Sample records for circuit coordinates miz1

  1. Myc and Miz-1 have coordinate genomic functions including targeting Hox genes in human embryonic stem cells

    Varlakhanova Natalia


    Full Text Available Abstract Background A proposed role for Myc in maintaining mouse embryonic stem (ES cell pluripotency is transcriptional repression of key differentiation-promoting genes, but detail of the mechanism has remained an important open topic. Results To test the hypothesis that the zinc finger protein Miz-1 plays a central role, in the present work we conducted chromatin immunoprecipitation/microarray (ChIP-chip analysis of Myc and Miz-1 in human ES cells, finding homeobox (Hox genes as the most significant functional class of Miz-1 direct targets. Miz-1 differentiation-associated target genes specifically lack acetylated lysine 9 and trimethylated lysine 4 of histone H3 (AcH3K9 and H3K4me3 9 histone marks, consistent with a repressed transcriptional state. Almost 30% of Miz-1 targets are also bound by Myc and these cobound genes are mostly factors that promote differentiation including Hox genes. Knockdown of Myc increased expression of differentiation genes directly bound by Myc and Miz-1, while a subset of the same genes is downregulated by Miz-1 loss-of-function. Myc and Miz-1 proteins interact with each other and associate with several corepressor factors in ES cells, suggesting a mechanism of repression of differentiation genes. Conclusions Taken together our data indicate that Miz-1 and Myc maintain human ES cell pluripotency by coordinately suppressing differentiation genes, particularly Hox genes. These data also support a new model of how Myc and Miz-1 function on chromatin.

  2. Miz-1 activates gene expression via a novel consensus DNA binding motif.

    Bonnie L Barrilleaux

    Full Text Available The transcription factor Miz-1 can either activate or repress gene expression in concert with binding partners including the Myc oncoprotein. The genomic binding of Miz-1 includes both core promoters and more distal sites, but the preferred DNA binding motif of Miz-1 has been unclear. We used a high-throughput in vitro technique, Bind-n-Seq, to identify two Miz-1 consensus DNA binding motif sequences--ATCGGTAATC and ATCGAT (Mizm1 and Mizm2--bound by full-length Miz-1 and its zinc finger domain, respectively. We validated these sequences directly as high affinity Miz-1 binding motifs. Competition assays using mutant probes indicated that the binding affinity of Miz-1 for Mizm1 and Mizm2 is highly sequence-specific. Miz-1 strongly activates gene expression through the motifs in a Myc-independent manner. MEME-ChIP analysis of Miz-1 ChIP-seq data in two different cell types reveals a long motif with a central core sequence highly similar to the Mizm1 motif identified by Bind-n-Seq, validating the in vivo relevance of the findings. Miz-1 ChIP-seq peaks containing the long motif are predominantly located outside of proximal promoter regions, in contrast to peaks without the motif, which are highly concentrated within 1.5 kb of the nearest transcription start site. Overall, our results indicate that Miz-1 may be directed in vivo to the novel motif sequences we have identified, where it can recruit its specific binding partners to control gene expression and ultimately regulate cell fate.

  3. Structural and dynamical characterization of the Miz-1 zinc fingers 5-8 by solution-state NMR

    Bernard, David; Bedard, Mikaeel; Bilodeau, Josee; Lavigne, Pierre, E-mail: [Universite de Sherbrooke, Departement de Biochimie, Faculte de Medecine et des Sciences de la Sante, Institut de Pharmacologie de Sherbrooke (Canada)


    Myc-interacting zinc finger protein-1 (Miz-1) is a BTB/POZ transcription factor that activates the transcription of cytostatic genes, such as p15{sup INK4B} or p21{sup CIP1}. The C-terminus of Miz-1 contains 13 consensus C{sub 2}H{sub 2} zinc finger domains (ZF). ZFs 1-4 have been shown to interact with SMAD3/4, while the remaining ZFs are expected to bind the promoters of target genes. We have noted unusual features in ZF 5 and the linker between ZFs 5 and 6. Indeed, a glutamate is found instead of the conserved basic residue two positions before the second zinc-coordinating histidine on the ZF 5 helix, and the linker sequence is DTDKE in place of the classical TGEKP sequence. In a canonical {beta}{beta}{alpha} fold, such unusual primary structure elements should cause severe electrostatic repulsions. In this context, we have characterized the structure and the dynamics of a Miz-1 construct comprising ZFs 5-8 (Miz 5-8) by solution-state NMR. Whilst ZFs 5, 7 and 8 were shown to adopt the classical {beta}{beta}{alpha} fold for C{sub 2}H{sub 2} ZFs, the number of long-range NOEs was insufficient to define a classical fold for ZF 6. We show by using {sup 15}N-relaxation dispersion experiments that this lack of NOEs is due to the presence of extensive motions on the {mu}s-ms timescale. Since this negatively charged region would have to be located near the phosphodiester backbone in a DNA complex, we propose that in addition to promoting conformational searches, it could serve as a hinge region to keep ZFs 1-4 away from DNA.

  4. Repression of p15INK4b expression by Myc through association with Miz-1

    Staller, P; Peukert, K; Kiermaier, A;


    Deregulated expression of c-myc can induce cell proliferation in established cell lines and in primary mouse embryonic fibroblasts (MEFs), through a combination of both transcriptional activation and repression by Myc. Here we show that a Myc-associated transcription factor, Miz-1, arrests cells ...... p15INK4b messenger RNA in primary cells and are, as a consequence, deficient in immortalization....

  5. Mizunami Underground Research Laboratory project (rock mechanical investigations). MIZ-1 borehole investigations

    In order to establish the scientific and technical basis of geological disposal of high level radioactive waste, Japan Atomic Energy Agency (JAEA) is advancing the geo-scientific research at the Mizunami Underground Laboratory (MIU). In this project, the surface-based investigation phase (Phase I) was finished in fiscal year 2004. Rock mechanics investigations were conducted in Phase I using the MIZ-1 borehole in order to understand the rock mechanical conditions deep underground and to construct a rock mechanical model of the MIU construction site. This report describes the results of these investigations. A brief summary is shown as follows. 1) Determining the average rock physical and mechanical properties using core from Toki Granite are: - apparent specific gravity: 2.62; - unconfined compressive strength (U.C.S.): 173Mpa; - tangent modulus at 50% U.C.S: 51.8Gpa; - poisson's ratio: 0.265. These results are consistent with the results of similar investigations in the nearby Shobasama site. 2) Estimation of in situ stress by stress measurements using cores. Four different methods (AE, DRA, ASR, and DSCA) were applied to estimate the in situ stress state. However the results are very low confidence due to very small deformation during drilling, excepting DSCA. 3) Determining of in situ stress by hydraulic fracturing. The horizontal, maximum principal stress is oriented to NW-SE (using north magnetic pole). Above six hundred meters depth, the in situ stress state is reverse fault type (SH > Sh ≥ Sv overburden pressure ρgh as Sv). But below it, the in situ stress state changed to a wrench or normal fault type (SV ≥ SH > Sh). 4) Rock mechanical model. In consideration of the investigations and geological model, we proposed a rock mechanical model consisting of two in situ stress states and homogeneous, rock mechanical properties. (author)

  6. Insights into Strand Exchange in BTB Domain Dimers from the Crystal Structures of FAZF and Miz1

    Stogios, Peter J.; Cuesta-Seijo, Jose Antonio; Chen, Lu; Pomroy, Neil C.; Privé, Gilbert G. (Toronto); (OCI)


    The BTB domain is a widely distributed protein-protein interaction motif that is often found at the N-terminus of zinc finger transcription factors. Previous crystal structures of BTB domains have revealed tightly interwound homodimers, with the N-terminus from one chain forming a two-stranded anti-parallel {beta}-sheet with a strand from the other chain. We have solved the crystal structures of the BTB domains from Fanconi anemia zinc finger (FAZF) and Miz1 (Myc-interacting zinc finger 1) to resolutions of 2.0 {angstrom} and 2.6 {angstrom}, respectively. Unlike previous examples of BTB domain structures, the FAZF BTB domain is a nonswapped dimer, with each N-terminal {beta}-strand associated with its own chain. As a result, the dimerization interface in the FAZF BTB domain is about half as large as in the domain-swapped dimers. The Miz1 BTB domain resembles a typical swapped BTB dimer, although it has a shorter N-terminus that is not able to form the interchain sheet. Using cysteine cross-linking, we confirmed that the promyelocytic leukemia zinc finger (PLZF) BTB dimer is strand exchanged in solution, while the FAZF BTB dimer is not. A phylogenic tree of the BTB fold based on both sequence and structural features shows that the common ancestor of the BTB domain in BTB-ZF (bric a brac, tramtrack, broad-complex zinc finger) proteins was a domain-swapped dimer. The differences in the N-termini seen in the FAZF and Miz1 BTB domains appear to be more recent developments in the structural evolution of the domain.

  7. Intersegmental coordination of cockroach locomotion: adaptive control of centrally coupled pattern generator circuits

    Einat eFuchs


    Full Text Available Animals’ ability to demonstrate both stereotyped and adaptive locomotor behavior is largely dependent on the interplay between centrally-generated motor patterns and the sensory inputs that shape them. We utilized a combined experimental and theoretical approach to investigate the relative importance of CPG interconnections vs. intersegmental afferents in the cockroach: an animal that is renowned for rapid and stable locomotion. We simultaneously recorded coxal levator and depressor motor neurons (MN in the thoracic ganglia of Periplaneta americana, while sensory feedback was completely blocked or allowed only from one intact stepping leg. In the absence of sensory feedback, we observed a coordination pattern with consistent phase relationship that shares similarities with a double tripod gait, suggesting central, feedforward control. This intersegmental coordination pattern was then reinforced in the presence of sensory feedback from a single stepping leg. Specifically, we report on transient stabilization of phase differences between activity recorded in the middle and hind thoracic MN following individual front-leg steps, suggesting a role for afferent phasic information in the coordination of motor circuits at the different hemiganglia. Data were further analyzed using stochastic models of coupled oscillators and maximum likelihood techniques to estimate underlying physiological parameters, such as uncoupled endogenous frequencies of hemisegmental oscillators and coupling strengths and directions. We found that descending ipsilateral coupling is stronger than ascending coupling, while left-right coupling in both the meso- and meta-thoracic ganglia appear to be symmetrical. We discuss our results in comparison with recent findings in stick insects that share similar neural and body architectures, and argue that the two species may exemplify opposite extremes of a fast-slow locomotion continuum, mediated through different intersegmental

  8. Insulation co-ordination aspects for power stations with generator circuit-breakers

    The generator circuit-breaker (gen. c.b.) located between the generator and the step-up transformer, is now being applied world-wide. It has become a recognized electrical component of power stations which is largely due to economical advantages and increased power station availability. Technical protection considerations for power stations have always been the reason for discussion and the object of improvement. With the use of a gen. c.b., some points of view need to be considered anew. Not only the protection system in case of fault conditions will be influenced, but also the insulation co-ordination philosophy. Below the results of some calculations concerning expected overvoltages are presented. These calculations are based on a transformer rated 264/15.5kV, 220 MVA. But the results are transferable to other power plants. Some measurements carried out on a transformer of the same rating complement the calculations. The findings may contribute to an improvement in insulation co-ordination and protection of the electrical system generator--step-up transformer

  9. Development of the specialized integrated circuit for signal readout from micro-strip structures of a coordinate detectors

    The paper presents current status of development of a specialized 64-channel integrated circuit (IC, ASIC) for front-end electronics of coordinate detectors in the Budker INP. The ASIC is produced using 180 nm process. During the recording phase the IC allows integration of short current pulses from strips of a coordinate sensor, and storing of up to 100 corresponding charge values in the analogue memory with minimum time interval of 100 ns. Maximum input charge is equal to 2×106 electrons, equivalent noise charge is ∼2.7×103 electrons. Conversion of the data, stored in the analogue memory, to digital form is performed by an external ADC during the readout through an analogue multiplexer

  10. Computerized procedure for protection coordination in distribution primary circuits; Procedimiento computarizado para coordinacion de protecciones en circuitos primarios de distribucion

    Carrillo, Victor M.; Velazquez Sanchez, Raul [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)


    Nowadays, the method employed to study the protection coordination are based in the hand outlining of curves time- current and in the visual comparison in log sheets. Due to the large amount of distribution circuits, the engineer makes a considerable effort to perform this type of studies, which besides are routinist and time consuming. In this article a program for the computer aided design for the protection coordination in primary distribution circuits is presented. Such a program -carried out in the Transmission and Distribution Department of the Power Systems Division of the Instituto de Investigaciones Electricas (IIE)- substitutes in an efficient manner, the manual procedures that are performed in the protection coordination studies. The coordination principles, suggested by the equipment manufacturers, were respected, trying, at the same time, to keep the procedures of the Comision Federal de Electricidad personnel (CFE) emerged from the field experience. The algorithm basically consists of an iterative process in the selection of the adjustments taking as a reference the of three-phase short- circuit and of phase to ground, values, as well as the operating times. [Espanol] Actualmente, los metodos que se emplean para estudiar la coordinacion de protecciones se basan en el trazado manual de curvas de tiempo-corriente y en la comparacion visual sobre hojas logaritmicas. Debido a la gran cantidad de circuitos de distribucion, el ingeniero hace un esfuerzo considerable para realizar este tipo de estudios, los que ademas, son rutinarios y tardados. En este articulo, se presenta un programa para el diseno asistido por computadora del proceso de coordinacion de protecciones en circuitos primarios de distribucion. Dicho programa -realizado en el Departamento de Transmision y Distribucion, de la Division de Sistemas de Potencia, del Instituto de Investigaciones Electricas (IIE)- sustituye de manera eficaz los procedimientos manuales que se efectuan en los estudios

  11. Circuit theory

    This book is divided into fourteen chapters, which deals with circuit theory of basis, sinusoidal alternating current on cycle and frequency, basics current circuit about R.L, C circuit and resonant circuit, current power, general linear circuit, inductive coupling circuit and vector locus on an alternating current bridge and mutual inductance and coupling coefficient, multiphase alternating current and method of symmetrical coordinates, non-sinusoidal alternating current, two terminal network, four terminal network, transient of circuits, distributed line circuit constant, frequency characteristic and a filter and Laplace transformation.

  12. A new wave concept iterative method in cylindrical coordinates for modeling of circular planar circuits

    The purpose of this paper is the formulation of a Wave Concept Iterative Process (WCIP) for the analysis of the microwave planar circuits printed between two dielectric mediums in a cylindrical metallic box. This method is based on the transverse wave formulation. It also uses the Hankel Transform to express the integral relation in a spectral domain. An example of annular ring and circular patch loaded by annular ring has been studied and the obtained results validate the new approach. The good agreement between the simulation results and the experimental published data justifies the design procedure and validates the present analysis approach.

  13. Circuit design of VLSI for microelectronic coordinate-sensitive detector for material element analysis

    Sidorenko V. P.


    Full Text Available There has been designed, manufactured and tested a VLSI providing as a part of the microelectronic coordinate-sensitive detector the simultaneous elemental analysis of all the principles of the substance. VLSI ensures the amplifier-converter response on receiving of 1,6.10–13 С negative charge to its input. Response speed of the microcircuit is at least 3 MHz in the counting mode and more than 4 MHz in the counter information read-out mode. The power consumption of the microcircuit is no more than 7 mA.

  14. Coordinated reset stimulation in a large-scale model of the STN-GPe circuit

    Christian Hauptmann


    Full Text Available Synchronization of populations of neurons is a hallmark of several brain diseases. Coordinated reset (CR stimulation is a model-based stimulation technique which specifically counteracts abnormal synchrony by desynchronization. Electrical CR stimulation, e.g. for the treatment of Parkinson’s disease (PD, is administered via depth electrodes. In order to get a deeper understanding of this technique, we extended the top-down approach of previous studies and constructed a large-scale computational model of the respective brain areas. Furthermore, we took into account the spatial anatomical properties of the simulated brain structures and incor- porated a detailed numerical representation of 2·104 simulated neurons. We simulated the subthalamic nucleus (STN and the globus pallidus externus (GPe. Connections within the STN were governed by spike-timing dependent plasticity (STDP. In this way, we modeled the physiological and pathological activity of the considered brain structures. In particular, we investigated how plasticity could be exploited and how the model could be shifted from strongly synchronized (pathological activity to strongly desynchronized (healthy activity of the neuronal populations via CR stimulation of the STN neurons. Furthermore, we investigated the impact of specific stimulation parameters especially the electrode position on the stimulation outcome. Our model provides a step forward towards a biophysically realistic model of the brain areas relevant to the emergence of pathological neuronal activity in PD. Furthermore, our model constitutes a test bench for the optimization of both stimulation parameters and novel electrode geometries for efficient CR stimulation.

  15. A cholinergic-regulated circuit coordinates the maintenance and bi-stable states of a sensory-motor behavior during Caenorhabditis elegans male copulation.

    Yishi Liu


    Full Text Available Penetration of a male copulatory organ into a suitable mate is a conserved and necessary behavioral step for most terrestrial matings; however, the detailed molecular and cellular mechanisms for this distinct social interaction have not been elucidated in any animal. During mating, the Caenorhabditis elegans male cloaca is maintained over the hermaphrodite's vulva as he attempts to insert his copulatory spicules. Rhythmic spicule thrusts cease when insertion is sensed. Circuit components consisting of sensory/motor neurons and sex muscles for these steps have been previously identified, but it was unclear how their outputs are integrated to generate a coordinated behavior pattern. Here, we show that cholinergic signaling between the cloacal sensory/motor neurons and the posterior sex muscles sustains genital contact between the sexes. Simultaneously, via gap junctions, signaling from these muscles is transmitted to the spicule muscles, thus coupling repeated spicule thrusts with vulval contact. To transit from rhythmic to sustained muscle contraction during penetration, the SPC sensory-motor neurons integrate the signal of spicule's position in the vulva with inputs from the hook and cloacal sensilla. The UNC-103 K(+ channel maintains a high excitability threshold in the circuit, so that sustained spicule muscle contraction is not stimulated by fewer inputs. We demonstrate that coordination of sensory inputs and motor outputs used to initiate, maintain, self-monitor, and complete an innate behavior is accomplished via the coupling of a few circuit components.

  16. Measuring circuits

    Graf, Rudolf F


    This series of circuits provides designers with a quick source for measuring circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listings

  17. The neuronal circuit between nociceptin/orphanin FQ and hypocretins/orexins coordinately modulates stress-induced analgesia and anxiety-related behavior.

