WorldWideScience

Sample records for circuit boards computers

  1. Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers

    International Nuclear Information System (INIS)

    Yamane, Luciana Harue; Tavares de Moraes, Viviane; Crocce Romano Espinosa, Denise; Soares Tenorio, Jorge Alberto

    2011-01-01

    Highlights: → This paper presents new and important data on characterization of wastes of electric and electronic equipments. → Copper concentration is increasing in mobile phones and remaining constant in personal computers. → Printed circuit boards from mobile phones and computers would not be mixed prior treatment. - Abstract: This paper presents a comparison between printed circuit boards from computers and mobile phones. Since printed circuits boards are becoming more complex and smaller, the amount of materials is constantly changing. The main objective of this work was to characterize spent printed circuit boards from computers and mobile phones applying mineral processing technique to separate the metal, ceramic, and polymer fractions. The processing was performed by comminution in a hammer mill, followed by particle size analysis, and by magnetic and electrostatic separation. Aqua regia leaching, loss-on-ignition and chemical analysis (inductively coupled plasma atomic emission spectroscopy - ICP-OES) were carried out to determine the composition of printed circuit boards and the metal rich fraction. The composition of the studied mobile phones printed circuit boards (PCB-MP) was 63 wt.% metals; 24 wt.% ceramics and 13 wt.% polymers; and of the printed circuit boards from studied personal computers (PCB-PC) was 45 wt.% metals; 27 wt.% polymers and ceramics 28 wt.% ceramics. The chemical analysis showed that copper concentration in printed circuit boards from personal computers was 20 wt.% and in printed circuit boards from mobile phones was 34.5 wt.%. According to the characteristics of each type of printed circuit board, the recovery of precious metals may be the main goal of the recycling process of printed circuit boards from personal computers and the recovery of copper should be the main goal of the recycling process of printed circuit boards from mobile phones. Hence, these printed circuit boards would not be mixed prior treatment. The results

  2. Primer printed circuit boards

    CERN Document Server

    Argyle, Andrew

    2009-01-01

    Step-by-step instructions for making your own PCBs at home. Making your own printed circuit board (PCB) might seem a daunting task, but once you master the steps, it's easy to attain professional-looking results. Printed circuit boards, which connect chips and other components, are what make almost all modern electronic devices possible. PCBs are made from sheets of fiberglass clad with copper, usually in multiplelayers. Cut a computer motherboard in two, for instance, and you'll often see five or more differently patterned layers. Making boards at home is relatively easy

  3. A guide to printed circuit board design

    CERN Document Server

    Hamilton, Charles

    1984-01-01

    A Guide to Printed Circuit Board Design discusses the basic design principles of printed circuit board (PCB). The book consists of nine chapters; each chapter provides both text discussion and illustration relevant to the topic being discussed. Chapter 1 talks about understanding the circuit diagram, and Chapter 2 covers how to compile component information file. Chapter 3 deals with the design layout, while Chapter 4 talks about preparing the master artworks. The book also covers generating computer aided design (CAD) master patterns, and then discusses how to prepare the production drawing a

  4. Aeroflex Single Board Computers and Instrument Circuit Cards for Nuclear Environments Measuring and Monitoring

    International Nuclear Information System (INIS)

    Stratton, Sam; Stevenson, Dave; Magnifico, Mateo

    2013-06-01

    A Single Board Computer (SBC) is an entire computer including all of the required components and I/O interfaces built on a single circuit board. SBC's are used across numerous industrial, military and space flight applications. In the case of military and space implementations, SBC's employ advanced high reliability processors designed for rugged thermal, mechanical and even radiation environments. These processors, in turn, rely on equally advanced support components such as memory, interface, and digital logic. When all of these components are put together on a printed circuit card, the result is a highly reliable Single Board Computer that can perform a wide variety of tasks in very harsh environments. In the area of instrumentation, peripheral circuit cards can be developed that directly interface to the SBC and various radiation measuring devices and systems. Designers use signal conditioning and high reliability Analog to Digital Converters (ADC's) to convert the measuring device signals to digital data suitable for a microprocessor. The data can then be sent to the SBC via high speed communication protocols such as Ethernet or similar type of serial bus. Data received by the SBC can then be manipulated and processed into a form readily available to users. Recent events are causing some in the NPP industry to consider devices and systems with better radiation and temperature performance capability. Systems designed for space application are designed for the harsh environment of space which under certain conditions would be similar to what the electronics will see during a severe nuclear reactor event. The NPP industry should be considering higher reliability electronics for certain critical applications. (authors)

  5. Microwave assisted leaching and electrochemical recovery of copper from printed circuit boards of computer waste

    Science.gov (United States)

    Ivǎnuş, R. C.; ǎnuş, D., IV; Cǎlmuc, F.

    2010-06-01

    Due to the rapid technological progress, the replacement of electronic equipment is very often necessary, leading to huge amounts that end up as waste. In addition, waste electrical and electronic equipment (WEEE) contains metals of high commercial value and others that are supposed to be hazardous for the environment. Consequently, WEEE could be considered as a significant source for recovery of nonferrous metals. Among these wastes, computers appear to be distinctive, as far as further exploitation is concerned. The most ″useful″ parts of the computers are the printed circuit boards that contain many metals of interest. A study on microwave assisted electronic scrap (printed circuit boards of computer waste - PCBs) leaching was carried out with a microwave hydrothermal reactor. The leaching was conducted with thick slurries (50-100 g/L). The leaching media is a mixed solution of CuCl2 and NaCl. Preliminary electrolysis from leaching solution has investigated the feasibility of electrodeposition of copper. The results were discussed and compared with the conventional leaching method and demonstrated the potential for selective extraction of copper from PCBs.

  6. Microwave assisted leaching and electrochemical recovery of copper from printed circuit boards of computer waste

    Directory of Open Access Journals (Sweden)

    Ivănuş R.C.

    2010-06-01

    Full Text Available Due to the rapid technological progress, the replacement of electronic equipment is very often necessary, leading to huge amounts that end up as waste. In addition, waste electrical and electronic equipment (WEEE contains metals of high commercial value and others that are supposed to be hazardous for the environment. Consequently, WEEE could be considered as a significant source for recovery of nonferrous metals. Among these wastes, computers appear to be distinctive, as far as further exploitation is concerned. The most ″useful″ parts of the computers are the printed circuit boards that contain many metals of interest. A study on microwave assisted electronic scrap (printed circuit boards of computer waste – PCBs leaching was carried out with a microwave hydrothermal reactor. The leaching was conducted with thick slurries (50-100 g/L. The leaching media is a mixed solution of CuCl2 and NaCl. Preliminary electrolysis from leaching solution has investigated the feasibility of electrodeposition of copper. The results were discussed and compared with the conventional leaching method and demonstrated the potential for selective extraction of copper from PCBs.

  7. Digital circuit boards mach 1 GHz

    CERN Document Server

    Morrison, Ralph

    2012-01-01

    A unique, practical approach to the design of high-speed digital circuit boards The demand for ever-faster digital circuit designs is beginning to render the circuit theory used by engineers ineffective. Digital Circuit Boards presents an alternative to the circuit theory approach, emphasizing energy flow rather than just signal interconnection to explain logic circuit behavior. The book shows how treating design in terms of transmission lines will ensure that the logic will function, addressing both storage and movement of electrical energy on these lines. It cove

  8. Modelling, analysis, and acceleration of a printed circuit board ...

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    discuss lead time reduction in a qualitative way with illustrative case studies. Krishnan ... industry practices, and research questions that should drive new methods and computer ... There are three types of printed circuit boards available today.

  9. Sustainability issues in circuit board recycling

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech; Alting, Leo; Baldo, Gian Luca

    1995-01-01

    The resource recovery and environmental impact issues of printed circuit board recycling by secondary copper smelters are discussed. Guidelines concerning material selection for circuit board manufacture and concerning the recycling processes are given to enhance recovery efficiency and to lower...

  10. Preparing printed circuit boards for rapid turn-around time on a protomat plotter

    International Nuclear Information System (INIS)

    Hawtree, J.

    1998-01-01

    This document describes the use of the LPKF ProtoMat mill/drill unit circuit board Plotter, with the associated CAD/CAM software BoardMaster and CircuitCAM. At present its primarily use here at Fermilab's Particle Physics Department is for rapid-turnover of prototype PCBs double-sided and single-sided copper clad printed circuit boards (PCBs). (The plotter is also capable of producing gravure films and engraving aluminum or plastic although we have not used it for this.) It has the capability of making traces 0.004 inch wide with 0.004 inch spacings which is appropriate for high density surface mount circuits as well as other through-mounted discrete and integrated components. One of the primary benefits of the plotter is the capability to produce double-sided drilled boards from CAD files in a few hours. However to achieve this rapid turn-around time, some care must be taken in preparing the files. This document describes how to optimize the process of PCB fabrication. With proper preparation, researchers can often have a completed circuit board in a day's time instead of a week or two wait with usual procedures. It is assumed that the software and hardware are properly installed and that the machinist is acquainted with the Win95 operating system and the basics of the associated software. This paper does not describe its use with pen plotters, lasers or rubouts. The process of creating a PCB (printed circuit board) begins with the CAD (computer-aided design) software, usually PCAD or VeriBest. These files are then moved to CAM (computer-aided machining) where they are edited and converted to put them into the proper format for running on the ProtoMat plotter. The plotter then performs the actual machining of the board. This document concentrates on the LPKF programs CircuitCam BASIS and BoardMaster for the CAM software. These programs run on a Windows 95 platform to run an LPKF ProtoMat 93s plotter

  11. Improving Heat Transfer Performance of Printed Circuit Boards

    Science.gov (United States)

    Schatzel, Donald V.

    2009-01-01

    This paper will explore the ability of printed circuit boards laminated with a Carbon Core Laminate to transfer heat vs. standard printed circuit boards that use only thick layers of copper. The paper will compare the differences in heat transfer performance of printed circuit boards with and without CCL.

  12. Developing 300°C Ceramic Circuit Boards

    Energy Technology Data Exchange (ETDEWEB)

    Normann, Randy A

    2015-02-15

    This paper covers the development of a geothermal ceramic circuit board technology using 3D traces in a machinable ceramic. Test results showing the circuit board to be operational to at least 550°C. Discussion on producing this type of board is outlined along with areas needing improvement.

  13. CAD-CAM printed circuit board design

    Science.gov (United States)

    Agy, W. E.

    A step-by-step procedure for a printed circuit design achieved by CAD is presented. The operator at the interactive CRT station moves a stylus across a graphics tablet and intersperses commands which result in computer-generated pictorial forms on the screen that were drawn on the pad. Standard symbols are used for commands allowing, for instance, connections to be made of specific types in certain locations, which can be automatically edited from a materials list. An entire network of drawn lines can be referenced by a signal name for recall, and a finished circuit schematic can be checked for designs rules compliance, including fault reporting in terms of designator/pin number. A map may be present delineating the boundaries of the circuitry area, and previously completed circuitry segments can be recalled for piece-by-piece assembly of the circuit board.

  14. Detection of circuit-board components with an adaptive multiclass correlation filter

    Science.gov (United States)

    Diaz-Ramirez, Victor H.; Kober, Vitaly

    2008-08-01

    A new method for reliable detection of circuit-board components is proposed. The method is based on an adaptive multiclass composite correlation filter. The filter is designed with the help of an iterative algorithm using complex synthetic discriminant functions. The impulse response of the filter contains information needed to localize and classify geometrically distorted circuit-board components belonging to different classes. Computer simulation results obtained with the proposed method are provided and compared with those of known multiclass correlation based techniques in terms of performance criteria for recognition and classification of objects.

  15. Computational algorithms for analysis of data from thin-film thermoresistors on a radio-electronic printed circuit board

    International Nuclear Information System (INIS)

    Korneeva, Anna; Shaydurov, Vladimir

    2016-01-01

    In the paper, the data analysis is considered for thin-film thermoresistors coated on to a radio-electronic printed circuit board to determine possible zones of its overheating. A mathematical model consists in an underdetermined system of linear algebraic equations with an infinite set of solutions. For computing a more real solution, two additional conditions are used: the smoothness of a solution and the positiveness of an increase of temperature during overheating. Computational experiments demonstrate that an overheating zone is determined exactly with a tolerable accuracy of temperature in it.

  16. 29 CFR 1915.181 - Electrical circuits and distribution boards.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Electrical circuits and distribution boards. 1915.181... Electrical Machinery § 1915.181 Electrical circuits and distribution boards. (a) The provisions of this... employee is permitted to work on an electrical circuit, except when the circuit must remain energized for...

  17. RECYCLING OF PRINTED CIRCUIT BOARDS AIMING SILVER RECOVERY: A HYDROMETALLURGICAL ROUTE STUDY

    Directory of Open Access Journals (Sweden)

    Marcos Paulo Kohler Caldas

    2015-06-01

    Full Text Available The aim of this paper is characterize printed circuit board of computers and propose a hydrometallurgical route for silver recovery present in its composition. Initially, the printed circuit board was comminuted in both knife and hammer mills. The comminuted material was characterized by sieve analysis, chemical analysis by inductively coupled plasma optical emission spectrometry (ICP-OES and loss on ignition. Leaching tests were conducted in sulfuric acid, sulfuric acid in an oxidizing medium and nitric acid. The results indicated that the printed circuit board is mainly composed of copper (19.42%. Silver content of 0.045% was found. The route for silver recovery was leaching in sulfuric acid at 75°C for 18 hours. Then, leaching in sulfuric acid at 75°C in an oxidizing medium for 6 hours and nitric acid leaching at room temperature for 2 hours. Through of this route, 96.6% of silver was recovered.

  18. Sampling and Control Circuit Board for an Inertial Measurement Unit

    Science.gov (United States)

    Chelmins, David T (Inventor); Powis, Richard T., Jr. (Inventor); Sands, Obed (Inventor)

    2016-01-01

    A circuit board that serves as a control and sampling interface to an inertial measurement unit ("IMU") is provided. The circuit board is also configured to interface with a local oscillator and an external trigger pulse. The circuit board is further configured to receive the external trigger pulse from an external source that time aligns the local oscillator and initiates sampling of the inertial measurement device for data at precise time intervals based on pulses from the local oscillator. The sampled data may be synchronized by the circuit board with other sensors of a navigation system via the trigger pulse.

  19. DEVICES FOR COOLING ELECTRONIC CIRCUIT BOARDS

    OpenAIRE

    T. A. Ismailov; D. V. Evdulov; A. G. Mustafaev; D. K. Ramazanova

    2014-01-01

    In the work described structural variants of devices for cooling electronic circuit boards, made on the basis of thermoelectric batteries and consumable working substances, implementing uneven process of removing heat from heat-generating components. A comparison of temperature fields of electronic circuit simulator with his uniform and non-uniform cooling. 

  20. A filter circuit board for the Earthworm Seismic Data Acquisition System

    Science.gov (United States)

    Jensen, Edward Gray

    2000-01-01

    The Earthworm system is a seismic network data acquisition and processing system used by the Northern California Seismic Network as well as many other seismic networks. The input to the system is comprised of many realtime electronic waveforms fed to a multi-channel digitizer on a PC platform. The digitizer consists of one or more National Instruments Corp. AMUX–64T multiplexer boards attached to an A/D converter board located in the computer. Originally, passive filters were installed on the multiplexers to eliminate electronic noise picked up in cabling. It was later discovered that a small amount of crosstalk occurred between successive channels in the digitizing sequence. Though small, this crosstalk will cause what appear to be small earthquake arrivals at the wrong time on some channels. This can result in erroneous calculation of earthquake arrival times, particularly by automated algorithms. To deal with this problem, an Earthworm filter board was developed to provide the needed filtering while eliminating crosstalk. This report describes the tests performed to find a suitable solution, and the design of the circuit board. Also included are all the details needed to build and install this board in an Earthworm system or any other system using the AMUX–64T board. Available below is the report in PDF format as well as an archive file containing the circuit board manufacturing information.

  1. DEVICES FOR COOLING ELECTRONIC CIRCUIT BOARDS

    Directory of Open Access Journals (Sweden)

    T. A. Ismailov

    2014-01-01

    Full Text Available In the work described structural variants of devices for cooling electronic circuit boards, made on the basis of thermoelectric batteries and consumable working substances, implementing uneven process of removing heat from heat-generating components. A comparison of temperature fields of electronic circuit simulator with his uniform and non-uniform cooling. 

  2. Soft-Matter Printed Circuit Board with UV Laser Micropatterning.

    Science.gov (United States)

    Lu, Tong; Markvicka, Eric J; Jin, Yichu; Majidi, Carmel

    2017-07-05

    When encapsulated in elastomer, micropatterned traces of Ga-based liquid metal (LM) can function as elastically deformable circuit wiring that provides mechanically robust electrical connectivity between solid-state elements (e.g., transistors, processors, and sensor nodes). However, LM-microelectronics integration is currently limited by challenges in rapid fabrication of LM circuits and the creation of vias between circuit terminals and the I/O pins of packaged electronics. In this study, we address both with a unique layup for soft-matter electronics in which traces of liquid-phase Ga-In eutectic (EGaIn) are patterned with UV laser micromachining (UVLM). The terminals of the elastomer-sealed LM circuit connect to the surface mounted chips through vertically aligned columns of EGaIn-coated Ag-Fe 2 O 3 microparticles that are embedded within an interfacial elastomer layer. The processing technique is compatible with conventional UVLM printed circuit board (PCB) prototyping and exploits the photophysical ablation of EGaIn on an elastomer substrate. Potential applications to wearable computing and biosensing are demonstrated with functional implementations in which soft-matter PCBs are populated with surface-mounted microelectronics.

  3. Packaging printed circuit boards: A production application of interactive graphics

    Science.gov (United States)

    Perrill, W. A.

    1975-01-01

    The structure and use of an Interactive Graphics Packaging Program (IGPP), conceived to apply computer graphics to the design of packaging electronic circuits onto printed circuit boards (PCB), were described. The intent was to combine the data storage and manipulative power of the computer with the imaginative, intuitive power of a human designer. The hardware includes a CDC 6400 computer and two CDC 777 terminals with CRT screens, light pens, and keyboards. The program is written in FORTRAN 4 extended with the exception of a few functions coded in COMPASS (assembly language). The IGPP performs four major functions for the designer: (1) data input and display, (2) component placement (automatic or manual), (3) conductor path routing (automatic or manual), and (4) data output. The most complex PCB packaged to date measured 16.5 cm by 19 cm and contained 380 components, two layers of ground planes and four layers of conductors mixed with ground planes.

  4. Merging polygons on two-layer printed circuit board

    Directory of Open Access Journals (Sweden)

    Murov S. Yu.

    2011-12-01

    Full Text Available A method is proposed for solving the problem of connection of maximum number of isolated islands of metallized areas of the same chain, located on different layers of the printed circuit board. The method can be used in the automatic tracing of the boards.

  5. WindoWorks: A flexible program for computerized testing of accelerator control system electronic circuit boards

    International Nuclear Information System (INIS)

    Utterback, J.

    1993-09-01

    Since most accelerator control system circuit boards reside in a commercial bus architecture, such as CAMAC or VMEbus, a computerized test station is needed for exercising the boards. This test station is needed for the development of newly designed prototypes, for commissioning newly manufactured boards, for diagnosing boards which have failed in service, and for long term testing of boards with intermittent failure problems. WindoWorks was created to address these needs. It is a flexible program which runs on a PC compatible computer and uses a PC to bus crate interface. WindoWorks was designed to give the user a flexible way to test circuit boards. Each test is incapsulated into a window. By bringing up several different windows the user can run several different tests simultaneously. The windows are sizable, and moveable. They have data entry boxes so that the test can be customized to the users preference. The windows can be used in conjunction with each other in order to create supertests. There are several windows which are generic. They can be used to test basic functions on any VME (or CAMAC) board. There are other windows which have been created to test specific boards. New windows for testing specific boards can be easily created by a Pascal programmer using the WindoWorks framework

  6. Homogenization on Multi-Materials’ Elements: Application to Printed Circuit Boards and Warpage Analysis

    Directory of Open Access Journals (Sweden)

    Araújo Manuel

    2016-01-01

    Full Text Available Multi-material domains are often found in industrial applications. Modelling them can be computationally very expensive due to meshing requirements. The finite element properties comprising different materials are hardly accurate. In this work, a new homogenization method that simplifies the computation of the homogenized Young modulus, Poisson ratio and thermal expansion coefficient is proposed, and applied to composite-like material on a printed circuit board. The results show a good properties correspondence between the homogenized domain and the real geometry simulation.

  7. Development and verification of printed circuit board toroidal transformer model

    DEFF Research Database (Denmark)

    Pejtersen, Jens; Mønster, Jakob Døllner; Knott, Arnold

    2013-01-01

    An analytical model of an air core printed circuit board embedded toroidal transformer configuration is presented. The transformer has been developed for galvanic isolation of very high frequency switch-mode dc-dc power converter applications. The theoretical model is developed and verified...... by comparing calculated parameters with 3D finite element simulations and experimental measurement results. The developed transformer model shows good agreement with the simulated and measured results. The model can be used to predict the parameters of printed circuit board toroidal transformer configurations...

  8. Computer aided production of manufacturing CAMAC-wired boards by the multiwire-technique

    Energy Technology Data Exchange (ETDEWEB)

    Martini, M; Brehmer, W

    1975-10-01

    The multiwire-technique is a computer controlled wiring method for the manufacturing of circuit boards with insulated conductors. The technical data for production are dimensional drawings of the board and a list of all points which are to be connected. The listing must be in absolute co-ordinates including a list of all soldering points for component parts and a reproducible print pattern for inscription. For this wiring method a CAMAC standard board, a layout plan with alpha-numeric symbols, and a computer program which produces the essential technical data were developed. A description of the alpha-numeric symbols, the quality of the program, recognition and checking of these symbols, and the produced technical data is presented. (auth)

  9. Development of a miniaturized watch-type dosimeter using a silicon printed-circuit board

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Sakamaki, Tsuyoshi; Matsumoto, Iwao; Aoyama, Kei; Nakamura, Takashi

    2008-01-01

    The electrical personal dosimeter using a silicon semiconductor sensor has the advantage of real time response and alarm function, which can prevent unexpected over-exposure. We tried to develop a miniaturized watch-type dosimeter by incorporating the silicon semiconductor sensor on a silicon printed-circuit board. Thin film resistors, capacitors and wiring patterns are formed on a downsized printed-circuit board. Electronic parts including transistors are mounted by soldering on the silicon printed-circuit board. The dosimeter is further miniaturized by downsizing the amplifier circuit, the semiconductor radiation sensor, the power supply circuit, setting parts and alarm part. The performance of the developed dosimeter was evaluated with respect to the gamma-ray spectra, angular dependence and linearity to dose equivalent rate, and it was confirmed that this dosimeter has the performance equivalent to a commercially available electrical personal dosimeter. (author)

  10. A Method for Automatic Inspection of Printed Circuit Boards by Using the Thermal Signature

    International Nuclear Information System (INIS)

    Amer, H.H.; Zekry, A.A.; Elaraby, S.; Ghareeb, K.E.

    2012-01-01

    This paper aims to design a system for automating inspection of the printed circuit boards (PCBs) by using the thermal signature of the different integrated circuits (I.C). The proposed inspection system consists of the inspection circuit, data acquisition system (DAS) and personal computer. Inspection is done by comparing the thermal signature of normally operated circuit with the thermal signature of circuit under test. One thermistor is assigned to each component in the circuit. The thermistor must touch tightly the surface of the I.C. to sense its temperature during the inspection process. Matlab software is used to represent the thermal signature through different colors. The Turbo C software is used to develop a program for acquiring and comparing the thermal signature of the circuit under the test with the reference circuit. If the colors of the two thermal signatures for the same I.C. are same then the circuit under test is fault free and does not contain any defect. On the other side, if the colors of the two thermal signatures for the same I.C. are different then the circuit under test is defective

  11. A study of liberation and separation process of metals from printed circuit boards (PCBs) scrap

    International Nuclear Information System (INIS)

    Noorliyana, H.A.; Zaheruddin, K.; Mohd Fazlul Bari; M. Sri Asliza; Nurhidayah, A.Z.; Kamarudin, H.

    2009-01-01

    Since the metallic elements are covered with or encapsulated by various plastic or ceramic materials on printed circuit boards, a mechanical pre-treatment process allowing their liberation and separation is first needed in order to facilitate their efficient extraction with hydrometallurgy route. Even though many studies have been performed on the mechanical pre-treatment processing for the liberation and separation of the metallic components of printed circuit boards scrap, further studies are required to pave the way for efficient recycling of waste printed circuit boards through a combination of mechanical pre-treatment and hydrometallurgical technology. In this work, a fundamental study has been carried out on the mechanical pre-treatment that is necessary to recover metallic concentrates from printed circuit boards scraps. The most important problem is to separate or release particles from the associated gangue minerals at the possible liberation particle size. The distribution of metallic elements has been also investigated in relation to the particle size of the milled printed circuit boards. The samples of printed circuit boards were separated into the magnetic and non-magnetic fractions by Rare-earth Roll Magnetic separator. Thereafter, the magnetic and non-magnetic fractions were separated to heavy fraction (metallic elements) and light fraction (plastic) by Mozley Laboratory Table Separator. The recovery ratios and the evaluation of the metallic concentrates recovered by each separation process were also investigated. This study is expected to provide useful data for the efficient mechanical separation of metallic components from printed circuit boards scraps. (author)

  12. A Circuit Board Using a Sheet of Thick Paper and Aluminium Tape

    Science.gov (United States)

    Kamata, Masahiro; Honda, Motoshi

    2003-01-01

    We have developed a circuit board using materials that are inexpensive and familiar to elementary school students. Most of the responses from students who made this board were relatively positive and we observed them enjoy making the boards at a Science Festival in Japan and in elementary school. As an application, we also developed a tiny torch…

  13. Memristor-based nanoelectronic computing circuits and architectures

    CERN Document Server

    Vourkas, Ioannis

    2016-01-01

    This book considers the design and development of nanoelectronic computing circuits, systems and architectures focusing particularly on memristors, which represent one of today’s latest technology breakthroughs in nanoelectronics. The book studies, explores, and addresses the related challenges and proposes solutions for the smooth transition from conventional circuit technologies to emerging computing memristive nanotechnologies. Its content spans from fundamental device modeling to emerging storage system architectures and novel circuit design methodologies, targeting advanced non-conventional analog/digital massively parallel computational structures. Several new results on memristor modeling, memristive interconnections, logic circuit design, memory circuit architectures, computer arithmetic systems, simulation software tools, and applications of memristors in computing are presented. High-density memristive data storage combined with memristive circuit-design paradigms and computational tools applied t...

  14. Toward environmentally-benign utilization of nonmetallic fraction of waste printed circuit boards as modifier and precursor

    Energy Technology Data Exchange (ETDEWEB)

    Hadi, Pejman; Ning, Chao; Ouyang, Weiyi; Xu, Meng [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); Lin, Carol S.K. [School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong Special Administrative Region (Hong Kong); McKay, Gordon, E-mail: kemckayg@ust.hk [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); Division of Sustainable Development, College of Science, Engineering and Technology, Hamad bin Khalifa University, Doha (Qatar)

    2015-01-15

    Highlights: • Environmental impacts of electronic waste and specifically waste printed circuit boards. • Review of the recycling techniques of waste printed circuit boards. • Advantages of physico-mechanical recycling techniques over chemical methods. • Utilization of nonmetallic fraction of waste printed circuit boards as modifier/filler. • Recent advances in the use of nonmetallic fraction of waste printed circuit boards as precursor. - Abstract: Electronic waste, including printed circuit boards, is growing at an alarming rate due to the accelerated technological progress and the shorter lifespan of the electronic equipment. In the past decades, due to the lack of proper economic and environmentally-benign recycling technologies, a major fraction of e-waste generated was either destined to landfills or incinerated with the sole intention of its disposal disregarding the toxic nature of this waste. Recently, with the increasing public awareness over their environment and health issues and with the enaction of more stringent regulations, environmentally-benign recycling has been driven to be an alternative option partially replacing the traditional eco-unfriendly disposal methods. One of the most favorable green technologies has been the mechanical separation of the metallic and nonmetallic fraction of the waste printed circuit boards. Although metallic fraction, as the most profitable component, is used to generate the revenue of the separation process, the nonmetallic fraction (NMF) has been left isolated. Herein, the recent developments in the application of NMF have been comprehensively reviewed and an eco-friendly emerging usage of NMF as a value-added material for sustainable remediation has been introduced.

  15. Toward environmentally-benign utilization of nonmetallic fraction of waste printed circuit boards as modifier and precursor

    International Nuclear Information System (INIS)

    Hadi, Pejman; Ning, Chao; Ouyang, Weiyi; Xu, Meng; Lin, Carol S.K.; McKay, Gordon

    2015-01-01

    Highlights: • Environmental impacts of electronic waste and specifically waste printed circuit boards. • Review of the recycling techniques of waste printed circuit boards. • Advantages of physico-mechanical recycling techniques over chemical methods. • Utilization of nonmetallic fraction of waste printed circuit boards as modifier/filler. • Recent advances in the use of nonmetallic fraction of waste printed circuit boards as precursor. - Abstract: Electronic waste, including printed circuit boards, is growing at an alarming rate due to the accelerated technological progress and the shorter lifespan of the electronic equipment. In the past decades, due to the lack of proper economic and environmentally-benign recycling technologies, a major fraction of e-waste generated was either destined to landfills or incinerated with the sole intention of its disposal disregarding the toxic nature of this waste. Recently, with the increasing public awareness over their environment and health issues and with the enaction of more stringent regulations, environmentally-benign recycling has been driven to be an alternative option partially replacing the traditional eco-unfriendly disposal methods. One of the most favorable green technologies has been the mechanical separation of the metallic and nonmetallic fraction of the waste printed circuit boards. Although metallic fraction, as the most profitable component, is used to generate the revenue of the separation process, the nonmetallic fraction (NMF) has been left isolated. Herein, the recent developments in the application of NMF have been comprehensively reviewed and an eco-friendly emerging usage of NMF as a value-added material for sustainable remediation has been introduced

  16. All-semiconductor metamaterial-based optical circuit board at the microscale

    International Nuclear Information System (INIS)

    Min, Li; Huang, Lirong

    2015-01-01

    The newly introduced metamaterial-based optical circuit, an analogue of electronic circuit, is becoming a forefront topic in the fields of electronics, optics, plasmonics, and metamaterials. However, metals, as the commonly used plasmonic elements in an optical circuit, suffer from large losses at the visible and infrared wavelengths. We propose here a low-loss, all-semiconductor metamaterial-based optical circuit board at the microscale by using interleaved intrinsic GaAs and doped GaAs, and present the detailed design process for various lumped optical circuit elements, including lumped optical inductors, optical capacitors, optical conductors, and optical insulators. By properly combining these optical circuit elements and arranging anisotropic optical connectors, we obtain a subwavelength optical filter, which can always hold band-stop filtering function for various polarization states of the incident electromagnetic wave. All-semiconductor optical circuits may provide a new opportunity in developing low-power and ultrafast components and devices for optical information processing

  17. Enrichment of the metallic components from waste printed circuit boards by a mechanical separation process using a stamp mill

    International Nuclear Information System (INIS)

    Yoo, Jae-Min; Jeong, Jinki; Yoo, Kyoungkeun; Lee, Jae-chun; Kim, Wonbaek

    2009-01-01

    Printed circuit boards incorporated in most electrical and electronic equipment contain valuable metals such as Cu, Ni, Au, Ag, Pd, Fe, Sn, and Pb. In order to employ a hydrometallurgical route for the recycling of valuable metals from printed circuit boards, a mechanical pre-treatment step is needed. In this study, the metallic components from waste printed circuit boards have been enriched using a mechanical separation process. Waste printed circuit boards shredded to 5.0 mm. The fractions of milled printed circuit boards of size 5.0 mm fraction and the heavy fraction were subjected to two-step magnetic separation. Through the first magnetic separation at 700 Gauss, 83% of the nickel and iron, based on the whole printed circuit boards, was recovered in the magnetic fraction, and 92% of the copper was recovered in the non-magnetic fraction. The cumulative recovery of nickel-iron concentrate was increased by a second magnetic separation at 3000 Gauss, but the grade of the concentrate decreased remarkably from 76% to 56%. The cumulative recovery of copper concentrate decreased, but the grade increased slightly from 71.6% to 75.4%. This study has demonstrated the feasibility of the mechanical separation process consisting of milling/size classification/gravity separation/two-step magnetic separation for enriching metallic components such as Cu, Ni, Al, and Fe from waste printed circuit boards

  18. A FPGA implementation of solder paste deposit on printed circuit boards errors detector based in a bright and contrast algorithm

    OpenAIRE

    De Luca-Pennacchia, A.; Sánchez-Martínez, M. Á.

    2007-01-01

    Solder paste deposit on printed circuit boards (PCB) is a critical stage. It is known that about 60% of functionality defects in this type of boards are due to poor solder paste printing. These defects can be diminished by means of automatic optical inspection of this printing. Actually, this process is implemented by image processing software with its inherent high computational time cost. In this paper we propose to implement a high parallel degree image comparison algorithm suitable to be ...

  19. ELECTRONIC CIRCUIT BOARDS NON-UNIFORM COOLING SYSTEM MODEL

    Directory of Open Access Journals (Sweden)

    D. V. Yevdulov

    2016-01-01

    Full Text Available Abstract. The paper considers a mathematical model of non-uniform cooling of electronic circuit boards. The block diagram of the system implementing this approach, the method of calculation of the electronic board temperature field, as well as the principle of its thermal performance optimizing are presented. In the considered scheme the main heat elimination from electronic board is produced by the radiator system, and additional cooling of the most temperature-sensitive components is produced by thermoelectric batteries. Are given the two-dimensional temperature fields of the electronic board during its uniform and non-uniform cooling, is carried out their comparison. As follows from the calculations results, when using a uniform overall cooling of electronic unit there is a waste of energy for the cooling 0f electronic board parts which temperature is within acceptable temperature range without the cooling system. This approach leads to the increase in the cooling capacity of used thermoelectric batteries in comparison with the desired values. This largely reduces the efficiency of heat elimination system. The use for electronic boards cooling of non-uniform local heat elimination removes this disadvantage. The obtained dependences show that in this case, the energy required to create a given temperature is smaller than when using a common uniform cooling. In this approach the temperature field of the electronic board is more uniform and the cooling is more efficient. 

  20. 78 FR 23591 - Certain Prepregs, Laminates, and Finished Circuit Boards

    Science.gov (United States)

    2013-04-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-659 (Enforcement)] Certain Prepregs... United States after importation of certain prepregs, laminates, and finished circuit boards that infringe... prepregs and laminates that are the subject of the investigation or that otherwise infringe, induce, and/or...

  1. Printed circuit board permittivity measurement using waveguide and resonator rings

    NARCIS (Netherlands)

    Op 't Land, Sjoerd; Tereshchenko, O.V.; Ramdani, Mohamed; Leferink, Frank Bernardus Johannes; Perdriau, Richard

    2014-01-01

    Knowing the frequency dependent complex permittivity of Printed Circuit Board (PCB) substrates is important in modern electronics. In this paper, two methods for measuring the permittivity are applied to the same Flame Resistant (FR4) substrate and the results are compared. The reference measurement

  2. An Enhanced Random Vibration and Fatigue Model for Printed Circuit Boards

    Directory of Open Access Journals (Sweden)

    Bruno de Castro Braz

    Full Text Available Abstract Aerospace vehicles are mostly exposed to random vibration loads during its operational lifetime. These harsh conditions excites vibration responses in the vehicles printed circuit boards, what can cause failure on mission functionality due to fatigue damage of electronic components. A novel analytical model to evaluate the useful life of embedded electronic components (capacitors, chips, oscillators etc. mounted on Printed Circuit Boards (PCB is presented. The fatigue damage predictions are calculated by the relative displacement between the PCB and the component, the lead stiffness, as well the natural vibration modes of the PCB and the component itself. Statistical methods are used for fatigue cycle counting. The model is applied to experimental fatigue tests of PCBs available on literature. The analytical results are of the same magnitude order of the experimental findings.

  3. PUZZLE - A program for computer-aided design of printed circuit artwork

    Science.gov (United States)

    Harrell, D. A. W.; Zane, R.

    1971-01-01

    Program assists in solving spacing problems encountered in printed circuit /PC/ design. It is intended to have maximum use for two-sided PC boards carrying integrated circuits, and also aids design of discrete component circuits.

  4. DC arc plasma disposal of printed circuit board

    International Nuclear Information System (INIS)

    Huang Jianjun; Shenzhen Univ., Shenzhen; Shi Jiabiao; Meng Yuedong; Liu Zhengzhi

    2004-01-01

    A new solid waste disposal technology setup with DC arc plasma is presented. Being different from conventional combustion or burning such as incineration, it is based on a process called controlled high-temperature pyrolysis, the thermal destruction and recovery process. The results of vitrification of the circuit board are presented. The properties of vitrified product including hardness and leaching test results are presented. The final product (vitrified material) and air emission from the plasma treatment is environmentally acceptable. (authors)

  5. Polyimide Nanocomposite Circuit Board Materials to Mitigate Internal Electrostatic Discharge, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — In Sub-topic T8.02, NASA has identified a need for improved circuit boards to mitigate the hazards of internal electrostatic discharge (IESD) on missions where high...

  6. Design principles and realization of electro-optical circuit boards

    Science.gov (United States)

    Betschon, Felix; Lamprecht, Tobias; Halter, Markus; Beyer, Stefan; Peterson, Harry

    2013-02-01

    The manufacturing of electro-optical circuit boards (EOCB) is based to a large extent on established technologies. First products with embedded polymer waveguides are currently produced in series. The range of applications within the sensor and data communication markets is growing with the increasing maturity level. EOCBs require design flows, processes and techniques similar to existing printed circuit board (PCB) manufacturing and appropriate for optical signal transmission. A key aspect is the precise and automated assembly of active and passive optical components to the optical waveguides which has to be supported by the technology. The design flow is described after a short introduction into the build-up of EOCBs and the motivation for the usage of this technology within the different application fields. Basis for the design of EOCBs are the required optical signal transmission properties. Thereafter, the devices for the electro-optical conversion are chosen and the optical coupling approach is defined. Then, the planar optical elements (waveguides, splitters, couplers) are designed and simulated. This phase already requires co-design of the optical and electrical domain using novel design flows. The actual integration of an optical system into a PCB is shown in the last part. The optical layer is thereby laminated to the purely electrical PCB using a conventional PCB-lamination process to form the EOCB. The precise alignment of the various electrical and optical layers is thereby essential. Electrical vias are then generated, penetrating also the optical layer, to connect the individual electrical layers. Finally, the board has to be tested electrically and optically.

  7. Research on Toxicity Evaluation of Waste Incineration Residues of Printed Circuit Boards

    Directory of Open Access Journals (Sweden)

    Rasa Volungevičienė

    2014-10-01

    Full Text Available Recycling waste printed circuit boards (PCB is an extremely complicated process, because PCBs consist of a number of complex components – hazardous and non-hazardous materials sets. Pyrolysis and combustion are currently the most effective treatment technologies for waste printed circuit boards. Pyrolysis can be used for thermally decomposing PCBs allowing for the simultaneous recovery of valuable materials. Following the extraction of valuable materials, the problem of residual ash utilization is encountered. Determining the qualitative and quantitative characteristics of incineration residue helps with choosing effective ash management technologies. This paper analyzes PCB ash generated at three different temperatures of 400 °C, 500 °C and 600 °C. Ash residues have been analysed to determine the quantity and type of metals present. Furthermore, the experiment of leaching heavy metals from ash has been described.

  8. Ruggedizing Printed Circuit Boards Using a Wideband Dynamic Absorber

    Directory of Open Access Journals (Sweden)

    V.C. Ho

    2003-01-01

    Full Text Available The existing approaches to ruggedizing inherently fragile and sensitive critical components of electronic equipment such as printed circuit boards (PCB for use in hostile industrial and military environment are either insufficient or expensive. This paper addresses a novel approach towards ruggedizing commercial-off-the-shelf PCBs using a miniature wideband dynamic absorber. The optimisation technique used relies on the experimentally measured vibration spectra and complex receptance of the original PCB.

  9. Electromagnetic Compatibility Design of the Computer Circuits

    Science.gov (United States)

    Zitai, Hong

    2018-02-01

    Computers and the Internet have gradually penetrated into every aspect of people’s daily work. But with the improvement of electronic equipment as well as electrical system, the electromagnetic environment becomes much more complex. Electromagnetic interference has become an important factor to hinder the normal operation of electronic equipment. In order to analyse the computer circuit compatible with the electromagnetic compatibility, this paper starts from the computer electromagnetic and the conception of electromagnetic compatibility. And then, through the analysis of the main circuit and system of computer electromagnetic compatibility problems, we can design the computer circuits in term of electromagnetic compatibility. Finally, the basic contents and methods of EMC test are expounded in order to ensure the electromagnetic compatibility of equipment.

  10. Computational aspects of feedback in neural circuits.

    Directory of Open Access Journals (Sweden)

    Wolfgang Maass

    2007-01-01

    Full Text Available It has previously been shown that generic cortical microcircuit models can perform complex real-time computations on continuous input streams, provided that these computations can be carried out with a rapidly fading memory. We investigate the computational capability of such circuits in the more realistic case where not only readout neurons, but in addition a few neurons within the circuit, have been trained for specific tasks. This is essentially equivalent to the case where the output of trained readout neurons is fed back into the circuit. We show that this new model overcomes the limitation of a rapidly fading memory. In fact, we prove that in the idealized case without noise it can carry out any conceivable digital or analog computation on time-varying inputs. But even with noise, the resulting computational model can perform a large class of biologically relevant real-time computations that require a nonfading memory. We demonstrate these computational implications of feedback both theoretically, and through computer simulations of detailed cortical microcircuit models that are subject to noise and have complex inherent dynamics. We show that the application of simple learning procedures (such as linear regression or perceptron learning to a few neurons enables such circuits to represent time over behaviorally relevant long time spans, to integrate evidence from incoming spike trains over longer periods of time, and to process new information contained in such spike trains in diverse ways according to the current internal state of the circuit. In particular we show that such generic cortical microcircuits with feedback provide a new model for working memory that is consistent with a large set of biological constraints. Although this article examines primarily the computational role of feedback in circuits of neurons, the mathematical principles on which its analysis is based apply to a variety of dynamical systems. Hence they may also

  11. Computer-aided engineering of semiconductor integrated circuits

    Science.gov (United States)

    Meindl, J. D.; Dutton, R. W.; Gibbons, J. F.; Helms, C. R.; Plummer, J. D.; Tiller, W. A.; Ho, C. P.; Saraswat, K. C.; Deal, B. E.; Kamins, T. I.

    1980-07-01

    Economical procurement of small quantities of high performance custom integrated circuits for military systems is impeded by inadequate process, device and circuit models that handicap low cost computer aided design. The principal objective of this program is to formulate physical models of fabrication processes, devices and circuits to allow total computer-aided design of custom large-scale integrated circuits. The basic areas under investigation are (1) thermal oxidation, (2) ion implantation and diffusion, (3) chemical vapor deposition of silicon and refractory metal silicides, (4) device simulation and analytic measurements. This report discusses the fourth year of the program.

  12. Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria

    International Nuclear Information System (INIS)

    Karwowska, Ewa; Andrzejewska-Morzuch, Dorota; Łebkowska, Maria; Tabernacka, Agnieszka; Wojtkowska, Małgorzata; Telepko, Alicja; Konarzewska, Agnieszka

    2014-01-01

    Highlights: • Bioleaching of metals from printed circuit boards by BSAC-producing bacteria was estimated. • Aeration increased the release of all metals in medium with sulphur and biosurfactant. • Increase in Cu, Pb, Ni and Cr removal rate was observed at 37 °C in acidic medium. -- Abstract: This study has evaluated the possibility of bioleaching zinc, copper, lead, nickel, cadmium and chromium from printed circuit boards by applying a culture of sulphur-oxidising bacteria and a mixed culture of biosurfactant-producing bacteria and sulphur-oxidising bacteria. It was revealed that zinc was removed effectively both in a traditional solution acidified by a way of microbial oxidation of sulphur and when using a microbial culture containing sulphur-oxidising and biosurfactant-producing bacteria. The average process efficiency was 48% for Zn dissolution. Cadmium removal was similar in both media, with a highest metal release of 93%. For nickel and copper, a better effect was obtained in the acidic medium, with a process effectiveness of 48.5% and 53%, respectively. Chromium was the only metal that was removed more effectively in the bioleaching medium containing both sulphur-oxidising and biosurfactant-producing bacteria. Lead was removed from the printed circuit boards with very low effectiveness (below 0.5%). Aerating the culture medium with compressed air increased the release of all metals in the medium with sulphur and biosurfactant, and of Ni, Cu, Zn and Cr in the acidic medium. Increasing the temperature of the medium (to 37 °C) had a more significant impact in the acidic environment than in the neutral environment

  13. Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Karwowska, Ewa, E-mail: ewa.karwowska@is.pw.edu.pl [Warsaw University of Technology, Faculty of Environmental Engineering, Biology Division, Nowowiejska 20, 00-653 Warsaw (Poland); Andrzejewska-Morzuch, Dorota; Łebkowska, Maria [Warsaw University of Technology, Faculty of Environmental Engineering, Biology Division, Nowowiejska 20, 00-653 Warsaw (Poland); Tabernacka, Agnieszka, E-mail: agnieszka.tabernacka@is.pw.edu.pl [Warsaw University of Technology, Faculty of Environmental Engineering, Biology Division, Nowowiejska 20, 00-653 Warsaw (Poland); Wojtkowska, Małgorzata; Telepko, Alicja; Konarzewska, Agnieszka [Warsaw University of Technology, Faculty of Environmental Engineering, Nowowiejska 20, 00-653 Warsaw (Poland)

    2014-01-15

    Highlights: • Bioleaching of metals from printed circuit boards by BSAC-producing bacteria was estimated. • Aeration increased the release of all metals in medium with sulphur and biosurfactant. • Increase in Cu, Pb, Ni and Cr removal rate was observed at 37 °C in acidic medium. -- Abstract: This study has evaluated the possibility of bioleaching zinc, copper, lead, nickel, cadmium and chromium from printed circuit boards by applying a culture of sulphur-oxidising bacteria and a mixed culture of biosurfactant-producing bacteria and sulphur-oxidising bacteria. It was revealed that zinc was removed effectively both in a traditional solution acidified by a way of microbial oxidation of sulphur and when using a microbial culture containing sulphur-oxidising and biosurfactant-producing bacteria. The average process efficiency was 48% for Zn dissolution. Cadmium removal was similar in both media, with a highest metal release of 93%. For nickel and copper, a better effect was obtained in the acidic medium, with a process effectiveness of 48.5% and 53%, respectively. Chromium was the only metal that was removed more effectively in the bioleaching medium containing both sulphur-oxidising and biosurfactant-producing bacteria. Lead was removed from the printed circuit boards with very low effectiveness (below 0.5%). Aerating the culture medium with compressed air increased the release of all metals in the medium with sulphur and biosurfactant, and of Ni, Cu, Zn and Cr in the acidic medium. Increasing the temperature of the medium (to 37 °C) had a more significant impact in the acidic environment than in the neutral environment.

  14. Matchgate circuits and compressed quantum computation

    International Nuclear Information System (INIS)

    Boyajian, W.L.

    2015-01-01

    Simulating a quantum system with a classical computer seems to be an un- feasible task due to the exponential growths of the dimension of the Hilbert space as a function of the number of considered systems. This is why the classical simulation of quantum behavior is usually restricted to a few qubits, although the numerical methods became very powerful. However, as pointed out by [Feynman (1982)] and proven by [Llody (1996)] quantum systems can be used to simulate the behavior of the other. The former being such that constituents can be very precisely prepared, manipulated and measured. Many experiments are realizing such a simulation nowadays. Among them experiments utilizing ions in ion-traps, NMR or atoms in optical lattices (see for instance [Bloch et al. (2012); Lanyon et al. (2011); Houck et al. (2012)] and references therein). Here we are not concerned about this direct simulation of a quantum system. We are interested in a more economical way of simulating certain quantum behaviors. To this end, we are using the fact that some classes of quantum algorithms, among them those which are based on matchgates, can be simulated classically efficiently. Moreover, it can be shown that matchgate circuits can also be simulated by an exponentially smaller quantum computer [Jozsa et al. (2009)]. There, the classical computation is restricted in space such that the computation has to be performed by the quantum computer and cannot be performed by the classical computer. In fact, it has been shown that the computational power of matchgate circuits running on n qubits is equivalent to the one of space-bounded quantum computation with space restricted to being logarithmic in n [Jozsa et al. (2009)]. This thesis is organized as follows. In Part I, we recall some basic concepts of quantum mechanics, quantum computation and quantum simulation. Furthermore we discuss the main results of matchgate circuits and compressed quantum computation. We also recall the XY model and its

  15. Newnes circuit calculations pocket book with computer programs

    CERN Document Server

    Davies, Thomas J

    2013-01-01

    Newnes Circuit Calculations Pocket Book: With Computer Programs presents equations, examples, and problems in circuit calculations. The text includes 300 computer programs that help solve the problems presented. The book is comprised of 20 chapters that tackle different aspects of circuit calculation. The coverage of the text includes dc voltage, dc circuits, and network theorems. The book also covers oscillators, phasors, and transformers. The text will be useful to electrical engineers and other professionals whose work involves electronic circuitry.

  16. Improving intrinsic corrosion reliability of printed circuit board assembly

    DEFF Research Database (Denmark)

    Ambat, Rajan; Conseil, Helene

    2016-01-01

    conditions, therefore the protection of electronic devices is becoming a critical factor in system design. Humidity and local condensation inside electronic enclosures can significantly alter the performance of electronic devices. The presence of moisture in a PCB alters its quality, functionality, thermal...... performance, and thermo-mechanical properties, while condensation on the surface of printed circuit board assemblies (PCBAs) can lead to electrical failures, like electrochemical migration. The result is reduced life span for electronic products and heavy economic loss due to failures....

  17. Effect of ionic contamination on climatic reliability of printed circuit board assemblies

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan

    2012-01-01

    The effect of NaCl and weak organic acids (WOAs) in “no-clean” wave solder flux residues was studied on electrochemical migration (ECM), leakage current, and corrosion on surface mount chip capacitors using a test printed circuit board assembly (PCBA) substrate having known chip components...

  18. Pyrolysis characteristics of integrated circuit boards at various particle sizes and temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, H.-L. [Department Risk Management, China Medical University, Taichung 40402, Taiwan (China)], E-mail: hlchiang@mail.cmu.edu.tw; Lin, K.-H. [Department of Environmental Engineering, Fooyin University, Kaohsiung 831, Taiwan (China); Lai, M.-H. [Department of Environmental Engineering, Dayeh University, Changhua 51591, Taiwan (China); Chen, T.-C. [Department of Environmental Science and Engineering, Pingtung University of Science and Technology, Pingtung 91201, Taiwan (China); Ma, S.-Y. [Department of Environmental Engineering, Fooyin University, Kaohsiung 831, Taiwan (China)

    2007-10-01

    A pyrolysis method was employed to recycle the metals and brominated compounds blended into printed circuit boards. This research investigated the effect of particle size and process temperature on the element composition of IC boards and pyrolytic residues, liquid products, and water-soluble ionic species in the exhaust, with the overall goal being to identify the pyrolysis conditions that will have the least impact on the environment. Integrated circuit (IC) boards were crushed into 5-40 mesh (0.71-4.4 mm), and the crushed particles were pyrolyzed at temperatures ranging from 200 to 500 deg. C. The thermal decomposition kinetics were measured by a thermogravimetric (TG) analyzer. The composition of pyrolytic residues was analyzed by Energy Dispersive X-ray Spectrometer (EDS), Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). In addition, the element compositions of liquid products were analyzed by ICP-AES and ICP-MS. Pyrolytic exhaust was collected by a water-absorption system in an ice-bath cooler, and IC analysis showed that the absorbed solution comprised 11 ionic species. Based on the pyrolytic kinetic parameters of TG analysis and pyrolytic residues at various temperatures for 30 min, the effect of particle size was insignificant in this study, and temperature was the key factor for the IC board pyrolysis. Two stages of decomposition were found for IC board pyrolysis under nitrogen atmosphere. The activation energy was 38-47 kcal/mol for the first-stage reaction and 5.2-9.4 kcal/mol for the second-stage reaction. Metal content was low in the liquid by-product of the IC board pyrolysis process, which is an advantage in that the liquid product could be used as a fuel. Brominate and ammonium were the main water-soluble ionic species of the pyrolytic exhaust. A plan for their safe and effective disposal must be developed if the pyrolytic recycling process is to be applied to IC boards.

  19. Pyrolysis characteristics of integrated circuit boards at various particle sizes and temperatures

    International Nuclear Information System (INIS)

    Chiang, H.-L.; Lin, K.-H.; Lai, M.-H.; Chen, T.-C.; Ma, S.-Y.

    2007-01-01

    A pyrolysis method was employed to recycle the metals and brominated compounds blended into printed circuit boards. This research investigated the effect of particle size and process temperature on the element composition of IC boards and pyrolytic residues, liquid products, and water-soluble ionic species in the exhaust, with the overall goal being to identify the pyrolysis conditions that will have the least impact on the environment. Integrated circuit (IC) boards were crushed into 5-40 mesh (0.71-4.4 mm), and the crushed particles were pyrolyzed at temperatures ranging from 200 to 500 deg. C. The thermal decomposition kinetics were measured by a thermogravimetric (TG) analyzer. The composition of pyrolytic residues was analyzed by Energy Dispersive X-ray Spectrometer (EDS), Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES) and Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). In addition, the element compositions of liquid products were analyzed by ICP-AES and ICP-MS. Pyrolytic exhaust was collected by a water-absorption system in an ice-bath cooler, and IC analysis showed that the absorbed solution comprised 11 ionic species. Based on the pyrolytic kinetic parameters of TG analysis and pyrolytic residues at various temperatures for 30 min, the effect of particle size was insignificant in this study, and temperature was the key factor for the IC board pyrolysis. Two stages of decomposition were found for IC board pyrolysis under nitrogen atmosphere. The activation energy was 38-47 kcal/mol for the first-stage reaction and 5.2-9.4 kcal/mol for the second-stage reaction. Metal content was low in the liquid by-product of the IC board pyrolysis process, which is an advantage in that the liquid product could be used as a fuel. Brominate and ammonium were the main water-soluble ionic species of the pyrolytic exhaust. A plan for their safe and effective disposal must be developed if the pyrolytic recycling process is to be applied to IC boards

  20. Study of Photosensitive Dry Films Absorption for Printed Circuit Boards by Photoacoustic Technique

    Science.gov (United States)

    Hernández, R.; Zaragoza, J. A. Barrientos; Jiménez-Pérez, J. L.; Orea, A. Cruz; Correa-Pacheco, Z. N.

    2017-08-01

    In this work, the study of photosensitive dry-type films by photoacoustic technique is proposed. The dry film photoresist is resistant to chemical etching for printed circuit boards such as ferric chloride, sodium persulfate or ammonium, hydrochloric acid. It is capable of faithfully reproducing circuit pattern exposed to ultraviolet light (UV) through a negative. Once recorded, the uncured portion is removed with alkaline solution. It is possible to obtain good results in surface mount circuits with tracks of 5 mm. Furthermore, the solid resin films are formed by three layers, two protective layers and a UV-sensitive optical absorption layer in the range of 325 nm to 405 nm. By means of optical absorption of UV-visible rays emitted by a low-power Xe lamp, the films transform this energy into thermal waves generated by the absorption of optical radiation and subsequently no-radiative de-excitation occurs. The photoacoustic spectroscopy is a useful technique to measure the transmittance and absorption directly. In this study, the optical absorption spectra of the three layers of photosensitive dry-type films were obtained as a function of the wavelength, in order to have a knowledge of the absorber layer and the protective layers. These analyses will give us the physical properties of the photosensitive film, which are very important in curing the dry film for applications in printed circuit boards.

  1. Impact of NaCl Contamination and Climatic Conditions on the Reliability of Printed Circuit Board Assemblies

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan

    2014-01-01

    The effect of climatic conditions and ionic contamination on the reliability of printed circuit board assembly has been investigated in terms of leakage current (LC) and electrochemical migration susceptibility. The change in LC as a function of relative humidity (RH) and temperature was measured...... and 15 $^{\\circ}\\hbox{C}$ –65 $^{\\circ}\\hbox{C}$. The variation of RH at the surface of the test specimens was imposed by 1) increasing the RH of the surrounding air and 2) reducing the temperature of the printed circuit boards using a cooling stage, while maintaining a constant climatic condition...

  2. Printed Circuit Board Embedded Inductors for Very High Frequency Switch-Mode Power Supplies

    DEFF Research Database (Denmark)

    Madsen, Mickey Pierre; Knott, Arnold; Andersen, Michael A. E.

    2013-01-01

    The paper describes the design of three different structures for printed circuit board embedded inductors. Direct comparison of spirals, solenoids and toroids are made with regard to inductance, dc and ac resistance, electromagnetic field and design flexibility. First the equations for the impeda...

  3. 'Micro-8' micro-computer system

    International Nuclear Information System (INIS)

    Yagi, Hideyuki; Nakahara, Yoshinori; Yamada, Takayuki; Takeuchi, Norio; Koyama, Kinji

    1978-08-01

    The micro-computer Micro-8 system has been developed to organize a data exchange network between various instruments and a computer group including a large computer system. Used for packet exchangers and terminal controllers, the system consists of ten kinds of standard boards including a CPU board with INTEL-8080 one-chip-processor. CPU architecture, BUS architecture, interrupt control, and standard-boards function are explained in circuit block diagrams. Operations of the basic I/O device, digital I/O board and communication adapter are described with definitions of the interrupt ramp status, I/O command, I/O mask, data register, etc. In the appendixes are circuit drawings, INTEL-8080 micro-processor specifications, BUS connections, I/O address mappings, jumper connections of address selection, and interface connections. (author)

  4. Investigation, development and verification of printed circuit board embedded air-core solenoid transformers

    DEFF Research Database (Denmark)

    Mønster, Jakob Døllner; Madsen, Mickey Pierre; Pedersen, Jeppe Arnsdorf

    2015-01-01

    A new printed circuit board embedded air-core transformer/coupled inductor is proposed and presented. The transformer is intended for use in power converter applications operating at very high frequency between 30 MHz to 300 MHz. The transformer is based on two or more solenoid structures...

