WorldWideScience

Sample records for chrysosporium

  1. Enzyme activity of a Phanerochaete chrysosporium cellobiohydrolase

    African Journals Online (AJOL)

    The white-rot, basidiomycete fungus, Phanerochaete chrysosporium, has attracted .... with Congo red (1 mg/ml) solution, incubated at room temperature for 15 min and washed several times with sterile 1 .... white rot fungus Phanerochaete chrysosporium: cloning, sequence analysis and regulation of differential expression.

  2. Influence Of Chrysosporium Spp. In The Prevalence Of Dermatophytes in Soil

    Directory of Open Access Journals (Sweden)

    Shankar Gokul S

    2001-01-01

    Full Text Available Eighty two soil samples were screened for the prevalence of Chrysosporium and dermatophytes. Out of the 75 positive samples 2 were M. gypseum and 73 were Chrysosporium spp.None of the soil samples yielded both Chrysosporium spp. and M. gypseum. The co- inoculation of Chrysosporium spp. with different species of dermatophytes (T. rubrum. T. Mentagrophytes. E. floccosum and M. gypseum in sterilized soil revealed that none of the dermatophytes except M. gypseum could be recovered after the 15th day of co- inoculation. Whereas, these organisms when inoculated alone in sterilized soil, could be recovered even upto 25 days. In the light of the above finding, we suggest that Chrysosporium spp. might pose a definite challenge to dermatophytes in their saprophytic existence in soil.

  3. Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Fueyo, Elena; Ruiz-Duenas, Francisco J.; Ferreira, Patrica; Floudas, Dimitrios; HIbbett, David S.; Canessa, Paulo; Larrondo, Luis F.; James, Tim Y.; Seelenfreund, Daniela; Lobos, Sergio; Polanco, Ruben; Tello, Mario; Honda, Yoichi; Watanabe, Takahito; Watanabe, Takashi; Ryu, Jae San; Kubicek, Christian P.; Schmoll, Monika; Gaskell, Jill; Hammel, Kenneth E.; John, Franz J.; Vanden Wymelenberg, Amber; Sabat, Grzegorz; Splinter BonDurant, Sandra; Syed, Khajamohiddin; Yadav, Jagjit S.; Doddapaneni, Harshavardhan; Subramanian, Venkataramanan; Lavin, Jose L.; Oguiza, Jose A.; Perez, Gumer; Pisabarro, Antonio G.; Ramirez, Lucia; Santoyo, Francisco; Master, Emma; Coutinho, Pedro M.; Henrissat, Bernard; Lombard, Vincent; Magnuson, Jon Karl; Kues, Ursula; Hori, Chiaki; Igarashi, Kiyohiko; Samejima, Masahiro; Held, Benjamin W.; Barry, Kerrie W.; LaButti, Kurt M.; Lapidus, Alla; Lindquist, Erika A.; Lucas, Susan M.; Riley, Robert; Salamov, Asaf A.; Hoffmeister, Dirk; Schwenk, Daniel; Hadar, Yitzhak; Yarden, Oded; de Vries, Ronald P.; Wiebenga, Ad; Stenlid, Jan; Eastwood, Daniel; Grigoriev, Igor V.; Berka, Randy M.; Blanchette, Robert A.; Kersten, Phil; Martinez, Angel T.; Vicuna, Rafael; Cullen, Dan

    2011-12-06

    Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little cellulose degradation. To investigate the basis for selective ligninolysis, we conducted comparative genome analysis of C. subvermispora and P. chrysosporium. Genes encoding manganese peroxidase numbered 13 and five in C. subvermispora and P. chrysosporium, respectively. In addition, the C. subvermispora genome contains at least seven genes predicted to encode laccases, whereas the P. chrysosporium genome contains none. We also observed expansion of the number of C. subvermispora desaturase-encoding genes putatively involved in lipid metabolism. Microarray-based transcriptome analysis showed substantial up-regulation of several desaturase and MnP genes in wood-containing medium. MS identified MnP proteins in C. subvermispora culture filtrates, but none in P. chrysosporium cultures. These results support the importance of MnP and a lignin degradation mechanism whereby cleavage of the dominant nonphenolic structures is mediated by lipid peroxidation products. Two C. subvermispora genes were predicted to encode peroxidases structurally similar to P. chrysosporium lignin peroxidase and, following heterologous expression in Escherichia coli, the enzymes were shown to oxidize high redox potential substrates, but not Mn2. Apart from oxidative lignin degradation, we also examined cellulolytic and hemicellulolytic systems in both fungi. In summary, the C. subvermispora genetic inventory and expression patterns exhibit increased oxidoreductase potential and diminished cellulolytic capability relative to P. chrysosporium.

  4. Bioremediation of textile effluent using Phanerochaete chrysosporium

    African Journals Online (AJOL)

    Bioremediation of textile effluent using Phanerochaete chrysosporium. ... African Journal of Biotechnology. Journal Home · ABOUT THIS ... The discharge of these waste residues into the environment eventually poison, damage or affect one or ...

  5. Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium

    KAUST Repository

    Espinosa-Ortiz, Erika J.

    2014-10-24

    The ability of Phanerochaete chrysosporium to reduce the oxidized forms of selenium, selenate and selenite, and their effects on the growth, substrate consumption rate, and pellet morphology of the fungus were assessed. The effect of different operational parameters (pH, glucose, and selenium concentration) on the response of P. chrysosporium to selenium oxyanions was explored as well. This fungal species showed a high sensitivity to selenium, particularly selenite, which inhibited the fungal growth and substrate consumption when supplied at 10 mg L−1 in the growth medium, whereas selenate did not have such a strong influence on the fungus. Biological removal of selenite was achieved under semi-acidic conditions (pH 4.5) with about 40 % removal efficiency, whereas less than 10 % selenium removal was achieved for incubations with selenate. P. chrysosporium was found to be a selenium-reducing organism, capable of synthesizing elemental selenium from selenite but not from selenate. Analysis with transmission electron microscopy, electron energy loss spectroscopy, and a 3D reconstruction showed that elemental selenium was produced intracellularly as nanoparticles in the range of 30–400 nm. Furthermore, selenite influenced the pellet morphology of P. chrysosporium by reducing the size of the fungal pellets and inducing their compaction and smoothness.

  6. A series of Xerophilic Chrysosporium species

    DEFF Research Database (Denmark)

    Skou, Jens-Peder

    1992-01-01

    Xerophilic Chrysosporium species related to C. farinicola were often isolated from uneaten provisions (pollen-and-nectar mixture) of mason bees (Osmia spp.). The fungi have an optimal growth rate on media which are 2 to 3 molar in regard to glucose, exhibit some growth up to 3.6 molar glucose...

  7. Fatal cutaneous mycosis in tentacled snakes caused by the chrysosporium anamorph of nannizziposis vriesii

    DEFF Research Database (Denmark)

    Bertelsen, Mads Frost; Crawshaw, Graham J.; Sigler, Lynne

    2005-01-01

    The fungus Chrysosporium anamorph of Nannizziopsis vriesii was identified as the caurse of fatal, multifocal, heterophilic dermatitis in for freshwater aquatic captive-bred tentacled snakes......The fungus Chrysosporium anamorph of Nannizziopsis vriesii was identified as the caurse of fatal, multifocal, heterophilic dermatitis in for freshwater aquatic captive-bred tentacled snakes...

  8. Enzyme activity of a Phanerochaete chrysosporium cellobiohydrolase

    African Journals Online (AJOL)

    The aim of this study was to produce a secreted, heterologously expressed Phanerochaete chrysosporium cellobiohydrolase (CBHI.1) protein that required no in vitro chemical refolding and to investigate the cellulolytic activity of the clone expressing the glutathione S-transferase (GST) fused CBHI.1 protein. Plate enzyme ...

  9. Polyvinyl alcohol-immobilized Phanerochaete chrysosporium and its application in the bioremediation of composite-polluted wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhenzhen [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Chen, Guiqiu, E-mail: gqchen@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zeng, Guangming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Chen, Anwei [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Zuo, Yanan; Guo, Zhi; Tan, Qiong [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Song, Zhongxian [Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500 (China); Niu, Qiuya [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2015-05-30

    Graphical abstract: Schematic diagram of polyvinyl alcohol-immobilized Phanerochaete chrysosporium beads (PPBs) for Cd(II) removal and 2,4-DCP degradation. - Highlights: • PVA-immobilized P. chrysosporium beads (PPBs) were fit for wastewater treatment. • Removal rates of Cd(II) and 2,4-DCP at optimum conditions were up to 78% and 95.4%. • 2,4-DCP removal rates were beyond 90% with varying initial 2,4-DCP concentrations. • PVA was vital to Cd(II) removal besides the function groups in P. chrysosporium. • Maximum recovery of the Cd(II)-laden PPBs after reuse three times was 98.9%. - Abstract: A novel biosorbent, polyvinyl alcohol (PVA)-immobilized Phanerochaete chrysosporium, was applied to the bioremediation of composite-polluted wastewater, containing both cadmium and 2,4-dichlorophenol (2,4-DCP). The optimum removal efficiency achieved was 78% for Cd(II) and 95.4% for 2,4-DCP at initial concentrations of 20 mg/L Cd(II) and 40 mg/L 2,4-DCP. PPBs had significantly enhanced the resistance of P. chrysosporium to 2,4-DCP, leading to the degradation rates of 2,4-DCP beyond 90% with varying initial 2,4-DCP concentrations. This research demonstrated that 2,4-DCP and secreted proteins might be used as carbon and nitrogen sources by PVA-immobilized P. chrysosporium beads (PPBs) for Cd(II) removal. Fourier transform infrared spectroscopy analysis showed that hydroxyl and carboxyl groups on the surface of PPBs were dominant in Cd(II) binding. The mechanism underlying the degradation of 2,4-DCP into fumaric acid and 1-hexanol was investigated. The adsorption–desorption studies indicated that PPBs kept up to 98.9% of desorption efficiency over three cycles.

  10. Polyvinyl alcohol-immobilized Phanerochaete chrysosporium and its application in the bioremediation of composite-polluted wastewater

    International Nuclear Information System (INIS)

    Huang, Zhenzhen; Chen, Guiqiu; Zeng, Guangming; Chen, Anwei; Zuo, Yanan; Guo, Zhi; Tan, Qiong; Song, Zhongxian; Niu, Qiuya

    2015-01-01

    Graphical abstract: Schematic diagram of polyvinyl alcohol-immobilized Phanerochaete chrysosporium beads (PPBs) for Cd(II) removal and 2,4-DCP degradation. - Highlights: • PVA-immobilized P. chrysosporium beads (PPBs) were fit for wastewater treatment. • Removal rates of Cd(II) and 2,4-DCP at optimum conditions were up to 78% and 95.4%. • 2,4-DCP removal rates were beyond 90% with varying initial 2,4-DCP concentrations. • PVA was vital to Cd(II) removal besides the function groups in P. chrysosporium. • Maximum recovery of the Cd(II)-laden PPBs after reuse three times was 98.9%. - Abstract: A novel biosorbent, polyvinyl alcohol (PVA)-immobilized Phanerochaete chrysosporium, was applied to the bioremediation of composite-polluted wastewater, containing both cadmium and 2,4-dichlorophenol (2,4-DCP). The optimum removal efficiency achieved was 78% for Cd(II) and 95.4% for 2,4-DCP at initial concentrations of 20 mg/L Cd(II) and 40 mg/L 2,4-DCP. PPBs had significantly enhanced the resistance of P. chrysosporium to 2,4-DCP, leading to the degradation rates of 2,4-DCP beyond 90% with varying initial 2,4-DCP concentrations. This research demonstrated that 2,4-DCP and secreted proteins might be used as carbon and nitrogen sources by PVA-immobilized P. chrysosporium beads (PPBs) for Cd(II) removal. Fourier transform infrared spectroscopy analysis showed that hydroxyl and carboxyl groups on the surface of PPBs were dominant in Cd(II) binding. The mechanism underlying the degradation of 2,4-DCP into fumaric acid and 1-hexanol was investigated. The adsorption–desorption studies indicated that PPBs kept up to 98.9% of desorption efficiency over three cycles

  11. Enhanced bioremediation of 4-nonylphenol and cadmium co-contaminated sediment by composting with Phanerochaete chrysosporium inocula.

    Science.gov (United States)

    Xu, Piao; Lai, Cui; Zeng, Guangming; Huang, Danlian; Chen, Ming; Song, Biao; Peng, Xin; Wan, Jia; Hu, Liang; Duan, Abing; Tang, Wangwang

    2018-02-01

    Composting is identified as an effective approach for solid waste disposal. The bioremediation of 4-nonylphenol (4NP) and cadmium (Cd) co-contaminated sediment was investigated by composting with Phanerochaete chrysosporium (P. chrysosporium) inocula. P. chrysosporium inocula and proper C/N ratios (25.51) accelerated the composting process accompanied with faster total organic carbon loss, 4NP degradation and Cd passivation. Microbiological analysis demonstrated that elevated activities of lignocellulolytic enzymes and sediment enzymes was conducive to organic chemical transformation. Bacterial community diversity results illustrated that Firmicutes and Proteobacteria were predominant species during the whole composting process. Aerobic cellulolytic bacteria and organic degrading species played significant roles. Toxicity characteristic leaching procedure (TCLP) extraction and germination indices results indicated the efficient detoxification of 4NP and Cd co-contaminated sediment after 120 days of composting. Overall, results demonstrated that P. chrysosporium enhanced composting was available for the bioremediation of 4NP and Cd co-contaminated sediment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. In vitro effect of Chrysosporium indicum and Chrysosporium keratinophylum on Toxocara canis eggs.

    Science.gov (United States)

    Bojanich, María V; Basualdo, Juan A; Giusiano, Gustavo

    2017-12-05

    The degree of antagonism exercised by fungi on geohelminth development varies according to the morphological alterations caused by different fungal species. Saprophytic fungi may exert ovicidal or ovistatic effects. The aim of this study was to apply scanning electron microscopy (SEM) to observe the action of two soil saprophytic species of Chrysosporium (C. indicum and C. keratinophylum) on Toxocara canis eggs. The fungal strains to be tested were incubated for 28 days at 28°C in 2% water agar with a suspension of unembryonated T. canis eggs. A suspension of T. canis eggs in 2% water agar was used as control group. The assay was done in triplicate for each fungus and the control group. SEM observations were performed on the 4th, 7th, 14th, 21st, and 28th day after inoculation. The effect of the fungi on eggs was evaluated in accordance with the alterations observed on the surface and the changes in the normal characteristics of the eggs. Hyphae around the eggs, appresoria penetrating the shell and changes in the typical egg membrane were observed in this assay. Type 3 effect (alterations that occur both in the embryo and the shell, and hyphal penetration of the eggs) was the prevalent effect. SEM allowed us to observe clearly the morphological alterations in T. canis eggs due to the effect of C. indicum and C. keratinophylum. Both saprophytic species of Chrysosporium alter the egg structure and alterations increase as exposure increases. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Aqueous two-phase system purification for superoxide dismutase induced by menadione from Phanerochaete chrysosporium.

    Science.gov (United States)

    Kavakcıoğlu, Berna; Tongul, Burcu; Tarhan, Leman

    2017-03-01

    In the present work, the partitioning behavior of menadione-induced superoxide dismutase (SOD; EC 1.15.1.1), an antioxidant enzyme that has various applications in the medical and cosmetic industries, from the white rot fungus Phanerochaete chrysosporium has been characterized on different types of aqueous two-phase systems (ATPSs) (poly(ethylene glycol)/polypropylene glycol (PEG/PPG)-dextran, PEG-salt and PPG-salt). PEG-salt combinations were found most optimal systems for the purification of SOD. The best partition conditions were found using the PEG-3350 24% and K 2 HPO 4 5% (w/w) with pH 7.0 at 25 °C. The partition coefficient of total SOD activity and total protein concentration observed in this system were 0.17 and 6.65, respectively, with the recovery percentage as 78.90% in the bottom phase and 13.17% in the top phase. The highest purification fold for SOD from P. chrysosporium was found as 6.04 in the bottom phase of PEG 3350%24 - K 2 HPO 4 %5 (w/w) system with pH 7.0. SOD purified from P. chrysosporium was determined to be a homodimer in its native state with a molecular weight of 60  ± 4 kDa. Consequently, simple and only one step PEG-salt ATPS system was developed for SOD purification from P. chrysosporium.

  14. Influence of gamma rays radiation on lignin degradation potency of phanerochaete chrysosporium and ganoderma lucidum

    International Nuclear Information System (INIS)

    Tri Retno DL; Nana Mulyana; Nurhasni; Uswatun Hasanah

    2016-01-01

    This research aims to increase the activity of extracellular enzymes lignolitik fungi phanerochaete chrysosporium and ganoderma lucidum to degrade lignocellulosic waste. Lignocellulosic difficult to degrade because it is composed of lignin, cellulose and hemicellulose. Phanerochaete chrysosporium and ganoderma lucidum group white rot fungi can degrade lignin because it is able to synthesize enzymes lignin peroxidase (LiP). Irradiation low dose gamma rays capable menstimulsi increase extracellular enzyme activity. Fungi phanerochaete chrysosporium and ganoderma lucidum in medium slent exposed to gamma irradiation at doses of 0 (control), 200, 400, 600, 800 and 1000 Gy. In a liquid medium containing Potatoes Dextrose Broth (PDB), mineral salts with the substrate lignin alkali 0 and 5 % w/v, fungi phanerochaete chrysosporium were exposed to a dose of 600 Gy of gamma rays have LiP activity (30 U/mL) by 2.5 times higher compared with controls (12 U/mL). While ganoderma lucidum that are exposed to gamma radiation at a dose of 800 Gy has LiP activity (34 U/mL) was 1.7 times higher than the control (20 U/mL). On a solid substrate fermentation of white teak powder (Gmelina arborea Roxb.) For 12 days at pH 6.4 and water content of 79 % by fungi phanerochaete chrysosporium were exposed to gamma ray dose of 600 Gy has an efficiency of lignin degradation by 42 %, whereas on fungi ganoderma lucidum that are exposed gamma ray dose of 800 Gy has an efficiency of lignin degradation by 21 % with optimal conditions of pH 7. And; water content of 71.3 %. (author)

  15. Infection with Devriesea agamarum and Chrysosporium guarroi in an inland bearded dragon (Pogona vitticeps).

    Science.gov (United States)

    Schmidt-Ukaj, Silvana; Loncaric, Igor; Klang, Andrea; Spergser, Joachim; Häbich, Annett-Carolin; Knotek, Zdenek

    2014-12-01

    Description of clinical, microbiological and histopathological findings in a case of deep dermatitis in an inland bearded dragon (Pogona vitticeps) caused by Devriesea agamarum and Chrysosporium guarroi. A 4-year-old male inland bearded dragon, weighing 497 g, was presented at the clinic because the animal was suffering from dysecdysis and chronic skin lesions. Large numbers of bacilli, cocci and hyphal elements were diagnosed during the microscopic examination of the wound exudate. Microbiological analysis of a skin specimen revealed a moderate growth of Enterococcus sp. and D. agamarum. The condition of the bearded dragon improved with combined therapy consisting of ceftiofur hydrochloride, voriconazole and meloxicam. However, 3 months later recrudescence was observed. This time, Clostridium sp. and Chrysosporium sp. were isolated in large numbers. The bearded dragon was euthanized. Histopathology confirmed a severe granulomatous dermatitis with associated fungal hyphae and a severe granulomatous hepatitis with intralesional hyphae. Chrysosporium guarroi was identified by PCR and sequencing in two organs (skin and liver). This is the first case of an infection with D. agamarum and C. guarroi in an inland bearded dragon (P. vitticeps). It emphasizes the importance of mycological cultures and specific treatment. Samples of suspected Chrysosporium sp. should be cultured at 30°C for 10-14 days. Early antifungal treatment is necessary to prevent systemic and potentially fatal infection with C. guarroi. © 2014 ESVD and ACVD.

  16. Potensi kapang pelapuk putih Phanerochaeta chrysosporium dalam pengolahan limbah industri tekstil

    Directory of Open Access Journals (Sweden)

    Yulinah Trihadiningrum

    2012-02-01

    Full Text Available Phanerochaete chrysosporium was known as white rot mold which could biodegrade persistent organic pollutants. In this researchthe ability of the mold in biodegrading textile dye direct orange S and rhemazol yellow, which contained naphtol functional group, wasstudied. This research included characterization of the waste water and determination of optimum concentration of the waste water forbiodegradation. The optimum concentration for biodegradation was determined by measuring the radial growth of the mold in agarmedium containing various concentrations of textile dye. The final stage was the application of the mold for biodegrading the textiledye in aerobic batch reactor using the selected concentration.This research showed that P. chrysosporium could grow satisfactorily in minimum medium containing synthetic textile wastewaterin various concentrations. The highest colour removal efficiency of 93% was achieved in 3 days in the waste water with highest colorintensity (absorbance value l520 = 4.00, and 48% in the waste water with absorbance value l520 = 1.22. COD removal efficiency of87% was achieved within 12 days in the wastewater of 30% concentration, and 83% in the waste water of 100% concentration. The pHvalues decreased to 3.23 in the waste water with lower dye concentration and to 3.42 in the higher color intensity, from the initialvalues of 5.0-6.0. This research concluded that P. chrysosporium was capable to biodegrade naphtol textile dye with reasonably highefficiency.

  17. Laboratory studies of the degradation of chloropyrifos pesticide in soils supplemented by the fungus Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    Lopera Mesa, Margarita Maria; Penuela Mesa, Gustavo Antonio; Dominguez Gual, Maria Carolina; Mejia Zapata, Gloria Maria

    2005-01-01

    Degradation of the insecticide chloropyrifos was investigated in sterilized soil samples supplemented by the white rot basidiomycetes Phanerochaete chrysosporium. Degradation rates were measured during 21-day incubation at pesticide concentrations of 0,95, 5,3, and 9,41 μ/g. Phanerochaete chrysosporium showed ability to biodegrade the insecticide in values of 96,3%, 82,4% and 62,2%, respectively, followed by rapid degradation at low initial concentration of chloropyrifos

  18. Chrysosporium guarroi sp. nov. a new emerging pathogen of pet green iguanas (Iguana iguana).

    Science.gov (United States)

    Abarca, M L; Castellá, G; Martorell, J; Cabañes, F J

    2010-03-01

    Chrysosporium guarroi sp. nov. represented by five strains isolated from cases of dermatomycosis in pet green iguanas (Iguana iguana) in Spain, is described and illustrated. This taxon is characterized by its ability to grow at temperatures from 15 to 37 degrees C and by the presence of arthroconidia and aleurioconidia. The latter are unicellular, smooth, pyriform or clavate, sessile or borne at the ends of narrow stalks. The analysis of the sequences of the D1/D2 and ITS regions confirm the separation of this new species from others of the genus Chrysosporium.

  19. Genetic recombination in auxotrophic strains of Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    Krejci, R.

    1987-01-01

    Four auxotrophic strains of ligninolytic basidiomycete Phanerochaete chrysosporium were obtained by UV mutagenesis. The heterokaryotic mycelium formed by complementation of different auxotrophic isolates was able to fruit and produce basidiospores. Prototrophic strains and strains with a recombined set of parental nutritional requirements were isolated from the basidiospore progeny of the heterokaryons. Genetic recombination hence takes place in fruit bodies produced by the heterokaryotic mycelium. (author). 3 tabs., 13 refs

  20. Structure, organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignin-degrading basidiomycete Phanerochaete chrysosporium

    Science.gov (United States)

    Amber Vanden Wymelenberg; Grzegorz Sabat; Michael Mozuch; Philip J. Kersten; Dan Cullen; Robert A. Blanchette

    2006-01-01

    The white rot basidiomycete Phanerochaete chrysosporium produces an array of nonspecific extracellular enzymes thought to be involved in lignin degradation, including lignin peroxidases, manganese peroxidases, and the H2O2-generating copper radical oxidase, glyoxal oxidase (GLX). Preliminary analysis of the P. chrysosporium draft genome had identified six sequences...

  1. Biotreatment of textile effluent in static bioreactor by Curvularia lunata URM 6179 and Phanerochaete chrysosporium URM 6181.

    Science.gov (United States)

    Miranda, Rita de Cássia M de; Gomes, Edelvio de Barros; Pereira, Nei; Marin-Morales, Maria Aparecida; Machado, Katia Maria Gomes; Gusmão, Norma Buarque de

    2013-08-01

    Investigations on biodegradation of textile effluent by filamentous fungi strains Curvularia lunata URM 6179 and Phanerochaete chrysosporium URM 6181 were performed in static bioreactors under aerated and non-aerated conditions. Spectrophotometric, HPLC/UV and LC-MS/MS analysis were performed as for to confirm, respectively, decolourisation, biodegradation and identity of compounds in the effluent. Enzymatic assays revealed higher production of enzymes laccase (Lac), lignin peroxidase (LiP) and manganese-dependent peroxidase (MnP) by P. chrysosporium URM 6181 in aerated bioreactor (2020; 39 and 392 U/l, respectively). Both strains decolourised completely the effluent after ten days and biodegradation of the most predominant indigo dye was superior in aerated bioreactor (96%). Effluent treated by P. chrysosporium URM 6181 accumulated a mutagenic metabolite derived from indigo. The C. lunata URM 6179 strain, showed to be more successful for assure the environmental quality of treated effluent. These systems were found very effective for efficient fungal treatment of textile effluent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Transport of Phanerochaete chrysosporium and Mucor hiemalis f. irnsingii spores through water-saturated quartz sands; Transport von Phanerochaete chrysosporium- und Mucor hiemalis f. irnsingii-Sporen durch wassergesaettigten Quarzsand

    Energy Technology Data Exchange (ETDEWEB)

    Hoque, E.; Klotz, D.; Teichmann, G.; Lang, H.; Wolf, M. [GSF - Forschungszentrum fuer Umwelt und Gesundheit GmbH, Neuherberg (Germany). Inst. fuer Hydrologie; Beisker, W. [GSF, Inst. fuer Pathologie (Germany)

    2001-11-01

    Just as bacteria so can aquatic fungi contribute effectively to pollutant elimination, at least in superficial groundwaters. However, very little is known about this. Nor is it known whether fungal spores are capable of being transported through sedimentary cavities. At least fungal spores are for some part of similar size as bacteria. We here report for the first time on a demonstration of the migration through quartz sand of spores of the two fungal species Phanerochaete chrysosporium and Mucor hiemalis f. irnsingii. [German] Neben Bakterien koennen auch aquatische Pilze, zumindest im oberflaechennahen Grundwasser, effiziente Beitraege zur Schadstoffentgiftung leisten. Darueber ist aber sehr wenig bekannt. Es ist auch nicht bekannt, ob ueberhaupt Pilzsporen durch Sedimenthohlraeume transportiert werden koennen, obwohl die Pilzsporen z.T. aehnliche Abmessungen wie Bakterien haben. Hier berichten wir erstmalig ueber den Nachweis der Migration von Sporen der beiden Pilzarten Phanerochaete chrysosporium und Mucor hiemalis f. irnsingii durch Quarzsand. (orig.)

  3. Simultaneous cadmium removal and 2,4-dichlorophenol degradation from aqueous solutions by Phanerochaete chrysosporium

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Anwei; Zeng, Guangming; Chen, Guiqiu; Fan, Jiaqi; Zou, Zhengjun; Li, Hui; Hu, Xinjiang; Long, Fei [Hunan Univ., Changsha (China). College of Environmental Science and Engineering; Ministry of Education, Changsha (CN). Key Lab. of Environmental Biology and Pollution Control (Hunan Univ.)

    2011-08-15

    Phanerochaete chrysosporium has been recognised as an effective bioremediation agent due to its unique degradation to xenobiotic and biosorption ability to heavy metals. However, few studies have focused on the simultaneous removal of heavy metals and organic pollutants. The aim of this work was to study the feasibility of simultaneous cadmium removal and 2,4-dichlorophenol (2,4-DCP) degradation in P. chrysosporium liquid cultures. The removal efficiencies were pH dependent and the maximum removal efficiencies were observed at pH 6.5 under an initial cadmium concentration of 5 mg/L and an initial 2,4-DCP concentration of 20 mg/L. The removal efficiencies for cadmium and 2,4-DCP reached 63.62% and 83.90%, respectively, under the optimum conditions. The high production levels of lignin peroxidase (7.35 U/mL) and manganese peroxidase (8.30 U/mL) resulted in an increase in 2,4-DCP degradation. The protein content decreased with increasing cadmium concentration. The surface characteristics and functional groups of the biomass were studied by scanning electron microscopy and a Fourier-transformed infrared spectrometer. The results showed that the use of P. chrysosporium is promising for the simultaneous removal of cadmium and 2,4-DCP from liquid media. (orig.)

  4. Degradation of wheat straw cell wall by white rot fungi Phanerochaete chrysosporium

    Science.gov (United States)

    Zeng, Jijiao

    The main aim of this dissertation research was to understand the natural microbial degradation process of lignocellulosic materials in order to develop a new, green and more effective pretreatment technology for bio-fuel production. The biodegradation of wheat straw by white rot fungi Phanerochaete chrysosporium was investigated. The addition of nutrients significantly improved the performance of P.chrysosporium on wheat straw degradation. The proteomic analysis indicated that this fungus produced various pepetides related to cellulose and lignin degradation while grown on the biomass. The structural analysis of lignin further showed that P.chrysosporium preferentially degraded hydroxycinnamtes in order to access cellulose. In details, the effects of carbon resource and metabolic pathway regulating compounds on manganeses peroxidase (MnP) were studied. The results indicated that MnP activity of 4.7 +/- 0.31 U mL-1 was obtained using mannose as a carbon source. The enzyme productivity further reached 7.36 +/- 0.05 U mL-1 and 8.77 +/- 0.23 U mL -1 when the mannose medium was supplemented with cyclic adenosine monophosphate (cAMP) and S-adenosylmethionine (SAM) respectively, revealing highest MnP productivity obtained by optimizing the carbon sources and supplementation with small molecules. In addition, the effects of nutrient additives for improving biological pretreatment of lignocellulosic biomass were studied. The pretreatment of wheat straw supplemented with inorganic salts (salts group) and tween 80 was examined. The extra nutrient significantly improved the ligninase expression leading to improve digestibility of lignocellulosic biomass. Among the solid state fermentation groups, salts group resulted in a substantial degradation of wheat straw within one week, along with the highest lignin loss (25 %) and ˜ 250% higher efficiency for the total sugar release through enzymatic hydrolysis. The results were correlated with pyrolysis GC-MS (Py

  5. Dermatomycosis in a pet inland bearded dragon (Pogona vitticeps) caused by a Chrysosporium species related to Nannizziopsis vriesii.

    Science.gov (United States)

    Abarca, M L; Martorell, J; Castellá, G; Ramis, A; Cabañes, F J

    2009-08-01

    A Chrysosporium sp. related to Nannizziopsis vriesii was isolated in pure culture from squames and biopsies of facial lesions in a pet inland bearded dragon (Pogona vitticeps) in Spain. The presence in histological sections of morphologically consistent fungal elements strongly incriminates this fungus as the aetiological agent of infection. Lesions regressed following treatment with oral ketoconazole and topical chlorhexidine and terbinafine until the lizard was lost to follow up 1 month later. The ITS-5.8S rRNA gene of the isolate was sequenced and a search on the GenBank database revealed a high match with the sequences of two Chrysosporium sp. strains recently isolated from green iguanas (Iguana iguana) with dermatomycosis, also in Spain. Phylogenetic analysis of the sequences revealed that all these strains are related to N. vriesii. This is the first report of dermatomycoses caused by a Chrysosporium species related to N. vriesii in a bearded dragon outside North America.

  6. Pyranose 2-oxidase from Phanerochaete chrysosporium--Expression in E.coli and Biochemical Characterization

    Czech Academy of Sciences Publication Activity Database

    Pisanelli, I.; Kujawa, M.; Spadiut, O.; Kittl, R.; Halada, Petr; Volc, Jindřich; Mozuch, M. D.; Kersten, P.; Haltrich, D.; Peterbauer, C.

    2009-01-01

    Roč. 142, č. 2 (2009), s. 97-106 ISSN 0168-1656 Institutional research plan: CEZ:AV0Z50200510 Keywords : Pyranose 2-oxidase * Phanerochaete chrysosporium * Lignocellulose degradation Subject RIV: CE - Biochemistry Impact factor: 2.881, year: 2009

  7. Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis

    Science.gov (United States)

    Elena Fernandez-Fueyo; Francisco J. Ruiz-Dueñas; Patricia Ferreira; Dimitrios Floudas; David S. Hibbett; Paulo Canessa; Luis F. Larrondo; Tim Y. James; Daniela Seelenfreund; Sergio Lobos; Rubén Polanco; Mario Tello; Yoichi Honda; Takahito Watanabe; Takashi Watanabe; Jae San Ryu; Christian P. Kubicek; Monika Schmoll; Jill Gaskell; Kenneth E. Hammel; Franz J. St. John; Amber Vanden Wymelenberg; Grzegorz Sabat; Sandra Splinter BonDurant; Khajamohiddin Syed; Jagjit S. Yadav; Harshavardhan Dodapaneni; Venkataramanan Subramanian; José L. Lavin; José A. Oguiza; Gumer Perez; Antonio G. Pisabarro; Lucia Ramirez; Francisco Santoyo; Emma Master; Pedro M. Coutinho; Bernard Henrissat; Vincent Lombard; Jon Karl Magnuson; Ursula Kües; Chiaki Hori; Kiyohiko Igarashi; Masahiro Samejima; Benjamin W. Held; Kerrie W. Barry; Kurt M. LaButti; Alla Lapidus; Erika A. Lindquist; Susan M. Lucas; Robert Riley; Asaf A. Salamov; Dirk Hoffmeister; Daniel Schwenk; Yitzhak Hadar; Oded Yarden; Ronald P. de Vries; Ad Wiebenga; Jan Stenlid; Daniel Eastwood; Igor V. Grigoriev; Randy M. Berka; Robert A. Blanchette; Phil Kersten; Angel T. Martinez; Rafael Vicuna; Daniel Cullen

    2012-01-01

    Efficient lignin depolymerization is unique to the wood decay basidiomycetes, collectively referred to as white rot fungi. Phanerochaete chrysosporium simultaneously degrades lignin and cellulose, whereas the closely related species, Ceriporiopsis subvermispora, also depolymerizes lignin but may do so with relatively little...

  8. Comparative biodegradation of alkyl halide insecticides by the white rot fungus, Phanerochaete chrysosporium (BKM-F-1767)

    International Nuclear Information System (INIS)

    Kennedy, D.W.; Aust, S.D.; Bumpus, J.A.

    1990-01-01

    The ability of Phanerochaete chrysosporium to degrade six alkyl halide insecticides (aldrin, dieldrin, heptachlor, chlordane, lindane, and mirex) in liquid and soil-corncob matrices was compared by using 14 C-labeled compounds. Of these, only [ 14 C]lindane and [ 14 C]chlordane underwent extensive biodegradation, as evidenced by the fact that 9.4 to 23.4% of these compounds were degraded to 14 CO 2 in 30 days in liquid cultures and 60 days in soil-corncob cultures inoculated with P. chrysosporium. Although [ 14 C]aldrin, [ 14 C]dieldrin, [ 14 C]heptachlor, and [14D]mirex were poorly mineralized, substantial bioconversion occurred, as determined by substrate disappearance and metabolite formation. Nonbiological disappearance was observed only with chlordane and heptachlor

  9. Nitrate reductase gene involvement in hexachlorobiphenyl dechlorination by Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    De, Supriyo; Perkins, Michael; Dutta, Sisir K.

    2006-01-01

    Polychlorobiphenyl (PCB) degradation usually occurs through reductive dechlorination under anaerobic conditions and phenolic ring cleavage under aerobic conditions. In this paper, we provide evidence of nitrate reductase (NaR) mediated dechlorination of hexachlorobiphenyl (PCB-153) in Phanerochaete chrysosporium under non-ligninolytic condition and the gene involved. The NaR enzyme and its cofactor, molybdenum (Mo), were found to mediate reductive dechlorination of PCBs even in aerobic condition. Tungsten (W), a competitive inhibitor of this enzyme, was found to suppress this dechlorination. Chlorine release assay provided further evidence of this nitrate reductase mediated dechlorination. Commercially available pure NaR enzyme from Aspergillus was used to confirm these results. Through homology search using TBLASTN program, NaR gene was identified, primers were designed and the RT-PCR product was sequenced. The NaR gene was then annotated in the P. chrysosporium genome (GenBank accession no. AY700576). This is the first report regarding the presence of nitrate reductase gene in this fungus with the explanation why this fungus can dechlorinate PCBs even in aerobic condition. These fungal inoculums are used commercially as pellets in sawdust for enhanced bioremediation of PCBs at the risk of depleting soil nitrates. Hence, the addition of nitrates to the pellets will reduce this risk as well as enhance its activity

  10. Demonstration of laccase in the white rot basidiomycete phanerochaete chrysosporium BKM-F1767

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, C.; D`Souza, T.M.; Boominathan, K. [Michigan State Univ., East Lansing, MI (United States)

    1995-12-01

    It has been widely reported that the white rot basidiomycete Phanerochaete chrysosporium, unlike most other white rot fungi, does not produce laccase, an enzyme implicated in lignin biodegradation. Our results showed that P. chrysosporium BKM-F1767 produces extracellular laccase in a defined culture medium containing cellulose (10 g/liter) and either 2.4 or 24 mM ammonium tartrate. Laccase activity was demonstrated in the concentrated extracellular culture fluids of this organism as determined by a laccase plate assay as well as a spectrophotometric assay with ABTS [2,2`-azinobis(3-ethylbenzathiazoline-6-sulfonic acid)] as the substrate. Laccase activity was observed even after addition of excess catalase to the extracellular culture fluid to destroy the endogenously produced hydrogen peroxide, indicating that the observed activity is not due to a peroxidase. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by activity staining with ABTS revealed the presence of a laccase band with an estimated M{sub r} of 46,500.

  11. Molecular characterization of reptile pathogens currently known as members of the chrysosporium anamorph of Nannizziopsis vriesii complex and relationship with some human-associated isolates.

    Science.gov (United States)

    Sigler, Lynne; Hambleton, Sarah; Paré, Jean A

    2013-10-01

    In recent years, the Chrysosporium anamorph of Nannizziopsis vriesii (CANV), Chrysosporium guarroi, Chrysosporium ophiodiicola, and Chrysosporium species have been reported as the causes of dermal or deep lesions in reptiles. These infections are contagious and often fatal and affect both captive and wild animals. Forty-nine CANV isolates from reptiles and six isolates from human sources were compared with N. vriesii based on their cultural characteristics and DNA sequence data. Analyses of the sequences of the internal transcribed spacer and small subunit of the nuclear ribosomal gene revealed that the reptile pathogens and human isolates belong in well-supported clades corresponding to three lineages that are distinct from all other taxa within the family Onygenaceae of the order Onygenales. One lineage represents the genus Nannizziopsis and comprises N. vriesii, N. guarroi, and six additional species encompassing isolates from chameleons and geckos, crocodiles, agamid and iguanid lizards, and humans. Two other lineages comprise the genus Ophidiomyces, with the species Ophidiomyces ophiodiicola occurring only in snakes, and Paranannizziopsis gen. nov., with three new species infecting squamates and tuataras. The newly described species are Nannizziopsis dermatitidis, Nannizziopsis crocodili, Nannizziopsis barbata, Nannizziopsis infrequens, Nannizziopsis hominis, Nannizziopsis obscura, Paranannizziopsis australasiensis, Paranannizziopsis californiensis, and Paranannizziopsis crustacea. Chrysosporium longisporum has been reclassified as Paranannizziopsis longispora. N. guarroi causes yellow fungus disease, a common infection in bearded dragons and green iguanas, and O. ophiodiicola is an emerging pathogen of captive and wild snakes. Human-associated species were not recovered from reptiles, and reptile-associated species were recovered only from reptiles, thereby mitigating concerns related to zoonosis.

  12. Transcript patterns of Phanerochaete chrysosporium genes in organopollutant contaminated soils and in wood

    Science.gov (United States)

    Amber. Vanden Wymelenberg; Bernard. Janse; Jill. Gaskell; Diane. Dietrich; Marcelo. Vallim; Dan. Cullen

    1998-01-01

    We describe here recent methods for quantitative assessment of specific P. chrysosporium mRNAs in organopollutant contaminated soils and in Aspen wood chips. Magnetic capture techniques were used to rapidly purify poly(A)-RNA, and quantitative RT-PCR protocols were developed for all known lignin peroxidase (lip) and cellobiohydrolase (cbh1) genes. The methodology is...