    Xie, Xinmin Simon


    The neuropeptide nociceptin/orphanin FQ (N/OFQ), acting on its receptors (NOP), modulates a variety of biological functions and neurobehavior including nociception, stress responses, water and food-intake, locomotor activity, and spatial attention. N/OFQ is conventionally regarded as an "antiopiate" peptide in the brain because central administration of N/OFQ attenuates stress-induced analgesia (SIA) and produces anxiolytic effects. However, naloxone-irreversible SIA and anxiolytic action are unlikely to be mediated by the opiate system. Both N/OFQ and NOP receptors are expressed most abundantly in the hypothalamus, where two other neuropeptides, the hypocretins/orexins (Hcrts), are exclusively synthesized in the lateral hypothalamic area. N/OFQ and Hcrt regulate most cellular physiological responses in opposite directions (e.g., ion channel modulation and second messenger coupling), and produce differential modulations for almost all neurobehavior assessed, including sleep/wake, locomotion, and rewarding behaviors. This chapter focuses on recent studies that provide evidence at a neuroanatomical level showing that a local neuronal circuit linking N/OFQ to Hcrt neurons exists. Functionally, N/OFQ depresses Hcrt neuronal activity at the cellular level, and modulates stress responses, especially SIA and anxiety-related behavior in the whole organism. N/OFQ exerts its attenuation of SIA and anxiolytic action on fear-induced anxiety through direct modulation of Hcrt neuronal activity. The information obtained from these studies has provided insights into how interaction between the Hcrt and N/OFQ systems positively and negatively modulates the complex and integrated stress responses. PMID:25677777

  18. Transcriptional regulation of Wnt inhibitory factor-1 by Miz-1/c-Myc

    Licchesi, JDF; Van Neste, L; Tiwari, VK; Cope, L; Lin, X.; Baylin, SB; Herman, JG


    The Wnt signaling pathway is capable of self-regulation through positive and negative feedback mechanisms. For example, the oncoprotein c-Myc, which is upregulated by Wnt signaling activity, participates in a positive feedback loop of canonical Wnt signaling through repression of Wnt antagonists DKK1 and SFRP1. In this study, we investigated the mechanism of Wnt inhibitory factor-1 (WIF-1) silencing. Mapping of CpG island methylation of the WIF-1 promoter reveals regional methylation (–295 to...

  19. Controllable circuit


    A switch-mode power circuit comprises a controllable element and a control unit. The controllable element is configured to control a current in response to a control signal supplied to the controllable element. The control unit is connected to the controllable element and provides the control...

  20. Discharge quenching circuit for counters

    A circuit for quenching discharges in gas-discharge detectors with working voltage of 3-5 kV based on transistors operating in the avalanche mode is described. The quenching circuit consists of a coordinating emitter follower, amplifier-shaper for avalanche key cascade control which changes potential on the counter electrodes and a shaper of discharge quenching duration. The emitter follower is assembled according to a widely used flowsheet with two transistors. The circuit permits to obtain a rectangular quenching pulse with front of 100 ns and an amplitude of up to 3.2 kV at duration of 500 μm-8 ms. Application of the quenching circuit described permits to obtain countering characteristics with the slope less than or equal to 0.02%/V and plateau extent greater than or equal to 300 V

  1. EDA circuit simulation

    EDA technique is used for circuit simulation. The circuit simulation and the analysis are made for a gate circuit one-shot multivibrator. The result shows: EDA circuit simulation is very useful technique

  2. Layout to circuit extraction for three-dimensional thermal-electrical circuit simulation of device structures

    Krabbenborg, B.H.; Bosma, A.; Graaff, de, G.C.; Mouthaan, A.J.


    In this paper, a method is proposed for extraction of coupled networks from layout information for simulation of electrothermal device behavior. The networks represent a three-dimensional (3-D) device structure with circuit elements. The electrical and thermal characteristics of this circuit representation are calculated with a circuit simulator. Spatial potential distributions, current flows, and temperature distributions in the device structure are calculated on the spatial coordinates. Thi...

  3. Analog and VLSI circuits

    Chen, Wai-Kai


    Featuring hundreds of illustrations and references, this book provides the information on analog and VLSI circuits. It focuses on analog integrated circuits, presenting the knowledge on monolithic device models, analog circuit cells, high performance analog circuits, RF communication circuits, and PLL circuits.

  4. Circuits courts

    Dubuisson-Quellier, Sophie


    Si la notion de circuit court est aujourd’hui largement reprise par les médias comme un phénomène assez typique de la fin du 20ème siècle, il convient de considérer que la vente directe est aussi ancienne que l’agriculture elle-même. Au tournant des années 2000, elle est surtout devenu un moyen, pour ceux qui la promeuvent de souligner que les distances tant géographiques qu’organisationnelles entre ceux qui produisent et ceux qui consomment sont devenus trop longues et doivent être raccourci...


    Strong, G.H.; Faught, M.L.


    A device for safety rod counting in a nuclear reactor is described. A Wheatstone bridge circuit is adapted to prevent de-energizing the hopper coils of a ball backup system if safety rods, sufficient in total control effect, properly enter the reactor core to effect shut down. A plurality of resistances form one arm of the bridge, each resistance being associated with a particular safety rod and weighted in value according to the control effect of the particular safety rod. Switching means are used to switch each of the resistances in and out of the bridge circuit responsive to the presence of a particular safety rod in its effective position in the reactor core and responsive to the attainment of a predetermined velocity by a particular safety rod enroute to its effective position. The bridge is unbalanced in one direction during normal reactor operation prior to the generation of a scram signal and the switching means and resistances are adapted to unbalance the bridge in the opposite direction if the safety rods produce a predetermined amount of control effect in response to the scram signal. The bridge unbalance reversal is then utilized to prevent the actuation of the ball backup system, or, conversely, a failure of the safety rods to produce the predetermined effect produces no unbalance reversal and the ball backup system is actuated. (AEC)

  6. Short- circuit tests of circuit breakers

    Chorovský, P.


    This paper deals with short-circuit tests of low voltage electrical devices. In the first part of this paper, there are described basic types of short- circuit tests and their principles. Direct and indirect (synthetic) tests with more details are described in the second part. Each test and principles are explained separately. Oscilogram is obtained from short-circuit tests of circuit breakers at laboratory. The aim of this research work is to propose a test circuit for performing indirect test.

  7. Collective of mechatronics circuit

    This book is composed of three parts, which deals with mechatronics system about sensor, circuit and motor. The contents of the first part are photo sensor of collector for output, locating detection circuit with photo interrupts, photo sensor circuit with CdS cell and lamp, interface circuit with logic and LED and temperature sensor circuit. The second part deals with oscillation circuit with crystal, C-R oscillation circuit, F-V converter, timer circuit, stability power circuit, DC amp and DC-DC converter. The last part is comprised of bridge server circuit, deformation bridge server, controlling circuit of DC motor, controlling circuit with IC for PLL and driver circuit of stepping motor and driver circuit of Brushless.

  8. Analog circuit design designing dynamic circuit response

    Feucht, Dennis


    This second volume, Designing Dynamic Circuit Response builds upon the first volume Designing Amplifier Circuits by extending coverage to include reactances and their time- and frequency-related behavioral consequences.

  9. Photomultiplier blanking circuit

    Mcclenahan, J. O.


    Circuit for protecting photomultiplier equipment from current surges which occur when exposed to brilliant illumination is discussed. Components of circuit and details of operation are provided. Circuit diagram to show action of blanking pulse on zener diode is included.

  10. Analog circuit design designing waveform processing circuits

    Feucht, Dennis


    The fourth volume in the set Designing Waveform-Processing Circuits builds on the previous 3 volumes and presents a variety of analog non-amplifier circuits, including voltage references, current sources, filters, hysteresis switches and oscilloscope trigger and sweep circuitry, function generation, absolute-value circuits, and peak detectors.

  11. Practically Coordinating

    Durfee, Edmund H.


    To coordinate, intelligent agents might need to know something about themselves, about each other, about how others view themselves and others, about how others think others view themselves and others, and so on. Taken to an extreme, the amount of knowledge an agent might possess to coordinate its interactions with others might outstrip the agent's limited reasoning capacity (its available time, memory, and so on). Much of the work in studying and building multiagent systems has thus been dev...

  12. Utility design of electronic circuit

    This is comprised of eleven chapters about electronic circuit design and utility circuit for electronics, which includes the point of design on electronic circuit like logical circuit, sensor circuit and power circuit, acoustic system, image system, communication system like FSK demodulation circuit, measurement and control system, appliance, operating amplifier, conversion device, counter and timer, sensor circuit, motor control such as DC motor control circuit and stepping motor drive circuit and power device like electric current control circuit.

  13. Circuit analysis for dummies

    Santiago, John


    Circuits overloaded from electric circuit analysis? Many universities require that students pursuing a degree in electrical or computer engineering take an Electric Circuit Analysis course to determine who will ""make the cut"" and continue in the degree program. Circuit Analysis For Dummies will help these students to better understand electric circuit analysis by presenting the information in an effective and straightforward manner. Circuit Analysis For Dummies gives you clear-cut information about the topics covered in an electric circuit analysis courses to help

  14. Solid-state circuits

    Pridham, G J


    Solid-State Circuits provides an introduction to the theory and practice underlying solid-state circuits, laying particular emphasis on field effect transistors and integrated circuits. Topics range from construction and characteristics of semiconductor devices to rectification and power supplies, low-frequency amplifiers, sine- and square-wave oscillators, and high-frequency effects and circuits. Black-box equivalent circuits of bipolar transistors, physical equivalent circuits of bipolar transistors, and equivalent circuits of field effect transistors are also covered. This volume is divided

  15. Modelling coordination in biological systems

    Clarke, David; Oliveira Costa, de, David; Arbab, Farhad


    We present an application of the Reo coordination paradigm to provide a compositional formal model for describing and reasoning about the behaviour of biological systems, such as regulatory gene networks. Reo governs the interaction and flow of data between components by allowing the construction of connector circuits which have a precise formal semantics. When applied to systems biology, the result is a graphical model, which is comprehensible, mathematically precise, and flexible


    A. Ball


    1 Operational experience 2011 1.1 Overview Starting on a positive note, it is encouraging that, for the period of this report, the operation of CMS and its entire infrastructure at Point 5 was remarkably stable and efficient. No luminosity was lost due to failures of common systems or infrastructure. The major faults were two failures of rack ventilation turbines, a leak in a water pump in the endcap circuit and the first fast dump of the magnet since underground commissioning. As the rack ventilation units have two turbines, these single turbine failures were tolerated until the next possible access. The water pump survived until the end of the fill after which the circuit was switched to a reserve pump (which in principle is also possible “on the fly”). A faulty position controller of a cryo-valve serving the cryo-power leads caused a spontaneous closure of the valve leading to the fast dump of the magnet. In this case, CMS was lucky once again, since the incident happened on the first ...


    A. Ball

    Overview From a technical perspective, CMS has been in “beam operation” state since 6th November. The detector is fully closed with all components operational and the magnetic field is normally at the nominal 3.8T. The UXC cavern is normally closed with the radiation veto set. Access to UXC is now only possible during downtimes of LHC. Such accesses must be carefully planned, documented and carried out in agreement with CMS Technical Coordination, Experimental Area Management, LHC programme coordination and the CCC. Material flow in and out of UXC is now strictly controlled. Access to USC remains possible at any time, although, for safety reasons, it is necessary to register with the shift crew in the control room before going down.It is obligatory for all material leaving UXC to pass through the underground buffer zone for RP scanning, database entry and appropriate labeling for traceability. Technical coordination (notably Stephane Bally and Christoph Schaefer), the shift crew and run ...

  18. Electronic devices and circuits

    Pridham, Gordon John


    Electronic Devices and Circuits, Volume 3 provides a comprehensive account on electronic devices and circuits and includes introductory network theory and physics. The physics of semiconductor devices is described, along with field effect transistors, small-signal equivalent circuits of bipolar transistors, and integrated circuits. Linear and non-linear circuits as well as logic circuits are also considered. This volume is comprised of 12 chapters and begins with an analysis of the use of Laplace transforms for analysis of filter networks, followed by a discussion on the physical properties of

  19. The circuit designer's companion

    Williams, Tim


    The Circuit Designer's Companion covers the theoretical aspects and practices in analogue and digital circuit design. Electronic circuit design involves designing a circuit that will fulfill its specified function and designing the same circuit so that every production model of it will fulfill its specified function, and no other undesired and unspecified function.This book is composed of nine chapters and starts with a review of the concept of grounding, wiring, and printed circuits. The subsequent chapters deal with the passive and active components of circuitry design. These topics are foll

  20. Intuitive analog circuit design

    Thompson, Marc


    Intuitive Analog Circuit Design outlines ways of thinking about analog circuits and systems that let you develop a feel for what a good, working analog circuit design should be. This book reflects author Marc Thompson's 30 years of experience designing analog and power electronics circuits and teaching graduate-level analog circuit design, and is the ideal reference for anyone who needs a straightforward introduction to the subject. In this book, Dr. Thompson describes intuitive and ""back-of-the-envelope"" techniques for designing and analyzing analog circuits, including transistor amplifi

  1. Density Matrix for Mesoscopic Distributed Parameter Circuits

    JI Ying-Hua; WANG Qi; LUO Hai-Mei; LEI Min-Sheng


    Under the Born-von-Karmann periodic boundary condition, we propose a quantization scheme for nondissipative distributed parameter circuits (i.e. a uniform periodic transmission line). We find the unitary operator for diagonalizing the Hamiltonian of the uniform periodic transmission line. The unitary operator is expressed in a coordinate representation that brings convenience to deriving the density matrix p(q, q',β). The quantum fluctuations of charge and current at a definite temperature have been studied. It is shown that quantum fluctuations of distributed parameter circuits, which also have distributed properties, are related to both the circuit parameters and the positions and the mode of signals and temperature T. The higher the temperature is, the stronger quantum noise the circuit exhibits.

  2. Linear integrated circuits

    Young, T.

    This book is intended to be used as a textbook in a one-semester course at a variety of levels. Because of self-study features incorporated, it may also be used by practicing electronic engineers as a formal and thorough introduction to the subject. The distinction between linear and digital integrated circuits is discussed, taking into account digital and linear signal characteristics, linear and digital integrated circuit characteristics, the definitions for linear and digital circuits, applications of digital and linear integrated circuits, aspects of fabrication, packaging, and classification and numbering. Operational amplifiers are considered along with linear integrated circuit (LIC) power requirements and power supplies, voltage and current regulators, linear amplifiers, linear integrated circuit oscillators, wave-shaping circuits, active filters, DA and AD converters, demodulators, comparators, instrument amplifiers, current difference amplifiers, analog circuits and devices, and aspects of troubleshooting.

  3. Electrical Circuits and Water Analogies

    Smith, Frederick A.; Wilson, Jerry D.


    Briefly describes water analogies for electrical circuits and presents plans for the construction of apparatus to demonstrate these analogies. Demonstrations include series circuits, parallel circuits, and capacitors. (GS)

  4. Circuits on Cylinders

    Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro; Vinay, V


    We consider the computational power of constant width polynomial size cylindrical circuits and nondeterministic branching programs. We show that every function computed by a Pi2 o MOD o AC0 circuit can also be computed by a constant width polynomial size cylindrical nondeterministic branching...... program (or cylindrical circuit) and that every function computed by a constant width polynomial size cylindrical circuit belongs to ACC0....

  5. Electric circuits essentials

    REA, Editors of


    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Electric Circuits I includes units, notation, resistive circuits, experimental laws, transient circuits, network theorems, techniques of circuit analysis, sinusoidal analysis, polyph

  6. Coordinated unbundling

    Timmermans, Bram; Zabala-Iturriagagoitia, Jon Mikel


    not focused on the role this policy instrument can play in the promotion of (knowledge-intensive) entrepreneurship. This paper investigates this link in more detail and introduces the concept of coordinated unbundling as a strategy that can facilitate this purpose. We also present a framework on how......Public procurement for innovation is a matter of using public demand to trigger innovation. Empirical studies have demonstrated that demand-based policy instruments can be considered to be a powerful tool in stimulating innovative processes among existing firms; however, the existing literature has...

  7. Load testing circuit


    A load testing circuit a circuit tests the load impedance of a load connected to an amplifier. The load impedance includes a first terminal and a second terminal, the load testing circuit comprising a signal generator providing a test signal of a defined bandwidth to the first terminal of the load...

  8. Piezoelectric drive circuit

    Treu, Jr., Charles A.


    A piezoelectric motor drive circuit is provided which utilizes the piezoelectric elements as oscillators and a Meacham half-bridge approach to develop feedback from the motor ground circuit to produce a signal to drive amplifiers to power the motor. The circuit automatically compensates for shifts in harmonic frequency of the piezoelectric elements due to pressure and temperature changes.

  9. Signal sampling circuit

    Louwsma, Simon Minze; Vertregt, Maarten


    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte

  10. Signal sampling circuit

    Louwsma, Simon Minze; Vertregt, Maarten


    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converte


    A. Ball


    Operational Experience At the end of the first full-year running period of LHC, CMS is established as a reliable, robust and mature experiment. In particular common systems and infrastructure faults accounted for <0.6 % CMS downtime during LHC pp physics. Technical operation throughout the entire year was rather smooth, the main faults requiring UXC access being sub-detector power systems and rack-cooling turbines. All such problems were corrected during scheduled technical stops, in the shadow of tunnel access needed by the LHC, or in negotiated accesses or access extensions. Nevertheless, the number of necessary accesses to the UXC averaged more than one per week and the technical stops were inevitably packed with work packages, typically 30 being executed within a few days, placing a high load on the coordination and area management teams. It is an appropriate moment for CMS Technical Coordination to thank all those in many CERN departments and in the Collaboration, who were involved in CMS techni...

  12. Optimal Coordination of Automatic Line Switches for Distribution Systems

    Jyh-Cherng Gu; Ming-Ta Yang


    For the Taiwan Power Company (Taipower), the margins of coordination times between the lateral circuit breakers (LCB) of underground 4-way automatic line switches and the protection equipment of high voltage customers are often too small. This could lead to sympathy tripping by the feeder circuit breaker (FCB) of the distribution feeder and create difficulties in protection coordination between upstream and downstream protection equipment, identification of faults, and restoration operations....

