigerators and a complex helium distribution system have been used. This paper describes the results of the first cool-down, steady-state operation at 4.5 K and quench recovery of the BT in its final configuration.

  1. Probabilistic fracture mechanics analysis of boiling water reactor vessel for cool-down and low temperature over-pressurization transients

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Soon; Choi, Young Hwan; Jhung, Myung Jo [Safety Research Division, Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-04-15

    The failure probabilities of the reactor pressure vessel (RPV) for low temperature over-pressurization (LTOP) and cool-down transients are calculated in this study. For the cool-down transient, a pressure-temperature limit curve is generated in accordance with Section XI, Appendix G of the American Society of Mechanical Engineers (ASME) code, from which safety margin factors are deliberately removed for the probabilistic fracture mechanics analysis. Then, sensitivity analyses are conducted to understand the effects of some input parameters. For the LTOP transient, the failure of the RPV mostly occurs during the period of the abrupt pressure rise. For the cool-down transient, the decrease of the fracture toughness with temperature and time plays a main role in RPV failure at the end of the cool-down process. As expected, the failure probability increases with increasing fluence, Cu and Ni contents, and initial reference temperature-nil ductility transition (RTNDT). The effect of warm prestressing on the vessel failure probability for LTOP is not significant because most of the failures happen before the stress intensity factor reaches the peak value while its effect reduces the failure probability by more than one order of magnitude for the cool-down transient.

  2. Numerical Analysis of the Final Cooldown of a 3.3 km Sector of the Large Hadron Collider

    CERN Document Server

    Liu, L; Tavian, L

    2006-01-01

    The final cool-down of a 107-m standard cell of LHC, which consists of the helium filling operation at 4.5 K and the further cool-down from 4.5 K to 1.9 K, has been previously simulated and analyzed numerically. To model and analyze the final cool-down process of a whole 3.3-km sector of the LHC, additional boundary conditions must be introduced. In this paper, the slope of the sector, the efficiency of the sub-cooling heat exchanger, the pressure drops and heat loads in different headers of the cryogenic distribution line as well as the fact that both the filling flow of the cold mass and the vaporized flow in the 1.8 K heat exchanger are concurrently supplied have been taken into account. The simulation results, such as the temperature evolution in the LHC magnet cold mass and the pressure profiles in cryogenic line headers during the filling and cool-down from 4.5 K to 1.9 K of a LHC sector are presented. Taking into account the required distribution of the total flow to each cell, all the cells can be fil...

  3. Gas Cooled Fast Breeder Reactor cost estimate for a circulator test facility (modified HTGR circulator test facility)

    International Nuclear Information System (INIS)

    1979-10-01

    This is a conceptual design cost estimate for a Helium Circulator Test Facility to be located at the General Atomic Company, San Diego, California. The circulator, drive motors, controllers, thermal barrier, and circulator service module installation costs are part of the construction cost included

  4. Gas cooled fast breeder reactor design for a circulator test facility (modified HTGR circulator test facility)

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    A GCFR helium circulator test facility sized for full design conditions is proposed for meeting the above requirements. The circulator will be mounted in a large vessel containing high pressure helium which will permit testing at the same power, speed, pressure, temperature and flow conditions intended in the demonstration plant. The electric drive motor for the circulator will obtain its power from an electric supply and distribution system in which electric power will be taken from a local utility. The conceptual design decribed in this report is the result of close interaction between the General Atomic Company (GA), designer of the GCFR, and The Ralph M. Parson Company, architect/engineer for the test facility. A realistic estimate of total project cost is presented, together with a schedule for design, procurement, construction, and inspection.

  5. Intentional back flow effects on ruptured steam generator cooldown during a SGTR event for KSNP

    International Nuclear Information System (INIS)

    Seok, Jeong Park; Cheol, Woo Kim; Chul, Jin Choi; Jong, Tae Seo

    2001-01-01

    For an optimum recovery from a Steam Generator Tube Rupture (SGTR) event, the operators are directed to isolate the steam generator (SG) with ruptured tube(s) as early as possible in order to minimize the radioactive material release. However, the Reactor Coolant System (RCS) cooldown and depressurization to the Residual Heat Removal (RHR) System operation conditions using the intact SG only can not be readily achievable unless the affected SG is properly cooled since the isolated SG remains at high temperature even though the RCS has been cooled down. Therefore, a study on the intentional back flow from the ruptured SG secondary side to the RCS was performed to evaluate its effectiveness on the ruptured SG cooldown during a SGTR event for the pressurized light water reactor, especially for the Korean Standard Nuclear Power Plant (KSNP). In order to evaluate the intentional back flow effect, a series of analyses was conducted by using RELAP5/MOD3 computer code. In these analyses, the primary and secondary systems of KSNP are modeled including the major Nuclear Steam Supply System (NSSS) components such as the reactor vessel, steam generators, hot and cold legs, pressurizer, and reactor coolant pumps. Also, the key safety systems and control systems are modeled. Using this model, two possible methods of the ruptured SG cooldown by using back flow after RCS cooldown were evaluated: the first method is a tube uncover method, and the second method is a SG drain (back flow) and fill method. (author)

  6. Improvement of cooldown time of LSF9599 flexure-bearing SADA cooler

    Science.gov (United States)

    Mullié, Jeroen; vd Groep, Willem; Bruins, Peter; Benschop, Tonny; de Koning, Arjan; Dam, Jacques

    2006-05-01

    Thales Cryogenics has presented the LSF 9599 SADA II flexure cooler in 2005. Based on Thales' well-known moving magnet flexure technology, the LSF 9599 complies with the SADA II specification with respect to performance, envelope and mass. Being the first manufacturer offering a full flexure-bearing supported cooler that fits within the SADA II envelope, Thales Cryogenics has been selected in several new (military) programs with their LSF coolers. For many of these new programs, the cooldown time requirements are more stringent than in the past, whereas at the same time size, complexity and thus thermal mass of the infrared sensor tends to increase. In order to respond to the need created by the combination of these trends, Thales Cryogenics started a development program to optimize cryogenic performance of the LSF 9599 cooler. The main goal for the development program is to reduce the cooldown time, while maintaining the SADA II compatible interface, and maintaining the robustness and proven reliability of the cooler. Within these constraints, the regenerator was further optimized using among others the experience with mixed-gauze regenerators obtained from our pulse tube research. Using the mixed gauze approach, the heat storage capacity of the regenerator is adapted as a function of the temperature profile over the regenerator, thus giving the optimum balance between heat storage capacity and pressure drop. A novel way of constructing the regenerator further decreases shuttle heat losses and other thermal losses in the regenerator. This paper describes the first results of the trade-offs and gives an overview of impact on cooldown times and efficiency figures achieved after the regenerator and displacer optimization.

  7. Efficacy of Cool-Down Exercises In the Practice Regimen of Elite Singers

    Science.gov (United States)

    Gottliebson, Renee O.

    Cool-down exercises are routinely prescribed for singers, yet few data exist about the efficacy of active recovery or cooling down of the vocal mechanism. The purpose of the present study was to compare three aspects of vocal function after using different recovery methods following rigorous voice use. Vocal function was assessed using (1) phonation threshold pressure (PTP); (2) acoustic measures (accuracy of tone production, duration of notes and duration of intervals between notes); and (3) measures of subjective perception: perceived phonatory effort (PPE) and Singing Voice Handicap Index (SVHI). Data were collected after 10-minutes of cool-down exercises, complete voice rest, and conversation immediately following a 50-minute voice lesson. Data were collected again 12-24 hours later. Participants included actively performing elite singers (7 women, 2 men) enrolled in the graduate program (M.M., D.M.A.) at the University of Cincinnati's College-Conservatory of Music. While it was expected that PTP estimates after cool downs would be significantly lower than baselines and the other conditions, it turns out that PTP estimates after cool downs were significantly higher at the 80% level of the pitch range. Statistically significant correlations between PTP estimates and PPE scores were found when comparing levels of the participants' pitch ranges (10%, 20%, 80%). Mean PPE scores were highest at the 80% level of the pitch range. The acoustic measures yielded variable results. Cool-down exercises did not result in significantly more accurate tone production and shorter staccato note duration and duration of intervals between staccato notes as compared to baselines and recovery conditions. Instead, participants demonstrated greater accuracy of tone production during baselines and lesser accuracy after voice rest. Staccato notes were significantly shorter in duration after the conversation condition as compared to voice rest. Duration between staccato notes was

  8. Testing of the MFTF magnets

    International Nuclear Information System (INIS)

    Kozman, T.A.; Chang, Y.; Dalder, E.N.C.

    1982-01-01

    This paper describes the cooldown and testing of the first yin-yang magnet for the Mirror Fusion Test Facility. The introduction describes the superconducting magnet; the rest of the paper explains the tests prior to and including magnet cooldown and final acceptance testing. The MFTF (originally MX) was proposed in 1976 and the project was funded for construction start in October 1977. Construction of the first large superconducting magnet set was completed in May 1981 and testing started shortly thereafter. The acceptance test procedures were reviewed in May 1981 and the cooldown and final acceptance test were done by the end of February 1982. During this acceptance testing the magnet achieved its full design current and field

  9. Design and study of Engineering Test Facility - Helium Circulator

    International Nuclear Information System (INIS)

    Jiang Huijing; Ye Ping; Zhao Gang; Geng Yinan; Wang Jie

    2015-01-01

    Helium circulator is one of the key equipment of High-temperature Gas-cooled Reactor Pebble-bed Module (HTR-PM). In order to simulate most normal and accident operating conditions of helium circulator in HTR-PM, a full scale, rated flow rate and power, engineering test loop, which was called Engineering Test Facility - Helium Circulator (ETF-HC), was designed and established. Two prototypes of helium circulator, which was supported by Active Magnetic Bearing (AMB) or sealed by dry gas seals, would be tested on ETF-HC. Therefore, special interchangeable design was under consideration. ETF-HC was constructed compactly, which consisted of eleven sub-systems. In order to reduce the flow resistance of the circuit, special ducts, elbows, valves and flowmeters were selected. Two stages of heat exchange loops were designed and a helium - high pressure pure water heat exchanger was applied to ensure water wouldn't be vaporized while simulating accident conditions. Commissioning tests were carried out and operation results showed that ETF-HC meets the requirement of helium circulator operation. On this test facility, different kinds of experiments were supposed to be held, including mechanical and aerodynamic performance tests, durability tests and so on. These tests would provide the features and performance of helium circulator and verify its feasibility, availability and reliability. (author)

  10. Experimental Modeling of VHTR Plenum Flows during Normal Operation and Pressurized Conduction Cooldown

    Energy Technology Data Exchange (ETDEWEB)

    Glenn E McCreery; Keith G Condie

    2006-09-01

    The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. The present document addresses experimental modeling of flow and thermal mixing phenomena of importance during normal or reduced power operation and during a loss of forced reactor cooling (pressurized conduction cooldown) scenario. The objectives of the experiments are, 1), provide benchmark data for assessment and improvement of codes proposed for NGNP designs and safety studies, and, 2), obtain a better understanding of related phenomena, behavior and needs. Physical models of VHTR vessel upper and lower plenums which use various working fluids to scale phenomena of interest are described. The models may be used to both simulate natural convection conditions during pressurized conduction cooldown and turbulent lower plenum flow during normal or reduced power operation.

  11. Production circulator fabrication and testing for core flow test loop. Final report, Phase III

    Energy Technology Data Exchange (ETDEWEB)

    1981-05-01

    The performance testing of two production helium circulators utilizing gas film lubrication is described. These two centrifugal-type circulators plus an identical circulator prototype will be arranged in series to provide the helium flow requirements for the Core Flow Test Loop which is part of the Gas-Cooled Fast Breeder Reactor Program (GCFR) at the Oak Ridge National Laboratory. This report presents the results of the Phase III performance and supplemental tests, which were carried out by MTI during the period of December 18, 1980 through March 19, 1981. Specific test procedures are outlined and described, as are individual tests for measuring the performance of the circulators. Test data and run descriptions are presented.

  12. Production circulator fabrication and testing for core flow test loop. Final report, Phase III

    International Nuclear Information System (INIS)

    1981-05-01

    The performance testing of two production helium circulators utilizing gas film lubrication is described. These two centrifugal-type circulators plus an identical circulator prototype will be arranged in series to provide the helium flow requirements for the Core Flow Test Loop which is part of the Gas-Cooled Fast Breeder Reactor Program (GCFR) at the Oak Ridge National Laboratory. This report presents the results of the Phase III performance and supplemental tests, which were carried out by MTI during the period of December 18, 1980 through March 19, 1981. Specific test procedures are outlined and described, as are individual tests for measuring the performance of the circulators. Test data and run descriptions are presented

  13. The role of natural circulation in the FFTF [Fast Flux Test Facility] passive safety tests

    International Nuclear Information System (INIS)

    Stover, R.L.; Padilla, A.; Burke, T.M.; Knecht, W.L.

    1987-03-01

    A series of tests were completed at the Fast Flux Test Facility to demonstrate the passive safety characteristics of liquid metal reactors with natural circulation flow. The first test consisted of transition from forced to natural circulation flow at an initial decay power of 0.3%. The second test represented an unprotected loss-of-flow transient to natural circulation from 50% power with the control rods prevented from scramming into the core. The third test was a steady-state, natural circulation condition with core fission powers up ato about 2.3%. Core sodium data and results of single and multi-channel computer models confirmed the reliability and effectiveness of natural circulation flow for liquid metal reactor safety

  14. Reevaluation of Kori Unit 4 Natural Circulation Test

    Energy Technology Data Exchange (ETDEWEB)

    Yassin, Nassir [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Woo, Sweng Woong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    The simulation results showed that the natural circulation flow developed by density difference was capable of removing decay heat from the fuel rod. The maximum pellet centerline temperature of the hot channel showed large margin to the pellet melting temperature. The maximum coolant temperature in the hot channel was well below the saturation temperature. If steam generators provide heat sink to the primary coolant system and thus natural circulation is maintained, the integrity of the fuel in the core can be sustained with large margin. Passive cooling of reactor is inevitable in case of failures in forced cooling system such as loss of electric power for cooling pumps. Fukushima accident showed the importance of the passive core cooling. During the commissioning test of PWRs, natural circulation test is performed to demonstrate the passive core cooling by natural convection. The driving force for coolant flow is developed by the density deference along the loop multiplied by the gravitation. Using the data from 'natural circulation test' and 'RCS flow coast down test' of Kori Unit 4, fuel behavior was reevaluated by FRAPTRAN code. RCS natural circulation test of Kori Unit 4 was reevaluated by FRAPTYRAN simulation to study the fuel behavior during the flow coast down transient and at the equilibrium condition in which decay heat transport and RCS flow were stabilized.

  15. Cooldown to residual heat removal entry conditions using atmospheric dump valves and auxiliary pressurizer spray following a loss-of-offsite power at Calvert Cliffs, Unit 1

    International Nuclear Information System (INIS)

    Jenks, R.P.

    1984-01-01

    An investigation of cooldown using atmospheric dump valves (ADVs) and auxiliary pressurizer spray (APS) following loss-of-offsite power at Calvert Cliffs-1 showed residual heat removal entry conditions could not be reached with the plant ADVs alone. Use of APS with the plant ADVs enhanced depressurization, but still provided insufficient cooldown. Effective cooldown and depressurization was shown to occur when rated steady state flow through the ADVs was increased by a factor of four. 6 refs., 30 figs., 2 tabs

  16. High-power circulator test results at 350 and 700 MHz

    International Nuclear Information System (INIS)

    Roybal, W.; Bradley, J.T.; Rees, D.E.

    2000-01-01

    The high-power RF systems for the Accelerator Production of Tritium (APT) program require high-power circulators at 350 MHz and 700 MHz to protect 1 MW Continuous Wave (CW) klystrons from reflected power. The 350 MHz circulator is based on the CERN, EXF, and APS designs and has performed very well. The 700 MHz circulator is a new design. Prototype 700 MHz circulators have been high-power tested at Los Alamos National Laboratory (LANL). The first of these circulators has satisfied performance requirements. The circulator requirements, results from the testing, and lessons learned from this development are presented and discussed

  17. Impact of cool-down conditions at T_{c} on the superconducting rf cavity quality factor

    Directory of Open Access Journals (Sweden)

    J.-M. Vogt

    2013-10-01

    Full Text Available Many next-generation, high-gradient accelerator applications, from energy-recovery linacs to accelerator-driven systems (ADS rely on continuous wave (CW operation for which superconducting radio-frequency (SRF systems are the enabling technology. However, while SRF cavities dissipate little power, they must be cooled by liquid helium and for many CW accelerators the complexity as well as the investment and operating costs of the cryoplant can prove to be prohibitive. We investigated ways to reduce the dynamic losses by improving the residual resistance (R_{res} of niobium cavities. Both the material treatment and the magnetic shielding are known to have an impact. In addition, we found that R_{res} can be reduced significantly when the cool-down conditions during the superconducting phase transition of the niobium are optimized. We believe that not only do the cool-down conditions impact the level to which external magnetic flux is trapped in the cavity but also that thermoelectric currents are generated which in turn create additional flux that can be trapped. Therefore, we investigated the generation of flux and the dynamics of flux trapping and release in a simple model niobium-titanium system that mimics an SRF cavity in its helium tank. We indeed found that thermal gradients along the system during the superconducting transition can generate a thermoelectric current and magnetic flux, which subsequently can be trapped. These effects may explain the observed variation of the cavity’s R_{res} with cool-down conditions.

  18. Natural circulation in a scaled PWR integral test facility

    International Nuclear Information System (INIS)

    Kiang, R.L.; Jeuck, P.R. III

    1987-01-01

    Natural circulation is an important mechanism for cooling a nuclear power plant under abnormal operating conditions. To study natural circulation, we modeled a type of pressurized water reactor (PWR) that incorporates once-through steam generators. We conducted tests of single-phase natural circulations, two-phase natural circulations, and a boiler condenser mode. Because of complex geometry, the natural circulations observed in this facility exhibit some phenomena not commonly seen in a simple thermosyphon loop

  19. Preliminary test results and CFD analysis for moderator circulation test at Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.T. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of); Im, S.H.; Sung, H.J. [Korea Advanced Inst. of Science and Tech., Daejeon (Korea, Republic of); Seo, H.; Bang, I.C. [Ulsan National Inst. of Science and Tech., Ulsan (Korea, Republic of)

    2014-07-01

    Korea Atomic Energy Research Institute (KAERI) is carrying out a scaled-down moderator test program to simulate the CANDU6 moderator circulation phenomena during steady state operation and accident conditions. This research program includes the construction of the Moderator Circulation Test (MCT) facility, production of the validation data for self-reliant CFD tools, and development of optical measurement system using the Particle Image Velocimetry (PIV). The MCT facility includes a primary circulation loop (pipe lines, a primary side pump, a heat exchanger, valves, flow meters) and a secondary side loop (pipe lines, a secondary side pump, and an external cooling tower). The loop leakage test and non-heating test are performed in the present work. In the present work the PIV technique is used to measure the velocity distributions in the scaled moderator tank of MCT under iso-thermal test conditions. The preliminary PIV measurement data are obtained and compared with CFX code predictions. (author)

  20. Preliminary test results and CFD analysis for moderator circulation test at Korea

    International Nuclear Information System (INIS)

    Kim, H.T.; Im, S.H.; Sung, H.J.; Seo, H.; Bang, I.C.

    2014-01-01

    Korea Atomic Energy Research Institute (KAERI) is carrying out a scaled-down moderator test program to simulate the CANDU6 moderator circulation phenomena during steady state operation and accident conditions. This research program includes the construction of the Moderator Circulation Test (MCT) facility, production of the validation data for self-reliant CFD tools, and development of optical measurement system using the Particle Image Velocimetry (PIV). The MCT facility includes a primary circulation loop (pipe lines, a primary side pump, a heat exchanger, valves, flow meters) and a secondary side loop (pipe lines, a secondary side pump, and an external cooling tower). The loop leakage test and non-heating test are performed in the present work. In the present work the PIV technique is used to measure the velocity distributions in the scaled moderator tank of MCT under iso-thermal test conditions. The preliminary PIV measurement data are obtained and compared with CFX code predictions. (author)

  1. Vibration features of an 180 kW maglev circulator test rig

    International Nuclear Information System (INIS)

    Su Jiageng; Li Hongwei; Shi Qian; Sha Honglei; Yu Suyuan

    2015-01-01

    The helium circulator is the key equipment to drive the helium gas flowing in the primary loop for energy exchange in HTGR. Active magnetic bearings (AMB) have been considered as an alternative to replace traditional mechanical bearings in the helium circulator. Such contactless bearings do not have frictional wear and can be used to suppress vibration in rotor-dynamic applications. It is necessary to study the vibration characteristics of the maglev helium circulator to guarantee the reactor safety. Therefore, a maglev circulator test rig was built. The power of the circulator is 180 kW and the maximum speed is 17000 rpm. For the time being, the test atmosphere is air. In this paper the test rig was introduced. Vibration test work of the maglev circulator was also carried out. The measuring points were arranged at the seat because the seat vibration level is important to evaluate the machine noise. The measuring points were also arranged at the base of the circulator housing to better study the vibration characteristics. The vibrations were measured by the LC-8024 multichannel machinery diagnoses system. At each measuring point the vibrations were detected in three directions (X, Y and Z) with the vibration acceleration sensors. The test speeds varied from 1000 rpm to 17000 rpm with an increase of 1000 rpm each time. The vibration values of the seat are from 89.5 dB at 1000 rpm to 113.3 dB at 17000 rpm. The test results showed that the maglev circulator exhibits good vibration properties. This work will offer important theoretical base and engineering experience to explore the high-speed helium circulator in HTGR. (author)

  2. Natural circulation in an integral CANDU test facility

    International Nuclear Information System (INIS)

    Ingham, P.J.; Sanderson, T.V.; Luxat, J.C.; Melnyk, A.J.

    2000-01-01

    Over 70 single- and two-phase natural circulation experiments have been completed in the RD-14M facility, an integral CANDU thermalhydraulic test loop. This paper describes the RD-14M facility and provides an overview of the impact of key parameters on the results of natural circulation experiments. Particular emphasis will be on phenomena which led to heat up at high system inventories in a small subset of experiments. Clarification of misunderstandings in a recently published comparison of the effectiveness of natural circulation flows in RD-14M to integral facilities simulating other reactor geometries will also be provided. (author)

  3. Natural convection as the way of heat removal from fast reactor core at cooldown regimes

    International Nuclear Information System (INIS)

    Zhukov, A.V.; Kuzina, J.A.; Uhov, V.A.; Sorokin, G.A.

    2000-01-01

    The problems of thermohydraulics in fast reactors at cooldown regimes at heat removal by natural convection are considered The results of experiments and calculations obtained in various countries in this area are presented. The special attention is given to heat removal through inter-assembly space in the core and also to problems of thermohydraulics in the upper plenum. (author)

  4. Improvement of Emergency Cooldown Tank in terms of long-term cooling

    International Nuclear Information System (INIS)

    Moon, Joo Hyung; Kim, Youngin; Kim, Keung Koo

    2014-01-01

    SMART received its Standard Design Approval(SDA) from Korea Government in 2012. After Fukushima accident, passively cooling system of nuclear reactor gets great attention and a consentience reached that at least 72 hours of grace time after an accident should be secured, during which a nuclear reactor remains in safe condition without any operator's intervention. To meet this requirement, SMART adapted passive cooling system such as passive residual heat removal system(PRHRS). It is composed of an emergency cooldown tank(ETC), a heat exchanger and a makeup tank. The ETC should be refilled periodically by auxiliary water supply system in order to use it beyond 72 hours. Otherwise the immersed heat exchanger would be exposed to the air, which would damage the function of PRHRS. To overcome this shortcoming, installation of an air-cooling heat exchanger at the top of the ETC is proposed as shown in Fig. 2. Here the top of the ETC is now closed. Evaporated steam is collected through the vertical duct and condensed through air-cooling heat exchanger. By natural circulation, water level of ETC can be maintained at steady state for a very long-term period. The purpose of the present study is to investigate the thermal sizing of air-cooling heat exchanger which extends the cooling period of ETC. Thermal sizing of air-cooling heat exchanger had been investigated by using several heat transfer correlations for natural convection of vertical tubes. Quantitative comparisons were made to find out how many tubes are required to remove the residual heat. This work would contribute to improve the current design of ETC and to extend the cooling period much longer than 72 hours, which will promote the passive safety function of SMART

  5. Resfria - a computational routine for thermal-hydraulic analysis of a cooldown in the PWR

    International Nuclear Information System (INIS)

    Silva Neto, A.J. da; Maciel Filho, L.A.

    1989-01-01

    This paper presents the computer code RESFRIA, designed to calculate the process parameters in a PWR nuclear power plant during a cooldown normal procedure. The procedure is described and some of the models developed to the simulation of systems and equipments are presented. A simplified flowchart of the computational routine and the results in the form of a diagram, for a typical PWR nuclear power plant, are also presented. (author)

  6. Passive safety testing at the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Lucoff, D.M.

    1989-01-01

    During 1986, the Fast Flux Test Facility (FFTF) conducted several tests designed to improve the understanding of the passive safety characteristics of an oxide-fueled liquid-metal reactor (LMR). Static and dynamic tests were performed over a broad range of power, flow, and temperature conditions that extended beyond those for normal operation. Key results of these tests are presented. Stable operation at low power with natural circulation cooling was demonstrated. A passive safety enhancement feature, the gas expansion module (GEM) was developed specifically to offset the large amount of cooldown reactivity that needs to be controlled in an oxide-fueled LMR undergoing an unprotected loss-of-flow accident. Nine GEMs were built and successfully tested in FFTF. With the reactor at 50% power (200 MW (thermal)), the main coolant pumps were turned off and the normal control rod scram response was inhibited. The GEMs and inherent core reactivity feedback mechanisms took the core subcritical with a modest peak coolant temperature transient that reached 85 degrees C above the pretransient value and always maintained a >400 degrees C margin to the sodium boiling point (910 degrees C)

  7. Evaluation of the cool-down behaviour of ITER FW beryllium tiles for an early failure detection

    Directory of Open Access Journals (Sweden)

    Thomas Weber

    2016-12-01

    Full Text Available The design of the first wall in ITER foresees several hundred thousand beryllium tiles, which are bonded to the water-cooled CuCrZr supporting structure. Due to the nature of a Tokamak reactor this bonding is faced to thermal fatigue. Since the failure of a single tile might already have a major impact on the operability of ITER, comprehensive high heat flux tests are performed on prototypes prior to the acceptance of manufacturing procedures. For a deeper understanding of the temperature curves, which were and will be measured by IR devices of these first wall prototypes, thermo-mechanical FEM simulations shall demonstrate the possibilities of an early bonding failure detection. Hereby, the maximum temperatures for each cycle as well as the cool-down behaviour are the input data.

  8. ANSYS modeling of thermal contraction of SPL HOM couplers during cool-down

    CERN Document Server

    Papke, K

    2016-01-01

    During the cool-down the HOM coupler as well as the cavity inside the cryo module experience a thermal contraction. For most materials between room temperature and liquid helium temperatures, the changes in dimension are in the order of a few tenths of a percent change in volume. This paper presents the effect of thermal contraction on the RF transmission behavior of HOM couplers, and in particular the influence on its notch filter. Furthermore the simulation process with APDL is explained in detail. Conclusions about the necessary tuning range of the notch filter are made which is especially a concern for couplers with only notch filter.

  9. Prediction to natural circulation in semiscale SBLOCA test, S-NC-8B

    International Nuclear Information System (INIS)

    Bang, Young Seok; Seul, Kwang Won; Lee, Sukho; Kim, Hho Jung

    1995-01-01

    Natural circulation and the associated thermal-hydraulic behavior are predicted by RELAP5/MOD3.1 code against the test S-NC-8B, which simulated 0.1% equivalent SBLOCA in PWR. The Semiscale Mod-2A facility and the test-specific initial/boundary condition are modeled. The calculation result is compared with the experiment data in terms of natural circulation characteristic and the code predictability is evaluated on natural circulation. As a result, flow rate during single-and two-phase natural circulation modes is well predicted and slightly overpredicted with oscillation in transition and reflux regimes. Additional sensitivity calculations are attempted with different discharge coefficient and break modeling to investigate the break flow effect

  10. Validation of SSC using the FFTF natural-circulation tests

    International Nuclear Information System (INIS)

    Horak, W.C.; Guppy, J.G.; Kennett, R.J.

    1982-01-01

    As part of the Super System Code (SSC) validation program, the 100% power FFTF natural circulation test has been simulated using SSC. A detailed 19 channel, 2 loop model was used in SSC. Comparisons showed SSC calculations to be in good agreement with the Fast Flux Test Facility (FFTF), test data. Simulation of the test was obtained in real time

  11. Quick Look Report for Semiscale MOD-2C Test S-FS-2

    International Nuclear Information System (INIS)

    Boucher, T.J.; Chen, T.H.

    1985-01-01

    Results of a preliminary analysis of the first test performed in the Semiscale MOD-2C Steam Generator Feedwater and Steam Line Break (FS) experiment series are presented. Test S-FS-2 simulated a pressurized water reactor transient initiated by a double-ended offset shear of a steam generator main steam line upstream of the flow restrictor. Initial conditions represented normal ''hot-standby'' operation. The transient included an initial 600-s period in which only automatic plant protection systems responded to the initiating event. This period was followed by a series of operator actions necessary to stabilize the plant at conditions required to allow a natural circulation cooldown. The test results provided a measured evaluation of the effectiveness of the automatic responses in minimizing primary system overcooling and operator actions in stabilizing the plant. Test data also provided a basis for comparison with other tests in the series of the effects of break size on primary overcooling and primary-to-secondary heat transfer. 57 figs., 3 tabs

  12. Engineering, Manufacture and Preliminary Testing of the ITER Toroidal Field (TF) Magnet Helium Cold Circulator

    Science.gov (United States)

    Rista, P. E. C.; Shull, J.; Sargent, S.

    2015-12-01

    The ITER cryodistribution system provides the supercritical Helium (SHe) forced flow cooling to the magnet system using cold circulators. The cold circulators are located in each of five separate auxiliary cold boxes planned for use in the facility. Barber-Nichols Inc. has been awarded a contract from ITER-India for engineering, manufacture and testing of the Toroidal Field (TF) Magnet Helium Cold Circulator. The cold circulator will be extensively tested at Barber-Nichols’ facility prior to delivery for qualification testing at the Japan Atomic Energy Agency's (JAEA) test facility at Naka, Japan. The TF Cold Circulator integrates features and technical requirements which Barber-Nichols has utilized when supplying helium cold circulators worldwide over a period of 35 years. Features include a vacuum-jacketed hermetically sealed design with a very low helium leak rate, a heat shield for use with both nitrogen & helium cold sources, a broad operating range with a guaranteed isentropic efficiency over 70%, and impeller design features for high efficiency. The cold circulator will be designed to meet MTBM of 17,500 hours and MTBF of 36,000 hours. Vibration and speed monitoring are integrated into a compact package on the rotating assembly with operation and health monitoring in a multi-drop PROFIBUS communication environment using an electrical cabinet with critical features and full local and network PLC interface and control. For the testing in Japan and eventual installation in Europe, the cold circulator must be certified to the Japanese High Pressure Gas Safety Act (JHPGSA) and CE marked in compliance with the European Pressure Equipment Directive (PED) including Essential Safety Requirements (ESR). The test methodology utilized at Barber-Nichols’ facility and the resulting test data, validating the high efficiency of the TF Cold Circulator across a broad operating range, are important features of this paper.

  13. Engineering, Manufacture and Preliminary Testing of the ITER Toroidal Field (TF) Magnet Helium Cold Circulator

    International Nuclear Information System (INIS)

    C Rista, P E; Shull, J; Sargent, S

    2015-01-01

    The ITER cryodistribution system provides the supercritical Helium (SHe) forced flow cooling to the magnet system using cold circulators. The cold circulators are located in each of five separate auxiliary cold boxes planned for use in the facility. Barber-Nichols Inc. has been awarded a contract from ITER-India for engineering, manufacture and testing of the Toroidal Field (TF) Magnet Helium Cold Circulator. The cold circulator will be extensively tested at Barber-Nichols’ facility prior to delivery for qualification testing at the Japan Atomic Energy Agency's (JAEA) test facility at Naka, Japan. The TF Cold Circulator integrates features and technical requirements which Barber-Nichols has utilized when supplying helium cold circulators worldwide over a period of 35 years. Features include a vacuum-jacketed hermetically sealed design with a very low helium leak rate, a heat shield for use with both nitrogen and helium cold sources, a broad operating range with a guaranteed isentropic efficiency over 70%, and impeller design features for high efficiency. The cold circulator will be designed to meet MTBM of 17,500 hours and MTBF of 36,000 hours. Vibration and speed monitoring are integrated into a compact package on the rotating assembly with operation and health monitoring in a multi-drop PROFIBUS communication environment using an electrical cabinet with critical features and full local and network PLC interface and control. For the testing in Japan and eventual installation in Europe, the cold circulator must be certified to the Japanese High Pressure Gas Safety Act (JHPGSA) and CE marked in compliance with the European Pressure Equipment Directive (PED) including Essential Safety Requirements (ESR). The test methodology utilized at Barber-Nichols’ facility and the resulting test data, validating the high efficiency of the TF Cold Circulator across a broad operating range, are important features of this paper. (paper)

  14. Quantitative measurement of blood circulation in tests of rats using nuclear medical methods

    International Nuclear Information System (INIS)

    Ripke, R.

    1980-01-01

    The experiments show that is it is possible to quantitatively assess the blood circulation and, within limits, the germinative function of tests by measuring the impulses of an incorporated radionuclide (99-Tc-pertechnetate) using an uptake measuring instrument. This is a rapid and unbloody method to be adopted in human medicine. 'Acute tests' or pre-damaged tests can thus be exactly diagnosed. In the former case the circulation modification and in the latter the evaluation of the germinative function ability is of main interest. The most important measuring criterion is the 15-minute-uptake U; it represents the blood circulation in the tests measured. The germinative function ability is evaluated on the basis of the accumulation activity Nsub(max). (orig./MG) [de

  15. High-Reynolds Number Circulation Control Testing in the National Transonic Facility

    Science.gov (United States)

    Milholen, William E., II; Jones, Gregory S.; Chan, David T.; Goodliff, Scott L.

    2012-01-01

    A new capability to test active flow control concepts and propulsion simulations at high Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center is being developed. The first active flow control experiment was completed using the new FAST-MAC semi-span model to study Reynolds number scaling effects for several circulation control concepts. Testing was conducted over a wide range of Mach numbers, up to chord Reynolds numbers of 30 million. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. Preliminary analysis of the uncorrected lift data showed that the circulation control increased the low-speed maximum lift coefficient by 33%. At transonic speeds, the circulation control was capable of positively altering the shockwave pattern on the upper wing surface and reducing flow separation. Furthermore, application of the technique to only the outboard portion of the wing demonstrated the feasibility of a pneumatic based roll control capability.

  16. Preliminary test results and CFD analysis for Moderator Circulation Test (MCT)

    International Nuclear Information System (INIS)

    Kim, Hyoung Tae

    2015-01-01

    Highlights: • Korea Atomic Energy Research Institute (KAERI) installed the Moderator Circulation Test (MCT) facility. • Velocity profiles for iso-thermal conditions are measured by the Particle Image Velocimetry (PIV). • The PIV measurement results can capture the same flow pattern as that expected in the CANDU6 calandria tank under a momentum dominant flow condition. • More experimental works for the iso-thermal conditions as well as the heating conditions will be performed. • The CFX model will be validated against the PIV measurement data in the future. - Abstract: The moderator flow circulation patterns in CANDU6 reactor are complicated slow flows that significantly vary from buoyancy dominated to inertia dominated patterns. Accurate predictions of flow patterns are essential for accurate calculation of moderator temperature distributions and the related moderator subcooling. The code and its analytical models have therefore to be validated against experiments representative of reactor conditions. Korea Atomic Energy Research Institute (KAERI) installed the Moderator Circulation Test (MCT) facility to simulate the 3 dimensional moderator circulation phenomena in the calandria of CANDU6 reactor and develop the optical measurement system using the Particle Image Velocimetry (PIV). From the present work it is shown that the PIV measurement results can capture the same flow pattern as that expected in the CANDU6 calandria tank under a momentum dominant flow condition, where the inlet jets penetrate the top of the tank and produce a downward flow through the center of the tube columns toward the outlet nozzle, and the flow fields are in symmetric distributions. The measurements of the downward velocities are performed at different locations. The velocity is shown to be axially uniform. The velocity is rapidly decreased as the measurement location is far from the center of the tank, since the downward flow is dominant along the center of the tube columns

  17. Implementation of Moderator Circulation Test Temperature Measurement System

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yeong Muk; Hong, Seok Boong; Kim, Min Seok; Choi, Hwa Rim [KAERI, Daejeon (Korea, Republic of); Kim, Hyung Shin [Chungnam University, Daejeon (Korea, Republic of)

    2016-05-15

    Moderator Circulation Test(MCT) facility is 1/4 scale facility designed to reproduce the important characteristics of moderator circulation in a CANDU6 calandria under a range of operating conditions. MCT is an equipment with 380 acrylic pipes instead of the heater rods and a preliminary measurement of velocity field using PIV(Particle Image Velocimetry) is performed under the iso-thermal test conditions. The Korea Atomic Energy Research Institute (KAERI) started implementation of MCT Temperature Measurement System (TMS) using multiple infrared sensors. To control multiple infrared sensors, MCT TMS is implemented using National Instruments (NI) LabVIEW programming language. The MCT TMS is implemented to measure sensor data of multiple infrared sensors using the LabVIEW. The 35 sensor pipes of MCT TMS are divided into 2 ports to meet the minimum measurement time of 0.2 seconds. The software of MCT TMS is designed using collection function and processing function. The MCT TMS has the function of monitoring the states of multiple infrared sensors. The GUI screen of MCT TMS is composed of sensor pipe categories for user.

  18. Implementation of Moderator Circulation Test Temperature Measurement System

    International Nuclear Information System (INIS)

    Lim, Yeong Muk; Hong, Seok Boong; Kim, Min Seok; Choi, Hwa Rim; Kim, Hyung Shin

    2016-01-01

    Moderator Circulation Test(MCT) facility is 1/4 scale facility designed to reproduce the important characteristics of moderator circulation in a CANDU6 calandria under a range of operating conditions. MCT is an equipment with 380 acrylic pipes instead of the heater rods and a preliminary measurement of velocity field using PIV(Particle Image Velocimetry) is performed under the iso-thermal test conditions. The Korea Atomic Energy Research Institute (KAERI) started implementation of MCT Temperature Measurement System (TMS) using multiple infrared sensors. To control multiple infrared sensors, MCT TMS is implemented using National Instruments (NI) LabVIEW programming language. The MCT TMS is implemented to measure sensor data of multiple infrared sensors using the LabVIEW. The 35 sensor pipes of MCT TMS are divided into 2 ports to meet the minimum measurement time of 0.2 seconds. The software of MCT TMS is designed using collection function and processing function. The MCT TMS has the function of monitoring the states of multiple infrared sensors. The GUI screen of MCT TMS is composed of sensor pipe categories for user

  19. Second sector cool down

    CERN Multimedia

    2007-01-01

    At the beginning of July, cool-down is starting in the second LHC sector, sector 4-5. The cool down of sector 4-5 may occasionally generate mist at Point 4, like that produced last January (photo) during the cool-down of sector 7-8.Things are getting colder in the LHC. Sector 7-8 has been kept at 1.9 K for three weeks with excellent stability (see Bulletin No. 16-17 of 16 April 2007). The electrical tests in this sector have got opt to a successful start. At the beginning of July the cryogenic teams started to cool a second sector, sector 4-5. At Point 4 in Echenevex, where one of the LHC’s cryogenic plants is located, preparations for the first phase of the cool-down are underway. During this phase, the sector will first be cooled to 80 K (-193°C), the temperature of liquid nitrogen. As for the first sector, 1200 tonnes of liquid nitrogen will be used for the cool-down. In fact, the nitrogen circulates only at the surface in the ...

  20. Performance test results of helium gas circulator of mock-up test facility with full-scale reaction tube for HTTR hydrogen production system. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Akira; Kato, Michio; Hayashi, Koji [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment] [and others

    2003-03-01

    Hydrogen production system by steam reforming of methane will be connected to the High Temperature Engineering Test Reactor (HTTR) of the Japan Atomic Energy Research Institute (JAERI) against development of nuclear heat utilization system. To obtain design and safety database of the HTTR hydrogen production system, mock-up test facility with full-scale reaction was constructed in FY 2001 and hydrogen of 120m{sup 3}N{sub /}h was successfully produced in overall performance test. This report describes performance test results of a helium gas circulator in this facility. The circulator performance curves regarding to pressure-rise, input power and adiabatic thermal efficiency at standard revolution number were made based on the measured flow-rate, temperature and pressure data in overall performance test. The circulator performance prediction code was made based on these performance curves. The code can calculate revolution number, electric power and temperature-rise of the circulator using flow-rate, inlet temperature, inlet pressure and pressure-rise data. The verification of the code was carried out with the test data in FY 2002. Total pressure loss of the helium gas circulation loop was also evaluated. The circulator should be operated in conditions such as pressure from 2.7MPa to 4.0MPa and flow-rate from 250g/s to 400g/s and at maximum pressure-rise of 250 kPa in test operation. It was confirmed in above verification and evaluations that the circulator had performance to satisfy above conditions within operation limitation of the circulator such as maximum input-power of 150 kW and maximum revolution number of 12,000 rpm. (author)

  1. Status of the Moderator Circulation Tests at Korea Atomic Energy Research Institute

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyoungtae; Rhee, Bowook; Cha, Jaeeun; Choi, Hwalim [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The scaling analysis produced the design parameters of the MCT facility, and the manufacturing process is ongoing. The application of the optical fluid measurements to the MCT was preliminary tested by small scale test models. The various flow patterns arising from a complex interaction between the buoyancy and inertia forces can be simulated in the MCT facility. In addition, the experimental results will be compared with the CFD results. The Korea Atomic Energy Research Institute (KAERI) started experimental research on moderator circulation as one of its national R and D research programs in 2012. In the present paper, we introduce a scaling analysis performed to extend the scaling criteria suitable for reproducing thermal-hydraulic phenomena in a scaled-down CANDU-6 moderator tank, 1/40 and 1/8 small-scale model tests to identify the potential problems of the flow visualization and measurement in the main 1/4 scale MCT (Moderator Circulation Test) facility, a manufacturing status of the 1/4 scale moderator tank, and preliminary CFD analysis results to determine the flow, thermal, and heating boundary conditions with which the various flow patterns expected in the prototype CANDU-6 moderator tank can be reproduced in the experiment. KAERI has launched an experimental program for moderator circulation in a CANDU6 reactor.

  2. Cool-down flow-rate limits imposed by thermal stresses in LNG pipelines

    Science.gov (United States)

    Novak, J. K.; Edeskuty, F. J.; Bartlit, J. R.

    Warm cryogenic pipelines are usually cooled to operating temperature by a small, steady flow of the liquid cryogen. If this flow rate is too high or too low, undesirable stresses will be produced. Low flow-rate limits based on avoidance of stratified two-phase flow were calculated for pipelines cooled with liquid hydrogen or nitrogen. High flow-rate limits for stainless steel and aluminum pipelines cooled by liquid hydrogen or nitrogen were determined by calculating thermal stress in thick components vs flow rate and then selecting some reasonable stress limits. The present work extends these calculations to pipelines made of AISI 304 stainless steel, 6061 aluminum, or ASTM A420 9% nickel steel cooled by liquid methane or a typical natural gas. Results indicate that aluminum and 9% nickel steel components can tolerate very high cool-down flow rates, based on not exceeding the material yield strength.

  3. Capability of the RELAP5 code to simulate natural circulation behaviour in test facilities

    International Nuclear Information System (INIS)

    Mangal, Amit; Jain, Vikas; Nayak, A.K.

    2011-01-01

    In the present study, one of the extensively used best estimate code RELAP5 has been used for simulation of steady state, transient and stability behavior of natural circulation based experimental facilities, such as the High-Pressure Natural Circulation Loop (HPNCL) and the Parallel Channel Loop (PCL) installed and operating at BARC. The test data have been generated for a range of pressure, power and subcooling conditions. The computer code RELAP5/MOD3.2 was applied to predict the transient natural circulation characteristics under single-phase and two-phase conditions, thresholds of flow instability, amplitude and frequency of flow oscillations for different operating conditions of the loops. This paper presents the effect of nodalisation in prediction of natural circulation behavior in test facilities and a comparison of experimental data in with that of code predictions. The errors associated with the predictions are also characterized

  4. Thermal hydraulic analysis of aggressive secondary cooldown in a small break loss of coolant accident with a total loss of high pressure safety injection

    International Nuclear Information System (INIS)

    Han, Seok Jung; Lim, Ho Gon; Yang, Joon Eon

    2003-01-01

    To support the development of a Probabilistic Safety Assessment (PSA) model usable in Riskinformed Applications (RIA) for Korea Standard Nuclear power Plants (KSNP), we have performed a thermal hydraulic analysis of Aggressive Secondary Cooldown (ASC) in a 2-inch Small Break Loss Of Coolant Accident (SBLOCA) with a total loss of High Pressure Safety Injection (HPSI). The present study focuses on the estimation of the success criteria of ASC, and the enhanced understanding of the detailed thermal hydraulic behavior and phenomena. The results have shown that the Reactor Coolant System (RCS) pressure can be reduced to the Low Pressure Safety Injection (LPSI) operation conditions without core damage. It was also shown that more relaxed success criteria compared to those in the previous PSA models of KSNP could be used in the new PSA model. However, it was found that the results could be affected by various parameters related with ASC operation, i.e., reference temperature for the calculation of the cooldown rate and its control method

  5. Operational Experience from LCLS-II Cryomodule Testing

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Renzhuo [Fermilab; Hansen, Benjamin [Fermilab; White, Michael [Fermilab; Hurd, Joseph [Fermilab; Atassi, Omar Al [Fermilab; Bossert, Richard [Fermilab; Pei, Liujin [Fermilab; Klebaner, Arkadiy [Fermilab; Makara, Jerry [Fermilab; Theilacker, Jay [Fermilab; Kaluzny, Joshua [Fermilab; Wu, Genfa [Fermilab; Harms, Elvin [Fermilab

    2017-07-01

    This paper describes the initial operational experience gained from testing Linac Coherent Light Source II (LCLS-II) cryomodules at Fermilab’s Cryomodule Test Facility (CMTF). Strategies for a controlled slow cooldown to 100 K and a fast cooldown past the niobium superconducting transition temperature of 9.2 K will be described. The test stand for the cryomodules at CMTF is sloped to match gradient in the LCLS-II tunnel at Stanford Linear Accelerator (SLAC) laboratory, which adds an additional challenge to stable liquid level control. Control valve regulation, Superconducting Radio-Frequency (SRF) power compensation, and other methods of stabilizing liquid level and pressure in the cryomodule 2.0 K SRF cavity circuit will be discussed. Several different pumping configurations using cold compressors and warm vacuum pumps have been used on the cryomodule 2.0 K return line and the associated results will be described.

  6. Operational experience from LCLS-II cryomodule testing

    Science.gov (United States)

    Wang, R.; Hansen, B.; White, M.; Hurd, J.; Atassi, O. Al; Bossert, R.; Pei, L.; Klebaner, A.; Makara, J.; Theilacker, J.; Kaluzny, J.; Wu, G.; Harms, E.

    2017-12-01

    This paper describes the initial operational experience gained from testing Linac Coherent Light Source II (LCLS-II) cryomodules at Fermilab’s Cryomodule Test Facility (CMTF). Strategies for a controlled slow cooldown to 100 K and a fast cooldown past the niobium superconducting transition temperature of 9.2 K will be described. The test stand for the cryomodules at CMTF is sloped to match gradient in the LCLS-II tunnel at Stanford Linear Accelerator (SLAC) laboratory, which adds an additional challenge to stable liquid level control. Control valve regulation, Superconducting Radio-Frequency (SRF) power compensation, and other methods of stabilizing liquid level and pressure in the cryomodule 2.0 K SRF cavity circuit will be discussed. Several different pumping configurations using cold compressors and warm vacuum pumps have been used on the cryomodule 2.0 K return line and the associated results will be described.

  7. Cooling tests of the cryomodules at superconducting RF test facility (STF)

    International Nuclear Information System (INIS)

    Ohuchi, Norihito; Nakai, Hirotaka; Kojima, Yuuji

    2009-01-01

    KEK has been constructing the Superconducting RF Test Facility (STF) with aiming at a center of the ILC-R and D in Asia from 2005. In this project, KEK targets manufacturing and operational experiences of the RF cavity and cryomodule toward the ILC, and two cryomodules have been developed. These cryomodules are 6 meter long and have 4 nine-cell cavities in each cryostat. The designs of the cryomodules are based on the TESLA Type-3 (TTF-3) at DESY, however, each cryostat has the different type of cavities, TESLA-like type and Low-Loss type. The tests of the cryomodules were performed in two steps. In the first test, measurements of the cryogenic performances of these cryomodules were the main objective. One nine-cell cavity was assembled in each cryomodule and cool-down of the two cryomodules was performed, individually. In the second test, the four TESLA-like cavities were assembled in the cryomodule as complete integration. Cool-down of the cryomodule to 2 K was successfully completed, and thermal performances of the cryomodule and cooling capacity of the cryogenics system were studied in detail. In this paper, we will report the design of the cryomodules and the thermal performances at these cold tests. (author)

  8. Thermal results of the Japanese LCT coil's domestic test

    International Nuclear Information System (INIS)

    Tada, Eisuke; Hiyama, Tadao; Kato, Takashi; Takahashi, Osamu; Shimamoto, Susumu

    1984-01-01

    This paper describes thermal results obtained in the domestic test of the Japanese LCT coil which was constructed at the Japan Atomic Energy Research Institute (JAERI) in order to develop large superconducting coils for fusion in international collaboration proposed by the IEA. The domestic test was carried out from May 13 to June 17 in 1982 by using the test facility named as SETF (Superconducting Engineering Test Facility) which was composed of a 350-l/h helium cryogenic system, a vacuum system, a 30 KA-DC power supply and protection system, and a PDP-11/70 computer system. The cool-down characteristics, heat load, fast discharge characteristics, stability, and warm-up characteristics of the LCT coil were successfully measured in the test. The details of thermal test results acquired in the cool-down, heat load measurement, fast discharge, and warm-up, and the comparison between measurements and calculations are described in this paper. (author)

  9. Integral test facilities for validation of the performance of passive safety systems and natural circulation

    International Nuclear Information System (INIS)

    Choi, J. H.

    2010-10-01

    Passive safety systems are becoming an important component in advanced reactor designs. This has led to an international interest in examining natural circulation phenomena as this may play an important role in the operation of these passive safety systems. Understanding reactor system behaviour is a challenging process due to the complex interactions between components and associated phenomena. Properly scaled integral test facilities can be used to explore these complex interactions. In addition, system analysis computer codes can be used as predictive tools in understanding the complex reactor system behaviour. However, before the application of system analysis computer codes for reactor design, it is capability in making predictions needs to be validated against the experimental data from a properly scaled integral test facility. The IAEA has organized a coordinated research project (CRP) on natural circulation phenomena, modeling and reliability of passive systems that utilize natural circulation. This paper is a part of research results from this CRP and describes representative international integral test facilities that can be used for data collection for reactor types in which natural circulation may play an important role. Example experiments were described along with the analyses of these example cases in order to examine the ability of system codes to model the phenomena that are occurring in the test facilities. (Author)

  10. MES lead bismuth forced circulation loop and test results

    International Nuclear Information System (INIS)

    Ono, Mikinori; Mine, Tatsuya; Kitano, Teruaki; Kamata, Kin-ya

    2003-01-01

    Liquid lead-bismuth is a promising material as future reactor coolant or intensive neutron source material for accelerator driven system (ADS). Mitsui Engineering and Shipbuilding Co., Ltd. (MES) completed lead-bismuth coolant (LBC) forced circulation loop in May 2001 and acquired engineering data on economizer, electro magnetic pump, electro magnetic flow meter and so on. For quality control of LBC, oxygen sensor and filtering element are developing using some hydrogen and moisture mixed gases. Structural materials corrosion test for accelerator driver system (ADS) will start soon. And thermal hydraulic test for ADS will start in tree years. (author)

  11. Thermal analysis of lithium cooled natural circulation loop module for fuel rod testing in the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Eyler, L.L.; Kim, D.; Stover, R.L.; Beaver, T.R.

    1987-01-01

    Maximum heat removal capability of a lithium cooled natural circulation fuel rod test module design is determined. Loop geometry is optimized within limitations of design specifications for nominal operation temperatures, materials, and test module environment. Results provide test module operation limits and range of potential uncertainties. 3 refs., 12 figs

  12. Experimental and analytical studies on the passive residual heat removal system for the advanced integral type reactor

    International Nuclear Information System (INIS)

    Park, Hyun-Sik; Choi, Ki-Yong; Cho, Seok; Park, Choon-Kyung; Lee, Sung-Jae; Song, Chul-Hwa; Chung, Moon-Ki

    2004-01-01

    An experiment on the thermal-hydraulic characteristics of the passive residual heat removal system (PRHRS) for an advanced integral type reactor, SMART-P, has been performed, and its experimental results have been analyzed using a best-estimated system analysis code, MARS. The experiment is performed to investigate the performance of the passive residual heat removal system using the high temperature and high pressure thermal-hydraulic test facility (VISTA) which simulates the SMART-P. The natural circulation performance of the PRHRS, the heat transfer characteristics of the PRHRS heat exchangers and the emergency cooldown tank (ECT), and the thermal-hydraulic behavior of the primary loop are investigated. The experimental results show that the coolant flows steadily in the PRHRS loop and the heat transfer through the PRHRS heat exchanger in the emergency cooldown tank is sufficient enough to enable a natural circulation of the coolant. Analysis on a typical PRHRS test has been carried out using the MARS code. The overall trends of the calculated flow rate, pressure, temperature, and heat transfer rate in the PRHRS are similar to the experimental data. There is good agreement between the experimental data and the calculated one for the fluid temperature in the PRHRS steam line. However, the calculated fluid temperature in the PRHRS condensate line is higher, the calculated coolant outlet temperature is lower, and the heat transfer rate through the PRHRS heat exchanger is lower than the experimental data. It seems that it is due to an insufficient heat transfer modeling in the pool such as the emergency cooldown tank in the MARS calculation. (author)

  13. Fission product release measured during fuel damage tests at the Power Burst Facility

    International Nuclear Information System (INIS)

    Osetek, D.J.; Hartwell, J.K.; Vinjamuri, K.; Cronenberg, A.W.

    1985-01-01

    Results are presented of fission product release behavior observed during four severe fuel damage tests on bundles of UO 2 fuel rods. Transient temperatures up to fuel melting were obtained in the tests that included both rapid quench and slow cooldown, low and high (36 GWd/t) burnup fuel and the addition of Ag-In-Cd control rods. Release fractions of major fission product species and release rates of noble gas species are reported. Significant differences in release behavior are discussed between heatup and cooldown periods, low and high burnup fuel and long- and short-lived fission products. Explanations are offered for the probable reasons for the observed differences and recommendations for further studies are given

  14. Experiments on natural circulation of lead-bismuth in the TALL test facility

    International Nuclear Information System (INIS)

    Ma, W.M.; Karbojian, A.; Sehgal, B.R.

    2005-01-01

    Full text of publication follows: Lead-bismuth eutectic (LBE) is a potential candidate coolant for next generation liquid metal reactors due to its favorable properties such as being chemical inert and low melting point, in comparison with sodium and lead considered as coolants in FBRs. Having a high atomic number of LBE allows it be well suited as a spallation target for accelerator-driven systems (ADS) which have been proposed for the transmutation of nuclear waste. Due to its strong buoyancy, the LBE-cooled system should also have significant natural circulation, which is desirable for so-called Generation IV nuclear reactors, which like to employ passive safety and reliability. But so far, very little experimental data have been published on the natural circulation thermal-hydraulics of LBE-cooled systems. Motivated by the increasing interest in LBE-cooled fast reactors and ADS, a test facility called Thermal-hydraulic ADS Lead-bismuth Loop (TALL) was designed and constructed at KTH to investigate the thermalhydraulic characteristics of liquid LBE. The facility consists of a primary loop (LBE loop) and a secondary loop (oil loop). The LBE loop consists of sump tank, core tank, expansion tank, heat exchanger, EM pump, EM flowmeter, electric heaters and instrumentation. The heating of LBE in the core tank and its cooling in the heat exchanger allows natural convection flows as should occur in the prototypic vessel. Recently, our experimental study on natural circulation was performed on the TALL test facility. This paper will present the experimental results and analysis. The facility is of 6.8 m height which is comparable to the full height of the LBE heat exchange circuit in the ANSALDO ADS reactor vessel design, and has been scaled for prototypic (power/volume) ratio to represent the main components. Their LBE volume, flow velocity and heating rates correspond to one tube of the heat exchanger design chosen. During the experiments, the main adjustable

  15. Design of an additional heat sink based on natural circulation in pressurized water reactors

    International Nuclear Information System (INIS)

    Frischengruber, Kurt; Solanilla, Roberto; Fernandez, Ricardo; Blumenkrantz, Arnaldo; Castano, Jorge

    1989-01-01

    Residual heat removal through the steam generators in Nuclear Power Plant with pressurized water reactors (PWR) or pressurized heavy water reactors (PHWR in pressured vessel or pressured tube types) requires the maintenance of the steam generator inventory and the availability of and appropriate heat sink, which are based on the operability of the steam generators feedwater system. This paper describes the conceptual design of an assured heat removal system which includes only passive elements and is based on natural circulation. The system can supplement the original systems of the plant. The new system includes a condenser/boiler heat exchanger to condense the steam produced in the steam generator, transferring the heat to the water of an open pool at atmospheric pressure. The condensed steam flows back to the steam generators by natural circulation effects. The performance of an Atucha type PHWR nuclear power station with and without the proposed system is calculated in an emergency power case for the first 5000 seconds after the incident. The analysis shows that the proposed system offers the possibility to cool-down the plant to a low energy state during several hours and avoids the repeated actuation of the primary and secondary system safety valves. (Author) [es

  16. Thermal hydraulic analysis of aggressive secondary cooldown in small break loss of coolant accident with total loss of high pressure safety injection

    International Nuclear Information System (INIS)

    Han, S. J.; Im, H. K.; Yang, J. U.

    2003-01-01

    Recently, Probabilistic Safety Assessment (PSA) has being applied to various fields as a basic technique of Risk-Informed Applications (RIA). To use RIA, the present study focuses on the detailed thermal hydraulic analyses for major accident sequences and success criteria to support a development of PSA model for Korea Standard Nuclear Power plant (KSNP). The primary purpose of the present study is to evaluate the success criteria of Aggressive Secondary Cooldown (ASC) in Small Break Loss Of Coolant Accident (SBLOCA) with total loss of High Pressure Safety Injection (HPSI) and to enhance the understanding of related thermal hydraulic behavior and phenomena. The accident scenario was 2 inch coldleg break LOCA without HPSI, with 1/2 Low Pressure Safety Injection (LPSI), and performing ASC limited by 55.6 .deg. C /hr (100 .deg. F/hr) cooldown rate at 15 minute after reactor trip, which successively reaches the LPSI condition for about 1.5hr after starting ASC operation with the Peak Cladding Temperature (PCT) of the hottest rod below the core damage criteria 1204.4 .deg. C (2200 .deg. F). In the present study, more relaxed success criteria than the previous PSA for KSNP could be generated under an assumption that operator should maintain the adequate ASC operation. However, it is necessary to evaluate uncertainties arisen from the related parameters of the ASC operation

  17. Verification test for helium panel of cryopump for DIII-D advanced divertor

    International Nuclear Information System (INIS)

    Baxi, C.B.; Laughon, G.J.; Langhorn, A.R.; Schaubel, K.M.; Smith, J.P.; Gootgeld, A.M.; Campbell, G.L.; Menon, M.M.

    1992-01-01

    It is planned to install a cryogenic pump in the lower divertor portion of the DIII-D tokamak with a pumping speed of 50000 ell/s and an exhaust of 2670 Pa-ell/s (20 Torr-ell/s). A coaxial counter flow configuration has been chosen for the helium panel of this cryogenic pump. This paper evaluates cool-down rates and fluid stability of this configuration. A prototypic test was performed at General Atomics (GA) to increase confidence in the design. It was concluded that the helium panel cooldown rate agreed quite well with analytical prediction and was within acceptable limits. The design flow rate proved stable and two-phase pressure drop can be predicted quite accurately

  18. Thermal Behavior of the Coolant in the Emergency Cooldown Tank for an Integral Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hyung; Kim, Seok; Kim, Woo Shik; Jung, Seo Yoon; Kim, Young In [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The Residual Heat Removal System (PRHRS) is one of the passive safety systems which should be activated after an accident to remove the residual heat from the core and the sensible heat of the reactor coolant system (RCS) through the steam generators until the safe shutdown conditions are reached. In the previous study presented at the last KNS Autumn Meeting, transient behavior of the RCS temperature and the cooling performance of the PRHRS were investigated numerically by using newly developed in-house code based on MATLAB software. By using the program, the steady-state and transient (quasi-steady state) characteristics during the operation of the PRHRS had been reported. In this program, the temperature of the coolant in the Emergency Cooldown Tank (ECT) was assumed to be constant at saturated state and pool boiling heat transfer mechanism was applied through the entire time domain. The coolant of the ECT reached at a saturated state in early time. It was revealed that the assumption made in the previous study was reasonable.

  19. Assessment of CATHARE2 V1.5qR6 using the experimental data of BETHSY natural circulation tests

    International Nuclear Information System (INIS)

    Huang Yanping; Jia Dounan

    2003-01-01

    The assessment of CATHARE2 V1.5qR6 is carried out against the experimental data of BETHSY natural circulation test-4. 1a-TC. Results show that the experimental process under single phase natural circulation can be predicted very well by CATHARE2 V1.5qR6, the primary mass inventory at the transition points from single phase natural circulation to two-phase natural circulation and from two-phase natural circulation to reflux condensation mode are also predicted correctly. The predicted results for thermohydraulic parameters of two-phase natural circulation and reflux condensation mode are not so good. Generally speaking, the prediction capability of CATHARE2 V1.5 for strong and two-phase flow process should be improved further in future

  20. SpaceX Dragon Air Circulation System

    Science.gov (United States)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  1. Thermal and Mechanical Performance of the First MICE Coupling Coil and the Fermilab Solenoid Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, Roger [Fermilab; Carcagno, Ruben [Fermilab; Caspi, Shlomo [LBNL, Berkeley; DeMello, Allan [LBNL, Berkeley; Kokoska, Lidija [Fermilab; Orris, D. [Fermilab; Pan, Heng [LBNL, Berkeley; Sylvester, Cosmore [Fermilab; Tartaglia, Michael

    2014-11-06

    The first coupling coil for the Muon Ionization Cooling Experiment (MICE) has been tested in a conduction-cooled environment at the Solenoid Test Facility at Fermilab. An overview of the thermal and mechanical performance of the magnet and the test stand during cool-down and power testing of the magnet is presented.

  2. A Cryogenic Test Stand for Large Superconducting Solenoid Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, R. [Fermilab; Carcagno, R. [Fermilab; Nogiec, J. [Fermilab; Orris, D. [Fermilab; Soyars, W. [Fermilab; Sylvester, C. [Fermilab

    2013-01-01

    A new test stand for testing large superconducting solenoid magnets at the Fermilab Central Helium Liquifier (CHL) has been designed, and operated. This test stand has been used to test a coupling coil for the Muon Ionization Cooling Experiment (MICE), and future uses include solenoids for the Fermilab mu2e experiment. This paper describes the test stand design and operation including controlled cool-down and warm-up. Overviews of the process controls system and the quench management system are also included.

  3. Cryogenic testing of the TPC superconducting solenoid

    International Nuclear Information System (INIS)

    Green, M.A.; Smits, R.G.; Taylor, J.D.