  13. Bioreduction of hexavalent chromium by live and active phanerochaete chrysosporium: kinetics and modeling

    International Nuclear Information System (INIS)

    Murugavelh, Somasundaram; Mohanty, Kaustubha

    2012-01-01

    In this work the potential of live and active Phanerochaete chrysosporium, a white rot fungi, to remove lower Cr(VI) concentration from aqueous solutions was reported for the first time. A medium pH had significant effect on the growth of the fungus and bioremoval of Cr(VI). Substrate inhibition on the growth of Phanerochaete chrysosporium was evident beyond 20 g L -1 of dextrose concentration. A maximum biomass concentration of 15.64 g L -1 was obtained for an initial dextrose concentration of 20 g L -1 in metal free medium at pH 6.0. An increase in Cr(VI) concentration beyond 10 mg L -1 inhibited the growth of the fungi, thereby, reducing the chromium bioremoval efficiency. A maximum reduction efficiency of 98.92% was reported for an initial metal concentration of 10 mg L -1 . A mathematical expression for the bioreduction of Cr(VI) considering the organic compounds in the cells was proposed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Bioreduction of hexavalent chromium by live and active phanerochaete chrysosporium: kinetics and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Murugavelh, Somasundaram; Mohanty, Kaustubha [Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam (India)

    2012-07-15

    In this work the potential of live and active Phanerochaete chrysosporium, a white rot fungi, to remove lower Cr(VI) concentration from aqueous solutions was reported for the first time. A medium pH had significant effect on the growth of the fungus and bioremoval of Cr(VI). Substrate inhibition on the growth of Phanerochaete chrysosporium was evident beyond 20 g L{sup -1} of dextrose concentration. A maximum biomass concentration of 15.64 g L{sup -1} was obtained for an initial dextrose concentration of 20 g L{sup -1} in metal free medium at pH 6.0. An increase in Cr(VI) concentration beyond 10 mg L{sup -1} inhibited the growth of the fungi, thereby, reducing the chromium bioremoval efficiency. A maximum reduction efficiency of 98.92% was reported for an initial metal concentration of 10 mg L{sup -1}. A mathematical expression for the bioreduction of Cr(VI) considering the organic compounds in the cells was proposed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Influence of Populus Genotype on Gene Expression by the Wood Decay Fungus Phanerochaete chrysosporium

    Science.gov (United States)

    Jill Gaskell; Amber Marty; Michael Mozuch; Philip J. Kersten; Sandra Splinter Bondurant; Grzegorz Sabat; Ali Azarpira; John Ralph; Oleksandr Skyba; Shawn D. Mansfield; Robert A. Blanchette; Dan Cullen

    2014-01-01

    We examined gene expression patterns in the lignin-degrading fungus Phanerochaete chrysosporium when it colonizes hybrid poplar (Populus alba tremula) and syringyl (S)-rich transgenic derivatives. Acombination ofmicroarrays and liquid chromatography- tandem mass spectrometry (LC-MS/MS) allowed detection of a total of 9,959 transcripts and 793...

  16. Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium

    Science.gov (United States)

    Amber J. Vanden Wymelenberg; Jill Gaskell; Michael Mozuch; Grzegorz Sabat; John Ralph; Oleksandr Skyba; Shawn D Mansfield; Robert A. Blanchette; Diego Martinez; Igor Grigoriev; Philip J Kersten; Daniel Cullen

    2010-01-01

    Cellulose degradation by brown rot fungi, such as Postia placenta, is poorly understood relative to the phylogenetically related white rot basidiomycete, Phanerochaete chrysosporium. To elucidate the number, structure, and regulation of genes involved in lignocellulosic cell wall attack, secretome and transcriptome analyses were performed on both wood decay fungi...

  17. Pyranose 2-oxidase from Phanerochaete chrysosporium : expression in E. coli and biochemical characterization

    Science.gov (United States)

    Ines Pisanelli; Magdalena Kujawa; Oliver Spadiut; Roman Kittl; Petr Halada; Jindrich Volc; Michael D. Mozuch; Philip Kersten; Dietmar Haltrich; Clemens Peterbauer

    2009-01-01

    The presented work reports the isolation and heterologous expression of the p2ox gene encoding the flavoprotein pyranose 2-oxidase (P2Ox) from the basidiomycete Phanerochaete chrysosporium. The p2ox cDNA was inserted into the bacterial expression vector pET21a(+) and successfully expressed in Escherichia coli. We obtained active, fully flavinylated recombinant P2Ox in...

  18. Delignification of Sawdust White Teak (Gmelina arborea Roxb. by Fungi Phanerochaete chrysosporium Irradiated Gamma Ray

    Directory of Open Access Journals (Sweden)

    Nurhasni Nurhasni

    2016-12-01

    Full Text Available Abstrak Biomassa lignoselulosa yang merupakan limbah pemanenan kayu harus dilakukan proses untuk memisahkan selulosa, hemiselulosa dan lignin sehingga dapat termanfaatkan. Penelitian ini bertujuan untuk mengetahui efektivitas inokulan fungi Phanerochaete chrysosporium iradiasi gamma dan pretreatment kimia terhadap percepatan delignifikasi serbuk kayu jati putih (Gmelina arborea Roxb. sehingga dapat dimanfaatkan dalam proses pulping. Pada penelitian ini dilakukan pretreatment substrat kayu jati putih (Gmelina arborea Roxb. menggunakan larutan NaOH 1% dan H2SO4 1% serta iradiasi gamma Co-60, yang mempunyai daya ionisasi kecil, daya tembus yang tinggi serta Co-60 dapat memancarkan sinar gamma dengan waktu paruh pendek. Penelitian ini dilakukan dalam dua tahap, tahap pertama penentuan dosis optimum iradiasi gamma terhadap fungi Phanerochaete chrysosporium (0 Gy, 200 Gy, 400 Gy, 600 Gy, 800 Gy, dan 1000 Gy dan tahap kedua analisis karakteristik substrat kayu jati putih yang telah di pretreatment dengan metode Solid State Fermentation (SSF selama 21 hari. Hasil penelitian menunjukkan bahwa dosis optimum pemberian iradiasi gamma pada fungi Phanerochaete chrysosporium yaitu pada dosis 600 Gy yang dapat meningkatkan aktivitas enzim lignin peroksidase (LiP sebesar 22.18 U/mL. Proses pretreatment kimia dengan menggunakan H2SO4 1% dapat mempercepat proses biodelignifikasi yang menghasilkan efisiensi degradasi lignin tertinggi yaitu sebesar 25.65%.   Kata kunci: Lignoselulosa, delignifikasi, Solid State Fermentation (SSF, Phanerochaete chrysosporium,iradiasi gamma.   Abstract   Lignocellulose biomass is waste wood harvesting should be a process for separating cellulose, hemicellulose and lignin that can be utilized. This study aims to determine the effectiveness of the inoculant fungi Phanerochaete chrysosphorium gamma irradiation and chemical pretreatment to accelerate delignification powder white teak (Gmelina arborea Roxb.. In this research

  19. ABILITY OF Phanerochaete chrysosporium AND Trametes versicolor TO REMOVE Zn2+, Cr3+, Pb2+ METAL IONS

    Directory of Open Access Journals (Sweden)

    Josué Solís Pacheco

    2015-07-01

    Full Text Available The use of fungal biomass as an alternative for removing heavy metals has become increasingly important in recent years, replacing conventional methods based on chemical physical processes. In this study, we evaluated the biosorption of Zn2+, Cr3+ and Pb2+, which were analyzed to determine their effect on growth kinetic parameters of Phanerochaete chrysosporium strain ATCC 32629 and Trametes versicolor ATCC 1267. Growth kinetics were performed in four liquid culture media: 1 Yeast Nitrogen Base (YNB used as control, 2 YNB medium plus Pb2+ (0.25, 1 and 2 mg L-1, 3 YNB medium plus Zn2+ (5, 10 and 20 mg L-1 and 4 YNB medium plus Cr3+ (0.5, 1 and 2 mg L-1. The flasks were incubated at 25 °C with shaking at 150 rpm. Metal concentrations were determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES with prior acid digestion of the sample. The results demonstrated that Phanerochaete chrysosporium ATCC 32629 and Trametes versicolor ATCC 12679 are able to grow in the culture medium with Pb2+, Zn2+ and Cr3+ ions at different concentrations. However, P. chrysosporium ATCC 32629 showed greater adaptability and ability to adsorb Cr3+ in the culture medium at concentrations of 0.5 and 1 mg L-1, whereas T. versicolor ATCC 12679 was capable of Pb2+ biosorption at concentrations of 0.25, 1 and 2 mg L-1.

  20. Detoxification of corn stover and corn starch pyrolysis liquors by ligninolytic enzymes of Phanerochaete chrysosporium.

    Science.gov (United States)

    Khiyami, Mohammad A; Pometto, Anthony L; Brown, Robert C

    2005-04-20

    Phanerochaete chrysosporium (ATCC 24725) shake flask culture with 3 mM veratryl alcohol addition on day 3 was able to grow and detoxify different concentrations of diluted corn stover (Dcs) and diluted corn starch (Dst) pyrolysis liquors [10, 25, and 50% (v/v)] in defined media. GC-MS analysis of reaction products showed a decrease and change in some compounds. In addition, the total phenolic assay with Dcs samples demonstrated a decrease in the phenolic compounds. A bioassay employing Lactobacillus casei growth and lactic acid production was developed to confirm the removal of toxic compounds from 10 and 25% (v/v) Dcs and Dst by the lignolytic enzymes, but not from 50% (v/v) Dcs and Dst. The removal did not occur when sodium azide or cycloheximide was added to Ph. chrysosporium culture media, confirming the participation of lignolytic enzymes in the detoxification process. A concentrated enzyme preparation decreased the phenolic compounds in 10% (v/v) corn stover and corn starch pyrolysis liquors to the same extent as the fungal cultures.

  1. Degradation of Diuron by Phanerochaete chrysosporium: Role of Ligninolytic Enzymes and Cytochrome P450

    Directory of Open Access Journals (Sweden)

    Jaqueline da Silva Coelho-Moreira

    2013-01-01

    Full Text Available The white-rot fungus Phanerochaete chrysosporium was investigated for its capacity to degrade the herbicide diuron in liquid stationary cultures. The presence of diuron increased the production of lignin peroxidase in relation to control cultures but only barely affected the production of manganese peroxidase. The herbicide at the concentration of 7 μg/mL did not cause any reduction in the biomass production and it was almost completely removed after 10 days. Concomitantly with the removal of diuron, two metabolites, DCPMU [1-(3,4-dichlorophenyl-3-methylurea] and DCPU [(3,4-dichlorophenylurea], were detected in the culture medium at the concentrations of 0.74 μg/mL and 0.06 μg/mL, respectively. Crude extracellular ligninolytic enzymes were not efficient in the in vitro degradation of diuron. In addition, 1-aminobenzotriazole (ABT, a cytochrome P450 inhibitor, significantly inhibited both diuron degradation and metabolites production. Significant reduction in the toxicity evaluated by the Lactuca sativa L. bioassay was observed in the cultures after 10 days of cultivation. In conclusion, P. chrysosporium can efficiently metabolize diuron without the accumulation of toxic products.

  2. Degradation of diuron by Phanerochaete chrysosporium: role of ligninolytic enzymes and cytochrome P450.

    Science.gov (United States)

    Coelho-Moreira, Jaqueline da Silva; Bracht, Adelar; de Souza, Aline Cristine da Silva; Oliveira, Roselene Ferreira; de Sá-Nakanishi, Anacharis Babeto; de Souza, Cristina Giatti Marques; Peralta, Rosane Marina

    2013-01-01

    The white-rot fungus Phanerochaete chrysosporium was investigated for its capacity to degrade the herbicide diuron in liquid stationary cultures. The presence of diuron increased the production of lignin peroxidase in relation to control cultures but only barely affected the production of manganese peroxidase. The herbicide at the concentration of 7 μ g/mL did not cause any reduction in the biomass production and it was almost completely removed after 10 days. Concomitantly with the removal of diuron, two metabolites, DCPMU [1-(3,4-dichlorophenyl)-3-methylurea] and DCPU [(3,4-dichlorophenyl)urea], were detected in the culture medium at the concentrations of 0.74 μ g/mL and 0.06 μ g/mL, respectively. Crude extracellular ligninolytic enzymes were not efficient in the in vitro degradation of diuron. In addition, 1-aminobenzotriazole (ABT), a cytochrome P450 inhibitor, significantly inhibited both diuron degradation and metabolites production. Significant reduction in the toxicity evaluated by the Lactuca sativa L. bioassay was observed in the cultures after 10 days of cultivation. In conclusion, P. chrysosporium can efficiently metabolize diuron without the accumulation of toxic products.

  3. In vitro and in vivo inhibitory effects of some fungicides on catalase produced and purified from white-rot fungus Phanerochaete chrysosporium.

    Science.gov (United States)

    Kavakçıoğlu, Berna; Tarhan, Leman

    2014-10-01

    In this study, in vitro and in vivo effects of some commonly used fungicides, antibiotics, and various chemicals on isolated and purified catalase from Phanerochaete chrysosporium were investigated. The catalase was purified 129.10-fold by using 60% ammonium sulfate and 60% ethanol precipitations, DEAE-cellulose anion exchange and Sephacryl-S-200 gel filtration chromatographies from P. chrysosporium growth in carbon- and nitrogen-limited medium for 12 days. The molecular weight of native purified catalase from P. chrysosporium was found to be 290 ± 10 kDa, and sodium dodecyl sulfate (SDS)-PAGE results indicated that enzyme consisted of four apparently identical subunits, with a molecular weight of 72.5 ± 2.5 kDa. Kinetic characterization studies showed that optimum pH and temperature, Km and Vmax values of the purified catalase which were stable in basic region and at comparatively high temperatures were 7.5, 30°C, 289.86 mM, and 250,000 U/mg, respectively. The activity of purified catalase from P. chrysosporium was significantly inhibited by dithiothreitol (DTT), 2-mercaptoethanol, iodoacetamide, EDTA, and sodium dodecyl sulfate (SDS). It was found that while antibiotics had no inhibitory effects, 45 ppm benomyl, 144 ppm captan, and 47.5 ppm chlorothalonil caused 14.52, 10.82, and 38.86% inhibition of purified catalase, respectively. The inhibition types of these three fungicides were found to be non-competitive inhibition with the Ki values of 1.158, 0.638, and 0.145 mM and IC50 values of 0.573, 0.158, 0.010 mM, respectively. The results of in vivo experiments also showed that benomyl, captan and chlorothalonil caused 15.25, 1.96, and 36.70% activity decreases after 24-h treatments compared to that of the control.

  4. Regulation of Gene Expression during the Onset of Ligninolytic Oxidation by Phanerochaete chrysosporium on Spruce Wood

    Science.gov (United States)

    Premsagar Korripally; Christopher G. Hunt; Carl J. Houtman; Don C. Jones; Peter J. Kitin; Dan Cullen; Kenneth E. Hammel; A. A. Brakhage

    2015-01-01

    Since uncertainty remains about how white rot fungi oxidize and degrade lignin in wood, it would be useful to monitor changes in fungal gene expression during the onset of ligninolysis on a natural substrate. We grew Phanerochaete chrysosporium on solid spruce wood and included oxidant-sensing beads bearing the fluorometric dye BODIPY 581/591 in...

  5. Caractérisation biochimique et fonctionnelle de glutathion-S-transferases (GSTs) chez Phanerochaete chrysosporium

    OpenAIRE

    Anak Ngadin , Andrew

    2011-01-01

    Phanerochaete chrysosporium is a ligninolytic fungus widely studied because of its capacities to degrade wood and xenobiotics through an extracellular enzymatic system. Its genome has been sequenced and has provided researchers with a complete inventory of the predicted proteins produced by this organism. This has allowed the description of many protein superfamilies. Among them, Glutathione S-transferases (GSTs) constitute a complex and widespread superfamily classified as enzymes of seconda...

  6. Isolation and purification of pyranose 2-oxidase from Phanerochaete chrysosporium and characterization of gene structure and regulation

    Science.gov (United States)

    Theodorus H. de Koker; Michael D. Mozuch; Daniel Cullen; Jill Gaskell; Philip J. Kersten

    2004-01-01

    Pyranose 2-oxidase (POX) was recovered from Phanerochaete chrysosporium BKM-F-1767 solid substrate culture using mild extraction conditions and was purified. 13C-nuclear magnetic resonance confirmed production of D- arabino -hexos-2-ulose (glucosone) from D-glucose with the oxidase. Peptide fingerprints generated by liquid chromatography-tandem mass spectrometry of...

  7. Significant alteration of gene expression in wood decay fungi Postia placenta and Phanerochaete chrysosporium by plant species

    Science.gov (United States)

    Amber Vanden Wymelenberg; Jill Gaskell; Michael Mozuch; Sandra Splinter BonDurant; Grzegorz Sabat; John Ralph; Oleksandr Skyba; Shawn D. Mansfield; Robert A. Blanchette; Igor Grigoriev; Philip J. Kersten; Daniel Cullen

    2011-01-01

    Identification of specific genes and enzymes involved in conversion of lignocellulosics from an expanding number of potential feedstocks is of growing interest to bioenergy process development. The basidiomycetous wood decay fungi Phanerochaete chrysosporium and Postia placenta are promising in this regard because they are able to utilize a wide range of simple and...

  8. Characterization and mode of action of two acetyl xylan esterases from Chrysosporium lucknowense C1 active towards acetylated xylans

    NARCIS (Netherlands)

    Pouvreau, L.A.M.; Jonathan, M.C.; Kabel, M.A.; Hinz, S.W.A.; Gruppen, H.; Schols, H.A.

    2011-01-01

    Two novel acetyl xylan esterases, Axe2 and Axe3, from Chrysosporium lucknowense (C1), belonging to the carbohydrate esterase families 5 and 1, respectively, were purified and biochemically characterized. Axe2 and Axe3 are able to hydrolyze acetyl groups both from simple acetylated

  9. Recent advances in the molecular genetics of the lignin degrading fungus, phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    Covert, S.F.

    1991-01-01

    During the past several years, molecular genetics research on phanerochaete chrysosporium, a white-rot basidiomycete, has increased dramatically. It is known that families of highly homologous, clustered genes encode the lignin peroxidases. The same appears to be true with the exocellobiohydrolase genes. Functional domains and active sites have been tentatively identified from the deduced amino acid sequences of these genes. Current investigations focus on elucidating the genomic organization of gene families, the mechanism(s) of gene regulation, and the role and interaction of specific gene products in lignocellulose degradation. (author)

  10. BIODEGRADATION OF DDT [1,1,1-TRICHLORO-2,2-BIS(4- CHLOROPHENYL) ETHANE] BY THE WHITE ROT FUNGUS PHANEROCHAETE CHRYSOSPORIUM

    Science.gov (United States)

    Extensive biodegradation of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by the white rot fungus Phanerochaete chrysosporium was demonstrated by disappearance and mineralization of [14C]DDT in nutrient nitrogen-deficient cultures. Mass balance studies demonstrated the form...

  11. Effect of peat extract on the hydrolytic enzymes of Phanerochaete chrysosporium

    Energy Technology Data Exchange (ETDEWEB)

    Nawaz, M; Gunasekaran, M

    1988-08-01

    Peat, a partially decomposed plant material rich in minerals and lignocellulose was tested as a substrate for the growth and production of hydrolytic enzymes viz. cellulase, cellobiase and xylanase in Phanerochaete chrysosporium. Three types of peat extracts such as cold, hot water and autoclaved were prepared and tested. Among them, autoclaved extract supported the maximal growth. The intracellular enzyme activities peaked on the fifth day after inoculation irrespective of the media and enzyme tested. Addition of cellobiose and lactose in the medium induced the production of cellulase, xylanase and to a lesser extent cellobiase. Addition of glucose and sucrose to the media resulted in the suppression of all the extracellular enzymes tested. 18 refs., 5 figs.

  12. Cellulase enzyme production during continuous culture growth of Sporotrichum (Chrysosporium) thermophile

    Energy Technology Data Exchange (ETDEWEB)

    Cossar, D; Canevascini, G

    1986-07-01

    The cellulolytic fungus Sporotrichum (Chrysosporium) thermophile produces an extracellular cellobiose dehydrogenase during batch culture on cellulose or cellobiose. In chemostat culture at pH 5.6 on cellobiose this enzyme was produced in parallel with endo-cellulase. At pH 5.0 in continuous or fed-batch culture such a pattern was not evident. At constant growth rate in a chemostat with varying pH, activity of these enzymes was found to be poorly correlated. Thus the induction of cellobiose dehydrogenase shows a dependence on pH and cellobiose concentration which is different to that for endo-cellulase. The natural inducer of these enzymes and the role of cellubiose dehydrogenase remain to be elucidated.

  13. Effect of inducers and culturing processes on laccase synthesis in Phanerochaete chrysosporium NCIM 1197 and the constitutive expression of laccase isozymes

    DEFF Research Database (Denmark)

    Manavalan, Arulmani

    2006-01-01

    Phanerochaete chrysosporium NCIM 1197 constitutively secretes considerable level of extracellular enzyme laccase in defined growth medium. Effect of several inducers on laccase production was attempted and found that copper sulphate alone at 30 mM concentration accelerate the laccase production...

  14. EFFECTS OF CULTURE PARAMETERS ON DDT [1,1,1-TRICHLO- RO-2,2-BIS(4-CHLOROPHENYL) ETHANE] BIODEGRADATION BY PHANEROCHAETE CHRYSOSPORIUM

    Science.gov (United States)

    The lignin degrading system of the white rot fungus Phanerochaete chrysosporium is able to degrade a wide variety of structurally diverse organopollutants to carbon dioxide. Current research is focused on ways to increase or optimize rates of biodegradation in order to a...

  15. Degradation of pentachlorophenol by the white rot fungus Phanerochaete chrysosporium grown in ammonium lignosulphonate media.

    Science.gov (United States)

    Aiken, B S; Logan, B E

    1996-06-01

    Removal and degradation of pentachlorophenol (PCP) by Phanerochaete chrysosporium in static flask cultures was studied using ammonium lignosulphonates (LS), a waste product of the papermill industry, as a carbon and nitrogen source. After 3 days, cultures of P. chrysosporium grown in either a 2% LS (nitrogen-sufficient) medium or a 0.23% LS and 2% glucose (nitrogen-deficient) medium removed 72 to 75% of PCP, slightly less than the 95% removal seen using nitrogen-deficient glucose and ammonia medium. PCP dehalogenation occurred despite the fact that extracellular enzyme (LiP) activity, measured by a veratryl alcohol oxidation assay and by PCP disappearance in cell-free extracts, was inhibited by LS. This inactivation of LiP likely contributed to the lower percent of PCP dehalogenation observed using the LS media. In order to better understand the relationship between PCP disappearance and dehalogenation, we measured the fate of the chlorine in PCP. After 13 days, only 1.8% of the initial PCP added was recoverable as PCP. The remainder of the PCP was either mineralized or transformed to breakdown intermediates collectively identified as organic halides. The largest fraction of the original chlorine (58%) was recovered as organic (non-PCP) halide, most of which (73%) was associated with the cell mass. Of the remaining chlorine, 40% was released as chloride ion, indicating a level of dehalogenation in agreement with previously reported values.

  16. Cutaneous hyalohyphomycosis caused by a Chrysosporium species related to Nannizziopsis vriesii in two green iguanas (Iguana iguana).

    Science.gov (United States)

    Abarca, M L; Martorell, J; Castellá, G; Ramis, A; Cabañes, F J

    2008-06-01

    This report describes the first isolation of a Chrysosporium species as the etiological agent of dermatomycosis in two green iguanas (Iguana iguana). The ITS-5.8S rRNA gene of the two strains was sequenced and a search on the GenBank database revealed that the closest match was Nannizziopsis vriesii. Treatment with oral ketoconazole, in combination with topical 2% chlorhexidine solution and terbinafine resulted in clinical cure.

  17. Caractérisation biochimique et fonctionnelle de glutathion-S-transferases (GSTs) chez Phanerochaete chrysosporium

    OpenAIRE

    Anak-Ngadin, Andrew

    2011-01-01

    Phanerochaete chrysosporium est un champignon ligninolytique largement étudié pour ses capacités à dégrader la lignine et certains xénobiotiques grâce à un important système d'enzymes extracellulaires. Son génome est entièrement séquencé et constitue un inventaire de séquences protéiques prédites qui a permis la description de nombreuses superfamilles de protéines. Parmi elles, les Glutathion S-transférases sont essentiellement impliquées dans le métabolisme secondaire du champignon. Cependan...

  18. Ligninolytic system of Phanerochaete chrysosporium: inhibition by o-phthalate

    Energy Technology Data Exchange (ETDEWEB)

    Fenn, P.; Kirk, T.K.

    1979-01-01

    The degradation rate of (synthetic/sup 14/C)-lignin to /sup 14/CO/sub 2/ by Phanerochaete chrysosporium in cultures buffered with 0.01 M 2,2-dimethylsuccinate (DMS) was twice that in 0.01 M o-phthalate-buffered cultures. This difference could be totally accounted for by o-phthalate inhibition of the activity of the ligninolytic system. /sup 14/CO/sub 2/ production from ring-, sidechain-, and methoyxl-labled lignins was inhibited, the degree of inhibition being dependent on o-phthalate concentration. Oxidations of /sup 14/C-glucose, /sup 14/C-acetovanillone, and /sup 14/C-apocynol were not inhibited; thus o-phthalate is not a general inhibitor, and might inhibit activities involved in attach of the lignin polymer. DMS is a suitable buffer for the ligninolytic system. Degradation rates of ring-labeled lignin to /sup 14/CO/sub 2/ of 10 to 15% in 24 h were obtained consistently over the pH range 3.6 to 4.5, with an optimum near pH 4.0.

  19. Characterization of a multicopper oxidase gene cluster in Phanerochaete chrysosporium and evidence of altered splicing of the mco transcripts

    Science.gov (United States)

    Luis F. Larrondo; Bernardo Gonzalez; Dan Cullen; Rafael Vicuna

    2004-01-01

    A cluster of multicopper oxidase genes (mco1, mco2, mco3, mco4) from the lignin-degrading basidiomycete Phanerochaete chrysosporium is described. The four genes share the same transcriptional orientation within a 25 kb region. mco1, mco2 and mco3 are tightly grouped, with intergenic regions of 2.3 and 0.8 kb, respectively, whereas mco4 is located 11 kb upstream of mco1...

  20. Bio-remediation of colored industrial wastewaters by the white-rot fungi Phanerochaete chrysosporium and Pleurotus ostreatus and their enzymes.

    Science.gov (United States)

    Faraco, V; Pezzella, C; Miele, A; Giardina, P; Sannia, G

    2009-04-01

    The effect of Phanerochaete chrysosporium and Pleurotus ostreatus whole cells and their ligninolytic enzymes on models of colored industrial wastewaters was evaluated. Models of acid, direct and reactive dye wastewaters from textile industry have been defined on the basis of discharged amounts, economic relevance and representativeness of chemical structures of the contained dyes. Phanerochaete chrysosporium provided an effective decolourization of direct dye wastewater model, reaching about 45% decolourization in only 1 day of treatment, and about 90% decolourization within 7 days, whilst P. ostreatus was able to decolorize and detoxify acid dye wastewater model providing 40% decolourization in only 1 day, and 60% in 7 days. P. ostreatus growth conditions that induce laccase production (up to 130,000 U/l) were identified, and extra-cellular enzyme mixtures, with known laccase isoenzyme composition, were produced and used in wastewater models decolourization. The mixtures decolorized and detoxified the acid dye wastewater model, suggesting laccases as the main agents of wastewater decolourization by P. ostreatus. A laccase mixture was immobilized by entrapment in Cu-alginate beads, and the immobilized enzymes were shown to be effective in batch decolourization, even after 15 stepwise additions of dye for a total exposure of about 1 month.

  1. Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Hitoshi; MacDonald, Jacqueline; Syed, Khajamohiddin; Salamov, Asaf; Hori, Chiaki; Aerts, Andrea; Henrissat, Bernard; Wiebenga, Ad; vanKuyk, Patricia A.; Barry, Kerrie; Lindquist, Erika; LaButti, Kurt; Lapidus, Alla; Lucas, Susan; Coutinho, Pedro; Gong, Yunchen; Samejima, Masahiro; Mahadevan, Radhakrishnan; Abou-Zaid, Mamdouh; de Vries, Ronald P.; Igarashi, Kiyohiko; Yadav, Jagit S.; Grigoriev, Igor V.; Master, Emma R.

    2012-02-17

    Background Softwood is the predominant form of land plant biomass in the Northern hemisphere, and is among the most recalcitrant biomass resources to bioprocess technologies. The white rot fungus, Phanerochaete carnosa, has been isolated almost exclusively from softwoods, while most other known white-rot species, including Phanerochaete chrysosporium, were mainly isolated from hardwoods. Accordingly, it is anticipated that P. carnosa encodes a distinct set of enzymes and proteins that promote softwood decomposition. To elucidate the genetic basis of softwood bioconversion by a white-rot fungus, the present study reports the P. carnosa genome sequence and its comparative analysis with the previously reported P. chrysosporium genome. Results P. carnosa encodes a complete set of lignocellulose-active enzymes. Comparative genomic analysis revealed that P. carnosa is enriched with genes encoding manganese peroxidase, and that the most divergent glycoside hydrolase families were predicted to encode hemicellulases and glycoprotein degrading enzymes. Most remarkably, P. carnosa possesses one of the largest P450 contingents (266 P450s) among the sequenced and annotated wood-rotting basidiomycetes, nearly double that of P. chrysosporium. Along with metabolic pathway modeling, comparative growth studies on model compounds and chemical analyses of decomposed wood components showed greater tolerance of P. carnosa to various substrates including coniferous heartwood. Conclusions The P. carnosa genome is enriched with genes that encode P450 monooxygenases that can participate in extractives degradation, and manganese peroxidases involved in lignin degradation. The significant expansion of P450s in P. carnosa, along with differences in carbohydrate- and lignin-degrading enzymes, could be correlated to the utilization of heartwood and sapwood preparations from both coniferous and hardwood species.

  2. Purification, cloning and characterisation of two forms of thermostable and highly active cellobiohydrolase I (Cel7A) produced by the industrial strain of Chrysosporium lucknowense

    NARCIS (Netherlands)

    Gusakov, A.V.; Sinitsyn, A.P.; Salanovich, T.N.; Bukhtojarov, F.E.; Markov, A.V.; Ustinov, B.B.; Zeijl, C.V.; Punt, P.; Burlingame, R.

    2005-01-01

    Two forms of cellobiohydrolase I (CBH I, Cel7A) were purified from the culture ultrafiltrate of a mutant strain of the fungus Chrysosporium lucknowense, an industrial producer of cellulases and hemicellulases. The enzymes had different molecular masses (52 and 65 kDa, SDS-PAGE data) but the same pI

  3. Metabolic regulation at the tricarboxylic acid and glyoxylate cycles of the lignin-degrading basidiomycete Phanerochaete chrysosporium against exogenous addition of vanillin.

    Science.gov (United States)

    Shimizu, Motoyuki; Yuda, Naoki; Nakamura, Tomofumi; Tanaka, Hiroo; Wariishi, Hiroyuki

    2005-10-01

    A proteomic differential display technique was utilized to study cellular responses of Phanerochaete chrysosporium exposed to vanillin, one of the key intermediates found during lignin biodegradation. Intracellular proteins were resolved by 2-DE and target protein spots were identified using MALDI-MS after in-gel tryptic digestions. Upon addition of vanillin to P. chrysosporium, up-regulation of homogentisate 1,2-dioxygenase, 1,4-benzoquinone reductases, aldehyde dehydrogenase, and aryl-alcohol dehydrogenase, which seem to play roles in vanillin metabolism, was observed. Furthermore, enzymes involved in glycolysis, the tricarboxylic acid cycle, the pentose-phosphate cycle, and heme biosynthesis were also activated. Up-regulation of extracellular peroxidase was also observed. One of the most unique phenomena against exogenous vanillin was a switch from the glyoxylate cycle to the tricarboxylic acid cycle, where a drastic increase in isocitrate dehydrogenase activity was observed. The exogenous addition of other aromatic compounds also caused an increase in its activity, which in turn triggered NAD(P)H production via the action of dehydrogenases in the tricarboxylic acid cycle, heme biosynthesis via the action of aminolevulinic acid synthase on succinyl-CoA, and energy production via activation of the mitochondrial electron transfer system. These metabolic shifts seem to be required for activating a metabolic system for aromatic compounds.

  4. Activity of the ligninolytic enzymes of the Phanerochaete chrysosporium and its variation with the Mn+2 addition

    International Nuclear Information System (INIS)

    Jimenez T, Gloria Alicia; Mejia G, Amanda I; Lopez O, Betty Lucy

    1999-01-01

    The activity of the ligninolytic enzymes, lignin peroxidase (LiP), manganese peroxidase (MnP) and Laccase, in submerged cultures of Phanerochaete chrysosporium, with limited amounts of carbon and nitrogen, were affected by the addition of Mn+2. In cultures with o and 1,25 ppm of Mn+2, only the lip was detected and its higher activity level was observed in the cultures with 1.25 ppm of Mn+2. The cultures with 40 ppm of Mn+2 showed activities of lip, MnP and Laccase. The presence of the three enzymes in the same culture had not been reported and it is of great importance because is shows that the fungus and its lignolitic machinery can act sequentially

  5. Catabolic fate of Streptomyces viridosporus T7A-Produced, acid precipitable polymeric lignin upon incubation with ligninolytic Streptomyces species and Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    Pometto, A.L. III; Crawford, D.L.

    1986-01-01

    Degradation of ground and hot-water-extracted corn stover (Zea mays) lignocellulose by Streptomyces viridosporus T7A generates a water-soluble lignin degradation intermediate termed acid-precipitable polymeric lignin (APPL). The further catabolism of T7A-APPL by S. viridosporus T7A, S. badius 252, and S. setonii75Vi2 was followed for 3 weeks. APPL catabolism by Phanerochaete chrysosporium was followed in stationary cultures in a low-nitrogen medium containing 1% (wt/vol) glucose and 0.05% (wt/vol) T7A-APPL. Metabolism of the APPL was followed by turbidometric assay (600 nm) and by direct measurement of APPL recoverable from the medium. Accumulation and disappearance of soluble low-molecular-weight products of APPL catabolism were followed by gas-liquid chromatography and by high-pressure liquid chromatography, utilizing a diode array detector. Mineralization of a [ 14 C-lignin]APPL was also followed. The percent 14 C recovered as 14 CO 2 , 14 C-APPL, 14 C-labeled water-soluble products, and cell mass-associated radioactivity, were determined for each microorganism after 1 and 3 weeks of incubation in bubbler tube cultures at 37 0 C. P. chrysosporium evolved the most 14 CO 2 , and S. viridosporus gave the greatest decrease in recoverable 14 C-APPL. The results show that S. badius was not able to significantly degrade the APPL, while the other microorganisms demonstrated various APPL-degrading abilities

  6. Transport, fate, and stimulating impact of silver nanoparticles on the removal of Cd(II) by Phanerochaete chrysosporium in aqueous solutions

    International Nuclear Information System (INIS)

    Zuo, Yanan; Chen, Guiqiu; Zeng, Guangming; Li, Zhongwu; Yan, Ming; Chen, Anwei; Guo, Zhi; Huang, Zhenzhen; Tan, Qiong

    2015-01-01

    Highlights: • Appropriate concentration of AgNPs can stimulate the biological removal of Cd(II). • Added AgNPs were oxidatively dissolved and transported to the surface of fungus. • AgNPs have undergone coarsening in the process of transport. • Amino, carboxyl, hydroxyl, and other reducing groups were involved in transportion. - Abstract: Despite the knowledge about increasing discharge of silver nanoparticles (AgNPs) into wastewater and its potential toxicity to microorganisms, the interaction of AgNPs with heavy metals in the biological removal process remains poorly understood. This study focused on the effect of AgNPs (hydrodynamic diameter about 24.3 ± 0.37 nm) on the removal of cadmium (Cd(II)) by using a model white rot fungus species, Phanerochaete chrysosporium. Results showed that the biological removal capacity of Cd(II) increased with the concentration of AgNPs increasing from 0.1 mg/L to 1 mg/L. The maximum removal capacity (4.67 mg/g) was located at 1 mg/L AgNPs, and then decreased with further increasing AgNPs concentration, suggesting that an appropriate concentration of AgNPs has a stimulating effect on the removal of Cd(II) by P. chrysosporium instead of an inhibitory effect. Results of Ag + and total Ag concentrations in the solutions together with those of SEM and XRD demonstrated that added AgNPs had undergone oxidative dissolution and transported from the solution to the surface of fungal mycelia (up to 94%). FTIR spectra confirmed that amino, carboxyl, hydroxyl, and other reducing functional groups were involved in Cd(II) removal, AgNPs transportation, and the reduction of Ag + to AgNPs

  7. Transport, fate, and stimulating impact of silver nanoparticles on the removal of Cd(II) by Phanerochaete chrysosporium in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Yanan [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Chen, Guiqiu, E-mail: gqchen@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Zeng, Guangming, E-mail: zgming@hnu.edu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li, Zhongwu; Yan, Ming [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Chen, Anwei [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Guo, Zhi; Huang, Zhenzhen; Tan, Qiong [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2015-03-21

    Highlights: • Appropriate concentration of AgNPs can stimulate the biological removal of Cd(II). • Added AgNPs were oxidatively dissolved and transported to the surface of fungus. • AgNPs have undergone coarsening in the process of transport. • Amino, carboxyl, hydroxyl, and other reducing groups were involved in transportion. - Abstract: Despite the knowledge about increasing discharge of silver nanoparticles (AgNPs) into wastewater and its potential toxicity to microorganisms, the interaction of AgNPs with heavy metals in the biological removal process remains poorly understood. This study focused on the effect of AgNPs (hydrodynamic diameter about 24.3 ± 0.37 nm) on the removal of cadmium (Cd(II)) by using a model white rot fungus species, Phanerochaete chrysosporium. Results showed that the biological removal capacity of Cd(II) increased with the concentration of AgNPs increasing from 0.1 mg/L to 1 mg/L. The maximum removal capacity (4.67 mg/g) was located at 1 mg/L AgNPs, and then decreased with further increasing AgNPs concentration, suggesting that an appropriate concentration of AgNPs has a stimulating effect on the removal of Cd(II) by P. chrysosporium instead of an inhibitory effect. Results of Ag{sup +} and total Ag concentrations in the solutions together with those of SEM and XRD demonstrated that added AgNPs had undergone oxidative dissolution and transported from the solution to the surface of fungal mycelia (up to 94%). FTIR spectra confirmed that amino, carboxyl, hydroxyl, and other reducing functional groups were involved in Cd(II) removal, AgNPs transportation, and the reduction of Ag{sup +} to AgNPs.

  8. Dermatitis and cellulitis in leopard geckos (Eublepharis macularius) caused by the Chrysosporium anamorph of Nannizziopsis vriesii.

    Science.gov (United States)

    Toplon, D E; Terrell, S P; Sigler, L; Jacobson, E R

    2013-07-01

    An epizootic of ulcerative to nodular ventral dermatitis was observed in a large breeding colony of 8-month to 5-year-old leopard geckos (Eublepharis macularius) of both sexes. Two representative mature male geckos were euthanized for diagnostic necropsy. The Chrysosporium anamorph of Nannizziopsis vriesii (CANV) was isolated from the skin lesions, and identification was confirmed by sequencing of the internal transcribed spacer region of the rRNA gene. Histopathology revealed multifocal to coalescing dermal and subcutaneous heterophilic granulomas that contained septate fungal hyphae. There was also multifocal epidermal hyperplasia with hyperkeratosis, and similar hyphae were present within the stratum corneum, occasionally with terminal chains of arthroconidia consistent with the CANV. In one case, there was focal extension of granulomatous inflammation into the underlying masseter muscle. This is the first report of dermatitis and cellulitis due to the CANV in leopard geckos.

  9. Evaluación de la degradación del plaguicida clorpirifos en muestras de suelo utilizando el hongo Phanerochaete chrysosporium

    Directory of Open Access Journals (Sweden)

    Margarita María Lopera Mesa

    2005-01-01

    Full Text Available Se evaluó la degradación del insecticida clorpirifos en muestras de suelo durante 21 días, utilizando el hongo Phanerochaete chrysosporium. En los ensayos se obtuvieron porcentajes de degradación, en promedio, para las muestras con hongo, de 96,3, 82,4 y 62,2% cuando se trabajaron, respectivamente, con concentraciones iniciales de clorpirifos de 0,95, 5,3 y 9,4 µg/g. Igualmente, los porcentajes de degradación estuvieron acompañados del aumento en la velocidad de degradación, cuando se partió de la concentración inicial de 0,95 µg/g.

  10. Deep fungal dermatitis caused by the Chrysosporium anamorph of Nannizziopsis vriesii in captive coastal bearded dragons (Pogona barbata).