  13. Practical microwave circuits

    Maas, Stephen A


    This book differentiates itself by presenting microwave and RF technology from a circuit design viewpoint, rather than a set of electromagnetic problems. The emphasis is on gaining a practical understanding of often overlooked but vital physical processes.This resource provides microwave circuit engineers with analytical techniques for understanding and designing high-frequency circuits almost entirely from a circuit point of view. Electromagnetic concepts are not avoided, but they are employed only as necessary to support circuit-theoretical ones or to describe phenomena such as radiation and

  14. Feedback in analog circuits

    Ochoa, Agustin


    This book describes a consistent and direct methodology to the analysis and design of analog circuits with particular application to circuits containing feedback. The analysis and design of circuits containing feedback is generally presented by either following a series of examples where each circuit is simplified through the use of insight or experience (someone else’s), or a complete nodal-matrix analysis generating lots of algebra. Neither of these approaches leads to gaining insight into the design process easily. The author develops a systematic approach to circuit analysis, the Driving Point Impedance and Signal Flow Graphs (DPI/SFG) method that does not require a-priori insight to the circuit being considered and results in factored analysis supporting the design function. This approach enables designers to account fully for loading and the bi-directional nature of elements both in the feedback path and in the amplifier itself, properties many times assumed negligible and ignored. Feedback circuits a...

  15. Equivalent Circuit Modeling of Hysteresis Motors

    Nitao, J J; Scharlemann, E T; Kirkendall, B A


    We performed a literature review and found that many equivalent circuit models of hysteresis motors in use today are incorrect. The model by Miyairi and Kataoka (1965) is the correct one. We extended the model by transforming it to quadrature coordinates, amenable to circuit or digital simulation. 'Hunting' is an oscillatory phenomenon often observed in hysteresis motors. While several works have attempted to model the phenomenon with some partial success, we present a new complete model that predicts hunting from first principles.

  16. Coordination Capacity

    Cuff, Paul; Cover, Thomas


    We develop elements of a theory of cooperation and coordination in networks. Rather than considering a communication network as a means of distributing information, or of reconstructing random processes at remote nodes, we ask what dependence can be established among the nodes given the communication constraints. Specifically, in a network with communication rates between the nodes, we ask what is the set of all achievable joint distributions p(x1, ..., xm) of actions at the nodes on the network. Several networks are solved, including arbitrarily large cascade networks. Distributed cooperation can be the solution to many problems such as distributed games, distributed control, and establishing mutual information bounds on the influence of one part of a physical system on another.


    W. Zeuner and A. Ball


    LS1 overview In general the LS1 project is progressing well and the workflow is holding to the original December 2012 schedule within two–three weeks, acceptable at this stage, with about 400 work packages already completed. In particular, the critical logistic configuration planned for summer 2013, giving simultaneous access to both ends of the vacuum tank interior and the exterior, plus the YE1 nose zones, was achieved significantly before the deadline at the end of June. The safety awareness of all those working on the CMS detector is currently very satisfactory and the general atmosphere at Point 5 is good, despite many concurrent activities and inevitable last minute adjustments to the day-to-day planning. LS1 services infrastructure work The “once-in-ten years” maintenance of the water-cooling infrastructure has been completed successfully by EN department teams; underground circuits were available again from 12 June. In the shadow of this activity, consolidation and m...

  18. Electrician's Helper. Coordinator's Guide. Individualized Study Guide.

    Stotts, Danny

    This guide is designed to assist teacher-coordinators supervising cooperative education programs for electrician's helpers in helping students complete a set of individualized, competency-based training activities dealing with electricity and electrical circuits and equipment. The first part of the manual includes a progress chart, a study guide…


    C. Delaere


    Since the LHC ceased operations in February, a lot has been going on at Point 5, and Run Coordination continues to monitor closely the advance of maintenance and upgrade activities. In the last months, the Pixel detector was extracted and is now stored in the pixel lab in SX5; the beam pipe has been removed and ME1/1 removal has started. We regained access to the vactank and some work on the RBX of HB has started. Since mid-June, electricity and cooling are back in S1 and S2, allowing us to turn equipment back on, at least during the day. 24/7 shifts are not foreseen in the next weeks, and safety tours are mandatory to keep equipment on overnight, but re-commissioning activities are slowly being resumed. Given the (slight) delays accumulated in LS1, it was decided to merge the two global runs initially foreseen into a single exercise during the week of 4 November 2013. The aim of the global run is to check that we can run (parts of) CMS after several months switched off, with the new VME PCs installed, th...


    Christophe Delaere


    The focus of Run Coordination during LS1 is to monitor closely the advance of maintenance and upgrade activities, to smooth interactions between subsystems and to ensure that all are ready in time to resume operations in 2015 with a fully calibrated and understood detector. After electricity and cooling were restored to all equipment, at about the time of the last CMS week, recommissioning activities were resumed for all subsystems. On 7 October, DCS shifts began 24/7 to allow subsystems to remain on to facilitate operations. That culminated with the Global Run in November (GriN), which   took place as scheduled during the week of 4 November. The GriN has been the first centrally managed operation since the beginning of LS1, and involved all subdetectors but the Pixel Tracker presently in a lab upstairs. All nights were therefore dedicated to long stable runs with as many subdetectors as possible. Among the many achievements in that week, three items may be highlighted. First, the Strip...

  1. Exact Threshold Circuits

    Hansen, Kristoffer Arnsfelt; Podolskii, Vladimir V.


    We initiate a systematic study of constant depth Boolean circuits built using exact threshold gates. We consider both unweighted and weighted exact threshold gates and introduce corresponding circuit classes. We next show that this gives a hierarchy of classes that seamlessly interleave with the...... well-studied corresponding hierarchies defined using ordinary threshold gates. A major open problem in Boolean circuit complexity is to provide an explicit super-polynomial lower bound for depth two threshold circuits. We identify the class of depth two exact threshold circuits as a natural subclass of...... these where also no explicit lower bounds are known. Many of our results can be seen as evidence that this class is a strict subclass of depth two threshold circuits - thus we argue that efforts in proving lower bounds should be directed towards this class....

  2. Analog circuits cookbook

    Hickman, Ian


    Analog Circuits Cookbook presents articles about advanced circuit techniques, components and concepts, useful IC for analog signal processing in the audio range, direct digital synthesis, and ingenious video op-amp. The book also includes articles about amplitude measurements on RF signals, linear optical imager, power supplies and devices, and RF circuits and techniques. Professionals and students of electrical engineering will find the book informative and useful.

  3. Analog circuit design

    Dobkin, Bob


    Analog circuit and system design today is more essential than ever before. With the growth of digital systems, wireless communications, complex industrial and automotive systems, designers are being challenged to develop sophisticated analog solutions. This comprehensive source book of circuit design solutions aids engineers with elegant and practical design techniques that focus on common analog challenges. The book's in-depth application examples provide insight into circuit design and application solutions that you can apply in today's demanding designs. <

  4. Stochastic Switching Circuit Synthesis

    Wilhelm, Daniel; Bruck, Jehoshua


    Shannon in his 1938 Masterpsilas Thesis demonstrated that any Boolean function can be realized by a switching relay circuit, leading to the development of deterministic digital logic. Here, we replace each classical switch with a probabilistic switch (pswitch). We present algorithms for synthesizing circuits closed with a desired probability, including an algorithm that generates optimal size circuits for any binary fraction. We also introduce a new duality property for series-parallel stocha...

  5. Electronic devices and circuits

    Pridham, Gordon John


    Electronic Devices and Circuits, Volume 1 deals with the design and applications of electronic devices and circuits such as passive components, diodes, triodes and transistors, rectification and power supplies, amplifying circuits, electronic instruments, and oscillators. These topics are supported with introductory network theory and physics. This volume is comprised of nine chapters and begins by explaining the operation of resistive, inductive, and capacitive elements in direct and alternating current circuits. The theory for some of the expressions quoted in later chapters is presented. Th

  6. MOS integrated circuit design

    Wolfendale, E


    MOS Integral Circuit Design aims to help in the design of integrated circuits, especially large-scale ones, using MOS Technology through teaching of techniques, practical applications, and examples. The book covers topics such as design equation and process parameters; MOS static and dynamic circuits; logic design techniques, system partitioning, and layout techniques. Also featured are computer aids such as logic simulation and mask layout, as well as examples on simple MOS design. The text is recommended for electrical engineers who would like to know how to use MOS for integral circuit desi

  7. CMOS circuits manual

    Marston, R M


    CMOS Circuits Manual is a user's guide for CMOS. The book emphasizes the practical aspects of CMOS and provides circuits, tables, and graphs to further relate the fundamentals with the applications. The text first discusses the basic principles and characteristics of the CMOS devices. The succeeding chapters detail the types of CMOS IC, including simple inverter, gate and logic ICs and circuits, and complex counters and decoders. The last chapter presents a miscellaneous collection of two dozen useful CMOS circuits. The book will be useful to researchers and professionals who employ CMOS circu

  8. Circuits and filters handbook

    Chen, Wai-Kai


    A bestseller in its first edition, The Circuits and Filters Handbook has been thoroughly updated to provide the most current, most comprehensive information available in both the classical and emerging fields of circuits and filters, both analog and digital. This edition contains 29 new chapters, with significant additions in the areas of computer-aided design, circuit simulation, VLSI circuits, design automation, and active and digital filters. It will undoubtedly take its place as the engineer's first choice in looking for solutions to problems encountered in the design, analysis, and behavi

  9. Timergenerator circuits manual

    Marston, R M


    Timer/Generator Circuits Manual is an 11-chapter text that deals mainly with waveform generator techniques and circuits. Each chapter starts with an explanation of the basic principles of its subject followed by a wide range of practical circuit designs. This work presents a total of over 300 practical circuits, diagrams, and tables.Chapter 1 outlines the basic principles and the different types of generator. Chapters 2 to 9 deal with a specific type of waveform generator, including sine, square, triangular, sawtooth, and special waveform generators pulse. These chapters also include pulse gen

  10. Logic circuit and computer

    This book contains eight chapters, which are introduction of computer like history of computer, integrated circuit, micro processor and micro computer, number system and binary code such as complement and parity bit, boolean algebra and logic circuit like karnaugh map, Quine-Mclusky, and prime implicant, integrated logic circuit such as adder, subtractor, carry propagation and magnitude comparator, order logic circuit and memory like flip-flop, serial binary adder and counter, IC logic gate such as IC logic level and ECL, development of structure of micro processor and instruction and addressing mode.

  11. Security electronics circuits manual



    Security Electronics Circuits Manual is an invaluable guide for engineers and technicians in the security industry. It will also prove to be a useful guide for students and experimenters, as well as providing experienced amateurs and DIY enthusiasts with numerous ideas to protect their homes, businesses and properties.As with all Ray Marston's Circuits Manuals, the style is easy-to-read and non-mathematical, with the emphasis firmly on practical applications, circuits and design ideas. The ICs and other devices used in the practical circuits are modestly priced and readily available ty

  12. Signal sampling circuit

    Louwsma, Simon Minze; Vertregt, Maarten


    A sampling circuit for sampling a signal is disclosed. The sampling circuit comprises a plurality of sampling channels adapted to sample the signal in time-multiplexed fashion, each sampling channel comprising a respective track-and-hold circuit connected to a respective analogue to digital converter via a respective output switch. The output switch of each channel opens for a tracking time period when the track-and-hold circuit is in a tracking mode for sampling the signal, and closes for a ...

  13. Functional roles for noise in genetic circuits

    Eldar, Avigdor; Michael B Elowitz


    The genetic circuits that regulate cellular functions are subject to stochastic fluctuations, or ‘noise’, in the levels of their components. Noise, far from just a nuisance, has begun to be appreciated for its essential role in key cellular activities. Noise functions in both microbial and eukaryotic cells, in multicellular development, and in evolution. It enables coordination of gene expression across large regulons, as well as probabilistic differentiation strategies that function across c...

  14. Synchronizing Hyperchaotic Circuits

    Tamasevicius, Arunas; Cenys, Antanas; Namajunas, Audrius;


    Regarding possible applications to secure communications the technique of synchronizing hyperchaotic circuits with a single dynamical variable is discussed. Several specific examples including the fourth-order circuits with two positive Lyapunov exponents as well as the oscillator with a delay line...

  15. A Virtual Circuits Lab

    Vick, Matthew E.


    The University of Colorado's Physics Education Technology (PhET) website offers free, high-quality simulations of many physics experiments that can be used in the classroom. The Circuit Construction Kit, for example, allows students to safely and constructively play with circuit components while learning the mathematics behind many circuit…

  16. Synchronizing Hyperchaotic Circuits

    Tamasevicius, Arunas; Cenys, Antanas; Namajunas, Audrius; Mykolaitis, Gytis; Lindberg, Erik


    Regarding possible applications to secure communications the technique of synchronizing hyperchaotic circuits with a single dynamical variable is discussed. Several specific examples including the fourth-order circuits with two positive Lyapunov exponents as well as the oscillator with a delay line...... characterized by multiple positive Lyapunov exponents are reviewd....

  17. Genetic circuit design automation.

    Nielsen, Alec A K; Der, Bryan S; Shin, Jonghyeon; Vaidyanathan, Prashant; Paralanov, Vanya; Strychalski, Elizabeth A; Ross, David; Densmore, Douglas; Voigt, Christopher A


    Computation can be performed in living cells by DNA-encoded circuits that process sensory information and control biological functions. Their construction is time-intensive, requiring manual part assembly and balancing of regulator expression. We describe a design environment, Cello, in which a user writes Verilog code that is automatically transformed into a DNA sequence. Algorithms build a circuit diagram, assign and connect gates, and simulate performance. Reliable circuit design requires the insulation of gates from genetic context, so that they function identically when used in different circuits. We used Cello to design 60 circuits forEscherichia coli(880,000 base pairs of DNA), for which each DNA sequence was built as predicted by the software with no additional tuning. Of these, 45 circuits performed correctly in every output state (up to 10 regulators and 55 parts), and across all circuits 92% of the output states functioned as predicted. Design automation simplifies the incorporation of genetic circuits into biotechnology projects that require decision-making, control, sensing, or spatial organization. PMID:27034378

  18. Amplifier improvement circuit

    Sturman, J.


    Stable input stage was designed for the use with a integrated circuit operational amplifier to provide improved performance as an instrumentation-type amplifier. The circuit provides high input impedance, stable gain, good common mode rejection, very low drift, and low output impedance.

  19. Approximate circuits for increased reliability

    Hamlet, Jason R.; Mayo, Jackson R.


    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  20. Approximate circuits for increased reliability

    Hamlet, Jason R.; Mayo, Jackson R.


    Embodiments of the invention describe a Boolean circuit having a voter circuit and a plurality of approximate circuits each based, at least in part, on a reference circuit. The approximate circuits are each to generate one or more output signals based on values of received input signals. The voter circuit is to receive the one or more output signals generated by each of the approximate circuits, and is to output one or more signals corresponding to a majority value of the received signals. At least some of the approximate circuits are to generate an output value different than the reference circuit for one or more input signal values; however, for each possible input signal value, the majority values of the one or more output signals generated by the approximate circuits and received by the voter circuit correspond to output signal result values of the reference circuit.

  1. Circuit analysis with Multisim

    Baez-Lopez, David


    This book is concerned with circuit simulation using National Instruments Multisim. It focuses on the use and comprehension of the working techniques for electrical and electronic circuit simulation. The first chapters are devoted to basic circuit analysis.It starts by describing in detail how to perform a DC analysis using only resistors and independent and controlled sources. Then, it introduces capacitors and inductors to make a transient analysis. In the case of transient analysis, it is possible to have an initial condition either in the capacitor voltage or in the inductor current, or bo

  2. Troubleshooting analog circuits

    Pease, Robert A


    Troubleshooting Analog Circuits is a guidebook for solving product or process related problems in analog circuits. The book also provides advice in selecting equipment, preventing problems, and general tips. The coverage of the book includes the philosophy of troubleshooting; the modes of failure of various components; and preventive measures. The text also deals with the active components of analog circuits, including diodes and rectifiers, optically coupled devices, solar cells, and batteries. The book will be of great use to both students and practitioners of electronics engineering. Other

  3. Plasmonic Nanoguides and Circuits

    Bozhevolnyi, Sergey


    Modern communication systems dealing with huge amounts of data at ever increasing speed try to utilize the best aspects of electronic and optical circuits. Electronic circuits are tiny but their operation speed is limited, whereas optical circuits are extremely fast but their sizes are limited by diffraction. Waveguide components utilizing surface plasmon (SP) modes were found to combine the huge optical bandwidth and compactness of electronics, and plasmonics thereby began to be considered as the next chip-scale technology. In this book, the authors concentrate on the SP waveguide configurati

  4. Nonlinear dynamics in circuits

    Carroll, TL


    This volume describes the use of simple analog circuits to study nonlinear dynamics, chaos and stochastic resonance. The circuit experiments that are described are mostly easy and inexpensive to reproduce, and yet these experiments come from the forefront of nonlinear dynamics research. The individual chapters describe why analog circuits are so useful for studying nonlinear dynamics, and include theoretical as well as experimental results from some of the leading researchers in the field. Most of the articles contain some tutorial sections for the less experienced readers.The audience for thi

  5. Counting rate logarithmic circuits

    This paper describes the basic circuit and the design method for a multidecade logarithmic counting ratemeter. The method is based on the charging and discharging of several RC time constants. An F.E.T. switch is used and the drain current is converted into a proportional voltage by a current to voltage converter. The logarithmic linearity was estimated for 4 decades starting from 50 cps. This circuit can be used in several nuclear instruments like survey meters and counting systems. This circuits has been developed as part of campbell channel instrumentation. (author)

  6. Optoelectronics circuits manual

    Marston, R M


    Optoelectronics Circuits Manual covers the basic principles and characteristics of the best known types of optoelectronic devices, as well as the practical applications of many of these optoelectronic devices. The book describes LED display circuits and LED dot- and bar-graph circuits and discusses the applications of seven-segment displays, light-sensitive devices, optocouplers, and a variety of brightness control techniques. The text also tackles infrared light-beam alarms and multichannel remote control systems. The book provides practical user information and circuitry and illustrations.

  7. Modern TTL circuits manual

    Marston, R M


    Modern TTL Circuits Manual provides an introduction to the basic principles of Transistor-Transistor Logic (TTL). This book outlines the major features of the 74 series of integrated circuits (ICs) and introduces the various sub-groups of the TTL family.Organized into seven chapters, this book begins with an overview of the basics of digital ICs. This text then examines the symbology and mathematics of digital logic. Other chapters consider a variety of topics, including waveform generator circuitry, clocked flip-flop and counter circuits, special counter/dividers, registers, data latches, com

  8. Printed circuit for ATLAS

    Laurent Guiraud


    A printed circuit board made by scientists in the ATLAS collaboration for the transition radiaton tracker (TRT). This will read data produced when a high energy particle crosses the boundary between two materials with different electrical properties.