  5. Non-unitary probabilistic quantum computing circuit and method

    Science.gov (United States)

    Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)

    2009-01-01

    A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.

  6. An interactive system for the automatic layout of printed circuit boards (ARAIGNEE)

    International Nuclear Information System (INIS)

    Combet, M.; Eder, J.; Pagny, C.

    1974-12-01

    A software package for the automatic layout of printed circuit boards is presented. The program permits an interaction of the user during the layout process. The automatic searching of paths can be interrupted at any step and convenient corrections can be inserted. This procedure improves strongly the performance of the program as far as the number of unresolved connections is concerned

  7. Time Synchronization Strategy Between On-Board Computer and FIMS on STSAT-1

    Directory of Open Access Journals (Sweden)

    Seong Woo Kwak

    2004-06-01

    Full Text Available STSAT-1 was launched on sep. 2003 with the main payload of Far Ultra-violet Imaging Spectrograph(FIMS. The mission of FIMS is to observe universe and aurora. In this paper, we suggest a simple and reliable strategy adopted in STSAT-1 to synchronize time between On-board Computer(OBC and FIMS. For the characteristics of STSAT-1, this strategy is devised to maintain reliability of satellite system and to reduce implementation cost by using minimized electronic circuits. We suggested two methods with different synchronization resolutions to cope with unexpected faults in space. The backup method with low resolution can be activated when the main has some problems.

  8. ON-BOARD COMPUTER SYSTEM FOR KITSAT-1 AND 2

    Directory of Open Access Journals (Sweden)

    H. S. Kim

    1996-06-01

    Full Text Available KITSAT-1 and 2 are microsatellites weighting 50kg and all the on-board data are processed by the on-board computer system. Hence, these on-board computers require to be highly reliable and be designed with tight power consumption, mass and size constraints. On-board computer(OBC systems for KITSAT-1 and 2 are also designed with a simple flexible hardware for reliability and software takes more responsibility than hardware. KITSAT-1 and 2 on-board computer system consist of OBC 186 as the primary OBC and OBC80 as its backup. OBC186 runs spacecraft operating system (SCOS which has real-time multi-tasking capability. Since their launch, OBC186 and OBC80 have been operating successfully until today. In this paper, we describe the development of OBC186 hardware and software and analyze its in-orbit operation performance.

  9. Assembling surface mounted components on ink-jet printed double sided paper circuit board

    International Nuclear Information System (INIS)

    Andersson, Henrik A; Manuilskiy, Anatoliy; Haller, Stefan; Sidén, Johan; Nilsson, Hans-Erik; Hummelgård, Magnus; Olin, Håkan; Hummelgård, Christine

    2014-01-01

    Printed electronics is a rapidly developing field where many components can already be manufactured on flexible substrates by printing or by other high speed manufacturing methods. However, the functionality of even the most inexpensive microcontroller or other integrated circuit is, at the present time and for the foreseeable future, out of reach by means of fully printed components. Therefore, it is of interest to investigate hybrid printed electronics, where regular electrical components are mounted on flexible substrates to achieve high functionality at a low cost. Moreover, the use of paper as a substrate for printed electronics is of growing interest because it is an environmentally friendly and renewable material and is, additionally, the main material used for many packages in which electronics functionalities could be integrated. One of the challenges for such hybrid printed electronics is the mounting of the components and the interconnection between layers on flexible substrates with printed conductive tracks that should provide as low a resistance as possible while still being able to be used in a high speed manufacturing process. In this article, several conductive adhesives are evaluated as well as soldering for mounting surface mounted components on a paper circuit board with ink-jet printed tracks and, in addition, a double sided Arduino compatible circuit board is manufactured and programmed. (paper)

  10. Assembling surface mounted components on ink-jet printed double sided paper circuit board.

    Science.gov (United States)

    Andersson, Henrik A; Manuilskiy, Anatoliy; Haller, Stefan; Hummelgård, Magnus; Sidén, Johan; Hummelgård, Christine; Olin, Håkan; Nilsson, Hans-Erik

    2014-03-07

    Printed electronics is a rapidly developing field where many components can already be manufactured on flexible substrates by printing or by other high speed manufacturing methods. However, the functionality of even the most inexpensive microcontroller or other integrated circuit is, at the present time and for the foreseeable future, out of reach by means of fully printed components. Therefore, it is of interest to investigate hybrid printed electronics, where regular electrical components are mounted on flexible substrates to achieve high functionality at a low cost. Moreover, the use of paper as a substrate for printed electronics is of growing interest because it is an environmentally friendly and renewable material and is, additionally, the main material used for many packages in which electronics functionalities could be integrated. One of the challenges for such hybrid printed electronics is the mounting of the components and the interconnection between layers on flexible substrates with printed conductive tracks that should provide as low a resistance as possible while still being able to be used in a high speed manufacturing process. In this article, several conductive adhesives are evaluated as well as soldering for mounting surface mounted components on a paper circuit board with ink-jet printed tracks and, in addition, a double sided Arduino compatible circuit board is manufactured and programmed.

  11. Assembling surface mounted components on ink-jet printed double sided paper circuit board

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Henrik A; Manuilskiy, Anatoliy; Haller, Stefan; Sidén, Johan; Nilsson, Hans-Erik [Department of Electronics Design, Mid Sweden University, SE-851 70 Sundsvall (Sweden); Hummelgård, Magnus; Olin, Håkan [Department of Natural Science, Mid Sweden University, SE-851 70 Sundsvall (Sweden); Hummelgård, Christine [Acreo Swedish ICT AB, Håstaholmen 4, SE-824 42 Hudiksvall (Sweden)

    2014-03-07

    Printed electronics is a rapidly developing field where many components can already be manufactured on flexible substrates by printing or by other high speed manufacturing methods. However, the functionality of even the most inexpensive microcontroller or other integrated circuit is, at the present time and for the foreseeable future, out of reach by means of fully printed components. Therefore, it is of interest to investigate hybrid printed electronics, where regular electrical components are mounted on flexible substrates to achieve high functionality at a low cost. Moreover, the use of paper as a substrate for printed electronics is of growing interest because it is an environmentally friendly and renewable material and is, additionally, the main material used for many packages in which electronics functionalities could be integrated. One of the challenges for such hybrid printed electronics is the mounting of the components and the interconnection between layers on flexible substrates with printed conductive tracks that should provide as low a resistance as possible while still being able to be used in a high speed manufacturing process. In this article, several conductive adhesives are evaluated as well as soldering for mounting surface mounted components on a paper circuit board with ink-jet printed tracks and, in addition, a double sided Arduino compatible circuit board is manufactured and programmed. (paper)

  12. Radiation evaluation method of commercial off-the-shelf (COTS) electronic printed circuit boards (PCBs)

    International Nuclear Information System (INIS)

    LaBel, K.A.; Gruner, T.D.; Reed, R.A.; Settles, B.; Wilmot, J.; Dougherty, L.F.; Russo, A.; Yuknis, W.; Foster, M.G.; Garrisson-Darrin, A.; Marshall, P.W.

    1999-01-01

    We present a radiation evaluation methodology and proton ground test results for candidate COTS PCBs (commercial off-the-shelf electronic printed circuit boards) and their associated electronics for low-altitude, low-inclination orbits. We will also discuss the implications associated with mission orbit and duration. (authors)

  13. Recovery Act: High-Temperature Circuit Boards for use in Geothermal Well Monitoring Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, Matthew [Composite Tehcnology Development, Inc., Lafayette, CO (United States); Fabian, Paul [Composite Tehcnology Development, Inc., Lafayette, CO (United States)

    2013-05-01

    The U.S. Department of Energy is leading the development of alternative energy sources that will ensure the long-term energy independence of our nation. One of the key renewable resources currently being advanced is geothermal energy. To tap into the large potential offered by generating power from the heat of the earth, and for geothermal energy to be more widely used, it will be necessary to drill deeper wells to reach the hot, dry rock located up to 10 km beneath the earth’s surface. In this instance, water will be introduced into the well to create a geothermal reservoir. A geothermal well produced in this manner is referred to as an enhanced geothermal system (EGS). EGS reservoirs are typically at depths of 3 to 10 km, and the temperatures at these depths have become a limiting factor in the application of existing downhole technologies. These high temperatures are especially problematic for electronic systems such as downhole data-logging tools, which are used to map and characterize the fractures and high-permeability regions in underground formations. Information provided by these tools is assessed so that underground formations capable of providing geothermal energy can be identified, and the subsequent drilling operations can be accurately directed to those locations. The mapping of geothermal resources involves the design and fabrication of sensor packages, including the electronic control modules, to quantify downhole conditions (300°C temperature, high pressure, seismic activity, etc.). Because of the extreme depths at which these measurements are performed, it is most desirable to perform the sensor signal processing downhole and then transmit the information to the surface. This approach necessitates the use of high-temperature electronics that can operate in the downhole environment. Downhole signal processing in EGS wells will require the development and demonstration of circuit boards that can withstand the elevated temperatures found at these

  14. Circuit Board Analysis for Lead by Atomic Absorption Spectroscopy in a Course for Nonscience Majors

    Science.gov (United States)

    Weidenhammer, Jeffrey D.

    2007-01-01

    A circuit board analysis of the atomic absorption spectroscopy, which is used to measure lead content in a course for nonscience majors, is being presented. The experiment can also be used to explain the potential environmental hazards of unsafe disposal of various used electronic equipments.

  15. Contamination profile on typical printed circuit board assemblies vs soldering process

    DEFF Research Database (Denmark)

    Conseil, Helene; Jellesen, Morten Stendahl; Ambat, Rajan

    2014-01-01

    Purpose – The purpose of this paper was to analyse typical printed circuit board assemblies (PCBAs) processed by reflow, wave or selective wave soldering for typical levels of process-related residues, resulting from a specific or combination of soldering processes. Typical solder flux residue...... structure was identified by Fourier transform infrared spectroscopy, while the concentration was measured using ion chromatography, and the electrical properties of the extracts were determined by measuring the leak current using a twin platinum electrode set-up. Localized extraction of residue was carried...

  16. Characterization and mechanical separation of metals from computer Printed Circuit Boards (PCBs) based on mineral processing methods.

    Science.gov (United States)

    Sarvar, Mojtaba; Salarirad, Mohammad Mehdi; Shabani, Mohammad Amin

    2015-11-01

    In this paper, a novel mechanical process is proposed for enriching metal content of computer Printed Circuit Boards (PCBs). The PCBs are crushed and divided into three different size fractions namely: -0.59, +0.59 to 1.68 and +1.68 mm. Wet jigging and froth flotation methods are selected for metal enrichment. The coarse size fraction (+1.68 mm) is processed by jigging. The plastic free product is grinded and screened. The oversized product is separated as the first concentrate. It was rich of metal because the grinding process was selective. The undersized product is processed by froth flotation. Based on the obtained results, the middle size fraction (+0.59 to 1.68 mm) and the small size fraction (-0.59 mm) are processed by wet jigging and froth flotation respectively. The wet jigging process is optimized by investigating the effect of pulsation frequency and water flow rate. The results of examining the effect of particle size, solid to liquid ratio, conditioning time and using apolar collector showed that collectorless flotation is a promising method for separating nonmetals of PCBs. 95.6%, 97.5% and 85% of metal content of coarse size, middle size and small size fraction are recovered. The grades of obtained concentrates were 63.3%, 92.5% and 75% respectively. The total recovery is calculated as 95.64% and the grade of the final concentrate was 71.26%. Determining the grade of copper and gold in the final product reveals that 4.95% of copper and 24.46% of gold are lost during the concentration. The major part of the lost gold is accumulated in froth flotation tail. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A NEW CONTROL CIRCUIT AND COMPUTER SOFTWARE FOR CONTROLING PHOTOVOLTAIC SYSTEMS

    Directory of Open Access Journals (Sweden)

    Mustafa Berkant SELEK

    2008-02-01

    Full Text Available In this study, a new microcontroller circuit was designed and new computer software was implemented to control power flow currents of renewable energy system, which is established in Solar Energy Institute, Ege University, Bornova, Izmir, Turkey. PIC18F452 microcontroller based electronic circuit was designed to control another electronic circuit that includes power electronic switching components. Readily available standard control circuits are designed for switching single level inverters. In contrary, implemented circuit allows to switch multilevel inverters. In addition, because the efficiency of solar energy panels is considerably low, solar panels should be operated under the maximum power point (MPP. Therefore, MPP algorithm is included in the designed control circuit. Next, the control circuit also includes a serial communication interface based on RS232 standard. Using this interface enables the user to choose all functions available in the control circuit and take status report via computer software. Last, a general purpose command set was designed to establish communication between the computer software and the microcontroller-based control circuit. As a result, it is aimed that this study supply a basis for the researchers who want to develop own control circuits or more visual software.

  18. Leaching of gold and silver from printed circuit board of mobile phones

    OpenAIRE

    Petter,Patrícia Melo Halmenschlager; Veit,Hugo Marcelo; Bernardes,Andréa Moura

    2015-01-01

    Nowadays there is a wide variety of models, sizes and configurations of mobile phones available for consumption. After the life cycle of this equipment, the recycling and reuse of the precious metals found in the printed circuit boards (PCB) of the mobile phones are principal objectives. Thus, the objective of this work was to characterize the gold and silver present in a PCB and develop a recycling route using alternative reagents for cyanide, such as sodium and ammonium thiosulfate. These r...

  19. EMC and the printed circuit board design theory and layout made simple

    CERN Document Server

    Montrose, Mark I

    1999-01-01

    "This reference text shows how and why RF energy is created within a printed circuit board, and the manner in which propagation occurs. With thorough explanations, this book enables engineers to grasp both the fundamentals of EMC theory and signal integrity, along with the mitigation process needed to prevent an EMC event while maintaining optimal functionality for low- and high-technology products. Mr. Montrose also shows the relationship between time and frequency domains, helping one meet mandatory compliance requirements."--Jacket.

  20. Computer board for radioactive ray test

    International Nuclear Information System (INIS)

    Zuo Mingfu

    1996-05-01

    The present status of the radioactive-ray test system for industrial applications, the newly designed computer board for overcoming the shortcomings of the current system are described. The functions, measurement principles and the feature of the board as well as the test results for this board are discussed. The board puts together many functions of the radioactive-ray test system, such as energy calibration, MCS, etc.. It also provides many other subordinate practical function such as motor control, ADC and so on. The board summarizes two sets of test parts into one and therefore composes a powerful unit for the system. Not only can it replace all units in a normal test system for signal analysis, signal process, data management, and motor control, but also can be used in more complex test systems, such as those for double source/double energy/double channel testing, multichannel testing, position testing and core positioning, etc.. The board makes the test system more easier to achieve miniaturization, computerization goals, and therefore improves the quality of the test and reduces the cost of the system. (10 refs., 8 figs.)

  1. Colorimetric visualization of tin corrosion: A method for early stage corrosion detection on printed circuit boards

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan

    2017-01-01

    A majority of printed circuit board surfaces are covered with tin, therefore tin corrosion under humid conditions and movement of tin ions under the influence of an electric field plays an important role in the corrosion failure development. Tracking tin corrosion products spread on the printed c...

  2. Field analysis and enhancement of multi-pole magnetic components fabricated on printed circuit board

    International Nuclear Information System (INIS)

    Chiu, K.-C.; Chen, C.-S.

    2007-01-01

    A multi-pole magnetic component magnetized with a fine magnetic pole pitch of less than 1 mm is very difficult to achieve by using traditional methods. Moreover, it requires a precise mechanical process and a complicated magnetization system. Different fine magnetic pole pitches of 300, 350 and 400 μm have been accomplished on 9-pole magnetic components through the printed circuit board (PCB) manufacturing technology. Additionally, another fine magnetic pole pitch of 500 μm was also fabricated on a dual-layered (DL) wire circuit structure to investigate the field enhancement. After measurements, a gain factor of 1.37 was obtained in the field strength. The field variations among different magnetic pole pitches were analyzed in this paper

  3. Single-server blind quantum computation with quantum circuit model

    Science.gov (United States)

    Zhang, Xiaoqian; Weng, Jian; Li, Xiaochun; Luo, Weiqi; Tan, Xiaoqing; Song, Tingting

    2018-06-01

    Blind quantum computation (BQC) enables the client, who has few quantum technologies, to delegate her quantum computation to a server, who has strong quantum computabilities and learns nothing about the client's quantum inputs, outputs and algorithms. In this article, we propose a single-server BQC protocol with quantum circuit model by replacing any quantum gate with the combination of rotation operators. The trap quantum circuits are introduced, together with the combination of rotation operators, such that the server is unknown about quantum algorithms. The client only needs to perform operations X and Z, while the server honestly performs rotation operators.

  4. Hydrothermal modification and recycling of nonmetallic particles from waste print circuit boards.

    Science.gov (United States)

    Gao, Xuehua; Li, Qisheng; Qiu, Jun

    2018-04-01

    Nonmetallic particles recycled from waste print circuit boards (NPRPs) were modified by a hydrothermal treatment method and the catalysts, solvents, temperature and time were investigated, which affected the modification effect of NPRPs. The mild hydrothermal treatment method does not need high temperature, and would not cause secondary pollution. Further, the modified NPRPs were used as the raw materials for the epoxy resin and glass fibers/epoxy resin composites, which were prepared by pouring and hot-pressing method. The mechanical properties and morphology of the composites were discussed. The results showed that relative intensity of the hydroxyl bonds on the surface of NPRPs increased 58.9% after modification. The mechanical tests revealed that both flexural and impact properties of the composites can be significantly improved by adding the modified NPRPs. Particularly, the maximum increment of flexural strength, flexural modulus and impact strength of the epoxy matrix composites with 30% modified NPRPs is 40.1%, 80.0% and 79.0%, respectively. Hydrothermal treatment can modify surface of NPRPs successfully and modified NPRPs can not only improve the properties of the composites, but also reduce the production cost of the composites and environmental pollution. Thus, we develop a new way to recycle nonmetallic materials of waste print circuit boards and the highest level of waste material recycling with the raw materials-products-raw materials closed cycle can be realized through the hydrothermal modification and reuse of NPRPs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Effect of solder flux residue on the performance of silicone conformal coatings on printed circuit board assemblies

    DEFF Research Database (Denmark)

    Rathinavelu, Umadevi; Jellesen, Morten Stendahl; Ambat, Rajan

    2013-01-01

    Conformal coatings are applied on printed circuit board assemblies (PCBAs) in order to protect the assembly from environmental influence and silicone-based coating is commonly used. A systematic study on the performance of silicone conformal coating in connection with process-related contaminants...

  6. Superior model for fault tolerance computation in designing nano-sized circuit systems

    Energy Technology Data Exchange (ETDEWEB)

    Singh, N. S. S., E-mail: narinderjit@petronas.com.my; Muthuvalu, M. S., E-mail: msmuthuvalu@gmail.com [Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak (Malaysia); Asirvadam, V. S., E-mail: vijanth-sagayan@petronas.com.my [Electrical and Electronics Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak (Malaysia)

    2014-10-24

    As CMOS technology scales nano-metrically, reliability turns out to be a decisive subject in the design methodology of nano-sized circuit systems. As a result, several computational approaches have been developed to compute and evaluate reliability of desired nano-electronic circuits. The process of computing reliability becomes very troublesome and time consuming as the computational complexity build ups with the desired circuit size. Therefore, being able to measure reliability instantly and superiorly is fast becoming necessary in designing modern logic integrated circuits. For this purpose, the paper firstly looks into the development of an automated reliability evaluation tool based on the generalization of Probabilistic Gate Model (PGM) and Boolean Difference-based Error Calculator (BDEC) models. The Matlab-based tool allows users to significantly speed-up the task of reliability analysis for very large number of nano-electronic circuits. Secondly, by using the developed automated tool, the paper explores into a comparative study involving reliability computation and evaluation by PGM and, BDEC models for different implementations of same functionality circuits. Based on the reliability analysis, BDEC gives exact and transparent reliability measures, but as the complexity of the same functionality circuits with respect to gate error increases, reliability measure by BDEC tends to be lower than the reliability measure by PGM. The lesser reliability measure by BDEC is well explained in this paper using distribution of different signal input patterns overtime for same functionality circuits. Simulation results conclude that the reliability measure by BDEC depends not only on faulty gates but it also depends on circuit topology, probability of input signals being one or zero and also probability of error on signal lines.

  7. Superior model for fault tolerance computation in designing nano-sized circuit systems

    International Nuclear Information System (INIS)

    Singh, N. S. S.; Muthuvalu, M. S.; Asirvadam, V. S.

    2014-01-01

    As CMOS technology scales nano-metrically, reliability turns out to be a decisive subject in the design methodology of nano-sized circuit systems. As a result, several computational approaches have been developed to compute and evaluate reliability of desired nano-electronic circuits. The process of computing reliability becomes very troublesome and time consuming as the computational complexity build ups with the desired circuit size. Therefore, being able to measure reliability instantly and superiorly is fast becoming necessary in designing modern logic integrated circuits. For this purpose, the paper firstly looks into the development of an automated reliability evaluation tool based on the generalization of Probabilistic Gate Model (PGM) and Boolean Difference-based Error Calculator (BDEC) models. The Matlab-based tool allows users to significantly speed-up the task of reliability analysis for very large number of nano-electronic circuits. Secondly, by using the developed automated tool, the paper explores into a comparative study involving reliability computation and evaluation by PGM and, BDEC models for different implementations of same functionality circuits. Based on the reliability analysis, BDEC gives exact and transparent reliability measures, but as the complexity of the same functionality circuits with respect to gate error increases, reliability measure by BDEC tends to be lower than the reliability measure by PGM. The lesser reliability measure by BDEC is well explained in this paper using distribution of different signal input patterns overtime for same functionality circuits. Simulation results conclude that the reliability measure by BDEC depends not only on faulty gates but it also depends on circuit topology, probability of input signals being one or zero and also probability of error on signal lines

  8. RC Circuits: Some Computer-Interfaced Experiments.

    Science.gov (United States)

    Jolly, Pratibha; Verma, Mallika

    1994-01-01

    Describes a simple computer-interface experiment for recording the response of an RC network to an arbitrary input excitation. The setup is used to pose a variety of open-ended investigations in network modeling by varying the initial conditions, input signal waveform, and the circuit topology. (DDR)

  9. Estimation of Operating Condition of Appliances Using Circuit Current Data on Electric Distribution Boards

    Science.gov (United States)

    Iwafune, Yumiko; Ogimoto, Kazuhiko; Yagita, Yoshie

    The Energy management systems (EMS) on demand sides are expected as a method to enhance the capability of supply and demand balancing of a power system under the anticipated penetration of renewable energy generation such as Photovoltaics (PV). Elucidation of energy consumption structure in a building is one of important elements for realization of EMS and contributes to the extraction of potential energy saving. In this paper, we propose the estimation method of operating condition of household appliances using circuit current data on an electric distribution board. Circuit current data are broken down by their shape using a self-organization map method and aggregated by appliance based on customers' information of appliance possessed. Proposed method is verified using residential energy consumption measurement survey data.

  10. Effects of mould on electrochemical migration behaviour of immersion silver finished printed circuit board.

    Science.gov (United States)

    Yi, Pan; Xiao, Kui; Dong, Chaofang; Zou, Shiwen; Li, Xiaogang

    2018-02-01

    The role played by mould in the electrochemical migration (ECM) behaviour of an immersion silver finished printed circuit board (PCB-ImAg) under a direct current (DC) bias was investigated. An interesting phenomenon is found whereby mould, especially Aspergillus niger, can preferentially grow well on PCB-ImAg under electrical bias and then bridge integrated circuits and form a migration path. The cooperation of the mould and DC bias aggravates the ECM process occurring on PCB-ImAg. When the bias voltage is below 15V, ECM almost does not occur for Ag coating. Mechanisms that explain the ECM processes of PCB-ImAg in the presence of mould and DC bias are proposed. Copyright © 2017. Published by Elsevier B.V.

  11. Ductile electroless Ni-P coating onto flexible printed circuit board

    Science.gov (United States)

    Wang, Wenchang; Zhang, Weiwei; Wang, Yurong; Mitsuzak, Naotoshi; Chen, Zhidong

    2016-03-01

    In this study, a ductile electroless Ni-P coating on the flexible printed circuit board (FPCB) was prepared in an acidic nickel plating bath. The addition of dipropylamine (DPA) in electroless plating not only improves the ductility of the Ni-P coating, but also enhances the corrosion resistance. The further analysis reveals that the ductility improvement and enhancement of corrosion resistance for the Ni-P coating may be due to the fact that the addition of DPA significantly refines the volume of columnar nodule and reduce the porosity, thus leading to the released internal stress. In addition, it was found that the nodule within the Ni-P coating grew into a columnar structure, which may be also contribute to the improvement of ductility.

  12. Fabrication of a capacitive relative humidity sensor using aluminum thin films deposited on etched printed circuit board

    Directory of Open Access Journals (Sweden)

    Lee Jacqueline Ann L.

    2016-01-01

    Full Text Available A capacitive humidity-sensing device was created by thermal evaporation of 99.999% aluminum. The substrate used for the coating was etched double-sided printed circuit board. The etched printed circuit board serves as the dielectric of the capacitor while the aluminum thin films deposited on either side serve as the plates of the capacitor. The capacitance was measured before and after exposure to humidity. The device was then calibrated by comparing the readings of capacitance with that of the relative humidity sensor of the Vernier LabQuest2. It was found that there is a linear relationship between the capacitance and relative humidity given by the equation C=1.418RH+29.139 where C is the capacitance and RH is the relative humidity. The surface of the aluminum films is porous and it is through these pores that water is adsorbed and capillary condensation occurs, thereby causing the capacitance to change upon exposure to humidity.

  13. Computing Hypergraph Ramsey Numbers by Using Quantum Circuit

    OpenAIRE

    Qu, Ri; Li, Zong-shang; Wang, Juan; Bao, Yan-ru; Cao, Xiao-chun

    2012-01-01

    Gaitan and Clark [Phys. Rev. Lett. 108, 010501 (2012)] have recently shown a quantum algorithm for the computation of the Ramsey numbers using adiabatic quantum evolution. We present a quantum algorithm to compute the two-color Ramsey numbers for r-uniform hypergraphs by using the quantum counting circuit.

  14. Integrated mechanisms of anticipation and rate-of-change computations in cortical circuits.

    Directory of Open Access Journals (Sweden)

    Gabriel D Puccini

    2007-05-01

    Full Text Available Local neocortical circuits are characterized by stereotypical physiological and structural features that subserve generic computational operations. These basic computations of the cortical microcircuit emerge through the interplay of neuronal connectivity, cellular intrinsic properties, and synaptic plasticity dynamics. How these interacting mechanisms generate specific computational operations in the cortical circuit remains largely unknown. Here, we identify the neurophysiological basis of both the rate of change and anticipation computations on synaptic inputs in a cortical circuit. Through biophysically realistic computer simulations and neuronal recordings, we show that the rate-of-change computation is operated robustly in cortical networks through the combination of two ubiquitous brain mechanisms: short-term synaptic depression and spike-frequency adaptation. We then show how this rate-of-change circuit can be embedded in a convergently connected network to anticipate temporally incoming synaptic inputs, in quantitative agreement with experimental findings on anticipatory responses to moving stimuli in the primary visual cortex. Given the robustness of the mechanism and the widespread nature of the physiological machinery involved, we suggest that rate-of-change computation and temporal anticipation are principal, hard-wired functions of neural information processing in the cortical microcircuit.

  15. Leaching of metals from large pieces of printed circuit boards using citric acid and hydrogen peroxide.

    Science.gov (United States)

    Jadhav, Umesh; Su, C; Hocheng, Hong

    2016-12-01

    In the present study, the leaching of metals from large pieces of computer printed circuit boards (CPCBs) was studied. A combination of citric acid (0.5 M) and 1.76 M hydrogen peroxide (H 2 O 2 ) was used to leach the metals from CPCB piece. The influence of system variables such as H 2 O 2 concentration, concentration of citric acid, shaking speed, and temperature on the metal leaching process was investigated. The complete metal leaching was achieved in 4 h from a 4 × 4 cm CPCB piece. The presence of citric acid and H 2 O 2 together in the leaching solution is essential for complete metal leaching. The optimum addition amount of H 2 O 2 was 5.83 %. The citric acid concentration and shaking speed had an insignificant effect on the leaching of metals. The increase in the temperature above 30 °C showed a drastic effect on metal leaching process.

  16. Search for the optimal size of printed circuit boards for mechanical structures for electronic equipment

    Directory of Open Access Journals (Sweden)

    Yefimenko A. A.

    2014-12-01

    Full Text Available The authors present a method, an algorithm and a program, designed to determine the optimal size of printed circuit boards (PCB of mechanical structures and different kinds of electronic equipment. The PCB filling factor is taken as an optimization criterion. The method allows one to quickly determine the dependence of the filling factor on the size of the PCB for various components.

  17. Comparative study of electromagnetic compatibility methods in printed circuit board design tools

    International Nuclear Information System (INIS)

    Marinova, Galia

    2002-01-01

    The paper considers the state-of-the art in electromagnetic compatibility (EMC) oriented printed circuit board (PCB) design. A general methodology of EMC oriented PCB design is synthesized. The main CAD tools available today are estimated and compared for their abilities to treat EMC oriented design. To help non experts a knowledge-base containing more than 50 basic rules for EMC-oriented PCB design is proposed. It can be applied in the PCB design CAD tools that possess rule-builders or it can help interactive design. Trends in this area of EMC-oriented PCB design are deduced. (Author)

  18. Single-board 32-bit computer for the FASTBUS

    International Nuclear Information System (INIS)

    Kellner, R.; Blossom, J.M.; Hong, J.P.

    1985-01-01

    The Los Alamos National Laboratory is building a 32bit computer on a FASTBUS board. It will use the National Semiconductor 32032 chip set, including the demand-paged memory management, floating point slave processor and interrupt control chips. The board will support 4 megabytes of memory which can be accessed by the processor over an on-board execution bus at processor speeds and which can be accessed by the FASTBUS at 80 megabytes per second. A windowed, direct memory access mechanism allows transfers of up to all of the memory

  19. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging

    International Nuclear Information System (INIS)

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia

    2014-01-01

    Highlights: • A recycling oriented characterization of end-of-life mobile phones was carried out. • Characterization was developed in a zero-waste-perspective, aiming to recover all the mobile phone materials. • Plastic frames and printed circuit boards were analyzed by electronic and chemical imaging. • Suitable milling/classification strategies were set up to define specialized-pre-concentrated-streams. • The proposed approach can improve the recovery of polymers, base/precious metals, rare earths and critical raw materials. - Abstract: This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further “sustainable” recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both “traditional” (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery

  20. Recycling-oriented characterization of plastic frames and printed circuit boards from mobile phones by electronic and chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia, E-mail: silvia.serranti@uniroma1.it

    2014-11-15

    Highlights: • A recycling oriented characterization of end-of-life mobile phones was carried out. • Characterization was developed in a zero-waste-perspective, aiming to recover all the mobile phone materials. • Plastic frames and printed circuit boards were analyzed by electronic and chemical imaging. • Suitable milling/classification strategies were set up to define specialized-pre-concentrated-streams. • The proposed approach can improve the recovery of polymers, base/precious metals, rare earths and critical raw materials. - Abstract: This study characterizes the composition of plastic frames and printed circuit boards from end-of-life mobile phones. This knowledge may help define an optimal processing strategy for using these items as potential raw materials. Correct handling of such a waste is essential for its further “sustainable” recovery, especially to maximize the extraction of base, rare and precious metals, minimizing the environmental impact of the entire process chain. A combination of electronic and chemical imaging techniques was thus examined, applied and critically evaluated in order to optimize the processing, through the identification and the topological assessment of the materials of interest and their quantitative distribution. To reach this goal, end-of-life mobile phone derived wastes have been systematically characterized adopting both “traditional” (e.g. scanning electronic microscopy combined with microanalysis and Raman spectroscopy) and innovative (e.g. hyperspectral imaging in short wave infrared field) techniques, with reference to frames and printed circuit boards. Results showed as the combination of both the approaches (i.e. traditional and classical) could dramatically improve recycling strategies set up, as well as final products recovery.

  1. Draft of diagnostic techniques for primary coolant circuit facilities using control computer

    International Nuclear Information System (INIS)

    Suchy, R.; Procka, V.; Murin, V.; Rybarova, D.

    A method is proposed of in-service on-line diagnostics of primary circuit selected parts by means of a control computer. Computer processing will involve the measurements of neutron flux, pressure difference in pumps and in the core, and the vibrations of primary circuit mechanical parts. (H.S.)

  2. Instantaneous Non-Local Computation of Low T-Depth Quantum Circuits

    DEFF Research Database (Denmark)

    Speelman, Florian

    2016-01-01

    -depth of a quantum circuit, able to perform non-local computation of quantum circuits with a (poly-)logarithmic number of layers of T gates with quasi-polynomial entanglement. Our proofs combine ideas from blind and delegated quantum computation with the garden-hose model, a combinatorial model of communication......Instantaneous non-local quantum computation requires multiple parties to jointly perform a quantum operation, using pre-shared entanglement and a single round of simultaneous communication. We study this task for its close connection to position-based quantum cryptography, but it also has natural...... applications in the context of foundations of quantum physics and in distributed computing. The best known general construction for instantaneous non-local quantum computation requires a pre-shared state which is exponentially large in the number of qubits involved in the operation, while efficient...

  3. Modular integration of electronics and microfluidic systems using flexible printed circuit boards.

    Science.gov (United States)

    Wu, Amy; Wang, Lisen; Jensen, Erik; Mathies, Richard; Boser, Bernhard

    2010-02-21

    Microfluidic systems offer an attractive alternative to conventional wet chemical methods with benefits including reduced sample and reagent volumes, shorter reaction times, high-throughput, automation, and low cost. However, most present microfluidic systems rely on external means to analyze reaction products. This substantially adds to the size, complexity, and cost of the overall system. Electronic detection based on sub-millimetre size integrated circuits (ICs) has been demonstrated for a wide range of targets including nucleic and amino acids, but deployment of this technology to date has been limited due to the lack of a flexible process to integrate these chips within microfluidic devices. This paper presents a modular and inexpensive process to integrate ICs with microfluidic systems based on standard printed circuit board (PCB) technology to assemble the independently designed microfluidic and electronic components. The integrated system can accommodate multiple chips of different sizes bonded to glass or PDMS microfluidic systems. Since IC chips and flex PCB manufacturing and assembly are industry standards with low cost, the integrated system is economical for both laboratory and point-of-care settings.

  4. How to design and establish a computer bulletin board to support inventors

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This booklet is a ``how-to handbook`` to demonstrate the development of an interactive electronic bulletin board as a support network for independent inventors and small business inventors. This will explain step-by-step, how Linking Alaskan Minds{trademark}, the Alaskan model of an interactive computer bulletin board system, was developed and designed to serve as a successfully working, interactive computer bulletin board that links and supports independent inventors in Alaska.

  5. Designing reversible arithmetic, logic circuit to implement micro-operation in quantum computation

    International Nuclear Information System (INIS)

    Kalita, Gunajit; Saikia, Navajit

    2016-01-01

    The futuristic computing is desired to be more power full with low-power consumption. That is why quantum computing has been a key area of research for quite some time and is getting more and more attention. Quantum logic being reversible, a significant amount of contributions has been reported on reversible logic in recent times. Reversible circuits are essential parts of quantum computers, and hence their designs are of great importance. In this paper, designs of reversible circuits are proposed using a recently proposed reversible gate for arithmetic and logic operations to implement various micro-operations (simple add and subtract, add with carry, subtract with borrow, transfer, incrementing, decrementing etc., and logic operations like XOR, XNOR, complementing etc.) in a reversible computer like quantum computer. The two new reversible designs proposed here for half adder and full adders are also used in the presented reversible circuits to implement various microoperations. The quantum costs of these designs are comparable. Many of the implemented micro-operations are not seen in previous literatures. The performances of the proposed circuits are compared with existing designs wherever available. (paper)

  6. Toward environmentally-benign utilization of nonmetallic fraction of waste printed circuit boards as modifier and precursor.

    Science.gov (United States)

    Hadi, Pejman; Ning, Chao; Ouyang, Weiyi; Xu, Meng; Lin, Carol S K; McKay, Gordon

    2015-01-01

    Electronic waste, including printed circuit boards, is growing at an alarming rate due to the accelerated technological progress and the shorter lifespan of the electronic equipment. In the past decades, due to the lack of proper economic and environmentally-benign recycling technologies, a major fraction of e-waste generated was either destined to landfills or incinerated with the sole intention of its disposal disregarding the toxic nature of this waste. Recently, with the increasing public awareness over their environment and health issues and with the enaction of more stringent regulations, environmentally-benign recycling has been driven to be an alternative option partially replacing the traditional eco-unfriendly disposal methods. One of the most favorable green technologies has been the mechanical separation of the metallic and nonmetallic fraction of the waste printed circuit boards. Although metallic fraction, as the most profitable component, is used to generate the revenue of the separation process, the nonmetallic fraction (NMF) has been left isolated. Herein, the recent developments in the application of NMF have been comprehensively reviewed and an eco-friendly emerging usage of NMF as a value-added material for sustainable remediation has been introduced. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Modelling the transient analysis of flat miniature heat pipes in printed circuit boards using a control volume approacht

    NARCIS (Netherlands)

    Wits, W.W.; Kok, J.B.W.; van Steenhoven, A.A.; van der Meer, T.H.; Stoffels, G.G.M.

    2008-01-01

    The heat pipe is a two-phase cooling solution, offering very high thermal coefficients, for heat transport. Therefore, it is increasingly used in the design of electronic products. Flat miniature heat pipes are able to effectively remove heat from several hot spots on a Printed Circuit Board (PCB).

  8. Computer optimization of cutting yield from multiple ripped boards

    Science.gov (United States)

    A.R. Stern; K.A. McDonald

    1978-01-01

    RIPYLD is a computer program that optimizes the cutting yield from multiple-ripped boards. Decisions are based on automatically collected defect information, cutting bill requirements, and sawing variables. The yield of clear cuttings from a board is calculated for every possible permutation of specified rip widths and both the maximum and minimum percent yield...

  9. How to design and establish a computer bulletin board to support inventors

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This booklet is a how-to handbook'' to demonstrate the development of an interactive electronic bulletin board as a support network for independent inventors and small business inventors. This will explain step-by-step, how Linking Alaskan Minds{trademark}, the Alaskan model of an interactive computer bulletin board system, was developed and designed to serve as a successfully working, interactive computer bulletin board that links and supports independent inventors in Alaska.

  10. Analysis of the treatment of plastic from electrical and electronic waste in the Republic of Serbia and the testing of the recycling potential of non-metallic fractions of printed circuit boards

    Directory of Open Access Journals (Sweden)

    Vučinić Aleksandra S.

    2017-01-01

    Full Text Available This paper presents the analysis of the quantity of plastic and waste printed circuit boards obtained after the mechanical treatment of electrical and electronic waste (E-waste in the Republic of Serbia, as well as the recycling of non-metallic fractions of waste printed circuit boards. The aim is to analyze the obtained recycled material and recommendation for possible application of recyclables. The data on the quantities and treatment of plastics and printed circuit boards obtained after the mechanical treatment of WEEE, were gained through questionnaires sent to the operators who treat this type of waste. The results of the questionnaire analysis showed that in 2014 the dismantling of E-waste isolated 1,870.95 t of plastic and 499.85 t of printed circuit boards. In the Republic of Serbia, E-waste recycling is performed exclusively by using mechanical methods. Mechanical methods consist of primary crushing and separation of the materials which have a utility value as secondary raw materials, from the components and materials that have hazardous properties. Respect to that, the recycling of printed circuit boards using some of the metallurgical processes with the aim of extracting copper, precious metals and non-metallic fraction is completely absent, and the circuit boards are exported as a whole. Given the number of printed circuit boards obtained by E-waste dismantling, and the fact that from an economic point of view, hydrometallurgical methods are very suitable technological solutions in the case of a smaller capacity, there is a possibility for establishing the facilities in the Republic of Serbia for the hydrometallurgical treatment that could be used for metals extraction, and non-metallic fractions, which also have their own value. Printed circuit boards granulate obtained after the mechanical pretreatment and the selective removal of metals by hydrometallurgical processes was used for the testing of the recycling potential

  11. One-way quantum computing in superconducting circuits

    Science.gov (United States)

    Albarrán-Arriagada, F.; Alvarado Barrios, G.; Sanz, M.; Romero, G.; Lamata, L.; Retamal, J. C.; Solano, E.

    2018-03-01

    We propose a method for the implementation of one-way quantum computing in superconducting circuits. Measurement-based quantum computing is a universal quantum computation paradigm in which an initial cluster state provides the quantum resource, while the iteration of sequential measurements and local rotations encodes the quantum algorithm. Up to now, technical constraints have limited a scalable approach to this quantum computing alternative. The initial cluster state can be generated with available controlled-phase gates, while the quantum algorithm makes use of high-fidelity readout and coherent feedforward. With current technology, we estimate that quantum algorithms with above 20 qubits may be implemented in the path toward quantum supremacy. Moreover, we propose an alternative initial state with properties of maximal persistence and maximal connectedness, reducing the required resources of one-way quantum computing protocols.

  12. Three-phase short circuit calculation method based on pre-computed surface for doubly fed induction generator

    Science.gov (United States)

    Ma, J.; Liu, Q.

    2018-02-01

    This paper presents an improved short circuit calculation method, based on pre-computed surface to determine the short circuit current of a distribution system with multiple doubly fed induction generators (DFIGs). The short circuit current, injected into power grid by DFIG, is determined by low voltage ride through (LVRT) control and protection under grid fault. However, the existing methods are difficult to calculate the short circuit current of DFIG in engineering practice due to its complexity. A short circuit calculation method, based on pre-computed surface, was proposed by developing the surface of short circuit current changing with the calculating impedance and the open circuit voltage. And the short circuit currents were derived by taking into account the rotor excitation and crowbar activation time. Finally, the pre-computed surfaces of short circuit current at different time were established, and the procedure of DFIG short circuit calculation considering its LVRT was designed. The correctness of proposed method was verified by simulation.

  13. Several problems of algorithmization in integrated computation programs on third generation computers for short circuit currents in complex power networks

    Energy Technology Data Exchange (ETDEWEB)

    Krylov, V.A.; Pisarenko, V.P.

    1982-01-01

    Methods of modeling complex power networks with short circuits in the networks are described. The methods are implemented in integrated computation programs for short circuit currents and equivalents in electrical networks with a large number of branch points (up to 1000) on a computer with a limited on line memory capacity (M equals 4030 for the computer).

  14. Simultaneous detection of lactate and glucose by integrated printed circuit board based array sensing chip

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xuelian [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China); School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Zang, Jianfeng [Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 (United States); Liu, Yingshuai; Lu, Zhisong [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China); Li, Qing, E-mail: Qli@swu.edu.cn [School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715 (China); Li, Chang Ming, E-mail: ecmli@swu.edu.cn [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China)

    2013-04-10

    Highlights: ► An integrated printed circuit board (PCB) based array sensing chip was developed. ► Simultaneous detection of lactate and glucose in serum has been demonstrated. ► The array electronic biochip has high signal to noise ratio and high sensitivity. ► Additional electrodes were designed on the chip to correct interferences. -- Abstract: An integrated printed circuit board (PCB) based array sensing chip was developed to simultaneously detect lactate and glucose in mouse serum. The novelty of the chip relies on a concept demonstration of inexpensive high-throughput electronic biochip, a chip design for high signal to noise ratio and high sensitivity by construction of positively charged chitosan/redox polymer Polyvinylimidazole-Os (PVI-Os)/carbon nanotube (CNT) composite sensing platform, in which the positively charged chitosan/PVI-Os is mediator and electrostatically immobilizes the negatively charged enzyme, while CNTs function as an essential cross-linker to network PVI-Os and chitosan due to its negative charged nature. Additional electrodes on the chip with the same sensing layer but without enzymes were prepared to correct the interferences for high specificity. Low detection limits of 0.6 μM and 5 μM were achieved for lactate and glucose, respectively. This work could be extended to inexpensive array sensing chips with high sensitivity, good specificity and high reproducibility for various sensor applications.

  15. Characterization of Printed Circuit Boards for Metal and Energy Recovery after Milling and Mechanical Separation

    Directory of Open Access Journals (Sweden)

    Waldir A. Bizzo

    2014-06-01

    Full Text Available The proper disposal of electrical and electronic waste is currently a concern of researchers and environmental managers not only because of the large volume of such waste generated, but also because of the heavy metals and toxic substances it contains. This study analyzed printed circuit boards (PCBs from discarded computers to determine their metal content and characterized them as solid waste and fuel. The analysis showed that PCBs consist of approximately 26% metal, made up mainly of copper, lead, aluminum, iron and tin, as well as other heavy metals such as cadmium and nickel. Comparison with the results of other studies indicated that the concentration of precious metals (gold and silver has declined over time. Analysis of the leachate revealed high concentrations of cadmium and lead, giving the residue the characteristics of hazardous waste. After milling the PCBs, we found that larger amounts of metal were concentrated in smaller fractions, while the lightest fraction, obtained by density separation, had a gross calorific value of approximately 11 MJ/kg, although with a high ash content. Milling followed by density separation proved potentially useful for recovery of metals and energy-rich fractions.

  16. Treatment of Wastewater from Electroplating, Metal Finishing and Printed Circuit Board Manufacturing. Operation of Wastewater Treatment Plants Volume 4.

    Science.gov (United States)

    California State Univ., Sacramento. Dept. of Civil Engineering.

    One of four manuals dealing with the operation of wastewater plants, this document was designed to address the treatment of wastewater from electroplating, metal finishing, and printed circuit board manufacturing. It emphasizes how to operate and maintain facilities which neutralize acidic and basic waters; treat waters containing metals; destroy…

  17. Analytical modeling of multi-layered printed circuit board using multi-stacked via clusters as component heat spreader

    Directory of Open Access Journals (Sweden)

    Monier-Vinard Eric

    2016-01-01

    Full Text Available In order to help the electronic designer to early determine the limits of the power dissipation of electronic component, an analytical model was established to allow a fast insight of relevant design parameters of a multi-layered electronic board constitution. The proposed steady-state approach based on Fourier series method promotes a practical solution to quickly investigate the potential gain of multi-layered thermal via clusters. Generally, it has been shown a good agreement between the results obtained by the proposed analytical model and those given by electronics cooling software widely used in industry. Some results highlight the fact that the conventional practices for Printed Circuit Board modeling can be dramatically underestimate source temperatures, in particular with smaller sources. Moreover, the analytic solution could be applied to optimize the heat spreading in the board structure with a local modification of the effective thermal conductivity layers.

  18. SOURCES OF COPPER IONS AND SELECTED METHODS OF THEIR REMOVAL FROM WASTEWATER FROM THE PRINTED CIRCUITS BOARD PRODUCTION

    Directory of Open Access Journals (Sweden)

    Maciej Thomas

    2014-10-01

    Full Text Available This paper presents the issues related to the presence and removal of copper compounds from industrial effluents with including wastewater from plants involved in the production of printed circuit boards. Characterized the toxicological properties of selected copper compounds, described the applicable technological processes, sources of copper ions in the effluents and selected methods for their removal.

  19. An embedded single-board computer for BPM of SSRF

    International Nuclear Information System (INIS)

    Chen Kai; Liu Shubin; Yan Han; Wu Weihao; Zhao Lei; An Qi; Leng Yongbin; Yi Xing; Yan Yingbing; Lai Longwei

    2011-01-01

    An embedded single-board computer (SBC) system based on AT91RM9200 was designed for monitoring and controlling the digital beam position monitor system of Shanghai Synchrotron Radiation Facility (SSRF) through the Virtex-4 FPGA in the digital processing board. The SBC transfers the configuration commands from the remote EPICS to the FPGA, and calculates the beam position data. The interface between the FPGA and the SBC is the Static Memory Controller (SMC) with a peak transfer speed of up to 349 Mbps. The 100 Mb Ethernet is used for data transfer between the EPICS and SBC board, and a serial port serves as monitoring the status of the embedded system. Test results indicate that the SBC board functions well. (authors)

  20. Study of the computer-aided implantation and layout of printed circuits

    International Nuclear Information System (INIS)

    Baudry, Marc

    1973-01-01

    This research thesis reports the design and implementation of a software aimed at a computer-aided implantation and layout of printed circuits. This work comprises the use of heuristic algorithms and the search for a minimum cost by reduction of computing time and of memory size. The software comprises four independent parts which respectively address data analysis and control, circuit implantation, connection layout, and the exploitation of the obtained results. These four parts and their subroutines are presented. Two examples are reported in appendix

  1. Comparative Study of Crosstalk Reduction Techniques in RF Printed Circuit Board Using FDTD Method

    Directory of Open Access Journals (Sweden)

    Rajeswari Packianathan

    2015-01-01

    Full Text Available Miniaturization of the feature size in modern electronic circuits results from placing interconnections in close proximity with a high packing density. As a result, coupling between the adjacent lines has increased significantly, causing crosstalk to become an important concern in high-performance circuit design. In certain applications, microstriplines may be used in printed circuit boards for propagating high-speed signals, rather than striplines. Here, the electromagnetic coupling effects are analyzed for various microstrip transmission line structures, namely, microstriplines with a guard trace, double stub microstriplines, and parallel serpentine microstriplines using the finite-difference time-domain method. The numerical results are compared with simulation results, where the variants are simulated using an Ansoft high-frequency structure simulator. The analysis and simulation results are experimentally validated by fabricating a prototype and establishing a good correspondence between them. Numerical results are compared with simulation and experimental results, showing that double stub microstriplines reduce the far end crosstalk by 7 dB and increase the near end crosstalk by about 2 dB compared with the parallel microstriplines. Parallel serpentine microstriplines reduce the far end crosstalk by more than 10 dB and also reduce more than 15 mV of peak far end crosstalk voltage, compared with parallel microstriplines.

  2. Recovery of high purity precious metals from printed circuit boards

    International Nuclear Information System (INIS)

    Park, Young Jun; Fray, Derek J.

    2009-01-01

    Waste printed circuit boards (WPCB) have an inherent value because of the precious metal content. For an effective recycling of WPCB, it is essential to recover the precious metals. This paper reports a promising method to recover the precious metals. Aqua regia was used as a leachant and the ratio between metals and leachant was fixed at 1/20 (g/ml). Silver is relatively stable so the amount of about 98 wt.% of the input was recovered without an additional treatment. Palladium formed a red precipitate during dissolution, which were consisted of Pd(NH 4 ) 2 Cl 6 . The amount precipitated was 93 wt.% of the input palladium. A liquid-liquid extraction with toluene was used to extract gold selectively. Also, dodecanethiol and sodium borohydride solution were added to make gold nanoparticles. Gold of about 97 wt.% of the input was recovered as nanoparticles which was identified with a high-resolution transmission electron microscopy through selected area electron diffraction and nearest-neighbor lattice spacing.

  3. Contamination profile of Printed Circuit Board Assemblies in relation to soldering types and conformal coating

    DEFF Research Database (Denmark)

    Conseil, Helene; Jellesen, Morten Stendahl; Ambat, Rajan

    2014-01-01

    Typical printed circuit board assemblies (PCBAs) processed by reflow, wave, or selective wave soldering were analysed for typical levels of process related residues, resulting from a specific or combination of soldering process. Typical solder flux residue distribution pattern, composition......, and concentration are profiled and reported. Presence of localized flux residues were visualized using a commercial Residue RAT gel test and chemical structure was identified by FT-IR, while the concentration was measured using ion chromatography, and the electrical properties of the extracts were determined...

  4. Checking a printed board

    CERN Multimedia

    1977-01-01

    An 'Interactive Printed Circuit Board Design System' has been developed by a company in a Member-State. Printed circuits are now produced at the SB's surface treatment workshop using a digitized photo-plotter.

  5. Electronic circuit design with HEP computational tools

    International Nuclear Information System (INIS)

    Vaz, Mario

    1996-01-01

    CPSPICE is an electronic circuit statistical simulation program developed to run in a parallel environment under UNIX operating system and TCP/IP communications protocol, using CPS - Cooperative Processes Software , SPICE program and CERNLIB software package. It is part of a set of tools being develop, intended to help electronic engineers to design, model and simulate complex systems and circuits for High Energy Physics detectors, based on statistical methods, using the same software and methodology used by HEP physicists for data analysis. CPSPICE simulates electronic circuits by Monte Carlo method, through several different processes running simultaneously SPICE in UNIX parallel computers or workstation farms. Data transfer between CPS processes for a modified version of SPICE2G6 is done by RAM memory, but can also be done through hard disk files if no source files are available for the simulator, and for bigger simulation outputs files. Simulation results are written in a HBOOK file as a NTUPLE, to be examined by HBOOK in batch model or graphics, and analyzed by statistical procedures available. The HBOOK file be stored on hard disk for small amount of data, or into Exabyte tape file for large amount of data. HEP tools also helps circuit or component modeling, like MINUT program from CERNLIB, that implements Nelder and Mead Simplex and Gradient with or without derivatives algorithms, and can be used for design optimization.This paper presents CPSPICE program implementation. The scheme adopted is suitable to make parallel other electronic circuit simulators. (author)

  6. Nonlinear optics quantum computing with circuit QED.

    Science.gov (United States)

    Adhikari, Prabin; Hafezi, Mohammad; Taylor, J M

    2013-02-08

    One approach to quantum information processing is to use photons as quantum bits and rely on linear optical elements for most operations. However, some optical nonlinearity is necessary to enable universal quantum computing. Here, we suggest a circuit-QED approach to nonlinear optics quantum computing in the microwave regime, including a deterministic two-photon phase gate. Our specific example uses a hybrid quantum system comprising a LC resonator coupled to a superconducting flux qubit to implement a nonlinear coupling. Compared to the self-Kerr nonlinearity, we find that our approach has improved tolerance to noise in the qubit while maintaining fast operation.

  7. Design and Analysis of Compact DNA Strand Displacement Circuits for Analog Computation Using Autocatalytic Amplifiers.

    Science.gov (United States)

    Song, Tianqi; Garg, Sudhanshu; Mokhtar, Reem; Bui, Hieu; Reif, John

    2018-01-19

    A main goal in DNA computing is to build DNA circuits to compute designated functions using a minimal number of DNA strands. Here, we propose a novel architecture to build compact DNA strand displacement circuits to compute a broad scope of functions in an analog fashion. A circuit by this architecture is composed of three autocatalytic amplifiers, and the amplifiers interact to perform computation. We show DNA circuits to compute functions sqrt(x), ln(x) and exp(x) for x in tunable ranges with simulation results. A key innovation in our architecture, inspired by Napier's use of logarithm transforms to compute square roots on a slide rule, is to make use of autocatalytic amplifiers to do logarithmic and exponential transforms in concentration and time. In particular, we convert from the input that is encoded by the initial concentration of the input DNA strand, to time, and then back again to the output encoded by the concentration of the output DNA strand at equilibrium. This combined use of strand-concentration and time encoding of computational values may have impact on other forms of molecular computation.

  8. Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits.

    Science.gov (United States)

    Ujfalussy, Balázs B; Makara, Judit K; Branco, Tiago; Lengyel, Máté

    2015-12-24

    Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits.

  9. Quantitative evaluation of low-cost frame-grabber boards for personal computers.

    Science.gov (United States)

    Kofler, J M; Gray, J E; Fuelberth, J T; Taubel, J P

    1995-11-01

    Nine moderately priced frame-grabber boards for both Macintosh (Apple Computers, Cupertino, CA) and IBM-compatible computers were evaluated using a Society of Motion Pictures and Television Engineers (SMPTE) pattern and a video signal generator for dynamic range, gray-scale reproducibility, and spatial integrity of the captured image. The degradation of the video information ranged from minor to severe. Some boards are of reasonable quality for applications in diagnostic imaging and education. However, price and quality are not necessarily directly related.

  10. Analog Integrated Circuit Design for Spike Time Dependent Encoder and Reservoir in Reservoir Computing Processors

    Science.gov (United States)

    2018-01-01

    HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. FOR THE CHIEF ENGINEER : / S / / S...bridged high-performance computing, nanotechnology , and integrated circuits & systems. 15. SUBJECT TERMS neuromorphic computing, neuron design, spike...multidisciplinary effort encompassed high-performance computing, nanotechnology , integrated circuits, and integrated systems. The project’s architecture was

  11. Analysis of electronic circuits using digital computers

    International Nuclear Information System (INIS)

    Tapu, C.

    1968-01-01

    Various programmes have been proposed for studying electronic circuits with the help of computers. It is shown here how it possible to use the programme ECAP, developed by I.B.M., for studying the behaviour of an operational amplifier from different point of view: direct current, alternating current and transient state analysis, optimisation of the gain in open loop, study of the reliability. (author) [fr

  12. Computation of magnetic suspension of maglev systems using dynamic circuit theory

    Science.gov (United States)

    He, J. L.; Rote, D. M.; Coffey, H. T.

    1992-01-01

    Dynamic circuit theory is applied to several magnetic suspensions associated with maglev systems. These suspension systems are the loop-shaped coil guideway, the figure-eight-shaped null-flux coil guideway, and the continuous sheet guideway. Mathematical models, which can be used for the development of computer codes, are provided for each of these suspension systems. The differences and similarities of the models in using dynamic circuit theory are discussed in the paper. The paper emphasizes the transient and dynamic analysis and computer simulation of maglev systems. In general, the method discussed here can be applied to many electrodynamic suspension system design concepts. It is also suited for the computation of the performance of maglev propulsion systems. Numerical examples are presented in the paper.

  13. Evaluation of gold and silver leaching from printed circuit board of cellphones

    Energy Technology Data Exchange (ETDEWEB)

    Petter, P.M.H., E-mail: patymhp@yahoo.com.br; Veit, H.M.; Bernardes, A.M.