    1983-06-01

    This report describes the results of a series of tests on the TPC superconducting magnet cryogenic system which occurred during the winter and spring of 1983. The tests occurred at interaction region 2 of the PEP colliding beam facility at the Stanford Linear Accelerator Center (SLAC). The TPC Magnet Cryogenic System which was tested includes the following major components: a remote helium compressor with a full flow liquid nitrogen purification station, 400 meters of high pressure supply and low pressure return lines; and locally a CTi Model 2800 refrigerator with two Sulzer gas bearing turbines, the TPC magnet control dewar, 70 meters of transfer lines, and the TPC thin superconducting solenoid magnet. In addition, there is a conditioner (liquid nitrogen heat exchangers and gas heaters) system for cooldown and warmup of the magnet. This report describes the local cryogenic system and describes the various steps in the cooldown and operation of the TPC magnet. The tests were successful in that they showed that the TPC magnet could be cooled down in 24 hours and the magnet could be operated on the refrigerator or a helium pump with adequate cooling margin. The tests identified problems with the cryogenic system and the 2800 refrigerator. Procedures for successful operation and quenching of the superconducting magnet were developed. 19 references

  4. Computational simulation of the natural circulation occurring in an experimental test section of a pool type research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Francisco R.T. do; Lima Junior, Carlos A.S.; Oliveira, Andre F.S. de; Affonso, Renato R.W.; Faccini, Jose L.H.; Moreira, Maria L., E-mail: rogerio.tdn@gmail.com, E-mail: souzalima_ca@ien.gov.br, E-mail: oliveira.afelipe@gmail.com, E-mail: raoniwa@yahoo.com.br, E-mail: faccini@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2015-07-01

    The present work presents a computational simulation of the natural circulation phenomenon developing in an experimental test section of a pool type research reactor. The test section has been designed using a reduced scale in height 1:4.7 in relation to a pool type 30 MW research reactor prototype. It comprises a cylindrical vessel, which is opened to atmosphere, and representing the reactor pool; a natural circulation pipe, a lower plenum, and a heater containing electrical resistors in rectangular plate format, which represents the fuel elements, with a chimney positioned on the top of the resistor assembly. In the computational simulation, it was used a commercial CFD software, without any turbulence model. Besides, in the presence of the natural circulation, a laminar flow has been assumed and the equations of the mass conservation, momentum and energy were solved by the finite element method. In addition, the results of the simulation are presented in terms of velocities and temperatures differences, respectively: at inlet and outlet of the heater and of the natural circulation pipe. (author)

  5. Computational simulation of the natural circulation occurring in an experimental test section of a pool type research reactor

    International Nuclear Information System (INIS)

    Nascimento, Francisco R.T. do; Lima Junior, Carlos A.S.; Oliveira, Andre F.S. de; Affonso, Renato R.W.; Faccini, Jose L.H.; Moreira, Maria L.

    2015-01-01

    The present work presents a computational simulation of the natural circulation phenomenon developing in an experimental test section of a pool type research reactor. The test section has been designed using a reduced scale in height 1:4.7 in relation to a pool type 30 MW research reactor prototype. It comprises a cylindrical vessel, which is opened to atmosphere, and representing the reactor pool; a natural circulation pipe, a lower plenum, and a heater containing electrical resistors in rectangular plate format, which represents the fuel elements, with a chimney positioned on the top of the resistor assembly. In the computational simulation, it was used a commercial CFD software, without any turbulence model. Besides, in the presence of the natural circulation, a laminar flow has been assumed and the equations of the mass conservation, momentum and energy were solved by the finite element method. In addition, the results of the simulation are presented in terms of velocities and temperatures differences, respectively: at inlet and outlet of the heater and of the natural circulation pipe. (author)

  6. Code Assessment of SPACE 2.19 using LSTF Steam Generator Tube Rupture Test

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Minhee; Kim, Seyun [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    The SPACE is a best estimated two-phase three-field thermal-hydraulic analysis code used to analyze the safety and performance of pressurized water reactors. As a result of the development, the 2.19 version of the code was released through the successive various verification and validation works. The present work is on the line of expanding the work by Kim et al. In this study, results produced by the SPACE 2.19 code were compared with the experimental data from JAERI's LSTF Test Run LSTF SB-SG-06 experiment simulating a Steam Generator Tube Rupture (SGTR) transient. In order to identify the predictability of SPACE 2.19, the LSTF steam generator tube rupture test was simulated. To evaluate the computed results, LSTF SB-SG-06 test data simulating the SGTR and the RELAP5/ MOD3.1 are used. The calculation results indicate that the SPACE 2.19 code predicted well the sequence of events and the major phenomena during the transient, such as the asymmetric loop behavior, reactor coolant system cooldown and heat transfer by natural circulation, the primary and secondary system depressurization by the pressurizer auxiliary spray and the steam dump using the intact loop steam generator relief valve.

  7. PIE on Safety-Tested AGR-1 Compact 5-1-1

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morris, Robert Noel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baldwin, Charles A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Fred C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gerczak, Tyler J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High-Temperature Gas-cooled Reactors (HTGRs). AGR-1 was the first in a series of TRISO fuel irradiation experiments initiated in 2006 under the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program; this work continues to be funded by the Department of Energy's Office of Nuclear Energy as part of the Advanced Reactor Technologies (ART) initiative. AGR-1 fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 and irradiated for three years in the Idaho National Laboratory (INL) Advanced Test Reactor (ATR) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. PIE is being performed at INL and ORNL to study how the fuel behaved during irradiation, and to examine fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing of irradiated AGR-1 Compact 5-1-1 in the ORNL Core Conduction Cooldown Test Facility (CCCTF) and post-safety testing PIE.

  8. Verification test for helium panel of cryopump for DIII-D advanced divertor

    International Nuclear Information System (INIS)

    Baxi, C.B.; Laughon, G.J.; Langhorn, A.R.; Schaubel, K.M.; Smith, J.P.; Gootgeld, A.M.; Campbell, G.L.; Menon, M.M.

    1991-10-01

    It is planned to install a cryogenic pump in the lower divertor portion of the D3-D tokamak with a pumping speed of 50000 ell/s and an exhaust of 2670 Pa-ell/s (20 Torr-ell s). A coaxial counter flow configuration has been chosen for the helium panel of this cryogenic pump. This paper evaluates cooldown rates and fluid stability of this configuration. A prototypic test was performed at General Atomics (GA) to increase confidence in the design. It was concluded that the helium panel cooldown rate agreed quite well with analytical prediction and was within acceptable limits. The design flow rate proved stable and two-phase pressure drop can be predicted quite accurately. 8 refs., 5 figs., 1 tab

  9. Condensation heat transfer coefficient of air-cooled condensing heat exchanger of emergency cooldown tank in long-term passive cooling system

    International Nuclear Information System (INIS)

    Huh, Seon Jeong; Lee, Hee Joon; Moon, Joo Hyung; Bae, Youngmin; Kim, Young In

    2017-01-01

    For the design purpose of air-cooled condensing heat exchanger of emergency cooldown tank, average condensation heat transfer coefficient inside a circular tube was reduced by a thermal sizing program using the experimental data of Kim et al. It was compared to the existing condensation heat transfer correlations. Moreover, a sensitivity analysis of both inside condensation and outside air natural convection correlations was performed. Although condensation heat transfer did not play a great role to design over 10 3 W/m 2 /K, the improved Shah's correlation gives the best prediction for the design. Consequently, air natural convection coefficient significantly affects the design of air-cooled condensing heat exchanger. (author)

  10. Design, Development and Testing of a Drillable Straddle Packer for Lost Circulation Control in Geothermal Drilling

    Energy Technology Data Exchange (ETDEWEB)

    Gabaldon, J.; Glowka, D.A.; Gronewald, P.; Knudsen, S.D.; Raymond, D.W.; Staller, G.E.; Westmoreland, J.J.; Whitlow, G.L.; Wise, J.L.; Wright, E.K.

    1999-04-01

    Lost Circulation is a widespread problem encountered when drilling geothermal wells, and often represents a substantial portion of the cost of drilling a well. The U.S. Department of Energy sponsors research and development work at Sandia National Laboratories in an effort to reduce these lost circulation expenditures. Sandia has developed a down hole tool that improves the effectiveness and reduces th cost of lost circulation cement treatment while drilling geothermal wells. This tool, the Drillable Straddle Packer, is a low-cost disposable device that is used to isolate the loss zone and emplace the cement treatment directly into the region of concern. This report documents the design and development of the Drillabe Straddle Packer, the laboratory and field test results, and the design package that is available to transfer this technology to industry users.

  11. MARS-LMR modeling for the post-test analysis of Phenix End-of-Life natural circulation

    International Nuclear Information System (INIS)

    Jeong, Hae Yong; Ha, Kwi Seok; Chang, Won Pyo; Lee, Kwi Lim

    2011-01-01

    For a successful design and analysis of Sodium cooled Fast Reactor (SFR), it is required to have a reliable and well-proven system analysis code. To achieve this purpose, KAERI is enhancing the modeling capability of MARS code by adding the SFR-specific models such as pressure drop model, heat transfer model and reactivity feedback model. This version of MARS-LMR will be used as a basic tool in the design and analysis of future SFR systems in Korea. Before wide application of MARS-LMR code, it is required to verify and validate the code models through analyses for appropriate experimental data or analytical results. The end-of-life test of Phenix reactor performed by the CEA provided a unique opportunity to have reliable test data which is very valuable in the validation and verification of a SFR system analysis code. The KAERI joined this international program of the analysis of Phenix end-of-life natural circulation test coordinated by the IAEA from 2008. The main test of natural circulation was completed in 2009. Before the test the KAERI performed the pre-test analysis based on the design condition provided by the CEA. Then, the blind post-test analysis was also performed based on the test conditions measured during the test before the CEA provide the final test results. Finally, the final post-test analysis was performed recently to predict the test results as accurate as possible. This paper introduces the modeling approach of the MARS-LMR used in the final post-test analysis and summarizes the major results of the analysis

  12. RCGVS design improvement and depressurization capability tests for Ulchin nuclear power plant units 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Kang Sik; Seong, Ho Je; Jeong, Won Sang; Seo, Jong Tae; Lee, Sang Keun [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of); Lim, Keun Hyo; Choi, Kwon Sik; Oh, Chul Sung [Korea Electric Power Cooperation, Taejon (Korea, Republic of)

    1999-12-31

    The Reactor Coolant Gas Vent System(RCGVS) design for Ulchin Nuclear Power Plant Units 3 and 4 (UCN 3 and 4) has been improved from the Yonggwang Nuclear Power Plant Units 3 and 4 (YGN 3 and 4) based on the evaluation results for depressurization capability tests performed at YGN 3 and 4. There has been a series of plant safety analyses for Natural Circulation Cooldown(NCC) event and thermo-dynamic analyses with RELAP5 code for the steam blowdown phenomena in order to optimize the orifice size of UCN 3 and 4 RCGVS. Based on these analyses results, the RCGVS orifics size for UCN 3 and 4 has been reduced to 9/32 inch from the 11/32 inch for YGN 3 and 4. The depressurization capability tests, which were performed at UCN 3 in order to verify the FSAR NCC analysis results, show that the RCGVS depressurization rates are being within the acceptable ranges. Therefore, it is concluded that the orificed flow path of UCN 3 and 4 RCGVS is adequately designed, and can provide the safety-grade depressurization capability required for a safe plant operation. 6 refs., 5 figs., 1 tab. (Author)

  13. RCGVS design improvement and depressurization capability tests for Ulchin nuclear power plant units 3 and 4

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Kang Sik; Seong, Ho Je; Jeong, Won Sang; Seo, Jong Tae; Lee, Sang Keun [Korea Power Engineering Company, Inc., Seoul (Korea, Republic of); Lim, Keun Hyo; Choi, Kwon Sik; Oh, Chul Sung [Korea Electric Power Cooperation, Taejon (Korea, Republic of)

    1998-12-31

    The Reactor Coolant Gas Vent System(RCGVS) design for Ulchin Nuclear Power Plant Units 3 and 4 (UCN 3 and 4) has been improved from the Yonggwang Nuclear Power Plant Units 3 and 4 (YGN 3 and 4) based on the evaluation results for depressurization capability tests performed at YGN 3 and 4. There has been a series of plant safety analyses for Natural Circulation Cooldown(NCC) event and thermo-dynamic analyses with RELAP5 code for the steam blowdown phenomena in order to optimize the orifice size of UCN 3 and 4 RCGVS. Based on these analyses results, the RCGVS orifics size for UCN 3 and 4 has been reduced to 9/32 inch from the 11/32 inch for YGN 3 and 4. The depressurization capability tests, which were performed at UCN 3 in order to verify the FSAR NCC analysis results, show that the RCGVS depressurization rates are being within the acceptable ranges. Therefore, it is concluded that the orificed flow path of UCN 3 and 4 RCGVS is adequately designed, and can provide the safety-grade depressurization capability required for a safe plant operation. 6 refs., 5 figs., 1 tab. (Author)

  14. Two-phase flow patterns recognition and parameters estimation through natural circulation test loop image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, R.N.; Libardi, R.M.P.; Masotti, P.H.F.; Sabundjian, G.; Andrade, D.A.; Umbehaun, P.E.; Torres, W.M.; Conti, T.N.; Macedo, L.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Nuclear Engineering Center], e-mail: rnavarro@ipen.br

    2009-07-01

    Visualization of natural circulation test loop cycles is used to study two-phase flow patterns associated with phase transients and static instabilities of flow. Experimental studies on natural circulation flow were originally related to accidents and transient simulations relative to nuclear reactor systems with light water refrigeration. In this regime, fluid circulation is mainly caused by a driving force ('thermal head') which arises from density differences due to temperature gradient. Natural circulation phenomenon has been important to provide residual heat removal in cases of 'loss of pump power' or plant shutdown in nuclear power plant accidents. The new generation of compact nuclear reactors includes natural circulation of their refrigerant fluid as a security mechanism in their projects. Two-phase flow patterns have been studied for many decades, and the related instabilities have been object of special attention recently. Experimental facility is an all glass-made cylindrical tubes loop which contains about twelve demineralized water liters, a heat source by an electrical resistor immersion heater controlled by a Variac, and a helicoidal heat exchanger working as cold source. Data is obtained through thermo-pairs distributed over the loop and CCD cameras. Artificial intelligence based algorithms are used to improve (bubble) border detection and patterns recognition, in order to estimate and characterize, phase transitions patterns and correlate them with the periodic static instability (chugging) cycle observed in this circuit. Most of initial results show good agreement with previous numerical studies in this same facility. (author)

  15. Two-phase flow patterns recognition and parameters estimation through natural circulation test loop image analysis

    International Nuclear Information System (INIS)

    Mesquita, R.N.; Libardi, R.M.P.; Masotti, P.H.F.; Sabundjian, G.; Andrade, D.A.; Umbehaun, P.E.; Torres, W.M.; Conti, T.N.; Macedo, L.A.

    2009-01-01

    Visualization of natural circulation test loop cycles is used to study two-phase flow patterns associated with phase transients and static instabilities of flow. Experimental studies on natural circulation flow were originally related to accidents and transient simulations relative to nuclear reactor systems with light water refrigeration. In this regime, fluid circulation is mainly caused by a driving force ('thermal head') which arises from density differences due to temperature gradient. Natural circulation phenomenon has been important to provide residual heat removal in cases of 'loss of pump power' or plant shutdown in nuclear power plant accidents. The new generation of compact nuclear reactors includes natural circulation of their refrigerant fluid as a security mechanism in their projects. Two-phase flow patterns have been studied for many decades, and the related instabilities have been object of special attention recently. Experimental facility is an all glass-made cylindrical tubes loop which contains about twelve demineralized water liters, a heat source by an electrical resistor immersion heater controlled by a Variac, and a helicoidal heat exchanger working as cold source. Data is obtained through thermo-pairs distributed over the loop and CCD cameras. Artificial intelligence based algorithms are used to improve (bubble) border detection and patterns recognition, in order to estimate and characterize, phase transitions patterns and correlate them with the periodic static instability (chugging) cycle observed in this circuit. Most of initial results show good agreement with previous numerical studies in this same facility. (author)

  16. Developmental assessment of RELAP5/MOD3 using the semiscale natural circulation tests

    International Nuclear Information System (INIS)

    Carlson, K.E.

    1990-01-01

    A code development effort creating RELAP5/MOD3 from RELAP5/MOD2 has been completed. Upon completion, a developmental assessment task was performed. One of the problems used for the developmental assessment was the Semiscale Natural Circulation Test. Calculated results from RELAP5/MOD3 are compared to measured data and previously calculated results from RELAP5/MOD2. 10 refs., 6 figs., 1 tab

  17. Experimental investigation on natural circulation and air-injection enhanced circulation in a simple loop

    International Nuclear Information System (INIS)

    Walter Ambrosini; Nicola Forgione; Francesco Oriolo; Filippo Pellacani; Mariano Tarantino; Claudio Struckmann

    2005-01-01

    Full text of publication follows: Natural circulation represents an interesting phenomenon because of both the complex aspects characterising it and for the widespread application in industry. On the other hand, injection of a gas into a rising branch of a loop represents a means to establish or to enhance a circulation flow, as it occurs in the so-called 'air-lift' loops. Both natural circulation and gas-injection enhanced circulation are presently considered for cooling Accelerator Driven System (ADS) reactors. These are subcritical reactors in which the fission reaction chain is maintained by the injection of neutrons obtained by spallation reactions in a target through a high energy proton beam generated in an external accelerator. The capability of such reactors to be used as incinerators of long lived fission products makes them particularly interesting in the light of the closure of the nuclear fuel cycle. Some of the fluids proposed as coolants for these reactors are liquid metals, with main interest for lead and lead-bismuth eutectic (LBE). Experimental activities are being performed in support to the design of the reactor prototype by different organisations. The university of Pisa, in addition to provide cooperation in these large scale activities performed with LBE has set up a specific experimental program aimed at studying the fundamental mechanisms involved in natural circulation and gas-injection enhanced circulation. The adopted experimental facility consists in a simple loop, having a rectangular lay-out (roughly, 4 m tall and 1 m wide), equipped with a 5 kW, 1 m tall heater, a 2 m long pipe-in-pipe heat exchanger, an air injection device and a separator. The fluid adopted in the tests performed up to now is water, though studies for evaluating the feasibility of the adoption of different fluids have been undertaken. Experimental data reported in previous publications concerning this research were related to a relatively high range of gas

  18. Adequacy of power-to-volume scaling philosophy to simulate natural circulation in Integral Test Facilities

    International Nuclear Information System (INIS)

    Nayak, A.K.; Vijayan, P.K.; Saha, D.; Venkat Raj, V.; Aritomi, Masanori

    1998-01-01

    Theoretical and experimental investigations were carried out to study the adequacy of power-to-volume scaling philosophy for the simulation of natural circulation and to establish the scaling philosophy applicable for the design of the Integral Test Facility (ITF-AHWR) for the Indian Advanced Heavy Water Reactor (AHWR). The results indicate that a reduction in the flow channel diameter of the scaled facility as required by the power-to-volume scaling philosophy may affect the simulation of natural circulation behaviour of the prototype plants. This is caused by the distortions due to the inability to simulate the frictional resistance of the scaled facility. Hence, it is recommended that the flow channel diameter of the scaled facility should be as close as possible to the prototype. This was verified by comparing the natural circulation behaviour of a prototype 220 MWe Indian PHWR and its scaled facility (FISBE-1) designed based on power-to-volume scaling philosophy. It is suggested from examinations using a mathematical model and a computer code that the FISBE-1 simulates the steady state and the general trend of transient natural circulation behaviour of the prototype reactor adequately. Finally the proposed scaling method was applied for the design of the ITF-AHWR. (author)

  19. Flow characteristic of Hijiori HDR reservoir from circulation test in 1991; Koon tantai Hijiori jikkenjo ni okeru senbu choryuso shiken (1991 nendo) kekka to ryudo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shiga, T; Hyodo, M; Shinohara, N; Takasugi, S [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan)

    1996-05-01

    This paper reports one example of flow analyses on a circulation test carried out in fiscal 1991 at the Hijiori hot dry rock experimental field (Yamagata Prefecture). A fluid circulation model was proposed to simulate an HDR circulation system for a shallow reservoir (at a depth of about 1800 m) demonstrated in the circulation test by using an electric circuit network (which expresses continuity impedance in resistance and fluid storage in capacitance). Storage capacity of the reservoir was estimated by deriving time constant of the system from data of time-based change in reservoir pressure associated with transition phenomena during the circulation test. The storage capacity was estimated separately by dividing change of storage in the reservoir by change in the reservoir pressure. To derive the storage in the reservoir, a method to calculate non-recovered flows in the circulation test was utilized. The results of evaluating the reservoir capacity in the shallow reservoir using the above two independent methods were found substantially consistent. 3 refs., 6 figs., 1 tab.

  20. Enhancements to the FAST-MAC Circulation Control Model and Recent High-Reynolds Number Testing in the National Transonic Facility

    Science.gov (United States)

    Milholen, William E., II; Jones, Gregory S.; Chan, David T.; Goodliff, Scott L.; Anders, Scott G.; Melton, Latunia P.; Carter, Melissa B.; Allan, Brian G.; Capone, Francis J.

    2013-01-01

    A second wind tunnel test of the FAST-MAC circulation control model was recently completed in the National Transonic Facility at the NASA Langley Research Center. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. The model was configured for low-speed high-lift testing with flap deflections of 30 and 60 degrees, along with the transonic cruise configuration with zero degree flap deflection. Testing was again conducted over a wide range of Mach numbers up to 0.88, and Reynolds numbers up to 30 million based on the mean chord. The first wind tunnel test had poor transonic force and moment data repeatability at mild cryogenic conditions due to inadequate thermal conditioning of the balance. The second test demonstrated that an improvement to the balance heating system significantly improved the transonic data repeatability, but also indicated further improvements are still needed. The low-speed highlift performance of the model was improved by testing various blowing slot heights, and the circulation control was again demonstrated to be effective in re-attaching the flow over the wing at off-design transonic conditions. A new tailored spanwise blowing technique was also demonstrated to be effective at transonic conditions with the benefit of reduced mass flow requirements.

  1. ATHLET validation using accident management experiments

    Energy Technology Data Exchange (ETDEWEB)

    Teschendorff, V.; Glaeser, H.; Steinhoff, F. [Gasellschaft fuer Anlagen - und Reaktorsicherheit (GSR) mbH, Garching (Germany)

    1995-09-01

    The computer code ATHLET is being developed as an advanced best-estimate code for the simulation of leaks and transients in PWRs and BWRs including beyond design basis accidents. The code has features that are of special interest for applications to small leaks and transients with accident management, e.g. initialisation by a steady-state calculation, full-range drift-flux model, and dynamic mixture level tracking. The General Control Simulation Module of ATHLET is a flexible tool for the simulation of the balance-of-plant and control systems including the various operator actions in the course of accident sequences with AM measures. The systematic validation of ATHLET is based on a well balanced set of integral and separate effect tests derived from the CSNI proposal emphasising, however, the German combined ECC injection system which was investigated in the UPTF, PKL and LOBI test facilities. PKL-III test B 2.1 simulates a cool-down procedure during an emergency power case with three steam generators isolated. Natural circulation under these conditions was investigated in detail in a pressure range of 4 to 2 MPa. The transient was calculated over 22000 s with complicated boundary conditions including manual control actions. The calculations demonstrations the capability to model the following processes successfully: (1) variation of the natural circulation caused by steam generator isolation, (2) vapour formation in the U-tubes of the isolated steam generators, (3) break-down of circulation in the loop containing the isolated steam generator following controlled cool-down of the secondary side, (4) accumulation of vapour in the pressure vessel dome. One conclusion with respect to the suitability of experiments simulating AM procedures for code validation purposes is that complete documentation of control actions during the experiment must be available. Special attention should be given to the documentation of operator actions in the course of the experiment.

  2. Hanford spent nuclear fuel cold vacuum drying proof of performance test procedure

    International Nuclear Information System (INIS)

    McCracken, K.J.

    1998-01-01

    This document provides the test procedure for cold testing of the first article skids for the Cold Vacuum Drying (CVD) process at the Facility. The primary objective of this testing is to confirm design choices and provide data for the initial start-up parameters for the process. The current scope of testing in this document includes design verification, drying cycle determination equipment performance testing of the CVD process and MCC components, heat up and cool-down cycle determination, and thermal model validation

  3. Proper Sizing of Circulation Pumps

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Nørgaard, Jørgen

    2007-01-01

    The paper describes the preliminary results from field tests of replacing various types of old pumps used for circulating water in heating systems in single- and double-family houses with new types of pumps. The tests were carried out in Denmark for the Danish Electricity Savings Trust, but the r......The paper describes the preliminary results from field tests of replacing various types of old pumps used for circulating water in heating systems in single- and double-family houses with new types of pumps. The tests were carried out in Denmark for the Danish Electricity Savings Trust...

  4. Tests of Parameterized Langmuir Circulation Mixing in the Oceans Surface Mixed Layer II

    Science.gov (United States)

    2017-08-11

    inertial oscillations in the ocean are governed by three-dimensional processes that are not accounted for in a one-dimensional simulation , and it was...Unlimited 52 Paul Martin (228) 688-5447 Recent large-eddy simulations (LES) of Langmuir circulation (LC) within the surface mixed layer (SML) of...used in the Navy Coastal Ocean Model (NCOM) and tested for (a) a simple wind-mixing case, (b) simulations of the upper ocean thermal structure at Ocean

  5. Molecular Tagging Velocimetry Development for In-situ Measurement in High-Temperature Test Facility

    Science.gov (United States)

    Andre, Matthieu A.; Bardet, Philippe M.; Burns, Ross A.; Danehy, Paul M.

    2015-01-01

    The High Temperature Test Facility, HTTF, at Oregon State University (OSU) is an integral-effect test facility designed to model the behavior of a Very High Temperature Gas Reactor (VHTR) during a Depressurized Conduction Cooldown (DCC) event. It also has the ability to conduct limited investigations into the progression of a Pressurized Conduction Cooldown (PCC) event in addition to phenomena occurring during normal operations. Both of these phenomena will be studied with in-situ velocity field measurements. Experimental measurements of velocity are critical to provide proper boundary conditions to validate CFD codes, as well as developing correlations for system level codes, such as RELAP5 (http://www4vip.inl.gov/relap5/). Such data will be the first acquired in the HTTF and will introduce a diagnostic with numerous other applications to the field of nuclear thermal hydraulics. A laser-based optical diagnostic under development at The George Washington University (GWU) is presented; the technique is demonstrated with velocity data obtained in ambient temperature air, and adaptation to high-pressure, high-temperature flow is discussed.

  6. The forced flow high field test facility SULTAN

    International Nuclear Information System (INIS)

    Horvath, I.; Vecsey, G.; Weymuth, P.

    1984-01-01

    The construction of the 8 Tesla, 1 m bore Test Facility SULTAN - I, a common action of ENEA (I-Frascati), ECN (NL-Petten) and SIN (CH-Villigen), is completed. Results on assembly, cooldown and the first operation of the whole system are presented. The SULTAN facility provides a wide range of capability of parameter variations (field, current, cooling) for the investigation of steady state performance and stability of technical superconductors unders nominal and limiting conditions

  7. An Experimental Study of Natural Circulation in a Loop with Parallel Flow Test Sections

    Energy Technology Data Exchange (ETDEWEB)

    Mathisen, R P; Eklind, O

    1965-10-15

    The dynamic behaviour of a natural circulation loop parallel round duct channels has been studied. The test sections were both electrically heated and the power distribution was uniform along the 4300 mm heated length of the 20 mm dia. channels. The inter channel interference and the threshold of flow instability were obtained by using a dynamically calibrated flowmeter in each channel. The pressure was 50 bars and the sub-cooling 6 deg C. The main parameters varied, were the flow restrictions in the one-phase and two-phase sections. The instability data were correlated to the resistance coefficients due to these restrictions. Theoretical calculations for parallel channels in natural circulation have been compared with the experimental results. For the conditions determined by the above mentioned magnitudes, the steady-state computations are in excellent agreement with experiment. The transients are also nearly similar, except for the resonance frequency which for the theoretical case is higher by an amount between 0.3 and 0.5 c.p.s.

  8. An Experimental Study of Natural Circulation in a Loop with Parallel Flow Test Sections

    International Nuclear Information System (INIS)

    Mathisen, R.P.; Eklind, O.

    1965-10-01

    The dynamic behaviour of a natural circulation loop parallel round duct channels has been studied. The test sections were both electrically heated and the power distribution was uniform along the 4300 mm heated length of the 20 mm dia. channels. The inter channel interference and the threshold of flow instability were obtained by using a dynamically calibrated flowmeter in each channel. The pressure was 50 bars and the sub-cooling 6 deg C. The main parameters varied, were the flow restrictions in the one-phase and two-phase sections. The instability data were correlated to the resistance coefficients due to these restrictions. Theoretical calculations for parallel channels in natural circulation have been compared with the experimental results. For the conditions determined by the above mentioned magnitudes, the steady-state computations are in excellent agreement with experiment. The transients are also nearly similar, except for the resonance frequency which for the theoretical case is higher by an amount between 0.3 and 0.5 c.p.s

  9. Cryogenic expansion joint for large superconducting magnet structures

    Science.gov (United States)

    Brown, Robert L.

    1978-01-01

    An expansion joint is provided that accommodates dimensional changes occurring during the cooldown and warm-up of large cryogenic devices such as superconducting magnet coils. Flattened tubes containing a refrigerant such as gaseous nitrogen (N.sub.2) are inserted into expansion spaces in the structure. The gaseous N.sub.2 is circulated under pressure and aids in the cooldown process while providing its primary function of accommodating differential thermal contraction and expansion in the structure. After lower temperatures are reached and the greater part of the contraction has occured, the N.sub.2 liquefies then solidifies to provide a completely rigid structure at the cryogenic operating temperatures of the device.

  10. Leak testing and repair of fusion devices

    International Nuclear Information System (INIS)

    Kozman, T.A.

    1983-01-01

    The leak testing, reporting and vacuum leak repair techniques of the MFTF yin-yang number one magnet system, the world's largest superconducting magnet system, are discussed. Based on this experience, techniques will be developed for testing and repairing leaks on the 42 MFTF-B magnets. The leak-hunting techniques for the yin-yang magnet systems were applied to two helium circuits (the coil bundle and guard vacuum; both require helium flow for magnet cooldown), their associated piping, liquid nitrogen radiation shields, and piping. Additionally, during MFTF-B operation there will be warm water plasma shields and piping that require leak checking

  11. Stability of the Horizontal Curvature of the LHC Cryodipoles During Cold Tests

    CERN Document Server

    Cano, E D Fernandez; García-Pérez, J; Jeanneret, Jean Bernard; Poncet, A; Seyvet, F; Tovar-Gonzalez, A; Wildner, E; IEEE Trans. Nucl. Sci.

    2006-01-01

    The LHC will be composed of 1232 horizontally curved, 15 meter long, superconducting dipole magnets cooled at 1.9 K. They are supported within their vacuum vessel by three Glass Fiber Reinforced Epoxy (GFRE) support posts. Each cryodipole is individually cold tested at CERN before its installation and interconnection in the LHC 27 km circumference tunnel. As the magnet geometry under cryogenic operation is extremely important for the LHC machine aperture, a new method has been developed at CERN in order to monitor the magnet curvature change between warm and cold states. It enabled us to conclude that there is no permanent horizontal curvature change of the LHC dipole magnet between warm and cold states, although a systematic horizontal transient deformation during cool-down was detected. This deformation generates loads in the dipole supporting system; further investigation permitted us to infer this behavior to the asymmetric thermal contraction of the rigid magnet thermal shield during cool-down. Controlli...

  12. The barrel EM is cold and full

    CERN Document Server

    Fournier, D

    After insertion of the two EM wheels in the cryostat in 2003, the cold vessel was finally closed in December (Omega seals and welds). This was then followed by the installation of the solenoid in February, and the closing of the warm vessel in March (see eNews of December 2003). During these few months the LAr cryogenic system was thoroughly tested, and its control system commissioned, each of the ~1000 control points at a time. Finally, in April the cool-down could start. Rather unusual for liquid argon detectors, the cool-down was made in its first part (above 140K) by circulating cold nitrogen gas (instead of liquid nitrogen) in the heat exchangers. The reason was to limit as much as possible temperature gradients in the calorimeter body. With the accordion structure, each of the EM wheel behaves as a single piece, which could be damaged if the supporting rings at its outside would contract faster than the active part inside. Also with improperly controlled gradients, the two wheels - 4 meters in diamete...

  13. Scoping analysis of in situ thermal-hydrological testing at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Nitao, J.J.

    1996-01-01

    In situ thermal tests, which are to be conducted in the Exploratory Studies Facility (ESF) in the unsaturated zone (UZ) at Yucca Mountain, are required to test coupled thermal-hydrological-geomechanical-geochemical (T-H-M-C) process models that support total system performance assessment. The ESF thermal tests must provide an understanding of coupled T-H-M-C processes that are relevant to expected repository conditions. Current planning includes the possibility of two large-scale tests: (1) the first ESF (drift-scale) thermal test, which will be conducted under an accelerated heatup and cooldown schedule, and (2) a second ESF (multi-drift) test, which will be larger-scale, longer-duration test, conducted under a less accelerated heatup and cooldown schedule. With the V-TOUGH (vectorized transport of unsaturated groundwater and heat) code, the authors modeled and evaluated a range of heater test sizes, heating rates, and heating durations under a range of plausible hydrological conditions to develop a test design that provides sufficient (and timely) information to determine the following: the dominant mode(s) of heat flow; the major T-H regime(s) and the T-H-M-C processes that determine the magnitude and direction of vapor and condensate flow; and the influence of heterogeneous conditions on the flow of heat, vapor, and condensate. A major purpose of the ESF thermal tests is to determine which major decay-heat-driven T-H flow regime(s) will govern the magnitude and direction of vapor and condensate flow in the UZ. Another major purpose of the thermal tests is to determine the degree of vapor diffusion enhancement

  14. Thermo-mechanical tests on W7-X current lead flanges

    International Nuclear Information System (INIS)

    Dhard, Chandra Prakash; Rummel, Thomas; Zacharias, Daniel; Bykov, Victor; Moennich, Thomas; Buscher, Klaus-Peter

    2013-01-01

    Highlights: • There are significant mechanical loads on the cryostat and radial flanges for W7-X current leads. • These are due to evacuation of W7-X cryostat, cool-down of cold mass, electro-magnetic forces and self weight of leads. • The actual mechanical loads were reduced to simplify the experimental set-up. • The tests were carried out on mock-up flanges test assembly at ambient temperature and at 77 K. • The thermo-mechanical tests on W7-X current lead flanges validate the design and joints of these flanges to the leads. -- Abstract: Fourteen pieces of high temperature superconducting current leads (CL) arranged in seven pairs, will be installed on the outer vessel of Wendelstein 7-X (W7-X) stellarator. In order to support the CL, it is provided with two glass fiber reinforce plastic (GFRP) flanges, namely, the lower cryostat flange (CF) remaining at room temperature and upper radial flange (RF) at about 5 K. Both the flanges i.e. CF and RF experience high mechanical loads with respect to the CL, due to the evacuation of W7-X cryostat, cool-down of cold mass including the CL, electro-magnetic forces due to current and plasma operations and self weight of CL. In order to check the integrity of these flanges for such mechanical loads, thermo-mechanical tests were carried out on these flanges at room temperatures and at liquid nitrogen (LN2) temperatures. The details of test set-up, results and modeling are described in the paper

  15. Operation and control strategies in pre-series testing of cold circulating pumps for ITER

    International Nuclear Information System (INIS)

    Bhattacharya, R.; Vaghela, H.; Sarkar, B.; Srinivas, M.; Choukekar, K.

    2013-01-01

    Cryo-distribution system of ITER is responsible for the distribution and control of forced-flow supercritical helium for cooling of the superconducting magnets and the cryo-pumps. The requirements of cold circulating pumps (CCP) for mass flow rates and performance are much higher than presently existing and commercially available one used at 4.0 K helium. Design up-scaling with pre-series test of CCP has been proposed including test infrastructure. Operation and control strategies for the test distribution box (TDB) of test infrastructure have been developed and analyzed using steady state and dynamic process simulation to cope with the functional requirements of CCPs. Off-normal scenario with CCP inlet pressure variation is an important concern, dynamic process responses during such scenario have been evaluated to verify the operability of CCP. The paper describes process simulation to cope with the functional requirements of CCPs along with evaluation of off-normal scenario to verify the operability of CCP. (author)

  16. Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

    2012-02-01

    The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

  17. The neutral beam test facility cryopumping operation: preliminary analysis and design of the cryogenic system

    International Nuclear Information System (INIS)

    Gravil, B.; Henry, D.; Cordier, J.J.; Hemsworth, R.; Van Houtte, D.

    2004-01-01

    The ITER neutral beam heating and current drive system is to be equipped with a cryosorption cryopump made up of 12 panels connected in parallel, refrigerated by 4.5 K 0.4 MPa supercritical helium. The pump is submitted to a non homogeneous flux of H 2 or D 2 molecules, and the absorbed flux varies from 3 Pa.m -3 .s -1 to 35 Pa.m -3 .s -1 . In the frame of the 'ITER first injector and test facility CSU-EFDA task' (TW3-THHN-IITF1), the ITER reference cryo-system and cryo-plant designs have been assessed and compared to optimised designs devoted to the Neutral Beam Test Facility (NBTF). The 4.5 K cryo-panel, which has a mass of about 1000 kg, must be periodically regenerated up to 90 K and occasionally to 470 K. The cool-down time after regeneration depends strongly on the refrigeration capacity. Fast regeneration and cool-down of the cryo-panels are not considered a priority for the test facility operation, and an analysis of the consequences of a limited cold power refrigerator on the cooling down time has been carried out and will be discussed. This paper presents a preliminary evaluation of the NBTF cryo-plant and the associated process flow diagram. (authors)

  18. Development of automatic control method for cryopump system for JT-60 neutral beam injector

    International Nuclear Information System (INIS)

    Shibanuma, Kiyoshi; Akino, Noboru; Dairaku, Masayuki; Ohuchi, Yutaka; Shibata, Takemasa

    1991-10-01

    A cryopump system for JT-60 neutral beam injector (NBI) is composed of 14 cryopumps with the largest total pumping speed of 20000 m 3 /s in the world, which are cooled by liquid helium through a long-distance liquid helium transferline of about 500 m from a helium refrigerator with the largest capacity of 3000 W at 3.6 K in Japan. An automatic control method of the cryopump system has been developed and tested. Features of the automatic control method are as follows. 1) Suppression control of the thermal imbalance in cooling-down of the 14 cryopumps. 2) Stable cooling control of the cryopump due to liquid helium supply to six cryopanels by natural circulation in steady-state mode. 3) Stable liquid helium supply control for the cryopumps from the liquid helium dewar in all operation modes of the cryopumps, considering the helium quantities held in respective components of the closed helium loop. 4) Stable control of the helium refrigerator for the fluctuation in thermal load from the cryopumps and the change of operation mode of the cryopumps. In the automatic operation of the cryopump system by the newly developed control method, the cryopump system including the refrigerator was stably operated for all operation modes of the cryopumps, so that the cool-down of 14 cryopumps was completed in 16 hours from the start of cool-down of the system and the cryopumps was stably cooled by natural circulation cooling in steady-state mode. (author)

  19. Fort St. Vrain circulator operating experience

    International Nuclear Information System (INIS)

    Brey, H.L.

    1988-01-01

    Fort St. Vrain, on the system of Public Service Company of Colorado, is the only high-temperature gas-cooled power reactor in the United States. Four helium circulators are utilized in this plant to transfer heat from the reactor to the steam generators. These unique machines have a single stage axial flow helium compressor driven by a single stage steam turbine. A single stage water driven (pelton wheel) turbine is the back-up drive utilizing either feed water, condensate, or fire water as the driving fluid. Developmental testing of the circulators was accomplished prior to installation into Fort St. Vrain. A combined machine operating history of approximately 250,000 hours has shown these machines to be of conservative design and proven mechanical integrity. However, many problems have been encountered in operating the complex auxiliaries which are necessary for successful circulator and plant operation. It has been 15 years since initial installation of the circulators occurred at Fort St. Vrain. During this time, a number of significant issues had to be resolved dealing specifically with machine performance. These events include cavitation damage of the pelton wheels during the initial plant hot functional testing, cracks in the water turbine buckets and cervic coupling, static shutdown seal bellows failure, and, most recently, degradation of components within the steam drive assembly. Unreliable operation particularly with the circulator auxiliaries has been a focus of attention by Public Service Company of Colorado. Actions to replace or significantly modify the existing circulators and their auxiliaries are currently awaiting decisions concerning the long-term future of the Fort St. Vrain plant. (author). 10 refs, 7 figs, 2 tabs

  20. Fort St. Vrain circulator operating experience

    Energy Technology Data Exchange (ETDEWEB)

    Brey, H. L.

    1988-08-15

    Fort St. Vrain, on the system of Public Service Company of Colorado, is the only high-temperature gas-cooled power reactor in the United States. Four helium circulators are utilized in this plant to transfer heat from the reactor to the steam generators. These unique machines have a single stage axial flow helium compressor driven by a single stage steam turbine. A single stage water driven (pelton wheel) turbine is the back-up drive utilizing either feed water, condensate, or fire water as the driving fluid. Developmental testing of the circulators was accomplished prior to installation into Fort St. Vrain. A combined machine operating history of approximately 250,000 hours has shown these machines to be of conservative design and proven mechanical integrity. However, many problems have been encountered in operating the complex auxiliaries which are necessary for successful circulator and plant operation. It has been 15 years since initial installation of the circulators occurred at Fort St. Vrain. During this time, a number of significant issues had to be resolved dealing specifically with machine performance. These events include cavitation damage of the pelton wheels during the initial plant hot functional testing, cracks in the water turbine buckets and cervic coupling, static shutdown seal bellows failure, and, most recently, degradation of components within the steam drive assembly. Unreliable operation particularly with the circulator auxiliaries has been a focus of attention by Public Service Company of Colorado. Actions to replace or significantly modify the existing circulators and their auxiliaries are currently awaiting decisions concerning the long-term future of the Fort St. Vrain plant. (author). 10 refs, 7 figs, 2 tabs.

  1. Scheduling the powering tests

    CERN Document Server

    Barbero-Soto, E; Casas-Lino, M P; Fernandez-Robles, C; Foraz, K; Pojer, M; Saban, R; Schmidt, R; Solfaroli-Camillocci, M; Vergara-Fernandez, A

    2008-01-01

    The Large Hadron Collider is now entering in its final phase before receiving beam, and the activities at CERN between 2007 and 2008 have shifted from installation work to the commissioning of the technical systems ("hardware commissioning"). Due to the unprecedented complexity of this machine, all the systems are or will be tested as far as possible before the cool-down starts. Systems are firstly tested individually before being globally tested together. The architecture of LHC, which is partitioned into eight cryogenically and electrically independent sectors, allows the commissioning on a sector by sector basis. When a sector reaches nominal cryogenic conditions, commissioning of the magnet powering system to nominal current for all magnets can be performed. This paper briefly describes the different activities to be performed during the powering tests of the superconducting magnet system and presents the scheduling issues raised by co-activities as well as the management of resources.

  2. An Oceanic General Circulation Model (OGCM) investigation of the Red Sea circulation: 2. Three-dimensional circulation in the Red Sea

    Science.gov (United States)

    Sofianos, Sarantis S.; Johns, William E.

    2003-03-01

    The three-dimensional circulation of the Red Sea is studied using a set of Miami Isopycnic Coordinate Ocean Model (MICOM) simulations. The model performance is tested against the few available observations in the basin and shows generally good agreement with the main observed features of the circulation. The main findings of this analysis include an intensification of the along-axis flow toward the coasts, with a transition from western intensified boundary flow in the south to eastern intensified flow in the north, and a series of strong seasonal or permanent eddy-like features. Model experiments conducted with different forcing fields (wind-stress forcing only, surface buoyancy forcing only, or both forcings combined) showed that the circulation produced by the buoyancy forcing is stronger overall and dominates the wind-driven part of the circulation. The main circulation pattern is related to the seasonal buoyancy flux (mostly due to the evaporation), which causes the density to increase northward in the basin and produces a northward surface pressure gradient associated with the downward sloping of the sea surface. The response of the eastern boundary to the associated mean cross-basin geostrophic current depends on the stratification and β-effect. In the northern part of the basin this results in an eastward intensification of the northward surface flow associated with the presence of Kelvin waves while in the south the traditional westward intensification due to Rossby waves takes place. The most prominent gyre circulation pattern occurs in the north where a permanent cyclonic gyre is present that is involved in the formation of Red Sea Outflow Water (RSOW). Beneath the surface boundary currents are similarly intensified southward undercurrents that carry the RSOW to the sill to flow out of the basin into the Indian Ocean.

  3. The First End-Cap Cryostat is being Tested at Cold

    CERN Multimedia

    Aleksa, M

    The integration of the LAr end-cap detector wheels - one electromagnetic calorimeter wheel and two hadronic calorimeter wheels - was finished at the end of 2003 (see Fig. 1). Fig. 1: ECC cryostat after the insertion of the second hadronic end-cap wheel (Dec. 2003), and before the insertion of the forward calorimeter. After the insertion of the forward calorimeter, in summer 2004, the cryostat was closed and welded. Cool-down of the End-Cap C Cryostat: On Nov. 26, 2004, the cool-down of the cryostat started in B180 using forced convection of gaseous N2 in the heat exchangers and He gas in the cryostat (see Fig. 2). The cool-down speed during this time was on average 0.2K/h, hence arriving at a temperature of approximately 120K after about 6 weeks. The speed of the cool down was limited by stringent requirements on the temperature gradients in the detector wheels, which were established from mechanical constraints. The most severe limit was the maximum allowed temperature difference of 6K for the el...

  4. Flow characteristics of natural circulation in a lead-bismuth eutectic loop

    Institute of Scientific and Technical Information of China (English)

    Chen-Chong Yue; Liu-Li Chen; Ke-Feng Lyu; Yang Li; Sheng Gao; Yue-Jing Liu; Qun-Ying Huang

    2017-01-01

    Lead and lead-alloys are proposed in future advanced nuclear system as coolant and spallation target.To test the natural circulation and gas-lift and obtain thermal-hydraulics data for computational fluid dynamics (CFD) and system code validation,a lead-bismuth eutectic rectangular loop,the KYLIN-Ⅱ Thermal Hydraulic natural circulation test loop,has been designed and constructed by the FDS team.In this paper,theoretical analysis on natural circulation thermal-hydraulic performance is described and the steady-state natural circulation experiment is performed.The results indicated that the natural circulation capability depends on the loop resistance and the temperature and center height differences between the hot and cold legs.The theoretical analysis results agree well with,while the CFD deviate from,the experimental results.

  5. Thermal-hydraulic behavior on break simulation of steam generator U-tube

    International Nuclear Information System (INIS)

    Seul, Kwang Won; Bang, Young Seok; Lee, Sukho; Kim, Hho Jung

    1995-01-01

    The thermal-hydraulic behavior depending on the break simulation in a steam generator U-tube was investigated and identified the code predictability on plant responses during SGTR accident. The calculated results were compared and assessed with LSTF SB-SG-06 test data. The RELAP5/MOD3.1 code well predicted the sequence of events and the significant phenomena, such as the asymmetric loop behavior, the RCS cooldown and heat transfer by the natural circulation, and system depressurization, even though there were some differences from the experimental data. The break flowrate was found to be sensitive to the break model and affected the system behavior

  6. Experiments on 18-8 stainless steels exposed to liquid lithium. I. 1,100-hour corrosion tests in lithium of 400, 500 and 6000C in natural circulation type testing apparatus

    International Nuclear Information System (INIS)

    Nihei, I.; Sumiya, I.; Fukaya, Y.; Yamazaki, Y.

    The Japan Atomic Energy Research Institute has planned and started to carry out a series of experiments concerning fusion reactor materials. This report gives the results of the first experiments. The first test materials selected were 18-8 stainless steels, and the experiments were designed to test their behavior when exposed to liquid lithium. Natural circulation type corrosion testing devices (pots) were used as the testing apparatus, and the tests were conducted with lithium temperatures up to 600 0 C

  7. Subcooler assembly for SSC single magnet test program

    International Nuclear Information System (INIS)

    Wu, K.C.; Brown, D.P.; Sondericker, J.H.; Farah, Y.; Zantopp, D.; Nicoletti, A.

    1991-01-01

    A subcooler assembly has been designed, constructed and installed in the MAGCOOL magnet test area at Brookhaven National Laboratory. Since July 1989, it has been used for testing SSC magnets. This subcooler assembly and cryogenic system are the first of its kind ever built. Today, with more than 5000 hours of operating time, the subcooler has proved to be a reliable unit with individual components meeting design expectations. The lowest temperatures achieved with one SSC dipole are 3.0 K at the suction of the cold vacuum pump and 3.2 K at the return of the magnet. The system performs well in both steady state operation and during magnet quench, subcooling, cooldown and warmup. 4 refs., 7 figs

  8. Performance evaluation approach for the supercritical helium cold circulators of ITER

    Energy Technology Data Exchange (ETDEWEB)

    Vaghela, H.; Sarkar, B.; Bhattacharya, R.; Kapoor, H. [ITER-India, Institute for Plasma Research, Near Indira Bridge, Bhat, Gandhinagar-382428 (India); Chalifour, M.; Chang, H.-S.; Serio, L. [ITER Organization, Route de Vinon sur Verdon - 13115 St Paul Lez Durance (France)

    2014-01-29

    The ITER project design foresees Supercritical Helium (SHe) forced flow cooling for the main cryogenic components, namely, the superconducting (SC) magnets and cryopumps (CP). Therefore, cold circulators have been selected to provide the required SHe mass flow rate to cope with specific operating conditions and technical requirements. Considering the availability impacts of such machines, it has been decided to perform evaluation tests of the cold circulators at operating conditions prior to the series production in order to minimize the project technical risks. A proposal has been conceptualized, evaluated and simulated to perform representative tests of the full scale SHe cold circulators. The objectives of the performance tests include the validation of normal operating condition, transient and off-design operating modes as well as the efficiency measurement. A suitable process and instrumentation diagram of the test valve box (TVB) has been developed to implement the tests at the required thermodynamic conditions. The conceptual engineering design of the TVB has been developed along with the required thermal analysis for the normal operating conditions to support the performance evaluation of the SHe cold circulator.

  9. Post-test analysis with RELAP5/MOD2 of ROSA-IV/LSTF natural circulation test ST-NC-02

    International Nuclear Information System (INIS)

    Chauliac, C.; Kukita, Yutaka; Kawaji, Masahiro; Nakamura, Hideo; Tasaka, Kanji.

    1988-10-01

    Results of post-test analysis for the ROSA-IV/LSTF natural circulation experiment ST-NC-02 are presented. The experiment consisted of many steady-state stages registered for different primary inventories. The calculation was done with RELAP5/MOD2 CYCLE 36.00. Discrepancies between the calculation and the experiment are observed: the core flow rate is overestimated at inventories between 80 % and 95 %; the inventory at which dryout occurs in the core is also much overestimated. The causes of these discrepancies are studies through sensitivity calculations and the following key parameters are pointed out: the interfacial friction and the form loss coefficients in the vessel riser, the SG U-tube multidimensional behaviour, the interfacial friction in the SG inlet plenum and in the pipe located underneath. (author)

  10. The Invertibility, Explicit Determinants, and Inverses of Circulant and Left Circulant and g-Circulant Matrices Involving Any Continuous Fibonacci and Lucas Numbers

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    Full Text Available Circulant matrices play an important role in solving delay differential equations. In this paper, circulant type matrices including the circulant and left circulant and g-circulant matrices with any continuous Fibonacci and Lucas numbers are considered. Firstly, the invertibility of the circulant matrix is discussed and the explicit determinant and the inverse matrices by constructing the transformation matrices are presented. Furthermore, the invertibility of the left circulant and g-circulant matrices is also studied. We obtain the explicit determinants and the inverse matrices of the left circulant and g-circulant matrices by utilizing the relationship between left circulant, g-circulant matrices and circulant matrix, respectively.

  11. Thermal control for the MFTF magnet

    International Nuclear Information System (INIS)

    Vansant, J.H.; Russ, R.M.

    1980-01-01

    The external dimensions of the Yin-Yang magnet of the Mirror Fusion Test Facility will be 7.8 by 8.5 by 8.5 m, and it will weigh approximately 300 tons. More than 8000 liters of circulating liquid helium will be required to maintain the nearly 50 km of superconductor at below 5.0 K while the latter carries almost 6000 A in a magnetic field of up to nearly 7.7 T. This paper describes several features of the thermal control plans for the Yin-Yang: (1) the proposed cooldown and warmup schedules for the MFTF and the procedure for regenerating external cooling surfaces (2) the design of an external quench resistor based on an estimate of the superconductor's maximum temperature and (3) the use of a computer model of liquid helium circulation in choosing pipe size for the liquid helium lines

  12. Energy saver A-sector power test results

    International Nuclear Information System (INIS)

    Martin, P.; Flora, R.; Tool, G.; Wolff, D.

    1982-01-01

    The superconducting magnets and associated cryogenic components in A-sector represent the initial phase of installation of the Fermilab superconducting accelerator, designed to accelerate proton beams to energies of 1 TeV. Installation of the magnets, comprising one-eighth of the ring, was completed in December, 1981. Cooldown and power tests took place in the first half of 1982, concurrent with main ring use for 400 GeV high energy physics. The tests described in this paper involved 151 cryogenic components in the tunnel: 94 dipoles, 24 quadrupoles, 25 spool pieces, 3 feed cans, 4 turn-around boxes and 1 bypass. Refrigeration was supplied by three satellite refrigerators, the Central Helium Liquefier, and two compressor buildings. The magnets were powered by a single power supply

  13. A Cryogenic Test Set-Up for the Qualification of Pre-Series Test Cells for the LHC Cryogenic Distribution Line

    CERN Document Server

    Livran, J; Parente, C; Riddone, G; Rybkowski, D; Veillet, N

    2000-01-01

    Three pre-series Test Cells of the LHC Cryogenic Distribution Line (QRL) [1], manufactured by three European industrial companies, will be tested in the year 2000 to qualify the design chosen and verify the thermal and mechanical performances. A dedicated test stand (170 m x 13 m) has been built for extensive testing and performance assessment of the pre-series units in parallel. They will be fed with saturated liquid helium at 4.2 K supplied by a mobile helium dewar. In addition, LN2 cooled helium will be used for cool-down and thermal shielding. For each of the three pre-series units, a set of end boxes has been designed and manufactured at CERN. This paper presents the layout of the cryogenic system for the pre-series units, the calorimetric methods as well as the results of the thermal calculation of the end box test.

  14. Pretest analysis document for Semiscale Test S-FS-1

    International Nuclear Information System (INIS)

    Chen, T.H.

    1985-02-01

    This report documents the pretest analysis calculation completed with the RELAP5/MOD2/CY21 code for Semiscale Test S-FS-1. The test will simulate the double-ended offset shear of the main steam line at the exit of the broken loop steam generator (downstream of the flow restrictor) and the subsequent plant recovery. The recovery portion of the test consists of a plant stabilization phase and a plant cooldown phase. The recovery procedures involve normal charging/letdown operation, pressurizer heater operation, secondary steam and feed of the unaffected steam generator, and pressurizer auxiliary spray. The test will be terminated after the unaffected steam generator and pressurizer pressures and liquid levels are stable, and the average priamry fluid temperature is stable at about 480 K (405 0 F) for at least 10 minutes

  15. Operating experience with gas-bearing circulators in a high-pressure helium loop

    International Nuclear Information System (INIS)

    Sanders, J.P.; Gat, U.; Young, H.C.

    1988-01-01

    A high-pressure engineering test loop has been designed and constructed at the Oak Ridge National Laboratory for circulating helium through a test chamber at temperatures to 1,000 deg. C. The purpose of this loop is to determine the thermal and structural performance of proposed components for the primary loops of gas-cooled nuclear reactors. Three gas-bearing circulators, mounted in series, provide a maximum volumetric flow of 0.47 m 3 /s and a maximum head of 78 kJ/kg at operating pressures from 0.1 to 10.7 MPa. Control of gaseous impurities in the circulating gas was the significant operating requirement that dictated the choice of a circulator that is lubricated by the circulating gas. The motor for each circulator is contained within the pressure boundary, and it is cooled by circulating the gas in the motor cavity over water-cooled coils. Each motor is rated at 200 kW at a speed of 23,500 rpm. The circulators have been operated in the loop for more than 5,000 h. The flow of the gas in the loop is controlled by varying the speed of the circulators through the use of individual 250-kVA, solid state power supplies that can be continuously varied in frequency from 50 to 400 Hz. To prevent excessive wear on the gas bearings during startup, the circulator motor accelerates the rotor to 3,000 rpm in less than one second. During operation, no problems associated with the gas bearings, per se, were encountered; however, related problems pointed to design considerations that should be included in future applications of circulators of this type. The primary test that has been conducted in this loop required sustained operation for several weeks without interruption. After a number of unscheduled interruptions, the operating goals were attained. During part of this period, the loop was operated with only two circulators installed in the pressure vessels with a guard installed in the third vessel to protect the closure flange from the gas temperatures. Unattended

  16. Bed system performance in helium circulation mode

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yean Jin; Jung, Kwang Jin; Ahn, Do Hee; Chung, Hong Suk [UST, Daejeon (Korea, Republic of); Kang, Hee Suk [KAERI, Daejeon (Korea, Republic of); Yun, Sei Hun [NFRI, Deajeon (Korea, Republic of)

    2016-05-15

    As a part of the International Thermonuclear Experimental Reactor (ITER) Project, We have conducted an experiment for storing hydrogen to depleted uranium and zirconium cobalt. The helium blanket effect has been observed in experiments using metal hydrides. The collapse of the hydrogen isotopes are accompanied by the decay heat and helium-3. Helium-3 dramatically reduces the hydrogen isotope storage capacity by surrounding the metal. This phenomenon is called a helium blanket effect. In addition the authors are working on the recovery and removal techniques of helium-3. In this paper, we discuss the equipment used to test the helium blanket effect and the results of a helium circulation experiment. The helium-3 produced surrounds the storage material surface and thus disturbs the reaction of the storage material and the hydrogen isotope. Even if the amount of helium-3 is small, the storage capacity of the SDS bed significantly drops. This phenomenon is the helium blanket effect. To resolve this phenomenon, a circulating loop was introduced. Using a circulating system, helium can be separated from the storage material. We made a helium loop that includes a ZrCo bed. Then using a metal bellows pump, we tested the helium circulation.

  17. FFTF primary system transition to natural circulation from low reactor power

    International Nuclear Information System (INIS)

    Bouchey, G.D.; Additon, S.L.; Nutt, W.T.

    1980-01-01

    Plans for reactor and primary loop natural circulation testing in the Fast Flux Test Facility (FFTF) are summarized. Detailed pretest planning with an emphasis on understanding the implications of process noise and model uncertainties for model verification and test acceptance are discussed for a transition to natural circulation in the reactor core and primary heat transport loops from initial conditions of 5% of rated reactor power and 75% of full flow

  18. Reverse primary-side flow in steam generators during natural circulation cooling

    International Nuclear Information System (INIS)

    Stumpf, H.; Motley, F.; Schultz, R.; Chapman, J.; Kukita, Y.

    1987-01-01

    A TRAC model of the Large Scale Test Facility with a 3-tube steam-generator model was used to analyze natural-circulation test ST-NC-02. For the steady state at 100% primary mass inventory, TRAC was in excellent agreement with the natural-circulation flow rate, the temperature distribution in the steam-generator tubes, and the temperature drop from the hot leg to the steam-generator inlet plenum. TRAC also predicted reverse flow in the long tubes. At reduced primary mass inventories, TRAC predicted the three natural-circulation flow regimes: single phase, two phase, and reflux condensation. TRAC did not predict the cyclic fill-and-dump phenomenon seen briefly in the test. TRAC overpredicted the two-phase natural-circulation flow rate. Since the core is well cooled at this time, the result is conservative. An important result of the analysis is that TRAC was able to predict the core dryout and heatup at approximately the same primary mass inventory as in the test. 4 refs., 8 figs., 2 tabs

  19. Experimental studies and computational benchmark on heavy liquid metal natural circulation in a full height-scale test loop for small modular reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yong-Hoon, E-mail: chaotics@snu.ac.kr [Department of Energy Systems Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Cho, Jaehyun [Korea Atomic Energy Research Institute, 111 Daedeok-daero, 989 Beon-gil, Yuseong-gu, Daejeon 34057 (Korea, Republic of); Lee, Jueun; Ju, Heejae; Sohn, Sungjune; Kim, Yeji; Noh, Hyunyub; Hwang, Il Soon [Department of Energy Systems Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of)

    2017-05-15

    Highlights: • Experimental studies on natural circulation for lead-bismuth eutectic were conducted. • Adiabatic wall boundaries conditions were established by compensating heat loss. • Computational benchmark with a system thermal-hydraulics code was performed. • Numerical simulation and experiment showed good agreement in mass flow rate. • An empirical relation was formulated for mass flow rate with experimental data. - Abstract: In order to test the enhanced safety of small lead-cooled fast reactors, lead-bismuth eutectic (LBE) natural circulation characteristics have been studied. We present results of experiments with LBE non-isothermal natural circulation in a full-height scale test loop, HELIOS (heavy eutectic liquid metal loop for integral test of operability and safety of PEACER), and the validation of a system thermal-hydraulics code. The experimental studies on LBE were conducted under steady state as a function of core power conditions from 9.8 kW to 33.6 kW. Local surface heaters on the main loop were activated and finely tuned by trial-and-error approach to make adiabatic wall boundary conditions. A thermal-hydraulic system code MARS-LBE was validated by using the well-defined benchmark data. It was found that the predictions were mostly in good agreement with the experimental data in terms of mass flow rate and temperature difference that were both within 7%, respectively. With experiment results, an empirical relation predicting mass flow rate at a non-isothermal, adiabatic condition in HELIOS was derived.

  20. Themes on circulation in the third world.

    Science.gov (United States)

    Chapman, M; Prothero, R M

    1983-01-01

    "This article focuses upon circulation, or reciprocal flows of people, with specific reference to Third World societies." Aspects considered include attempts to standardize terminology and to formulate typologies of population movement; the development of explanatory models of circulation and modernization, social networks, family welfare, and capitalism; and "the transfer of methods and concepts to societies and populations different from those from which they initially evolved and in which they were first tested." excerpt

  1. Natural circulation in simulated LMFBR fuel assemblies

    International Nuclear Information System (INIS)

    Levin, A.E.; Carbajo, J.J.; Lloyd, D.B.; Montgomery, B.H.; Rose, S.D.; Wantland, J.L.

    1985-01-01

    Natural circulation experiments have been performed using simulated liquid metal fast breeder reactor fuel assemblies in the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility, an engineering-scale sodium loop. Objective of these tests has been to provide experimental data under conditions that might be encountered during a partial or total loss of the shutdown heat removal system (SHRS) in a reactor. The experiments have included single- and two-phase tests under quasi-steady and transient conditions, at both nominal and non-nominal system conditions. Results from these test indicate that the potential for reactor damage during degraded SHRS operation is extremely slight, and that natural circulation can be a major contributor to safe operation of the system in both single- and two-phase flow during such operation

  2. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    KAUST Repository

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Lawrence J.; Bower, Amy S.; Kö hl, Armin; Gopalakrishnan, Ganesh; Rivas, David

    2014-01-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented

  3. Natural-circulation-cooling characteristics during PWR accident simulations

    International Nuclear Information System (INIS)

    Adams, J.P.; McCreery, G.E.; Berta, V.T.

    1983-01-01

    A description of natural circulation cooling characteristics is presented. Data were obtained from several pressurized water reactor accident simulations in the Loss-of-Fluid Test (LOFT) pressurized water reactor (PWR). The reliability of natural circulation cooling, its cooling effectiveness, and the effect of changing system conditions are described. Quantitative comparison of flow rates and time constants with theory for both single- and two-phase fluid conditions were made. It is concluded that natural circulation cooling can be relied on in plant recovery procedures in the absence of forced convection whenever the steam generator heat sink is available

  4. Using a Gravity Model to Predict Circulation in a Public Library System.

    Science.gov (United States)

    Ottensmann, John R.

    1995-01-01

    Describes the development of a gravity model based upon principles of spatial interaction to predict the circulation of libraries in the Indianapolis-Marion County Public Library (Indiana). The model effectively predicted past circulation figures and was tested by predicting future library circulation, particularly for a new branch library.…

  5. Survey of natural-circulation cooling in U.S. pressurized water reactors

    International Nuclear Information System (INIS)

    Boyack, B.E.