  9. High temperature circuit breaker

    Edwards, R. N.; Travis, E. F.


    Alternating current circuit breaker is suitable for reliable long-term service at 1000 deg F in the vacuum conditions of outer space. Construction materials are resistant to nuclear radiation and vacuum welding. Service test conditions and results are given.

  10. Latching overcurrent circuit breaker

    Moore, M. L.


    Circuit breaker consists of a preset current amplitude sensor, and a lamp-photo-resistor combination in a feedback arrangement which energizes a power switching relay. The ac input power is removed from the load at predetermined current amplitudes.

  11. Synthetic in vitro circuits

    Hockenberry, Adam J.; Jewett, Michael C.


    Inspired by advances in the ability to construct programmable circuits in living organisms, in vitro circuits are emerging as a viable platform for designing, understanding, and exploiting dynamic biochemical circuitry. In vitro systems allow researchers to directly access and manipulate biomolecular parts without the unwieldy complexity and intertwined dependencies that often exist in vivo. Experimental and computational foundations in DNA, DNA/RNA, and DNA/RNA/protein based circuitry have g...

  12. Overriding Faulty Circuit Breakers

    Robbins, Richard L.; Pierson, Thomas E.


    Retainer keeps power on in emergency. Simple mechanical device attaches to failed aircraft-type push/pull circuit breaker to restore electrical power temporarily until breaker replaced. Device holds push/pull button in closed position; unnecessary for crewmember to hold button in position by continual finger pressure. Sleeve and plug hold button in, overriding mechanical failure in circuit breaker. Windows in sleeve show button position.

  13. Peak reading detector circuit

    The peak reading detector circuit serves for picking up the instants during which peaks of a given polarity occur in sequences of signals in which the extreme values, their time intervals, and the curve shape of the signals vary. The signal sequences appear in measuring the foetal heart beat frequence from amplitude-modulated ultrasonic, electrocardiagram, and blood pressure signals. In order to prevent undesired emission of output signals from, e. g., disturbing intermediate extreme values, the circuit consists of the series connections of a circuit to simulate an ideal diode, a strong unit, a discriminator for the direction of charging current, a time-delay circuit, and an electronic switch lying in the decharging circuit of the storage unit. The time-delay circuit thereby causes storing of a preliminary maximum value being used only after a certain time delay for the emission of the output signal. If a larger extreme value occurs during the delay time the preliminary maximum value is cleared and the delay time starts running anew. (DG/PB)

  14. Limitations of Radar Coordinates

    Bini, Donato; Lusanna, Luca; Mashhoon, Bahram


    The construction of a radar coordinate system about the world line of an observer is discussed. Radar coordinates for a hyperbolic observer as well as a uniformly rotating observer are described in detail. The utility of the notion of radar distance and the admissibility of radar coordinates are investigated. Our results provide a critical assessment of the physical significance of radar coordinates.

  15. The Mind Grows Circuits

    Panigrahy, Rina


    There is a vast supply of prior art that study models for mental processes. Some studies in psychology and philosophy approach it from an inner perspective in terms of experiences and percepts. Others such as neurobiology or connectionist-machines approach it externally by viewing the mind as complex circuit of neurons where each neuron is a primitive binary circuit. In this paper, we also model the mind as a place where a circuit grows, starting as a collection of primitive components at birth and then builds up incrementally in a bottom up fashion. A new node is formed by a simple composition of prior nodes when we undergo a repeated experience that can be described by that composition. Unlike neural networks, however, these circuits take "concepts" or "percepts" as inputs and outputs. Thus the growing circuits can be likened to a growing collection of lambda expressions that are built on top of one another in an attempt to compress the sensory input as a heuristic to bound its Kolmogorov Complexity.

  16. Functional roles for noise in genetic circuits.

    Eldar, Avigdor; Elowitz, Michael B


    The genetic circuits that regulate cellular functions are subject to stochastic fluctuations, or 'noise', in the levels of their components. Noise, far from just a nuisance, has begun to be appreciated for its essential role in key cellular activities. Noise functions in both microbial and eukaryotic cells, in multicellular development, and in evolution. It enables coordination of gene expression across large regulons, as well as probabilistic differentiation strategies that function across cell populations. At the longest timescales, noise may facilitate evolutionary transitions. Here we review examples and emerging principles that connect noise, the architecture of the gene circuits in which it is present, and the biological functions it enables. We further indicate some of the important challenges and opportunities going forward. PMID:20829787

  17. Semiconductor circuits worked examples

    Abrahams, J R; Hiller, N


    Semiconductor Circuits: Worked Examples is a companion volume to Semiconductor Circuits: Theory, Design and Experiment. This book is a presentation of many questions at the undergraduate and technical level centering on the transistor. The problems concern basic physical theories of energy bands, covalent bond, and crystal lattice. Questions regarding the intrinsic property and impurity of semiconductors are also asked after the book presents a brief discussion of semiconductors. This book addresses the physical principles of semiconductor devices by presenting questions and worked examples o

  18. Circuit Quantum Electrodynamics

    Bishop, Lev S


    Circuit Quantum Electrodynamics (cQED), the study of the interaction between superconducting circuits behaving as artificial atoms and 1-dimensional transmission-line resonators, has shown much promise for quantum information processing tasks. For the purposes of quantum computing it is usual to approximate the artificial atoms as 2-level qubits, and much effort has been expended on attempts to isolate these qubits from the environment and to invent ever more sophisticated control and measurement schemes. Rather than focussing on these technological aspects of the field, this thesis investigates the opportunities for using these carefully engineered systems for answering questions of fundamental physics.

  19. Primer printed circuit boards

    Argyle, Andrew


    Step-by-step instructions for making your own PCBs at home. Making your own printed circuit board (PCB) might seem a daunting task, but once you master the steps, it's easy to attain professional-looking results. Printed circuit boards, which connect chips and other components, are what make almost all modern electronic devices possible. PCBs are made from sheets of fiberglass clad with copper, usually in multiplelayers. Cut a computer motherboard in two, for instance, and you'll often see five or more differently patterned layers. Making boards at home is relatively easy

  20. Compound semiconductor integrated circuits

    Vu, Tho T


    This is the book version of a special issue of the International Journal of High Speed Electronics and Systems , reviewing recent work in the field of compound semiconductor integrated circuits. There are fourteen invited papers covering a wide range of applications, frequencies and materials. These papers deal with digital, analog, microwave and millimeter-wave technologies, devices and integrated circuits for wireline fiber-optic lightwave transmissions, and wireless radio-frequency microwave and millimeter-wave communications. In each case, the market is young and experiencing rapid growth

  1. Electronic circuits fundamentals & applications

    Tooley, Mike


    Electronics explained in one volume, using both theoretical and practical applications.New chapter on Raspberry PiCompanion website contains free electronic tools to aid learning for students and a question bank for lecturersPractical investigations and questions within each chapter help reinforce learning Mike Tooley provides all the information required to get to grips with the fundamentals of electronics, detailing the underpinning knowledge necessary to appreciate the operation of a wide range of electronic circuits, including amplifiers, logic circuits, power supplies and oscillators. The

  2. Circuit design for reliability

    Cao, Yu; Wirth, Gilson


    This book presents physical understanding, modeling and simulation, on-chip characterization, layout solutions, and design techniques that are effective to enhance the reliability of various circuit units.  The authors provide readers with techniques for state of the art and future technologies, ranging from technology modeling, fault detection and analysis, circuit hardening, and reliability management. Provides comprehensive review on various reliability mechanisms at sub-45nm nodes; Describes practical modeling and characterization techniques for reliability; Includes thorough presentation of robust design techniques for major VLSI design units; Promotes physical understanding with first-principle simulations.

  3. Electronic circuit analysis

    Kishore, K Lal


    Second Edition of the book Electronic Circuit Analysis is brought out with certain new Topics and reorganization of text matter into eight units. With addition of new topics, syllabi of many universities in this subject can be covered. Besides this, the book can also meet the requirements of M.Sc (Electronics), AMIETE, AMIE (Electronics) courses. Text matter is improved thoroughly. New topics like frequency effects in multistage amplifiers, amplifier circuit analysis, design of high frequency amplifiers, switching regulators, voltage multipliers, Uninterrupted Power Supplies (UPS), and Switchi

  4. Chaotic memristive circuit: equivalent circuit realization and dynamical analysis

    Bao Bo-Cheng; Xu Jian-Ping; Zhou Guo-Hua; Ma Zheng-Hua; Zou Ling


    In this paper,a practical equivalent circuit of an active flux-controlled memristor characterized by smooth piecewise-quadratic nonlinearity is designed and an experimental chaotic memristive circuit is implemented.The chaotic memristive circuit has an equilibrium set and its stability is dependent on the initial state of the memristor.The initial state-dependent and the circuit parameter-dependent dynamics of the chaotic memristive circuit are investigated via phase portraits,bifurcation diagrams and Lyapunov exponents.Both experimental and simulation results validate the proposed equivalent circuit realization of the active flux-controlled memristor.

  5. ESD analog circuits and design

    Voldman, Steven H


    A comprehensive and in-depth review of analog circuit layout, schematic architecture, device, power network and ESD design This book will provide a balanced overview of analog circuit design layout, analog circuit schematic development, architecture of chips, and ESD design.  It will start at an introductory level and will bring the reader right up to the state-of-the-art. Two critical design aspects for analog and power integrated circuits are combined. The first design aspect covers analog circuit design techniques to achieve the desired circuit performance. The second and main aspect pres

  6. Circuit Theory for SPICE of Spintronic Integrated Circuits

    Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.


    We present a theoretical and a numerical formalism for analysis and design of spintronic integrated circuits (SPINICs). The formalism encompasses a generalized circuit theory for spintronic integrated circuits based on nanomagnetic dynamics and spin transport. We propose an extension to the Modified Nodal Analysis technique for the analysis of spin circuits based on the recently developed spin conduction matrices. We demonstrate the applicability of the framework using an example spin logic c...

  7. Coordination and Cooperation

    Janssen, Maarten


    textabstractThis comment makes four related points. First, explaining coordination is different from explaining cooperation. Second, solving the coordination problem is more important for the theory of games than solving the cooperation problem. Third, a version of the Principle of Coordination can be rationalized on individualistic grounds. Finally, psychological game theory should consider how players perceive their gaming situation. ---------------------------------------------------------...

  8. A Coordination Theory

    J. Foss, Nicolai


    Important aspects of leadership behavior can be rendered intelligible through a focus on coordination games. The concept of common knowledge is shown to be particularly important to understanding leadership. Thus, leaders may establish common knowledge conditions and assist the coordination of strategies in this way, or make decisions in situations where coordination problems persist in spite of common knowledge.

  9. Quantifying linguistic coordination

    Fusaroli, Riccardo; Tylén, Kristian

    task (Bahrami et al 2010, Fusaroli et al. 2012) we extend to linguistic coordination dynamical measures of recurrence employed in the analysis of sensorimotor coordination (such as heart-rate (Konvalinka et al 2011), postural sway (Shockley 2005) and eye-movements (Dale, Richardson and Kirkham 2012...... linguistic coordination and their effects at a fine-degree....

  10. 4-Hz oscillations synchronize prefrontal-amygdala circuits during fear behavior.

    Karalis, Nikolaos; Dejean, Cyril; Chaudun, Fabrice; Khoder, Suzana; Rozeske, Robert R; Wurtz, Hélène; Bagur, Sophie; Benchenane, Karim; Sirota, Anton; Courtin, Julien; Herry, Cyril


    Fear expression relies on the coordinated activity of prefrontal and amygdala circuits, yet the mechanisms allowing long-range network synchronization during fear remain unknown. Using a combination of extracellular recordings, pharmacological and optogenetic manipulations, we found that freezing, a behavioral expression of fear, temporally coincided with the development of sustained, internally generated 4-Hz oscillations in prefrontal-amygdala circuits. 4-Hz oscillations predict freezing onset and offset and synchronize prefrontal-amygdala circuits. Optogenetic induction of prefrontal 4-Hz oscillations coordinates prefrontal-amygdala activity and elicits fear behavior. These results unravel a sustained oscillatory mechanism mediating prefrontal-amygdala coupling during fear behavior. PMID:26878674

  11. Reducing energy with asynchronous circuits

    Rivas Barragan, Daniel


    Reducing energy consumption using asynchronous circuits. The elastic clocks approach has been implemented along with a closed-feedback loop in order to achieve a lower energy consumption along with more reliability in integrated circuits.

  12. Electronic circuits and systems: A compilation. [including integrated circuits, logic circuits, varactor diode circuits, low pass filters, and optical equipment circuits


    Technological information is presented electronic circuits and systems which have potential utility outside the aerospace community. Topics discussed include circuit components such as filters, converters, and integrators, circuits designed for use with specific equipment or systems, and circuits designed primarily for use with optical equipment or displays.

  13. Unstable oscillators based hyperchaotic circuit

    Murali, K.; Tamasevicius, A.; G. Mykolaitis, A.;


    A simple 4th order hyperchaotic circuit with unstable oscillators is described. The circuit contains two negative impedance converters, two inductors, two capacitors, a linear resistor and a diode. The Lyapunov exponents are presented to confirm hyperchaotic nature of the oscillations in the...... circuit. The performance of the circuit is investigated by means of numerical integration of appropriate differential equations, PSPICE simulations, and hardware experiment....

  14. The LMT circuit and SPICE

    Lindberg, Erik; Murali, K.; Tamacevicius, Arunas


    The state equations of the LMT circuit are modeled as a dedicated analogue computer circuit and solved by means of PSpice. The nonlinear part of the system is studied. Problems with the PSpice program are presented.......The state equations of the LMT circuit are modeled as a dedicated analogue computer circuit and solved by means of PSpice. The nonlinear part of the system is studied. Problems with the PSpice program are presented....

  15. Value Constraint and Monotone circuit

    Kobayashi, Koji


    This paper talks about that monotone circuit is P-Complete. Decision problem that include P-Complete is mapping that classify input with a similar property. Therefore equivalence relation of input value is important for computation. But monotone circuit cannot compute the equivalence relation of the value because monotone circuit can compute only monotone function. Therefore, I make the value constraint explicitly in the input and monotone circuit can compute equivalence relation. As a result...

  16. Neurotrophins and spinal circuit function

    Lorne M. Mendell


    Work early in the last century emphasized the stereotyped activity of spinal circuits based on studies of reflexes. However, the last several decades have focused on the plasticity of these spinal circuits. These considerations began with studies of the effects of monoamines on descending and reflex circuits. In recent years new classes of compounds called growth factors that are found in peripheral nerves and the spinal cord have been shown to affect circuit behavior in the spinal cord. In t...

  17. Dynamical models of cortical circuits.

    Wolf, Fred; Engelken, Rainer; Puelma-Touzel, Maximilian; Weidinger, Juan Daniel Flórez; Neef, Andreas


    Cortical neurons operate within recurrent neuronal circuits. Dissecting their operation is key to understanding information processing in the cortex and requires transparent and adequate dynamical models of circuit function. Convergent evidence from experimental and theoretical studies indicates that strong feedback inhibition shapes the operating regime of cortical circuits. For circuits operating in inhibition-dominated regimes, mathematical and computational studies over the past several y...

  18. Diode, transistor & fet circuits manual

    Marston, R M


    Diode, Transistor and FET Circuits Manual is a handbook of circuits based on discrete semiconductor components such as diodes, transistors, and FETS. The book also includes diagrams and practical circuits. The book describes basic and special diode characteristics, heat wave-rectifier circuits, transformers, filter capacitors, and rectifier ratings. The text also presents practical applications of associated devices, for example, zeners, varicaps, photodiodes, or LEDs, as well as it describes bipolar transistor characteristics. The transistor can be used in three basic amplifier configuration

  19. Static Switching Dynamic Buffer Circuit

    Pandey, A. K.; R. A. Mishra; R. K. Nagaria


    We proposed footless domino logic buffer circuit. It minimizes redundant switching at the dynamic and the output nodes. The proposed circuit avoids propagation of precharge pulse to the output node and allows the dynamic node which saves power consumption. Simulation is done using 0.18 µm CMOS technology. We have calculated the power consumption, delay, and power delay product of the proposed circuit and compared the results with the existing circuits for different logic function, loading co...

  20. Adventures in Coordinate Space

    Chambers, J. E.


    A variety of coordinate systems have been used to study the N-body problem for cases involving a dominant central mass. These include the traditional Keplerian orbital elements and the canonical Delaunay variables, which both incorporate conserved quantities of the two-body problem. Recently, Cartesian coordinate systems have returned to favour with the rise of mixed-variable symplectic integrators, since these coordinates prove to be more efficient than using orbital elements. Three sets of canonical Cartesian coordinates are well known, each with its own advantages and disadvantages. Inertial coordinates (which include barycentric coordinates as a special case) are the simplest and easiest to implement. However, they suffer from the disadvantage that the motion of the central body must be calculated explicitly, leading to relatively large errors in general. Jacobi coordinates overcome this problem by replacing the coordinates and momenta of the central body with those of the system as a whole, so that momentum is conserved exactly. This leads to substantial improvements in accuracy, but has the disadvantage that every object is treated differently, and interactions between each pair of bodies are now expressed in a complicated manner involving the coordinates of many bodies. Canonical heliocentric coordinates (also known as democratic heliocentric coordinates) treat all bodies equally, and conserve the centre of mass motion, but at the cost of introducing momentum cross terms into the kinetic energy. This complicates the development of higher order symplectic integrators and symplectic correctors, as well as the development of methods used to resolve close encounters with the central body. Here I will re-examine the set of possible canonical Cartesian coordinate systems to determine if it is possible to (a) conserve the centre of mass motion, (b) treat all bodies equally, and (c) eliminate the momentum cross terms. I will demonstrate that this is indeed possible

  1. Neuromorphic silicon neuron circuits



    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  2. LC-Circuit Calorimetry

    Bossen, Olaf


    We present a new type of calorimeter in which we couple an unknown heat capacity with the aid of Peltier elements to an electrical circuit. The use of an electrical inductance and an amplifier in the circuit allows us to achieve autonomous oscillations, and the measurement of the corresponding resonance frequency makes it possible to accurately measure the heat capacity with an intrinsic statistical error that decreases as ~t^{-3/2} with measuring time t, as opposed to a corresponding error ~t^{-1/2} in the conventional alternating current (a.c.) method to measure heat capacities. We have built a demonstration experiment to show the feasibility of the new technique, and we have tested it on a gadolinium sample at its transition to the ferromagnetic state.