    Science.gov (United States)

    Johnson, R S P; Sangster, C R; Sigler, L; Hambleton, S; Paré, J A

    2011-12-01

    Deep fungal dermatitis caused by the Chrysosporium anamorph of Nannizziopsis vriesii (CANV) was diagnosed in a group of coastal bearded dragons (Pogona barbata). The outbreak extended over a 6-month period, with four of six lizards from the same zoological outdoor enclosure succumbing to infection. A fifth case of dermatomycosis was identified in a pet lizard originally sourced from the wild. Diagnosis of infection with the CANV was based on similar clinical signs and histopathology in all animals and confirmed by culture and sequencing of the fungus from one animal. This is the first report of the CANV causing disease in a terrestrial reptile species in Australia and the first in the coastal bearded dragon. © 2011 The Authors. Australian Veterinary Journal © 2011 Australian Veterinary Association.

  11. Microbial pretreatment of corn stovers by solid-state cultivation of Phanerochaete chrysosporium for biogas production.

    Science.gov (United States)

    Liu, Shan; Wu, Shubiao; Pang, Changle; Li, Wei; Dong, Renjie

    2014-02-01

    The microbial pretreatment of corn stover and corn stover silage was achieved via the solid-state cultivation of Phanerochaete chrysosporium; pretreatment effects on the biodegradability and subsequent anaerobic production of biogas were investigated. The peak levels of daily biogas production and CH₄ yield from corn stover silage were approximately twice that of corn stover. Results suggested that ensiling was a potential pretreatment method to stimulate biogas production from corn stover. Surface morphology and Fourier-transform infrared spectroscopy analyses demonstrated that the microbial pretreatment of corn stover silage improved biogas production by 10.5 to 19.7% and CH4 yield by 11.7 to 21.2% because pretreatment could decrease dry mass loss (14.2%) and increase substrate biodegradability (19.9% cellulose, 32.4% hemicellulose, and 22.6% lignin). By contrast, the higher dry mass loss in corn stover (55.3%) after microbial pretreatment was accompanied by 54.7% cellulose, 64.0% hemicellulose, and 61.1% lignin degradation but did not significantly influence biogas production.

  12. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Tomofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Fukuoka Institute of Health and Environmental Sciences, 39 Mukaizano, Dazaifu-shi, Fukuoka 818-0135 (Japan); Ichinose, Hirofumi [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Wariishi, Hiroyuki, E-mail: hirowari@agr.kyushu-u.ac.jp [Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan); Innovation Center for Medical Redox Navigation, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2010-04-09

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD{sup +}-binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.

  13. Cloning and heterologous expression of two aryl-aldehyde dehydrogenases from the white-rot basidiomycete Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    Nakamura, Tomofumi; Ichinose, Hirofumi; Wariishi, Hiroyuki

    2010-01-01

    We identified two aryl-aldehyde dehydrogenase proteins (PcALDH1 and PcALDH2) from the white-rot basidiomycete Phanerochaete chrysosporium. Both PcALDHs were translationally up-regulated in response to exogenous addition of vanillin, one of the key aromatic compounds in the pathway of lignin degradation by basidiomycetes. To clarify the catalytic functions of PcALDHs, we isolated full-length cDNAs encoding these proteins and heterologously expressed the recombinant enzymes using a pET/Escherichia coli system. The open reading frames of both PcALDH1 and PcALDH2 consisted of 1503 nucleotides. The deduced amino acid sequences of both proteins showed high homologies with aryl-aldehyde dehydrogenases from other organisms and contained ten conserved domains of ALDHs. Moreover, a novel glycine-rich motif 'GxGxxxG' was located at the NAD + -binding site. The recombinant PcALDHs catalyzed dehydrogenation reactions of several aryl-aldehyde compounds, including vanillin, to their corresponding aromatic acids. These results strongly suggested that PcALDHs metabolize aryl-aldehyde compounds generated during fungal degradation of lignin and various aromatic xenobiotics.

  14. Biodegradation of TNT (2,4,6-Trinitrotoluene) by Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    Fernando, T.; Bumpus, J.A.; Aust, S.D.

    1990-01-01

    Extensive biodegradation of TNT (2,4,6-trinitrotoluene) by the white rot fungus Phanerochaete chrysosporium was observed. At an initial concentration of 1.3 mg/liter, 35.4 ± 3.6% of the [ 14 C]TNT was degraded to 14 CO 2 in 18 days. The addition of glucose 12 days after the addition of TNT did not stimulate mineralization, and, after 18 days of incubation with TNT only, about 3.3% of the initial TNT could be recovered. Mineralization of [ 14 C]TNT absorbed on soil was also examined. Ground corncobs served as the nutrient for slow but sustained degradation of [ 14 C]TNT to 14 CO 2 such that 6.3 ± 0.6% of the [ 14 C]TNT initially present was converted to 14 CO 2 during the 30-day incubation period. Mass balance analysis of liquid cultures and of soil-corncob cultures revealed that polar [ 14 C]TNT metabolites are formed in both systems, and high-performance liquid chromatography analyses revealed that less then 5% of the radioactivity remained as undegraded [ 14 C]TNT following incubation with the fungus in soil and liquid cultures. When the concentration of TNT in cultures (both liquid and soil) was adjusted to contamination levels that might be found in the environment, i.e., 10,000 mg/kg in soil and 100 mg/liter in water, mineralization studies showed that 18.4 ± 2.9% and 19.6 ± 3.5% of the initial TNT was converted to 14 CO 2 in 90 days in soil and liquid cultures, respectively. In both cases (90 days in water at 100 mg/liter and in soil at 10,000 mg/kg) approximately 85% of the TNT was degraded. These results suggest that this fungus may be useful for the decontamination of sites in the environment contaminated with TNT

  15. Microbial pretreatment of cotton stalks by Phanerochaete chrysosporium for bioethanol production

    Science.gov (United States)

    Shi, Jian

    Lignocellulosic biomass has been recognized as a widespread, potentially low cost renewable source of mixed sugars for fermentation to fuel ethanol. Pretreatment, as the first step towards conversion of lignocellulose to ethanol, remains one of the main barriers to technical and commercial success of the processing technology. Existing pretreatment methods have largely been developed on the basis of physiochemical technologies which are considered relatively expensive and usually involve adverse environmental impacts. In this study, an environmentally benign alternative, microbial pretreatment using Phanerochaete chrysosporium, was explored to degrade lignin in cotton stalks and facilitate their conversion into ethanol. Two submerged liquid pretreatment techniques (SmC), shallow stationary and agitated cultivation, at three inorganic salt concentrations (no salts, modified salts without Mn2+, modified salts with Mn2+) were compared by evaluating their pretreatment efficiencies. Shallow stationary cultivation with no salt was superior to other pretreatment conditions and gave 20.7% lignin degradation along with 76.3% solids recovery and 29.0% carbohydrate availability over a 14 day period. The influence of substrate moisture content (65%, 75% and 80% M.C. wet-basis), inorganic salt concentration (no salts, modified salts without Mn2+ , modified salts with Mn2+) and culture time (0-14 days) on pretreatment effectiveness in solid state (SSC) systems was also examined. It was shown that solid state cultivation at 75% M.C. without salts was the most preferable pretreatment resulting in 27.6% lignin degradation, 71.1% solids recovery and 41.6% carbohydrate availability over a period of 14 days. A study on hydrolysis and fermentation of cotton stalks treated microbially using the most promising SmC (shallow stationary, no salts) and SSC (75% moisture content, no salts) methods resulted in no increase in cellulose conversion with direct enzyme application (10.98% and 3

  16. The putative endoglucanase PcGH61D from Phanerochaete chrysosporium is a metal-dependent oxidative enzyme that cleaves cellulose.

    Directory of Open Access Journals (Sweden)

    Bjørge Westereng

    Full Text Available Many fungi growing on plant biomass produce proteins currently classified as glycoside hydrolase family 61 (GH61, some of which are known to act synergistically with cellulases. In this study we show that PcGH61D, the gene product of an open reading frame in the genome of Phanerochaete chrysosporium, is an enzyme that cleaves cellulose using a metal-dependent oxidative mechanism that leads to generation of aldonic acids. The activity of this enzyme and its beneficial effect on the efficiency of classical cellulases are stimulated by the presence of electron donors. Experiments with reduced cellulose confirmed the oxidative nature of the reaction catalyzed by PcGH61D and indicated that the enzyme may be capable of penetrating into the substrate. Considering the abundance of GH61-encoding genes in fungi and genes encoding their functional bacterial homologues currently classified as carbohydrate binding modules family 33 (CBM33, this enzyme activity is likely to turn out as a major determinant of microbial biomass-degrading efficiency.

  17. The effectiveness of arbuscular-mycorrhizal fungi and Aspergillus niger or Phanerochaete chrysosporium treated organic amendments from olive residues upon plant growth in a semi-arid degraded soil.

    Science.gov (United States)

    Medina, A; Roldán, A; Azcón, R

    2010-12-01

    Arbuscular mycorrhizal (AM) fungi and a residue from dry olive cake (DOC) supplemented with rock phosphate (RP) and treated with either Aspergillus niger (DOC-A) or Phanerochaete chrysosporium (DOC-P), were assayed in a natural, semi-arid soil using Trifolium repens or Dorycnium pentaphyllum plants. The effects of the AM fungi and/or DOC-A were compared with P-fertilisation (P) over eleven successive harvests to evaluate the persistence of the effectiveness of the treatments. The biomass of dually-treated plants after four successive harvests was greater than that obtained for non-treated plants or those receiving the AM inoculum or DOC-A treatments after eleven yields. The AM inoculation was critical for obtaining plant growth benefit from the application of fermented DOC-A residue. The abilities of the treatments to prevent plant drought stress were also assayed. Drought-alleviating effects were evaluated in terms of plant growth, proline and total sugars concentration under alternative drought and re-watering conditions (8th and 9th harvests). The concentrations of both compounds in plant biomass increased under drought when DOC-A amendment and AM inoculation were employed together: they reinforced the plant drought-avoidance capabilities and anti-oxidative defence. Water stress was less compensated in P-fertilised than in DOC-A-treated plants. DOC-P increased D. pentaphyllum biomass, shoot P content, nodule number and AM colonisation, indicating the greater DOC-transforming ability of P. chrysosporium compared to A. niger. The lack of AM colonisation and nodulation in this soil was compensated by the application of DOC-P, particularly with AM inoculum. The management of natural resources (organic amendments and soil microorganisms) represents an important strategy that assured the growth, nutrition and plant establishment in arid, degraded soils, preventing the damage that arises from limited water and nutrient supply. Copyright © 2010 Elsevier Ltd. All rights

  18. Biological composting of petroleum waste organics using the white rot fungus Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    McFarland, M.J.; Xiu J, Qiu; Aprill, W.A.; Sims, R.C.

    1990-01-01

    Environmental enrichment of the white rot fungus Phanerochaete chrysosporium in biological compost soil reactors was effective in enhancing the rates of Benzo(a)pyrene removal over that observed under natural soil conditions. In contaminated soil compost systems amended with fungal inoculum and primary substrate, maximum Benzo(a)pyrene removal rates of 0.31 mg B(a)p/kg compost material-day (0.25 mgB(a)p/kg soil-day) were observed while in unamended soil conditions, maximum removal rates of 0.13 mg B(a)p/kg soil-day were recorded. Additions of primary substrate without any fungal inoculum gave compound removal rates similar to soil only conditions (i.e., 14 mg B(a)p/kg soil-day). Differences in contaminant and radioactivity ( 14 C) removal rates indicated that Benzo(a)pyrene derived carbon was being incorporated into nonvolatile materials within the compost environment. Contaminated soil pH had a significant effect on Benzo(a)pyrene removal rates during composting treatment. With acid soils (pH-4.8), a maximum Benzo(a)pyrene removal rate of 0.11 mg B(a)p/kg compost material-day was determined compared to 0.31 mg B(a)p/kg compost material-day in alkaline (pH-8.0) soil. Oxygen availability appeared to be one of the most important process variables influencing both fungal growth and Benzo(a)pyrene removal. Periodic pulses of oxygen equivalent to a three volume turnover of reactor headspace every three days resulted in increasing the Benzo(a)pyrene removal rate from 0.31 mg B(a)p/kg compost material-day to 0.85 mg B(a)p/kg compost material day

  19. Mineralization of 2,4-Dichlorophenoxyacetic Acid (2,4-D) and Mixtures of 2,4-D and 2,4,5-Trichlorophenoxyacetic Acid by Phanerochaete chrysosporium

    Science.gov (United States)

    Yadav, J. S.; Reddy, C. A.

    1993-01-01

    Evidence is presented for mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) in nutrient-rich media (high-nitrogen and malt extract media) by wild-type Phanerochaete chrysosporium and by a peroxidase-negative mutant of this organism. Mass balance analysis of [U-ring-14C]2,4-D mineralization in malt extract cultures showed 82.7% recovery of radioactivity. Of this, 38.6% was released as 14CO2 and 27.0, 11.2, and 5.9% were present in the aqueous, methylene chloride, and mycelial fractions, respectively. 2,4-D and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) were simultaneously mineralized when presented as a mixture, and mutual inhibition of degradation was not observed. In contrast, a relatively higher rate of mineralization of 2,4-D and 2,4,5-T was observed when these compounds were tested as mixtures than when they were tested alone. PMID:16349039

  20. Voriconazole, a safe alternative for treating infections caused by the Chrysosporium anamorph of Nannizziopsis vriesii in bearded dragons (Pogona vitticeps).

    Science.gov (United States)

    Van Waeyenberghe, L; Baert, K; Pasmans, F; van Rooij, P; Hellebuyck, T; Beernaert, L; de Backer, P; Haesebrouck, F; Martel, A

    2010-09-01

    Dermal and systemic infections caused by the Chrysosporium anamorph of Nannizziopsis vriesii (CANV) are highly prevalent in reptiles and may result in severe disease and high mortality. Due to the high incidence of therapeutic failures, optimizing treatment is required. We first determined in this study the minimal inhibitory concentrations (MIC) of itraconazole, voriconazole, amphotericin B and terbinafine against 32 CANV isolates. For voriconazole, amphotericin B and terbinafine a monomodal MIC distribution was seen, whereas a bimodal MIC distribution was present for itraconazole, indicating acquired resistance in one isolate. Fourteen naturally-infected bearded dragons (Pogona vitticeps), from the same owner, were treated orally with either itraconazole (5 mg/kg q24h) or voriconazole (10 mg/kg q24h). The clinical condition, drug plasma concentrations and the presence of CANV in skin samples were followed. The animals were treated until complete clearance of the fungus. The plasma concentrations of voriconazole and itraconazole exceeded the minimal inhibitory concentrations of the CANV isolates. Elimination of CANV was achieved on average after 27 and 47 days of treatment with itraconazole and voriconazole, respectively. Whereas only 2 out of 7 survived after itraconazole treatment, only a single animal died in the voriconazole treated group. In conclusion, based on a limited number of animals, voriconazole applied at a regimen of 10 mg/kg bodyweight (BW) q24h seems to be a safe and effective antimycotic drug to eliminate CANV infections in bearded dragons.

  1. Survey on the role of brown hares (Lepus europaeus, Pallas 1778 as carriers of zoonotic dermatophytes

    Directory of Open Access Journals (Sweden)

    Francesca Mancianti

    2010-02-01

    Full Text Available The occurrence of dermatophytes and keratinophilic fungi was investigated by hair-brush technique on the coat of 986 apparently healthy brown hares (Lepus europaeus, Pallas 1778 caught in 9 restocking and capture zones in Central Italy. Overall, 7.5% hair samples gave positive results. Trichophyton terrestre (2.1%, Chrysosporium sp, Chrysosporium keratinophilum, Microsporum gypseum, Trichophyton gloriae and Trichophyton mentagrophytes (0.6% each, Trichophyton erinacei and Scopulariopsis brevicaulis (0.4% each, Chrysosporium asperatum (0.3%, Arthroderma sp and Microsporum canis (0.1% each were identified in cultures with single isolates, whereas Chrysosporium sp/T. mentagrophytes (0.3%, Chrysosporium sp/T. terrestre and M. gypseum/T. terrestre (0.2% each, Chrysosporium tropicum/T. terrestre, M. canis/T. terrestre and T. ajelloi/T. terrestre (0.1% each were identified in cultures with mixed isolates. T. erinacei and M. canis have not previously been isolated from hares. M. canis, T. erinacei and T. mentagrophytes were the most clinically important dermatophytes found. Altogether, they were isolated only from 1.5% hair samples. Thus, it is concluded that brown hares may play a limited epidemiological role as carriers of zoonotic dermatophytes. Nevertheless, this should be taken into consideration as many people may be exposed to zoonotic agents from brown hares during hunting and trapping activities.

  2. Isolation of keratinophilic fungi from selected soils of Sanjay Gandhi National Park, Mumbai (India).

    Science.gov (United States)

    Deshmukh, S K; Verekar, S A

    2014-12-01

    One hundred and twenty-five samples were collected from eight different sites in the vicinity of Sanjay Gandhi National Park (SGNP) and screened for the presence of keratinophilic fungi using hair baiting technique for isolation. Seventy-three isolates were recovered and identified. The cultures were identified using macro- and micro-morphological features. Their identification was also confirmed by the BLAST search of sequences of the ITS1-5.8S-ITS2 rDNA region against the NCBI/Genbank data and compared with deposited sequences for identification purpose. Thirteen species of nine genera were isolated viz. Aphanoascus durus (2.4%), Arthroderma corniculatum (1.6%), Auxarthron umbrinum (0.8%), Chrysosporium evolceanui (1.6%), Chrysosporium indicum (16.0%), Chrysosporium tropicum (2.4%), Chrysosporium zonatum (4.0%), Chrysosporium states of Arthroderma tuberculatum (0.8%), Chrysosporium state of Ctenomyces serratus (11.2%), Gymnascella dankaliensis (3.2%), Microsporum gypseum (12.0%), Myriodontium keratinophilum (0.8%) and Trichophyton mentagrophytes (1.6%). Representative of all thirteen species can release the protein in the range of 152.2-322.4 μg/mL in liquid media when grown on human hair in shake flask culture and also decompose 18.4-40.2% of human hair after four weeks of incubation. This study indicates that the soils of SGNP, Mumbai may be significant reservoirs of certain keratinophilic fungi. The keratinolytic activity of these fungi may be playing significant role in superficial infections to man and animals and recycling of keratinic material of this environment. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Biotechnological modification of lignin

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    A literature search of organisms capable of degrading lignin was conducted. Four fungi were selected for study and these were Phanerochaete chrysosporium, Chrysosporium pruinosum, Phlebia tremellosus and Trametes versicolor. Other organisms, Pleurotus ostreatus, Pleurotus florida and Lentinus edodes were also tested in preliminary experiments. All cultures were screened for their ability to degrade the lignin component of aspen sawdust and also lignin extracted from steam-exploded wood. This type of screen was followed by analysis of culture filtrates for the presence of ligninase, the marker enzyme for lignin degradation. Phanerochaete chrysosporium and consequently chosen for further studies in fermentors. Considerable efforts were directed to production of ligninase in fermentors. Only when Chrysosporium pruinosum was pre-cultured in a shake flask for 4 days and then transferred to a fermentor could ligninase activity be detected. The enzyme from shake flasks has been concentrated ready for use in bench-scale studies on cell-free depolymerization of lignin. 13 refs., 8 tabs.

  4. Physical Damages of Wood Fiber in Acacia Mangium due to Biopulping Treatment

    Directory of Open Access Journals (Sweden)

    Ridwan Yahya

    2016-05-01

    chrysosporium to Acacia mangium Willd can reduce lignin and improve holocellulose and cellulose content of the material. Fiber dimension recognized as other important factor for paper properties. The question is how the integrity and dimensions of the wood fiber that has been pretreated with the fungus. The objectives of present study were to know effect of pretreatment of P. chrysosporium to the integrity and dimensions of the fiber. The P. chrysosporium was cultured for 14 days in growth medium, and inoculated to wood chips 5% (w/v and incubated for 0, 15 and 30 days. The inoculated wood chips were chipped into 1 mm x 1 mm x 20 mm and macerated using franklin solution at 60 oC for 48 hours. Forty fibers from each incubated time were analized their physical damages using a light microscope at a 400 magnification. The inoculated fibers were measured theirs dimensions. The physical damage percentage of fibers pretreated using P. chrysosporium was 0%. Length and wall thickness of the pretreated fibers were can be categorized as middle class and thin fibers, respectively.

  5. Occurrence of keratinophilic fungi on Indian birds.

    Science.gov (United States)

    Dixit, A K; Kushwaha, R K

    1991-01-01

    Keratinophilic fungi were isolated from feathers of most common Indian birds, viz. domestic chicken (Gallus domesticus), domestic pigeon (Columba livia), house sparrow (Passer domesticus), house crow (Corvus splendens), duck (Anas sp.), rose-ringed parakeet (Psittacula krameri). Out of 87 birds, 58 yielded 4 keratinophilic fungal genera representing 13 fungal species and one sterile mycelium. The isolated fungi were cultured on Sabouraud's dextrose agar at 28 +/- 2 degrees C. Chrysosporium species were isolated on most of the birds. Chrysosporium lucknowense and Chrysosporium tropicum were the most common fungal species associated with these Indian birds. Maximum occurrence of fungi (47%) was recorded on domestic chickens and the least number of keratinophilic fungi was isolated from the domestic pigeon and duck. The average number of fungi per bird was found to be the 0.44.

  6. Biodegradation of the High Explosive Hexanitrohexaazaiso-wurtzitane (CL-20)

    OpenAIRE

    Karakaya, Pelin; Christodoulatos, Christos; Koutsospyros, Agamemnon; Balas, Wendy; Nicolich, Steve; Sidhoum, Mohammed

    2009-01-01

    The aerobic biodegradability of the high explosive CL-20 by activated sludge and the white rot fungus Phanerochaete chrysosporium has been investigated. Although activated sludge is not effective in degrading CL-20 directly, it can mineralize the alkaline hydrolysis products. Phanerochaete chrysosporium degrades CL-20 in the presence of supplementary carbon and nitrogen sources. Biodegradation studies were conducted using various nutrient media under diverse conditions. Variables included the...

  7. Solid State production of manganese peroxidases using arecanut husk as substrate

    Directory of Open Access Journals (Sweden)

    Akhila Rajan

    2010-06-01

    Full Text Available The lignocellulosic biomass from arecanut husk (Areca catechu Linnaeus was evaluated as a new substrate for cultivation of Phanerochaete chrysosporium and Phanerochaete sp for solid state fermentation of manganese peroxidase (MnP. Arecanut had a moisture content of 79.84 % for ripe nut husk whereas green nut husk had 68.39 % moisture and a pH of 5.0, 3.0 and 7.0 for raw, ripe and dry husk. Reducing sugar content was 14.31, 19.21 and 1.77(mg/g of husk for raw, ripe and dry nut husk, respectively. Non reducing sugar was 1.04(mg/g of husk for raw and 0.68 (mg/g of husk for dry husk. Solid state fermentation carried out at different pH showed optimum enzyme production at pH 6.0 (52.60 IU/g for P.chrysosporium and pH 5.0 (44.08 IU/g for Phanerochaete sp. Optimum temperature was 30 ± 2º C for both the organisms. Lower concentration of MnSO4 (0.1 mM MnSO4 induced maximum enzyme production in P.chrysosporium whereas Phanerochaete sp. required 1 mM MnSO4 for induction. Absence of carbon and nitrogen stimulated enzyme production in P.chrysosporium while Phanerochaete sp. needed nitrogen. Enzyme was partially purified by ammonium sulphate precipitation followed by ion exchange chromatography.

  8. Biodegradation of the High Explosive Hexanitrohexaazaiso-wurtzitane (CL-20

    Directory of Open Access Journals (Sweden)

    Steve Nicolich

    2009-04-01

    Full Text Available The aerobic biodegradability of the high explosive CL-20 by activated sludge and the white rot fungus Phanerochaete chrysosporium has been investigated. Although activated sludge is not effective in degrading CL-20 directly, it can mineralize the alkaline hydrolysis products. Phanerochaete chrysosporium degrades CL-20 in the presence of supplementary carbon and nitrogen sources. Biodegradation studies were conducted using various nutrient media under diverse conditions. Variables included the CL-20 concentration; levels of carbon (as glycerol and ammonium sulfate and yeast extract as sources of nitrogen. Cultures that received CL-20 at the time of inoculation transformed CL-20 completely under all nutrient conditions studied. When CL-20 was added to pre-grown cultures, degradation was limited. The extent of mineralization was monitored by the 14CO2 time evolution; up to 51% mineralization was achieved when the fungus was incubated with [14C]-CL-20. The kinetics of CL-20 biodegradation by Phanerochaete chrysosporium follows the logistic kinetic growth model.

  9. Components of the ligninolytic system of Fusarium oxysporum and Trichoderma atroviride

    Energy Technology Data Exchange (ETDEWEB)

    Moenkemann, H.; Hoelker, U.; Hoefer, M. [Universitaet Bonn, Bonn (Germany). Botanisches Institut

    1997-11-01

    The ligninolytic system in the two deuteromycetous fungi Fusarium oxysporum and Trichoderma atroviride, which are able to solubilize low-rank coal, has been proved to have several components. Analysis of the chromosomal DNA of these fungi revealed distinct bands with probes coding for three ligninase isoenzymes, glyoxal oxidase and arylalcohol dehydrogenase of the basidiomycete Phanerochaete chrysosporium. These data constitute a strong indication for the existence in F. oxysporum and T. atroviride of a ligninolytic system comparable to that in P. chrysosporium that may be involved in the process of coal solubilization. 11 refs., 3 figs.

  10. Utilization of fruit peels as carbon source for white rot fungi biomass production under submerged state bioconversion

    Directory of Open Access Journals (Sweden)

    Olorunnisola Kola Saheed

    2016-04-01

    Full Text Available The present generation of nutrient rich waste streams within the food and hospitality industry is inevitable and remained a matter of concern to stakeholders. Three white rot fungal strains were cultivated under submerged state bioconversion (SmB. Fermentable sugar conversion efficiency, biomass production and substrate utilization constant were indicators used to measure the success of the process. The substrates – banana peel (Bp, pineapple peel (PAp and papaya peel (Pp were prepared in wet and dried forms as substrates. Phanerochaete chrysosporium (P. chrysosporium, Panus tigrinus M609RQY, and RO209RQY were cultivated on sole fruit wastes and their composites. All fungal strains produced profound biomass on dry sole wet substrates, but wet composite substrates gave improved results. P. tigrinus RO209RQY was the most efficient in sugar conversion (99.6% on sole substrates while P. tigrinus M609RQY was efficient on composite substrates. Elevated substrate utilization constant (Ku and biomass production heralded wet composite substrates. P. chrysosporium was the most performing fungal strain for biomass production, while PApBp was the best composite substrate.

  11. Biomass pyrolysis liquid to citric acid via 2-step bioconversion.

    Science.gov (United States)

    Yang, Zhiguang; Bai, Zhihui; Sun, Hongyan; Yu, Zhisheng; Li, Xingxing; Guo, Yifei; Zhang, Hongxun

    2014-12-31

    The use of fossil carbon sources for fuels and petrochemicals has serious impacts on our environment and is unable to meet the demand in the future. A promising and sustainable alternative is to substitute fossil carbon sources with microbial cell factories converting lignocellulosic biomass into desirable value added products. However, such bioprocesses require tolerance to inhibitory compounds generated during pretreatment of biomass. In this study, the process of sequential two-step bio-conversion of biomass pyrolysis liquid containing levoglucosan (LG) to citric acid without chemical detoxification has been explored, which can greatly improve the utilization efficiency of lignocellulosic biomass. The sequential two-step bio-conversion of corn stover pyrolysis liquid to citric acid has been established. The first step conversion by Phanerochaete chrysosporium (P. chrysosporium) is desirable to decrease the content of other compounds except levoglucosan as a pretreatment for the second conversion. The remaining levoglucosan in solution was further converted into citric acid by Aspergillus niger (A. niger) CBX-209. Thus the conversion of cellulose to citric acid is completed by both pyrolysis and bio-conversion technology. Under experimental conditions, levoglucosan yield is 12% based on the feedstock and the citric acid yield can reach 82.1% based on the levoglucosan content in the pyrolysis liquid (namely 82.1 g of citric acid per 100 g of levoglucosan). The study shows that P. chrysosporium and A. niger have the potential to be used as production platforms for value-added products from pyrolyzed lignocellulosic biomass. Selected P. chrysosporium is able to decrease the content of other compounds except levoglucosan and levoglucosan can be further converted into citric acid in the residual liquids by A. niger. Thus the conversion of cellulose to citric acid is completed by both pyrolysis and bio-conversion technology.

  12. Extracellular oxidases and the transformation of solubilised low-rank coal by wood-rot fungi

    Energy Technology Data Exchange (ETDEWEB)

    Ralph, J.P. [Flinders Univ. of South Australia, Bedford Park (Australia). School of Biological Sciences; Graham, L.A. [Flinders Univ. of South Australia, Bedford Park (Australia). School of Biological Sciences; Catcheside, D.E.A. [Flinders Univ. of South Australia, Bedford Park (Australia). School of Biological Sciences

    1996-12-31

    The involvement of extracellular oxidases in biotransformation of low-rank coal was assessed by correlating the ability of nine white-rot and brown-rot fungi to alter macromolecular material in alkali-solubilised brown coal with the spectrum of oxidases they produce when grown on low-nitrogen medium. The coal fraction used was that soluble at 3.0{<=}pH{<=}6.0 (SWC6 coal). In 15-ml cultures, Gloeophyllum trabeum, Lentinus lepideus and Trametes versicolor produced little or no lignin peroxidase, manganese (Mn) peroxidase or laccase activity and caused no change to SWC6 coal. Ganoderma applanatum and Pycnoporus cinnabarinus also produced no detectable lignin or Mn peroxidases or laccase yet increased the absorbance at 400 nm of SWC6 coal. G. applanatum, which produced veratryl alcohol oxidase, also increased the modal apparent molecular mass. SWC6 coal exposed to Merulius tremellosus and Perenniporia tephropora, which secreted Mn peroxidases and laccase and Phanerochaete chrysosporium, which produced Mn and lignin peroxidases was polymerised but had unchanged or decreased absorbance. In the case of both P. chrysosporium and M. tremellosus, polymerisation of SWC6 coal was most extensive, leading to the formation of a complex insoluble in 100 mM NaOH. Rigidoporus ulmarius, which produced only laccase, both polymerised and reduced the A{sub 400} of SWC6 coal. P. chrysosporium, M. tremellosus and P. tephropora grown in 10-ml cultures produced a spectrum of oxidases similar to that in 15-ml cultures but, in each case, caused more extensive loss of A{sub 400}, and P. chrysosporium depolymerised SWC6 coal. It is concluded that the extracellular oxidases of white-rot fungi can transform low-rank coal macromolecules and that increased oxygen availability in the shallower 10-ml cultures favours catabolism over polymerisation. (orig.)

  13. Comparative Examination of the Olive Mill Wastewater Biodegradation Process by Various Wood-Rot Macrofungi

    Science.gov (United States)

    Koutrotsios, Georgios; Zervakis, Georgios I.

    2014-01-01

    Olive mill wastewater (OMW) constitutes a major cause of environmental pollution in olive-oil producing regions. Sixty wood-rot macrofungi assigned in 43 species were evaluated for their efficacy to colonize solidified OMW media at initially established optimal growth temperatures. Subsequently eight strains of the following species were qualified: Abortiporus biennis, Ganoderma carnosum, Hapalopilus croceus, Hericium erinaceus, Irpex lacteus, Phanerochaete chrysosporium, Pleurotus djamor, and P. pulmonarius. Fungal growth in OMW (25%v/v in water) resulted in marked reduction of total phenolic content, which was significantly correlated with the effluent's decolorization. A. biennis was the best performing strain (it decreased phenolics by 92% and color by 64%) followed by P. djamor and I. lacteus. Increase of plant seeds germination was less pronounced evidencing that phenolics are only partly responsible for OMW's phytotoxicity. Laccase production was highly correlated with all three biodegradation parameters for H. croceus, Ph. chrysosporium, and Pleurotus spp., and so were manganese-independent and manganese dependent peroxidases for A. biennis and I. lacteus. Monitoring of enzymes with respect to biomass production indicated that Pleurotus spp., H. croceus, and Ph. chrysosporium shared common patterns for all three activities. Moreover, generation of enzymes at the early biodegradation stages enhanced the efficiency of OMW treatment. PMID:24987685

  14. Enhancement of Cotton Stalks Composting with Certain Microbial Inoculations

    Directory of Open Access Journals (Sweden)

    Osama Abdel-Twab Seoudi

    2013-01-01

    Full Text Available Effect of inoculation with Phanerochaete chrysosporium and Azotobacter chrococcum microbes on cotton stalks composting was studied in an attempt to achieve rapid maturity and desirable characteristics of produced compost. Composting process was maintained for 16 weeks under aerobic conditions with proper moisture content and turning piles. The C/N ratio of the mixtures was adjusted to about 30:1 before composting using chicken manure. Temperature evolution and its profile were monitored throughout the composting period. Mineralization rates of organic matter and changes in nitrogen content during composting stages were evaluated. Total plate count of mesophilic and thermophilic bacteria, cellulose decomposers and Azotobacter were determined during composting periods. The treatment of cotton stalks inoculated with both P. chrysosporium and Azotobacter gave the most desirable characteristics of the final product with respect to the narrow C/N ratio, high nitrogen content and high numbers of Azotobacter. The phytotoxicity test of compost extracts was evaluated. The use of P. chrysosporium in composting accelerated markedly decomposition process, so that 16 weeks composting enough to produce a stable and mature compost suitable for use as fertilizer while the fertilizer obtained by composting cotton stalks mixed with chicken manure and inoculated with microorganisms is highest quality Compost.

  15. Comparative Examination of the Olive Mill Wastewater Biodegradation Process by Various Wood-Rot Macrofungi

    Directory of Open Access Journals (Sweden)

    Georgios Koutrotsios

    2014-01-01

    Full Text Available Olive mill wastewater (OMW constitutes a major cause of environmental pollution in olive-oil producing regions. Sixty wood-rot macrofungi assigned in 43 species were evaluated for their efficacy to colonize solidified OMW media at initially established optimal growth temperatures. Subsequently eight strains of the following species were qualified: Abortiporus biennis, Ganoderma carnosum, Hapalopilus croceus, Hericium erinaceus, Irpex lacteus, Phanerochaete chrysosporium, Pleurotus djamor, and P. pulmonarius. Fungal growth in OMW (25%v/v in water resulted in marked reduction of total phenolic content, which was significantly correlated with the effluent’s decolorization. A. biennis was the best performing strain (it decreased phenolics by 92% and color by 64% followed by P. djamor and I. lacteus. Increase of plant seeds germination was less pronounced evidencing that phenolics are only partly responsible for OMW’s phytotoxicity. Laccase production was highly correlated with all three biodegradation parameters for H. croceus, Ph. chrysosporium, and Pleurotus spp., and so were manganese-independent and manganese dependent peroxidases for A. biennis and I. lacteus. Monitoring of enzymes with respect to biomass production indicated that Pleurotus spp., H. croceus, and Ph. chrysosporium shared common patterns for all three activities. Moreover, generation of enzymes at the early biodegradation stages enhanced the efficiency of OMW treatment.

  16. Effect of metal ions on autofluorescence of the dry rot fungus Serpula lacrymans grown on spruce wood

    Czech Academy of Sciences Publication Activity Database

    Gabriel, Jiří; Žižka, Zdeněk; Švec, Karel; Nasswettrová, A.; Šmíra, P.; Kofroňová, Olga; Benada, Oldřich

    2016-01-01

    Roč. 61, č. 2 (2016), s. 119-128 ISSN 0015-5632 Institutional support: RVO:61388971 Keywords : HEAVY-METALS * CELL-WALL * PHANEROCHAETE-CHRYSOSPORIUM Subject RIV: EE - Microbiology, Virology Impact factor: 1.521, year: 2016

  17. SOLID-PHASE TREATMENT OF A PENTACHLOROPHENOL- CONTAMINATED SOIL USING LIGNIN-DEGRADING FUNGI

    Science.gov (United States)

    The abilities of three lignin-degrading fungi, Phanerochaete chrysosporium, Phanerochaete sordida, and Trametes hirsuta, to deplete pentachlorophenol (PCP) from soil contaminated with PCP and creosote were evaluated. A total of seven fungal and three control treatments ...

  18. SACCHARIFICATION WITH Phanerochaete chrysosporium and ...

    African Journals Online (AJOL)

    cantocanche

    2011-05-09

    May 9, 2011 ... and Pleurotus ostreatus enzymatic extracts of pretreated banana ... reduction in the cost of production (Hahn-Hägerdal et al., ... economy, the saccharification of these materials is necessary ... To efficiently process lignocellulosic wastes, the lignin ..... industries depend on the success in saccharification.

  19. Immobilization of Irpex lacteus to liquid-core alginate beads and their application to degradation of pollutants

    Czech Academy of Sciences Publication Activity Database

    Šíma, J.; Milne, R.; Novotný, Čeněk; Hasal, P.

    2017-01-01

    Roč. 62, č. 4 (2017), s. 335-342 ISSN 0015-5632 Institutional support: RVO:61388971 Keywords : WHITE-ROT FUNGI * ROTATING BIOLOGICAL CONTACTOR * PHANEROCHAETE-CHRYSOSPORIUM Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 1.521, year: 2016

  20. The Role of Drosophila Merlin in the Control of Mitosis Exit and Development

    Science.gov (United States)

    2008-07-01

    chrysosporium --- http://genome.jgi-p Aspergillus flavus --- http://www.tigr.or Arabidopsis thaliana --- http://www.tigr.or Oryza sativa --- http...distinguish colon and ovarian adenocarcinomas: identi- fication, genomic, proteomic , and tissue array profiling. Cancer Res 2003;63:5243–50. 108

  1. FIBER QUALITIES OF PRETREATED BETUNG BAMBOO (Dendrocalamusasper BY MIXED CULTURE OF WHITE-ROT FUNGI WITH RESPECT TO ITS USE FOR PULP/PAPER

    Directory of Open Access Journals (Sweden)

    Widya Fatriasari

    2013-10-01

    Full Text Available Previous research on anatomical structures of pretreated large (betung bamboo (Dendrocalamusasper using single culture of white-rot fungi has been investigated, which revealed that the pretreatment caused the decrease in the Runkel ratioas well as the coefficient rigidity and the increase in the flexibility ratio of their corresponding bamboo fibers. However, there is no study reported on the anatomical structure changes of them caused by pretreatment using mixed culture of white-rot fungi. This paper reports the results of the research on paper/pulp quality after different treatments. Pretreatment that used Trametes versicolor fungi and lasted for 45 days inflicted intensive fiber damages compared with those of untreated bamboo (control. Fresh and barkless large (betung bamboo chips of 2 year's old, and 1.6 cm in length, were inoculated by 10% of mixed culture of white-rot fungi inoculums stock for 30 and 45 days in room temperature. There were four treatment groups of mixed culture, i.e T. versi color and P. ostreatus (TVPO; P. ostreatus and P. chrysosporium (POPC; P. chrysosporium and T.versi color (PCTV; and P.chrysosporium,  T.versicolorand  P.ostreatus  (TVPCPO.After  the  inoculation  period,  the  chips  weremacerated into separate fibers using Scultze method to analyze the fiber dimension and its derived values. The fibers were then observed regarding their macro and microscopic structures by optical microscope. Mixed culture pretreatment of white-rot fungi accelerated improvement of fiber morphology and fiber derived value characteristics, except for Muhlsteph ratio. The fiber derived values oftreated bamboo tended to improve compared to those of untreated bamboo, there by requiring milder pulping conditions. Accordingly, the treated bamboo would indicatively produce a good quality pulp (grade I based on FAO and LPHH (Forest Product Research Report requirements. Co-culture treatment using P. chrysosporium and P. ostreatus for

  2. Biodegradation of Phenol Adsorbed on Soil in the Presence of Polycyclic Aromatic Hydrocarbons.

    Czech Academy of Sciences Publication Activity Database

    Maléterová, Ywetta; Matějková, Martina; Demnerová, K.; Stiborová, H.; Kaštánek, František; Šolcová, Olga

    2016-01-01

    Roč. 3, č. 1 (2016), s. 87-98 ISSN 2397-2076 R&D Projects: GA TA ČR TA04020700 Institutional support: RVO:67985858 Keywords : polycyclic artomatic hydrocarbons * phenol * bioremediation * candida tropicalis * phanerochaete chrysosporium Subject RIV: CI - Industrial Chemistry, Chemical Engineering

  3. Testing the Tolerance and Growth of eleven Trichoderma Strains to crude oil, naphthalene and phenanthrene

    Energy Technology Data Exchange (ETDEWEB)

    Argumedo-Delira, R.; Alarcon, A.; Ferrera-Cerrato, R.; Pena-Cabriales, J. J.