    2014-02-15

    Highlights: • Printed circuit boards (PCB) of mobile phones have large amounts of metals with high economic value such as gold and silver. • Dissolution of gold was done with a cyanide-based reagent and silver with nitric acid. • Leaching of PCB with Na{sub 2}S{sub 2}O{sub 3} and (NH{sub 4}){sub 2}S{sub 2}O{sub 3} to examine the feasibility of using these reagents was done. - Abstract: Electronic waste has been increasing proportionally with the technology. So, nowadays, it is necessary to consider the useful life, recycling, and final disposal of these equipment. Metals, such as Au, Ag, Cu, Sn and Ni can be found in the printed circuit boards (PCB). According to this, the aims of this work is to characterize the PCBs of mobile phones with aqua regia; obtaining “reference” values of leaching, to gold and silver, with cyanide and nitric acid, respectively; and study the process of leaching of these metals in alternative leaching with sodium thiosulfate and ammonium thiosulfate. The metals were characterized by digesting the sample with aqua regia for 1 and 2 h at 60 °C and 80 °C. The leaching of Au with a commercial reagent (cyanide) and the Ag with HNO{sub 3}were made. The leaching of Au and Ag with alternative reagents: Na{sub 2}S{sub 2}O{sub 3,} and (NH{sub 4}){sub 2}S{sub 2}O{sub 3} in 0.1 M concentration with the addition of CuSO{sub 4}, NH{sub 4}OH, and H{sub 2}O{sub 2}, was also studied. The results show that the digestion with aqua regia was efficient to characterize the metals present in the PCBs of mobile phones. However, the best method to solubilize silver was by digesting the sample with nitric acid. The leaching process using sodium thiosulfate was more efficient when an additional concentration of 0.015 and 0.030 M of the CuSO{sub 4} was added.

  14. Evaluation of gold and silver leaching from printed circuit board of cellphones

    International Nuclear Information System (INIS)

    Petter, P.M.H.; Veit, H.M.; Bernardes, A.M.

    2014-01-01

    Highlights: • Printed circuit boards (PCB) of mobile phones have large amounts of metals with high economic value such as gold and silver. • Dissolution of gold was done with a cyanide-based reagent and silver with nitric acid. • Leaching of PCB with Na 2 S 2 O 3 and (NH 4 ) 2 S 2 O 3 to examine the feasibility of using these reagents was done. - Abstract: Electronic waste has been increasing proportionally with the technology. So, nowadays, it is necessary to consider the useful life, recycling, and final disposal of these equipment. Metals, such as Au, Ag, Cu, Sn and Ni can be found in the printed circuit boards (PCB). According to this, the aims of this work is to characterize the PCBs of mobile phones with aqua regia; obtaining “reference” values of leaching, to gold and silver, with cyanide and nitric acid, respectively; and study the process of leaching of these metals in alternative leaching with sodium thiosulfate and ammonium thiosulfate. The metals were characterized by digesting the sample with aqua regia for 1 and 2 h at 60 °C and 80 °C. The leaching of Au with a commercial reagent (cyanide) and the Ag with HNO 3 were made. The leaching of Au and Ag with alternative reagents: Na 2 S 2 O 3, and (NH 4 ) 2 S 2 O 3 in 0.1 M concentration with the addition of CuSO 4 , NH 4 OH, and H 2 O 2 , was also studied. The results show that the digestion with aqua regia was efficient to characterize the metals present in the PCBs of mobile phones. However, the best method to solubilize silver was by digesting the sample with nitric acid. The leaching process using sodium thiosulfate was more efficient when an additional concentration of 0.015 and 0.030 M of the CuSO 4 was added

  15. New technology for recovering residual metals from nonmetallic fractions of waste printed circuit boards.

    Science.gov (United States)

    Zhang, Guangwen; He, Yaqun; Wang, Haifeng; Zhang, Tao; Wang, Shuai; Yang, Xing; Xia, Wencheng

    2017-06-01

    Recycling of waste printed circuit boards is important for environmental protection and sustainable resource utilization. Corona electrostatic separation has been widely used to recycle metals from waste printed circuit boards, but it has poor separation efficiency for finer sized fractions. In this study, a new process of vibrated gas-solid fluidized bed was used to recycle residual metals from nonmetallic fractions, which were treated using the corona electrostatic separation technology. The effects of three main parameters, i.e., vibration frequency, superficial air flow velocity, and fluidizing time on gravity segregation, were investigated using a vibrating gas-solid fluidized bed. Each size fraction had its own optimum parameters. Corresponding to their optimal segregation performance, the products from each experiment were analyzed using an X-ray fluorescence (XRF) and a scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS). From the results, it can be seen that the metal recoveries of -1+0.5mm, -0.5+0.25mm, and -0.25mm size fractions were 86.39%, 82.22% and 76.63%, respectively. After separation, each metal content in the -1+0.5 or -0.5+0.25mm size fraction reduced to 1% or less, while the Fe and Cu contents are up to 2.57% and 1.50%, respectively, in the -0.25mm size fraction. Images of the nonmetallic fractions with a size of -0.25mm indicated that a considerable amount of clavate glass fibers existed in these nonmetallic fractions, which may explain why fine particles had the poorest segregation performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Microwave integrated circuit mask design, using computer aided microfilm techniques

    Energy Technology Data Exchange (ETDEWEB)

    Reymond, J.M.; Batliwala, E.R.; Ajose, S.O.

    1977-01-01

    This paper examines the possibility of using a computer interfaced with a precision film C.R.T. information retrieval system, to produce photomasks suitable for the production of microwave integrated circuits.

  17. Removing lead from metallic mixture of waste printed circuit boards by vacuum distillation: factorial design and removal mechanism.

    Science.gov (United States)

    Li, Xingang; Gao, Yujie; Ding, Hui

    2013-10-01

    The lead removal from the metallic mixture of waste printed circuit boards by vacuum distillation was optimized using experimental design, and a mathematical model was established to elucidate the removal mechanism. The variables studied in lead evaporation consisted of the chamber pressure, heating temperature, heating time, particle size and initial mass. The low-level chamber pressure was fixed at 0.1 Pa as the operation pressure. The application of two-level factorial design generated a first-order polynomial that agreed well with the data for evaporation efficiency of lead. The heating temperature and heating time exhibited significant effects on the efficiency, which was validated by means of the copper-lead mixture experiments. The optimized operating conditions within the region studied were the chamber pressure of 0.1 Pa, heating temperature of 1023 K and heating time of 120 min. After the conditions were employed to remove lead from the metallic mixture of waste printed circuit boards, the efficiency was 99.97%. The mechanism of the effects was elucidated by mathematical modeling that deals with evaporation, mass transfer and condensation, and can be applied to a wider range of metal removal by vacuum distillation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Exhaust constituent emission factors of printed circuit board pyrolysis processes and its exhaust control

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Hung-Lung, E-mail: hlchiang@mail.cmu.edu.tw [Department of Health Risk Management, China Medical University, Taichung, Taiwan (China); Lin, Kuo-Hsiung [Department of Environmental Engineering and Science, Fooyin University, Kaohsiung, Taiwan (China)

    2014-01-15

    Highlights: • Recycling of waste printed circuit boards is an important issue. • Pyrolysis is an emerging technology for PCB treatment. • Emission factors of VOCs are determined for PCB pyrolysis exhaust. • Iron-Al{sub 2}O{sub 3} catalyst was employed for the exhaust control. -- Abstract: The printed circuit board (PCB) is an important part of electrical and electronic equipment, and its disposal and the recovery of useful materials from waste PCBs (WPCBs) are key issues for waste electrical and electronic equipment. Waste PCB compositions and their pyrolysis characteristics were analyzed in this study. In addition, the volatile organic compound (VOC) exhaust was controlled by an iron-impregnated alumina oxide catalyst. Results indicated that carbon and oxygen were the dominant components (hundreds mg/g) of the raw materials, and other elements such as nitrogen, bromine, and copper were several decades mg/g. Exhaust constituents of CO, H{sub 2}, CH{sub 4}, CO{sub 2}, and NOx, were 60–115, 0.4–4.0, 1.1–10, 30–95, and 0–0.7 mg/g, corresponding to temperatures ranging from 200 to 500 °C. When the pyrolysis temperature was lower than 300 °C, aromatics and paraffins were the major species, contributing 90% of ozone precursor VOCs, and an increase in the pyrolysis temperature corresponded to a decrease in the fraction of aromatic emission factors. Methanol, ethylacetate, acetone, dichloromethane, tetrachloromethane and acrylonitrile were the main species of oxygenated and chlorinated VOCs. The emission factors of some brominated compounds, i.e., bromoform, bromophenol, and dibromophenol, were higher at temperatures over 400 °C. When VOC exhaust was flowed through the bed of Fe-impregnated Al{sub 2}O{sub 3}, the emission of ozone precursor VOCs could be reduced by 70–80%.

  19. Microprocessor-based single board computer for high energy physics event pattern recognition

    International Nuclear Information System (INIS)

    Bernstein, H.; Gould, J.J.; Imossi, R.; Kopp, J.K.; Love, W.A.; Ozaki, S.; Platner, E.D.; Kramer, M.A.

    1981-01-01

    A single board MC 68000 based computer has been assembled and bench marked against the CDC 7600 running portions of the pattern recognition code used at the MPS. This computer has a floating coprocessor to achieve throughputs equivalent to several percent that of the 7600. A major part of this work was the construction of a FORTRAN compiler including assembler, linker and library. The intention of this work is to assemble a large number of these single board computers in a parallel FASTBUS environment to act as an on-line and off-line filter for the raw data from MPS II and ISABELLE experiments

  20. A quick solution, made to measure; Big scientific experiments need big circuit boards and that's where East Kilbride's D-TACQ comes in

    CERN Multimedia

    Gardner, D

    2003-01-01

    D-TACQ is a small electronics company operating in a highly-specialised market with technological expertise that few can match worldwide. It specialises in designing and manufacturing bespoke printed circuit boards (PCBs) which handle data acquisition tasks linked to scientific instrumentation and control systems (1 page).

  1. A kind of video image digitizing circuit based on computer parallel port

    International Nuclear Information System (INIS)

    Wang Yi; Tang Le; Cheng Jianping; Li Yuanjing; Zhang Binquan

    2003-01-01

    A kind of video images digitizing circuit based on parallel port was developed to digitize the flash x ray images in our Multi-Channel Digital Flash X ray Imaging System. The circuit can digitize the video images and store in static memory. The digital images can be transferred to computer through parallel port and can be displayed, processed and stored. (authors)

  2. The Effect of Computer Automation on Institutional Review Board (IRB) Office Efficiency

    Science.gov (United States)

    Oder, Karl; Pittman, Stephanie

    2015-01-01

    Companies purchase computer systems to make their processes more efficient through automation. Some academic medical centers (AMC) have purchased computer systems for their institutional review boards (IRB) to increase efficiency and compliance with regulations. IRB computer systems are expensive to purchase, deploy, and maintain. An AMC should…

  3. PHYSICAL CHEMISTRY CHARACTERIZATION OF PRINTED CIRCUIT BOARD OF MOBILE PHONES

    Directory of Open Access Journals (Sweden)

    Hellington Bastos da Silva de Sant’ana

    2015-07-01

    Full Text Available Nowadays, electronics industry is the leading sector in developing new technologies. These new technologies lead to cheaper products increasing the consumption. The lifetime of such products is relatively short and soon it becomes waste, known as electronic waste. Cell phone is a common electronic waste. This waste represents an interesting raw material, because it contains large amount of base metals, considerable amount of valuable metals and also those dangerous. In this work, the electronic waste was submitted to mechanical processing: initially the devices were separated into two categories, as year of release (2002 and disassembled manually. The printed circuit boards were milled below 1 mm and then submitted to density and magnetic separation processes. The fractions obtained during the mechanical processing were characterized by chemical analysis. Using mechanical processing it was possible to obtain metal fractions of 80 wt%. A leaching test was carried out to determine if a waste needs to be managed as a hazardous; so that, cell phone waste must be considered in the category of hazardous residue because the lead concentration was above the limit established by Brazilian Standards

  4. Student generated assignments about electrical circuits in a computer simulation

    NARCIS (Netherlands)

    Vreman-de Olde, Cornelise; de Jong, Anthonius J.M.

    2004-01-01

    In this study we investigated the design of assignments by students as a knowledge-generating activity. Students were required to design assignments for 'other students' in a computer simulation environment about electrical circuits. Assignments consisted of a question, alternatives, and feedback on

  5. Adhesion and failure analysis of metal-polymer interface in flexible printed circuits boards

    Science.gov (United States)

    Park, Sanghee; Kim, Ye Chan; Choi, Kisuk; Chae, Heeyop; Suhr, Jonghwan; Nam, Jae-Do

    2017-12-01

    As device miniaturization in microelectronics is currently requested in the development of high performance device, which usually include highly-integrated metal-polyimide multilayer structures. A redistribution layer (RDL) process is currently emerging as one of the most advance fabrication techniques for on-chip interconnect and packaging. One of the major issues in this process is the poor adhesion of the metal-polyimide interfaces particularly in flexible circuit boards due to the flexibility and bendability of devices. In this study, low pressure O2 plasma treatment was investigated to improve the adhesion of metal-polyimide interfaces, using inductively coupled plasma (ICP) treatment. We identified that the adhesion of metal-polyimide interfaces was greatly improved by the surface roughness control providing 46.1 MPa of shear force in the ball shear test after O2 plasma treatment, compared 14.2 MPa without O2 plasma treatment. It was seemingly due to the fact that the adhesion in metal-polyimide interfaces was improved by a chemical conversion of C=O to C-O bonds and by a ring opening reaction of imide groups, which was confirmed with FT-IR analysis. In the finite element numerical analysis of metal-polyimide interfaces, the O2 plasma treated interface showed that the in-plane stress distribution and the vertical directional deformation agreed well with real failure modes in flexible circuits manufacturing.

  6. Waste printed circuit board recycling techniques and product utilization

    International Nuclear Information System (INIS)

    Hadi, Pejman; Xu, Meng; Lin, Carol S.K.; Hui, Chi-Wai; McKay, Gordon

    2015-01-01

    Highlights: • There is a major environmental issue about the printed circuit boards throughout the world. • Different physical and chemical recycling techniques have been reviewed. • Nonmetallic fraction of PCBs is the unwanted face of this waste stream. • Several applications of the nonmetallic fraction of waste PCBs have been introduced. - Abstract: E-waste, in particular waste PCBs, represents a rapidly growing disposal problem worldwide. The vast diversity of highly toxic materials for landfill disposal and the potential of heavy metal vapors and brominated dioxin emissions in the case of incineration render these two waste management technologies inappropriate. Also, the shipment of these toxic wastes to certain areas of the world for eco-unfriendly “recycling” has recently generated a major public outcry. Consequently, waste PCB recycling should be adopted by the environmental communities as an ultimate goal. This article reviews the recent trends and developments in PCB waste recycling techniques, including both physical and chemical recycling. It is concluded that the physical recycling techniques, which efficiently separate the metallic and nonmetallic fractions of waste PCBs, offer the most promising gateways for the environmentally-benign recycling of this waste. Moreover, although the reclaimed metallic fraction has gained more attention due to its high value, the application of the nonmetallic fraction has been neglected in most cases. Hence, several proposed applications of this fraction have been comprehensively examined

  7. Waste printed circuit board recycling techniques and product utilization

    Energy Technology Data Exchange (ETDEWEB)

    Hadi, Pejman; Xu, Meng [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); Lin, Carol S.K. [School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Hui, Chi-Wai [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); McKay, Gordon, E-mail: kemckayg@ust.hk [Chemical and Biomolecular Engineering Department, Hong Kong University of Science and Technology, Clear Water Bay Road, Hong Kong Special Administrative Region (Hong Kong); Division of Sustainable Development, College of Science, Engineering and Technology, Hamad Bin Khalifa University, Qatar Foundation, Doha (Qatar)

    2015-02-11

    Highlights: • There is a major environmental issue about the printed circuit boards throughout the world. • Different physical and chemical recycling techniques have been reviewed. • Nonmetallic fraction of PCBs is the unwanted face of this waste stream. • Several applications of the nonmetallic fraction of waste PCBs have been introduced. - Abstract: E-waste, in particular waste PCBs, represents a rapidly growing disposal problem worldwide. The vast diversity of highly toxic materials for landfill disposal and the potential of heavy metal vapors and brominated dioxin emissions in the case of incineration render these two waste management technologies inappropriate. Also, the shipment of these toxic wastes to certain areas of the world for eco-unfriendly “recycling” has recently generated a major public outcry. Consequently, waste PCB recycling should be adopted by the environmental communities as an ultimate goal. This article reviews the recent trends and developments in PCB waste recycling techniques, including both physical and chemical recycling. It is concluded that the physical recycling techniques, which efficiently separate the metallic and nonmetallic fractions of waste PCBs, offer the most promising gateways for the environmentally-benign recycling of this waste. Moreover, although the reclaimed metallic fraction has gained more attention due to its high value, the application of the nonmetallic fraction has been neglected in most cases. Hence, several proposed applications of this fraction have been comprehensively examined.

  8. A microprocessor-based single board computer for high energy physics event pattern recognition

    International Nuclear Information System (INIS)

    Bernstein, H.; Gould, J.J.; Imossi, R.; Kopp, J.K.; Love, W.A.; Ozaki, S.; Platner, E.D.; Kramer, M.A.

    1981-01-01

    A single board MC 68000 based computer has been assembled and bench marked against the CDC 7600 running portions of the pattern recognition code used at the MPS. This computer has a floating coprocessor to achieve throughputs equivalent to several percent that of the 7600. A major part of this work was the construction of a FORTRAN compiler including assembler, linker and library. The intention of this work is to assemble a large number of these single board computers in a parallel FASTBUS environment to act as an on-line and off-line filter for the raw data from MPS II and ISABELLE experiments. (orig.)

  9. Advanced circuit simulation using Multisim workbench

    CERN Document Server

    Báez-López, David; Cervantes-Villagómez, Ofelia Delfina

    2012-01-01

    Multisim is now the de facto standard for circuit simulation. It is a SPICE-based circuit simulator which combines analog, discrete-time, and mixed-mode circuits. In addition, it is the only simulator which incorporates microcontroller simulation in the same environment. It also includes a tool for printed circuit board design.Advanced Circuit Simulation Using Multisim Workbench is a companion book to Circuit Analysis Using Multisim, published by Morgan & Claypool in 2011. This new book covers advanced analyses and the creation of models and subcircuits. It also includes coverage of transmissi

  10. Design and implementation of a hybrid circuit system for micro sensor signal processing

    International Nuclear Information System (INIS)

    Wang Zhuping; Chen Jing; Liu Ruqing

    2011-01-01

    This paper covers a micro sensor analog signal processing circuit system (MASPS) chip with low power and a digital signal processing circuit board implementation including hardware connection and software design. Attention has been paid to incorporate the MASPS chip into the digital circuit board. The ultimate aim is to form a hybrid circuit used for mixed-signal processing, which can be applied to a micro sensor flow monitoring system. (semiconductor integrated circuits)

  11. Paper Circuits: A Tangible, Low Threshold, Low Cost Entry to Computational Thinking

    Science.gov (United States)

    Lee, Victor R.; Recker, Mimi

    2018-01-01

    In this paper, we propose that paper circuitry provides a productive space for exploring aspects of computational thinking, an increasingly critical 21st century skills for all students. We argue that the creation and operation of paper circuits involve learning about computational concepts such as rule-based constraints, operations, and defined…

  12. Pollutant emissions during pyrolysis and combustion of waste printed circuit boards, before and after metal removal

    International Nuclear Information System (INIS)

    Ortuño, Nuria; Conesa, Juan A.; Moltó, Julia; Font, Rafael

    2014-01-01

    The constant increase in the production of electronic devices implies the need for an appropriate management of a growing number of waste electrical and electronic equipment. Thermal treatments represent an interesting alternative to recycle this kind of waste, but particular attention has to be paid to the potential emissions of toxic by-products. In this study, the emissions from thermal degradation of printed circuit boards (with and without metals) have been studied using a laboratory scale reactor, under oxidizing and inert atmosphere at 600 and 850 °C. Apart from carbon oxides, HBr was the main decomposition product, followed by high amounts of methane, ethylene, propylene, phenol and benzene. The maximum formation of PAHs was found in pyrolysis at 850 °C, naphthalene being the most abundant. High levels of 2-, 4-, 2,4-, 2,6- and 2,4,6-bromophenols were found, especially at 600 °C. Emissions of PCDD/Fs and dioxin-like PCBs were quite low and much lower than that of PBDD/Fs, due to the higher bromine content of the samples. Combustion at 600 °C was the run with the highest PBDD/F formation: the total content of eleven 2,3,7,8-substituted congeners (tetra- through heptaBDD/Fs) was 7240 and 3250 ng WHO 2005 -TEQ/kg sample, corresponding to the sample with and without metals, respectively. - Highlights: • Thermal decomposition of printed circuit boards (with and without metals) is studied. • Important differences were found at the different experimental conditions. • Emission of brominated pollutants is much higher than that of chlorinated. • Metal enhances emission of halogenated compounds. • An increase in the temperature produces the destruction of pollutants

  13. Integrated optical circuits for numerical computation

    Science.gov (United States)

    Verber, C. M.; Kenan, R. P.

    1983-01-01

    The development of integrated optical circuits (IOC) for numerical-computation applications is reviewed, with a focus on the use of systolic architectures. The basic architecture criteria for optical processors are shown to be the same as those proposed by Kung (1982) for VLSI design, and the advantages of IOCs over bulk techniques are indicated. The operation and fabrication of electrooptic grating structures are outlined, and the application of IOCs of this type to an existing 32-bit, 32-Mbit/sec digital correlator, a proposed matrix multiplier, and a proposed pipeline processor for polynomial evaluation is discussed. The problems arising from the inherent nonlinearity of electrooptic gratings are considered. Diagrams and drawings of the application concepts are provided.

  14. Computational Performance Optimisation for Statistical Analysis of the Effect of Nano-CMOS Variability on Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Zheng Xie

    2013-01-01

    Full Text Available The intrinsic variability of nanoscale VLSI technology must be taken into account when analyzing circuit designs to predict likely yield. Monte-Carlo- (MC- and quasi-MC- (QMC- based statistical techniques do this by analysing many randomised or quasirandomised copies of circuits. The randomisation must model forms of variability that occur in nano-CMOS technology, including “atomistic” effects without intradie correlation and effects with intradie correlation between neighbouring devices. A major problem is the computational cost of carrying out sufficient analyses to produce statistically reliable results. The use of principal components analysis, behavioural modeling, and an implementation of “Statistical Blockade” (SB is shown to be capable of achieving significant reduction in the computational costs. A computation time reduction of 98.7% was achieved for a commonly used asynchronous circuit element. Replacing MC by QMC analysis can achieve further computation reduction, and this is illustrated for more complex circuits, with the results being compared with those of transistor-level simulations. The “yield prediction” analysis of SRAM arrays is taken as a case study, where the arrays contain up to 1536 transistors modelled using parameters appropriate to 35 nm technology. It is reported that savings of up to 99.85% in computation time were obtained.

  15. Optimizing the operating parameters of corona electrostatic separation for recycling waste scraped printed circuit boards by computer simulation of electric field.

    Science.gov (United States)

    Li, Jia; Lu, Hongzhou; Liu, Shushu; Xu, Zhenming

    2008-05-01

    The printed circuit board (PCB) has a metal content of nearly 28% metal, including an abundance of nonferrous metals such as copper, lead, and tin. The purity of precious metals in PCBs is more than 10 times that of rich-content minerals. Therefore, the recycling of PCBs is an important subject, not only from the viewpoint of waste treatment, but also with respect to the recovery of valuable materials. Compared with traditional process the corona electrostatic separation (CES) had no waste water or gas during the process and it had high productivity with a low-energy cost. In this paper, the roll-type corona electrostatic separator was used to separate metals and nonmetals from scraped waste PCBs. The software MATLAB was used to simulate the distribution of electric field in separating space. It was found that, the variations of parameters of electrodes and applied voltages directly influenced the distribution of electric field. Through the correlation of simulated and experimental results, the good separation results were got under the optimized operating parameter: U=20-30 kV, L=L(1)=L(2)=0.21 m, R(1)=0.114, R(2)=0.019 m, theta(1)=20 degrees and theta(2)=60 degrees .

  16. Design, Construction, and Use of a Single Board Computer Beowulf Cluster: Application of the Small-Footprint, Low-Cost, InSignal 5420 Octa Board

    OpenAIRE

    Cusick, James J.; Miller, William; Laurita, Nicholas; Pitt, Tasha

    2014-01-01

    In recent years development in the area of Single Board Computing has been advancing rapidly. At Wolters Kluwer's Corporate Legal Services Division a prototyping effort was undertaken to establish the utility of such devices for practical and general computing needs. This paper presents the background of this work, the design and construction of a 64 core 96 GHz cluster, and their possibility of yielding approximately 400 GFLOPs from a set of small footprint InSignal boards created for just o...

  17. Electronic Circuit Analysis Language (ECAL)

    Science.gov (United States)

    Chenghang, C.

    1983-03-01

    The computer aided design technique is an important development in computer applications and it is an important component of computer science. The special language for electronic circuit analysis is the foundation of computer aided design or computer aided circuit analysis (abbreviated as CACD and CACA) of simulated circuits. Electronic circuit analysis language (ECAL) is a comparatively simple and easy to use circuit analysis special language which uses the FORTRAN language to carry out the explanatory executions. It is capable of conducting dc analysis, ac analysis, and transient analysis of a circuit. Futhermore, the results of the dc analysis can be used directly as the initial conditions for the ac and transient analyses.

  18. Reduction of adhesive stain defect in flexible printed circuit board on hot pressing process: a case study of electronic component factory

    Directory of Open Access Journals (Sweden)

    Sakulkaew Srisang

    2014-09-01

    Full Text Available The objective of this research is a reduction of an adhesive stain defect in flexible printed circuit board in hot pressing process, the electronic factory. The manufacturing have been processing by sheet type of products with ninety-six pieces of flexible printed circuit boards. Causes of the problem include the before and internal hot pressing process. In process beginning times, the most right row of products between the cooling plate and the hot pressing machine has temperature 71.2◦C that is higher than glass transition temperature (Tg 60◦C. Those products’ temperature lead to evaporate a polyimide adhesive before hot pressing process beginning. The internal hot pressing process include the preheat times and the pressure time. In the preheat time the problem is a gap between lower and upper plate, was under specification(Under 1 mm and leaded to adhesive polyimide stain. In the actuality this time requires temperature and low pressure that mean a gap within 1 – 2 mm (between lower and upper plate. In pressure times the hot pressing plate surface is not flat and products are pressed by insufficient force that it lead to generate an adhesive stain on flexible printed circuit boards. That force is measured by the pre-scale paper and a result, RGB color, is provided. And then color density (From standard color sample and RGB color (From pre-scale paper is found out the relation by Photoshop program and multiple regression theory using. The formula is applied to compare with defect so as to find out the suitable color density (Defects reducing. The solving solutions is provided including the gap reduced adjustment between cooling plate and hot pressing machine before hot pressing process, the plate adjustment within specification in the preheat time and the pressing plate polishing in the pressure time. Results of study and solving are provide defect reduction from 24.4 percentage to 7.2 percentage of total study product.

  19. Reduction of adhesive stain defect in flexible printed circuit board on hot pressing process: A case study of electronic component factory

    Directory of Open Access Journals (Sweden)

    Sakulkaew Srisang

    2015-03-01

    Full Text Available The objective of this research is a reduction of an adhesive stain defect in flexible printed circuit board in hot pressing process, the electronic factory. The manufacturing have been processing by sheet type of products with ninety-six pieces of flexible printed circuit boards. Causes of the problem include the before and internal hot pressing process. In process beginning times, the most right row of products between the cooling plate and the hot pressing machine has temperature 71.2◦C that is higher than glass transition temperature (Tg 60◦C. Those products’ temperature lead to evaporate a polyimide adhesive before hot pressing process beginning. The internal hot pressing process include the preheat times and the pressure time. In the preheat time the problem is a gap between lower and upper plate, was under specification (Under 1 mm and leaded to adhesive polyimide stain. In the actuality this time requires temperature and low pressure that mean a gap within 1 – 2 mm (between lower and upper plate. In pressure times the hot pressing plate surface is not flat and products are pressed by insufficient force that it lead to generate an adhesive stain on flexible printed circuit boards. That force is measured by the pre-scale paper and a result, RGB color, is provided. And then color density (From standard color sample and RGB color (From pre-scale paper is found out the relation by Photoshop program and multiple regression theory using. The formula is applied to compare with defect so as to find out the suitable color density (Defects reducing. The solving solutions is provided including the gap reduced adjustment between cooling plate and hot pressing machine before hot pressing process, the plate adjustment within specification in the preheat time and the pressing plate polishing in the pressure time. Results of study and solving are provide defect reduction from 24.4 percentage to 7.2 percentage of total study product.

  20. Multi parametric card to personal computers interface based in ispLSI1016 circuits

    International Nuclear Information System (INIS)

    Osorio Deliz, J.F.; Toledo Acosta, R.B.; Arista Romeu, E.

    1997-01-01

    It is described the design and principal characteristic of the interface circuit for a 16 bit multi parametric add on card for IBM or compatible microcomputer which content two communication channels of direct memory access and bidirectional between the card and the computer, an interrupt controller, a programmable address register, a default add res register of the card, a four channels multiplexer, as well as the decoder logic of the 80C186 and computer. The circuit was designed with two programmable logic devices ispL1016, which allowed drastically to diminish the quantity of utilized components and get a more flexible design in less time better characteristics

  1. A Computer Program for Short Circuit Analysis of Electric Power ...

    African Journals Online (AJOL)

    The Short Circuit Analysis Program (SCAP) is to be used to assess the composite effects of unbalanced and balanced faults on the overall reliability of electric power system. The program uses the symmetrical components method to compute all phase and sequence quantities for any bus or branch of a given power network ...

  2. Analysis and synthesis of digital circuits for a computer of specific purposes

    International Nuclear Information System (INIS)

    Marchand Rosales, E.E.

    1975-01-01

    The circuits described in this paper are part of a computer system designed for the automation of plasma diagnostics using electrostatic probes. The automated system is designed to give: (a) The density of the plasma (state variable) every ten microseconds in binary digits; (b) Probe data, stored for subsequent diagnostics; (c) A graphic and digital display of results; (d) Presentation of numerical diagnostics results in floating point format and in the decimal system for convenience of interpretation. The project is aimed, furthermore, at the development of techniques for the design, construction and adjustment of digital circuits, and at the training of personnel who will apply these techniques in digital instrumentation. A block diagram of the system is discussed in general terms. Methods for analysis and synthesis of the sequential circuits applied to the circuit for aligning and normalizing the floating point format, the format circuit and the operational sequence circuit are also described. Recommendations are made and precautions suggested which it is thought advisable to follow at the stages of design, construction and adjustment of the digital circuits, and these apply also to the equipment and techniques (wire wrapping) used for building the circuits. The adjustment of the digital circuits proved to be satisfactory and a definition panel was thus obtained for the decimal point alignment circuit. It is concluded that the method of synthesis need not always be applied; the cases in which the method is recommended are mentioned, as are those in which the non-formal method of synthesis can be used. (author)

  3. ONR Europe Reports. Computer Science/Computer Engineering in Central Europe: A Report on Czechoslovakia, Hungary, and Poland

    Science.gov (United States)

    1992-08-01

    Routing on Printed Circuit Boards. Computer Aided Design, Vol.12, No.5, 1980, pp.231-234. 15 Servit, M.: Heuristic Algorithms for Rectilinear Steiner ...practical utilization ver. 5.0, KOPP publ. comp., 1992 Herout P, Rudolf V., Smrha P.: ABC of Programmer in the C Language (ANSI C, Borland C and C++), KOPP

  4. Integration of microelectronic chips in microfluidic systems on printed circuit board

    International Nuclear Information System (INIS)

    Burdallo, I; Jimenez-Jorquera, C; Fernández-Sánchez, C; Baldi, A

    2012-01-01

    A new scheme for the integration of small semiconductor transducer chips with microfluidic structures on printed circuit board (PCB) is presented. The proposed approach is based on a packaging technique that yields a large and flat area with small and shallow (∼44 µm deep) openings over the chips. The photocurable encapsulant material used, based on a diacrylate bisphenol A polymer, enables irreversible bonding of polydimethylsiloxane microfluidic structures at moderate temperatures (80 °C). This integration scheme enables the insertion of transducer chips in microfluidic systems with a lower added volume than previous schemes. Leakage tests have shown that the bonded structures withstand more than 360 kPa of pressure. A prototype microfluidic system with two detection chips, including one inter-digitated electrode (IDE) chip for conductivity and one ion selective field effect transistor (ISFET) chip for pH, has been implemented and characterized. Good electrical insulation of the chip contacts and silicon edge surfaces from the solution in the microchannels has been achieved. This integration procedure opens the door to the low-cost fabrication of complex analytical microsystems that combine the extraordinary potential of both the microfluidics and silicon microtechnology fields. (paper)

  5. Analysis of electronic circuits using digital computers; L'analyse des circuits electroniques par les calculateurs numeriques

    Energy Technology Data Exchange (ETDEWEB)

    Tapu, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-07-01

    Various programmes have been proposed for studying electronic circuits with the help of computers. It is shown here how it possible to use the programme ECAP, developed by I.B.M., for studying the behaviour of an operational amplifier from different point of view: direct current, alternating current and transient state analysis, optimisation of the gain in open loop, study of the reliability. (author) [French] Differents programmes ont ete proposes pour l'etude des circuits electroniques a l'aide des calculateurs. On montre comment on peut utiliser le programme ECAP, mis au point par I. B. M., pour etudier le comportement d'un amplificateur operationnel, a differents points de vue: analyse en courant continu, courant alternatif et regime transitoire, optimalisation du gain en boucle ouverte, etude de la fiabilite. (auteur)

  6. Pollutant emissions during pyrolysis and combustion of waste printed circuit boards, before and after metal removal

    Energy Technology Data Exchange (ETDEWEB)

    Ortuño, Nuria; Conesa, Juan A., E-mail: ja.conesa@ua.es; Moltó, Julia; Font, Rafael

    2014-11-15

    The constant increase in the production of electronic devices implies the need for an appropriate management of a growing number of waste electrical and electronic equipment. Thermal treatments represent an interesting alternative to recycle this kind of waste, but particular attention has to be paid to the potential emissions of toxic by-products. In this study, the emissions from thermal degradation of printed circuit boards (with and without metals) have been studied using a laboratory scale reactor, under oxidizing and inert atmosphere at 600 and 850 °C. Apart from carbon oxides, HBr was the main decomposition product, followed by high amounts of methane, ethylene, propylene, phenol and benzene. The maximum formation of PAHs was found in pyrolysis at 850 °C, naphthalene being the most abundant. High levels of 2-, 4-, 2,4-, 2,6- and 2,4,6-bromophenols were found, especially at 600 °C. Emissions of PCDD/Fs and dioxin-like PCBs were quite low and much lower than that of PBDD/Fs, due to the higher bromine content of the samples. Combustion at 600 °C was the run with the highest PBDD/F formation: the total content of eleven 2,3,7,8-substituted congeners (tetra- through heptaBDD/Fs) was 7240 and 3250 ng WHO{sub 2005}-TEQ/kg sample, corresponding to the sample with and without metals, respectively. - Highlights: • Thermal decomposition of printed circuit boards (with and without metals) is studied. • Important differences were found at the different experimental conditions. • Emission of brominated pollutants is much higher than that of chlorinated. • Metal enhances emission of halogenated compounds. • An increase in the temperature produces the destruction of pollutants.

  7. Circuits on Cylinders

    DEFF Research Database (Denmark)

    Hansen, Kristoffer Arnsfelt; Miltersen, Peter Bro; Vinay, V

    2006-01-01

    We consider the computational power of constant width polynomial size cylindrical circuits and nondeterministic branching programs. We show that every function computed by a Pi2 o MOD o AC0 circuit can also be computed by a constant width polynomial size cylindrical nondeterministic branching pro...

  8. Real-time monitoring system for improving corona electrostatic separation in the process of recovering waste printed circuit boards.

    Science.gov (United States)

    Li, Jia; Zhou, Quan; Xu, Zhenming

    2014-12-01

    Although corona electrostatic separation is successfully used in recycling waste printed circuit boards in industrial applications, there are problems that cannot be resolved completely, such as nonmetal particle aggregation and spark discharge. Both of these problems damage the process of separation and are not easy to identify during the process of separation in industrial applications. This paper provides a systematic study on a real-time monitoring system. Weight monitoring systems were established to continuously monitor the separation process. A Virtual Instrumentation program written by LabVIEW was utilized to sample and analyse the mass increment of the middling product. It includes four modules: historical data storage, steady-state analysis, data computing and alarm. Three kinds of operating conditions were used to verify the applicability of the monitoring system. It was found that the system achieved the goal of monitoring during the separation process and realized the function of real-time analysis of the received data. The system also gave comprehensible feedback on the accidents of material blockages in the feed inlet and high-voltage spark discharge. With the warning function of the alarm system, the whole monitoring system could save the human cost and help the new technology to be more easily applied in industry. © The Author(s) 2014.

  9. Comprehensive characterization of printed circuit boards of various end-of-life electrical and electronic equipment for beneficiation investigation.

    Science.gov (United States)

    Anshu Priya; Hait, Subrata

    2018-05-01

    Comprehensive characterization of printed circuit board (PCB) of end-of-life electrical and electronic equipment (EEE) is obligatory for prospective profitable beneficiation. In this study, beneficiation oriented comprehensive characterization of two brands of PCBs each of 16 end-of-life EEE was conducted in terms of their physicochemical characteristics with special emphasis on the content of 16 general elements, 2 precious metals and 15 rare earth elements (REEs). General elements and their highest weight percent composition found in different PCBs of the EEEs were Cu (23% in laptop), Al (6% in computer), Pb (15% in DVD player) and Ba (7% in TV). The high abundant of precious metals such as Au (316 g/ton) and Ag (636 g/ton) in mobile phone and laptop, respectively coupled with rapid obsolescence age makes waste PCBs of information technology and telecommunication equipment the most potent resource reservoir. Additionally, most of the waste PCBs were observed to contain REEs in considerable quantity with Sc up to 31 g/ton and Ce up to 13 g/ton being the major constituents. Comprehensive characterization of waste PCBs therefore will systematically help towards better understanding of e-waste recycling processes for beneficiation purpose and sustainable resource circulation and conservation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Influence Of Used Bacterial Culture On Zinc And Aluminium Bioleaching From Printed Circuit Boards

    Directory of Open Access Journals (Sweden)

    Mrazikova Anna

    2015-06-01

    Full Text Available Bioleaching processes were used to solubilize metals (Cu, Ni, Zn and Al from printed circuit boards (PCBs. In this study, a PCBs-adapted pure culture of Acidithiobacillus ferrooxidans, pure culture of Acidithiobacillus thiooxidans and PCBs-adapted mixed culture of A. ferrooxidans and A. thiooxidans were used for recovery of the metals. The study showed that the mixed bacterial culture has the greatest potential to dissolve metals. The maximum metal bioleaching efficiencies were found to be 100, 92, 89 and 20% of Cu, Ni, Zn and Al, respectively. The mixed culture revealed higher bacterial stability. The main factor responsible for high metal recovery was the ability of the mixed culture to maintain the low pH during the whole process. The pure culture of A. thiooxidans had no significant effect on metal bioleaching from PCBs.

  11. Quantitative Leaching of a Spent Cell Phone Printed Circuit Board by Hydrochloric acid

    Directory of Open Access Journals (Sweden)

    Alafara A. Baba

    2014-07-01

    Full Text Available This paper presents a kinetic data on the hydrometallurgical recovery of some metal ions from a printed circuit board (PCB of a spent cell phone by hydrochloric acid leaching. The effects of acid concentration, temperature and particle diameter on the dissolution efficiency at various leaching time intervals were examined. The results of the leaching investigations showed that the powdered cell phone dissolution increases with increasing acid concentration, system temperature with decreasing particle diameter at 360 rpm. With 2M HCl solution, about 88.49% of the sample was dissolved within 120 minutes using 0.075-0.112 mm particle diameter at 800 C. The results of the study indicated that the dissolution reaction could be represented by a shrinking core model with surface chemical reaction. A value of 0.61, 60.67 kJ/mol and 12.9s-1 were calculated as reaction order, activation energy and frequency factor, respectively for the dissolution process.

  12. Reliability analysis of microcomputer boards and computer based systems important to safety of nuclear plants

    International Nuclear Information System (INIS)

    Shrikhande, S.V.; Patil, V.K.; Ganesh, G.; Biswas, B.; Patil, R.K.

    2010-01-01

    Computer Based Systems (CBS) are employed in Indian nuclear plants for protection, control and monitoring purpose. For forthcoming CBS, Reactor Control Division has designed and developed a new standardized family of microcomputer boards qualified to stringent requirements of nuclear industry. These boards form the basic building blocks of CBS. Reliability analysis of these boards is being carried out using analysis package based on MIL-STD-217Plus methodology. The estimated failure rate values of these standardized microcomputer boards will be useful for reliability assessment of these systems. The paper presents reliability analysis of microcomputer boards and case study of a CBS system built using these boards. (author)

  13. Board-to-Board Free-Space Optical Interconnections Passing through Boards for a Bookshelf-Assembled Terabit-Per-Second-Class ATM Switch.

    Science.gov (United States)

    Hirabayashi, K; Yamamoto, T; Matsuo, S; Hino, S

    1998-05-10

    We propose free-space optical interconnections for a bookshelf-assembled terabit-per-second-class ATM switch. Thousands of arrayed optical beams, each having a rate of a few gigabits per second, propagate vertically to printed circuit boards, passing through some boards, and are connected to arbitrary transmitters and receivers on boards by polarization controllers and prism arrays. We describe a preliminary experiment using a 1-mm-pitch 2 x 2 beam-collimator array that uses vertical-cavity surface-emitting laser diodes. These optical interconnections can be made quite stable in terms of mechanical shock and temperature fluctuation by the attachment of reinforcing frames to the boards and use of an autoalignment system.

  14. Random On-Board Pixel Sampling (ROPS) X-Ray Camera

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui [Los Alamos; Iaroshenko, O. [Los Alamos; Li, S. [Los Alamos; Liu, T. [Fermilab; Parab, N. [Argonne (main); Chen, W. W. [Purdue U.; Chu, P. [Los Alamos; Kenyon, G. [Los Alamos; Lipton, R. [Fermilab; Sun, K.-X. [Nevada U., Las Vegas

    2017-09-25

    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.

  15. Estimation of Relative Permittivity of Printed Circuit Board with Fiber Glass Epoxy as Dielectric for UHF Applications

    Directory of Open Access Journals (Sweden)

    Ronal D. Montoya-Montoya

    2013-11-01

    Full Text Available This paper presents the results of measuring relative permittivity of fiber glass printed circuit board (PCB’s, using a rectangular resonant cavity. The relative permittivity is presented as function of frequency. To obtain resonant frequencies, the return loss was measured using a network analyzer. Relative permittivity was calculated by finding frequencies of resonant cavity modes. The results are presented in a frequency span of 1 to 3.5GHz. It was clearly shown the nonlinear behavior of the relative permittivity for the dielectric laminate evaluated, even what happens respect to the frequency of the resonant modes below and above to frequency of 2 GHz.

  16. A device for taking moessbauer data by a single-board computer

    International Nuclear Information System (INIS)

    Yin Chuanyuan

    1987-01-01

    A device for taking moessbauer data based on a single-board computer is described. The device is simple in construction and to operate. The spectrum is displayed by an oscillograph. So it is very convenient for teaching and research work

  17. Progress in complementary metal–oxide–semiconductor silicon photonics and optoelectronic integrated circuits

    International Nuclear Information System (INIS)

    Chen Hongda; Zhang Zan; Huang Beiju; Mao Luhong; Zhang Zanyun

    2015-01-01

    Silicon photonics is an emerging competitive solution for next-generation scalable data communications in different application areas as high-speed data communication is constrained by electrical interconnects. Optical interconnects based on silicon photonics can be used in intra/inter-chip interconnects, board-to-board interconnects, short-reach communications in datacenters, supercomputers and long-haul optical transmissions. In this paper, we present an overview of recent progress in silicon optoelectronic devices and optoelectronic integrated circuits (OEICs) based on a complementary metal–oxide–semiconductor-compatible process, and focus on our research contributions. The silicon optoelectronic devices and OEICs show good characteristics, which are expected to benefit several application domains, including communication, sensing, computing and nonlinear systems. (review)

  18. Reconfigurable On-Board Vision Processing for Small Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    James K. Archibald

    2006-12-01

    Full Text Available This paper addresses the challenge of supporting real-time vision processing on-board small autonomous vehicles. Local vision gives increased autonomous capability, but it requires substantial computing power that is difficult to provide given the severe constraints of small size and battery-powered operation. We describe a custom FPGA-based circuit board designed to support research in the development of algorithms for image-directed navigation and control. We show that the FPGA approach supports real-time vision algorithms by describing the implementation of an algorithm to construct a three-dimensional (3D map of the environment surrounding a small mobile robot. We show that FPGAs are well suited for systems that must be flexible and deliver high levels of performance, especially in embedded settings where space and power are significant concerns.

  19. Reconfigurable On-Board Vision Processing for Small Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Fife WadeS

    2007-01-01

    Full Text Available This paper addresses the challenge of supporting real-time vision processing on-board small autonomous vehicles. Local vision gives increased autonomous capability, but it requires substantial computing power that is difficult to provide given the severe constraints of small size and battery-powered operation. We describe a custom FPGA-based circuit board designed to support research in the development of algorithms for image-directed navigation and control. We show that the FPGA approach supports real-time vision algorithms by describing the implementation of an algorithm to construct a three-dimensional (3D map of the environment surrounding a small mobile robot. We show that FPGAs are well suited for systems that must be flexible and deliver high levels of performance, especially in embedded settings where space and power are significant concerns.

  20. Bioleaching of Gold and Silver from Waste Printed Circuit Boards by Pseudomonas balearica SAE1 Isolated from an e-Waste Recycling Facility.

    Science.gov (United States)

    Kumar, Anil; Saini, Harvinder Singh; Kumar, Sudhir

    2018-02-01

    Indigenous bacterial strain Pseudomonas balearica SAE1, tolerant to e-waste toxicity was isolated from an e-waste recycling facility Exigo Recycling Pvt. Ltd., India. Toxicity tolerance of bacterial strain was analyzed using crushed (particle size ≤150 µm) waste computer printed circuit boards (PCBs)/liter (L) of culture medium. The EC 50 value for SAE1 was 325.7 g/L of the e-waste pulp density. Two-step bioleaching was then applied to achieve the dissolution of gold (Au) and silver (Ag) from the e-waste. To maximize precious metal dissolution, factors including pulp density, glycine concentration, pH level, and temperature were optimized. The optimization resulted in 68.5 and 33.8% of Au and Ag dissolution, respectively, at a pH of 9.0, a pulp density of 10 g/L, a temperature of 30 °C, and a glycine concentration of 5 g/L. This is the first study of Au and Ag bioleaching using indigenous e-waste bacteria and its analysis to determine e-waste toxicity tolerance.

  1. Printed circuit for ATLAS

    CERN Multimedia

    Laurent Guiraud

    1999-01-01

    A printed circuit board made by scientists in the ATLAS collaboration for the transition radiaton tracker (TRT). This will read data produced when a high energy particle crosses the boundary between two materials with different electrical properties.

  2. Experimental Device for Learning of Logical Circuit Design using Integrated Circuits

    OpenAIRE

    石橋, 孝昭

    2012-01-01

    This paper presents an experimental device for learning of logical circuit design using integrated circuits and breadboards. The experimental device can be made at a low cost and can be used for many subjects such as logical circuits, computer engineering, basic electricity, electrical circuits and electronic circuits. The proposed device is effective to learn the logical circuits than the usual lecture.

  3. Adaptive Signal Processing Testbed: VME-based DSP board market survey

    Science.gov (United States)

    Ingram, Rick E.

    1992-04-01

    The Adaptive Signal Processing Testbed (ASPT) is a real-time multiprocessor system utilizing digital signal processor technology on VMEbus based printed circuit boards installed on a Sun workstation. The ASPT has specific requirements, particularly as regards to the signal excision application, with respect to interfacing with current and planned data generation equipment, processing of the data, storage to disk of final and intermediate results, and the development tools for applications development and integration into the overall EW/COM computing environment. A prototype ASPT was implemented using three VME-C-30 boards from Applied Silicon. Experience gained during the prototype development led to the conclusions that interprocessor communications capability is the most significant contributor to overall ASPT performance. In addition, the host involvement should be minimized. Boards using different processors were evaluated with respect to the ASPT system requirements, pricing, and availability. Specific recommendations based on various priorities are made as well as recommendations concerning the integration and interaction of various tools developed during the prototype implementation.

  4. Electronic circuit encyclopedia 2

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sun Ho

    1992-10-15

    This book is composed of 15 chapters, which are amplification of weak signal and measurement circuit audio control and power amplification circuit, data transmission and wireless system, forwarding and isolation, signal converting circuit, counter and comparator, discriminator circuit, oscillation circuit and synthesizer, digital and circuit on computer image processing circuit, sensor drive circuit temperature sensor circuit, magnetic control and application circuit, motor driver circuit, measuring instrument and check tool and power control and stability circuit.

  5. Electronic circuit encyclopedia 2

    International Nuclear Information System (INIS)

    Park, Sun Ho

    1992-10-01

    This book is composed of 15 chapters, which are amplification of weak signal and measurement circuit audio control and power amplification circuit, data transmission and wireless system, forwarding and isolation, signal converting circuit, counter and comparator, discriminator circuit, oscillation circuit and synthesizer, digital and circuit on computer image processing circuit, sensor drive circuit temperature sensor circuit, magnetic control and application circuit, motor driver circuit, measuring instrument and check tool and power control and stability circuit.

  6. Leaching of gold, silver and accompanying metals from circuit boards (PCBs waste

    Directory of Open Access Journals (Sweden)

    Jana Ficeriová

    2011-12-01

    Full Text Available Au-Ag noble metal wastes represent a wide range of waste types and forms, with various accompanying metallic elements.The presented leaching strategy for Au-Ag contained in circuit boards (PCBs aims at gaining gold and silver in the metallic form.Application of the proposed ammonium thiosulphate leaching process for the treatment of the above mentioned Au-Ag containing wastesrepresents a practical, economic and at the same time an ecological solution. The ammonium thiosulphate based leaching of gold and silverfrom PCBs waste, using crushing as a pretreatment, was investigated. It was possible to achieve 98 % gold and 93 % silver recovery within48 hours of ammonium thiosulphate leaching. This type of leaching is a better leaching procedure for recovery of gold and silver from PCBwaste than the classical toxic cyanide leaching. 84 % Cu, 82 % Fe, 77 % Al, 76 % Zn, 70 % Ni, 90 % Pd, 88 % Pb and 83 % Sn recovery ofthe accompanying metals was achieved, using sulphuric acid with hydrogen peroxide, sodium chloride and aqua regia. A four steps leachingprocess gave a very satisfactory yield and a more rapid kinetics for all observed metals solubilization than other technologies.

  7. The Effects of Computer-Assisted Instruction of Simple Circuits on Experimental Process Skills

    Directory of Open Access Journals (Sweden)

    Şeyma ULUKÖK

    2013-01-01

    Full Text Available The experimental and control groups were composed of 30 sophomores majoring in Classroom Teaching for this study investigating the effects of computer-assisted instruction of simple circuits on the development of experimental process skills. The instruction includes experiments and studies about simple circuits and its elements (serial, parallel, and mixed conncetions of resistors covered in Science and Technology Laboratory II course curriculum. In this study where quantitative and qualitative methods were used together, the control list developed by the researchers was used to collect data. Results showed that experimental process skills of sophomores in experimental group were more developed than that of those in control group. Thus, it can be said that computer-assisted instruction has a positive impact on the development of experimental process skills of students.

  8. Automating ATLAS Computing Operations using the Site Status Board

    CERN Document Server

    Andreeva, J; The ATLAS collaboration; Campana, S; Di Girolamo, A; Espinal Curull, X; Gayazov, S; Magradze, E; Nowotka, MM; Rinaldi, L; Saiz, P; Schovancova, J; Stewart, GA; Wright, M

    2012-01-01

    The automation of operations is essential to reduce manpower costs and improve the reliability of the system. The Site Status Board (SSB) is a framework which allows Virtual Organizations to monitor their computing activities at distributed sites and to evaluate site performance. The ATLAS experiment intensively uses SSB for the distributed computing shifts, for estimating data processing and data transfer efficiencies at a particular site, and for implementing automatic exclusion of sites from computing activities, in case of potential problems. ATLAS SSB provides a real-time aggregated monitoring view and keeps the history of the monitoring metrics. Based on this history, usability of a site from the perspective of ATLAS is calculated. The presentation will describe how SSB is integrated in the ATLAS operations and computing infrastructure and will cover implementation details of the ATLAS SSB sensors and alarm system, based on the information in SSB. It will demonstrate the positive impact of the use of SS...

  9. Accurate Models for Evaluating the Direct Conducted and Radiated Emissions from Integrated Circuits

    Directory of Open Access Journals (Sweden)

    Domenico Capriglione

    2018-03-01

    Full Text Available This paper deals with the electromagnetic compatibility (EMC issues related to the direct and radiated emissions from a high-speed integrated circuits (ICs. These emissions are evaluated here by means of circuital and electromagnetic models. As for the conducted emission, an equivalent circuit model is derived to describe the IC and the effect of its loads (package, printed circuit board, decaps, etc., based on the Integrated Circuit Emission Model template (ICEM. As for the radiated emission, an electromagnetic model is proposed, based on the superposition of the fields generated in the far field region by the loop currents flowing into the IC and the package pins. A custom experimental setup is designed for validating the models. Specifically, for the radiated emission measurement, a custom test board is designed and realized, able to highlight the contribution of the direct emission from the IC, usually hidden by the indirect emission coming from the printed circuit board. Measurements of the package currents and of the far-field emitted fields are carried out, providing a satisfactory agreement with the model predictions.

  10. Thiourea leaching gold and silver from the printed circuit boards of waste mobile phones.

    Science.gov (United States)

    Jing-ying, Li; Xiu-li, Xu; Wen-quan, Liu

    2012-06-01

    The present communication deals with the leaching of gold and silver from the printed circuit boards (PCBs) of waste mobile phones using an effective and less hazardous system, i.e., a thiourea leaching process as an alternative to the conventional and toxic cyanide leaching of gold. The influence of particle size, thiourea and Fe(3+) concentrations and temperature on the leaching of gold and silver from waste mobile phones was investigated. Gold extraction was found to be enhanced in a PCBs particle size of 100 mesh with the solutions containing 24 g/L thiourea and Fe(3+) concentration of 0.6% under the room temperature. In this case, about 90% of gold and 50% of silver were leached by the reaction of 2h. The obtained data will be useful for the development of processes for the recycling of gold and silver from the PCBs of waste mobile phones. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Digitized adiabatic quantum computing with a superconducting circuit.

    Science.gov (United States)

    Barends, R; Shabani, A; Lamata, L; Kelly, J; Mezzacapo, A; Las Heras, U; Babbush, R; Fowler, A G; Campbell, B; Chen, Yu; Chen, Z; Chiaro, B; Dunsworth, A; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J Y; Neeley, M; Neill, C; O'Malley, P J J; Quintana, C; Roushan, P; Sank, D; Vainsencher, A; Wenner, J; White, T C; Solano, E; Neven, H; Martinis, John M

    2016-06-09

    Quantum mechanics can help to solve complex problems in physics and chemistry, provided they can be programmed in a physical device. In adiabatic quantum computing, a system is slowly evolved from the ground state of a simple initial Hamiltonian to a final Hamiltonian that encodes a computational problem. The appeal of this approach lies in the combination of simplicity and generality; in principle, any problem can be encoded. In practice, applications are restricted by limited connectivity, available interactions and noise. A complementary approach is digital quantum computing, which enables the construction of arbitrary interactions and is compatible with error correction, but uses quantum circuit algorithms that are problem-specific. Here we combine the advantages of both approaches by implementing digitized adiabatic quantum computing in a superconducting system. We tomographically probe the system during the digitized evolution and explore the scaling of errors with system size. We then let the full system find the solution to random instances of the one-dimensional Ising problem as well as problem Hamiltonians that involve more complex interactions. This digital quantum simulation of the adiabatic algorithm consists of up to nine qubits and up to 1,000 quantum logic gates. The demonstration of digitized adiabatic quantum computing in the solid state opens a path to synthesizing long-range correlations and solving complex computational problems. When combined with fault-tolerance, our approach becomes a general-purpose algorithm that is scalable.

  12. A COTS-based single board radiation-hardened computer for space applications

    International Nuclear Information System (INIS)

    Stewart, S.; Hillman, R.; Layton, P.; Krawzsenek, D.

    1999-01-01

    There is great community interest in the ability to use COTS (Commercial-Off-The-Shelf) technology in radiation environments. Space Electronics, Inc. has developed a high performance COTS-based radiation hardened computer. COTS approaches were selected for both hardware and software. Through parts testing, selection and packaging, all requirements have been met without parts or process development. Reliability, total ionizing dose and single event performance are attractive. The characteristics, performance and radiation resistance of the single board computer will be presented. (authors)

  13. Proceedings of the 2011 International Conference on Informatics, Cybernetics, and Computer Engineering

    CERN Document Server

    2012-01-01

    This volume includes a set of selected papers extended and revised from the International Conference on Informatics, Cybernetics, and Computer Engineering. A computer network is a collection of computers and devices interconnected by communications channels that facilitate communications and allows sharing of resources and information among interconnected devices. Networks may be classified according to a wide variety of characteristics such as medium used to transport the data, communications protocol used, scale, topology, organizational scope, etc. Electronics engineering is an engineering discipline where non-linear and active electrical components such as electron tubes, and semiconductor devices, especially transistors, diodes and integrated circuits, are utilized to design electronic circuits, devices and systems, typically also including passive electrical components and based on printed circuit boards. ICCE 2011 Volume 3 is to provide a forum for researchers, educators, engineers, and government offi...

  14. Engineering integrated digital circuits with allosteric ribozymes for scaling up molecular computation and diagnostics.

    Science.gov (United States)

    Penchovsky, Robert

    2012-10-19

    Here we describe molecular implementations of integrated digital circuits, including a three-input AND logic gate, a two-input multiplexer, and 1-to-2 decoder using allosteric ribozymes. Furthermore, we demonstrate a multiplexer-decoder circuit. The ribozymes are designed to seek-and-destroy specific RNAs with a certain length by a fully computerized procedure. The algorithm can accurately predict one base substitution that alters the ribozyme's logic function. The ability to sense the length of RNA molecules enables single ribozymes to be used as platforms for multiple interactions. These ribozymes can work as integrated circuits with the functionality of up to five logic gates. The ribozyme design is universal since the allosteric and substrate domains can be altered to sense different RNAs. In addition, the ribozymes can specifically cleave RNA molecules with triplet-repeat expansions observed in genetic disorders such as oculopharyngeal muscular dystrophy. Therefore, the designer ribozymes can be employed for scaling up computing and diagnostic networks in the fields of molecular computing and diagnostics and RNA synthetic biology.