  3. Refractory Neuron Circuits

    Sarpeshkar, Rahul; Watts, Lloyd; Mead, Carver


    Neural networks typically use an abstraction of the behaviour of a biological neuron, in which the continuously varying mean firing rate of the neuron is presumed to carry information about the neuron's time-varying state of excitation. However, the detailed timing of action potentials is known to be important in many biological systems. To build electronic models of such systems, one must have well-characterized neuron circuits that capture the essential behaviour of real neur...

  4. Electronic devices and circuits

    Kishore, K Lal


    This book is written in a simple lucid Language along with derivation of equations and supported by numerous solved problems to help the student to understand the concepts clearly.Advances in Miniaturization of Electronic Systems by ever increasing packaging densities on Integrated Circuits has made it very essential for thorough Knowledge of the concepts, phenomenon, characteristics and behaviour of semiconductor Devices for students and professionals.


    Anderson, O.A.


    >A particle-beam tracking and correcting circuit is described. Beam induction electrodes are placed on either side of the beam, and potentials induced by the beam are compared in a voltage comparator or discriminator. This comparison produces an error signal which modifies the fm curve at the voltage applied to the drift tube, thereby returning the orbit to the preferred position. The arrangement serves also to synchronize accelerating frequency and magnetic field growth. (T.R.H.)

  6. Engineering prokaryotic gene circuits

    Michalodimitrakis, Konstantinos; Isalan, Mark


    Engineering of synthetic gene circuits is a rapidly growing discipline, currently dominated by prokaryotic transcription networks, which can be easily rearranged or rewired to give different output behaviours. In this review, we examine both a rational and a combinatorial design of such networks and discuss progress on using in vitro evolution techniques to obtain functional systems. Moving beyond pure transcription networks, more and more networks are being implemented at the level of RNA, t...

  7. Integrated Circuit Immunity

    Sketoe, J. G.; Clark, Anthony


    This paper presents a DOD E3 program overview on integrated circuit immunity. The topics include: 1) EMI Immunity Testing; 2) Threshold Definition; 3) Bias Tee Function; 4) Bias Tee Calibration Set-Up; 5) EDM Test Figure; 6) EMI Immunity Levels; 7) NAND vs. and Gate Immunity; 8) TTL vs. LS Immunity Levels; 9) TP vs. OC Immunity Levels; 10) 7805 Volt Reg Immunity; and 11) Seventies Chip Set. This paper is presented in viewgraph form.

  8. Fundamental Atomtronic Circuit Elements

    Lee, Jeffrey; McIlvain, Brian; Lobb, Christopher; Hill, Wendell T., III


    Recent experiments with neutral superfluid gases have shown that it is possible to create atomtronic circuits analogous to existing superconducting circuits. The goals of these experiments are to create complex systems such as Josephson junctions. In addition, there are theoretical models for active atomtronic components analogous to diodes, transistors and oscillators. In order for any of these devices to function, an understanding of the more fundamental atomtronic elements is needed. Here we describe the first experimental realization of these more fundamental elements. We have created an atomtronic capacitor that is discharged through a resistance and inductance. We will discuss a theoretical description of the system that allows us to determine values for the capacitance, resistance and inductance. The resistance is shown to be analogous to the Sharvin resistance, and the inductance analogous to kinetic inductance in electronics. This atomtronic circuit is implemented with a thermal sample of laser cooled rubidium atoms. The atoms are confined using what we call free-space atom chips, a novel optical dipole trap produced using a generalized phase-contrast imaging technique. We will also discuss progress toward implementing this atomtronic system in a degenerate Bose gas.

  9. Semiconductor integrated circuits

    An improved method involving ion implantation to form non-epitaxial semiconductor integrated circuits. These are made by forming a silicon substrate of one conductivity type with a recessed silicon dioxide region extending into the substrate and enclosing a portion of the silicon substrate. A beam of ions of opposite conductivity type impurity is directed at the substrate at an energy and dosage level sufficient to form a first region of opposite conductivity within the silicon dioxide region. This impurity having a concentration peak below the surface of the substrate forms a region of the one conductivity type which extends from the substrate surface into the first opposite type region to a depth between the concentration peak and the surface and forms a second region of opposite conductivity type. The method, materials and ion beam conditions are detailed. Vertical bipolar integrated circuits can be made this way when the first opposite type conductivity region will function as a collector. Also circuits with inverted bipolar devices when this first region functions as a 'buried'' emitter region. (U.K.)

  10. Changes to the shuttle circuits

    GS Department


    To fit with passengers expectation, there will be some changes to the shuttle circuits as from Monday 10 October. See details on (on line on 7 October). Circuit No. 5 is cancelled as circuit No. 1 also stops at Bldg. 33. In order to guarantee shorter travel times, circuit No. 1 will circulate on Meyrin site only and circuit No. 2, with departures from Bldg. 33 and 500, on Prévessin site only. Site Services Section

  11. Experimental determination of circuit equations

    Shulman, Jason; Widjaja, Matthew; Gunaratne, Gemunu H


    Kirchhoff's laws offer a general, straightforward approach to circuit analysis. Unfortunately, use of the laws becomes impractical for all but the simplest of circuits. This work presents a novel method of analyzing direct current resistor circuits. It is based on an approach developed to model complex networks, making it appropriate for use on large, complicated circuits. It is unique in that it is not an analytic method. It is based on experiment, yet the approach produces the same circuit equations obtained by more traditional means.

  12. Optimum Overcurrent Relay Coordination of a Power Grid

    Sheila Mahapatra


    Full Text Available Protective system plays a pivotal role in any power system operation. In a typical power system there are large numbers of circuit breakers and relays installed which constitute an integral part of the protective scheme. Relay is a device that senses and locates the fault and sends a command to the circuit breaker to disconnect the faulty element. Relay coordination is done to provide primary as well as back up protection from any fault that is likely to occur in the system. In this paper, overcurrent relay coordination is implemented on a 72 bus 220 KV substation. Load flow studies and the short circuit analysis on the test system is initially done followed by relay coordination. Fault current data obtained from short circuit studies enables us to obtain operating time of the relays used in the test system. The simulated value of operating time provides the coordinated operation of all the relays connected from 220kV to 33kV line thereby protecting the equipment of the test system. Keywords-

  13. Power system with an integrated lubrication circuit

    Hoff, Brian D.; Akasam, Sivaprasad; Algrain, Marcelo C.; Johnson, Kris W.; Lane, William H.


    A power system includes an engine having a first lubrication circuit and at least one auxiliary power unit having a second lubrication circuit. The first lubrication circuit is in fluid communication with the second lubrication circuit.

  14. Integrated coherent matter wave circuits

    An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through their electric polarizability. Moreover, the source of coherent matter waves is a Bose-Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry

  15. Memristor based startup circuit for self biased circuits

    Das, Mangal; Singh, Amit Kumar; Rathi, Amit; Singhal, Sonal


    This paper presents the design of a Memristor based startup circuit for self biased circuits. Memristor has many advantages over conventional CMOS devices such as low leakage current at nanometer scale, easy to manufacture. In this work the switching characteristics of memristor is utilized. First the theoretical equations describing the switching behavior of memristor are investigated. To prove the switching capability of Memristor, a startup circuit based on memristor is proposed which uses series combination of Memristor and capacitor. Proposed circuit is compared with the previously reported MOSFET based startup circuits. Comparison of different circuits was done to validate the results. Simulation results show that memristor based circuit can attain on (I = 12.94 µA) to off state (I = 1 .2 µA) in 25 ns while the MOSFET based startup circuits take on (I = 14.19 µA) to off state (I = 1.4 µA) in more than 90 ns. The benefit comes in terms of area because the number of components used in the circuit are lesser than the conventional startup circuits.

  16. Mapping brains without coordinates

    Kötter, Rolf; Wanke, Egon


    Brain mapping has evolved considerably over the last century. While most emphasis has been placed on coordinate-based spatial atlases, coordinate-independent parcellation-based mapping is an important technique for accessing the multitude of structural and functional data that have been reported from invasive experiments, and provides for flexible and efficient representations of information. Here, we provide an introduction to motivations, concepts, techniques and implications of coordinate-...

  17. Adaptive Coordinate Descent

    Loshchilov, Ilya; Schoenauer, Marc; Sebag, Michèle


    Independence from the coordinate system is one source of efficiency and robustness for the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). The recently proposed Adaptive Encoding (AE) procedure generalizes CMA-ES adaptive mechanism, and can be used together with any optimization algorithm. Adaptive Encoding gradually builds a transformation of the coordinate system such that the new coordinates are as decorrelated as possible with respect to the objective function. But any optimizat...

  18. Electronics circuits and systems

    Bishop, Owen


    The material in Electronics - Circuits and Systems is a truly up-to-date textbook, with coverage carefully matched to the electronics units of the 2007 BTEC National Engineering and the latest AS and A Level specifications in Electronics from AQA, OCR and WJEC. The material has been organized with a logical learning progression, making it ideal for a wide range of pre-degree courses in electronics. The approach is student-centred and includes: numerous examples and activities; web research topics; Self Test features, highlighted key facts, formulae and definitions. Each chapter ends with a set

  19. Electronic logic circuits

    Gibson, J


    Most branches of organizing utilize digital electronic systems. This book introduces the design of such systems using basic logic elements as the components. The material is presented in a straightforward manner suitable for students of electronic engineering and computer science. The book is also of use to engineers in related disciplines who require a clear introduction to logic circuits. This third edition has been revised to encompass the most recent advances in technology as well as the latest trends in components and notation. It includes a wide coverage of application specific integrate

  20. Photonic Integrated Circuits

    Merritt, Scott; Krainak, Michael


    Integrated photonics generally is the integration of multiple lithographically defined photonic and electronic components and devices (e.g. lasers, detectors, waveguides passive structures, modulators, electronic control and optical interconnects) on a single platform with nanometer-scale feature sizes. The development of photonic integrated circuits permits size, weight, power and cost reductions for spacecraft microprocessors, optical communication, processor buses, advanced data processing, and integrated optic science instrument optical systems, subsystems and components. This is particularly critical for small spacecraft platforms. We will give an overview of some NASA applications for integrated photonics.

  1. Digital logic circuit test

    This book is about digital logic circuit test, which lists the digital basic theory, basic gate like and, or And Not gate, NAND/NOR gate such as NAND gate, NOR gate, AND and OR, logic function, EX-OR gate, adder and subtractor, decoder and encoder, multiplexer, demultiplexer, flip-flop, counter such as up/down counter modulus N counter and Reset type counter, shift register, D/A and A/D converter and two supplements list of using components and TTL manual and CMOS manual.

  2. Biophotonic integrated circuits

    Cohen, Daniel A.; Nolde, Jill A.; Wang, Chad S.; Skogen, Erik J.; Rivlin, A.; Coldren, Larry A.


    Biosensors rely on optical techniques to obtain high sensitivity and speed, but almost all biochips still require external light sources, optics, and detectors, which limits the widespread use of these devices. The optoelectronics technology base now allows monolithic integration of versatile optical sources, novel sensing geometries, filters, spectrometers, and detectors, enabling highly integrated chip-scale sensors. We discuss biophotonic integrated circuits built on both GaAs and InP substrates, incorporating widely tunable lasers, novel evanescent field sensing waveguides, heterodyne spectrometers, and waveguide photodetectors, suitable for high sensitivity transduction of affinity assays.

  3. Electric circuits problem solver

    REA, Editors of


    Each Problem Solver is an insightful and essential study and solution guide chock-full of clear, concise problem-solving gems. All your questions can be found in one convenient source from one of the most trusted names in reference solution guides. More useful, more practical, and more informative, these study aids are the best review books and textbook companions available. Nothing remotely as comprehensive or as helpful exists in their subject anywhere. Perfect for undergraduate and graduate studies.Here in this highly useful reference is the finest overview of electric circuits currently av

  4. Optoelectronics circuits manual

    Marston, R M


    This manual is a useful single-volume guide specifically aimed at the practical design engineer, technician, and experimenter, as well as the electronics student and amateur. It deals with the subject in an easy to read, down to earth, and non-mathematical yet comprehensive manner, explaining the basic principles and characteristics of the best known devices, and presenting the reader with many practical applications and over 200 circuits. Most of the ICs and other devices used are inexpensive and readily available types, with universally recognised type numbers.The second edition

  5. Closed Circuit Videoinstallationen

    Kacunko, Slavko

    and 650 artists. This and the notes on further reading and viewing will enable deeper explorations of the material in a way not unlike the open “hyper-text”- structure. Video technique makes it possible to simultaneously record and reproduce images, sound and sequences of motion; that potential can...... and at the same time general investigations. The research project, ‘Closed-Circuit-Video Installations. A Study on the History and Theory of Media Art’, is being supported by the Fritz-Thyssen Foundation, Cologne....

  6. Electronics circuits and systems

    Bishop, Owen


    The material in Electronics - Circuits and Systems is a truly up-to-date textbook, with coverage carefully matched to the electronics units of the 2007 BTEC National Engineering and the latest AS and A Level specifications in Electronics from AQA, OCR and WJEC. The material has been organized with a logical learning progression, making it ideal for a wide range of pre-degree courses in electronics. The approach is student-centred and includes: numerous examples and activities; web research topics; Self Test features, highlighted key facts, formulae and definitions. Ea

  7. Integrated circuit cell library

    Whitaker, Sterling R. (Inventor); Miles, Lowell H. (Inventor)


    According to the invention, an ASIC cell library for use in creation of custom integrated circuits is disclosed. The ASIC cell library includes some first cells and some second cells. Each of the second cells includes two or more kernel cells. The ASIC cell library is at least 5% comprised of second cells. In various embodiments, the ASIC cell library could be 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more, or 95% or more comprised of second cells.

  8. Linear integrated circuits

    Carr, Joseph


    The linear IC market is large and growing, as is the demand for well trained technicians and engineers who understand how these devices work and how to apply them. Linear Integrated Circuits provides in-depth coverage of the devices and their operation, but not at the expense of practical applications in which linear devices figure prominently. This book is written for a wide readership from FE and first degree students, to hobbyists and professionals.Chapter 1 offers a general introduction that will provide students with the foundations of linear IC technology. From chapter 2 onwa

  9. Optically controllable molecular logic circuits

    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals

  10. Optically controllable molecular logic circuits

    Nishimura, Takahiro, E-mail:; Fujii, Ryo; Ogura, Yusuke; Tanida, Jun [Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871 (Japan)


    Molecular logic circuits represent a promising technology for observation and manipulation of biological systems at the molecular level. However, the implementation of molecular logic circuits for temporal and programmable operation remains challenging. In this paper, we demonstrate an optically controllable logic circuit that uses fluorescence resonance energy transfer (FRET) for signaling. The FRET-based signaling process is modulated by both molecular and optical inputs. Based on the distance dependence of FRET, the FRET pathways required to execute molecular logic operations are formed on a DNA nanostructure as a circuit based on its molecular inputs. In addition, the FRET pathways on the DNA nanostructure are controlled optically, using photoswitching fluorescent molecules to instruct the execution of the desired operation and the related timings. The behavior of the circuit can thus be controlled using external optical signals. As an example, a molecular logic circuit capable of executing two different logic operations was studied. The circuit contains functional DNAs and a DNA scaffold to construct two FRET routes for executing Input 1 AND Input 2 and Input 1 AND NOT Input 3 operations on molecular inputs. The circuit produced the correct outputs with all possible combinations of the inputs by following the light signals. Moreover, the operation execution timings were controlled based on light irradiation and the circuit responded to time-dependent inputs. The experimental results demonstrate that the circuit changes the output for the required operations following the input of temporal light signals.

  11. Sequential circuit design for radiation hardened multiple voltage integrated circuits

    Clark, Lawrence T.; McIver, III, John K.


    The present invention includes a radiation hardened sequential circuit, such as a bistable circuit, flip-flop or other suitable design that presents substantial immunity to ionizing radiation while simultaneously maintaining a low operating voltage. In one embodiment, the circuit includes a plurality of logic elements that operate on relatively low voltage, and a master and slave latches each having storage elements that operate on a relatively high voltage.

  12. Simple Cell Balance Circuit

    Johnson, Steven D.; Byers, Jerry W.; Martin, James A.


    A method has been developed for continuous cell voltage balancing for rechargeable batteries (e.g. lithium ion batteries). A resistor divider chain is provided that generates a set of voltages representing the ideal cell voltage (the voltage of each cell should be as if the cells were perfectly balanced). An operational amplifier circuit with an added current buffer stage generates the ideal voltage with a very high degree of accuracy, using the concept of negative feedback. The ideal voltages are each connected to the corresponding cell through a current- limiting resistance. Over time, having the cell connected to the ideal voltage provides a balancing current that moves the cell voltage very close to that ideal level. In effect, it adjusts the current of each cell during charging, discharging, and standby periods to force the cell voltages to be equal to the ideal voltages generated by the resistor divider. The device also includes solid-state switches that disconnect the circuit from the battery so that it will not discharge the battery during storage. This solution requires relatively few parts and is, therefore, of lower cost and of increased reliability due to the fewer failure modes. Additionally, this design uses very little power. A preliminary model predicts a power usage of 0.18 W for an 8-cell battery. This approach is applicable to a wide range of battery capacities and voltages.

  13. Quasi-Linear Circuit

    Bradley, William; Bird, Ross; Eldred, Dennis; Zook, Jon; Knowles, Gareth


    This work involved developing spacequalifiable switch mode DC/DC power supplies that improve performance with fewer components, and result in elimination of digital components and reduction in magnetics. This design is for missions where systems may be operating under extreme conditions, especially at elevated temperature levels from 200 to 300 degC. Prior art for radiation-tolerant DC/DC converters has been accomplished utilizing classical magnetic-based switch mode converter topologies; however, this requires specific shielding and component de-rating to meet the high-reliability specifications. It requires complex measurement and feedback components, and will not enable automatic re-optimization for larger changes in voltage supply or electrical loading condition. The innovation is a switch mode DC/DC power supply that eliminates the need for processors and most magnetics. It can provide a well-regulated voltage supply with a gain of 1:100 step-up to 8:1 step down, tolerating an up to 30% fluctuation of the voltage supply parameters. The circuit incorporates a ceramic core transformer in a manner that enables it to provide a well-regulated voltage output without use of any processor components or magnetic transformers. The circuit adjusts its internal parameters to re-optimize its performance for changes in supply voltage, environmental conditions, or electrical loading at the output

  14. IVS Technology Coordinator Report

    Whitney, Alan


    This report of the Technology Coordinator includes the following: 1) continued work to implement the new VLBI2010 system, 2) the 1st International VLBI Technology Workshop, 3) a VLBI Digital- Backend Intercomparison Workshop, 4) DiFX software correlator development for geodetic VLBI, 5) a review of progress towards global VLBI standards, and 6) a welcome to new IVS Technology Coordinator Bill Petrachenko.