    2009-07-01

    Petroleum hydrocarbons (PH) are major organic contaminants in soils, and are subjected to degradation process mediated by either rhizospheric or soil microorganisms. Filamentous fungi such as cunninghamella elegans and Phanerochaete chrysosporium have a significant role on degradation of organic contaminants in soils. (Author)

  4. Testing the Tolerance and Growth of eleven Trichoderma Strains to crude oil, naphthalene and phenanthrene

    International Nuclear Information System (INIS)

    Argumedo-Delira, R.; Alarcon, A.; Ferrera-Cerrato, R.; Pena-Cabriales, J. J.

    2009-01-01

    Petroleum hydrocarbons (PH) are major organic contaminants in soils, and are subjected to degradation process mediated by either rhizospheric or soil microorganisms. Filamentous fungi such as cunninghamella elegans and Phanerochaete chrysosporium have a significant role on degradation of organic contaminants in soils. (Author)

  5. Photochemical and microbial degradation technologies to remove toxic chemicals

    International Nuclear Information System (INIS)

    Matsumura, F.; Katayama, A.

    1992-01-01

    An effort was made to apply photochemical degradation technology on biodegradation processes to increase the bioremediation potential of microbial actions. For this purpose, we have chosen Phanerochaete chrysosporium, a wood decaying white-rot fungus and a variety of chlorinated pesticides and aromatics as study materials. By using UV-irradiation and benomyl (a commonly used fungicide) as selection methods, a strain of UV-resistant P. chrysosporium was developed. This strain was found to be capable of rapidly degrading these chlorinated chemicals when they were incubated in N-deficient medium which received 1 hr/day of UV-irradiation. UV-irradiation either at 300 or 254 nm showed the beneficial effect of speeding up the rate of degradation on most of test chemicals with the exception of toxaphene and HCH (hexachlorocyclohexane). By adding fresh glucose to the medium it was possible to maintain high degradation capacity for several weeks

  6. Biodegradation of hazardous waste using white rot fungus: Project planning and concept development document

    International Nuclear Information System (INIS)

    Luey, J.; Brouns, T.M.; Elliott, M.L.

    1990-11-01

    The white rot fungus Phanerochaete chrysosporium has been shown to effectively degrade pollutants such as trichlorophenol, polychlorinated biphenyls (PCBs), dioxins and other halogenated aromatic compounds. These refractory organic compounds and many others have been identified in the tank waste, groundwater and soil of various US Department of Energy (DOE) sites. The treatment of these refractory organic compounds has been identified as a high priority for DOE's Research, Development, Demonstration, Testing, and Evaluation (RDDT ampersand E) waste treatment programs. Unlike many bacteria, the white rot fungus P. chrysosporium is capable of degrading these types of refractory organics and may be valuable for the treatment of wastes containing multiple pollutants. The objectives of this project are to identify DOE waste problems amenable to white rot fungus treatment and to develop and demonstrate white rot fungus treatment process for these hazardous organic compounds. 32 refs., 6 figs., 7 tabs

  7. Effects of Rhamnolipid and Microbial Inoculants on the Vermicomposting of Green Waste with Eisenia fetida.

    Science.gov (United States)

    Gong, Xiaoqiang; Wei, Le; Yu, Xin; Li, Suyan; Sun, Xiangyang; Wang, Xinyu

    2017-01-01

    The effects of adding the biosurfactant rhamnolipid, the lignolytic and cellulolytic fungus Phanerochete chrysosporium, and the free-living nitrogen-fixing bacterium Azotobacter chrococcum on vermicomposting of green waste with Eisenia fetida was investigated. The addition of rhamnolipid and/or either microorganism alone or in all combinations significantly increased E. fetida growth rate, the number of E. fetida juveniles and cocoons, the population densities of cellulolytic fungi and Azotobacter bacteria, and cellulase and urease activities in the vermicomposts. The quality of the final vermicompost (in terms of electrical conductivity, nutrient content, C/N ratio, humic acid content, lignin and cellulose contents, and phytotoxicity to germinating seeds) was enhanced by addition of rhamnolipid and/or microorganisms. The physical characteristics of vermicomposts produced with rhamnolipid and/or microorganisms were acceptable for agricultural application. The best quality vermicompost was obtained with the combined addition of P. chrysosporium, A. chrococcum, and rhamnolipid.

  8. Photochemical and microbial degradation technologies to remove toxic chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, F.; Katayama, A.

    1992-07-01

    An effort was made to apply photochemical degradation technology on biodegradation processes to increase the bioremediation potential of microbial actions. For this purpose, we have chosen Phanerochaete chrysosporium, a wood decaying white-rot fungus and a variety of chlorinated pesticides and aromatics as study materials. By using UV-irradiation and benomyl (a commonly used fungicide) as selection methods, a strain of UV-resistant P. chrysosporium was developed. This strain was found to be capable of rapidly degrading these chlorinated chemicals when they were incubated in N-deficient medium which received 1 hr/day of UV-irradiation. UV-irradiation either at 300 or 254 nm showed the beneficial effect of speeding up the rate of degradation on most of test chemicals with the exception of toxaphene and HCH (hexachlorocyclohexane). By adding fresh glucose to the medium it was possible to maintain high degradation capacity for several weeks.

  9. Evaluation of Potential Fungal Species for the in situ Simultaneous Saccharification and Fermentation (SSF of Cellulosic Material

    Directory of Open Access Journals (Sweden)

    Leeuwen, J.

    2011-01-01

    Full Text Available Three fungal species were evaluated for their abilities to saccharify pure cellulose. The three species chosen represented three major wood-rot molds; brown rot (Gloeophyllum trabeum, white rot (Phanerochaete chrysosporium and soft rot (Trichoderma reesei. After solid state fermentation of the fungi on the filter paper for four days, the saccharified cellulose was then fermented to ethanol by using Saccharomyces cerevisiae. The efficiency of the fungal species in saccharifying the filter paper was compared against a low dose (25 FPU/g cellulose of a commercial cellulase. Total sugar, cellobiose and glucose were monitored during the fermentation period, along with ethanol, acetic acid and lactic acid. Results indicated that the most efficient fungal species in saccharifying the filter paper was T. reesei with 5.13 g/100 g filter paper of ethanol being produced at days 5, followed by P. chrysosporium at 1.79 g/100 g filter paper. No ethanol was detected for the filter paper treated with G. trabeum throughout the five day fermentation stage. Acetic acid was only produced in the sample treated with T. reesei and the commercial enzyme, with concentration 0.95 and 2.57 g/100 g filter paper, respectively at day 5. Lactic acid production was not detected for all the fungal treated filter paper after day 5. Our study indicated that there is potential in utilizing in situ enzymatic saccharification of biomass by using T. reesei and P. chrysosporium that may lead to an economical simultaneous saccharification and fermentation process for the production of fuel ethanol.

  10. CYP63A2, a catalytically versatile fungal P450 monooxygenase capable of oxidizing higher-molecular-weight polycyclic aromatic hydrocarbons, alkylphenols, and alkanes

    Science.gov (United States)

    Cytochrome P450 monooxygenases (P450s) are known to oxidize hydrocarbons albeit with limited substrate specificity across classes of these compounds. Here we report a P450 monooxygenase (CYP63A2) from the model ligninolytic white rot fungus Phanerochaete chrysosporium that was fo...

  11. Prospects for bioprocess development based on recent genome advances in lignocellulose degrading basidiomycetes

    Science.gov (United States)

    Chiaki Hori; Daniel Cullen

    2016-01-01

    Efficient and complete degradation of woody plant cell walls requires the concerted action of hydrolytic and oxidative systems possessed by a relatively small group of filamentous basidiomycetous fungi. Among these wood decay species, Phanerochaete chrysosporium was the first to be sequenced (Martinez et al. 2004). In...

  12. Comparative efficacy and pathogenicity of keratinophilic soil fungi against Culex quinquefasciatus larvae.

    Science.gov (United States)

    Mohanty, Suman Sundar; Prakash, Soam

    2010-09-01

    Out of seven fungal species belonging to four genera isolated from pond and wallow soils using feathers of Pavo cristatus as bait, four species viz., Aspergillus flavus, Aspergillus niger, Chrysosporium pseudomerdarium and Trichophyton ajelloi were most frequent. Chrysosporium and Trichophyton spp. were more pathogenic on Culex quinquefasciatus larvae than Aspergillus and Penicillium. The bioefficacy tests conducted as per the protocol of World Health Organization and the LC(50) values calculated by the Probit analysis showed that 3(rd)-instar C. quinquefasciatus were more susceptible to the conidia of above fungi. Highest mortality was observed in the larvae of C. quinquefasciatus when exposed to T. ajelloi. The density of fungal conidia was greatest on the ventral brush, palmate hair and anal region of the mosquito larvae after exposing for 72 hours. The potentiality of these fungi for use in the control of C. quinquefasciatus is discussed which can be exploited as a suitable biocontrol agent in the tropics.

  13. Biosoftening of coir fiber using selected microorganisms.

    Science.gov (United States)

    Rajan, Akhila; Senan, Resmi C; Pavithran, C; Abraham, T Emilia

    2005-12-01

    Coir fiber belongs to the group of hard structural fibers obtained from coconut husk. As lignin is the main constituent of coir responsible for its stiffness, microbes that selectively remove lignin without loss of appreciable amounts of cellulose are extremely attractive in biosoftening. Five isolated strains were compared with known strains of bacteria and fungi. The raw fiber treated with Pseudomonas putida and Phanerocheate chrysosporium produced better softened fiber at 30+/-2 degrees C and neutral pH. FeSO4 and humic acid were found to be the best inducers for P. chrysosporium and P. putida, respectively, while sucrose and dextrose were the best C-sources for both. Biosoftening of unretted coir fibers was more advantageous than the retted fibers. Unlike the weak chemically softened fiber, microbial treatment produced soft, whiter fibers having better tensile strength and elongation (44.6-44.8%) properties. Scanning electron microscopy photos showed the mycelia penetrating the pores of the fiber, removing the tylose plug and degrading lignin.

  14. Effect of Saprotrophic Soil Fungi on Toxocara canis Eggs

    Directory of Open Access Journals (Sweden)

    Ciarmela, M. L.

    2010-01-01

    Full Text Available The purpose of this work was to assess the ovicidal activity of Chrysosporium merdarium, Trichoderma harzianum, Fusarium oxysporum, F. moniliforme and F. sulphureum isolated from public areas in the city of La Plata, Argentina, on Toxocara canis eggs in vitro. Each species were cultured on water agar 2% with a suspension of immature-stage T. canis eggs. At 4, 7, 14, 21 and 28 days post-culture, they were observed by light and scanning electron microscopy. One hundred eggs were evaluated and scored according to Lỳsek’s ovicidal effect classification. These procedures were repeated three times which each fungal species. Chrysosporium merdarium and F. oxysporum showed very high ovicidal activity, F. sulphureum high ovicidal activity, F. moniliforme intermediate ovicidal activity and T. harzianum did not affect the viability of T. canis eggs. Taking into account the effects on human and animal health and the environment, the species with better prospects for studying its potential use as biological control was F. sulphureum.

  15. Sequential low and medium frequency ultrasound assists biodegradation of wheat chaff by white rot fungal enzymes.

    Science.gov (United States)

    Oliver, Christine M; Mawson, Raymond; Melton, Laurence D; Dumsday, Geoff; Welch, Jessica; Sanguansri, Peerasak; Singh, Tanoj K; Augustin, Mary Ann

    2014-10-13

    The consequences of ultrasonic pre-treatment using low (40 kHz) and medium (270 kHz) frequency (40 kHz followed by 270 kHz) on the degradation of wheat chaff (8 g 100ml(-1) acetate buffer, pH 5) were evaluated. In addition, the effects of the ultrasonic pre-treatment on the degradation of the wheat chaff when subsequently exposed to enzyme extracts from two white rot fungi (Phanerochaete chrysosporium and Trametes sp.) were investigated. Pre-treatment by sequential low and medium frequency ultrasound had a disruptive effect on the lignocellulosic matrix. Analysis of the phenolic-derived volatiles after enzymatic hydrolysis showed that biodegradation with the enzyme extract obtained from P. chrysosporium was more pronounced compared to that of the Trametes sp. The efficacy of the ultrasonic pre-treatment was attributed to increased enzyme accessibility of the cellulose fibrils due to sonication-induced disruption of the plant surface structure, as shown by changes in the microstructure. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Biosorption characteristics of Aspergillus fumigatus in removal of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-01

    Sep 1, 2009 ... in growth medium, thus about 20% of the isolates can grow up to 50 mg Cd/100 ml medium and only ... have the highest Cd biosorption, compared to yeast malt extract (YM) and sabourad (Sb) media. ... chemical parameters of the solution, say, temperature, ...... inactivated Phanerochaete chrysosporium.

  17. Characterisation of a chimeric Phanerochaete chrysosporium ...

    African Journals Online (AJOL)

    Fred

    soaked tissue paper, the lid of the plastic box was closed and the reaction were incubated at 37oC for 3–4 days. The plastic box with soaked tissue paper provided a humid environment that prevented the media from drying-out. After incubation, the plates were ... cbhI.1 when it was cloned into a pET vector to generate.

  18. Cloning and expression of Phanerochaete chrysosporium ...

    African Journals Online (AJOL)

    Owner

    various industries such as chemicals, fuel, food, brewery and wine, animal-feed, .... and transformed into competent E. coli BL21 cells for vector amplification, repurified ..... Hydrolysis of lignocellulose material for ethanol production: A Review: ...

  19. Saccharification with Phanerochaete chrysosporium and Pleurotus ...

    African Journals Online (AJOL)

    Lignocellulosic biomass has a great potential as raw material for second and third generation biofuels since it is the most abundant carbohydrate on earth and the main component of agricultural waste; however, saccharification of lignocellulosic biomass is crucial for the establishment of a carbohydratebased economy.

  20. Removal of Cr(VI) from aqueous solution by fungal biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, Sarabjeet Singh [Department of Biotechnology, General Shivdev Singh Diwan Gurbachan Singh Khalsa College, Patiala, Punjab (India); Goyal, Dinesh [Department of Biotechnology and Environmental Sciences, Thapar University, Patiala, Punjab (India)

    2010-10-15

    Chromium compounds are released by industrial processes including leather production, mining, petroleum refining, in textile industry and dyeing. They are a significant threat to the environment and public health because of their toxicity. Removal of hexavalent chromium by living biomass of different fungi was effective in the order of Aspergillus terricola>Aspergillus niger>Acremonium strictum>Aureobasidium pullulans>Paecilomyces variotii>Aspergillus foetidus>Cladosporium resinae>Phanerochaete chrysosporium. Non-living dried fungal biomass showed higher potential for metal removal than living cells. Among all fungi dead biomass of P. chrysosporium, C. resinae and P. variotii had the maximum specific chromium uptake capacity, which was 11.02, 10.69 and 10.35 mg/g of dry biomass respectively at pH 4.0-5.0 in batch sorption. Removal of Cr(VI) by P. chrysosporium from multi-metallic synthetic solution as well as chrome effluent was significant by bringing down the residual concentration to 0.1 mg/L in the effluent, which falls within the permissible range and its removal was not affected by the presence of other metal ions such as Fe, Zn and Ni. Fourier transform infrared spectral analysis revealed the presence of carboxylate (C=O) and amine (-NH{sup +}{sub 3}-NH{sup +}{sub 2}) functional groups commonly present on the cell surface of all fungi, with possible involvement in chromium binding. The result indicates that non-living fungal biomass either obtained as a by-product of fermentation industry or mass produced using inexpensive culture media can be used for bioremediation of Cr(VI) from chrome effluent on large scale. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. A new mechanism of biopulping : attachment of acid groups on fiber

    Science.gov (United States)

    William R. Kenealy; Chris Hunt; Eric Horn; Carl Houtman

    2004-01-01

    We analyzed the physical properties of wood chips incubated with Ceriporiopsis subvermispora and cultural parameters of biopulping incubations of Phanerochaete chrysosporium and C. subvermispora. Dynamic mechanical analyses indicated a reduction in the modulus of elasticity (MOE) and loss modulus of spruce during the time where the biopulping energy savings effect...

  2. Nannizziopsis guarroi infection in 2 Inland Bearded Dragons (Pogona vitticeps): clinical, cytologic, histologic, and ultrastructural aspects.

    Science.gov (United States)

    Le Donne, Viviana; Crossland, Nicholas; Brandão, João; Sokolova, Yuliya; Fowlkes, Natalie; Nevarez, Javier G; Langohr, Ingeborg M; Gaunt, Stephen D

    2016-06-01

    Chrysosporium-related infections have been increasingly reported in reptiles over the last 2 decades. In this report, we describe clinical, cytologic, histopathologic, and ultrastructural aspects of Chrysosporium-related infection in 2 Inland Bearded Dragons (Pogona vitticeps). Case 1 was presented for an enlarging raised lesion over the left eye and multiple additional masses over the dorsum. Case 2 was submitted to necropsy by the referring veterinarian for suspected yellow fungus disease. Impression smears of the nodules in case 1 revealed granulomatous to pyogranulomatous inflammation and many septate, variably long, 4-10 μm wide, often undulated hyphae, and very rare conidia. Postmortem impression smears of the superficial lesions of case 2 contained large numbers of solitary conidia and arthroconidia and low numbers of hyphae with similar morphology to case 1. Histopathology of the 2 cases revealed severe, multifocal, chronic, ulcerative, nodular pyogranulomatous dermatitis, with myriad intralesional septate hyphae, and arthroconidia. Fungal culture and molecular sequencing in both cases indicated infection with Nannizziopsis guarroi. © 2016 American Society for Veterinary Clinical Pathology.

  3. Bio-softening of mature coconut husk for facile coir recovery.

    Science.gov (United States)

    Suganya, D S; Pradeep, S; Jayapriya, J; Subramanian, S

    2007-06-01

    Bio-softening of the mature coconut husk using Basidiomyceteous fungi was attempted to recover the soft and whiter fibers. The process was faster and more efficient in degrading lignin and toxic phenolics. Phanerochaete chrysosporium, Pleurotus eryngii and Ceriporiopsis subvermispora were found to degrade lignin efficiently without any appreciable loss of cellulose, yielding good quality fiber ideal for dyeing.

  4. Microbial Degradation of RDX and HMX

    Science.gov (United States)

    2004-02-01

    cultivated in the M-succinate medium as previously described (Coleman et al., 1998). P. chrysosporium ATCC 24725 was provided by Ian Reid (Paprican...Sunahara. 1999. Ecotoxicological Evaluation of a Bench–Scale Bioslurry Treating Explosives – Spiked Soil. Bioremediation J. 3(3), 233-245. 217...1999. Ecotoxicological characterization of energetic substances using a soil extraction procedure. Ecotoxicol. Environ. Safety 43, 138-148

  5. Ligninolytic Activity of Ganoderma strains on Different Carbon Sources

    Directory of Open Access Journals (Sweden)

    TYPUK ARTININGSIH

    2006-10-01

    Full Text Available Lignin is a phenylpropanoid polymers with only few carbon bonds might be hydrolized. Due to its complexity, lignin is particularly difficult to decompose. Ganoderma is one of white rot fungi capable of lignin degradation. The ligninolytic of several species Ganoderma growing under different carbon sources was studied under controlled conditions which P. chrysosporium was used as standard comparison.Three types of ligninolytic, namely LiP, MnP, and laccase were assessed quantitatively and qualitatively. Ratio between clear zone and diameter of fungal colony was used for measuring specific activity qualitatively.Four sspecies of Ganoderma showed positive ligninolytic qualitatively that G. lucidum KT2-32 gave the highest ligninolytic. Activity of LiP and MnP in different carbon sources was consistently resulted by G. lucidum KT2-32, while the highest activity of laccase was shown by G. ochrolaccatum SA2-14. Medium of Indulin AT affected production of protein extracellular and induced ligninolytic. Glucose, BMC, and pine sawdust did not affect the activity of ligninolytic. The specific activity of Ganoderma species was found to be higher than the one of P. chrysosporium.

  6. Fungal biodegradation of anthracene-polluted cork: A comparative study.

    Science.gov (United States)

    Jové, Patrícia; Olivella, Maria À; Camarero, Susana; Caixach, Josep; Planas, Carles; Cano, Laura; De Las Heras, Francesc X

    2016-01-01

    The efficiency of cork waste in adsorbing aqueous polycyclic aromatic hydrocarbons (PAHs) has been previously reported. Biodegradation of contaminated cork using filamentous fungi could be a good alternative for detoxifying cork to facilitate its final processing. For this purpose, the degradation efficiency of anthracene by three ligninolytic white-rot fungi (Phanerochaete chrysosporium, Irpex lacteus and Pleurotus ostreatus) and three non-ligninolytic fungi which are found in the cork itself (Aspergillus niger, Penicillium simplicissimum and Mucor racemosus) are compared. Anthracene degradation by all fungi was examined in solid-phase cultures after 0, 16, 30 and 61 days. The degradation products of anthracene by P. simplicissimum and I. lacteus were also identified by GC-MS and a metabolic pathway was proposed for P. simplicissimum. Results show that all the fungi tested degraded anthracene. After 61 days of incubation, approximately 86%, 40%, and 38% of the initial concentration of anthracene (i.e., 100 µM) was degraded by P. simplicissimum, P. chrysosporium and I. lacteus, respectively. The rest of the fungi degraded anthracene to a lesser extent (cork itself, could be used as an efficient degrader of PAH-contaminated cork.

  7. Improving Nutritional Quality of Cocoa Pod ( through Chemical and Biological Treatments for Ruminant Feeding: and Evaluation

    Directory of Open Access Journals (Sweden)

    Erika B. Laconi

    2015-03-01

    Full Text Available Cocoa pod is among the by-products of cocoa (Theobroma cacao plantations. The aim of this study was to apply a number of treatments in order to improve nutritional quality of cocoa pod for feeding of ruminants. Cocoa pod was subjected to different treatments, i.e. C (cocoa pod without any treatment or control, CAm (cocoa pod+1.5% urea, CMo (cocoa pod+3% molasses, CRu (cocoa pod+3% rumen content and CPh (cocoa pod+3% molasses+Phanerochaete chrysosporium inoculum. Analysis of proximate and Van Soest’s fiber fraction were performed on the respective treatments. The pods were then subjected to an in vitro digestibility evaluation by incubation in rumen fluid-buffer medium, employing a randomized complete block design (n = 3 replicates. Further, an in vivo evaluation of the pods (35% inclusion level in total mixed ration was conducted by feeding to young Holstein steers (average body weight of 145±3.6 kg with a 5×5 latin square design arrangement (n = 5 replicates. Each experimental period lasted for 30 d; the first 20 d was for feed adaptation, the next 3 d was for sampling of rumen liquid, and the last 7 d was for measurements of digestibility and N balance. Results revealed that lignin content was reduced significantly when cocoa pod was treated with urea, molasses, rumen content or P. chrysosporium (pCAm>CRu>CMo. Among all treatments, CAm and CPh treatments significantly improved the in vitro dry matter and organic matter digestibility (p<0.05 of cocoa pod. Average daily gain of steers receiving CAm or CPh treatment was significantly higher than that of control (p<0.01 with an increase of 105% and 92%, respectively. Such higher daily gain was concomitant with higher N retention and proportion of N retention to N intake in CAm and CPh treatments than those of control (p<0.05. It can be concluded from this study that treatment with either urea or P. chrysosporium is effective in improving the nutritive value of cocoa pod.

  8. Fiscal 2000 achievement report on the venture business assisting type regional consortium - Core industry creation type. Research and development of energy conservation oriented collective detoxification system for dioxins and toxic heavy metals in fly ash and soil; 2000 nendo chiiki consortium kenkyu kaihatsu jigyo seika hokokusho. Hibai dojochu no dioxin rui yugai jukinzoku no sho energy gata ikkatsu mugaika shori system ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Efforts are made to develop a system to collectively detoxify dioxins and heavy metals in incinerator fly ash or in polluted soil using microbes and/or chemicals. In the use of chemicals, verification tests are conducted for a system to detoxify dioxins and toxic heavy metals simultaneously. In the use of microbes, an effort is made to develop a low cost energy conservation type treatment system based on what is provided by the study of microbes such as Phanerochaete chrysosporium. As for the treatment of fly ash, an effort is made to recycle it into resources usable in the development of marketable products. For the detoxification of dioxins using chemicals, they are dechlorinated in a chemical reduction reaction. For their detoxification with help of microbes, it is found in an experiment of ash fly dioxin decomposition using Phanerochaete chrysosporium that the microbe reduces dioxins in both liquid phase and solid phase systems. The result of verification tests using chemicals shows that the reference level of 3ng-TEQ/g is easily cleared in the treatment of high concentration ash fly. In the detoxification of heavy metals, data is obtained indicating that the elution level of lead in ash fly is found reduced by 70-85% after treatment. (NEDO)

  9. Lignin peroxidase isoenzyme: a novel approach to biodegrade the toxic synthetic polymer waste.

    Science.gov (United States)

    Khatoon, Nazia; Jamal, Asif; Ali, Muhammad Ishtiaq

    2018-01-05

    Fungal metabolites are playing an immense role in developing various sustainable waste treatment processes. The present study aimed at production and characterization of fungal lignin peroxidase (EC 1.11.1.14) with a potential to degrade Polyvinyl Chloride. Optimization studies revealed that the maximum enzyme production occurred at a temperature 25°C, pH 5 in the 4th week of the incubation period with fungal strain. Enzyme assay was performed to find out the dominating enzyme in the culture broth. The molecular weight of the enzyme was found to be 46 kDa. Partially purified lignin peroxidase from Phanerocheate chrysosporium was used for the degradation of PVC films. A significant reduction in the weight of PVC film was observed (31%) in shake flask experiment. FTIR spectra of the enzyme-treated plastic film revealed structural changes in the chemical composition, indicating a specific peak at 2943 cm -1 that corresponded to alkenyl C-H stretch. Moreover, deterioration on the surface of PVC films was confirmed by Scanning Electron Microscopy tracked through activity assay for the lignin peroxidase. Extracellular lignin peroxidases from P. chrysosporium play a significant role in the degradation of complex polymeric compounds like PVC.

  10. Mn(II) regulation of lignin peroxidases and manganese-dependent peroxidases from lignin-degrading white rot fungi

    International Nuclear Information System (INIS)

    Bonnarme, P.; Jeffries, T.W.

    1990-01-01

    Two families of peroxidases-lignin peroxidase (LiP) and manganese-dependent lignin peroxidase (MnP)-are formed by the lignin-degrading white rot basidiomycete Phanerochaete chrysosporium and other white rot fungi. Isoenzymes of these enzyme families carry out reactions important to the biodegradation of lignin. This research investigated the regulation of LiP and MnP production by Mn(II). In liquid culture, LiP titers varied as an inverse function of and MnP titers varied as a direct function of the Mn(II) concentration. The extracellular isoenzyme profiles differed radically at low and high Mn(II) levels, whereas other fermentation parameters, including extracellular protein concentrations, the glucose consumption rate, and the accumulation of cell dry weight, did not change significantly with the Mn(II) concentration. In the absence of Mn(II), extracellular LiP isoenzymes predominated, whereas in the presence of Mn(II), MnP isoenzymes were dominant. The release of 14 CO 2 from 14 C-labeled dehydrogenative polymerizate lignin was likewise affected by Mn(II). The rate of 14 CO 2 release increased at low Mn(II) and decreased at high Mn(II) concentrations. This regulatory effect of Mn(II) occurred with five strains of P. chrysosporium, two other species of Phanerochaete, three species of Phlebia, Lentinula edodes, and Phellinus pini

  11. Fermented Apple Pomace as a Feed Additive to Enhance Growth Performance of Growing Pigs and Its Effects on Emissions

    Directory of Open Access Journals (Sweden)

    Chandran M. Ajila

    2015-06-01

    Full Text Available Apple pomace is a by-product from the apple processing industry and can be used for the production of many value-added compounds such as enzymes, proteins, and nutraceuticals, among others. An investigation was carried out to study the improvement in the protein content in apple pomace by solid-state fermentation using the fungus Phanerochaete chrysosporium by tray fermentation method. The effect of this protein in terms of how it enriched apple pomace as animal feed for pigs has also been studied. There was a 36% increase in protein content in the experimental diet with 5% w/w fermented apple pomace. The efficiency of conversion of ingested food was increased from 43.5 ± 2.5 to 83.1 ± 4.4 in the control group and the efficiency of conversion of feed increased from 55.4 ± 4.5 to 92.1 ± 3.6 in the experimental group during the animal feed experiment. Similarly, the effect of a protein enriched diet on odor emission and greenhouse gas emission has also been studied. The results demonstrated that the protein enrichment of apple pomace by solid state cultivation of the fungus P. chrysosporium makes it possible to use it as a dietary supplement for pigs.

  12. Bioreduction of selenite and tellurite by Phanerochaete chrysosporium

    NARCIS (Netherlands)

    Espinosa‐Ortiz, E.J.

    2015-01-01

    Selenium (Se) and tellurium (Te) are elements, they are part of the chalcogens (VI‐A group of the periodic table) and share common properties. These metalloids are of commercial interest due to their physicochemical properties, and they have been used in a broad range of applications in advanced

  13. by Phanerochaete chrysosporium from a binary metal system

    African Journals Online (AJOL)

    drinie

    2001-01-01

    Jan 1, 2001 ... metal concentrations (Ci) increased, independent of initial pH (pHi) and generally the metal with ... The results also show that some portion of the metal ions sorbed by P. ... mechanisms, mainly ion exchange, chelation, adsorption, and ..... YU Q and KAEWSARN P (1999) Binary adsorption of copper(II) and.

  14. Heterologous Expression of Phanerochaete chrysoporium Glyoxal Oxidase and its Application for the Coupled Reaction with Manganese Peroxidase to Decolorize Malachite Green

    Science.gov (United States)

    Son, Yu-Lim; Kim, Hyoun-Young; Thiyagarajan, Saravanakumar; Xu, Jing Jing

    2012-01-01

    cDNA of the glx1 gene encoding glyoxal oxidase (GLX) from Phanerochaete chrysosporium was isolated and expressed in Pichia pastoris. The recombinant GLX (rGLX) produces H2O2 over 7.0 nmol/min/mL using methyl glyoxal as a substrate. Use of rGLX as a generator of H2O2 improved the coupled reaction with recombinant manganese peroxidase resulting in decolorization of malachite green up to 150 µM within 90 min. PMID:23323052

  15. Ability of some species of fungi of the Basidiomycetes class to degrade cellulose and lignocellulose substrates

    Directory of Open Access Journals (Sweden)

    Zdzisław Tagoński

    2014-08-01

    Full Text Available Studies were carried-out on the ability of 18 strains of 15 white-rot and brown-rot basidiomycetons fungi to degrade wood components and to synthesize cellulolytic enzymes and laccase. 28,5% lignin and 26,1% carbohydrates of pine wood meal, 46,2% lignin and 67,8% carbohydrates of beech wood meal was degraded after 6 weeks incubation by the white-rot fungus Phanerochate chrysosporium. The highest activity of laccase was obtained in from fungi Coriotus zonatus and Fomes fomentarius.

  16. Biodegradation of Jet Fuel-4 (JP-4) in Sequencing Batch Reactors

    Science.gov (United States)

    1992-06-01

    nalw~eo %CUMENTATION PAGE__ _ _ _ _ _ _ _ _O 74S Ab -A258 020 L AW POi~W6 DATI .~ TYP AIMqm ,-& 0 U. glbs A~ I ma"&LFUN Mu BIODEGRADATION OF JET FUEL...Specific Objectives of This Proposal Are: 1. To assess the ability of C. resinae , P. chrysosporium and selected bacterial consortia to degrade individual...chemical components of JP-4. 2. To develop a sequencing batch reactor that utilizes C. resinae to degrade chemical components of JP-4 in contaminated

  17. Enhanced bioprocessing of lignocellulose: Wood-rot fungal saccharification and fermentation of corn fiber to ethanol

    Science.gov (United States)

    Shrestha, Prachand

    This research aims at developing a biorefinery platform to convert corn-ethanol coproduct, corn fiber, into fermentable sugars at a lower temperature with minimal use of chemicals. White-rot (Phanerochaete chrysosporium), brown-rot (Gloeophyllum trabeum) and soft-rot (Trichoderma reesei) fungi were used in this research to biologically break down cellulosic and hemicellulosic components of corn fiber into fermentable sugars. Laboratory-scale simultaneous saccharification and fermentation (SSF) process proceeded by in-situ cellulolytic enzyme induction enhanced overall enzymatic hydrolysis of hemi/cellulose from corn fiber into simple sugars (mono-, di-, tri-saccharides). The yeast fermentation of hydrolyzate yielded 7.1, 8.6 and 4.1 g ethanol per 100 g corn fiber when saccharified with the white-, brown-, and soft-rot fungi, respectively. The highest corn-to-ethanol yield (8.6 g ethanol/100 g corn fiber) was equivalent to 42 % of the theoretical ethanol yield from starch and cellulose in corn fiber. Cellulase, xylanase and amylase activities of these fungi were also investigated over a week long solid-substrate fermentation of corn fiber. G. trabeum had the highest activities for starch (160 mg glucose/mg protein.min) and on day three of solid-substrate fermentation. P. chrysosporium had the highest activity for xylan (119 mg xylose/mg protein.min) on day five and carboxymethyl cellulose (35 mg glucose/mg protein.min) on day three of solid-substrate fermentation. T. reesei showed the highest activity for Sigma cell 20 (54.8 mg glucose/mg protein.min) on day 5 of solid-substrate fermentation. The effect of different pretreatments on SSF of corn fiber by fungal processes was examined. Corn fiber was treated at 30 °C for 2 h with alkali [2% NaOH (w/w)], alkaline peroxide [2% NaOH (w/w) and 1% H2O 2 (w/w)], and by steaming at 100 °C for 2 h. Mild pretreatment resulted in improved ethanol yields for brown- and soft-rot SSF, while white-rot and Spezyme CP SSFs showed

  18. Processing Methods Affect the Nutritive Value and in vitro Rumen Fermentation of Distilled Grain%不同加工方法对白酒糟营养价值和体外瘤胃发酵的影响

    Institute of Scientific and Technical Information of China (English)

    吴丹; 王之盛; 薛白; 邹华围; 余群莲

    2011-01-01

    本文旨在研究不同加工方法对白酒糟营养价值和体外瘤胃发酵特性的影响.以未处理白酒糟作为对照(CK组),按白酒糟的加工方式不同设4个试验组:黄孢原毛平革菌发酵白酒糟(发酵,F组)、黄孢原毛平革菌发酵粉碎白酒糟(粉碎+发酵,CF组)、黄孢原毛平革菌发酵氨化白酒糟(氨化+发酵,AF组)、黄孢原毛平革菌发酵粉碎、氨化白酒糟(粉碎+氨化+发酵,CAF组).测定各组白酒糟常规营养成分及体外瘤胃发酵指标.结果表明:1)黄孢原毛平革菌发酵能极显著降低白酒糟酸性洗涤木质素(ADL)含量、极显著提高粗蛋白质(CP)含量(P<0.01),粉碎+氨化+发酵3种加工方式联合处理效果最好.2)与CK组相比,CF组、AF组和CAF组理论最大产气量和产气速率极显著提高、产气延滞时间极显著降低(P<0.01);CAF组产气量、理论最大产气量和产气速率极显著高于其他各试验组(P<0.01).3)CAF组菌体蛋白(MCP)含量显著高于其他各组(P<0.05);AF组和CAF组氨态氮(NH3 -N)浓度(P<0.05)、总挥发性脂肪酸(TVFA)浓度(P<0.05)、丙酸比例(P<0.01)显著或极显著高于其他各组,乙酸/丙酸极显著低于其他各组(P<0.01).结果提示:对白酒糟进行粉碎、氨化处理,可促进黄孢原毛平革菌对白酒糟木质素的降解,进而提高其营养价值、改善瘤胃发酵,粉碎、氨化、发酵复合加工效果最好.%This experiment was conducted to study the effects of different processing methods on nutritive value and in vitro ruminal fermentation characteristics of distilled grain ( DG). The unprocessed DG was used as the control (CK group) , and 4 experimental groups were set by the different processing methods, which were DG fermented with P. Chrysosporium (ferment, F group), crushed DG fermented with P. Chrysosporium (crush + ferment, CF group) , ammoniated DG fermented with P. Chrysosporium (ammoniate + ferment, AF group), as well as crushed

  19. Degradation of Lignocellulosic Components in Un-pretreated Vinegar Residue Using an Artificially Constructed Fungal Consortium

    Directory of Open Access Journals (Sweden)

    Yaoming Cui

    2015-04-01

    Full Text Available The objective of this work was to degrade lignocellulosic components in un-pretreated vinegar residue (VR using a fungal consortium. Consortium-29, consisting of P. chrysosporium, T. koningii, A. niger, and A. ficuum NTG-23, was constructed using orthogonal design combined with two-way interaction analysis. After seven days of cultivation, the reducing sugar yield reached 35.57 mg per gram of dry substrate (gds-1, which was 108.01% higher than the control (17.10 mg gds-1. Additionally, the xylanase and CMCase activity reached 439.07 U gds-1 and 8.15 U gds-1, which were 432.08% and 243.88% higher than that of pure cultures of A. niger (82.52 U gds-1 and P. chrysosporium (2.37 U gds-1, respectively. The cellulose, hemicellulose, and lignin contents decreased by 17.11%, 68.61%, and 14.44%, respectively, compared with that of the raw VR. The optimal fermentation conditions of consortium-29 were as follows: incubation temperature 25 °C, initial pH 6, initial moisture content 70%, inoculum size 1 x 10^6 spores/mL, incubation time 5 days, urea/VR 1%, and MnSO4 . H2O/VR 0.03%. This study suggests that consortium-29 is an efficient fungal consortium for un-pretreated VR degradation and has a potential application in lignocellulosic waste utilization with a low cost of operation.

  20. Differential proteomic analysis of the secretome of Irpex lacteus and other white-rot fungi during wheat straw pretreatment.

    Science.gov (United States)

    Salvachúa, Davinia; Martínez, Angel T; Tien, Ming; López-Lucendo, María F; García, Francisco; de Los Ríos, Vivian; Martínez, María Jesús; Prieto, Alicia

    2013-08-10

    Identifying new high-performance enzymes or enzyme complexes to enhance biomass degradation is the key for the development of cost-effective processes for ethanol production. Irpex lacteus is an efficient microorganism for wheat straw pretreatment, yielding easily hydrolysable products with high sugar content. Thus, this fungus was selected to investigate the enzymatic system involved in lignocellulose decay, and its secretome was compared to those from Phanerochaete chrysosporium and Pleurotus ostreatus which produced different degradation patterns when growing on wheat straw. Extracellular enzymes were analyzed through 2D-PAGE, nanoLC/MS-MS, and homology searches against public databases. In wheat straw, I. lacteus secreted proteases, dye-decolorizing and manganese-oxidizing peroxidases, and H2O2 producing-enzymes but also a battery of cellulases and xylanases, excluding those implicated in cellulose and hemicellulose degradation to their monosaccharides, making these sugars poorly available for fungal consumption. In contrast, a significant increase of β-glucosidase production was observed when I. lacteus grew in liquid cultures. P. chrysosporium secreted more enzymes implicated in the total hydrolysis of the polysaccharides and P. ostreatus produced, in proportion, more oxidoreductases. The protein pattern secreted during I. lacteus growth in wheat straw plus the differences observed among the different secretomes, justify the fitness of I. lacteus for biopretreatment processes in 2G-ethanol production. Furthermore, all these data give insight into the biological degradation of lignocellulose and suggest new enzyme mixtures interesting for its efficient hydrolysis.

  1. Biotransformations of organic energetic materials

    International Nuclear Information System (INIS)

    Matousek, J.

    2001-01-01

    This paper reviews data on the acute eco-toxicity and delayed effects (mutagenicity) of the model substance (TNT) and of a wide spectrum of its biodegradation products in the wastewaters. It also suggests main metabolic pathways of biotransformation, involving biological reduction. Some possibilities of remediation of contaminated soils utilising microbial catabolic pathways leading to the hydroxy derivatives and up to the cleavage of the aromatic ring system in the presence of the soil bacteria Pseudomonas fluorescens are shown, as well as the practical utilisation of fungi Phanerochaete chrysosporium under aerobic conditions

  2. Understanding LiP Promoters from Phanerochaete chrysosporium: A Bioinformatic Analysis

    Science.gov (United States)

    Sergio Lobos; Rubén Polanco; Mario Tello; Dan Cullen; Daniela Seelenfreund; Rafael. Vicuña

    2011-01-01

    DNA contains the coding information for the entire set of proteins produced by an organism. The specific combination of proteins synthesized varies with developmental, metabolic and environmental circumstances. This variation is generated by regulatory mechanisms that direct the production of messenger ribonucleic acid (mRNA) and subsequent translation of the...

  3. and Pb(ii) by Phanerochaete chrysosporium from a binary metal ...

    African Journals Online (AJOL)

    drinie

    2001-01-01

    Jan 1, 2001 ... Kinetic studies revealed that biosorption takes place in two stages: a rapid surface adsorption, within the ... With the help of multi-metal biosorption studies, these complex ..... bioreactor for color removal from bleach effluents.