  15. Evaluation of a recycling process for printed circuit board by physical separation and heat treatment

    International Nuclear Information System (INIS)

    Fujita, Toyohisa; Ono, Hiroyuki; Dodbiba, Gjergj; Yamaguchi, Kunihiko

    2014-01-01

    Highlights: • The parts mounted on printed circuit board (PCB) were liberated by underwater explosion and mechanical crushing. • The crushed PCB without surface-mounted parts was carbonized under inert atmosphere at 873 K to recover copper. • The multi-layered ceramic capacitors including nickel was carbonized at 873 K to recover nickel by the magnetic separation. • The tantalum powders were recovered from the molded resins by heat treatment at 723 and 823 K in air atmosphere and screening. • Energy and treatment cost of new process increased, however, the environmental burden decreased comparing conventional one. - Abstract: Printed circuit boards (PCBs) from discarded personal computer (PC) and hard disk drive were crushed by explosion in water or mechanical comminution in order to disintegrate the attached parts. More parts were stripped from PCB of PC, composed of epoxy resin; than from PCB of household appliance, composed of phenol resin. In an attempt to raise the copper grade of PCB by removing other components, a carbonization treatment was investigated. The crushed PCB without surface-mounted parts was carbonized under a nitrogen atmosphere at 873–1073 K. After screening, the char was classified by size into oversized pieces, undersized pieces and powder. The copper foil and glass fiber pieces were liberated and collected in undersized fraction. The copper foil was liberated easily from glass fiber by stamping treatment. As one of the mounted parts, the multi-layered ceramic capacitors (MLCCs), which contain nickel, were carbonized at 873 K. The magnetic separation is carried out at a lower magnetic field strength of 0.1 T and then at 0.8 T. In the +0.5 mm size fraction the nickel grade in magnetic product was increased from 0.16% to 6.7% and the nickel recovery is 74%. The other useful mounted parts are tantalum capacitors. The tantalum capacitors were collected from mounted parts. The tantalum-sintered bodies were separated from molded resins

  16. INSULATION RESISTANCE OF PRINTED CIRCUIT BOARDS. BEHAVIOR OF CERTAIN TYPES AND MAKES UNDER DIFFERENT CLIMATIC CONDITIONS. En undersoegelse af en raekke typer og fabrikater under forskellige klimatiske forhold

    Energy Technology Data Exchange (ETDEWEB)

    Olesen, S. T.

    1971-11-15

    The present study embraces measurements of insulation resistance on a number of types and makes of printed-circuit boards. The insulation measurements were performed on boards just received from the manufacturer, as well as on boards exposed to humidity or to elevated temperatures. A total of 33 types from five different material categories were obtained. The test material used thus originated from a variety of independent sources. The purpose of the project was to investigate the frequency with which batches with insufficiently baked material - and consequently having a poor insulation resistance - were encountered in practice. No such batches were in fact found, and it is likely that they do not occur as often as had previously been assumed.

  17. Quantum computing with photons: introduction to the circuit model, the one-way quantum computer, and the fundamental principles of photonic experiments

    International Nuclear Information System (INIS)

    Barz, Stefanie

    2015-01-01

    Quantum physics has revolutionized our understanding of information processing and enables computational speed-ups that are unattainable using classical computers. This tutorial reviews the fundamental tools of photonic quantum information processing. The basics of theoretical quantum computing are presented and the quantum circuit model as well as measurement-based models of quantum computing are introduced. Furthermore, it is shown how these concepts can be implemented experimentally using photonic qubits, where information is encoded in the photons’ polarization. (tutorial)

  18. Computer science security research and human subjects: emerging considerations for research ethics boards.

    Science.gov (United States)

    Buchanan, Elizabeth; Aycock, John; Dexter, Scott; Dittrich, David; Hvizdak, Erin

    2011-06-01

    This paper explores the growing concerns with computer science research, and in particular, computer security research and its relationship with the committees that review human subjects research. It offers cases that review boards are likely to confront, and provides a context for appropriate consideration of such research, as issues of bots, clouds, and worms enter the discourse of human subjects review.

  19. Grounding and shielding circuits and interference

    CERN Document Server

    Morrison, Ralph

    2016-01-01

    Applies basic field behavior in circuit design and demonstrates how it relates to grounding and shielding requirements and techniques in circuit design This book connects the fundamentals of electromagnetic theory to the problems of interference in all types of electronic design. The text covers power distribution in facilities, mixing of analog and digital circuitry, circuit board layout at high clock rates, and meeting radiation and susceptibility standards. The author examines the grounding and shielding requirements and techniques in circuit design and applies basic physics to circuit behavior. The sixth edition of this book has been updated with new material added throughout the chapters where appropriate. The presentation of the book has also been rearranged in order to reflect the current trends in the field.

  20. Prioritizing material recovery for end-of-life printed circuit boards

    International Nuclear Information System (INIS)

    Wang Xue; Gaustad, Gabrielle

    2012-01-01

    Highlights: ► Material recovery driven by composition, choice of ranking, and weighting. ► Economic potential for new recycling technologies quantified for several metrics. ► Indicators developed for materials incurring high eco-toxicity costs. ► Methodology useful for a variety of stakeholders, particularly policy-makers. - Abstract: The increasing growth in generation of electronic waste (e-waste) motivates a variety of waste reduction research. Printed circuit boards (PCBs) are an important sub-set of the overall e-waste stream due to the high value of the materials contained within them and potential toxicity. This work explores several environmental and economic metrics for prioritizing the recovery of materials from end-of-life PCBs. A weighted sum model is used to investigate the trade-offs among economic value, energy saving potentials, and eco-toxicity. Results show that given equal weights for these three sustainability criteria gold has the highest recovery priority, followed by copper, palladium, aluminum, tin, lead, platinum, nickel, zinc, and silver. However, recovery priority will change significantly due to variation in the composition of PCBs, choice of ranking metrics, and weighting factors when scoring multiple metrics. These results can be used by waste management decision-makers to quantify the value and environmental savings potential for recycling technology development and infrastructure. They can also be extended by policy-makers to inform possible penalties for land-filling PCBs or exporting to the informal recycling sector. The importance of weighting factors when examining recovery trade-offs, particularly for policies regarding PCB collection and recycling are explored further.

  1. Interface Circuit For Printer Port

    Science.gov (United States)

    Tucker, Jerry H.; Yadlowsky, Ann B.

    1991-01-01

    Electronic circuit, called printer-port interface circuit (PPI) developed to overcome certain disadvantages of previous methods for connecting IBM PC or PC-compatible computer to other equipment. Has both reading and writing modes of operation. Very simple, requiring only six integrated circuits. Provides for moderately fast rates of transfer of data and uses existing unmodified circuit card in IBM PC. When used with appropriate software, circuit converts printer port on IBM PC, XT, AT, or compatible personal computer to general purpose, 8-bit-data, 16-bit address bus that connects to multitude of devices.

  2. Effects of smoke on functional circuits

    International Nuclear Information System (INIS)

    Tanaka, T.J.

    1997-10-01

    Nuclear power plants are converting to digital instrumentation and control systems; however, the effects of abnormal environments such as fire and smoke on such systems are not known. There are no standard tests for smoke, but previous smoke exposure tests at Sandia National Laboratories have shown that digital communications can be temporarily interrupted during a smoke exposure. Another concern is the long-term corrosion of metals exposed to the acidic gases produced by a cable fire. This report documents measurements of basic functional circuits during and up to 1 day after exposure to smoke created by burning cable insulation. Printed wiring boards were exposed to the smoke in an enclosed chamber for 1 hour. For high-resistance circuits, the smoke lowered the resistance of the surface of the board and caused the circuits to short during the exposure. These circuits recovered after the smoke was vented. For low-resistance circuits, the smoke caused their resistance to increase slightly. A polyurethane conformal coating substantially reduced the effects of smoke. A high-speed digital circuit was unaffected. A second experiment on different logic chip technologies showed that the critical shunt resistance that would cause failure was dependent on the chip technology and that the components used in the smoke exposures were some of the most smoke tolerant. The smoke densities in these tests were high enough to cause changes in high impedance (resistance) circuits during exposure, but did not affect most of the other circuits. Conformal coatings and the characteristics of chip technologies should be considered when designing circuitry for nuclear power plant safety systems, which must be highly reliable under a variety of operating and accident conditions. 10 refs., 34 figs., 18 tabs

  3. A Novel Designed Bioreactor for Recovering Precious Metals from Waste Printed Circuit Boards

    Science.gov (United States)

    Jujun, Ruan; Jie, Zheng; Jian, Hu; Zhang, Jianwen

    2015-01-01

    For recovering precious metals from waste printed circuit boards (PCBs), a novel hybrid technology including physical and biological methods was developed. It consisted of crushing, corona-electrostatic separation, and bioleaching. Bioleaching process is the focus of this paper. A novel bioreactor for bioleaching was designed. Bioleaching was carried out using Pseudomonas chlororaphis. Bioleaching experiments using mixed particles of Au and Cu were performed and leachate contained 0.006 mg/L, 2823 mg/L Au+ and Cu2+ respectively. It showed when Cu existed, the concentrations of Au were extremely small. This provided the feasibility to separate Cu from Au. The method of orthogonal experimental design was employed in the simulation bioleaching experiments. Experimental results showed the optimized parameters for separating Cu from Au particles were pH 7.0, temperature 22.5 °C, and rotation speed 80 r/min. Based on the optimized parameters obtained, the bioreactor was operated for recovering mixed Au and Cu particles. 88.1 wt.% of Cu and 76.6 wt.% of Au were recovered. The paper contributed important information to recover precious metals from waste PCBs. PMID:26316021

  4. Disposing and recycling waste printed circuit boards: disconnecting, resource recovery, and pollution control.

    Science.gov (United States)

    Wang, Jianbo; Xu, Zhenming

    2015-01-20

    Over the past decades, China has been suffering from negative environmental impacts from distempered e-waste recycling activities. After a decade of effort, disassembly and raw materials recycling of environmentally friendly e-waste have been realized in specialized companies, in China, and law enforcement for illegal activities of e-waste recycling has also been made more and more strict. So up to now, the e-waste recycling in China should be developed toward more depth and refinement to promote industrial production of e-waste resource recovery. Waste printed circuit boards (WPCBs), which are the most complex, hazardous, and valuable components of e-waste, are selected as one typical example in this article that reviews the status of related regulations and technologies of WPCBs recycling, then optimizes, and integrates the proper approaches in existence, while the bottlenecks in the WPCBs recycling system are analyzed, and some preliminary experiments of pinch technologies are also conducted. Finally, in order to provide directional guidance for future development of WPCBs recycling, some key points in the WPCBs recycling system are proposed to point towards a future trend in the e-waste recycling industry.

  5. Circuit bridging of components by smoke

    International Nuclear Information System (INIS)

    Tanaka, T.J.; Nowlen, S.P.; Anderson, D.J.

    1996-10-01

    Smoke can adversely affect digital electronics; in the short term, it can lead to circuit bridging and in the long term to corrosion of metal parts. This report is a summary of the work to date and component-level tests by Sandia National Laboratories for the Nuclear Regulatory Commission to determine the impact of smoke on digital instrumentation and control equipment. The component tests focused on short-term effects such as circuit bridging in typical components and the factors that can influence how much the smoke will affect them. These factors include the component technology and packaging, physical board protection, and environmental conditions such as the amount of smoke, temperature of burn, and humidity level. The likelihood of circuit bridging was tested by measuring leakage currents and converting those currents to resistance in ohms. Hermetically sealed ceramic packages were more resistant to smoke than plastic packages. Coating the boards with an acrylic spray provided some protection against circuit bridging. The smoke generation factors that affect the resistance the most are humidity, fuel level, and burn temperature. The use of CO 2 as a fire suppressant, the presence of galvanic metal, and the presence of PVC did not significantly affect the outcome of these results

  6. Separation of the metallic and non-metallic fraction from printed circuit boards employing green technology

    Energy Technology Data Exchange (ETDEWEB)

    Estrada-Ruiz, R.H., E-mail: rhestrada@itsaltillo.edu.mx; Flores-Campos, R., E-mail: rcampos@itsaltillo.edu.mx; Gámez-Altamirano, H.A., E-mail: hgamez@itsaltillo.edu.mx; Velarde-Sánchez, E.J., E-mail: ejvelarde@itsaltillo.edu.mx

    2016-07-05

    Highlights: • Small sizes of particles are required in order to separate the different fractions. • Inverse flotation process is an efficient green technology to separate fractions. • Superficial air velocity is the main variable in the inverse flotation process. • Inverse flotation is a green process because the pulṕs pH is 7.0 during the test. - Abstract: The generation of electrical and electronic waste is increasing day by day; recycling is attractive because of the metallic fraction containing these. Nevertheless, conventional techniques are highly polluting. The comminution of the printed circuit boards followed by an inverse flotation process is a clean technique that allows one to separate the metallic fraction from the non-metallic fraction. It was found that particle size and superficial air velocity are the main variables in the separation of the different fractions. In this way an efficient separation is achieved by avoiding the environmental contamination coupled with the possible utilization of the different fractions obtained.

  7. Copper recovery and gold enrichment from waste printed circuit boards by mediated electrochemical oxidation.

    Science.gov (United States)

    Fogarasi, Szabolcs; Imre-Lucaci, Florica; Imre-Lucaci, Arpád; Ilea, Petru

    2014-05-30

    The present study aims to develop an eco-friendly chemical-electrochemical process for the simultaneous recovery of copper and separation of a gold rich residue from waste printed circuit boards (WPCBs). The process was carried out by employing two different types of reactors coupled in series: a leaching reactor with a perforated rotating drum, for the dissolution of base metals and a divided electrochemical reactor for the regeneration of the leaching solution with the parallel electrowinning of copper. The process performances were evaluated on the basis of the dissolution efficiency, current efficiency and specific energy consumptions. Finally a process scale up was realized taking into consideration the optimal values of the operating parameters. The laboratory scale leaching plant allowed the recovery of a high purity copper deposit (99.04wt.%) at a current efficiency of 63.84% and specific energy consumption of 1.75kWh/kg cooper. The gold concentration in the remained solid residue was 25 times higher than the gold concentration in the initial WPCB samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Synthesis of carbon nanotubes and porous carbons from printed circuit board waste pyrolysis oil

    International Nuclear Information System (INIS)

    Quan Cui; Li Aimin; Gao Ningbo

    2010-01-01

    The possibility and feasibility of using pyrolysis oil from printed circuit board (PCB) waste as a precursor for advanced carbonaceous materials is presented. The PCB waste was first pyrolyzed in a laboratory scale fixed bed reactor at 600 deg. C to prepare pyrolysis oil. The analysis of pyrolysis oil by gas chromatography-mass spectroscopy indicated that it contained a very high proportion of phenol and phenol derivatives. It was then polymerized in formaldehyde solution to synthesize pyrolysis oil-based resin which was used as a precursor to prepare carbon nanotubes (CNTs) and porous carbons. Scanning electron microscopy and transmission microscopy investigation showed that the resulting CNTs had hollow cores with outer diameter of ∼338 nm and wall thickness of ∼86 nm and most of them were filled with metal nanoparticles or nanorods. X-ray diffraction reveals that CNTs have an amorphous structure. Nitrogen adsorption isotherm analysis indicated the prepared porous carbons had a Brunauer-Emmett-Teller surface area of 1214 m 2 /g. The mechanism of the formation of the CNTs and porous carbons was discussed.

  9. Compressed Air System Enhancement Increases Efficiency and Provides Energy Savings at a Circuit Board Manufacturer (Sanmina Plant, Oswego, New York): Office of Industrial Technologies (OIT) BestPractices Technical Case Study

    International Nuclear Information System (INIS)

    Wogsland, J.

    2001-01-01

    This case study is one in a series on industrial firms who are implementing energy efficient technologies and system improvements into their manufacturing processes. This case study documents the activities, savings, and lessons learned on the circuit board manufacturer (Sanmina Plant) project

  10. Integrated electric circuit engineering system in LSI design center, Konami Kogyo Co. Ltd

    Energy Technology Data Exchange (ETDEWEB)

    Kamitsuki, Kagehiko; Tanaka, Tomiaki

    1988-08-26

    Development of the integrated engineering system is presented which designs and manufactures the hardwares, softwares and cases of electronic game products with LSI integratedly as an experiment. The system is intended to reduce the number of each development of the parts, to verify each other by comparing each parts with the product concept during the development, to reduce modifications, and to shorten development periods. The main subsystems are an electric circuit CAD for LSI designs and a mechanical CAD for case or printed circuit board designs. The LSI development period has been shortened up to one month by a larger capacity computer and higher speed simulator, and the electric circuit engineering system capable of keeping step with the software development has been approximately completed. In the future, the system will be intended to introduce an expert system or a visual system capable of predicting the final product during a logical design period. (10 figs, 1 photo)

  11. Fast copper extraction from printed circuit boards using supercritical carbon dioxide.

    Science.gov (United States)

    Calgaro, C O; Schlemmer, D F; da Silva, M D C R; Maziero, E V; Tanabe, E H; Bertuol, D A

    2015-11-01

    Technological development and intensive marketing support the growth in demand for electrical and electronic equipment (EEE), for which printed circuit boards (PCBs) are vital components. As these devices become obsolete after short periods, waste PCBs present a problem and require recycling. PCBs are composed of ceramics, polymers, and metals, particularly Cu, which is present in highest percentages. The aim of this study was to develop an innovative method to recover Cu from the PCBs of old mobile phones, obtaining faster reaction kinetics by means of leaching with supercritical CO2 and co-solvents. The PCBs from waste mobile phones were characterized, and evaluation was made of the reaction kinetics during leaching at atmospheric pressure and using supercritical CO2 with H2O2 and H2SO4 as co-solvents. The results showed that the PCBs contained 34.83 wt% of Cu. It was found that the supercritical extraction was 9 times faster, compared to atmospheric pressure extraction. After 20 min of supercritical leaching, approximately 90% of the Cu contained in the PCB was extracted using a 1:20 solid:liquid ratio and 20% of H2O2 and H2SO4 (2.5 M). These results demonstrate the efficiency of the process. Therefore the supercritical CO2 employment in the PCBs recycling is a promising alternative and the CO2 is environmentally acceptable and reusable. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Circuit analysis for dummies

    CERN Document Server

    Santiago, John

    2013-01-01

    Circuits overloaded from electric circuit analysis? Many universities require that students pursuing a degree in electrical or computer engineering take an Electric Circuit Analysis course to determine who will ""make the cut"" and continue in the degree program. Circuit Analysis For Dummies will help these students to better understand electric circuit analysis by presenting the information in an effective and straightforward manner. Circuit Analysis For Dummies gives you clear-cut information about the topics covered in an electric circuit analysis courses to help

  13. Towards electromechanical computation: An alternative approach to realize complex logic circuits

    KAUST Repository

    Hafiz, Md Abdullah Al; Kosuru, Lakshmoji; Younis, Mohammad I.

    2016-01-01

    Electromechanical computing based on micro/nano resonators has recently attracted significant attention. However, full implementation of this technology has been hindered by the difficulty in realizing complex logic circuits. We report here an alternative approach to realize complex logic circuits based on multiple MEMS resonators. As case studies, we report the construction of a single-bit binary comparator, a single-bit 4-to-2 encoder, and parallel XOR/XNOR and AND/NOT logic gates. Toward this, several microresonators are electrically connected and their resonance frequencies are tuned through an electrothermal modulation scheme. The microresonators operating in the linear regime do not require large excitation forces, and work at room temperature and at modest air pressure. This study demonstrates that by reconfiguring the same basic building block, tunable resonator, several essential complex logic functions can be achieved.

  14. Towards electromechanical computation: An alternative approach to realize complex logic circuits

    KAUST Repository

    Hafiz, M. A. A.

    2016-08-18

    Electromechanical computing based on micro/nano resonators has recently attracted significant attention. However, full implementation of this technology has been hindered by the difficulty in realizing complex logic circuits. We report here an alternative approach to realize complex logic circuits based on multiple MEMS resonators. As case studies, we report the construction of a single-bit binary comparator, a single-bit 4-to-2 encoder, and parallel XOR/XNOR and AND/NOT logic gates. Toward this, several microresonators are electrically connected and their resonance frequencies are tuned through an electrothermal modulation scheme. The microresonators operating in the linear regime do not require large excitation forces, and work at room temperature and at modest air pressure. This study demonstrates that by reconfiguring the same basic building block, tunable resonator, several essential complex logic functions can be achieved.

  15. Tailored benzoxazines as novel resin systems for printed circuit boards in high temperature e-mobility applications

    International Nuclear Information System (INIS)

    Troeger, K.; Darka, R. Khanpour; Neumeyer, T.; Altstaedt, V.

    2014-01-01

    This study focuses on the development of Bisphenol-F-benzoxazine resins blended with different ratios of a trifunctional epoxy resin suitable as matrix for substrates for high temperature printed circuit board (HT-PCB) applications. With the benzoxazine blends glass transition temperatures of more than 190 °C could be achieved in combination with a coefficient of thermal expansion in thickness direction (z-CTE) of less than 60 ppm/K without adding any fillers. This shows the high potential of the benzoxazine-epoxy blend systems as substrate materials for HT-PCBs. To understand the thermal behavior of the different formulations, the apparent crosslink density was calculated based on data from Dynamic Mechanical Analysis. Laminates in laboratory scale were prepared and characterized to demonstrate the transformation of the neat resin properties into real electronic substrate properties. The produced laminates exhibit a z-CTE below 40 ppm/K

  16. Tailored benzoxazines as novel resin systems for printed circuit boards in high temperature e-mobility applications

    Energy Technology Data Exchange (ETDEWEB)

    Troeger, K., E-mail: altstaedt@uni-bayreuth.de; Darka, R. Khanpour, E-mail: altstaedt@uni-bayreuth.de; Neumeyer, T., E-mail: altstaedt@uni-bayreuth.de; Altstaedt, V., E-mail: altstaedt@uni-bayreuth.de [Polymer Engineering, University of Bayreuth, Germany and Polymer Engineering, Universitaetsstrasse 30, 95447 Bayreuth (Germany)

    2014-05-15

    This study focuses on the development of Bisphenol-F-benzoxazine resins blended with different ratios of a trifunctional epoxy resin suitable as matrix for substrates for high temperature printed circuit board (HT-PCB) applications. With the benzoxazine blends glass transition temperatures of more than 190 °C could be achieved in combination with a coefficient of thermal expansion in thickness direction (z-CTE) of less than 60 ppm/K without adding any fillers. This shows the high potential of the benzoxazine-epoxy blend systems as substrate materials for HT-PCBs. To understand the thermal behavior of the different formulations, the apparent crosslink density was calculated based on data from Dynamic Mechanical Analysis. Laminates in laboratory scale were prepared and characterized to demonstrate the transformation of the neat resin properties into real electronic substrate properties. The produced laminates exhibit a z-CTE below 40 ppm/K.

  17. Ultrafast quantum computation in ultrastrongly coupled circuit QED systems

    Science.gov (United States)

    Wang, Yimin; Guo, Chu; Zhang, Guo-Qiang; Wang, Gangcheng; Wu, Chunfeng

    2017-01-01

    The latest technological progress of achieving the ultrastrong-coupling regime in circuit quantum electrodynamics (QED) systems has greatly promoted the developments of quantum physics, where novel quantum optics phenomena and potential computational benefits have been predicted. Here, we propose a scheme to accelerate the nontrivial two-qubit phase gate in a circuit QED system, where superconducting flux qubits are ultrastrongly coupled to a transmission line resonator (TLR), and two more TLRs are coupled to the ultrastrongly-coupled system for assistant. The nontrivial unconventional geometric phase gate between the two flux qubits is achieved based on close-loop displacements of the three-mode intracavity fields. Moreover, as there are three resonators contributing to the phase accumulation, the requirement of the coupling strength to realize the two-qubit gate can be reduced. Further reduction in the coupling strength to achieve a specific controlled-phase gate can be realized by adding more auxiliary resonators to the ultrastrongly-coupled system through superconducting quantum interference devices. We also present a study of our scheme with realistic parameters considering imperfect controls and noisy environment. Our scheme possesses the merits of ultrafastness and noise-tolerance due to the advantages of geometric phases. PMID:28281654

  18. Future Directions in Computer Graphics and Visualization: From CG&A's Editorial Board

    Energy Technology Data Exchange (ETDEWEB)

    Encarnacao, L. M.; Chuang, Yung-Yu; Stork, Andre; Kasik, David; Rhyne, Theresa-Marie; Avila, Lisa; Kohlhammer, Jorn; LaViola, Joseph; Tory, Melanie; Dill, John; Domik, Gitta; Owen, G. Scott; Wong, Pak C.

    2015-01-01

    With many new members joining the CG&A editorial board over the past year, and with a renewed commitment to not only document the state of the art in computer graphics research and applications but to anticipate and where possible foster future areas of scientific discourse and industrial practice, we asked editorial and advisory council members about where they see their fields of expertise going. The answers compiled here aren’t meant to be all encompassing or deterministic when it comes to the opportunities computer graphics and interactive visualization hold for the future. Instead, we aim to accomplish two things: give a more in-depth introduction of members of the editorial board to the CG&A readership and encourage cross-disciplinary discourse toward approaching, complementing, or disputing the visions laid out in this compilation.

  19. Study on characteristics of printed circuit board liberation and its crushed products.

    Science.gov (United States)

    Quan, Cui; Li, Aimin; Gao, Ningbo

    2012-11-01

    Recycling printed circuit board waste (PCBW) waste is a hot issue of environmental protection and resource recycling. Mechanical and thermo-chemical methods are two traditional recycling processes for PCBW. In the present research, a two-step crushing process combined with a coarse-crushing step and a fine-pulverizing step was adopted, and then the crushed products were classified into seven different fractions with a standard sieve. The liberation situation and particle shape in different size fractions were observed. Properties of different size fractions, such as heating value, thermogravimetric, proximate, ultimate and chemical analysis were determined. The Rosin-Rammler model was applied to analyze the particle size distribution of crushed material. The results indicated that complete liberation of metals from the PCBW was achieved at a size less than 0.59 mm, but the nonmetal particle in the smaller-than-0.15 mm fraction is liable to aggregate. Copper was the most prominent metal in PCBW and mainly enriched in the 0.42-0.25 mm particle size. The Rosin-Rammler equation adequately fit particle size distribution data of crushed PCBW with a correlation coefficient of 0.9810. The results of heating value and proximate analysis revealed that the PCBW had a low heating value and high ash content. The combustion and pyrolysis process of PCBW was different and there was an obvious oxidation peak of Cu in combustion runs.

  20. 75 FR 53004 - Privacy Act of 1974, as Amended; Notice of Computer-Matching Program (Railroad Retirement Board...

    Science.gov (United States)

    2010-08-30

    ... report of this computer-matching program with the Committee on Homeland Security and Governmental Affairs... INFORMATION: A. General The Computer-Matching and Privacy Protection Act of 1988, (Pub. L. 100-503), amended... RAILROAD RETIREMENT BOARD Privacy Act of 1974, as Amended; Notice of Computer-Matching Program...

  1. 78 FR 70971 - Privacy Act of 1974, as Amended; Notice of Computer Matching Program (Railroad Retirement Board...

    Science.gov (United States)

    2013-11-27

    ... will file a report of this computer-matching program with the Committee on Homeland Security and... . SUPPLEMENTARY INFORMATION: A. General The Computer Matching and Privacy Protection Act of 1988, (Pub. L. 100-503... RAILROAD RETIREMENT BOARD Privacy Act of 1974, as Amended; Notice of Computer Matching Program...

  2. Investigation and experimental validation of the contribution of optical interconnects in the SYMPHONIE massively parallel computer

    International Nuclear Information System (INIS)

    Scheer, Patrick

    1998-01-01

    Progress in microelectronics lead to electronic circuits which are increasingly integrated, with an operating frequency and an inputs/outputs count larger than the ones supported by printed circuit board and back-plane technologies. As a result, distributed systems with several boards cannot fully exploit the performance of integrated circuits. In synchronous parallel computers, the situation is worsen since the overall system performances rely on the efficiency of electrical interconnects between the integrated circuits which include the processing elements (PE). The study of a real parallel computer named SYMPHONIE shows for instance that the system operating frequency is far smaller than the capabilities of the microelectronics technology used for the PE implementation. Optical interconnections may cancel these limitations by providing more efficient connections between the PE. Especially, free-space optical interconnections based on vertical-cavity surface-emitting lasers (VCSEL), micro-lens and PIN photodiodes are compatible with the required features of the PE communications. Zero bias modulation of VCSEL with CMOS-compatible digital signals is studied and experimentally demonstrated. A model of the propagation of truncated gaussian beams through micro-lenses is developed. It is then used to optimise the geometry of the detection areas. A dedicated mechanical system is also proposed and implemented for integrating free-space optical interconnects in a standard electronic environment, representative of the one of parallel computer systems. A specially designed demonstrator provides the experimental validation of the above physical concepts. (author) [fr

  3. Integrated bioleaching of copper metal from waste printed circuit board-a comprehensive review of approaches and challenges.

    Science.gov (United States)

    Awasthi, Abhishek Kumar; Zeng, Xianlai; Li, Jinhui

    2016-11-01

    Waste electrical and electronic equipment (e-waste) is the most rapidly growing waste stream in the world, and the majority of the residues are openly disposed of in developing countries. Waste printed circuit boards (WPCBs) make up the major portion of e-waste, and their informal recycling can cause environmental pollution and health risks. Furthermore, the conventional disposal and recycling techniques-mechanical treatments used to recover valuable metals, including copper-are not sustainable in the long term. Chemical leaching is rapid and efficient but causes secondary pollution. Bioleaching is a promising approach, eco-friendly and economically feasible, but it is slower process. This review considers the recycling potential of microbes and suggests an integrated bioleaching approach for Cu extraction and recovery from WPCBs. The proposed recycling system should be more effective, efficient and both technically and economically feasible.

  4. Kajian dan Implementasi Real TIME Operating System pada Single Board Computer Berbasis Arm

    OpenAIRE

    A, Wiedjaja; M, Handi; L, Jonathan; Christian, Benyamin; Kristofel, Luis

    2014-01-01

    Operating System is an important software in computer system. For personal and office use the operating system is sufficient. However, to critical mission applications such as nuclear power plants and braking system on the car (auto braking system) which need a high level of reliability, it requires operating system which operates in real time. The study aims to assess the implementation of the Linux-based operating system on a Single Board Computer (SBC) ARM-based, namely Pandaboard ES with ...

  5. Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB).

    Science.gov (United States)

    Işıldar, Arda; van de Vossenberg, Jack; Rene, Eldon R; van Hullebusch, Eric D; Lens, Piet N L

    2016-11-01

    An effective strategy for environmentally sound biological recovery of copper and gold from discarded printed circuit boards (PCB) in a two-step bioleaching process was experimented. In the first step, chemolithotrophic acidophilic Acidithiobacillus ferrivorans and Acidithiobacillus thiooxidans were used. In the second step, cyanide-producing heterotrophic Pseudomonas fluorescens and Pseudomonas putida were used. Results showed that at a 1% pulp density (10g/L PCB concentration), 98.4% of the copper was bioleached by a mixture of A. ferrivorans and A. thiooxidans at pH 1.0-1.6 and ambient temperature (23±2°C) in 7days. A pure culture of P. putida (strain WCS361) produced 21.5 (±1.5)mg/L cyanide with 10g/L glycine as the substrate. This gold complexing agent was used in the subsequent bioleaching step using the Cu-leached (by A. ferrivorans and A. thiooxidans) PCB material, 44.0% of the gold was mobilized in alkaline conditions at pH 7.3-8.6, and 30°C in 2days. This study provided a proof-of-concept of a two-step approach in metal bioleaching from PCB, by bacterially produced lixiviants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Quality control process improvement of flexible printed circuit board by FMEA

    Science.gov (United States)

    Krasaephol, Siwaporn; Chutima, Parames

    2018-02-01

    This research focuses on the quality control process improvement of Flexible Printed Circuit Board (FPCB), centred around model 7-Flex, by using Failure Mode and Effect Analysis (FMEA) method to decrease proportion of defective finished goods that are found at the final inspection process. Due to a number of defective units that were found at the final inspection process, high scraps may be escaped to customers. The problem comes from poor quality control process which is not efficient enough to filter defective products from in-process because there is no In-Process Quality Control (IPQC) or sampling inspection in the process. Therefore, the quality control process has to be improved by setting inspection gates and IPCQs at critical processes in order to filter the defective products. The critical processes are analysed by the FMEA method. IPQC is used for detecting defective products and reducing chances of defective finished goods escaped to the customers. Reducing proportion of defective finished goods also decreases scrap cost because finished goods incur higher scrap cost than work in-process. Moreover, defective products that are found during process can reflect the abnormal processes; therefore, engineers and operators should timely solve the problems. Improved quality control was implemented for 7-Flex production lines from July 2017 to September 2017. The result shows decreasing of the average proportion of defective finished goods and the average of Customer Manufacturers Lot Reject Rate (%LRR of CMs) equal to 4.5% and 4.1% respectively. Furthermore, cost saving of this quality control process equals to 100K Baht.

  7. Influence of nonmetals recycled from waste printed circuit boards on flexural properties and fracture behavior of polypropylene composites

    International Nuclear Information System (INIS)

    Zheng Yanhong; Shen Zhigang; Cai Chujiang; Ma Shulin; Xing Yushan

    2009-01-01

    Flexural strength and flexural modulus of the composites can be successfully improved by filling nonmetals recycled from waste printed circuit boards (PCBs) into polypropylene (PP). By using scanning electron microscopy (SEM), the influence of nonmetals on fracture behavior of PP composites is investigated by in situ flexural test. Observation results show that the particles can effectively lead to mass micro cracks instead of the breaking crack. The process of the crack initiation, propagation and fiber breakage dissipate a great amount of energy. As a result, the flexural properties of the composites can be reinforced significantly. Results of the in situ SEM observation and analysis to the dynamic flexural process supply effective test evidence for the reinforcing mechanism of the nonmetals/PP composites on the basis of the energy dissipation theory

  8. Encountering the Expertise Reversal Effect with a Computer-Based Environment on Electrical Circuit Analysis

    Science.gov (United States)

    Reisslein, Jana; Atkinson, Robert K.; Seeling, Patrick; Reisslein, Martin

    2006-01-01

    This study examined the effectiveness of a computer-based environment employing three example-based instructional procedures (example-problem, problem-example, and fading) to teach series and parallel electrical circuit analysis to learners classified by two levels of prior knowledge (low and high). Although no differences between the…

  9. A programming language for composable DNA circuits.

    Science.gov (United States)

    Phillips, Andrew; Cardelli, Luca

    2009-08-06

    Recently, a range of information-processing circuits have been implemented in DNA by using strand displacement as their main computational mechanism. Examples include digital logic circuits and catalytic signal amplification circuits that function as efficient molecular detectors. As new paradigms for DNA computation emerge, the development of corresponding languages and tools for these paradigms will help to facilitate the design of DNA circuits and their automatic compilation to nucleotide sequences. We present a programming language for designing and simulating DNA circuits in which strand displacement is the main computational mechanism. The language includes basic elements of sequence domains, toeholds and branch migration, and assumes that strands do not possess any secondary structure. The language is used to model and simulate a variety of circuits, including an entropy-driven catalytic gate, a simple gate motif for synthesizing large-scale circuits and a scheme for implementing an arbitrary system of chemical reactions. The language is a first step towards the design of modelling and simulation tools for DNA strand displacement, which complements the emergence of novel implementation strategies for DNA computing.

  10. 78 FR 69927 - SJI Board of Directors Meeting, Notice

    Science.gov (United States)

    2013-11-21

    ... STATE JUSTICE INSTITUTE SJI Board of Directors Meeting, Notice AGENCY: State Justice Institute. ACTION: Notice of meeting. SUMMARY: The SJI Board of Directors will be meeting on Monday, December 9, 2013 at 1:00 p.m. The meeting will be held at the 9th Judicial Circuit of Florida in Orlando, Florida...

  11. Application of glass-nonmetals of waste printed circuit boards to produce phenolic moulding compound

    International Nuclear Information System (INIS)

    Guo Jie; Rao Qunli; Xu Zhenming

    2008-01-01

    The aim of this study was to investigate the feasibility of using glass-nonmetals, a byproduct of recycling waste printed circuit boards (PCBs), to replace wood flour in production of phenolic moulding compound (PMC). Glass-nonmetals were attained by two-step crushing and corona electrostatic separating processes. Glass-nonmetals with particle size shorter than 0.07 mm were in the form of single fibers and resin powder, with the biggest portion (up to 34.6 wt%). Properties of PMC with glass-nonmetals (PMCGN) were compared with reference PMC and the national standard of PMC (PF2C3). When the adding content of glass-nonmetals was 40 wt%, PMCGN exhibited flexural strength of 82 MPa, notched impact strength of 2.4 kJ/m 2 , heat deflection temperature of 175 deg. C, and dielectric strength of 4.8 MV/m, all of which met the national standard. Scanning electron microscopy (SEM) showed strong interfacial bonding between glass fibers and the phenolic resin. All the results showed that the use of glass-nonmetals as filler in PMC represented a promising method for resolving the environmental pollutions and reducing the cost of PMC, thus attaining both environmental and economic benefits

  12. The ultrasonically assisted metals recovery treatment of printed circuit board waste sludge by leaching separation.

    Science.gov (United States)

    Xie, Fengchun; Li, Haiying; Ma, Yang; Li, Chuncheng; Cai, Tingting; Huang, Zhiyuan; Yuan, Gaoqing

    2009-10-15

    This paper provides a practical technique that realized industrial scale copper and iron separation from printed circuit board (PCB) waste sludge by ultrasonically assisted acid leaching in a low cost, low energy consumption and zero discharge of wastes manner. The separation efficiencies of copper and iron from acid leaching with assistance of ultrasound were compared with the one without assistance of ultrasound and the effects of the leaching procedure, pH value, and ultrasonic strength have been investigated in the paper. With the appropriate leaching procedure, a final pH of 3.0, an ultrasonic generator power of 160 W (in 1l tank), leaching time of 60 min, leaching efficiencies of copper and iron had reached 97.83% and 1.23%, respectively. Therefore the separation of copper and iron in PCB waste sludge was virtually achieved. The lab results had been successfully applied to the industrial scaled applications in a heavy metal recovery plant in city of Huizhou, China for more than two years. It has great potentials to be used in even the broad metal recovery practices.

  13. Logic circuits from zero forcing.

    Science.gov (United States)

    Burgarth, Daniel; Giovannetti, Vittorio; Hogben, Leslie; Severini, Simone; Young, Michael

    We design logic circuits based on the notion of zero forcing on graphs; each gate of the circuits is a gadget in which zero forcing is performed. We show that such circuits can evaluate every monotone Boolean function. By using two vertices to encode each logical bit, we obtain universal computation. We also highlight a phenomenon of "back forcing" as a property of each function. Such a phenomenon occurs in a circuit when the input of gates which have been already used at a given time step is further modified by a computation actually performed at a later stage. Finally, we show that zero forcing can be also used to implement reversible computation. The model introduced here provides a potentially new tool in the analysis of Boolean functions, with particular attention to monotonicity. Moreover, in the light of applications of zero forcing in quantum mechanics, the link with Boolean functions may suggest a new directions in quantum control theory and in the study of engineered quantum spin systems. It is an open technical problem to verify whether there is a link between zero forcing and computation with contact circuits.

  14. Space Time – Track Circuits with Trellis Code Modulation

    Directory of Open Access Journals (Sweden)

    Marius Enulescu

    2017-07-01

    Full Text Available The track circuits are very important equipments used in the railway transportation system. Today these are used to send vital information, to the running train, in the same time with the integrity checking of the rail. The actual track circuits have a small problem due to the use of the same transmission medium by the signals containing vital information and the return traction current, the running track rails. But this small problem can produce big disturbances in the train circulation, especially in the rush hours. To improve the data transmission to the train on-board equipment, the implementation of new track circuits using new communication technology were studied. This technology is used by the mobile and satellite communications and applies the principle of diversity encoding both time and space through the use of multiple transmission points of the track circuit signal for telegram which is sent to the train. Since this implementation does not satisfy the intended purpose, other modern communication principles such as 8PSK signals modulation and encoding using Trellis Coded Modulation were developed. This new track circuit aims to solve the problems which appeared in the current operation of track circuits and theoretically manages to transmit vital information to the train on board equipment without being affected by disturbances in electric traction transport systems.

  15. Mobile clusters of single board computers: an option for providing resources to student projects and researchers.

    Science.gov (United States)

    Baun, Christian

    2016-01-01

    Clusters usually consist of servers, workstations or personal computers as nodes. But especially for academic purposes like student projects or scientific projects, the cost for purchase and operation can be a challenge. Single board computers cannot compete with the performance or energy-efficiency of higher-value systems, but they are an option to build inexpensive cluster systems. Because of the compact design and modest energy consumption, it is possible to build clusters of single board computers in a way that they are mobile and can be easily transported by the users. This paper describes the construction of such a cluster, useful applications and the performance of the single nodes. Furthermore, the clusters' performance and energy-efficiency is analyzed by executing the High Performance Linpack benchmark with a different number of nodes and different proportion of the systems total main memory utilized.

  16. Development of a computer code for dynamic analysis of the primary circuit of advanced reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Jussie Soares da; Lira, Carlos A.B.O.; Magalhaes, Mardson A. de Sa, E-mail: cabol@ufpe.b [Universidade Federal de Pernambuco (DEN/UFPE), Recife, PE (Brazil). Dept. de Energia Nuclear

    2011-07-01

    Currently, advanced reactors are being developed, seeking for enhanced safety, better performance and low environmental impacts. Reactor designs must follow several steps and numerous tests before a conceptual project could be certified. In this sense, computational tools become indispensable in the preparation of such projects. Thus, this study aimed at the development of a computational tool for thermal-hydraulic analysis by coupling two computer codes to evaluate the influence of transients caused by pressure variations and flow surges in the region of the primary circuit of IRIS reactor between the core and the pressurizer. For the simulation, it was used a situation of 'insurge', characterized by the entry of water in the pressurizer, due to the expansion of the refrigerant in the primary circuit. This expansion was represented by a pressure disturbance in step form, through the block 'step' of SIMULINK, thus enabling the transient startup. The results showed that the dynamic tool, obtained through the coupling of the codes, generated very satisfactory responses within model limitations, preserving the most important phenomena in the process. (author)

  17. Development of a computer code for dynamic analysis of the primary circuit of advanced reactors

    International Nuclear Information System (INIS)

    Rocha, Jussie Soares da; Lira, Carlos A.B.O.; Magalhaes, Mardson A. de Sa

    2011-01-01

    Currently, advanced reactors are being developed, seeking for enhanced safety, better performance and low environmental impacts. Reactor designs must follow several steps and numerous tests before a conceptual project could be certified. In this sense, computational tools become indispensable in the preparation of such projects. Thus, this study aimed at the development of a computational tool for thermal-hydraulic analysis by coupling two computer codes to evaluate the influence of transients caused by pressure variations and flow surges in the region of the primary circuit of IRIS reactor between the core and the pressurizer. For the simulation, it was used a situation of 'insurge', characterized by the entry of water in the pressurizer, due to the expansion of the refrigerant in the primary circuit. This expansion was represented by a pressure disturbance in step form, through the block 'step' of SIMULINK, thus enabling the transient startup. The results showed that the dynamic tool, obtained through the coupling of the codes, generated very satisfactory responses within model limitations, preserving the most important phenomena in the process. (author)

  18. 1st International Conference on Computational Advancement in Communication Circuits and Systems

    CERN Document Server

    Dalapati, Goutam; Banerjee, P; Mallick, Amiya; Mukherjee, Moumita

    2015-01-01

    This book comprises the proceedings of 1st International Conference on Computational Advancement in Communication Circuits and Systems (ICCACCS 2014) organized by Narula Institute of Technology under the patronage of JIS group, affiliated to West Bengal University of Technology. The conference was supported by Technical Education Quality Improvement Program (TEQIP), New Delhi, India and had technical collaboration with IEEE Kolkata Section, along with publication partner by Springer. The book contains 62 refereed papers that aim to highlight new theoretical and experimental findings in the field of Electronics and communication engineering including interdisciplinary fields like Advanced Computing, Pattern Recognition and Analysis, Signal and Image Processing. The proceedings cover the principles, techniques and applications in microwave & devices, communication & networking, signal & image processing, and computations & mathematics & control. The proceedings reflect the conference’s emp...

  19. Development of reconfigurable analog and digital circuits for plasma diagnostics measurement systems

    International Nuclear Information System (INIS)

    Srivastava, Amit Kumar; Sharma, Atish; Raval, Tushar

    2009-01-01

    In long pulse discharge tokamak, a large number of diagnostic channels are being used to understand the complex behavior of plasma. Different diagnostics demand different types of analog and digital processing for plasma parameters measurement. This leads to variable requirements of signal processing for diagnostic measurement. For such types of requirements, we have developed hardware with reconfigurable electronic devices, which provide flexible solution for rapid development of measurement system. Here the analog processing is achieved by Field Programmable Analog Array (FPAA) integrated circuit while reconfigurable digital devices (CPLD/FPGA) achieve digital processing. FPAA's provide an ideal integrated platform for implementing low to medium complexity analog signal processing. With dynamic reconfigurability, the functionality of the FPAA can be reconfigured in-system by the designer or on the fly by a microprocessor. This feature is quite useful to manipulate the tuning or the construction of any part of the analog circuit without interrupting operation of the FPAA, thus maintaining system integrity. The hardware operation control logic circuits are configured in the reconfigurable digital devices (CPLD/FPGA) to control proper hardware functioning. These reconfigurable devices provide the design flexibility and save the component space on the board. It also provides the flexibility for various setting through software. The circuit controlling commands are either issued by computer/processor or generated by circuit itself. (author)

  20. The Simulation Computer Based Learning (SCBL) for Short Circuit Multi Machine Power System Analysis

    Science.gov (United States)

    Rahmaniar; Putri, Maharani

    2018-03-01

    Strengthening Competitiveness of human resources become the reply of college as a conductor of high fomal education. Electrical Engineering Program UNPAB (Prodi TE UNPAB) as one of the department of electrical engineering that manages the field of electrical engineering expertise has a very important part in preparing human resources (HR), Which is required by where graduates are produced by DE UNPAB, Is expected to be able to compete globally, especially related to the implementation of Asean Economic Community (AEC) which requires the active participation of graduates with competence and quality of human resource competitiveness. Preparation of HR formation Competitive is done with the various strategies contained in the Seven (7) Higher Education Standard, one part of which is the implementation of teaching and learning process in Electrical system analysis with short circuit analysis (SCA) This course is a course The core of which is the basis for the competencies of other subjects in the advanced semester at Development of Computer Based Learning model (CBL) is done in the learning of interference analysis of multi-machine short circuit which includes: (a) Short-circuit One phase, (B) Two-phase Short Circuit Disruption, (c) Ground Short Circuit Disruption, (d) Short Circuit Disruption One Ground Floor Development of CBL learning model for Electrical System Analysis course provides space for students to be more active In learning in solving complex (complicated) problems, so it is thrilling Ilkan flexibility of student learning how to actively solve the problem of short-circuit analysis and to form the active participation of students in learning (Student Center Learning, in the course of electrical power system analysis.

  1. Influence of incorporation of powder of printed circuit boards on technological properties and microstructure of triaxial ceramics

    International Nuclear Information System (INIS)

    Stafford, F.N.; Hotza, D.

    2012-01-01

    Using the methodology of experiments with mixtures, seven formulations of clay, phyllite, and printed circuit boards (PCB) were obtained to study the influence of this waste on triaxial ceramic tiles. Each formulation was processed under conditions similar to those used in the ceramic tiles industry, and characterized for fired modulus of rupture (FMoR) and water absorption (WA). The samples sintered at 1180°C were also subjected to analysis by XRD and SEM. The lowest resistance was observed in samples with 40% residue, while the highest strength occurred for samples with 14% residue, which reached average values of mechanical strength and water absorption of 35.0 MPa and 2.0%, respectively. The microstructure showed that it is possible to use waste of PCB in triaxial ceramic, which exhibits a fluxing behavior and it has an important effect on the sinterability and the development of appropriate microstructures. (author)

  2. Printed circuit board recycling: Physical processing and copper extraction by selective leaching.

    Science.gov (United States)

    Silvas, Flávia P C; Correa, Mónica M Jiménez; Caldas, Marcos P K; de Moraes, Viviane T; Espinosa, Denise C R; Tenório, Jorge A S

    2015-12-01

    Global generation of waste electrical and electronic equipment (WEEE) is about 40 million tons per year. Constant increase in WEEE generation added to international legislations has improved the development of processes for materials recovery and sustainability of electrical and electronic industry. This paper describes a new hydrometallurgical route (leaching process) to recycle printed circuit boards (PCBs) from printers to recover copper. Methodology included PCBs characterization and a combined route of physical and hydrometallurgical processing. Magnetic separation, acid digestion and chemical analysis by ICP-OES were performed. On leaching process were used two stages: the first one in a sulfuric media and the second in an oxidant media. The results showed that the PCBs composition was 74.6 wt.% of non-magnetic material and 25.4 wt.% of magnetic one. The metallic fraction corresponded to 44.0 wt.%, the polymeric to 28.5 wt.% and the ceramic to 27.5 wt.%. The main metal was copper and its initial content was 32.5 wt.%. On sulfuric leaching 90 wt.% of Al, 40 wt.% of Zn and 8.6 wt.% of Sn were extracted, whereas on oxidant leaching tests the extraction percentage of Cu was 100 wt.%, of Zn 60 wt.% and of Al 10 wt.%. At the end of the hydrometallurgical processing was obtained 100% of copper extraction and the recovery factor was 98.46%, which corresponds to a 32 kg of Cu in 100 kg of PCB. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Evolvable designs of experiments applications for circuits

    CERN Document Server

    Iordache, Octavian

    2009-01-01

    Adopting a groundbreaking approach, the highly regarded author shows how to design methods for planning increasingly complex experiments. He begins with a brief introduction to standard quality methods and the technology in standard electric circuits. The book then gives numerous examples of how to apply the proposed methodology in a series of real-life case studies. Although these case studies are taken from the printed circuit board industry, the methods are equally applicable to other fields of engineering.

  4. Risk Mitigation for the Development of the New Ariane 5 On-Board Computer

    Science.gov (United States)

    Stransky, Arnaud; Chevalier, Laurent; Dubuc, Francois; Conde-Reis, Alain; Ledoux, Alain; Miramont, Philippe; Johansson, Leif

    2010-08-01

    In the frame of the Ariane 5 production, some equipment will become obsolete and need to be redesigned and redeveloped. This is the case for the On-Board Computer, which has to be completely redesigned and re-qualified by RUAG Space, as well as all its on-board software and associated development tools by ASTRIUM ST. This paper presents this obsolescence treatment, which has started in 2007 under an ESA contract, in the frame of ACEP and ARTA accompaniment programmes, and is very critical in technical term but also from schedule point of view: it gives the context and overall development plan, and details the risk mitigation actions agreed with ESA, especially those related to the development of the input/output ASIC, and also the on-board software porting and revalidation strategy. The efficiency of these risk mitigation actions has been proven by the outcome schedule; this development constitutes an up-to-date case for good practices, including some experience report and feedback for future other developments.

  5. Detection of transient disturbing signals on PC boards

    Directory of Open Access Journals (Sweden)

    S. Korte

    2008-05-01

    Full Text Available This paper shows a possibility to visualize signal propagation in electronic circuits. Instead of using various galvanic measurement points all over the circuit, a test method is shown which measures the radiated field of the printed circuit board. By use of a 2-dimensional positionable field probe it is possible to get an overview over the signals running on the different parts of the PCB. In order to measure transient disturbing signals and distinguish them from normal device operation, problems of probe design and triggering need to be discussed.

  6. 75 FR 59780 - Privacy Act of 1974, as Amended; Computer Matching Program (SSA/Railroad Retirement Board (RRB...

    Science.gov (United States)

    2010-09-28

    ... SOCIAL SECURITY ADMINISTRATION [Docket No. SSA 2010-0040] Privacy Act of 1974, as Amended; Computer Matching Program (SSA/ Railroad Retirement Board (RRB))--Match Number 1006 AGENCY: Social Security...: A. General The Computer Matching and Privacy Protection Act of 1988 (Pub. L.) 100-503), amended the...

  7. Computer simulation of rare earth solvent extraction circuits

    International Nuclear Information System (INIS)

    Voit, D.O.

    1988-01-01

    A BASIC language program has been written that simulates the performance of an integrated solvent extraction circuit consisting of an extractor, a reflux fed scrubber, and a stripper. The program is designed to simulate the performance of a circuit having an aqueous feed containing each of the lanthanide as well as yttrium. The Kremser equation is used to determine the separation occurring in each section of the circuit. The required input variables are the feed composition, the separation factors, the light key extraction factors and extractor feed zone distribution coefficient, the number of stages, and the reflux ratios. The program calculates the composition of the streams at each mode in the circuit, the total loading, and the remaining distribution coefficients. User interaction with the program is essential. The program has no capability to determine if the calculated values are consistent with various real restraints. Knowledge of the physical, chemical, and equilibrium behavior is essential to successfully utilize the program. The number of iterations required to achieve steady-state provides insight to the circuit response times

  8. Logic circuits based on molecular spider systems.

    Science.gov (United States)

    Mo, Dandan; Lakin, Matthew R; Stefanovic, Darko

    2016-08-01

    Spatial locality brings the advantages of computation speed-up and sequence reuse to molecular computing. In particular, molecular walkers that undergo localized reactions are of interest for implementing logic computations at the nanoscale. We use molecular spider walkers to implement logic circuits. We develop an extended multi-spider model with a dynamic environment wherein signal transmission is triggered via localized reactions, and use this model to implement three basic gates (AND, OR, NOT) and a cascading mechanism. We develop an algorithm to automatically generate the layout of the circuit. We use a kinetic Monte Carlo algorithm to simulate circuit computations, and we analyze circuit complexity: our design scales linearly with formula size and has a logarithmic time complexity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. WE-AB-303-09: Rapid Projection Computations for On-Board Digital Tomosynthesis in Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Iliopoulos, AS; Sun, X [Duke University, Durham, NC (United States); Pitsianis, N [Aristotle University of Thessaloniki (Greece); Duke University, Durham, NC (United States); Yin, FF; Ren, L [Duke University Medical Center, Durham, NC (United States)

    2015-06-15

    Purpose: To facilitate fast and accurate iterative volumetric image reconstruction from limited-angle on-board projections. Methods: Intrafraction motion hinders the clinical applicability of modern radiotherapy techniques, such as lung stereotactic body radiation therapy (SBRT). The LIVE system may impact clinical practice by recovering volumetric information via Digital Tomosynthesis (DTS), thus entailing low time and radiation dose for image acquisition during treatment. The DTS is estimated as a deformation of prior CT via iterative registration with on-board images; this shifts the challenge to the computational domain, owing largely to repeated projection computations across iterations. We address this issue by composing efficient digital projection operators from their constituent parts. This allows us to separate the static (projection geometry) and dynamic (volume/image data) parts of projection operations by means of pre-computations, enabling fast on-board processing, while also relaxing constraints on underlying numerical models (e.g. regridding interpolation kernels). Further decoupling the projectors into simpler ones ensures the incurred memory overhead remains low, within the capacity of a single GPU. These operators depend only on the treatment plan and may be reused across iterations and patients. The dynamic processing load is kept to a minimum and maps well to the GPU computational model. Results: We have integrated efficient, pre-computable modules for volumetric ray-casting and FDK-based back-projection with the LIVE processing pipeline. Our results show a 60x acceleration of the DTS computations, compared to the previous version, using a single GPU; presently, reconstruction is attained within a couple of minutes. The present implementation allows for significant flexibility in terms of the numerical and operational projection model; we are investigating the benefit of further optimizations and accurate digital projection sub

  10. WE-AB-303-09: Rapid Projection Computations for On-Board Digital Tomosynthesis in Radiation Therapy

    International Nuclear Information System (INIS)

    Iliopoulos, AS; Sun, X; Pitsianis, N; Yin, FF; Ren, L

    2015-01-01

    Purpose: To facilitate fast and accurate iterative volumetric image reconstruction from limited-angle on-board projections. Methods: Intrafraction motion hinders the clinical applicability of modern radiotherapy techniques, such as lung stereotactic body radiation therapy (SBRT). The LIVE system may impact clinical practice by recovering volumetric information via Digital Tomosynthesis (DTS), thus entailing low time and radiation dose for image acquisition during treatment. The DTS is estimated as a deformation of prior CT via iterative registration with on-board images; this shifts the challenge to the computational domain, owing largely to repeated projection computations across iterations. We address this issue by composing efficient digital projection operators from their constituent parts. This allows us to separate the static (projection geometry) and dynamic (volume/image data) parts of projection operations by means of pre-computations, enabling fast on-board processing, while also relaxing constraints on underlying numerical models (e.g. regridding interpolation kernels). Further decoupling the projectors into simpler ones ensures the incurred memory overhead remains low, within the capacity of a single GPU. These operators depend only on the treatment plan and may be reused across iterations and patients. The dynamic processing load is kept to a minimum and maps well to the GPU computational model. Results: We have integrated efficient, pre-computable modules for volumetric ray-casting and FDK-based back-projection with the LIVE processing pipeline. Our results show a 60x acceleration of the DTS computations, compared to the previous version, using a single GPU; presently, reconstruction is attained within a couple of minutes. The present implementation allows for significant flexibility in terms of the numerical and operational projection model; we are investigating the benefit of further optimizations and accurate digital projection sub

  11. Measurements of the Effects of Smoke on Active Circuits

    International Nuclear Information System (INIS)

    Tanaka, T.J.