    1985-01-01

    Literature describing natural circulation analyses, experiments, and plant operation have been obtained from the Nuclear Regulatory Commission, reactor vendors, utility-sponsored research groups, utilities, national laboratories, and foreign sources. These have been reviewed and significant results and conclusions identified. Three modes of natural-circulation cooling are covered: single phase, two-phase, and reflux condensation. Single-phase natural circulation is amply verified by plant operational data, test data from scaled experimental facilities, and analysis with assessed computer codes. Ample evidence also exists that two-phase natural circulation can successfully cool pressurized water reactors. This mode occurs during certain events such as small-break loss-of-coolant accidents. The data base for reflux condensation is primarily from tests in scaled experimental facilities. There are no plant operational data and only limited assessment of thermal-hydraulic systems codes has been performed. Further work is needed before this mode of natural circulation can be confidently used

  6. FFTF operating experience with sodium natural circulation: slides included

    Energy Technology Data Exchange (ETDEWEB)

    Burke, T.M.; Additon, S.L.; Beaver, T.R.; Midgett, J.C.

    1981-01-01

    The Fast Flux Test Facility (FFTF) has been designed for passive, back-up, safety grade decay heat removal utilizing natural circulation of the sodium coolant. This paper discusses the process by which operator preparation for this emergency operating mode has been assured, in paralled with the design verification during the FFTF startup and acceptance testing program. Over the course of the test program, additional insights were gained through the testing program, through on-going plant analyses and through general safety evaluations performed throughout the nuclear industry. These insights led to development of improved operator training material for control of decay heat removal during both forced and natural circulation as well as improvements in the related plant operating procedures.

  7. FFTF operating experience with sodium natural circulation: slides included

    International Nuclear Information System (INIS)

    Burke, T.M.; Additon, S.L.; Beaver, T.R.; Midgett, J.C.

    1981-01-01

    The Fast Flux Test Facility (FFTF) has been designed for passive, back-up, safety grade decay heat removal utilizing natural circulation of the sodium coolant. This paper discusses the process by which operator preparation for this emergency operating mode has been assured, in paralled with the design verification during the FFTF startup and acceptance testing program. Over the course of the test program, additional insights were gained through the testing program, through on-going plant analyses and through general safety evaluations performed throughout the nuclear industry. These insights led to development of improved operator training material for control of decay heat removal during both forced and natural circulation as well as improvements in the related plant operating procedures

  8. Calculation analysis on steady state natural circulation characteristics

    International Nuclear Information System (INIS)

    Wang Fei; Nie Changhua; Huang Yanping

    2005-01-01

    The calculation results of single-phase steady state natural circulation characteristics by using Retran02 code have been presented, good agreement is achieved between the verified calculation result and the experimental data which were conducted at a test facility. Based on the calculation model, some sensibility analyses were made and much deeper understanding for single-phase steady state natural circulation characteristics was obtained. (author)

  9. Sequential combined test, second trimester maternal serum markers, and circulating fetal cells to select women for invasive prenatal diagnosis.

    Directory of Open Access Journals (Sweden)

    Paolo Guanciali Franchi

    Full Text Available From January 1st 2013 to August 31st 2016, 24408 pregnant women received the first trimester Combined test and contingently offered second trimester maternal serum screening to identify those women who would most benefit from invasive prenatal diagnosis (IPD. The screening was based on first trimester cut-offs of ≥1:30 (IPD indicated, 1:31 to 1:899 (second trimester screening indicated and ≤1:900 (no further action, and a second trimester cut-off of ≥1:250. From January 2014, analysis of fetal cells from peripheral maternal blood was also offered to women with positive screening results. For fetal Down syndrome, the overall detection rate was 96.8% for a false-positive rate of 2.8% resulting in an odds of being affected given a positive result (OAPR of 1:11, equivalent to a positive predictive value (PPV of 8.1%. Additional chromosome abnormalities were also identified resulting in an OAPR for any chromosome abnormality of 1:6.6 (PPV 11.9%. For a sub-set of cases with positive contingent test results, FISH analysis of circulating fetal cells in maternal circulation identified 7 abnormal and 39 as normal cases with 100% specificity and 100% sensitivity. We conclude that contingent screening using conventional Combined and second trimester screening tests is effective but can potentially be considerably enhanced through the addition of fetal cell analysis.

  10. Operational tests of the BNL 24.8 kW, 3.80K helium refrigerator

    International Nuclear Information System (INIS)

    Brown, D.P.; Farah, Y.; Gibbs, R.J.; Schlafke, A.P.; Sondericker, J.H.

    1986-01-01

    The BNL 24.8 kW refrigeration system is completely installed and major portions of the acceptance tests have been completed. So far, the equipment tested has performed at or above design levels. The room temperature helium compressor station has been completely tested and accepted. The two-stage oil injected screw compressor system exhibited an isothermal efficiency of 57% while delivering a helium flow in excess of 4400 g/s. Data on the performance of the make-up gas cryogenic purifier is also given. The refrigerator turbomachinery, 13 expanders and three cold compressors, has been tested at room temperature for mechanical integrity and control stability. The first cooldown to operating temperature will be attempted in late August, 1985

  11. Thermomechanical modeling of the Spent Fuel Test-Climax

    Energy Technology Data Exchange (ETDEWEB)

    Butkovich, T.R.; Patrick, W.C.

    1986-02-01

    The Spent Fuel Test-Climax (SFT-C) was conducted to evaluate the feasibility of retrievable deep geologic storage of commercially generated spent nuclear-reactor fuel assemblies. One of the primary aspects of the test was to measure the thermomechanical response of the rock mass to the extensive heating of a large volume of rock. Instrumentation was emplaced to measure stress changes, relative motion of the rock mass, and tunnel closures during three years of heating from thermally decaying heat sources, followed by a six-month cooldown period. The calculations reported here were performed using the best available input parameters, thermal and mechanical properties, and power levels which were directly measured or inferred from measurements made during the test. This report documents the results of these calculations and compares the results with selected measurements made during heating and cooling of the SFT-C.

  12. Thermomechanical modeling of the Spent Fuel Test-Climax

    International Nuclear Information System (INIS)

    Butkovich, T.R.; Patrick, W.C.

    1986-02-01

    The Spent Fuel Test-Climax (SFT-C) was conducted to evaluate the feasibility of retrievable deep geologic storage of commercially generated spent nuclear-reactor fuel assemblies. One of the primary aspects of the test was to measure the thermomechanical response of the rock mass to the extensive heating of a large volume of rock. Instrumentation was emplaced to measure stress changes, relative motion of the rock mass, and tunnel closures during three years of heating from thermally decaying heat sources, followed by a six-month cooldown period. The calculations reported here were performed using the best available input parameters, thermal and mechanical properties, and power levels which were directly measured or inferred from measurements made during the test. This report documents the results of these calculations and compares the results with selected measurements made during heating and cooling of the SFT-C

  13. Cryogenic tests of the first two LHC quadrupole prototypes

    International Nuclear Information System (INIS)

    Genevey, P.; Deregel, J.; Perot, J.; Rifflet, J.M.; Vedrine, P.; Cortella, J.; Le Coroller, A.

    1994-01-01

    Two LHC (Large Hadron Collider) twin aperture quadrupole prototypes were constructed at CEA Saclay (a CERN-CEA collaboration agreement). Their main characteristics are: 3.05 m length, 56 mm coil aperture, 180 mm between the two apertures, 252 T/m nominal gradient at 15060 A. They have been tested and measured in the 1.8 K Saclay test facility in an horizontal cryostat. The magnets are instrumented in order to investigate their behaviour during cool-down, stand-by, powering and current ramping, quenching and warming-up. A summary of the cryogenic, mechanical, pressure and electrical measurements is presented. The quench protection heaters are efficient down to 3000 A. Losses during ramping up and down are reported. (from authors) 5 fig., 11 ref

  14. Field estimates of groundwater circulation depths in two mountainous watersheds in the western U.S. and the effect of deep circulation on solute concentrations in streamflow

    Science.gov (United States)

    Frisbee, Marty D.; Tolley, Douglas G.; Wilson, John L.

    2017-04-01

    Estimates of groundwater circulation depths based on field data are lacking. These data are critical to inform and refine hydrogeologic models of mountainous watersheds, and to quantify depth and time dependencies of weathering processes in watersheds. Here we test two competing hypotheses on the role of geology and geologic setting in deep groundwater circulation and the role of deep groundwater in the geochemical evolution of streams and springs. We test these hypotheses in two mountainous watersheds that have distinctly different geologic settings (one crystalline, metamorphic bedrock and the other volcanic bedrock). Estimated circulation depths for springs in both watersheds range from 0.6 to 1.6 km and may be as great as 2.5 km. These estimated groundwater circulation depths are much deeper than commonly modeled depths suggesting that we may be forcing groundwater flow paths too shallow in models. In addition, the spatial relationships of groundwater circulation depths are different between the two watersheds. Groundwater circulation depths in the crystalline bedrock watershed increase with decreasing elevation indicative of topography-driven groundwater flow. This relationship is not present in the volcanic bedrock watershed suggesting that both the source of fracturing (tectonic versus volcanic) and increased primary porosity in the volcanic bedrock play a role in deep groundwater circulation. The results from the crystalline bedrock watershed also indicate that relatively deep groundwater circulation can occur at local scales in headwater drainages less than 9.0 km2 and at larger fractions than commonly perceived. Deep groundwater is a primary control on streamflow processes and solute concentrations in both watersheds.

  15. Supercritical water natural circulation flow stability experiment research

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dongliang; Zhou, Tao; Li, Bing [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; North China Electric Power Univ., Beijing (China). Inst. of Nuclear Thermalhydraulic Safety and Standardization; North China Electric Power Univ., Beijing (China). Beijing Key Lab. of Passive Safety Technology for Nuclear Energy; Huang, Yanping [Nuclear Power Institute of China, Chengdu (China). Science and Technology on Reactor System Design Technology Lab.

    2017-12-15

    The Thermal hydraulic characteristics of supercritical water natural circulation plays an important role in the safety of the Generation-IV supercritical water-cooled reactors. Hence it is crucial to conduct the natural circulation heat transfer experiment of supercritical water. The heat transfer characteristics have been studied under different system pressures in the natural circulation systems. Results show that the fluctuations in the subcritical flow rate (for natural circulation) is relatively small, as compared to the supercritical flow rate. By increasing the heating power, it is observed that the amplitude (and time period) of the fluctuation tends to become larger for the natural circulation of supercritical water. This tends to show the presence of flow instability in the supercritical water. It is possible to observe the flow instability phenomenon when the system pressure is suddenly reduced from the supercritical pressure state to the subcritical state. At the test outlet section, the temperature is prone to increase suddenly, whereas the blocking effect may be observed in the inlet section of the experiment.

  16. Thermal hydraulic analysis of aggressive secondary cooldown in a small break loss of coolant accident with a total loss of high pressure safety injection

    International Nuclear Information System (INIS)

    Han, Seok Jung; Lim, Ho Gon; Yang, Joon Eon

    2003-03-01

    Recently, Probabilistic Safety Assessment (PSA) has being applied to various fields as a basic technique of Risk-Informed Applications (RIA). The present study focuses on detailed thermal hydraulic analyses for major accident sequences and success criteria to support a development of PSA model using RIA for Korea Standard Nuclear Power plant (KSNP). The primary purpose of the present study in this year is to evaluate the success cri-teria of Aggressive Secondary Cooldown (ASC) in a Small Size Loss Of Coolant Accident (SBLOCA) without HPSI and to enhance the understanding of related thermal hydraulic behavior and phenomena. An effort was made to evaluate the system success criteria and a mission time for the recovery action by an operator to prevent the core damage for that accident scenario. The accident scenario for KSNP was a 2 inch coldleg break LOCA with a total loss of High Pressure Safety Injection (HPSI) and 1/2 Low Pressure Safety Injection (LPSI) available and perform-ing ASC limited by 55.6 .deg. C/hr (100 .deg. F/hr) cooldown rate at 15 minute after reactor trip. It successively reached the LPSI condition for about 1.5hr after starting the ASC operation with the Peak Cladding Temperature (PCT) of the hottest rod below the core damage criteria of 1204.4 .deg. C (2200 .deg. F). Sensitivity studies were performed for (1) cool-ant average temperature parameters, (2) ASC operation control method, (3) operation start time, (4) 1 inch break size. The present analysis identified thermal hydraulic phenomena and parameters affecting on the behavior, which consist of coolant break flow and inventory, parameters governing secondary heat removal, ASC operation control method, and its reference temperature parameters. In the present study, more relaxed success criteria than the previous PSA for KSNP could be generated under an assumption that an operator should maintain the ade-quate ASC operation. However, it is necessary to evaluate the uncertainties arisen from the

  17. A cryogenic test stand for full length SSC magnets with superfluid capability

    International Nuclear Information System (INIS)

    Peterson, T.J.; Mazur, P.O.

    1989-02-01

    The Fermilab Magnet Test Facility performs testing of the full scale SSC magnets on test stands capable of simulating the cryogenic environment of the SSC main ring. One of these test stands, Stand 5, also has the ability to operate the magnet under test at temperatures from 1.8K to 4.5K with either supercritical helium or subcooled liquid, providing at least 25 Watts of refrigeration. At least 50 g/s flow is available from 2.3K to 4.5K, whereas superfluid operation occurs with zero flow. Cooldown time from 4.5K to 1.8K is 1.5 hours. A maximum current capability of 10,000 amps is provided, as is instrumentation to monitor and control the cryogenic conditions. This paper describes the cryogenic design of this test stand. 8 refs., 6 figs

  18. Flow characteristics of Hijiori HDR reservoir form circulation test in 1995; Koon tantai Hijiori jikkenjo ni okeru shinbu choryuso yobi junkan shiken (1995 nendo) kekka to ryudo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, N; Hyodo, M; Shinohara, N; Takasugi, S [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan)

    1996-05-01

    This paper reports the result of a preliminary circulation test conducted in fiscal 1995 on a deep reservoir (at a depth of about 2200 m) in the Hijiori hot dry rock experimental field. One water injection well and two production wells were drilled to constitute a circulation loop, to which the circulation test was performed to investigate the flow characteristics thereof. The result revealed the following matters: total amount of injected water of 51500 m{sup 3} resulted in a total fluid recovery rate of about 40%; as a result of well stimulation given twice during the initial stage of the water injection, the continuity impedance in the vicinity of the injection well decreased largely (however, the continuity improvement upon the second attempt was considerably inferior to that from the first attempt); and increase in the water injection amount does not necessarily lead to increase in the production amount. The paper describes additionally that it is extremely difficult to interpret non-linearity between the injection and production amounts by using a model prepared previously with a main objective to analyze the Hijiori HDR circulation system. 1 ref., 9 figs., 1 tab.

  19. Experimental study of natural circulation circuit

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley F.; Su, Jian, E-mail: wlemos@lasme.coppe.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao de Engenharia (LASME/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Simulacao e Metodos Numericos; Faccini, Jose L.H., E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (LTE/IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2011-07-01

    This work presents an experimental study about fluid flows behavior in natural circulation, under conditions of single-phase flow. The experiment was performed through experimental thermal-hydraulic circuit built at IEN. This test equipment has performance similar to passive system of residual heat removal present in Advanced Pressurized Water Reactors (APWR). This experimental study aims to observing and analyzing the natural circulation phenomenon, using this experimental circuit that was dimensioned and built based on concepts of similarity and scale. This philosophy allows the analysis of natural circulation behavior in single-phase flow conditions proportionally to the functioning real conditions of a nuclear reactor. The experiment was performed through procedures to initialization of hydraulic feeding of primary and secondary circuits and electrical energizing of resistors installed inside heater. Power controller has availability to adjust values of electrical power to feeding resistors, in order to portray several conditions of energy decay of nuclear reactor in a steady state. Data acquisition system allows the measurement and monitoring of the evolution of the temperature in various points through thermocouples installed in strategic points along hydraulic circuit. The behavior of the natural circulation phenomenon was monitored by graphical interface on computer screen, showing the temperature evolutions of measuring points and results stored in digital spreadsheets. The results stored in digital spreadsheets allowed the getting of data to graphic construction and discussion about natural circulation phenomenon. Finally, the calculus of Reynolds number allowed the establishment for a correlation of friction in function of geometric scales of length, heights and cross section of tubing, considering a natural circulation flow throughout in the region of hot leg. (author)

  20. Experimental study of natural circulation circuit

    International Nuclear Information System (INIS)

    Lemos, Wanderley F.; Su, Jian; Faccini, Jose L.H.

    2011-01-01

    This work presents an experimental study about fluid flows behavior in natural circulation, under conditions of single-phase flow. The experiment was performed through experimental thermal-hydraulic circuit built at IEN. This test equipment has performance similar to passive system of residual heat removal present in Advanced Pressurized Water Reactors (APWR). This experimental study aims to observing and analyzing the natural circulation phenomenon, using this experimental circuit that was dimensioned and built based on concepts of similarity and scale. This philosophy allows the analysis of natural circulation behavior in single-phase flow conditions proportionally to the functioning real conditions of a nuclear reactor. The experiment was performed through procedures to initialization of hydraulic feeding of primary and secondary circuits and electrical energizing of resistors installed inside heater. Power controller has availability to adjust values of electrical power to feeding resistors, in order to portray several conditions of energy decay of nuclear reactor in a steady state. Data acquisition system allows the measurement and monitoring of the evolution of the temperature in various points through thermocouples installed in strategic points along hydraulic circuit. The behavior of the natural circulation phenomenon was monitored by graphical interface on computer screen, showing the temperature evolutions of measuring points and results stored in digital spreadsheets. The results stored in digital spreadsheets allowed the getting of data to graphic construction and discussion about natural circulation phenomenon. Finally, the calculus of Reynolds number allowed the establishment for a correlation of friction in function of geometric scales of length, heights and cross section of tubing, considering a natural circulation flow throughout in the region of hot leg. (author)

  1. Operational tests of the BNL 24.8 kW, 3.8 K helium refrigerator

    International Nuclear Information System (INIS)

    Brown, D.P.; Farah, Y.; Gibbs, R.J.

    1985-01-01

    The BNL 24.8 kW refrigeration system is completely installed and major portions of the acceptance tests have been completed. So far, the equipment tested has performed at or above design levels. The room temperature helium compressor station has been completely tested and accepted. The two-stage oil injected screw compressor system exhibited an isothermal efficiency of 57% while delivering a helium flow in excess of 4400 g/s. Data on the performance of the make-up gas cryogenic purifier is given. The refrigerator turbomachinery, 13 expanders and three cold compressors, has been tested at room temperature for mechanical integrity and control stability. The first cooldown to operating temperature will be attempted in late August, 1985. 2 refs., 5 figs

  2. First circulating beam in the AA

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    On 3 July 1980, two years after project authorization, beam circulated for the first time in the AA. It was a 3.56 GeV/c proton test beam. We see an expecting crowd, minutes before the happy event. The persons are too numerous to name them all, but the 3 most prominent ones are at the centre (left to right): Roy Billinge (Joint AA Project Leader, with his hand on the control box), Eifionydd Jones (white shirt), Simon van der Meer (spiritus rector and Joint AA Project Leader). The first antiprotons were injected, made to circulate and cooled soon after, on 14 July 1980.

  3. Measurement techniques for AGR circulators in a full-density rig

    International Nuclear Information System (INIS)

    Watson, I.; Wilson, R.R.

    1977-01-01

    Safety and reliability are the most important factors of a nuclear power plant. This applies in particular to the circulators used to drive the high-density CO 2 around the reactor core and boiler circuits. Under operating conditions, very high sound-pressure levels are generated which could excite components and cause possible fatigue failures. Failures of this type were experienced on the original axial blowers for the Hinkley 'A' Magnox reactor and, following this, a stringent test plan was specified for the AGR circulators. The present paper describes some of the techniques used to measure strain, sound and vibration on circulators in a full-density rig. This rig reproduces the actual reactor working conditions of 300 0 C and 4.1 MN m -2 with gas velocities up to 120 m s -1 . Under these conditions sound-pressure levels of up to 172 dB are generated. This programme of circulator testing has continued for the past 10 years. During this period many obstacles and difficulties were encountered. Some of these problems, together with the solutions found, are discussed. (author)

  4. The importance of circulating tumor products as „liquid biopsies” in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Alina Miscoci

    2018-04-01

    Full Text Available Liquid biopsies represent an array of plasma analysis tests that are studied to evaluate and identify circulating tumor products, especially circulating tumor cells (CTCs and circulating tumor DNA (ctDNA. Examining such biomarkers in the plasma of colorectal cancer patients has attracted attention due to its clinical significance in the treatment of malignant diseases. Given that tissue samples are sometimes challenging to procure or unsatisfactory for genomic profiling from patients with colorectal cancer, trustworthy biomarkers are mandatory for guiding treatment, monitoring therapeutic response, and detecting recurrence. This review considers the relevance of flowing tumor products like circulating tumor cells (CTCs, circulating tumor DNA (ctDNA, circulating messenger RNA (mRNA, circulating micro RNA (miRNA, circulating exosomes, and tumor educated platelets (TEPs for patients with colorectal cancer.

  5. Circulating Tumor Cells Versus Circulating Tumor DNA in Colorectal Cancer: Pros and Cons.

    Science.gov (United States)

    Tan, Carlyn Rose C; Zhou, Lanlan; El-Deiry, Wafik S

    2016-06-01

    Circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) are emerging noninvasive multifunctional biomarkers in liquid biopsy allowing for early diagnosis, accurate prognosis, therapeutic target selection, spatiotemporal monitoring of metastasis, as well as monitoring response and resistance to treatment. CTCs and ctDNA are released from different tumor types at different stages and contribute complementary information for clinical decision. Although big strides have been taken in technology development for detection, isolation and characterization of CTCs and sensitive and specific detection of ctDNA, CTC-, and ctDNA-based liquid biopsies may not be widely adopted for routine cancer patient care until the suitability, accuracy, and reliability of these tests are validated and more standardized protocols are corroborated in large, independent, prospectively designed trials. This review covers CTC- and ctDNA-related technologies and their application in colorectal cancer. The promise of CTC-and ctDNA-based liquid biopsies is envisioned.

  6. Main circulator design features for HTR 100, HTR 500 and space heating plants

    International Nuclear Information System (INIS)

    Engel, J.; Glass, D.

    1988-01-01

    design is underway. This circulator will be tested in a test stand designed for test runs of all different circulator sizes. (author). 8 figs

  7. Microwave circulator design

    CERN Document Server

    Linkhart, Douglas K

    2014-01-01

    Circulator design has advanced significantly since the first edition of this book was published 25 years ago. The objective of this second edition is to present theory, information, and design procedures that will enable microwave engineers and technicians to design and build circulators successfully. This resource contains a discussion of the various units used in the circulator design computations, as well as covers the theory of operation. This book presents numerous applications, giving microwave engineers new ideas about how to solve problems using circulators. Design examples are provided, which demonstrate how to apply the information to real-world design tasks.

  8. Natural circulation under variable primary mass inventories at BETHSY facility

    International Nuclear Information System (INIS)

    Bazin, P.; Clement, P.; Deruaz, R.

    1989-01-01

    BETHSY is a high pressure integral test facility which models a 3 loop Framatome PWR with the intent of studying PWR accidents. The BETHSY programme includes both accident transients and tests under successive steady state conditions. So far, tests of the latter type have been especially devoted to situations where natural circulation takes place in the primary coolant system (PCS). Tests 4.1a and 4.1a TC, the results of which are introduced, deal with PCS natural circulation patterns and related heat transport mechanisms under two different core power levels (2 and 5% of nominal power), variable primary mass inventory (100% to 30-40% according to core power) and at two different steam generator liquid levels (standard value and 1 meter). (orig.)

  9. Commissioning and operation of the horizontal test apparatus at SNS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Ho [ORNL; Neustadt, Thomas S. [ORNL; Howell, Matthew P. [ORNL; Hannah, Brian S. [ORNL; Doleans, Marc [ORNL; Saunders, Jeffrey W. [ORNL

    2015-07-01

    The Spallation Neutron Source (SNS) at Oak Ridge National Lab (ORNL) has built, commissioned and operated a Horizontal Test Apparatus (HTA) vessel in the Radiofrequency Test Facility (RFTF) test cave. It can be operated at 4.5 K using the independent Cryogenic Test Facility (CTF). The HTA is designed to be a single cavity version of an SNS cryomodule with the ability to demount and replace the cavity. It provides the functionality for testing a single dressed SNS medium or high beta Superconducting Radiofrequency (SRF) cavity. The HTA is currently being used in support of R&D for in-situ plasma processing of the cavity's inner niobium surface. The design and commissioning of the HTA at 4.5 K will be presented as well as results from operating the HTA including cool-down, warm-up and steady state operations. Results from plasma processing a warm SCRF cavity in-between cold HTA tests will also be reported.

  10. VanderLaan Circulant Type Matrices

    Directory of Open Access Journals (Sweden)

    Hongyan Pan

    2015-01-01

    Full Text Available Circulant matrices have become a satisfactory tools in control methods for modern complex systems. In the paper, VanderLaan circulant type matrices are presented, which include VanderLaan circulant, left circulant, and g-circulant matrices. The nonsingularity of these special matrices is discussed by the surprising properties of VanderLaan numbers. The exact determinants of VanderLaan circulant type matrices are given by structuring transformation matrices, determinants of well-known tridiagonal matrices, and tridiagonal-like matrices. The explicit inverse matrices of these special matrices are obtained by structuring transformation matrices, inverses of known tridiagonal matrices, and quasi-tridiagonal matrices. Three kinds of norms and lower bound for the spread of VanderLaan circulant and left circulant matrix are given separately. And we gain the spectral norm of VanderLaan g-circulant matrix.

  11. Testing the 231Pa/230Th paleo-circulation proxy: A data versus 2D model comparison

    International Nuclear Information System (INIS)

    Lippold, Jorg; Gherardi, Jeanne-Marie; Luo, Yiming

    2011-01-01

    Variations of the Atlantic Meridional Overturning Circulation (AMOC) are believed to have crucially influenced Earth's climate due to its key role in the inter-hemispheric redistribution of heat and carbon. To assess its past strength, the sedimentary 231 Pa/ 230 Th proxy has been developed and improved but also contested due to its sensitivity to other factors beyond ocean circulation. In order to provide a better basis for the understanding of the Atlantic 231 Pa/ 230 Th system, and therefore to shed light on the controversy, we compare new measurements of Holocene sediments from the north Brazilian margin to water column data and the output of a two-dimensional scavenging-circulation model, based on modern circulation patterns and reversible scavenging parameters. We show that sedimentary 231 Pa/ 230 Th data from one specific area of the Atlantic are in very good agreement with model results suggesting that sedimentary 231 Pa/ 230 Th is predominantly driven by the AMOC. Therefore, 231 Pa/ 230 Th represents an appropriate method to reconstruct past AMOC at least qualitatively along the western margin. (authors)

  12. Natural circulation in pressurized water reactors

    International Nuclear Information System (INIS)

    Bastos, J.L.F.; Loureiro, L.V.; Rocha, R.T.V. da; Umbehaun, P.E.

    1992-01-01

    Several analytical modelling have been done for steady-state and slow transients conditions, besides more sophisticated studies considering two and three dimensional effects in a very simple geometry. Under severe accident conditions for PWR a code to analyse natural circulation has been developed by Westinghouse. This paper discusses the problem of natural circulation in a complex geometry similar to that of nuclear power plants. A first experiment has been done at the integral test facility of 'Co-ordination of Special Projects-Ministry of Naval Affairs' (Coordenadoria para Projetos Especiais -Ministerio da Marinha, COPESP) for several flux conditions. The results obtained were compared with numerical simulations for the steady-state regime. 09 refs, 05 figs, 01 tab. (B.C.A.)

  13. Performance of Control System Using Microcontroller for Sea Water Circulation

    Science.gov (United States)

    Indriani, A.; Witanto, Y.; Pratama, A. S.; Supriyadi; Hendra; Tanjung, A.

    2018-02-01

    Now a day control system is very important rule for any process. Control system have been used in the automatic system. Automatic system can be seen in the industrial filed, mechanical field, electrical field and etc. In industrial and mechanical field, control system are used for control of motion component such as motor, conveyor, machine, control of process made of product, control of system and soon. In electrical field, control system can met for control of electrical system as equipment or part electrical like fan, rice cooker, refrigerator, air conditioner and etc. Control system are used for control of temperature and circulation gas, air and water. Control system of temperature and circulation of water also can be used for fisher community. Control system can be create by using microcontroller, PLC and other automatic program [1][2]. In this paper we will focus on the close loop system by using microcontroller Arduino Mega to control of temperature and circulation of sea water for fisher community. Performance control system is influenced by control equipment, sensor sensitivity, test condition, environment and others. The temperature sensor is measured using the DS18S20 and the sea water clarity sensor for circulation indicator with turbidity sensor. From the test results indicated that this control system can circulate sea water and maintain the temperature and clarity of seawater in a short time.

  14. Preliminary model validation for integral stability behavior in molten salt natural circulation

    International Nuclear Information System (INIS)

    Cai Chuangxiong; He Zhaozhong; Chen Kun

    2017-01-01

    Passive safety system is an important characteristic of Fluoride-Salt-Cooled High-Temperature Reactor (FHR). In order to remove the decay heat, a direct reactor auxiliary cooling system (DRACS) which uses the passive safety technology is proposed to the FHR as the ultimate heat sink. The DRACS is relying on the natural circulation, so the study of molten salt natural circulation plays an important role at TMSR. A high-temperature molten salt natural circulation test loop has been designed and constructed at the TMSR center of the Chinese Academy of Sciences (CAS) to understand the characteristics of the natural circulation and verify the design model. It adopts nitrate salt as the working fluid to simulate fluoride salts, and uses air as the ultimate heat sink. The test shows the operation very well and has a very nice performance, the Heat transfer coefficients (salt-salt or salt-air), power of the loop, heat loss of molten salt pool (or molten salt pipe or air cooling tower), starting time of the loop, flow rate that can be verified in this loop. A series of experiments have been done and the results show that the experimental data are well matched with the design data. This paper aims at analyzing the molten salt circulation model, studying the characteristics of the natural circulation, and verifying the Integral stability behavior by three different natural circulation experiments. Also, the experiment is going on, and more experiments will been carry out to study the molten salt natural circulation for optimizing the design. (author)

  15. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    Science.gov (United States)

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry J.; Bower, Amy S.; Köhl, Armin; Gopalakrishnan, Ganesh; Rivas, David

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model's winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow.

  16. Assessment of the tests results of the two CERN-INFN 10 m long superconducting dipole prototypes for the LHC

    International Nuclear Information System (INIS)

    Bona, M.; Perin, R.; Acerbi, E.; Rossi, L.

    1996-01-01

    In the first phase of the R and D program for LHC dipoles, seven 10-m-long, 50-mm-aperture prototypes have been manufactured by European Industries. The first two prototypes, fabricated under a CERN-INFN Collaboration, were successfully tested in 1994. This paper provides a first assessment of the main test results of these two magnets, in particular for what concerns kinematics and evolution of the stress distribution in the magnet during cooldown, energization and warmup. The influence of some adopted technological solutions is also discussed. Based on test results, some design corrections are proposed for adoption in the design of the future 15-m-long LHC dipole prototype

  17. Circulation pump mounting

    International Nuclear Information System (INIS)

    Skalicky, A.

    1976-01-01

    The suspension is described of nuclear reactor circulating pumps enabling their dilatation with a minimum reverse force consisting of spacing rods supported with one end in the anchor joints and provided with springs and screw joints engaging the circulating pump shoes. The spacing rods are equipped with side vibration dampers anchored in the shaft side wall and on the body of the circulating pump drive body. The negative reverse force F of the spacing rods is given by the relation F=Q/l.y, where Q is the weight of the circulating pump, l is the spatial distance between the shoe joints and anchor joints, and y is the deflection of the circulating pump vertical axis from the mean equilibrium position. The described suspension is advantageous in that that the reverse force for the deflection from the mean equilibrium position is minimal, dynamic behaviour is better, and construction costs are lower compared to suspension design used so far. (J.B.)

  18. A scaling study of the natural circulation flow of the ex-vessel core catcher cooling system of a 1400MW PWR for designing a scale-down test facility

    International Nuclear Information System (INIS)

    Rhee, Bo. W.; Ha, K. S.; Park, R. J.; Song, J. H.

    2012-01-01

    A scaling study on the steady state natural circulation flow along the flow path of the ex-vessel core catcher cooling system of 1400MWe PWR is described. The scaling criteria for reproducing the same thermalhydraulic characteristics of the natural circulation flow as the prototype core catcher cooling system in the scale-down test facility is derived and the resulting natural circulation flow characteristics of the prototype and scale-down facility analyzed and compared. The purpose of this study is to apply the similarity law to the prototype EU-APR1400 core catcher cooling system and the model test facility of this prototype system and derive a relationship between the heating channel characteristics and the down-comer piping characteristics so as to determine the down-comer pipe size and the orifice size of the model test facility. As the geometry and the heating wall heat flux of the heating channel of the model test facility will be the same as those of the prototype core catcher cooling system except the width of the heating channel is reduced, the axial distribution of the coolant quality (or void fraction) is expected to resemble each other between the prototype and model facility. Thus using this fact, the down-comer piping design characteristics of the model facility can be determined from the relationship derived from the similarity law

  19. Average Natural Convective Heat Transfer of Air-cooled Condensing Heat Exchanger of Emergency Cooldown Tank - Effect of Tube Banks

    International Nuclear Information System (INIS)

    Huh, Seon Jeong; Lee, Hee Joon; Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In

    2016-01-01

    Recently emergency cooldown tank(ECT) is a great concern of passive cooling system for the safety of nuclear reactor. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. In this study, the effect of heat transfer area at the air cooled condensing heat exchanger was investigated by changing 5×5 tube banks into 4×4 and 3×3. Moreover, each of air-side natural convective heat transfer coefficient of tube banks was compared to existing correlations. This study presents the effect of heat transfer area at air-cooled condensing heat exchanger. As heat transfer area decreased, the temperature of outlet increased. In other words, the cooling performance got lower with the decrease of heat transfer area. In addition, the average natural convective heat transfer coefficient was 15.3 W/m"2/K from the 4×4 tube banks, and 4.92 W/m"2/K from the 3×3 tube banks, which had quite a large error more than 46% especially with the value of 4×4 tube banks compared to the value from correlation equation. Therefore, according to this result, it is needed to measure the local heat transfer coefficient of vertical cylinder more elaborately in further study

  20. Average Natural Convective Heat Transfer of Air-cooled Condensing Heat Exchanger of Emergency Cooldown Tank - Effect of Tube Banks

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Seon Jeong; Lee, Hee Joon [Kookmin University, Seoul (Korea, Republic of); Kim, Myoung Jun; Moon, Joo Hyung; Bae, Youngmin; Kim, Young-In [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Recently emergency cooldown tank(ECT) is a great concern of passive cooling system for the safety of nuclear reactor. After the operation of a conventional passive cooling system for an extended period, however, the water level falls as a result of the evaporation from the ECT, as steam is emitted from the open top of the tank. In this study, the effect of heat transfer area at the air cooled condensing heat exchanger was investigated by changing 5×5 tube banks into 4×4 and 3×3. Moreover, each of air-side natural convective heat transfer coefficient of tube banks was compared to existing correlations. This study presents the effect of heat transfer area at air-cooled condensing heat exchanger. As heat transfer area decreased, the temperature of outlet increased. In other words, the cooling performance got lower with the decrease of heat transfer area. In addition, the average natural convective heat transfer coefficient was 15.3 W/m{sup 2}/K from the 4×4 tube banks, and 4.92 W/m{sup 2}/K from the 3×3 tube banks, which had quite a large error more than 46% especially with the value of 4×4 tube banks compared to the value from correlation equation. Therefore, according to this result, it is needed to measure the local heat transfer coefficient of vertical cylinder more elaborately in further study.

  1. The Explicit Identities for Spectral Norms of Circulant-Type Matrices Involving Binomial Coefficients and Harmonic Numbers

    Directory of Open Access Journals (Sweden)

    Jianwei Zhou

    2014-01-01

    Full Text Available The explicit formulae of spectral norms for circulant-type matrices are investigated; the matrices are circulant matrix, skew-circulant matrix, and g-circulant matrix, respectively. The entries are products of binomial coefficients with harmonic numbers. Explicit identities for these spectral norms are obtained. Employing these approaches, some numerical tests are listed to verify the results.

  2. Genetic architecture of circulating lipid levels

    DEFF Research Database (Denmark)

    Demirkan, Ayşe; Amin, Najaf; Isaacs, Aaron

    2011-01-01

    Serum concentrations of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TGs) and total cholesterol (TC) are important heritable risk factors for cardiovascular disease. Although genome-wide association studies (GWASs) of circulating lipid...... the ENGAGE Consortium GWAS on serum lipids, were applied to predict lipid levels in an independent population-based study, the Rotterdam Study-II (RS-II). We additionally tested for evidence of a shared genetic basis for different lipid phenotypes. Finally, the polygenic score approach was used to identify...... an alternative genome-wide significance threshold before pathway analysis and those results were compared with those based on the classical genome-wide significance threshold. Our study provides evidence suggesting that many loci influencing circulating lipid levels remain undiscovered. Cross-prediction models...

  3. Multi-dimensional approach of MARS-LMR for the analysis of Phenix End-of-Life natural circulation test

    International Nuclear Information System (INIS)

    Jeong, Hae Yong; Ha, Kwi Seok; Chang, Won Pyo; Lee, Kwi Lim

    2012-01-01

    Phenix is one of the important prototype sodium-cooled fast reactors (SFR) in nuclear reactor development history. It had been operated successfully for 35 years by the French Commissariat a l'energie atomique (CEA) and the Electricite de France (EdF) achieving its original objectives of demonstrating a fast breeder reactor technology and of playing the role of irradiation facility for innovative fuels and materials. After its final shutdown in 2009, CEA launched the Phenix End-of-life (EOL) test program. It provided a unique opportunity to generate reliable test data which is inevitable in the validation and verification of a SFR system analysis code. KAERI joined this international collaboration program of IAEA CRP and has performed the pretest analysis and post-test analysis utilizing the one-dimensional modeling of the MARS-LMR code, which had been developed by KAERI for the transient analysis of SFR systems. Through the previous studies, it has been identified that there are some limitations in the modeling of complicated thermal-hydraulic behaviors in the large pool volumes with the one-dimensional modeling. Recently, KAERI performed the analysis of Phenix EOL natural circulation test with multi-dimensional pool modeling, which is detailed below

  4. Multi-dimensional approach of MARS-LMR for the analysis of Phenix End-of-Life natural circulation test

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hae Yong; Ha, Kwi Seok; Chang, Won Pyo; Lee, Kwi Lim [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    Phenix is one of the important prototype sodium-cooled fast reactors (SFR) in nuclear reactor development history. It had been operated successfully for 35 years by the French Commissariat a l'energie atomique (CEA) and the Electricite de France (EdF) achieving its original objectives of demonstrating a fast breeder reactor technology and of playing the role of irradiation facility for innovative fuels and materials. After its final shutdown in 2009, CEA launched the Phenix End-of-life (EOL) test program. It provided a unique opportunity to generate reliable test data which is inevitable in the validation and verification of a SFR system analysis code. KAERI joined this international collaboration program of IAEA CRP and has performed the pretest analysis and post-test analysis utilizing the one-dimensional modeling of the MARS-LMR code, which had been developed by KAERI for the transient analysis of SFR systems. Through the previous studies, it has been identified that there are some limitations in the modeling of complicated thermal-hydraulic behaviors in the large pool volumes with the one-dimensional modeling. Recently, KAERI performed the analysis of Phenix EOL natural circulation test with multi-dimensional pool modeling, which is detailed below

  5. Investigation of the loss of forced cooling test by using the high temperature engineering test reactor (HTTR) (Contract research)

    International Nuclear Information System (INIS)

    Nakagawa, Shigeaki; Takamatsu, Kuniyoshi; Inaba, Yoshitomo; Goto, Minoru; Tochio, Daisuke

    2007-09-01

    The three gas circulators trip test and the vessel cooling system stop test as the safety demonstration test by using the High Temperature engineering Test Reactor (HTTR) are under planning to demonstrate inherent safety features of High Temperature Gas-cooled Reactor. All three gas circulators to circulate the helium gas as the coolant are stopped to simulate the loss of forced cooling in the three gas circulators trip test. The stop of the vessel cooling system located outside the reactor pressure vessel to remove the residual heat of the reactor core follows the stop of all three gas circulators in the vessel cooling system stop test. The analysis of the reactor transient for such tests and abnormal events postulated during the test was performed. From the result of analysis, it was confirmed that the three gas circulators trip test and the vessel cooling system stop test can be performed within the region of the normal operation in the HTTR and the safety of the reactor facility is ensured even if the abnormal events would occur. (author)

  6. Stability of single-phase natural circulation with inverted U-tube steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Sanders, J.

    1988-08-01

    For natural circulation it is shown that parallel flow in the tubes of an inverted U-tube stream generator can be, at certain power levels, unstable. A mathematical model, based on one-dimensional Oberbeck-Boussinesq equations, shows that stability can be attained if in some tubes the water flows backward, opposite to the normal flow direction. The results are compared to measurements obtained from the natural circulation test A2-77A in the LOBI-MOD2 integral system test facility.

  7. Structural performance of the first SSC [Superconducting Super Collider] Design B dipole magnet

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1989-09-01

    The first Design B Superconducting Super Collider (SSC) dipole magnet has been successfully tested. This magnet was heavily instrumented with temperature and strain gage sensors in order to evaluate its adherence to design constraints and design calculations. The instrumentation and associated data acquisition system allowed monitoring of the magnet during cooldown, warmup, and quench testing. This paper will focus on the results obtained from structural measurements on the suspension system during normal and rapid cooldowns and during quench studies at full magnet current. 4 refs., 9 figs

  8. (Shippingport Atomic Power Station). Quarterly operating report, third quarter 1979

    Energy Technology Data Exchange (ETDEWEB)

    Jones, T. D.

    1979-01-01

    At the beginning of the third quarter of 1979, the Shippingport Atomic Power Station remained shutdown to complete repairs of the turbine generator hydrogen circulation fan following discovery of a rubbing noise on May 24, 1979. The Station was in a cooldown condition at approximately 180/sup 0/F and 300 psig with a steam bubble in the pressurizer and the reactor coolant pumps in slow speed. The reactor plant cooldown heat exchanger was in service to maintain coolant temperature. The 1A, 1B, 1C, and 1D reactor coolant loops and the 1AC and 1BD purification loops remained in service. All expended PWR Core 2 fuel elements have previously been shipped off-site. The remaining irradiated PWR Core 2 core barrel and miscellaneous refueling tools were in storage under shielding water in the deep pit of the Fuel Handling Building. The LWBR Core has generated 12,111.00 EFPH from startup through the end of the quarter.

  9. Liquid Fluoride Salt Experimentation Using a Small Natural Circulation Cell

    Energy Technology Data Exchange (ETDEWEB)

    Yoder Jr, Graydon L [ORNL; Heatherly, Dennis Wayne [ORNL; Williams, David F [ORNL; Elkassabgi, Yousri M. [Texas A& M University, Kingsville; Caja, Joseph [Electrochemical Systems, Inc.; Caja, Mario [ORNL; Jordan, John [Texas A& M University, Kingsville; Salinas, Roberto [Texas A& M University, Kingsville

    2014-04-01

    A small molten fluoride salt experiment has been constructed and tested to develop experimental techniques for application in liquid fluoride salt systems. There were five major objectives in developing this test apparatus: Allow visual observation of the salt during testing (how can lighting be introduced, how can pictures be taken, what can be seen) Determine if IR photography can be used to examine components submerged in the salt Determine if the experimental configuration provides salt velocity sufficient for collection of corrosion data for future experimentation Determine if a laser Doppler velocimeter can be used to quantify salt velocities. Acquire natural circulation heat transfer data in fluoride salt at temperatures up to 700oC All of these objectives were successfully achieved during testing with the exception of the fourth: acquiring velocity data using the laser Doppler velocimeter. This paper describes the experiment and experimental techniques used, and presents data taken during natural circulation testing.

  10. Seasonal overturning circulation in the Red Sea: 2. Winter circulation

    KAUST Repository

    Yao, Fengchao

    2014-04-01

    The shallow winter overturning circulation in the Red Sea is studied using a 50 year high-resolution MITgcm (MIT general circulation model) simulation with realistic atmospheric forcing. The overturning circulation for a typical year, represented by 1980, and the climatological mean are analyzed using model output to delineate the three-dimensional structure and to investigate the underlying dynamical mechanisms. The horizontal model circulation in the winter of 1980 is dominated by energetic eddies. The climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation. The simulated water exchange is not hydraulically controlled in the Strait of Bab el Mandeb; instead, the exchange is limited by bottom and lateral boundary friction and, to a lesser extent, by interfacial friction due to the vertical viscosity at the interface between the inflow and the outflow. Key Points Sinking occurs in a narrow boundary layer along the eastern boundary Surface western boundary current switches into an eastern boundary current Water exchange in the Strait of Bab el Mandeb is not hydraulically controlled © 2014. American Geophysical Union. All Rights Reserved.

  11. An experimental study on the flow instabilities and critical heat flux under natural circulation

    International Nuclear Information System (INIS)

    Kim, Yun Il

    1993-02-01

    This study has been carried out to investigate the hydrodynamic stabilities of natural circulation and to analyze Critical Heat Flux (CHF) characteristics for the natural and forced circulation. A low pressure experimental loop was constructed, and experiments under various conditions have been performed. In the experiments of the natural circulation, flow oscillations and the average mass flux have been observed. Several parameters such as heat flux, the inlet temperature of test section, friction valve opening and riser length have been varied in order to investigate their effects on the flow stability of the natural circulation system. The results show that the flow instability has strongly dependent on geometric conditions and operating parameters, the inlet temperature and the heat flux of test section. It was found that unstable region for the heat flux and the inlet temperature exists between the single-phase stable region of low heat and low inlet temperature and the two-phase stable region of very high heat flux and high inlet temperature. The CHF data from the natural and forced circulation experiments have been compared each other to identify the effects of the flow instabilities on the CHF for the natural circulation mode. The test conditions were low flow less than 70 kg/m 2 s of water in vertical round tube with diameter of 0.008m at near atmospheric pressure. In this study, no difference in CHF values is observed between natural and fored circulation. Since low flow usually has the oscillation characteristic of relatively low amplitude and high frequency, the effect of the flow instabilities on the CHF seems to be negligible

  12. Performance testing of a hydrogen heat pipe

    International Nuclear Information System (INIS)

    Alario, J.; Kosson, R.

    1980-01-01

    Test results are presented for a reentrant groove heat pipe with hydrogen working fluid. The heat pipe became operational between 20 and 30 K after a cooldown from 77 K without any difficulty. Steady-state performance data taken over a 19 to 23 K temperature range indicated the following: (1) maximum heat transport capacity 5.4 W-m (2) static wicking height 1.42 cm and (3) overall heat pipe conductance 1.7 W/C. These data agreed remarkably well with extrapolations made from comparable ammonia test results. The maximum heat transport capacity is 9.5% larger than the extrapolated value, but the static wicking height is the same. The overall conductance is 29% of the ammonia value, which is close to the ratio of liquid thermal conductivities (24%). Also, recovery from a completely frozen condition was accomplished within 5 min by simply applying an evaporater heat load of 1.8 W

  13. Experimental observations of natural circulation flow in the NSTF

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, Darius D., E-mail: dlisowski@anl.gov; Kraus, Adam R.; Bucknor, Matthew D.; Hu, Rui; Farmer, Mitch T.

    2016-09-15

    A 1/2 scale test facility has been constructed at Argonne National Laboratory to study the heat removal performance and natural circulation flow patterns in a Reactor Cavity Cooling System (RCCS). Our test facility, the Natural convection Shutdown heat removal Test Facility (NSTF), supports the broader goal of developing an inherently safe and fully passive ex-vessel decay heat removal for advanced reactor designs. The project, initiated in 2010 to support the Advanced Reactor Technologies (ART), Small Modular Reactor (SMR), and Next Generation Nuclear Plant (NGNP) programs, has been conducting experimental operations since early 2014. The following paper provides a summary of some primary design features of the 26-m tall test facility along with a description of the data acquisition suite that guides our experimental practices. Specifics of the distributed fiber optic temperature measurements will be discussed, which introduces an unparalleled level of data density that has never before been implemented in a large scale natural circulation test facility. Results from our test series will then be presented, which provide insight into the thermal hydraulic behavior at steady-state and transient conditions for varying heat flux levels and exhaust chimney configuration states.

  14. An experimental study on the flow instabilities and critical heat flux under natural circulation

    International Nuclear Information System (INIS)

    Kim, Yun II; Chang, Soon Heung

    2004-01-01

    This study has been carried out to investigate the hydrodynamic stabilities and Critical Heat Flux (CHF) characteristics for the natural and forced circulation. A low pressure experimental loop was constructed, and experiments under various conditions have been performed. In the experiments of the natural circulation, flow oscillations has been observed and the average mass flux under flow oscillation have been measured. Several parameters such as heat flux, the inlet temperature of test section, friction valve opening and riser length have been varied in order to investigate their effects on the flow stability of the natural circulation system. And the CHF data from low flow experiments, namely the natural and forced circulation, have been compared with each other to identify the effects of the flow instabilities on the CHF for the natural circulation mode. The test conditions for the CHF experiments were a low flow of less than 70 kg/m 2 s of water in a vertical round tube with diameter of 0.008 m at near atmospheric pressure. (author)

  15. First circulating beam in the AA

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    On 3 July 1980, two years after project authorization, beam circulated for the first time in the AA. It was a 3.5 GeV/c proton test beam. We see an expecting crowd, minutes before the happy event. The persons are to numerous to name them all. Heribert Koziol, apparently asleep, is answering the call from an impatient director. See also 8007094.

  16. Geomechanics of the Spent Fuel Test: Climax

    International Nuclear Information System (INIS)

    Wilder, D.G.; Yow, J.L. Jr.

    1987-07-01

    Three years of geomechanical measurements were made at the Spent Fuel Test-Climax (SFT-C) 1400 feet underground in fractured granitic rock. Heating of the rock mass resulted from emplacement of spent fuel as well as the heating by electrical heaters. Cooldown of the rock occurred after the spent fuel was removed and the heaters were turned off. The measurements program examines both gross and localized responses of the rock mass to thermal loading, to evaluate the thermomechanical response of sheared and fractured rock with that of relatively unfractured rock, to compare the magnitudes of displacements during mining with those induced by extensive heating of the rock mass, and to check assumptions regarding symmetry and damaged zones made in numerical modeling of the SFT-C. 28 refs., 113 figs., 10 tabs

  17. A study on thermal ratcheting structure test of 316L test cylinder

    International Nuclear Information System (INIS)

    Lee, H. Y.; Kim, J. B.; Koo, G. H.

    2001-01-01

    In this study, the progressive inelastic deformation, so called, thermal ratchet phenomenon which can occur in high temperature liquid metal reactor was simulated with thermal ratchet structural test facility and 316L stainless steel test cylinder. The inelastic deformation of the reactor baffle cylinder can occur due to the moving temperature distribution along the axial direction as the hot free surface moves up and down under the cyclic heat-up and cool-down of reactor operations. The ratchet deformations were measured with the laser displacement sensor and LVDTs after cooling the structural specimen which experiences thermal load up to 550 .deg. C and the temperature differences of about 500 .deg. C. During structural thermal ratchet test, the temperature distribution of the test cylinder along the axial direction was measured from 28 channels of thermocouples and the temperatures were used for the ratchet analysis. The thermal ratchet deformation analysis was performed with the NONSTA code whose constitutive model is nonlinear combined kinematic and isotropic hardening model and the test results were compared with those of the analysis. Thermal ratchet test was carried out with respect to 9 cycles of thermal loading and the maximum residual displacements were measured to be 1.8mm. It was shown that thermal ratchet load can cause a progressive deformation to the reactor structure. The analysis results with the combined hardening model were in reasonable agreement with those of the tests

  18. SMTMS - SM18 Magnet Tests Management System: a Brief User Guide for Operation

    CERN Document Server

    Chohan, N; CERN. Geneva. AB Department

    2004-01-01

    As the number of magnets to be tested under cryogenic conditions increased during the course of 2003, it was clear that a versatile computer-based tool was urgently required for keeping track of all the necessary tests that were carried out for each magnet as well as the outcome of the tests. It was also essential to keep track of the times taken during different phases in magnet preparation for the tests, including Cryogenic connections, cool-downs, warm ups and so forth. SMTMS uses the CERN provided backbone in Web based services and Access database to fulfil these urgent needs and was successfully made operational within a very short time. It has considerably eased & simplified the work in operation for cold testing the magnets with a few permanent core operational staff and a considerably large number of rotational personnel of short duration. This is because SMTMS is now the exclusive & unique Web-based tool to manage the tests and collate the essential electrical characterisation and quench resu...

  19. Benchmark Analyses on the Natural Circulation Test Performed During the PHENIX End-of-Life Experiments. Final Report of a Co-ordinated Research Project 2008-2011

    International Nuclear Information System (INIS)

    2013-07-01

    The International Atomic Energy Agency (IAEA) supports Member State activities in the area of advanced fast reactor technology development by providing a forum for information exchange and collaborative research programmes. The Agency's activities in this field are mainly carried out within the framework of the Technical Working Group on Fast Reactors (TWG-FR), which assists in the implementation of corresponding IAEA activities and ensures that all technical activities are in line with the expressed needs of Member States. Among its broad range of activities, the IAEA proposes and establishes coordinated research projects (CRPs) aimed at the improvement of Member State capabilities in the area of fast reactor design and analysis. An important opportunity to undertake collaborative research was provided by the experimental campaign of the French Alternative Energies and Atomic Energy Commission (CEA) in the prototype sodium fast reactor PHENIX before it was shut down in 2009. The overall purpose of the end of life tests was to gather additional experience on the operation of sodium cooled reactors. As the CEA opened the experiments to international cooperation, in 2007 the IAEA launched a CRP on ''Control Rod Withdrawal and Sodium Natural Circulation Tests Performed during the PHENIX End-of-Life Experiments''. The CRP, with the participation of institutes from eight countries, contributed to improving capabilities in sodium cooled reactor simulation through code verification and validation, with particular emphasis on temperature and power distribution calculations and the analysis of sodium natural circulation phenomena. The objective of this report is to document the results and main achievements of the benchmark analyses on the natural circulation test performed in the framework of the PHENIX end of life experimental campaign

  20. Operating experience of gas bearing helium circulators in HTGR development facility

    International Nuclear Information System (INIS)

    Shimomura, H.; Kawaji, S.; Fujisaki, K.; Ihizuka, T.

    1988-01-01

    The large scale helium gas test facility (HENDEL) has been constructed and operated since March 1982 at the Japan Atomic Energy Research Institute to develop HTGR components. The five electric driven gas circulators with dynamic gas bearings are used to circulate the helium gas of 4MPa and 400 deg. C in loops for their compactness, gas tightness, easy maintenance and free from gas contamination. All of these circulators are variable speed types of 3,000 to 12,000 rpm and have the same gas bearings and electric motors. The four machines among them are equipped with centrifugal impeller and one other machine has regenerative type, and the weight of both type rotors are nearly the same. After the troubles and repairing, both type of circulators were tested and the vibration characteristics were measured as preventing maintenance. From the test and measurements of the circulators, it was presumed that the first trouble on regenerative type was caused from excess unbalance force by falling off of a small pin from the rotating part and the second severe trouble on it was caused by the whipping in gas bearing. The static load on tilting pads indicated close relations to occurrence of the whirling through the measurements. It is recognized that fine balancing of the rotors and delicate clearance adjustment of the bearings are very important for the rotor stability and that the mechanism should be designed and machined so precise as to be adjustable. As the gas bearing would be damaged in an instantaneously short time, the monitoring technique for it should be so fast and predictive as to prevent serious damage. Through the tests, the vibration spectrum monitoring method seems to be predictive and useful for early detection of the shaft instability. It will be concluded that the gas bearing machine is an excellent system in its design philosophy, however, it also needs highly precise machining and delicate maintenance technique. 4 refs, 10 figs, 1 tab

  1. Twenty-five years of Brown Boveri experience in development, design and fabrication of circulators for HTGR

    International Nuclear Information System (INIS)

    Stoelzl, D.

    1988-01-01

    The two circulators for the AVR experimental reactor in Juelich, Federal Republic of Germany, were supplied. The circulators, which are equipped with oil bearings, have been operating troublefree since the start of commissioning in 1966. As a consequence of a water ingress into the reactor resulting from a steam generator damage one bearing was replaced in 1977 after 72,000 operating hours. Up to the present date, each of the circulators has scored 115,000 hours of operation, one of them without any disassembly. In the THTR 300 in Schmehausen, Federal Republic of Germany, 6 BBC circulators are in operation. The insertable circulator units equipped with oil bearings have successfully proven their operating capability without any problems during the commissioning phase and the 100% power operation which was started recently. Currently active magnetic bearings are being developed for advanced gas-cooled reactors such as the HTR 100, the HTR 500 and the heating reactor after excellent results have been furnished by a small prototype in a test loop. This ADI circulator has since scored more than 15,000 operating hours without any trouble. A retainer bearing test stand also equipped with active magnetic bearings has been in operation for nearly 2 years. This test stand serves for developing the conditions for safe rundown of the rotors of even the largest circulators after the magnetic bearings have been deenergized unintentionally. Development work is conducted on the prototype of a safety-relevant circulator held in magnetic bearings, to be used for decay heat removal in the HTR 500. The original aim to have circulators without auxiliary medium for bearing lubrication will thus be reached. The advantages to be obtained in process and systems design are a supplementary support to the inherent safety characteristics of high-temperature reactors. Another advantage of these bearings is cost reduction. 5 refs, 7 figs

  2. Startup transient simulation for natural circulation boiling water reactors in PUMA facility

    International Nuclear Information System (INIS)

    Kuran, S.; Xu, Y.; Sun, X.; Cheng, L.; Yoon, H.J.; Revankar, S.T.; Ishii, M.; Wang, W.

    2006-01-01

    In view of the importance of instabilities that may occur at low-pressure and -flow conditions during the startup of natural circulation boiling water reactors, startup simulation experiments were performed in the Purdue University Multi-Dimensional Integral Test Assembly (PUMA) facility. The simulations used pressure scaling and followed the startup procedure of a typical natural circulation boiling water reactor. Two simulation experiments were performed for the reactor dome pressures ranging from 55 kPa to 1 MPa, where the instabilities may occur. The experimental results show the signature of condensation-induced oscillations during the single-phase-to-two-phase natural circulation transition. The results also suggest that a rational startup procedure is needed to overcome the startup instabilities in natural circulation boiling water reactor designs

  3. Experimental study of two-phase natural circulation circuit

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley Freitas; Su, Jian, E-mail: wlemos@lasme.coppe.ufrj.br, E-mail: sujian@nuclear.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose Luiz Horacio, E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), RIo de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2012-07-01

    This paper reports an experimental study on the behavior of fluid flow in natural circulation under single-and two-phase flow conditions. The natural circulation circuit was designed based on concepts of similarity and scale in proportion to the actual operating conditions of a nuclear reactor. This test equipment has similar performance to the passive system for removal of residual heat presents in Advanced Pressurized Water Reactors (A PWR). The experiment was carried out by supplying water to primary and secondary circuits, as well as electrical power resistors installed inside the heater. Power controller has available to adjust the values for supply of electrical power resistors, in order to simulate conditions of decay of power from the nuclear reactor in steady state. Data acquisition system allows the measurement and control of the temperature at different points by means of thermocouples installed at several points along the circuit. The behavior of the phenomenon of natural circulation was monitored by a software with graphical interface, showing the evolution of temperature measurement points and the results stored in digital format spreadsheets. Besides, the natural circulation flow rate was measured by a flowmeter installed on the hot leg. A flow visualization technique was used the for identifying vertical flow regimes of two-phase natural circulation. Finally, the Reynolds Number was calculated for the establishment of a friction factor correlation dependent on the scale geometrical length, height and diameter of the pipe. (author)

  4. Experimental study of two-phase natural circulation circuit

    International Nuclear Information System (INIS)

    Lemos, Wanderley Freitas; Su, Jian; Faccini, Jose Luiz Horacio

    2012-01-01

    This paper reports an experimental study on the behavior of fluid flow in natural circulation under single-and two-phase flow conditions. The natural circulation circuit was designed based on concepts of similarity and scale in proportion to the actual operating conditions of a nuclear reactor. This test equipment has similar performance to the passive system for removal of residual heat presents in Advanced Pressurized Water Reactors (A PWR). The experiment was carried out by supplying water to primary and secondary circuits, as well as electrical power resistors installed inside the heater. Power controller has available to adjust the values for supply of electrical power resistors, in order to simulate conditions of decay of power from the nuclear reactor in steady state. Data acquisition system allows the measurement and control of the temperature at different points by means of thermocouples installed at several points along the circuit. The behavior of the phenomenon of natural circulation was monitored by a software with graphical interface, showing the evolution of temperature measurement points and the results stored in digital format spreadsheets. Besides, the natural circulation flow rate was measured by a flowmeter installed on the hot leg. A flow visualization technique was used the for identifying vertical flow regimes of two-phase natural circulation. Finally, the Reynolds Number was calculated for the establishment of a friction factor correlation dependent on the scale geometrical length, height and diameter of the pipe. (author)

  5. Anti-cyclonic circulation driven by the estuarine circulation in a gulf type ROFI

    Science.gov (United States)

    Fujiwara, T.; Sanford, L. P.; Nakatsuji, K.; Sugiyama, Y.

    1997-08-01

    Baroclinic residual circulation processes are examined in gulf type Regions Of Freshwater Influence (ROFIs), which have large rivers discharging into a rounded head wider than the Rossby internal deformation radius. Theoretical and observational investigations concentrate on Ise Bay, Japan, with supporting data from Osaka Bay and Tokyo Bay. Simplified analytical solutions are derived to describe the primary features of the circulation. Three dimensional residual current data collected using moored current meters and shipboard acoustic doppler current profilers (ADCPs), satellite imagery and density structure data observed using STDs, are presented for comparison to the theoretical predictions. There are three key points to understanding the resulting circulation in gulf type ROFIs. First, there are likely to be three distinct water masses: the river plume, a brackish upper layer, and a higher salinity lower layer. Second, baroclinic processes in gulf type ROFIs are influenced by the Earth's rotation at first order. Residual currents are quasi-geostrophic and potential vorticity is approximately conserved. Third, the combined effects of a classical longitudinal estuarine circulation and the Earth's rotation are both necessary to produce the resulting circulation. Anti-cyclonic vorticity is generated in the upper layer by the horizontal divergence associated with upward entrainment, which is part of the estuarine circulation. The interaction between anti-cyclonic vorticity and horizontal divergence results in two regions of qualitatively different circulation, with gyre-like circulation near the bay head and uniformly seaward anti-cyclonicly sheared flow further towards the mouth. The stagnation point separating the two regions is closer to (further away from) the bay head for stronger (weaker) horizontal divergence, respectively. The vorticity and spin-up time of this circulation are-(ƒ-ω 1)/2 and h/2w 0, respectively, where ƒ is the Coriolis parameter, ω 1 is

  6. Sino-Danish Brain Circulation

    DEFF Research Database (Denmark)

    Bertelsen, Rasmus Gjedssø; Du, Xiangyun; Søndergaard, Morten Karnøe

    2014-01-01

    China is faced with urgent needs to develop an economically and environmentally sustainable economy based on innovation and knowledge. Brain circulation and research and business investments from the outside are central for this development. Sino-American brain circulation and research...... and investment by overseas researchers and entrepreneurs are well described. In that case, the US is the center of global R&D and S&T. However, the brain circulation and research and investments between a small open Scandinavian economy, such as Denmark, and the huge developing economy of China are not well...... understood. In this case, Denmark is very highly developed, but a satellite in the global R&D and S&T system. With time and the growth of China as a R&D and S&T power house, both Denmark and China will benefit from brain circulation between them. Such brain circulation is likely to play a key role in flows...