  4. Animal bioavailability of defined xenobiotic lignin metabolites

    International Nuclear Information System (INIS)

    Sandermann, H. Jr.; Arjmand, M.; Gennity, I.; Winkler, R.; Struble, C.B.; Aschbacher, P.W.

    1990-01-01

    Lignin has been recognized as a major component of bound pesticide residues in plants and is thought to be undigestible in animals. Two defined ring-U- 14 C-labeled chloroaniline/lignin metabolites have now been fed to rats, where a release of ∼66% of the bound xenobiotic occurred in the form of simple chloroaniline derivatives. The observed high degree of bioavailability indicates that bound pesticidal residues may possess ecotoxicological significance. In parallel studies, the white-rot fungus Phanerochaete chrysosporium was more efficient, and a soil system was much less efficient, in the degradation of the [ring-U- 14 C]chloroaniline/lignin metabolites

  5. Selected emerging infectious diseases of squamata.

    Science.gov (United States)

    Latney, La'toya V; Wellehan, James

    2013-05-01

    It is important that reptile clinicians have an appreciation for the epidemiology, clinical signs, pathology, diagnostic options, and prognostic parameters for novel and emerging infectious diseases in squamates. This article provides an update on emerging squamate diseases reported in the primary literature within the past decade. Updates on adenovirus, iridovirus, rhabdovirus, arenavirus, and paramyxovirus epidemiology, divergence, and host fidelity are presented. A new emerging bacterial disease of Uromastyx species, Devriesea agamarum, is reviewed. Chrysosporium ophiodiicola-associated mortality in North American snakes is discussed. Cryptosporidium and pentastomid infections in squamates are highlighted among emerging parasitic infections. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Isolation of keratinophilic fungi from the soil of islands of Greater Tunb, Abu-Musa and Sirri, Persian Gulf, Iran

    Directory of Open Access Journals (Sweden)

    Mohsen Nosratabadi

    2017-06-01

    Full Text Available Background and Purpose: Keratinophilic fungi are among the important groups of fungi living in the soil. This study aimed to isolate and identify keratinophilic fungi from the soil of three Iranian islands, namely Greater Tunb, Abu Musa, and Sirri, located in the Persian Gulf using morphological and molecular (polymerase chain reaction methods. Materials and Methods: In this study, a total of 60 soil samples were collected from the three islands of Greater Tunb, Abu Musa, and Sirri. The samples were analyzed for the presence of the keratinophilic fungi using a hair baiting technique. Furthermore, the identification of keratinophilic fungi was accomplished through the employment of molecular and sequencing techniques. Results: A total of 130 fungal isolates, including 11 genera with 24 species, were collected. Accordingly, Chrysosporium tropicum (24;18.5%, C. keratinophilum (17; 13.1%,  Chrysosporium  species (15; 11.5%, Aspergillus  species ( 8;6.1%, Aspergillus flavus (8; 6.1%, Penicillium  species (8;6.1%, Alternaria spp ( 6; 4.6%, Phoma  species (5;  3.8%, Aphanoascus verrucosus (4;3.1%, Fusarium chlamydosporum (4; 3.1%, Aspergillus trreus (4;3.1%, Acremonium  species (4; 3.1%, and other fungi( 23; 17.8 % isolates were identified . All isolates of keratinophilic fungi were isolated from the soils with the pH range of 7-9. Conclusion: The results of this study contributed towards a better conceptualization of the incidence pattern of keratinophilic fungi in the regions of Iran. Given that no study has investigated this issue, the findings of the present study can be beneficial for the management of public health surveillance, physicians, and epidemiologists.  

  7. Microbial Biofertilizer Decreases Nicotine Content by Improving Soil Nitrogen Supply.

    Science.gov (United States)

    Shang, Cui; Chen, Anwei; Chen, Guiqiu; Li, Huanke; Guan, Song; He, Jianmin

    2017-01-01

    Biofertilizers have been widely used in many countries for their benefit to soil biological and physicochemical properties. A new microbial biofertilizer containing Phanerochaete chrysosporium and Bacillus thuringiensis was prepared to decrease nicotine content in tobacco leaves by regulating soil nitrogen supply. Soil NO 3 - -N, NH 4 + -N, nitrogen supply-related enzyme activities, and nitrogen accumulation in plant leaves throughout the growing period were investigated to explore the mechanism of nicotine reduction. The experimental results indicated that biofertilizer can reduce the nicotine content in tobacco leaves, with a maximum decrement of 16-18 % in mature upper leaves. In the meantime, the total nitrogen in mature lower and middle leaves increased with the application of biofertilizer, while an opposite result was observed in upper leaves. Protein concentration in leaves had similar fluctuation to that of total nitrogen in response to biofertilizer. NO 3 - -N content and nitrate reductase activity in biofertilizer-amended soil increased by 92.3 and 42.2 %, respectively, compared to those in the control, whereas the NH 4 + -N and urease activity decreased by 37.8 and 29.3 %, respectively. Nitrogen uptake was improved in the early growing stage, but this phenomenon was not observed during the late growth period. Nicotine decrease is attributing to the adjustment of biofertilizer in soil nitrogen supply and its uptake in tobacco, which result in changes of nitrogen content as well as its distribution in tobacco leaves. The application of biofertilizer containing P. chrysosporium and B. thuringiensis can reduce the nicotine content and improve tobacco quality, which may provide some useful information for tobacco cultivation.

  8. Improving Nutritional Quality of Cocoa Pod (Theobroma cacao) through Chemical and Biological Treatments for Ruminant Feeding: In vitro and In vivo Evaluation.

    Science.gov (United States)

    Laconi, Erika B; Jayanegara, Anuraga

    2015-03-01

    Cocoa pod is among the by-products of cocoa (Theobroma cacao) plantations. The aim of this study was to apply a number of treatments in order to improve nutritional quality of cocoa pod for feeding of ruminants. Cocoa pod was subjected to different treatments, i.e. C (cocoa pod without any treatment or control), CAm (cocoa pod+1.5% urea), CMo (cocoa pod+3% molasses), CRu (cocoa pod+3% rumen content) and CPh (cocoa pod+3% molasses+Phanerochaete chrysosporium inoculum). Analysis of proximate and Van Soest's fiber fraction were performed on the respective treatments. The pods were then subjected to an in vitro digestibility evaluation by incubation in rumen fluid-buffer medium, employing a randomized complete block design (n = 3 replicates). Further, an in vivo evaluation of the pods (35% inclusion level in total mixed ration) was conducted by feeding to young Holstein steers (average body weight of 145±3.6 kg) with a 5×5 latin square design arrangement (n = 5 replicates). Each experimental period lasted for 30 d; the first 20 d was for feed adaptation, the next 3 d was for sampling of rumen liquid, and the last 7 d was for measurements of digestibility and N balance. Results revealed that lignin content was reduced significantly when cocoa pod was treated with urea, molasses, rumen content or P. chrysosporium (pCAm>CRu>CMo. Among all treatments, CAm and CPh treatments significantly improved the in vitro dry matter and organic matter digestibility (pcocoa pod. Average daily gain of steers receiving CAm or CPh treatment was significantly higher than that of control (pcocoa pod.

  9. Effect of type of fungal culture, type of pellets and pH on the semi-continuous post-treatment of an anaerobically-pretreated weak black liquor from kraft pulp industry

    Energy Technology Data Exchange (ETDEWEB)

    Robledo-Narvaez, P. N.; Ortega-Clemente, L. A.; Ponce-Noyola, M. T.; Rinderknecht-Seijas, N. F.; Poggi-Varaldo, H. M.

    2009-07-01

    It is well known that fungi belonging to the Basidiomycetes (such as Trametes versicolor, Lentinus edodes, Phanerochaete chrysosporium) are microorganisms with a demonstrated capability of degrading lignin and its derivatives using a powerful and diverse group of enzymes. Because of these features, ligninolytic fungi have been used for the treatment or post-treatment of a variety of recalcitrant and toxic effluents, those of the Kraft industry among them. Yet, most of reported fungal treatments so far required the supplementation with glucose or other soluble carbohydrates, pH 4 to 4,5, and their effective performance was demonstrated only for short periods of operation time. (Author)

  10. Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium

    KAUST Repository

    Espinosa-Ortiz, Erika J.; Gonzalez-Gil, Graciela; Saikaly, Pascal; van Hullebusch, Eric D.; Lens, Piet N L

    2014-01-01

    and substrate consumption when supplied at 10 mg L−1 in the growth medium, whereas selenate did not have such a strong influence on the fungus. Biological removal of selenite was achieved under semi-acidic conditions (pH 4.5) with about 40 % removal efficiency

  11. The Mycoflora of Hot Spring Soil in Northern Taiwan

    Directory of Open Access Journals (Sweden)

    Kuei-Yu Chen

    2003-09-01

    Full Text Available An investigation of the mycoflora in northern Taiwan from August 1999 to June 2000, particularly of thermophilic and thermotolerant fungi inhabiting sulfurous hot spring soils, resulted in identification 12 taxa: Aspergillus fumigatus var. fumigatus (66.85 %, A. fumigatus var. 1 with green colony (7.86 %, A. fumigatus var. 2 with brown colony (4.81 %, A. niger (1.14 %, unidentified Asperigillus sp. (0.045 %, Chrysosporium sp. (0.18 %, Papulaspora thermophila (2.72 %, Scytalidium thermophilum (0.045 %, Sporotrichum sp. (0.045 %, Mycelia sterilia sp.1 with white colony (6.63 %, Mycelia sterilia sp.2 with yellow colony (5.27 % and Mycelia sterilia sp. 3 with gray colony (4.405 %. A total of 2202 colonies were isolated from three sampling sites: site 1 (hot springhead, site 2 (2 m from site 1 and site 3 (4 m from site 1. Fungal colonies isolated as well as species percentage at three sites were as follows: 32.92 % in 9 taxa from site 1, 37.87 % in 11 taxa from site 2, and 29.21 % in 8 taxa from site 3. The dominant species was Aspergillus fumigatus var. fumigatus, which was isolated year around from three sampling sites. A. fumigatus var. 1 appeared from February to June 2000. A. fumigatus var. 2 was isolated only in August and October 1999. Within the sampling range of hot spring niches, there was evidence of the presence of ecotypes in the A. fumigatus complex. Chrysosporium sp. and Sporotrichum sp. were isolated only from the soils without hot water treatment, but Aspergillus sp. and Scytalidium thermophilum were isolated only from the soils pre-treated with hot water for 30 min. at 60℃. The significance level (P value of fungal communities between hot water treatment and no treatment was 0.866, indicating that no significant difference between both treatments.

  12. Biodegradation of volatile organic compounds by five fungal species

    Energy Technology Data Exchange (ETDEWEB)

    Qi, B.; Moe, W.M. [Dept. of Civil and Environmental Engineering, Louisiana State Univ., Baton Rouge, LA (United States); Kinney, K.A. [Dept. of Civil Engineering, Univ. of Texas, Austin (United States)

    2002-07-01

    Five fungal species, Cladosporium resinae (ATCC 34066), Cladosporium sphaerospermum (ATCC 200384), Exophiala lecanii-corni (CBS 102400), Mucor rouxii (ATCC 44260), and Phanerochaete chrysosporium (ATCC 24725), were tested for their ability to degrade nine compounds commonly found in industrial off-gas emissions. Fungal cultures inoculated on ceramic support media were provided with volatile organic compounds (VOCs) via the vapor phase as their sole carbon and energy sources. Compounds tested included aromatic hydrocarbons (benzene, ethylbenzene, toluene, and styrene), ketones (methyl ethyl ketone, methyl isobutyl ketone, and methyl propyl ketone), and organic acids (n-butyl acetate, ethyl 3-ethoxypropionate). Experiments were conducted using three pH values ranging from 3.5 to 6.5. Fungal ability to degrade each VOC was determined by observing the presence or absence of visible growth on the ceramic support medium during a 30-day test period. Results indicate that E. lecanii-corni and C. sphaerospermum can readily utilize each of the nine VOCs as a sole carbon and energy source. P. chrysosporium was able to degrade all VOCs tested except for styrene under the conditions imposed. C. resinae was able to degrade both organic acids, all of the ketones, and some of the aromatic compounds (ethylbenzene and toluene); however, it was not able to grow utilizing benzene or styrene under the conditions tested. With the VOCs tested, M. rouxii produced visible growth only when supplied with n-butyl acetate or ethyl 3-ethoxypropionate. Maximum growth for most fungi was observed at a pH of approximately 5.0. The experimental protocol utilized in these studies is a useful tool for assessing the ability of different fungal species to degrade gas-phase VOCs under conditions expected in a biofilter application. (orig.)

  13. Effects of pH and Temperature on Recombinant Manganese Peroxidase Production and Stability

    Science.gov (United States)

    Jiang, Fei; Kongsaeree, Puapong; Schilke, Karl; Lajoie, Curtis; Kelly, Christine

    The enzyme manganese peroxidase (MnP) is produced by numerous white-rot fungi to overcome biomass recalcitrance caused by lignin. MnP acts directly on lignin and increases access of the woody structure to synergistic wood-degrading enzymes such as cellulases and xylanases. Recombinant MnP (rMnP) can be produced in the yeast Pichia pastoris αMnP1-1 in fed-batch fermentations. The effects of pH and temperature on recombinant manganese peroxidase (rMnP) production by P. pastoris αMnP1-1 were investigated in shake flask and fed-batch fermentations. The optimum pH and temperature for a standardized fed-batch fermentation process for rMnP production in P. pastoris ctMnP1-1 were determined to be pH 6 and 30 °C, respectively. P. pastoris αMnP1-1 constitutively expresses the manganese peroxidase (mnp1) complementary DNA from Phanerochaete chrysosporium, and the rMnP has similar kinetic characteristics and pH activity and stability ranges as the wild-type MnP (wtMnP). Cultivation of P. chrysosporium mycelia in stationary flasks for production of heme peroxidases is commonly conducted at low pH (pH 4.2). However, shake flask and fed-batch fermentation experiments with P. pastoris αMnP1-1 demonstrated that rMnP production is highest at pH 6, with rMnP concentrations in the medium declining rapidly at pH less than 5.5, although cell growth rates were similar from pH 4-7. Investigations of the cause of low rMnP production at low pH were consistent with the hypothesis that intracellular proteases are released from dead and lysed yeast cells during the fermentation that are active against rMnP at pH less than 5.5.

  14. Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol.

    Science.gov (United States)

    Kuhar, Sarika; Nair, Lavanya M; Kuhad, Ramesh Chander

    2008-04-01

    Phanerochaete chrysosporium, Pycnoporus cinnabarinus,and fungal isolates RCK-1 and RCK-3 were tested for their lignin degradation abilities when grown on wheat straw (WS) and Prosopis juliflora (PJ) under solid-state cultivation conditions. Fungal isolate RCK-1 degraded more lignin in WS (12.26% and 22.64%) and PJ (19.30% and 21.97%) and less holocellulose in WS (6.27% and 9.39%) and PJ (3.01% and 4.58%) after 10 and 20 days, respectively, than other fungi tested. Phanerochaete chrysosporium caused higher substrate mass loss and degraded more of holocellulosic content (WS: 55.67%; PJ: 48.89%) than lignin (WS: 18.89%; PJ: 20.20%) after 20 days. The fungal pretreatment of WS and PJ with a high-lignin-degrading and low-holocellulose-degrading fungus (fungal isolate RCK-1) for 10 days resulted in (i) reduction in acid load for hydrolysis of structural polysaccharides (from 3.5% to 2.5% in WS and from 4.5% to 2.5% in PJ), (ii) an increase in the release of fermentable sugars (from 30.27 to 40.82 g L(-1) in WS and from 18.18 to 26.00 g L(-1) in PJ), and (iii) a reduction in fermentation inhibitors (total phenolics) in acid hydrolysate of WS (from 1.31 to 0.63 g L(-1)) and PJ (from 2.05 to 0.80 g L(-1)). Ethanol yield and volumetric productivity from RCK-1-treated WS (0.48 g g(-1) and 0.54 g L(-1) h(-1), respectively) and PJ (0.46 g g(-1) and 0.33 g L(-1) h(-1), respectively) were higher than untreated WS (0.36 g g(-1) and 0.30 g L(-1) h(-1), respectively) and untreated PJ (0.42 g g(-1) and 0.21 g L(-1) h(-1), respectively).

  15. Fungal degradation of organophosphorous insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Bumpus, J.A. [Notre Dame Univ., IN (United States); Kakar, S.N.; Coleman, R.D. [Argonne National Lab., IL (United States)

    1992-07-01

    Organophosphorous insecticides are used extensively to treat a variety of pests and insects. Although as a group they are easily degraded by bacteria in the environment, a number of them have half-lives of several months. Little is known about their biodegradation by fungi. We have shown that Phanerochaete chrysosporium can substantially degrade chlorpyrifos, fonofos, and terbufos (27.5%, 12.2%, and 26.6%, respectively) during 18-day incubation in nitrogen-limited stationary cultures. The results demonstrate that the clorinated pyridinyl ring of chlorpyrifos and the phenyl ring of fonofos undergo ring cleavage during biodegradation by the fungus. The usefulness of the fungus system for bioremediation is discussed. 16 refs., 7 figs., 2 tabs.

  16. Fungal degradation of organophosphorous insecticides

    Energy Technology Data Exchange (ETDEWEB)

    Bumpus, J.A. (Notre Dame Univ., IN (United States)); Kakar, S.N.; Coleman, R.D. (Argonne National Lab., IL (United States))

    1992-01-01

    Organophosphorous insecticides are used extensively to treat a variety of pests and insects. Although as a group they are easily degraded by bacteria in the environment, a number of them have half-lives of several months. Little is known about their biodegradation by fungi. We have shown that Phanerochaete chrysosporium can substantially degrade chlorpyrifos, fonofos, and terbufos (27.5%, 12.2%, and 26.6%, respectively) during 18-day incubation in nitrogen-limited stationary cultures. The results demonstrate that the clorinated pyridinyl ring of chlorpyrifos and the phenyl ring of fonofos undergo ring cleavage during biodegradation by the fungus. The usefulness of the fungus system for bioremediation is discussed. 16 refs., 7 figs., 2 tabs.

  17. Evaluation of the types of starch for preparation of LDPE/starch blends

    Directory of Open Access Journals (Sweden)

    Glória Maria Vinhas

    2007-05-01

    Full Text Available This study evaluated in relation the growth, and the amylolytic activity of mixed and isolated cultures of Phanerochaete chrysosporium and Talaromyces wortmanni on different types of starch. The thermal and mechanical properties in polyethylene/starch blends (proportion: 80/20 (w/w before and after inoculation of the mixed cultures were evaluated. The regular starch Amidex 3 and the modified starch Fox5901 stood out in relation to the cellular growth and production of the amylase enzyme. In spite of the short time that the blends were exposed to the fungi, the microorganisms promoted physical and chemical changes in the structure of the blend, modifying its thermal and mechanical properties. The alteration of the degree of crystallinity and mechanical properties of the blends could be indications of the modification caused by the biodegradation process.Nesse trabalho foi realizado um estudo sobre diferentes tipos de amido quanto ao crescimento, e a atividade amilolítica de culturas mistas e isoladas dos fungos Phanerochaete chrysosporium e Talaromyces wortmannii. Avaliaram-se também as propriedades térmicas e mecânicas das blendas de polietileno/amido anfótero (na proporção 80/20 (m/m antes e apos a inoculação das culturas mistas desses fungos.O amido regular Amidex 3 e o amido modificado Fox5901 foram os que se destacaram quanto ao crescimento celular e produção da enzima amilase. Apesar do pouco tempo de exposição dos filmes com os fungos, pode-se concluir que os microrganismos promovem mudanças físicas e químicas na estrutura da blenda, modificando suas propriedades térmicas e mecânicas. A alteração do grau de cristalinidade e das propriedades mecânicas das blendas podem ser indícios da modificação provocada pelo processo de biodegradação.

  18. Biodegradation of degradable plastic polyethylene by phanerochaete and streptomyces species.

    Science.gov (United States)

    Lee, B; Pometto, A L; Fratzke, A; Bailey, T B

    1991-03-01

    The ability of lignin-degrading microorganisms to attack degradable plastics was investigated in pure shake flask culture studies. The degradable plastic used in this study was produced commercially by using the Archer-Daniels-Midland POLYCLEAN masterbatch and contained pro-oxidant and 6% starch. The known lignin-degrading bacteria Streptomyces viridosporus T7A, S. badius 252, and S. setonii 75Vi2 and fungus Phanerochaete chrysosporium were used. Pro-oxidant activity was accelerated by placing a sheet of plastic into a drying oven at 70 degrees C under atmospheric pressure and air for 0, 4, 8, 12, 16, or 20 days. The effect of 2-, 4-, and 8-week longwave UV irradiation at 365 nm on plastic biodegradability was also investigated. For shake flask cultures, plastics were chemically disinfected and incubated-shaken at 125 rpm at 37 degrees C in 0.6% yeast extract medium (pH 7.1) for Streptomyces spp. and at 30 degrees C for the fungus in 3% malt extract medium (pH 4.5) for 4 weeks along with an uninoculated control for each treatment. Weight loss data were inconclusive because of cell mass accumulation. For almost every 70 degrees C heat-treated film, the Streptomyces spp. demonstrated a further reduction in percent elongation and polyethylene molecular weight average when compared with the corresponding uninoculated control. Significant (P < 0.05) reductions were demonstrated for the 4- and 8-day heat-treated films by all three bacteria. Heat-treated films incubated with P. chrysosporium consistently demonstrated higher percent elongation and molecular weight average than the corresponding uninoculated controls, but were lower than the corresponding zero controls (heat-treated films without 4-week incubation). The 2- and 4-week UV-treated films showed the greatest biodegradation by all three bacteria. Virtually no degradation by the fungus was observed. To our knowledge, this is the first report demonstrating bacterial degradation of these oxidized polyethylenes in

  19. Biodegradation of Degradable Plastic Polyethylene by Phanerochaete and Streptomyces Species †

    Science.gov (United States)

    Lee, Byungtae; Pometto, Anthony L.; Fratzke, Alfred; Bailey, Theodore B.

    1991-01-01

    The ability of lignin-degrading microorganisms to attack degradable plastics was investigated in pure shake flask culture studies. The degradable plastic used in this study was produced commercially by using the Archer-Daniels-Midland POLYCLEAN masterbatch and contained pro-oxidant and 6% starch. The known lignin-degrading bacteria Streptomyces viridosporus T7A, S. badius 252, and S. setonii 75Vi2 and fungus Phanerochaete chrysosporium were used. Pro-oxidant activity was accelerated by placing a sheet of plastic into a drying oven at 70°C under atmospheric pressure and air for 0, 4, 8, 12, 16, or 20 days. The effect of 2-, 4-, and 8-week longwave UV irradiation at 365 nm on plastic biodegradability was also investigated. For shake flask cultures, plastics were chemically disinfected and incubated-shaken at 125 rpm at 37°C in 0.6% yeast extract medium (pH 7.1) for Streptomyces spp. and at 30°C for the fungus in 3% malt extract medium (pH 4.5) for 4 weeks along with an uninoculated control for each treatment. Weight loss data were inconclusive because of cell mass accumulation. For almost every 70°C heat-treated film, the Streptomyces spp. demonstrated a further reduction in percent elongation and polyethylene molecular weight average when compared with the corresponding uninoculated control. Significant (P < 0.05) reductions were demonstrated for the 4- and 8-day heat-treated films by all three bacteria. Heat-treated films incubated with P. chrysosporium consistently demonstrated higher percent elongation and molecular weight average than the corresponding uninoculated controls, but were lower than the corresponding zero controls (heat-treated films without 4-week incubation). The 2- and 4-week UV-treated films showed the greatest biodegradation by all three bacteria. Virtually no degradation by the fungus was observed. To our knowledge, this is the first report demonstrating bacterial degradation of these oxidized polyethylenes in pure culture. PMID:16348434

  20. Biological pretreatment and ethanol production from olive cake

    DEFF Research Database (Denmark)

    Jurado, Esperanza; Gavala, Hariklia N.; Baroi, George Nabin

    2010-01-01

    Olive oil is one of the major Mediterranean products, whose nutritional and economic importance is well-known. However the extraction of olive oil yields a highly contaminating residue that causes serious environmental concerns in the olive oil producing countries. The olive cake (OC) coming out...... of the three-phase olive oil production process could be used as low price feedstock for lignocellulosic ethanol production due to its high concentration in carbohydrates. However, the binding of the carbohydrates with lignin may significantly hinder the necessary enzymatic hydrolysis of the polymeric sugars...... before ethanol fermentation. Treatment with three white rot fungi, Phaneroachaete chrysosporium, Ceriporiopsis subvermispora and Ceriolopsis polyzona has been applied on olive cake in order to investigate the potential for performing delignification and thus enhancing the efficiency of the subsequent...

  1. Microbial degradation of coconut coir dust for biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Uyenco, F.R.; Ochoa, J.A.K.

    Several species of white-rot fungi were studied for its ability to degrade the lignocellulose components of coir dust at optimum conditions. The most effective fungi was Phanerochaeta chrysosporium UPCC 4003. This organism degraded the lignocellulose complex of coir dust at a rate of about 25 percent in 4 weeks. The degradation process was carried on with minimal nitrogen concentration, coconut water supplementation and moisture levels between 85-90 percent. Shake flask cultures of the degraded coir dust using cellulolytic fungi were not effective. In fermentor cultures with Chaetomium cellulolyticum UPCC 3934, supplemented coir dust was converted into a microbial biomass product (MBP) with 15.58 percent lignin, 19.20 percent cellulose and 18.87 percent protein. More work is being done on the utilization of coir dust on a low technology.

  2. Microbiological analysis of a mummy from the archeological museum in Zagreb.

    Science.gov (United States)

    Cavka, Mislav; Glasnović, Anton; Janković, Ivor; Sikanjić, Petra Rajić; Perić, Berislav; Brkljacić, Boris; Mlinarić-Missoni, Emilija; Skrlin, Jasenka

    2010-09-01

    In this paper we report the results of the microbiological analysis of the samples taken from the mummy from the collection of the Archaeological museum in Zagreb, Croatia. Samples were taken from specific places such as oral, orbital, abdominal cavity and bandages surrounding the mummy, and analyzed in Department of Microbiology and Hospital Infections in University Hospital "Dubrava" in Zagreb and in National Reference Laboratory for systemic mycoses of Croatian National Institute of Public Health in Zagreb. The analysis indicated that all of the found organisms were non-primary pathogenic and are not harmful for healthy humans. Isolated microorganisms mainly belonged to the group of saprophytic fungi as listed: Monilia spp., Penicillium spp., Alternaria spp., Aspergillus fumigatus, Aspergillus nidulans, Rhizopus spp. and Chrysosporium spp. and to the genus of saprophytic bacteria, Bacillus spp.

  3. Direct Surface Analysis of Fungal Species by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, Nancy B.(BATTELLE (PACIFIC NW LAB)); Wahl, Jon H.(BATTELLE (PACIFIC NW LAB)); Kingsley, Mark T.(BATTELLE (PACIFIC NW LAB)); Wahl, Karen L.(BATTELLE (PACIFIC NW LAB))

    2001-12-01

    Intact spores and/or hyphae of Aspergillus niger, Rhizopus oryzae, Trichoderma reesei and Phanerochaete chrysosporium are analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). This study investigates various methods of sample preparation and matrices to determine optimum collection and analysis criteria for fungal analysis by MALDI-MS. Fungi are applied to the MALDI sample target as untreated, sonicated, acid/heat treated, or blotted directly from the fungal culture with double-stick tape. Ferulic acid or sinapinic acid matrix solution is layered over the dried samples and analyzed by MALDI-MS. Statistical analysis of the data show that simply using double stick tape to collect and transfer to a MALDI sample plate typically worked as well as the other preparation methods, but requires the least sample handling.

  4. Differential expression in Phanerochaete chrysosporium of membrane- associated proteins relevant to lignin degradation

    Science.gov (United States)

    Semarjit Shary; Alexander N. Kapich; Ellen A. Panisko; Jon K. Magnuson; Daniel Cullen; Kenneth E. Hammel

    2008-01-01

    Fungal lignin-degrading systems likely include membrane-associated proteins that participate in diverse processes such as uptake and oxidation of lignin fragments, production of ligninolytic secondary metabolites, and defense of the mycelium against ligninolytic oxidants. Little is known about the nature or regulation of these membrane-associated components. We grew...

  5. Improving the yield and quality of DNA isolated from white-rot fungi.

    Science.gov (United States)

    Kuhad, R C; Kapoor, R K; Lal, R

    2004-01-01

    A new simple method used to eliminate polysaccharides that cause problems during DNA isolation was established for 6 different white-rot fungi using 1% hexadecyltrimethylammonium bromide (CTAB) as wash buffer and followed by centrifugation. Variation in the DNA yield and quality was ascertained using precipitating agents, detergents and cell-wall-hydrolyzing chitinase. Considerable amount of exopolysaccharides from fungal biomass was removed with the use of 1% CTAB wash buffer followed by centrifugation. The DNA varied in terms of yield and quality. For the DNA extraction use of 2% SDS in extraction buffer worked best for Pycnoporus cinnabarinus, Cyathus bulleri, Cyathus striatus and Cyathus stercoreus, while 2% CTAB worked best for Phanerochaete chrysosporium and Pleurotus ostreatus. Elimination of phenol and use of absolute ethanol for precipitating DNA resulted in good yield and quality of DNA. This DNA was amenable to restriction endonuclease digestion.

  6. Exploring the Synergy between Cellobiose Dehydrogenase from Phanerochaete chrysosporium and Cellulase from Trichoderma reesei

    OpenAIRE

    Wang, Min; Lu, Xuefeng

    2016-01-01

    Recent demands for the production of lignocellulose biofuels boosted research on cellulase. Hydrolysis efficiency and production cost of cellulase are two bottlenecks in biomass to biofuels process. The Trichoderma cellulase mixture is one of the most commonly used enzymes for cellulosic hydrolysis. During hydrolytic process cellobiose accumulation causes feedback inhibition against most cellobiohydrolases and endoglucanases. In this study, we demonstrated the synergism effects between cellob...

  7. Inmovilización de hongos ligninolíticos para la remoción del colorante negro reactivo 5

    Directory of Open Access Journals (Sweden)

    Jorge Andrés Fernández

    2009-01-01

    Full Text Available La presencia de colorantes azoicos en aguas residuales de la industria textil es un problema ambiental y sanitario, porque muchos de estos compuestos son cancerígenos. Los tratamientos biológicos son una alternativa para la remoción de ese tipo de colorantes. En el presente trabajo se evaluó el efecto de tres hongos de podredumbre blanca, Trametes versicolor, Pleurotus ostreatus y Phanerochaete chrysosporium sobre la decoloración de un agua que contiene colorante negro reactivo 5 (NR5, ampliamente usado en la industria textil. Se estudió la inmovilización de estos hongos en dos soportes, espuma de poliuretano y estropajo (L. cylíndrica para seleccionar el mejor soporte y el hongo con mayor capacidad para la decoloración. Ambos soportes fueron igualmente efectivos, pero se seleccionó estropajo por ser un producto natural. El hongo que generó los mayores porcentajes de decoloración en 4 días fue Trametes versicolor, con 96%, 98% y 98% para agua con concentración de NR5 300 ppm, 150 ppm y 75 ppm, respectivamente. La actividad lacasa para cada concentración de NR5 fue 8 U L-1, 7 U L-1 y 5 U L-1. Waste water from the textile industry represents a major environmental and health problem because it contains azo dyes whose carcirogenic effect has been tested in research. Biological treatment represents a valuable alternative for removing these dyes. The effect of Trametes versicolor, Pleurotus ostreatus and Phanerochaete chrysosporium rot fungi on decoloration of water containing reactive black five (NR5 textile dye was evaluated in this work. Immobilising the fungi on polyurethane foam and luffa sponge (Luffa cylindrica supports was studied in order to select the best support and the fungi having the best decolorisation. Both supports were equally effective; however, the luffa sponge was selected as being a natural product. Trametes versicolor produced the highest decolorisation percentages in four days (96%, 98% and 98% for 300 ppm, 150

  8. The Comparative Study Of Saprophytic Fungi In Air Canal, Air, Hospital Instruments And Clinical Samples From Patients With Bone Marrow Transplantation

    Directory of Open Access Journals (Sweden)

    Hashemi S J

    2004-08-01

    Full Text Available Background: Bone Marrow Transplantation is one of the most important therapeutic methods in much malignant and nonmalignant disease. Patients with Bone Marrow Transplantation (BMT following radiotherapy and chemotherapy will suffer from immuno-suppression. Therefore they are susceptible to get saprophytic fungi infection that sometimes are killer. Materials and Methods: The purpose of this cross-sectional survey is isolation of saprophytic fungi from patients with BMT and wards space and instruments. Therefore sampling from ventilator system (HEPA filter and common filter, air canal, air, hospital instruments and clinical samples (nasal discharge, sputum, urine were done and cultured in sabouro dextrose agar with choloramphenicol (SC. In assessing total frequency from 4838 plates of wards space and instruments, 985 fungi colonies includes 21 genus were isolated. Results and Conclusion: Most fungi colonies present were Penicillium , Aspergillus and Cladosporium and low present were Trichoderma ,Stereptomyses, Chrysosporium, Rhizopus.

  9. Pneumocystosis in wild small mammals from California

    Science.gov (United States)

    Laakkonen, Juha; Fisher, Robert N.; Case, Ted J.

    2001-01-01

    Cyst forms of the opportunistic fungal parasite Pneumocystis carinii were found in the lungs of 34% of the desert shrew, Notiosorex crawfordi (n = 59), 13% of the ornate shrew, Sorex ornatus (n = 55), 6% of the dusky-footed wood rat, Neotoma fuscipes (n = 16), 2.5% of the California meadow vole,Microtus californicus (n = 40), and 50% of the California pocket mouse, Chaetodipus californicus (n= 2) caught from southern California between February 1998 and February 2000. Cysts were not found in any of the harvest mouse, Reithrodontomys megalotis (n = 21), California mouse,Peromyscus californicus (n = 20), brush mouse, Peromyscus boylii (n = 7) or deer mouse, Peromyscus maniculatus (n = 4) examined. All infections were mild; extrapulmonary infections were not observed. Other lung parasites detected were Hepatozoon sp./spp. from M. californicus andNotiosorex crawfordi, Chrysosporium sp. (Emmonsia) from M. californicus, and a nematode from S. ornatus.

  10. Synergism between ultrasonic pretreatment and white rot fungal enzymes on biodegradation of wheat chaff.

    Science.gov (United States)

    Sabarez, Henry; Oliver, Christine Maree; Mawson, Raymond; Dumsday, Geoff; Singh, Tanoj; Bitto, Natalie; McSweeney, Chris; Augustin, Mary Ann

    2014-11-01

    Lignocellulosic biomass samples (wheat chaff) were pretreated by ultrasound (US) (40kHz/0.5Wcm(-2)/10min and 400kHz/0.5Wcm(-2)/10min applied sequentially) prior to digestion by enzyme extracts obtained from fermentation of the biomass with white rot fungi (Phanerochaete chrysosporium or Trametes sp.). The accessibility of the cellulosic components in wheat chaff was increased, as demonstrated by the increased concentration of sugars produced by exposure to the ultrasound treatment prior to enzyme addition. Pretreatment with ultrasound increased the concentration of lignin degradation products (guaiacol and syringol) obtained from wheat chaff after enzyme addition. In vitro digestibility of wheat chaff was also enhanced by the ultrasonics pretreatment in combination with treatment with enzyme extracts. Degradation was enhanced with the use of a mixture of the enzyme extracts compared to that for a single enzyme extract. Copyright © 2014. Published by Elsevier B.V.

  11. Solubilization of Australian lignites by fungi and other microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Catcheside, D.E.A.; Mallett, K.J. (Flinders University, Bedford Park, SA (Australia). School of Biological Sciences)

    Lignites (brown coals) from the Latrobe Valley in Victoria are solubilized by {ital Coriolus versicolor}, {ital Phanerochaete chrysosporium}, and five other species known to be active on Leonardite and various acid-treated North America lignites. Run-of-mine coal from Morwell and Loy Yang is refractory but is soluble after pretreatment with acid. A weathered deposit at Loy Yang, like Leonardite, is susceptible to biosolubilization without pretreatment. The white rot fungi {ital Ganoderma applanatum}, {ital Perenniporia tephropora} ({ital Fomes lividus}), {ital Pleurotus ostreatus}, {ital Pycnoporus cinnabarinus}, {ital Rigidoporus ulmarius}, and {ital Xylaria hypoxylon} were found to be capable of solubilizing lignite. In contrast, brown rot fungi were weakly active or inactive under the same test conditions. Lignite-degrading fungi, actinomycetes, and other bacteria, including some active on untreated run-of-mine coal, were isolated from natural lignite exposures and mining sites. 15 refs., 5 tabs.

  12. Oxidative cleavage of a phenolic diarylpropane lignin model dimer by manganese peroxidase from Phanerochaete chrysosporium

    International Nuclear Information System (INIS)

    Wariishi, Hiroyuki; Valli, K.; Gold, M.H.

    1989-01-01

    In the presence of Mn II and H 2 O 2 , homogeneous manganese peroxidase oxidized 1-(3,5-dimethoxy-4-hydroxyphenyl)-2-(4-methoxyphenyl)-1,3-dihydroxypropane (I) to yield 1-(3,5-dimethoxy-4-hydroxyphenyl)-2-(4-methoxyphenyl)-1-oxo-3-hydroxypropane (II), 2,6-dimethoxy-1,4-benzoquinone (III), 2,6-dimethoxy-1,4-dihydroxybenzene (IV), 1-(4-methoxyphenyl)-1-oxo-2-hydroxyethane (V), 1-(4-methoxyphenyl)-1,2-dihydroxyethane (VI), syringaldehyde (VIII), and 2-(4-methoxyphenyl)-3-hydroxypropanal (IX). Chemically prepared manganese(III) malonate catalyzed the same reactions. Oxidation of I in H 2 18 O under argon resulted in >80% incorporation of 18 O into the phenylglycol VI, the hydroquinone IV, and the quinone III. Oxidation of I in H 2 18 O under aerobic conditions resulted in 40% incorporation of 18 O into VI but no 18 O incorporation into V. Finally, oxidation of I under 18 O 2 resulted in 89% and 28% incorporation of 18 O into V and VI, respectively. These results are explained by mechanisms involving the one-electron oxidation of the substrate I by enzyme-generated Mn III to produce a phenoxy radical intermediate I'. Subsequent C α -C β bond cleavage of the radical intermediate yields syringaldehyde (VIII) and a C 6 -C 2 benzylic radical. Syringaldehyde is oxidized by Mn III in several steps to a cyclohexadiene cation intermediate I double-prime, which is attacked by water to yield the benzoquinone III. The C 6 -C 2 radical is scavenged by O 2 to form a peroxy radical that decomposes to V and VI. In these reactions, Mn III generated by manganese peroxidase catalyzes both formation of the substrate phenoxy radical and oxidation of carbon-centered radical intermediates, to yield reactive cations

  13. Effects of temperature on growth of four high Arctic soil fungi in a three-phase system

    Energy Technology Data Exchange (ETDEWEB)

    Widden, P [Concordia Univ., Montreal; Parkinson, D

    1978-04-01

    The effect of temperature on the growth of Chrysosporium pannorum, Cylindrocarpon sp., Penicillium janthinellum, and Phoma herbarum, isolated from tundra soils, was studied. The growth in two systems, glucose-mineral agar plates and sand, moistened with glucose-mineral broth, was compared. All isolates showed an exponential increase in mass (measured as protein increase) in sand and a linear rate of extension on agar. Radial increase on agar was shown not to be a good index of growth in sand. Trends in growth rates in the sand cultures indicated that all four fungi can grow at low temperatures. The growth rate for Penicillium janthinellum at 15/sup 0/C was higher than at 20/sup 0/C, and Cylindrocarpon sp. and Phoma herbarum had higher growth rates at 2.5/sup 0/C than at 5/sup 0/C. These data suggest that there may be some adaptation by these fungi to growth in Arctic regions.