    1999-01-01

    Smoke has long been recognized as the most common source of fire damage to electrical equipment; however, most failures have been analyzed after the fire was out and the smoke vented. The effects caused while the smoke is still in the air have not been explored. Such effects have implications for new digital equipment being installed in nuclear reactors. The U.S. Nuclear Regulatory Commission is sponsoring work to determine the impact of smoke on digital instrumentation and control. As part of this program, Sandia National Laboratories has tested simple active circuits to determine how smoke affects them. These tests included the study of three possible failure modes on a functional board: (1) circuit bridging, (2) corrosion (metal loss), and (3) induction of stray capacitance. The performance of nine different circuits was measured continuously on bare and conformably coated boards during smoke exposures lasting 1 hour each and continued for 24 hours after the exposure started. The circuit that was most affected by smoke (100% change in measured values) was the one most sensitive to circuit bridging. Its high impedance (50 MOmega) was shorted during the exposure, but in some cases recovered after the smoke was vented. The other two failure modes, corrosion and induced stray capacitance, caused little change in the function of the circuits. The smoke permanently increased resistance of the circuit tested for corrosion, implying that the cent acts were corroded. However, the change was very small (< 2%). The stray-capacitance test circuit showed very little change after a smoke exposure in either the short or long term. The results of the tests suggest that conformal coatings and type of circuit are major considerations when designing digital circuitry to be used in critical control systems

  12. Measurements of the effects of smoke on active circuits

    International Nuclear Information System (INIS)

    Tanaka, T.J.

    1998-01-01

    Smoke has long been recognized as the most common source of fire damage to electrical equipment; however, most failures have been analyzed after the fire was out and the smoke vented. The effects caused while the smoke is still in the air have not been explored. Such effects have implications for new digital equipment being installed in nuclear reactors. The US Nuclear Regulatory Commission is sponsoring work to determine the impact of smoke on digital instrumentation and control. As part of this program, Sandia National Laboratories has tested simple active circuits to determine how smoke affects them. These tests included the study of three possible failure modes on a functional board: (1) circuit bridging, (2) corrosion (metal loss), and (3) induction of stray capacitance. The performance of nine different circuits was measured continuously on bare and conformally coated boards during smoke exposures lasting 1 hour each and continued for 24 hours after the exposure started. The circuit that was most affected by smoke (100% change in measured values) was the one most sensitive to circuit bridging. Its high impedance (50 Mohm) was shorted during the exposure, but in some cases recovered after the smoke was vented. The other two failure modes, corrosion and induced stray capacitance, caused little change in the function of the circuits. The smoke permanently increased resistance of the circuit tested for corrosion, implying that the contacts were corroded. However, the change was very small (< 2%). The stray capacitance test circuit showed very little change after a smoke exposure in either the short or long term. The results of the tests suggest that conformal coatings and type of circuit are major considerations when designing digital circuitry to be used in critical control systems

  13. Simulation of electronic circuit sensitivity towards humidity using electrochemical data on water layer

    DEFF Research Database (Denmark)

    Joshy, Salil; Verdingovas, Vadimas; Jellesen, Morten Stendahl

    2015-01-01

    Climatic conditions like temperature and humidity have direct influence on the operation of electronic circuits. The effects of temperature on the operation of electronic circuits have been widely investigated, while the effect of humidity and solder flux residues are not well understood including...... the effect on circuit and PCBA (printed circuit board assembly) layout design. This paper elucidates a methodology for analyzing the sensitivity of an electronic circuit based on parasitic circuit analysis using data on electrical property of the water layer formed under humid as well as contaminated...

  14. An Overview of Surface Finishes and Their Role in Printed Circuit Board Solderability and Solder Joint Performance

    Energy Technology Data Exchange (ETDEWEB)

    Vianco, P.T.

    1998-10-15

    A overview has been presented on the topic of alternative surface finishes for package I/Os and circuit board features. Aspects of processability and solder joint reliability were described for the following coatings: baseline hot-dipped, plated, and plated-and-fused 100Sn and Sn-Pb coatings; Ni/Au; Pd, Ni/Pd, and Ni/Pd/Au finishes; and the recently marketed immersion Ag coatings. The Ni/Au coatings appear to provide the all-around best option in terms of solderability protection and wire bondability. Nickel/Pal ftishes offer a slightly reduced level of performance in these areas that is most likely due to variable Pd surface conditions. It is necessmy to minimize dissolved Au or Pd contents in the solder material to prevent solder joint embrittlement. Ancillary aspects that included thickness measurement techniques; the importance of finish compatibility with conformal coatings and conductive adhesives; and the need for alternative finishes for the processing of non-Pb bearing solders were discussed.

  15. IE Information Notice No. 85-18, Supplement 1: Failures of undervoltage output circuit boards in the Westinghouse-designed solid state protection system

    International Nuclear Information System (INIS)

    Rossi, C.E.

    1992-01-01

    The US Nuclear Regulatory Commission (NRC) is issuing this information notice supplement to alert addressees to continuing problems associated with the undervoltage (UV) output circuit boards (driver cards) in the solid state protection system (SSPS) designed by the Westinghouse Electric Corporation (Westinghouse). On June 3, 1991, the Shearon Harris Nuclear Power Plant, Unit 1, (Harris) experienced an automatic reactor trip from 100 percent power on a spurious low reactor coolant system loop flow signal. The signal was generated as a result of a surveillance test being performed on one of three loop flow transmitters. The licensee attributed the spurious signal to both procedural inadequacies and personnel error. A control room operator verified that all control rods had fully inserted following the trip signal and that reactor power was properly decreasing. However, about 22 seconds after the automatic trip signal was generated, operators discovered that the ''A'' reactor trip breaker (RTB) had not opened. The RTB was manually opened using the reactor trip switch on the main control board. Subsequent analyses are discussed

  16. Leaching Studies for Copper and Solder Alloy Recovery from Shredded Particles of Waste Printed Circuit Boards

    Science.gov (United States)

    Kavousi, Maryam; Sattari, Anahita; Alamdari, Eskandar Keshavarz; Fatmehsari, Davoud Haghshenas

    2018-03-01

    Printed circuit boards (PCBs) comprise various metals such as Cu, Sn, and Pb, as well as platinum group metals. The recovery of metals from PCBs is important not only due to the waste treatment but also for recycling of valuable metals. In the present work, the leaching process of Cu, Sn, and Pb from PCBs was studied using fluoroboric acid and hydrogen peroxide as the leaching agent and oxidant, respectively. Pertinent factors including concentration of acid, temperature, liquid-solid ratio, and concentration of oxidizing agent were evaluated. The results showed 99 pct of copper and 90 pct solder alloy were dissolved at a temperature of 298 K (25 °C) for 180 minutes using 0.6 M HBF4 for the particle size range of 0.15 to 0.4 mm. Moreover, solid/liquid ratio had insignificant effect on the recovery of metals. Kinetics analysis revealed that the chemical control regime governs the process with activation energy 41.25 and 38.9 kJ/mol for copper and lead leaching reactions, respectively.

  17. Leaching Studies for Copper and Solder Alloy Recovery from Shredded Particles of Waste Printed Circuit Boards

    Science.gov (United States)

    Kavousi, Maryam; Sattari, Anahita; Alamdari, Eskandar Keshavarz; Fatmehsari, Davoud Haghshenas

    2018-06-01

    Printed circuit boards (PCBs) comprise various metals such as Cu, Sn, and Pb, as well as platinum group metals. The recovery of metals from PCBs is important not only due to the waste treatment but also for recycling of valuable metals. In the present work, the leaching process of Cu, Sn, and Pb from PCBs was studied using fluoroboric acid and hydrogen peroxide as the leaching agent and oxidant, respectively. Pertinent factors including concentration of acid, temperature, liquid-solid ratio, and concentration of oxidizing agent were evaluated. The results showed 99 pct of copper and 90 pct solder alloy were dissolved at a temperature of 298 K (25 °C) for 180 minutes using 0.6 M HBF4 for the particle size range of 0.15 to 0.4 mm. Moreover, solid/liquid ratio had insignificant effect on the recovery of metals. Kinetics analysis revealed that the chemical control regime governs the process with activation energy 41.25 and 38.9 kJ/mol for copper and lead leaching reactions, respectively.

  18. A full feature FASTBUS slave interface using semicustom integrated circuits

    International Nuclear Information System (INIS)

    Skegg, R.; Daviel, A.; Downing, R.

    1986-01-01

    Two semi-custom integrated circuits have been designed and manufactured which enable the construction of a full featured FASTBUS slave interface without the need for a detailed knowledge of the FASTBUS protocol. A relatively small amount of board space is required compared to implementations using conventional circuits. The semi-custom devices are described in detail, and an application example is given. (orig.)

  19. Elements configuration of the open lead test circuit

    International Nuclear Information System (INIS)

    Fukuzaki, Yumi; Ono, Akira

    2016-01-01

    In the field of electronics, small electronic devices are widely utilized because they are easy to carry. The devices have various functions by user’s request. Therefore, the lead’s pitch or the ball’s pitch have been narrowed and high-density printed circuit board has been used in the devices. Use of the ICs which have narrow lead pitch makes normal connection difficult. When logic circuits in the devices are fabricated with the state-of-the-art technology, some faults have occurred more frequently. It can be divided into types of open faults and short faults. We have proposed a new test method using a test circuit in the past. This paper propose elements configuration of the test circuit.

  20. Elements configuration of the open lead test circuit

    Energy Technology Data Exchange (ETDEWEB)

    Fukuzaki, Yumi, E-mail: 14514@sr.kagawa-nct.ac.jp [Advanced course of Electronics, Information and Communication Engineering, National Institute of Technology, Kagawa College, 551 Koda, Mitoyo, Kagawa (Japan); Ono, Akira [Department of Communication Network Engineering, National Institute of Technology, Kagawa College, 551 Koda, Mitoyo, Kagawa (Japan)

    2016-07-06

    In the field of electronics, small electronic devices are widely utilized because they are easy to carry. The devices have various functions by user’s request. Therefore, the lead’s pitch or the ball’s pitch have been narrowed and high-density printed circuit board has been used in the devices. Use of the ICs which have narrow lead pitch makes normal connection difficult. When logic circuits in the devices are fabricated with the state-of-the-art technology, some faults have occurred more frequently. It can be divided into types of open faults and short faults. We have proposed a new test method using a test circuit in the past. This paper propose elements configuration of the test circuit.

  1. Evaluation of gold and silver leaching from printed circuit board of cellphones.

    Science.gov (United States)

    Petter, P M H; Veit, H M; Bernardes, A M

    2014-02-01

    Electronic waste has been increasing proportionally with the technology. So, nowadays, it is necessary to consider the useful life, recycling, and final disposal of these equipment. Metals, such as Au, Ag, Cu, Sn and Ni can be found in the printed circuit boards (PCB). According to this, the aims of this work is to characterize the PCBs of mobile phones with aqua regia; obtaining "reference" values of leaching, to gold and silver, with cyanide and nitric acid, respectively; and study the process of leaching of these metals in alternative leaching with sodium thiosulfate and ammonium thiosulfate. The metals were characterized by digesting the sample with aqua regia for 1 and 2h at 60°C and 80°C. The leaching of Au with a commercial reagent (cyanide) and the Ag with HNO3were made. The leaching of Au and Ag with alternative reagents: Na2S2O3, and (NH4)2S2O3 in 0.1M concentration with the addition of CuSO4, NH4OH, and H2O2, was also studied. The results show that the digestion with aqua regia was efficient to characterize the metals present in the PCBs of mobile phones. However, the best method to solubilize silver was by digesting the sample with nitric acid. The leaching process using sodium thiosulfate was more efficient when an additional concentration of 0.015 and 0.030 M of the CuSO4 was added. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Using vacuum pyrolysis and mechanical processing for recycling waste printed circuit boards

    International Nuclear Information System (INIS)

    Long Laishou; Sun Shuiyu; Zhong Sheng; Dai Wencan; Liu Jingyong; Song Weifeng

    2010-01-01

    The constant growth in generation of waste printed circuit boards (WPCB) poses a huge disposal problem because they consist of a heterogeneous mixture of organic and metallic chemicals as well as glass fiber. Also the presence of heavy metals, such as Pb and Cd turns this scrap into hazardous waste. Therefore, recycling of WPCB is an important subject not only from the recovery of valuable materials but also from the treatment of waste. The aim of this study was to present a recycling process without negative impact to the environment as an alternative for recycling WPCB. In this work, a process technology containing vacuum pyrolysis and mechanical processing was employed to recycle WPCB. At the first stage of this work, the WPCB was pyrolyzed under vacuum in a self-made batch pilot-scale fixed bed reactor to recycle organic resins contained in the WPCB. By vacuum pyrolysis the organic matter was decomposed to gases and liquids which could be used as fuels or chemical material resources, however, the inorganic WPCB matter was left unaltered as solid residues. At the second stage, the residues obtained at the first stage were investigated to separate and recover the copper through mechanical processing such as crushing, screening, and gravity separation. The copper grade of 99.50% with recovery of 99.86% based on the whole WPCB was obtained. And the glass fiber could be obtained by calcinations in a muffle furnace at 600 deg. C for 10 min. This study had demonstrated the feasibility of vacuum pyrolysis and mechanical processing for recycling WPCB.

  3. Optimal replacement and inspection periods of safety and control boards in Wolsung nuclear power plant unit 1

    International Nuclear Information System (INIS)

    Mok, Jin Il

    1993-02-01

    In nuclear power plants, the safety and control systems are important for operating and maintaining safety of nuclear power plants. Due to the failure of the instrument and control devices of nuclear power plants caused by aging, nuclear power plants occasionally trip. Since the start of first commercial operation of Kori nuclear power plant (NPP) unit 1, the trips caused by instrument and control systems account for 28% of total trips of NPPs in Korea. Even a single trip of a nuclear power plant causes an extravagant economical loss and deteriorates public acceptance of nuclear power plants. Therefore, the replacement of the instrument and control devices with proper consideration of the aging effect is necessary in order to prevent the inadvertent trip. In this work we investigated the optimal replacement periods of the digital control computer's (DCC) and the programmable digital comparator's (PDC) electronic circuit boards of Wolsung nuclear power plant Unit 1. We first derived mathematical models which calculate optimal replacement periods for electronic circuit boards of digital control computer (DCC) and for those of the programmable digital comparator (PDC) in Wolsung NPP unit 1. And we analytically obtained the optimal replacement periods of electronic circuit boards by using these models. We compared these periods with the replacement periods currently used at Wolsung NPP Unit. The periods used at Wolsung is not based on mathematical analysis, but on empirical knowledge. As a consequence, the optimal replacement periods analytically obtained for the electronic circuit boards of DCC and those used in the field shown small difference : the optimal replacement periods analytically obtained for the electronic circuit boards of PDC are shorter than those used in the field in general. The engineered safeguards of Wolsung nuclear power plant unit 1 contains redundant systems of 2-out-of-3 logic which are not operating under normal conditions but they are called

  4. Thermal computations for electronics conductive, radiative, and convective air cooling

    CERN Document Server

    Ellison, Gordon

    2010-01-01

    IntroductionPrimary mechanisms of heat flowConductionApplication example: Silicon chip resistance calculationConvectionApplication example: Chassis panel cooled by natural convectionRadiationApplication example: Chassis panel cooled only by radiation 7Illustrative example: Simple thermal network model for a heat sinked power transistorIllustrative example: Thermal network circuit for a printed circuit boardCompact component modelsIllustrative example: Pressure and thermal circuits for a forced air cooled enclosureIllustrative example: A single chip package on a printed circuit board-the proble

  5. Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates

    DEFF Research Database (Denmark)

    Gal, A.; Hansen, Kristoffer Arnsfelt; Koucky, Michal

    2013-01-01

    We bound the minimum number w of wires needed to compute any (asymptotically good) error-correcting code C:{0,1}Ω(n)→{0,1}n with minimum distance Ω(n), using unbounded fan-in circuits of depth d with arbitrary gates. Our main results are: 1) if d=2, then w=Θ(n (lgn/lglgn)2); 2) if d=3, then w...

  6. Tight bounds on computing error-correcting codes by bounded-depth circuits with arbitrary gates

    DEFF Research Database (Denmark)

    Gál, Anna; Hansen, Kristoffer Arnsfelt; Koucký, Michal

    2012-01-01

    We bound the minimum number w of wires needed to compute any (asymptotically good) error-correcting code C:{0,1}Ω(n) -> {0,1}n with minimum distance Ω(n), using unbounded fan-in circuits of depth d with arbitrary gates. Our main results are: (1) If d=2 then w = Θ(n ({log n/ log log n})2). (2) If d...

  7. Circuits and filters handbook

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    A bestseller in its first edition, The Circuits and Filters Handbook has been thoroughly updated to provide the most current, most comprehensive information available in both the classical and emerging fields of circuits and filters, both analog and digital. This edition contains 29 new chapters, with significant additions in the areas of computer-aided design, circuit simulation, VLSI circuits, design automation, and active and digital filters. It will undoubtedly take its place as the engineer's first choice in looking for solutions to problems encountered in the design, analysis, and behavi

  8. MOS integrated circuit design

    CERN Document Server

    Wolfendale, E

    2013-01-01

    MOS Integral Circuit Design aims to help in the design of integrated circuits, especially large-scale ones, using MOS Technology through teaching of techniques, practical applications, and examples. The book covers topics such as design equation and process parameters; MOS static and dynamic circuits; logic design techniques, system partitioning, and layout techniques. Also featured are computer aids such as logic simulation and mask layout, as well as examples on simple MOS design. The text is recommended for electrical engineers who would like to know how to use MOS for integral circuit desi

  9. Computer controlled motor vehicle battery circuit

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, W.R.; McAuiliffe, G.N.; Schlageter, G.A.

    1986-04-01

    This patent consists of a motor vehicle having a DC motor, a pedal biased to a released position and depressed by the driver to increase speed. An alternate switching means affects the vehicle speed control, a foot switch is operated by the pedal and operative when the pedal is depressed to close a circuit enabling energization of the alternate switching means. A microprocessor includes a program for controlling operation of the alternate switching means, the foot switch is operative when the pedal is released to open the enabling circuit. The program includes a register which is incremented with each passage of the logic and is responsive to the incremented count in the register to instruct a change in position of the alternate switching means.

  10. Experimental Study of WBFC method for testing electromagnetic immunity of integrated circuits

    OpenAIRE

    香川, 直己; カガワ, ナオキ; Naoki, KAGAWA

    2004-01-01

    The author made a workbench faraday cage, WBFC, in order to estimate performance of the WBFC method for the measurement of common mode noise immunity of integrated circuits. In this report, characteristics of the constructed workbench faraday cage and results of experimental study of effects of the common mode noise on a circuit board including an electronic device are shown. Selected DUT, LM324 is popular operational amplifier for electrical circuits in vehicles.

  11. At grade optical crossover for monolithic optial circuits

    Science.gov (United States)

    Jamieson, Robert S. (Inventor)

    1983-01-01

    Planar optical circuits may be made to cross through each other, (thus eliminating extra steps required to fabricate elevated, nonintersecting crossovers) by control of the dimensions of the crossing light conductors (10, 12) to be significantly greater than d=0.89.lambda. and the angle of crossing as nearly 90.degree. as conveniently possible. A light trap may be provided just ahead of the intersection to trap any light being reflected in the source conductor at angles greater than about 45.degree.. The light trap may take the form of triangular shaped portions (16a, 16b) on each side of the source conductor with the far side of the triangular portion receiving incident light at an angle so that incident light will be reflected to the other side, or it may take the form of windows (18a, 18b) in place of the triangular portions. Planar optical circuit boards (21-23) may be fabricated and stacked to form a keyboard (20) with intersecting conductors (26-29) and keyholes (0-9) where conductors merge at the broad side of the circuit boards. These keyholes may be prearranged to form an array or matrix of keyholes.

  12. Magnetic field computations of the magnetic circuits with permanent magnets by infinite element method

    International Nuclear Information System (INIS)

    Hahn, Song Yop

    1985-01-01

    A method employing infinite elements is described for the magnetic field computations of the magnetic circuits with permanent magnet. The system stiffness matrix is derived by a variational approach, while the interfacial boundary conditions between the finite element regions and the infinite element regions are dealt with using collocation method. The proposed method is applied to a simple linear problems, and the numerical results are compared with those of the standard finite element method and the analytic solutions. It is observed that the proposed method gives more accurate results than those of the standard finite element method under the same computing efforts. (Author)

  13. Integrated circuit design using design automation

    International Nuclear Information System (INIS)

    Gwyn, C.W.

    1976-09-01

    Although the use of computer aids to develop integrated circuits is relatively new at Sandia, the program has been very successful. The results have verified the utility of the in-house CAD design capability. Custom IC's have been developed in much shorter times than available through semiconductor device manufacturers. In addition, security problems were minimized and a saving was realized in circuit cost. The custom CMOS IC's were designed at less than half the cost of designing with conventional techniques. In addition to the computer aided design, the prototype fabrication and testing capability provided by the semiconductor development laboratory and microelectronics computer network allows the circuits to be fabricated and evaluated before the designs are transferred to the commercial semiconductor manufacturers for production. The Sandia design and prototype fabrication facilities provide the capability of complete custom integrated circuit development entirely within the ERDA laboratories

  14. The LMT circuit and SPICE

    DEFF Research Database (Denmark)

    Lindberg, Erik; Murali, K.; Tamacevicius, Arunas

    2006-01-01

    The state equations of the LMT circuit are modeled as a dedicated analogue computer circuit and solved by means of PSpice. The nonlinear part of the system is studied. Problems with the PSpice program are presented....

  15. Universal programmable quantum circuit schemes to emulate an operator

    Energy Technology Data Exchange (ETDEWEB)

    Daskin, Anmer; Grama, Ananth; Kollias, Giorgos [Department of Computer Science, Purdue University, West Lafayette, Indiana 47907 (United States); Kais, Sabre [Department of Chemistry, Department of Physics and Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Qatar Environment and Energy Research Institute, Doha (Qatar)

    2012-12-21

    Unlike fixed designs, programmable circuit designs support an infinite number of operators. The functionality of a programmable circuit can be altered by simply changing the angle values of the rotation gates in the circuit. Here, we present a new quantum circuit design technique resulting in two general programmable circuit schemes. The circuit schemes can be used to simulate any given operator by setting the angle values in the circuit. This provides a fixed circuit design whose angles are determined from the elements of the given matrix-which can be non-unitary-in an efficient way. We also give both the classical and quantum complexity analysis for these circuits and show that the circuits require a few classical computations. For the electronic structure simulation on a quantum computer, one has to perform the following steps: prepare the initial wave function of the system; present the evolution operator U=e{sup -iHt} for a given atomic and molecular Hamiltonian H in terms of quantum gates array and apply the phase estimation algorithm to find the energy eigenvalues. Thus, in the circuit model of quantum computing for quantum chemistry, a crucial step is presenting the evolution operator for the atomic and molecular Hamiltonians in terms of quantum gate arrays. Since the presented circuit designs are independent from the matrix decomposition techniques and the global optimization processes used to find quantum circuits for a given operator, high accuracy simulations can be done for the unitary propagators of molecular Hamiltonians on quantum computers. As an example, we show how to build the circuit design for the hydrogen molecule.

  16. Universal programmable quantum circuit schemes to emulate an operator

    International Nuclear Information System (INIS)

    Daskin, Anmer; Grama, Ananth; Kollias, Giorgos; Kais, Sabre

    2012-01-01

    Unlike fixed designs, programmable circuit designs support an infinite number of operators. The functionality of a programmable circuit can be altered by simply changing the angle values of the rotation gates in the circuit. Here, we present a new quantum circuit design technique resulting in two general programmable circuit schemes. The circuit schemes can be used to simulate any given operator by setting the angle values in the circuit. This provides a fixed circuit design whose angles are determined from the elements of the given matrix–which can be non-unitary–in an efficient way. We also give both the classical and quantum complexity analysis for these circuits and show that the circuits require a few classical computations. For the electronic structure simulation on a quantum computer, one has to perform the following steps: prepare the initial wave function of the system; present the evolution operator U=e −iHt for a given atomic and molecular Hamiltonian H in terms of quantum gates array and apply the phase estimation algorithm to find the energy eigenvalues. Thus, in the circuit model of quantum computing for quantum chemistry, a crucial step is presenting the evolution operator for the atomic and molecular Hamiltonians in terms of quantum gate arrays. Since the presented circuit designs are independent from the matrix decomposition techniques and the global optimization processes used to find quantum circuits for a given operator, high accuracy simulations can be done for the unitary propagators of molecular Hamiltonians on quantum computers. As an example, we show how to build the circuit design for the hydrogen molecule.

  17. Prototype board development for the validation of the VMM ASICs for the New Small Wheel ATLAS upgrade project

    CERN Document Server

    Gkountoumis, Panagiotis; The ATLAS collaboration

    2018-01-01

    The VMM is a custom Application Specific Integrated Circuit (ASIC) which was designed to be used in the front-end readout electronics of both micromegas (MM) and small Thin Gap Chambers (sTGC) detectors of the New Small Wheel (NSW) Phase-I upgrade project of the ATLAS experiment. A new version of the VMM was recently fabricated and for that reason various prototype boards, the micromegas Front-End (MMFE1) and the General Purpose VMM (GPVMM), have been fabricated and extensively tested in order to validate the functionality of the ASIC. These boards use commercial Field Programmable Gate Arrays (FPGAs) for direct communication with computers which is achieved through 10/100/1000 Mbps Ethernet and UDP/IP protocols. The low noise performance of these boards gave the opportunity to be used in various test beams with micromegas detectors for validating the VMM and for performance studies of the sTGC detectors. A detailed description of the boards along with the results of the test beam and the detector studies wi...

  18. Prototype board development for the validation of the VMM ASICs for the New Small Wheel ATLAS upgrade project

    CERN Document Server

    Gkountoumis, Panagiotis; The ATLAS collaboration

    2018-01-01

    The VMM is a custom Application Specific Integrated Circuit (ASIC) which was designed to be used in the frontend readout electronics of both micromegas (MM) and small Thin Gap Chambers (sTGC) detectors of the New Small Wheel (NSW) Phase-I upgrade project of the ATLAS experiment. A new version of the VMM was recently fabricated and for that reason various prototype boards, the micromegas Front-End (MMFE1) and the General Purpose VMM (GPVMM), have been fabricated and extensively tested in order to validate the functionality of the ASIC. These boards use commercial Field Programmable Gate Arrays (FPGAs) for direct communication with computers which is achieved through 10=100=1000 Mbps Ethernet and UDP/IP protocols. The low noise performance of these boards gave the opportunity to be used in various test beams with micormegas detectors for validating the VMM and for performance studies of the sTGC detectors. A detailed description of the boards along with the results of the test beam and the detector studies will...

  19. Computer modelling the potential benefits of amines in NPP Bohunice secondary circuit

    International Nuclear Information System (INIS)

    Fountain, M.J.; Smiesko, I.

    1998-01-01

    The use of computer modelling of PWR and WWER secondary circuit chemistry was already demonstrated in the past. The model was used to illustrate the technical and economic advantages, compared with ammonia, of using an 'advanced', high basicity, low volatility amines to raise the liquid phase pH(T) in the moisture separator and other areas swept by wet steam. Since the 1995, this technique has been successfully applied to a number of power plants and the computer model has been progressively developed. This paper describes the preliminary results of an ongoing assessment being carried out for the VVER 440 plants at Bohunice. The work for Bohunice is being funded by the 'Know How Fund', a department in the British Government's Foreign and Commonwealth Office. (J.P.N.)

  20. TRANP - a computer code for digital simulation of steady - state and transient behavior of a pressurizer water reactor primary circuit

    International Nuclear Information System (INIS)

    Chalhoub, E.S.

    1980-09-01

    A digital computer code TRANP was developed to simulate the steady-state and transient behavior of a pressurizer water reactor primary circuit. The development of this code was based on the combining of three codes already developed for the simulation of a PWR core, a pressurizer, a steam generator and a main coolant pump, representing the primary circuit components. (Author) [pt

  1. Lithographic technology for microwave integrated circuits

    OpenAIRE

    Shepherd, PR; Evans, PSA; Ramsey, BJ; Harrison, DJ

    1997-01-01

    Conductive lithographic films (CLFs) have been developed primarily as substitutes for resin/laminate boards, which share properties with the metallisation patterns used in planar microwave integrated circuits (MICs). The authors examine the microwave properties of the films and show that, although the losses are greater, they have potential as an alternative to the traditional manufacturing process of MICs.

  2. On equivalent resistance of electrical circuits

    Science.gov (United States)

    Kagan, Mikhail

    2015-01-01

    While the standard (introductory physics) way of computing the equivalent resistance of nontrivial electrical circuits is based on Kirchhoff's rules, there is a mathematically and conceptually simpler approach, called the method of nodal potentials, whose basic variables are the values of the electric potential at the circuit's nodes. In this paper, we review the method of nodal potentials and illustrate it using the Wheatstone bridge as an example. We then derive a closed-form expression for the equivalent resistance of a generic circuit, which we apply to a few sample circuits. The result unveils a curious interplay between electrical circuits, matrix algebra, and graph theory and its applications to computer science. The paper is written at a level accessible by undergraduate students who are familiar with matrix arithmetic. Additional proofs and technical details are provided in appendices.

  3. Experimental Investigation of Pool Boiling for Single and Double Heaters Using Printed Circuit Board

    International Nuclear Information System (INIS)

    Han, Won Seok; Lee, Jae Young

    2012-01-01

    Over the past several decades, a considerable number of studies have been conducted on boiling heat transfer in pool boiling. Boiling heat transfer is used in a variety of cooling applications, such as heat exchangers, high powered electronics, and nuclear reactors. Nucleate boiling is one of the most efficient heat transfer mechanisms in boiling regime, but it is imperative that the critical heat flux(CHF) should not be exceeded. CHF phenomenon leads to a dramatic rise in wall temperature, decreased heat transfer, and material failure. Although numerous attempts have been made by researchers to demonstrate the CHF, there is little agreement with the CHF mechanism. In recent years, many researchers have been focusing on surface condition using nanoparticles and surface enhancements, such as a micro structure and artificial cavities, due to enhancement of the CHF point. Cooke and Kandlikar used chips etched with microchannels to prove that these structure has the most enhancement effect. They found that the most efficient boiling surface is with a larger channel size and deep etch. The purpose of this paper is to evaluate the heat transfer and CHF of double heaters on printed circuit board(PCB) in pool boiling. In addition, bubble dynamics of nucleate boiling were observed with high speed observation on single and double heaters using PCB heater

  4. Supergravity separation of Pb and Sn from waste printed circuit boards at different temperatures

    Science.gov (United States)

    Meng, Long; Wang, Zhe; Zhong, Yi-wei; Chen, Kui-yuan; Guo, Zhan-cheng

    2018-02-01

    Printed circuit boards (PCBs) contain many toxic substances as well as valuable metals, e.g., lead (Pb) and tin (Sn). In this study, a novel technology, named supergravity, was used to separate different mass ratios of Pb and Sn from Pb-Sn alloys in PCBs. In a supergravity field, the liquid metal phase can permeate from solid particles. Hence, temperatures of 200, 280, and 400°C were chosen to separate Pb and Sn from PCBs. The results depicted that gravity coefficient only affected the recovery rates of Pb and Sn, whereas it had little effect on the mass ratios of Pb and Sn in the obtained alloys. With an increase in gravity coefficient, the recovery values of Pb and Sn in each step of the separation process increased. In the single-step separation process, the mass ratios of Pb and Sn in Pb-Sn alloys were 0.55, 0.40, and 0.64 at 200, 280, and 400°C, respectively. In the two-step separation process, the mass ratios were 0.12 and 0.55 at 280 and 400°C, respectively. Further, the mass ratio was observed to be 0.76 at 400°C in the three-step separation process. This process provides an innovative approach to the recycling mechanism of Pb and Sn from PCBs.

  5. Advanced engineering materials and thick film hybrid circuit technology

    International Nuclear Information System (INIS)

    Faisal, S.; Aslam, M.; Mehmood, K.

    2006-01-01

    The use of Thick Film hybrid Technology to manufacture electronic circuits and passive components continues to grow at rapid rate. Thick Film Technology can be viewed as a means of packaging active devices, spanning the gap between monolithic integrated circuit chips and printed circuit boards with attached active and passive components. An advancement in engineering materials has moved from a formulating art to a base of greater understanding of relationship of material chemistry to the details of electrical and mechanical performance. This amazing advancement in the field of engineering materials has brought us up to a magnificent standard that we are able to manufacture small size, low cost and sophisticated electronic circuits of Military, Satellite systems, Robotics, Medical and Telecommunications. (author)

  6. SMART Boards Rock

    Science.gov (United States)

    Giles, Rebecca M.; Shaw, Edward L.

    2011-01-01

    SMART Board is a technology that combines the functionality of a whiteboard, computer, and projector into a single system. The interactive nature of the SMART Board offers many practical uses for providing an introduction to or review of material, while the large work area invites collaboration through social interaction and communication. As a…

  7. Experimental industrial signal acquisition board in a large scientific device

    Science.gov (United States)

    Zeng, Xiangzhen; Ren, Bin

    2018-02-01

    In order to measure the industrial signal of neutrino experiment, a set of general-purpose industrial data acquisition board has been designed. It includes the function of switch signal input and output, and the function of analog signal input. The main components are signal isolation amplifier and filter circuit, ADC circuit, microcomputer systems and isolated communication interface circuit. Through the practical experiments, it shows that the system is flexible, reliable, convenient and economical, and the system has characters of high definition and strong anti-interference ability. Thus, the system fully meets the design requirements.

  8. Electrochemical migration, whisker formation, and corrosion behavior of printed circuit board under wet H2S environment

    International Nuclear Information System (INIS)

    Zou, Shiwen; Li, Xiaogang; Dong, Chaofang; Ding, Kangkang; Xiao, Kui

    2013-01-01

    Highlights: •The electrochemical migration, whisker formation, and corrosion behavior of PCB under wet H 2 S environment were observed and studied systematically. •The process of electrochemical migration of solder joints is explained. •The corrosion mechanism of PCB interconnectors induced by micro pores under wet H 2 S environment is discussed, and the corrosion reaction model is proposed. -- Abstract: Electrochemical migration, whisker formation, and corrosion behavior of printed circuit board (PCB) under wet H 2 S environment were analyzed by environment scanning electron microscope (ESEM), Energy dispersive X-ray spectroscopy (EDS) with mapping and element phase cluster (EPC) techniques, Raman Spectrum analysis and electrochemical impedance spectroscopy (EIS) technology. The results showed that nonuniform corrosion behavior occurred on PCB surfaces under 1 ppm wet H 2 S at 40 °C; whiskers formed on the inner sidewall of via-holes with a growth rate of 1.2 Å/s; numerous corrosion products migrated through the pore of plated gold layer, which broke off the protective layer. The corrosion rate was accelerated according to the big-cathode-small-anode model

  9. Feature-Learning-Based Printed Circuit Board Inspection via Speeded-Up Robust Features and Random Forest

    Directory of Open Access Journals (Sweden)

    Eun Hye Yuk

    2018-06-01

    Full Text Available With the coming of the 4th industrial revolution era, manufacturers produce high-tech products. As the production process is refined, inspection technologies become more important. Specifically, the inspection of a printed circuit board (PCB, which is an indispensable part of electronic products, is an essential step to improve the quality of the process and yield. Image processing techniques are utilized for inspection, but there are limitations because the backgrounds of images are different and the kinds of defects increase. In order to overcome these limitations, methods based on machine learning have been used recently. These methods can inspect without a normal image by learning fault patterns. Therefore, this paper proposes a method can detect various types of defects using machine learning. The proposed method first extracts features through speeded-up robust features (SURF, then learns the fault pattern and calculates probabilities. After that, we generate a weighted kernel density estimation (WKDE map weighted by the probabilities to consider the density of the features. Because the probability of the WKDE map can detect an area where the defects are concentrated, it improves the performance of the inspection. To verify the proposed method, we apply the method to PCB images and confirm the performance of the method.

  10. Performance of the electrical generator cell by the ferrous alloys of printed circuit board scrap and Iron Metal 1020

    Science.gov (United States)

    Sahan, Y.; Sudarsono, S.; Silviana, E.; Chairul; Wisrayetti

    2018-04-01

    Galvani cell is one of thealternative energy. This cell can be used as an electric resources. In this research, the generator cell was designed and builds to generate the electric. The generator cell consisted of the iron metal 1020 were used as anode, the ferrous alloys of printed circuit board scrapwas then used as chatode, and NaCl solution as an electrolyte. The aim of this research is to estimate the performance of this generator cell by using variation of NaCl concentration (i.e. 1%, 3%, 5%, 7%, and 9%) with the electrodes pair ( 1 and 8 pairs). The performance of the cell was measured with a multi tester equipment and a LED bulb (5-watt 3Volt). The Results shown that the generator cell can produce the electric power of 3.679 Volt maximally by using NaCl 9% and 8 electrode pairs applied for this condition.

  11. Fabric circuits and method of manufacturing fabric circuits

    Science.gov (United States)

    Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Scully, Robert C. (Inventor); Trevino, Robert C. (Inventor); Lin, Greg Y. (Inventor); Fink, Patrick W. (Inventor)

    2011-01-01

    A flexible, fabric-based circuit comprises a non-conductive flexible layer of fabric and a conductive flexible layer of fabric adjacent thereto. A non-conductive thread, an adhesive, and/or other means may be used for attaching the conductive layer to the non-conductive layer. In some embodiments, the layers are attached by a computer-driven embroidery machine at pre-determined portions or locations in accordance with a pre-determined attachment layout before automated cutting. In some other embodiments, an automated milling machine or a computer-driven laser using a pre-designed circuit trace as a template cuts the conductive layer so as to separate an undesired portion of the conductive layer from a desired portion of the conductive layer. Additional layers of conductive fabric may be attached in some embodiments to form a multi-layer construct.

  12. Efficient physical embedding of topologically complex information processing networks in brains and computer circuits.

    Directory of Open Access Journals (Sweden)

    Danielle S Bassett

    2010-04-01

    Full Text Available Nervous systems are information processing networks that evolved by natural selection, whereas very large scale integrated (VLSI computer circuits have evolved by commercially driven technology development. Here we follow historic intuition that all physical information processing systems will share key organizational properties, such as modularity, that generally confer adaptivity of function. It has long been observed that modular VLSI circuits demonstrate an isometric scaling relationship between the number of processing elements and the number of connections, known as Rent's rule, which is related to the dimensionality of the circuit's interconnect topology and its logical capacity. We show that human brain structural networks, and the nervous system of the nematode C. elegans, also obey Rent's rule, and exhibit some degree of hierarchical modularity. We further show that the estimated Rent exponent of human brain networks, derived from MRI data, can explain the allometric scaling relations between gray and white matter volumes across a wide range of mammalian species, again suggesting that these principles of nervous system design are highly conserved. For each of these fractal modular networks, the dimensionality of the interconnect topology was greater than the 2 or 3 Euclidean dimensions of the space in which it was embedded. This relatively high complexity entailed extra cost in physical wiring: although all networks were economically or cost-efficiently wired they did not strictly minimize wiring costs. Artificial and biological information processing systems both may evolve to optimize a trade-off between physical cost and topological complexity, resulting in the emergence of homologous principles of economical, fractal and modular design across many different kinds of nervous and computational networks.

  13. Laboratory and exterior decay of wood plastic composite boards: voids analysis and computed tomography

    Science.gov (United States)

    Grace Sun; Rebecca E. Ibach; Meghan Faillace; Marek Gnatowski; Jessie A. Glaeser; John Haight

    2016-01-01

    After exposure in the field and laboratory soil block culture testing, the void content of wood–plastic composite (WPC) decking boards was compared to unexposed samples. A void volume analysis was conducted based on calculations of sample density and from micro-computed tomography (microCT) data. It was found that reference WPC contains voids of different sizes from...

  14. Circuit card failures and industry mitigation strategy

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, U. [Candu Owners Group, Toronto, Ontario (Canada)

    2012-07-01

    In recent years the nuclear industry has experienced an increase in circuit card failures due to ageing of components, inadequate Preventive Maintenance (PM), lack of effective circuit card health monitoring, etc. Circuit card failures have caused loss of critical equipment, e.g., electro hydraulic governors, Safety Systems, resulting in loss of function and in some cases loss of generation. INPO completed a root cause analysis of 40 Reactor Trips/Scrams in US reactors and has recommended several actions to mitigate Circuit Card failures. Obsolescence of discrete components has posed many challenges in conducting effective preventative maintenance on circuit cards. In many cases, repairs have resulted in installation of components that compromise performance of the circuit cards. Improper termination and worn edge connectors have caused intermittent contacts contributing to circuit card failures. Traditionally, little attention is paid to relay functions and preventative maintenance of relay. Relays contribute significantly to circuit card failures and have dominated loss of generation across the power industry. The INPO study recommended a number of actions to mitigate circuit card failures, such as; identification of critical components and single point vulnerabilities; strategic preventative maintenance; protection of circuit boards against electrostatic discharge; limiting power cycles; performing an effective burn-in prior to commissioning of the circuit cards; monitoring performance of DC power supplies; limiting cabinet temperatures; managing of component aging/degradation mechanism, etc. A subcommittee has been set up under INPO sponsorship to understand the causes of circuit card failure and to develop an effective mitigation strategy. (author)

  15. Kajian dan Implementasi Real Time Operating System pada Single Board Computer Berbasis Arm

    Directory of Open Access Journals (Sweden)

    Wiedjaja A

    2014-06-01

    Full Text Available Operating System is an important software in computer system. For personal and office use the operating system is sufficient. However, to critical mission applications such as nuclear power plants and braking system on the car (auto braking system which need a high level of reliability, it requires operating system which operates in real time. The study aims to assess the implementation of the Linux-based operating system on a Single Board Computer (SBC ARM-based, namely Pandaboard ES with the Dual-core ARM Cortex-A9, TI OMAP 4460 type. Research was conducted by the method of implementation of the General Purpose OS Ubuntu 12:04 OMAP4-armhf-RTOS and Linux 3.4.0-rt17 + on PandaBoard ES. Then research compared the latency value of each OS on no-load and with full-load condition. The results obtained show the maximum latency value of RTOS on full load condition is at 45 uS, much smaller than the maximum value of GPOS at full-load at 17.712 uS. The lower value of latency demontrates that the RTOS has ability to run the process in a certain period of time much better than the GPOS.

  16. The Devil Within- A Tale about Computers, Experts and Confusion

    Science.gov (United States)

    Bittner, Florian; Hanigk, Stefan

    2013-09-01

    Printed circuit boards [1] and EEE components are the foundation block of computers. They are the basis where a fault may have fatal consequences. Modern spacecraft are heavily depending on these devices. EEE components typically make up 8-20% of the cost of a spacecraft. Their quality is essential [2], [3], [4], [5].We all use printed circuit boards everywhere, from TV to freezer to your car, but what is it actually: Just a holding place for IC's and other stuff or is there more to it?During the course of manufacturing and testing systems for use in an ATV (automated transfer vehicle) an unexpected behavior was found with a subsystem which drives ATV's propulsion. This was just the beginning of a long journey to find the root cause of failures hiding deeply in a microscopic world. Suppliers, independent laboratories, project team members and ESA specialists were searching for explanations. In the course of investigation more suspects were found. Could that jeopardize a mission? Are there similar problems in other projects?

  17. Study of the computer aided design of combinatory logical circuits

    International Nuclear Information System (INIS)

    Sisso, Robert

    1969-01-01

    This survey aims at obtaining, automatically, low costs circuits in NOR and NAND technology for completely and incompletely specified functions. Two methods are proposed; the first one (chain fusion and element combination method) aims at obtaining directly the circuits by applying synthesis algorithms, the automation of which is provided by a new notation which binds bi-univocally circuit and function. The second one (decomposition method) uses the principle of the simple disjoined decomposition and enables to determine within this scope the upper boundary evolution of the circuit minimum cost. (author) [fr

  18. Symmetry Groups for the Decomposition of Reversible Computers, Quantum Computers, and Computers in between

    Directory of Open Access Journals (Sweden)

    Alexis De Vos

    2011-06-01

    Full Text Available Whereas quantum computing circuits follow the symmetries of the unitary Lie group, classical reversible computation circuits follow the symmetries of a finite group, i.e., the symmetric group. We confront the decomposition of an arbitrary classical reversible circuit with w bits and the decomposition of an arbitrary quantum circuit with w qubits. Both decompositions use the control gate as building block, i.e., a circuit transforming only one (qubit, the transformation being controlled by the other w−1 (qubits. We explain why the former circuit can be decomposed into 2w − 1 control gates, whereas the latter circuit needs 2w − 1 control gates. We investigate whether computer circuits, not based on the full unitary group but instead on a subgroup of the unitary group, may be decomposable either into 2w − 1 or into 2w − 1 control gates.

  19. Circuit bridging of digital equipment caused by smoke from a cable fire

    International Nuclear Information System (INIS)

    Tanaka, T.J.; Anderson, D.J.

    1997-01-01

    Advanced reactor systems are likely to use protection systems with digital electronics that ideally should be resistant to environmental hazards, including smoke from possible cable fires. Previous smoke tests have shown that digital safety systems can fail even at relatively low levels of smoke density and that short-term failures are likely to be caused by circuit bridging. Experiments were performed to examine these failures, with a focus on component packaging and protection schemes. Circuit bridging, which causes increased leakage currents and arcs, was gauged by measuring leakage currents among the leads of component packages. The resistance among circuit leads typically varies over a wide range, depending on the nature of the circuitry between the pins, bias conditions, circuit board material, etc. Resistance between leads can be as low as 20 kΩ and still be good, depending on the component. For these tests, the authors chose a printed circuit board and components that normally have an interlead resistance above 10 12 Ω, but if the circuit is exposed to smoke, circuit bridging causes the resistance to fall below 10 3 Ω. Plated-through-hole (PTH) and surface-mounted (SMT) packages were exposed to a series of different smoke environments using a mixture of environmentally qualified cables for fuel. Conformal coatings and enclosures were tested as circuit protection methods. High fuel levels, high humidity, and high flaming burns were the conditions most likely to cause circuit bridging. The inexpensive conformal coating that was tested - an acrylic spray - reduced leakage currents, but enclosure in a chassis with a fan did not. PTH packages were more resistant to smoke-induced circuit bridging than SMT packages. Active components failed most often in tests where the leakage currents were high, but failure did not always accompany high leakage currents

  20. Aging evaluation of electrical circuits using the ECCAD [Electrical Circuit Characterization and Diagnostic] system

    International Nuclear Information System (INIS)

    Edson, J.L.

    1988-01-01

    As a part of the Nuclear Regulatory Commission Nuclear Plant Aging Research Program, an aging assessment of electrical circuits was conducted at the Shippingport Atomic Power Station Decommissioning Project. The objective of this work was to evaluate the effectiveness of the Electrical Circuit Characterization and Diagnostic (ECCAD) system in identifying circuit conditions, to determine the present condition of selected electrical circuits, and correlate the results with aging effects. To accomplish this task, a series of electrical tests was performed on each circuit using the ECCAD system, which is composed of commercially available electronic test equipment under computer control. Test results indicate that the ECCAD system is effective in detecting and identifying aging and service wear in selected electrical circuits. The major area of degradation in the circuits tested was at the termination/connection points, whereas the cables were in generally good condition

  1. Computing with networks of spiking neurons on a biophysically motivated floating-gate based neuromorphic integrated circuit.

    Science.gov (United States)

    Brink, S; Nease, S; Hasler, P

    2013-09-01

    Results are presented from several spiking network experiments performed on a novel neuromorphic integrated circuit. The networks are discussed in terms of their computational significance, which includes applications such as arbitrary spatiotemporal pattern generation and recognition, winner-take-all competition, stable generation of rhythmic outputs, and volatile memory. Analogies to the behavior of real biological neural systems are also noted. The alternatives for implementing the same computations are discussed and compared from a computational efficiency standpoint, with the conclusion that implementing neural networks on neuromorphic hardware is significantly more power efficient than numerical integration of model equations on traditional digital hardware. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Liquid oil and residual characteristics of printed circuit board recycle by pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Kuo-Hsiung [Department of Environmental Engineering and Science, Fooyin University, Kaohsiung, Taiwan (China); Chiang, Hung-Lung, E-mail: hlchiang@mail.cmu.edu.tw [Department of Health Risk Management, China Medical University, Taichung, Taiwan (China)

    2014-04-01

    Highlights: • Pyrolysis is a technology for recycling of the non-metal fraction of PCBs. • Liquid product constituents were analyzed for PCB pyrolysis. • Water-soluble ionic species were determined for PCB pyrolysis exhaust. - Abstract: Non-metal fractions of waste printed circuit boards (PCBs) were thermally treated (200–500 °C) under nitrogen atmosphere. Carbon, hydrogen, and nitrogen were determined by elemental analyzer, bromine by instrumental neutron activation analysis (INAA), phosphorus by energy dispersive X-ray spectrometer (EDX), and 29 trace elements by inductively coupled plasma atomic emission spectrometer (ICP-AES) and mass spectrometry (ICP-MS) for raw material and pyrolysis residues. Organic compositions of liquid oil were identified by GC (gas chromatography)–MS, trace element composition by ICP system, and 12 water-soluble ions by IC (ionic chromatography). Elemental content of carbon was >450 mg/g, oxygen 300 mg/g, bromine and hydrogen 60 mg/g, nitrogen 30 mg/g, and phosphorus 28 mg/g. Sulfur was trace in PCBs. Copper content was 25–28 mg/g, iron 1.3–1.7 mg/g, tin 0.8–1.0 mg/g and magnesium 0.4–1.0 mg/g; those were the main metals in the raw materials and pyrolytic residues. In the liquid products, carbon content was 68–73%, hydrogen was 10–14%, nitrogen was 4–5%, and sulfur was less than 0.05% at pyrolysis temperatures from 300 to 500 °C. Phenol, 3-bromophenol, 2-methylphenol and 4-propan-2-ylphenol were major species in liquid products, accounting for >50% of analyzed organic species. Bromides, ammonium and phosphate were the main species in water sorption samples for PCB pyrolysis exhaust.

  3. Modernization of the memory board of an x-ray spectrometer

    International Nuclear Information System (INIS)

    Dutra Neto, A.; Dias, A.G.; Marra, J.G.

    1992-01-01

    This paper presents the design of a constant memory board for the Rigaku X-ray fluorescence spectroscopy, model 3064. This spectroscopy has been used to mineral analysis and materials characterization. It has been applied for elements instrumental analysis in mineral, metallic, ceramic, environmental samples and alloys. The memory board stores the elements sequence to be analyzed in the samples. It allows the automatic continuous operation of the spectroscopy and can be used as temporary register by the system. The spectroscopy data memory was composed by two permanent memory board with magnetic cores. The new memory board has a solid state static RAM, a data bus buffer, control and a special circuit to supply continuous power to the memory. (author)

  4. Magnetic compatibility of standard components for electrical installations: Computation of the background field and consequences on the design of the electrical distribution boards and control boards for the ITER Tokamak building

    International Nuclear Information System (INIS)

    Benfatto, I.; Bettini, P.; Cavinato, M.; Lorenzi, A. De; Hourtoule, J.; Serra, E.

    2005-01-01

    Inside the proposed Tokamak building, the ITER poloidal field magnet system would produce a stray magnetic field up to 70 mT. This is a very unusual environmental condition for electrical installation equipment and limited information is available on the magnetic compatibility of standard components for electrical distribution boards and control boards. Because this information is a necessary input for the design of the electrical installation inside the proposed ITER Tokamak building specific investigations have been carried out by the ITER European Participant Team. The paper reports on the computation of the background magnetic field map inside the ITER Tokamak building and the consequences on the design of the electrical installations of this building. The effects of the steel inside the building structure and the feasibility of magnetic shields for electrical distribution boards and control boards are also reported in the paper. The results of the test campaigns on the magnetic field compatibility of standard components for electrical distribution boards and control boards are reported in companion papers published in these proceedings

  5. Copper recovery and gold enrichment from waste printed circuit boards by mediated electrochemical oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Fogarasi, Szabolcs [“Babeş-Bolyai” University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, 11 Arany Janos Street, Cluj-Napoca RO-400028 (Romania); Imre-Lucaci, Florica [“Babeş-Bolyai” University, Interdisciplinary Research Institute on Bio-Nano-Sciences, 42 Treboniu Laurian Street, Cluj-Napoca RO-400271 (Romania); Imre-Lucaci, Árpád, E-mail: aimre@chem.ubbcluj.ro [“Babeş-Bolyai” University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, 11 Arany Janos Street, Cluj-Napoca RO-400028 (Romania); Ilea, Petru [“Babeş-Bolyai” University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, 11 Arany Janos Street, Cluj-Napoca RO-400028 (Romania)

    2014-05-01

    Highlights: • We developed a mediated electrochemical process for electronic waste treatment. • We achieved the simultaneous recovery of copper and gold enrichment. • Process scale up was realized based on the optimal values of operating parameters. • The waste does not require mechanical pretreatment in the scaled process. • The process proved to be efficient and eco-friendly as well. - Abstract: The present study aims to develop an eco-friendly chemical–electrochemical process for the simultaneous recovery of copper and separation of a gold rich residue from waste printed circuit boards (WPCBs). The process was carried out by employing two different types of reactors coupled in series: a leaching reactor with a perforated rotating drum, for the dissolution of base metals and a divided electrochemical reactor for the regeneration of the leaching solution with the parallel electrowinning of copper. The process performances were evaluated on the basis of the dissolution efficiency, current efficiency and specific energy consumptions. Finally a process scale up was realized taking into consideration the optimal values of the operating parameters. The laboratory scale leaching plant allowed the recovery of a high purity copper deposit (99.04 wt.%) at a current efficiency of 63.84% and specific energy consumption of 1.75 kW h/kg cooper. The gold concentration in the remained solid residue was 25 times higher than the gold concentration in the initial WPCB samples.

  6. Copper recovery and gold enrichment from waste printed circuit boards by mediated electrochemical oxidation

    International Nuclear Information System (INIS)

    Fogarasi, Szabolcs; Imre-Lucaci, Florica; Imre-Lucaci, Árpád; Ilea, Petru

    2014-01-01

    Highlights: • We developed a mediated electrochemical process for electronic waste treatment. • We achieved the simultaneous recovery of copper and gold enrichment. • Process scale up was realized based on the optimal values of operating parameters. • The waste does not require mechanical pretreatment in the scaled process. • The process proved to be efficient and eco-friendly as well. - Abstract: The present study aims to develop an eco-friendly chemical–electrochemical process for the simultaneous recovery of copper and separation of a gold rich residue from waste printed circuit boards (WPCBs). The process was carried out by employing two different types of reactors coupled in series: a leaching reactor with a perforated rotating drum, for the dissolution of base metals and a divided electrochemical reactor for the regeneration of the leaching solution with the parallel electrowinning of copper. The process performances were evaluated on the basis of the dissolution efficiency, current efficiency and specific energy consumptions. Finally a process scale up was realized taking into consideration the optimal values of the operating parameters. The laboratory scale leaching plant allowed the recovery of a high purity copper deposit (99.04 wt.%) at a current efficiency of 63.84% and specific energy consumption of 1.75 kW h/kg cooper. The gold concentration in the remained solid residue was 25 times higher than the gold concentration in the initial WPCB samples

  7. Demonstration of glass-based photonic interposer for mid-board-optical engines and electrical-optical circuit board (EOCB) integration strategy

    Science.gov (United States)

    Schröder, H.; Neitz, M.; Schneider-Ramelow, M.

    2018-02-01

    Due to its optical transparency and superior dielectric properties glass is regarded as a promising candidate for advanced applications as active photonic interposer for mid-board-optics and optical PCB waveguide integration. The concepts for multi-mode and single-mode photonic system integration are discussed and related demonstration project results will be presented. A hybrid integrated photonic glass body interposer with integrated optical lenses for multi-mode data communication wavelength of 850 nm have been realized. The paper summarizes process developments which allow cost efficient metallization of TGV. Electro-optical elements like photodiodes and VCSELs can be directly flip-chip mounted on the glass substrate according to the desired lens positions. Furthermore results for a silicon photonic based single-mode active interposer integration onto a single mode glass made EOCB will be compared in terms of packaging challenges. The board level integration strategy for both of these technological approaches and general next generation board level integration concepts for photonic interposer will be introductorily discussed.

  8. Magnonic logic circuits

    International Nuclear Information System (INIS)

    Khitun, Alexander; Bao Mingqiang; Wang, Kang L

    2010-01-01

    We describe and analyse possible approaches to magnonic logic circuits and basic elements required for circuit construction. A distinctive feature of the magnonic circuitry is that information is transmitted by spin waves propagating in the magnetic waveguides without the use of electric current. The latter makes it possible to exploit spin wave phenomena for more efficient data transfer and enhanced logic functionality. We describe possible schemes for general computing and special task data processing. The functional throughput of the magnonic logic gates is estimated and compared with the conventional transistor-based approach. Magnonic logic circuits allow scaling down to the deep submicrometre range and THz frequency operation. The scaling is in favour of the magnonic circuits offering a significant functional advantage over the traditional approach. The disadvantages and problems of the spin wave devices are also discussed.

  9. Comparative study on copper leaching from waste printed circuit boards by typical ionic liquid acids.

    Science.gov (United States)

    Chen, Mengjun; Huang, Jinxiu; Ogunseitan, Oladele A; Zhu, Nengming; Wang, Yan-min

    2015-07-01

    Waste printed circuit boards (WPCBs) are attracting increasing concerns because the recovery of its content of valuable metallic resources is hampered by the presence of hazardous substances. In this study, we used ionic liquids (IL) to leach copper from WPCBs. [BSO3HPy]OTf, [BSO3HMIm]OTf, [BSO4HPy]HSO4, [BSO4HMim]HSO4 and [MIm]HSO4 were selected. Factors that affect copper leaching rate were investigated in detail and their leaching kinetics were also examined with the comparison of [Bmim]HSO4. The results showed that all six IL acids could successfully leach copper out, with near 100% recovery. WPCB particle size and leaching time had similar influences on copper leaching performance, while IL acid concentration, hydrogen peroxide addition, solid to liquid ratio, temperature, showed different influences. Moreover, IL acid with HSO4(-) was more efficient than IL acid with CF3SO3(-). These six IL acids indicate a similar behavior with common inorganic acids, except temperature since copper leaching rate of some IL acids decreases with its increase. The results of leaching kinetics studies showed that diffusion plays a more important role than surface reaction, whereas copper leaching by inorganic acids is usually controlled by surface reaction. This innovation provides a new option for recovering valuable materials such as copper from WPCBs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. CMOS digital integrated circuits a first course

    CERN Document Server

    Hawkins, Charles; Zarkesh-Ha, Payman

    2016-01-01

    This book teaches the fundamentals of modern CMOS technology and covers equal treatment to both types of MOSFET transistors that make up computer circuits; power properties of logic circuits; physical and electrical properties of metals; introduction of timing circuit electronics and introduction of layout; real-world examples and problem sets.