  7. Natural Circulation High Pressure Loop Dynamics Around Operating Point, Tests and Modelling With Retran 02

    International Nuclear Information System (INIS)

    Masriera, N.A; Doval, A.S; Mazufri, C.M

    2000-01-01

    The Natural Circulation High Pressure Loop (CAPCN) reproduces in scale all the one-dimensional thermal-hydraulic phenomena occurring in the primary loop of CAREM-25 reactor.It plays an important role in the qualification process of calculating computer codes.This facility demanded to develop several technological solutions in order to achieve the measuring and control quality required by that process.This engineering and experimental development allowed completing the first stage of dynamic tests during 1998.The trends of recorded data were systematically evaluated in terms of the deviations of main variables in response to different perturbations.By this analysis a group of eight transients was selected, providing a Minimum Representative Set (MRS) of dynamic tests, allowing the evaluation of all dynamic phenomena.Each of these transients was simulated with RETRAN-02, using a spreadsheet to facilitate the consistent elaboration and modification of input files.Comparing measured data and computer simulations, it may be concluded that it is possible to reproduce the dynamic response of all the transients with a level of approximation quite homogeneous and generally acceptable.It is possible to identify the detailed physical models that fit better the dynamic phenomena, and which of the limitations of RETRAN code are more relevant

  8. Three-pattern decomposition of global atmospheric circulation: part II—dynamical equations of horizontal, meridional and zonal circulations

    Science.gov (United States)

    Hu, Shujuan; Cheng, Jianbo; Xu, Ming; Chou, Jifan

    2018-04-01

    The three-pattern decomposition of global atmospheric circulation (TPDGAC) partitions three-dimensional (3D) atmospheric circulation into horizontal, meridional and zonal components to study the 3D structures of global atmospheric circulation. This paper incorporates the three-pattern decomposition model (TPDM) into primitive equations of atmospheric dynamics and establishes a new set of dynamical equations of the horizontal, meridional and zonal circulations in which the operator properties are studied and energy conservation laws are preserved, as in the primitive equations. The physical significance of the newly established equations is demonstrated. Our findings reveal that the new equations are essentially the 3D vorticity equations of atmosphere and that the time evolution rules of the horizontal, meridional and zonal circulations can be described from the perspective of 3D vorticity evolution. The new set of dynamical equations includes decomposed expressions that can be used to explore the source terms of large-scale atmospheric circulation variations. A simplified model is presented to demonstrate the potential applications of the new equations for studying the dynamics of the Rossby, Hadley and Walker circulations. The model shows that the horizontal air temperature anomaly gradient (ATAG) induces changes in meridional and zonal circulations and promotes the baroclinic evolution of the horizontal circulation. The simplified model also indicates that the absolute vorticity of the horizontal circulation is not conserved, and its changes can be described by changes in the vertical vorticities of the meridional and zonal circulations. Moreover, the thermodynamic equation shows that the induced meridional and zonal circulations and advection transport by the horizontal circulation in turn cause a redistribution of the air temperature. The simplified model reveals the fundamental rules between the evolution of the air temperature and the horizontal, meridional

  9. Two-phase natural circulation experiments in a pressurized water loop with CANDU geometry

    International Nuclear Information System (INIS)

    Ardron, K.H.; Krishnan, V.S.; McGee, G.R.; Anderson, J.W.D.; Hawley, E.H.

    1984-07-01

    To provide information on two-phase natural circulation in a CANDU-type coolant circuit a series of tests has been performed in the RD-12 loop at the Whiteshell Nuclear Research Establishment. RD-12 is a 10-MPa pressurized-water loop containing two active boilers, two pumps, and two, or four, heated horizontal channels arranged in a symmetrical figure-of-eight configuration characteristic of the CANDU reactor primary heat-transport system. In the tests, single-phase natural circulation was established in the loop and void was introduced by controlled draining, with the surge tank (pressurizer) valved out of the system. The paper reviews the experimental results obtained and describes the evolution of natural circulation flow in particular cases as voidage is progressively increased. The stability behaviour is discussed briefly with reference to a simple stability model

  10. Testing of the European LCT coil in the TOSKA facility

    International Nuclear Information System (INIS)

    Herz, W.; Katheder, H.; Krauth, H.

    1985-01-01

    The EURATOM-LCT coil was tested as a single coil in TOSKA. Load cells were mounted in the support structure to monitor forces between coil and vacuum vessel during cooldown and coil charging. Disturbances of components by magnetic fringing fields were carefully considered. To investigate the mechanical behaviour and compare it with FEM-calculations the coil was equipped with strain gauge rosettes and displacement transducers. Van Mises stresses in the coil case are in agreement with calculations. As known from special investigations during coil manufacturing the average radial Young modulus varies along the periphery caused by the different curvatures. This leads to differences with FEM-calculation (larger gaps between winding and coil case) assuming a larger constant Young modulus performed at the beginning of the project

  11. Natural circulation in reactor coolant system

    International Nuclear Information System (INIS)

    Han, J.T.

    1987-01-01

    Reactor coolant system (RCS) natural circulation in a PWR is the buoyancy-driven coolant circulation between the core and the upper-plenum region (in-vessel circulation) with or without a countercurrent flow in the hot leg piping between the vessel and steam generators (ex-vessel circulation). This kind of multidimensional bouyancy-driven flow circulation serves as a means of transferring the heat from the core to the structures in the upper plenum, hot legs, and possibly steam generators. As a result, the RCS piping and other pressure boundaries may be heated to high temperatures at which the structural integrity is challenged. RCS natural circulation is likely to occur during the core uncovery period of the TMLB' accident in a PWR when the vessel upper plenum and hot leg are already drained and filled with steam and possibly other gaseous species. RCS natural circulation is being studied for the Surry plant during the TMLB' accident in which station blackout coincides with the loss of auxiliary feedwater and no operator actions. The effects of the multidimensional RCS natural circulation during the TMLB' accident are discussed

  12. Mechanical performance of full-scale prototype quadrupole magnets for the SSC

    International Nuclear Information System (INIS)

    Cortella, J.M.; Wandesforde, A.; Devred, A.

    1992-08-01

    Six 5-m-long prototype quadrupole magnets have been built and cold-tested at Lawrence Berkeley Laboratory for the Superconducting Super Collider. Each of the magnets contained instrumentation to monitor the mechanical performance of the magnets during assembly and cold-testing. In addition, the instrumentation was used along with physical measurements as aids during magnet assembly. Quantities measured include coil pressures during assembly, cooldown, and magnet energization; axial thermal contraction of the magnets during cooldown; and axial force transmitted to the magnet end-plates. For the most part, mechanical measurements have proven repeatable and agree well with analysis

  13. LCLS-II 1.3 GHz cryomodule design - lessons learned from testing at Fermilab

    Science.gov (United States)

    Kaluzny, J.; Hurd, J.; Orlov, Y.; He, Y.; Bossert, R.; Grimm, C.; Schappert, W.; Atassi, O. Al; Wang, R.; Arkan, T.; Theilacker, J.; Klebaner, A.; White, M.; Wu, G.; Makara, J.; Ginsburg, C.; Pei, L.; Holzbauer, J.; Hansen, B.; Stanek, R.; Peterson, T.; Harms, E.

    2017-12-01

    Fermilab’s 1.3 GHz prototype cryomodule for the Linac Coherent Light Source Upgrade (LCLS-II) has been tested at Fermilab’s Cryomodule Test Facility (CMTF). Aspects of the cryomodule design have been studied and tested. The cooldown circuit was used to quickly cool the cavities through the transition temperature, and a heater on the circuit was used to heat incoming helium for warmup. Due to the 0.5% slope of the cryomodule, the liquid level is not constant along the length of the cryomodule. This slope as well as the pressure profile caused liquid level management to be a challenge. The microphonics levels in the cryomodule were studied and efforts were made to reduce them throughout testing. Some of the design approaches and studies performed on these aspects will be presented. Fermilab is operated by Fermi Research Alliance, LLC under Contract No. De-AC02-07CH11359 with the United States Department of Energy. This work was supported, in part, by the LCLS-II Project.

  14. Brine migration test report: Asse Salt Mine, Federal Republic of Germany: Technical report

    International Nuclear Information System (INIS)

    Coyle, A.J.; Eckert, J.; Kalia, H.

    1987-01-01

    This report presents a summary of Brine Migration Tests which were undertaken at the Asse mine of the Federal Republic of Germany (FRG) under a bilateral US/FRG agreement. This experiment simulates a nuclear waste repository at the 800-m (2624-ft) level of the Asse salt mine in the Federal Republic of Germany. This report describes the Asse salt mine, the test equipment, and the pretest properties of the salt in the mine and in the vicinity of the test area. Also included are selected test data (for the first 28 months of operation) on the following: brine migration rates, thermomechaical behavior of the salt (including room closure, stress reading, and thermal profiles), borehole gas pressures, and borehole gas analyses. In addition to field data, laboratory analyses of pretest salt properties are included in this report. The operational phase of these experiments was completed on October 4, 1985, with the commencement of cooldown and the start of posttest activities. 7 refs., 68 figs., 48 tabs

  15. Observing a fictitious stressful event: haematological changes, including circulating leukocyte activation.

    Science.gov (United States)

    Mian, Rubina; Shelton-Rayner, Graham; Harkin, Brendan; Williams, Paul

    2003-03-01

    The aim of this study was to assess the effect of watching a psychological stressful event on the activation of leukocytes in healthy human volunteers. Blood samples were obtained from 32 healthy male and female subjects aged between 20 and 26 years before, during and after either watching an 83-minute horror film that none of the subjects had previously seen (The Texas Chainsaw Massacre, 1974) or by sitting quietly in a room (control group). Total differential cell counts, leukocyte activation as measured by the nitroblue tetrazolium (NBT) test, heart rate and blood pressure (BP) measurements were taken at defined time points. There were significant increases in peripheral circulating leukocytes, the number of activated circulating leukocytes, haemoglobin (Hb) concentration and haematocrit (Hct) in response to the stressor. These were accompanied by significant increases in heart rate, systolic and diastolic BP (P<0.05 from baseline). This is the first reported study on the effects of observing a psychologically stressful, albeit fictitious event on circulating leukocyte numbers and the state of leukocyte activation as determined by the nitrotetrazolium test.

  16. 46 CFR 56.50-45 - Circulating pumps.

    Science.gov (United States)

    2010-10-01

    ... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-45 Circulating pumps. (a) A main circulating pump and emergency means for circulating water through the main condenser shall be provided. The... circulating pump and the condenser. (b) Independent sea suctions shall be provided for the main circulating...

  17. Arctic circulation regimes.

    Science.gov (United States)

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. © 2015 The Authors.

  18. Probabilistic fracture mechanics applied for DHC assessment in the cool-down transients for CANDU pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Radu, Vasile, E-mail: vasile.radu@nuclear.ro [Institute for Nuclear Research Pitesti, 1st Campului Street, 115400 Mioveni, Arges, P.O. Box 78, Mioveni (Romania); Roth, Maria [Institute for Nuclear Research Pitesti, 1st Campului Street, 115400 Mioveni, Arges, P.O. Box 78, Mioveni (Romania)

    2012-12-15

    irradiation in reactor. The paper describes a prospective way for the probabilistic approach of CANDU pressure tube failure by DHC mechanisms during cool-down cycles by using probabilistic fracture mechanics principles. The limit state functions are defined for fracture instability and plastic collapse according to the Canadian Standard N285.8-05 criteria. British Procedure R6 is used to define another limit state function based on reserve factors. Discussion of lifetime probability values obtained from both procedures is made.

  19. A study of natural circulation cooling using a flow visualization rig

    International Nuclear Information System (INIS)

    Bowman, W.C.; Ferch, R.L.; Omar, A.M.

    1985-01-01

    A flow visualization rig has been built at Monserco Limited to provide visual insight into the thermalhydraulic phenomena which occur during single phase and two phase thermosyphoning in a figure-of-eight heat transport loop. Tests performed with the rig have provided design information for the scaling and instrumentation of a high pressure rig being investigated for simulating CANDU reactor conditions during natural circulation cooling. A videotape was produced, for viewing at this presentation, to show important thermalhydraulic features of the thermosyphoning process. The rig is a standard figure-of-eight loop with two steam generators and three heated channels per pass. An elevated surge tank open to atmosphere was used for pressure control. Two variable speed pumps provided forced circulation for warming up the rig, and for establishing the desired initial conditions for testing. Test rig power could be varied between 0 and 15 kW

  20. Cryomodule tests of the TESLA-like superconducting cavity in KEK-STF

    International Nuclear Information System (INIS)

    Kako, Eiji; Sato, Masato; Shishido, Toshio; Noguchi, Shuichi; Hatori, Hirofumi; Hayano, Hitoshi; Yamamoto, Yasuchika; Watanabe, Ken

    2008-01-01

    Construction of STF (Superconducting RF Test Facility) is being carried out at KEK. The STF-Baseline superconducting cavity system, which includes four TESLA-like 9-cell cavities, input couplers and frequency tuners, has been developed for the future ILC project. A 6-m cryomodule including one of four TESLA-like cavities was assembled, and the cryomodule was installed in the tunnel for the initial test, called the STF Phase-0.5. The first cool-down of the cryomodule and high power tests of the cavity had been carried out at 2 K from October to November, 2007. The maximum accelerating gradient (Eacc, max) of 19.3 MV/m was achieved in a specific pulse width of 1.5 msec and a repetition rate of 5 Hz, (23.4 MV/m in a shorter pulse width of 0.6 msec). Compensation of Lorentz force detuning at 18 MV/m was successfully demonstrated by using a piezo tuner. The second cryomodule test for four cavities, called the STF Phase-1.0, is scheduled in July, 2008. (author)

  1. PIV Measurement of Isothermal Flow in the Moderator Circulation Test (MCT) Facility

    Energy Technology Data Exchange (ETDEWEB)

    Im, Sunghyuk; Sung, Hyung Jin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Seo, Han; Bang, In Cheol [Ulsan National Institute of Science and Technology, Ulsan (Korea, Republic of); Kim, Hyoung Tae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    One of the important design features of a CANDU reactor (a pressurize heavy water reactor) is the use of moderator as a heat sink during some postulated accidents such as a large break Loss Of Coolant Accident (LOCA). If the moderator available subcooling at the onset of a large LOCA is greater than the subcooling requirements, a sustained calandria tube dryout is avoided. The subcooling requirements are determined from a set of experiments known as the fuel channel contact boiling experiments. The difference between available subcooling and required subcooling is called subcooling margins. The local temperature of the moderator is a key parameter in determining the available subcooling. To predict the local temperature in the calandria, Korea Atomic Energy Research Institute (KAERI) started the experimental research on moderator circulation as one of a national R and D research programs from 2012. In the present work the test vessel is equipment with 380 acrylic pipes instead of the heater rods and a preliminary measurement of velocity field using PIV is performed under the iso-thermal test conditions. The 2D velocity is measured on the cross-sectional plane normal to the axial direction of the tank. The PIV measurement results could capture the same flow pattern as that expected in the CANDU6 calandria tank under momentum dominant flow condition, where the inlet jets penetrate to the top of the tank and produce a downward flow through the center of the tube columns towards the outlet nozzle and the flow fields are in symmetric distributions. The measurements of downward velocities are performed at different locations. The velocity is shown to be axially uniform. The velocity is rapidly decreased as the measurement location is far from the center of tank, since the downward flow is dominant along the center of the tube columns. More experimental works for the iso-thermal conditions as well as the heating conditions will be performed using PIV measurement in the

  2. PIV Measurement of Isothermal Flow in the Moderator Circulation Test (MCT) Facility

    International Nuclear Information System (INIS)

    Im, Sunghyuk; Sung, Hyung Jin; Seo, Han; Bang, In Cheol; Kim, Hyoung Tae

    2014-01-01

    One of the important design features of a CANDU reactor (a pressurize heavy water reactor) is the use of moderator as a heat sink during some postulated accidents such as a large break Loss Of Coolant Accident (LOCA). If the moderator available subcooling at the onset of a large LOCA is greater than the subcooling requirements, a sustained calandria tube dryout is avoided. The subcooling requirements are determined from a set of experiments known as the fuel channel contact boiling experiments. The difference between available subcooling and required subcooling is called subcooling margins. The local temperature of the moderator is a key parameter in determining the available subcooling. To predict the local temperature in the calandria, Korea Atomic Energy Research Institute (KAERI) started the experimental research on moderator circulation as one of a national R and D research programs from 2012. In the present work the test vessel is equipment with 380 acrylic pipes instead of the heater rods and a preliminary measurement of velocity field using PIV is performed under the iso-thermal test conditions. The 2D velocity is measured on the cross-sectional plane normal to the axial direction of the tank. The PIV measurement results could capture the same flow pattern as that expected in the CANDU6 calandria tank under momentum dominant flow condition, where the inlet jets penetrate to the top of the tank and produce a downward flow through the center of the tube columns towards the outlet nozzle and the flow fields are in symmetric distributions. The measurements of downward velocities are performed at different locations. The velocity is shown to be axially uniform. The velocity is rapidly decreased as the measurement location is far from the center of tank, since the downward flow is dominant along the center of the tube columns. More experimental works for the iso-thermal conditions as well as the heating conditions will be performed using PIV measurement in the

  3. Improvement of Classification of Enterprise Circulating Funds

    Directory of Open Access Journals (Sweden)

    Rohanova Hanna O.

    2014-02-01

    Full Text Available The goal of the article lies in revelation of possibilities of increase of efficiency of managing enterprise circulating funds by means of improvement of their classification features. Having analysed approaches of many economists to classification of enterprise circulating funds, systemised and supplementing them, the article offers grouping classification features of enterprise circulating funds. In the result of the study the article offers an expanded classification of circulating funds, which clearly shows the role of circulating funds in managing enterprise finance and economy in general. The article supplements and groups classification features of enterprise circulating funds by: the organisation level, functioning character, sources of formation and their cost, and level of management efficiency. The article shows that the provided grouping of classification features of circulating funds allows exerting all-sided and purposeful influence upon indicators of efficiency of circulating funds functioning and facilitates their rational management in general. The prospect of further studies in this direction is identification of the level of attraction of loan resources by production enterprises for financing circulating funds.

  4. A Statistical Evaluation of Atmosphere-Ocean General Circulation Models: Complexity vs. Simplicity

    OpenAIRE

    Robert K. Kaufmann; David I. Stern

    2004-01-01

    The principal tools used to model future climate change are General Circulation Models which are deterministic high resolution bottom-up models of the global atmosphere-ocean system that require large amounts of supercomputer time to generate results. But are these models a cost-effective way of predicting future climate change at the global level? In this paper we use modern econometric techniques to evaluate the statistical adequacy of three general circulation models (GCMs) by testing thre...

  5. Experimental investigations in high-pressure natural circulation loop: progress report for the period January-June, 1999

    International Nuclear Information System (INIS)

    Naveen Kumar; Rajalakshmi, R.; Kulkarni, R.D.; Sagar, T.V.; Vijayan, P.K.; Saha, D.

    2000-02-01

    The Advanced Heavy Water Reactor employs natural circulation as the normal mode of coolant circulation. This is expected to enhance safety and reliability as it eliminates all safety issues associated with the pump failure. Two-phase natural circulation, however, is susceptible to several types of instabilities. In addition, the flow rate in a natural circulation loop is a dependent quantity and is not known a priori. Reliable calculations of the flow rate and stability behaviour are essential to ensure the success of AHWR design. Hence computer codes developed to predict the steady state flow rate and stability behaviour require validation against test data under natural circulation. For this purpose a high-pressure natural circulation loop has been designed, constructed and commissioned. Steady state experiments have been carried out in this loop to study the effect of pressure on natural circulation flow rate. The experimental results for this case are presented in this report. More experiments are planned in future to study the various aspects of two-phase natural circulation. (author)

  6. Scientific investigation plan for initial engineered barrier system field tests

    International Nuclear Information System (INIS)

    Wunan Lin.

    1993-02-01

    The purpose of this Scientific Investigation Plan (SIP) is to describe tests known as Initial Engineered Barrier System Field Tests (IEBSFT) and identified by Work Breakdown Structure as WBS 1.2.2.2.4. The IEBSFT are precursors to the Engineered Barrier System Field Test (EBSFT), WBS 1.2.2.2.4, to be conducted in the Exploratory Study Facility (ESF) at Yucca Mountain. The EBSFT and IEBSFT are designed to provide information on the interaction between waste packages (simulated by heated containers) and the surrounding rock mass, its vadose water, and infiltrated water. Heater assemblies will be installed in drifts or boreholes openings and heated to measure moisture movement during heat-up and subsequent cool-down of the rock mass. In some of the tests, infiltration of water into the heated rock mass will be studied. Throughout the heating and cooling cycle, instruments installed in the rock will monitor such parameters as temperature, moisture content, concentration of some chemical species, and stress and strain. Rock permeability measurements, rock and fluid (water and gas) sampling, and fracture pattern measurements will also be made before and after the test

  7. Natural Circulation Characteristics at Low-Pressure Conditions through PANDA Experiments and ATHLET Simulations

    Directory of Open Access Journals (Sweden)

    Domenico Paladino

    2008-01-01

    Full Text Available Natural circulation characteristics at low pressure/low power have been studied by performing experimental investigations and numerical simulations. The PANDA large-scale facility was used to provide valuable, high quality data on natural circulation characteristics as a function of several parameters and for a wide range of operating conditions. The new experimental data allow for testing and improving the capabilities of the thermal-hydraulic computer codes to be used for treating natural circulation loops in a range with increased attention. This paper presents a synthesis of a part of the results obtained within the EU-Project NACUSP “natural circulation and stability performance of boiling water reactors.” It does so by using the experimental results produced in PANDA and by showing some examples of numerical simulations performed with the thermal-hydraulic code ATHLET.

  8. Investigation of an overheated PWR-type fuel rod simulator bundle cooled down by steam. Pt. 1: experimental and calculational results of the QUENCH-04 test. Pt. 2: application of the SVECHA/QUENCH code to the analysis of the QUENCH-01 and QUENCH-04 bundle tests

    International Nuclear Information System (INIS)

    Sepold, L.; Hofmann, P.; Homann, C.

    2002-04-01

    The QUENCH experiments are to investigate the hydrogen source term that results from the water injection into an uncovered core of a light-water reactor (LWR). The test bundle is made of 21 fuel rod simulators with a length of approximately 2.5 m. 20 fuel rod simulators are heated over a length of 1024 mm, the one unheated fuel rod simulator is located in the center of the test bundle. Heating is carried out electrically using 6-mm-diameter tungsten heating elements installed in the center of the rods and surrounded by annular ZrO 2 pellets. The rod cladding is identical to that used in LWRs: Zircaloy-4, 10.75 mm outside diameter, 0.725 mm wall thickness. The test bundle is instrumented with thermocouples attached to the cladding and the shroud at 17 different elevations with an axial distance between the thermocouples of 100 mm. During the entire test up to the cooldown phase, superheated steam together with the argon as carrier gas enters the test bundle at the bottom end and leaves the test section at the top together with the hydrogen that is produced in the zirconium-steam reaction. The hydrogen is analyzed by three different instruments: two mass spectrometers and a ''Caldos 7 G'' hydrogen measuring device (based on the principle of heat conductivity). Part I of this report describes the results of test QUENCH-04 performed in the QUENCH test facility at the Forschungszentrum Karlsruhe on June 30, 1999. The objective of the experiment QUENCH-04 was to investigate the reaction of the non-preoxidized rod cladding on cooldown by steam rather than quenching by water. Part II of the present report deals with the results of the SVECHA/QUENCH (S/Q) code application to the FZK QUENCH bundle tests. The adaptation of the S/Q code to such kind of calculations is described. The numerical procedure of the recalculation of the temperature test data, and the preparation for the S/Q code input is presented. In particular, the results of the QUENCH-01 and QUENCH-04 test

  9. Experimental study on gas-injection enhanced circulation performed with the CIRCE facility

    International Nuclear Information System (INIS)

    Benamati, G.; Foletti, C.; Forgione, N.; Oriolo, F.; Scaddozzo, G.; Tarantino, M.

    2007-01-01

    This paper describes the results of an experimental campaign concerning the possibility of achieving a steady state circulation by gas-injection in a pool containing lead-bismuth eutectic (LBE) as working fluid. The activity was aimed at gaining information about the basic mechanisms of the gas injection enhanced circulation intended as a pumping system for a liquid metal cooled reactor. In particular, the paper is focused on the experimental work performed in the CIRCE large-scale facility, installed at the ENEA Brasimone Centre for studying the fluid-dynamic and operating behaviour of ADS reactor plants cooled by LBE. The gas enhanced circulation tests were carried out for different LBE temperatures (from 200 to 320 deg. C), under isothermal conditions and with a wide range of argon injected flow rates (from 0.5 to 7.0 Nl/s). The gas is injected from the bottom of the riser, by means of an appropriate nozzle, and the liquid metal flow rate is measured by a Venturi-Nozzle flow meter installed in the single phase part of the test section. The obtained results allowed formulating a characteristic curve of the system and evaluating the void fraction distribution along the riser path by means differential pressure measurements, which play an important role to generating the driving force for the circulation

  10. LOFT/L6-7, Loss of Fluid Test, Anticipated Transients with Multiple Failures

    International Nuclear Information System (INIS)

    1992-01-01

    1 - Description of test facility: The LOFT Integral Test Facility is a scale model of a LPWR. The intent of the facility is to model the nuclear, thermal-hydraulic phenomena which would take place in a LPWR during a LOCA. The general philosophy in scaling coolant volumes and flow areas in LOFT was to use the ratio of the LOFT core [50 MW(t)] to a typical LPWR core [3000 MW(t)]. For some components, this factor is not applied; however, it is used as extensively as practical. In general, components used in LOFT are similar in design to those of a LPWR. Because of scaling and component design, the LOFT LOCA is expected to closely model a LPWR LOCA. 2 - Description of test: This was the seventh in the NRC L6 Series of Anticipated Transients experiments. Rapid secondary side induced cooldown was studied. The experiment was conducted on 31 September 1981

  11. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  12. Circulation Systems Past and Present

    Directory of Open Access Journals (Sweden)

    Maurice J. Freedman

    1981-01-01

    Full Text Available A review of the development of circulation systems shows two areas of change. The librarian's perception of circulation control has shifted from a broad service orientation to a narrow record-keeping approach and recently back again. The technological development of circulation sys-tems has evolved from manual systems to the online systems of today. The trade-offs and deficiencies of earlier systems in relation to the comprehensive services made possible by the online computer are detailed.

  13. CIRCUS and DESIRE: Experimental facilities for research on natural-circulation-cooled boiling water reactors

    International Nuclear Information System (INIS)

    Kruijf, W.J.M. de; Haden, T.H.J.J. van der; Zboray, R.; Manera, A.; Mudde, R.F.

    2002-01-01

    At the Delft University of Technology two thermohydraulic test facilities are being used to study the characteristics of Boiling Water Reactors (BWRs) with natural circulation core cooling. The focus of the research is on the stability characteristics of the system. DESIRE is a test facility with freon-12 as scaling fluid in which one fuel bundle of a natural-circulation BWR is simulated. The neutronic feedback can be simulated artificially. DESIRE is used to study the stability of the system at nominal and beyond nominal conditions. CIRCUS is a full-height facility with water, consisting of four parallel fuel channels and four parallel bypass channels with a common riser or with parallel riser sections. It is used to study the start-up characteristics of a natural-circulation BWR at low pressures and low power. In this paper a description of both facilities is given and the research items are presented. (author)

  14. Long term survival following the detection of circulating tumour cells in head and neck squamous cell carcinoma

    International Nuclear Information System (INIS)

    Winter, Stuart C; Stephenson, Sally-Anne; Subramaniam, Selva K; Paleri, Vinidh; Ha, Kien; Marnane, Conor; Krishnan, Suren; Rees, Guy

    2009-01-01

    Techniques for detecting circulating tumor cells in the peripheral blood of patients with head and neck cancers may identify individuals likely to benefit from early systemic treatment. Reconstruction experiments were used to optimise immunomagnetic enrichment and RT-PCR detection of circulating tumor cells using four markers (ELF3, CK19, EGFR and EphB4). This method was then tested in a pilot study using samples from 16 patients with advanced head and neck carcinomas. Seven patients were positive for circulating tumour cells both prior to and after surgery, 4 patients were positive prior to but not after surgery, 3 patients were positive after but not prior to surgery and 2 patients were negative. Two patients tested positive for circulating cells but there was no other evidence of tumor spread. Given this patient cohort had mostly advanced disease, as expected the detection of circulating tumour cells was not associated with significant differences in overall or disease free survival. For the first time, we show that almost all patients with advanced head and neck cancers have circulating cells at the time of surgery. The clinical application of techniques for detection of spreading disease, such as the immunomagnetic enrichment RT-PCR analysis used in this study, should be explored further

  15. Computer simulation of natural circulation in FFTF secondary loops

    International Nuclear Information System (INIS)

    Beaver, T.R.; Turner, D.M.; Additon, S.L.

    1979-07-01

    A thermal/hydraulic model of the FFTF secondary heat transport loop has been calibrated against transient natural circulation test data collected March to May 1979. The tests verified that the transition to natural convective flow could be effected from near isothermal conditions without excessive cooling at the air dump heat exchangers. Key empirical parameters of pressure drop and heat loss were found to be at 88% and 81% of pretest estimates, respectively. Pretest piping thermal transport and flow calculational models required no further revision to produce good agreement with test data

  16. Natural Circulation Characteristics at Low-Pressure Conditions through PANDA Experiments and ATHLET Simulations

    OpenAIRE

    Paladino, Domenico; Huggenberger, Max; Schäfer, Frank

    2008-01-01

    Natural circulation characteristics at low pressure/low power have been studied by performing experimental investigations and numerical simulations. The PANDA large-scale facility was used to provide valuable, high quality data on natural circulation characteristics as a function of several parameters and for a wide range of operating conditions. The new experimental data allow for testing and improving the capabilities of the thermal-hydraulic computer codes to be used for treating natural c...

  17. Dynamics and developing of natural circulation cooling from vertical upflow and downflow conditions

    International Nuclear Information System (INIS)

    Yang, B.W.; Ouyang, W.

    2004-01-01

    Several research programs have been conducted to evaluate the capability of natural circulation cooling of reactors following a loss of cooling accident. Both experimental and RELAP5 simulation results were obtained for these studies in a facility with vertical heated tube(s) and a unheated bypass channel. The analytical results showed that, under a certain power level, a natural circulation pattern can be developed from both initial upflow and downflow conditions, and maintained for a significant cooling period. This power level, for the discussion of this paper, is defined as the natural circulation cooling (NCC) power limit. Two import factors, namely the pump coastdown rate and the initial flow direction, are examined in this paper. In the benchmark case, as compared to the experimental results, the RELAP5 simulation program accurately predicted the transient phenomena from forced convection through flow reversal, then, into natural circulation cooling. Generally, the two-phase NCC power limit is higher and also more stable for the cases with initial upflow forced convection than for the cases with initial downflow. The transient phenomena (dynamics) of the natural circulation cooling was examined by varying the pump coast down rate in approaching the flow reversal natural circulation. A significant pump coastdown effect on the NCC power limit was observed for the analytical tests with initial downflow forced convection. For the tests with initial downflow condition, the higher the coastdown rate (or the shorter the coastdown period), the higher the NCC power limit. For the case with initial upflow forced convection, there may be an optimal coastdown rate for a given subcooled condition. However, for the subcooled condition used in this study, the effect of pump coast down rate is not as significant as in the downward forced convection. (author)

  18. NPP Krsko natural circulation performance evaluation

    International Nuclear Information System (INIS)

    Segon, Velimir; Bajs, Tomislav; Frogheri, Monica

    1999-01-01

    The present document deals with an evaluation of the natural circulation performance of the Krsko nuclear power plant. Two calculation have been performed using the NPP Krsko nodalization (both similar to the LOBI A2-77 natural circulation experiment) - the first with the present steam generators at NPP Krsko (Westinghouse, 18% plugged), the second with the future steam generators (Siemens, 0% plugged). The results were evaluated using the natural circulation flow map derived in /1/, and were compared to evaluate the influence of the new steam generators on the natural circulation performance. (author)

  19. Basic natural circulation characteristics of SBWR

    International Nuclear Information System (INIS)

    Kuran, S.; Soekmen, C. N.

    2001-01-01

    Natural circulation is an important passive heat removal mechanism for both existing and next generation light water reactors. Simplified Boiling Water Reactor (SBWR) is one of the advanced light water reactors that rely on natural circulation for normal as well as emergency core cooling. In this study, basic natural circulation characteristics of this reactor are examined on a flow loop that simulates the operation of SBWR. On this model, effect of system operating parameters on the steady state natural circulation characteristics inside the loop is studied via solving the transcendental equation for loop flow rate

  20. Encoders for block-circulant LDPC codes

    Science.gov (United States)

    Divsalar, Dariush (Inventor); Abbasfar, Aliazam (Inventor); Jones, Christopher R. (Inventor); Dolinar, Samuel J. (Inventor); Thorpe, Jeremy C. (Inventor); Andrews, Kenneth S. (Inventor); Yao, Kung (Inventor)

    2009-01-01

    Methods and apparatus to encode message input symbols in accordance with an accumulate-repeat-accumulate code with repetition three or four are disclosed. Block circulant matrices are used. A first method and apparatus make use of the block-circulant structure of the parity check matrix. A second method and apparatus use block-circulant generator matrices.

  1. Two-phase natural circulation experiments in a pressurized water loop with CANDU geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ardron, K.H.; Krishnan, V.S.; McGee, G.R.; Anderson, J.W.D.; Hawley, E.H.

    1984-07-01

    A series of tests has been performed in the RD-12 loop, a 10-MPa pressurized-water loop containing two active boilers, two pumps, and two, or four, heated horizontal channels arranged in a symmetrical figure-of-eight configuration characteristic of the CANDU reactor primary heat-transport system. In the tests, single-phase natural circulation was established in the loop and void was introduced by controlled draining, with the surge tank (pressurizer) valved out of the system. Results indicate that a stable, two-phase, natural circulation flow can usually be established. However, as the void fraction in the loop is increased, large-amplitude flow oscillations can occur. The initial flow oscillations in the two halves of the loop are usually very nearly 180/sup 0/ out-of-phase. However, as the loop inventory is further decreased, an in-phase oscillation component is observed. In tests with two parallel, heated channels in each half-loop, oscillations associated with mass transfer between the channel pairs are also observed. Although flow oscillations can lead to intermittent dryout of the upper elements of the heater-rod assemblies in the horizontal channels, natural circulation cooling appears to be effective until about 50% of the loop inventory is drained; sustained flow stratification then occurs in the heated channels, leading to heater temperature excursions. The paper reviews the experimental results obtained and describes the evolution of natural circulation flow in particular cases as voidage is progressively increased. The stability behavior is discussed briefly with reference to a simple stability model.

  2. The stability of the thermohaline circulation in a coupled ocean-atmosphere general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, A. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Mikolajewicz, U. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany); Voss, R. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany)

    1996-02-01

    The stability of the Atlantic thermohaline circulation against meltwater input is investigated in a coupled ocean-atmosphere general circulation model. The meltwater input to the Labrador Sea is increased linearly for 250 years to a maximum input of 0.625 Sv and then reduced again to 0 (both instantaneously and slowly decreasing over 250 years). The resulting freshening forces a shutdown of the formation of North Atlantic deepwater and a subsequent reversal of the thermohaline circulation of the Atlantic, filling the deep Atlantic with Antarctic bottom water. The change in the overturning pattern causes a drastic reduction of the Atlantic northward heat transport, resulting in a strong cooling with maximum amplitude over the northern North Atlantic and a southward shift of the sea-ice margin in the Atlantic. Due to the increased meridional temperature gradient, the Atlantic intertropical convergence zone is displaced southward and the westerlies in the northern hemisphere gain strength. We identify four main feedbacks affecting the stability of the thermohaline circulation: the change in the overturning circulation of the Atlantic leads to longer residence times of the surface waters in high northern latitudes, which allows them to accumulate more precipitation and runoff from the continents, which results in an increased stability in the North Atlantic.

  3. Ocean circulation code on machine connection

    International Nuclear Information System (INIS)

    Vitart, F.

    1993-01-01

    This work is part of a development of a global climate model based on a coupling between an ocean model and an atmosphere model. The objective was to develop this global model on a massively parallel machine (CM2). The author presents the OPA7 code (equations, boundary conditions, equation system resolution) and parallelization on the CM2 machine. CM2 data structure is briefly evoked, and two tests are reported (on a flat bottom basin, and a topography with eight islands). The author then gives an overview of studies aimed at improving the ocean circulation code: use of a new state equation, use of a formulation of surface pressure, use of a new mesh. He reports the study of the use of multi-block domains on CM2 through advection tests, and two-block tests

  4. Arc jet testing of a Dynasil dome

    Science.gov (United States)

    Burrell, Jack O.; Strobel, Forrest A.

    1999-07-01

    Arc jet testing of the Hera modified ballistic reentry vehicle - 1E (MBRV-1E) nosetip was conducted in June of 1998. The tests were conducted in the Air Force's Arnold Engineering Development Center HEAT-H1 arc plasma test facility in Tullahoma, Tennessee. The MBRV-1 vehicle is a separating short- to medium-range target. The MBRV-1E nosetip incorporates a custom designed quartz dome that is integrated into the nosetip stagnation region. The dome was bonded to the baseline nosetip material, a well characterized carbon-carbon composite material, using a silica based ceramic bond materials. The objectives of the test were to demonstrate the thermal performance and structural integrity of the nosetip design by exposing tip to arc plasma-heated flow simulating the reentry flight environment. Pre-test analysis of the Dynasil dome performed using finite element analysis predicted the dome would survive the test conditions with no failures. Post-test inspection of the dome revealed a hard, opaque coating on the outer surface of the dome. Once removed, the dome was shown to have numerous surface cracks near the stagnation region. In addition to the surface cracks, significant pitting on the surface was observed through both an optical microscope and a scanning electron microscope. Post-test analyses were performed to determine the cause of these surface cracks. It was concluded that the cracks occurred during cooldown, and were a result of significant strength degradation which was caused by the surface pitting.

  5. A Wind Tunnel Model to Explore Unsteady Circulation Control for General Aviation Applications

    Science.gov (United States)

    Cagle, Christopher M.; Jones, Gregory S.

    2002-01-01

    Circulation Control airfoils have been demonstrated to provide substantial improvements in lift over conventional airfoils. The General Aviation Circular Control model is an attempt to address some of the concerns of this technique. The primary focus is to substantially reduce the amount of air mass flow by implementing unsteady flow. This paper describes a wind tunnel model that implements unsteady circulation control by pulsing internal pneumatic valves and details some preliminary results from the first test entry.

  6. Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation

    KAUST Repository

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry J.; Bower, Amy S.; Zhai, Ping; Kö hl, Armin; Gopalakrishnan, Ganesh

    2014-01-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using high-resolution MIT general circulation model simulations. In the first part of this study, the vertical and horizontal structure of the summer overturning circulation and its dynamical mechanisms are presented from the model results. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. In addition, during late summer two processes associated, respectively, with latitudinally differential heating and increased salinity in the southern Red Sea act together to cause the reversal of the contrast of the vertical density structure and the cessation of the summer overturning circulation. Dynamically, the subsurface northward pressure gradient force is mainly balanced by vertical viscosity resulting from the vertical shear and boundary friction in the Strait of Bab el Mandeb. Unlike some previous studies, the three-layer summer exchange flows in the Strait of Bab el Mandeb do not appear to be hydraulically controlled.

  7. Seasonal overturning circulation in the Red Sea: 1. Model validation and summer circulation

    KAUST Repository

    Yao, Fengchao

    2014-04-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using high-resolution MIT general circulation model simulations. In the first part of this study, the vertical and horizontal structure of the summer overturning circulation and its dynamical mechanisms are presented from the model results. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. In addition, during late summer two processes associated, respectively, with latitudinally differential heating and increased salinity in the southern Red Sea act together to cause the reversal of the contrast of the vertical density structure and the cessation of the summer overturning circulation. Dynamically, the subsurface northward pressure gradient force is mainly balanced by vertical viscosity resulting from the vertical shear and boundary friction in the Strait of Bab el Mandeb. Unlike some previous studies, the three-layer summer exchange flows in the Strait of Bab el Mandeb do not appear to be hydraulically controlled.

  8. Hot helium flow test facility summary report

    International Nuclear Information System (INIS)

    1980-06-01

    This report summarizes the results of a study conducted to assess the feasibility and cost of modifying an existing circulator test facility (CTF) at General Atomic Company (GA). The CTF originally was built to test the Delmarva Power and Light Co. steam-driven circulator. This circulator, as modified, could provide a source of hot, pressurized helium for high-temperature gas-cooled reactor (HTGR) and gas-cooled fast breeder reactor (GCFR) component testing. To achieve this purpose, a high-temperature impeller would be installed on the existing machine. The projected range of tests which could be conducted for the project is also presented, along with corresponding cost considerations

  9. Harmonic currents circulation in electrical networks simulation and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Em-Mamlouk, W.M. [MEP, Cairo (Egypt); El-Sharkawy, M.A. [Shams Univ., Cairo (Egypt). Dept. of Electrical Power and Machines; Mostafa, H.E. [Jazan Univ., Jazan (Saudi Arabia). Electrical Dept.

    2009-07-01

    A detailed harmonic flow analysis for a 13-bus balanced industrial distribution system was presented. The aim of the study was to determine the influence of harmonic sources in various branches of the system on voltage and current waveforms before disruptions to the utility supply system occurred. The current harmonic contents of an adjustable speed drive (ASD) were studied under various loading conditions. The test system was simulated using a standard study test system. Harmonic effects from multiple sources were investigated, and voltage distortion on the different buses was monitored. The study demonstrated that while the harmonic loads circulated harmonic currents in all system branches, no harmonic source was directly connected to the system buses. Many of the investigated cases exceeded allowable voltage total harmonic distortion and or current total harmonic distortion standards set by the Institute of Electrical and Electronic Engineers (IEEE). It was concluded that active harmonic filters should be used to prevent the effects of harmonic current circulation at different buses on neighbouring loads within a system. 8 refs., 11 tabs., 15 figs.

  10. Oxy-fuel combustion on circulating fluidized bed. Chapter 5

    Energy Technology Data Exchange (ETDEWEB)

    Anthony, E.J. [Canmet, Natural Resources Canada (Canada); Hack, H. [Foster Wheeler North America Corporation (United States)

    2011-07-01

    This paper explores the developments and field tests carried out with oxy-fuel fluidized bed combustion. This method has the advantage over the other options of emitting a pure stream of CO2 which thus does not need to be concentrated to be liquefied, transported and stored. In addition, pilot scale tests have shown that oxy-fired circulating fluidized bed combustion (CFBC) results in low emission and fuel flexibility. This paper highlighted that oxy-fired CFBC might be a good option for CCS but tests performed so far have been on a small scale. To confirm the promising results of pilot tests, demonstration projects are underway and are presented herein.

  11. Study on the phenomena of natural circulation in LMFBR

    International Nuclear Information System (INIS)

    Takeda, Hirofumi; Koga, Tomonari

    1993-01-01

    Decay heat removal with natural circulation is to be introduced to the LMFBR operation under loss of the electric power supply. The natural circulation is highly reliable, but the phenomenon is essentially unstable and subtle, which makes fine prediction difficult. The difficulties of experimental prediction are explained by facts that the phenomena are ruled by the delicate balance between the buoyancy force and the low pressure loss and are influenced by the various parameters such as local geometry, heat capacity and so on. Therefore the similarity rule for the natural circulation has not been fully understood. This study has been conducted to establish the simulation method for the natural circulation phenomena and the detailed phenomena have been reviewed. For the natural circulation in an LMFBR plant, there are no readily available reference velocity and temperature. These values are related only with the heating and cooling rate, the characteristic length and physical properties of the testing fluid. Basic equations were transformed by these values, and dimensionless equations were derived and then two dimensionless numbers, the Gr' number and the Bo' number, were identified. In order to examine the similarity rule for natural circulation we performed experiments using the different scale water models, a 1/20th and a 1/6th model. The temperatures and velocities at typical points were measured in the transient condition with various heating rate as a parameter. Measured temperatures and velocities were transformed to dimensionless forms for comparison and the effects of the Bo' number and the Gr' number were examined. As a result, it was clarified that the effect of the Gr' number is negligibly small but the effect of Bo' number still remained in our experimental range. The Bo' number of an actual plant is within the range of this experiment. Accordingly similitude of the Bo' number becomes important in an experiment to simulate an actual plant. (author)

  12. A study of longwave radiation codes for climate studies: Validation with ARM observations and tests in general circulation models

    International Nuclear Information System (INIS)

    Ellingson, R.G.; Baer, F.

    1993-01-01

    This report summarizes the activities of our group to meet our stated objectives. The report is divided into sections entitled: Radiation Model Testing Activities, General Circulation Model Testing Activities, Science Team Activities, and Publications, Presentations and Meetings. The section on Science Team Activities summarizes our participation with the science team to further advance the observation and modeling programs. Appendix A lists graduate students supported, and post-doctoral appointments during the project. Reports on the activities during each of the first two years are included as Appendix B. Significant progress has been made in: determining the ability of line-by-line radiation models to calculate the downward longwave flux at the surface; determining the uncertainties in calculated the downwelling radiance and flux at the surface associated with the use of different proposed profiling techniques; intercomparing clear-sky radiance and flux observations with calculations from radiation codes from different climate models; determining the uncertainties associated with estimating N* from surface longwave flux observations; and determining the sensitivity of model calculations to different formulations of the effects of finite sized clouds

  13. Single and two-phase natural circulation in Westinghouse pressurized water reactor simulators: Phenomena, analysis and scaling

    International Nuclear Information System (INIS)

    Schultz, R.R.; Chapman, J.C.; Kukita, Y.; Motley, F.E.; Stumpf, H.; Chen, Y.S.; Tasaka, K.

    1987-01-01

    Natural circulation data obtained in the 1/48 scale W four loop PWR simulator - the Large Scale Test Facility (LSTF) are discussed and summarized. Core cooling modes, the primary fluid state, the primary loop mass flow and localized natural circulation phenomena occurring in the steam generator are presented. TRAC-PF1 LSTF model (using both a 1 U-tube and a 3 U-tube steam generator model) analyses of the LSTF natural circulation data including the SG recirculation patterns are presented and compared to the data. The LSTF data are then compared to similar natural circulation data obtained in the Primarkreislaufe (PKL) and the Semiscale facilities. Based on the 1/48 to 1/1705 scaling range which exists between the facilities, the implications of these data towrard natural circulation behavior in commercial plants are briefly discussed

  14. Improvement of Classification of Enterprise Circulating Funds

    OpenAIRE

    Rohanova Hanna O.

    2014-01-01

    The goal of the article lies in revelation of possibilities of increase of efficiency of managing enterprise circulating funds by means of improvement of their classification features. Having analysed approaches of many economists to classification of enterprise circulating funds, systemised and supplementing them, the article offers grouping classification features of enterprise circulating funds. In the result of the study the article offers an expanded classification of circulating funds, ...

  15. Radiation Heat Transfer Effect on Thermal Sizing of Air-Cooling Heat Exchanger of Emergency Cooldown Tank

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Joo Hyung; Kim, Young In; Kim, Keung Koo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Myoung Jun; Lee, Hee Joon [School of Mechanical Eng., Kookmin University, Seoul (Korea, Republic of)

    2014-10-15

    An attempt has begun to extend the life time of emergency cooldown tank (ECT) by Korea Atomic Energy Research Institute (KAERI) researchers. Moon et al. recently reported a basic concept upon how to keep the ECT in operation beyond 72 hours after an accident occurs without any active corrective actions for the postulated design basis accidents. When the SMART (System-integrated Modular Advanced Reac-Tor) received its Standard Design Approval (SDA) for the first time in the world, hybrid safety systems are applied. However, the passive safety systems of SMART are being enforced in response to the public concern for much safer reactors since the Fukushima accident occurred. The ECT is a major component of a passive residual heat removal system (PRHRS), which is one of the most important systems to enhance the safety of SMART. It is being developed in a SMART safety enhancement project to contain enough cooling water to remove a sensible heat and a decay heat from reactor core for 72 hours since an accident occurs. Moon et al. offered to install another heat exchanger above the ECT and to recirculate an evaporated steam into water, which enables the ECT to be in operation, theoretically, indefinitely. An investigation was made to determine how long and how many tubes were required to meet the purpose of the study. In their calculation, however, a radiation heat transfer effect was neglected. The present study is to consider the radiation heat transfer for the design of air-cooling heat exchanger. Radiation heat transfer is normally ignored in many situations, but this is not the case for the present study. Kim et al. conducted thermal sizing of scaled-down ECT heat exchanger, which will be used to validate experimentally the basic concept of the present study. Their calculation is also examined to see if a radiation heat transfer effect was taken into consideration. The thermal sizing of an air-cooling heat exchanger was conducted including radiation heat transfer

  16. Formation of germline chimera Gaok chicken used circulation primordial germ cells (circulation PGCs fresh and thawed

    Directory of Open Access Journals (Sweden)

    Kostaman T

    2014-03-01

    Full Text Available Formation of germline chimeras by transfer of chicken primordial germ cells (PGCs is one of the effective techniques for preservation and regeneration of genetic resources in chickens. This study attempted to form germline chimeras of Gaok chicken buy purifying circulated PGCs of donor embryo before it is transferred to the recipient (White Leghorn chickens=WL and studied the ability of recipient embryo on survival in incubators, and hatchability. This study used 200 fertile eggs of Gaok and 90 fertile WL breed all of the eggs was incubated at 380C and 60% humidity in a portable incubator. PGCs-circulation of the blood collected Gaok embryos at stage 14-16 were taken from the dorsal aorta, and then purified by centrifugation method using nycodenz. PGCs-circulation results further purification frozen in liquid nitrogen before being transferred to the recipient embryo. The results showed that for the development of embryos transferred to the fresh circulation of PGCs-circulation as many as 25 cells can survive up to day 14, while one of the transferred of 50 and 100 cells into recipient embryos was hatched (10%. On the contrari recipient embryos that are transferred to the frozen PGCs-circulation the embryos development was shorter, and only survived until day 10th (treatment 25 cells, day 14th (treatment of 50 cells and day 17th (treatment of 100 cells. It is concluded that the amount of PGCs-circulation embryos transferred to the recipient is one factor that influence the success of the development germline chimeras.

  17. Circulating Cellular Adhesion Molecules and Cognitive Function: The Coronary Artery Risk Development in Young Adults Study

    Directory of Open Access Journals (Sweden)

    Cynthia Yursun Yoon

    2017-05-01

    Full Text Available ObjectiveHigher circulating concentrations of cellular adhesion molecules (CAMs can be used as markers of endothelial dysfunction. Given that the brain is highly vascularized, we assessed whether endothelial function is associated with cognitive performance.MethodWithin the Coronary Artery Risk Development in Young Adults (CARDIA Study, excluding N = 54 with stroke before year 25, we studied CAMs among N = 2,690 black and white men and women in CARDIA year 7 (1992–1993, ages 25–37 and N = 2,848 in CARDIA year 15 (2000–2001, ages 33–45. We included subjects with levels of circulating soluble CAMs measured in year 7 or 15 and cognitive function testing in year 25 (2010–2011, ages 43–55. Using multiple regression analysis, we evaluated the association between CAMs and year 25 cognitive test scores: Rey Auditory Verbal Learning Test (RAVLT, memory, Digit Symbol Substitution Test (DSST, speed of processing, and the Stroop Test (executive function.ResultAll CAM concentrations were greater in year 15 vs. year 7. Adjusting for age, race, sex, education, smoking, alcohol, diet, physical activity, participants in the fourth vs. the first quartile of CARDIA year 7 of circulating intercellular adhesion molecule-1 (ICAM-1 scored worse on RAVLT, DSST, and Stroop Test (p ≤ 0.05 in CARDIA year 25. Other CAMs showed little association with cognitive test scores. Findings were similar for ICAM-1 assessed at year 15. Adjustment for possibly mediating physical factors attenuated the findings.ConclusionHigher circulating ICAM-1 at average ages 32 and 40 was associated with lower cognitive skills at average age 50. The study is consistent with the hypothesis that endothelial dysfunction is associated with worse short-term memory, speed of processing, and executive function.

  18. Circulating Cellular Adhesion Molecules and Cognitive Function: The Coronary Artery Risk Development in Young Adults Study.

    Science.gov (United States)

    Yoon, Cynthia Yursun; Steffen, Lyn M; Gross, Myron D; Launer, Lenore J; Odegaard, Andrew; Reiner, Alexander; Sanchez, Otto; Yaffe, Kristine; Sidney, Stephen; Jacobs, David R

    2017-01-01

    Higher circulating concentrations of cellular adhesion molecules (CAMs) can be used as markers of endothelial dysfunction. Given that the brain is highly vascularized, we assessed whether endothelial function is associated with cognitive performance. Within the Coronary Artery Risk Development in Young Adults (CARDIA) Study, excluding N  = 54 with stroke before year 25, we studied CAMs among N  = 2,690 black and white men and women in CARDIA year 7 (1992-1993, ages 25-37) and N  = 2,848 in CARDIA year 15 (2000-2001, ages 33-45). We included subjects with levels of circulating soluble CAMs measured in year 7 or 15 and cognitive function testing in year 25 (2010-2011, ages 43-55). Using multiple regression analysis, we evaluated the association between CAMs and year 25 cognitive test scores: Rey Auditory Verbal Learning Test (RAVLT, memory), Digit Symbol Substitution Test (DSST, speed of processing), and the Stroop Test (executive function). All CAM concentrations were greater in year 15 vs. year 7. Adjusting for age, race, sex, education, smoking, alcohol, diet, physical activity, participants in the fourth vs. the first quartile of CARDIA year 7 of circulating intercellular adhesion molecule-1 (ICAM-1) scored worse on RAVLT, DSST, and Stroop Test ( p  ≤ 0.05) in CARDIA year 25. Other CAMs showed little association with cognitive test scores. Findings were similar for ICAM-1 assessed at year 15. Adjustment for possibly mediating physical factors attenuated the findings. Higher circulating ICAM-1 at average ages 32 and 40 was associated with lower cognitive skills at average age 50. The study is consistent with the hypothesis that endothelial dysfunction is associated with worse short-term memory, speed of processing, and executive function.

  19. Full length prototype SSC dipole test results

    International Nuclear Information System (INIS)

    Strait, J.; Brown, B.C.; Carson, J.

    1987-01-01

    Results are presented from tests of the first full length prototype SSC dipole magnet. The cryogenic behavior of the magnet during a slow cooldown to 4.5K and a slow warmup to room temperature has been measured. Magnetic field quality was measured at currents up to 2000 A. Averaged over the body field all harmonics with the exception of b 2 and b 8 are at or within the tolerances specified by the SSC Central Design Group. (The values of b 2 and b 8 result from known design and construction defects which will be be corrected in later magnets.) Using an NMR probe the average body field strength is measured to be 10.283 G/A with point to point variations on the order of one part in 1000. Data are presented on quench behavior of the magnet up to 3500 A (approximately 55% of full field) including longitudinal and transverse velocities for the first 250 msec of the quench

  20. Hydrodynamic Instability and Dynamic Burnout in Natural Circulation Two-Phase Flow. An Experimental and Theoretical Study

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Jahnberg, S; Haga, I; Hansson, P T; Mathisen, R P

    1964-09-15

    A theoretical model for predicting the threshold of instability for two phase flow in a natural circulation loop is presented. The model calculates the flow transient caused by a step disturbance of the heat input, and is based upon the conservation laws of mass, momentum and energy in one dimensional form. Empirical correlations are used in the model for estimating the void fractions and the two-phase flow pressure drops. The equations are solved numerically in a finite difference approximation coded for a digital computer. An experimental study of the hydrodynamic instability and dynamic burnout in two-phase flow has been performed in a natural circulation loop in the pressure range from 10 to 70 atg. The test sections were round ducts of 20, 30 and 36 mm inner diameter and 4890 mm heated length. The experimental results showed that within the ranges tested, the stability of the flow increases with increasing pressure and increasing throttling before the test section, but decreases with increasing Inlet subcooling and increasing throttling after the test section. Comparing the natural circulation burnout steam qualities with corresponding forced circulation data shoved that the former data were low by a factor up to 2.5. However, by applying inlet throttling of the flow the burnout values approached and finally coincided with the forced circulation data. The present experimental results as well as data available from other sources have been compared with the stability thresholds obtained with the theoretical model. The comparisons included circular, annular and rod cluster geometries, and the agreement between the experimental and theoretical stability limits was good. Finally the application of the experimental and theoretical results on the assessment of boiling heavy water reactor design is discussed.

  1. Hydrodynamic Instability and Dynamic Burnout in Natural Circulation Two-Phase Flow. An Experimental and Theoretical Study

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Jahnberg, S.; Haga, I.; Hansson, P.T.; Mathisen, R.P.

    1964-09-01

    A theoretical model for predicting the threshold of instability for two phase flow in a natural circulation loop is presented. The model calculates the flow transient caused by a step disturbance of the heat input, and is based upon the conservation laws of mass, momentum and energy in one dimensional form. Empirical correlations are used in the model for estimating the void fractions and the two-phase flow pressure drops. The equations are solved numerically in a finite difference approximation coded for a digital computer. An experimental study of the hydrodynamic instability and dynamic burnout in two-phase flow has been performed in a natural circulation loop in the pressure range from 10 to 70 atg. The test sections were round ducts of 20, 30 and 36 mm inner diameter and 4890 mm heated length. The experimental results showed that within the ranges tested, the stability of the flow increases with increasing pressure and increasing throttling before the test section, but decreases with increasing Inlet subcooling and increasing throttling after the test section. Comparing the natural circulation burnout steam qualities with corresponding forced circulation data shoved that the former data were low by a factor up to 2.5. However, by applying inlet throttling of the flow the burnout values approached and finally coincided with the forced circulation data. The present experimental results as well as data available from other sources have been compared with the stability thresholds obtained with the theoretical model. The comparisons included circular, annular and rod cluster geometries, and the agreement between the experimental and theoretical stability limits was good. Finally the application of the experimental and theoretical results on the assessment of boiling heavy water reactor design is discussed

  2. Development of an Accident Reproduction Simulator System Using a Hemodialysis Extracorporeal Circulation System

    Science.gov (United States)

    Nishite, Yoshiaki; Takesawa, Shingo

    2016-01-01

    Background: Accidents that occur during dialysis treatment are notified to the medical staff via alarms raised by the dialysis apparatus. Similar to such real accidents, apparatus activation or accidents can be reproduced by simulating a treatment situation. An alarm that corresponds to such accidents can be utilized in the simulation model. Objectives: The aim of this study was to create an extracorporeal circulation system (hereinafter, the circulation system) for dialysis machines so that it sets off five types of alarms for: 1) decreased arterial pressure, 2) increased arterial pressure, 3) decreased venous pressure, 4) increased venous pressure, and 5) blood leakage, according to the five types of accidents chosen based on their frequency of occurrence and the degree of severity. Materials and Methods: In order to verify the alarm from the dialysis apparatus connected to the circulation system and the accident corresponding to it, an evaluation of the alarm for its reproducibility of an accident was performed under normal treatment circumstances. The method involved testing whether the dialysis apparatus raised the desired alarm from the moment of control of the circulation system, and measuring the time it took until the desired alarm was activated. This was tested on five main models from four dialyzer manufacturers that are currently used in Japan. Results: The results of the tests demonstrated successful activation of the alarms by the dialysis apparatus, which were appropriate for each of the five types of accidents. The time between the control of the circulatory system to the alarm signal was as follows, 1) venous pressure lower limit alarm: 7 seconds; 2) venous pressure lower limit: 8 seconds; 3) venous pressure upper limit: 7 seconds; 4) venous pressure lower limit alarm: 2 seconds; and 5) blood leakage alarm: 19 seconds. All alarms were set off in under 20 seconds. Conclusions: Thus, we can conclude that a simulator system using an extracorporeal

  3. Money circulation and debt circulation: A restatement of quantity theory of money

    OpenAIRE

    Xing, Xiaoyun; Xiong, Wanting; Chen, Liujun; Chen, Jiawei; Wang, Yougui; Stanley, H. Eugene

    2018-01-01

    Both money and debt are products of credit creation of banks. Money is always circulating among traders by facilitating commodity transactions. In contrast, debt is created by borrowing and annihilated by repayment as it is matured. However, when this creation- annihilation process is mediated by banks which are constrained by a credit capacity, there exists continuous transfer of debt among debtors, which can be defined as debt circulation. This paper presents a multi-agent model in which in...

  4. Fuel morphology effects on fission product release

    International Nuclear Information System (INIS)

    Osetek, D.J.; Hartwell, J.K.; Cronenberg, A.W.

    1986-01-01

    Results are presented of fission product release behavior observed during four severe fuel damage tests on bundles of UO 2 fuel rods. Transient temperatures up to fuel melting were obtained in the tests that included both rapid and slow cooldown, low and high (36 GWd/t) burnup fuel and the addition of Ag-In-Cd control rods. Release fractions of major fission product species and release rates of noble gas species are reported. Significant differences in release behavior are discussed between heatup and cooldown periods, low and high burnup fuel and long- and short-lived fission products. Explanations for the observed differences are offered that relate fuel morphology changes to the releases

  5. PIE on Safety-Tested Loose Particles from Irradiated Compact 4-4-2

    Energy Technology Data Exchange (ETDEWEB)

    Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gerczak, Tyler J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Morris, Robert Noel [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baldwin, Charles A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Fred C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    Post-irradiation examination (PIE) is being performed in support of tristructural isotropic (TRISO) coated particle fuel development and qualification for High Temperature Gas-cooled Reactors (HTGRs). This work is sponsored by the Department of Energy Office of Nuclear Energy (DOE-NE) through the Advanced Reactor Technologies (ART) Office under the Advanced Gas Reactor Fuel Development and Qualification (AGR) Program. The AGR-1 experiment was the first in a series of TRISO fuel irradiation tests initiated in 2006. The AGR-1 TRISO particles and fuel compacts were fabricated at Oak Ridge National Laboratory (ORNL) in 2006 using laboratory-scale equipment and irradiated for 3 years in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) to demonstrate and evaluate fuel performance under HTGR irradiation conditions. Post-irradiation examination was performed at INL and ORNL to study how the fuel behaved during irradiation, and to test fuel performance during exposure to elevated temperatures at or above temperatures that could occur during a depressurized conduction cooldown event. This report summarizes safety testing and post-safety testing PIE conducted at ORNL on loose particles extracted from irradiated AGR-1 Compact 4-4-2.

  6. What Can Radiocarbon Depth Profiles Tell Us About The LGM Circulation?

    Science.gov (United States)

    Burke, A.; Stewart, A.; Adkins, J. F.; Ferrari, R. M.; Thompson, A. F.; Jansen, M. F.

    2014-12-01

    Published reconstructions of radiocarbon in the Atlantic sector of the Southern Ocean indicate that there is a mid-depth maximum in radiocarbon age during the last glacial maximum (LGM). This is in contrast to the modern ocean where intense mixing between water masses along shared density surfaces (isopycnals) results in a relatively homogenous radiocarbon profile. A recent study (Ferrari et al. 2014) suggested that the extended Antarctic sea ice cover during the LGM necessitated a shallower boundary between the upper and lower branches of the meridional overturning circulation (MOC). This shoaled boundary lay above major topographic features and their associated strong diapycnal mixing, which isolated dense southern-sourced water in the lower branch of the overturning circulation. This isolation would have allowed radiocarbon to decay, and thus provides a possible explanation for the mid-depth radiocarbon age bulge. We test this hypothesis using an idealized, 2D, residual-mean dynamical model of the global overturning circulation. Concentration distributions of a decaying tracer that is advected by the simulated overturning are compared to published radiocarbon data. We test the sensitivity of the mid-depth radiocarbon age to changes in sea ice extent, wind strength, and isopycnal and diapycnal diffusion. The mid-depth radiocarbon age bulge is most likely caused by the different circulation geometry, associated with increased sea ice extent. In particular, with an LGM-like sea ice extent the upper and lower branches of the MOC no longer share isopycnals, so radiocarbon-rich northern-sourced water is no longer mixed rapidly into the southern-sourced water. However, this process alone cannot explain the magnitude of the glacial radiocarbon anomalies; additional isolation (e.g. from reduced air-sea gas exchange associated with the increased sea ice) is required. Ferrari, R., M. F. Jansen, J. F. Adkins, A. Burke, A. L. Stewart, and A. F. Thompson (2014), Antarctic sea

  7. Tests results of Nb$_{3}$Sn quadrupole magnets using a shell-based support structure

    CERN Document Server

    Caspi, S

    2009-01-01

    In support of the development of a 90 mm aperture Nb$_{3}$Sn superconducting quadrupole for the US LHC Accelerator Research Program (LARP), test results of five quadrupole magnets are compared. All five assemblies used key and bladder technology to compress and support the coils within an iron yoke and an aluminium shell. The first three models (TQS01a, b, c) used Nb$_{3}$Sn MJR conductor and segmented bronze poles. The last two models (TQS02a, b) used Nb$_{3}$Sn RRP conductor, and segmented titanium alloy (TiAl6V4) poles, with no axial gaps during reaction. This presentation summarizes the magnets performance during assembly, cool-down and excitation and compares measurements with design expectations.