  15. Coordinate measuring machines

    De Chiffre, Leonardo

    This document is used in connection with three exercises of 2 hours duration as a part of the course GEOMETRICAL METROLOGY AND MACHINE TESTING. The exercises concern three aspects of coordinate measuring: 1) Measuring and verification of tolerances on coordinate measuring machines, 2) Traceabilit...

  16. Calculation and comparison of circuit breaker parameters in Power World Simulator

    Kuljinder Kaur,


    Full Text Available A circuit breaker has ratings that an engineer uses for their application. These ratings define circuit breaker performance characteristics. A good understanding of Ratings allow the electrical engineer to make a proper comparison of various circuit breaker designs. In this research work, the different ratings of circuit breaker were calculated. The other objective of this work was comparison between ratings of existing circuit breaker and calculated ratings in POWER WORLD SIMULATOR. Further, the impact of time delay in circuit breaker was studied. These calculations were performed for rated current of 400 & 630 Amps. The results performed in POWER WORLD SIMULATOR were shown better and information gained from the analysis can be used for proper relay selection, settings, performances and coordination.

  17. On Reaction Coordinate Optimality.

    Krivov, Sergei V


    The following question is addressed: how to establish that a constructed reaction coordinate is optimal, i.e., that it provides an accurate description of dynamics. It is shown that the reaction coordinate is optimal if its cut free energy profile, determined using length-weighted transitions, is constant, i.e., it is position and sampling interval independent. The observation leads to a number of interesting results. In particular, the equilibrium flux between two boundary states can be computed exactly as diffusion on a free energy profile associated with the coordinate. The mean square displacement, for the trajectory projected onto the coordinate, grows linear with time. That for the same trajectory projected onto a suboptimal coordinate grows slower than linear with time. The results are illustrated on a number of model systems, Sierpinski gasket, FIP35 protein, and beta3s peptide. PMID:26589017

  18. A bit serial sequential circuit

    Hu, S.; Whitaker, S.


    Normally a sequential circuit with n state variables consists of n unique hardware realizations, one for each state variable. All variables are processed in parallel. This paper introduces a new sequential circuit architecture that allows the state variables to be realized in a serial manner using only one next state logic circuit. The action of processing the state variables in a serial manner has never been addressed before. This paper presents a general design procedure for circuit construction and initialization. Utilizing pass transistors to form the combinational next state forming logic in synchronous sequential machines, a bit serial state machine can be realized with a single NMOS pass transistor network connected to shift registers. The bit serial state machine occupies less area than other realizations which perform parallel operations. Moreover, the logical circuit of the bit serial state machine can be modified by simply changing the circuit input matrix to develop an adaptive state machine.

  19. Synthetic Biology: Integrated Gene Circuits

    Nandagopal, Nagarajan; Michael B Elowitz


    A major goal of synthetic biology is to develop a deeper understanding of biological design principles from the bottom up, by building circuits and studying their behavior in cells. Investigators initially sought to design circuits “from scratch” that functioned as independently as possible from the underlying cellular system. More recently, researchers have begun to develop a new generation of synthetic circuits that integrate more closely with endogenous cellular processes. These approaches...

  20. Quantum Circuits with Mixed States

    Aharonov, Dorit; Kitaev, Alexei; Nisan, Noam


    We define the model of quantum circuits with density matrices, where non-unitary gates are allowed. Measurements in the middle of the computation, noise and decoherence are implemented in a natural way in this model, which is shown to be equivalent in computational power to standard quantum circuits. The main result in this paper is a solution for the subroutine problem: The general function that a quantum circuit outputs is a probabilistic function, but using pure state language, such a func...

  1. Microwatt Switched Capacitor Circuit Design

    Vittoz, E.


    The micropower CMOS implementation of the three basic components of switched capacitor circuits is discussed. Switches must be carefully designed to allow low voltage operation and compensation of clock feed-through by dummy transistors. Matched capacitors can be implemented in single polysilicon technologies primarily designed for digital micropower circuits. Excellent micropower amplifiers are realized by using simple one-stage circuits which take advantage of the special behaviour of MOS t...

  2. Designing Parity Preserving Reversible Circuits

    Paul, Goutam; Chattopadhyay, Anupam; Chandak, Chander


    Making a reversible circuit fault-tolerant is much more difficult than classical circuit and there have been only a few works in the area of parity-preserving reversible logic design. Moreover, all of these designs are ad hoc, based on some pre-defined parity preserving reversible gates as building blocks. In this paper, we for the first time propose a novel and systematic approach towards parity preserving reversible circuits design. We provide some related theoretical results and give two a...

  3. CMOS Nonlinear Signal Processing Circuits

    Hung,; Yu-Cherng,


    The chapter describes various nonlinear signal processing CMOS circuits, including a high reliable WTA/LTA, simple MED cell, and low-voltage arbitrary order extractor. We focus the discussion on CMOS analog circuit design with reliable, programmable capability, and low voltage operation. It is a practical problem when the multiple identical cells are required to match and realized within a single chip using a conventional process. Thus, the design of high-reliable circuit is indeed needed. Th...

  4. 49 CFR 236.13 - Spring switch; selection of signal control circuits through circuit controller.


    ... circuits through circuit controller. 236.13 Section 236.13 Transportation Other Regulations Relating to...; selection of signal control circuits through circuit controller. The control circuits of signals governing... circuit controller, or through the contacts of relay repeating the position of such circuit...

  5. Encoding of fear learning and memory in distributed neuronal circuits.

    Herry, Cyril; Johansen, Joshua P


    How sensory information is transformed by learning into adaptive behaviors is a fundamental question in neuroscience. Studies of auditory fear conditioning have revealed much about the formation and expression of emotional memories and have provided important insights into this question. Classical work focused on the amygdala as a central structure for fear conditioning. Recent advances, however, have identified new circuits and neural coding strategies mediating fear learning and the expression of fear behaviors. One area of research has identified key brain regions and neuronal coding mechanisms that regulate the formation, specificity and strength of fear memories. Other work has discovered critical circuits and neuronal dynamics by which fear memories are expressed through a medial prefrontal cortex pathway and coordinated activity across interconnected brain regions. Here we review these recent advances alongside prior work to provide a working model of the extended circuits and neuronal coding mechanisms mediating fear learning and memory. PMID:25413091

  6. Coordination failure caused by sunspots

    Beugnot, Julie; Gürgüç, Zeynep; Øvlisen, Frederik Roose; Roos, Michael M. W.


    In a coordination game with Pareto-ranked equilibria, we study whether a sunspot can lead to either coordination on an inferior equilibrium (mis-coordination) or to out-of equilibrium behavior (dis-coordination). While much of the literature searches for mechanisms to attain coordination on the e......-dominant equilibrium, but in the sunspot treatment, dis-coordination is frequent. Sunspots lead to significant inefficiency, and we conclude that sunspots can indeed cause coordination failure....

  7. MAPK transgenic circuit to improve plant stress-tolerance?

    Moustafa, Khaled


    Thanks to their distinctive mode of action in a coordinated switch-like way, their multi-tiered signaling cascades and their involvement in cell responses to multiple internal and external stimuli, MAP kinases offer a remarkable possibility to be assembled into what we can call “MAPK transgenic circuits” to improve cell functions. Such circuit could be used to enhance cell signaling efficiency and boost cell functions for several purposes in plant biotechnology, medicine, and pharmaceutical i...

  8. MAPK transgenic circuit to improve plant stress-tolerance?

    Moustafa, Khaled


    Thanks to their distinctive mode of action in a coordinated switch-like way, their multi-tiered signaling cascades and their involvement in cell responses to multiple internal and external stimuli, MAP kinases offer a remarkable possibility to be assembled into what we can call “MAPK transgenic circuits” to improve cell functions. Such circuit could be used to enhance cell signaling efficiency and boost cell functions for several purposes in plant biotechnology, medicine, and pharmaceutical industry. PMID:25482799

  9. A Circuit to Demonstrate Phase Relationships in "RLC" Circuits

    Sokol, P. E.; Warren, G.; Zheng, B.; Smith, P.


    We have developed a circuit to demonstrate the phase relationships between resistive and reactive elements in series "RLC" circuits. We utilize a differential amplifier to allow the phases of the three elements and the current to be simultaneously displayed on an inexpensive four channel oscilloscope. We have included a novel circuit…

  10. Basic electronic circuits

    Buckley, P M


    In the past, the teaching of electricity and electronics has more often than not been carried out from a theoretical and often highly academic standpoint. Fundamentals and basic concepts have often been presented with no indication of their practical appli­ cations, and all too frequently they have been illustrated by artificially contrived laboratory experiments bearing little relationship to the outside world. The course comes in the form of fourteen fairly open-ended constructional experiments or projects. Each experiment has associated with it a construction exercise and an explanation. The basic idea behind this dual presentation is that the student can embark on each circuit following only the briefest possible instructions and that an open-ended approach is thereby not prejudiced by an initial lengthy encounter with the theory behind the project; this being a sure way to dampen enthusiasm at the outset. As the investigation progresses, questions inevitably arise. Descriptions of the phenomena encounte...

  11. A dishwasher for circuits

    Rosaria Marraffino


    You have always been told that electronic devices fear water. However, at the Surface Mount Devices (SMD) Workshop here at CERN all the electronic assemblies are cleaned with a machine that looks like a… dishwasher.   The circuit dishwasher. Credit: Clara Nellist.  If you think the image above shows a dishwasher, you wouldn’t be completely wrong. Apart from the fact that the whole pumping system and the case itself are made entirely from stainless steel and chemical resistant materials, and the fact that it washes electrical boards instead of dishes… it works exactly like a dishwasher. It’s a professional machine (mainly used in the pharmaceutical industry) designed to clean everything that can be washed with a water-based chemical soap. This type of treatment increases the lifetime of the electronic boards and therefore the LHC's reliability by preventing corrosion problems in the severe radiation and ozone environment of the LHC tunn...

  12. Memristor Circuits and Systems

    Zidan, Mohammed A.


    Current CMOS-based technologies are facing design challenges related to the continuous scaling down of the minimum feature size, according to Moore’s law. Moreover, conventional computing architecture is no longer an effective way of fulfilling modern applications demands, such as big data analysis, pattern recognition, and vector processing. Therefore, there is an exigent need to shift to new technologies, at both the architecture and the device levels. Recently, memristor devices and structures attracted attention for being promising candidates for this job. Memristor device adds a new dimension for designing novel circuits and systems. In addition, high-density memristor-based crossbar is widely considered to be the essential element for future memory and bio-inspired computing systems. However, numerous challenges need to be addressed before the memristor genuinely replaces current memory and computing technologies, which is the motivation behind this research effort. In order to address the technology challenges, we begin by fabricating and modeling the memristor device. The devices fabricated at our local clean room enriched our understanding of the memristive phenomenon and enabled the experimental testing for our memristor-based circuits. Moreover, our proposed mathematical modeling for memristor behavior is an essential element for the theoretical circuit design stage. Designing and addressing the challenges of memristor systems with practical complexity, however, requires an extra step, which takes the form of a reliable and modular simulation platform. We, therefore, built a new simulation platform for the resistive crossbar, which can simulate realistic size arrays filled with real memory data. In addition, this simulation platform includes various crossbar nonidealities in order to obtain accurate simulation results. Consequently, we were able to address the significant challenges facing the high density memristor crossbar, as the building block for

  13. Modeling cortical circuits.

    Rohrer, Brandon Robinson; Rothganger, Fredrick H.; Verzi, Stephen J.; Xavier, Patrick Gordon


    The neocortex is perhaps the highest region of the human brain, where audio and visual perception takes place along with many important cognitive functions. An important research goal is to describe the mechanisms implemented by the neocortex. There is an apparent regularity in the structure of the neocortex [Brodmann 1909, Mountcastle 1957] which may help simplify this task. The work reported here addresses the problem of how to describe the putative repeated units ('cortical circuits') in a manner that is easily understood and manipulated, with the long-term goal of developing a mathematical and algorithmic description of their function. The approach is to reduce each algorithm to an enhanced perceptron-like structure and describe its computation using difference equations. We organize this algorithmic processing into larger structures based on physiological observations, and implement key modeling concepts in software which runs on parallel computing hardware.

  14. VLSI circuits implementing computational models of neocortical circuits.

    Wijekoon, Jayawan H B; Dudek, Piotr


    This paper overviews the design and implementation of three neuromorphic integrated circuits developed for the COLAMN ("Novel Computing Architecture for Cognitive Systems based on the Laminar Microcircuitry of the Neocortex") project. The circuits are implemented in a standard 0.35 μm CMOS technology and include spiking and bursting neuron models, and synapses with short-term (facilitating/depressing) and long-term (STDP and dopamine-modulated STDP) dynamics. They enable execution of complex nonlinear models in accelerated-time, as compared with biology, and with low power consumption. The neural dynamics are implemented using analogue circuit techniques, with digital asynchronous event-based input and output. The circuits provide configurable hardware blocks that can be used to simulate a variety of neural networks. The paper presents experimental results obtained from the fabricated devices, and discusses the advantages and disadvantages of the analogue circuit approach to computational neural modelling. PMID:22342970

  15. Optimal Coordination of Automatic Line Switches for Distribution Systems

    Jyh-Cherng Gu


    Full Text Available For the Taiwan Power Company (Taipower, the margins of coordination times between the lateral circuit breakers (LCB of underground 4-way automatic line switches and the protection equipment of high voltage customers are often too small. This could lead to sympathy tripping by the feeder circuit breaker (FCB of the distribution feeder and create difficulties in protection coordination between upstream and downstream protection equipment, identification of faults, and restoration operations. In order to solve the problem, it is necessary to reexamine the protection coordination between LCBs and high voltage customers’ protection equipment, and between LCBs and FCBs, in order to bring forth new proposals for settings and operations. This paper applies linear programming to optimize the protection coordination of protection devices, and proposes new time current curves (TCCs for the overcurrent (CO and low-energy overcurrent (LCO relays used in normally open distribution systems by performing simulations in the Electrical Transient Analyzer Program (ETAP environment. The simulation results show that the new TCCs solve the coordination problems among high voltage customer, lateral, feeder, bus-interconnection, and distribution transformer. The new proposals also satisfy the requirements of Taipower on protection coordination of the distribution feeder automation system (DFAS. Finally, the authors believe that the system configuration, operation experience, and relevant criteria mentioned in this paper may serve as valuable references for other companies or utilities when building DFAS of their own.

  16. Supercritical Airfoil Coordinates

    National Aeronautics and Space Administration — Rectangular Supercritical Wing (Ricketts) - design and measured locations are provided in an Excel file RSW_airfoil_coordinates_ricketts.xls . One sheet is with Non...

  17. Movement and Coordination

    ... in Action Medical Editor & Editorial Advisory Board Sponsors Sponsorship Opporunities Spread the Word Shop AAP Find a Pediatrician ... Movement and Coordination Page Content Article Body At this age, your child will seem to be continually on the go— ...

  18. Demonstrations with an "LCR" Circuit

    Kraftmakher, Yaakov


    The "LCR" circuit is an important topic in the course of electricity and magnetism. Papers in this field consider mainly the forced oscillations and resonance. Our aim is to show how to demonstrate the free and self-excited oscillations in an "LCR" circuit. (Contains 4 figures.)

  19. Enhancement of Linear Circuit Program

    Gaunholt, Hans; Dabu, Mihaela; Beldiman, Octavian


    In this report a preliminary user friendly interface has been added to the LCP2 program making it possible to describe an electronic circuit by actually drawing the circuit on the screen. Component values and other options and parameters can easily be set by the aid of the interface. The interfac...

  20. Improved simulation of stabilizer circuits

    The Gottesman-Knill theorem says that a stabilizer circuit - that is, a quantum circuit consisting solely of controlled-NOT (CNOT), Hadamard, and phase gates - can be simulated efficiently on a classical computer. This paper improves that theorem in several directions. First, by removing the need for Gaussian elimination, we make the simulation algorithm much faster at the cost of a factor of 2 increase in the number of bits needed to represent a state. We have implemented the improved algorithm in a freely available program called CHP (CNOT-Hadamard-phase), which can handle thousands of qubits easily. Second, we show that the problem of simulating stabilizer circuits is complete for the classical complexity class +L, which means that stabilizer circuits are probably not even universal for classical computation. Third, we give efficient algorithms for computing the inner product between two stabilizer states, putting any n-qubit stabilizer circuit into a 'canonical form' that requires at most O(n2/log n) gates, and other useful tasks. Fourth, we extend our simulation algorithm to circuits acting on mixed states, circuits containing a limited number of nonstabilizer gates, and circuits acting on general tensor-product initial states but containing only a limited number of measurements

  1. Pharmacokinetics and "RC" Circuit Concepts

    De Cock, Mieke; Janssen, Paul


    Most introductory physics courses include a chapter on "RC" circuits in which the differential equations for the charging and discharging of a capacitor are derived. A number of papers in this journal describe lab experiments dealing with the measurement of different parameters in such "RC" circuits. In this contribution, we…

  2. Postirradiation Effects In Integrated Circuits

    Shaw, David C.; Barnes, Charles E.


    Two reports discuss postirradiation effects in integrated circuits. Presents examples of postirradiation measurements of performances of integrated circuits of five different types: dual complementary metal oxide/semiconductor (CMOS) flip-flop; CMOS analog multiplier; two CMOS multiplying digital-to-analog converters; electrically erasable programmable read-only memory; and semiconductor/oxide/semiconductor octal buffer driver.

  3. Coordination and Policy Traps

    Angeletos, George-Marios; Hellwig, Christian; Pavan, Alessandro


    This paper examines the ability of a policy maker to control equilibrium outcomes in an environment where market participants play a coordination game with information heterogeneity. We consider defense policies against speculative currency attacks in a model where speculators observe the fundamentals with idiosyncratic noise. The policy maker is willing to take a costly policy action only for moderate fundamentals. Market participants can use this information to coordinate on di.erent respon...

  4. Attribute coordination in organizations

    Yingyi Qian; Gerard Roland; Chenggang Xu


    We study coordination in organizations with a variety of organizational forms. Coordination in organization is modeled as the adjustment of attributes and capacities of tasks when facing external shocks. An M-form (U-form) organization groups complementary (substitutable) tasks together in one unit. In the presence of only attribute shocks, particularly when gains from specialization are small, communication is poor, or shocks are more likely, the expected payoff of the decentralized M-form i...