  11. An Investigation on the Extraction and Quantitation of a Hexavalent Chromium in Acrylonitrile Butadiene Styrene Copolymer (ABS) and Printed Circuit Board (PCB) by Ion Chromatography Coupled with Inductively Coupled Plasma Atomic Emission Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Sang Ho; Kim, Yu Na [Mokpo National University, Muan (Korea, Republic of)

    2012-06-15

    A hexavalent chromium (Cr (VI)) is one of the hazardous substances regulated by the RoHS. The determination of Cr (VI) in various polymers and printed circuit board (PCB) has been very important. In this study, the three different analytical methods were investigated for the determination of a hexavalent chromium in Acrylonitrile Butadiene Styrene copolymer (ABS) and PCB. The results by three analytical methods were obtained and compared. An analytical method by UV-Visible spectrometer has been generally used for the determination of Cr (VI) in a sample, but a hexavalent chromium should complex with diphenylcarbazide for the detection in the method. The complexation did make an adverse effect on the quantitative analysis of Cr (VI) in ABS. The analytical method using diphenylcarbazide was also not applicable to printed circuit board (PCB) because PCB contained lots of irons. The irons interfered with the analysis of hexavalent chromium because those also could complex with diphenylcarbazide. In this study, hexavalent chromiums in PCB have been separated by ion chromatography (IC), then directly and selectively detected by inductively coupled plasma atomic emission spectrometry (ICP-AES). The quantity of Cr (VI) in PCB was 0.1 mg/kg

  12. Single-flux-quantum logic circuits exploiting collision-based fusion gates

    International Nuclear Information System (INIS)

    Asai, T.; Yamada, K.; Amemiya, Y.

    2008-01-01

    We propose a single-flux-quantum (SFQ) logic circuit based on the fusion computing systems--collision-based and reaction-diffusion fusion computers. A fusion computing system consists of regularly arrayed unit cells (fusion gates), where each unit has two input arms and two output arms and is connected to its neighboring cells with the arms. We designed functional SFQ circuits that implemented the fusion computation. The unit cell was able to be made with ten Josephson junctions. Circuit simulation with standard Nb/Al-AlOx/Nb 2.5-kA/cm 2 process parameters showed that the SFQ fusion computing systems could operate at 10 GHz clock

  13. A deadtime reduction circuit for thermal neutron coincidence counters with Amptek preamplifiers

    International Nuclear Information System (INIS)

    Bourret, S.C.; Krick, M.S.

    1994-01-01

    We have developed a deadtime reduction circuit for thermal neutron coincidence counters using Amptek preamplifier/amplifier/discriminator circuits. The principle is to remove the overlap between the output pulses from the Amptek circuits by adding a derandomizer between the Amptek circuits and the shift-register coincidence electronics. We implemented the derandomizer as an Actel programmable logic array; the derandomizer board is small and can be mounted in the high-voltage junction box with the Amptek circuits, if desired. Up to 32 Amptek circuits can be used with one derandomizer. The derandomizer has seven outputs: four groups of eight inputs, two groups of 16 inputs, and one group of 32 inputs. We selected these groupings to facilitate detector ring-ratio measurements. The circuit was tested with the five-ring research multiplicity counter, which has five output signals-one for each ring. The counter's deadtime was reduced from 70 to 30 ns

  14. The Versatile Link Demo Board (VLDB)

    International Nuclear Information System (INIS)

    Lesma, R. Martín; Alessio, F.; Barbosa, J.; Baron, S.; Caplan, C.; Leitao, P.; Porret, D.; Wyllie, K.; Pecoraro, C.

    2017-01-01

    The Versatile Link Demonstrator Board (VLDB) is the evaluation kit for the radiation-hard Optical Link ecosystem, which provides a 4.8 Gbps data transfer link for communication between front-end (FE) and back-end (BE) of the High Energy Physics experiments. It gathers the Versatile link main radiation-hard custom Application-Specific Integrated Circuits (ASICs) and modules: GBTx, GBT-SCA and VTRx/VTTx plus the FeastMP, a radiation-hard in-house designed DC-DC converter. This board is the first design allowing system-level tests of the Link with a complete interconnection of the constitutive components, allowing data acquisition, control and monitoring of FE devices with the GBT-SCA pair.

  15. Spike timing precision of neuronal circuits.

    Science.gov (United States)

    Kilinc, Deniz; Demir, Alper

    2018-04-17

    Spike timing is believed to be a key factor in sensory information encoding and computations performed by the neurons and neuronal circuits. However, the considerable noise and variability, arising from the inherently stochastic mechanisms that exist in the neurons and the synapses, degrade spike timing precision. Computational modeling can help decipher the mechanisms utilized by the neuronal circuits in order to regulate timing precision. In this paper, we utilize semi-analytical techniques, which were adapted from previously developed methods for electronic circuits, for the stochastic characterization of neuronal circuits. These techniques, which are orders of magnitude faster than traditional Monte Carlo type simulations, can be used to directly compute the spike timing jitter variance, power spectral densities, correlation functions, and other stochastic characterizations of neuronal circuit operation. We consider three distinct neuronal circuit motifs: Feedback inhibition, synaptic integration, and synaptic coupling. First, we show that both the spike timing precision and the energy efficiency of a spiking neuron are improved with feedback inhibition. We unveil the underlying mechanism through which this is achieved. Then, we demonstrate that a neuron can improve on the timing precision of its synaptic inputs, coming from multiple sources, via synaptic integration: The phase of the output spikes of the integrator neuron has the same variance as that of the sample average of the phases of its inputs. Finally, we reveal that weak synaptic coupling among neurons, in a fully connected network, enables them to behave like a single neuron with a larger membrane area, resulting in an improvement in the timing precision through cooperation.

  16. New trends in designing NPP control boards

    International Nuclear Information System (INIS)

    Kondrat'ev, V.V.

    1981-01-01

    A short analytical summary of the latest developments and future trends in designing NPP control boards is given. The designs of the Westinghause and the Hynkley-Point NPP control boards are described in detail. The essence of the advanced control board concept consists , firstly, in expanded use of computer-controlled displays for the sake of reducing the content of unimportant information presented to an operator, and, secondary, in better account of human possibilities to convert the NPP operation information into a more suitable form. An enlarged use of the direct digital reactor control utilizing microprocessors is expected. Besides, the employment of full-scale control board mock-ups and information desks as well as testing newly-developed control boards at computer reactor simulators are concluded to be used at all-growing rate [ru

  17. Near-Threshold Computing and Minimum Supply Voltage of Single-Rail MCML Circuits

    Directory of Open Access Journals (Sweden)

    Ruiping Cao

    2014-01-01

    Full Text Available In high-speed applications, MOS current mode logic (MCML is a good alternative. Scaling down supply voltage of the MCML circuits can achieve low power-delay product (PDP. However, the current almost all MCML circuits are realized with dual-rail scheme, where the NMOS configuration in series limits the minimum supply voltage. In this paper, single-rail MCML (SRMCML circuits are described, which can avoid the devices configuration in series, since their logic evaluation block can be realized by only using MOS devices in parallel. The relationship between the minimum supply voltage of the SRMCML circuits and the model parameters of MOS transistors is derived, so that the minimum supply voltage can be estimated before circuit designs. An MCML dynamic flop-flop based on SRMCML is also proposed. The optimization algorithm for near-threshold sequential circuits is presented. A near-threshold SRMCML mode-10 counter based on the optimization algorithm is verified. Scaling down the supply voltage of the SRMCML circuits is also investigated. The power dissipation, delay, and power-delay products of these circuits are carried out. The results show that the near-threshold SRMCML circuits can obtain low delay and small power-delay product.

  18. Using graph theory for automated electric circuit solving

    International Nuclear Information System (INIS)

    Toscano, L; Stella, S; Milotti, E

    2015-01-01

    Graph theory plays many important roles in modern physics and in many different contexts, spanning diverse topics such as the description of scale-free networks and the structure of the universe as a complex directed graph in causal set theory. Graph theory is also ideally suited to describe many concepts in computer science. Therefore it is increasingly important for physics students to master the basic concepts of graph theory. Here we describe a student project where we develop a computational approach to electric circuit solving which is based on graph theoretic concepts. This highly multidisciplinary approach combines abstract mathematics, linear algebra, the physics of circuits, and computer programming to reach the ambitious goal of implementing automated circuit solving. (paper)

  19. Measuring the layer-average volumetric water content in the uppermost 5 cm of soil using printed circuit board TDR probes

    International Nuclear Information System (INIS)

    Wang, W.; Kobayashi, T.; Chikushi, J.

    2000-01-01

    Newly designed printed circuit board TDR probes (PCBPs) were made, and they were calibrated by indoor experiment. A regression equation for estimating the volumetric water content from the dielectric constant measured with the PCBP was determined, which is almost the same as the well-known Topp's equation when the soil is rather wet while the difference becomes larger as the soil dries. The PCBP was designed to measure the average water content over a soil layer 5 cm thick because the thickness of soil layer involved in measuring water content by microwave remote sensing is several centimeters. A comparison experiment of measurements with PCBPs and those by microwave remote sensing was conducted in an arid area in the northwest of China. The results of this experiment show that the newly designed TDR probe is promising as the sensor to get ground truth of the surface wetness. This paper describes only the calibration of probes and the observations taken using them

  20. New way on designing majorant coincidence circuits

    International Nuclear Information System (INIS)

    Gajdamaka, R.I.; Kalinnikov, V.A.; Nikityuk, N.M.; Shirikov, V.P.

    1982-01-01

    A new way of designing fast devices of combinatorial selection by the number of particles passing through a multichannel charged particle detector is decribed. The algorithm of their operation is based on modern algebraic coding theory. By application of analytical computational methods Boolean expressions can be obtianed for designing basic circuits for a large number of inputs. An example of computation of 15 inputs majorant coincidence circuit is considered

  1. A study on the development of an automatic fault diagnosis system for testing NPP digital electronic circuits

    International Nuclear Information System (INIS)

    Kim, Dae Sik

    1993-02-01

    This paper describes a study on the development of an automatic fault diagnosis system for testing digital electronic circuits of nuclear power plants. Compared with the other conventional fault diagnosis systems, the system described in this paper uses Artificial Intelligence technique of model based reasoning and corroboration, which makes fault diagnosis much more efficient. In order to reduce the testing time, an optimal testing set which means a minimal testing set to determine whether or not the circuit is fault-free and to locate the faulty gate was derived. Compared with the testing using an exhaustive testing set, the testing using the optimal testing set makes fault diagnosis much more fast. Since the system diagnoses the circuit boards bases only on input and output signals, it can be further developed for on-line testing. The system was implemented on a microprocessor and was applied for Universal Circuit board testing of the Solid State protection System in nuclear power plants

  2. Computer hardware for radiologists: Part I

    International Nuclear Information System (INIS)

    Indrajit, IK; Alam, A

    2010-01-01

    Computers are an integral part of modern radiology practice. They are used in different radiology modalities to acquire, process, and postprocess imaging data. They have had a dramatic influence on contemporary radiology practice. Their impact has extended further with the emergence of Digital Imaging and Communications in Medicine (DICOM), Picture Archiving and Communication System (PACS), Radiology information system (RIS) technology, and Teleradiology. A basic overview of computer hardware relevant to radiology practice is presented here. The key hardware components in a computer are the motherboard, central processor unit (CPU), the chipset, the random access memory (RAM), the memory modules, bus, storage drives, and ports. The personnel computer (PC) has a rectangular case that contains important components called hardware, many of which are integrated circuits (ICs). The fiberglass motherboard is the main printed circuit board and has a variety of important hardware mounted on it, which are connected by electrical pathways called “buses”. The CPU is the largest IC on the motherboard and contains millions of transistors. Its principal function is to execute “programs”. A Pentium ® 4 CPU has transistors that execute a billion instructions per second. The chipset is completely different from the CPU in design and function; it controls data and interaction of buses between the motherboard and the CPU. Memory (RAM) is fundamentally semiconductor chips storing data and instructions for access by a CPU. RAM is classified by storage capacity, access speed, data rate, and configuration

  3. Computer hardware for radiologists: Part I

    Directory of Open Access Journals (Sweden)

    Indrajit I

    2010-01-01

    Full Text Available Computers are an integral part of modern radiology practice. They are used in different radiology modalities to acquire, process, and postprocess imaging data. They have had a dramatic influence on contemporary radiology practice. Their impact has extended further with the emergence of Digital Imaging and Communications in Medicine (DICOM, Picture Archiving and Communication System (PACS, Radiology information system (RIS technology, and Teleradiology. A basic overview of computer hardware relevant to radiology practice is presented here. The key hardware components in a computer are the motherboard, central processor unit (CPU, the chipset, the random access memory (RAM, the memory modules, bus, storage drives, and ports. The personnel computer (PC has a rectangular case that contains important components called hardware, many of which are integrated circuits (ICs. The fiberglass motherboard is the main printed circuit board and has a variety of important hardware mounted on it, which are connected by electrical pathways called "buses". The CPU is the largest IC on the motherboard and contains millions of transistors. Its principal function is to execute "programs". A Pentium® 4 CPU has transistors that execute a billion instructions per second. The chipset is completely different from the CPU in design and function; it controls data and interaction of buses between the motherboard and the CPU. Memory (RAM is fundamentally semiconductor chips storing data and instructions for access by a CPU. RAM is classified by storage capacity, access speed, data rate, and configuration.

  4. Arithmetic circuits for DSP applications

    CERN Document Server

    Stouraitis, Thanos

    2017-01-01

    Arithmetic Circuits for DSP Applications is a complete resource on arithmetic circuits for digital signal processing (DSP). It covers the key concepts, designs and developments of different types of arithmetic circuits, which can be used for improving the efficiency of implementation of a multitude of DSP applications. Each chapter includes various applications of the respective class of arithmetic circuits along with information on the future scope of research. Written for students, engineers, and researchers in electrical and computer engineering, this comprehensive text offers a clear understanding of different types of arithmetic circuits used for digital signal processing applications. The text includes contributions from noted researchers on a wide range of topics, including a review o circuits used in implementing basic operations like additions and multiplications; distributed arithmetic as a technique for the multiplier-less implementation of inner products for DSP applications; discussions on look ...

  5. A dishwasher for circuits

    CERN Multimedia

    Rosaria Marraffino

    2014-01-01

    You have always been told that electronic devices fear water. However, at the Surface Mount Devices (SMD) Workshop here at CERN all the electronic assemblies are cleaned with a machine that looks like a… dishwasher.   The circuit dishwasher. Credit: Clara Nellist.  If you think the image above shows a dishwasher, you wouldn’t be completely wrong. Apart from the fact that the whole pumping system and the case itself are made entirely from stainless steel and chemical resistant materials, and the fact that it washes electrical boards instead of dishes… it works exactly like a dishwasher. It’s a professional machine (mainly used in the pharmaceutical industry) designed to clean everything that can be washed with a water-based chemical soap. This type of treatment increases the lifetime of the electronic boards and therefore the LHC's reliability by preventing corrosion problems in the severe radiation and ozone environment of the LHC tunn...

  6. Classical verification of quantum circuits containing few basis changes

    Science.gov (United States)

    Demarie, Tommaso F.; Ouyang, Yingkai; Fitzsimons, Joseph F.

    2018-04-01

    We consider the task of verifying the correctness of quantum computation for a restricted class of circuits which contain at most two basis changes. This contains circuits giving rise to the second level of the Fourier hierarchy, the lowest level for which there is an established quantum advantage. We show that when the circuit has an outcome with probability at least the inverse of some polynomial in the circuit size, the outcome can be checked in polynomial time with bounded error by a completely classical verifier. This verification procedure is based on random sampling of computational paths and is only possible given knowledge of the likely outcome.

  7. SVX Sequencer Board

    International Nuclear Information System (INIS)

    Utes, M.

    1997-01-01

    The SVX Sequencer boards are 9U by 280mm circuit boards that reside in slots 2 through 21 of each of eight Eurocard crates in the D0 Detector Platform. The basic purpose is to control the SVX chips for data acquisition and when a trigger occurs, to gather the SVX data and relay the data to the VRB boards in the Movable Counting House. Functions and features are as follows: (1) Initialization of eight SVX chip strings using the MIL-STD-1553 data bus; (2) Real time manipulation of the SVX control lines to effect data acquisition, digitization, and readout based on the NRZ/Clock signals from the Controller; (3) Conversion of 8-bit electrical SVX readout data to an optical signal operating at 1.062 Gbit/sec, sent to the VRB. Eight HDIs will be serviced per board; (4) Built-in logic analyzer which can record the most important control and data lines during a data acquisition cycle and put this recorded information onto the 1553 bus; (5) Identification header and end of data trailer tacked onto data stream; (6) 1553 register which can read the current values of the control and data lines; (7) 1553 register which can test the optical link; (8) 1553 registers for crossing pulse width, calibration pulse voltage, and calibration pipeline select; (9) 1553 register for reading the optical drivers status link; (10) 1553 register for power control of SVX chips and ignoring bad SVX strings; (11) Front panel displays and LEDs show the board status at a glance; (12) In-system programmable EPLDs are programmed via 1553 or Altera's 'Bitblaster'; (13) Automatic readout abort after 45us; (14) Supplies BUSY signal back to Trigger Framework; (15) Supports a heartbeat system to prevent excessive SVX current draw; and (16) Supports a SVX power trip feature if heartbeat failure occurs.

  8. Removal of organic compounds from wastewater originating from the production of printed circuit boards by UV-Fenton method

    Directory of Open Access Journals (Sweden)

    Thomas Maciej

    2017-12-01

    Full Text Available The possibility of removing organic compounds from wastewater originating from the photochemical production of printed circuit boards by use of waste acidification and disposal of precipitated photopolymer in the first stage and the UV-Fenton method in a second stage has been presented. To optimize the process of advanced oxidation, the RSM (Response Surface Methodology for three independent factors was applied, i.e. pH, the concentration of Fe(II and H2O2 concentration. The use of optimized values of individual parameters in the process of wastewater treatment caused a decrease in the concentration of the organic compounds denoted as COD by approx. 87% in the first stage and approx. 98% after application of both processes. Precipitation and the decomposition of organic compounds was associated with a decrease of wastewater COD to below 100 mg O2/L whereas the initial value was 5550 mg O2/L. Decomposition of organic compounds and verification of the developed model of photopolymers removal was also carried out with use of alternative H2O2 sources i.e. CaO2, MgO2, and Na2CO3·1,5H2O2.

  9. Recovery of copper and lead from waste printed circuit boards by supercritical water oxidation combined with electrokinetic process

    International Nuclear Information System (INIS)

    Xiu Furong; Zhang Fushen

    2009-01-01

    An effective and benign process for copper and lead recovery from waste printed circuit boards (PCBs) was developed. In the process, the PCBs was pre-treated in supercritical water, then subjected to electrokinetic (EK) process. Experimental results showed that supercritical water oxidation (SCWO) process was strong enough to decompose the organic compounds of PCBs, and XRD spectra indicated that copper and lead were oxidized into CuO, Cu 2 O and β-PbO 2 in the process. The optimum SCWO treatment conditions were 60 min, 713 K, 30 MPa, and EK treatment time, constant current density were 11 h, 20 mA cm -2 , respectively. The recovery percentages of copper and lead under optimum SCWO + EK treatment conditions were around 84.2% and 89.4%, respectively. In the optimized EK treatment, 74% of Cu was recovered as a deposit on the cathode with a purity of 97.6%, while Pb was recovered as concentrated solutions in either anode (23.1%) or cathode (66.3%) compartments but little was deposited on the electrodes. It is believed that the process is effective and practical for Cu and Pb recovery from waste electric and electronic equipments.

  10. Multiple single-board-computer system for the KEK positron generator control

    International Nuclear Information System (INIS)

    Nakahara, Kazuo; Abe, Isamu; Enomoto, Atsushi; Otake, Yuji; Urano, Takao

    1986-01-01

    The KEK positron generator is controlled by means of a distributed microprocessor network. The control system is composed of three kinds of equipment: device controllers for the linac equipment, operation management stations and a communication network. Individual linac equipment has its own microprocessor-based controller. A multiple single board computer (SBC) system is used for communication control and for equipment surveillance; it has a database containing communication and linac equipment status information. The linac operation management that should be the most soft part in the control system, is separated from the multiple SBC system and is carried out by work-stations. The principle that every processor executes only one task is maintained throughout the control system. This made the software architecture very simple. (orig.)

  11. ONBORD (On-Board Navigation of Ballistic ORDnance): Gun-Launched Munitions Flight Controller

    National Research Council Canada - National Science Library

    Wilson, Michael

    2004-01-01

    .... The electronics consist of a single 1.4-inch printed circuit board that includes the Texas Instruments TMS320F2812 digital signal processor whose microcontroller-like capabilities reduce the amount of peripheral circuitry necessary...

  12. Occurrences and inventories of heavy metals and brominated flame retardants in wastes from printed circuit board production.

    Science.gov (United States)

    Zhou, Xiaoyu; Guo, Jie; Zhang, Wei; Zhou, Peng; Deng, Jingjing; Lin, Kuangfei

    2014-09-01

    Pollutants including heavy metals and brominated flame retardant were detected in 10 types of production wastes from a typical printed circuit board manufacturing plant, and their inventories were estimated. Rinsing water from etching process had the highest concentrations of copper (665.51 mg/L), lead (1.02 mg/L), nickel (3.60 mg/L), chromium (0.97 mg/L), and tin (1.79 mg/L). Powdered solid waste (SW) from the cut lamination process contained the highest tetrabromobisphenol-A (TBBPA) levels (49.86 mg/kg). Polybrominated diphenyl ethers (PBDEs) were absent in this plant, in agreement with the international regulations of PBDE phase out. The pollutant inventories in the wastes exhibited in the order of copper > > zinc > tin ≈ nickel > lead > chromium > > TBBPA. The potential environmental impact of pollutants in SW during production and disposal were further investigated. A high partitioning of pollutant concentration between the total suspended particle and SW (-0.10 < log K TS < 2.12) was observed for most pollutants, indicating the emission pathway from SW to the airborne atmosphere in the workshop. Although SW met the toxicity characteristic leaching procedure, drilling powder with the smallest particle diameter still showed high leachabilities of lead and tin which may lead to a negative environmental impact during disposal.

  13. Preparation of hierarchical porous carbon from waste printed circuit boards for high performance electric double-layer capacitors

    Science.gov (United States)

    Du, Xuan; Wang, Li; Zhao, Wei; Wang, Yi; Qi, Tao; Li, Chang Ming

    2016-08-01

    Renewable clean energy and resources recycling have become inevitable choices to solve worldwide energy shortages and environmental pollution problems. It is a great challenge to recycle tons of waste printed circuit boards (PCB) produced every year for clean environment while creating values. In this work, low cost, high quality activated carbons (ACs) were synthesized from non-metallic fractions (NMF) of waste PCB to offer a great potential for applications of electrochemical double-layer capacitors (EDLCs). After recovering metal from waste PCB, hierarchical porous carbons were produced from NMF by carbonization and activation processes. The experimental results exhibit that some pores were formed after carbonization due to the escape of impurity atoms introduced by additives in NMF. Then the pore structure was further tailored by adjusting the activation parameters. Roles of micropores and non-micropores in charge storage were investigated when the hierarchical porous carbons were applied as electrode of EDLCs. The highest specific capacitance of 210 F g-1 (at 50 mA g-1) and excellent rate capability were achieved when the ACs possessing a proper micropores/non-micropores ratio. This work not only provides a promising method to recycle PCB, but also investigates the structure tailoring arts for a rational hierarchical porous structure in energy storage/conversion.

  14. Novel Application of Glass Fibers Recovered From Waste Printed Circuit Boards as Sound and Thermal Insulation Material

    Science.gov (United States)

    Sun, Zhixing; Shen, Zhigang; Ma, Shulin; Zhang, Xiaojing

    2013-10-01

    The aim of this study is to investigate the feasibility of using glass fibers, a recycled material from waste printed circuit boards (WPCB), as sound absorption and thermal insulation material. Glass fibers were obtained through a fluidized-bed recycling process. Acoustic properties of the recovered glass fibers (RGF) were measured and compared with some commercial sound absorbing materials, such as expanded perlite (EP), expanded vermiculite (EV), and commercial glass fiber. Results show that RGF have good sound absorption ability over the whole tested frequency range (100-6400 Hz). The average sound absorption coefficient of RGF is 0.86, which is prior to those of EP (0.81) and EV (0.73). Noise reduction coefficient analysis indicates that the absorption ability of RGF can meet the requirement of II rating for sound absorbing material according to national standard. The thermal insulation results show that RGF has a fair low thermal conductivity (0.046 W/m K), which is comparable to those of some insulation materials (i.e., EV, EP, and rock wool). Besides, an empirical dependence of thermal conductivity on material temperature was determined for RGF. All the results showed that the reuse of RGF for sound and thermal insulation material provided a promising way for recycling WPCB and obtaining high beneficial products.

  15. Nonlinear dynamic response of a 'flexible-and-heavy' printed circuit board (PCB) to an impact load applied to its support contour

    International Nuclear Information System (INIS)

    Suhir, E; Vujosevic, M; Reinikainen, T

    2009-01-01

    Based on the developed simple and physically meaningful analytical ('mathematical') stress model, we evaluate some major parameters (amplitude, frequency, maximum acceleration, stresses and strains) of the response of a 'flexible-and-heavy' square simply supported printed circuit board (PCB) to an impact drop load applied to its support contour. The analysis is restricted to the first mode of vibrations and is carried out in application to the PCB design employed in an advanced accelerated test setup (test vehicle). This setup is aimed at the assessment of the performance, in accelerated test conditions on the board level, of packaging materials (and, first of all, BGA solder joint interconnections) subjected to dynamic (drop or shock) loading. It is anticipated that heavy masses could be mounted on the PCB to accelerate its dynamic response to an impact load. These masses are expected to be small in size, so that while changing the total mass of the board and generating significant inertia forces, they do not affect the board's flexural rigidity or its stiffness with respect to the in-plane loading. The PCB's contour is considered non-deformable, which is indeed the case in many practical situations. This circumstance, if the drop height and/or the induced inertia forces are significant, leads to elevated in-plane ('membrane') stresses in the PCB and, as a result of that, to the nonlinear response of the board to the impact load: the relationship between the magnitude of the load (determined by the initial impact velocity) and the induced PCB deflections becomes geometrically nonlinear, with a rigid cubic characteristic of the restoring force. The carried out numerical example, although reflects the characteristics of the PCB and loading conditions in an actual experimental setup, is merely an illustration of the general concept and is intended to demonstrate the abilities of the suggested method. Predictions based on this method agree well with the finite element

  16. A fast circuit analysis program based on microcomputer

    International Nuclear Information System (INIS)

    Hu Guoji

    1988-01-01

    A fast circuit analysis program (FCAP) is introduced. The program may be used to analyse DC operating point, frequency and transient response of fast circuit. The feature is that the model of active element is not specified. Users may choose one of many equivalent circuits. Written in FORTRAN 77, FCAP can be run on IBM PC and its compatible computers. It can be used as an assistant tool of analysis and design for fast circuits

  17. Integrated electric circuit CAD system in Minolta Camera Co. Ltd

    Energy Technology Data Exchange (ETDEWEB)

    Nakagami, Tsuyoshi; Hirata, Sumiaki; Matsumura, Fumihiko

    1988-08-26

    Development background, fundamental concept, details and future plan of the integrated electric circuit CAD system for OA equipment are presented. The central integrated database is basically intended to store experiences or know-hows, to cover the wide range of data required for designs, and to provide a friendly interface. This easy-to-use integrated database covers the drawing data, parts information, design standards, know-hows and system data. The system contains the circuit design function to support drawing circuit diagrams, the wiring design function to support the wiring and arrangement of printed circuit boards and various parts integratedly, and the function to verify designs, to make full use of parts or technical information, to maintain the system security. In the future, as the system will be wholly in operation, the design period reduction, quality improvement and cost saving will be attained by this integrated design system. (19 figs, 2 tabs)

  18. Laser direct fabrication of silver conductors on glass boards

    International Nuclear Information System (INIS)

    Li Xiangyou; Zeng Xiaoyan; Li Huiling; Qi Xiaojing

    2005-01-01

    Laser micro-cladding has been used to fabricate metal conductors, according to a designed electronic circuit, directly onto glass boards which had been coated with a silver-containing electronic paste. The electronic pastes, composed of silver powders, inorganic binders and organic medium, thus formed the conductive metal pattern (i.e. electric circuit) along the path of the laser allowing the rest of the layer to be removed subsequently by an organic solvent. Firing in a furnace at 600 deg. C resulted in conductive lines with resistivity of about 10 -5 Ω cm and with adhesive strength of the order of magnitude of megapascals

  19. Eco-friendly copper recovery process from waste printed circuit boards using Fe³⁺/Fe²⁺ redox system.

    Science.gov (United States)

    Fogarasi, Szabolcs; Imre-Lucaci, Florica; Egedy, Attila; Imre-Lucaci, Árpád; Ilea, Petru

    2015-06-01

    The present study aimed at developing an original and environmentally friendly process for the recovery of copper from waste printed circuit boards (WPCBs) by chemical dissolution with Fe(3+) combined with the simultaneous electrowinning of copper and oxidant regeneration. The recovery of copper was achieved in an original set-up consisting of a three chamber electrochemical reactor (ER) connected in series with a chemical reactor (CR) equipped with a perforated rotating drum. Several experiments were performed in order to identify the optimal flow rate for the dissolution of copper in the CR and to ensure the lowest energy consumption for copper electrodeposition in the ER. The optimal hydrodynamic conditions were provided at 400 mL/min, leading to the 75% dissolution of metals and to a low specific energy consumption of 1.59 kW h/kg Cu for the electrodeposition process. In most experiments, the copper content of the obtained cathodic deposits was over 99.9%. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Intrinsic neuromodulation: altering neuronal circuits from within.

    Science.gov (United States)

    Katz, P S; Frost, W N

    1996-02-01

    There are two sources of neuromodulation for neuronal circuits: extrinsic inputs and intrinsic components of the circuits themselves. Extrinsic neuromodulation is known to be pervasive in nervous systems, but intrinsic neuromodulation is less recognized, despite the fact that it has now been demonstrated in sensory and neuromuscular circuits and in central pattern generators. By its nature, intrinsic neuromodulation produces local changes in neuronal computation, whereas extrinsic neuromodulation can cause global changes, often affecting many circuits simultaneously. Studies in a number of systems are defining the different properties of these two forms of neuromodulation.

  1. Computer model of a reverberant and parallel circuit coupling

    Science.gov (United States)

    Kalil, Camila de Andrade; de Castro, Maria Clícia Stelling; Cortez, Célia Martins

    2017-11-01

    The objective of the present study was to deepen the knowledge about the functioning of the neural circuits by implementing a signal transmission model using the Graph Theory in a small network of neurons composed of an interconnected reverberant and parallel circuit, in order to investigate the processing of the signals in each of them and the effects on the output of the network. For this, a program was developed in C language and simulations were done using neurophysiological data obtained in the literature.

  2. The point of practical use for the transistor circuit

    International Nuclear Information System (INIS)

    1996-01-01

    This is comprised of eight chapters and goes as follows; what is transistor? the first step for use of transistor such as connection between power and signal source, static characteristic of transistor and equivalent circuit of transistor, design of easy small-signal amplifier circuit, design for amplification of electric power and countermeasure for prevention of trouble, transistor concerned interface, transistor circuit around micro computer, transistor in active use of FET and power circuit and transistor. It has an appendix on transistor and design of bias of FET circuits like small signal transistor circuit and FET circuit.

  3. Circuit analysis and computer simulations of ZT-40M

    International Nuclear Information System (INIS)

    Melton, J.G.

    1981-01-01

    The network analysis code SCEPTRE was extensively used to predict circuit performance under both normal and fault conditions. SCEPTRE's capabilities enabled us to include realistic nonlinear models for such components as the PF iron cores, the PCB transformers, the ignition switches, and even the complicated way in which the plasma couples the two circuits. Fault conditions for which protective measures were devised include; failure to achieve gas breakdown; disruption of the plasma current; saturation of the PF iron cores; prefire of a crowbar ignitron; overvoltage due to transients on the coax cables

  4. Research on uranium resource models. Part IV. Logic: a computer graphics program to construct integrated logic circuits for genetic-geologic models. Progress report

    International Nuclear Information System (INIS)

    Scott, W.A.; Turner, R.M.; McCammon, R.B.

    1981-01-01

    Integrated logic circuits were described as a means of formally representing genetic-geologic models for estimating undiscovered uranium resources. The logic circuits are logical combinations of selected geologic characteristics judged to be associated with particular types of uranium deposits. Each combination takes on a value which corresponds to the combined presence, absence, or don't know states of the selected characteristic within a specified geographic cell. Within each cell, the output of the logic circuit is taken as a measure of the favorability of occurrence of an undiscovered deposit of the type being considered. In this way, geological, geochemical, and geophysical data are incorporated explicitly into potential uranium resource estimates. The present report describes how integrated logic circuits are constructed by use of a computer graphics program. A user's guide is also included

  5. Classical Simulation of Intermediate-Size Quantum Circuits

    OpenAIRE

    Chen, Jianxin; Zhang, Fang; Chen, Mingcheng; Huang, Cupjin; Newman, Michael; Shi, Yaoyun

    2018-01-01

    We introduce a distributed classical simulation algorithm for general quantum circuits, and present numerical results for calculating the output probabilities of universal random circuits. We find that we can simulate more qubits to greater depth than previously reported using the cluster supported by the Data Infrastructure and Search Technology Division of the Alibaba Group. For example, computing a single amplitude of an $8\\times 8$ qubit circuit with depth $40$ was previously beyond the r...

  6. Co-recycling of acrylonitrile-butadiene-styrene waste plastic and nonmetal particles from waste printed circuit boards to manufacture reproduction composites.

    Science.gov (United States)

    Sun, Zhixing; Shen, Zhigang; Zhang, Xiaojing; Ma, Shulin

    2015-01-01

    This study investigated the feasibility of using acrylonitrile-butadiene-styrene (ABS) waste plastic and nonmetal particles from waste printed circuit boards (WPCB) to manufacture reproduction composites (RC), with the aim of co-recycling these two waste resources. The composites were prepared in a twin-crew extruder and investigated by means of mechanical testing, in situ flexural observation, thermogravimatric analysis, and dimensional stability evaluation. The results showed that the presence of nonmetal particles significantly improved the mechanical properties and the physical performance of the RC. A loading of 30 wt% nonmetal particles could achieve a flexural strength of 72.6 MPa, a flexural modulus of 3.57 GPa, and an impact strength of 15.5 kJ/m2. Moreover, it was found that the application of maleic anhydride-grafted ABS as compatilizer could effectively promote the interfacial adhesion between the ABS plastic and the nonmetal particles. This research provides a novel method to reuse waste ABS and WPCB nonmetals for manufacturing high value-added product, which represents a promising way for waste recycling and resolving the environmental problem.

  7. Model for transient simulation in a PWR steam circuit

    International Nuclear Information System (INIS)

    Mello, L.A. de.

    1982-11-01

    A computer code (SURF) was developed and used to simulate pressure losses along the tubes of the main steam circuit of a PWR nuclear power plant, and the steam flow through relief and safety valves when pressure reactors its thresholds values. A thermodynamic model of turbines (high and low pressure), and its associated components are simulated too. The SURF computer code was coupled to the GEVAP computer code, complementing the simulation of a PWR nuclear power plant main steam circuit. (Author) [pt

  8. Flexible circuits with integrated switches for robotic shape sensing

    Science.gov (United States)

    Harnett, C. K.

    2016-05-01

    Digital switches are commonly used for detecting surface contact and limb-position limits in robotics. The typical momentary-contact digital switch is a mechanical device made from metal springs, designed to connect with a rigid printed circuit board (PCB). However, flexible printed circuits are taking over from the rigid PCB in robotics because the circuits can bend while carrying signals and power through moving joints. This project is motivated by a previous work where an array of surface-mount momentary contact switches on a flexible circuit acted as an all-digital shape sensor compatible with the power resources of energy harvesting systems. Without a rigid segment, the smallest commercially-available surface-mount switches would detach from the flexible circuit after several bending cycles, sometimes violently. This report describes a low-cost, conductive fiber based method to integrate electromechanical switches into flexible circuits and other soft, bendable materials. Because the switches are digital (on/off), they differ from commercially-available continuous-valued bend/flex sensors. No amplification or analog-to-digital conversion is needed to read the signal, but the tradeoff is that the digital switches only give a threshold curvature value. Boundary conditions on the edges of the flexible circuit are key to setting the threshold curvature value for switching. This presentation will discuss threshold-setting, size scaling of the design, automation for inserting a digital switch into the flexible circuit fabrication process, and methods for reconstructing a shape from an array of digital switch states.

  9. Control circuits for the 1.3 GeV electron synchrotron

    International Nuclear Information System (INIS)

    Asaoka, S.; Shiino, K.; Yoshioka, M.; Norimura, K.

    1980-01-01

    Following control circuits for the 1.3 GeV electron synchrotron, Institute for Nuclear Study, University of Tokyo, have been designed and constructed. 1. Variable delay circuits for the timing pulse of the synchrotron. 2. An alarm circuit for sputter ion pumps. 3. A sample and hold circuit for digital display and computer control of the beam intensity. This report describes detailes of the circuits and their specificatons. (author)

  10. Experimental Verification of Guided-Wave Lumped Circuits Using Waveguide Metamaterials

    Science.gov (United States)

    Li, Yue; Zhang, Zhijun

    2018-04-01

    Through the construction and characterization in microwave frequencies, we experimentally demonstrate our recently developed theory of waveguide lumped circuits, i.e., waveguide metatronics [Sci. Adv. 2, e1501790 (2016), 10.1126/sciadv.1501790], as a method to design subwavelength-scaled analog circuits. In the paradigm of waveguide metatronics, numbers of lumped inductors and capacitors are easily integrated functionally inside the waveguide, which is an irreplaceable transmission line in millimeter-wave and terahertz systems with the advantages of low radiation loss and low crosstalk. An example of multiple-ordered metatronic filters with layered structures is fabricated utilizing the technique of substrate integrated waveguides, which can be easily constructed by the printed-circuit-board process. The materials used in the construction are also typical microwave materials with positive permittivity, low loss, and negligible dispersion, imitating the plasmonic materials with negative permittivity in the optical domain. The results verify the theory of waveguide metatronics, which provides an efficient platform of functional lumped circuit design for guided-wave processing.

  11. Morphology, mechanical and thermal oxidative aging properties of HDPE composites reinforced by nonmetals recycled from waste printed circuit boards.

    Science.gov (United States)

    Yang, Shuangqiao; Bai, Shibing; Wang, Qi

    2016-11-01

    In this study nonmetals recycled from waste printed circuit boards (NPCB) is used as reinforce fillers in high-density polyethylene (HDPE) composites. The morphology, mechanical and thermal oxidative aging properties of NPCB reinforced HDPE composites are assessed and it compared with two other commercial functional filler for the first time. Mechanical test results showed that NPCB could be used as reinforcing fillers in the HDPE composites and mechanical properties especially for stiffness is better than other two commercial fillers. The improved mechanical property was confirmed by the higher aspect ratio and strong interfacial adhesion in scanning electron microscopy (SEM) studies. The heat deflection temperature (HDT) test showed the presence of fiberglass in NPCB can improve the heat resistance of composite for their potential applications. Meanwhile, the oxidation induction time (OIT) and the Fourier transform infrared (FTIR) spectroscopy results showed that NPCB has a near resistance to oxidation as two other commercial fillers used in this paper. The above results show the reuse of NPCB in the HDPE composites represents a promising way for resolving both the environmental pollution and the high-value reuse of resources. Copyright © 2015. Published by Elsevier Ltd.

  12. Feedback control of superconducting quantum circuits

    NARCIS (Netherlands)

    Ristè, D.

    2014-01-01

    Superconducting circuits have recently risen to the forefront of the solid-state prototypes for quantum computing. Reaching the stage of robust quantum computing requires closing the loop between measurement and control of quantum bits (qubits). This thesis presents the realization of feedback

  13. Het onzichtbare circuit

    NARCIS (Netherlands)

    Nauta, Bram

    2013-01-01

    De chip, of geïntegreerde schakeling, heeft in een razend tempo ons leven ingrijpend veranderd. Het lijkt zo vanzelfsprekend dat er weer een nieuwe generatie smartphones, tablets of computers is. Maar dat is het niet. Prof.dr.ir. Bram Nauta, hoogleraar Integrated Circuit Design, laat in zijn rede

  14. Note: A disposable x-ray camera based on mass produced complementary metal-oxide-semiconductor sensors and single-board computers

    Energy Technology Data Exchange (ETDEWEB)

    Hoidn, Oliver R.; Seidler, Gerald T., E-mail: seidler@uw.edu [Physics Department, University of Washington, Seattle, Washington 98195 (United States)

    2015-08-15

    We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2–6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ∼20% quantum efficiency at 2.6 keV with ∼190 eV resolution and a 100 kHz maximum detection rate. The detector platform’s useful intrinsic energy resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry.

  15. A personal computer-based nuclear magnetic resonance spectrometer

    Science.gov (United States)

    Job, Constantin; Pearson, Robert M.; Brown, Michael F.

    1994-11-01

    Nuclear magnetic resonance (NMR) spectroscopy using personal computer-based hardware has the potential of enabling the application of NMR methods to fields where conventional state of the art equipment is either impractical or too costly. With such a strategy for data acquisition and processing, disciplines including civil engineering, agriculture, geology, archaeology, and others have the possibility of utilizing magnetic resonance techniques within the laboratory or conducting applications directly in the field. Another aspect is the possibility of utilizing existing NMR magnets which may be in good condition but unused because of outdated or nonrepairable electronics. Moreover, NMR applications based on personal computer technology may open up teaching possibilities at the college or even secondary school level. The goal of developing such a personal computer (PC)-based NMR standard is facilitated by existing technologies including logic cell arrays, direct digital frequency synthesis, use of PC-based electrical engineering software tools to fabricate electronic circuits, and the use of permanent magnets based on neodymium-iron-boron alloy. Utilizing such an approach, we have been able to place essentially an entire NMR spectrometer console on two printed circuit boards, with the exception of the receiver and radio frequency power amplifier. Future upgrades to include the deuterium lock and the decoupler unit are readily envisioned. The continued development of such PC-based NMR spectrometers is expected to benefit from the fast growing, practical, and low cost personal computer market.

  16. Disassembly and physical separation of electric/electronic components layered in printed circuit boards (PCB).

    Science.gov (United States)

    Lee, Jaeryeong; Kim, Youngjin; Lee, Jae-chun

    2012-11-30

    Although printed circuit boards (PCBs) contain various elements, only the major elements (i.e., those with content levels in wt% or over grade) of and precious metals (e.g., Ag, Au, and platinum groups) contained within PCBs can be recycled. To recover other elements from PCBs, the PCBs should be properly disassembled as the first step of the recycling process. The recovery of these other elements would be beneficial for efforts to conserve scarce resources, reuse electric/electronic components (EECs), and eliminate environmental problems. This paper examines the disassembly of EECs from wasted PCBs (WPCBs) and the physical separation of these EECs using a self-designed disassembling apparatus and a 3-step separation process of sieving, magnetic separation, and dense medium separation. The disassembling efficiencies were evaluated by using the ratio of grinding area (E(area)) and the weight ratio of the detached EECs (E(weight)). In the disassembly treatment, these efficiencies were improved with an increase of grinder speed and grinder height. 97.7% (E(area)) and 98% (E(weight)) could be accomplished ultimately by 3 repetitive treatments at a grinder speed of 5500 rpm and a grinder height of 1.5mm. Through a series of physical separations, most groups of the EECs (except for the diode, transistor, and IC chip groups) could be sorted at a relatively high separation efficiency of about 75% or more. To evaluate the separation efficiency with regard to the elemental composition, the distribution ratio (R(dis)) and the concentration ratio (R(conc)) were used. 15 elements could be separated with the highest R(dis) and R(conc) in the same separated division. This result implies that the recyclability of the elements is highly feasible, even though the initial content in EECs is lower than several tens of mg/kg. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Simplified model of a PWR primary circuit

    International Nuclear Information System (INIS)

    Souza, A.L.; Faya, A.J.G.

    1988-07-01

    The computer program RENUR was developed to perform a very simplified simulation of a typical PWR primary circuit. The program has mathematical models for the thermal-hydraulics of the reactor core and the pressurizer, the rest of the circuit being treated as a single volume. Heat conduction in the fuel rod is analyzed by a nodal model. Average and hot channels are treated so that bulk response of the core and DNBR can be evaluated. A homogenenous model is employed in the pressurizer. Results are presented for a steady-state situation as well as for a loss of load transient. Agreement with the results of more elaborate computer codes is good with substantial reduction in computer costs. (author) [pt

  18. Recycling of non-metallic fractions from waste printed circuit boards: A review

    International Nuclear Information System (INIS)

    Guo Jiuyong; Guo Jie; Xu Zhenming

    2009-01-01

    The major economic driving force for recycling of waste printed circuit boards (PCBs) is the value of the metallic fractions (MFs) of PCBs. The non-metallic fractions (NMFs), which take up almost 70 wt% of waste PCBs, were treated by combustion or land filling in the past. However, combustion of the NMFs will cause the formation of highly toxic polybrominated dibenzodioxins and dibenzofurans (PBDD/Fs) while land filling of the NMFs will lead to secondary pollution caused by heavy metals and brominated flame retardants (BFRs) leaching to the groundwater. Therefore, recycling of the NMFs from waste PCBs is drawing more and more attention from the public and the governments. Currently, how to recycle the NMFs environmental soundly has become a significant topic in recycling of waste PCBs. In order to fulfill the better resource utilization of the NMFs, the compositions and characteristics of the NMFs, methods and outcomes of recycling the NMFs from waste PCBs and analysis and treatment for the hazardous substances contained in the NMFs were reviewed in this paper. Thermosetting resin matrix composites, thermoplastic matrix composites, concrete and viscoelastic materials are main applications for physical recycling of the NMFs. Chemical recycling methods consisting of pyrolysis, gasification, supercritical fluids depolymerization and hydrogenolytic degradation can be used to convert the NMFs to chemical feedstocks and fuels. The toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) can be used to determine the toxicity characteristic (TC) of the NMFs and to evaluate the environmental safety of products made from the recycled NMFs. It is believed that physical recycling of the NMFs has been a promising recycling method. Much more work should be done to develop comprehensive and industrialized usage of the NMFs recycled by physical methods. Chemical recycling methods have the advantages in eliminating hazardous substances

  19. Recycling of non-metallic fractions from waste printed circuit boards: A review

    Energy Technology Data Exchange (ETDEWEB)

    Guo Jiuyong; Guo Jie [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Xu Zhenming, E-mail: zmxu@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2009-09-15

    The major economic driving force for recycling of waste printed circuit boards (PCBs) is the value of the metallic fractions (MFs) of PCBs. The non-metallic fractions (NMFs), which take up almost 70 wt% of waste PCBs, were treated by combustion or land filling in the past. However, combustion of the NMFs will cause the formation of highly toxic polybrominated dibenzodioxins and dibenzofurans (PBDD/Fs) while land filling of the NMFs will lead to secondary pollution caused by heavy metals and brominated flame retardants (BFRs) leaching to the groundwater. Therefore, recycling of the NMFs from waste PCBs is drawing more and more attention from the public and the governments. Currently, how to recycle the NMFs environmental soundly has become a significant topic in recycling of waste PCBs. In order to fulfill the better resource utilization of the NMFs, the compositions and characteristics of the NMFs, methods and outcomes of recycling the NMFs from waste PCBs and analysis and treatment for the hazardous substances contained in the NMFs were reviewed in this paper. Thermosetting resin matrix composites, thermoplastic matrix composites, concrete and viscoelastic materials are main applications for physical recycling of the NMFs. Chemical recycling methods consisting of pyrolysis, gasification, supercritical fluids depolymerization and hydrogenolytic degradation can be used to convert the NMFs to chemical feedstocks and fuels. The toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) can be used to determine the toxicity characteristic (TC) of the NMFs and to evaluate the environmental safety of products made from the recycled NMFs. It is believed that physical recycling of the NMFs has been a promising recycling method. Much more work should be done to develop comprehensive and industrialized usage of the NMFs recycled by physical methods. Chemical recycling methods have the advantages in eliminating hazardous substances

  20. Design, Assembly, Integration, and Testing of a Power Processing Unit for a Cylindrical Hall Thruster, the NORSAT-2 Flatsat, and the Vector Gravimeter for Asteroids Instrument Computer

    Science.gov (United States)

    Svatos, Adam Ladislav

    This thesis describes the author's contributions to three separate projects. The bus of the NORSAT-2 satellite was developed by the Space Flight Laboratory (SFL) for the Norwegian Space Centre (NSC) and Space Norway. The author's contributions to the mission were performing unit tests for the components of all the spacecraft subsystems as well as designing and assembling the flatsat from flight spares. Gedex's Vector Gravimeter for Asteroids (VEGA) is an accelerometer for spacecraft. The author's contributions to this payload were modifying the instrument computer board schematic, designing the printed circuit board, developing and applying test software, and performing thermal acceptance testing of two instrument computer boards. The SFL's cylindrical Hall effect thruster combines the cylindrical configuration for a Hall thruster and uses permanent magnets to achieve miniaturization and low power consumption, respectively. The author's contributions were to design, build, and test an engineering model power processing unit.

  1. Computation of fission product distribution in core and primary circuit of a high temperature reactor during normal operation

    International Nuclear Information System (INIS)

    Mattke, U.H.

    1991-08-01

    The fission product release during normal operation from the core of a high temperature reactor is well known to be very low. A HTR-Modul-reactor with a reduced power of 170 MW th is examined under the aspect whether the contamination with Cs-137 as most important nuclide will be so low that a helium turbine in the primary circuit is possible. The program SPTRAN is the tool for the computations and siumlations of fission product transport in HTRs. The program initially developed for computations of accident events has been enlarged for computing the fission product transport under the conditions of normal operation. The theoretical basis, the used programs and data basis are presented followed by the results of the computations. These results are explained and discussed; moreover the consequences and future possibilities of development are shown. (orig./HP) [de

  2. Electronic bulletin board system for image and information exchange

    International Nuclear Information System (INIS)

    Halama, J.R.; Henkin, R.E.; Wagner, R.H.

    1990-01-01

    This paper provides nuclear medicine professionals access to an electronic bulletin board (EBB) for image and information exchange. EBB users access the system remotely via modem and personal computer. A public message board is maintained containing messages posted by users. New messages or replies to existing messages may be posted. A public library board contains documents and images for users to access by transmitting them locally for off-line review. Comments and replies may be posted in the library board. New files may be posted in the library at any time. The EBB programs were developed on a multi-user computer system, allowing simultaneous access of users and on-line conferencing among active users

  3. Integrated optoelectronic materials and circuits for optical interconnects

    International Nuclear Information System (INIS)

    Hutcheson, L.D.

    1988-01-01

    Conventional interconnect and switching technology is rapidly becoming a critical issue in the realization of systems using high speed silicon and GaAs based technologies. In recent years clock speeds and on-chip density for VLSI/VHSIC technology has made packaging these high speed chips extremely difficult. A strong case can be made for using optical interconnects for on-chip/on-wafer, chip-to-chip and board-to-board high speed communications. GaAs integrated optoelectronic circuits (IOC's) are being developed in a number of laboratories for performing Input/Output functions at all levels. In this paper integrated optoelectronic materials, electronics and optoelectronic devices are presented. IOC's are examined from the standpoint of what it takes to fabricate the devices and what performance can be expected

  4. Development and Flight Results of a PC104/QNX-Based On-Board Computer and Software for the YES2 Tether Experiment

    Science.gov (United States)

    Spiliotopoulos, I.; Mirmont, M.; Kruijff, M.

    2008-08-01

    This paper highlights the flight preparation and mission performance of a PC104-based On-Board Computer for ESA's second Young Engineer's Satellite (YES2), with additional attention to the flight software design and experience of QNX as multi-process real-time operating system. This combination of Commercial-Of-The-Shelf (COTS) technologies is an accessible option for small satellites with high computational demands.

  5. Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit.

    Science.gov (United States)

    Song, Chao; Zheng, Shi-Biao; Zhang, Pengfei; Xu, Kai; Zhang, Libo; Guo, Qiujiang; Liu, Wuxin; Xu, Da; Deng, Hui; Huang, Keqiang; Zheng, Dongning; Zhu, Xiaobo; Wang, H

    2017-10-20

    Geometric phase, associated with holonomy transformation in quantum state space, is an important quantum-mechanical effect. Besides fundamental interest, this effect has practical applications, among which geometric quantum computation is a paradigm, where quantum logic operations are realized through geometric phase manipulation that has some intrinsic noise-resilient advantages and may enable simplified implementation of multi-qubit gates compared to the dynamical approach. Here we report observation of a continuous-variable geometric phase and demonstrate a quantum gate protocol based on this phase in a superconducting circuit, where five qubits are controllably coupled to a resonator. Our geometric approach allows for one-step implementation of n-qubit controlled-phase gates, which represents a remarkable advantage compared to gate decomposition methods, where the number of required steps dramatically increases with n. Following this approach, we realize these gates with n up to 4, verifying the high efficiency of this geometric manipulation for quantum computation.

  6. Optoelectronic circuits in nanometer CMOS technology

    CERN Document Server

    Atef, Mohamed

    2016-01-01

    This book describes the newest implementations of integrated photodiodes fabricated in nanometer standard CMOS technologies. It also includes the required fundamentals, the state-of-the-art, and the design of high-performance laser drivers, transimpedance amplifiers, equalizers, and limiting amplifiers fabricated in nanometer CMOS technologies. This book shows the newest results for the performance of integrated optical receivers, laser drivers, modulator drivers and optical sensors in nanometer standard CMOS technologies. Nanometer CMOS technologies rapidly advanced, enabling the implementation of integrated optical receivers for high data rates of several Giga-bits per second and of high-pixel count optical imagers and sensors. In particular, low cost silicon CMOS optoelectronic integrated circuits became very attractive because they can be extensively applied to short-distance optical communications, such as local area network, chip-to-chip and board-to-board interconnects as well as to imaging and medical...

  7. Optimal boarding method for airline passengers

    Energy Technology Data Exchange (ETDEWEB)

    Steffen, Jason H.; /Fermilab

    2008-02-01

    Using a Markov Chain Monte Carlo optimization algorithm and a computer simulation, I find the passenger ordering which minimizes the time required to board the passengers onto an airplane. The model that I employ assumes that the time that a passenger requires to load his or her luggage is the dominant contribution to the time needed to completely fill the aircraft. The optimal boarding strategy may reduce the time required to board and airplane by over a factor of four and possibly more depending upon the dimensions of the aircraft. I explore some features of the optimal boarding method and discuss practical modifications to the optimal. Finally, I mention some of the benefits that could come from implementing an improved passenger boarding scheme.

  8. Circuit For Control Of Electromechanical Prosthetic Hand

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Proposed circuit for control of electromechanical prosthetic hand derives electrical control signals from shoulder movements. Updated, electronic version of prosthesis, that includes two hooklike fingers actuated via cables from shoulder harness. Circuit built around favored shoulder harness, provides more dexterous movement, without incurring complexity of computer-controlled "bionic" or hydraulically actuated devices. Additional harness and potentiometer connected to similar control circuit mounted on other shoulder. Used to control stepping motor rotating hand about prosthetic wrist to one of number of angles consistent with number of digital outputs. Finger-control signals developed by circuit connected to first shoulder harness transmitted to prosthetic hand via sliprings at prosthetic wrist joint.

  9. Automatic design of digital synthetic gene circuits.

    Directory of Open Access Journals (Sweden)

    Mario A Marchisio

    2011-02-01

    Full Text Available De novo computational design of synthetic gene circuits that achieve well-defined target functions is a hard task. Existing, brute-force approaches run optimization algorithms on the structure and on the kinetic parameter values of the network. However, more direct rational methods for automatic circuit design are lacking. Focusing on digital synthetic gene circuits, we developed a methodology and a corresponding tool for in silico automatic design. For a given truth table that specifies a circuit's input-output relations, our algorithm generates and ranks several possible circuit schemes without the need for any optimization. Logic behavior is reproduced by the action of regulatory factors and chemicals on the promoters and on the ribosome binding sites of biological Boolean gates. Simulations of circuits with up to four inputs show a faithful and unequivocal truth table representation, even under parametric perturbations and stochastic noise. A comparison with already implemented circuits, in addition, reveals the potential for simpler designs with the same function. Therefore, we expect the method to help both in devising new circuits and in simplifying existing solutions.

  10. A parity checker circuit based on microelectromechanical resonator logic elements

    Energy Technology Data Exchange (ETDEWEB)

    Hafiz, Md Abdullah Al, E-mail: abdullah.hafiz@kaust.edu.sa [CEMSE Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia); Li, Ren [CEMSE Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia); Younis, Mohammad I. [PSE Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia); Fariborzi, Hossein [CEMSE Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2017-03-03

    Micro/nano-electromechanical resonator based logic computation has attracted significant attention in recent years due to its dynamic mode of operation, ultra-low power consumption, and potential for reprogrammable and reversible computing. Here we demonstrate a 4-bit parity checker circuit by utilizing recently developed logic gates based on MEMS resonators. Toward this, resonance frequencies of shallow arch shaped micro-resonators are electrothermally tuned by the logic inputs to constitute the required logic gates for the proposed parity checker circuit. This study demonstrates that by utilizing MEMS resonator based logic elements, complex digital circuits can be realized. - Highlights: • A 4-bit parity checker circuit is proposed and demonstrated based on MEMS resonator based logic elements. • Multiple copies of MEMS resonator based XOR logic gates are used to construct a complex logic circuit. • Functionality and feasibility of micro-resonator based logic platform is demonstrated.

  11. Heat management in integrated circuits on-chip and system-level monitoring and cooling

    CERN Document Server

    Ogrenci-Memik, Seda

    2016-01-01

    This essential overview covers the subject of thermal monitoring and management in integrated circuits. Specifically, it focuses on devices and materials that are intimately integrated on-chip (as opposed to in-package or on-board) for the purposes of thermal monitoring and thermal management.