  8. Genetically elevated levels of circulating triglycerides and brachial-ankle pulse wave velocity in a Chinese population.

    Science.gov (United States)

    Yao, W-M; Zhang, H-F; Zhu, Z-Y; Zhou, Y-L; Liang, N-X; Xu, D-J; Zhou, F; Sheng, Y-H; Yang, R; Gong, L; Yin, Z-J; Chen, F-K; Cao, K-J; Li, X-L

    2013-04-01

    Elevated levels of circulating triglycerides and increased arterial stiffness are associated with cardiovascular disease. Numerous studies have reported an association between levels of circulating triglycerides and arterial stiffness. We used Mendelian randomization to test whether this association is causal. We investigated the association between circulating triglyceride levels, the apolipoprotein A-V (ApoA5) -1131T>C single nucleotide polymorphism and brachial-ankle pulse wave velocity (baPWV) by examining data from 4421 subjects aged 18-74 years who were recruited from the Chinese population. baPWV was significantly associated with the levels of circulating triglycerides after adjusting for age, sex, body mass index (BMI), systolic blood pressure, heart rate, waist-to-hip ratio, antihypertensive treatment and diabetes mellitus status. The -1131C allele was associated with a 5% (95% confidence interval 3-8%) increase in circulating triglycerides (adjusted for age, sex, BMI, waist-to-hip ratio, diabetes mellitus and antihypertensive treatment). Instrumental variable analysis showed that genetically elevated levels of circulating triglycerides were not associated with increased baPWV. These results do not support the hypothesis that levels of circulating triglycerides have a causal role in the development of arterial stiffness.

  9. High power test of RF window and coaxial line in vacuum

    International Nuclear Information System (INIS)

    Sun, D.; Champion, M.; Gormley, M.; Kerns, Q.; Koepke, K.; Moretti, A.

    1993-01-01

    Primary rf input couplers for the superconducting accelerating cavities of the TESLA electron linear accelerator test to be performed at DESY, Hamburg, Germany are under development at both DESY and Fermilab. The input couplers consist of a WR650 waveguide to coaxial line transition with an integral ceramic window, a coaxial connection to the superconducting accelerating cavity with a second ceramic window located at the liquid nitrogen heat intercept location, and bellows on both sides of the cold window to allow for cavity motion during cooldown, coupling adjustments and easier assembly. To permit in situ high peak power processing of the TESLA superconducting accelerating cavities, the input couplers are designed to transmit nominally 1 ms long, 2 MW peak, 1.3 GHz rf pulses from the WR650 waveguide at room temperature to the cavities at 1.8 K. The coaxial part of the Fermilab TESLA input coupler design has been tested up to 1.7 MW using the prototype 805 MHz rf source located at the A0 service building of the Tevatron. The rf source, the testing system and the test results are described

  10. Evaluation of transient natural circulation behavior during accident in low power/shutdown condition of YGN units 3/4

    International Nuclear Information System (INIS)

    Bang, Young Seok; Kim, Kap; Seul, Kwang Won; Kim, Hho Jung

    1997-01-01

    A transient natural circulation behavior during a LOCA at hot-standby operation is evaluated for YGN Units 3/4. The plant initial condition is determined within the EOP limitation as suitable to hot-standby mode and the transient scenario is prepared as relevant to evaluation of transient natural circulation. A 0.4% cold leg break with loss of off-site power is calculated with RELAP5/MOD3.2, whose predictability has been verified for SBLOCA natural circulation test, S-NC-8B. Through one hour transient analysis, it is found that the plant has its own decay heat removal capability by natural circulation following a LOCA at hot-standby mode. Additional calculation is performed to investigate an effect of HPSI flow on natural circulation

  11. Surgical myocardial revascularization without extracorporeal circulation

    Directory of Open Access Journals (Sweden)

    Salomón Soriano Ordinola Rojas

    2003-05-01

    Full Text Available OBJECTIVE: To assess the immediate postoperative period of patients undergoing myocardial revascularization without extracorporeal circulation with different types of grafts. METHODS: One hundred and twelve patients, 89 (79.5% of whom were males, were revascularized without extracorporeal circulation. Their ages ranged from 39 to 85 years. The criteria for indicating myocardial revascularization without extracorporeal circulation were as follows: revascularized coronary artery caliber > 1.5 mm, lack of intramyocardial trajectory on coronary angiography, noncalcified coronary arteries, and tolerance of the heart to the different rotation maneuvers. RESULTS: Myocardial revascularization without extracorporeal circulation was performed in 112 patients. Three were converted to extracorporeal circulation, which required a longer hospital stay but did not impact mortality. During the procedure, the following events were observed: atrial fibrillation in 10 patients, ventricular fibrillation in 4, total transient atrioventricular block in 2, ventricular extrasystoles in 58, use of a device to retrieve red blood cells in 53, blood transfusion in 8, and arterial hypotension in 89 patients. Coronary angiography was performed in 20 patients on the seventh postoperative day when the grafts were patent. CONCLUSION: Myocardial revascularization without extracorporeal circulation is a reproducible technique that is an alternative for treating ischemic heart disease.

  12. Simulation of natural circulation on an integral type experimental facility, MASLWR

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Youngjong; Lim, Sungwon; Ha, Jaejoo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The OSU MASLWR test facility was reconfigured to eliminate a recurring grounding problem and improve facility reliability in anticipation of conducting an IAEA International Collaborative Standard Problem (ICSP). The purpose of ICSP is to provide experimental data on flow instability phenomena under natural circulation conditions and coupled containment/reactor vessel behavior in integral-type reactors, and to evaluate system code capabilities to predict natural circulation phenomena for integral type PWR, by simulating an integrated experiment. A natural circulation in the primary side during various core powers is analyzed using TASS/SMR code for the integral type experimental facility. The calculation results show higher steady state primary flow than experiment. If it matches the initial flow with experiment, it shows lower primary flow than experiment according to the increase of power. The code predictions may be improved by applying a Reynolds number dependent form loss coefficient to accurately account for unrecoverable pressure losses.

  13. Functional evaluation of circulating hematopoietic progenitors in Noonan syndrome

    Science.gov (United States)

    TIMEUS, FABIO; CRESCENZIO, NICOLETTA; BALDASSARRE, GIUSEPPINA; DORIA, ALESSANDRA; VALLERO, STEFANO; FOGLIA, LUISELDA; PAGLIANO, SARA; ROSSI, CESARE; SILENGO, MARGHERITA CIRILLO; RAMENGHI, UGO; FAGIOLI, FRANCA; DI MONTEZEMOLO, LUCA CORDERO; FERRERO, GIOVANNI BATTISTA

    2013-01-01

    comparison with the controls (median, 8.6%; range, 0–27.7% vs. median, 17.6%; range, 2.8–49.6%), suggesting an increased CD34+ cell survival. The functional evaluation of circulating hematopoietic progenitors showed specific patterns in NS and NS/MPD. These tests are a reliable integrative tool that, together with clinical data and other hematological parameters, could help detect NS patients with a high risk for a myeloproliferative evolution. PMID:23756559

  14. Explicit Determinants of the RFPrLrR Circulant and RLPrFrL Circulant Matrices Involving Some Famous Numbers

    Directory of Open Access Journals (Sweden)

    Tingting Xu

    2014-01-01

    Full Text Available Circulant matrices may play a crucial role in solving various differential equations. In this paper, the techniques used herein are based on the inverse factorization of polynomial. We give the explicit determinants of the RFPrLrR circulant matrices and RLPrFrL circulant matrices involving Fibonacci, Lucas, Pell, and Pell-Lucas number, respectively.

  15. Analysis of natural circulation stability in a low pressure thermohydraulic test loop

    International Nuclear Information System (INIS)

    Jafari, J.; D'Auria, F.; Kazeminejad, H.; Davilu, H.

    2002-01-01

    This paper discusses an instability study of a natural circulation (NC) loop performed with the aid of Relap5 thermal-hydraulic system code. This loop has been designed and constructed for the analysis of relevant thermohydraulic parameters of a nuclear reactor. In this study, the main parameters for the stability of NC are identified and characterized through the execution of proper code runs. The obtained stability boundary (SB) in the dimensionless Zuber- Sub-cooling plane is compared with the SB reported in referenced literature. The agreement of predicted NC stability boundaries with the results of independent studies demonstrates both the capability of the mentioned code in assessing NC loop stability and the quality of the performed calculations.(author)

  16. Investigation of Natural Circulation Instability and Transients in Passively Safe Small Modular Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Mamoru [Purdue Univ., West Lafayette, IN (United State

    2016-11-30

    The NEUP funded project, NEUP-3496, aims to experimentally investigate two-phase natural circulation flow instability that could occur in Small Modular Reactors (SMRs), especially for natural circulation SMRs. The objective has been achieved by systematically performing tests to study the general natural circulation instability characteristics and the natural circulation behavior under start-up or design basis accident conditions. Experimental data sets highlighting the effect of void reactivity feedback as well as the effect of power ramp-up rate and system pressure have been used to develop a comprehensive stability map. The safety analysis code, RELAP5, has been used to evaluate experimental results and models. Improvements to the constitutive relations for flashing have been made in order to develop a reliable analysis tool. This research has been focusing on two generic SMR designs, i.e. a small modular Simplified Boiling Water Reactor (SBWR) like design and a small integral Pressurized Water Reactor (PWR) like design. A BWR-type natural circulation test facility was firstly built based on the three-level scaling analysis of the Purdue Novel Modular Reactor (NMR) with an electric output of 50 MWe, namely NMR-50, which represents a BWR-type SMR with a significantly reduced reactor pressure vessel (RPV) height. The experimental facility was installed with various equipment to measure thermalhydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests were performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The control system and data acquisition system were programmed with LabVIEW to realize the realtime control and data storage. The thermal-hydraulic and nuclear coupled startup transients were performed to investigate the flow instabilities at low pressure and low power conditions for NMR-50. Two different power ramps were chosen to study the effect of startup

  17. Experimental Observations of Natural Circulation Flow in the NSTF at Steady-State Conditions

    International Nuclear Information System (INIS)

    Lisowski, Darius D.; Farmer, Mitch T.

    2014-01-01

    A ½ scale test facility has been constructed at Argonne National Laboratory (ANL) to study the heat removal performance and natural circulation flow patterns in a Reactor Cavity Cooling System (RCCS). Our test facility, the Natural convection Shutdown heat removal Test Facility (NSTF), supports the broader goal of developing an inherently safe and fully passive ex-vessel decay heat removal for advanced reactor designs. The project, initiated in 2010 to support the Advanced Reactor Concepts (ARC), Small Modular Reactor (SMR), and Next Generation Nuclear Plant (NGNP) programs, has been conducting experimental operations since early 2014. The following paper provides a summary of some primary design features of the 26-m tall test facility along with a description of the data acquisition suite that guides our experimental practices. Specifics of the distributed fiber optic temperature measurements will be discussed, which introduces an unparalleled level of data density that has never before been implemented in a large scale natural circulation test facility. Results from our first test series will then be presented, which provide insight into the thermal hydraulic behavior at steady-state conditions for varying heat flux levels and exhaust chimney configuration states. (author)

  18. Linking the South Atlantic Meridional Overturning Circulation and the Global Monsoons

    Science.gov (United States)

    Lopez, H.; Dong, S.; Goni, G. J.; Lee, S. K.

    2016-02-01

    This study tested the hypothesis whether low frequency decadal variability of the South Atlantic meridional heat transport (SAMHT) influences decadal variability of the global monsoons. A multi-century run from a state-of-the-art coupled general circulation model is used as basis for the analysis. Our findings indicate that multi-decadal variability of the South Atlantic Ocean plays a key role in modulating atmospheric circulation via interhemispheric changes in Atlantic Ocean heat content. Weaker SAMHT produces anomalous ocean heat divergence over the South Atlantic resulting in negative ocean heat content anomaly about 15 years later. This, in turn, forces a thermally direct anomalous interhemispheric Hadley circulation in the atmosphere, transporting heat from the northern hemisphere (NH) to the southern hemisphere (SH) and moisture from the SH to the NH, thereby intensify (weaken) summer (winter) monsoon in the NH and winter (summer) monsoon in the SH. Results also show that anomalous atmospheric eddies, both transient and stationary, transport heat northward in both hemispheres producing eddy heat flux convergence (divergence) in the NH (SH) around 15-30°, reinforcing the anomalous Hadley circulation. Overall, SAMHT decadal variability leads its atmospheric response by about 15 years, suggesting that the South Atlantic is a potential predictor of global climate variability.

  19. LHC Report: Beams are back in the LHC

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    The LHC has shaken itself awake after the winter break, and, as the snow melts on the lower slopes, the temperature in the magnets has dropped to a chilly 1.9 K once more.   Following the cool-down, the last few weeks have seen an intense few tests of the magnets, power supplies and associated protection systems. These tests, referred to as hardware commissioning, have been completed in record time. At the same time the other accelerator systems have been put through the preparatory machine checkout. In parallel, the injectors (LINAC2, Booster, PS and SPS) have also come out of the technical stop in order to prepare to deliver beam to the LHC very early in the season. Of particular note here was the remarkably seamless transition to POPS, the PS's new main power supply system. All this work culminated in the LHC taking beam again for the first time in 2011 on Saturday, 19 February. The careful preparation paid off, with circulating beams being rapidly re-established. There then followed a programme ...

  20. Detection of circulating immune complexes in breast cancer and melanoma by three different methods

    Energy Technology Data Exchange (ETDEWEB)

    Krapf, F; Renger, D; Fricke, M; Kemper, A; Schedel, I; Deicher, H

    1982-08-01

    By the simultaneous application of three methods, C1q-binding-test (C1q-BA), a two antibody conglutinin binding ELISA and a polyethylene-glycol 6000 precipitation with subsequent quantitative determination of immunoglobulins and complement factors in the redissolved precipitates (PPLaNT), circulating immune complexes could be demonstrated in the sera of 94% of patients with malignant melanoma and of 75% of breast cancer patients. The specific detection rates of the individual methods varied between 23% (C1q-BA) and 46% (PPLaNT), presumably due to the presence of qualitatively different immune complexes in the investigated sera. Accordingly, the simultaneous use of the afore mentioned assays resulted in an increased diagnostic sensitivity and a duplication of the predictive value. Nevertheless, because of the relatively low incidence of malignant diseases in the total population, and due to the fact that circulating immune complexes occur in other non-malignant diseases with considerable frequency, tests for circulating immune complexes must be regarded as less useful parameters in the early diagnostic of cancer.

  1. Clinical significance of the molecular detection of melanoma cells circulating in the peripheral blood in melanoma patients.

    Science.gov (United States)

    Konstantopoulos, K; Psatha, M; Kalotychou, V; Frangia, N; Ioannovits, I; Meletis, I; Loukopoulos, D

    2001-06-01

    Blood circulating melanoma cells may be important for the spread of the disease. The current methods are not sensitive in detecting micro metastases. Tyrosinase mRNA can be detected in peripheral blood by a molecular test. As tyrosinase is expressed only in melanocytes and melanocytes normally do not circulate in the blood, the test may prove reliable in detecting circulating melanoma cells. we used a reverse-transcription polymerase chain reaction (RT-PCR) detecting tyrosinase mRNA in the blood. A prospective investigation in melanoma patients undergoing surgery was conducted; follow-up duration was 12 months. University Department Laboratory and Melanoma Clinic of a Tertiary Hospital. a total of 27 Greek patients with a diagnosis of malignant melanoma at different stages of the disease; 12 months follow-up after surgery. Samples form 12 healthy volunteers and 13 patients with chronic myelogenous leukemia served as controls. none. none. We detected mRNA tyrosinase in the peripheral blood in 16 out of 27 melanoma patients studied. No tyrosinase mRNA was detected in any of the 25 samples from the controls. Two of the 16 positive cases developed a metastasis within the next 12 months following testing. The other 14 positive cases remain metastasis free for this period, as also did the test negative cases. Detection of blood circulating melanoma cells by a RT-PCR technique, may be helpful in defining melanoma patients who are at risk for the spread of the disease.

  2. Continuous improvement of the MHTGR safety and competitive performance

    International Nuclear Information System (INIS)

    Eichenberg, T.W.; Etzel, K.T.; Mascaro, L.L.; Rucker, R.A.

    1992-05-01

    An increase in reactor module power from 350 to 450 MW(t) would markedly improve the economics of the Modular High Temperature Gas-Cooled Reactor (MHTGR). The higher power level was recommended as the result of an in-depth cost reduction study undertaken to compete with the declining price of fossil fuel. The safety assessment confirms that the high level of safety, which relies on inherent characteristics and passive features, is maintained at the elevated power level. Preliminary systems, nuclear, and safety performance results are discussed for the recommended 450 MW(t) design. Optimization of plant parameters and design modifications accommodated the operation of the steam generator and circulator at the higher power level. Events in which forced cooling is lost, designated as conduction cooldowns are described in detail. For the depressurized conduction cooldown, without full helium inventory, peak fuel temperatures are significantly lowered. A more negative temperature coefficient of reactivity was achieved while maintaining an adequate fuel cycle and reactivity control. Continual improvement of the MHTGR delivers competitive performance without relinquishing the high safety margins demanded of the next generation of power plants

  3. Self-organizing maps applied to two-phase flow on natural circulation loop study

    International Nuclear Information System (INIS)

    Castro, Leonardo Ferreira

    2016-01-01

    Two-phase flow of liquid and gas is found in many closed circuits using natural circulation for cooling purposes. Natural circulation phenomenon is important on recent nuclear power plant projects for decay heat removal. The Natural Circulation Facility (Circuito de Circulacao Natural CCN) installed at Instituto de Pesquisas Energeticas e Nucleares, IPEN/CNEN, is an experimental circuit designed to provide thermal hydraulic data related to single and two-phase flow under natural circulation conditions. This periodic flow oscillation behavior can be observed thoroughly in this facility due its glass-made tubes transparency. The heat transfer estimation has been improved based on models that require precise prediction of pattern transitions of flow. This work presents experiments realized at CCN to visualize natural circulation cycles in order to classify two-phase flow patterns associated with phase transients and static instabilities of flow. Images are compared and clustered using Kohonen Self-organizing Maps (SOM's) applied on different digital image features. The Full Frame Discret Cosine Transform (FFDCT) coefficients were used as input for the classification task, enabling good results. FFDCT prototypes obtained can be associated to each flow pattern, enabling a better comprehension of each observed instability. A systematic test methodology was used to verify classifier robustness.

  4. Methods of quantifying circulating IgE

    International Nuclear Information System (INIS)

    Merrett, T.G.; Merrett, J.

    1978-01-01

    Four radioimmunoassay techniques, two conventional and two sandwich, have been used to measure circulating IgE levels in 100 sera. The test sera had IgE levels ranging from 1.0 to 20,000 u/ml, and each was measured at five dilutions, ranging from three-fold to 400-fold. The same IgE standards were used throughout, and the optimal range for each assay was determined by assessing data for quality control sera and the WHO standard 69/204. To be of general use in the United Kingdom an IgE test must measure accurately levels as low as 20-30 u IgE/ml. The Phadebas RIST method failed to meet this criterion, and of the remaining tests the double antibody method had the most useful operating range and produced the most reliable results. However, the double antibody method is not available commercially and so, for the majority of laboratories, the Phadebas PRIST technique should be the method chosen. (author)

  5. Tomato Infection by Whitefly-Transmitted Circulative and Non-Circulative Viruses Induce Contrasting Changes in Plant Volatiles and Vector Behaviour.

    Science.gov (United States)

    Fereres, Alberto; Peñaflor, Maria Fernanda G V; Favaro, Carla F; Azevedo, Kamila E X; Landi, Carolina H; Maluta, Nathalie K P; Bento, José Mauricio S; Lopes, Joao R S

    2016-08-11

    Virus infection frequently modifies plant phenotypes, leading to changes in behaviour and performance of their insect vectors in a way that transmission is enhanced, although this may not always be the case. Here, we investigated Bemisia tabaci response to tomato plants infected by Tomato chlorosis virus (ToCV), a non-circulative-transmitted crinivirus, and Tomato severe rugose virus (ToSRV), a circulative-transmitted begomovirus. Moreover, we examined the role of visual and olfactory cues in host plant selection by both viruliferous and non-viruliferous B. tabaci. Visual cues alone were assessed as targets for whitefly landing by placing leaves underneath a Plexiglas plate. A dual-choice arena was used to assess whitefly response to virus-infected and mock-inoculated tomato leaves under light and dark conditions. Thereafter, we tested the whitefly response to volatiles using an active air-flow Y-tube olfactometer, and chemically characterized the blends using gas chromatography coupled to mass spectrometry. Visual stimuli tests showed that whiteflies, irrespective of their infectious status, always preferred to land on virus-infected rather than on mock-inoculated leaves. Furthermore, whiteflies had no preference for either virus-infected or mock-inoculated leaves under dark conditions, but preferred virus-infected leaves in the presence of light. ToSRV-infection promoted a sharp decline in the concentration of some tomato volatiles, while an increase in the emission of some terpenes after ToCV infection was found. ToSRV-viruliferous whiteflies preferred volatiles emitted from mock-inoculated plants, a conducive behaviour to enhance virus spread, while volatiles from ToCV-infected plants were avoided by non-viruliferous whiteflies, a behaviour that is likely detrimental to the secondary spread of the virus. In conclusion, the circulative persistent begomovirus, ToSRV, seems to have evolved together with its vector B. tabaci to optimise its own spread. However

  6. Tomato Infection by Whitefly-Transmitted Circulative and Non-Circulative Viruses Induce Contrasting Changes in Plant Volatiles and Vector Behaviour

    Directory of Open Access Journals (Sweden)

    Alberto Fereres

    2016-08-01

    Full Text Available Virus infection frequently modifies plant phenotypes, leading to changes in behaviour and performance of their insect vectors in a way that transmission is enhanced, although this may not always be the case. Here, we investigated Bemisia tabaci response to tomato plants infected by Tomato chlorosis virus (ToCV, a non-circulative-transmitted crinivirus, and Tomato severe rugose virus (ToSRV, a circulative-transmitted begomovirus. Moreover, we examined the role of visual and olfactory cues in host plant selection by both viruliferous and non-viruliferous B. tabaci. Visual cues alone were assessed as targets for whitefly landing by placing leaves underneath a Plexiglas plate. A dual-choice arena was used to assess whitefly response to virus-infected and mock-inoculated tomato leaves under light and dark conditions. Thereafter, we tested the whitefly response to volatiles using an active air-flow Y-tube olfactometer, and chemically characterized the blends using gas chromatography coupled to mass spectrometry. Visual stimuli tests showed that whiteflies, irrespective of their infectious status, always preferred to land on virus-infected rather than on mock-inoculated leaves. Furthermore, whiteflies had no preference for either virus-infected or mock-inoculated leaves under dark conditions, but preferred virus-infected leaves in the presence of light. ToSRV-infection promoted a sharp decline in the concentration of some tomato volatiles, while an increase in the emission of some terpenes after ToCV infection was found. ToSRV-viruliferous whiteflies preferred volatiles emitted from mock-inoculated plants, a conducive behaviour to enhance virus spread, while volatiles from ToCV-infected plants were avoided by non-viruliferous whiteflies, a behaviour that is likely detrimental to the secondary spread of the virus. In conclusion, the circulative persistent begomovirus, ToSRV, seems to have evolved together with its vector B. tabaci to optimise its own

  7. CIRCULATING MOVING BED COMBUSTION PROOF OF CONCEPT

    Energy Technology Data Exchange (ETDEWEB)

    Jukkola, Glen

    2010-06-30

    Circulating Moving Bed (CMB) combustion technology has its roots in traditional circulating fluidized bed technology and involves a novel method of solid fuel combustion and heat transfer. CMB technology represents a step change in improved performance and cost relative to conventional PC and FBC boilers. The CMB heat exchanger preheats the energy cycle working fluid, steam or air, to the high temperature levels required in systems for advanced power generation. Unique features of the CMB are the reduction of the heat transfer surfaces by about 60% as a result of the enhanced heat transfer rates, flexibility of operation, and about 30% lower cost over existing technology. The CMB Phase I project ran from July 2001 through March 2003. Its objective was to continue development of the CMB technology with a series of proof of concept tests. The tests were conducted at a scale that provided design data for scale up to a demonstration plant. These objectives were met by conducting a series of experiments in ALSTOM Power’s Multi-use Test Facility (MTF). The MTF was modified to operate under CMB conditions of commercial interest. The objective of the tests were to evaluate gas-to-solids heat transfer in the upper furnace, assess agglomeration in the high temperature CMB bubbling bed, and evaluate solids-to-tube heat transfer in the moving bed heat exchanger. The Phase I program results showed that there are still some significant technical uncertainties that needed to be resolved before the technology can be confidently scaled up for a successful demonstration plant design. Work remained in three primary areas: • scale up of gas to solid heat transfer • high temperature finned surface design • the overall requirements of mechanical and process design. The CMB Phase II workscope built upon the results of Phase I and specifically addressed the remaining technical uncertainties. It included a scaled MTF heat transfer test to provide the necessary data to scale up gas

  8. In-service diagnostics of main circulating circuit pipes of WWER nuclear power plants

    International Nuclear Information System (INIS)

    Svoboda, V.; Merta, J.; Merta, V.

    1982-01-01

    The application is discussed of the acoustic emission method for testing the integrity of the components of the main circulating circuit of the WWER 440 nuclear power plant. A description is given of the main circulating circuit and a stress analysis on the basis of strength computations considering operating modes is presented. An analysis is also presented of the possible damage of the pipe material as related to the application of the acoustic emission method for in-service inspection of the pipes. Certain practical problems of application are discussed. (author)

  9. Considerations on the design of a helium circulator for a high temperature modular reactor system

    International Nuclear Information System (INIS)

    Dumm, K.; Donaldson, J.

    1988-01-01

    A modular helium cooled, high temperature reactor system with a thermal output of 200 MW per reactor has been developed by the KWU group for cogeneration of electricity and process steam. The flow of the reactor coolant - Helium at 60 bars and 250/700 deg. C is maintained by one circulator per reactor. The circulator is driven by a variable speed Siemens asynchronous motor and is submerged in the helium primary system. For operational reasons high reliability and availability of the circulator is required. The operational requirements for the circulator design are presented in this paper. The actual design has been carried out in close cooperation with the designer and manufacturer of all submerged circulators operating in AGR plants in Great Britain, James Howden Co. Renfrew, Scotland. Design solutions received so far and mainly based on sufficiently proven components - such as oil bath lubricated bearing systems - will be described. Special attention will be paid on the necessary test work; especially for the prototype to confirm the lay out. (author). 9 figs

  10. DBSSP - A computer program for simulation of controlled circulation boiler and natural circulation boiler start up behavior

    International Nuclear Information System (INIS)

    Li Bin; Chen Tingkuan; Yang Dong

    2005-01-01

    In this paper, a computer program, Drum Boiler Start-up Simulation Program (DBSSP), is developed for simulating the start up behavior of controlled circulation and natural circulation boilers. The mathematical model developed here is based on the first principles of mass, energy and momentum conservations. In the boiler model, heat transfer in the waterwall, the superheater, the reheater and the economizer is simulated by the distributing parameter method, while heat transfer in the drum and the downcomer is simulated by lumped parameter analysis. The program can provide detailed flow and thermodynamic characteristics of the boiler components. The development of this program is based only on design data, so it can be used for any subcritical, controlled or natural circulation boiler. The simulation results were compared with experimental measurements, and good agreements between them were found. This program is expected to be useful for predicting the characteristics and the performance of controlled circulation and natural circulation boilers during the start up process. It also can be used to optimize a start up system for minimum start up time

  11. A multi-center field study of two point-of-care tests for circulating Wuchereria bancrofti antigenemia in Africa.

    Directory of Open Access Journals (Sweden)

    Cédric B Chesnais

    2017-09-01

    Full Text Available The Global Programme to Eliminate Lymphatic Filariasis uses point-of-care tests for circulating filarial antigenemia (CFA to map endemic areas and for monitoring and evaluating the success of mass drug administration (MDA programs. We compared the performance of the reference BinaxNOW Filariasis card test (ICT, introduced in 1997 with the Alere Filariasis Test Strip (FTS, introduced in 2013 in 5 endemic study sites in Africa.The tests were compared prior to MDA in two study sites (Congo and Côte d'Ivoire and in three sites that had received MDA (DRC and 2 sites in Liberia. Data were analyzed with regard to % positivity, % agreement, and heterogeneity. Models evaluated potential effects of age, gender, and blood microfilaria (Mf counts in individuals and effects of endemicity and history of MDA at the village level as potential factors linked to higher sensitivity of the FTS. Lastly, we assessed relationships between CFA scores and Mf in pre- and post-MDA settings.Paired test results were available for 3,682 individuals. Antigenemia rates were 8% and 22% higher by FTS than by ICT in pre-MDA and in post-MDA sites, respectively. FTS/ICT ratios were higher in areas with low infection rates. The probability of having microfilaremia was much higher in persons with CFA scores >1 in untreated areas. However, this was not true in post-MDA settings.This study has provided extensive new information on the performance of the FTS compared to ICT in Africa and it has confirmed the increased sensitivity of FTS reported in prior studies. Variability in FTS/ICT was related in part to endemicity level, history of MDA, and perhaps to the medications used for MDA. These results suggest that FTS should be superior to ICT for mapping, for transmission assessment surveys, and for post-MDA surveillance.

  12. Nitrogen heat pipe for cryocooler thermal shunt

    International Nuclear Information System (INIS)

    Prenger F.C.; Hill, D.D.; Daney, D.E.

    1996-01-01

    A nitrogen heat pipe was designed, built and tested for the purpose of providing a thermal shunt between the two stages of a Gifford-McMahan (GM) cryocooler during cooldown. The nitrogen heat pipe has an operating temperature range between 63 and 123 K. While the heat pipe is in this temperature range during the system cooldown, it acts as a thermal shunt between the first and second stage of the cryocooler. The heat pipe increases the heat transfer to the first stage of the cryocooler, thereby reducing the cooldown time of the system. When the heat pipe temperature drops below the triple point, the nitrogen working fluid freezes, effectively stopping the heat pipe operation. A small heat leak between cryocooler stages remains because of axial conduction along the heat pipe wall. As long as the heat pipe remains below 63 K, the heat pipe remains inactive. Heat pipe performance limits were measured and the optimum fluid charge was determined

  13. Aneurysms of the anterior and posterior cerebral circulation: comparison of the morphometric features.

    Science.gov (United States)

    Tykocki, Tomasz; Kostkiewicz, Bogusław

    2014-09-01

    Intracranial aneurysms (IAs) located in the posterior circulation are considered to have higher annual bleed rates than those in the anterior circulation. The aim of the study was to compare the morphometric factors differentiating between IAs located in the anterior and posterior cerebral circulation. A total number of 254 IAs diagnosed between 2009 and 2012 were retrospectively analyzed. All patients qualified for diagnostic, three-dimensional rotational angiography. IAs were assigned to either the anterior or posterior cerebral circulation subsets for the analysis. Means were compared with a t-test. The univariate and stepwise logistic regression analyses were used to determine the predictors of morphometric differences between the groups. For the defined predictors, ROC (receiver-operating characteristic) curves and interactive dot diagrams were calculated with the cutoff values of the morphometric factors. The number of anterior cerebral circulation IAs was 179 (70.5 %); 141 (55.5 %) aneurysms were ruptured. Significant differences between anterior and posterior circulation IAs were found for: the parent artery size (5.08 ± 1.8 mm vs. 3.95 ± 1.5 mm; p 45) and aspect ratio (AR) (1.91 ± 0.8 vs. 2.75 ± 1.8; p = 0.02). Predicting factors differentiating anterior and posterior circulation IAs were: the AR (OR = 2.20; 95 % CI 1.80-270; Is 270 correct or should it be 2.70 and parent artery size (OR = 0.44; 95 % CI 0.38-0.54). The cutoff point in the ROC curve was 2.185 for the AR and 4.89 mm for parent artery size. Aspect ratio and parent artery size were found to be predictive morphometric factors in differentiating between anterior and posterior cerebral IAs.

  14. Circulating DNA and its methylation level in inflammatory bowel disease and related colon cancer.

    Science.gov (United States)

    Bai, Xuming; Zhu, Yaqun; Pu, Wangyang; Xiao, Li; Li, Kai; Xing, Chungen; Jin, Yong

    2015-01-01

    Both of chronic inflammation and abnormal immune in inflammatory bowel disease can induce colon cancer. Previous research showed that cell apoptosis and necrosis become the main source of circulating DNA in the peripheral blood during tumorigenesis that reduced along with methylation degree. However, its role in the process of colitis transforming to colon cancer is not clarified. Drinking 3% DSS was used to establish colitis model, while 3% dextran sodium sulfate (DSS) combined with azo oxidation methane (AOM) intraperitoneal injection was applied to establish colitis related colon cancer model. Circulating DNA and its methylation level in peripheral blood were tested. Morphology observation, HE staining, and p53 and β-catenin expression detection confirmed that drinking 3% DSS and 3% DSS combined with AOM intraperitoneal injection can successfully establish colitis and colitis associated colorectal cancer models. Circulating DNA level in colitis and colon cancer mice increased by gradient compared with control, while significant difference was observed between each other. Circulating DNA methylation level decreased obviously in colitis and colon cancer, and significant difference was observed between each other. Abnormal protein expression, circulating DNA and its methylation level in ulcerative colitis associated colorectal tissues change in gradient, suggesting that circulating DNA and its methylation level can be treated as new markers for colitis cancer transformation that has certain significance to explore the mechanism of human ulcerative colitis canceration.

  15. Hypoxia, leukocytes, and the pulmonary circulation.

    Science.gov (United States)

    Stenmark, Kurt R; Davie, Neil J; Reeves, John T; Frid, Maria G

    2005-02-01

    Data are rapidly accumulating in support of the idea that circulating monocytes and/or mononuclear fibrocytes are recruited to the pulmonary circulation of chronically hypoxic animals and that these cells play an important role in the pulmonary hypertensive process. Hypoxic induction of monocyte chemoattractant protein-1, stromal cell-derived factor-1, vascular endothelial growth factor-A, endothelin-1, and tumor growth factor-beta(1) in pulmonary vessel wall cells, either directly or indirectly via signals from hypoxic lung epithelial cells, may be a critical first step in the recruitment of circulating leukocytes to the pulmonary circulation. In addition, hypoxic stress appears to induce release of increased numbers of monocytic progenitor cells from the bone marrow, and these cells may have upregulated expression of receptors for the chemokines produced by the lung circulation, which thus facilitates their specific recruitment to the pulmonary site. Once present, macrophages/fibrocytes may exert paracrine effects on resident pulmonary vessel wall cells stimulating proliferation, phenotypic modulation, and migration of resident fibroblasts and smooth muscle cells. They may also contribute directly to the remodeling process through increased production of collagen and/or differentiation into myofibroblasts. In addition, they could play a critical role in initiating and/or supporting neovascularization of the pulmonary artery vasa vasorum. The expanded vasa network may then act as a conduit for further delivery of circulating mononuclear cells to the pulmonary arterial wall, creating a feedforward loop of pathological remodeling. Future studies will need to determine the mechanisms that selectively induce leukocyte/fibrocyte recruitment to the lung circulation under hypoxic conditions, their direct role in the remodeling process via production of extracellular matrix and/or differentiation into myofibroblasts, their impact on the phenotype of resident smooth muscle

  16. Performance Tests for Bubble Blockage Device

    International Nuclear Information System (INIS)

    Ha, Kwang Soon; Wi, Kyung Jin; Park, Rae Joon; Wan, Han Seong

    2014-01-01

    Postulated severe core damage accidents have a high threat risk for the safety of human health and jeopardize the environment. Versatile measures have been suggested and applied to mitigate severe accidents in nuclear power plants. To improve the thermal margin for the severe accident measures in high-power reactors, engineered corium cooling systems involving boiling-induced two-phase natural circulation have been proposed for decay heat removal. A boiling-induced natural circulation flow is generated in a coolant path between a hot vessel wall and cold coolant reservoir. In general, it is possible for some bubbles to be entrained in the natural circulation loop. If some bubbles entrain in the liquid phase flow passage, flow instability may occur, that is, the natural circulation mass flow rate may be oscillated. A new device to block the entraining bubbles is proposed and verified using air-water test loop. To avoid bubbles entrained in the natural circulation flow loop, a new device was proposed and verified using an air-water test loop. The air injection and liquid circulation loop was prepared, and the tests for the bubble blockage devices were performed by varying the geometry and shape of the devices. The performance of the bubble blockage device was more effective as the area ratio of the inlet to the down-comer increased, and the device height decreased. If the device has a rim to generate a vortex zone, the bubbles will be most effectively blocked

  17. Late Posthemorrhagic Structural and Functional Changes in Pulmonary Circulation Arteries

    Directory of Open Access Journals (Sweden)

    S. A. Andreyeva

    2008-01-01

    Full Text Available Objective: to reveal the major regularities and mechanisms of morphological changes in the rat pulmonary circulation arteries in the late posthemorrhagic period and to compare them with age-related features of the vessels. Materials and methods: experiments to generate graduated hemorrhagic hypotension with the blood pressure being maintained at 40 mm Hg were carried out on young (5—6-month albino male Wistar rats. Throughout hypotension and 60 days after blood loss, the blood was tested to determine low and average molecular-weight substances by spectrophotometry and the pro- and antioxidative systems by chemiluminescence. Pulmonary circulation arteries were morphologically studied in young animals, rats in the late posthemorrhagic period and old (24—25-month rats. Results. Sixty-minute hemorrhagic hypotension leads to the development of endotoxemia and imbalance of the pro- and antioxidative systems, the signs of which are observed in the late periods (2 months after hypotension. At the same time, the posthemorrhagic period is marked by the significant pulmonary circulation arterial morphological changes comparable with their age-related alterations in old rat. This shows up mainly in the reorganization of a connective tissue component in the vascular wall: the elevated levels of individual collagen fibers, their structural changes, elastic medial membrane destruction and deformity. At the same time, there is a change in the morphometric parameters of vessels at all study stages while their lowered flow capacity is only characteristic for intraorgan arteries. Conclusion: The increased activity of free radical oxidation and endotoxemia may be believed to be one of the causes of morphological changes in pulmonary circulation arteries in the late posthemorrhagic period, which is similar to age-related vascular alterations. Key words: hemorrhagic hypotension, pulmonary circulation arteries, free radical oxidation, endotoxemia, remodeling, late

  18. Development Status of the Helium Circulator for the HCS of HCCR-TBS

    International Nuclear Information System (INIS)

    Lee, Eo Hwak; Jin, Hyung Gon; Yoon, Jae Sung; Kim, Suk Kwon; Lee, Dong Won; Lee, Si Woo; Cho, Seung Yon

    2016-01-01

    The calculated eddy current loss on the stainless steel sealing cap of the magnetic coupling device is very high. To solve the eddy current loss problem of the sealing cap, a glass fiber composite, non-conductive and high strength material, is adapted as a material of the sealing cap. The HCCR TBM will be cooled down by HCS (Helium Cooling System), supply high pressure (8 MPa) and temperature (300 .deg. C) helium coolant with 1.15 kg/s of mass flow for nominal operation. The real-scale helium circulator, which is main component of the HCS, has been developed since 2014. In present study, design and manufacture progress of the helium circulator and its verification test plan are described. The real-scale circulator has been developed to provide high temperature and pressure of helium flow as a coolant of the HCCR TBM. To prevent helium leakage, magnetic coupling design was adapted between the shaft and the impeller

  19. A blood circulation model for reference man

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, R.W.; Eckerman, K.F. [Oak Ridge National Lab., TN (United States); Williams, L.R. [Indiana Univ., South Bend, IN (United States). Div. of Liberal Arts and Sciences

    1996-12-31

    A dynamic blood circulation model that predicts the movement and gradual dispersion of a bolus of material in the circulation after its intravenous injection into an adult human. The main purpose of the model is improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The model partitions the blood volume into 24 separate organs or tissues, right heart chamber, left heart chamber, pulmonary circulation, arterial outflow to the aorta and large arteries, and venous return via the large veins. Model results were compared to data obtained from injection of carbon 11 labeled carbon monoxide or rubidium 86.

  20. A blood circulation model for reference man

    International Nuclear Information System (INIS)

    Leggett, R.W.; Eckerman, K.F.; Williams, L.R.

    1996-01-01

    A dynamic blood circulation model that predicts the movement and gradual dispersion of a bolus of material in the circulation after its intravenous injection into an adult human. The main purpose of the model is improve the dosimetry of internally deposited radionuclides that decay in the circulation to a significant extent. The model partitions the blood volume into 24 separate organs or tissues, right heart chamber, left heart chamber, pulmonary circulation, arterial outflow to the aorta and large arteries, and venous return via the large veins. Model results were compared to data obtained from injection of carbon 11 labeled carbon monoxide or rubidium 86

  1. Circulation as Assessment: Collection Development Policies Evaluated in Terms of Circulation at a Small Academic Library.

    Science.gov (United States)

    Dinkins, Debbi

    2003-01-01

    Discusses the use of academic library circulation statistics to assess whether user needs are being met and describes a study at Stetson University that investigated collection development practices by comparing circulation statistics for books selected by faculty in support of departmental curricula with those of librarian selections. (Author/LRW)

  2. Density wave oscillations of a boiling natural circulation loop induced by flashing

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Masahiro; Inada, Fumio; Yasuo, Akira [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1995-09-01

    Experiments are conducted to investigate two-phase flow instabilities in a boiling natural circulation loop with a chimney due to flashing in the chimney at lower pressure. The test facility used in this experiment is designed to have non-dimensional values which are nearly equal to those of natural circulation BWR. Stability maps in reference to the heat flux, the inlet subcooling, the system pressure are presented. This instability is suggested to be density wave oscillations due to flashing in the chimney, and the differences from other phenomena such as flow pattern oscillations and geysering phenomena are discussed by investigating the dynamic characteristics, the oscillation period, and the transient flow pattern.

  3. Natural circulation of integrated-type marine reactor at inclined attitude

    International Nuclear Information System (INIS)

    Iyori, Isao; Aya, Izuo; Murata, Hiroyuki; Kobayashi, Michiyuki; Nariai, Hideki

    1987-01-01

    A steady-state single-phase natural circulation test was performed to clarify the effect of inclination by using a model of an integrated-type marine reactor. It was found that several types of flow pattern occur in the natural circulation loop corresponding to the range of inclination angle. Stable flow rates are sustained up to near 90 0 because of the occurrence of a driving force arising from those sections of the facility which were horizontal before the inclination. It was found that the temperature distribution in the steam generator at inclined attitude depends essentially only on the elevation z. The applicability of a one-dimensional analytical model was examined. It was clarified that employment of detailed U-turn flow paths, their correlation, and temperature-distribution function of core is essential for improvement. (orig.)

  4. Experimental studies on natural circulation in molten salt loops

    International Nuclear Information System (INIS)

    Srivastava, A.K.; Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.

    2015-01-01

    Molten salts are increasingly getting attention as a coolant and storage medium in solar thermal power plants and as a liquid fuel, blanket and coolant in Molten Salt Reactors (MSR’s). Two different test facilities named Molten Salt Natural Circulation Loop (MSNCL) and Molten Active Fluoride salt Loop (MAFL) have been setup for thermal hydraulics, instrument development and material related studies relevant to MSR and solar power plants. The working medium for MSNCL is a molten nitrate salt which is a mixture of NaNO 3 and KNO 3 in 60:40 ratio and proposed as one of the coolant option for molten salt based reactor and coolant as well as storage medium for solar thermal power application. On the other hand, the working medium for MAFL is a eutectic mixture of LiF and ThF 4 and proposed as a blanket salt for Indian Molten Salt Breeder Reactor (MSBR). Steady state natural circulation experiments at different power level have been performed in the MSNCL. Transient studies for startup of natural circulation, loss of heat sink, heater trip and step change in heater power have also been carried out in the same. A 1D code LeBENC, developed in-house to simulate the natural circulation characteristics in closed loops, has been validated with the experimental data obtained from MSNCL. Further, LeBENC has been used for Pretest analysis of MAFL. This paper deals with the description of both the loops and experimental studies carried out in MSNCL. Validation of LeBENC along with the pretest analysis of MAFL using the same are also reported in this paper. (author)

  5. Horizontal coring using air as the circulating fluid: Some prototype studies conducted in G Tunnel at the Nevada Test Site for the Yucca Mountain Project

    International Nuclear Information System (INIS)

    Chornack, M.P.; French, C.A.

    1989-01-01

    Horizontal coring using air as the circulating fluid has been conducted in the G Tunnel Underground Facility (GTUF) at the Nevada Test Site. This work is part of the prototype investigations of hydrogeology for the Yucca Mountain Project. The work is being conducted to develop methods and procedures that will be used at the Department of Energy's Yucca Mountain Site, a candidate site for the nation's first high-level nuclear waste repository, during the site characterization phase of the investigations. The United States Geological Survey (USGS) is conducting this prototype testing under the guidance of the Los Alamos National Laboratory (LANL) and in conjunction with Reynolds Electrical ampersand Engineering Company (REECo), the drilling contractor. 7 refs., 8 figs., 5 tabs

  6. An experimental approach to improve the basin type solar still using an integrated natural circulation loop

    International Nuclear Information System (INIS)

    Rahmani, Ahmed; Boutriaa, Abdelouahab; Hadef, Amar

    2015-01-01

    Highlights: • A new experimental approach to improve the conventional solar still performances is proposed. • A passive natural circulation loop is integrated to the conventional solar still. • Natural circulation of humid-air in a closed loop is studied by the present study. • Natural circulation capability in driving air convection in the still was demonstrated. • Air convection created inside the still increase the evaporation heat and mass transfer. - Abstract: In this paper, a new experimental approach is proposed to enhance the performances of the conventional solar still using the natural circulation effect inside the still. The idea consists in generating air flow by a rectangular natural circulation loop appended to the rear side of the still. The proposed still was tested during summer period and the experimental data presented in this paper concerns four typical days. The convective heat transfer coefficient is evaluated and compared with Dunkle’s model. The comparison shows that convective heat transfer is considerably improved by the air convection created inside the still. The natural circulation phenomenon in the still is studied and a good agreement between the experimental data and Vijajan’s laminar correlation is found. Therefore, natural circulation phenomenon is found to have a good effect on the still performances where the still daily productivity is of 3.72 kg/m 2 and the maximum efficiency is of 45.15%

  7. Circulating microRNAs in breast cancer

    DEFF Research Database (Denmark)

    Hamam, Rimi; Hamam, Dana; Alsaleh, Khalid A.

    2017-01-01

    Effective management of breast cancer depends on early diagnosis and proper monitoring of patients' response to therapy. However, these goals are difficult to achieve because of the lack of sensitive and specific biomarkers for early detection and for disease monitoring. Accumulating evidence...... in the past several years has highlighted the potential use of peripheral blood circulating nucleic acids such as DNA, mRNA and micro (mi)RNA in breast cancer diagnosis, prognosis and for monitoring response to anticancer therapy. Among these, circulating miRNA is increasingly recognized as a promising...... circulating miRNAs as diagnostic, prognostic or predictive biomarkers in breast cancer management....

  8. Effects of land cover change on the tropical circulation in a GCM

    Science.gov (United States)

    Jonko, Alexandra Karolina; Hense, Andreas; Feddema, Johannes Jan

    2010-09-01

    Multivariate statistics are used to investigate sensitivity of the tropical atmospheric circulation to scenario-based global land cover change (LCC), with the largest changes occurring in the tropics. Three simulations performed with the fully coupled Parallel Climate Model (PCM) are compared: (1) a present day control run; (2) a simulation with present day land cover and Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES) A2 greenhouse gas (GHG) projections; and (3) a simulation with SRES A2 land cover and GHG projections. Dimensionality of PCM data is reduced by projection onto a priori specified eigenvectors, consisting of Rossby and Kelvin waves produced by a linearized, reduced gravity model of the tropical circulation. A Hotelling T 2 test is performed on projection amplitudes. Effects of LCC evaluated by this method are limited to diabatic heating. A statistically significant and recurrent signal is detected for 33% of all tests performed for various combinations of parameters. Taking into account uncertainties and limitations of the present methodology, this signal can be interpreted as a Rossby wave response to prescribed LCC. The Rossby waves are shallow, large-scale motions, trapped at the equator and most pronounced in boreal summer. Differences in mass and flow fields indicate a shift of the tropical Walker circulation patterns with an anomalous subsidence over tropical South America.

  9. Characterization of natural circulation looping of emergency cooling systems in naval and advanced reactors

    International Nuclear Information System (INIS)

    Macedo, Luiz Alberto; Baptista Filho, Benedito Dias

    2000-01-01

    This paper describes the natural circuit looping, resumes the main project characteristics, presents results of the hydraulic characterization, consisting of pressure loss measurements, and presents results from calibration tests of the power and flow measurements and the first experiments in natural circulation. Those experiments comprised transients in natural circulation with application of application of power steps. The results shown a non linear behaviour of the magnetic flow meter and a dependence on the fluid temperature as well. The assembly circuit/instrumentation/data acquisition system is suitable for the research on emergency cooling passive systems

  10. Imprinted NanoVelcro Microchips for Isolation and Characterization of Circulating Fetal Trophoblasts: Toward Noninvasive Prenatal Diagnostics

    OpenAIRE

    Hou, Shuang; Chen, Jie-Fu; Song, Min; Zhu, Yazhen; Jan, Yu Jen; Chen, Szu Hao; Weng, Tzu-Hua; Ling, Dean-An; Chen, Shang-Fu; Ro, Tracy; Liang, An-Jou; Lee, Tom; Jin, Helen; Li, Man; Liu, Lian

    2017-01-01

    Circulating fetal nucleated cells (CFNCs) in maternal blood offer an ideal source of fetal genomic DNA for noninvasive prenatal diagnostics (NIPD). We developed a class of nanoVelcro microchips to effectively enrich a subcategory of CFNCs, i.e., circulating trophoblasts (cTBs) from maternal blood, which can then be isolated with single-cell resolution by a laser capture microdissection (LCM) technique for downstream genetic testing. We first established a nanoimprinting fabrication process to...

  11. Validation of a urine circulating cathodic antigen cassette test for detection of Schistosoma haematobiumin uMkhanyakude district of South Africa.

    Science.gov (United States)

    Rubaba, O; Chimbari, M J; Soko, W; Manyangadze, T; Mukaratirwa, S

    2018-06-01

    Circulating cathodic antigen (CCA) tests for schistosomiasis are fast and less complicated allowing making them good candidates for routine qualitative screening for schistosomiasis at point of care. The urine-CCA has been evaluated for detection of S. mansoni with promising results. Its specificity and consistency in detecting S. haematobium infection in different endemic regions has been variable. This study validated a rapid urine-CCA cassette test for qualitative detection of S. haematobium infection in an S. haematobium endemic area with low S. mansoni prevalence. Microscopic examination for the standard urine filtration technique was used to validate the commercially available urine-CCA cassette test (rapid medical diagnostics ® ). The validation was done in a sample of primary school pupils (n = 420) aged 10-15 years in schools in the Jozini Municipality, KZN. There was a relationship between infection intensity and a positive urine-CCA test. Using the urine filtration method as the gold standard, the prevalence for S. haematobium was 40%, the accuracy of the CCA kit was 54.8%, sensitivity was 68.1% while the specificity was 45.8%. The positive predictive value was 45.82% while the negative predictive value was 68.05%. Both the urine filtration and the urine-CCA methods detected heavy (≥50 eggs/10 mL urine) and light infections at statistically significant levels. The overall accuracy, sensitivity and specificity of the urine-CCA cassette test were low. The urine-CCA cassette test performed much better for heavy infections than low infections (p < 0.05) implying that the kit may not be suitable for low endemic areas. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Theoretical research for natural circulation operational characteristic of ship nuclear machinery under ocean conditions

    Energy Technology Data Exchange (ETDEWEB)

    Yan Binghuo [Department of Nuclear Science and Engineering, Naval University of Engineering, Wuhan 430033 (China)], E-mail: yanbh1986@163.com; Yu Lei [Department of Nuclear Science and Engineering, Naval University of Engineering, Wuhan 430033 (China)], E-mail: yulei301@163.com

    2009-06-15

    Based on the two-phase drift flux model and the multi-pressure nodes matrix solving method, natural circulation thermal hydraulic analysis models for the Nuclear Machinery (NM) under ocean conditions are developed. The neutron physical activities and the responses of the reactivity control systems are described by the two-group, 3-dimensional space and time dependent neutron kinetics model. Reactivity feedback is calculated by coupling the neutron physics and thermal hydraulic codes, and is tested by comparison with experiments. Using the models developed, the natural circulation operating characteristics of NM in rolling and pitching motions and the transitions between forced circulation (FC) to natural circulation (NC) are analyzed. The results show that the influence of the rolling motion increases as the rolling amplitude is increased, and as the rolling period becomes shorter. The results also show that for this NM, with the same rolling period and rolling angle, the influence of pitching motion on natural circulation is greater than that of rolling motion. Furthermore, the oscillation period for pitching motion is the same as the pitching period, while the oscillation period for rolling is one half of the rolling period. In the ocean environment, excessive flow oscillation of the natural circulation may cause the control rods to respond so frequently that the NM would not be able to realize the transition from the FC to NC steadily. However, the influence of ocean environment on the transition from NC to FC is limited.

  13. Fabrication of an electromagnetic pump with gas circulation

    International Nuclear Information System (INIS)

    Ravoire, J.

    1959-01-01

    This note reports the design and production of a pump aimed at circulating a gas in a closed circuit, and possessing some specific properties (tightness, gas in contact only with glass, operation pressure range, rates, resistance to overpressure). After a description of pump operation principle, the author describes the glassware part of the pump, its electromagnetic and electronic parts. He reports tests performed to assess pump characteristics. Obtained data are graphically presented, as well as a drawing of the pump

  14. Liquid Biopsy for Cancer: Circulating Tumor Cells, Circulating Free DNA or Exosomes?

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2017-02-01

    Full Text Available Precision medicine and personalized medicine are based on the development of biomarkers, and liquid biopsy has been reported to be able to detect biomarkers that carry information on tumor development and progression. Compared with traditional ‘solid biopsy’, which cannot always be performed to determine tumor dynamics, liquid biopsy has notable advantages in that it is a noninvasive modality that can provide diagnostic and prognostic information prior to treatment, during treatment and during progression. In this review, we describe the source, characteristics, technology for detection and current situation of circulating tumor cells, circulating free DNA and exosomes used for diagnosis, recurrence monitoring, prognosis assessment and medication planning.

  15. Effect of circulation on wastewater treatment by Lemna gibba and Lemna minor (floating aquatic macrophytes).

    Science.gov (United States)

    Demirezen Yilmaz, Dilek; Akbulut, Hatice

    2011-01-01

    In this study, laboratory tests were performed in order to examine growth characteristics of floating aquatic macrophytes (Lemna gibba and Lemna minor) in the presence of wastewater with circulation. The results showed that circulation of the waste water enhanced the kinetics of the process, as compared to the control systems. However, prolonged application of high circulation level had a different effect. In the presence of circulation with aquatic plants, there was additional 85.3-88.2% for BODs and 59.6-66.8% for COD decreases in the water quality indicators. In this study, the effectiveness of L. gibba and L. minor with circulation addition for the removal of four heavy metals (Pb, Ni, Mn, and Cu) from waste water was also investigated. Results from analysis confirmed the accumulation of different metals within the plant and a corresponding decrease of metals in the waste water. At the end of the study of circulation, L. gibba provided the metal removal for Cu, Pb, Ni, and Mn in the waste water as the ratio of 57%, 60%, 60%, and 62%, respectively. In this context, the best results were obtained when the action of L. gibba and L. minor plants, was combined with that of circulation. It is shown that in the presence of L. gibba and L. minor plants that are supplemented with circulation, the national standards of biochemical oxygen demand (BOD5) 27-33 mgL(-1) and chemical oxygen demand (COD) 62-78 mgL(-1) for L. minor and L. gibba, respectively, were reached after treatment. The new results can be used for design calculations regarding expected removal of pollutants by aquatic floating plants.

  16. BIM-Enabled Conceptual Modelling and Representation of Building Circulation

    Directory of Open Access Journals (Sweden)

    Jin Kook Lee

    2014-08-01

    Full Text Available This paper describes how a building information modelling (BIM-based approach for building circulation enables us to change the process of building design in terms of its computational representation and processes, focusing on the conceptual modelling and representation of circulation within buildings. BIM has been designed for use by several BIM authoring tools, in particular with the widely known interoperable industry foundation classes (IFCs, which follow an object-oriented data modelling methodology. Advances in BIM authoring tools, using space objects and their relations defined in an IFC's schema, have made it possible to model, visualize and analyse circulation within buildings prior to their construction. Agent-based circulation has long been an interdisciplinary topic of research across several areas, including design computing, computer science, architectural morphology, human behaviour and environmental psychology. Such conventional approaches to building circulation are centred on navigational knowledge about built environments, and represent specific circulation paths and regulations. This paper, however, places emphasis on the use of ‘space objects’ in BIM-enabled design processes rather than on circulation agents, the latter of which are not defined in the IFCs' schemas. By introducing and reviewing some associated research and projects, this paper also surveys how such a circulation representation is applicable to the analysis of building circulation-related rules.

  17. Study on thermalhydraulics of natural circulation decay heat removal in FBR. Experiment with water of typical reactor trip in the demonstration FBR

    International Nuclear Information System (INIS)

    Koga, Tomonari; Murakami, Takahiro; Eguchi, Yuzuru

    2010-01-01

    Intending to enhance safety and to reduce costs, an FBR plant is being developed in Japan. In relies solely on natural circulation of the primary cooling loop to remove a decay heat of the core after reactor trips. A water test was carried out to advance the development. The test used a 1/10 reduced scale model simulating the core and cooling systems. The experiments simulated representative accidents from steady state to decay heat removal through reactor trip and clarified thermal-hydraulic issues on the thermal circulation performance. Some modifications of the system design were proposed for solving serious problems of natural circulation. An improved design complying with the suggestions will make it possible for natural circulation of the cooling systems to remove the decay heat of the core without causing and unstable or unpredictable change. (author)

  18. 19 CFR 207.63 - Circulation of draft questionnaires.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Circulation of draft questionnaires. 207.63... SUBSIDIZED EXPORTS TO THE UNITED STATES Five-Year Reviews § 207.63 Circulation of draft questionnaires. (a) The Director shall circulate draft questionnaires to the parties for comment in each full review. (b...

  19. Study in rabbits of portal circulation by a radioisotopic method

    International Nuclear Information System (INIS)

    Maliska, C.

    1980-01-01

    The development of a precocius - and noninvasive method for the detection of portal circulation alterations by means of time interval measurements between the rectal administration of radiotracers and their detection in liver and head is aimed at. The pertecnetate ( 99 sup(m)Tc)- and iodate ( 131 I) absorption by the terminal large intestine was tested in 22 rabbits. The time iinterval between rectal administration of the radiotracer and its appearance in liver and head was determined in 12 rabbits, by external detection with a scintillation camera. The same parameters were studied in 9 animals submitted to the ligature of the portal vein. Iodate and pertecnetate are absorbed by the terminal large intestine, the pertecnetate absorption being significantly smaller than that of iodate. The pertecnetate distribution volume is smaller than that of iodate; the rectum - liver - and rectum - head time intervals is increased in animals with the ligature of portal vein. Application of the method to larger animals will permit the necessary improvements for its utilization as a precocius - noninvasive - and inocuous test in the evaluation of alteration of the human portal circulation. (Author) [pt

  20. Polyclonal antibodies for the detection of Trypanosoma cruzi circulating antigens.

    Directory of Open Access Journals (Sweden)

    Edith S Málaga-Machaca

    2017-11-01

    Full Text Available Detection of Trypanosoma cruzi antigens in clinical samples is considered an important diagnostic tool for Chagas disease. The production and use of polyclonal antibodies may contribute to an increase in the sensitivity of immunodiagnosis of Chagas disease.Polyclonal antibodies were raised in alpacas, rabbits, and hens immunized with trypomastigote excreted-secreted antigen, membrane proteins, trypomastigote lysate antigen and recombinant 1F8 to produce polyclonal antibodies. Western blot analysis was performed to determine specificity of the developed antibodies. An antigen capture ELISA of circulating antigens in serum, plasma and urine samples was developed using IgY polyclonal antibodies against T. cruzi membrane antigens (capture antibody and IgG from alpaca raised against TESA. A total of 33 serum, 23 plasma and 9 urine samples were analyzed using the developed test. Among serum samples, compared to serology, the antigen capture ELISA tested positive in 55% of samples. All plasma samples from serology positive subjects were positive in the antigen capture ELISA. All urine positive samples had corresponding plasma samples that were also positive when tested by the antigen capture ELISA.Polyclonal antibodies are useful for detection of circulating antigens in both the plasma and urine of infected individuals. Detection of antigens is direct evidence of the presence of the parasite, and could be a better surrogate of current infection status.

  1. Power limit and quality limit of natural circulation reactor

    International Nuclear Information System (INIS)

    Zhao Guochang; Ma Changwen

    1997-01-01

    The circulation characteristics of natural circulation reactor in boiling regime are researched. It is found that, the circulation mass flow rate and the power have a peak value at a mass quality respectively. Therefore, the natural circulation reactor has a power limit under certain technological condition. It can not be increased steadily by continually increasing the mass quality. Corresponding to this, the mass quality of natural circulation reactor has a reasonable limit. The relations between the maximum power and the reactor parameters, such as the resistance coefficient, the working pressure and so on, are analyzed. It is pointed out that the power limit of natural circulation reactor is about 1000 MW at present technological condition. Taking the above result and low quality stability experimental result into account, the authors recommend that the reasonable mass quality of natural circulation reactor working in boiling regime is from 2% to 3% under the researched working pressure

  2. Multi-stage circulating fluidized bed syngas cooling

    Science.gov (United States)

    Liu, Guohai; Vimalchand, Pannalal; Guan, Xiaofeng; Peng, WanWang

    2016-10-11

    A method and apparatus for cooling hot gas streams in the temperature range 800.degree. C. to 1600.degree. C. using multi-stage circulating fluid bed (CFB) coolers is disclosed. The invention relates to cooling the hot syngas from coal gasifiers in which the hot syngas entrains substances that foul, erode and corrode heat transfer surfaces upon contact in conventional coolers. The hot syngas is cooled by extracting and indirectly transferring heat to heat transfer surfaces with circulating inert solid particles in CFB syngas coolers. The CFB syngas coolers are staged to facilitate generation of steam at multiple conditions and hot boiler feed water that are necessary for power generation in an IGCC process. The multi-stage syngas cooler can include internally circulating fluid bed coolers, externally circulating fluid bed coolers and hybrid coolers that incorporate features of both internally and externally circulating fluid bed coolers. Higher process efficiencies can be realized as the invention can handle hot syngas from various types of gasifiers without the need for a less efficient precooling step.

  3. SCDAP/RELAP5 applications to RCS natural circulation

    International Nuclear Information System (INIS)

    Bayless, P.D.

    1988-01-01

    The effects of natural circulation flows in the reactor coolant system during a TMLB' sequence were investigated. Both in-vessel circulation and hot leg countercurrent flow were modeled in the Surry nuclear power plant using the SCDAP/RELAP5 computer code. The transient was analyzed until after fuel rod relocation had begun. The delays in the onset of relocation resulting from the natural circulation flows were not significant compared to SCDAP/RELAP5 calculations without natural circulation modeled, but were large compared to the analyses presented in NUREG-1150. The most significant aspect of the natural circulations flows was the heating of ex-vessel structures. Surge line failure is likely to occur before the vessel is breached by the molten core, while steam generator tube failure is not expected

  4. Hepatitis B circulating immune complexes. Characterization by radioimmunoprecipitation - PEG assay (ripega)

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, F; Wattre, P; Dessaint, J P; Capron, A [Institut Pasteur de Lille, 59 - Villeneuve d' Ascq (France)

    1977-04-01

    Incidence of circulating immune complexes (IC) was investigated in carriers of hepatitis B antigen (HBAg) and/or anti-HB antibodies (anti-HBAb). Three methods were used: radiolabelled C1q binding test (C1qBT), complement fixation test (CFT), and optical density (OD) measurement after dissolution of 3% polyethylene glycol (PEG) precipitate of serum. A highly significant correlation was obtained between these three techniques. The level of IC was higher in carriers of HBAg without anti-HBAb than in others. The characterization of HBAg and anti-HBAb in IC was carried out by a new procedure, the radioimmunoprecipitation-PEG assay (RIPEGA). This sensitive and reproducible test was performed by incubation of /sup 125/I-HBAg or /sup 125/I-HBAg with 3% precipitate of the carriers' sera. Separation of free from complexed /sup 125/I-HBAg or /sup 125/I-HBAb was achieved by PEG precipitation. A highly significant correlation was found between the levels of circulating IC evaluated by the C1q-BT and the quantities of HBAg or anti HBAb measured by RIPEGA. RIPEGA was used to quantify HBAg and anti-HBAb present in serum from HBAg and/or anti-HBAb carriers, confirmed by a radioimmunoassay. In preliminary results, RIGPEGA was shown to be more sensitive than classical radioimmunoassay.