  14. Biological pretreatment of corn stover with ligninolytic enzyme for high efficient enzymatic hydrolysis.

    Science.gov (United States)

    Wang, Feng-Qin; Xie, Hui; Chen, Wei; Wang, En-Tao; Du, Feng-Guang; Song, An-Dong

    2013-09-01

    Aiming at increasing the efficiency of transferring corn stover into sugars, a biological pretreatment was developed and investigated in this study. The protocol was characterized by the pretreatment with crude ligninolytic enzymes from Phanerochete chrysosporium and Coridus versicolor to break the lignin structure in corn stover, followed by a washing procedure to eliminate the inhibition of ligninolytic enzyme on cellulase. By a 2 d-pretreatment, sugar yield from corn stover hydrolysis could be increased by 50.2% (up to 323 mg/g) compared with that of the control. X-ray diffractometry and FT-IR analysis revealed that biological pretreatment could partially remove the lignin of corn stover, and consequently enhance the enzymatic hydrolysis efficiency of cellulose and hemeicellulose. In addition, the amount of microbial inhibitors, such as acetic acid and furfural, were much lower in biological pretreatment than that in acid pretreatment. This study provided a promising pretreatment method for biotransformation of corn stovers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. An amperometric enzyme biosensor for real-time measurements of cellobiohydrolase activity on insoluble cellulose

    DEFF Research Database (Denmark)

    Cruys-Bagger, Nicolaj; Guilin, Ren; Tatsumi, Hirosuke

    2012-01-01

    An amperometric enzyme biosensor for continuous detection of cellobiose has been implemented as an enzyme assay for cellulases. We show that the initial kinetics for cellobiohydrolase I, Cel7A from Trichoderma reesei, acting on different types of cellulose substrates, semi-crystalline and amorphous......, can be monitored directly and in real-time by an enzyme-modified electrode based on cellobiose dehydrogenase (CDH) from Phanerochaete chrysosporium (Pc). PcCDH was cross-linked and immobilized on the surface of a carbon paste electrode which contained a mediator, benzoquinone. An oxidation current...... of the reduced mediator, hydroquinone, produced by the CDH-catalyzed reaction with cellobiose, was recorded under constant-potential amperometry at +0.5 V (vs. Ag/AgCl). The CDH-biosensors showed high sensitivity (87.7 µA mM−1 cm−2), low detection limit (25 nM), and fast response time (t95% ∼ 3 s...

  16. Exposure level and distribution characteristics of airborne bacteria and fungi in Seoul metropolitan subway stations.

    Science.gov (United States)

    Kim, Ki Youn; Kim, Yoon Shin; Kim, Daekeun; Kim, Hyeon Tae

    2011-01-01

    The exposure level and distribution characteristics of airborne bacteria and fungi were assessed in the workers' activity areas (station office, bedroom, ticket office and driver's seat) and passengers' activity areas (station precinct, inside the passenger carriage, and platform) of the Seoul metropolitan subway. Among investigated areas, the levels of airborne bacteria and fungi in the workers' bedroom and station precincts were relatively high. No significant difference was found in the concentration of airborne bacteria and fungi between the underground and above ground activity areas of the subway. The genera identified in all subway activity areas with a 5% or greater detection rate were Staphylococcus, Micrococcus, Bacillus and Corynebacterium for airborne bacteria and Penicillium, Cladosporium, Chrysosporium, Aspergillus for airborne fungi. Staphylococcus and Micrococcus comprised over 50% of the total airborne bacteria and Penicillium and Cladosporium comprised over 60% of the total airborne fungi, thus these four genera are the predominant genera in the subway station.

  17. Novel fungal consortium pretreatment of waste oat straw to enhance economic and efficient biohydrogen production

    Directory of Open Access Journals (Sweden)

    Lirong Zhou

    2016-12-01

    Full Text Available Bio-pretreatment using a fungal consortium to enhance the efficiency of lignocellulosic biohydrogen production was explored.  A fungal consortium comprised of T. viride and P. chrysosporium as microbial inoculum was compared with untreated and single-species-inoculated samples. Fungal bio-pretreatment was carried out at atmospheric conditions with limited external energy input.  The effectiveness of the pretreatment is evaluated according to its lignin removal and digestibility. Enhancement of biohydrogen production is observed through scanning electron microscopy (SEM analysis. Fungal consortium pretreatment effectively degraded oat straw lignin (by >47% in 7 days leading to decomposition of cell-wall structure as revealed in SEM images, increasing biohydrogen yield. The hydrogen produced from the fungal consortium pretreated straw increased by 165% 6 days later, and was more than produced from either a single fungi species of T. viride or P. chrysosponium pretreated straw (94% and 106%, respectively. No inhibitory effect on hydrogen production was observed.

  18. Enhanced bioremediation of PAH contaminated soils from coal processing sites

    International Nuclear Information System (INIS)

    Joshi, M.M.; Lee, S.

    1995-01-01

    The polycyclic aromatic hydrocarbons (PAH) are a potential hazard to health due to their carcinogenic, mutagenic nature and acute toxicity and there is an imminent need for remediation of PAH contaminated soils abounding the several coke oven and town gas sites. Aerobic biological degradation of PAHs is an innovative technology and has shown high decontamination efficiencies, complete mineralization of contaminants, and is environmentally safe. The present study investigates the remediation of PAH contaminated soils achieved using Acinetobacter species and fungal strain Phanerochaete Chrysosporium. The soil used for the experiments was an industrially contaminated soil obtained from Alberta Research Council (ARC) primary cleanup facility, Alberta, Canada. Soil characterization was done using High Performance Liquid Chromatography (HPLC) to qualitatively and quantitatively determine the contaminants in the soil. Artificially contaminated soil was also used for some experiments. All the experiments were conducted under completely mixed conditions with suitable oxygen and nutrient amendments. The removal efficiency obtained for various PAHs using the two microorganisms was compared

  19. A biodegradabilidade da blenda de poli(β-Hidroxibutirato-co-Valerato/amido anfótero na presença de microrganismos The Biodegradation of polyhydroxybutyrate-co-valerate/amphiprotic starch in the presence of microorganisms

    Directory of Open Access Journals (Sweden)

    Nadjane S. Coelho

    2008-09-01

    Full Text Available O crescimento do consumo de plásticos vem gerando grandes problemas ambientais, pois um polímero, uma vez descartado no ambiente, necessita de mais de cem anos para se degradar. O plástico ideal deve apresentar propriedades industriais desejáveis e, ao mesmo tempo ser degradável num período considerado satisfatório. Busca-se desenvolver plásticos com boas propriedades para embalagens e que possam ser biodegradados quando descartados ao ambiente. Neste trabalho avaliamos a biodegradação da blenda do copolímero poli(β-hidroxibutirato-co-valerato, PHB-HV, que é um termoplástico natural, biodegradável e biocompatível, e do amido anfótero, na proporção de 75 e 25% m/m, respectivamente. Os resultados foram obtidos através do teste de Sturm, uma metodologia para a avaliação da biodegradação na presença de uma cultura mista dos fungos Phanerochaete chrysosporium e Talaromyces wortmannii. Os resultados evidenciam a biodegradação da blenda em função do tempo, de acordo com os resultados do teste de Sturm, com o aparecimento de grupos carboxílicos terminais. Foi detectado também o aparecimento de nova simetria cristalina na estrutura polimérica.The increasing consumption of plastics has generated environmental problems because it takes more than a hundred years for a discarded polymer to degrade. The ideal plastic should present desirable industrial properties and be degradable within a satisfactory time period. Researches is conducted to plastics with good properties for packaging, but that are biodegradable when discarded to the environment. In this work we evaluated the biodegradation of the blend of the copolymer poly(hydroxybutyrate-hydroxyvalerate, PHB-HV, which is a natural, biodegradable and biocompatible thermoplastic, and of the starch amphiprotic, in the proportion of 75 and 25% m/m, respectively. The results were obtained through the Sturm test, a methodology for the evaluation of biodegradation in the presence

  20. Characterisation of recombinant pyranose oxidase from the cultivated mycorrhizal basidiomycete Lyophyllum shimeji (hon-shimeji

    Directory of Open Access Journals (Sweden)

    Yamabhai Montarop

    2010-07-01

    Full Text Available Abstract Background The flavin-dependent enzyme pyranose 2-oxidase (P2Ox has gained increased attention during the last years because of a number of attractive applications for this enzyme. P2Ox is a unique biocatalyst with high potential for biotransformations of carbohydrates and in synthetic carbohydrate chemistry. Recently, it was shown that P2Ox is useful as bioelement in biofuel cells, replacing glucose oxidase (GOx, which traditionally is used in these applications. P2Ox offers several advantages over GOx for this application, e.g., its much broader substrate specificity. Because of this renewed interest in P2Ox, knowledge on novel pyranose oxidases isolated from organisms other than white-rot fungi, which represent the traditional source of this enzyme, is of importance, as these novel enzymes might differ in their biochemical and physical properties. Results We isolated and over-expressed the p2ox gene encoding P2Ox from the ectomycorrhizal fungus Lyophyllum shimeji. The p2ox cDNA was inserted into the bacterial expression vector pET21a(+ and successfully expressed in E. coli Rosetta 2. We obtained active, flavinylated recombinant P2Ox in yields of approximately 130 mg per L of medium. The enzyme was purified by a two-step procedure based on anion exchange chromatography and preparative native PAGE, yielding an apparently homogenous enzyme preparation with a specific activity of 1.92 U/mg (using glucose and air oxygen as the substrates. Recombinant P2Ox from L. shimeji was characterized in some detail with respect to its physical and catalytic properties, and compared to the well-characterised enzymes from Phanerochaete chrysosporium and Trametes multicolor. Conclusion L. shimeji P2Ox shows properties that are comparable to those of P2Ox from white-rot fungal origin, and is in general characterised by lower Km and kcat values both for electron donor (sugar as well as electron acceptor (ferrocenium ion, 1,4-benzoquinone, 2

  1. Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Kuhar, S.; Nair, L.M.; Kuhad, R.C. [Delhi Univ., New Delhi (India). Dept. of Microbiology, Lignocellulose Biotechnology Laboratory

    2008-04-15

    Lignocellulosic biomass is the most abundant energy resource in the world and is a potential source of carbon substrate for the production of ethanol via fermentation. However, the presence of lignin restricts access to holocellulose. It is necessary to break or remove the lignin in plant residues prior to their hydrolysis. Pretreatment is needed to liberate cellulose and hemicellulose from the lignins. This paper discussed a biological delignification method that avoided the use of toxic and corrosive chemicals. The in situ microbial delignification process used white rot fungi as a basidiomycetes for biological pretreatment. The study examined the capability of 4 basidiomycetes fungi, notably: (1) Phanerochaete chrysosporium; (2) Pycnoporus cinnabarinus; (3) fungal isolate RCK-1; and (4) fungal isolate RCK-3. The fungi were used to delignify wheat straw and improve hydrolysis procedures. Attempts were also made to ferment the acid hydrolysates from fungal-pretreated lignocellulosic materials. Results of the experiment showed that higher yields of ethanol were obtained using selective lignin-degrading fungi as a pretreatment method. 39 refs., 3 tabs., 4 figs.

  2. Nests of Marsh harrier (Circus aeruginosus L. as refuges of potentially phytopathogenic and zoopathogenic fungi

    Directory of Open Access Journals (Sweden)

    Teresa Kornillowicz-Kowalska

    2018-01-01

    Full Text Available Birds’ nests may be refuges for various species of fungi including that which are potentially phytopathogenic and zoopathogenic. Among the 2449 isolates of fungi obtained from nests of Marsh harriers 96.8% belonged to filamentous fungi. In total, 37 genera were identified from 63 fungi species. Within the mycobiotas of the examined nests populations of fungi which are potentially pathogenic for humans, homoiothermous animals and plants dominated. Among 63 species, 46 (72% were potentially pathogenic fungi of which 18 species were potentially phytopathogenic and 32 species were pathogenic for homoiothermous animals. Inter alia species of fungi were found in the Marsh harriers nests: Aspergillus fumigatus, Aspergillus flavus, Scopulariopsis brevicaulis, Chrysosporium keratinophilum and Fusarium poae, Fusarium sporotrichioides. In terms of numbers, dominant in Marsh harrier nests were fungi pathogenic to birds, other homoiothermous animals and humans. On that basis it was concluded that Marsh harrier nests are both a source of fungal infections for that species and one of the links in the epidemiological cycle of opportunistic fungi for humans.

  3. Nests of Marsh harrier (Circus aeruginosus L.) as refuges of potentially phytopathogenic and zoopathogenic fungi.

    Science.gov (United States)

    Kornillowicz-Kowalska, Teresa; Kitowski, Ignacy

    2018-01-01

    Birds' nests may be refuges for various species of fungi including that which are potentially phytopathogenic and zoopathogenic. Among the 2449 isolates of fungi obtained from nests of Marsh harriers 96.8% belonged to filamentous fungi. In total, 37 genera were identified from 63 fungi species. Within the mycobiotas of the examined nests populations of fungi which are potentially pathogenic for humans, homoiothermous animals and plants dominated. Among 63 species, 46 (72%) were potentially pathogenic fungi of which 18 species were potentially phytopathogenic and 32 species were pathogenic for homoiothermous animals. Inter alia species of fungi were found in the Marsh harriers nests: Aspergillus fumigatus , Aspergillus flavus , Scopulariopsis brevicaulis , Chrysosporium keratinophilum and Fusarium poae , Fusarium sporotrichioides . In terms of numbers, dominant in Marsh harrier nests were fungi pathogenic to birds, other homoiothermous animals and humans. On that basis it was concluded that Marsh harrier nests are both a source of fungal infections for that species and one of the links in the epidemiological cycle of opportunistic fungi for humans.

  4. Entomopathogenic fungus generated Nanoparticles for enhancement of efficacy in Culex quinquefasciatus and Anopheles stephensi

    Directory of Open Access Journals (Sweden)

    N. SONI, S. PRAKASH

    2012-05-01

    Full Text Available Objective: To evaluate to efficacy of silver and gold generated larvicide with the help of entomopathogenic fungus Chrysosporium tropicum against the Culex quinquefasciatus and Anopheles stephensi larvae. Methods: The silver and gold nanoparticles were quantified and observed by the Micro-scan reader and X-ray diffraction technique. The micrographs of silver and gold nanoparticles were obtained by the Transmission electron microscope and Scanning electron microscope. The larvicidal efficacy was then performed at six different log concentrations by the probit analysis. Results: The characterization study confirmed the spherical shaped and sized (20-50 and 2-15 nm of silver and gold nanoparticles. The all larval stages of Cx. quinquefasciatus were found more susceptible to the synthesized silver nanoparticles. Whereas, the larvae of An. stephensi were found more susceptible to larvicide synthesized with gold nanoparticles. Conclusions: The results suggested that the silver and gold nanoparticles generated by the entomopathogenic fungus C. tropicum is an environmentally safer and greener approach for mosquito control and new possibility in vector control strategy.

  5. Vegetal waste degradation by microbial strains inoculation Degradación de residuos vegetales mediante inoculación con cepas microbianas

    Directory of Open Access Journals (Sweden)

    Nubia Grijalva Vallejos

    2013-06-01

    Full Text Available (Received: 2013/03/31 - Accepted: 2013/06/02Vegetal waste treatment product of urban, agricultural and industrial processes has severaltechnical problems and constitutes a significant environmental concern. Among them are thepersistence of crop protection products in high concentrations in plant material and the lack ofmicroorganisms that can tolerate such compounds and efficiently decompose the substrate.Bacteria and mainly white rot fungi are the main decomposers of lignin because of their ability tosynthesize extracellular hydrolytic and oxidative enzymes in large quantities. Trichodermareesei, Aspergillus niger, Penicillium sp. and Phanerochaete chrysosporium strains are modelstrains whose hight degradation efficiency with lignocellulose materials even in the presence ofpollutants has been proven. Several studies such as directed mutagenesis, co-culturing andheterologous expression have been done in order to improve the content of some enzymes(cellulase, xylanase, and β-glucosidase in model strains, additionally it has been done newgenetic searches to find other microorganisms with this potential. Its main applications are theindustrial production of ethanol and some seconday metabolites under controlled conditions infermentation processes. This review provides an overview about strategies and methodologiescurrently used for vegetal waste utilization by inoculation of microbial strains.(Recibido: 2013/03/31 - Aceptado: 2013/06/02El tratamiento de los residuos vegetales producto de desechos urbanos, procesos agrícolas eindustriales enfrenta varios problemas técnicos y constituye una preocupación ambientalimportante. Entre ellos se destacan la permanencia de productos fitosanitarios en altasconcentraciones en el material vegetal unido a la carencia de microorganismos que puedantolerar dichos compuestos y logren descomponer eficientemente el sustrato. Las bacterias yprincipalmente los hongos de la podredumbre blanca son los mejores

  6. Inducción fúngica de la biorremediación de suelos contaminados con combustibles

    Directory of Open Access Journals (Sweden)

    Mary Lopretti

    2011-04-01

    Full Text Available La biorremediación de suelos ha sido en los últimos años una de las aplicaciones de los procesos de la biotecnología industrial que se ha desarrollado en busca de soluciones  naturales y eficientes al problema de la contaminación.Varios son los microorganismos que viven en condiciones extremas, desarrollando estrategias metabólicas que les permiten tener sus vías metabólicas aptas para vivir y reproducirse. Dentro de estas estrategias  se encuentra la acción de enzimas hidrolíticas, oxidativas y depolimerizantes que permiten modificar sustratos complejos como lo son los derivados del petróleo  y entre ellos los combustibles.En el presente trabajo se estudió la acción de dos hongos Gloeophylum trabeum y Phanerochaetes chrysosporium actuando en forma consorcial sobre sustratos  contaminados con gasoil y nafta.Se prepararon 4 reactores de fermentación sólida: dos de ellos blanco, contaminados sin inducción, y de los otros dos uno con nafta y el otro con gasoil inoculados ambos con 100cc de medio de propagación con micelios de P.chrysosporium y 50cc de medio de crecimiento con pellets de G. trabeum. Se extrajeron muestras cada 15 días y se evaluó  en el material de cada reactor características fisicoquímicas como %C, humedad y pH.También se realizó la evaluación microbiológica por siembra en placa y dilución en placa con agar malta al 1,25%. En todos los casos se obtuvieron micelios.Por último se determinó la actividad de enzimas lacasa  y peroxidasa. La actividad lacasa se determinó por espectrometría usando 0.5mM de ABTS como sustrato en 0,1M de buffer acetato de sodio pH5 y 1 ml de extracto obtenido por extracción salina. La determinación de actividad Mn peroxidasa se realizó con 0.01% de rojo fenol como sustrato en buffer succinato de sodio 0.1M en presencia de 1 ml de extracto enzimático, MnSO4 0.1M y H2O2 0.1M.Las actividad  de éstas enzimas permitió obtener moléculas mas pequeñas producto de la

  7. Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production.

    Science.gov (United States)

    Chandel, Anuj K; Gonçalves, Bruna C M; Strap, Janice L; da Silva, Silvio S

    2015-01-01

    Lignocellulosic biomass (LB) is a promising sugar feedstock for biofuels and other high-value chemical commodities. The recalcitrance of LB, however, impedes carbohydrate accessibility and its conversion into commercially significant products. Two important factors for the overall economization of biofuel production is LB pretreatment to liberate fermentable sugars followed by conversion into ethanol. Sustainable biofuel production must overcome issues such as minimizing water and energy usage, reducing chemical usage and process intensification. Amongst available pretreatment methods, microorganism-mediated pretreatments are the safest, green, and sustainable. Native biodelignifying agents such as Phanerochaete chrysosporium, Pycnoporous cinnabarinus, Ceriporiopsis subvermispora and Cyathus stercoreus can remove lignin, making the remaining substrates amenable for saccharification. The development of a robust, integrated bioprocessing (IBP) approach for economic ethanol production would incorporate all essential steps including pretreatment, cellulase production, enzyme hydrolysis and fermentation of the released sugars into ethanol. IBP represents an inexpensive, environmentally friendly, low energy and low capital approach for second-generation ethanol production. This paper reviews the advancements in microbial-assisted pretreatment for the delignification of lignocellulosic substrates, system metabolic engineering for biorefineries and highlights the possibilities of process integration for sustainable and economic ethanol production.

  8. Computational studies on LiP H isolated from Ganoderma lucidum GD88

    Directory of Open Access Journals (Sweden)

    Parambayil Nayana

    2015-01-01

    Full Text Available Ganoderma lucidum is a basidiomycete fungus that produces ligninase for the modification of lignin. Lignin peroxidase (LiP is a glycoprotein that acts on the recalcitrant cell wall component lignin. In the present study, the phylogenetic analysis of Ganoderma lucidum GD88 with the partial coding sequence (cds of other LiP isoforms was performed using MEGA6. After determination of the open reading frame, the +3 frame nucleotide sequence was converted to protein using the EMBOSS Transseq and the secondary structure was predicted using the Chou and Fasman Secondary Structure Prediction server (CFSSP. Protein modeling was also performed by SWISS-MODEL. The obtained result shows that the lipH partial cds of Ganoderma lucidum GD88 is homologous to the lipD gene of Phanerochaete chrysosporium. The secondary structure prediction result revealed that the percent content of the helix (67 is higher than the percent contents of sheet (53.4 and turns (13.6. According to the generated model, LiP H protein is a homodimer with chains A and B. The heme acts as a ligand and plays a major role in structure stabilization.

  9. Solid-state fermentation of rice straw residues for its use as growing medium in ornamental nurseries

    Science.gov (United States)

    Belal, Elsayed B.; El-Mahrouk, M. E.

    2010-11-01

    This work was conducted at a private nursery in Kafr El-Sheikh governorate to investigate the bioconversion of rice straw into a soil-like substrate (SLS) by Phanerochaete chrysosporium and Trichoderma hazianum and the possibility of using rice straw compost in ornamental nurseries as a partial or total replacement of coconut peat (CP) and vermiculite (V) in the growing medium. The results showed that rice straw could be treated better by aerobic fermentation. The authors used five mixtures as follows: (1) Control (CP+V at 1:1 v/v), (2) SLS (100%), (3) SLS+CP (1:1 v/v), (4) SLS+V (1:1 v/v), and (5) SLS+CP+V (1:1:1 v/v/v). Data were recorded as seedling height, no. of leaves, shoot fresh and dry weights, root length and root fresh and dry weights in order to assess the quality of both transplants of Althea rosea (hollyhock) and Calendula officinalis (scotch marigold). Hollyhock seedlings grown in medium containing a mixture of SLS+CP+V displayed quality traits similar to those recorded from the control treatment, while scotch marigold seedlings in the same medium followed the control medium in quality.

  10. Snake fungal disease: An emerging threat to wild snakes

    Science.gov (United States)

    Lorch, Jeffrey M.; Knowles, Susan N.; Lankton, Julia S.; Michell, Kathy; Edwards, Jaime L.; Kapfer, Joshua M.; Staffen, Richard A.; Wild, Erik R.; Schmidt, Katie Z.; Ballmann, Anne; Blodgett, Doug; Farrell, Terence M.; Glorioso, Brad M.; Last, Lisa A.; Price, Steven J.; Schuler, Krysten L.; Smith, Christopher; Wellehan, James F. X.; Blehert, David S.

    2016-01-01

    Since 2006, there has been a marked increase in the number of reports of severe and often fatal fungal skin infections in wild snakes in the eastern USA. The emerging condition, referred to as snake fungal disease (SFD), was initially documented in rattlesnakes, where the infections were believed to pose a risk to the viability of affected populations. The disease is caused byOphidiomyces ophiodiicola, a fungus recently split from a complex of fungi long referred to as the Chrysosporium anamorph of Nannizziopsis vriesii (CANV). Here we review the current state of knowledge about O. ophiodiicola and SFD. In addition, we provide original findings which demonstrate that O. ophiodiicola is widely distributed in eastern North America, has a broad host range, is the predominant cause of fungal skin infections in wild snakes and often causes mild infections in snakes emerging from hibernation. This new information, together with what is already available in the scientific literature, advances our knowledge of the cause, pathogenesis and ecology of SFD. However, additional research is necessary to elucidate the factors driving the emergence of this disease and develop strategies to mitigate its impacts.

  11. Flora fúngica no ambiente da Unidade de Terapia Intensiva Pediátrica e Neonatal em hospital terciário Environmental fungal flora in Pediatric and Neonatal Intensive Care Units at a tertiary hospital

    Directory of Open Access Journals (Sweden)

    Lívia Lopes S. de Melo

    2009-09-01

    Full Text Available OBJETIVO: As infecções nosocomiais são responsáveis por morbidade e mortalidade significativas no período neonatal. Considerando-se a preocupação com a qualidade do ar de áreas críticas como Unidades de Terapia Intensiva (UTI, foi realizado um levantamento da flora fúngica das UTI Pediátrica e Neonatal do Hospital das Clínicas Samuel Libânio, Pouso Alegre (MG, com a finalidade de identificar a presença de fungos potencialmente patogênicos e oportunistas. MÉTODOS: Foram realizadas 30 coletas, que incluíram leitos, incubadoras, janelas, aparelhos de ar condicionado, telefone, estetoscópios, portas e maçanetas. Placas de Agar Sabouraud Dextrose com o material das coletas foram incubadas em temperatura ambiente por 15 dias. A identificação foi baseada nas características macroscópicas no exame direto e em microcultivos. RESULTADOS: Fungos potencialmente patogênicos e toxigênicos foram isolados. A análise quantitativa das colônias revelou a presença de 11 gêneros. Verificou-se que mais de 40% das colônias correspondem ao gênero Penicillium spp, seguido por Cladosporium spp e Chrysosporium spp. CONCLUSÕES: Os fungos encontrados podem apresentar grande potencial de patogenicidade, principalmente em imunodeprimidos. É importante adotar medidas de controle ambiental, como assepsia dos equipamentos, controle da presença de visitantes, lavagem das mãos pelos funcionários e troca de filtros de ar condicionado.OBJECTIVE: Nosocomial infections lead to significant morbidity and mortality in the neonatal period. Considering the concern regarding air quality in critical hospital areas, such as Intensive Care Units (ICU, this study aims to identify the presence of potentially pathological fungi in the Pediatric and Neonatal Intensive Care Unit of the Samuel Libânio Hospital in Pouso Alegre, Minas Gerais, Brazil. METHODS: Thirty samples were collected in the following areas: surface of beds, incubators, windows, air

  12. De novo synthesis and decomposition of veratryl alcohol by a lignin-degrading basidiomycete

    Energy Technology Data Exchange (ETDEWEB)

    Lundquist, K; Kirk, T K

    1978-01-01

    In studies of the metabolism of lignin-related aromatics by the ligninolytic basidiomycete Phanerochaete chrysosporium (strain ME-446), a compound was consistently found (TLC) in chloroform extracts of cultures. The substance, identified as veratryl alcohol (1), was first suspected to be a non-metabilizable degradation product of the aromatics studied, which included various guaiacyl- and veratryl-type compounds. Veratryl alcohol itself, in fact, was included in the first experiments. Further investigation with cultures containing /sup 14/C-glucose as growth substrate revealed that 1 is synthesized de novo from glucose. Although the culture medium contained in addition to glucose 0.01 M phthalate or aconitate (buffers), and 0.6 mM L-asparagine (nutrient nitrogen), glucose was the sole source of veratryl alcohol carbon. Introduction of the purified biosynthetic /sup 14/C-veratryl alcohol into fresh cultures resulted in 40% decomposition to /sup 14/CO/sub 2/ in 20 days, showing that the fungus not only makes the compound, it also degrades it. Russell et al. found veratryl alcohol and veratraldehyde in cultures of a ligninolytic fungus (Polystictus versicolor), but considered them to be degradation products of the lignin-related aromatics or wood meal present in the cultures. Reports of synthesis or decomposition of veratryl alcohol by microorganisms were not found.

  13. Snake fungal disease: an emerging threat to wild snakes.

    Science.gov (United States)

    Lorch, Jeffrey M; Knowles, Susan; Lankton, Julia S; Michell, Kathy; Edwards, Jaime L; Kapfer, Joshua M; Staffen, Richard A; Wild, Erik R; Schmidt, Katie Z; Ballmann, Anne E; Blodgett, Doug; Farrell, Terence M; Glorioso, Brad M; Last, Lisa A; Price, Steven J; Schuler, Krysten L; Smith, Christopher E; Wellehan, James F X; Blehert, David S

    2016-12-05

    Since 2006, there has been a marked increase in the number of reports of severe and often fatal fungal skin infections in wild snakes in the eastern USA. The emerging condition, referred to as snake fungal disease (SFD), was initially documented in rattlesnakes, where the infections were believed to pose a risk to the viability of affected populations. The disease is caused by Ophidiomyces ophiodiicola, a fungus recently split from a complex of fungi long referred to as the Chrysosporium anamorph of Nannizziopsis vriesii (CANV). Here we review the current state of knowledge about O. ophiodiicola and SFD. In addition, we provide original findings which demonstrate that O. ophiodiicola is widely distributed in eastern North America, has a broad host range, is the predominant cause of fungal skin infections in wild snakes and often causes mild infections in snakes emerging from hibernation. This new information, together with what is already available in the scientific literature, advances our knowledge of the cause, pathogenesis and ecology of SFD. However, additional research is necessary to elucidate the factors driving the emergence of this disease and develop strategies to mitigate its impacts.This article is part of the themed issue 'Tackling emerging fungal threats to animal health, food security and ecosystem resilience'. © 2016 The Author(s).

  14. Keratinophilic fungi and other moulds associated with air-dust particles from Egypt.

    Science.gov (United States)

    Abdel-Hafez, S I; Moubasher, A H; Barakat, A

    1990-01-01

    One-hundred and eleven species and three species varieties belonging to 39 genera were collected from 50 dust samples on the five media used at 28 degrees C. Using the hair-baiting technique with horse hair, 10 species of Chrysosporium were isolated: C. asperatum, C. state of Arthroderma tuberculatum, C. indicum, C. inops, C. keratinophilum, C. merdarium, C. pannorum, C. queenslandicum, C. tropicum and C. xerophilum. True dermatophytes were isolated: Trichophyton verrucosum and Trichophyton sp. Also, numerous fungi tolerating high levels of cycloheximide were encountered, such as members of Acremonium, Aspergillus and Penicillium. On plates of glucose or cellulose Czapek-Dox agar (free from sucrose) the most frequent fungi were: Alternaria alternata, Aspergillus flavus, A. flavus var. columnaris, A. fumigatus, A. niger, A. ochraceus, A. sydowii, A. terreus, Chaetomium globosum, Cladosporium herbarum, Emericella nidulans, Fusarium oxysporum, Mucor hiemalis, Penicillium chrysogenum, P. oxalicum, Scopulariopsis brevicaulis and Ulocladium atrum. On plates of 50% sucrose or 10 and 20% NaCl-Czapek's agar, some interesting species were frequently encountered: Eurotium amstelodami, E. chevalieri, E. halophilicum, E. montevidensis, E. repens, E. rubrum and Scopulariopsis halophilica. The isolated fungi have been tested for osmophilicity and halophilicity, they showed different rates of growth on sucrose and sodium chloride-Czapek's medium of various osmotic potential.

  15. Fungal treatment of humic-rich industrial wastewater: application of white rot fungi in remediation of food-processing wastewater.

    Science.gov (United States)

    Zahmatkesh, Mostafa; Spanjers, Henri; van Lier, Jules B

    2017-11-01

    This paper presents the results of fungal treatment of a real industrial wastewater (WW), providing insight into the main mechanisms involved and clarifying some ambiguities and uncertainties in the previous reports. In this regard, the mycoremediation potentials of four strains of white rot fungi (WRF): Phanerochaete chrysosporium, Trametes versicolor, Pleurotus ostreatus and Pleurotus pulmonarius were tested to remove humic acids (HA) from a real humic-rich industrial treated WW of a food-processing plant. The HA removal was assessed by color measurement and size-exclusion chromatography (SEC) analysis. T. versicolor showed the best decolorization efficiency of 90% and yielded more than 45% degradation of HA, which was the highest among the tested fungal strains. The nitrogen limitation was studied and results showed that it affected the fungal extracellular laccase and manganese peroxidase (MnP) activities. The results of the SEC analysis revealed that the mechanism of HA removal by WRF involves degradation of large HA molecules to smaller molecules, conversion of HA to fulvic acid-like molecules and also biosorption of HA by fungal mycelia. The effect of HS on the growth of WRF was investigated and results showed that the inhibition or stimulation of growth differs among the fungal strains.

  16. Exploitation of Trametes versicolor for bioremediation of endocrine disrupting chemicals in bioreactors.

    Directory of Open Access Journals (Sweden)

    Cinzia Pezzella

    Full Text Available Endocrine disrupting chemicals (EDCs are environmental contaminants causing increasing concerns due to their toxicity, persistence and ubiquity. In the present study, degradative capabilities of Trametes versicolor, Pleurotus ostreatus and Phanerochaete chrysosporium to act on five EDCs, which represent different classes of chemicals (phenols, parabens and phthalate and were first applied as single compounds, were assessed. T. versicolor was selected due to its efficiency against target EDCs and its potentialities were exploited against a mixture of EDCs in a cost-effective bioremediation process. A fed-batch approach as well as a starvation strategy were applied in order to reduce the need for input of 'fresh' biomass, and avoid the requirement for external nutrients. The fungus was successfully operated in two different bioreactors over one week. Semi-batch cultures were carried out by daily adding a mixture of EDCs to the bioreactors in a total of five consecutive degradation cycles. T. versicolor was able to efficiently remove all compounds during each cycle converting up to 21 mg L-1 day-1 of the tested EDCs. The maintained ability of T. versicolor to remove EDCs without any additional nutrients represents the main outcome of this study, which enables to forecast its application in a water treatment process.

  17. Biodegradation of Aged Residues of Atrazine and Alachlor in a Mix-Load Site Soil by Fungal Enzymes

    Directory of Open Access Journals (Sweden)

    Anastasia E. M. Chirnside

    2011-01-01

    Full Text Available Soils from bulk pesticide mixing and loading (mix-load sites are often contaminated with a complex mixture of pesticides, herbicides, and other organic compounds used in pesticide formulations that limits the success of remediation efforts. Therefore, there is a need to find remediation strategies that can successfully clean up these mix-load site soils. This paper examined the degradation of atrazine (2-chloro-4-ethylamino-6-isopropylamino-S-triazine; AT and alachlor (2-chloro-2, 6-diethyl-N-[methoxymethyl]-acetanilide in contaminated mix-load site soil utilizing an extracellular fungal enzyme solution derived from the white rot fungus, Phanerochaete chrysosporium, grown in a packed bed bioreactor. Thirty-two percent of AT and 54% of AL were transformed in the biometers. The pseudo first-order rate constant for AT and AL biodegradation was 0.0882 d−1 and 0.2504 d−1, respectively. The half-life (1/2 for AT and AL was 8.0 and 3.0 days, respectively. Compared to AT, the initial disappearance of AL proceeded at a faster rate and resulted in a greater amount of AL transformed. Based on the net Co2 evolved from the biometers, about 4% of the AT and AL initially present in the soil was completely mineralized.

  18. Gene expression patterns of wood decay fungi Postia placenta and Phanerochaete chrysosporium are influenced by wood substrate composition during degradation

    Science.gov (United States)

    Oleksandr Skyba; Daniel Cullen; Carl J. Douglas; Shawn D. Mansfield

    2016-01-01

    Identification of the specific genes and enzymes involved in the fungal degradation of lignocellulosic biomass derived from feedstocks with various compositions is essential to the development of improved bioenergy processes. In order to elucidate the effect of substrate composition on gene expression in wood-rotting fungi, we employed microarrays based on the...

  19. Parasitic and fungal infections in synanthropic rodents in an area of urban expansion, Aracaju, Sergipe State, Brazil - doi: 10.4025/actascibiolsci.v36i1.19760

    Directory of Open Access Journals (Sweden)

    Adriana Oliveira Guimarães

    2013-09-01

    Full Text Available This study analysed the prevalence of parasitic and fungal infections in rodents in an area of urban expansion, Aracaju, Brazil. Traps were placed in the area from December 2011 to January 2013. Blood samples, faeces and hair were collected from the animals. We collected a total of 47 rodents; 44 were Rattus rattus, and 3 were Mus musculus. Parasitological evaluation revealed the cestode Hymenolepis diminuta infection in both rodent species. The nematodes Aspiculuris tetraptera and Syphacia obvelata were found in M. musculus, and the commensal Entamoeba coli was found in R. rattus. We observed that 69.2% of the R. rattus and 33.3% of the M. musculus were infected with the haemoparasite Babesia sp. The differential leukocyte count revealed normal (72.3%, neutrophilic (15.9% and lymphocytic (11.4% profiles. The evaluation showed the following species of fungi in the rodents: Aspergillus sp. (77.1%, Penicillium sp. (28.6%, Cladosporium sp. (14.3%, Mucor sp. (14.3%, Curvularia sp. (8.6%, Acremonium sp. (8.6%, Chrysosporium sp. (2.9%, Syncephalostrum sp. (2.9%, Alternaria sp. (2.9%, Trichophyton sp. (2.9% and Scopulariopsis sp. (2.9%. The parasites and fungi found in rodents are potentially zoonotic, and the presence of these household animals demonstrates their potential role as reservoirs and disseminators of fungal and parasitic infections.

  20. Co-fermentation using Recombinant Saccharomyces cerevisiae Yeast Strains Hyper-secreting Different Cellulases for the Production of Cellulosic Bioethanol.

    Science.gov (United States)

    Lee, Cho-Ryong; Sung, Bong Hyun; Lim, Kwang-Mook; Kim, Mi-Jin; Sohn, Min Jeong; Bae, Jung-Hoon; Sohn, Jung-Hoon

    2017-06-30

    To realize the economical production of ethanol and other bio-based chemicals from lignocellulosic biomass by consolidated bioprocessing (CBP), various cellulases from different sources were tested to improve the level of cellulase secretion in the yeast Saccharomyces cerevisiae by screening an optimal translational fusion partner (TFP) as both a secretion signal and fusion partner. Among them, four indispensable cellulases for cellulose hydrolysis, including Chaetomium thermophilum cellobiohydrolase (CtCBH1), Chrysosporium lucknowense cellobiohydrolase (ClCBH2), Trichoderma reesei endoglucanase (TrEGL2), and Saccharomycopsis fibuligera β-glucosidase (SfBGL1), were identified to be highly secreted in active form in yeast. Despite variability in the enzyme levels produced, each recombinant yeast could secrete approximately 0.6-2.0 g/L of cellulases into the fermentation broth. The synergistic effect of the mixed culture of the four strains expressing the essential cellulases with the insoluble substrate Avicel and several types of cellulosic biomass was demonstrated to be effective. Co-fermentation of these yeast strains produced approximately 14 g/L ethanol from the pre-treated rice straw containing 35 g/L glucan with 3-fold higher productivity than that of wild type yeast using a reduced amount of commercial cellulases. This process will contribute to the cost-effective production of bioenergy such as bioethanol and biochemicals from cellulosic biomass.

  1. Direct Succinic Acid Production from Minimally Pretreated Biomass Using Sequential Solid-State and Slurry Fermentation with Mixed Fungal Cultures

    Directory of Open Access Journals (Sweden)

    Jerico Alcantara

    2017-06-01

    Full Text Available Conventional bio-based succinic acid production involves anaerobic bacterial fermentation of pure sugars. This study explored a new route for directly producing succinic acid from minimally-pretreated lignocellulosic biomass via a consolidated bioprocessing technology employing a mixed lignocellulolytic and acidogenic fungal co-culture. The process involved a solid-state pre-fermentation stage followed by a two-phase slurry fermentation stage. During the solid-state pre-fermentation stage, Aspergillus niger and Trichoderma reesei were co-cultured in a nitrogen-rich substrate (e.g., soybean hull to induce cellulolytic enzyme activity. The ligninolytic fungus Phanerochaete chrysosporium was grown separately on carbon-rich birch wood chips to induce ligninolytic enzymes, rendering the biomass more susceptible to cellulase attack. The solid-state pre-cultures were then combined in a slurry fermentation culture to achieve simultaneous enzymatic cellulolysis and succinic acid production. This approach generated succinic acid at maximum titers of 32.43 g/L after 72 h of batch slurry fermentation (~10 g/L production, and 61.12 g/L after 36 h of addition of fresh birch wood chips at the onset of the slurry fermentation stage (~26 g/L production. Based on this result, this approach is a promising alternative to current bacterial succinic acid production due to its minimal substrate pretreatment requirements, which could reduce production costs.

  2. Fungal Biodegradative Oxidants in Lignocellulose: Fluorescence Mapping and Correlation With Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, Kenneth E. [Univ. of Wisconsin, Madison, WI (United States); Ralph, John [Univ. of Wisconsin, Madison, WI (United States); Hunt, Christopher G. [U.S. Forest Products Lab., Madison, WI (United States); Houtman, Carl J. [U.S. Forest Products Lab., Madison, WI (United States)

    2016-09-06

    This work focused on new methods for the detection of oxidation in natural substrates during the deconstruction of lignocellulose by microoganisms. Oxidation was the focus because all known biological systems that degrade lignin are oxidative. The detection methods involved the used of (a) micrometer-scale beads carrying a fluorescent dye that is sensitive to oxidation, (b) 13C-labeled synthetic lignins whose breakdown products can be assessed using mass spectrometry and nuclear magnetic resonance spectroscopy, and (c) a fluorometric stain that is highly sensitive to incipient oxidation during microbial attack. The results showed (a) that one white rot fungus, Phanerochaete chrysosporium, produces diffusible oxidants on wood, and that the onset of oxidation is coincident with the marked up-regulation of genes that encode ligninolytic peroxidases and auxiliary oxidative enzymes; (b) that a more selectively ligninolytic white rot fungus, Ceriporiopsis subvermispora, produces a highly diastereoselective oxidative system for attack on lignin; (c) that a brown rot fungus, Serpula lacrymans, uses extracellular hydroquinone metabolites to drive the production of lignocellulose-oxidizing free radicals; (d) that both white rot and brown rot fungi produce highly diffusible mild oxidants that modify lignocellulose at the earliest stage of substrate deconstruction; and (e) that lignin degradation in a tropical soil is not inhibited as much as expected during periods of flooding-induced hypoxia, which indicates that unknown mechanisms for attack on lignin remain to be discovered.