  12. A parity checker circuit based on microelectromechanical resonator logic elements

    KAUST Repository

    Hafiz, Md Abdullah Al

    2017-01-11

    Micro/nano-electromechanical resonator based logic computation has attracted significant attention in recent years due to its dynamic mode of operation, ultra-low power consumption, and potential for reprogrammable and reversible computing. Here we demonstrate a 4-bit parity checker circuit by utilizing recently developed logic gates based on MEMS resonators. Toward this, resonance frequencies of shallow arch shaped micro resonators are electrothermally tuned by the logic inputs to constitute the required logic gates for the proposed parity checker circuit. This study demonstrates that by utilizing MEMS resonator based logic elements, complex digital circuits can be realized.

  13. A parity checker circuit based on microelectromechanical resonator logic elements

    KAUST Repository

    Hafiz, Md Abdullah Al; Li, Ren; Younis, Mohammad I.; Fariborzi, Hossein

    2017-01-01

    Micro/nano-electromechanical resonator based logic computation has attracted significant attention in recent years due to its dynamic mode of operation, ultra-low power consumption, and potential for reprogrammable and reversible computing. Here we demonstrate a 4-bit parity checker circuit by utilizing recently developed logic gates based on MEMS resonators. Toward this, resonance frequencies of shallow arch shaped micro resonators are electrothermally tuned by the logic inputs to constitute the required logic gates for the proposed parity checker circuit. This study demonstrates that by utilizing MEMS resonator based logic elements, complex digital circuits can be realized.

  14. Evaluation of forearm support provided by the Workplace Board on perceived tension, comfort and productivity in pregnant and non-pregnant computer users.

    Science.gov (United States)

    Slot, Tegan; Charpentier, Karine; Dumas, Geneviève; Delisle, Alain; Leger, Andy; Plamondon, André

    2009-01-01

    The aim of the study was to evaluate the effect of forearm support provided by the Workplace Board on perceived tension, comfort and productivity among pregnant and non-pregnant female computer workers. Ten pregnant and 18 non-pregnant women participated in the study. Participants completed three sets of tension/discomfort questionnaires at two week intervals. The first set was completed prior to any workstation intervention; the second set was completed after two weeks working with an ergonomically adjusted workstation; the third set was completed after two weeks working with the Workplace Board integrated into the office workstation. With the Workplace Board, decreased perceived tension was reported in the left shoulder, wrist and low back in non-pregnant women only. The Board was generally liked by all participants, and increased comfort and productivity in all areas, with the exception of a negative effect on productivity of general office tasks. The board is suitable for integration in most office workstations and for most users, but has no special benefits for pregnant women.

  15. Equivalent circuit simulation of HPEM-induced transient responses at nonlinear loads

    Directory of Open Access Journals (Sweden)

    M. Kotzev

    2017-09-01

    Full Text Available In this paper the equivalent circuit modeling of a nonlinearly loaded loop antenna and its transient responses to HPEM field excitations are investigated. For the circuit modeling the general strategy to characterize the nonlinearly loaded antenna by a linear and a nonlinear circuit part is pursued. The linear circuit part can be determined by standard methods of antenna theory and numerical field computation. The modeling of the nonlinear circuit part requires realistic circuit models of the nonlinear loads that are given by Schottky diodes. Combining both parts, appropriate circuit models are obtained and analyzed by means of a standard SPICE circuit simulator. It is the main result that in this way full-wave simulation results can be reproduced. Furthermore it is clearly seen that the equivalent circuit modeling offers considerable advantages with respect to computation speed and also leads to improved physical insights regarding the coupling between HPEM field excitation and nonlinearly loaded loop antenna.

  16. New Service Status Board

    CERN Multimedia

    2013-01-01

    On Monday 14 October, the Service Status Board for GS and IT will change. The new Status Board will be integrated with the CERN Service Portal and with the CERN Service Catalogue.   As of today, the SSB will display “Service Incidents”, “Planned Interventions” and “Service Changes”. References valid from 14 October: CERN SSB at https://cern.ch/ssb Computing SSB (previously IT SSB) at https://cern.ch/itssb   Nicole Cremel, IT and GS Service Management Support

  17. Potentials for Improvement of Resource Efficiency in Printed Circuit Board Manufacturing: A Case Study Based on Material Flow Cost Accounting

    Directory of Open Access Journals (Sweden)

    Yi-Xuan Wang

    2017-05-01

    Full Text Available The pursuit of sustainable resource use by manufacturing companies is driven by resource scarcity, environmental awareness, and cost savings potentials. To address these issues, Material Flow Cost Accounting (MFCA has been developed and applied as an effective environmental management tool. Within MFCA’s general allocation, the accounts of products and losses are overrated by weight or volume. However, such a method is incompatible with Printed Circuit Board (PCB manufacturing because of industry characteristics in which primary inputs and products are measured by area. Based on MFCA, this case study systematically established several linear cost calculation models along the production process for capturing the actual waste flows as well as performing cost-benefit analysis. The recognition of previously ignored losses offered the incentive to find appropriate indicators to conduct cost-benefit analysis on hotspots for losses. Loss identification and analysis indicated that machining and wiring are the necessities and priorities of process optimization for resource efficiency improvement measures. Therefore, this research could not only advance the achievement of a profitable and sustainable production while improving resource efficiency at the source but could also provide support for decision making in PCB manufacturing.

  18. Exact Synthesis of Reversible Circuits Using A* Algorithm

    Science.gov (United States)

    Datta, K.; Rathi, G. K.; Sengupta, I.; Rahaman, H.

    2015-06-01

    With the growing emphasis on low-power design methodologies, and the result that theoretical zero power dissipation is possible only if computations are information lossless, design and synthesis of reversible logic circuits have become very important in recent years. Reversible logic circuits are also important in the context of quantum computing, where the basic operations are reversible in nature. Several synthesis methodologies for reversible circuits have been reported. Some of these methods are termed as exact, where the motivation is to get the minimum-gate realization for a given reversible function. These methods are computationally very intensive, and are able to synthesize only very small functions. There are other methods based on function transformations or higher-level representation of functions like binary decision diagrams or exclusive-or sum-of-products, that are able to handle much larger circuits without any guarantee of optimality or near-optimality. Design of exact synthesis algorithms is interesting in this context, because they set some kind of benchmarks against which other methods can be compared. This paper proposes an exact synthesis approach based on an iterative deepening version of the A* algorithm using the multiple-control Toffoli gate library. Experimental results are presented with comparisons with other exact and some heuristic based synthesis approaches.

  19. Reducing image noise in computed tomography (CT) colonography: effect of an integrated circuit CT detector.

    Science.gov (United States)

    Liu, Yu; Leng, Shuai; Michalak, Gregory J; Vrieze, Thomas J; Duan, Xinhui; Qu, Mingliang; Shiung, Maria M; McCollough, Cynthia H; Fletcher, Joel G

    2014-01-01

    To investigate whether the integrated circuit (IC) detector results in reduced noise in computed tomography (CT) colonography (CTC). Three hundred sixty-six consecutive patients underwent clinically indicated CTC using the same CT scanner system, except for a difference in CT detectors (IC or conventional). Image noise, patient size, and scanner radiation output (volume CT dose index) were quantitatively compared between patient cohorts using each detector system, with separate comparisons for the abdomen and pelvis. For the abdomen and pelvis, despite significantly larger patient sizes in the IC detector cohort (both P 0.18). Based on the observed image noise reduction, radiation dose could alternatively be reduced by approximately 20% to result in similar levels of image noise. Computed tomography colonography images acquired using the IC detector had significantly lower noise than images acquired using the conventional detector. This noise reduction can permit further radiation dose reduction in CTC.

  20. DIADEME: A computer code to assess in operation defective fuel characteristics and primary circuit contamination

    Energy Technology Data Exchange (ETDEWEB)

    Genin, J.B. [DEN/DEC/S3C, CEA Cadarache, 13 - Saint-Paul-lez-Durance (France); Harrer, A. [EdF/SEPTEN, 69 - Villeurbanne (France); Musante, Y. [FRAMATOME-ANP, 69 - Lyon (France)

    2002-07-01

    DIADEME is a computer code developed within the framework of R and D cooperation between the French Atomic Energy Commission (CEA), Electricite de France (EdF) and FRAMATOME-ANP. Its aim is to assess in operation defective fuel characteristics and primary circuit contamination for actinides and long half-life fission products involved in health physics problems as well as in waste and decommissioning studies. DIADEME has been developed and qualified for the EDF nuclear power plants. For many years, both theoretical and experimental studies have been carried out at the CEA on the release of fission products and actinides out of defective fuel rods in operation, their migration and deposition in PWR primary circuits. These studies have allowed defect characteristic diagnosis methods to be developed, based on radiochemical measurements of the primary coolant. These methods are generally used along with gamma spectrometry measurements on primary water sampling. In order to be completely efficient, these methods can also be used in connection with an on-line primary water gamma spectrometry device. This permits to obtain the most comprehensive data on fission product activity evolutions at steady state and during operation transients, and allows the on-line characterization of the defective fuel assemblies. For long half-life fission products and for actinides, DIADEME is also able to assess the activities of soluble and insoluble forms in the primary water and in the chemical and voluminal control system (CVCS) filters and resins, as well as those activities deposited on primary circuit surfaces. (author)

  1. DIADEME: A computer code to assess in operation defective fuel characteristics and primary circuit contamination

    International Nuclear Information System (INIS)

    Genin, J.B.; Harrer, A.; Musante, Y.

    2002-01-01

    DIADEME is a computer code developed within the framework of R and D cooperation between the French Atomic Energy Commission (CEA), Electricite de France (EdF) and FRAMATOME-ANP. Its aim is to assess in operation defective fuel characteristics and primary circuit contamination for actinides and long half-life fission products involved in health physics problems as well as in waste and decommissioning studies. DIADEME has been developed and qualified for the EDF nuclear power plants. For many years, both theoretical and experimental studies have been carried out at the CEA on the release of fission products and actinides out of defective fuel rods in operation, their migration and deposition in PWR primary circuits. These studies have allowed defect characteristic diagnosis methods to be developed, based on radiochemical measurements of the primary coolant. These methods are generally used along with gamma spectrometry measurements on primary water sampling. In order to be completely efficient, these methods can also be used in connection with an on-line primary water gamma spectrometry device. This permits to obtain the most comprehensive data on fission product activity evolutions at steady state and during operation transients, and allows the on-line characterization of the defective fuel assemblies. For long half-life fission products and for actinides, DIADEME is also able to assess the activities of soluble and insoluble forms in the primary water and in the chemical and voluminal control system (CVCS) filters and resins, as well as those activities deposited on primary circuit surfaces. (author)

  2. Simulation of pulsed-ionizing-radiation-induced errors in CMOS memory circuits

    International Nuclear Information System (INIS)

    Massengill, L.W.

    1987-01-01

    Effects of transient ionizing radiation on complementary metal-oxide-semiconductor (CMOS) memory circuits was studied by computer simulation. Simulation results have uncovered the dominant mechanism leading to information loss (upset) in dense (CMOS) circuits: rail span collapse. This effect is the catastrophic reduction in the local power supply at a RAM cell location due to the conglomerate radiation-induced photocurrents from all other RAM cells flowing through the power-supply-interconnect distribution. Rail-span collapse leads to reduced RAM cell-noise margins and can predicate upset. Results show that rail-span collapse in the dominant pulsed radiation effect in many memory circuits, preempting local circuit responses to the radiation. Several techniques to model power-supply noise, such as that arising from rail span collapse, are presented in this work. These include an analytical model for design optimization against these effects, a hierarchical computer-analysis technique for efficient power bus noise simulation in arrayed circuits, such as memories, and a complete circuit-simulation tool for noise margin analysis of circuits with arbitrary topologies

  3. A SURVEY OF SMART ELECTRICAL BOARDS IN UBIQUITOUS SENSOR NETWORKS FOR GEOMATICS APPLICATIONS

    Directory of Open Access Journals (Sweden)

    S. M. R. Moosavi

    2015-12-01

    Full Text Available Nowadays more advanced sensor networks in various fields are developed. There are lots of online sensors spreading around the world. Sensor networks have been used in Geospatial Information Systems (GIS since sensor networks have expanded. Health monitoring, environmental monitoring, traffic monitoring, etc, are the examples of its applications in Geomatics. Sensor network is an infrastructure comprised of sensing (measuring, computing, and communication elements that gives an administrator the ability to instrument, observe, and react to events and phenomena in a specified environment. This paper describes about development boards which can be used in sensor networks and their applications in Geomatics and their role in wireless sensor networks and also a comparison between various types of boards. Boards that are discussed in this paper are Arduino, Raspberry Pi, Beagle board, Cubieboard. The Boards because of their great potential are also known as single board computers. This paper is organized in four phases: First, Reviewing on ubiquitous computing and sensor networks. Second, introducing of some electrical boards. Then, defining some criterions for comparison. Finally, comparing the Ubiquitous boards.

  4. Eco-friendly copper recovery process from waste printed circuit boards using Fe{sup 3+}/Fe{sup 2+} redox system

    Energy Technology Data Exchange (ETDEWEB)

    Fogarasi, Szabolcs [Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, Cluj-Napoca RO-400028 (Romania); Imre-Lucaci, Florica [Babeş-Bolyai University, Interdisciplinary Research Institute on Bio-Nano-Sciences, 42 Treboniu Laurian Street, Cluj-Napoca RO-400271 (Romania); Egedy, Attila [University of Pannonia, Department of Process Engineering, Egyetem Str. 10, H-8200 Veszprém (Hungary); Imre-Lucaci, Árpád, E-mail: aimre@chem.ubbcluj.ro [Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, Cluj-Napoca RO-400028 (Romania); Ilea, Petru [Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos Street, Cluj-Napoca RO-400028 (Romania)

    2015-06-15

    Highlights: • We developed an ecofriendly mediated electrochemical process for copper recovery. • The recovery of copper was achieved without mechanical pretreatment of the samples. • We identified the optimal flow rate for the leaching and electrowinning of copper. • The copper content of the obtained cathodic deposits was over 99.9%. - Abstract: The present study aimed at developing an original and environmentally friendly process for the recovery of copper from waste printed circuit boards (WPCBs) by chemical dissolution with Fe{sup 3+} combined with the simultaneous electrowinning of copper and oxidant regeneration. The recovery of copper was achieved in an original set-up consisting of a three chamber electrochemical reactor (ER) connected in series with a chemical reactor (CR) equipped with a perforated rotating drum. Several experiments were performed in order to identify the optimal flow rate for the dissolution of copper in the CR and to ensure the lowest energy consumption for copper electrodeposition in the ER. The optimal hydrodynamic conditions were provided at 400 mL/min, leading to the 75% dissolution of metals and to a low specific energy consumption of 1.59 kW h/kg Cu for the electrodeposition process. In most experiments, the copper content of the obtained cathodic deposits was over 99.9%.

  5. Application of vacuum metallurgy to separate pure metal from mixed metallic particles of crushed waste printed circuit board scraps.

    Science.gov (United States)

    Zhan, Lu; Xu, Zhenming

    2008-10-15

    The principle of separating pure metal from mixed metallic particles (MMPs) byvacuum metallurgy is that the vapor pressures of various metals at the same temperature are different As a result, the metal with high vapor pressure and low boiling point can be separated from the mixed metals through distillation or sublimation, and then it can be recycled through condensation under a certain condition. The vacuum metallurgy separation (VMS) of MMPs of crushed waste printed circuit boards (WPCBs) has been studied in this paper. Theoretical analyses show that the MMPs (copper, zinc, bismuth, lead, and indium, for example) can be separated by vacuum metallurgy. The copper particles (0.15-0.20 mm) and zinc particles (<0.30 mm) were chosen to simulate the MMPs of crushed WPCBs. Experimental results show that the separated efficiency of zinc in the copper-rich particles achieves 96.19 wt % when the vacuum pressure is 0.01-0.10 Pa, the heating temperature is 1123 K, and the heating time is 105 min. Under this operation condition, the separated efficiency of zinc in the copper-rich particles from crushed WPCBs achieves 97.00 wt % and the copper purity increases from 90.68 to 99.84 wt %.

  6. Deep Modeling: Circuit Characterization Using Theory Based Models in a Data Driven Framework

    Energy Technology Data Exchange (ETDEWEB)

    Bolme, David S [ORNL; Mikkilineni, Aravind K [ORNL; Rose, Derek C [ORNL; Yoginath, Srikanth B [ORNL; Holleman, Jeremy [University of Tennessee, Knoxville (UTK); Judy, Mohsen [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science

    2017-01-01

    Analog computational circuits have been demonstrated to provide substantial improvements in power and speed relative to digital circuits, especially for applications requiring extreme parallelism but only modest precision. Deep machine learning is one such area and stands to benefit greatly from analog and mixed-signal implementations. However, even at modest precisions, offsets and non-linearity can degrade system performance. Furthermore, in all but the simplest systems, it is impossible to directly measure the intermediate outputs of all sub-circuits. The result is that circuit designers are unable to accurately evaluate the non-idealities of computational circuits in-situ and are therefore unable to fully utilize measurement results to improve future designs. In this paper we present a technique to use deep learning frameworks to model physical systems. Recently developed libraries like TensorFlow make it possible to use back propagation to learn parameters in the context of modeling circuit behavior. Offsets and scaling errors can be discovered even for sub-circuits that are deeply embedded in a computational system and not directly observable. The learned parameters can be used to refine simulation methods or to identify appropriate compensation strategies. We demonstrate the framework using a mixed-signal convolution operator as an example circuit.

  7. Automated processing of dynamic properties of intraventricular pressure by computer program and electronic circuit.

    Science.gov (United States)

    Adler, D; Mahler, Y

    1980-04-01

    A procedure for automatic detection and digital processing of the maximum first derivative of the intraventricular pressure (dp/dtmax), time to dp/dtmax(t - dp/dt) and beat-to-beat intervals have been developed. The procedure integrates simple electronic circuits with a short program using a simple algorithm for the detection of the points of interest. The tasks of differentiating the pressure signal and detecting the onset of contraction were done by electronics, while the tasks of finding the values of dp/dtmax, t - dp/dt, beat-to-beat intervals and all computations needed were done by software. Software/hardware 'trade off' considerations and the accuracy and reliability of the system are discussed.

  8. Non-Causal Computation

    Directory of Open Access Journals (Sweden)

    Ämin Baumeler

    2017-07-01

    Full Text Available Computation models such as circuits describe sequences of computation steps that are carried out one after the other. In other words, algorithm design is traditionally subject to the restriction imposed by a fixed causal order. We address a novel computing paradigm beyond quantum computing, replacing this assumption by mere logical consistency: We study non-causal circuits, where a fixed time structure within a gate is locally assumed whilst the global causal structure between the gates is dropped. We present examples of logically consistent non-causal circuits outperforming all causal ones; they imply that suppressing loops entirely is more restrictive than just avoiding the contradictions they can give rise to. That fact is already known for correlations as well as for communication, and we here extend it to computation.

  9. E-Learning System Using Segmentation-Based MR Technique for Learning Circuit Construction

    Science.gov (United States)

    Takemura, Atsushi

    2016-01-01

    This paper proposes a novel e-Learning system using the mixed reality (MR) technique for technical experiments involving the construction of electronic circuits. The proposed system comprises experimenters' mobile computers and a remote analysis system. When constructing circuits, each learner uses a mobile computer to transmit image data from the…

  10. BACTERIAL LEACHING OF ELECTRONIC SCRAP: INFLUENCE OF PROCESS PARAMETERS

    Directory of Open Access Journals (Sweden)

    Luciana Harue Yamane

    2013-03-01

    Full Text Available The application of bacterial leaching in the ore treatment is already known and also can be applied such as treatment of electronic waste to copper recovery. This paper investigates the influence of process parameters (pulp density, inoculums volume, rotation speed and initial concentration of ferrous iron on bacterial leaching of copper from printed circuit board of computers using the bacterium Acidithiobacillus ferrooxidans–LR. Printed circuit boards from computers were comminuted using a hammer mill. The powder obtained was magnetically separated and the non-magnetic material used in this study. A shake flask study was carried out on the non-magnetic material using a shaker. The results show that Acidithiobacillus ferrooxidans–LR can leach 99% of copper from printed circuit boards (non–magnetic material under the determined conditions through of the studies.

  11. Discrete ternary particle swarm optimization for area optimization of MPRM circuits

    International Nuclear Information System (INIS)

    Yu Haizhen; Wang Pengjun; Wang Disheng; Zhang Huihong

    2013-01-01

    Having the advantage of simplicity, robustness and low computational costs, the particle swarm optimization (PSO) algorithm is a powerful evolutionary computation tool for synthesis and optimization of Reed-Muller logic based circuits. Exploring discrete PSO and probabilistic transition rules, the discrete ternary particle swarm optimization (DTPSO) is proposed for mixed polarity Reed-Muller (MPRM) circuits. According to the characteristics of mixed polarity OR/XNOR expression, a tabular technique is improved, and it is applied in the polarity conversion of MPRM functions. DTPSO is introduced to search the best polarity for an area of MPRM circuits by building parameter mapping relationships between particles and polarities. The computational results show that the proposed DTPSO outperforms the reported method using maxterm conversion starting from POS Boolean functions. The average saving in the number of terms is about 11.5%; the algorithm is quite efficient in terms of CPU time and achieves 12.2% improvement on average. (semiconductor integrated circuits)

  12. Hybrid circuit prototypes for the CMS Tracker upgrade front-end electronics

    International Nuclear Information System (INIS)

    Blanchot, G; Honma, A; Kovacs, M; Braga, D; Raymond, M

    2013-01-01

    New high-density interconnect hybrid circuits are under development for the CMS tracker modules at the HL-LHC. These hybrids will provide module connectivity between flip-chip front-end ASICs, strip sensors and a service board for the data transmission and powering. Rigid organic-based substrate prototypes and also a flexible hybrid design have been built, containing up to eight front-end flip chip ASICs. A description of the function of the hybrid circuit in the tracker, the first prototype designs, results of some electrical and mechanical properties from the prototypes, and examples of the integration of the hybrids into detector modules are presented

  13. Embedding electromagnetic band gap structures in printed circuit boards for electromagnetic interference reduction

    NARCIS (Netherlands)

    Tereshchenko, O.V.

    2015-01-01

    Due to the tendency of faster data rates and lower power supply voltage in the integrated circuit (IC) design, Simultaneously Switching Noise (SSN) and ground bounce become serious concerns for designers and testers. This noise can be a source of electromagnetic interference (EMI). It propagates

  14. A precise goniometer/tensiometer using a low cost single-board computer

    Science.gov (United States)

    Favier, Benoit; Chamakos, Nikolaos T.; Papathanasiou, Athanasios G.

    2017-12-01

    Measuring the surface tension and the Young contact angle of a droplet is extremely important for many industrial applications. Here, considering the booming interest for small and cheap but precise experimental instruments, we have constructed a low-cost contact angle goniometer/tensiometer, based on a single-board computer (Raspberry Pi). The device runs an axisymmetric drop shape analysis (ADSA) algorithm written in Python. The code, here named DropToolKit, was developed in-house. We initially present the mathematical framework of our algorithm and then we validate our software tool against other well-established ADSA packages, including the commercial ramé-hart DROPimage Advanced as well as the DropAnalysis plugin in ImageJ. After successfully testing for various combinations of liquids and solid surfaces, we concluded that our prototype device would be highly beneficial for industrial applications as well as for scientific research in wetting phenomena compared to the commercial solutions.

  15. Test signal generation for analog circuits

    Directory of Open Access Journals (Sweden)

    B. Burdiek

    2003-01-01

    Full Text Available In this paper a new test signal generation approach for general analog circuits based on the variational calculus and modern control theory methods is presented. The computed transient test signals also called test stimuli are optimal with respect to the detection of a given fault set by means of a predefined merit functional representing a fault detection criterion. The test signal generation problem of finding optimal test stimuli detecting all faults form the fault set is formulated as an optimal control problem. The solution of the optimal control problem representing the test stimuli is computed using an optimization procedure. The optimization procedure is based on the necessary conditions for optimality like the maximum principle of Pontryagin and adjoint circuit equations.

  16. Glovebox with purification and pressure control of the neutral gas atmosphere in closed circuit

    International Nuclear Information System (INIS)

    Cadrot, J.

    1990-01-01

    In the gas main are placed 2 series of specific gas purifiers in parallel. Pressure is controlled with a buffer tank two three way solenoid value upstream and down stream a compressor and a supercharger. A checking board allows continuous monitoring of circuit tightness [fr

  17. Computation of the locus crossing point location of MC circuit

    International Nuclear Information System (INIS)

    Liu Hai-Jun; Li Zhi-Wei; Bu Kai; Sun Zhao-Lin; Nie Hong-Shan

    2014-01-01

    In this paper, the crossing point property of the i–v hysteresis curve in a memristor–capacitor (MC) circuit is analyzed. First, the ideal passive memristor on the crossing point property of i–v hysteresis curve is studied. Based on the analysis, the analytical derivation with respect to the crossing point location of MC circuit is given. Then the example of MC with linear memristance-versus-charge state map is demonstrated to discuss the drift property of cross-point location, caused by the frequency and capacitance value. (interdisciplinary physics and related areas of science and technology)

  18. Protection of toroidal field coils using multiple circuits

    International Nuclear Information System (INIS)

    Thome, R.J.; Langton, W.G.; Mann, W.R.; Pillsbury, R.D.; Tarrh, J.M.

    1983-01-01

    The protection of toroidal field (TF) coils using multiple circuits is described. The discharge of a single-circuit TF system is given for purposes of definition. Two-circuit TF systems are analyzed and the results presented analytically and graphically. Induced currents, maximum discharge voltages, and discharge time constants are compared to the single-circuit system. Three-circuit TF systems are analyzed. In addition to induced currents, maximum discharge voltages, and time constants, several different discharge scenarios are included. The impacts of having discharge rates versus final maximum coil temperatures as requirements are examined. The out-of-plane forces which occur in the three-circuit system are analyzed using an approximate model. The analysis of multiplecircuit TF systems is briefly described and results for a Toroidal Fusion Core Experiment (TFCX) scale device are given based on computer analysis. The advantages and disadvantages of using multiple-circuit systems are summarized and discussed. The primary disadvantages of multiple circuits are the increased circuit complexity and potential for out-of-plane forces. These are offset by the substantial reduction in maximum discharge voltages, as well as other design options which become available when using multiple circuits

  19. Polymer waveguides for electro-optical integration in data centers and high-performance computers.

    Science.gov (United States)

    Dangel, Roger; Hofrichter, Jens; Horst, Folkert; Jubin, Daniel; La Porta, Antonio; Meier, Norbert; Soganci, Ibrahim Murat; Weiss, Jonas; Offrein, Bert Jan

    2015-02-23

    To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.

  20. A Parallel Genetic Algorithm for Automated Electronic Circuit Design

    Science.gov (United States)

    Long, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris

    2000-01-01

    Parallelized versions of genetic algorithms (GAs) are popular primarily for three reasons: the GA is an inherently parallel algorithm, typical GA applications are very compute intensive, and powerful computing platforms, especially Beowulf-style computing clusters, are becoming more affordable and easier to implement. In addition, the low communication bandwidth required allows the use of inexpensive networking hardware such as standard office ethernet. In this paper we describe a parallel GA and its use in automated high-level circuit design. Genetic algorithms are a type of trial-and-error search technique that are guided by principles of Darwinian evolution. Just as the genetic material of two living organisms can intermix to produce offspring that are better adapted to their environment, GAs expose genetic material, frequently strings of 1s and Os, to the forces of artificial evolution: selection, mutation, recombination, etc. GAs start with a pool of randomly-generated candidate solutions which are then tested and scored with respect to their utility. Solutions are then bred by probabilistically selecting high quality parents and recombining their genetic representations to produce offspring solutions. Offspring are typically subjected to a small amount of random mutation. After a pool of offspring is produced, this process iterates until a satisfactory solution is found or an iteration limit is reached. Genetic algorithms have been applied to a wide variety of problems in many fields, including chemistry, biology, and many engineering disciplines. There are many styles of parallelism used in implementing parallel GAs. One such method is called the master-slave or processor farm approach. In this technique, slave nodes are used solely to compute fitness evaluations (the most time consuming part). The master processor collects fitness scores from the nodes and performs the genetic operators (selection, reproduction, variation, etc.). Because of dependency

  1. Superconducting Multilayer High-Density Flexible Printed Circuit Board for Very High Thermal Resistance Interconnections

    Science.gov (United States)

    de la Broïse, Xavier; Le Coguie, Alain; Sauvageot, Jean-Luc; Pigot, Claude; Coppolani, Xavier; Moreau, Vincent; d'Hollosy, Samuel; Knarosovski, Timur; Engel, Andreas

    2018-05-01

    We have successively developed two superconducting flexible PCBs for cryogenic applications. The first one is monolayer, includes 552 tracks (10 µm wide, 20 µm spacing), and receives 24 wire-bonded integrated circuits. The second one is multilayer, with one track layer between two shielding layers interconnected by microvias, includes 37 tracks, and can be interconnected at both ends by wire bonding or by connectors. The first cold measurements have been performed and show good performances. The novelty of these products is, for the first one, the association of superconducting materials with very narrow pitch and bonded integrated circuits and, for the second one, the introduction of a superconducting multilayer structure interconnected by vias which is, to our knowledge, a world-first.

  2. HySDeP: a computational platform for on-board hydrogen storage systems – hybrid high-pressure solid-state and gaseous storage

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2016-01-01

    A computational platform is developed in the Modelica® language within the DymolaTM environment to provide a tool for the design and performance comparison of on-board hydrogen storage systems. The platform has been coupled with an open source library for hydrogen fueling stations to investigate...

  3. On Multiplicative Linear Logic, Modality and Quantum Circuits

    Directory of Open Access Journals (Sweden)

    Ugo Dal Lago

    2012-10-01

    Full Text Available A logical system derived from linear logic and called QMLL is introduced and shown able to capture all unitary quantum circuits. Conversely, any proof is shown to compute, through a concrete GoI interpretation, some quantum circuits. The system QMLL, which enjoys cut-elimination, is obtained by endowing multiplicative linear logic with a quantum modality.

  4. An expert system in C for computer-aided digital circuit design

    Science.gov (United States)

    Santos, Jorge S.

    1989-06-01

    This thesis effort documents the design, development, implementation, and test of an expert system which decomposes digital circuits into subproblems in order to detect wiring errors, which consist of improperly connected gates, missing connections, and violation of fanout or race conditions. Information needed to connect chips together is viewed as knowledge base information for the expert system. Information such type as number of pins, value of each pin (input, output, power, ground, clock), fanout for a particular type of chip are retrieved from a central database where they are represented. Implementation was done in the C programming language, which although is not design specially for dealing with problems in the Artificial Intelligence (AI) field could be used with success. An integration with a graphics package and a central database was achieved. Tests conducted with the system running in a personal computer Zenith 248 and compatible microcomputers under the Disk Operational System (DOS) version 3.2 proved the portability and efficiency of the expert system. A user's manual is included for the operation of the InterConnect Expert System (ICE).

  5. Sequent Calculus Representations for Quantum Circuits

    Directory of Open Access Journals (Sweden)

    Cameron Beebe

    2016-06-01

    Full Text Available When considering a sequent-style proof system for quantum programs, there are certain elements of quantum mechanics that we may wish to capture, such as phase, dynamics of unitary transformations, and measurement probabilities. Traditional quantum logics which focus primarily on the abstract orthomodular lattice theory and structures of Hilbert spaces have not satisfactorily captured some of these elements. We can start from 'scratch' in an attempt to conceptually characterize the types of proof rules which should be in a system that represents elements necessary for quantum algorithms. This present work attempts to do this from the perspective of the quantum circuit model of quantum computation. A sequent calculus based on single quantum circuits is suggested, and its ability to incorporate important conceptual and dynamic aspects of quantum computing is discussed. In particular, preserving the representation of phase helps illustrate the role of interference as a resource in quantum computation. Interference also provides an intuitive basis for a non-monotonic calculus.

  6. Simplified model of a PWR primary coolant circuit

    International Nuclear Information System (INIS)

    Souza, A.L. de; Faya, A.J.G.

    1988-01-01

    The computer program RENUR was developed to perform a very simplified simulation of a typical PWR primary circuit. The program has mathematical models for the thermal-hydraulics of the reactor core and the pressurizer, the rest of the circuit being treated as a single volume. Heat conduction in the fuel rod is analysed by a nodal model. Average and hot channels are treated so that the bulk response of the core and DNBR can be evaluated. A Homogenenous model is employed in the pressurizer. Results are presented for a steady-state situation as well as for a loss of load transient. Agreement with the results of more elaborate computer codes is good with substantial reduction in computer costs. (author) [pt

  7. Aging evaluation of electrical circuits using the ECCAD system

    International Nuclear Information System (INIS)

    Edson, J.L.

    1988-01-01

    As a part of the Nuclear Regulator Commission Nuclear Plant Aging Research Program, an aging assessment of electrical circuits was conducted at the Shippingport atomic power station decommissioning project. The objective of this work was to evaluate the effectiveness of the electrical circuit characterization and diagnostic (ECCAD) system in identifying circuit conditions, to determine the present condition of selected electrical circuits, and correlate the results with aging effects. To accomplish this task, a series of electrical tests was performed on each circuit using the ECCAD system, which is composed of commercially available electronic test equipment under computer control. Test results indicate that the ECCAD system is effective in detecting and identifying aging and service wear in selected electrical circuits. The major area of degradation in the circuits tested was at the termination/connection points, whereas the cables were in generally good condition

  8. Design of delay insensitive circuits using multi-ring structures

    DEFF Research Database (Denmark)

    Sparsø, Jens; Staunstrup, Jørgen; Dantzer-Sørensen, Michael

    1992-01-01

    The design and VLSI implementation of a delay insensitive circuit that computes the inner product of two vec·tors is described. The circuit is based on an iterative serial-parallel multiplication algorithm. The design is based on a data flow approach using pipelines and rings that are combined...

  9. The Circuit Ideal of a Vector Configuration

    DEFF Research Database (Denmark)

    Jensen, Anders Nedergaard; Bogart, Tristram; Thomas, Rekha

    $, of $\\A$ which has numerous applications and is nontrivial to compute. Since circuits can be computed using linear algebra and the two ideals often coincide, it is worthwhile to understand when equality occurs. In this paper we study $\\ica$ in relation to $\\ia$ from various algebraic and combinatorial...

  10. Designing Novel Quaternary Quantum Reversible Subtractor Circuits

    Science.gov (United States)

    Haghparast, Majid; Monfared, Asma Taheri

    2018-01-01

    Reversible logic synthesis is an important area of current research because of its ability to reduce energy dissipation. In recent years, multiple valued logic has received great attention due to its ability to reduce the width of the reversible circuit which is a main requirement in quantum technology. Subtractor circuits are between major components used in quantum computers. In this paper, we will discuss the design of a quaternary quantum reversible half subtractor circuit using quaternary 1-qudit, 2-qudit Muthukrishnan-Stroud and 3-qudit controlled gates and a 2-qudit Generalized quaternary gate. Then a design of a quaternary quantum reversible full subtractor circuit based on the quaternary half subtractor will be presenting. The designs shall then be evaluated in terms of quantum cost, constant input, garbage output, and hardware complexity. The proposed quaternary quantum reversible circuits are the first attempt in the designing of the aforementioned subtractor.

  11. The development of a computational platform to design and simulate on-board hydrogen storage systems

    DEFF Research Database (Denmark)

    Mazzucco, Andrea; Rokni, Masoud

    2017-01-01

    A computational platform is developed in the Modelica® language within the Dymola™ environment to provide a tool for the design and performance comparison of on-board hydrogen storage systems. The platform has been coupled with an open source library for hydrogen fueling stations to investigate...... the vehicular tank within the frame of a complete refueling system. The two technologies that are integrated in the platform are solid-state hydrogen storage in the form of metal hydrides and compressed gas systems. In this work the computational platform is used to compare the storage performance of two tank...... to a storage capacity four times larger than a tube-in-tube solution of the same size. The volumetric and gravimetric densities of the shell and tube are 2.46% and 1.25% respectively. The dehydriding ability of this solution is proven to withstand intense discharging conditions....

  12. Design and Verification of Application Specific Integrated Circuits in a Network of Online Labs

    Directory of Open Access Journals (Sweden)

    A.Y. Al-Zoubi

    2009-08-01

    Full Text Available A solution to implement a remote laboratory for testing and designing analog Application-Specific Integrated Circuits of the type (ispPAC10 is presented. The application allows electrical engineering students to access and perform measurements and conduct analog electronics experiments over the internet. PAC-Designer software, running on a Citrix server, is used in the circuit design in which the signals are generated and the responses are acquired by a data acquisition board controlled by LabVIEW. Three interconnected remote labs located in three different continents will be implementing the proposed system.

  13. Electronics calibration board for the ATLAS liquid argon calorimeters

    International Nuclear Information System (INIS)

    Colas, J.; Dumont-Dayot, N.; Marchand, J.F.; Massol, N.; Perrodo, P.; Wingerter-Seez, I.; De La Taille, C.; Imbert, P.; Richer, J.P.; Seguin Moreau, N.; Serin, L.

    2008-01-01

    To calibrate the energy response of the ATLAS liquid argon calorimeter, an electronics calibration board has been designed; it delivers a signal whose shape is close to the calorimeter ionization current signal with amplitude up to 100 mA in 50 Ω with 16 bit dynamic range. The amplitude of this signal is designed to be uniform over all calorimeters channels, stable in time and with an integral linearity much better that the electronics readout. The various R and D phases and most of the difficulties met are discussed and illustrated by many measurements. The custom design circuits are described and the layout of the ATLAS calibration board presented. The procedure used to qualify the boards is explained and the performance obtained illustrated: a dynamic range up to 3 TeV in three energy scales with an integral linearity better than 0.1% in each of them, a response uniformity better than 0.2% and a stability better than 0.1%. The performance of the board is well within the ATLAS requirements. Finally, in situ measurements done on the ATLAS calorimeter are shown to validate these performances

  14. An improved, computer-based, on-line gamma monitor for plutonium anion exchange process control

    International Nuclear Information System (INIS)

    Pope, N.G.; Marsh, S.F.

    1987-06-01

    An improved, low-cost, computer-based system has replaced a previously developed on-line gamma monitor. Both instruments continuously profile uranium, plutonium, and americium in the nitrate anion exchange process used to recover and purify plutonium at the Los Alamos Plutonium Facility. The latest system incorporates a personal computer that provides full-feature multichannel analyzer (MCA) capabilities by means of a single-slot, plug-in integrated circuit board. In addition to controlling all MCA functions, the computer program continuously corrects for gain shift and performs all other data processing functions. This Plutonium Recovery Operations Gamma Ray Energy Spectrometer System (PROGRESS) provides on-line process operational data essential for efficient operation. By identifying abnormal conditions in real time, it allows operators to take corrective actions promptly. The decision-making capability of the computer will be of increasing value as we implement automated process-control functions in the future. 4 refs., 6 figs

  15. Improving the shielding effectiveness of a board-level shield by bonding it with the waveguide-below-cutoff principle

    OpenAIRE

    Degraeve, Andy; Pissoort, Davy; Armstrong, Keith

    2015-01-01

    This paper discusses the shielding performance or shielding effectiveness of a board-level shield in function of its bonding method. Improved shielding performance at board-level in order to harden integrated circuits against unintentional and intentional electromagnetic interference, and this under harsh environmental conditions, is getting more and more important to achieve the desired levels of functional performance and operational reliability despite an ever more aggressive electromagnet...

  16. Garbageless reversible implementation of integer linear transformations

    DEFF Research Database (Denmark)

    Burignat, Stéphane; Vermeirsch, Kenneth; De Vos, Alexis

    2013-01-01

    inputs. The resulting reversible circuit is able to perform both the forward transform and the inverse transform. Which of the two computations that actually is performed, simply depends on the orientation of the circuit when it is inserted in a computer board (if one takes care to provide...

  17. Working Memory and Decision-Making in a Frontoparietal Circuit Model.

    Science.gov (United States)

    Murray, John D; Jaramillo, Jorge; Wang, Xiao-Jing

    2017-12-13

    Working memory (WM) and decision-making (DM) are fundamental cognitive functions involving a distributed interacting network of brain areas, with the posterior parietal cortex (PPC) and prefrontal cortex (PFC) at the core. However, the shared and distinct roles of these areas and the nature of their coordination in cognitive function remain poorly understood. Biophysically based computational models of cortical circuits have provided insights into the mechanisms supporting these functions, yet they have primarily focused on the local microcircuit level, raising questions about the principles for distributed cognitive computation in multiregional networks. To examine these issues, we developed a distributed circuit model of two reciprocally interacting modules representing PPC and PFC circuits. The circuit architecture includes hierarchical differences in local recurrent structure and implements reciprocal long-range projections. This parsimonious model captures a range of behavioral and neuronal features of frontoparietal circuits across multiple WM and DM paradigms. In the context of WM, both areas exhibit persistent activity, but, in response to intervening distractors, PPC transiently encodes distractors while PFC filters distractors and supports WM robustness. With regard to DM, the PPC module generates graded representations of accumulated evidence supporting target selection, while the PFC module generates more categorical responses related to action or choice. These findings suggest computational principles for distributed, hierarchical processing in cortex during cognitive function and provide a framework for extension to multiregional models. SIGNIFICANCE STATEMENT Working memory and decision-making are fundamental "building blocks" of cognition, and deficits in these functions are associated with neuropsychiatric disorders such as schizophrenia. These cognitive functions engage distributed networks with prefrontal cortex (PFC) and posterior parietal

  18. Pulse-power circuit diagnostics for the Nova laser

    International Nuclear Information System (INIS)

    Christie, D.J.; Dallum, G.E.; Gritton, D.G.; Merritt, B.T.; Whitham, K.; Berkbigler, L.W.

    1982-01-01

    The Nova laser will have a large pulse power system for driving laser amplifiers, incorporating approximately 1600 flashlamp circuits. An automated system has been designed for diagnosing the condition of these flashlamp circuits. It records digitized circuit current waveforms and detects current excursions above a given threshold. In addition, it is able to fire flashlamps at a low energy to ascertain the health of the system. Data from this system can be ploted for inspection by the operator, analyzed by the computer system and archived for future reference

  19. Human Centered Design and Development for NASA's MerBoard

    Science.gov (United States)

    Trimble, Jay

    2003-01-01

    This viewgraph presentation provides an overview of the design and development process for NASA's MerBoard. These devices are large interactive display screens which can be shown on the user's computer, which will allow scientists in many locations to interpret and evaluate mission data in real-time. These tools are scheduled to be used during the 2003 Mars Exploration Rover (MER) expeditions. Topics covered include: mission overview, Mer Human Centered Computers, FIDO 2001 observations and MerBoard prototypes.

  20. Circuit board accident--organizational dimension hidden by prescribed safety.

    Science.gov (United States)

    de Almeida, Ildeberto Muniz; Buoso, Eduardo; do Amaral Dias, Maria Dionísia; Vilela, Rodolfo Andrade Gouveia

    2012-01-01

    This study analyzes an accident in which two maintenance workers suffered severe burns while replacing a circuit breaker panel in a steel mill, following model of analysis and prevention of accidents (MAPA) developed with the objective of enlarging the perimeter of interventions and contributing to deconstruction of blame attribution practices. The study was based on materials produced by a health service team in an in-depth analysis of the accident. The analysis shows that decisions related to system modernization were taken without considering their implications in maintenance scheduling and creating conflicts of priorities and of interests between production and safety; and also reveals that the lack of a systemic perspective in safety management was its principal failure. To explain the accident as merely non-fulfillment of idealized formal safety rules feeds practices of blame attribution supported by alibi norms and inhibits possible prevention. In contrast, accident analyses undertaken in worker health surveillance services show potential to reveal origins of these events incubated in the history of the system ignored in practices guided by the traditional paradigm.

  1. Signal processing: opportunities for superconductive circuits

    International Nuclear Information System (INIS)

    Ralston, R.W.

    1985-01-01

    Prime motivators in the evolution of increasingly sophisticated communication and detection systems are the needs for handling ever wider signal bandwidths and higher data processing speeds. These same needs drive the development of electronic device technology. Until recently the superconductive community has been tightly focused on digital devices for high speed computers. The purpose of this paper is to describe opportunities and challenges which exist for both analog and digital devices in a less familiar area, that of wideband signal processing. The function and purpose of analog signal-processing components, including matched filters, correlators and Fourier transformers, will be described and examples of superconductive implementations given. A canonic signal-processing system is then configured using these components in combination with analog/digital converters and digital output circuits to highlight the important issues of dynamic range, accuracy and equivalent computation rate. Superconductive circuits hold promise for processing signals of 10-GHz bandwidth. Signal processing systems, however, can be properly designed and implemented only through a synergistic combination of the talents of device physicists, circuit designers, algorithm architects and system engineers. An immediate challenge to the applied superconductivity community is to begin sharing ideas with these other researchers

  2. Automatic recloser circuit breaker integrated with GSM technology for power system notification

    Science.gov (United States)

    Lada, M. Y.; Khiar, M. S. A.; Ghani, S. A.; Nawawi, M. R. M.; Rahim, N. H.; Sinar, L. O. M.

    2015-05-01

    Lightning is one type of transient faults that usually cause the circuit breaker in the distribution board trip due to overload current detection. The instant tripping condition in the circuit breakers clears the fault in the system. Unfortunately most circuit breakers system is manually operated. The power line will be effectively re-energized after the clearing fault process is finished. Auto-reclose circuit is used on the transmission line to carry out the duty of supplying quality electrical power to customers. In this project, an automatic reclose circuit breaker for low voltage usage is designed. The product description is the Auto Reclose Circuit Breaker (ARCB) will trip if the current sensor detects high current which exceeds the rated current for the miniature circuit breaker (MCB) used. Then the fault condition will be cleared automatically and return the power line to normal condition. The Global System for Mobile Communication (GSM) system will send SMS to the person in charge if the tripping occurs. If the over current occurs in three times, the system will fully trip (open circuit) and at the same time will send an SMS to the person in charge. In this project a 1 A is set as the rated current and any current exceeding a 1 A will cause the system to trip or interrupted. This system also provides an additional notification for user such as the emergency light and warning system.

  3. Chaos in Electronic Circuits: Nonlinear Time Series Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wheat, Jr., Robert M. [Kennedy Western Univ., Cheyenne, WY (United States)

    2003-07-01

    Chaos in electronic circuits is a phenomenon that has been largely ignored by engineers, manufacturers, and researchers until the early 1990’s and the work of Chua, Matsumoto, and others. As the world becomes more dependent on electronic devices, the detrimental effects of non-normal operation of these devices becomes more significant. Developing a better understanding of the mechanisms involved in the chaotic behavior of electronic circuits is a logical step toward the prediction and prevention of any potentially catastrophic occurrence of this phenomenon. Also, a better understanding of chaotic behavior, in a general sense, could potentially lead to better accuracy in the prediction of natural events such as weather, volcanic activity, and earthquakes. As a first step in this improvement of understanding, and as part of the research being reported here, methods of computer modeling, identifying and analyzing, and producing chaotic behavior in simple electronic circuits have been developed. The computer models were developed using both the Alternative Transient Program (ATP) and Spice, the analysis techniques have been implemented using the C and C++ programming languages, and the chaotically behaving circuits developed using “off the shelf” electronic components.

  4. Memristor Circuits and Systems

    KAUST Repository

    Zidan, Mohammed A.

    2015-05-01

    Current CMOS-based technologies are facing design challenges related to the continuous scaling down of the minimum feature size, according to Moore’s law. Moreover, conventional computing architecture is no longer an effective way of fulfilling modern applications demands, such as big data analysis, pattern recognition, and vector processing. Therefore, there is an exigent need to shift to new technologies, at both the architecture and the device levels. Recently, memristor devices and structures attracted attention for being promising candidates for this job. Memristor device adds a new dimension for designing novel circuits and systems. In addition, high-density memristor-based crossbar is widely considered to be the essential element for future memory and bio-inspired computing systems. However, numerous challenges need to be addressed before the memristor genuinely replaces current memory and computing technologies, which is the motivation behind this research effort. In order to address the technology challenges, we begin by fabricating and modeling the memristor device. The devices fabricated at our local clean room enriched our understanding of the memristive phenomenon and enabled the experimental testing for our memristor-based circuits. Moreover, our proposed mathematical modeling for memristor behavior is an essential element for the theoretical circuit design stage. Designing and addressing the challenges of memristor systems with practical complexity, however, requires an extra step, which takes the form of a reliable and modular simulation platform. We, therefore, built a new simulation platform for the resistive crossbar, which can simulate realistic size arrays filled with real memory data. In addition, this simulation platform includes various crossbar nonidealities in order to obtain accurate simulation results. Consequently, we were able to address the significant challenges facing the high density memristor crossbar, as the building block for

  5. Efficiently characterizing the total error in quantum circuits

    Science.gov (United States)

    Carignan-Dugas, Arnaud; Wallman, Joel J.; Emerson, Joseph

    A promising technological advancement meant to enlarge our computational means is the quantum computer. Such a device would harvest the quantum complexity of the physical world in order to unfold concrete mathematical problems more efficiently. However, the errors emerging from the implementation of quantum operations are likewise quantum, and hence share a similar level of intricacy. Fortunately, randomized benchmarking protocols provide an efficient way to characterize the operational noise within quantum devices. The resulting figures of merit, like the fidelity and the unitarity, are typically attached to a set of circuit components. While important, this doesn't fulfill the main goal: determining if the error rate of the total circuit is small enough in order to trust its outcome. In this work, we fill the gap by providing an optimal bound on the total fidelity of a circuit in terms of component-wise figures of merit. Our bound smoothly interpolates between the classical regime, in which the error rate grows linearly in the circuit's length, and the quantum regime, which can naturally allow quadratic growth. Conversely, our analysis substantially improves the bounds on single circuit element fidelities obtained through techniques such as interleaved randomized benchmarking. This research was supported by the U.S. Army Research Office through Grant W911NF- 14-1-0103, CIFAR, the Government of Ontario, and the Government of Canada through NSERC and Industry Canada.

  6. Benchmarking Further Single Board Computers for Building a Mini Supercomputer for Simulation of Telecommunication Systems

    Directory of Open Access Journals (Sweden)

    Gábor Lencse

    2016-01-01

    Full Text Available Parallel Discrete Event Simulation (PDES with the conservative synchronization method can be efficiently used for the performance analysis of telecommunication systems because of their good lookahead properties. For PDES, a cost effective execution platform may be built by using single board computers (SBCs, which offer relatively high computation capacity compared to their price or power consumption and especially to the space they take up. A benchmarking method is proposed and its operation is demonstrated by benchmarking ten different SBCs, namely Banana Pi, Beaglebone Black, Cubieboard2, Odroid-C1+, Odroid-U3+, Odroid-XU3 Lite, Orange Pi Plus, Radxa Rock Lite, Raspberry Pi Model B+, and Raspberry Pi 2 Model B+. Their benchmarking results are compared to find out which one should be used for building a mini supercomputer for parallel discrete-event simulation of telecommunication systems. The SBCs are also used to build a heterogeneous cluster and the performance of the cluster is tested, too.

  7. A miniature rigid/flex salinity measurement device fabricated using printed circuit processing techniques

    International Nuclear Information System (INIS)

    Broadbent, H A; Ketterl, T P; Reid, C S

    2010-01-01

    The design, fabrication and initial performance of a single substrate, miniature, low-cost conductivity, temperature, depth (CTD) sensor board with interconnects are presented. In combination these sensors measure ocean salinity. The miniature CTD device board was designed and fabricated as the main component of a 50 mm × 25 mm × 25 mm animal-attached biologger. The board was fabricated using printed circuit processes and consists of two distinct regions on a continuous single liquid crystal polymer substrate: an 18 mm × 28 mm rigid multi-metal sensor section and a 72 mm long flexible interconnect section. The 95% confidence intervals for the conductivity, temperature and pressure sensors were demonstrated to be ±0.083 mS cm −1 , 0.01 °C, and ±0.135 dbar, respectively.

  8. A Alternative Analog Circuit Design Methodology Employing Integrated Artificial Intelligence Techniques

    Science.gov (United States)

    Tuttle, Jeffery L.

    In consideration of the computer processing power now available to the designer, an alternative analog circuit design methodology is proposed. Computer memory capacities no longer require the reduction of the transistor operational characteristics to an imprecise formulation. Therefore, it is proposed that transistor modelling be abandoned in favor of fully characterized transistor data libraries. Secondly, availability of the transistor libraries would facilitate an automated selection of the most appropriate device(s) for the circuit being designed. More specifically, a preprocessor computer program to a more sophisticated circuit simulator (e.g. SPICE) is developed to assist the designer in developing the basic circuit topology and the selection of the most appropriate transistor. Once this is achieved, the circuit topology and selected transistor data library would be downloaded to the simulator for full circuit operational characterization and subsequent design modifications. It is recognized that the design process is enhanced by the use of heuristics as applied to iterative design results. Accordingly, an artificial intelligence (AI) interface is developed to assist the designer in applying the preprocessor results. To demonstrate the retrofitability of the AI interface to established programs, the interface is specifically designed to be as non-intrusive to the host code as possible. Implementation of the proposed methodology offers the potential to speed the design process, since the preprocessor both minimizes the required number of simulator runs and provides a higher acceptance potential of the initial and subsequent simulator runs. Secondly, part count reductions may be realizable since the circuit topologies are not as strongly driven by transistor limitations. Thirdly, the predicted results should more closely match actual circuit operations since the inadequacies of the transistor models have been virtually eliminated. Finally, the AI interface

  9. Circuit oriented electromagnetic modeling using the PEEC techniques

    CERN Document Server

    Ruehli, Albert; Jiang, Lijun

    2017-01-01

    This book provides intuitive solutions to electromagnetic problems by using the Partial Eelement Eequivalent Ccircuit (PEEC) method. This book begins with an introduction to circuit analysis techniques, laws, and frequency and time domain analyses. The authors also treat Maxwell's equations, capacitance computations, and inductance computations through the lens of the PEEC method. Next, readers learn to build PEEC models in various forms: equivalent circuit models, non orthogonal PEEC models, skin-effect models, PEEC models for dielectrics, incident and radiate field models, and scattering PEEC models. The book concludes by considering issues like such as stability and passivity, and includes five appendices some with formulas for partial elements.

  10. Short- circuit tests of circuit breakers

    OpenAIRE

    Chorovský, P.

    2015-01-01

    This paper deals with short-circuit tests of low voltage electrical devices. In the first part of this paper, there are described basic types of short- circuit tests and their principles. Direct and indirect (synthetic) tests with more details are described in the second part. Each test and principles are explained separately. Oscilogram is obtained from short-circuit tests of circuit breakers at laboratory. The aim of this research work is to propose a test circuit for performing indirect test.

  11. A computational analysis of the carbon-nanotube-based resonant-circuit sensors

    International Nuclear Information System (INIS)

    Grujicic, M.; Cao, G.; Roy, W.N.

    2004-01-01

    Available values for the molecular polarizability and the dipole moment and the computed adsorption energies to single walled carbon nanotubes (SWCNTs) for a couple of polar (NH 3 and CO) and several non-polar (He, Ar, N 2 and O 2 ) gases are used to help establish a correlation between the adsorbed gas-induced changes in the dielectric constant of the SWCNTs (the sensing material) and the resulting reduction in the resonant frequency of the resonant circuit-based chemical gas sensors. It is found that simple weighting methods which neglect the effect of changes in the electronic structure of the carbon nanotubes during adsorption are generally incapable of predicting correctly the changes in the effective dielectric constant of the carbon nanotubes. Conversely, the use of adsorption-induced changes in the band gap of the carbon nanotubes and a relationship between the band gap and the dielectric constant is found to be a promising approach for assessing the adsorption-induced changes in the effective dielectric constant of the carbon nanotubes and for establishment of their effect on the resonant frequency of resonator-based chemical gas sensors

  12. SEMICONDUCTOR INTEGRATED CIRCUITS: A quasi-3-dimensional simulation method for a high-voltage level-shifting circuit structure

    Science.gov (United States)

    Jizhi, Liu; Xingbi, Chen

    2009-12-01

    A new quasi-three-dimensional (quasi-3D) numeric simulation method for a high-voltage level-shifting circuit structure is proposed. The performances of the 3D structure are analyzed by combining some 2D device structures; the 2D devices are in two planes perpendicular to each other and to the surface of the semiconductor. In comparison with Davinci, the full 3D device simulation tool, the quasi-3D simulation method can give results for the potential and current distribution of the 3D high-voltage level-shifting circuit structure with appropriate accuracy and the total CPU time for simulation is significantly reduced. The quasi-3D simulation technique can be used in many cases with advantages such as saving computing time, making no demands on the high-end computer terminals, and being easy to operate.

  13. Simulation of Higher-Order Electrical Circuits with Stochastic Parameters via SDEs

    Directory of Open Access Journals (Sweden)

    BRANCIK, L.

    2013-02-01

    Full Text Available The paper deals with a technique for the simulation of higher-order electrical circuits with parameters varying randomly. The principle consists in the utilization of the theory of stochastic differential equations (SDE, namely the vector form of the ordinary SDEs. Random changes of both excitation voltage and some parameters of passive circuit elements are considered, and circuit responses are analyzed. The voltage and/or current responses are computed and represented in the form of the sample means accompanied by their confidence intervals to provide reliable estimates. The method is applied to analyze responses of the circuit models of optional orders, specially those consisting of a cascade connection of the RLGC networks. To develop the model equations the state-variable method is used, afterwards a corresponding vector SDE is formulated and a stochastic Euler numerical method applied. To verify the results the deterministic responses are also computed by the help of the PSpice simulator or the numerical inverse Laplace transforms (NILT procedure in MATLAB, while removing random terms from the circuit model.

  14. An algorithmic approach to solving polynomial equations associated with quantum circuits

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Zinin, M.V.

    2009-01-01

    In this paper we present two algorithms for reducing systems of multivariate polynomial equations over the finite field F 2 to the canonical triangular form called lexicographical Groebner basis. This triangular form is the most appropriate for finding solutions of the system. On the other hand, the system of polynomials over F 2 whose variables also take values in F 2 (Boolean polynomials) completely describes the unitary matrix generated by a quantum circuit. In particular, the matrix itself can be computed by counting the number of solutions (roots) of the associated polynomial system. Thereby, efficient construction of the lexicographical Groebner bases over F 2 associated with quantum circuits gives a method for computing their circuit matrices that is alternative to the direct numerical method based on linear algebra. We compare our implementation of both algorithms with some other software packages available for computing Groebner bases over F 2

  15. Navigating a Maze with Balance Board and Wiimote

    Science.gov (United States)

    Fikkert, Wim; Hoeijmakers, Niek; van der Vet, Paul; Nijholt, Anton

    Input from the lower body in human-computer interfaces can be beneficial, enjoyable and even entertaining when users are expected to perform tasks simultaneously. Users can navigate a virtual (game) world or even an (empirical) dataset while having their hands free to issue commands. We compared the Wii Balance Board to a hand-held Wiimote for navigating a maze and found that users completed this task slower with the Balance Board. However, the Balance Board was considered more intuitive, easy to learn and ‘much fun’.