  5. Development of environmental friendly lost circulation material from banana peel

    Science.gov (United States)

    Sauki, Arina; Hasan, Nur â.€˜Izzati; Naimi, Fardelen Binti Md; Othman, Nur Hidayati

    2017-12-01

    Loss of expensive mud could lead to major financial problem in executing a drilling project and is one of the biggest problems that need to be tackled during drilling. Synthetic Based Mud (SBM) is the most stable state of the art drilling mud used in current drilling technologies. However, the problem with lost circulation is still inevitable. The focus of this project is to develop a new potential waste material from banana peel in order to combat lost circulation in SBM. Standard industrial Lost Circulation Material (LCM) is used to compare the performance of banana peel as LCM in SBM. The effects of different sizing of banana peels (600 micron, 300 micron and 100 micron) were studied on the rheological and filtration properties of SBM and the bridging performance of banana peel as LCM additive. The tests were conducted using viscometer, HTHP filter press and sand bed tester. Thermal analysis of banana peel was also studied using TGA. According to the results obtained, 300 and 100 micron size of banana peel LCM exhibited an improved bridging performance by 65% as compared to industrial LCM. However, banana peel LCM with the size of 600 micron failed to act as LCM due to the total invasion of mud into the sand bed.

  6. Evaluation method for core thermohydraulics during natural circulation in fast reactors numerical predictions of inter-wrapper flow

    International Nuclear Information System (INIS)

    Kamide, H.; Kimura, N.; Miyakoshi, H.; Nagasawa, K.

    2001-01-01

    Decay heat removal using natural circulation is one of the important functions for the safety of fast reactors. As a decay heat removal system, direct reactor auxiliary cooling system has been selected in current designs of fast reactors. In this design, dumped heat exchanger provides cold sodium and it covers the reactor core outlet. The cold sodium can penetrate into the gap region between the subassemblies. This gap flow is referred as inter-wrapper flow (IWF). A numerical estimation method for such natural circulation phenomena in a reactor core has been developed, which models each subassembly as a rectangular duct with gap region between the subassemblies and also the upper plenum in a reactor vessel. This numerical simulation method was verified based on experimental data of a sodium test using 7- subassembly core model and also a water test which simulates IWF using the 1/12 sector model of a reactor core. We applied the estimation method to the natural circulation in a 600 MW class fast reactor. The temperature in the core strongly depended on IWF, flow redistribution in the core, and inter-subassembly heat transfer. It is desired for prediction methods on the natural circulation to simulate these phenomena. (author)

  7. Investigations On Water Circulation in Animal Sea-Water Basins – On the Example of Seals′ Breeding Pools

    Directory of Open Access Journals (Sweden)

    Zima Piotr

    2017-04-01

    Full Text Available This paper presents general comments concerning investigations on water circulation in animal breeding pools containing sea water. As an example are given results of computer simulation of water circulation in seals′ breeding pools situated in Marine Station at Hel, belonging to Oceanographic Institute , Gdansk University. A mathematical model of three main pools was prepared with taking into account their inflow and outflow water supply points. Next, the object indication ( tracer tests were done with the use of mathematical modelling as well as in-situ measurements. For description of flow field in steady conditions a simplified model of 2D flow in the form of Helmholtz biharmonic equation of stream function , recalculated then into velocity vector components, was used. The equation , supplemented with appropriate boundary conditions , was solved numerically by using the finite differences method. The spreading of a substance dissolved in water (tracer was analyzed by solving 2D equation of transient advecting - dispersing transport. To solve it the finite volumes method was applied. The applied model was verified by conducting the indication tests with the use of the rhodamine WT as a tracer. The obtained results made it possible to reconstruct water circulation within the seals′ pools and identify stagnation zones in which water circulation may be made difficult.

  8. In-vessel natural circulation during a hypothetical loss-of-heat-sink accident in the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Perkins, K.R.; Bari, R.A.; Pratt, W.T.

    1979-05-01

    The capability to remove decay heat from the FFTF core via in-vessel natural circulation has been analyzed for the preboiling phase using a lumped parameter model. The results indicate that boiling will occur in the average fuel assembly for a wide spectrum of initial conditions which appear to be representative of the hypothetical loss-of-heat-sink accident. Two-phase pressure drop calculations indicate that, once the saturation temperature is reached, coolability can only be assured for decay heat levels which are less than 0.5% of the operating power. A review of the limited sodium boiling data indicates that boiling-induced natural circulation may support up to 4% of the operating power, but geometric atypicalities and a large degree of inlet subcooling for the existing data limit the applicability to the loss-of-heat-sink accident in FFTF

  9. The development and study on passive natural circulation

    International Nuclear Information System (INIS)

    Zhou Tao; Li Jingjing; Ju Zhongyun; Huang Yanping; Xiao Zejun

    2013-01-01

    Passive natural circulation is getting more and more important in the field of nuclear power engineering. This article cited a passive natural circulation in the nuclear power system application, analyzed the potential problems during operation, described current mathematical research methods of the reliability of passive natural cycle analysis, briefly summarized the advantages and disadvantages of these methods, and finally got an outlook of the direction of passive natural circulation. Since the presence of passive natural circulation may get failure, sufficient attention and active research should be paid in response to the physical process failure of the running passive natural circulation system and its reliability. To ensure system security during the operation, the operation process should combine active with non-dynamic; while selecting an accurate model, perfect passive reliability analysis methods to achieve accurate theoretical calculations and experimental verification. (authors)

  10. Natural circulation under severe accident conditions

    International Nuclear Information System (INIS)

    Pafford, D.J.; Hanson, D.J.; Tung, V.X.; Chmielewski, S.V.

    1992-01-01

    Research is being conducted to better understand natural circulation phenomena in mixtures of steam and noncondensibles and its influence on the temperature of the vessel internals and the hot leg, pressurizer surge line, and steam generator tubes. The temperature of these structures is important because their failure prior to reactor vessel lower head failure could reduce the likelihood of containment failure as a result of direct containment heating. Computer code calculations (MELPROG, SCDAP/RELAP5/MOD3) predict high fluid temperatures in the upper plenum resulting from in-vessel natural circulation. Using a simple model for the guide tube phenomena, high upper plenum temperatures are shown to be consistent with the relatively low temperatures that were deduced metallurgically from leadscrews removed from the TMI-2 upper plenum. Evaluation of the capabilities of the RELAP5/MOD3 computer code to predict natural circulation behavior was also performed. The code was used to model the Westinghouse natural circulation experimental facility. Comparisons between code calculations and results from experiments show good agreement

  11. Detection and capture of single circulating melanoma cells using photoacoustic flowmetry

    Science.gov (United States)

    O'Brien, Christine; Mosley, Jeffrey; Goldschmidt, Benjamin S.; Viator, John A.

    2010-02-01

    Photoacoustic flowmetry has been used to detect single circulating melanoma cells in vitro. Circulating melanoma cells are those cells that travel in the blood and lymph systems to create secondary tumors and are the hallmark of metastasis. This technique involves taking blood samples from patients, separating the white blood and melanoma cells from whole blood and irradiating them with a pulsed laser in a flowmetry set up. Rapid, visible wavelength laser pulses on the order of 5 ns can induce photoacoustic waves in melanoma cells due to their melanin content, while surrounding white blood cells remain acoustically passive. We have developed a system that identifies rare melanoma cells and captures them in 50 microliter volumes using suction applied near the photoacoustic detection chamber. The 50 microliter sample is then diluted and the experiment is repeated using the new sample until only a melanoma cell remains. We have tested this system on dyed microspheres ranging in size from 300 to 500 microns. Capture of circulating melanoma cells may provide the opportunity to study metastatic cells for basic understanding of the spread of cancer and to optimize patient specific therapies.

  12. Radionuclide Absorption Demonstration System

    Data.gov (United States)

    National Aeronautics and Space Administration — After a nuclear thermal rocket (NTR) is test fired, the engine’s reactor is operated in a cool-down mode during which radioactive exhaust by-products continue to be...

  13. Thermal hydraulic phenomenology for the heating process in a natural circulation facility

    International Nuclear Information System (INIS)

    Torres, Walmir M.; Macedo, Luiz A.; Mesquita, Roberto N.; Masotti, Paulo Henrique F.; Libardi, Rosani Maria P.; Sabundjian, Gaiane; Andrade, Delvonei A.; Umbehaun, Pedro Ernesto; Conti, Thadeu N.; Silva Filho, Mauro F.S.; Melo, Gabriel R.

    2009-01-01

    This work describes thermal hydraulic phenomenology observed for the heating process in a natural circulation facility. Glass made circuit allows observations of the thermal hydraulic processes over several regions. Natural convection, natural circulation, nucleated sub-cooled, saturated boiling and some flow patterns such as, bubbly, slug and churn flow are observed and described. Facility heated and cooled parts are responsible for the natural circulation when in operation. An expansion tank accommodates the fluid density variations due to the temperature changes and void fraction. Instrumentation consists of thermocouples distributed along the circuit. Two differential pressure transducers are used for pressure and level measurements. Instrumentation signals and images are simultaneously acquired to help with phenomenon description. A CCD digital camera at a 250μs shutter speed is used for the images acquisition. Phenomenology described is based on a test under 1.1 x 10 5 W/m 2 of heat flux which corresponds to an electrical heater power of 7000 W and 0.0236 kg/s (85 l/h) of cooling flow rate. (author)

  14. Overview of the system alone and system/CFD coupled calculations of the PHENIX Natural Circulation Test within the THINS project

    Energy Technology Data Exchange (ETDEWEB)

    Pialla, David, E-mail: david.pialla@cea.fr [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DM2S/STMF, 17 rue des martyrs, 38054 Grenoble Cedex 9 (France); Tenchine, Denis [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DM2S/STMF, 17 rue des martyrs, 38054 Grenoble Cedex 9 (France); Li, Simon [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DM2S/STMF, 91191 Gif-sur-Yvette Cedex (France); Gauthe, Paul; Vasile, Alfredo [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DER/SESI, 13108 Saint Paul Lez Durance Cedex (France); Baviere, Roland; Tauveron, Nicolas; Perdu, Fabien [Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), DEN/DM2S/STMF, 17 rue des martyrs, 38054 Grenoble Cedex 9 (France); Maas, Ludovic; Cocheme, François [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN/SEMIA/BAST, B.P. 17, 92262 Fontenay-aux-Roses Cedex (France); Huber, Klaus; Cheng, Xu [Karlsruhe Institute of Technology (KIT), Institute of Fusion and Reactor Technology (IFRT), Kaiserstraße 12, Building 07.08, 76131 Karlsruhe (Germany)

    2015-08-15

    Highlights: • The PHENIX natural convection test performed during the end of life tests program. • The calculation with system codes and theirs limits. • The calculation with coupling CFD and system code, which allows better prediction. • The tasks of code validation have been done in the frame of the THINS project. - Abstract: The PHENIX sodium cooled fast reactor started operation in 1973 and was shut down in 2009. Before decommissioning, an ultimate test program was designed and performed to provide valuable data for the development of future sodium cooled fast reactors, as the so-called Astrid prototype in France. Among these ultimate tests, a thermal-hydraulic Natural Convection Test (NCT) was set-up in June 2009. Starting from a reduced power state of 120 MWt, the NCT consists of a loss of the heat sink combined with a reactor scram and a primary pumps trip leading to stabilized natural circulation in the primary sodium system. The thermal-hydraulics innovative system project (THINS project), sponsored by the European Community in the frame of the 7th FP has selected this transient for validation of both stand-alone system code simulations and coupled simulations using system and CFD codes. Participants from three organizations (CEA, IRSN and KIT) have addressed this transient using different system codes (CATHARE, DYN2B and ATHLET) and CFD codes (TRIO-U and OPEN FOAM). The present paper depicts the different modeling approaches, methodologies and compares the numerical results with the available experimental data. Finally, the main lessons learned from the work performed within the THINS project on the PHENIX NCT with respect to code development and validation are summarized.

  15. Characteristic of onset of nucleate boiling in natural circulation

    International Nuclear Information System (INIS)

    Zhou Tao; Yang Ruichang; Liu Ruolei

    2006-01-01

    Two kinds of thermodynamics quality at onset of nucleate boiling with sub-cooled boiling were calculated for force circulation by using Bergles and Rohesenow method or Davis and Anderson method, and natural circulation by using Tsinghua University project group's empirical equations suggested in our natural circulation experiment at same condition. The characteristic of onset of nucleate boiling with subcooled boiling in natural circulation were pointed out. The research result indicates that the thermodynamics quality at onset of nucleate boiling with subcooled boiling in natural circulation is more sensitive for heat and inlet temperature and system pressure. Producing of onset of nucleate boiling with subcooled boiling is early at same condition. The research result also indicates more from microcosmic angle of statistical physics that the phenomena are caused by the effects of characteristic of dissipative structure of natural circulation in self organization, fluctuation force and momentum force of dynamics on thermodynamics equilibrium. these can lay good basis for study and application on sub-cooled boiling in natural circulation in future. (authors)

  16. Analysis and research on natural circulation capacity of HFETR

    International Nuclear Information System (INIS)

    Xu Taozhong; Duan Tianyuan

    2010-01-01

    For the operating characteristics of HFETR, the numerical model of HFETR was established by RELAP5/MOD3 to analysis the maximal natural circulation capacity. Combining with the reactor running condition, the influence of the system pressure was analyzed by ascending power in step method and the pool water temperature on natural circulation characteristics was analyzed by integral power method. The results show that the natural circulation capacity are 0.9 and 2.0 MW separately under low pressure and high pressure, the natural circulation capacity increases as the running pressure increases, however the natural circulation capacity decreases as the coolant temperature increases in the pressure vessel. Based on the computational result and the theoretical deduction, a correlation was proposed to predicate the relationship between the natural circulation mass flow and the core power under different coolant temperatures. (authors)

  17. Effective collateral circulation may indicate improved perfusion territory restoration after carotid endarterectomy.

    Science.gov (United States)

    Lin, Tianye; Lai, Zhichao; Lv, Yuelei; Qu, Jianxun; Zuo, Zhentao; You, Hui; Wu, Bing; Hou, Bo; Liu, Changwei; Feng, Feng

    2018-02-01

    To investigate the relationship between the level of collateral circulation and perfusion territory normalisation after carotid endarterectomy (CEA). This study enrolled 22 patients with severe carotid stenosis that underwent CEA and 54 volunteers without significant carotid stenosis. All patients were scanned with ASL and t-ASL within 1 month before and 1 week after CEA. Collateral circulation was assessed on preoperative ASL images based on the presence of ATA. The postoperative flow territories were considered as back to normal if they conformed to the perfusion territory map in a healthy population. Neuropsychological tests were performed on patients before and within 7 days after surgery. ATA-based collateral score assessed on preoperative ASL was significantly higher in the flow territory normalisation group (n=11, 50 %) after CEA (P mean differences+2SD among control (MMSE=1.35, MOCA=1.02)]. This study demonstrated that effective collateral flow in carotid stenosis patients was associated with normalisation of t-ASL perfusion territory after CEA. The perfusion territory normalisation group tends to have more cognitive improvement after CEA. • Evaluation of collaterals before CEA is helpful for avoiding ischaemia during clamping. • There was good agreement on ATA-based ASL collateral grading. • Perfusion territories in carotid stenosis patients are altered. • Patients have better collateral circulation with perfusion territory back to normal. • MMSE and MOCA test scores improved more in the territory normalisation group.

  18. Effect of the inlet throttling on the thermal-hydraulic instability of the natural circulation BWR

    International Nuclear Information System (INIS)

    Furuya, Masahiro; Inada, Fumio; Yoneda, Kimitoshi

    1997-01-01

    Although it is well-established that inlet restriction has a stabilizing for forced circulation BWR, the effect of inlet on the thermal-hydraulic stability of natural circulation BWR remains unknown since increasing inlet restriction affect thermal-hydraulic stability due to reduction of the recirculation flow rate. Therefore experiments have been conducted to investigate the effect of inlet restriction on the thermal-hydraulic stability. A test facility used in this experiments was designed and constructed to have non-dimensional values which are nearly equal to those of natural circulation BWR. Experimental results showed that driving force of the natural circulation was described as a function of heat flux and inlet subcooling independent of inlet restriction. Stability maps in reference to the channel inlet subcooling, heat flux were presented for various inlet restriction which were carried out by an analysis based on the homogeneous flow various using this function. Instability region during the inlet subcooling shifted to the higher inlet subcooling with increasing inlet restriction and became larger with increasing heat flux. (author)

  19. French R&D Program on SFR and the ASTRID Prototype

    International Nuclear Information System (INIS)

    Béhar, Christophe

    2013-01-01

    • ASTRID will be designed using lessons learnt from the Fukushima-Daichi accident; • The design benefits of merits of pool-type Sodium-cooled fast neutron reactors: → Favorable intrinsic features to cool-down the reactor: Large thermal inertia; Diversified heat sinks; Natural circulation; Ability to guarantee a minimum sodium level. • Safety objectives of ASTRID are derived from the WENRA (Western European Nuclear Regulators Association) document “Safety objectives for new nuclear power plants”. → It summarizes the highest safety standards, even for Fukushima-like initiators. Former Beyond Design Basis Accidents are included in the design. • Safety requirements are checked with the Generation IV International Forum Safety Design Criteria

  20. Cascade of circulations in fluid turbulence.

    Science.gov (United States)

    Eyink, Gregory L

    2006-12-01

    Kelvin's theorem on conservation of circulations is an essential ingredient of Taylor's theory of turbulent energy dissipation by the process of vortex-line stretching. In previous work, we have proposed a nonlinear mechanism for the breakdown of Kelvin's theorem in ideal turbulence at infinite Reynolds number. We develop here a detailed physical theory of this cascade of circulations. Our analysis is based upon an effective equation for large-scale coarse-grained velocity, which contains a turbulent-induced vortex force that can violate Kelvin's theorem. We show that singularities of sufficient strength, which are observed to exist in turbulent flow, can lead to nonvanishing dissipation of circulation for an arbitrarily small coarse-graining length in the effective equations. This result is an analog for circulation of Onsager's theorem on energy dissipation for singular Euler solutions. The physical mechanism of the breakdown of Kelvin's theorem is diffusion of lines of large-scale vorticity out of the advected loop. This phenomenon can be viewed as a classical analog of the Josephson-Anderson phase-slip phenomenon in superfluids due to quantized vortex lines. We show that the circulation cascade is local in scale and use this locality to develop concrete expressions for the turbulent vortex force by a multiscale gradient expansion. We discuss implications for Taylor's theory of turbulent dissipation and we point out some related cascade phenomena, in particular for magnetic flux in magnetohydrodynamic turbulence.

  1. Experimental study of gas–liquid two-phase flow through packed bed under natural circulation conditions

    International Nuclear Information System (INIS)

    Chen, Shao-Wen; Miwa, Shuichiro; Griffiths, Matt

    2016-01-01

    Dry-out phenomena in packed beds or porous media may cause a significant digression of cooling/reaction performance in heat transfer/chemical reactor systems. One of the phenomena responsible for the dry-out in packed beds is known as the counter-current flow limitation (CCFL). In order to investigate the CCFL phenomena induced by gas–liquid two-phase flow in packed beds inside a pool, a natural circulation packed bed test facility was designed and constructed. A total of 27 experimental conditions covering various packing media sizes (sphere diameters: 3.0, 6.4 and 9.5 mm), packed bed heights (15, 35 and 50 cm) and water level heights (1.0, 1.5 and 2.0 m) were tested to examine the CCFL criteria with adiabatic air–water two-phase flow under natural circulation conditions. Both CCFL and flow reversal phenomena were observed, and the experimental data including instantaneous and time-averaged void fraction, differential pressure and superficial gas–liquid velocities were collected. The CCFL criteria were determined when periodical oscillations of void fraction and differential pressure appear. In addition, the Wallis correlation for CCFL was utilized for data analysis, and the Wallis coefficient, C, was determined experimentally from the packed bed CCFL tests. Compared to the existing data-sets in literature, the higher C values obtained in the present experiment suggest a possibly higher dry-out heat flux for natural circulation debris systems, which may be due to the water supply from both top and bottom surfaces of the packed beds. Considering the effects of bed height and hydraulic diameter of the packing media, a newly developed model for the Wallis coefficient, C, under natural circulation CCFL is presented. The present model can predict the experimental data with an averaged absolute error of ±7.9%. (author)

  2. Seasonal Overturning Circulation in the Red Sea

    Science.gov (United States)

    Yao, F.; Hoteit, I.; Koehl, A.

    2010-12-01

    The Red Sea exhibits a distinct seasonal overturning circulation. In winter, a typical two-layer exchange structure, with a fresher inflow from the Gulf of Aden on top of an outflow from the Red Sea, is established. In summer months (June to September) this circulation pattern is changed to a three-layer structure: a surface outflow from the Red Sea on top of a subsurface intrusion of the Gulf of Aden Intermediate Water and a weakened deep outflow. This seasonal variability is studied using a general circulation model, MITgcm, with 6 hourly NCEP atmospheric forcing. The model is able to reproduce the observed seasonal variability very well. The forcing mechanisms of the seasonal variability related to seasonal surface wind stress and buoyancy flux, and water mass transformation processes associated with the seasonal overturning circulation are analyzed and presented.

  3. Large-scale in situ heater tests for hydrothermal characterization at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Wilder, D.G.; Nitao, J.J.

    1993-01-01

    To safely and permanently store high-level nuclear waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. Our analyses indicate that the ambient hydrological system will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. In situ heater tests are required to provide an understanding of coupled geomechanical-hydrothermal-geochemical behavior in the engineered and natural barriers under repository thermal loading conditions. In situ heater tests have been included in the Site Characterization Plan in response to regulatory requirements for site characterization and to support the validation of process models required to assess the total systems performance at the site. Because of limited time, some of the in situ tests will have to be accelerated relative to actual thermal loading conditions. We examine the trade-offs between the limited test duration and generating hydrothermal conditions applicable to repository performance during the entire thermal loading cycle, including heating (boiling and dry-out) and cooldown (re-wetting). For in situ heater tests to be applicable to actual repository conditions, a minimum heater test duration of 6-7 yr (including 4 yr of full-power heating) is required

  4. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. 1990 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    The objective of this DOE Cooperative Agreement is to conduct a cost-shared clean coal technology project to demonstrate the feasibility of circulating fluidized bed combustion technology and to evaluate economic, environmental, and operational benefits of CFB steam generators on a utility scale. At the conclusion of the Phase 2 program, testing related to satisfying these objectives was completed. Data analysis and reporting are scheduled for completion by October 1991. (VC)

  5. Test Results for HD1, a 16 Tesla Nb3Sn Dipole Magnet

    International Nuclear Information System (INIS)

    Lietzke, A.F.; Bartlett, S.; Bish, P.; Caspi, S.; Chiesa, L.; Dietderich, D.; Ferracin, P.; Gourlay, S.A.; Goli, M.; Hafalia, R.R.; Higley, H.; Hannaford, R.; Lau, W.; Liggens, N.; Mattafirri, S.; McInturff, A.; Nyman, M.; Sabbi, G.; Scanlan, R.; Swanson, J.

    2003-01-01

    The Superconducting Magnet Group at Lawrence Berkeley National Laboratory has been developing the technology for using brittle superconductor in high-field accelerator magnets. HD1, the latest in a series of magnets, contains two, double-layer Nb 3 Sn flat racetrack coils. This single-bore dipole configuration, using the highest performance conductor available, was designed and assembled for a 16 tesla conductor/structure/pre-stress proof-of-principle. With the combination of brittle conductor and high Lorentz stress, considerable care was taken to predict the magnet's mechanical responses to pre-stress, cool-down, and excitation. Subsequent cold testing satisfied expectations: Training started at 13.6 T, 83% of 'short-sample', achieved 90% in 10 quenches, and reached its peak bore field (16 T) after 19 quenches. The average plateau, ∼92% of 'short-sample', appeared to be limited by 'stick-slip' conductor motions, consistent with the 16.2 T conductor 'lift-off' pre-stress that was chosen for this first test. Some lessons learned and some implications for future conductor and magnet technology development are presented and discussed.

  6. Safety of different acupuncture manipulations for posterior circulation ischemia with vertigo

    Directory of Open Access Journals (Sweden)

    Yan Wen

    2016-01-01

    Full Text Available Acupuncture at Fengchi (GB20 in the posterior neck improves vertigo. However, subarachnoid hemorrhage and spinal epidural hematoma have been reported to occur after acupuncture in the posterior neck. Therefore, in the present study, we assessed the safety of acupuncture at Fengchi. Laboratory tests and adverse event reports were used to evaluate the safety of different acupuncture manipulations for the treatment of posterior circulation ischemia with vertigo. A total of 136 patients were randomly assigned to four groups. Verum acupuncture was conducted with different needle insertion directions (contralateral paropia or prominentia laryngea and different needle twisting frequencies (60 or 120 times/minute at Fengchi and matching acupoints (for example, Zhongwan [CV12], Qihai [CV6], Zusanli [ST36], and Fenglong [ST40]. The patients received 14 treatments over 3–4 weeks. Routine blood analysis, hepatic and renal function tests, urine and feces tests and electrocardiography were performed before the first treatment session and after the final session. Adverse events were recorded after every session. Of the 136 patients, 120 completed the study. There were no significant differences between pretreatment and posttreatment test results in any of the groups. Only five patients suffered from minor adverse events (needling pain, slight hematoma and transient chest tightness. No serious adverse events were found. Our results indicate that a 14-session course of needling at Fengchi is relatively safe for treating posterior circulation ischemia with vertigo.

  7. Evidence of the Lower Thermospheric Winter-to-Summer Circulation

    Science.gov (United States)

    Qian, L.; Burns, A. G.; Yue, J.

    2017-12-01

    Numerical studies showed that the lower thermospheric winter-to-summer circulation is driven by wave dissipation, and it plays a significant role in trace gas distributions in the mesosphere and lower thermosphere (MLT), and in the composition of the thermosphere. Direct observations of this circulation are difficult. However, it leaves clear signatures in tracer distributions. Recent analysis of CO2 observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) onboard the Thermosphere Ionosphere Mesosphere Energetics and Dynamics satellite showed dynamically driven dense isolines of CO2 at summer high latitudes. We conduct modeling and observational studies to understand the CO2 distribution and circulation patterns in the MLT. We found that there exists maximum vertical gradient of CO2 at summer high latitudes, driven by the convergence of the upwelling of the mesospheric circulation and the downwelling of the lower thermospheric circulation; this maximum vertical gradient of CO2 is located at a higher altitude in the winter hemisphere, driven by the convergence of the upwelling of the lower thermospheric circulation and the downwelling of the solar-driven thermospheric circulation. Based on SABER CO2 distribution, the bottom of the lower thermospheric circulation is located between 95 km and 100 km, and it has a vertical extent of 10 km. Analysis of the SABER CO2 and temperature at summer high latitudes showed that the bottom of this circulation is consistently higher than the mesopause height by 10 km; and its location does not change much between solar maximum and solar minimum.

  8. Appraisal of circulation routine duties in academic libraries | Hassan ...

    African Journals Online (AJOL)

    ... of brown charging system, book reservation, keeping of reserved collection, circulation of reserved books, treatment of overdue, lost of books on loan and library statistics among other as duties perform in circulation department of libraries. Keywords: Library Service, Circulation Duties, Challenges, Academic Libraries ...

  9. Decontamination and decommissioning the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Walton, G.R.; Perry, E.D.; Commander, J.C.; Spampinato, P.T.

    1994-01-01

    The Tokamak Fusion Test Reactor (TFTR) is scheduled to complete its end-of-life deuterium-tritium (D-T) experiments in September 1994. The D-T operation will result in the TFTR machine structure becoming activated, and plasma facing and vacuum components will be contaminated with tritium. The resulting machine activation levels after a two year cooldown period will allow hands on dismantling for external structures, but require remote dismantling for the vacuum vessel. The primary objective of the Decontamination and Decommissioning (D ampersand D) Project is to provide a facility for construction of a new Department of Energy (DOE) experimental fusion reactor by March 1998. The project schedule calls for a two year shutdown period when tritium decontamination of the vacuum vessel, neutral beam injectors and other components will occur. Shutdown will be followed by an 18 month period of D ampersand D operations. The technical objectives of the project are to: safely dismantle and remove components from the test cell complex; package disassembled components in accordance with applicable regulations; ship packages to a DOE approved disposal or material recycling site; and develop expertise using remote disassembly techniques on a large scale fusion facility. This paper discusses the D ampersand D objectives, the facility to be decommissioned, and the technical plan that will be implemented

  10. 3. Workshop for IAEA ICSP on Integral PWR Design Natural Circulation Flow Stability and Thermo-hydraulic Coupling of Containment and Primary System during Accidents. Presentations

    International Nuclear Information System (INIS)

    2012-04-01

    Most advanced nuclear power plant designs adopted several kinds of passive systems. Natural circulation is used as a key driving force for many passive systems and even for core heat removal during normal operation such as NuScale, CAREM, ESBWR and Indian AHWR designs. Simulation of natural circulation phenomena is very challenging since the driving force of it is weak compared to forced circulation and involves a coupling between primary system and containment for integral type reactor. The IAEA ICSP (International Collaborative Standard Problem) on 'Integral PWR Design Natural Circulation Flow Stability and Thermo-hydraulic Coupling of Containment and Primary System during Accidents' was proposed within the CRP on 'Natural Circulation Phenomena, Modelling, and Reliability of Passive Systems that utilize Natural Circulation'. Oregon State University (OSU) of USA offered to host this ICSP. This ICSP plans to conduct the following experiments and blind/open simulations with system codes: 1. Quasi-steady state operation with different core power levels: Conduct quasi-steady state operation with step-wise increase of core power level in order to observe single phase natural circulation flow according to power level. The experimental facility and operating conditions for an integral PWR will be used. 2. Thermo-hydraulic Coupling between Primary system and Containment: Conduct a loss of feedwater transient with subsequent ADS blowdown and long term cooling to determine the progression of a loss of feedwater transient by natural circulation through primary and containment systems. These tests would examine the blowdown phase as well as the long term cooling using sump natural circulation by coupling the primary to containment systems. This data could be used for the evaluation of system codes to determine if they model specific phenomena in an accurate manner. OSU completed planned two ICSP tests in July 2011 and real initial and boundary conditions measured from the

  11. Experimental study of the transition from forced to natural circulation in EBR-II at low power and flow

    International Nuclear Information System (INIS)

    Gillette, J.L.; Singer, R.M.; Tokar, J.V.; Sullivan, J.E.

    1979-01-01

    A series of tests have been conducted in EBR-II which studied the dynamics of the transition from forced to natural circulation flow in a liquid-metal-cooled fast breeder reactor (LMFBR). Each test was initiated by abruptly tripping an electromagnetic pump which supplies 5 to 6% of the normal full operational primary flow rate. The ensuing flow coast-down reached a minimum value after which the flow increased as natural circulation was established. The effects of secondary system flow through the intermediate heat exchanger and reactor decay power level on the minimum in-core flow rates and maximum in-core temperatures were examined

  12. Experimental study of critical heat flux enhancement with hypervapotron structure under natural circulation conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Fangxin [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); Chang, Huajian [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing (China); State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Zhao, Yufeng, E-mail: zhaoyufeng@snptc.com.cn [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Zhang, Ming; Gao, Tianfang [State Nuclear Power Technology R& D Center (Beijing), Beijing (China); Chen, Peipei [State Power Investment Corporation, Beijing (China)

    2017-05-15

    Highlights: • Natural circulation tests are performed to study the effect of hypervapotron on CHF. • Hypervapotron structure improves CHF under natural circulation conditions. • Visualization data illustrate vapor blanket behavior under subcooled flow conditions. - Abstract: The enhancement of critical heat flux with a hypervapotron structure under natural circulation conditions is investigated in this study. Subcooled flow boiling CHF experiments are performed using smooth and hypervapotron surfaces at different inclination angles under natural circulation conditions. The experimental facility, TESEC (Test of External Vessel Surface with Enhanced Cooling), is designed to conduct CHF experiments in a 30 mm by 61 mm rectangular flow channel with a 200 mm long heated surface along the flow direction. The two-phase flow of subcooled flow boiling on both smooth and hypervapotron heating plates is observed and analyzed by the high-speed visualization technology. The results show that both smooth surface and hypervapotron surface CHF data exhibit a similar trend against inclination angles compared with the CHF results under forced flow condition on the same facility in earlier studies. However, the CHF enhancement of the hypervapotron structure is evidently more significant than the one under forced flow conditions. The experiments also indicate that the natural flow rates are higher with hypervapotron structure. The initiation of CHF is analyzed under transient subcooling and flow rate conditions for both smooth and hypervapotron heating surfaces. An explanation is given for the significant enhancement effect caused by the hypervapotron surface under natural circulation conditions. The visualization data are exhibited to demonstrate the behavior of the vapor blanket at various inclination angles and on different surfaces. The geometric data of the vapor blanket are quantified by an image post-processing method. It is found that the thickness of the vapor blanket

  13. Large coil test facility conceptual design report

    International Nuclear Information System (INIS)

    Nelms, L.W.; Thompson, P.B.; Mann, T.L.

    1978-02-01

    In the development of a superconducting toroidal field (TF) magnet for The Next Step (TNS) tokamak reactor, several different TF coils, about half TNS size, will be built and tested to permit selection of a design and fabrication procedure for full-scale TNS coils. A conceptual design has been completed for a facility to test D-shaped TF coils, 2.5 x 3.5-m bore, operating at 4-6 K, cooled either by boiling helium or by forced-flow supercritical helium. Up to six coils can be accommodated in a toroidal array housed in a single vacuum tank. The principal components and systems in the facility are an 11-m vacuum tank, a test stand providing structural support and service connections for the coils, a liquid nitrogen system, a system providing helium both as saturated liquid and at supercritical pressure, coils to produce a pulsed vertical field at any selected test coil position, coil power supplies, process instrumentation and control, coil diagnostics, and a data acquisition and handling system. The test stand structure is composed of a central bucking post, a base structure, and two horizontal torque rings. The coils are bolted to the bucking post, which transmits all gravity loads to the base structure. The torque ring structure, consisting of beams between adjacent coils, acts with the bucking structure to react all the magnetic loads that occur when the coils are energized. Liquid helium is used to cool the test stand structure to 5 K to minimize heat conduction to the coils. Liquid nitrogen is used to precool gaseous helium during system cooldown and to provide thermal radiation shielding

  14. Circulating follistatin in relation to energy metabolism

    DEFF Research Database (Denmark)

    Hansen, Jakob Schiøler; Plomgaard, Peter

    2016-01-01

    a relation to energy metabolism. In this narrative review, we attempt to reconcile the existing findings on circulating follistatin with the novel concept that circulating follistatin is a liver-derived molecule regulated by the glucagon-to-insulin ratio. The picture emerging is that conditions associated...

  15. Influence of Seasonality and Circulating Cytokines on Serial QuantiFERON Discordances

    Directory of Open Access Journals (Sweden)

    Marsha L. Griffin

    2018-01-01

    Full Text Available Objectives. An 18-month prospective study serially tested healthcare workers (HCWs for tuberculosis infection (TBI and reported discordant QuantiFERON Gold In-Tube® (QFT results in some participants. The purpose of the current study was to investigate whether the interferon-gamma (IFN-γ measured by QFT in discordant individuals could be influenced by other circulating cytokines that vary seasonally at the time of phlebotomy. Methods. The CDC funded TBESC Task Order 18 (TO18 project to assess the use of Interferon Gamma Release Assays (IGRAs, T-SPOT.TB® and QFT, compared to the tuberculin skin test (TST for the serial testing of TBI in HCW at 4 US sites. Unstimulated plasma from 9 discordant TO18 participants at 4 different time points from the Houston site was multiplexed to determine the association between circulating cytokines and antigen stimulated IFN-γ levels. Results. IL-12, IL-1β, IL-3, GCSF, and IL-7 were associated with the amount of IFN-γ measured in response to antigen stimulation. In addition to these cytokines, a significant relationship was found between a positive QFT result and the spring season. Conclusions. Allergens during the spring season can result in the upregulation of IL-1β and IL-3, and this upregulation was observed with the amount of IFN-γ measured in discordant results.

  16. Investigation of natural circulation instability and transients in passively safe novel modular reactor

    Science.gov (United States)

    Shi, Shanbin

    The Purdue Novel Modular Reactor (NMR) is a new type small modular reactor (SMR) that belongs to the design of boiling water reactor (BWR). Specifically, the NMR is one third the height and area of a conventional BWR reactor pressure vessel (RPV) with an electric output of 50 MWe. The fuel cycle length of the NMR-50 is extended up to 10 years due to optimized neutronics design. The NMR-50 is designed with double passive engineering safety system. However, natural circulation BWRs (NCBWR) could experience certain operational difficulties due to flow instabilities that occur at low pressure and low power conditions. Static instabilities (i.e. flow excursion (Ledinegg) instability and flow pattern transition instability) and dynamic instabilities (i.e. density wave instability and flashing/condensation instability) pose a significant challenge in two-phase natural circulation systems. In order to experimentally study the natural circulation flow instability, a proper scaling methodology is needed to build a reduced-size test facility. The scaling analysis of the NMR uses a three-level scaling method, which was developed and applied for the design of the Purdue Multi-dimensional Integral Test Assembly (PUMA). Scaling criteria is derived from dimensionless field equations and constitutive equations. The scaling process is validated by the RELAP5 analysis for both steady state and startup transients. A new well-scaled natural circulation test facility is designed and constructed based on the scaling analysis of the NMR-50. The experimental facility is installed with different equipment to measure various thermal-hydraulic parameters such as pressure, temperature, mass flow rate and void fraction. Characterization tests are performed before the startup transient tests and quasi-steady tests to determine the loop flow resistance. The controlling system and data acquisition system are programmed with LabVIEW to realize the real-time control and data storage. The thermal

  17. Exact Inverse Matrices of Fermat and Mersenne Circulant Matrix

    Directory of Open Access Journals (Sweden)

    Yanpeng Zheng

    2015-01-01

    Full Text Available The well known circulant matrices are applied to solve networked systems. In this paper, circulant and left circulant matrices with the Fermat and Mersenne numbers are considered. The nonsingularity of these special matrices is discussed. Meanwhile, the exact determinants and inverse matrices of these special matrices are presented.

  18. SPES-2, the full-height, full-pressure, test facility simulating the AP600 plant: Main results from the experimental campaign

    International Nuclear Information System (INIS)

    Medich, C.; Rigamonti, M.; Martinelli, R.; Tarantini, M.; Conway, L.

    1995-01-01

    The SPES-2 is a full height, full pressure experimental test facility reproducing the Westinghouse AP600 reactor with a scaling factor of 1/395. The experimental plant, designed and operated by SIET in Piacenza, consists of a full simulation of the AP600 primary core cooling system including all the passive and active safety systems. In 1992, Westinghouse, in cooperation with ENEL, ENEA, SIET and ANSALDO developed an experimental program to test the integrated behavior of the AP600 passive safety systems. The SPES-2 test matrix, concluded in November 1994, has examined the AP600 passive safety system response for a range of small break LOCAs at different locations on the primary system and on the passive system lines; single steam generator tube ruptures with both passive and active non-safety systems, and a main steam line break transient to demonstrate the capability of passive safety systems for rapid cooldown. Each of the tests has provided detailed experimental results for verification of the capability of the analysis methods to predict the integrated passive safety system behavior

  19. Idealised modelling of ocean circulation driven by conductive and hydrothermal fluxes at the seabed

    Science.gov (United States)

    Barnes, Jowan M.; Morales Maqueda, Miguel A.; Polton, Jeff A.; Megann, Alex P.

    2018-02-01

    Geothermal heating is increasingly recognised as an important factor affecting ocean circulation, with modelling studies suggesting that this heat source could lead to first-order changes in the formation rate of Antarctic Bottom Water, as well as a significant warming effect in the abyssal ocean. Where it has been represented in numerical models, however, the geothermal heat flux into the ocean is generally treated as an entirely conductive flux, despite an estimated one third of the global geothermal flux being introduced to the ocean via hydrothermal sources. A modelling study is presented which investigates the sensitivity of the geothermally forced circulation to the way heat is supplied to the abyssal ocean. An analytical two-dimensional model of the circulation is described, which demonstrates the effects of a volume flux through the ocean bed. A simulation using the NEMO numerical general circulation model in an idealised domain is then used to partition a heat flux between conductive and hydrothermal sources and explicitly test the sensitivity of the circulation to the formulation of the abyssal heat flux. Our simulations suggest that representing the hydrothermal flux as a mass exchange indeed changes the heat distribution in the abyssal ocean, increasing the advective heat transport from the abyss by up to 35% compared to conductive heat sources. Consequently, we suggest that the inclusion of hydrothermal fluxes can be an important addition to course-resolution ocean models.

  20. 3D Visualization of Global Ocean Circulation

    Science.gov (United States)

    Nelson, V. G.; Sharma, R.; Zhang, E.; Schmittner, A.; Jenny, B.

    2015-12-01

    Advanced 3D visualization techniques are seldom used to explore the dynamic behavior of ocean circulation. Streamlines are an effective method for visualization of flow, and they can be designed to clearly show the dynamic behavior of a fluidic system. We employ vector field editing and extraction software to examine the topology of velocity vector fields generated by a 3D global circulation model coupled to a one-layer atmosphere model simulating preindustrial and last glacial maximum (LGM) conditions. This results in a streamline-based visualization along multiple density isosurfaces on which we visualize points of vertical exchange and the distribution of properties such as temperature and biogeochemical tracers. Previous work involving this model examined the change in the energetics driving overturning circulation and mixing between simulations of LGM and preindustrial conditions. This visualization elucidates the relationship between locations of vertical exchange and mixing, as well as demonstrates the effects of circulation and mixing on the distribution of tracers such as carbon isotopes.

  1. Natural Circulation Characteristics of a Symmetric Loop under Inclined Conditions

    Directory of Open Access Journals (Sweden)

    Xingtuan Yang

    2014-01-01

    Full Text Available Natural circulation is an important process for primary loops of some marine integrated reactors. The reactor works under inclined conditions when severe accidents happen to the ship. In this paper, to investigate the characteristics of natural circulation, experiments were conducted in a symmetric loop under the inclined angle of 0~45°. A CFD model was also set up to predict the behaviors of the loop beyond the experimental scope. Total circulation flow rate decreases with the increase of inclined angle. Meanwhile one circulation is depressed while the other is enhanced, and accordingly the disparity between the branch circulations arises and increases with the increase of inclined angle. Circulation only takes place in one branch circuit at large inclined angle. Also based on the CFD model, the influences of flow resistance distribution and loop configuration on natural circulation are predicted. The numerical results show that to design the loop with the configuration of big altitude difference and small width, it is favorable to reduce the influence of inclination; however too small loop width will cause severe reduction of circulation ability at large angle inclination.

  2. A multimodel comparison of centennial Atlantic meridional overturning circulation variability

    Energy Technology Data Exchange (ETDEWEB)

    Menary, Matthew B.; Vellinga, Michael; Palmer, Matthew D. [Met Office Hadley Centre, Exeter, Devon (United Kingdom); Park, Wonsun; Latif, Mojib [IFM-GEOMAR, Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); Lohmann, Katja; Jungclaus, Johann H. [Max Planck Inst Meteorol, Hamburg (Germany)

    2012-06-15

    A mechanism contributing to centennial variability of the Atlantic Meridional Overturning Circulation (AMOC) is tested with multi-millennial control simulations of several coupled general circulation models (CGCMs). These are a substantially extended integration of the 3rd Hadley Centre Coupled Climate Model (HadCM3), the Kiel Climate Model (KCM), and the Max Plank Institute Earth System Model (MPI-ESM). Significant AMOC variability on time scales of around 100 years is simulated in these models. The centennial mechanism links changes in the strength of the AMOC with oceanic salinities and surface temperatures, and atmospheric phenomena such as the Intertropical Convergence Zone (ITCZ). 2 of the 3 models reproduce all aspects of the mechanism, with the third (MPI-ESM) reproducing most of them. A comparison with a high resolution paleo-proxy for Sea Surface Temperatures (SSTs) north of Iceland over the last 4,000 years, also linked to the ITCZ, suggests that elements of this mechanism may also be detectable in the real world. (orig.)

  3. BWR Full Integral Simulation Test (FIST) Phase II test results and TRAC-BWR model qualification

    International Nuclear Information System (INIS)

    Sutherland, W.A.; Alamgir, M.; Findlay, J.A.; Hwang, W.S.

    1985-10-01

    Eight matrix tests were conducted in the FIST Phase I. These tests investigated the large break, small break and steamline break LOCA's, as well as natural circulation and power transients. There are nine tests in Phase II of the FIST program. They include the following LOCA tests: BWR/6 LPCI line break, BWR/6 intermediate size recirculation break, and a BWR/4 large break. Steady state natural circulation tests with feedwater makeup performed at high and low pressure, and at high pressure with HPCS makeup, are included. Simulation of a transient without rod insertion, and with controlled depressurization, was performed. Also included is a simulation of the Peach Bottom turbine trip test. The final two tests simulated a failure to maintain water level during a postulated accident. A FIST program objective is to assess the TRAC code by comparisons with test data. Two post-test predictions made with TRACB04 are compared with Phase II test data in this report. These are for the BWR/6 LPCI line break LOCA, and the Peach Bottom turbine trip test simulation

  4. Preliminary Study of Single-Phase Natural Circulation for Lab-scaled Molten Salt Application

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Yukyung; Kang, Sarah; Kim, In Guk; Seo, Seok Bin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Park, Seong Dae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Advanced reactors such as MSR (FHR), VHTR and AHTR utilized molten salt as a coolant for efficiency and safety which has advantages in higher heat capacity, lower pumping power and scale compared to liquid metal. It becomes more necessary to study on the characteristics of molten salt. However, due to several characteristics such as high operating temperature, large-scale facility and preventing solidification, satisfying that condition for study has difficulties. Thus simulant fluid was used with scaling method for lab-scale experiment. Scaled experiment enables simulant fluid to simulate fluid mechanics and heat transfer behavior of molten salt on lower operating temperature and reduced scale. In this paper, as a proof test of the scaled experiment, simplified single-phase natural circulation loop was designed in a lab-scale and applied to the passive safety system in advanced reactor in which molten salt is considered as a major coolant of the system. For the application of the improved safety system, prototype was based on the primary loop of the test-scale DRACS, the main passive safety system in FHR, developed at the OSU. For preliminary experiment, single-phase natural circulation under low power was performed. DOWTHERM A and DOWTHERM RP were selected as simulant candidates. Then, study of feasibility with simulant was conducted based on the scaling law for heat transfer characteristics and geometric parameters. Additionally, simulation with MARS code and ANSYS-CFX with the same condition of natural circulation was carried out as verification. For the accurate code simulation, thermo-physical properties of DOWTHERM A and RP were developed and implemented into MARS code. In this study, single-phase natural circulation experiment was performed with simulant oil, DOWTHERM RP, based on the passive safety system of FHR. Feasibility of similarity experiment for molten salt with oil simulant was confirmed by scaling method. In addition, simulation with two

  5. Estuarine turbidity, flushing, salinity, and circulation

    Science.gov (United States)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  6. Natural circulation in water cooled nuclear power plants: Phenomena, models, and methodology for system reliability assessments

    International Nuclear Information System (INIS)

    2005-11-01

    order to focus the CRP activities on advancing the state of knowledge. With the benefit of the results of the CRP, this publication will be updated in the future to produce a report on the state of the art of natural circulation in water cooled nuclear power plants. This publication also contains material from an intensive IAEA training course on Natural Circulation in Water Cooled Reactors for research scientists and engineers involved in the design, testing or analysis of natural circulation systems

  7. Liquid nitrogen cooling considerations of the compact ignition tokamak

    International Nuclear Information System (INIS)

    Dabiri, A.E.

    1986-01-01

    An analytical procedure was developed to estimate the cooldown time between pulses of the Compact Ignition Tokamak (CIT) utilizing liquid nitrogen. Fairly good agreement was obtained between the analysis results and those measured in the early fusion experimental devices. The cooldown time between pulses in the CIT is controlled by the energy disposition in the inner leg of the TF coil. A cooldown time of less than one hour is feasible for the CIT if fins are used in the cooling channels. An R and D experimental program is proposed to determine the actual cooldown time between pulses since this would be considered an issue in the conceptual design of the CIT

  8. Cooling Performance of Natural Circulation for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Suki; Chun, J. H.; Yum, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This paper deals with the core cooling performance by natural circulation during normal operation and a flow channel blockage event in an open tank-in-pool type research reactor. The cooling performance is predicted by using the RELAP5/ MOD3.3 code. The core decay heat is usually removed by natural circulation to the reactor pool water in open tank-in-pool type research reactors with the thermal power less than several megawatts. Therefore, these reactors have generally no active core cooling system against a loss of normal forced flow. In reactors with the thermal power less than around one megawatt, the reactor core can be cooled down by natural circulation even during normal full power operation. The cooling performance of natural circulation in an open tank-in-pool type research reactor has been investigated during the normal natural circulation and a flow channel blockage event. It is found that the maximum powers without void generation at the hot channel are around 1.16 MW and 820 kW, respectively, for the normal natural circulation and the flow channel blockage event.

  9. Multiple states in the late Eocene ocean circulation

    Science.gov (United States)

    Baatsen, M. L. J.; von der Heydt, A. S.; Kliphuis, M.; Viebahn, J.; Dijkstra, H. A.

    2018-04-01

    The Eocene-Oligocene Transition (EOT) marks a major step within the Cenozoic climate in going from a greenhouse into an icehouse state, with the formation of a continental-scale Antarctic ice sheet. The roles of steadily decreasing CO2 concentrations versus changes in ocean circulation at the EOT are still debated and the threshold for Antarctic glaciation is obscured by uncertainties in global geometry. Here, a detailed study of the late Eocene ocean circulation is carried out using an ocean general circulation model under two slightly different geography reconstructions of the middle-to-late Eocene (38 Ma). Using the same atmospheric forcing, both geographies give a profoundly different equilibrium ocean circulation state. The underlying reason for this sensitivity is the presence of multiple equilibria characterised by either North or South Pacific deep water formation. A possible shift from a southern towards a northern overturning circulation would result in significant changes in the global heat distribution and consequently make the Southern Hemisphere climate more susceptible for significant cooling and ice sheet formation on Antarctica.

  10. Helium compressor aerodynamic design considerations for MHTGR circulators

    International Nuclear Information System (INIS)

    McDonald, C.F.

    1988-01-01

    Compressor aerodynamic design considerations for both the main and shutdown cooling circulators in the Modular High-Temperature Gas-Cooled Reactor (MHTGR) plant are addressed in this paper. A major selection topic relates to the impeller type (i.e., axial or radial flow), and the aerothermal studies leading to the selection of optimum parameters are discussed. For the conceptual designs of the main and shutdown cooling circulators, compressor blading geometries were established and helium gas flow paths defined. Both circulators are conservative by industrial standards in terms of aerodynamic and structural loading, and the blade tip speeds are particularly modest. Performance characteristics are presented, and the designs embody margin to ensure that pressure-rise growth potential can be accomodated should the circuit resistance possibly increase as the plant design advances. The axial flow impeller for the main circulator is very similar to the Fort St. Vrain (FSV) helium compressor which performs well. A significant technology base exists for the MHTGR plant circulators, and this is highlighted in the paper. (author). 15 refs, 16 figs, 12 tabs

  11. The relation of near-infrared spectroscopy with changes in peripheral circulation in critically ill patients

    NARCIS (Netherlands)

    Lima, Alexandre; van Bommel, Jasper; Sikorska, Karolina; van Genderen, Michel; Klijn, Eva; Lesaffre, Emmanuel; Ince, Can; Bakker, Jan

    2011-01-01

    We conducted this observational study to investigate tissue oxygen saturation during a vascular occlusion test in relationship with the condition of peripheral circulation and outcome in critically ill patients. Prospective observational study. Multidisciplinary intensive care unit in a university

  12. Circulating cell-free DNA and circulating tumor cells, the "liquid biopsies" in ovarian cancer.

    Science.gov (United States)

    Cheng, Xianliang; Zhang, Lei; Chen, Yajuan; Qing, Chen

    2017-11-13

    Limited understanding of ovarian cancer (OC) genome portrait has hindered the therapeutic advances. The serial monitoring of tumor genotypes is becoming increasingly attainable with circulating cell-free DNA (cf-DNA) and circulating tumor cells (CTCs) emerging as "liquid biopsies". They represent non-invasive biomarkers and are viable, as they can be isolated from human plasma, serum and other body fluids. Molecular characterization of circulating tumor DNA (ct-DNA) and CTCs offer unique potentials to better understand the biology of metastasis and resistance to therapies. The liquid biopsies may also give innovative insights into the process of rapid and accurate identification, resistant genetic alterations and a real time monitoring of treatment responses. In addition, liquid biopsies are shedding light on elucidating signal pathways involved in invasiveness and metastasis competence; but the detection and molecular characterization of ct-DNA and CTCs are still challenging, since they are rare, and the amount of available samples are very limited. This review will focus on the clinical potential of ct-DNA and CTCs in both the early and advanced diagnosis, prognosis, and in the identification of resistance mutations in OC.

  13. Prototype of an opto-capacitive probe for non-invasive sensing cerebrospinal fluid circulation

    Science.gov (United States)

    Myllylä, Teemu; Vihriälä, Erkki; Pedone, Matteo; Korhonen, Vesa; Surazynski, Lukasz; Wróbel, Maciej; Zienkiewicz, Aleksandra; Hakala, Jaakko; Sorvoja, Hannu; Lauri, Janne; Fabritius, Tapio; Jedrzejewska-Szczerska, Małgorzata; Kiviniemi, Vesa; Meglinski, Igor

    2017-03-01

    In brain studies, the function of the cerebrospinal fluid (CSF) awakes growing interest, particularly related to studies of the glymphatic system in the brain, which is connected with the complex system of lymphatic vessels responsible for cleaning the tissues. The CSF is a clear, colourless liquid including water (H2O) approximately with a concentration of 99 %. In addition, it contains electrolytes, amino acids, glucose, and other small molecules found in plasma. The CSF acts as a cushion behind the skull, providing basic mechanical as well as immunological protection to the brain. Disturbances of the CSF circulation have been linked to several brain related medical disorders, such as dementia. Our goal is to develop an in vivo method for the non-invasive measurement of cerebral blood flow and CSF circulation by exploiting optical and capacitive sensing techniques simultaneously. We introduce a prototype of a wearable probe that is aimed to be used for long-term brain monitoring purposes, especially focusing on studies of the glymphatic system. In this method, changes in cerebral blood flow, particularly oxy- and deoxyhaemoglobin, are measured simultaneously and analysed with the response gathered by the capacitive sensor in order to distinct the dynamics of the CSF circulation behind the skull. Presented prototype probe is tested by measuring liquid flows inside phantoms mimicking the CSF circulation.

  14. Weather types in the South Shetlands (Antarctica) using a circulation type approach

    Science.gov (United States)

    Mora, Carla; João Rocha, Maria; Dutra, Emanuel; Trigo, Isabel; Vieira, Gonçalo; Fragoso, Marcelo; Ramos, Miguel

    2010-05-01

    Weather types in the South Shetlands (Antarctica) were defined using an automated method based on the Lamb Weather Type classification scheme (Jones et al. 1993). This is an objective classification originally developed for the British Isles (Jones et al., 1993) and also applied to southeast (Goodess and Palutikof 1998) and northwest Spain (Lorenzo et al, 2009), Portugal (Trigo and DaCamara 2000) and Greece (Maheras et al. 2004) with good results. Daily atmospheric circulation in the South Shetlands region from 1989 to 2009 was classified using a 16-node grid of sea level pressure data from the ERA Interim. The classification is obtained through the comparison of the magnitudes of the directional and rotational components of the geostrophic flow. Basic circulation types were combined into 10 groups of weather types: four directional types (NW, N, S and SW), three anticyclonic types (A, ASW and ANW), and three cyclonic types (C, CSW and CNW). Westerly flow and cyclonic circulation are the most frequent events throughout the year. The sea level pressure field for each weather type is presented and the synoptic characteristics are described. The analysis is based on ERA-Interim fields, including mean sea level pressure, precipitation, cloud cover, humidity and air temperature. Snow thickess modelled using HTESSEL is also considered. Analysis of variance (anova) and multivariate analysis (principal component analysis) are applied to evaluate the characteristics of each weather type. This circulation-type approach showed good results in the past for the downscaling of precipitation in other regions, and we are interested in evaluating the possibilities that the classification offers for downscaling precipitation, but also for snow and air temperature. For this we will be using observational data at test sites in Livingston and Deception islands. We are also motivated by the possibility of using the circulation-type approach as a predictor in statistical downscaling

  15. A comparison of the RELAP5/MOD3 code with the IIST natural circulation experiments

    International Nuclear Information System (INIS)

    Ferng, Y.M.; Lee, C.H.

    1995-01-01

    A series of experiments dealing with variable secondary-side cooling conditions have been conducted at the IIST facility, including the natural circulation experiments under the secondary-side conditions of normal feedwater, loss of feedwater, and full of air. Different cooling conditions at the secondary side directly affect the primary-to-secondary heat transfer and then may influence the heat removal capability of natural circulation in the primary system. The corresponding analytical work is performed using the RELAP5/MOD3 code. Good agreement is reached both qualitatively and quantitatively between the experimental data and calculated results, demonstrating the satisfactory assessment of RELAP5/MOD3 code compared with the IIST natural circulation experiments. The cooling conditions at the secondary side have no significant effect on the heat removal capability of natural circulation as long as sufficient coolant exists on the steam generator secondary side, based on current IIST data and analytical results. Continuous increase of the core temperature and system pressure is also demonstrated experimentally and analytically in the test with the secondary side dry for the sake of deficient heat transfer capability at the steam generator secondary system

  16. Some experimental results for an automatic helium liquefier

    International Nuclear Information System (INIS)

    Watanabe, T.; Kudo, T.; Kuraoka, Y.; Sakura, K.; Tsuruga, H.; Watanabe, T.

    1984-01-01

    This chapter describes the testing of an automatic cooldown system. The liquefying machine examined is a CTi Model 1400. The automatic helium gas liquefying system is operated by using sequence control with a programmable controller. The automatic mode is carried out by operation of two compressors. The monitoring system consists of 41 remote sensors. Liquid level is measured by a superconducting level meter. The J-T valve and return valve, which require precise control, are operated by pulse motors. The advantages of the automatic cooldown system are reduced operator man power; temperatures and pressures are changed smoothly, so that the flow chart of automation is simple; and the system makes continuous liquefier operation possible

  17. Comparison of three-dimensional ocean general circulation models on a benchmark problem

    International Nuclear Information System (INIS)

    Chartier, M.

    1990-12-01

    A french and an american Ocean General Circulation Models for deep-sea disposal of radioactive wastes are compared on a benchmark test problem. Both models are three-dimensional. They solve the hydrostatic primitive equations of the ocean with two different finite difference techniques. Results show that the dynamics simulated by both models are consistent. Several methods for the running of a model from a known state are tested in the French model: the diagnostic method, the prognostic method, the acceleration of convergence and the robust-diagnostic method

  18. A heated large block test for high level nuclear waste management

    International Nuclear Information System (INIS)

    Lin, W.; Wilder, D.G.; Blink, J.A.; Blair, S.C.; Buscheck, T.A.; Glassley, W.E.; Lee, K.; Owens, M.W.; Roberts, J.J.

    1995-01-01

    The radioactive decay heat from high-level nuclear waste may, depending on the thermal load, create coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the host rock of a repository. A heated large block test (LBT) is designed to understand some of the TNMC processes. A block of Topopah Spring tuff of about 3 x 3 x 4.5 m was isolated at Fran Ridge, Nevada Test Site. Small blocks of the rock adjacent to the large block were collected for laboratory testing of some individual thermal-mechanical, thermal-hydrological, and thermal-chemical processes. The large block will be heated by heaters within so that a dryout zone and a condensate zone will exist simultaneously. Guard heaters on the block sides will be used to minimize horizontal heat losses. A constant load of about 4 MPa will be applied to the top and sides of the large block. The sides will be sealed with moisture and thermal barriers. Temperature, moisture content, pore pressure, chemical composition, stress, displacement, electrical resistivity, acoustic emissions, and acoustic velocities will be measured throughout the block during the heating and cool-down phases. The results from the experiments on small blocks and the tests on the large block will provide a better understanding of some concepts of the coupled TMHC processes. The progress of the project is presented in this paper

  19. Melt coolability modeling and comparison to MACE test results

    International Nuclear Information System (INIS)

    Farmer, M.T.; Sienicki, J.J.; Spencer, B.W.

    1992-01-01

    An important question in the assessment of severe accidents in light water nuclear reactors is the ability of water to quench a molten corium-concrete interaction and thereby terminate the accident progression. As part of the Melt Attack and Coolability Experiment (MACE) Program, phenomenological models of the corium quenching process are under development. The modeling approach considers both bulk cooldown and crust-limited heat transfer regimes, as well as criteria for the pool thermal hydraulic conditions which separate the two regimes. The model is then compared with results of the MACE experiments

  20. Circulating nucleic acids and evolution.

    Science.gov (United States)

    Anker, Philippe; Stroun, Maurice

    2012-06-01

    J.B. Lamarck in 1809 was the first to present a theory of evolution. He proposed it was due to the adaptation of species to environmental changes, this adaptation being acquired by the offspring. In 1868, Darwin suggested that cells excrete gemmules, which circulate through the body and reach the gonads where they are transmitted to the next generation. His main argument came from graft hybrids. In the fifties and sixties, Russian geneticists, rejecting neo-Darwinism, said that acquired characteristics were the basis of evolution. The main experiments on which they based their theory were the transmission of hereditary characteristics by a special technique of grafting between two varieties of plants. We repeated this kind of experiment and also succeeded in obtaining hereditary modifications of the pupil plants that acquired some characteristics of the mentor variety. Rather than adopting the views of the Russian scientists, we suggested that DNA was circulating between the mentor and pupil plants. Hirata's group have shown recently, by using molecular techniques such as cloning, RFLP PCR and sequencing some genes of their graft hybrids of pepper plants, that transfer of informative molecules from the mentor to the pupil plant does exist. Nucleic acids are actively released by cells; they circulate in the body. They can transform oncogenically or trigger antibody response but the only genetic transformation showing that DNA can go from the soma to the germen comes from graft hybrids. This suggests that circulating nucleic acids, in this case DNA, like Darwin's gemmules, play a role in the mechanism of evolution.

  1. Circulating water pumps for nuclear power stations

    International Nuclear Information System (INIS)

    Satoh, Hiroshi; Ohmori, Tsuneaki

    1979-01-01

    Shortly, the nuclear power station with unit power output of 1100 MW will begin the operation, and the circulating water pumps manufactured recently are those of 2.4 to 4 m bore, 840 to 2170 m 3 /min discharge and 2100 to 5100 kW driving power. The circulating water pumps are one of important auxiliary machines, because if they fail, power generation capacity lowers immediately. Enormous quantity of cooling water is required to cool condensers, therefore in Japan, sea water is usually used. As siphon is formed in circulating water pipes, the total head of the pumps is not very high. The discharge of the pumps is determined so as to keep the temperature rise of discharged water lower than 7 deg. C. The quantity of cooling water for nuclear power generation is about 50% more as compared with thermal power generation because of the difference in steam conditions. The total head of the pumps is normally from 8 to 15 m. The circulating water pumps rarely stop after they started the operation, therefore it is economical to determine the motor power so that it can withstand 10% overload for a short period, instead of large power. At present, vertical shaft, oblique flow circulating water pumps are usually employed. Recently, movable blade pumps are adopted. The installation, construction and materials of the pumps and the problems are described. (Kako, I.)