  3. ISOLASI DAN KARAKTERISASI JAMUR PENDEGRADASI ZAT PEWARNA TEKSTIL (Isolation and Characterization of dye-degrading Fungi

    Directory of Open Access Journals (Sweden)

    Erni Martani

    2011-07-01

    Full Text Available ABSTRAK Industri tekstil tidak saja menghasilkan sandang yang merupakan kebutuhan primer manusia, tetapi juga mengeluarkan limbah yang berpotensi sebagai penyebab pencemaran lingkungan. Komponen utama limbah industri ini adalah berbagai jenis zat pewarna tekstil. Penelitian ini bertujuan untuk memperoleh isolat-isolat jamur yang mampu mendegradasi beberapa jenis zat pewarna tekstil. Isolasi dilakukan menggunakan metode surface plating di atas medium Potato Dextrose Agar, dan seleksi kemampuan degradasi pewarna berdasarkan atas toleransi terhadap konsentrasi zat pewarna, serta besar dan kecepatan dekolorisasi beberapa jenis zat pewarna. Sebagai parameter awal digunakan enam zat pewarna tekstil. Isolat-isolat unggul kemudian diidentifikasi awal berdasar atas morfologi mikroskopis terhadap miseliumnya. Dalam penelitian ini juga digunakan beberapa kultur murni jamur pembusuk putih sebagai pembanding. Dalam penelitian ini digunakan limbah cair dan padat beberapa industri tekstil dan industri pulp & paper, tanah gambut dari Kalimantan Tengah dan Riau, tanah sekitar Tempat Pembuangan Sampah Akhir, serta tanah seresah hutan. Dari berbagai sumber tersebut diperoleh 101 isolat jamur. Uji dekolorisasi kualitatif terhadap 6 zat pewarna menghasilkan 6 isolat unggul yang mampu mendekolorisasi lebih dari tiga jenis pewarna dengan kecepatan relatif tinggi. Masing-masing isolat unggul memiliki spesifikasi dalam daya dekolorisasi terhadap ke 6 jenis pewarna. Identifikasi awal terhadap isolat unggul menunjukkan bahwa mereka berasal dari genus Aspergillus, Cladosporium, Penicillium dan Stachybotrys. Sedangkan uji terhadap kultur jamur pembusuk putih sebagai pembanding menghasilkan 2 kultur unggul, yaitu: Phanerochaete chrysosporium dan Pleurotus ostreatus. Secara umum kemampuan dekolorisasi isolat-isolat jamur kebanyakan masih di bawah kemampuan kedua kultur murni tersebut, namun beberapa isolat justru memiliki kemampuan lebih tinggi dibandingkan kultur pembanding

  4. Reduced toxicity of malachite green decolorized by laccase produced from Ganoderma sp. rckk-02 under solid-state fermentation.

    Science.gov (United States)

    Sharma, Abha; Shrivastava, Bhuvnesh; Kuhad, Ramesh Chander

    2015-10-01

    Statistical designs were applied for optimizing laccase production from a white-rot fungus, Ganoderma sp. rckk-02 under solid-state fermentation (SSF). Compared to unoptimized conditions [2,154 U/gds (Unit per gram of dry substrate)], the optimization process resulted in a 17.3-fold increase in laccase production (37,423 U/gds). The laccase produced was evaluated for its potential to decolorize a recalcitrant synthetic dye, malachite green. Laccase at dosage of 30 U/ml in presence of 1 mM of 1-hydroxybenzotriazole (HBT) almost completely decolorized 100 and 200 mg/l of malachite green in 16 and 20 h, respectively, at 30 °C, pH 5.5 and 150 rpm. While, higher dyes concentrations of 300, 400 and 500 mg/l were decolorized to 72, 62 and 55 % in 24, 28 and 32 h, respectively, under similar conditions. Furthermore, it was observed that the decolorized malachite green was less toxic towards the growth of five white-rot fungi tested viz. Crinipellis sp. RCK-1, Ganoderma sp. rckk-02, Coriolopsis Caperata RCK 2011, Phanerochaete chrysosporium K3 and Pycnoporous cinnabarinus PB. The present study demonstrates the potential of Ganoderma sp. rckk-02 to produce high titres of laccase under SSF, which can be exploited in conjunction with redox mediator for the decolorization of high concentrations of malachite green from water bodies.

  5. Primary Otomycosis in the Indian Subcontinent: Predisposing Factors, Microbiology, and Classification

    Directory of Open Access Journals (Sweden)

    Sampath Chandra Prasad

    2014-01-01

    Full Text Available Objective. To define otomycosis and determine the predisposing factors and microbiology in primary otomycosis. Study Design. Prospective study of two years and review of the literature. Setting. Academic Department of Otolaryngology in a coastal city in India. Patients. 150 immunocompetent individuals of whom 100 consecutive patients with a clinical diagnosis of otomycosis are considered as the study group and 50 consecutive patients with no otomycosis are considered as the control group. Results and Observations. Instillation of coconut oil (42%, use of topical antibiotic eardrops (20%, and compulsive cleaning of external ear with hard objects (32% appeared to be the main predisposing factors in otomycosis. Aspergilli were the most common isolates (80% followed by Penicillium (8%, Candida albicans (4%, Rhizopus (1%, and Chrysosporium (1%, the last being reported for the first time in otomycosis. Among aspergilli, A. niger complex (38% was the most common followed by A. fumigatus complex (27% and A. flavus complex (15%. Bacterial isolates associated with fungi in otomycosis were S. aureus, P. aeruginosa, and Proteus spp. In 42% of healthy external ears fungi were isolated. Conclusion. Aspergillus spp. were the most common fungi isolated, followed by Penicillium. Otomycotic ears are often associated with bacterial isolates when compared to normal ears. Fungi are also present in a significant number of healthy external auditory canals and their profiles match those in cases of otomycosis. The use of terms “primary” and “secondary” otomycosis is important to standardize reporting.

  6. Prevalence and zoonotic risks of Trichophyton mentagrophytes and Cheyletiella spp. in guinea pigs and rabbits in Dutch pet shops.

    Science.gov (United States)

    Overgaauw, P A M; Avermaete, K H A van; Mertens, C A R M; Meijer, M; Schoemaker, N J

    2017-06-01

    Young rabbits and guinea pigs are often purchased as pets for children and may be infected with zoonotic skin infections. To assess the risk of acquiring such an infection from rabbits or guinea pigs, this study investigated the prevalence of the fungus Trichophyton mentagrophytes and the fur mite Cheyletiella parasitovorax in asymptomatic rabbits and guinea pigs in Dutch pet shops. In 91 pet shops a total of 213 rabbits and 179 guinea pigs were sampled using the Mackenzie technique and cultured. Clean cultures were examined microscopically and a PCR was performed on at least one sample from each pet shop. All animals were investigated for fur mite using a flea comb, a magnifying glass and white paper. From the fur of 3.8% (8/213) of the rabbits and 16.8% (30/179) of the guinea pigs, T. mentagrophytes was isolated. From 1 guinea pig (0,6%) Chrysosporium keratinophilum was isolated. Dermatophyte-positive rabbits and guinea pigs originated from 5.6% (5/90) and 27.3% (24/88) of the investigated pet shops, respectively. Fur mites were not found. Pet shops can play an important role in preventing transmission of zoonotic ringworm infections (dermatophytosis) and educating their customers. Specific preventive measures such as routine screening examinations and (prophylactic) treatment of rabbits and guinea pigs are recommended next to regular hygiene when handling animals. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Pathogenic Fungal Species Associated with Digestive System of Periplaneta americana (Blattaria: Blattidae Trapped from Residential Dwellings in Ahvaz City, Southwestern Iran

    Directory of Open Access Journals (Sweden)

    Hamid Kassiri

    2018-03-01

    Full Text Available Background: Cockroaches are the most prevalent domestic pests of a worldwide distribution. They were recognized as possible vectors of pathogenic bacteria, viruses, fungi and parasites in residential dwellings and hospital environ­ments. The present study isolated and identified yeasts and filamentous fungi from digestive tract of American cock­roaches, collected from three different residential regions of Iran.Methods: Seventy cockroaches were sampled using direct collection (hand catch, vacuum cleaner and sticky traps in Ahvaz, Iran in 2009–2010. Their medically important fungal microorganisms were isolated from digestive tract using standard mycological methods. Filamentous fungi were identified by macroscopic and microscopic examina­tion. Yeasts were identified by API ID32C-32100 kit.Results: A high percentage of cockroaches (88.6% were detected to carry fungi of medical importance. Overall, 23 fungi species/genera were isolated from the American cockroaches' alimentary tract. The fungi isolated from cock­roaches, from the residential regions were species of Aspergillus, Rhizopus, Penicillium, Mucorales, Alternaria, Cladosporium, Mycelia, Chrysosporium, Candida, Rhodotorula, Zygosaccharomyces, and Debaryomyces. Candida spp. (41.4%, Aspergillus spp. (37.1% and Rhodotorula spp (27.1% were the most common fungi recovered on cockroaches. Candida albicans and Candida glabrata were the commonest species of the genus Candida. In addi­tion, Aspergillus niger and A. flavus were the most frequent species of the genus Aspergillus.Conclusion: American cockroaches may carry pathogenic fungi in the urban areas of Ahvaz.

  8. Endophytic Fungi Associated With Turmeric (Curcuma longa L. Can Inhibit Histamine-Forming Bacteria in Fish

    Directory of Open Access Journals (Sweden)

    Eris Septiana

    2017-01-01

    Full Text Available Turmeric (Curcuma longa L. is a medicinal plant that is commonly used as spice and preservative. Many types of endophytic fungi have been reported as being associated with medicinal plants and able to synthesize secondary metabolites. In this study, endophytic fungi were isolated from all plant parts of turmeric plants. Identification of the endophytic fungi was done using morphological characteristics and sequencing of the internal transcribed spacer (ITS region of ribosomal DNA. The dual culture method was used for screening antibacterial activity of the endophytic fungi against Morganella morganii, a common histamine-producing bacteria. The disc diffusion method was used to test the ability of water fractions of selected endophytic fungi to inhibit M. morganii growth. Two-dimensional thin layer chromatography was used to determine the fungal extract inhibition activity on histamine formation. In total, 11 endophytic fungi were successfully isolated and identified as Arthrobotrys foliicola, Cochliobolus kusanoi, Daldinia eschscholzii, Fusarium oxysporum, Fusarium proliferatum, Fusarium solani, Fusarium verticillioides, Phanerochaete chrysosporium, and Phaeosphaeria ammophilae. Five isolates showed inhibition activity against M. morganii in the dual culture tests. Based on the disc diffusion assay, A. foliicola and F. verticillioides inhibited the growth of M. morganii as a histamine-producing bacteria, and inhibiting histamine formation in fish. The best effects in inhibiting growth of the histamine-producing bacteria and histamine formation inhibition in fish were produced with F. verticillioides water fraction at 0°C incubation.

  9. Winery biomass waste degradation by sequential sonication and mixed fungal enzyme treatments.

    Science.gov (United States)

    Karpe, Avinash V; Dhamale, Vijay V; Morrison, Paul D; Beale, David J; Harding, Ian H; Palombo, Enzo A

    2017-05-01

    To increase the efficiency of winery-derived biomass biodegradation, grape pomace was ultrasonicated for 20min in the presence of 0.25M, 0.5Mand1.0MKOH and 1.0MNaOH. This was followed by treatment with a 1:1 (v/v) mix of crude enzyme preparation derived from Phanerochaete chrysosporium and Trametes versicolor for 18h and a further 18h treatment with a 60:14:4:2 percent ratio combination of enzymes derived from Aspergillus niger: Penicillium chrysogenum: Trichoderma harzianum: P. citrinum, repsectively. Process efficiency was evaluated by its comparison to biological only mixed fungal degradation over 16days. Ultrasonication treatment with 0.5MKOH followed by mixed enzyme treatment yielded the highest lignin degradation of about 13%. Cellulase, β-glucosidase, xylanase, laccase and lignin peroxidase activities of 77.9, 476, 5,390.5, 66.7 and 29,230.7U/mL, respectively, were observed during biomass degradation. Gas chromatography-mass spectrometry (GC-MS) analysis of the degraded material identified commercially important compounds such as gallic acid, lithocholic acid, glycolic acid and lactic acid which were generated in considerable quantities. Thus, the combination of sonication pre-treatment and enzymatic degradation has the potential to considerably improve the breakdown of agricultural biomass and produce commercially useful compounds in markedly less time (<40h) with respect to biological only degradation (16days). Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Toxicity profile of choline chloride-based deep eutectic solvents for fungi and Cyprinus carpio fish.

    Science.gov (United States)

    Juneidi, Ibrahim; Hayyan, Maan; Mohd Ali, Ozair

    2016-04-01

    An investigation on the toxicological assessment of 10 choline chloride (ChCl)-based deep eutectic solvents (DESs) towards four fungi strains and Cyprinus carpio fish was conducted. ChCl was combined with materials from different chemical groups such as alcohols, sugars, acids and others to form DESs. The study was carried out on the individual DES components, their aqueous mixture before DES formation and their formed DESs. The agar disc diffusion method was followed to investigate their toxicity on four fungi strains selected as a model of eukaryotic microorganisms (Phanerochaete chrysosporium, Aspergillus niger, Lentinus tigrinus and Candida cylindracea). Among these DESs, ChCl:ZnCl2 exhibited the highest inhibition zone diameter towards the tested fungi growth in vitro, followed by the acidic group (malonic acid and p-toluenesulfonic acid). Another study was conducted to test the acute toxicity and determine the lethal concentration at 50 % (LC50) of the same DESs on C. carpio fish. The inhibition range and LC50 of DESs were found to be different from their individual components. DESs were found to be less toxic than their mixture or individual components. The LC50 of ChCl:MADES is much higher than that of ChCl:MAMix. Moreover, the DESs acidic group showed a lower inhibition zone on fungi growth. Thus, DESs should be considered as new components with different physicochemical properties and toxicological profiles, and not merely compositions of compounds.

  11. Ligninolytic enzymes production and Remazol brilliant blue R decolorization by tropical brazilian basidiomycetes fungi Produção de enzimas ligninolíticas e descoloração do corante azul brilhante de Remazol R por fungos basidiomicetos tropicais brasileiros

    Directory of Open Access Journals (Sweden)

    Kátia M. G. Machado

    2005-09-01

    Full Text Available Remazol Brilliant Blue R (RBBR dye was used as substrate to evaluate ligninolytic activity in 125 basidiomycetous fungi isolated from tropical ecosystems. The extracellular RBBR decolorizing activity produced when selected fungi were grown in solid media and in soil contaminated with organochlorines was also evaluated. A total of 106 fungi decolorized the RBBR during the growth in malt extract agar (MEA, 2%; 96 fungi showed a mycelia growth and decolorization activity stronger than the P. chrysosporium used as reference. Extracellular extracts of 35 selected fungi grown on solid medium with sugar cane bagasse (BGS were evaluated for RBBR decolorization and peroxidase activity. All fungi showed peroxidase activities, but 5 of those were unable to decolorize the RBBR. Different patterns of ligninolytic enzymes were detected in 12 fungi extracts. Mn-dependent peroxidase (MnP was produced by Peniophora cinerea, Psilocybe castanella, three strains of Trametes villosa, T. versicolor, Melanoporia nigra and Trichaptum byssogenum. All 12 fungi had laccase activity. Trogia buccinalis showed the highest RBBR decolorization and did not produce MnP activity. RBBR decolorization without MnP production was also observed for three strains of Lentinum tested. Higher levels of peroxidase and laccase cannot be related to high RBBR decolorization. RBBR decolorization by extracellular extract was also detected during the growth of P. castanella, L. crinitus, P. cinerea and two strains of T. Villosa in pentachlorophenol- and hexachlorobenzene-contaminated soils. These fungi showed higher RBBR decolorization when grown in the presence of organochlorine compounds than when in non contaminated soil.O corante azul brilhante Remazol R (RBBR foi usado como substrato para avaliar 125 fungos basidiomicetos isolados de ecossistemas tropicais brasileiros quanto a atividade ligninolítica. A descoloração do RBBR por extratos obtidos do crescimento de fungos em meio sólido e

  12. An indoor air quality study of an alligator (Alligator mississippiensis) holding facility.

    Science.gov (United States)

    Wilson, S C; Holder, H W; Martin, J M; Brasel, T L; Andriychuk, L A; Wu, C; Straus, D C; Aguilar, R

    2006-06-01

    An environmental microbiologic investigation was conducted in an alligator (Alligator mississippiensis) holding facility in a zoo in the southeastern U.S. The facility had housed five alligators between March 1999 and February 2005. In the exhibit, one alligator died and all experienced poor health. It was hypothesized that environmental microbial contamination was associated with these issues. Samples were collected for fungal identification and quantification, microcystin analysis, and airborne mycotoxins. Analyses of air and water were conducted and an examination of the heating, ventilation, and air-conditioning system (HVAC) for design, maintenance, and operating issues was made. Two control sites, a facility for false gharials (Tomistoma schlegelii) and an off-site alligator breeding facility, were also tested. Morbidity and mortality records were examined for all sites. Results showed that, compared to the control sites, the test alligator facility and its HVAC system were extensively contaminated with a range of fungi. Nearly all sampled surfaces featured fungal growth. There were also significantly higher counts of Penicillium/Aspergillus-like and Chrysosporium-like spores in the air (P conditioned and mold-contaminated air being introduced to the facility. Morbidity records revealed solitary pulmonary disorders over time in three alligators, with one dying as a result. The other two alligators suffered from general malaise and a range of nonspecific symptoms. The control facilities had no morbidity or mortality issues. In conclusion, although no causal links could be demonstrated because of the nature of the morbidity data, environmental mold contamination appeared to be associated with the history of morbidity and mortality in the alligator exhibit.

  13. Potential for bioremediation of agro-industrial effluents with high loads of pesticides by selected fungi.

    Science.gov (United States)

    Karas, Panagiotis A; Perruchon, Chiara; Exarhou, Katerina; Ehaliotis, Constantinos; Karpouzas, Dimitrios G

    2011-02-01

    Wastewaters from the fruit packaging industry contain a high pesticide load and require treatment before their environmental discharge. We provide first evidence for the potential bioremediation of these wastewaters. Three white rot fungi (WRF) (Phanerochaete chrysosporium, Trametes versicolor, Pleurotus ostreatus) and an Aspergillus niger strain were tested in straw extract medium (StEM) and soil extract medium (SEM) for degrading the pesticides thiabendazole (TBZ), imazalil (IMZ), thiophanate methyl (TM), ortho-phenylphenol (OPP), diphenylamine (DPA) and chlorpyrifos (CHL). Peroxidase (LiP, MnP) and laccase (Lac) activity was also determined to investigate their involvement in pesticide degradation. T. versicolor and P. ostreatus were the most efficient degraders and degraded all pesticides (10 mg l⁻¹) except TBZ, with maximum efficiency in StEM. The phenolic pesticides OPP and DPA were rapidly degraded by these two fungi with a concurrent increase in MnP and Lac activity. In contrast, these enzymes were not associated with the degradation of CHL, IMZ and TM implying the involvement of other enzymes. T. versicolor degraded spillage-level pesticide concentrations (50 mg l⁻¹) either fully (DPA, OPP) or partially (TBZ, IMZ). The fungus was also able to rapidly degrade a mixture of TM/DPA (50 mg l⁻¹), whereas it failed to degrade IMZ and TBZ when supplied in a mixture with OPP. Overall, T. versicolor and P. ostreatus showed great potential for the bioremediation of wastewaters from the fruit packaging industry. However, degradation of TBZ should be also achieved before further scaling up.

  14. Phanerochaete mutants with enhanced ligninolytic activity

    International Nuclear Information System (INIS)

    Kakar, S.N.; Perez, A.; Gonzales, J.

    1994-01-01

    In addition to lignin, the white rot fungus Phanerochaete chrysosporium has the ability to degrade a wide spectrum of recalcitrant organo pollutants in soils and aqueous media. Most of the organic compounds are degraded under ligninolytic conditions with the involvement of the extracellular enzymes, lignin peroxidases, and manganese-dependent peroxidases, which are produced as secondary metabolites triggered by conditions of nutrient starvation (e.g., nitrogen limitation). The fungus and its enzymes can thus provide alternative technologies for bioremediation, bio pulping, bio bleaching, and other industrial applications. The efficiency and effectiveness of the fungus can be enhanced by increasing production and secretion of the important enzymes in large quantities and as primary metabolites under enriched conditions. One way this can be achieved is through isolation of mutants that are deregulated, or are hyper producers or super secretors of key enzymes under enriched conditions. Through UV-light and γ-ray mutagenesis, we have isolated a variety of mutants, some of which produce key enzymes of the ligninolytic system under high-nitrogen growth conditions. One of the mutants, 76UV, produced 272 U of lignin peroxidases enzyme activity/L after 9 d under high nitrogen (although the parent strain does not produce this enzyme under these conditions). The mutant and the parent strains produced up to 54 and 62 U/L, respectively, of the enzyme activity under low nitrogen growth conditions during this period. In some experiments, the mutant showed 281 U/L of enzyme activity under high nitrogen after 17 d

  15. Bio-Remediation of Acid Mine Drainage in the Sarcheshmeh Porphyry Copper Mine by Fungi: Batch and Fixed Bed Process

    Directory of Open Access Journals (Sweden)

    Hanieh Soleimanifar

    2012-12-01

    Full Text Available Acid mine drainage (AMD containing high concentrations of iron and sulphate, low pH and variableconcentrations of heavy metals leads to many environmental problems. The concentrations of Cu and Mnare high in the AMD of the Sarcheshmeh porphyry copper mine, Kerman province, south of Iran. In thisstudy, the bio-remediation of Cu and Mn ions from acid mine drainage was investigated using two nativefungi called Aspergillus niger and Phanerochaete chrysosporium which were extracted from the soil andsediment samples of the Shour River at the Sarcheshmeh mine. The live fungi was first harvested andthen killed by boiling in 0.5 N NaOH solution. The biomass was finally dried at 60 C for 24 h andpowdered. The optimum biosorption parameters including pH, temperature, the amount of biosorbent andcontact time were determined in a batch system. The optimum pH varied between 5 and 6. It was foundthat the biosorption process increased with an increase in temperature and the amount of biosorbent.Biosorption data were attempted by Langmuir and Freundlich isotherm models and showed a good match.Kinetic studies were also carried out in the present study. The results show that the second-order kineticsmodel fits well the experimental data. The biosorption experiments were further investigated with acontinuous system to compare the biosorption capacities of two systems. The results show thatbiosorption process using a continuous system increases efficiency up to 99%. A desorption process waseventually performed in order to recover Copper and Manganese ions. This process was successful andfungi could be used again.

  16. Comparative Analysis of Secretome Profiles of Manganese(II-Oxidizing Ascomycete Fungi.

    Directory of Open Access Journals (Sweden)

    Carolyn A Zeiner

    Full Text Available Fungal secretomes contain a wide range of hydrolytic and oxidative enzymes, including cellulases, hemicellulases, pectinases, and lignin-degrading accessory enzymes, that synergistically drive litter decomposition in the environment. While secretome studies of model organisms such as Phanerochaete chrysosporium and Aspergillus species have greatly expanded our knowledge of these enzymes, few have extended secretome characterization to environmental isolates or conducted side-by-side comparisons of diverse species. Thus, the mechanisms of carbon degradation by many ubiquitous soil fungi remain poorly understood. Here we use a combination of LC-MS/MS, genomic, and bioinformatic analyses to characterize and compare the protein composition of the secretomes of four recently isolated, cosmopolitan, Mn(II-oxidizing Ascomycetes (Alternaria alternata SRC1lrK2f, Stagonospora sp. SRC1lsM3a, Pyrenochaeta sp. DS3sAY3a, and Paraconiothyrium sporulosum AP3s5-JAC2a. We demonstrate that the organisms produce a rich yet functionally similar suite of extracellular enzymes, with species-specific differences in secretome composition arising from unique amino acid sequences rather than overall protein function. Furthermore, we identify not only a wide range of carbohydrate-active enzymes that can directly oxidize recalcitrant carbon, but also an impressive suite of redox-active accessory enzymes that suggests a role for Fenton-based hydroxyl radical formation in indirect, non-specific lignocellulose attack. Our findings highlight the diverse oxidative capacity of these environmental isolates and enhance our understanding of the role of filamentous Ascomycetes in carbon turnover in the environment.

  17. Influence of temperature, water activity and pH on growth of some xerophilic fungi.

    Science.gov (United States)

    Gock, Melissa A; Hocking, Ailsa D; Pitt, John I; Poulos, Peter G

    2003-02-25

    The combined effects of water activity (aw), pH and temperature on the germination and growth of seven xerophilic fungi important in the spoilage of baked goods and confectionery were examined. Eurotium rubrum, E. repens, Wallemia sebi, Aspergillus penicillioides, Penicillium roqueforti, Chrysosporium xerophilum and Xeromyces bisporus were grown at 25, 30 and 37 degrees C on media with pH values of 4.5, 5.5, 6.5 and 7.5 and a range of water activities (aw) from 0.92 to 0.70. The aw of the media was controlled with a mixture of equal parts of glucose and fructose. Temperature affected the minimum aw for germination for most species. For example, P. roqueforti germinated at 0.82 aw at 25 degrees C, 0.86 aw at 30 degrees C and was unable to germinate at 37 degrees C. E. repens germinated at 0.70 aw at 30 degrees C, but at 25 and 37 degrees C, its minimum aw for germination was 0.74. C. xerophilum and X. bisporus germinated at 0.70 aw at all three temperatures. The optimum growth occurred at 25 degrees C for P. roqueforti and W. sebi, at 30 degrees C for Eurotium species, A. penicillioides and X. bisporus and at 37 degrees C for C. xerophilum. These fungi all grew faster under acidic than neutral pH conditions. The data presented here provide a matrix that will be used in the development of a mathematical model for the prediction of the shelf life of baked goods and confectionery.

  18. The biodiversity of microbial cytochromes P450.

    Science.gov (United States)

    Kelly, Steven L; Lamb, David C; Jackson, Colin J; Warrilow, Andrew G; Kelly, Diane E

    2003-01-01

    The cytochrome P450 (CYP) superfamily of genes and proteins are well known for their involvement in pharmacology and toxicology, but also increasingly for their importance and diversity in microbes. The extent of diversity has only recently become apparent with the emergence of data from whole genome sequencing projects and the coming years will reveal even more information on the diversity in microbial eukaryotes. This review seeks to describe the historical development of these studies and to highlight the importance of the genes and proteins. CYPs are deeply involved in the development of strategies for deterrence and attraction as well as detoxification. As such, there is intense interest in pathways of secondary metabolism that include CYPs in oxidative tailoring of antibiotics, sometimes influencing potency as bioactive compounds. Further to this is interest in CYPs in metabolism of xenobiotics for use as carbon sources for microbial growth and as biotransformation agents or in bioremediation. CYPs are also current and potential drug targets; compounds inhibiting CYP are antifungal and anti-protozoan agents, and potentially similar compounds may be useful against some bacterial diseases such as tuberculosis. Of note is the diversity of CYP requirements within an organism, ranging from Escherichia coli that has no CYPs as in many bacteria, to Mycobacterium smegmatis that has 40 representing 1% of coding genes. The basidiomycete fungus Phanerochaete chrysosporium surprised all when it was found to contain a hundred or more CYPs. The functional genomic investigation of these orphan CYPs is a major challenge for the future.

  19. Extracellular oxidative metabolism of wood decay fungi

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Cullen

    2010-04-21

    Substantial progress has been made toward understanding the fundamental physiology and genetics of wood decay fungi, microbes that are capable of degrading all major components of plant cell walls. Efficient utilization of lignocellulosic biomass has been hampered in part by limitations in our understanding of enzymatic mechanisms of plant cell wall degradation. This is particularly true of woody substrates where accessibility and high lignin content substantially complicate enzymatic 'deconstruction'. The interdisciplinary research has illuminated enzymatic mechanisms essential for the conversion of lignocellulosics to simple carbohydrates and other small molecular weight products. Progress was in large part dependent on substantial collaborations with the Department of Energy's Joint Genome Institute (JGI) in Walnut Creek and Los Alamos, as well as the Catholic University, Santiago, Chile, the Royal Institute of Technology, Stockholm, the University of Minnesota, St. Paul, and colleagues at the University of Wisconsin and the Forest Products Laboratory. Early accomplishments focused on the development of experimental tools (2, 7, 22, 24-26, 32) and characterization of individual genes and enzymes (1, 3-5, 8, 9, 11, 14, 15, 17, 18, 23, 27, 33). In 2004, the genome of the most intensively studied lignin-degrading fungus, Phanerochaete chrysosporium, was published (21). This milestone lead to additional progress on this important model system (6, 10, 12, 13, 16, 28-31) and was further complemented by genome analysis of other important cellulose-degrading fungi (19, 20). These accomplishments have been highly cited and have paved the way for whole new research areas.

  20. A novel combined thermometric and amperometric biosensor for lactose determination based on immobilised cellobiose dehydrogenase.

    Science.gov (United States)

    Yakovleva, Maria; Buzas, Orsolya; Matsumura, Hirotoshi; Samejima, Masahiro; Igarashi, Kiyohiko; Larsson, Per-Olof; Gorton, Lo; Danielsson, Bengt

    2012-01-15

    A novel method for lactose determination in milk is proposed. It is based on oxidation of lactose by cellobiose dehydrogenase (CDH) from the basidiomycete Phanerochaete chrysosporium, immobilised in an enzyme reactor. The reactor was prepared by cross-linking CDH onto aminopropyl-silanised controlled pore glass (CPG) beads using glutaraldehyde. The combined biosensor worked in flow injection analysis (FIA) mode and was developed for simultaneous monitoring of the thermometric signal associated with the enzymatic oxidation of lactose using p-benzoquinone as electron acceptor and the electrochemically generated current associated with the oxidation of the hydroquinone formed. A highly reproducible linear response for lactose was obtained between 0.05 mM and 30 mM. For a set of more than 500 samples an R.S.D. of less than 10% was achieved. The assay time was ca. 2 min per sample. The sensor was applied for the determination of lactose in dairy milk samples (milk with a fat content of 1.5% or 3% and also "lactose free" milk). No sample preparation except dilution with buffer was needed. The proposed method is rapid, suitable for repeated use and allows the possibility to compare results from two different detection methods, thus providing a built-in quality assurance. Some differences in the response observed between the methods indicate that the dual approach can be useful in mechanistic studies of redox enzymes. In addition, a dual system opens up interesting possibilities for studies of enzyme properties and mechanisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Irradiation of Liquid Fungi Isolated Media from Contaminated Sources with Heavy Metals Additive

    International Nuclear Information System (INIS)

    Tawfiq, E.; Mohamed, A.A.; El-Kabbany, H.M.

    2012-01-01

    Occupational lead exposure is an important health issue in Egyptian workers, employees of paint factories, workers of copying centres, drivers, and tile making factories are in higher risk of lead toxicity. Wastewater, particularly from electroplating, paint, leather, metal and tanning industries, contain enormous amount of heavy metals. Microorganisms including fungi have been reported to exclude heavy metals from wastewater through bioaccumulation and bio sorption at low cost and in eco-friendly way. Low level lead exposure can significantly induce motor dis functions and cognitive impairment in children. Seventy six fungal isolates tolerant to heavy metals like Pb, Cd, Cr and Ni were isolated from sewage, sludge and industrial effluents containing heavy metals. Four fungi (Phanerochaete chrysosporium, Aspergillus awamori, Aspergillus flavus, Trichoderma viride) were included in this study. The majority of the fungal isolates were able to tolerate up to 400 ppm concentration of Pb, Cd, Cr and Ni. The most heavy metal tolerant fungi were studied for removal of heavy metals from liquid media at 50 ppm concentration. Results indicated removal of substantial amount of heavy metals by some of the fungi with respect to Pb, Cd, Cr and Ni with maximum uptake of 59.67, 16.25, 0.55 and 0.55 mg/g by fungi Pb 3 (Aspergillus terreus), Trichoderma viride, C r 8 (Trichoderma longibrachiatum), and isolate Ni 27 (A. niger), respectively. This indicated the potential of these fungi as bio sorbent for removal of heavy metals from wastewater and industrial effluents containing higher concentration of heavy metals. The F-ratio was 0.55 and gives non-significant as irradiated

  2. Influence of gamma radiation on the quality of some Egyptian honey types

    International Nuclear Information System (INIS)

    Taha, S.M.A.; Swailam, H.M.H.

    2007-01-01

    The influence of gamma radiation on the quality of different types of honey (clover, sweet marjoram and black cumin) was investigated. Samples were exposed to different doses of gamma radiation at 5, 10 and 25 KGy. The effect of treatments was investigated on several physicochemical and sensory properties and on amino acid compositions, mineral contents as well as on the antifungal activity of honeys. The results of the present study showed that the physicochemical properties (ph values, refractive index, moisture content, total protein, viscosity, total sugars and reducing sugars) and the sensory properties (colour, odour, taste and consistency) of 5 and 10 KGy irradiated honey types revealed non-significant difference as compared with the non-irradiated samples while gamma irradiation up to 25 KGy was found to cause significant changes in reducing sugars, viscosity and taste. Moreover, non-significant changes mineral contents between samples irradiated at 5, 10 and 25 KGy. At 5 KGy, there was non-significant change in the total amino acid, while by increasing the irradiation dose levels to 10 and 25 KGy, there was significant decrease in the total amino acids for all types of honey. Data exhibited that black cumin honey had the most antifungal activity while both sweet marjoram and clover honey were almost the same. The present results indicated that growth of Candida albicans was the most resistant to honey concentrations followed by Microsporum canis, Chrysosporium tropicum, Aspergillus niger, Penicillium chrysogenum and Trichophyton rubrum. The antifungal activity of raw and irradiated honey types was similar

  3. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white rot/ brown rot paradigm for wood decay fungi

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Salamov, Asaf; Brown, Daren W.; Nagy, Laszlo G.; Floudas, Dimitris; Held, Benjamin; Levasseur, Anthony; Lombard, Vincent; Morin, Emmanuelle; Otillar, Robert; Lindquist, Erika; Sun, Hui; LaButti, Kurt; Schmutz, Jeremy; Jabbour, Dina; Luo, Hong; Baker, Scott E.; Pisabarro, Antonio; Walton, Jonathan D.; Blanchette, Robert; Henrissat, Bernard; Martin, Francis; Cullen, Dan; Hibbett, David; Grigoriev, Igor V.

    2014-03-14

    Basidiomycota (basidiomycetes) make up 32percent of the described fungi and include most wood decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white rot/brown rot classification paradigm we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically-informed Principal Components Analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs, but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown rot fungi. Our results suggest a continuum rather than a dichotomy between the white rot and brown rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.

  4. H2O2 recycling during oxidation of the arylglycerol beta-aryl ether lignin structure by lignin peroxidase and glyoxal oxidase.

    Science.gov (United States)

    Hammel, K E; Mozuch, M D; Jensen, K A; Kersten, P J

    1994-11-15

    Oxidative C alpha-C beta cleavage of the arylglycerol beta-aryl ether lignin model 1-(3,4-dimethoxy-phenyl)-2-phenoxypropane-1,3-diol (I) by Phanerochaete chrysosporium lignin peroxidase in the presence of limiting H2O2 was enhanced 4-5-fold by glyoxal oxidase from the same fungus. Further investigation showed that each C alpha-C beta cleavage reaction released 0.8-0.9 equiv of glycolaldehyde, a glyoxal oxidase substrate. The identification of glycolaldehyde was based on 13C NMR spectrometry of reaction product obtained from beta-, gamma-, and beta,gamma-13C-substituted I, and quantitation was based on an enzymatic NADH-linked assay. The oxidation of glycolaldehyde by glyoxal oxidase yielded 0.9 oxalate and 2.8 H2O2 per reaction, as shown by quantitation of oxalate as 2,3-dihydroxyquinoxaline after derivatization with 1,2-diaminobenzene and by quantitation of H2O2 in coupled spectrophotometric assays with veratryl alcohol and lignin peroxidase. These results suggest that the C alpha-C beta cleavage of I by lignin peroxidase in the presence of glyoxal oxidase should regenerate as many as 3 H2O2. Calculations based on the observed enhancement of LiP-catalyzed C alpha-C beta cleavage by glyoxal oxidase showed that approximately 2 H2O2 were actually regenerated per cleavage of I when both enzymes were present. The cleavage of arylglycerol beta-aryl ether structures by ligninolytic enzymes thus recycles H2O2 to support subsequent cleavage reactions.

  5. Comparative Analysis of Secretome Profiles of Manganese(II)-Oxidizing Ascomycete Fungi

    Energy Technology Data Exchange (ETDEWEB)

    Zeiner, Carolyn A.; Purvine, Samuel O.; Zink, Erika M.; Paša-Tolić, Ljiljana; Chaput, Dominique L.; Haridas, Sajeet; Wu, Si; LaButti, Kurt; Grigoriev, Igor V.; Henrissat, Bernard; Santelli, Cara M.; Hansel, Colleen M.; Pöggeler, Stefanie

    2016-07-19

    Fungal secretomes contain a wide range of hydrolytic and oxidative enzymes, including cellulases, hemicellulases, pectinases, and lignin-degrading accessory enzymes, that synergistically drive litter decomposition in the environment. While secretome studies of model organisms such as Phanerochaete chrysosporium and Aspergillus species have greatly expanded our knowledge of these enzymes, few have extended secretome characterization to environmental isolates or conducted side-by-side comparisons of diverse species. Thus, the mechanisms of carbon degradation by many ubiquitous soil fungi remain poorly understood. Here we use a combination of LC-MS/MS, genomic, and bioinformatic analyses to characterize and compare the protein composition of the secretomes of four recently isolated, cosmopolitan, Mn(II)-oxidizing Ascomycetes (Alternaria alternata SRC1lrK2f, Stagonospora sp. SRC1lsM3a, Pyrenochaeta sp. DS3sAY3a, and Paraconiothyrium sporulosum AP3s5-JAC2a). We demonstrate that the organisms produce a rich yet functionally similar suite of extracellular enzymes, with species-specific differences in secretome composition arising from unique amino acid sequences rather than overall protein function. Furthermore, we identify not only a wide range of carbohydrate-active enzymes that can directly oxidize recalcitrant carbon, but also an impressive suite of redox-active accessory enzymes that suggests a role for Fenton-based hydroxyl radical formation in indirect, non-specific lignocellulose attack. Our findings highlight the diverse oxidative capacity of these environmental isolates and enhance our understanding of the role of filamentous Ascomycetes in carbon turnover in the environment.

  6. PRODUCTION OF ENRICHED BIOMASS BY RED YEASTS OF SPOROBOLOMYCES SP. GROWN ON WASTE SUBSTRATES

    Directory of Open Access Journals (Sweden)

    Emilia Breierova

    2012-02-01

    Full Text Available Carotenoids and ergosterol are industrially significant metabolites probably involved in yeast stress response mechanisms. Thus, controlled physiological and nutrition stress including use of waste substrates can be used for their enhanced production. In this work two red yeast strains of the genus Sporobolomyces (Sporobolomyces roseus, Sporobolomyces shibatanus were studied. To increase the yield of metabolites at improved biomass production, several types of exogenous as well as nutrition stress were tested. Each strain was cultivated at optimal growth conditions and in medium with modified carbon and nitrogen sources. Synthetic media with addition of complex substrates (e.g. yeast extract and vitamin mixtures as well as some waste materials (whey, apple fibre, wheat, crushed pasta were used as nutrient sources. Peroxide and salt stress were applied too, cells were exposed to oxidative stress (2-10 mM H2O2 and osmotic stress (2-10 % NaCl. During the experiment, growth characteristics and the production of biomass, carotenoids and ergosterol were evaluated. In optimal conditions tested strains substantially differed in biomass as well as metabolite production. S.roseus produced about 50 % of biomass produced by S.shibatanus (8 g/L. Oppositely, production of pigments and ergosterol by S.roseus was 3-4 times higher than in S.shibatanus. S.roseus was able to use most of waste substrates, the best production of ergosterol (8.9 mg/g d.w. and beta-carotene (4.33 mg/g d.w. was obtained in medium with crushed pasta hydrolyzed by mixed enzyme from Phanerochaetae chrysosporium. Regardless very high production of carotenes and ergosterol, S.roseus is probably not suitable for industrial use because of relatively low biomass production.