  16. Bringing Tomorrow's Technology to You Today: School Board of Tomorrow Resource Guide.

    Science.gov (United States)

    National School Boards Association, Alexandria, VA.

    The National School Boards Association (NSBA), the National School Boards Foundation, NSBA's Institute for the Transfer of Technology to Education, and Apple Computer, Inc., launched "The School Board of Tomorrow Exhibit" at NSBA's 1996 annual conference and exposition in Orlando, Florida. This handbook summarizes the communication technologies…

  17. Copper extraction from coarsely ground printed circuit boards using moderate thermophilic bacteria in a rotating-drum reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Michael L.M., E-mail: mitchel.marques@yahoo.com.br [Bio& Hydrometallurgy Laboratory, Department of Metallurgical and Materials Engineering, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-000 (Brazil); Leão, Versiane A., E-mail: versiane@demet.em.ufop.br [Bio& Hydrometallurgy Laboratory, Department of Metallurgical and Materials Engineering, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-000 (Brazil); Gomes, Otavio [Centre for Mineral Technology – CETEM, Av Pedro Calmon, 900, 21941-908 Rio de Janeiro (Brazil); Lambert, Fanny; Bastin, David; Gaydardzhiev, Stoyan [Mineral Processing and Recycling, University of Liege, SartTilman, 4000 Liege (Belgium)

    2015-07-15

    Highlights: • Copper bioleaching from PCB (20 mm) by moderate thermophiles was demonstrated. • Larger PCB sheets enable a cost reduction due to the elimination of fine grinding. • Crushing generated cracks in PCB increasing the copper extraction. • A pre-treatment step was necessary to remove the lacquer coating. • High copper extractions (85%) were possible with pulp density of up to 25.0 g/L. - Abstract: The current work reports on a new approach for copper bioleaching from Printed Circuit Board (PCB) by moderate thermophiles in a rotating-drum reactor. Initially leaching of PCB was carried out in shake flasks to assess the effects of particle size (−208 μm + 147 μm), ferrous iron concentration (1.25–10.0 g/L) and pH (1.5–2.5) on copper leaching using mesophile and moderate thermophile microorganisms. Only at a relatively low solid content (10.0 g/L) complete copper extraction was achieved from the particle size investigated. Conversely, high copper extractions were possible from coarse-ground PCB (20 mm-long) working with increased solids concentration (up to 25.0 g/L). Because there was as the faster leaching kinetics at 50 °C Sulfobacillus thermosulfidooxidans was selected for experiments in a rotating-drum reactor with the coarser-sized PCB sheets. Under optimal conditions, copper extraction reached 85%, in 8 days and microscopic observations by SEM–EDS of the on non-leached and leached material suggested that metal dissolution from the internal layers was restricted by the fact that metal surface was not entirely available and accessible for the solution in the case of the 20 mm-size sheets.

  18. Copper extraction from coarsely ground printed circuit boards using moderate thermophilic bacteria in a rotating-drum reactor

    International Nuclear Information System (INIS)

    Rodrigues, Michael L.M.; Leão, Versiane A.; Gomes, Otavio; Lambert, Fanny; Bastin, David; Gaydardzhiev, Stoyan

    2015-01-01

    Highlights: • Copper bioleaching from PCB (20 mm) by moderate thermophiles was demonstrated. • Larger PCB sheets enable a cost reduction due to the elimination of fine grinding. • Crushing generated cracks in PCB increasing the copper extraction. • A pre-treatment step was necessary to remove the lacquer coating. • High copper extractions (85%) were possible with pulp density of up to 25.0 g/L. - Abstract: The current work reports on a new approach for copper bioleaching from Printed Circuit Board (PCB) by moderate thermophiles in a rotating-drum reactor. Initially leaching of PCB was carried out in shake flasks to assess the effects of particle size (−208 μm + 147 μm), ferrous iron concentration (1.25–10.0 g/L) and pH (1.5–2.5) on copper leaching using mesophile and moderate thermophile microorganisms. Only at a relatively low solid content (10.0 g/L) complete copper extraction was achieved from the particle size investigated. Conversely, high copper extractions were possible from coarse-ground PCB (20 mm-long) working with increased solids concentration (up to 25.0 g/L). Because there was as the faster leaching kinetics at 50 °C Sulfobacillus thermosulfidooxidans was selected for experiments in a rotating-drum reactor with the coarser-sized PCB sheets. Under optimal conditions, copper extraction reached 85%, in 8 days and microscopic observations by SEM–EDS of the on non-leached and leached material suggested that metal dissolution from the internal layers was restricted by the fact that metal surface was not entirely available and accessible for the solution in the case of the 20 mm-size sheets

  19. Emerging materials and devices in spintronic integrated circuits for energy-smart mobile computing and connectivity

    International Nuclear Information System (INIS)

    Kang, S.H.; Lee, K.

    2013-01-01

    A spintronic integrated circuit (IC) is made of a combination of a semiconductor IC and a dense array of nanometer-scale magnetic tunnel junctions. This emerging field is of growing scientific and engineering interest, owing to its potential to bring disruptive device innovation to the world of electronics. This technology is currently being pursued not only for scalable non-volatile spin-transfer-torque magnetoresistive random access memory, but also for various forms of non-volatile logic (Spin-Logic). This paper reviews recent advances in spintronic IC. Key discoveries and breakthroughs in materials and devices are highlighted in light of the broader perspective of their application in low-energy mobile computing and connectivity systems, which have emerged as leading drivers for the prevailing electronics ecosystem

  20. Digital tomosynthesis with an on-board kilovoltage imaging device

    International Nuclear Information System (INIS)

    Godfrey, Devon J.; Yin, F.-F.; Oldham, Mark; Yoo, Sua; Willett, Christopher

    2006-01-01

    Purpose: To generate on-board digital tomosynthesis (DTS) and reference DTS images for three-dimensional image-guided radiation therapy (IGRT) as an alternative to conventional portal imaging or on-board cone-beam computed tomography (CBCT). Methods and Materials: Three clinical cases (prostate, head-and-neck, and liver) were selected to illustrate the capabilities of on-board DTS for IGRT. Corresponding reference DTS images were reconstructed from digitally reconstructed radiographs computed from planning CT image sets. The effect of scan angle on DTS slice thickness was examined by computing the mutual information between coincident CBCT and DTS images, as the DTS scan angle was varied from 0 o to 165 o . A breath-hold DTS acquisition strategy was implemented to remove respiratory motion artifacts. Results: Digital tomosynthesis slices appeared similar to coincident CBCT planes and yielded substantially more anatomic information than either kilovoltage or megavoltage radiographs. Breath-hold DTS acquisition improved soft-tissue visibility by suppressing respiratory motion. Conclusions: Improved bony and soft-tissue visibility in DTS images is likely to improve target localization compared with radiographic verification techniques and might allow for daily localization of a soft-tissue target. Breath-hold DTS is a potential alternative to on-board CBCT for sites prone to respiratory motion

  1. Emulating weak localization using a solid-state quantum circuit.

    Science.gov (United States)

    Chen, Yu; Roushan, P; Sank, D; Neill, C; Lucero, Erik; Mariantoni, Matteo; Barends, R; Chiaro, B; Kelly, J; Megrant, A; Mutus, J Y; O'Malley, P J J; Vainsencher, A; Wenner, J; White, T C; Yin, Yi; Cleland, A N; Martinis, John M

    2014-10-14

    Quantum interference is one of the most fundamental physical effects found in nature. Recent advances in quantum computing now employ interference as a fundamental resource for computation and control. Quantum interference also lies at the heart of sophisticated condensed matter phenomena such as Anderson localization, phenomena that are difficult to reproduce in numerical simulations. Here, employing a multiple-element superconducting quantum circuit, with which we manipulate a single microwave photon, we demonstrate that we can emulate the basic effects of weak localization. By engineering the control sequence, we are able to reproduce the well-known negative magnetoresistance of weak localization as well as its temperature dependence. Furthermore, we can use our circuit to continuously tune the level of disorder, a parameter that is not readily accessible in mesoscopic systems. Demonstrating a high level of control, our experiment shows the potential for employing superconducting quantum circuits as emulators for complex quantum phenomena.

  2. Error Mitigation for Short-Depth Quantum Circuits

    Science.gov (United States)

    Temme, Kristan; Bravyi, Sergey; Gambetta, Jay M.

    2017-11-01

    Two schemes are presented that mitigate the effect of errors and decoherence in short-depth quantum circuits. The size of the circuits for which these techniques can be applied is limited by the rate at which the errors in the computation are introduced. Near-term applications of early quantum devices, such as quantum simulations, rely on accurate estimates of expectation values to become relevant. Decoherence and gate errors lead to wrong estimates of the expectation values of observables used to evaluate the noisy circuit. The two schemes we discuss are deliberately simple and do not require additional qubit resources, so to be as practically relevant in current experiments as possible. The first method, extrapolation to the zero noise limit, subsequently cancels powers of the noise perturbations by an application of Richardson's deferred approach to the limit. The second method cancels errors by resampling randomized circuits according to a quasiprobability distribution.

  3. Controlling front-end electronics boards using commercial solutions

    CERN Document Server

    Beneyton, R; Jost, B; Schmeling, S

    2002-01-01

    LHCb is a dedicated B-physics experiment under construction at CERN's large hadron collider (LHC) accelerator. This paper will describe the novel approach LHCb is taking toward controlling and monitoring of electronics boards. Instead of using the bus in a crate to exercise control over the boards, we use credit-card sized personal computers (CCPCs) connected via Ethernet to cheap control PCs. The CCPCs will provide a simple parallel, I2C, and JTAG buses toward the electronics board. Each board will be equipped with a CCPC and, hence, will be completely independently controlled. The advantages of this scheme versus the traditional bus-based scheme will be described. Also, the integration of the controls of the electronics boards into a commercial supervisory control and data acquisition (SCADA) system will be shown. (5 refs).

  4. Use of large pieces of printed circuit boards for bioleaching to avoid 'precipitate contamination problem' and to simplify overall metal recovery.

    Science.gov (United States)

    Adhapure, N N; Dhakephalkar, P K; Dhakephalkar, A P; Tembhurkar, V R; Rajgure, A V; Deshmukh, A M

    2014-01-01

    Very recently bioleaching has been used for removing metals from electronic waste. Most of the research has been targeted to using pulverized PCBs for bioleaching where precipitate formed during bioleaching contaminates the pulverized PCB sample and making the overall metal recovery process more complicated. In addition to that, such mixing of pulverized sample with precipitate also creates problems for the final separation of non metallic fraction of PCB sample. In the present investigation we attempted the use of large pieces of printed circuit boards instead of pulverized sample for removal of metals. Use of large pieces of PCBs for bioleaching was restricted due to the chemical coating present on PCBs, the problem has been solved by chemical treatment of PCBs prior to bioleaching. In short,•Large pieces of PCB can be used for bioleaching instead of pulverized PCB sample.•Metallic portion on PCBs can be made accessible to bacteria with prior chemical treatment of PCBs.•Complete metal removal obtained on PCB pieces of size 4 cm × 2.5 cm with the exception of solder traces. The final metal free PCBs (non metallic) can be easily recycled and in this way the overall recycling process (metallic and non metallic part) of PCBs becomes simple.

  5. Diagnostic Neural Network Systems for the Electronic Circuits

    International Nuclear Information System (INIS)

    Mohamed, A.H.

    2014-01-01

    Neural Networks is one of the most important artificial intelligent approaches for solving the diagnostic processes. This research concerns with uses the neural networks for diagnosis of the electronic circuits. Modern electronic systems contain both the analog and digital circuits. But, diagnosis of the analog circuits suffers from great complexity due to their nonlinearity. To overcome this problem, the proposed system introduces a diagnostic system that uses the neural network to diagnose both the digital and analog circuits. So, it can face the new requirements for the modern electronic systems. A fault dictionary method was implemented in the system. Experimental results are presented on three electronic systems. They are: artificial kidney, wireless network and personal computer systems. The proposed system has improved the performance of the diagnostic systems when applied for these practical cases

  6. STICAP: A linear circuit analysis program with stiff systems capability. Volume 1: Theory manual. [network analysis

    Science.gov (United States)

    Cooke, C. H.

    1975-01-01

    STICAP (Stiff Circuit Analysis Program) is a FORTRAN 4 computer program written for the CDC-6400-6600 computer series and SCOPE 3.0 operating system. It provides the circuit analyst a tool for automatically computing the transient responses and frequency responses of large linear time invariant networks, both stiff and nonstiff (algorithms and numerical integration techniques are described). The circuit description and user's program input language is engineer-oriented, making simple the task of using the program. Engineering theories underlying STICAP are examined. A user's manual is included which explains user interaction with the program and gives results of typical circuit design applications. Also, the program structure from a systems programmer's viewpoint is depicted and flow charts and other software documentation are given.

  7. The computation of the build-up of long-lived radioisotopes on the surface of primary circuits and the ion exchange material of BWR

    International Nuclear Information System (INIS)

    Lundgren, K.

    1980-06-01

    The buildup of radionuclides on the surface of the primary circuits and in the ion exchange material is calculated. The computation is made by the computer code 'CRUD'. The buildup is interesting from the viewpoint of nuclear waste. Oskarshamn 2 is chosen as the reference plant. An extrapolation is made for 20 years of operation. Calculation are givin for Mn54, Fe55, Co60, Ni59, Ni63 and Zn65. The constants of deposition and disharge are determined by fitting the values. (G.B.)

  8. Polarization Control for Silicon Photonic Circuits

    Science.gov (United States)

    Caspers, Jan Niklas

    In recent years, the field of silicon photonics has received much interest from researchers and companies across the world. The idea is to use photons to transmit information on a computer chip in order to increase computational speed while decreasing the power required for computation. To allow for communication between the chip and other components, such as the computer memory, these silicon photonics circuits need to be interfaced with optical fiber. Unfortunately, in order to interface an optical fiber with an integrated photonics circuit two major challenges need to be overcome: a mode-size mismatch as well as a polarization mismatch. While the problem of mode-size has been well investigated, the polarization mismatch has yet to be addressed. In order to solve the polarization mismatch one needs to gain control over the polarization of the light in a waveguide. In this thesis, I will present the components required to solve the polarization mismatch. Using a novel wave guiding structure, the hybrid plasmonic waveguide, an ultra-compact polarization rotator is designed, fabricated, and tested. The hybrid plasmonic rotator has a performance similar to purely dielectric rotators while being more than an order of magnitude smaller. Additionally, a broadband hybrid plasmonic coupler is designed and measured. This coupler has a performance similar to dielectric couplers while having a footprint an order of magnitude smaller. Finally, a system solution to the polarization mismatch is provided. The system, a polarization adapter, matches the incoming changing polarization from the fiber actively to the correct one of the silicon photonics circuit. The polarization adapter is demonstrated experimentally to prove its operation. This proof is based on dielectric components, but the aforementioned hybrid plasmonic waveguide components would make the system more compact.

  9. On-chip enzymatic microbiofuel cell-powered integrated circuits.

    Science.gov (United States)

    Mark, Andrew G; Suraniti, Emmanuel; Roche, Jérôme; Richter, Harald; Kuhn, Alexander; Mano, Nicolas; Fischer, Peer

    2017-05-16

    A variety of diagnostic and therapeutic medical technologies rely on long term implantation of an electronic device to monitor or regulate a patient's condition. One proposed approach to powering these devices is to use a biofuel cell to convert the chemical energy from blood nutrients into electrical current to supply the electronics. We present here an enzymatic microbiofuel cell whose electrodes are directly integrated into a digital electronic circuit. Glucose oxidizing and oxygen reducing enzymes are immobilized on microelectrodes of an application specific integrated circuit (ASIC) using redox hydrogels to produce an enzymatic biofuel cell, capable of harvesting electrical power from just a single droplet of 5 mM glucose solution. Optimisation of the fuel cell voltage and power to match the requirements of the electronics allow self-powered operation of the on-board digital circuitry. This study represents a step towards implantable self-powered electronic devices that gather their energy from physiological fluids.

  10. Commutation circuit for an HVDC circuit breaker

    Science.gov (United States)

    Premerlani, William J.

    1981-01-01

    A commutation circuit for a high voltage DC circuit breaker incorporates a resistor capacitor combination and a charging circuit connected to the main breaker, such that a commutating capacitor is discharged in opposition to the load current to force the current in an arc after breaker opening to zero to facilitate arc interruption. In a particular embodiment, a normally open commutating circuit is connected across the contacts of a main DC circuit breaker to absorb the inductive system energy trapped by breaker opening and to limit recovery voltages to a level tolerable by the commutating circuit components.

  11. A note on monotone real circuits

    Czech Academy of Sciences Publication Activity Database

    Hrubeš, Pavel; Pudlák, Pavel

    2018-01-01

    Roč. 131, March (2018), s. 15-19 ISSN 0020-0190 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : computational complexity * monotone real circuit * Karchmer-Wigderson game Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.748, year: 2016 http ://www.sciencedirect.com/science/article/pii/S0020019017301965?via%3Dihub

  12. A note on monotone real circuits

    Czech Academy of Sciences Publication Activity Database

    Hrubeš, Pavel; Pudlák, Pavel

    2018-01-01

    Roč. 131, March (2018), s. 15-19 ISSN 0020-0190 EU Projects: European Commission(XE) 339691 - FEALORA Institutional support: RVO:67985840 Keywords : computational complexity * monotone real circuit * Karchmer-Wigderson game Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 0.748, year: 2016 http://www.sciencedirect.com/science/article/pii/S0020019017301965?via%3Dihub

  13. Speech recognition by means of a three-integrated-circuit set

    Energy Technology Data Exchange (ETDEWEB)

    Zoicas, A.

    1983-11-03

    The author uses pattern recognition methods for detecting word boundaries, and monitors incoming speech at 12 millisecond intervals. Frequency is divided into eight bands and analysis is achieved in an analogue interface integrated circuit, a pipeline digital processor and a control integrated circuit. Applications are suggested, including speech input to personal computers. 3 references.

  14. QUANTUM: A Wolfram Mathematica add-on for Dirac Bra-Ket Notation, Non-Commutative Algebra, and Simulation of Quantum Computing Circuits

    International Nuclear Information System (INIS)

    Muñoz, J L Gómez; Delgado, F

    2016-01-01

    This paper introduces QUANTUM, a free library of commands of Wolfram Mathematica that can be used to perform calculations directly in Dirac braket and operator notation. Its development started several years ago, in order to study quantum random walks. Later, many other features were included, like operator and commutator algebra, simulation and graphing of quantum computing circuits, generation and solution of Heisenberg equations of motion, among others. To the best of our knowledge, QUANTUM remains a unique tool in its use of Dirac notation, because it is used both in the input and output of the calculations. This work depicts its usage and features in Quantum Computing and Quantum Hamilton Dynamics. (paper)

  15. Using NCAP to predict RFI effects in linear bipolar integrated circuits

    Science.gov (United States)

    Fang, T.-F.; Whalen, J. J.; Chen, G. K. C.

    1980-11-01

    Applications of the Nonlinear Circuit Analysis Program (NCAP) to calculate RFI effects in electronic circuits containing discrete semiconductor devices have been reported upon previously. The objective of this paper is to demonstrate that the computer program NCAP also can be used to calcuate RFI effects in linear bipolar integrated circuits (IC's). The IC's reported upon are the microA741 operational amplifier (op amp) which is one of the most widely used IC's, and a differential pair which is a basic building block in many linear IC's. The microA741 op amp was used as the active component in a unity-gain buffer amplifier. The differential pair was used in a broad-band cascode amplifier circuit. The computer program NCAP was used to predict how amplitude-modulated RF signals are demodulated in the IC's to cause undesired low-frequency responses. The predicted and measured results for radio frequencies in the 0.050-60-MHz range are in good agreement.

  16. MATTERS PRESENTED AT THE JOINT BOARDS MEETING

    CERN Multimedia

    T. Virdee

    CMS Organisation (T. Virdee) The Management Board endorsed J. Incandela as Deputy Physics Coordinator; he would move to CERN in the middle of 2007. The Board also took note of the Level-2 Convenors in Computing, Offline Software and Physics. Suggestions for the unfilled positions were still welcome. It was urgent to appoint a Database Coordinator. In the cases where only one Level-2 coordinator was being nominated the second would be nominated in 9 months. It was stressed that the SLHC working group must do real simulations to address questions about the machine design. The Management Board took note of the proposal to formally assign Mentors to Physics and analysis groups, of the nominations of the Convenors of the Detector Performance Groups and recommended that the Trigger Coordinator be appointed soon. Discussion on Technical Recommendations (A. Ball) The Board was reminded of the conclusions presented at the Joint Boards meeting. The present planning assumed that the YB0 services installation could...

  17. Cosimulation of electromagnetics-circuit systems exploiting DGTD and MNA

    KAUST Repository

    Li, Ping

    2014-06-01

    A hybrid electromagnetics (EM)-circuit simulator exploiting the discontinuous Galerkin time domain (DGTD) method and the modified nodal analysis (MNA) algorithm is developed for analyzing hybrid distributive and nonlinear multiport lumped circuit systems. The computational domain is split into two subsystems. One is the EM subsystem that is analyzed by DGTD, while the other is the circuit subsystem that is solved by the MNA method. The coupling between the EM and circuit subsystems is enforced at the lumped port where related field and circuit unknowns are coupled via the use of numerical flux, port voltages, and current sources. Since the spatial operations of DGTD are localized, thanks to the use of numerical flux, coupling matrices between EM and circuit subsystems are small and are directly inverted. To handle nonlinear devices within the circuit subsystem, the standard Newton-Raphson method is applied to the nonlinear coupling matrix system. In addition, a local time-stepping scheme is applied to improve the efficiency of the hybrid solver. Numerical examples including single and multiport linear/nonlinear circuit networks are presented to validate the proposed solver. © 2014 IEEE.

  18. Neuromorphic Silicon Neuron Circuits

    Science.gov (United States)

    Indiveri, Giacomo; Linares-Barranco, Bernabé; Hamilton, Tara Julia; van Schaik, André; Etienne-Cummings, Ralph; Delbruck, Tobi; Liu, Shih-Chii; Dudek, Piotr; Häfliger, Philipp; Renaud, Sylvie; Schemmel, Johannes; Cauwenberghs, Gert; Arthur, John; Hynna, Kai; Folowosele, Fopefolu; Saighi, Sylvain; Serrano-Gotarredona, Teresa; Wijekoon, Jayawan; Wang, Yingxue; Boahen, Kwabena

    2011-01-01

    Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain–machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance-based Hodgkin–Huxley models to bi-dimensional generalized adaptive integrate and fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips. PMID:21747754

  19. Neuromorphic silicon neuron circuits

    Directory of Open Access Journals (Sweden)

    Giacomo eIndiveri

    2011-05-01

    Full Text Available Hardware implementations of spiking neurons can be extremely useful for a large variety of applications, ranging from high-speed modeling of large-scale neural systems to real-time behaving systems, to bidirectional brain-machine interfaces. The specific circuit solutions used to implement silicon neurons depend on the application requirements. In this paper we describe the most common building blocks and techniques used to implement these circuits, and present an overview of a wide range of neuromorphic silicon neurons, which implement different computational models, ranging from biophysically realistic and conductance based Hodgkin-Huxley models to bi-dimensional generalized adaptive Integrate and Fire models. We compare the different design methodologies used for each silicon neuron design described, and demonstrate their features with experimental results, measured from a wide range of fabricated VLSI chips.

  20. 29 CFR 783.44 - Board and lodging as wages.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Board and lodging as wages. 783.44 Section 783.44 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR STATEMENTS OF GENERAL... TO EMPLOYEES EMPLOYED AS SEAMEN Computation of Wages and Hours § 783.44 Board and lodging as wages...

  1. 75 FR 61779 - National Science Board: Sunshine Act Meetings; Notice

    Science.gov (United States)

    2010-10-06

    ... Science Board's Committee on Programs and Plans, pursuant to NSF regulations (45 CFR Part 614), the... National Science Board business and other matters specified, as follows: DATE AND TIME: October 13, 2010, 1... Performance Computing Award. STATUS: Closed. LOCATION: This meeting will be held at National Science...

  2. An Intelligent and Fast Chaotic Encryption Using Digital Logic Circuits for Ad-Hoc and Ubiquitous Computing

    Directory of Open Access Journals (Sweden)

    Ankur Khare

    2016-05-01

    Full Text Available Delays added by the encryption process represent an overhead for smart computing devices in ad-hoc and ubiquitous computing intelligent systems. Digital Logic Circuits are faster than other computing techniques, so these can be used for fast encryption to minimize processing delays. Chaotic Encryption is more attack-resilient than other encryption techniques. One of the most attractive properties of cryptography is known as an avalanche effect, in which two different keys produce distinct cipher text for the same information. Important properties of chaotic systems are sensitivity to initial conditions and nonlinearity, which makes two similar keys that generate different cipher text a source of confusion. In this paper a novel fast and secure Chaotic Map-based encryption technique using 2’s Compliment (CET-2C has been proposed, which uses a logistic map which implies that a negligible difference in parameters of the map generates different cipher text. Cryptanalysis of the proposed algorithm shows the strength and security of algorithm and keys. Performance of the proposed algorithm has been analyzed in terms of running time, throughput and power consumption. It is to be shown in comparison graphs that the proposed algorithm gave better results compare to different algorithms like AES and some others.

  3. Simulating the JET ITER-like Antenna circuit

    International Nuclear Information System (INIS)

    Van Eester, D.; Lerche, E.; Durodie, F.; Evrard, M.; Huygen, S.; Ongena, J.; Vrancken, M.; Argouarch, A.; Blackman, T.; Jacquet, P.; Mayoral, M.-L.; Monakhov, I.; Nightingale, M.; Wooldridge, E.; Whitehurst, A.; Goulding, R. H.

    2009-01-01

    A set of simulation/interpretation tools based on transmission line theory and on the RF model developed by M. Vrancken has been developed to study the ITER-like Antenna (ILA) at JET. For given tuning element settings, the unique solution of the equations governing the ILA circuit requires solving a system of coupled linear equations relating the voltages and currents at the antenna straps and other key locations. This computation allows cross-checking predicted values against measured experimental ones. Further more, a minimization procedure allows improving the correspondence with the quantities measured in the circuit during shots, thus coping with unavoidable errors arising from uncertainties in the measurements or from inaccuracies in the adopted RF model. Typical applications are e.g. fine-tuning of the second-stage of the ILA circuit for increased ELM-resilience, cross-checking the calibration of the measurements throughout the circuit and predicting the antenna performance and matching conditions in new plasma scenarios.

  4. Research on the equivalent circuit model of a circular flexural-vibration-research on the equivalent circuit model of a circular flexural-vibration-mode piezoelectric transformer with moderate thickness.

    Science.gov (United States)

    Huang, Yihua; Huang, Wenjin; Wang, Qinglei; Su, Xujian

    2013-07-01

    The equivalent circuit model of a piezoelectric transformer is useful in designing and optimizing the related driving circuits. Based on previous work, an equivalent circuit model for a circular flexural-vibration-mode piezoelectric transformer with moderate thickness is proposed and validated by finite element analysis. The input impedance, voltage gain, and efficiency of the transformer are determined through computation. The basic behaviors of the transformer are shown by numerical results.

  5. Oscillator circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for oscillator circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listing

  6. Measuring circuits

    CERN Document Server

    Graf, Rudolf F

    1996-01-01

    This series of circuits provides designers with a quick source for measuring circuits. Why waste time paging through huge encyclopedias when you can choose the topic you need and select any of the specialized circuits sorted by application?This book in the series has 250-300 practical, ready-to-use circuit designs, with schematics and brief explanations of circuit operation. The original source for each circuit is listed in an appendix, making it easy to obtain additional information.Ready-to-use circuits.Grouped by application for easy look-up.Circuit source listings

  7. Nucleic acids for the rational design of reaction circuits.

    Science.gov (United States)

    Padirac, Adrien; Fujii, Teruo; Rondelez, Yannick

    2013-08-01

    Nucleic acid-based circuits are rationally designed in vitro assemblies that can perform complex preencoded programs. They can be used to mimic in silico computations. Recent works emphasized the modularity and robustness of these circuits, which allow their scaling-up. Another new development has led to dynamic, time-responsive systems that can display emergent behaviors like oscillations. These are closely related to biological architectures and provide an in vitro model of in vivo information processing. Nucleic acid circuits have already been used to handle various processes for technological or biotechnological purposes. Future applications of these chemical smart systems will benefit from the rapidly growing ability to design, construct, and model nucleic acid circuits of increasing size. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. An energy-efficient high-performance processor with reconfigurable data-paths using RSFQ circuits

    International Nuclear Information System (INIS)

    Takagi, Naofumi

    2013-01-01

    Highlights: ► An idea of a high-performance computer using RSFQ circuits is shown. ► An outline of processor with reconfigurable data-paths (RDPs) is shown. ► Architectural details of an SFQ-RDP are described. -- Abstract: We show recent progress in our research on an energy-efficient high-performance processor with reconfigurable data-paths (RDPs) using rapid single-flux-quantum (RSFQ) circuits. We mainly describe the architectural details of an RDP implemented using RSFQ circuits. An RDP consists of a lot of floating-point units (FPUs) and operand routing networks (ORNs) which connect the FPUs. We reconfigure the RDP to fit a computation, i.e., a group of floating-point operations, appearing in a ‘for’ loop of programs for numerical computations by setting the route in ORNs before the execution of the loop. In the RDP, a lot of FPUs work in parallel with pipelined fashion, and hence, very high-performance computation is achieved

  9. Formalization, equivalence and generalization of basic resonance electrical circuits

    Science.gov (United States)

    Penev, Dimitar; Arnaudov, Dimitar; Hinov, Nikolay

    2017-12-01

    In the work are presented basic resonance circuits, which are used in resonance energy converters. The following resonant circuits are considered: serial, serial with parallel load parallel capacitor, parallel and parallel with serial loaded inductance. For the circuits under consideration, expressions are generated for the frequencies of own oscillations and for the equivalence of the active power emitted in the load. Mathematical expressions are graphically constructed and verified using computer simulations. The results obtained are used in the model based design of resonant energy converters with DC or AC output. This guaranteed the output indicators of power electronic devices.

  10. [National Academies' Board on Mathematical Sciences and their Application] Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Scott T. Weidman

    2005-01-11

    The National Academies' Board on Mathematical Sciences and their Applications (BMSA) is a primary interface between the research enterprise and federal agencies that rely on the mathematical sciences. The Board provides objective and authoritative advice on how best to apply the tools of mathematics, statistics, operations research, financial engineering, computational modeling, computational science, information analysis, and decision analysis to practical problems of national importance. In so doing, the Board strengthens the policy-making process and increases the visibility of, and appreciation for, the mathematical sciences while also identifying growth areas for the discipline. The Board consists of 18 pro bono experts from a broad range of quantitative fields, with experience in academia, industry, and national laboratories.

  11. Evaluation of spine boards for X-ray diagnostics

    International Nuclear Information System (INIS)

    Linsenmaier, U.; Kroetz, M.; Papst, E.; Rieger, J.; Pfeifer, K.J.; Kranz, K.G.; Russ, W.; Mutscher, W.

    2001-01-01

    Purpose: Spine boards are frequently used in preclinical emergency care. Different models were examined with regard to their feasibility for plain film radiography and computed tomography (CT). Methods: Five current spine board models were measured for their dimensions and weight. Transmission of radiation [μGyls] and dose area product [cGy x cm 2 ] were determined with a patient equivalent aluminium phantom. Image artifacts, image quality and resolution of anatomic details were evaluated with an anthropomorphic Alderson phantom. Results: With only 6.3 kg new models show a 28% reduction in weight, three spine boards generate lateral artifacts due to a narrow width of 41 - 42 cm. Radiation transmission of all boards was similar, however dose area products differed by up to 59%. Image quality was impaired in 4 out 5 boards because of image artifacts, CT scanning was not impaired with all boards. Conclusion: Only one board (Ferno Millenia trademark ) showed sufficient properties for plain film radiography and CT. There is no suitable spine board for preclinical and clinical applications as well as for trauma radiology, further improvements of current designs are essential. (orig.) [de

  12. General-purpose parallel simulator for quantum computing

    International Nuclear Information System (INIS)

    Niwa, Jumpei; Matsumoto, Keiji; Imai, Hiroshi

    2002-01-01

    With current technologies, it seems to be very difficult to implement quantum computers with many qubits. It is therefore of importance to simulate quantum algorithms and circuits on the existing computers. However, for a large-size problem, the simulation often requires more computational power than is available from sequential processing. Therefore, simulation methods for parallel processors are required. We have developed a general-purpose simulator for quantum algorithms/circuits on the parallel computer (Sun Enterprise4500). It can simulate algorithms/circuits with up to 30 qubits. In order to test efficiency of our proposed methods, we have simulated Shor's factorization algorithm and Grover's database search, and we have analyzed robustness of the corresponding quantum circuits in the presence of both decoherence and operational errors. The corresponding results, statistics, and analyses are presented in this paper

  13. Synthetic analog computation in living cells.

    Science.gov (United States)

    Daniel, Ramiz; Rubens, Jacob R; Sarpeshkar, Rahul; Lu, Timothy K

    2013-05-30

    A central goal of synthetic biology is to achieve multi-signal integration and processing in living cells for diagnostic, therapeutic and biotechnology applications. Digital logic has been used to build small-scale circuits, but other frameworks may be needed for efficient computation in the resource-limited environments of cells. Here we demonstrate that synthetic analog gene circuits can be engineered to execute sophisticated computational functions in living cells using just three transcription factors. Such synthetic analog gene circuits exploit feedback to implement logarithmically linear sensing, addition, ratiometric and power-law computations. The circuits exhibit Weber's law behaviour as in natural biological systems, operate over a wide dynamic range of up to four orders of magnitude and can be designed to have tunable transfer functions. Our circuits can be composed to implement higher-order functions that are well described by both intricate biochemical models and simple mathematical functions. By exploiting analog building-block functions that are already naturally present in cells, this approach efficiently implements arithmetic operations and complex functions in the logarithmic domain. Such circuits may lead to new applications for synthetic biology and biotechnology that require complex computations with limited parts, need wide-dynamic-range biosensing or would benefit from the fine control of gene expression.

  14. Boson sampling with integrated optical circuits

    International Nuclear Information System (INIS)

    Bentivegna, M.

    2014-01-01

    Simulating the evolution of non-interacting bosons through a linear transformation acting on the system’s Fock state is strongly believed to be hard for a classical computer. This is commonly known as the Boson Sampling problem, and has recently got attention as the first possible way to demonstrate the superior computational power of quantum devices over classical ones. In this paper we describe the quantum optics approach to this problem, highlighting the role of integrated optical circuits.

  15. CMOS analog integrated circuit design technology; CMOS anarogu IC sekkei gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, H.; Fujisawa, A. [Fuji Electric Co. Ltd., Tokyo (Japan)

    2000-08-10

    In the field of the LSI (large scale integrated circuit) in rapid progress toward high integration and advanced functions, CAD (computer-aided design) technology has become indispensable to LSI development within a short period. Fuji Electric has developed design technologies and automatic design system to develop high-quality analog ICs (integrated circuits), including power supply ICs. within a short period. This paper describes CMOS (complementary metal-oxide semiconductor) analog macro cell, circuit simulation, automatic routing, and backannotation technologies. (author)

  16. Synthetic Biology: A Unifying View and Review Using Analog Circuits.

    Science.gov (United States)

    Teo, Jonathan J Y; Woo, Sung Sik; Sarpeshkar, Rahul

    2015-08-01

    We review the field of synthetic biology from an analog circuits and analog computation perspective, focusing on circuits that have been built in living cells. This perspective is well suited to pictorially, symbolically, and quantitatively representing the nonlinear, dynamic, and stochastic (noisy) ordinary and partial differential equations that rigorously describe the molecular circuits of synthetic biology. This perspective enables us to construct a canonical analog circuit schematic that helps unify and review the operation of many fundamental circuits that have been built in synthetic biology at the DNA, RNA, protein, and small-molecule levels over nearly two decades. We review 17 circuits in the literature as particular examples of feedforward and feedback analog circuits that arise from special topological cases of the canonical analog circuit schematic. Digital circuit operation of these circuits represents a special case of saturated analog circuit behavior and is automatically incorporated as well. Many issues that have prevented synthetic biology from scaling are naturally represented in analog circuit schematics. Furthermore, the deep similarity between the Boltzmann thermodynamic equations that describe noisy electronic current flow in subthreshold transistors and noisy molecular flux in biochemical reactions has helped map analog circuit motifs in electronics to analog circuit motifs in cells and vice versa via a `cytomorphic' approach. Thus, a body of knowledge in analog electronic circuit design, analysis, simulation, and implementation may also be useful in the robust and efficient design of molecular circuits in synthetic biology, helping it to scale to more complex circuits in the future.

  17. SPRINT - An Interactive System for Printed Circuit Board Design User’s Guide.

    Science.gov (United States)

    1977-06-01

    effect as decreasing the time limit - your priority and turnaround time are improved. B) You have a very large circuit and an error message says...previous segment. If no path is found, a message is printed to that effect . If HIWIRE thinks the failure may have been due to too small a value of...USAF Academy, Colorado 80840 AUL/LSE-9663 Maxwell AFB, Alabama 36112 AFETR Technical Library P.O. Box 4608, MU 5650 Patrick AFB

  18. Resonance circuits for adiabatic circuits

    Directory of Open Access Journals (Sweden)

    C. Schlachta

    2003-01-01

    Full Text Available One of the possible techniques to reduces the power consumption in digital CMOS circuits is to slow down the charge transport. This slowdown can be achieved by introducing an inductor in the charging path. Additionally, the inductor can act as an energy storage element, conserving the energy that is normally dissipated during discharging. Together with the parasitic capacitances from the circuit a LCresonant circuit is formed.

  19. A Compact Cosmic Ray Telescope using Silicon Photomultipliers for use in High Schools

    Science.gov (United States)

    Castro, Luis; Elizondo, Leonardo; Shelor, Mark; Cervantes, Omar; Fan, Sewan; Ritt, Stefan

    2016-03-01

    Over the years, the QuarkNet and the LBL Cosmic Ray Project have helped trained thousands of high school students and teachers to explore cosmic ray physics. To get high school students in the Salinas, CA area also excited about cosmic rays, we constructed a cosmic ray telescope as a physics outreach apparatus. Our apparatus includes a pair of plastic scintillators coupled to silicon photomultipliers (SiPM) and a coincidence circuit board. We designed and constructed custom circuit boards for mounting the SiPM detectors, the high voltage power supplies and coincidence AND circuit. The AND logic signals can be used for triggering data acquisition devices including an oscilloscope, a waveform digitizer or an Arduino microcontroller. To properly route the circuit wire traces, the circuit boards were layout in Eagle and fabricated in-house using a circuit board maker from LPKF LASER, model Protomat E33. We used a Raspberry Pi computer to control a fast waveform sampler, the DRS4 to digitize the SiPM signal waveforms. The CERN PAW software package was used to analyze the amplitude and time distributions of SiPM detector signals. At this conference, we present our SiPM experimental setup, circuit board fabrication procedures and the data analysis work flow. AIP Megger's Award, Dept. of Ed. Title V Grant PO31S090007.

  20. Geometry of quantum computation with qutrits.

    Science.gov (United States)

    Li, Bin; Yu, Zu-Huan; Fei, Shao-Ming

    2013-01-01

    Determining the quantum circuit complexity of a unitary operation is an important problem in quantum computation. By using the mathematical techniques of Riemannian geometry, we investigate the efficient quantum circuits in quantum computation with n qutrits. We show that the optimal quantum circuits are essentially equivalent to the shortest path between two points in a certain curved geometry of SU(3(n)). As an example, three-qutrit systems are investigated in detail.

  1. A Dynamic Connectome Supports the Emergence of Stable Computational Function of Neural Circuits through Reward-Based Learning.

    Science.gov (United States)

    Kappel, David; Legenstein, Robert; Habenschuss, Stefan; Hsieh, Michael; Maass, Wolfgang

    2018-01-01

    Synaptic connections between neurons in the brain are dynamic because of continuously ongoing spine dynamics, axonal sprouting, and other processes. In fact, it was recently shown that the spontaneous synapse-autonomous component of spine dynamics is at least as large as the component that depends on the history of pre- and postsynaptic neural activity. These data are inconsistent with common models for network plasticity and raise the following questions: how can neural circuits maintain a stable computational function in spite of these continuously ongoing processes, and what could be functional uses of these ongoing processes? Here, we present a rigorous theoretical framework for these seemingly stochastic spine dynamics and rewiring processes in the context of reward-based learning tasks. We show that spontaneous synapse-autonomous processes, in combination with reward signals such as dopamine, can explain the capability of networks of neurons in the brain to configure themselves for specific computational tasks, and to compensate automatically for later changes in the network or task. Furthermore, we show theoretically and through computer simulations that stable computational performance is compatible with continuously ongoing synapse-autonomous changes. After reaching good computational performance it causes primarily a slow drift of network architecture and dynamics in task-irrelevant dimensions, as observed for neural activity in motor cortex and other areas. On the more abstract level of reinforcement learning the resulting model gives rise to an understanding of reward-driven network plasticity as continuous sampling of network configurations.

  2. Support for the Core Research Activities and Studies of the Computer Science and Telecommunications Board (CSTB)

    Energy Technology Data Exchange (ETDEWEB)

    Jon Eisenberg, Director, CSTB

    2008-05-13

    The Computer Science and Telecommunications Board of the National Research Council considers technical and policy issues pertaining to computer science (CS), telecommunications, and information technology (IT). The functions of the board include: (1) monitoring and promoting the health of the CS, IT, and telecommunications fields, including attention as appropriate to issues of human resources and funding levels and program structures for research; (2) initiating studies involving CS, IT, and telecommunications as critical resources and sources of national economic strength; (3) responding to requests from the government, non-profit organizations, and private industry for expert advice on CS, IT, and telecommunications issues; and to requests from the government for expert advice on computer and telecommunications systems planning, utilization, and modernization; (4) fostering interaction among CS, IT, and telecommunications researchers and practitioners, and with other disciplines; and providing a base of expertise in the National Research Council in the areas of CS, IT, and telecommunications. This award has supported the overall operation of CSTB. Reports resulting from the Board's efforts have been widely disseminated in both electronic and print form, and all CSTB reports are available at its World Wide Web home page at cstb.org. The following reports, resulting from projects that were separately funded by a wide array of sponsors, were completed and released during the award period: 2007: * Summary of a Workshop on Software-Intensive Systems and Uncertainty at Scale * Social Security Administration Electronic Service Provision: A Strategic Assessment * Toward a Safer and More Secure Cyberspace * Software for Dependable Systems: Sufficient Evidence? * Engaging Privacy and Information Technology in a Digital Age * Improving Disaster Management: The Role of IT in Mitigation, Preparedness, Response, and Recovery 2006: * Renewing U.S. Telecommunications

  3. Electronic circuit for rapid digital NMR signal imaging

    International Nuclear Information System (INIS)

    Jurak, P.; Krejci, I.; Belusa, J.

    1992-01-01

    The circuit is made up of two analog-to-digital converters whose outputs are connected to a process computer and the synchronization inputs to the clock terminal. The one analog-to-digital converter is connected, via the signal input, to the terminal of the nuclear magnetic resonance locking signal. The signal input of the other analog-to-digital converter is connected to the time base generator, which can be switched off, and to the magnetic field sweep circuit. The assets of this citcuit include easy computerized processing of the digitized information independently of the time base generation, and prevention of interfering signals from penetrating into the magnetic field sweep circuits. (Z.S.). 1 fig

  4. Introduction to noise-resilient computing

    CERN Document Server

    Yanushkevich, Svetlana N; Tangim, Golam

    2013-01-01

    Noise abatement is the key problem of small-scaled circuit design. New computational paradigms are needed -- as these circuits shrink, they become very vulnerable to noise and soft errors. In this lecture, we present a probabilistic computation framework for improving the resiliency of logic gates and circuits under random conditions induced by voltage or current fluctuation. Among many probabilistic techniques for modeling such devices, only a few models satisfy the requirements of efficient hardware implementation -- specifically, Boltzman machines and Markov Random Field (MRF) models. These

  5. INTEGRATED ON-BOARD COMPUTING SYSTEMS: PRESENT SITUATION REVIEW AND DEVELOPMENT PROSPECTS ANALYSIS IN THE AVIATION INSTRUMENT-MAKING INDUSTRY

    Directory of Open Access Journals (Sweden)

    P. P. Paramonov

    2013-03-01

    Full Text Available The article deals with present situation review and analysis of development prospects for integrated on-board computing systems, used in the aviation instrument-making industry. The main attention is paid to the projects carried out in the framework of an integrated modular avionics. Hierarchical levels of module design, crates (onboard systems and aviation complexes are considered in detail. Examples of the existing products of our country and from abroad and their brief technical characteristics are given and voluminous bibliography on the subject matter as well.

  6. New ATLAS Software & Computing Organization

    CERN Multimedia

    Barberis, D

    Following the election by the ATLAS Collaboration Board of Dario Barberis (Genoa University/INFN) as Computing Coordinator and David Quarrie (LBNL) as Software Project Leader, it was considered necessary to modify the organization of the ATLAS Software & Computing ("S&C") project. The new organization is based upon the following principles: separation of the responsibilities for computing management from those of software development, with the appointment of a Computing Coordinator and a Software Project Leader who are both members of the Executive Board; hierarchical structure of responsibilities and reporting lines; coordination at all levels between TDAQ, S&C and Physics working groups; integration of the subdetector software development groups with the central S&C organization. A schematic diagram of the new organization can be seen in Fig.1. Figure 1: new ATLAS Software & Computing organization. Two Management Boards will help the Computing Coordinator and the Software Project...

  7. A new model for simulating microbial cyanide production and optimizing the medium parameters for recovering precious metals from waste printed circuit boards.

    Science.gov (United States)

    Yuan, Zhihui; Ruan, Jujun; Li, Yaying; Qiu, Rongliang

    2018-04-10

    Bioleaching is a green recycling technology for recovering precious metals from waste printed circuit boards (WPCBs). However, this technology requires increasing cyanide production to obtain desirable recovery efficiency. Luria-Bertani medium (LB medium, containing tryptone 10 g/L, yeast extract 5 g/L, NaCl 10 g/L) was commonly used in bioleaching of precious metal. In this study, results showed that LB medium did not produce highest yield of cyanide. Under optimal culture conditions (25 °C, pH 7.5), the maximum cyanide yield of the optimized medium (containing tryptone 6 g/L and yeast extract 5 g/L) was 1.5 times as high as that of LB medium. In addition, kinetics and relationship of cell growth and cyanide production was studied. Data of cell growth fitted logistics model well. Allometric model was demonstrated effective in describing relationship between cell growth and cyanide production. By inserting logistics equation into allometric equation, we got a novel hybrid equation containing five parameters. Kinetic data for cyanide production were well fitted to the new model. Model parameters reflected both cell growth and cyanide production process. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Use of large pieces of printed circuit boards for bioleaching to avoid ‘precipitate contamination problem’ and to simplify overall metal recovery

    Science.gov (United States)

    Adhapure, N.N.; Dhakephalkar, P.K.; Dhakephalkar, A.P.; Tembhurkar, V.R.; Rajgure, A.V.; Deshmukh, A.M.

    2014-01-01

    Very recently bioleaching has been used for removing metals from electronic waste. Most of the research has been targeted to using pulverized PCBs for bioleaching where precipitate formed during bioleaching contaminates the pulverized PCB sample and making the overall metal recovery process more complicated. In addition to that, such mixing of pulverized sample with precipitate also creates problems for the final separation of non metallic fraction of PCB sample. In the present investigation we attempted the use of large pieces of printed circuit boards instead of pulverized sample for removal of metals. Use of large pieces of PCBs for bioleaching was restricted due to the chemical coating present on PCBs, the problem has been solved by chemical treatment of PCBs prior to bioleaching. In short,•Large pieces of PCB can be used for bioleaching instead of pulverized PCB sample.•Metallic portion on PCBs can be made accessible to bacteria with prior chemical treatment of PCBs.•Complete metal removal obtained on PCB pieces of size 4 cm × 2.5 cm with the exception of solder traces. The final metal free PCBs (non metallic) can be easily recycled and in this way the overall recycling process (metallic and non metallic part) of PCBs becomes simple. PMID:26150951

  9. 46 CFR 169.682 - Distribution and circuit loads.

    Science.gov (United States)

    2010-10-01

    ... the rating of the overcurrent protective device, computed using the greater of— (1) The lamp sizes to be installed; or (2) 50 watts per outlet. (b) Circuits supplying electrical discharge lamps must be...

  10. Water-Based Coating Simplifies Circuit Board Manufacturing

    Science.gov (United States)

    2008-01-01

    The Structures and Materials Division at Glenn Research Center is devoted to developing advanced, high-temperature materials and processes for future aerospace propulsion and power generation systems. The Polymers Branch falls under this division, and it is involved in the development of high-performance materials, including polymers for high-temperature polymer matrix composites; nanocomposites for both high- and low-temperature applications; durable aerogels; purification and functionalization of carbon nanotubes and their use in composites; computational modeling of materials and biological systems and processes; and developing polymer-derived molecular sensors. Essentially, this branch creates high-performance materials to reduce the weight and boost performance of components for space missions and aircraft engine components. Under the leadership of chemical engineer, Dr. Michael Meador, the Polymers Branch boasts world-class laboratories, composite manufacturing facilities, testing stations, and some of the best scientists in the field.

  11. Designing an Augmented Reality Board Games with children: The BattleBoard 3D experience

    DEFF Research Database (Denmark)

    Grønbæk, Kaj; Kristensen, Sune; Andersen, Troels L.

    2004-01-01

    This paper discusses the design of Battleboard 3D (BB3D) which is an ARToolkit based game prototype, featuring the use of LEGO bricks for the physical and digital pieces. BB3D is a novel type of an AR game augmenting traditional board games with features from computer games. The initial experiments...

  12. Development of FPGA-Based Control Board

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Hee; Jeong, See Chae; Choi, Woong Seock; Lee, Chang Jae; Jeong, Jin Kwon; Ha, Jae Hong [Korea Power Engineering Company Inc., Daejeon (Korea, Republic of)

    2009-10-15

    It is well known that existing nuclear power plant (NPP) control systems contain many components which are becoming obsolete at an increasing rate. Various studies have been conducted to address control system hardware obsolescence. Obsolete analog and digital control systems in non-nuclear power plants are commonly replaced with modern digital control systems, programmable logic controllers (PLC) and distributed control systems (DCS). Field Programmable Gate Arrays (FPGAs) are highlighted as an alternative means for obsolete control systems. FPGAs are advanced digital integrated circuits (ICs) that contain configurable (programmable) blocks of logic along with configurable interconnects between these blocks. Designers can configure (program) such devices to perform a tremendous variety of tasks. FPGAs have been evolved from the technology of Programmable Logic Device (PLD). Nowadays they can contain millions of logic gates by nanotechnology and so be used to implement extremely large and complex functions that previously could be realized only using Application-Specific Integrated Circuits (ASICs). This paper is to present the development of a FPGAbased control board performing user-defined control functions. An Actel ProASIC{sup plus} FPGA platform is implemented as the comparator of Plant Protection System (PPS). Functional simulation is implemented for the comparator.

  13. Foundations for microstrip circuit design

    CERN Document Server

    Edwards, Terry

    2016-01-01

    Building on the success of the previous three editions, Foundations for Microstrip Circuit Design offers extensive new, updated and revised material based upon the latest research. Strongly design-oriented, this fourth edition provides the reader with a fundamental understanding of this fast expanding field making it a definitive source for professional engineers and researchers and an indispensable reference for senior students in electronic engineering. Topics new to this edition: microwave substrates, multilayer transmission line structures, modern EM tools and techniques, microstrip and planar transmision line design, transmission line theory, substrates for planar transmission lines, Vias, wirebonds, 3D integrated interposer structures, computer-aided design, microstrip and power-dependent effects, circuit models, microwave network analysis, microstrip passive elements, and slotline design fundamentals.

  14. The Influence of Board of Directors, Independent Board of Commissioners, Leverage, and Corporate Activities To Disclosure of Sustainability Report.

    Directory of Open Access Journals (Sweden)

    Eria Nissa Awalia

    2015-07-01

    Full Text Available This research was intended to examine the influences of board of directors, board of independent commissioner, leverage, and activity of company toward sustainability report disclosure. Sustainability Report Disclosure is the dependent variable sinthis research were measured by GRIG 3.1 Content Index and Checklists. For the independent variables in this research, using board of directors were measured by sum of directors meetings, board of in dependent commissioner were measured by proportion of independent commissioner, leverage were measured by debt to equity, activity of company were measured by total asset turnover. This research uses secondary data which is financial statement. and sustainability report from Indonesian Stock Exchange Listed Companies in 2010-2012. While the sampling method used was purposive sampling method which is overall 39 observations. This research uses multiple regression method to test the hypothesis with SPSS computer program. From the analysis performed in this research, it can be concluded that board of directors, and leverage have no significant influence to sustainability report disclosure. The other hand activity of company has positive influence and significant to sustainability report disclosure. And Board of independent commissioner has negative influence and significant to sustainability reporting disclosure.

  15. Single-Phase Full-Wave Rectifier as an Effective Example to Teach Normalization, Conduction Modes, and Circuit Analysis Methods

    Directory of Open Access Journals (Sweden)

    Predrag Pejovic

    2013-12-01

    Full Text Available Application of a single phase rectifier as an example in teaching circuit modeling, normalization, operating modes of nonlinear circuits, and circuit analysis methods is proposed.The rectifier supplied from a voltage source by an inductive impedance is analyzed in the discontinuous as well as in the continuous conduction mode. Completely analytical solution for the continuous conduction mode is derived. Appropriate numerical methods are proposed to obtain the circuit waveforms in both of the operating modes, and to compute the performance parameters. Source code of the program that performs such computation is provided.

  16. Circuit for Communication Over Power Lines

    Science.gov (United States)

    Krasowski, Michael J.; Prokop, Normal F.; Greer, Lawrence C., III; Nappier, Jennifer

    2011-01-01

    Many distributed systems share common sensors and instruments along with a common power line supplying current to the system. A communication technique and circuit has been developed that allows for the simple inclusion of an instrument, sensor, or actuator node within any system containing a common power bus. Wherever power is available, a node can be added, which can then draw power for itself, its associated sensors, and actuators from the power bus all while communicating with other nodes on the power bus. The technique modulates a DC power bus through capacitive coupling using on-off keying (OOK), and receives and demodulates the signal from the DC power bus through the same capacitive coupling. The circuit acts as serial modem for the physical power line communication. The circuit and technique can be made of commercially available components or included in an application specific integrated circuit (ASIC) design, which allows for the circuit to be included in current designs with additional circuitry or embedded into new designs. This device and technique moves computational, sensing, and actuation abilities closer to the source, and allows for the networking of multiple similar nodes to each other and to a central processor. This technique also allows for reconfigurable systems by adding or removing nodes at any time. It can do so using nothing more than the in situ power wiring of the system.

  17. Track Circuit Fault Diagnosis Method based on Least Squares Support Vector

    Science.gov (United States)

    Cao, Yan; Sun, Fengru

    2018-01-01

    In order to improve the troubleshooting efficiency and accuracy of the track circuit, track circuit fault diagnosis method was researched. Firstly, the least squares support vector machine was applied to design the multi-fault classifier of the track circuit, and then the measured track data as training samples was used to verify the feasibility of the methods. Finally, the results based on BP neural network fault diagnosis methods and the methods used in this paper were compared. Results shows that the track fault classifier based on least squares support vector machine can effectively achieve the five track circuit fault diagnosis with less computing time.

  18. Project Circuits in a Basic Electric Circuits Course

    Science.gov (United States)

    Becker, James P.; Plumb, Carolyn; Revia, Richard A.

    2014-01-01

    The use of project circuits (a photoplethysmograph circuit and a simple audio amplifier), introduced in a sophomore-level electric circuits course utilizing active learning and inquiry-based methods, is described. The development of the project circuits was initiated to promote enhanced engagement and deeper understanding of course content among…

  19. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    Science.gov (United States)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  20. The relationship between inpatient discharge timing and emergency department boarding.

    Science.gov (United States)

    Powell, Emilie S; Khare, Rahul K; Venkatesh, Arjun K; Van Roo, Ben D; Adams, James G; Reinhardt, Gilles

    2012-02-01

    Patient crowding and boarding in Emergency Departments (EDs) impair the quality of care as well as patient safety and satisfaction. Improved timing of inpatient discharges could positively affect ED boarding, and this hypothesis can be tested with computer modeling. Modeling enables analysis of the impact of inpatient discharge timing on ED boarding. Three policies were tested: a sensitivity analysis on shifting the timing of current discharge practices earlier; discharging 75% of inpatients by 12:00 noon; and discharging all inpatients between 8:00 a.m. and 4:00 p.m. A cross-sectional computer modeling analysis was conducted of inpatient admissions and discharges on weekdays in September 2007. A model of patient flow streams into and out of inpatient beds with an output of ED admitted patient boarding hours was created to analyze the three policies. A mean of 38.8 ED patients, 22.7 surgical patients, and 19.5 intensive care unit transfers were admitted to inpatient beds, and 81.1 inpatients were discharged daily on September 2007 weekdays: 70.5%, 85.6%, 82.8%, and 88.0%, respectively, occurred between noon and midnight. In the model base case, total daily admitted patient boarding hours were 77.0 per day; the sensitivity analysis showed that shifting the peak inpatient discharge time 4h earlier eliminated ED boarding, and discharging 75% of inpatients by noon and discharging all inpatients between 8:00 a.m. and 4:00 p.m. both decreased boarding hours to 3.0. Timing of inpatient discharges had an impact on the need to board admitted patients. This model demonstrates the potential to reduce or eliminate ED boarding by improving inpatient discharge timing in anticipation of the daily surge in ED demand for inpatient beds. Copyright © 2012 Elsevier Inc. All rights reserved.