  2. Plausible Effect of Weather on Atlantic Meridional Overturning Circulation with a Coupled General Circulation Model

    Science.gov (United States)

    Liu, Zedong; Wan, Xiuquan

    2018-04-01

    The Atlantic meridional overturning circulation (AMOC) is a vital component of the global ocean circulation and the heat engine of the climate system. Through the use of a coupled general circulation model, this study examines the role of synoptic systems on the AMOC and presents evidence that internally generated high-frequency, synoptic-scale weather variability in the atmosphere could play a significant role in maintaining the overall strength and variability of the AMOC, thereby affecting climate variability and change. Results of a novel coupling technique show that the strength and variability of the AMOC are greatly reduced once the synoptic weather variability is suppressed in the coupled model. The strength and variability of the AMOC are closely linked to deep convection events at high latitudes, which could be strongly affected by the weather variability. Our results imply that synoptic weather systems are important in driving the AMOC and its variability. Thus, interactions between atmospheric weather variability and AMOC may be an important feedback mechanism of the global climate system and need to be taken into consideration in future climate change studies.

  3. Natural Circulation Characteristics of an Integral Pressurized Water Reactor

    International Nuclear Information System (INIS)

    Junli Gou; Suizheng Qiu; Guanghui Su; Dounan Jia

    2006-01-01

    Natural circulation potential is of great importance to the inherent safety of a nuclear reactor. This paper presents a theoretical investigation on the natural circulation characteristics of an integrated pressurized water reactor. Through numerically solved the one-dimensional model, the steady-state single phase conservative equations for the primary circuit and the steady-state two-phase drift-flux conservative equations for the secondary side of the once-through steam generator, the natural circulation characteristics are studied. Based on the preliminary calculation analysis, it is found that natural circulation mass flow rate is proportional to the exponential function of the power, and the value of the exponent is related to working conditions of the steam generator secondary side. The higher height difference between the core center and the steam generator center is favorable to the heat removal capacity of the natural circulation. (authors)

  4. Natural Circulation Phenomena and Modelling for Advanced Water Cooled Reactors

    International Nuclear Information System (INIS)

    2012-03-01

    The role of natural circulation in advanced water cooled reactor design has been extended with the adoption of passive safety systems. Some designs utilize natural circulation to remove core heat during normal operation. Most passive safety systems used in evolutionary and innovative water cooled reactor designs are driven by natural circulation. The use of passive systems based on natural circulation can eliminate the costs associated with the installation, maintenance and operation of active systems that require multiple pumps with independent and redundant electric power supplies. However, considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to ensure that the systems perform their intended functions. Several IAEA Member States with advanced reactor development programmes are actively conducting investigations of natural circulation to support the development of advanced water cooled reactor designs with passive safety systems. To foster international collaboration on the enabling technology of passive systems that utilize natural circulation, in 2004 the IAEA initiated a coordinated research project (CRP) on Natural Circulation Phenomena, Modelling and Reliability of Passive Systems that Utilize Natural Circulation. Three reports were published within the framework of this CRP. The first report (IAEA-TECDOC-1474) contains the material developed for the first IAEA training course on natural circulation in water cooled nuclear power plants. The second report (IAEA-TECDOC-1624) describes passive safety systems in a wide range of advanced water cooled nuclear power plant designs, with the goal of gaining insights into system design, operation and reliability. This third, and last, report summarizes the research studies completed by participating institutes during the CRP period.

  5. Validation of the RELAP5 code for the modeling of flashing-induced instabilities under natural-circulation conditions using experimental data from the CIRCUS test facility

    Energy Technology Data Exchange (ETDEWEB)

    Kozmenkov, Y. [Helmholtz-Zentrum Dresden-Rossendorf e.V. (FZD), Institute of Safety Research, P.O.B. 510119, D-01324 Dresden (Germany); Institute of Physics and Power Engineering, Obninsk (Russian Federation); Rohde, U., E-mail: U.Rohde@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf e.V. (FZD), Institute of Safety Research, P.O.B. 510119, D-01324 Dresden (Germany); Manera, A. [Paul Scherrer Institute (Switzerland)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer We report about the simulation of flashing-induced instabilities in natural circulation systems. Black-Right-Pointing-Pointer Flashing-induced instabilities are of relevance for operation of pool-type reactors of small power at low pressure. Black-Right-Pointing-Pointer The RELAP5 code is validated against measurement data from natural circulation experiments. Black-Right-Pointing-Pointer The magnitude and frequency of the oscillations were reproduced in good agreement with the measurement data. - Abstract: This paper reports on the use of the RELAP5 code for the simulation of flashing-induced instabilities in natural circulation systems. The RELAP 5 code is intended to be used for the simulation of transient processes in the Russian RUTA reactor concept operating at atmospheric pressure with forced convection of coolant. However, during transient processes, natural circulation with flashing-induced instabilities might occur. The RELAP5 code is validated against measurement data from natural circulation experiments performed within the framework of a European project (NACUSP) on the CIRCUS facility. The facility, built at the Delft University of Technology in The Netherlands, is a water/steam 1:1 height-scaled loop of a typical natural-circulation-cooled BWR. It was shown that the RELAP5 code is able to model all relevant phenomena related to flashing induced instabilities. The magnitude and frequency of the oscillations were reproduced in a good agreement with the measurement data. The close correspondence to the experiments was reached by detailed modeling of all components of the CIRCUS facility including the heat exchanger, the buffer vessel and the steam dome at the top of the facility.

  6. Isomorphic Operators and Functional Equations for the Skew-Circulant Algebra

    Directory of Open Access Journals (Sweden)

    Zhaolin Jiang

    2014-01-01

    Full Text Available The skew-circulant matrix has been used in solving ordinary differential equations. We prove that the set of skew-circulants with complex entries has an idempotent basis. On that basis, a skew-cyclic group of automorphisms and functional equations on the skew-circulant algebra is introduced. And different operators on linear vector space that are isomorphic to the algebra of n×n complex skew-circulant matrices are displayed in this paper.

  7. Evaluation of Two Commercial Enzyme-Linked Immunosorbent Assay Kits for the Detection of Human Circulating Metrnl.

    Science.gov (United States)

    Zheng, Si-Li; Li, Zhi-Yong; Zhang, Zheng; Wang, Dong-Sheng; Xu, Jian; Miao, Chao-Yu

    2018-04-01

    Metrnl is a newly discovered secreted protein with neurotrophic activity and metabolic effect, while in earlier studies its circulating level in human was not explored. We evaluated two commercial enzyme-linked immunosorbent assay kits (DY7867-05, R&D Systems and SK00478-02, Aviscera Bioscience) for the detection of human circulating Metrnl. The DY7867-05 kit showed superiority over the SK00478-02 kit since it generated better curve fitting degree, smaller variation among tests, higher inter-assay reproducibility and better specificity, and could effectively detect human Metrnl in six types of blood samples. Subsequent analysis was performed using the DY7867-05 kit. Sample storage conditions were investigated. No gender difference in circulating Metrnl levels was found, while people with newly diagnosed type 2 diabetes mellitus (T2DM) had significantly lower Metrnl levels compared to the healthy controls.

  8. Climatology of the HOPE-G global ocean general circulation model - Sea ice general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Legutke, S. [Deutsches Klimarechenzentrum (DKRZ), Hamburg (Germany); Maier-Reimer, E. [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1999-12-01

    The HOPE-G global ocean general circulation model (OGCM) climatology, obtained in a long-term forced integration is described. HOPE-G is a primitive-equation z-level ocean model which contains a dynamic-thermodynamic sea-ice model. It is formulated on a 2.8 grid with increased resolution in low latitudes in order to better resolve equatorial dynamics. The vertical resolution is 20 layers. The purpose of the integration was both to investigate the models ability to reproduce the observed general circulation of the world ocean and to obtain an initial state for coupled atmosphere - ocean - sea-ice climate simulations. The model was driven with daily mean data of a 15-year integration of the atmosphere general circulation model ECHAM4, the atmospheric component in later coupled runs. Thereby, a maximum of the flux variability that is expected to appear in coupled simulations is included already in the ocean spin-up experiment described here. The model was run for more than 2000 years until a quasi-steady state was achieved. It reproduces the major current systems and the main features of the so-called conveyor belt circulation. The observed distribution of water masses is reproduced reasonably well, although with a saline bias in the intermediate water masses and a warm bias in the deep and bottom water of the Atlantic and Indian Oceans. The model underestimates the meridional transport of heat in the Atlantic Ocean. The simulated heat transport in the other basins, though, is in good agreement with observations. (orig.)

  9. Natural Circulation Capability Assessments for a Small-medium Reactor

    International Nuclear Information System (INIS)

    Choi, Sun Do

    2010-02-01

    Small-medium reactors have been highly evaluated to have more safe characteristics than those of large reactors. In addition, it could be used for a variety of purposes, such as small-scale power production in mountainous of island area, seawater desalination, regional heating system. For a higher safety, studies about a way of using natural circulation have being conducted around world. CAREM(Argentina), AST- 500(Russia), and NHR-200(china) etc. According to this tendency, REX- 10(Regional Energy rX-10) is designed in Korea for regional heating and small-scale power production. To investigate the thermal-hydraulic behavior of REX-10, we designed Rex-10 Test Facility (RTF), simulating REX-10, by using the scaling law. The scaling ratios of length, volume and power were set with 1/1, 1/50 and 1/50, respectively. The diameter and total length of RTF are 40 cm and approximately 6 m, respectively. The facility is composed of various components, which are a core in the bottom part, a heat exchanger in the middle part, a pressurizer and hot legs in the upper part, and chillers outside the facility. The test instrumentation is also designed to measure temperatures, flow rates, pressures, and pressure drop. The experiment parameters were adopted based on the 1-dimensional approach. There are a variety of parameters which influence natural circulation behavior such as heater power, overall flow resistance parameter, the distance between the center of the heat exchanger and the core. As the experimental geometries are fixed, it is found that the most important parameter is the heater power under the experimental conditions. In addition, to evaluate the effect of heater power, some experiments were conducted at varying heater power condition (from 70 kW to 170 kW) under constant primary pressure (2.0 MPa) and secondary flow rate (4.5 liter per minute). As the results of the experiments, the temperature and flow rate increase with increasing heater power. The flow rate is

  10. Thermo-hydraulic instability of natural circulation BWRs at low pressure star-up. Experimental estimation of instability region with test facility considering scaling law

    International Nuclear Information System (INIS)

    Inada, F.; Furuya, M.; Yasuo, A.; Tabata, H.; Yoshioka, Y.; Kim, H.T.

    1995-01-01

    In natural circulation BWRs developed for advanced light water reactors with simplified passive safety systems, thermo-hydraulic stability should be confirmed especially at low pressure start-up. In this paper, nondimensional parameters to estimate the hydrodynamic stability to reactors at low pressure start-up were obtained by transformation of the basic equations of drift-flux model in the two-phase region into nondimensional form. A test facility based on these parameters was then constructed. The height of the test facility is 70% of SBWR and many nondimensional test facility parameters are almost the same as those of the reactor. Reactor stability was estimated experimentally. Stability maps below 0.5MPa were obtained on the heat flux - channel inlet subcooling place. It was found that there were two stability boundaries, between which the flow became unstable. Flow was stable in the high and low channel inlet subcooling regions. Typical conditions of SBWR at low pressure start-up were noted in the high channel inlet subcooling stable region. The heat flux at typical SBWR start-up was about one fifth that of the stability boundary. Though some nondimensional parameters of the test facility did not exactly agree with those of SBWR, it was suggested that the flow in SBWR was stable below 0.5MPa because of the large margin. (author)

  11. Periodontitis and increase in circulating oxidative stress

    Directory of Open Access Journals (Sweden)

    Takaaki Tomofuji

    2009-05-01

    Full Text Available Reactive oxygen species (ROS are products of normal cellular metabolism. However, excessive production of ROS oxidizes DNA, lipids and proteins, inducing tissue damage. Studies have shown that periodontitis induces excessive ROS production in periodontal tissue. When periodontitis develops, ROS produced in the periodontal lesion diffuse into the blood stream, resulting in the oxidation of blood molecules (circulating oxidative stress. Such oxidation may be detrimental to systemic health. For instance, previous animal studies suggested that experimental periodontitis induces oxidative damage of the liver and descending aorta by increasing circulating oxidative stress. In addition, it has been revealed that clinical parameters in chronic periodontitis patients showed a significant improvement 2 months after periodontal treatment, which was accompanied by a significant reduction of reactive oxygen metabolites in plasma. Improvement of periodontitis by periodontal treatment could reduce the occurrence of circulating oxidative stress. Furthermore, recent studies indicate that the increase in circulating oxidative stress following diabetes mellitus and inappropriate nutrition damages periodontal tissues. In such cases, therapeutic approaches to systemic oxidative stress might be necessary to improve periodontal health.

  12. The susceptibility of circulating human influenza viruses to tizoxanide, the active metabolite of nitazoxanide.

    Science.gov (United States)

    Tilmanis, Danielle; van Baalen, Carel; Oh, Ding Yuan; Rossignol, Jean-Francois; Hurt, Aeron C

    2017-11-01

    Nitazoxanide is a thiazolide compound that was originally developed as an anti-parasitic agent, but has recently been repurposed for the treatment of influenza virus infections. Thought to exert its anti-influenza activity via the inhibition of hemagglutinin maturation and intracellular trafficking in infected cells, the effectiveness of nitazoxanide in treating patients with non-complicated influenza is currently being assessed in phase III clinical trials. Here, we describe the susceptibility of 210 seasonal influenza viruses to tizoxanide, the active circulating metabolite of nitazoxanide. An optimised cell culture-based focus reduction assay was used to determine the susceptibility of A(H1N1)pdm09, A(H3N2), and influenza B viruses circulating in the southern hemisphere from the period March 2014 to August 2016. Tizoxanide showed potent in vitro antiviral activity against all influenza viruses tested, including neuraminidase inhibitor-resistant viruses, allowing the establishment of a baseline level of susceptibility for each subtype. Median EC 50 values (±IQR) of 0.48 μM (0.33-0.71), 0.62 μM (0.56-0.75), 0.66 μM (0.62-0.69), and 0.60 μM (0.51-0.67) were obtained for A(H1N1)pdm09, A(H3N2), B(Victoria lineage), and B(Yamagata lineage) influenza viruses respectively. There was no significant difference in the median baseline tizoxanide susceptibility for each influenza subtype tested. This is the first report on the susceptibility of circulating viruses to tizoxanide. The focus reduction assay format described is sensitive, robust, and less laborious than traditional cell based antiviral assays, making it highly suitable for the surveillance of tizoxanide susceptibility in circulating seasonal influenza viruses. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Flaviviruses in Europe: Complex Circulation Patterns and Their Consequences for the Diagnosis and Control of West Nile Disease

    Directory of Open Access Journals (Sweden)

    Elsa Jourdain

    2013-11-01

    Full Text Available In Europe, many flaviviruses are endemic (West Nile, Usutu, tick-borne encephalitis viruses or occasionally imported (dengue, yellow fever viruses. Due to the temporal and geographical co-circulation of flaviviruses in Europe, flavivirus differentiation by diagnostic tests is crucial in the adaptation of surveillance and control efforts. Serological diagnosis of flavivirus infections is complicated by the antigenic similarities among the Flavivirus genus. Indeed, most flavivirus antibodies are directed against the highly immunogenic envelope protein, which contains both flavivirus cross-reactive and virus-specific epitopes. Serological assay results should thus be interpreted with care and confirmed by comparative neutralization tests using a panel of viruses known to circulate in Europe. However, antibody cross-reactivity could be advantageous in efforts to control emerging flaviviruses because it ensures partial cross-protection. In contrast, it might also facilitate subsequent diseases, through a phenomenon called antibody-dependent enhancement mainly described for dengue virus infections. Here, we review the serological methods commonly used in WNV diagnosis and surveillance in Europe. By examining past and current epidemiological situations in different European countries, we present the challenges involved in interpreting flavivirus serological tests and setting up appropriate surveillance programs; we also address the consequences of flavivirus circulation and vaccination for host immunity.

  14. State of the Art Report for a Bearing for VHTR Helium Circulator

    International Nuclear Information System (INIS)

    Lee, Jae Seon; Song, Kee Nam; Kim, Yong Wan; Lee, Won Jae

    2008-10-01

    A helium circulator in a VHTR(Very High Temperature gas-cooled Reactor) plays a core role which translates thermal energy at high temperature from a nuclear core to a steam generator. Helium as a operating coolant circulates a primary circuit in high temperature and high pressure state, and controls thermal output of a nuclear core by controlling flow rate. A helium circulator is the only rotating machinery in a VHTR, and its reliability should be guaranteed for reliable operation of a reactor and stable production of hydrogen. Generally a main helium circulator is installed on the top of a steam generator vessel, and helium is circulated only by a main helium circulator in a normal operation state. An auxiliary or shutdown circulator is installed at the bottom of a reactor vessel, and it is an auxiliary circulator for shutting down a reactor in case of refueling or accelerating cooling down in case of fast cooling. Since a rotating shaft of a helium circulator is supported by bearings, bearings are the important machine elements which determines reliability of a helium circulator and a nuclear reactor. Various types of support bearings have been developed and applied for circulator bearings since 1960s, and it is still developing for developing VHTRs. So it is necessary to review and analyze the current technical state of helium circulator support bearings to develop bearings for Koran developing VHTR helium circulator

  15. Scaled Experimental Modeling of VHTR Plenum Flows

    Energy Technology Data Exchange (ETDEWEB)

    ICONE 15

    2007-04-01

    Abstract The Very High Temperature Reactor (VHTR) is the leading candidate for the Next Generation Nuclear Power (NGNP) Project in the U.S. which has the goal of demonstrating the production of emissions free electricity and hydrogen by 2015. Various scaled heated gas and water flow facilities were investigated for modeling VHTR upper and lower plenum flows during the decay heat portion of a pressurized conduction-cooldown scenario and for modeling thermal mixing and stratification (“thermal striping”) in the lower plenum during normal operation. It was concluded, based on phenomena scaling and instrumentation and other practical considerations, that a heated water flow scale model facility is preferable to a heated gas flow facility and to unheated facilities which use fluids with ranges of density to simulate the density effect of heating. For a heated water flow lower plenum model, both the Richardson numbers and Reynolds numbers may be approximately matched for conduction-cooldown natural circulation conditions. Thermal mixing during normal operation may be simulated but at lower, but still fully turbulent, Reynolds numbers than in the prototype. Natural circulation flows in the upper plenum may also be simulated in a separate heated water flow facility that uses the same plumbing as the lower plenum model. However, Reynolds number scaling distortions will occur at matching Richardson numbers due primarily to the necessity of using a reduced number of channels connected to the plenum than in the prototype (which has approximately 11,000 core channels connected to the upper plenum) in an otherwise geometrically scaled model. Experiments conducted in either or both facilities will meet the objectives of providing benchmark data for the validation of codes proposed for NGNP designs and safety studies, as well as providing a better understanding of the complex flow phenomena in the plenums.

  16. Circulating microRNAs in breast cancer

    DEFF Research Database (Denmark)

    Hamam, Rimi; Hamam, Dana; Alsaleh, Khalid A

    2017-01-01

    Effective management of breast cancer depends on early diagnosis and proper monitoring of patients' response to therapy. However, these goals are difficult to achieve because of the lack of sensitive and specific biomarkers for early detection and for disease monitoring. Accumulating evidence in ...... circulating miRNAs as diagnostic, prognostic or predictive biomarkers in breast cancer management.......Effective management of breast cancer depends on early diagnosis and proper monitoring of patients' response to therapy. However, these goals are difficult to achieve because of the lack of sensitive and specific biomarkers for early detection and for disease monitoring. Accumulating evidence...... in the past several years has highlighted the potential use of peripheral blood circulating nucleic acids such as DNA, mRNA and micro (mi)RNA in breast cancer diagnosis, prognosis and for monitoring response to anticancer therapy. Among these, circulating miRNA is increasingly recognized as a promising...

  17. Summary of ROSA-4 LSTF first phase test program and station blackout (TMLB) test results

    International Nuclear Information System (INIS)

    Tasaka, K.; Kukita, Y.; Anoda, Y.

    1990-01-01

    This paper summarizes major test results obtained at the ROSA-4 Large Scale Test Facility (LSTF) during the first phase of the test program. The results from a station blackout (TMLB) test conducted at the end of the first-phase program are described in some detail. The LSTF is an integral test facility being operated by the Japan Atomic Energy Research Institute for simulation of pressurized water reactor (PWR) thermal-hydraulic responses during small-break loss-of-coolant accidents (SBLOCAs) and operational/abnormal transients. It is a 1/48 volumetrically scaled, full-height, full-pressure simulator of a Westinghouse-type 4-loop PWR. The facility includes two symmetric primary loops each one containing an active inverted-U tube steam generator and an active reactor coolant pump. The loop horizontal legs are sized to conserve the scaled (1/24) volumes as well as the length to the square root of the diameter ratio in order to simulate the two-phase flow regime transitions. The primary objective of the LSTF first-phase program was to define the fundamental PWR thermal-hydraulic responses during SBLOCAs and transients. Most of the tests were conducted with simulated component/operator failures, including unavailability of the high pressure injection system and auxiliary feedwater system, as well as operator failure to take corrective actions. The forty-two first phase tests included twenty-nine SBLOCA tests conducted mainly for cold leg breaks, three abnormal transient tests and ten natural circulation tests. Attempts were made in several of the SBLOCA tests to simulate the plant recovery procedures as well as candidate accident management measures for prevention of high-pressure core melt situation. The natural circulation tests simulated the single-phase and two-phase natural circulation as well as reflux condensation behavior in the primary loops in steady or quasi-steady states

  18. Decontamination of CAGR gas circulator components

    International Nuclear Information System (INIS)

    Rogers, L.N.; Hooper, A.J.

    1985-01-01

    This paper describes the development and full-scale trial of two methods for removal of radioactive contamination on the surfaces of CAGR gas circulator components. The two methods described are a particle impact cleaning (PIC) decontamination technique and an electrochemical technique, 'electro-swabbing', which is based on the principle of decontamination by electro-polishing. In developing these techniques it was necessary to take account of the physical and chemical nature of the surface deposits on the gas circulator components; these were shown to consist of magnetite-type oxide and carbonaceous material. In order to follow the progress of the decontamination it was also necessary to develop a surface sampling technique which was effective and precise under these conditions; an electrochemical technique, employing similar principles to the electro-swabbing process, was developed for this purpose. The full-scale trial of the PIC decontamination technique was carried out on an inlet guide vane (IGV) assembly, this having been identified as the component from the gas circulator which contributes most to the radiation dose accumulated during routine circulator maintenance. The technique was shown to be practically viable and some 99% of the radioactive contamination was readily removed from the treated surfaces with only negligible surface damage being caused. The full-scale trial of the electro-swabbing decontamination technique was carried out on a gas circulator impeller. High decontamination factors were again achieved with ≥ 99% of the radioactive contamination being removed from the treated surfaces. The technique has practical limitations in terms of handling and treatment of waste-arisings. However, the use of specially-designed swabbing electrodes may allow the treatment of constricted geometries inaccessible to techniques such as PIC. The technique is also highly suitable for the treatment of soft-finish materials and of components fabricated from a

  19. Analysis of the hydrodynamic stability of natural circulation

    International Nuclear Information System (INIS)

    Olive, J.; Baby, J.P.

    1980-01-01

    A mathematical model (EOLE) for the analysis of the stability of boilers with natural circulation is discussed. The method employed consists in linearizing one-dimensional flow equations and in integrating them while employing the Laplace transformation. The properties of a two-phase fluid are schematized by a homogeneous model with slip. The computation results in the circulation loop transfer functions and its natural modes of oscillation (frequency and damping). A discussion follows which compares results obtained with this method to those of other existing models in the case of a straight pipe with forced circulation. Agreement proved to be satisfactory. The results are then given of a parametric study involving the stability of a PWR natural circulation steam generator. These results show that the model can satisfy, at least qualitatively, trends observed empirically or obtained with other more complex theoretical models. (author)

  20. Circulating mesenchymal stem cells and their clinical implications

    Directory of Open Access Journals (Sweden)

    Liangliang Xu

    2014-01-01

    Full Text Available Circulating mesenchymal stem cells (MSCs is a new cell source for tissue regeneration and tissue engineering. The characteristics of circulating MSCs are similar to those of bone marrow-derived MSCs (BM-MSCs, but they exist at a very low level in healthy individuals. It has been demonstrated that MSCs are able to migrate to the sites of injury and that they have some distinct genetic profiles compared to BM-MSCs. The current review summaries the basic knowledge of circulating MSCs and their potential clinical applications, such as mobilizing the BM-MSCs into circulation for therapy. The application of MSCs to cure a broad spectrum of diseases is promising, such as spinal cord injury, cardiovascular repair, bone and cartilage repair. The current review also discusses the issues of using of allogeneic MSCs for clinical therapy.

  1. A regional ocean circulation model for the mid-Cretaceous North Atlantic Basin: implications for black shale formation

    Directory of Open Access Journals (Sweden)

    R. P. M. Topper

    2011-03-01

    Full Text Available High concentrations of organic matter accumulated in marine sediments during Oceanic Anoxic Events (OAEs in the Cretaceous. Model studies examining these events invariably make use of global ocean circulation models. In this study, a regional model for the North Atlantic Basin during OAE2 at the Cenomanian-Turonian boundary has been developed. A first order check of the results has been performed by comparison with the results of a recent global Cenomanian CCSM3 run, from which boundary and initial conditions were obtained. The regional model is able to maintain tracer patterns and to produce velocity patterns similar to the global model. The sensitivity of the basin tracer and circulation patterns to changes in the geometry of the connections with the global ocean is examined with three experiments with different bathymetries near the sponges. Different geometries turn out to have little effect on tracer distribution, but do affect circulation and upwelling patterns. The regional model is also used to test the hypothesis that ocean circulation may have been behind the deposition of black shales during OAEs. Three scenarios are tested which are thought to represent pre-OAE, OAE and post-OAE situations. Model results confirm that Pacific intermediate inflow together with coastal upwelling could have enhanced primary production during OAE2. A low sea level in the pre-OAE scenario could have inhibited large scale black shale formation, as could have the opening of the Equatorial Atlantic Seaway in the post-OAE scenario.

  2. Nongeostrophic theory of zonally averaged circulation. I - Formulation

    Science.gov (United States)

    Tung, Ka Kit

    1986-01-01

    A nongeostrophic theory of zonally averaged circulation is formulated using the nonlinear primitive equations (mass conservation, thermodynamics, and zonal momentum) on a sphere. The relationship between the mean meridional circulation and diabatic heating rate is studied. Differences between results of nongeostropic theory and the geostrophic formulation concerning the role of eddy forcing of the diabatic circulation and the nonlinear nearly inviscid limit versus the geostrophic limit are discussed. Consideration is given to the Eliassen-Palm flux divergence, the Eliassen-Palm pseudodivergence, the nonacceleration theorem, and the nonlinear nongeostrophic Taylor relationship.

  3. The effects of conventional extracorporeal circulation versus miniaturized extracorporeal circulation on microcirculation during cardiopulmonary bypass-assisted coronary artery bypass graft surgery

    NARCIS (Netherlands)

    Yuruk, Koray; Bezemer, Rick; Euser, Mariska; Milstein, Dan M. J.; de Geus, Hilde H. R.; Scholten, Evert W.; de Mol, Bas A. J. M.; Ince, Can

    2012-01-01

    OBJECTIVES: To reduce the complications associated with cardiopulmonary bypass (CPB) during cardiac surgery, many modifications have been made to conventional extracorporeal circulation systems. This trend has led to the development of miniaturized extracorporeal circulation systems. Cardiac surgery

  4. Public speaking stress-induced neuroendocrine responses and circulating immune cell redistribution in irritable bowel syndrome.

    Science.gov (United States)

    Elsenbruch, Sigrid; Lucas, Ayscha; Holtmann, Gerald; Haag, Sebastian; Gerken, Guido; Riemenschneider, Natalie; Langhorst, Jost; Kavelaars, Annemieke; Heijnen, Cobi J; Schedlowski, Manfred

    2006-10-01

    Augmented neuroendocrine stress responses and altered immune functions may play a role in the manifestation of functional gastrointestinal (GI) disorders. We tested the hypothesis that IBS patients would demonstrate enhanced psychological and endocrine responses, as well as altered stress-induced redistribution of circulating leukocytes and lymphocytes, in response to an acute psychosocial stressor when compared with healthy controls. Responses to public speaking stress were analyzed in N = 17 IBS patients without concurrent psychiatric conditions and N = 12 healthy controls. At baseline, immediately following public speaking, and after a recovery period, state anxiety, acute GI symptoms, cardiovascular responses, serum cortisol and plasma adrenocorticotropic hormone (ACTH) were measured, and numbers of circulating leukocytes and lymphocyte subpopulations were analyzed by flow cytometry. Public speaking led to significant cardiovascular activation, a significant increase in ACTH, and a redistribution of circulating leukocytes and lymphocyte subpopulations, including significant increases in natural killer cells and cytotoxic/suppressor T cells. IBS patients demonstrated significantly greater state anxiety both at baseline and following public speaking. However, cardiovascular and endocrine responses, as well as the redistribution of circulating leukocytes and lymphocyte subpopulations after public speaking stress, did not differ for IBS patients compared with controls. In IBS patients without psychiatric comorbidity, the endocrine response as well as the circulation pattern of leukocyte subpopulations to acute psychosocial stress do not differ from healthy controls in spite of enhanced emotional responses. Future studies should discern the role of psychopathology in psychological and biological stress responses in IBS.

  5. Diagnosis of boundary-layer circulations.

    Science.gov (United States)

    Beare, Robert J; Cullen, Michael J P

    2013-05-28

    Diagnoses of circulations in the vertical plane provide valuable insights into aspects of the dynamics of the climate system. Dynamical theories based on geostrophic balance have proved useful in deriving diagnostic equations for these circulations. For example, semi-geostrophic theory gives rise to the Sawyer-Eliassen equation (SEE) that predicts, among other things, circulations around mid-latitude fronts. A limitation of the SEE is the absence of a realistic boundary layer. However, the coupling provided by the boundary layer between the atmosphere and the surface is fundamental to the climate system. Here, we use a theory based on Ekman momentum balance to derive an SEE that includes a boundary layer (SEEBL). We consider a case study of a baroclinic low-level jet. The SEEBL solution shows significant benefits over Ekman pumping, including accommodating a boundary-layer depth that varies in space and structure, which accounts for buoyancy and momentum advection. The diagnosed low-level jet is stronger than that determined by Ekman balance. This is due to the inclusion of momentum advection. Momentum advection provides an additional mechanism for enhancement of the low-level jet that is distinct from inertial oscillations.

  6. Clinical applications of circulating tumor DNA and circulating tumor cells in pancreatic cancer.

    Science.gov (United States)

    Riva, Francesca; Dronov, Oleksii I; Khomenko, Dmytro I; Huguet, Florence; Louvet, Christophe; Mariani, Pascale; Stern, Marc-Henri; Lantz, Olivier; Proudhon, Charlotte; Pierga, Jean-Yves; Bidard, Francois-Clement

    2016-03-01

    Pancreatic ductal adenocarcinoma (PDAC) is the most frequent pancreatic cancer type and is characterized by a dismal prognosis due to late diagnosis, local tumor invasion, frequent distant metastases and poor sensitivity to current therapy. In this context, circulating tumor cells and circulating tumor DNA constitute easily accessible blood-borne tumor biomarkers that may prove their clinical interest for screening, early diagnosis and metastatic risk assessment of PDAC. Moreover these markers represent a tool to assess PDAC mutational landscape. In this review, together with key biological findings, we summarize the clinical results obtained using "liquid biopsies" at the different stages of the disease, for early and metastatic diagnosis as well as monitoring during therapy. Copyright © 2016 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  7. Measles virus genotypes circulating in India, 2011-2015.

    Science.gov (United States)

    Vaidya, Sunil R; Chowdhury, Deepika T

    2017-05-01

    The Government of India is accepted to participate in the measles elimination and rubella control goal 2020, hence genetic characterization of measles viruses (MeV) becomes essential. At National Reference Laboratory (National Institute of Virology, Pune), the throat swabs/urine specimens (n = 380) or PCR products (n = 219) obtained from the suspected measles cases were referred for the molecular testing and subsequently, MeV nucleoprotein (N) gene sequencing/genotyping. In addition, 2,449 suspected measles cases, mainly from the Maharashtra state were referred for the laboratory diagnosis. A detailed study was performed on N gene sequences obtained during last two decades. Indian MeV sequences obtained during 2011-2015 were compared with 1996-2010 sequences and genetic divergence was studied. Circulation of measles genotypes B3 (n = 3), D4 (n = 49), and D8 (n = 351) strains were observed in 19 States and three Union Territories of India. In addition, 64 measles viruses were isolated from 253 throat swab or urine specimens obtained from the suspected measles cases. During 2011-2015, 67.9% (1,663/2,449) suspected measles cases were laboratory confirmed. Molecular studies showed circulation of measles genotype B3 in India along with prominently circulating genotypes D4 and D8 except D7 strains. The genetic diversion within Indian B3, D4, and D8 genotypes was 0.3%, 1.1%, and 2.1%, respectively. The genetic divergence of Indian B3, D4, and D8 measles strains with the WHO reference sequences was 2.5%, 2.6%, and 1.8%, respectively. It is crucial data for national immunization program. More measles/rubella genotyping studies are necessary to track transmission and to support measles elimination and rubella control. J. Med. Virol. 89:753-758, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Single particle behaviour in circulating fluidized bed combustors

    DEFF Research Database (Denmark)

    Erik Weinell, Claus

    1994-01-01

    An investigation of single particle behaviour in a circulating fluidized bed combustor is described, relating to sulphur capture reactions by limestone under alternate oxidizing and reducing conditions present in a circulating fluidized bed combustor, and to the devolatilization and burn out...

  9. Forcing mechanisms of the Bay of Bengal circulation

    Digital Repository Service at National Institute of Oceanography (India)

    Vinayachandran, P.N.; Shetye, S.R.; Sengupta, D.; Gadgil, S.

    A state-of-the-art ocean general circulation model, set up for the North Indian Ocean and driven by climatological wind stress simulates most of the observed features of the near-surface circulation of the Bay of Bengal. The prominent features...

  10. Susceptibility of influenza viruses circulating in Western Saudi Arabia to neuraminidase inhibitors

    Directory of Open Access Journals (Sweden)

    Ahmed M. Tolah

    2016-04-01

    Full Text Available Objectives: To investigate the sensitivity of circulating influenza viruses in Western Saudi Arabia to neuraminidase inhibitors (NAIs; mainly, zanamivir and oseltamivir. Methods: Respiratory samples were collected from patients presenting with respiratory symptoms to King Abdulaziz University Hospital, Jeddah, Kingdom of Saudi Arabia (KSA between September 2013 and October 2014. All samples were tested prospectively by real-time reverse-transcription polymerase chain reaction for influenza A and B viruses. Positive samples were then inoculated on Madin-Darby Canine Kidney (MDCK cells and isolated viruses were examined for their sensitivity to NAIs using fluorescent neuraminidase inhibition assay. Results: Out of 406 tested samples, 25 samples (6.2% were positive for influenza A/pdmH1N1 virus, one sample (0.25% was positive for influenza A/H3N2 virus, and 7 samples (1.7% were positive for influenza B Yamagata-like virus. Screening of isolated influenza A and B viruses (9 out of 33 for their sensitivity to NAIs showed no significant resistance to available NAIs. Conclusion: Our results show that circulating influenza viruses in Jeddah are still sensitive to NAIs.

  11. Results of the 1986 FFTF inherent safety tests

    International Nuclear Information System (INIS)

    Burke, T.M.; Campbell, L.R.; Franz, G.R.; Knecht, W.L.

    1987-01-01

    A series of tests was recently completed at the 400-MW (thermal) Fast Flux Test Facility (FFTF) to further demonstrate the passive safety characteristics of liquid-metal-cooled fast reactors. Earlier FFTF testing of decay heat removal by sodium natural circulation was reported in 1981. The main purpose of the 1986 test series was to demonstrate passive reactor shutdown during a loss-of-flow event when several inherent shutdown devices called gas expansion modules (GEMs) were installed in the reactor. However, these tests also provide further data on the natural circulation performance of the primary system, in particular the reactor core, and thus add to the data base available for checking the validity of available analytical tools

  12. The testing of thermal-mechanical-hydrological-chemical processes using a large block

    International Nuclear Information System (INIS)

    Lin, W.; Wilder, D.G.; Blink, J.A.; Blair, S.C.; Buscheck, T.A.; Chesnut, D.A.; Glassley, W.E.; Lee, K.; Roberts, J.J.

    1994-01-01

    The radioactive decay heat from nuclear waste packages may, depending on the thermal load, create coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the near-field environment of a repository. A group of tests on a large block (LBT) are planned to provide a timely opportunity to test and calibrate some of the TMHC model concepts. The LBT is advantageous for testing and verifying model concepts because the boundary conditions are controlled, and the block can be characterized before and after the experiment. A block of Topopah Spring tuff of about 3 x 3 x 4.5 m will be sawed and isolated at Fran Ridge, Nevada Test Site. Small blocks of the rock adjacent to the large block will be collected for laboratory testing of some individual thermal-mechanical, hydrological, and chemical processes. A constant load of about 4 MPa will be applied to the top and sides of the large block. The sides will be sealed with moisture and thermal barriers. The large block will be heated with one heater in each borehole and guard heaters on the sides so that a dry-out zone and a condensate zone will exist simultaneously. Temperature, moisture content, pore pressure, chemical composition, stress and displacement will be measured throughout the block during the heating and cool-down phases. The results from the experiments on small blocks and the tests on the large block will provide a better understanding of some concepts of the coupled TMHC processes

  13. Scaling of the steady state and stability behaviour of single and two-phase natural circulation systems

    International Nuclear Information System (INIS)

    Vijayan, P.K.; Nayak, A.K.; Bade, M.H.; Kumar, N.; Saha, D.; Sinha, R.K.

    2002-01-01

    Scaling methods for both single-phase and two-phase natural circulation systems have been presented. For single-phase systems, simulation of the steady state flow can be achieved by preserving just one nondimensional parameter. For uniform diameter two-phase systems also, it is possible to simulate the steady state behaviour with just one non-dimensional parameter. Simulation of the stability behaviour requires geometric similarity in addition to the similarity of the physical parameters appearing in the governing equations. The scaling laws proposed have been tested with experimental data in case of single-phase natural circulation. (author)

  14. A Thermodynamically General Theory for Convective Circulations and Vortices

    Science.gov (United States)

    Renno, N. O.

    2007-12-01

    Convective circulations and vortices are common features of atmospheres that absorb low-entropy-energy at higher temperatures than they reject high-entropy-energy to space. These circulations range from small to planetary-scale and play an important role in the vertical transport of heat, momentum, and tracer species. Thus, the development of theoretical models for convective phenomena is important to our understanding of many basic features of planetary atmospheres. A thermodynamically general theory for convective circulations and vortices is proposed. The theory includes irreversible processes and quantifies the pressure drop between the environment and any point in a convective updraft. The article's main result is that the proposed theory provides an expression for the pressure drop along streamlines or streamtubes that is a generalization of Bernoulli's equation to convective circulations. We speculate that the proposed theory not only explains the intensity, but also shed light on other basic features of convective circulations and vortices.

  15. Natural Circulation with Boiling

    Energy Technology Data Exchange (ETDEWEB)

    Mathisen, R P

    1967-09-15

    A number of parameters with dominant influence on the power level at hydrodynamic instability in natural circulation, two-phase flow, have been studied experimentally. The geometrical dependent quantities were: the system driving head, the boiling channel and riser dimensions, the single-phase as well as the two phase flow restrictions. The parameters influencing the liquid properties were the system pressure and the test section inlet subcooling. The threshold of instability was determined by plotting the noise characteristics in the mass flow records against power. The flow responses to artificially obtained power disturbances at instability conditions were also measured in order to study the nature of hydrodynamic instability. The results presented give a review over relatively wide ranges of the main parameters, mainly concerning the coolant performance in both single and parallel boiling channel flow. With regard to the power limits the experimental results verified that the single boiling channel performance was intimately related to that of the parallel channels. In the latter case the additional inter-channel factors with attenuating effects were studied. Some optimum values of the parameters were observed.

  16. Effect of steam quality on two—phase flow in a netural circulation loop

    Institute of Scientific and Technical Information of China (English)

    贾海军; 吴少融; 等

    1996-01-01

    Test pressures are 1.0-4.0MPa,heating powers 27-190kW,inlet subcoolings 5-80℃,water used as coolant,and steam quality at the outlet of test section is less than 0.05,These test conditions cover the parameters for a typical 200MW heating reactor.The experimental results show that the stema quality is the dominant factor in a natural circulation system with low pressure and low steam quality about the effect of system pressure,heating power and inlet subcooling on the flow rate,relative oscilatroy amplitude and oscilatory region of flow rate.

  17. Three-pattern decomposition of global atmospheric circulation: part I—decomposition model and theorems

    Science.gov (United States)

    Hu, Shujuan; Chou, Jifan; Cheng, Jianbo

    2018-04-01

    In order to study the interactions between the atmospheric circulations at the middle-high and low latitudes from the global perspective, the authors proposed the mathematical definition of three-pattern circulations, i.e., horizontal, meridional and zonal circulations with which the actual atmospheric circulation is expanded. This novel decomposition method is proved to accurately describe the actual atmospheric circulation dynamics. The authors used the NCEP/NCAR reanalysis data to calculate the climate characteristics of those three-pattern circulations, and found that the decomposition model agreed with the observed results. Further dynamical analysis indicates that the decomposition model is more accurate to capture the major features of global three dimensional atmospheric motions, compared to the traditional definitions of Rossby wave, Hadley circulation and Walker circulation. The decomposition model for the first time realized the decomposition of global atmospheric circulation using three orthogonal circulations within the horizontal, meridional and zonal planes, offering new opportunities to study the large-scale interactions between the middle-high latitudes and low latitudes circulations.

  18. Using the AD12-ICT rapid-format test to detect Wuchereria bancrofti circulating antigens in comparison to Og4C3-ELISA and nucleopore membrane filtration and microscopy techniques.

    Science.gov (United States)

    El-Moamly, Amal Abdul-Rasheed; El-Sweify, Mohamed Aly; Hafez, Mohamad Abdul

    2012-09-01

    Lymphatic filariasis (LF) continues to be a major source of permanent disability and an impediment to socio-economic development in 73 countries where more than 1 billion people are at risk and over 120 millions are infected. The global drive to eliminate LF necessitates an increasing demand for valid, reliable and rapid diagnostic tests. This study aimed to assess the performance of the AD12 rapid format immunochromatographic test (ICT) to detect Wuchereria bancrofti circulating antigens, against the combined gold standard: TropBio Og4C3-ELISA (enzyme-linked immunosorbent assay) which detects circulating filarial antigen (CFA) and the nucleopore membrane filtration and microscopic examination. This prospective case-control study involved 647 asymptomatic migrant workers from filariasis-endemic countries. Of these specimens, 32 were positive for microfilaremia using the membrane filtration and microscopy, 142 positive by ELISA (of which 32 had microfilaremia), and 128 positive by the ICT (of which 31 had microfilaremia). The performance of the ICT was calculated against 32 true-positive and 90 true-negative cases. For the detection of CFA, the ICT had a sensitivity of 97% (95% confidence interval [CI] 91-103), specificity 100% (95% CI 100-100), Positive Predictive Value (PPV) 100% (95% CI 100-100), Negative Predictive Value (NPV) 99% (95% CI 97-101); and the total accuracy of the test was 99% (95% CI 98-101). The agreement between ICT and ELISA in detecting W. bancrofti antigens was excellent (kappa = 0.934; p = 0.000). In conclusion, the AD12-ICT test for the detection of W. bancrofti-CFA was sensitive and specific and comparable to the performance of ELISA. The ICT would be a useful additional test to facilitate the proposed strategies for control and elimination of LF. Because it is rapid, simple to perform, and does not require the use of special equipment, the ICT may be most appropriate in screening programs and in monitoring the possible risk of introducing

  19. Test Results of the Third LHC Main Quadrupole Magnet Prototype at CEA/Saclay

    CERN Document Server

    Derégel, J; Gourdin, C; Hervieu, M; Ogitsu, T; Peyrot, M; Rifflet, J M; Schild, T; Simon, F; Tortschanoff, Theodor; Tsuchiya, K

    2002-01-01

    The construction of the third second-generation main quadrupole magnet prototype for LHC has been completed at CEA/Saclay in November 2000. The magnet was tested at 1.9 K. Similarly to the two first ones, this prototype has exceeded the operating current in one training step and exhibited excellent training memory after a thermal cycle. This paper describes the quench performance and quench start localization determined by means of voltage-taps and a quench antenna system developed in collaboration with KEK. As this magnet was equipped with capacitive gauges, the stresses during cool-down and powering have been recorded and are in agreement with FE computations. The newly designed quench heaters have improved efficiency and reproducibility compared to those of the first generation. Magnetic measurements have been performed at various stages. The cold measurements show minor differences with those at room temperature and are similar to those of the two first magnets of this design. These results prove that the...

  20. Anomalous Q(sub 0) Results in the CEBAF South Linac

    International Nuclear Information System (INIS)

    William J. Schneider; M. Drury; Joe Preble

    1993-01-01

    While in practice, the performance of cavities - Q(sub 0) versus E(sub acc) - in the assembled CEBAF cryomodule corresponds in nearly every respect to the performance as measured in the vertical test area; there are a few cases where this is not true. On six (6) of the twenty (20) cryomodules installed in the south linac, cavity 4 specifically, and one other cavity in cryomodule 7 have an anomalous low Q(sub 0). Investigation into the source of the low Q(sub 0) on these particular cavities have centered around trapped magnetic fields, slow cooldowns or maldistribution of He flow during cooldown leading to hydride precipitation and Q(sub 0) disease. Other possibilities such as low window Q(sub 0)'s or harmonic content of the klystron were also considered. A detailed investigation to understand the phenomena leading to the low Q(sub 0)'s on cryomodule 7 and 8 is discussed. We have found evidence suggesting cooldown dependent Q(sub 0) disease as well as window heating to account for some of the discrepancies but not all. A complete explanation of the problem is still under further investigation

  1. Glucose feeds the TCA cycle via circulating lactate.

    Science.gov (United States)

    Hui, Sheng; Ghergurovich, Jonathan M; Morscher, Raphael J; Jang, Cholsoon; Teng, Xin; Lu, Wenyun; Esparza, Lourdes A; Reya, Tannishtha; Le Zhan; Yanxiang Guo, Jessie; White, Eileen; Rabinowitz, Joshua D

    2017-11-02

    Mammalian tissues are fuelled by circulating nutrients, including glucose, amino acids, and various intermediary metabolites. Under aerobic conditions, glucose is generally assumed to be burned fully by tissues via the tricarboxylic acid cycle (TCA cycle) to carbon dioxide. Alternatively, glucose can be catabolized anaerobically via glycolysis to lactate, which is itself also a potential nutrient for tissues and tumours. The quantitative relevance of circulating lactate or other metabolic intermediates as fuels remains unclear. Here we systematically examine the fluxes of circulating metabolites in mice, and find that lactate can be a primary source of carbon for the TCA cycle and thus of energy. Intravenous infusions of 13 C-labelled nutrients reveal that, on a molar basis, the circulatory turnover flux of lactate is the highest of all metabolites and exceeds that of glucose by 1.1-fold in fed mice and 2.5-fold in fasting mice; lactate is made primarily from glucose but also from other sources. In both fed and fasted mice, 13 C-lactate extensively labels TCA cycle intermediates in all tissues. Quantitative analysis reveals that during the fasted state, the contribution of glucose to tissue TCA metabolism is primarily indirect (via circulating lactate) in all tissues except the brain. In genetically engineered lung and pancreatic cancer tumours in fasted mice, the contribution of circulating lactate to TCA cycle intermediates exceeds that of glucose, with glutamine making a larger contribution than lactate in pancreatic cancer. Thus, glycolysis and the TCA cycle are uncoupled at the level of lactate, which is a primary circulating TCA substrate in most tissues and tumours.

  2. Large scale atmospheric tropical circulation changes and consequences during global warming

    International Nuclear Information System (INIS)

    Gastineau, G.

    2008-01-01

    The changes of the tropical large scale circulation during climate change can have large impacts on human activities. In a first part, the meridional atmospheric tropical circulation was studied in the different coupled models. During climate change, we find, on the one hand, that the Hadley meridional circulation and the subtropical jet are significantly shifted poleward, and on the other hand, that the intensity of the tropical circulation weakens. The slow down of the atmospheric circulation results from the dry static stability changes affecting the tropical troposphere. Secondly, idealized simulations are used to explain the tropical circulation changes. Ensemble simulation using the model LMDZ4 are set up to study the results from the coupled model IPSLCM4. The weakening of the large scale tropical circulation and the poleward shift of the Hadley cells are explained by both the uniform change and the meridional gradient change of the sea surface temperature. Then, we used the atmospheric model LMDZ4 in an aqua-planet configuration. The Hadley circulation changes are explained in a simple framework by the required poleward energy transport. In a last part, we focus on the water vapor distribution and feedback in the climate models. The Hadley circulation changes were shown to have a significant impact on the water vapour feedback during climate change. (author)

  3. Atmospheric circulation influence on climatic trends in Europe: an analysis of circulation type classifications from the COST733 catalogue

    Czech Academy of Sciences Publication Activity Database

    Cahynová, Monika; Huth, R.

    2016-01-01

    Roč. 36, č. 7 (2016), s. 2743-2760 ISSN 0899-8418 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0073 Institutional support: RVO:67179843 Keywords : atmospheric circulation * classification * circulation type * climatic trends * Europe * COST733 Subject RIV: EH - Ecology, Behaviour Impact factor: 3.760, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/joc.4003/abstract

  4. Recent research and development of bearings for helium circulator

    International Nuclear Information System (INIS)

    Taniguchi, S.; Ezaki, Z.; Kawaguchi, K.; Matsumura, N.; Kozima, M.

    1988-01-01

    This paper mainly describes recent studies and successful applications of water lubricated bearing and gas lubricated bearing. Both types of bearing seem to be suitable for a turbo machine installed in an atomic energy plant - such as the helium circulator of a HTGR - not to be affected by radioactivity, so we have been attracted by them for about 10 years. The former was investigated theoretically taking account of turbulent flow due to the low viscosity of water, and compared with the experimental data. Good agreement was obtained, and a successful example applied to a small-sized high speed air compressor is shown. The latter was investigated using a large-sized bearing test rig simulated to an actual machine. The tilting pad journal bearing and the tilting pad thrust bearing were taken and improved for some aspects. These bearings have been taken into service on an actual circulator and are now operating successfully. Currently, a magnetic bearing is being studied to pay special attention to endurance for an earthquake and catcher bearing system. We would like to have an opportunity to present these results in the near future. (author). 5 refs, 15 figs, 2 tabs

  5. Effect of natural circulation on RCS depressurization strategy in PWR NPP

    International Nuclear Information System (INIS)

    Zhang Kun; Tong Lili; Cao Xuewu

    2009-01-01

    The natural circulation model of Chinese Qinshan Nuclear Power Plant (NPP) Unit 2 is built using SCDAP/RELAP5 code. Selecting TMLB' accident as the base sequence, this paper analyzes the natural circulation phenomena in high-pressure core melt severe accident. In order to study the effect of natural circulation on RCS depressurization strategy, the accident progressions of RCS depressurization with and without natural circulation are simulated, respectively. According to the results, the natural circulation can delay the initiation of RCS depressurization and the whole accident progression, but it does not evidently influence the results of RCS depressurization. (authors)

  6. Structure and variances of equatorial zonal circulation in a multimodel ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Yu, B. [Environment Canada, Climate Data and Analysis Section, Climate Research Division, Toronto, ON (Canada); Zwiers, F.W. [University of Victoria, Pacific Climate Impacts Consortium, Victoria, BC (Canada); Boer, G.J. [Environment Canada, Canadian Centre for Climate Modeling and Analysis, Climate Research Division, Victoria, BC (Canada); Ting, M.F. [Columbia University, Lamont-Doherty Earth Observatory, Palisades, NY (United States)

    2012-11-15

    The structure and variance of the equatorial zonal circulation, as characterized by the atmospheric mass flux in the equatorial zonal plane, is examined and inter-compared in simulations from 9 CMIP3 coupled climate models with multiple ensemble members and the NCEP-NCAR and ERA-40 reanalyses. The climate model simulations analyzed here include twentieth century (20C3M) and twenty-first century (SRES A1B) simulations. We evaluate the 20C3M modeled zonal circulations by comparing them with those in the reanalyses. We then examine the variability of the circulation, its changes with global warming, and the associated thermodynamic maintenance. The tropical zonal circulation involves three major components situated over the Pacific, Indian, and Atlantic oceans. The three cells are supported by the corresponding diabatic heating extending deeply throughout the troposphere, with heating centers apparent in the mid-troposphere. Seasonal features appear in the zonal circulation, including variations in its intensity and longitudinal migration. Most models, and hence the multi-model mean, represent the annual and seasonal features of the circulation and the associated heating reasonably well. The multi-model mean reproduces the observed climatology better than any individual model, as indicated by the spatial pattern correlation and mean square difference of the mass flux and the diabatic heating compared to the reanalysis based values. Projected changes in the zonal circulation under A1B forcing are dominated by mass flux changes over the Pacific and Indian oceans. An eastward shift of the Pacific Walker circulation is clearly evident with global warming, with anomalous rising motion apparent over the equatorial central Pacific and anomalous sinking motions in the west and east, which favors an overall strengthening of the Walker circulation. The zonal circulation weakens and shifts westwards over the Indian Ocean under external forcing, whereas it strengthens and shifts

  7. Experimental and theoretical study on natural circulation capacity under rolling motion condition

    International Nuclear Information System (INIS)

    Tan Sichao; Gao Puzhen

    2007-01-01

    Effect of rolling motion on natural circulation capacity was studied experimentally and theoretically. Experiments were conducted under the conditions of rolling and unrolling motions. The experimental results show that natural circulation capacity decreases under rolling motion condition. A mathematic model was developed to calculate the natural circulation capacity under rolling motion condition, considering the characteristics of natural circulation, the model was modified. The calculated results agree with experimental data well. Effect of rolling motion on natural circulation was analyzed through calculation and the following conclusions were obtained: (1) The increase of flow resistance coefficient is the main reason that the natural circulation capacity decreases under rolling motion condition; (2) Non-uniform distribution of fluid mass in the pipe has also influence on natural circulation capacity. (author)

  8. Test and analysis of thermal ratcheting deformation for 316L stainless steel cylindrical structure

    International Nuclear Information System (INIS)

    Lee, Hyeong Yeon; Kim, Jong Bum; Lee, Jae Han

    2002-01-01

    In this study, the progressive inelastic deformation, so called, thermal ratchet phenomenon which can occur in high temperature structures of liquid metal simulated with thermal ratchet structural test facility and 316L stainless steel test cylinder. The thermal ratchet deformation at the reactor baffle cylinder of the liquid metal reactor can occur due to the moving temperature distribution along the axial direction as the sodium free surface moves up and down under the cyclic heat-up and cool-down transients. The ratchet deformation was measured with the laser displacement sensor and LVDTs after cooling the structural specimen which is heated up to 550 degree C with steep temperature gradients along the axial direction. The temperature distribution of the test cylinder along the axial direction was measured with 28 channels of thermocouples and was used for the ratchet analysis. The thermal ratchet deformation was analyzed with the constitutive equation of nonlinear combined hardening model which was implemented as ABAQUS user subroutine and the analysis results were compared with those of the test. Thermal ratchet load was applied 9 times and the residual displacement after 9 cycles of thermal load was measured to be 1.79 mm. The ratcheting deformation shapes obtained by the analysis with the combined hardening model were in reasonable agreement with those of the structural tests

  9. Lost circulation technology workshop, October 9-10, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, B.C. (ed.)

    1985-03-01

    This report summarizes the presentations and discussions of a workshop on lost circulation technology. The workshop identified and defined lost circulation problem areas in field operations, materials, mud effects, and standards. Problem solution needs were also categorized as requiring analytical evaluation and procedure, instrument, and material development.

  10. Evaluation of circulating miRNAs during late pregnancy in the mare.

    Directory of Open Access Journals (Sweden)

    Shavahn C Loux

    Full Text Available MicroRNAs (miRNAs are small, non-coding RNAs which are produced throughout the body. Individual tissues tend to have a specific expression profile and excrete many of these miRNAs into circulation. These circulating miRNAs may be diagnostically valuable biomarkers for assessing the presence of disease while minimizing invasive testing. In women, numerous circulating miRNAs have been identified which change significantly during pregnancy-related complications (e.g. chorioamnionitis, eclampsia, recurrent pregnancy loss; however, no prior work has been done in this area in the horse. To identify pregnancy-specific miRNAs, we collected serial whole blood samples in pregnant mares at 8, 9, 10 m of gestation and post-partum, as well as from non-pregnant (diestrous mares. In total, we evaluated a panel of 178 miRNAs using qPCR, eventually identifying five miRNAs of interest. One miRNA (miR-374b was differentially regulated through late gestation and four miRNAs (miR-454, miR-133b, miR-486-5p and miR-204b were differentially regulated between the pregnant and non-pregnant samples. We were able to identify putative targets for the differentially regulated miRNAs using two separate target prediction programs, miRDB and Ingenuity Pathway Analysis. The targets for the miRNAs differentially regulated during pregnancy were predicted to be involved in signaling pathways such as the STAT3 pathway and PI3/AKT signaling pathway, as well as more endocrine-based pathways, including the GnRH, prolactin and insulin signaling pathways. In summary, this study provides novel information about the changes occurring in circulating miRNAs during normal pregnancy, as well as attempting to predict the biological effects induced by these miRNAs.

  11. Natural circulation cooling in US pressurized water reactors

    International Nuclear Information System (INIS)

    Berta, V.T.; Wilson, G.E.; Boyack, B.E.

    1989-01-01

    The research into the modes of, and heat removed by, natural circulation in PWR systems is reviewed for the purpose of determining the status of this method for off-nominal recovery procedures. The referenced information comes from all facets of the nuclear industry, both domestic and international. The information focuses on recent research (1986--1988); however, pre-1986 research is summarized and referenced. Particular attention is paid to the role of scaling in the experimental facilities and analytical tools. Three modes of natural-circulation cooling are covered: condensation. The conclusion of the review is that the new research reconfirms the pre-1986 conclusion that natural circulation is a viable means of decay heat removal. In addition, the new research sufficiently completes the acquisition of an appropriate experimental data base and the development of system codes to permit the design of valid plant recovery procedures incorporating all three modes of natural circulation. 48 refs., 1 fig., 3 tabs

  12. Canine parvovirus (CPV-2) variants circulating in Nigerian dogs

    Science.gov (United States)

    Apaa, T. T.; Daly, J. M.; Tarlinton, R. E.

    2016-01-01

    Canine parvovirus type 2 (CPV-2) is a highly contagious viral disease with three variants (CPV-2a, CPV-2b and CPV-2c) currently circulating in dogs worldwide. The main aim of this study was to determine the prevalent CPV-2 variant in faecal samples from 53 dogs presenting with acute gastroenteritis suspected to be and consistent with CPV-2 to Nigerian Veterinary Clinics in 2013–2014. Seventy-five per cent of these dogs tested positive for CPV-2 in a commercial antigen test and/or by PCR. Partial sequencing of the VP2 gene of six of these demonstrated them to be CPV-2a. Most of the dogs (60 per cent) were vaccinated, with 74 per cent of them puppies less than six months old. PMID:27933190

  13. Differential adipokine receptor expression on circulating leukocyte subsets in lean and obese children.

    Directory of Open Access Journals (Sweden)

    Genoveva Keustermans

    higher numbers of immature transition B-cells and intermediate CD14++CD16+ monocytes combined with lower total monocyte numbers, compared to controls. Furthermore, adiponectin receptor 1 expression on nonclassical CD14+CD16++ monocytes was consistently upregulated in obese children pre-intervention, compared to controls. However, none of the differences in leukocyte subset numbers and adipokine receptor expression profiles between obese children and controls remained significant after multiple testing correction.First, the distinct adipokine receptor profiles of circulating leukocyte subsets may partly explain the differential impact of adipokines on leukocyte subsets. Second, the similarities in adipokine receptor expression profiles between obese children and normal weight controls suggest that adipokine signaling in childhood obesity is primarily modulated by circulating adipokine levels, instead of adipokine receptor expression.

  14. Adjustable speed drives improve circulating water system

    International Nuclear Information System (INIS)

    Dent, R.A.; Dicic, Z.

    1994-01-01

    This paper illustrates the integration of electrical and mechanical engineering requirements to produce a solution to past problems and future operating demands. The application of adjustable speed drives in the modifications of the circulating water system at Indian Point No. 3 Nuclear Power Plant provided increased operating flexibility, efficiency and avoided otherwise costly renovations to the plant electrical systems. Rectification of the original inadequate design of the circulating water system, in addition to maximizing plant efficiency consistent with environmental considerations, formed the basis for this modification. This entailed replacement of all six circulating water pumps and motors and physical modifications to the intake system. This paper details the methodology used in this engineering task. The new system was installed successfully and has been operating reliably and economically for the past eight years

  15. The dependence of wintertime Mediterranean precipitation on the atmospheric circulation response to climate change

    Science.gov (United States)

    Zappa, Giuseppe; Hoskins, Brian; Shepherd, Ted

    2016-04-01

    Climate models indicate a future wintertime precipitation reduction in the Mediterranean region which may have large socio-economic impacts. However, there is large uncertainty in the amplitude of the projected precipitation reduction and this limits the possibility to inform effective adaptation planning. We analyse CMIP5 climate model output to quantify the role of atmospheric circulation in the precipitation change and the time of emergence of the Mediterranean precipitation response. It is found that a simple circulation index, i.e. the 850 hPa zonal wind (U850) in North Africa, well describes the year to year fluctuations in the area-averaged Mediterranean precipitation, with positive (i.e. westerly) U850 anomalies in North Africa being associated with positive precipitation anomalies. Under climate change, U850 in North Africa and the Mediterranean precipitation are both projected to decrease consistently with the relationship found in the inter-annual variability. This enables us to estimate that about 85% of the CMIP5 mean precipitation response and 80% of the variance in the inter-model spread are related to changes in the atmospheric circulation. In contrast, there is no significant correlation between the mean precipitation response and the global-mean surface warming across the models. We also find that the precipitation response to climate change might already emerge from internal variability by 2025 relative to 1960-1990 according to the climate models with a large circulation response. This implies that it might soon be possible to test model projections using observations. Finally, some of the mechanisms which are important for the Mediterranean circulation response in the CMIP5 models are discussed.

  16. Dynamic leaching and fractionation of trace elements from environmental solids exploiting a novel circulating-flow platform.

    Science.gov (United States)

    Mori, Masanobu; Nakano, Koji; Sasaki, Masaya; Shinozaki, Haruka; Suzuki, Shiho; Okawara, Chitose; Miró, Manuel; Itabashi, Hideyuki

    2016-02-01

    A dynamic flow-through microcolumn extraction system based on extractant re-circulation is herein proposed as a novel analytical approach for simplification of bioaccessibility tests of trace elements in sediments. On-line metal leaching is undertaken in the format of all injection (AI) analysis, which is a sequel of flow injection analysis, but involving extraction under steady-state conditions. The minimum circulation times and flow rates required to determine the maximum bioaccessible pools of target metals (viz., Cu, Zn, Cd, and Pb) from lake and river sediment samples were estimated using Tessier's sequential extraction scheme and an acid single extraction test. The on-line AIA method was successfully validated by mass balance studies of CRM and real sediment samples. Tessier's test in on-line AI format demonstrated to be carried out by one third of extraction time (6h against more than 17 h by the conventional method), with better analytical precision (15% by the conventional method) and significant decrease in blank readouts as compared with the manual batch counterpart. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. PWR hot leg natural circulation modeling with MELCOR code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hong; Lee, Jong In [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1998-12-31

    Previous MELCOR and SCDAP/RELAP5 nodalizations for simulating the counter-current, natural circulation behavior of vapor flow within the RCS hot legs and SG U-tubes when core damage progress can not be applied to the steady state and water-filled conditions during the initial period of accident progression because of the artificially high loss coefficients in the hot legs and SG U-tubes which were chosen from results of COMMIX calculation and the Westinghouse natural circulation experiments in a 1/7-scale facility for simulating steam natural circulation behavior in the vessel and circulation modeling which can be used both for the liquid flow condition at steady state and for the vapor flow condition at the later period of in-vessel core damage. For this, the drag forces resulting from the momentum exchange effects between the two vapor streams in the hot leg was modeled as a pressure drop by pump model. This hot leg natural circulation modeling of MELCOR was able to reproduce similar mass flow rates with those predicted by previous models. 6 refs., 2 figs. (Author)

  18. PWR hot leg natural circulation modeling with MELCOR code

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Hong; Lee, Jong In [Korea Institute of Nuclear Safety, Taejon (Korea, Republic of)

    1997-12-31

    Previous MELCOR and SCDAP/RELAP5 nodalizations for simulating the counter-current, natural circulation behavior of vapor flow within the RCS hot legs and SG U-tubes when core damage progress can not be applied to the steady state and water-filled conditions during the initial period of accident progression because of the artificially high loss coefficients in the hot legs and SG U-tubes which were chosen from results of COMMIX calculation and the Westinghouse natural circulation experiments in a 1/7-scale facility for simulating steam natural circulation behavior in the vessel and circulation modeling which can be used both for the liquid flow condition at steady state and for the vapor flow condition at the later period of in-vessel core damage. For this, the drag forces resulting from the momentum exchange effects between the two vapor streams in the hot leg was modeled as a pressure drop by pump model. This hot leg natural circulation modeling of MELCOR was able to reproduce similar mass flow rates with those predicted by previous models. 6 refs., 2 figs. (Author)

  19. An elementary model of money circulation

    Science.gov (United States)

    Pokrovskii, Vladimir N.; Schinckus, Christophe

    2016-12-01

    This paper investigates money circulation for a system, consisting of a production system, the government, a central bank, commercial banks and many customers of the commercial banks. A set of equations for the system is written; the theory determines the main features of interaction between production and money circulation. Investigation of the equations in a steady-state situation reveals some relationship among output of the production system and monetary variables. The relation of quantity theory of money is confirmed, whereas a new concept of the efficiency of the system is introduced.