  5. Demultiplexer circuit for neural stimulation

    Wessendorf, Kurt O; Okandan, Murat; Pearson, Sean


    A demultiplexer circuit is disclosed which can be used with a conventional neural stimulator to extend the number of electrodes which can be activated. The demultiplexer circuit, which is formed on a semiconductor substrate containing a power supply that provides all the dc electrical power for operation of the circuit, includes digital latches that receive and store addressing information from the neural stimulator one bit at a time. This addressing information is used to program one or more 1:2.sup.N demultiplexers in the demultiplexer circuit which then route neural stimulation signals from the neural stimulator to an electrode array which is connected to the outputs of the 1:2.sup.N demultiplexer. The demultiplexer circuit allows the number of individual electrodes in the electrode array to be increased by a factor of 2.sup.N with N generally being in a range of 2-4.

  6. Electronic design with integrated circuits

    Comer, D. J.

    The book is concerned with the application of integrated circuits and presents the material actually needed by the system designer to do an effective job. The operational amplifier (op amp) is discussed, taking into account the electronic amplifier, the basic op amp, the practical op amp, analog applications, and digital applications. Digital components are considered along with combinational logic, digital subsystems, the microprocessor, special circuits, communications, and integrated circuit building blocks. Attention is given to logic gates, logic families, multivibrators, the digital computer, digital methods, communicating with a computer, computer organization, register and timing circuits for data transfer, arithmetic circuits, memories, the microprocessor chip, the control unit, communicating with the microprocessor, examples of microprocessor architecture, programming a microprocessor, the voltage-controlled oscillator, the phase-locked loop, analog-to-digital conversion, amplitude modulation, frequency modulation, pulse and digital transmission, the semiconductor diode, the bipolar transistor, and the field-effect transistor.

  7. Continuous parallel coordinates.

    Heinrich, Julian; Weiskopf, Daniel


    Typical scientific data is represented on a grid with appropriate interpolation or approximation schemes,defined on a continuous domain. The visualization of such data in parallel coordinates may reveal patterns latently contained in the data and thus can improve the understanding of multidimensional relations. In this paper, we adopt the concept of continuous scatterplots for the visualization of spatially continuous input data to derive a density model for parallel coordinates. Based on the point-line duality between scatterplots and parallel coordinates, we propose a mathematical model that maps density from a continuous scatterplot to parallel coordinates and present different algorithms for both numerical and analytical computation of the resulting density field. In addition, we show how the 2-D model can be used to successively construct continuous parallel coordinates with an arbitrary number of dimensions. Since continuous parallel coordinates interpolate data values within grid cells, a scalable and dense visualization is achieved, which will be demonstrated for typical multi-variate scientific data. PMID:19834230

  8. Magnetic Coordinate Systems

    Laundal, K. M.; Richmond, A. D.


    Geospace phenomena such as the aurora, plasma motion, ionospheric currents and associated magnetic field disturbances are highly organized by Earth's main magnetic field. This is due to the fact that the charged particles that comprise space plasma can move almost freely along magnetic field lines, but not across them. For this reason it is sensible to present such phenomena relative to Earth's magnetic field. A large variety of magnetic coordinate systems exist, designed for different purposes and regions, ranging from the magnetopause to the ionosphere. In this paper we review the most common magnetic coordinate systems and describe how they are defined, where they are used, and how to convert between them. The definitions are presented based on the spherical harmonic expansion coefficients of the International Geomagnetic Reference Field (IGRF) and, in some of the coordinate systems, the position of the Sun which we show how to calculate from the time and date. The most detailed coordinate systems take the full IGRF into account and define magnetic latitude and longitude such that they are constant along field lines. These coordinate systems, which are useful at ionospheric altitudes, are non-orthogonal. We show how to handle vectors and vector calculus in such coordinates, and discuss how systematic errors may appear if this is not done correctly.

  9. 49 CFR 236.728 - Circuit, trap.


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Circuit, trap. 236.728 Section 236.728... Circuit, trap. A term applied to a circuit used where it is desirable to provide a track circuit but where it is impracticable to maintain a track circuit....

  10. Variational integrators for electric circuits

    In this contribution, we develop a variational integrator for the simulation of (stochastic and multiscale) electric circuits. When considering the dynamics of an electric circuit, one is faced with three special situations: 1. The system involves external (control) forcing through external (controlled) voltage sources and resistors. 2. The system is constrained via the Kirchhoff current (KCL) and voltage laws (KVL). 3. The Lagrangian is degenerate. Based on a geometric setting, an appropriate variational formulation is presented to model the circuit from which the equations of motion are derived. A time-discrete variational formulation provides an iteration scheme for the simulation of the electric circuit. Dependent on the discretization, the intrinsic degeneracy of the system can be canceled for the discrete variational scheme. In this way, a variational integrator is constructed that gains several advantages compared to standard integration tools for circuits; in particular, a comparison to BDF methods (which are usually the method of choice for the simulation of electric circuits) shows that even for simple LCR circuits, a better energy behavior and frequency spectrum preservation can be observed using the developed variational integrator

  11. 30 CFR 75.800 - High-voltage circuits; circuit breakers.


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 75.800... § 75.800 High-voltage circuits; circuit breakers. High-voltage circuits entering the underground area of any coal mine shall be protected by suitable circuit breakers of adequate interrupting...

  12. Spectral Purity Enhancement via Polyphase Multipath Circuits

    Mensink, Eisse; Klumperink, Eric; Nauta, Bram


    The central question of this paper is: can we enhance the spectral purity of nonlinear circuits by using polyphase multipath circuits? The basic idea behind polyphase multipath circuits is to split the nonlinear circuits into two or more paths and exploit phase differences between these paths to cancel undesired distortion products. It turns out that it is very well possible to use polyphase multipath circuits to cancel distortion products produced by a nonlinear circuit. Unfortunately, there...

  13. The Maplin electronic circuits handbook

    Tooley, Michael


    The Maplin Electronic Circuits Handbook provides pertinent data, formula, explanation, practical guidance, theory and practical guidance in the design, testing, and construction of electronic circuits. This book discusses the developments in electronics technology techniques.Organized into 11 chapters, this book begins with an overview of the common types of passive component. This text then provides the reader with sufficient information to make a correct selection of passive components for use in the circuits. Other chapters consider the various types of the most commonly used semiconductor

  14. Generator Coordinate Truncations

    Hagino, K; Reinhard, P G


    We investigate the accuracy of several schemes to calculate ground-state correlation energies using the generator coordinate technique. Our test-bed for the study is the $sd$ interacting boson model, equivalent to a 6-level Lipkin-type model. We find that the simplified projection of a triaxial generator coordinate state using the $S_3$ subgroup of the rotation group is not very accurate in the parameter space of the Hamiltonian of interest. On the other hand, a full rotational projection of an axial generator coordinate state gives remarkable accuracy. We also discuss the validity of the simplified treatment using the extended Gaussian overlap approximation (top-GOA), and show that it works reasonably well when the number of boson is four or larger.

  15. Coordination and citizen participation.

    Tucker, D J


    This study investigates the validity of the assumption that coordination and citizen participation are related inversely and, thus, are incompatible as features in the same social service reform strategy. Seventeen social service organizations situated in the same urban area were studied. Data were obtained by structured interview. The concepts of coordination and citizen participation were operationalized by means of scales. The findings support the validity of the assumption noted above. Although interpretations of the findings can be provided, they are post-factum. This implies a need for explanatory research which might be guided by theories of community power structure and of organizational behavior. PMID:10246483

  16. Introduction to Coordination Chemistry

    Lawrance, Geoffrey Alan


    Introduction to Coordination Chemistry examines and explains how metals and molecules that bind as ligands interact, and the consequences of this assembly process. This book describes the chemical and physical properties and behavior of the complex assemblies that form, and applications that may arise as a result of these properties. Coordination complexes are an important but often hidden part of our world?even part of us?and what they do is probed in this book. This book distills the essence of this topic for undergraduate students and for research scientists.

  17. Wireless communications circuits and systems

    Sun, Yichuang


    This new book examines integrated circuits, systems and transceivers for wireless and mobile communications. It covers the most recent developments in key RF, IF, analogue, mixed-signal components and single-chip transceivers in CMOS technology.

  18. Design of HTS RSFQ circuits

    After more than a decade of research in single flux quantum (SFQ) circuits, a high level of understanding the requirements for designing them with high-Tc superconductors (HTS) has been gained. Recently, the fabrication processes are being developed to be more and more in accordance with practical requirements for the design of real digital circuits. The contribution describes the complex relationship of desired high operation temperature and required low bit-error probability on a quantitative level. Suitable guidelines for circuit dimensioning are given. The discussion is oriented at one of the contemporary technological approaches. It is concluded that, despite some previous estimations, HTS SFQ circuits can work stable theoretically also at a relatively high operation temperature

  19. Extensional Uniformity for Boolean Circuits

    McKenzie, Pierre; Vollmer, Heribert


    Imposing an extensional uniformity condition on a non-uniform circuit complexity class C means simply intersecting C with a uniform class L. By contrast, the usual intensional uniformity conditions require that a resource-bounded machine be able to exhibit the circuits in the circuit family defining C. We say that (C,L) has the "Uniformity Duality Property" if the extensionally uniform class C \\cap L can be captured intensionally by means of adding so-called "L-numerical predicates" to the first-order descriptive complexity apparatus describing the connection language of the circuit family defining C. This paper exhibits positive instances and negative instances of the Uniformity Duality Property.

  20. Circuit design on plastic foils

    Raiteri, Daniele; Roermund, Arthur H M


    This book illustrates a variety of circuit designs on plastic foils and provides all the information needed to undertake successful designs in large-area electronics.  The authors demonstrate architectural, circuit, layout, and device solutions and explain the reasons and the creative process behind each. Readers will learn how to keep under control large-area technologies and achieve robust, reliable circuit designs that can face the challenges imposed by low-cost low-temperature high-throughput manufacturing.   • Discusses implications of problems associated with large-area electronics and compares them to standard silicon; • Provides the basis for understanding physics and modeling of disordered material; • Includes guidelines to quickly setup the basic CAD tools enabling efficient and reliable designs; • Illustrates practical solutions to cope with hard/soft faults, variability, mismatch, aging and bias stress at architecture, circuit, layout, and device levels.

  1. Practical circuits with Physarum Wires

    Whiting, James G. H.; Mayne, Richard; Moody, Nadine; Costello, Ben de Lacy; Adamatzky, Andrew


    Purpose: Protoplasmic tubes of Physarum polycephalum, also know as Physarum Wires (PW), have been previously suggested as novel bio- electronic components. Until recently, practical examples of electronic circuits using PWs have been limited. These PWs have been shown to be self repairing, offering significant advantage over traditional electronic components. This article documents work performed to produce practical circuits using PWs. Method: We have demonstrated through manufacture and tes...

  2. Receiver Gain Modulation Circuit

    Jones, Hollis; Racette, Paul; Walker, David; Gu, Dazhen


    A receiver gain modulation circuit (RGMC) was developed that modulates the power gain of the output of a radiometer receiver with a test signal. As the radiometer receiver switches between calibration noise references, the test signal is mixed with the calibrated noise and thus produces an ensemble set of measurements from which ensemble statistical analysis can be used to extract statistical information about the test signal. The RGMC is an enabling technology of the ensemble detector. As a key component for achieving ensemble detection and analysis, the RGMC has broad aeronautical and space applications. The RGMC can be used to test and develop new calibration algorithms, for example, to detect gain anomalies, and/or correct for slow drifts that affect climate-quality measurements over an accelerated time scale. A generalized approach to analyzing radiometer system designs yields a mathematical treatment of noise reference measurements in calibration algorithms. By treating the measurements from the different noise references as ensemble samples of the receiver state, i.e. receiver gain, a quantitative description of the non-stationary properties of the underlying receiver fluctuations can be derived. Excellent agreement has been obtained between model calculations and radiometric measurements. The mathematical formulation is equivalent to modulating the gain of a stable receiver with an externally generated signal and is the basis for ensemble detection and analysis (EDA). The concept of generating ensemble data sets using an ensemble detector is similar to the ensemble data sets generated as part of ensemble empirical mode decomposition (EEMD) with exception of a key distinguishing factor. EEMD adds noise to the signal under study whereas EDA mixes the signal with calibrated noise. It is mixing with calibrated noise that permits the measurement of temporal-functional variability of uncertainty in the underlying process. The RGMC permits the evaluation of EDA by

  3. Recursive Advice for Coordination

    Terepeta, Michal Tomasz; Nielson, Hanne Riis; Nielson, Flemming

    Aspect-oriented programming is a programming paradigm that is often praised for the ability to create modular software and separate cross-cutting concerns. Recently aspects have been also considered in the context of coordination languages, offering similar advantages. However, introducing aspect...... systems. Even though primarily used for analysis of recursive programs, we are able to adapt them to fit this new context....

  4. Coordination of mobile labor

    Steiner, Jakub


    Roč. 139, č. 1 (2008), s. 25-46. ISSN 0022-0531 R&D Projects: GA MŠk LC542 Institutional research plan: CEZ:AV0Z70850503 Keywords : coordination * general equilibrium * global game s Subject RIV: AH - Economics Impact factor: 1.224, year: 2008

  5. Facets of coordination chemistry

    Agarwala, BV


    A concise account of coordination chemistry since its inception is given here together with some of the newer significant facets. This book covers a broad spectrum of various topics on Environment, Cyclic Voltammetry, Chromatography, Metal Complexes of biological interest, Alkoxides, NMR spectroscopy and others. These are useful to the scientific community engaged in the field of Inorganic Chemistry and Analytical Chemistry.

  6. Coordinating Work with Groupware

    Pors, Jens Kaaber; Simonsen, Jesper

    One important goal of employing groupware is to make possible complex collaboration between geographically distributed groups. This requires a dual transformation of both technology and work practice. The challenge is to re­duce the complexity of the coordination work by successfully inte­grating...

  7. The potential roles of T-type Ca2+ channels in motor coordination

    Young-Gyun ePark


    Full Text Available Specific behavioral patterns are expressed by complex combinations of muscle coordination. Tremors are simple behavioral patterns and are the focus of studies investigating motor coordination mechanisms in the brain. T-type Ca2+ channels mediate intrinsic neuronal oscillations and rhythmic burst spiking, and facilitate the generation of tremor rhythms in motor circuits. Despite substantial evidence that T-type Ca2+ channels mediate pathological tremors, their roles in physiological motor coordination and behavior remain unknown. Here, we review recent progress in understanding the roles that T-type Ca2+ channels play under pathological conditions, and discuss the potential relevance of these channels in mediating physiological motor coordination.

  8. 46 CFR 169.670 - Circuit breakers.


    ... 46 Shipping 7 2010-10-01 2010-10-01 false Circuit breakers. 169.670 Section 169.670 Shipping COAST... Gross Tons § 169.670 Circuit breakers. Each circuit breaker must be of the manually reset type designed for— (a) Inverse time delay; (b) Instantaneous short circuit protection; and (c) Repeated opening...

  9. Tunable circuit for tunable capacitor devices

    Rivkina, Tatiana; Ginley, David S.


    A tunable circuit (10) for a capacitively tunable capacitor device (12) is provided. The tunable circuit (10) comprises a tunable circuit element (14) and a non-tunable dielectric element (16) coupled to the tunable circuit element (16). A tunable capacitor device (12) and a method for increasing the figure of merit in a tunable capacitor device (12) are also provided.

  10. Equivalence Checking of Hierarchical Combinational Circuits

    Williams, Poul Frederick; Hulgaard, Henrik; Andersen, Henrik Reif


    This paper presents a method for verifying that two hierarchical combinational circuits implement the same Boolean functions. The key new feature of the method is its ability to exploit the modularity of circuits to reuse results obtained from one part of the circuits in other parts. We demonstrate...... our method on large adder and multiplier circuits....

  11. Multi-Layer E-Textile Circuits

    Dunne, Lucy E.; Bibeau, Kaila; Mulligan, Lucie; Frith, Ashton; Simon, Cory


    Stitched e-textile circuits facilitate wearable, flexible, comfortable wearable technology. However, while stitched methods of e-textile circuits are common, multi-layer circuit creation remains a challenge. Here, we present methods of stitched multi-layer circuit creation using accessible tools and techniques.

  12. Comparison between four piezoelectric energy harvesting circuits

    Jinhao QIU; Hao JIANG; Hongli JI; Kongjun ZHU


    This paper investigates and compares the efficiencies of four different interfaces for vibration-based energy harvesting systems. Among those four circuits, two circuits adopt the synchronous switching technique, in which the circuit is switched synchronously with the vibration. In this study, a simple source-less trigger circuit used to control the synchronized switch is proposed and two interface circuits of energy harvesting systems are designed based on the trigger circuit. To validate the effectiveness of the proposed circuits, an experimental system was established and the power harvested by those circuits from a vibration beam was measured. Experimental results show that the two new circuits can increase the harvested power by factors 2.6 and 7, respectively, without consuming extra power in the circuits.

  13. Conformal Fermi Coordinates

    Dai, Liang; Schmidt, Fabian


    Fermi Normal Coordinates (FNC) are a useful frame for isolating the locally observable, physical effects of a long-wavelength spacetime perturbation. Their cosmological application, however, is hampered by the fact that they are only valid on scales much smaller than the horizon. We introduce a generalization that we call Conformal Fermi Coordinates (CFC). CFC preserve all the advantages of FNC, but in addition are valid outside the horizon. They allow us to calculate the coupling of long- and short-wavelength modes on all scales larger than the sound horizon of the cosmological fluid, starting from the epoch of inflation until today, by removing the complications of the second order Einstein equations to a large extent, and eliminating all gauge ambiguities. As an application, we present a calculation of the effect of long-wavelength tensor modes on small scale density fluctuations. We recover previous results, but clarify the physical content of the individual contributions in terms of locally measurable ef...

  14. Principles of Coordination Polymerisation

    Kuran, Witold


    The first all-inclusive text covering coordination polymerisation, including important classes of non-hydrocarbon monomers. Charting the achievements and progress in the field, in terms of both basic and industrial research, this book offers a unified and complete overview of coordination polymerisation. Provides detailed description of the historical development of the subject Presents a unified view of catalysis, mechanisms, structures and utility Encourages learning through a step-by-step progression from basic to in-depth text Features end-of-chapter exercises to reinforce understanding Offers a full bibliography and comprehensive literature review Requisite reading for research students studying introductory and advanced courses in; polymer science, catalysis and polymerisation catalysis, and valuable reference for researchers and technicians in industry.