  20. Pirates, stewards, and the securitisation of global circulation

    NARCIS (Netherlands)

    Lobo-Guerrero, Luis

    2008-01-01

    This article is a contribution to the theorization of global maritime circulation as a key category of a global biopolitics of security. It seeks to advance knowledge on the ways in which liberal life is promoted and protected by exacerbating global circulation. It focuses on the security effects of

  1. Modelling the Seasonal Overturning Circulation in the Red Sea

    KAUST Repository

    Yao, Fengchao

    2015-04-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using 50-year, high-resolution MIT general circulation model simulations. The seasonal water exchange in the Strait of Bab el Mandeb is successfully simulated, and the structures of the intruding subsurface Gulf of Aden intermediate water are in good agreement with summer observations in 2011. The model results suggest that the summer overturning circulation is driven by the combined effect of the shoaling of the thermocline in the Gulf of Aden resulting from remote winds in the Arabian Sea and an upward surface slope from the Red Sea to the Gulf of Aden set up by local surface winds in the Red Sea. For the winter overturning circulation, the climatological model mean results suggest that the surface inflow intensifies in a western boundary current in the southern Red Sea that switches to an eastern boundary current north of 24°N. The overturning is accomplished through a cyclonic recirculation and a cross-basin overturning circulation in the northern Red Sea, with major sinking occurring along a narrow band of width about 20 km along the eastern boundary and weaker upwelling along the western boundary. The northward pressure gradient force, strong vertical mixing, and horizontal mixing near the boundary are the essential dynamical components in the model\\'s winter overturning circulation.

  2. Theoretical and experimental investigations into natural circulation behaviour in a simulated facility of the Indian PHWR under reduced inventory conditions

    International Nuclear Information System (INIS)

    Satish Kumar, N.V.; Nayak, A.K.; Vijayan, P.K.; Pal, A.K.; Saha, D.; Sinha, R.K.

    2004-01-01

    A theoretical and experimental investigation has been carried out to study natural circulation characteristics of an Indian PHWR under reduced inventory conditions. The theoretical model incorporates a quasi-steady state analysis of natural circulation at different system inventories. It predicts the system flow rate under single-phase and two-phase conditions and the inventory at which reflux condensation occurs. The model predictions were compared with test data obtained from FISBE (facility for integral system behaviour experiments), which simulates the thermal hydraulic behaviour of the Indian 220 MWe PHWR. The experimental results were found to be in close agreement with the predictions. It was also found that the natural circulation could be oscillatory under reduced inventory conditions. (orig.)

  3. Analysis and Modeling of Circulating Current in Two Parallel-Connected Inverters

    DEFF Research Database (Denmark)

    Maheshwari, Ram Krishan; Gohil, Ghanshyamsinh Vijaysinh; Bede, Lorand

    2015-01-01

    Parallel-connected inverters are gaining attention for high power applications because of the limited power handling capability of the power modules. Moreover, the parallel-connected inverters may have low total harmonic distortion of the ac current if they are operated with the interleaved pulse...... this model, the circulating current between two parallel-connected inverters is analysed in this study. The peak and root mean square (rms) values of the normalised circulating current are calculated for different PWM methods, which makes this analysis a valuable tool to design a filter for the circulating......-width modulation (PWM). However, the interleaved PWM causes a circulating current between the inverters, which in turn causes additional losses. A model describing the dynamics of the circulating current is presented in this study which shows that the circulating current depends on the common-mode voltage. Using...

  4. Circulating Blood eNOS Contributes to the Regulation of Systemic Blood Pressure and Nitrite Homeostasis

    Science.gov (United States)

    Wood, Katherine C.; Cortese-Krott, Miriam M.; Kovacic, Jason C.; Noguchi, Audrey; Liu, Virginia B.; Wang, Xunde; Raghavachari, Nalini; Boehm, Manfred; Kato, Gregory J.; Kelm, Malte; Gladwin, Mark T.

    2013-01-01

    Objective Mice genetically deficient in endothelial nitric oxide synthase (eNOS−/−) are hypertensive with lower circulating nitrite levels, indicating the importance of constitutively produced nitric oxide (NO•) to blood pressure regulation and vascular homeostasis. While the current paradigm holds that this bioactivity derives specifically from expression of eNOS in endothelium, circulating blood cells also express eNOS protein. A functional red cell eNOS that modulates vascular NO• signaling has been proposed. Approach and Results To test the hypothesis that blood cells contribute to mammalian blood pressure regulation via eNOS-dependent NO• generation, we cross-transplanted WT and eNOS−/− mice, producing chimeras competent or deficient for eNOS expression in circulating blood cells. Surprisingly, we observed a significant contribution of both endothelial and circulating blood cell eNOS to blood pressure and systemic nitrite levels, the latter being a major component of the circulating NO• reservoir. These effects were abolished by the NOS inhibitor L-NAME and repristinated by the NOS substrate L-Arginine, and were independent of platelet or leukocyte depletion. Mouse erythrocytes were also found to carry an eNOS protein and convert 14C-Arginine into 14C-Citrulline in a NOS-dependent fashion. Conclusions These are the first studies to definitively establish a role for a blood borne eNOS, using cross transplant chimera models, that contributes to the regulation of blood pressure and nitrite homeostasis. This work provides evidence suggesting that erythrocyte eNOS may mediate this effect. PMID:23702660

  5. [Circulating tumor cells: cornerstone of personalized medicine].

    Science.gov (United States)

    Rafii, A; Vidal, F; Rathat, G; Alix-Panabières, C

    2014-11-01

    Cancer treatment has evolved toward personalized medicine. It is mandatory for clinicians to ascertain tumor biological features in order to optimize patients' treatment. Identification and characterization of circulating tumor cells demonstrated a prognostic value in many solid tumors. Here, we describe the main technologies for identification and characterization of circulating tumor cells and their clinical application in gynecologic and breast cancers. Copyright © 2014. Published by Elsevier Masson SAS.

  6. Studies on natural circulation cooling enhancement in a spent fuel in fast breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Maekawa, Isamu; Akamatsu, Mikio; Toda, Shinichi; Sato, Manabu [Kawasaki Heavy Industries Ltd., Kobe (Japan); Mayumi, Masami

    2001-01-01

    Fast breeder reactor (FBR) has some advantages such as effective application of plutonium, excellent capacity to fire minor-actinides (longer half-life nuclides such as Np, Am, Cm, and so on) contained in radioactive wastes in the reactor to convert their shorter half-life nuclides. However, fuels containing the minor-actinides have a characteristic with higher exotherm and radioactive intensity than those of conventional ones, it is essential at their actual stages to prepare some rational fuel handling systems on their transportation, storage and so forth. In addition, there are few examples on natural circulation heat transfer test of a liquid metal using long sized container. Then, in order to establish an evaluating method on decay-heat removing property of a spent fuel assembly in sodium canister and pot, some natural circulation tests on a long sized container including a quasi pin-bundle structure for a working fluid of lead-bismuth (Pb-Bi) mixture with easier handling than that of sodium was carried out. A specimen could be mounted at optional angles from horizontal to vertical positions so as to evaluate effects of inclined angles. In addition, in order to estimate temperature and flow rate distribution in a long sized container and understand thermal flowing phenomenon in specimen system, numerical analysis using multi-dimensional analysis code was carried out. As a result, it was found that in vertical arrangement system, natural circulation phenomenon is limited at upper portion of the exothermal portion, and its maximum temperature was tested at central portion of top pin-bundle of the exothermal portion. And, it was also found that at horizontal arrangement maximum temperature was 40 centigrade less than that of vertical arrangement, and so forth. (G.K.)

  7. The ocean circulation inverse problem

    National Research Council Canada - National Science Library

    Wunsch, C

    1996-01-01

    .... This book addresses the problem of inferring the state of the ocean circulation, understanding it dynamically, and even forecasting it through a quantitative combination of theory and observation...

  8. Gas-cooled reactor coolant circulator and blower technology

    International Nuclear Information System (INIS)

    1988-08-01

    In the previous 17 meetings held within the framework of the International Working Group on Gas-Cooled Reactors, a wide variety of topics and components have been addressed, but the San Diego meeting represented the first time that a group of specialists had been convened to discuss circulator and blower related technology. A total of 20 specialists from 6 countries attended the meeting in which 15 technical papers were presented in 5 sessions: circulator operating experience I and II (6 papers); circulator design considerations I and II (6 papers); bearing technology (3 papers). A separate abstract was prepared for each of these papers. Refs, figs and tabs

  9. Circulation Price Elasticity in the Daily Newspaper Industry.

    Science.gov (United States)

    Grotta, Gerald L.; Taylor, Michael Lee

    Pricing of subscriptions and single copies has historically been arbitrary. Evidence indicates that the newspaper industry has tended to overestimate the elasticity of demand for newspaper circulation. This study analyzed price changes, circulation changes, and population changes for all daily newspapers in the United States between 1970 and 1975.…

  10. Interethnic differences at the thermometric response to cold test: functional disorders of blood circulation in hand fingers and exposure to hand-arm vibration.

    Science.gov (United States)

    Riolfi, A; Princivalle, A; Romeo, L; Caramaschi, P; Perbellini, L

    2008-02-01

    To report some notable aspects regarding thermometric response to cold test in black African subjects compared with Caucasians: both groups comprised persons exposed to hand-arm vibration and controls. An overall sample of 48 workers was examined in order to study their blood circulation in hand fingers: a control group of 12 healthy Caucasian workers never exposed before to hand-arm vibration; 12 Caucasian workers exposed for several years to vibrating tools and affected by occupational Raynaud's phenomenon; 12 healthy black African workers exposed to hand-arm vibration for almost 3 years; and 12 healthy black African workers never exposed to hand-arm vibration. Computerized skin thermometry was performed and thermometric curves were analyzed according to thermometric interpretation criteria such as the area-over-curve (AOC), the fifth minute of recovery/baseline temperature ratio (5REC/BT) and the temperature at the tenth minute of recovery (10REC) after cold test. Thermometric parameters in Caucasian subjects confirmed the basis of the existing literature in controls (basal finger temperature higher than 32 degrees C and complete recovery to the initial temperature after the cold test) and also in patients with Raynaud's phenomenon (basal temperature often lower than control subjects and slow recovery of finger temperature after cold test). Statistically significant difference was found between healthy Caucasians and healthy black subjects in all the parameters tested: healthy black subjects showed values of AOC and 10REC suggesting almost constantly lower finger temperatures during the thermometry test. Black people, both exposed and non-exposed to hand-arm vibration showed thermometric parameters suggesting poor blood microcirculation, which seems even poorer than in Caucasian people complaining Raynaud's phenomenon. Our chronothermometric tests suggest some significant interethnic differences in peripheral microcirculation, which seems rather poor in black

  11. A large block heater test for high level nuclear waste management

    International Nuclear Information System (INIS)

    Lin, W.; Wilder, D.G.; Blink, J.A.

    1994-07-01

    The radioactive decay heat from nuclear waste packages may, depending on the thermal load, create coupled thermal-mechanical-hydrological-chemical (TMHC) processes in the near-field environment of a repository. A group of tests on a large block (LBT) are planned to provide a timely opportunity to test and calibrate some of the TMHC model concepts. The LBT is advantageous for testing and verifying model concepts because the boundary conditions are controlled, and the block can be characterized before and after the experiment. A block of Topopah Spring tuff of about 3 x 3 x 4.5 m will be sawed and isolated at Fran Ridge, Nevada Test Site. Small blocks of the rock adjacent to the large block will be collected for laboratory testing of some individual thermal-mechanical hydrological and chemical processes. A constant load of about 4 MPa will be applied to the top and sides of the large block. The sides will be sealed with moisture and thermal barriers. The large block will be heated by heaters within and guard heaters on the sides so that a dry-out zone and a condensate zone will exist simultaneously. Temperature, moisture content, pore pressure, chemical composition, stress, and displacement will be throughout the block during the heating and cool-down phases. The results from the experiments on small blocks and the tests on the large block will provide a better understanding of some concepts of the coupled TMHC processes. The progress of the project is presented in this paper

  12. Elite Circulation and the Convertibility of Knowledge: Comparing Different Types and Forms of Knowledge and Degrees of Elite Circulation in Europe

    Science.gov (United States)

    Mangset, Marte

    2017-01-01

    According to classical elite theory, increased circulation is related to increased integration which is thought to increase elites' power. Based on a comparative analysis of some European countries' elite education systems, recruitment to elite positions and degrees of circulation--with a specific focus on administrative elites--this article…

  13. Circulation of Stars

    Science.gov (United States)

    Boitani, P.

    2016-01-01

    Since the dawn of man, contemplation of the stars has been a primary impulse in human beings, who proliferated their knowledge of the stars all over the world. Aristotle sees this as the product of primeval and perennial “wonder” which gives rise to what we call science, philosophy, and poetry. Astronomy, astrology, and star art (painting, architecture, literature, and music) go hand in hand through millennia in all cultures of the planet (and all use catasterisms to explain certain phenomena). Some of these developments are independent of each other, i.e., they take place in one culture independently of others. Some, on the other hand, are the product of the “circulation of stars.” There are two ways of looking at this. One seeks out forms, the other concentrates on the passing of specific lore from one area to another through time. The former relies on archetypes (for instance, with catasterism), the latter constitutes a historical process. In this paper I present some of the surprising ways in which the circulation of stars has occurred—from East to West, from East to the Far East, and from West to East, at times simultaneously.

  14. Influence of depression and anxiety on circulating endothelial progenitor cells in patients with acute coronary syndromes.

    Science.gov (United States)

    Felice, Francesca; Di Stefano, Rossella; Pini, Stefano; Mazzotta, Gianfranco; Bovenzi, Francesco M; Bertoli, Daniele; Abelli, Marianna; Borelli, Lucia; Cardini, Alessandra; Lari, Lisa; Gesi, Camilla; Michi, Paola; Morrone, Doralisa; Gnudi, Luigi; Balbarini, Alberto

    2015-05-01

    Circulating endothelial progenitor cells (EPCs) are related to endothelial function and progression of coronary artery disease. There is evidence of decreased numbers of circulating EPCs in patients with a current episode of major depression. We investigated the relationships between the level of circulating EPCs and depression and anxiety in patients with acute coronary syndrome (ACS). Patients with ACS admitted to three Cardiology Intensive Care Units were evaluated by the SCID-I to determine the presence of lifetime and/or current mood and anxiety disorders according to DSM-IV criteria. The EPCs were defined as CD133(+) CD34(+) KDR(+) and evaluated by flow cytometry. All patients underwent standardized cardiological and psychopathological evaluations. Parametric and nonparametric statistical tests were performed where appropriate. Out of 111 ACS patients, 57 were found to have a DSM-IV lifetime or current mood or anxiety disorder at the time of the inclusion in the study. The ACS group with mood or anxiety disorders showed a significant decrease in circulating EPC number compared with ACS patients without affective disorders. In addition, EPC levels correlated negatively with severity of depression and anxiety at index ACS episode. The current study indicates that EPCs circulate in decreased numbers in ACS patients with depression or anxiety and, therefore, contribute to explore new perspectives in the pathophysiology of the association between cardiovascular disorders and affective disorders. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Scaling Analysis of the Single-Phase Natural Circulation: the Hydraulic Similarity

    International Nuclear Information System (INIS)

    Yu, Xin-Guo; Choi, Ki-Yong

    2015-01-01

    These passive safety systems all rely on the natural circulation to cool down the reactor cores during an accident. Thus, a robust and accurate scaling methodology must be developed and employed to both assist in the design of a scaled-down test facility and guide the tests in order to mimic the natural circulation flow of its prototype. The natural circulation system generally consists of a heat source, the connecting pipes and several heat sinks. Although many applauding scaling methodologies have been proposed during last several decades, few works have been dedicated to systematically analyze and exactly preserve the hydraulic similarity. In the present study, the hydraulic similarity analyses are performed at both system and local level. By this mean, the scaling criteria for the exact hydraulic similarity in a full-pressure model have been sought. In other words, not only the system-level but also the local-level hydraulic similarities are pursued. As the hydraulic characteristics of a fluid system is governed by the momentum equation, the scaling analysis starts with it. A dimensionless integral loop momentum equation is derived to obtain the dimensionless numbers. In the dimensionless momentum equation, two dimensionless numbers, the dimensionless flow resistance number and the dimensionless gravitational force number, are identified along with a unique hydraulic time scale, characterizing the system hydraulic response. A full-height full-pressure model is also made to see which model among the full-height model and reduced-height model can preserve the hydraulic behavior of the prototype. From the dimensionless integral momentum equation, a unique hydraulic time scale, which characterizes the hydraulic response of a single-phase natural circulation system, is identified along with two dimensionless parameters: the dimensionless flow resistance number and the dimensionless gravitational force number. By satisfying the equality of both dimensionless numbers

  16. Scaling Analysis of the Single-Phase Natural Circulation: the Hydraulic Similarity

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xin-Guo; Choi, Ki-Yong [KAERI, Daejeon (Korea, Republic of)

    2015-05-15

    These passive safety systems all rely on the natural circulation to cool down the reactor cores during an accident. Thus, a robust and accurate scaling methodology must be developed and employed to both assist in the design of a scaled-down test facility and guide the tests in order to mimic the natural circulation flow of its prototype. The natural circulation system generally consists of a heat source, the connecting pipes and several heat sinks. Although many applauding scaling methodologies have been proposed during last several decades, few works have been dedicated to systematically analyze and exactly preserve the hydraulic similarity. In the present study, the hydraulic similarity analyses are performed at both system and local level. By this mean, the scaling criteria for the exact hydraulic similarity in a full-pressure model have been sought. In other words, not only the system-level but also the local-level hydraulic similarities are pursued. As the hydraulic characteristics of a fluid system is governed by the momentum equation, the scaling analysis starts with it. A dimensionless integral loop momentum equation is derived to obtain the dimensionless numbers. In the dimensionless momentum equation, two dimensionless numbers, the dimensionless flow resistance number and the dimensionless gravitational force number, are identified along with a unique hydraulic time scale, characterizing the system hydraulic response. A full-height full-pressure model is also made to see which model among the full-height model and reduced-height model can preserve the hydraulic behavior of the prototype. From the dimensionless integral momentum equation, a unique hydraulic time scale, which characterizes the hydraulic response of a single-phase natural circulation system, is identified along with two dimensionless parameters: the dimensionless flow resistance number and the dimensionless gravitational force number. By satisfying the equality of both dimensionless numbers

  17. Gasification of sawdust in pressurised internally circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, R.; Lindblom, M. [Lund Univ. (Sweden). Dept. of Chemical Engineering

    1996-12-31

    A test plant for pressurised gasification of biofuels in a internally circulating fluidized bed has been built at the department of Chemical Engineering II at the University of Lund. The design performance is set to maximum 20 bar and 1 050 deg C at a thermal input of 100 kW or a maximum fuel input of 18 kg/in. The primary task is to study pressurised gasification of biofuels in relation to process requirements of the IGCC concept (integrated gasification combined cycle processes), which includes studies in different areas of hot gas clean-up in reducing atmosphere for gas turbine applications. (orig.)

  18. Gasification of sawdust in pressurised internally circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Maartensson, R; Lindblom, M [Lund Univ. (Sweden). Dept. of Chemical Engineering

    1997-12-31

    A test plant for pressurised gasification of biofuels in a internally circulating fluidized bed has been built at the department of Chemical Engineering II at the University of Lund. The design performance is set to maximum 20 bar and 1 050 deg C at a thermal input of 100 kW or a maximum fuel input of 18 kg/in. The primary task is to study pressurised gasification of biofuels in relation to process requirements of the IGCC concept (integrated gasification combined cycle processes), which includes studies in different areas of hot gas clean-up in reducing atmosphere for gas turbine applications. (orig.)

  19. Atmospheric circulation classification comparison based on wildfires in Portugal

    Science.gov (United States)

    Pereira, M. G.; Trigo, R. M.

    2009-04-01

    Atmospheric circulation classifications are not a simple description of atmospheric states but a tool to understand and interpret the atmospheric processes and to model the relation between atmospheric circulation and surface climate and other related variables (Radan Huth et al., 2008). Classifications were initially developed with weather forecasting purposes, however with the progress in computer processing capability, new and more robust objective methods were developed and applied to large datasets prompting atmospheric circulation classification methods to one of the most important fields in synoptic and statistical climatology. Classification studies have been extensively used in climate change studies (e.g. reconstructed past climates, recent observed changes and future climates), in bioclimatological research (e.g. relating human mortality to climatic factors) and in a wide variety of synoptic climatological applications (e.g. comparison between datasets, air pollution, snow avalanches, wine quality, fish captures and forest fires). Likewise, atmospheric circulation classifications are important for the study of the role of weather in wildfire occurrence in Portugal because the daily synoptic variability is the most important driver of local weather conditions (Pereira et al., 2005). In particular, the objective classification scheme developed by Trigo and DaCamara (2000) to classify the atmospheric circulation affecting Portugal have proved to be quite useful in discriminating the occurrence and development of wildfires as well as the distribution over Portugal of surface climatic variables with impact in wildfire activity such as maximum and minimum temperature and precipitation. This work aims to present: (i) an overview the existing circulation classification for the Iberian Peninsula, and (ii) the results of a comparison study between these atmospheric circulation classifications based on its relation with wildfires and relevant meteorological

  20. Long circulating polymeric nanoparticles for gene/drug delivery.

    Science.gov (United States)

    Hu, Jiaming; Sheng, Yan; Shi, Junfeng; Yu, Bohao; Yu, Zhiqiang; Liao, Guochao

    2017-12-07

    The major limitation in the improving polymeric nanoparticles into an efficient gene/drug delivery carrier is the rapid opsonization, phagocytic uptake by mononuclear phagocyte system and subsequent clearance from the bloodstream. The prolonged circulation time of nanoparticles in the blood is a prerequisite to realizing a controlled and targeted (passive or active targeting) release of the encapsulated gene/drug at the desired site of action. In this review, the factors such as biological barriers and physical barriers including particle size, shape, zeta potential, and hydrophilicity will be discussed, which can cause effects on blood clearance and organ accumulation. Some natural and synthetic polymers utilized in long-circulating nanoparticles will also be discussed. The most popular method to mask or camouflage nanoparticles is the adsorbed, grafted or conjugated of poly (ethylene glycol) (PEG) or other hydrophilic polymers (e.g. polysaccharides) to the particle surface. Surface modification of nanoparticles with these polymers results in an increased blood circulation time by several orders of magnitude in comparison to the bare nanoparticles. However, the circulation half-life of nanoparticles still cannot satisfy the need for clinical use. At present, identification of novel potential coating materials is an emerging field of interest in the design of long-circulating polymer-based nanoparticulate gene/drug delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Characteristics of the Current Sales and Circulation System in China

    Institute of Scientific and Technical Information of China (English)

    our reporter

    2001-01-01

    <正> 5 Former circulation enterprises finding new market position Those large-sized auto circulation enterprises, which used to lead the circulation system, have been suffering the twist and turns from the new system oriented by automakers. Their market shares shapely fell down and have emerged into chaos. Parts of them that are powerful enough have established new sales companies controlled by the jointly

  2. Experimental research and development of main circulation pump bearings in reactor plants using heavy liquid-metal coolants

    International Nuclear Information System (INIS)

    Zudin, A.; Beznosov, A.; Chernysh, A.; Prikazchikov, G.

    2015-01-01

    At the present time, specialists in Russia are engaged in designing the BREST-OD-300 fast neutron lead-coolant reactor plant. There is currently no experience in designing and operating axial pumps of lead-coolant reactor plants, including one of their major units – bearing unit. Selection and substantiation of operating and structural parameters of plain friction bearings used in main circulation pumps of reactor plants running on heavy liquid-metal coolants are important tasks that are solved at the NNSTU. Development of a feasible procedure for designing bearings and its components operating within the structure of the main circulation pump of a reactor plant running on a heavy liquid-metal coolant as well as guidelines for an optimized structural scheme of such bearings set a goal of performing a range of theoretically-calculated and experimental works. The report contains testing data of a hydrostatic bearing with reciprocal fricative choking tested on the NNSTU FT-4 bench running on a lead coolant within the range of 420-500degC. There have been presented a scheme of a bench for testing a contact friction bearing on a high-temperature coolant and the results of investigation tests of bearings of such type at T = 450 ÷ 500degC. Material of the bearing sleeve is steel 08X18H10T, and a possibility is provided with regard to installation of the bearing sleeves and shaft made of non-metal materials (ceramic materials, silicified graphite, etc.). The presented testing data of plain friction bearings operating in a high-temperature heavy liquid-metal coolant will serve as a ground for making an alternative choice of a plain friction bearing for the main circulation pump of a reactor plant running on a heavy liquid-metal coolant. (author)

  3. Observations of the summer Red Sea circulation

    Science.gov (United States)

    Sofianos, Sarantis S.; Johns, William E.

    2007-06-01

    Aiming at exploring and understanding the summer circulation in the Red Sea, a cruise was conducted in the basin during the summer of 2001 involving hydrographic, meteorological, and direct current observations. The most prominent feature, characteristic of the summer circulation and exchange with the Indian Ocean, is a temperature, salinity, and oxygen minimum located around a depth of 75 m at the southern end of the basin, associated with Gulf of Aden Intermediate Water inflowing from the Gulf of Aden during the summer season as an intruding subsurface layer. Stirring and mixing with ambient waters lead to marked increases in temperature (from 16.5 to almost 33°C) and salinity (from 35.7 to more than 38 psu) in this layer by the time it reaches midbasin. The observed circulation presents a very vigorous pattern with strong variability and intense features that extend the width of the basin. A permanent cyclone, detected in the northern Red Sea, verifies previous observations and modeling studies, while in the central sector of the basin a series of very strong anticyclones were observed with maximum velocities exceeding 1 m/s. The three-layer flow pattern, representative of the summer exchange between the Red Sea and the Gulf of Aden, is observed in the strait of Bab el Mandeb. In the southern part of the basin the layer flow is characterized by strong banking of the inflows and outflows against the coasts. Both surface and intermediate water masses involved in the summer Red Sea circulation present prominent spatial variability in their characteristics, indicating that the eddy field and mixing processes play an important role in the summer Red Sea circulation.

  4. Sequential Blood Filtration for Extracorporeal Circulation: Initial Results from a Proof-of-Concept Prototype

    Science.gov (United States)

    Herbst, Daniel P.

    2014-01-01

    Abstract: Micropore filters are used during extracorporeal circulation to prevent gaseous and solid particles from entering the patient’s systemic circulation. Although these devices improve patient safety, limitations in current designs have prompted the development of a new concept in micropore filtration. A prototype of the new design was made using 40-μm filter screens and compared against four commercially available filters for performance in pressure loss and gross air handling. Pre- and postfilter bubble counts for 5- and 10-mL bolus injections in an ex vivo test circuit were recorded using a Doppler ultrasound bubble counter. Statistical analysis of results for bubble volume reduction between test filters was performed with one-way repeated-measures analysis of variance using Bonferroni post hoc tests. Changes in filter performance with changes in microbubble load were also assessed with dependent t tests using the 5- and 10-mL bolus injections as the paired sample for each filter. Significance was set at p < .05. All filters in the test group were comparable in pressure loss performance, showing a range of 26–33 mmHg at a flow rate of 6 L/min. In gross air-handling studies, the prototype showed improved bubble volume reduction, reaching statistical significance with three of the four commercial filters. All test filters showed decreased performance in bubble volume reduction when the microbubble load was increased. Findings from this research support the underpinning theories of a sequential arterial-line filter design and suggest that improvements in microbubble filtration may be possible using this technique. PMID:26357790

  5. Seasonal changes in the atmospheric heat balance simulated by the GISS general circulation model

    Science.gov (United States)

    Stone, P. H.; Chow, S.; Helfand, H. M.; Quirk, W. J.; Somerville, R. C. J.

    1975-01-01

    Tests of the ability of numerical general circulation models to simulate the atmosphere have focussed so far on simulations of the January climatology. These models generally present boundary conditions such as sea surface temperature, but this does not prevent testing their ability to simulate seasonal changes in atmospheric processes that accompany presented seasonal changes in boundary conditions. Experiments to simulate changes in the zonally averaged heat balance are discussed since many simplified models of climatic processes are based solely on this balance.

  6. SBLOCA AND LOFW EXPERIMENTS IN A SCALED-DOWN IET FACILITY OF REX-10 REACTOR

    Directory of Open Access Journals (Sweden)

    YEON-GUN LEE

    2013-06-01

    Full Text Available This paper presents an experimental investigation of the small-break loss-of-coolant accident (SBLOCA and the loss-of-feedwater accident (LOFW in a scaled integral test facility of REX-10. REX-10 is a small integral-type PWR in which the coolant flow is driven by natural circulation, and the RCS is pressurized by the steam-gas pressurizer. The postulated accidents of REX-10 include the system depressurization initiated by the break of a nitrogen injection line connected to the steam-gas pressurizer and the complete loss of normal feedwater flow by the malfunction of control systems. The integral effect tests on SBLOCA and LOFW are conducted at the REX-10 Test Facility (RTF, a full-height full-pressure facility with reduced power by 1/50. The SBLOCA experiment is initiated by opening a flow passage out of the pressurizer vessel, and the LOFW experiment begins with the termination of the feedwater supply into the helical-coil steam generator. The experimental results reveal that the RTF can assure sufficient cooldown capability with the simulated PRHRS flow during these DBAs. In particular, the RTF exhibits faster pressurization during the LOFW test when employing the steam-gas pressurizer than the steam pressurizer. This experimental study can provide unique data to validate the thermal-hydraulic analysis code for REX-10.

  7. Atmospheric circulation influence on climatic trends in Europe: an analysis of circulation type classifications from the COST733 catalogue

    Czech Academy of Sciences Publication Activity Database

    Cahynová, Monika; Huth, Radan

    2016-01-01

    Roč. 36, č. 7 (2016), s. 2743-2760 ISSN 0899-8418 R&D Projects: GA ČR GAP209/10/2265; GA ČR(CZ) GPP209/12/P811 Institutional support: RVO:68378289 Keywords : atmospheric circulation * classification * circulation type * climatic trends * Europe * COST733 Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.760, year: 2016 http://onlinelibrary.wiley.com/doi/10.1002/joc.4003/abstract

  8. Circulating dendritic cells in pediatric patients with nephrotic syndrome

    African Journals Online (AJOL)

    EL-HAKIM

    nephrotic syndrome, circulating DCs were measured by flowcytometry. Results: Circulating DC count ... parents or caregivers of each child before enrollment in the study. ..... role in initiating the primary immune response. On the basis of the ...

  9. Uptake and degradation of circulating proteins by the liver.

    NARCIS (Netherlands)

    Buys, Carolus Henricus Cornelis Maria

    1976-01-01

    Circulating proteins, like all proteins in a living animal, are subject to continual replacement or turnover. This process implies both synthesis and degradation, This thesis deals with the degradative part of turnover of circulating proteins. ... Summary

  10. Twentieth century Walker Circulation change: data analysis and model experiments

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Qingjia [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); Chinese Research Academy of Environmental Sciences, River and Coastal Environment Research Center, Beijing (China); Chinese Academy of Sciences, Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Qingdao (China); Latif, Mojib; Park, Wonsun; Keenlyside, Noel S.; Martin, Thomas [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); Semenov, Vladimir A. [Leibniz-Institut fuer Meereswissenschaften, Kiel (Germany); A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow (Russian Federation)

    2012-05-15

    Recent studies indicate a weakening of the Walker Circulation during the twentieth century. Here, we present evidence from an atmospheric general circulation model (AGCM) forced by the history of observed sea surface temperature (SST) that the Walker Circulation may have intensified rather than weakened. Observed Equatorial Indo-Pacific Sector SST since 1870 exhibited a zonally asymmetric evolution: While the eastern part of the Equatorial Pacific showed only a weak warming, or even cooling in one SST dataset, the western part and the Equatorial Indian Ocean exhibited a rather strong warming. This has resulted in an increase of the SST gradient between the Maritime Continent and the eastern part of the Equatorial Pacific, one driving force of the Walker Circulation. The ensemble experiments with the AGCM, with and without time-varying external forcing, suggest that the enhancement of the SST gradient drove an anomalous atmospheric circulation, with an enhancement of both Walker and Hadley Circulation. Anomalously strong precipitation is simulated over the Indian Ocean and anomalously weak precipitation over the western Pacific, with corresponding changes in the surface wind pattern. Some sensitivity to the forcing SST, however, is noticed. The analysis of twentieth century integrations with global climate models driven with observed radiative forcing obtained from the Coupled Model Intercomparison Project (CMIP) database support the link between the SST gradient and Walker Circulation strength. Furthermore, control integrations with the CMIP models indicate the existence of strong internal variability on centennial timescales. The results suggest that a radiatively forced signal in the Walker Circulation during the twentieth century may have been too weak to be detectable. (orig.)

  11. Study of the effects of D2O circulation

    International Nuclear Information System (INIS)

    Oblath, N.S.; Poon, A.W.P.

    2000-01-01

    The Sudbury Neutrino Observatory (SNO) has been collecting data since November 1999. The study of whether or not the D 2 O circulation affects the data is an important part of understanding how the SNO detector behaves. This report looks at several characteristics of the data to determine to what extent the D 2 O circulation affects the data. We found that there is no evidence for any dependence of event rates in the cleaned data sets on the state of D 2 O circulation

  12. Critical rate of electrolyte circulation for preventing zinc dendrite formation in a zinc-bromine redox flow battery

    Science.gov (United States)

    Yang, Hyeon Sun; Park, Jong Ho; Ra, Ho Won; Jin, Chang-Soo; Yang, Jung Hoon

    2016-09-01

    In a zinc-bromine redox flow battery, a nonaqueous and dense polybromide phase formed because of bromide oxidation in the positive electrolyte during charging. This formation led to complicated two-phase flow on the electrode surface. The polybromide and aqueous phases led to different kinetics of the Br/Br- redox reaction; poor mixing of the two phases caused uneven redox kinetics on the electrode surface. As the Br/Br- redox reaction was coupled with the zinc deposition reaction, the uneven redox reaction on the positive electrode was accompanied by nonuniform zinc deposition and zinc dendrite formation, which degraded battery stability. A single-flow cell was operated at varying electrolyte circulation rates and current densities. Zinc dendrite formation was observed after cell disassembly following charge-discharge testing. In addition, the flow behavior in the positive compartment was observed by using a transparent version of the cell. At low rate of electrolyte circulation, the polybromide phase clearly separated from the aqueous phase and accumulated at the bottom of the flow frame. In the corresponding area on the negative electrode, a large amount of zinc dendrites was observed after charge-discharge testing. Therefore, a minimum circulation rate should be considered to avoid poor mixing of the positive electrolyte.

  13. Dynamic model of YGN 3 and 4 steam generators for natural circulation mode

    International Nuclear Information System (INIS)

    Sohn, Jong Joo

    1995-02-01

    A dynamic model for the secondary side of Yonggwang nuclear power plant units 3 and 4 (YGN 3 and 4) steam generator model is developed to improve the accuracy of the present performance analysis code. The new model is based on the one-dimensional three region model to predict the local quality and void fraction distribution along the U-tube length. The local quality concept is used instead of the Wilson bubble rise correlation to simulate the steam generators in the natural circulation mode. The new model can be applicable to the plants in the power operation modes such as load maneuvering transients in which the steam generator internal flow is maintained in the natural circulation mode. To validate the new model, the code predictions are compared with the actual plant data measured for the selected load maneuvering tests performed during the YGN units 3 power ascension test period. The results from the improved model show better agreement with the plant data than those from the present code. Especially, the new model's capability of accurately simulating the steam generator water level behavior during the fast transients such as a large load rejection event is demonstrated

  14. Journalism as Cultures of Circulation

    DEFF Research Database (Denmark)

    Bødker, Henrik

    2013-01-01

    The universe of journalism has always consisted of interspersed texts, meanings and practices. Yet, much journalism research has often isolated either texts and/or contexts and as such assumed relations between professional practices, informed (rational) readers and (conceived) core texts...... of journalism. It is, however, more important than ever to shift attention away from texts to the processes through which they are circulated. This is partly because the many cultural forms of journalism (textual, institutional, technological, material, behavioural and imagined) are undergoing significant......, likes, comments, searches, journalist roles, writing and reading positions and identities etc. Such forms will be traced within the mediation of a specific event with the overall aim of beginning a theorization of the landscape of journalism as highly interrelated cultures of circulation....

  15. Radioisotopic evaluation of portal circulation

    International Nuclear Information System (INIS)

    Maliska, C.; Rosenthal, D.

    1986-01-01

    The use of a radio-tracer of portal circulation through the intestine, should prevent cruel punctures in the portal-vein or spleen as it is usually the case with traditional methods in the study of portal-system. The absorption of I-131 and Tc-99m, previously cheked in rabbits presented similar results in dogs. The time of circulation between terminal large-intestine and the liver (t-RF) was determined by external counting at hepatic level by recording radioactivity variation-time. In healthy animals the t-RF was from 20to 60 seconds, with average time of 42 seconds. In 2 animals with partial binding of portal-vein the t-RF went up to 110 and 120 seconds. (Author) [pt

  16. Modelling the Seasonal Overturning Circulation in the Red Sea

    KAUST Repository

    Yao, Fengchao; Hoteit, Ibrahim; Pratt, Larry; Bower, Amy; Koehl, Armin; Gopalakrishnan, Ganesh

    2015-01-01

    The overturning circulation in the Red Sea exhibits a distinct seasonally reversing pattern and is studied using 50-year, high-resolution MIT general circulation model simulations. The seasonal water exchange in the Strait of Bab el Mandeb

  17. Circulating steroids negatively correlate with tinnitus.

    Science.gov (United States)

    Chrbolka, Pavel; Palúch, Zoltán; Hill, Martin; Alušík, Štefan

    2017-07-01

    While not a disease entity in itself; symptoms of tinnitus (from Latin tinnio - clink) accompany a number of diseases. Tinnitus prevalence increases with age, deteriorates one's quality of life, and may even result in suicidal behavior. Tinnitus develops in response to a variety of risk factors, otoxic substances, noise exposure, hearing disorders, and psychological alterations. Tinnitus is closely related to mood, depression, and psychological state. In the present study, we focused on alterations of the steroid metabolome and particularly neuroactive, neuroprotective, and immunomodulatory steroids in patients with tinnitus. The study group consisted of 28 patients without evidence of an organic cause of tinnitus as well as without associated diseases or the effect of ototoxic medications. All patients underwent a complete audiological assessment and laboratory tests including routine biochemical markers and quantification of circulating steroids using gas chromatography/mass spectrometry and immunoassays. To rule out a pathology in the cerebellopontine angle area, CT scan or MRI were performed. To diagnose stem lesions, evoked potentials were also measured. Pearson's correlations and multivariate regression were used to assess any links between tinnitus intensity and frequency on the one hand, and steroid levels on the other. Results indicated a significant and consistent negative correlation between tinnitus indices and intensity of adrenal steroidogenesis. The circulating steroid metabolome including hormones and neuroactive, neuroprotective, and immunomodulatory steroids negatively correlates with the degree of tinnitus due to hypothalamo-pituitary-adrenal axis malfunction. Our results may help explain the pathophysiology of tinnitus and improve its diagnosis. However, further studies are needed to verify our postulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Normothermal or Hypothermal Extracorporeal Circulation Regimens in Patients with Acquired Heart Disease

    Directory of Open Access Journals (Sweden)

    V. V. Lomivorotov

    2013-01-01

    Full Text Available Background. Hypothermal extracorporeal circulation has been used in cardiosurgery over 50 years. However, recent trials have not shown its predominant effect on the protection of the brain, lung, and myocardium in patients during surgery. We have presumed that when normothermal extracorporeal circulation used in patients with acquired heart disease, its pathophysiological effect on the body is comparable with that of hypothermal extracorporeal circulation. Subjects and methods. One hundred and forty patients who were to undergo acquired heart disease correction were randomized into two equal groups: that using hypothermal or normothermal extracorporeal circulation. Perioperative troponin I and NT-proBNP concentrations, postoperative clinical course, and hospital morbidity and mortality rates were estimated. Results. There were no significant differences in the concentrations of troponin I and NT-proBNP at the study stages. In the normothermal extracorporeal circulation group patients with isolated aortic stenosis, the concentration of troponin I was higher than that in the hypothermal extracorporeal circulation group. Analyzing the postoperative course indicated that the duration of mechanical ventilation was significantly lower in the hypothermal extracorporeal circulation group than in the normothermal extracorporeal circulation group. There were no differences in hospital complications and mortality rates. Conclusion. Hypothermal versus normothermal extracorporeal circulation in the correction of acquired heart diseases has no predominant effect on tro-ponin I and NT-proBNP concentrations, postoperative clinical course, and hospital complications and mortality rates. Key words: extracorporeal circulation, hypothermia, acquired heart disease, troponin I, NT-proBNP.

  19. Mid-latitude afforestation shifts general circulation and tropical precipitation.

    Science.gov (United States)

    Swann, Abigail L S; Fung, Inez Y; Chiang, John C H

    2012-01-17

    We show in climate model experiments that large-scale afforestation in northern mid-latitudes warms the Northern Hemisphere and alters global circulation patterns. An expansion of dark forests increases the absorption of solar energy and increases surface temperature, particularly in regions where the land surface is unable to compensate with latent heat flux due to water limitation. Atmospheric circulation redistributes the anomalous energy absorbed in the northern hemisphere, in particular toward the south, through altering the Hadley circulation, resulting in the northward displacement of the tropical rain bands. Precipitation decreases over parts of the Amazon basin affecting productivity and increases over the Sahel and Sahara regions in Africa. We find that the response of climate to afforestation in mid-latitudes is determined by the amount of soil moisture available to plants with the greatest warming found in water-limited regions. Mid-latitude afforestation is found to have a small impact on modeled global temperatures and on global CO(2), but regional heating from the increase in forest cover is capable of driving unintended changes in circulation and precipitation. The ability of vegetation to affect remote circulation has implications for strategies for climate mitigation.

  20. Design and Test of a Nb3Sn Subscale Dipole Magnet for Training Studies

    International Nuclear Information System (INIS)

    Felice, Helene; Caspi, Shlomo; Dietderich, Daniel R.; Felice, Helene; Ferracin, Paolo; Gourlay, Steve A.; Hafalia, Aurelo R.; Lietzke, Alan F.; Mailfert, Alain; Sabbi, GainLuca; Vedrine, Pierre

    2007-01-01

    As part of a collaboration between CEA/Saclay and the Superconducting Magnet Group at LBNL, a subscale dipole structure has been developed to study training in Nb3Sn coils under variable pre-stress conditions. This design is derived from the LBNL Subscale Magnet and relies on the use of identical Nb 3 Sn racetrack coils. Whereas the original LBNL subscale magnet was in a dual bore 'common-coil' configuration, the new subscale dipole magnet (SD) is assembled as a single bore dipole made of two superposed racetrack coils. The dipole is supported by a new mechanical structure developed to withstand the horizontal and axial Lorentz forces and capable of applying variable vertical, horizontal and axial preload. The magnet was tested at LBNL as part of a series of training studies aiming at understanding of the relation between pre-stress and magnet performance. Particular attention is given to the coil ends where the magnetic field peaks and stress conditions are the least understood. After a description of SD design, assembly, cool-down and tests results are reported and compared with the computations of the OPERA3D and ANSYS magnetic and mechanical models

  1. Circulation in the Mediterranean Sea: evidences, debates and unanswered questions

    Directory of Open Access Journals (Sweden)

    Claude Millot

    2005-06-01

    Full Text Available The overall counterclockwise alongslope circulation of Atlantic Water (AW in the western basin of the Mediterranean Sea is now generally accepted. As the eastern basin displays similar general features, why is it generally assumed to function in a different way, and why is AW now said to circulate across the interior of the eastern basin? Relatively huge mesoscale anticyclonic eddies induced by the instability of the AW circulation in the south of the western basin have lifetimes up to several years. It is possible that they extend down to the sea bottom and play a major role in the distribution of all water masses. Why have apparently similar eddies generated in the eastern basin never received specific attention? Once formed, Mediterranean Waters (MWs must spread and circulate before outflowing. Why have simple dynamical arguments for understanding the circulation of AW, such as the Coriolis effect, rarely been considered for the circulation of MWs? In this paper we address these major aspects of water circulation in the Mediterranean Sea. In order to be as objective and convincing as possible, and to write a paper that can be understood by as broad a readership as possible, we have chosen to present only raw data sets that can be easily interpreted by the reader without any help from the author. Based on the evidence provided by these data sets, we specify the current debates and list what we think are the main unanswered questions.

  2. On the dynamics of droughts in northeast Brazil - Observations, theory and numerical experiments with a general circulation model

    Science.gov (United States)

    Moura, A. D.; Shukla, J.

    1981-01-01

    The establishment of a thermally direct local circulation which has its ascending branch at about 10 deg N and its descending branch over northeast Brazil and the adjoining oceanic region is proposed as a possible mechanism for the occurrence of severe droughts over this Brazilian region. The driving for this anomalous circulation is provided by enhanced moist convection due to the effect of warmer sea surface anomalies over the northern tropical Atlantic and cooling associated with colder sea surface temperature anomalies in the southern tropical Atlantic. A simple primitive equation model is used to calculate the frictionally-controlled and thermally-driven circulation due to a prescribed heating function in a resting atmosphere, and a series of numerical experiments are carried out to test the sensitivity of the Goddard Laboratory's model to prescribed sea surface temperature anomalies over the tropical Atlantic.

  3. Silent Circulation of Ross River Virus in French Polynesia

    Directory of Open Access Journals (Sweden)

    Maite Aubry

    2015-08-01

    Discussion: Our results support the existence of autochthonous RRV transmission and suggest that this pathogen has silently circulated in French Polynesia. These findings raise the question of possible undetected circulation of RRV in other Pacific Island Countries and Territories.

  4. Circulation induced by diffused aeration in a shallow lake

    African Journals Online (AJOL)

    2017-01-01

    Jan 1, 2017 ... Lastly, a simple returning flow model was proposed to describe the circulation flow patterns ... method to describe the circulation patterns induced by the bub- ... 160 holes of 1 mm, which was designed to promote high mix-.

  5. Forced circulation type steam generator simulation code: HT4

    International Nuclear Information System (INIS)

    Okamoto, Masaharu; Tadokoro, Yoshihiro

    1982-08-01

    The purpose of this code is a understanding of dynamic characteristics of the steam generator, which is a component of High-temperature Heat Transfer Components Test Unit. This unit is a number 4th test section of Helium Engineering Demonstration Loop (HENDEL). Features of this report are as follows, modeling of the steam generator, a basic relationship for the continuity equation, numerical analysis techniques of a non-linear simultaneous equation and computer graphics output techniques. Forced circulation type steam generator with strait tubes and horizontal cut baffles, applied in this code, have be designed at the Over All System Design of the VHTRex. The code is for use with JAERI's digital computer FACOM M200. About 1.5 sec required for each time step reiteration, then about 40 sec cpu time required for a standard problem. (author)

  6. Gas erosion of impeller housing in the operation of a high-temperature, high-pressure helium circulator

    International Nuclear Information System (INIS)

    Sanders, J.P.; Heestand, R.L.; Young, H.C.

    1988-01-01

    Three gas-bearing circulators are installed in series in a high-pressure, high-temperature loop to provide helium flow up to 0.47 m 3 /s at a total head of 78 kJ/kg. The design pressure is 10.7 MPa, and temperatures of 1000 deg. C can be obtained in the test section. The inlet temperature to the circulators is limited to 450 deg. C. The 200-kW motor for each circulator is enclosed in the pressure boundary, and the motor is cooled by circulating the gas within the cavity over a water-cooled coil. The full operating speed is 23,500 rpm. A full-flow filter, absolute for particulate above 10 μm, is installed upstream of the circulator to protect the gas bearing surfaces. The minimum clearances between these surfaces during operation are in the range of 15 to 30 μm. During a routine examination of the circulator, deep V-shaped grooves were found in the stationary surface of this cavity. At the same time, a very fine, dark particulate was observed in crevices of the housing. At first it was assumed that the grooves were formed by particulate erosion; however, examination of the grooves and discussions with persons experienced with large circulator operation changed this opinion. Erosion caused by particulate is characteristically rounded on the bottom and has a greater width to depth aspect than the V-shaped grooves, which were observed. Analysis of the particulate indicated that it was essentially the material of the housing that had undergone reactions with impurities in the circulating gas. It was subsequently concluded that the impeller housing had not been heat treated in a sufficiently oxidizing atmosphere after machining to form an adherent oxide coating. This suboxide coating was eroded by the shear forces in the gas. The exposed layer of metal was then further oxidized by the impurities in the gas, and these layers of oxide were successively eroded to produce the grooves. This erosion problem was eliminated by machining a ring of the same material, heat

  7. Hall Effect Gyrators and Circulators

    Science.gov (United States)

    Viola, Giovanni; DiVincenzo, David P.

    2014-04-01

    The electronic circulator and its close relative the gyrator are invaluable tools for noise management and signal routing in the current generation of low-temperature microwave systems for the implementation of new quantum technologies. The current implementation of these devices using the Faraday effect is satisfactory but requires a bulky structure whose physical dimension is close to the microwave wavelength employed. The Hall effect is an alternative nonreciprocal effect that can also be used to produce desired device functionality. We review earlier efforts to use an Ohmically contacted four-terminal Hall bar, explaining why this approach leads to unacceptably high device loss. We find that capacitive coupling to such a Hall conductor has much greater promise for achieving good circulator and gyrator functionality. We formulate a classical Ohm-Hall analysis for calculating the properties of such a device, and show how this classical theory simplifies remarkably in the limiting case of the Hall angle approaching 90°. In this limit, we find that either a four-terminal or a three-terminal capacitive device can give excellent circulator behavior, with device dimensions far smaller than the ac wavelength. An experiment is proposed to achieve GHz-band gyration in millimeter (and smaller) scale structures employing either semiconductor heterostructure or graphene Hall conductors. An inductively coupled scheme for realizing a Hall gyrator is also analyzed.

  8. Genetic determinants of circulating sphingolipid concentrations in European populations.

    Directory of Open Access Journals (Sweden)

    Andrew A Hicks

    2009-10-01

    Full Text Available Sphingolipids have essential roles as structural components of cell membranes and in cell signalling, and disruption of their metabolism causes several diseases, with diverse neurological, psychiatric, and metabolic consequences. Increasingly, variants within a few of the genes that encode enzymes involved in sphingolipid metabolism are being associated with complex disease phenotypes. Direct experimental evidence supports a role of specific sphingolipid species in several common complex chronic disease processes including atherosclerotic plaque formation, myocardial infarction (MI, cardiomyopathy, pancreatic beta-cell failure, insulin resistance, and type 2 diabetes mellitus. Therefore, sphingolipids represent novel and important intermediate phenotypes for genetic analysis, yet little is known about the major genetic variants that influence their circulating levels in the general population. We performed a genome-wide association study (GWAS between 318,237 single-nucleotide polymorphisms (SNPs and levels of circulating sphingomyelin (SM, dihydrosphingomyelin (Dih-SM, ceramide (Cer, and glucosylceramide (GluCer single lipid species (33 traits; and 43 matched metabolite ratios measured in 4,400 subjects from five diverse European populations. Associated variants (32 in five genomic regions were identified with genome-wide significant corrected p-values ranging down to 9.08x10(-66. The strongest associations were observed in or near 7 genes functionally involved in ceramide biosynthesis and trafficking: SPTLC3, LASS4, SGPP1, ATP10D, and FADS1-3. Variants in 3 loci (ATP10D, FADS3, and SPTLC3 associate with MI in a series of three German MI studies. An additional 70 variants across 23 candidate genes involved in sphingolipid-metabolizing pathways also demonstrate association (p = 10(-4 or less. Circulating concentrations of several key components in sphingolipid metabolism are thus under strong genetic control, and variants in these loci can be

  9. Computer Simulation of the Circulation Subsystem of a Library

    Science.gov (United States)

    Shaw, W. M., Jr.

    1975-01-01

    When circulation data are used as input parameters for a computer simulation of a library's circulation subsystem, the results of the simulation provide information on book availability and delays. The model may be used to simulate alternative loan policies. (Author/LS)

  10. Impact of interocean exchange on the Atlantic overturning circulation

    NARCIS (Netherlands)

    Weijer, W.

    2000-01-01

    The awareness that human activity could change climate has greatly raised public and scientific interest in climate. One issue of present-day climate research is the stability of the thermohaline circulation. This overturning circulation, popularly known as the `conveyor belt', redistributes

  11. Natural circulation cooling in a PWR geometry under accident-induced conditions

    International Nuclear Information System (INIS)

    Shimeck, D.J.; Johnsen, G.W.

    1983-01-01

    The characteristics and limits of natural circulation heat rejection over a wide range of conditions were experimentally investigated in a small-scale model of a pressurized water reactor. Conditions that were varied included primary and secondary coolant inventory, decay heat power, and primary noncondensable gas content. The results have defined three distinct modes of natural circulation, their limits and transition points, and the characteristic signatures accompanying natural circulation behavior. Particular emphasis is focused on the limits of natural circulation under severely degraded primary and secondary conditions

  12. Circulating tumor cells and circulating tumor DNA: What surgical oncologists need to know?

    Science.gov (United States)

    Cabel, L; Proudhon, C; Mariani, P; Tzanis, D; Beinse, G; Bieche, I; Pierga, J-Y; Bidard, F-C

    2017-05-01

    As a result of recent progress in detection techniques, circulating tumor DNA (ctDNA) and circulating tumor cells (CTC) can now be accurately detected in the blood of most cancer patients. While these new biomarkers can provide a better understanding of key biological mechanisms underlying cancer growth and dissemination, they also open up a wide range of possible clinical applications in medical oncology, radiation oncology and surgical oncology. In this review, we summarize the results obtained with ctDNA and CTC together with their potential future clinical applications in the field of surgical oncology, with particular focus on the perioperative setting of various types of cancer. These applications include, but are not limited to, cancer screening, early diagnosis, prognostic assessment, evaluation and management of preoperative systemic or local therapies, post-surgical detection of minimal residual disease and early detection of cancer relapse. Copyright © 2017 Elsevier Ltd, BASO ~ The Association for Cancer Surgery, and the European Society of Surgical Oncology. All rights reserved.

  13. TORE SUPRA 300 W - 1.75 K refrigerator report

    International Nuclear Information System (INIS)

    Gistau, G.M.; Bonneton, M.; Mart, J.W.

    1988-01-01

    The TORE SUPRA refrigerator is now installed and the acceptance tests have been completed. All equipment has performed above design levels. The liquid ring pumps and cold centrifugal compressors have run for more than 1000 hours. Commissioning and acceptance tests, including cooldown, variable heat load, unscheduled shutdown, power outage and automatic restart, and a 400-hour shakedown run, are described and evaluated

  14. The Dynamics of Hadley Circulation Variability and Change

    Science.gov (United States)

    Davis, Nicholas Alexander

    The Hadley circulation exerts a dominant control on the surface climate of earth's tropical belt. Its converging surface winds fuel the tropical rains, while subsidence in the subtropics dries and stabilizes the atmosphere, creating deserts on land and stratocumulus decks over the oceans. Because of the strong meridional gradients in temperature and precipitation in the subtropics, any shift in the Hadley circulation edge could project as major changes in surface climate. While climate model simulations predict an expansion of the Hadley cells in response to greenhouse gas forcings, the mechanisms remain elusive. An analysis of the climatology, variability, and response of the Hadley circulation to radiative forcings in climate models and reanalyses illuminates the broader landscape in which Hadley cell expansion is realized. The expansion is a fundamental response of the atmosphere to increasing greenhouse gas concentrations as it scales with other key climate system changes, including polar amplification, increasing static stability, stratospheric cooling, and increasing global-mean surface temperatures. Multiple measures of the Hadley circulation edge latitudes co-vary with the latitudes of the eddy-driven jets on all timescales, and both exhibit a robust poleward shift in response to forcings. Further, across models there is a robust coupling between the eddy-driving on the Hadley cells and their width. On the other hand, the subtropical jet and tropopause break latitudes, two common observational proxies for the tropical belt edges, lack a strong statistical relationship with the Hadley cell edges and have no coherent response to forcings. This undermines theories for the Hadley cell width predicated on angular momentum conservation and calls for a new framework for understanding Hadley cell expansion. A numerical framework is developed within an idealized general circulation model to isolate the mean flow and eddy responses of the global atmosphere to

  15. Direct weakening of tropical circulations from masked CO2 radiative forcing.

    Science.gov (United States)

    Merlis, Timothy M

    2015-10-27

    Climate models robustly simulate weakened mean circulations of the tropical atmosphere in direct response to increased carbon dioxide (CO2). The direct response to CO2, defined by the response to radiative forcing in the absence of changes in sea surface temperature, affects tropical precipitation and tropical cyclone genesis, and these changes have been tied to the weakening of the mean tropical circulation. The mechanism underlying this direct CO2-forced circulation change has not been elucidated. Here, I demonstrate that this circulation weakening results from spatial structure in CO2's radiative forcing. In regions of ascending circulation, such as the intertropical convergence zone, the CO2 radiative forcing is reduced, or "masked," by deep-convective clouds and high humidity; in subsiding regions, such as the subtropics, the CO2 radiative forcing is larger because the atmosphere is drier and deep-convective clouds are infrequent. The spatial structure of the radiative forcing reduces the need for the atmosphere to transport energy. This, in turn, weakens the mass overturning of the tropical circulation. The previously unidentified mechanism is demonstrated in a hierarchy of atmospheric general circulation model simulations with altered radiative transfer to suppress the cloud masking of the radiative forcing. The mechanism depends on the climatological distribution of clouds and humidity, rather than uncertain changes in these quantities. Masked radiative forcing thereby offers an explanation for the robustness of the direct circulation weakening under increased CO2.

  16. Electromagnetic circulation pump for corrosive gases

    International Nuclear Information System (INIS)

    Noe, P.; Delafosse, D.; Deletre, G.

    1965-01-01

    In order to transport very corrosive products (fluorinated compounds) we have been led to develop a totally metallic circulation pump capable of operating at above room temperatures and with a molecular vacuum. We have aimed at maximum simplicity both in its conception and in its operation. The tests showed that the compression ratios produced, although not high are interesting (1.5 at a pressure of 100 torr) (see curve I). The flow-rate range is very wide: about one hundred ccs/atm/min. to 3000 ccs/atm/min. (see curves IV, V, VI). The desorption of this pump presents no difficulty if both the aspiration and the reject sides are pumped together. A hole of 2 mm diameter drilled in the piston makes it possible to desorb the space between the two segments. The price of this pump is not high: 1300 F, with the electrical cabinet. (authors) [fr

  17. Assessment of the MARS Code Using the Two-Phase Natural Circulation Experiments at a Core Catcher Test Facility

    Directory of Open Access Journals (Sweden)

    Dong Hun Lee

    2017-01-01

    Full Text Available A core catcher has been developed to maintain the integrity of nuclear reactor containment from molten corium during a severe accident. It uses a two-phase natural circulation for cooling molten corium. Flow in a typical core catcher is unique because (i it has an inclined cooling channel with downwards-facing heating surface, of which flow processes are not fully exploited, (ii it is usually exposed to a low-pressure condition, where phase change causes dramatic changes in the flow, and (iii the effects of a multidimensional flow are very large in the upper part of the core catcher. These features make computational analysis more difficult. In this study, the MARS code is assessed using the two-phase natural circulation experiments that had been conducted at the CE-PECS facility to verify the cooling performance of a core catcher. The code is a system-scale thermal-hydraulic (TH code and has a multidimensional TH component. The facility was modeled by using both one- and three-dimensional components. Six experiments at the facility were selected to investigate the parametric effects of heat flux, pressure, and form loss. The results show that MARS can predict the two-phase flow at the facility reasonably well. However, some limitations are obviously revealed.

  18. The epistemological status of general circulation models

    Science.gov (United States)

    Loehle, Craig

    2018-03-01

    Forecasts of both likely anthropogenic effects on climate and consequent effects on nature and society are based on large, complex software tools called general circulation models (GCMs). Forecasts generated by GCMs have been used extensively in policy decisions related to climate change. However, the relation between underlying physical theories and results produced by GCMs is unclear. In the case of GCMs, many discretizations and approximations are made, and simulating Earth system processes is far from simple and currently leads to some results with unknown energy balance implications. Statistical testing of GCM forecasts for degree of agreement with data would facilitate assessment of fitness for use. If model results need to be put on an anomaly basis due to model bias, then both visual and quantitative measures of model fit depend strongly on the reference period used for normalization, making testing problematic. Epistemology is here applied to problems of statistical inference during testing, the relationship between the underlying physics and the models, the epistemic meaning of ensemble statistics, problems of spatial and temporal scale, the existence or not of an unforced null for climate fluctuations, the meaning of existing uncertainty estimates, and other issues. Rigorous reasoning entails carefully quantifying levels of uncertainty.

  19. Ocean circulation generated magnetic signals

    DEFF Research Database (Denmark)

    Manoj, C.; Kuvshinov, A.; Maus, S.

    2006-01-01

    Conducting ocean water, as it flows through the Earth's magnetic field, generates secondary electric and magnetic fields. An assessment of the ocean-generated magnetic fields and their detectability may be of importance for geomagnetism and oceanography. Motivated by the clear identification...... of ocean tidal signatures in the CHAMP magnetic field data we estimate the ocean magnetic signals of steady flow using a global 3-D EM numerical solution. The required velocity data are from the ECCO ocean circulation experiment and alternatively from the OCCAM model for higher resolution. We assume...... of the magnetic field, as compared to the ECCO simulation. Besides the expected signatures of the global circulation patterns, we find significant seasonal variability of ocean magnetic signals in the Indian and Western Pacific Oceans. Compared to seasonal variation, interannual variations produce weaker signals....

  20. Experimental studies in a single-phase parallel channel natural circulation system. Preliminary results

    International Nuclear Information System (INIS)

    Bodkha, Kapil; Pilkhwal, D.S.; Jana, S.S.; Vijayan, P.K.

    2016-01-01

    Natural circulation systems find extensive applications in industrial engineering systems. One of the applications is in nuclear reactor where the decay heat is removed by natural circulation of the fluid under off-normal conditions. The upcoming reactor designs make use of natural circulation in order to remove the heat from core under normal operating conditions also. These reactors employ multiple vertical fuel channels with provision of on-power refueling/defueling. Natural circulation systems are relatively simple, safe and reliable when compared to forced circulation systems. However, natural circulation systems are prone to encounter flow instabilities which are highly undesirable for various reasons. Presence of parallel channels under natural circulation makes the system more complicated. To examine the behavior of parallel channel system, studies were carried out for single-phase natural circulation flow in a multiple vertical channel system. The objective of the present work is to study the flow behavior of the parallel heated channel system under natural circulation for different operating conditions. Steady state and transient studies have been carried out in a parallel channel natural circulation system with three heated channels. The paper brings out the details of the system considered, different cases analyzed and preliminary results of studies carried out on a single-phase parallel channel system.