  15. Improved Simulation of Stabilizer Circuits

    Aaronson, S; Aaronson, Scott; Gottesman, Daniel


    The Gottesman-Knill theorem says that a stabilizer circuit -- that is, a quantum circuit consisting solely of CNOT, Hadamard, and phase gates -- can be simulated efficiently on a classical computer. This paper improves that theorem in several directions. * By removing the need for Gaussian elimination, we make the simulation algorithm much faster at the cost of a factor-2 increase in the number of bits needed to represent a state. We have implemented the improved algorithm in a freely-available program called CHP (CNOT-Hadamard-Phase), which can handle thousands of qubits easily. * We show that the problem of simulating stabilizer circuits is complete for the classical complexity class ParityL, which means that stabilizer circuits are probably not even universal for classical computation. * We give efficient algorithms for computing the inner product between two stabilizer states, putting any n-qubit stabilizer circuit into a "canonical form" that requires at most O(n^2/log n) gates, and other useful tasks. *...

  16. A New Method for Constructing Circuit Codes

    Byrnes, Kevin M.


    Circuit codes are constructed from induced cycles in the graph of the $n$ dimensional hypercube. They are both theoretically and practically important, as circuit codes can be used as error correcting codes. When constructing circuit codes, the length of the cycle determines its accuracy and a parameter called the spread determines how many errors it can detect. We present a new method for constructing a circuit code of spread $k+1$ from a circuit code of spread $k$. This method leads to reco...

  17. Distortion Cancellation via Polyphase Multipath Circuits

    Mensink, Eisse; Klumperink, Eric A.M.; Nauta, Bram


    The central question of this paper is: can we enhance the spectral purity of nonlinear circuits with the help of polyphase multipath circuits. Polyphase multipath circuits are circuits with two or more paths that exploit phase differences between the paths to cancel unwanted signals. It turns out that it is very well possible to cancel distortion products produced by a nonlinear circuit. Unfortunately, there are also some spectral components that cannot be cancelled with the polyphase multipa...

  18. Instrumentation and test gear circuits manual

    Marston, R M


    Instrumentation and Test Gear Circuits Manual provides diagrams, graphs, tables, and discussions of several types of practical circuits. The practical circuits covered in this book include attenuators, bridges, scope trace doublers, timebases, and digital frequency meters. Chapter 1 discusses the basic instrumentation and test gear principles. Chapter 2 deals with the design of passive attenuators, and Chapter 3 with passive and active filter circuits. The subsequent chapters tackle 'bridge' circuits, analogue and digital metering techniques and circuitry, signal and waveform generation, and p

  19. Communication and interference coordination

    Blasco-Serrano, Ricardo; Thobaben, Ragnar; Skoglund, Mikael


    We study the problem of controlling the interference created to an external observer by a communication processes. We model the interference in terms of its type (empirical distribution), and we analyze the consequences of placing constraints on the admissible type. Considering a single interfering link, we characterize the communication-interference capacity region. Then, we look at a scenario where the interference is jointly created by two users allowed to coordinate their actions prior to...

  20. Advertising and Coordination


    We show that when relevant market information such as price is difficult to communicate, advertising plays a key role in bringing about optimal coordination of purchase behavior: an efficient firm uses advertising expenditures in place of price to inform sophisticated consumers that it offers a better deal. This provides a theoretical explanation for Benham's (1972) empirical association of the ability to advertise with lower prices and larger scale. We find that advertising improves welfare ...

  1. Global coordination: weighted voting

    Jan-Erik Lane


    Full Text Available In order to halt the depletion of global ecological capital, a number of different kinds of meetings between Governments of countries in the world has been scheduled. The need for global coordination of environmental policies has become ever more obvious, supported by more and more evidence of the running down of ecological capital. But there are no formal or binding arrangements in sight, as global environmental coordination suffers from high transaction costs (qualitative voting. The CO2 equivalent emissions, resulting in global warming, are driven by the unstoppable economic expansion in the global market economy, employing mainly fossil fuel generated energy, although at the same time lifting sharply the GDP per capita of several emerging countries. Only global environmental coordination on the successful model of the World Band and the IMF (quantitative voting can stem the rising emissions numbers and stop further environmental degradation. However, the system of weighted voting in the WB and the IMF must be reformed by reducing the excessive voting power disparities, for instance by reducing all member country votes by the cube root expression.

  2. Improving Project Manufacturing Coordination

    Korpivaara Ville


    Full Text Available The objective of this research is to develop firms’ project manufacturing coordination. The development will be made by centralizing the manufacturing information flows in one system. To be able to centralize information, a deep user need assessment is required. After user needs have been identified, the existing system will be developed to match these needs. The theoretical background is achieved through exploring the literature of project manufacturing, development project success factors and different frameworks and tools for development project execution. The focus of this research is rather in customer need assessment than in system’s technical expertise. To ensure the deep understanding of customer needs this study is executed by action research method. As a result of this research the information system for project manufacturing coordination was developed to respond revealed needs of the stakeholders. The new system improves the quality of the manufacturing information, eliminates waste in manufacturing coordination processes and offers a better visibility to the project manufacturing. Hence it provides a solid base for the further development of project manufacturing.

  3. 30 CFR 77.800 - High-voltage circuits; circuit breakers.


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-voltage circuits; circuit breakers. 77.800... COAL MINES Surface High-Voltage Distribution § 77.800 High-voltage circuits; circuit breakers. High-voltage circuits supplying power to portable or mobile equipment shall be protected by suitable...

  4. 30 CFR 77.506 - Electric equipment and circuits; overload and short-circuit protection.


    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment and circuits; overload and short-circuit protection. 77.506 Section 77.506 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION... circuits; overload and short-circuit protection. Automatic circuit-breaking devices or fuses of the...

  5. 49 CFR 236.5 - Design of control circuits on closed circuit principle.


    ... 49 Transportation 4 2010-10-01 2010-10-01 false Design of control circuits on closed circuit..., AND APPLIANCES Rules and Instructions: All Systems General § 236.5 Design of control circuits on closed circuit principle. All control circuits the functioning of which affects safety of train...

  6. Fault Testing for Reversible Circuits

    Patel, K N; Markov, I L; Patel, Ketan N.; Hayes, John P.; Markov, Igor L.


    Applications of reversible circuits can be found in the fields of low-power computation, cryptography, communications, digital signal processing, and the emerging field of quantum computation. Furthermore, prototype circuits for low-power applications are already being fabricated in CMOS. Regardless of the eventual technology adopted, testing is sure to be an important component in any robust implementation. We consider the test set generation problem. Reversibility affects the testing problem in fundamental ways, making it significantly simpler than for the irreversible case. For example, we show that any test set that detects all single stuck-at faults in a reversible circuit also detects all multiple stuck-at faults. We present efficient test set constructions for the standard stuck-at fault model as well as the usually intractable cell-fault model. We also give a practical test set generation algorithm, based on an integer linear programming formulation, that yields test sets approximately half the size o...

  7. Multiplication circuit for particle identification

    After having commented some characteristics of the particles present in a cyclotron, and their interactions, this report addresses the development and the implementation of a method and a device for selecting and counting particles. The author presents the principle and existing techniques of selection. In comparison with an existing device, the proportional counter and the scintillator are replaced by junctions: a surface barrier type junction (a silicon N layer with a very thin oxygen layer playing the role of the P layer), and lithium-based junction (a silicon P type layer made intrinsic by migration of lithium). The author then describes the developed circuit and assembly (background of the choice of a multiplication circuit), and their operation. In the next part, he presents the performed tests and discuses the obtained results. He finally outlines the benefits of the herein presented circuit

  8. Vertically Integrated Circuits at Fermilab

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom; /Fermilab


    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  9. Additive Manufacturing of Hybrid Circuits

    Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David; Hirschfeld, Deidre; Hall, Aaron C.; Bell, Nelson S.


    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects. Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. Finally, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.

  10. Design automation for integrated circuits

    Newell, S. B.; de Geus, A. J.; Rohrer, R. A.


    Consideration is given to the development status of the use of computers in automated integrated circuit design methods, which promise the minimization of both design time and design error incidence. Integrated circuit design encompasses two major tasks: error specification, in which the goal is a logic diagram that accurately represents the desired electronic function, and physical specification, in which the goal is an exact description of the physical locations of all circuit elements and their interconnections on the chip. Design automation not only saves money by reducing design and fabrication time, but also helps the community of systems and logic designers to work more innovatively. Attention is given to established design automation methodologies, programmable logic arrays, and design shortcuts.

  11. Nuclear sensor signal processing circuit

    Kallenbach, Gene A.; Noda, Frank T.; Mitchell, Dean J.; Etzkin, Joshua L.


    An apparatus and method are disclosed for a compact and temperature-insensitive nuclear sensor that can be calibrated with a non-hazardous radioactive sample. The nuclear sensor includes a gamma ray sensor that generates tail pulses from radioactive samples. An analog conditioning circuit conditions the tail-pulse signals from the gamma ray sensor, and a tail-pulse simulator circuit generates a plurality of simulated tail-pulse signals. A computer system processes the tail pulses from the gamma ray sensor and the simulated tail pulses from the tail-pulse simulator circuit. The nuclear sensor is calibrated under the control of the computer. The offset is adjusted using the simulated tail pulses. Since the offset is set to zero or near zero, the sensor gain can be adjusted with a non-hazardous radioactive source such as, for example, naturally occurring radiation and potassium chloride.

  12. Circuit model of Rimfire switch

    A cascade gaps circuit model for Rimfire switch has been developed. The circuit model includes all stray capacitances and spark channel on-state conduction characteristics. It can not only describe the behavior of Rimfire switch, but also allow analysis of the time varying voltage and current at each part of the switch, describing the internal characters of the switch. PSpice was used to implement the cascade gaps circuit model and simulate a 700 kV Rimfire switch. The simulation shows that, the voltage of the whole switch will be higher than 700 kV when the laser triggered section has broken down but all cascade gaps keep dielectric, and the voltage of all gaps attenuates with high frequency oscillation. (authors)

  13. Effect of coordination of optimal reclosing and fuzzy controlled braking resistor on transient stability during unsuccessful reclosing

    Ali, Mohd.Hasan; Murata, Toshiaki; Tamura, Junji


    This paper analyzes the effect of the coordination of optimal reclosing and fuzzy logic-controlled braking resistor on the transient stability of a multimachine power system in case of an unsuccessful reclosing of circuit breakers. The transient stability performance of the coordinated operation of optimal reclosing and fuzzy controlled braking resistor is compared to that of the coordinated operation of conventional auto-reclosing and fuzzy controlled braking resistor. The effectiveness of t...

  14. Irradiation device for electronic circuits

    The device includes a radiation-tight vessel, a mobile carriage for a radioactive source, a vertically mobile plate carrying a circuit to be tested and an irradiation detector. It includes also a cover related to the vacuum vessel which prevents the source from emitting for a certain source position. It includes also means which prevents irradiation when the vessel is not assembled and which prevents the dismantling when the source is radiating. It includes also a device allowing to disconnect the translation displacement controls of the circuit and of the radiation detector when the source is radiating

  15. Electronic circuits fundamentals and applications

    Tooley, Mike


    The essential textbook for students following pre-degree level courses, technician engineers, and all who need to access a straightforwardly written reference covering all the major areas of 21st century electronics.Mike Tooley's classic reference texts Electronic Circuits Handbook and Electronics Circuits Students Handbook have long offered a unique coverage of analog and digital electronics and applications in a single volume. The two versions of this title have now been combined to produce a major textbook which combines comprehensive coverage of principles and applications with readability

  16. Short-circuit impedance measurement

    Pedersen, Knud Ole Helgesen; Nielsen, Arne Hejde; Poulsen, Niels Kjølstad


    Methods for estimating the short-circuit impedance in the power grid are investigated for various voltage levels and situations. The short-circuit impedance is measured, preferably from naturally occurring load changes in the grid, and it is shown that such a measurement system faces different...... kinds of problems at different locations in the grid. This means that the best measurement methodology changes depending on the location in the grid. Three typical examples with different measurement problems at 400 kV, 132 kV and 400 V voltage level are discussed....

  17. Embedded systems circuits and programming

    Sanchez, Julio


    During the development of an engineered product, developers often need to create an embedded system--a prototype--that demonstrates the operation/function of the device and proves its viability. Offering practical tools for the development and prototyping phases, Embedded Systems Circuits and Programming provides a tutorial on microcontroller programming and the basics of embedded design. The book focuses on several development tools and resources: Standard and off-the-shelf components, such as input/output devices, integrated circuits, motors, and programmable microcontrollers The implementat

  18. Simplified design of filter circuits

    Lenk, John


    Simplified Design of Filter Circuits, the eighth book in this popular series, is a step-by-step guide to designing filters using off-the-shelf ICs. The book starts with the basic operating principles of filters and common applications, then moves on to describe how to design circuits by using and modifying chips available on the market today. Lenk's emphasis is on practical, simplified approaches to solving design problems.Contains practical designs using off-the-shelf ICsStraightforward, no-nonsense approachHighly illustrated with manufacturer's data sheets

  19. Fermionic models with superconducting circuits

    Las Heras, Urtzi; Garcia-Alvarez, Laura; Mezzacapo, Antonio; Lamata, Lucas [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Solano, Enrique [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain)


    We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition, and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups. (orig.)

  20. Circuit, Thermal and Cost Characteristics of Impulse Magnetizing Circuits


    This paper describes the development of circuit, thermal and cost model for a capacitor discharge impulse megnetizer and compares simulations to measurements from an actual system. We used a cost structure consisting of five major subsystems for cost modeling. Especially, we estimated the potential for cost reductions impulse magnetizer as a function of time using the learning curve.

  1. Communication, leadership and coordination failure

    Dong, Lu; Montero, Maria; Possajennikov, Alex


    Using experimental methods, this paper investigates the limits of communication and leadership in aiding group coordination in a minimum effort game. Choosing the highest effort is the payoff dominant Nash equilibrium in this game, and communication and leadership are expected to help in coordinating on such an equilibrium. We consider an environment in which the benefits of coordination are low compared to the cost of mis-coordination. In this environment, players converge to the most ineffi...

  2. Communication, Leadership and Coordination Failure

    Lu Dong; Maria Montero; Alex Possajennikov


    Using experimental methods, this paper investigates the limits of communication and leadership in aiding group coordination in a minimum effort game. Choosing the highest effort is the payoff dominant Nash equilibrium in this game, and communication and leadership are expected to help in coordinating on such an equilibrium. We consider an environment in which the benefits of coordination are low compared to the cost of mis-coordination. In this environment, players converge to the most ineffi...

  3. An Approach to Simplify Reversible Logic Circuits

    Pabitra Roy


    Full Text Available Energy loss is one of the major problems in traditional irreversible circuits. For every bit of information loss kTln2 joules of heat is lost. In order to reduce the energy loss the concept of reversible logic circuits are introduced. Here we have described an algorithm for simplifying the reversible logic circuit and hence reduction of circuit cost and energy. The algorithm considers sub_circuit with respect to their number of lines and contiguous gates. The resulting sub_circuits are re-synthesized with smaller equivalent implementation. The process continues until circuit cost reaches good enough for Application or until a given computation budget has been exhausted. The circuit is constructed by NOT, CNOT and Toffoli gates only. By applying the algorithm and using the equivalent implementation we will get significant reduction of circuit cost and hence energy.

  4. Relaxation Based Electrical Simulation for VLSI Circuits

    S. Rajkumar


    Full Text Available Electrical circuit simulation was one of the first CAD tools developed for IC design. The conventional circuit simulators like SPICE and ASTAP were designed initially for the cost effective analysis of circuits containing a few hundred transistors or less. A number of approaches have been used to improve the performances of congenital circuit simulators for the analysis of large circuits. Thereafter relaxation methods was proposed to provide more accurate waveforms than standard circuit simulators with up to two orders of magnitude speed improvement for large circuits. In this paper we have tried to highlights recently used waveform and point relaxation techniques for simulation of VLSI circuits. We also propose a simple parallelization technique and experimentally demonstrate that we can solve digital circuits with tens of million transistors in a few hours.

  5. Modeling Students' Units Coordinating Activity

    Boyce, Steven James


    Primarily via constructivist teaching experiment methodology, units coordination (Steffe, 1992) has emerged as a useful construct for modeling students' psychological constructions pertaining to several mathematical domains, including counting sequences, whole number multiplicative conceptions, and fractions schemes. I describe how consideration of units coordination as a Piagetian (1970b) structure is useful for modeling units coordination across contexts. In this study, I extend teaching ...

  6. Circuit design for RF transceivers

    Leenaerts, Domine; Vaucher, Cicero S


    Second edition of this successful 2001 RF Circuit Design book, has been updated, latest technology reviews have been added as well as several actual case studies. Due to the authors being active in industry as well as academia, this should prove to be an essential guide on RF Transceiver Design for students and engineers.

  7. MOS integrated circuit fault modeling

    Sievers, M.


    Three digital simulation techniques for MOS integrated circuit faults were examined. These techniques embody a hierarchy of complexity bracketing the range of simulation levels. The digital approaches are: transistor-level, connector-switch-attenuator level, and gate level. The advantages and disadvantages are discussed. Failure characteristics are also described.

  8. Unbalanced Neuronal Circuits in Addiction

    Volkow, Nora D; Wang, Gen-Jack; Tomasi, Dardo; Baler, Ruben D.


    Through sequential waves of drug-induced neurochemical stimulation, addiction co-opts the brain's neuronal circuits that mediate reward, motivation, , to behavioral inflexibility and a severe disruption of self-control and compulsive drug intake. Brain imaging technologies have allowed neuroscientists to map out the neural landscape of addiction in the human brain and to understand how drugs modify it.

  9. Testing Superconductor Logic Integrated Circuits

    Joseph, Arun A.; Kerkhoff, Hans G.


    Superconductor logic has the potential of extremely low-power consumption and ultra-fast digital signal processing. Unfortunately, the obtained yield of the present processes is low and specific faults occur. This paper deals with fault-modelling, Design-for-Test structures, and ATPG for these integrated circuits.

  10. Integrated Circuit Stellar Magnitude Simulator

    Blackburn, James A.


    Describes an electronic circuit which can be used to demonstrate the stellar magnitude scale. Six rectangular light-emitting diodes with independently adjustable duty cycles represent stars of magnitudes 1 through 6. Experimentally verifies the logarithmic response of the eye. (Author/GA)