  7. Toxicity of organic and inorganic nanoparticles to four species of white-rot fungi

    International Nuclear Information System (INIS)

    Galindo, T.P.S.; Pereira, R.; Freitas, A.C.; Santos-Rocha, T.A.P.; Rasteiro, M.G.; Antunes, F.; Rodrigues, D.; Soares, A.M.V.M.; Gonçalves, F.

    2013-01-01

    The rapid development of nanoparticles (NP) for industrial applications and large-volume manufacturing, with its subsequent release into the environment, raised the need to understand and characterize the potential effects of NP to biota. Accordingly, this work aimed to assess sublethal effects of five NP to the white-rot fungi species Trametes versicolor, Lentinus sajor caju, Pleurotus ostreatus, and Phanerochaete chrysosporium. Each species was exposed to serial dilutions of the following NP: organic-vesicles of SDS/DDAB and of Mo/NaO; gold-NP, quantum dot CdSe/ZnS, and Fe/Co. Fungi growth rate was monitored every day, and at the end of assay the mycelium from each replicate was collected to evaluate possible changes in its chemical composition. For all NP-suspensions the following parameters were characterized: hydrodynamic diameter, surface charge, aggregation index, zeta potential, and conductivity. All tested NP tended to aggregate when suspended in aqueous media. The obtained results showed that gold-NP, CdSe/ZnS, Mo/NaO, and SDS/DDAB significantly inhibited the growth of fungi with effects on the mycelium chemical composition. Among the tested NP, gold-NP and CdSe/ZnS were the ones exerting a higher effect on the four fungi. Finally to our knowledge, this is the first study reporting that different types of NP induce changes in the chemical composition of fungi mycelium. - Highlights: • Nanoparticles (NP) tend to aggregate when in aqueous suspensions. • Chemical composition revealed to be very important in the ecotoxicity of NP. • Observed effects suggested diversified modes of action of different NP. • White-rot fungi species exhibit great differences in their sensitivity to NP

  8. Genome, transcriptome, and secretome analysis of wood decay fungus postia placenta supports unique mechanisms of lignocellulose conversion

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Diego [Los Alamos National Laboratory; Challacombe, Jean F [Los Alamos National Laboratory; Misra, Monica [Los Alamos National Laboratory; Xie, Gary [Los Alamos National Laboratory; Brettin, Thomas [Los Alamos National Laboratory; Morgenstern, Ingo [CLARK UNIV; Hibbett, David [CLARK UNIV.; Schmoll, Monika [UNIV WIEN; Kubicek, Christian P [UNIV WIEN; Ferreira, Patricia [CIB, CSIC, MADRID; Ruiz - Duenase, Francisco J [CIB, CSIC, MADRID; Martinez, Angel T [CIB, CSIC, MADRID; Kersten, Phil [FOREST PRODUCTS LAB; Hammel, Kenneth E [FOREST PRODUCTS LAB; Vanden Wymelenberg, Amber [U. WISCONSIN; Gaskell, Jill [FOREST PRODUCTS LAB; Lindquist, Erika [DOE JGI; Sabati, Grzegorz [U. WISCONSIN; Bondurant, Sandra S [U. WISCONSIN; Larrondo, Luis F [U. CATHOLICA DE CHILE; Canessa, Paulo [U. CATHOLICA DE CHILE; Vicunna, Rafael [U. CATHOLICA DE CHILE; Yadavk, Jagiit [U. CINCINATTI; Doddapaneni, Harshavardhan [U. CINCINATTI; Subramaniank, Venkataramanan [U. CINCINATTI; Pisabarro, Antonio G [PUBLIC U. NAVARRE; Lavin, Jose L [PUBLIC U. NAVARRE; Oguiza, Jose A [PUBLIC U. NAVARRE; Master, Emma [U. TORONTO; Henrissat, Bernard [CNRS, MARSEILLE; Coutinho, Pedro M [CNRS, MARSEILLE; Harris, Paul [NOVOZYMES, INC.; Magnuson, Jon K [PNNL; Baker, Scott [PNNL; Bruno, Kenneth [PNNL; Kenealy, William [MASCOMA, INC.; Hoegger, Patrik J [GEORG-AUGUST-U.; Kues, Ursula [GEORG-AUGUST-U; Ramaiva, Preethi [NOVOZYMES, INC.; Lucas, Susan [DOE JGI; Salamov, Asaf [DOE JGI; Shapiro, Harris [DOE JGI; Tuh, Hank [DOE JGI; Chee, Christine L [UNM; Teter, Sarah [NOVOZYMES, INC.; Yaver, Debbie [NOVOZYMES, INC.; James, Tim [MCMASTER U.; Mokrejs, Martin [CHARLES U.; Pospisek, Martin [CHARLES U.; Grigoriev, Igor [DOE JGI; Rokhsar, Dan [DOE JGI; Berka, Randy [NOVOZYMES; Cullen, Dan [FOREST PRODUCTS LAB

    2008-01-01

    Brown-rot fungi such as Postia placenta are common inhabitants of forest ecosystems and are also largely responsible for the destructive decay of wooden structures. Rapid depolymerization of cellulose is a distinguishing feature of brown-rot, but the biochemical mechanisms and underlying genetics are poorly understood. Systematic examination of the P. placenta genome, transcriptome and secretome revealed unique extracellular enzyme systems, including an unusual repertoire of extracellular glycoside hydrolases. Genes encoding exocellobiohydrolases and cellulose-binding domains, typical of cellulolytic microbes, are absent in this efficient cellulose-degrading fungus. When P. placenta was grown in medium containing cellulose as sole carbon source, transcripts corresponding to many hemicellulases and to a single putative {beta}-1-4 endoglucanase were expressed at high levels relative to glucose grown cultures. These transcript profiles were confirmed by direct identification of peptides by liquid chromatography-tandem mass spectrometry (LC{center_dot}MSIMS). Also upregulated during growth on cellulose medium were putative iron reductases, quinone reductase, and structurally divergent oxidases potentially involved in extracellular generation of Fe(II) and H202. These observations are consistent with a biodegradative role for Fenton chemistry in which Fe(II) and H202 react to form hydroxyl radicals, highly reactive oxidants capable of depolymerizing cellulose. The P. placenta genome resources provide unparalleled opportunities for investigating such unusual mechanisms of cellulose conversion. More broadly, the genome offers insight into the diversification of lignocellulose degrading mechanisms in fungi. Comparisons to the closely related white-rot fungus Phanerochaete chrysosporium support an evolutionary shift from white-rot to brown-rot during which the capacity for efficient depolymerization of lignin was lost.

  9. Survey and analysis of simple sequence repeats in the Laccaria bicolor genome, with development of microsatellite markers

    Energy Technology Data Exchange (ETDEWEB)

    Labbe, Jessy L [ORNL; Murat, Claude [INRA, Nancy, France; Morin, Emmanuelle [INRA, Nancy, France; Le Tacon, F [UMR, France; Martin, Francis [INRA, Nancy, France

    2011-01-01

    It is becoming clear that simple sequence repeats (SSRs) play a significant role in fungal genome organization, and they are a large source of genetic markers for population genetics and meiotic maps. We identified SSRs in the Laccaria bicolor genome by in silico survey and analyzed their distribution in the different genomic regions. We also compared the abundance and distribution of SSRs in L. bicolor with those of the following fungal genomes: Phanerochaete chrysosporium, Coprinopsis cinerea, Ustilago maydis, Cryptococcus neoformans, Aspergillus nidulans, Magnaporthe grisea, Neurospora crassa and Saccharomyces cerevisiae. Using the MISA computer program, we detected 277,062 SSRs in the L. bicolor genome representing 8% of the assembled genomic sequence. Among the analyzed basidiomycetes, L. bicolor exhibited the highest SSR density although no correlation between relative abundance and the genome sizes was observed. In most genomes the short motifs (mono- to trinucleotides) were more abundant than the longer repeated SSRs. Generally, in each organism, the occurrence, relative abundance, and relative density of SSRs decreased as the repeat unit increased. Furthermore, each organism had its own common and longest SSRs. In the L. bicolor genome, most of the SSRs were located in intergenic regions (73.3%) and the highest SSR density was observed in transposable elements (TEs; 6,706 SSRs/Mb). However, 81% of the protein-coding genes contained SSRs in their exons, suggesting that SSR polymorphism may alter gene phenotypes. Within a L. bicolor offspring, sequence polymorphism of 78 SSRs was mainly detected in non-TE intergenic regions. Unlike previously developed microsatellite markers, these new ones are spread throughout the genome; these markers could have immediate applications in population genetics.

  10. Purification of bioactive phenolics from Phanerochaete chysosporium biomass extract on selected macroporous resins

    Science.gov (United States)

    Idris, Z. M.; Dzahir, M. I. H. M.; Jamal, P.; Barkat, A. A.; Xian, R. L. W.

    2017-06-01

    In this study, two different types of macroporous resins known as XAD-7HP and HP-20 were evaluated for the adsorption and desorption properties against bioactive phenolics extracted from Phanerochaete chrysosporium. From the previous static sorption studies, it was found that the adsorption capacity for both resins had has no significant difference. Then, the kinetic adsorption data were analyzed with both pseudo-first-order and pseudo-second-order equations and the later performed better. The adsorption isotherm data were fitted well by both Langmuir and Freundlich models. Meanwhile in desorption study, HP-20 and XAD-7HP gave 90.52% and 88.28% recoveries, respectively. Considering the desorption results of the macroporous resins, HP-20 and XAD-7HP were packed in chromatography column to further purify the phenolics. For dynamic adsorption, breakthrough capacity of HP-20 (0.522) was found to be higher than XAD-7HP (0.131). Different ethanol concentrations (30% to 50% (v/v)) were investigated at fixed flowrate (1 ml/min) on phenolics recovery from both types of resins. The highest recovery of bioactive phenolics was 94.3% using XAD-7HP resins at 50% (v/v) of ethanol. Only 77.1% of bioactive phenolics were recovered using HP-20 resin at the same experimental conditions. The purified extract subsequently was analyzed using HPLC. The results showed that three phenolics (gallic acid 3,4-dihydroxybenzoic acid and 4-hydroxybenzoic acid) were identified with higher concentrations as compared to non-purified extract. Finally, the purified extract was tested for scavenging activity against DPPH, and it showed that the activity increased significantly to 90.80% from 59.94% in non-purified extract.

  11. Toxicity of organic and inorganic nanoparticles to four species of white-rot fungi

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, T.P.S., E-mail: pgalindo@ua.pt [CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Pereira, R. [CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 4169-007 Porto (Portugal); Freitas, A.C.; Santos-Rocha, T.A.P. [CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); ISEIT, Instituto Piaget Viseu, Estrada do Alto do Gaio, Lordosa, 3515-776 Viseu (Portugal); Rasteiro, M.G.; Antunes, F. [Department of Chemical Engineering, University of Coimbra, 3030-290 Coimbra (Portugal); Rodrigues, D. [CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Departamento de Química, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); ISEIT, Instituto Piaget Viseu, Estrada do Alto do Gaio, Lordosa, 3515-776 Viseu (Portugal); Soares, A.M.V.M.; Gonçalves, F. [CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); and others

    2013-08-01

    The rapid development of nanoparticles (NP) for industrial applications and large-volume manufacturing, with its subsequent release into the environment, raised the need to understand and characterize the potential effects of NP to biota. Accordingly, this work aimed to assess sublethal effects of five NP to the white-rot fungi species Trametes versicolor, Lentinus sajor caju, Pleurotus ostreatus, and Phanerochaete chrysosporium. Each species was exposed to serial dilutions of the following NP: organic-vesicles of SDS/DDAB and of Mo/NaO; gold-NP, quantum dot CdSe/ZnS, and Fe/Co. Fungi growth rate was monitored every day, and at the end of assay the mycelium from each replicate was collected to evaluate possible changes in its chemical composition. For all NP-suspensions the following parameters were characterized: hydrodynamic diameter, surface charge, aggregation index, zeta potential, and conductivity. All tested NP tended to aggregate when suspended in aqueous media. The obtained results showed that gold-NP, CdSe/ZnS, Mo/NaO, and SDS/DDAB significantly inhibited the growth of fungi with effects on the mycelium chemical composition. Among the tested NP, gold-NP and CdSe/ZnS were the ones exerting a higher effect on the four fungi. Finally to our knowledge, this is the first study reporting that different types of NP induce changes in the chemical composition of fungi mycelium. - Highlights: • Nanoparticles (NP) tend to aggregate when in aqueous suspensions. • Chemical composition revealed to be very important in the ecotoxicity of NP. • Observed effects suggested diversified modes of action of different NP. • White-rot fungi species exhibit great differences in their sensitivity to NP.

  12. Ethanol production from lignocellulosic materials. Fermentation and on-line analysis

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, L.

    1994-04-01

    The fermentation performance of bacteria, yeast and fungi was investigated in lignocellulosic hydrolysates with the aim of finding microorganisms which both withstand the inhibitors and that have the ability to ferment pentoses. Firstly, the performance of Saccharomyces cidri, Saccharomyces cerevisiae, Lactobacillus brevis, Lactococcus lactis ssp lactis, Escherichia coli and Zymomonas mobilis was investigated in spent sulphite liquor and enzymatic hydrolysate of steam-pretreated willow. Secondly, the performance of natural and recombinant E. coli, Pichia stipitis, recombinant S. cerevisiae, S. cerevisiae in combination with xylose isomerase and Fusarium oxysporum was investigated in a xylose-rich acid hydrolysate of corn cob. Recombinant E. coli was the best alternative for fermentation of lignocellulosic hydrolysates, giving both high yields and productivities. The main drawback was that detoxification was necessary. The kinetics of the fermentation with recombinant E. coli KO11 was investigated in the condensate of steam-pretreated willow. A cost analysis of the ethanol production from willow was made, which predicted an ethanol production cost of 3.9 SEK/l for the pentose fermentation. The detoxification cost constituted 22% of this cost. The monitoring of three monosaccharides and ethanol in lignocellulosic hydro lysates is described. The monosaccharides were determined using immobilized pyranose oxidase in an on-line amperometric analyser. Immobilization and characterization of pyranose oxidase from Phanerochaete chrysosporium is also described. The ethanol was monitored on-line using a micro dialysis probe as an in situ sampling device. The dialysate components were then separated in a column liquid chromatographic system and the ethanol was selectively detected by an amperometric alcohol bio sensor. The determinations with on-line analysis methods agreed well with off-line methods. 248 refs, 4 figs, 12 tabs

  13. Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum

    Energy Technology Data Exchange (ETDEWEB)

    D/Souza, T.M.; Merritt, C.S.; Reddy, C.A.

    1999-12-01

    Ganoderma lucidum, a white rot basidiomycete widely distributed worldwide, was studied for the production of the lignin-modifying enzymes laccase, manganese-dependent peroxidase (MnP), and lignin peroxidase (LiP). Laccase levels observed in high-nitrogen shaken cultures were much greater than those seen in low-nitrogen, malt extract, or wool-grown cultures and those reported for most other white rot fungi to date. Laccase production was readily seen in cultures grown with pine or poplar as the sole carbon and energy source. Cultures containing both pine and poplar showed 5- to 10-fold-higher levels of laccase than cultures containing pine or poplar alone. Since syringyl units are structural components important in poplar lignin and other hardwoods but much less so in pine lignin and other softwoods, pine cultures were supplemented with syringic acid, and this resulted in laccase levels comparable to those seen in pine-plus-poplar cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of concentrated extracellular culture fluid from HM cultures showed two laccase activity bands, where as isoelectric focusing revealed five major laccase activity bands with estimated pIs of 3.0, 4.25, 4.5, and 5.1. Low levels of MnP activity were detected in poplar-grown cultures but not in cultures grown with pine, with pine plus syringic acid, or in HN medium. No LiP activity was seen in any of the media tested; however, probing the genomic DNA with the LiP cDNA (CLG4) from the white rot fungus Phanerochaete chrysosporium showed distinct hybridization bands suggesting the presence of lip-like sequences in G. lucidum.

  14. Microbial liquefaction of peat for the production of synthetic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gunasekaran, M.

    1988-01-01

    Objectives of this study were: to evaluate the potential of using various microorganisms to hydrolyse and liquify peat; to determine the optimal conditions for peat hydrolysis and liquefaction; to study the co-metabolizable substances; to separate the compounds present in liquified peat by alumina and silica acid chromatography and capillary gas chromatography; and to identify the compounds in liquified peat by capillary GC-Mass spectrometry. Organisms used in the study include: Coprinus comatus, Coriolus hirsutus, Ganoderma lucidum, Lentinus edodes, Lenzites trabea, Phanerochaete chrysosporium, Pleurotus ostreatus, P. sapidus, Polyporus adjustus, Neurospora sitophila, Rhizophus arrhizus, Bacillus subtilis, Acinetobacter sp. and Alcaligenes sp. The fungi were maintained and cultivated in potato dextrose agar at 30 C. The bacteria were maintained in nutrient agar at 30 C. We have also initiated work on coal solubilization in addition to the studies on peat liquefaction. A relatively new substratum or semi-solid base for culture media called Pluronic F-127, or Polyol (BASF, New Jersey). Objectives of this study were: (1) to study the growth patterns of Candida ML 13 on pluronic as substratum; (2) to determine the rate of microbial coal solubilization on pluronic F-127 amended in different growth media; (3) to separate the mycelial mat of Candida ML 13 from unsolubilized coal particles and solubilized coal products from pluronic F-127; (4) to determine the effects of pH on microbial coal solubilization in pluronic F-127 media; (5) the effect of concentration of pluronic F-127 in media on coal solubilization; and, (6) to study the role of extracellular factors secreted by Candida ML 13 on coal solubilization in pluronic F-127 media. Results are discussed. 4 refs.

  15. Degradation of PAH by white-rot fungi. Abbau von polyzyklischen aromatischen Kohlenwasserstoffen durch Weissfaeulepilze

    Energy Technology Data Exchange (ETDEWEB)

    Majcherczyk, A [Goettingen Univ. (Germany). Arbeitsgruppe Technische Mykologie; Zeddel, A [Goettingen Univ. (Germany). Arbeitsgruppe Technische Mykologie; Kelschebach, M [Goettingen Univ. (Germany). Arbeitsgruppe Technische Mykologie; Loske, D [Goettingen Univ. (Germany). Arbeitsgruppe Technische Mykologie; Huettermann, A [Goettingen Univ. (Germany). Arbeitsgruppe Technische Mykologie

    1993-04-01

    The reports on exciting good results on degradation of xenobiotic substances by Phanaerochaete chrysosporium obtained in the early eighties in liquid cultures were confirmed for a wide spectrum of white-rot fungi under soil conditions. The substance classes which were successfully degraded were: PAH, PCB and TNT. The results obtained in the laboratory could in the case of PAH be transfered to a larger scale. The addition of known inducers of lignolytic enzymes did not increase the rate of degradation of xenobiotics of the white-rot fungi. The most critical parameter is the oxygen supply. For improving the economics of the process, cheap methods of growing the fungi were developed, such as the treatment of the substrate with detergents or the supplementing with potato pulp. These treatments have the advantage that they do not require expensive thermal activation of the substrate. Both processes provide excellent growth of the fungi without additional treatments. The at present best process for bioremediation of soils with white-rot fungi includes the following steps: liquification of the soil to a slurry, addition of the fungi together with possibly other substances e.g. tensides, solidification of the slurry by the addition of a lignocellulosic substrate which converts the slurry to a crumbly solid which can be well areated. The mass is then transferred to a closed container and incubated under controlled aeration. The problems being unsolved are: upscaling to the cubic meter scale, the lack of bioavailability of the xenobiotics in many soils, the lack of information about the degradation products and the most suitable way of determining the residual toxicity of the treated soils. (orig.)

  16. Structure, computational and biochemical analysis of PcCel45A endoglucanase from Phanerochaete chrysosporium and catalytic mechanisms of GH45 subfamily C members

    DEFF Research Database (Denmark)

    Godoy, Andre S.; Pereira, Caroline S.; Ramia, Marina Paglione

    2018-01-01

    The glycoside hydrolase family 45 (GH45) of carbohydrate modifying enzymes is mostly comprised of ß-1,4-endoglucanases. Significant diversity between the GH45 members has prompted the division of this family into three subfamilies: A, B and C, which may differ in terms of the mechanism, general a...

  17. TaqMan real-time polymerase chain reaction for detection of Ophidiomyces ophiodiicola, the fungus associated with snake fungal disease.

    Science.gov (United States)

    Bohuski, Elizabeth; Lorch, Jeffrey M; Griffin, Kathryn M; Blehert, David S

    2015-04-15

    Fungal skin infections associated with Ophidiomyces ophiodiicola, a member of the Chrysosporium anamorph of Nannizziopsis vriesii (CANV) complex, have been linked to an increasing number of cases of snake fungal disease (SFD) in captive snakes around the world and in wild snake populations in eastern North America. The emergence of SFD in both captive and wild situations has led to an increased need for tools to better diagnose and study the disease. We developed two TaqMan real-time polymerase chain reaction (PCR) assays to rapidly detect O. ophiodiicola in clinical samples. One assay targets the internal transcribed spacer region (ITS) of the fungal genome while the other targets the more variable intergenic spacer region (IGS). The PCR assays were qualified using skin samples collected from 50 snakes for which O. ophiodiicola had been previously detected by culture, 20 snakes with gross skin lesions suggestive of SFD but which were culture-negative for O. ophiodiicola, and 16 snakes with no clinical signs of infection. Both assays performed equivalently and proved to be more sensitive than traditional culture methods, detecting O. ophiodiicola in 98% of the culture-positive samples and in 40% of the culture-negative snakes that had clinical signs of SFD. In addition, the assays did not cross-react with a panel of 28 fungal species that are closely related to O. ophiodiicola or that commonly occur on the skin of snakes. The assays did, however, indicate that some asymptomatic snakes (~6%) may harbor low levels of the fungus, and that PCR should be paired with histology when a definitive diagnosis is required. These assays represent the first published methods to detect O. ophiodiicola by real-time PCR. The ITS assay has great utility for assisting with SFD diagnoses whereas the IGS assay offers a valuable tool for research-based applications.

  18. Perspectives on the use of transcriptomics to advance biofuels

    Directory of Open Access Journals (Sweden)

    Siseon Lee

    2015-11-01

    Full Text Available As a field within the energy research sector, bioenergy is continuously expanding. Although much has been achieved and the yields of both ethanol and butanol have been improved, many avenues of research to further increase these yields still remain. This review covers current research related with transcriptomics and the application of this high-throughput analytical tool to engineer both microbes and plants with the penultimate goal being better biofuel production and yields. The initial focus is given to the responses of fermentative microbes during the fermentative production of acids, such as butyric acid, and solvents, including ethanol and butanol. As plants offer the greatest natural renewable source of fermentable sugars within the form of lignocellulose, the second focus area is the transcriptional responses of microbes when exposed to plant hydrolysates and lignin-related compounds. This is of particular importance as the acid/base hydrolysis methods commonly employed to make the plant-based cellulose available for enzymatic hydrolysis to sugars also generates significant amounts of lignin-derivatives that are inhibitory to fermentative bacteria and microbes. The article then transitions to transcriptional analyses of lignin-degrading organisms, such as Phanerochaete chrysosporium, as an alternative to acid/base hydrolysis. The final portion of this article will discuss recent transcriptome analyses of plants and, in particular, the genes involved in lignin production. The rationale behind these studies is to eventually reduce the lignin content present within these plants and, consequently, the amount of inhibitors generated during the acid/base hydrolysis of the lignocelluloses. All four of these topics represent key areas where transcriptomic research is currently being conducted to identify microbial genes and their responses to products and inhibitors as well as those related with lignin degradation/formation.

  19. Isolation of Microsporum gypseum from the haircoat of health wild felids kept in captivity in Brazil

    Directory of Open Access Journals (Sweden)

    Bentubo Henri Donnarumma Levy

    2006-01-01

    Full Text Available Dermatophytes are fungi that cause superficial mycoses in animals and humans. While studies have shown that domestic cats (Felis catus are often asymptomatic carriers of dermatophytes, and thus a significant source of infection, this aspect has not been studied in relation to their wild relatives. The present study was aimed at determining the presence of dermatophytes on the haircoat of healthy wild felids, kept in captivity at "Fundação Parque Zoológico de São Paulo". Samples were taken from 130 adult animals of both sexes: 25 lions (Panthera leo, 12 tigers (Panthera tigris, 6 jaguars (Panthera onca, 4 leopards (Panthera pardus, 2 snow leopards (Panthera uncia, 2 pumas (Puma concolor, 2 cheetahs (Acinonyx jubatus, 1 ocelot (Leopardus pardalis, 28 tiger cats (Leopardus tigrinus, 10 margays (Leopardus wiedii, 8 geoffroy's cats (Leopardus geoffroyi, 22 jaguarundis (Herpailurus yagouaroundi and 8 pampas cats (Oncifelis colocolo. The samples were obtained by rubbing the haircoat of the animals with squares of sterile carpet, and then seeded onto Petri dishes containing Mycobiotic agar (Difco(TM. The plates were incubated at 25°C for 4 weeks. The isolates were subcultured in Sabouraud dextrose agar supplemented with chloramphenicol (100mg/L and cultured on slides for posterior identification by their macro- and microscopic characteristics. Microsporum gypseum was isolated from two apparently healthy lionesses (1.6%, both kept in terrariums. The most prevalent contaminants were of the genera Penicillium (27.9%; Cladosporium (24.5%; Acremonium (12.1%; Scopulariopsis and Chrysosporium (9.8%; and Aspergillus (5.3%. The occurrence of dermatophytes in the haircoat of healthy wild felids, maintained in captivity, confirms their status as asymptomatic carriers and characterizes them as sources of infection for other animals and for humans.

  20. Bio-ethanol production from waste biomass of Pogonatherum crinitum phytoremediator: an eco-friendly strategy for renewable energy.

    Science.gov (United States)

    Waghmare, Pankajkumar R; Watharkar, Anuprita D; Jeon, Byong-Hun; Govindwar, Sanjay P

    2018-03-01

    In this study, we have described three steps to produce ethanol from Pogonatherum crinitum , which was derived after the treatment of textile wastewater. (a) Production of biomass: biomass samples collected from a hydroponic P. crinitum phytoreactor treating dye textile effluents and augmented with Ca-alginate immobilized growth-promoting bacterium, Bacillus pumilus strain PgJ (consortium phytoreactor), and waste sorghum husks were collected and dried. Compositional analysis of biomass (consortium phytoreactor) showed that the concentration of cellulose, hemicelluloses and lignin was 42, 30 and 17%, respectively, whereas the biomass samples without the growth-promoting bacterium (normal phytoreactor) was slightly lower, 40, 29 and 16%, respectively. (b) Hydrolysate (sugar) production: a crude sample of the fungus, Phanerochaete chrysosporium containing hydrolytic enzymes such as endoglucanase (53.25 U/ml), exoglucanase (8.38 U/ml), glucoamylase (115.04 U/ml), xylanase (83.88 U/ml), LiP (0.972 U/ml) and MnP (0.459 U/ml) was obtained, and added to consortium, normal and control phytoreactor derived biomass supplemented with Tween-20 (0.2% v/v). The hydrolysate of biomass from consortium phytoreactor produced maximum reducing sugar (0.93 g/l) than hydrolysates of normal phytoreactor biomass (0.82 g/l) and control phytoreactor biomass (0.79 g/l). FTIR and XRD analysis confirmed structural changes in treated biomass. (c) Ethanol production: the bioethanol produced from enzymatic hydrolysates of waste biomass of consortium and normal phytoreactor using Saccharomyces cerevisiae (KCTC 7296) was 42.2 and 39.4 g/l, respectively, while control phytoreactor biomass hydrolysate showed only 25.5 g/l. Thus, the amalgamation of phytoremediation and bioethanol production can be the truly environment-friendly way to eliminate the problem of textile dye along with bioenergy generation.

  1. REGULATION OF COAL POLYMER DEGRADATION BY FUNGI

    Energy Technology Data Exchange (ETDEWEB)

    John A. Bumpus

    1998-11-30

    A variety of lignin degrading fungi mediate solubilization and subsequent biodegradation of coal macromolecules (a.k.a. coal polymer) from highly oxidized low rank coals such as leonardites. It appears that oxalate or possibly other metal chelators (i.e., certain Krebs Cycle intermediates) mediate solubilization of low rank coals while extracellular oxidases have a role in subsequent oxidation of solubilized coal macromolecule. These processes are under nutritional control. For example, in the case of P. chrysosporium, solubilization of leonardite occurred when the fungi were cultured on most but not all nutrient agars tested and subsequent biodegradation occurred only in nutrient nitrogen limited cultures. Lignin peroxidases mediate oxidation of coal macromolecule in a reaction that is dependent on the presence of veratryl alcohol and hydrogen peroxide. Kinetic evidence suggests that veratryl alcohol is oxidized to the veratryl alcohol cation radical which then mediates oxidation of the coal macromolecule. Results by others suggest that Mn peroxidases mediate formation of reactive Mn{sup 3+} complexes which also mediate oxidation of coal macromolecule. A biomimetic approach was used to study solubilization of a North Dakota leonardite. It was found that a concentration {approximately}75 mM sodium oxalate was optimal for solubilization of this low rank coal. This is important because this is well above the concentration of oxalate produced by fungi in liquid culture. Higher local concentrations probably occur in solid agar cultures and thus may account for the observation that greater solubilization occurs in agar media relative to liquid media. The characteristics of biomimetically solubilized leonardite were similar to those of biologically solubilized leonardite. Perhaps our most interesting observation was that in addition to oxalate, other common Lewis bases (phosphate/hydrogen phosphate/dihydrogen phosphate and bicarbonate/carbonate ions) are able to mediate

  2. Preliminary geochemical, microbiological, and epidemiological investigations into possible linkages between lignite aquifers, pathogenic microbes, and kidney disease in northwestern Louisiana

    Science.gov (United States)

    Bunnell, Joseph E.; Bushon, Rebecca N.; Stoeckel, Donald M.; Gifford, Amie M.; Beck, Marisa; Lerch, Harry E.; Shi, Runhua; McGee, Benton; Hanson, Bradford C.; Kolak, Jonathan; Warwick, Peter D.

    2003-01-01

    In May 2002, 15 wells and four surface water sites were sampled, and in September 2002, those same wells and sites plus four additional surface sites were sampled in five parishes of northwestern Louisiana. A geographic information system (GIS) was used to select residential water wells for sampling. Well water samples were analyzed for pH, conductivity, organic compounds, and nutrient and anion concentrations. All samples were further tested for presence of fungi (maintained for up to 28 days and colonies counted and identified microscopically), and metal and trace element concentration by inductively-coupled plasma mass spectrometry and atomic emission spectrometry. Surface water samples were tested for dissolved oxygen and evidence of leptospiral bacterial presence. A polymerase chain reaction protocol was optimized for detection of pathogenic leptospires, and the sensitivity of the assay was determined. The Spearman correlation method was used to assess the association between the endpoints for these field/laboratory analyses and the incidence of cancer of the renal pelvis obtained from the Louisiana Tumor Registry. Significant associations were revealed between the cancer rate and the overall number of organic compounds, the fungi Zygomycetes, the nutrients PO4 and NH3, and thirteen chemical elements (As, B, Br, Cl, Cr, F, Li, Na, P, Rb, Se, Sr, W) from the well water as compared to the controls. Among the species of fungi from the total of 136 isolates were 12 Penicillium spp., at least two Aspergillus spp., a number of other genera (Alternaria sp., Eupenicillium lapidosum, Cladosporium sp., Epicoccum sp., Trichoderma sp., Paecilomyces sp., Chrysosporium sp., Chloridium sp.), and Zygomycetes, and Coelmycetes -- some of which are known mycotoxin producers. The two control wells yielded a mean of 6.5 (SD = 3.5355) individual isolates, while the mean number of isolates from all other sites was 7.6 (SD = 4.4866). Presence of human pathogenic leptospires was

  3. Gold nanoparticles/water-soluble carbon nanotubes/aromatic diamine polymer composite films for highly sensitive detection of cellobiose dehydrogenase gene

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Guangming, E-mail: zgming@hnu.cn [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Li Zhen, E-mail: happylizhen@yeah.ne [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China); Tang Lin; Wu Mengshi; Lei Xiaoxia; Liu Yuanyuan; Liu Can; Pang Ya; Zhang Yi [College of Environmental Science and Engineering, Hunan University, Changsha 410082 (China); Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082 (China)

    2011-05-01

    Highlights: > Gold nanoparticles/multiwalled carbon nanotubes/poly (1,5-naphthalenediamine) modified electrode was fabricated. > The sensor was applied for the detection of cellobiose dehydrogenase genes. > An effective method to distribute MWCNTs and attach to the electrode was proposed. > The composite films greatly improved the sensitivity and enhanced the DNA immobilization. > The DNA biosensor exhibited fairly high sensitivity and quite low detection limit. - Abstract: An electrochemical sensor based on gold nanoparticles (GNPs)/multiwalled carbon nanotubes (MWCNTs)/poly (1,5-naphthalenediamine) films modified glassy carbon electrode (GCE) was fabricated. The effectiveness of the sensor was confirmed by sensitive detection of cellobiose dehydrogenase (CDH) gene which was extracted from Phanerochaete chrysosporium using polymerase chain reaction (PCR). The monomer of 1,5-naphthalenediamine was electropolymerized on the GCE surface with abundant free amino groups which enhanced the stability of MWCNTs modified electrode. Congo red (CR)-functionalized MWCNTs possess excellent conductivity as well as high solubility in water which enabled to form the uniform and stable network nanostructures easily and created a large number of binding sites for electrodeposition of GNPs. The continuous GNPs together with MWCNTs greatly increased the surface area, conductivity and electrocatalytic activity. This electrode structure significantly improved the sensitivity of sensor and enhanced the DNA immobilization and hybridization. The thiol modified capture probes were immobilized onto the composite films-modified GCE by a direct formation of thiol-Au bond and horseradish peroxidase-streptavidin (HRP-SA) conjugates were labeled to the biotinylated detection probes through biotin-streptavidin bond. Scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to investigate the film assembly and DNA hybridization processes

  4. A kingdom-specific protein domain HMM library for improved annotation of fungal genomes

    Directory of Open Access Journals (Sweden)

    Oliver Stephen G

    2007-04-01

    Full Text Available Abstract Background Pfam is a general-purpose database of protein domain alignments and profile Hidden Markov Models (HMMs, which is very popular for the annotation of sequence data produced by genome sequencing projects. Pfam provides models that are often very general in terms of the taxa that they cover and it has previously been suggested that such general models may lack some of the specificity or selectivity that would be provided by kingdom-specific models. Results Here we present a general approach to create domain libraries of HMMs for sub-taxa of a kingdom. Taking fungal species as an example, we construct a domain library of HMMs (called Fungal Pfam or FPfam using sequences from 30 genomes, consisting of 24 species from the ascomycetes group and two basidiomycetes, Ustilago maydis, a fungal pathogen of maize, and the white rot fungus Phanerochaete chrysosporium. In addition, we include the Microsporidion Encephalitozoon cuniculi, an obligate intracellular parasite, and two non-fungal species, the oomycetes Phytophthora sojae and Phytophthora ramorum, both plant pathogens. We evaluate the performance in terms of coverage against the original 30 genomes used in training FPfam and against five more recently sequenced fungal genomes that can be considered as an independent test set. We show that kingdom-specific models such as FPfam can find instances of both novel and well characterized domains, increases overall coverage and detects more domains per sequence with typically higher bitscores than Pfam for the same domain families. An evaluation of the effect of changing E-values on the coverage shows that the performance of FPfam is consistent over the range of E-values applied. Conclusion Kingdom-specific models are shown to provide improved coverage. However, as the models become more specific, some sequences found by Pfam may be missed by the models in FPfam and some of the families represented in the test set are not present in FPfam

  5. Effect of biotic lignin decomposition on the fate of radiocesium-contaminated plant litter

    Energy Technology Data Exchange (ETDEWEB)

    Hashida, Shin-nosuke; Yoshihara, Toshihiro [Environmental Science Research Laboratory, Central Research Institute of Electric Power Industry, Abiko 1646, Abiko-shi, Chiba (Japan)

    2014-07-01

    .e., Phanerochaete chrysosporium (ATCC32629), Pleurotus pulmonarius (ATCC32078), Stropharia rugosoannulata (ATCC60010), and Trametes versicolor (ATCC96186). Quantitative assessment of mass loss, lignin degradation, and radiocesium distribution in the inoculated litter indicated that leaching of radiocesium could be facilitated by biotic lignin decomposition with white-rot fungi. Further data are required to elucidate the lignin substructure that allows absorption of radiocesium. (authors)

  6. A fungal P450 (CYP5136A3 capable of oxidizing polycyclic aromatic hydrocarbons and endocrine disrupting alkylphenols: role of Trp(129 and Leu(324.

    Directory of Open Access Journals (Sweden)

    Khajamohiddin Syed

    Full Text Available The model white rot fungus Phanerochaete chrysosporium, which is known for its versatile pollutant-biodegradation ability, possesses an extraordinarily large repertoire of P450 monooxygenases in its genome. However, the majority of these P450s have hitherto unknown function. Our initial studies using a genome-wide gene induction strategy revealed multiple P450s responsive to individual classes of xenobiotics. Here we report functional characterization of a cytochrome P450 monooxygenase, CYP5136A3 that showed common responsiveness and catalytic versatility towards endocrine-disrupting alkylphenols (APs and mutagenic/carcinogenic polycyclic aromatic hydrocarbons (PAHs. Using recombinant CYP5136A3, we demonstrated its oxidation activity towards APs with varying alkyl side-chain length (C3-C9, in addition to PAHs (3-4 ring size. AP oxidation involves hydroxylation at the terminal carbon of the alkyl side-chain (ω-oxidation. Structure-activity analysis based on a 3D model indicated a potential role of Trp(129 and Leu(324 in the oxidation mechanism of CYP5136A3. Replacing Trp(129 with Leu (W129L and Phe (W129F significantly diminished oxidation of both PAHs and APs. The W129L mutation caused greater reduction in phenanthrene oxidation (80% as compared to W129F which caused greater reduction in pyrene oxidation (88%. Almost complete loss of oxidation of C3-C8 APs (83-90% was observed for the W129L mutation as compared to W129F (28-41%. However, the two mutations showed a comparable loss (60-67% in C9-AP oxidation. Replacement of Leu(324 with Gly (L324G caused 42% and 54% decrease in oxidation activity towards phenanthrene and pyrene, respectively. This mutation also caused loss of activity towards C3-C8 APs (20-58%, and complete loss of activity toward nonylphenol (C9-AP. Collectively, the results suggest that Trp(129 and Leu(324 are critical in substrate recognition and/or regio-selective oxidation of PAHs and APs. To our knowledge, this is the first

  7. Genomics reveals traces of fungal phenylpropanoid-flavonoid metabolic pathway in the f ilamentous fungus Aspergillus oryzae.

    Science.gov (United States)

    Juvvadi, Praveen Rao; Seshime, Yasuyo; Kitamoto, Katsuhiko

    2005-12-01

    Fungal secondary metabolites constitute a wide variety of compounds which either play a vital role in agricultural, pharmaceutical and industrial contexts, or have devastating effects on agriculture, animal and human affairs by virtue of their toxigenicity. Owing to their beneficial and deleterious characteristics, these complex compounds and the genes responsible for their synthesis have been the subjects of extensive investigation by microbiologists and pharmacologists. A majority of the fungal secondary metabolic genes are classified as type I polyketide synthases (PKS) which are often clustered with other secondary metabolism related genes. In this review we discuss on the significance of our recent discovery of chalcone synthase (CHS) genes belonging to the type III PKS superfamily in an industrially important fungus, Aspergillus oryzae. CHS genes are known to play a vital role in the biosynthesis of flavonoids in plants. A comparative genome analyses revealed the unique character of A. oryzae with four CHS-like genes (csyA, csyB, csyC and csyD) amongst other Aspergilli (Aspergillus nidulans and Aspergillus fumigatus) which contained none of the CHS-like genes. Some other fungi such as Neurospora crassa, Fusarium graminearum, Magnaporthe grisea, Podospora anserina and Phanerochaete chrysosporium also contained putative type III PKSs, with a phylogenic distinction from bacteria and plants. The enzymatically active nature of these newly discovered homologues is expected owing to the conservation in the catalytic residues across the different species of plants and fungi, and also by the fact that a majority of these genes (csyA, csyB and csyD) were expressed in A. oryzae. While this finding brings filamentous fungi closer to plants and bacteria which until recently were the only ones considered to possess the type III PKSs, the presence of putative genes encoding other principal enzymes involved in the phenylpropanoid and flavonoid biosynthesis (viz

  8. Fungal Planet description sheets: 154-213.

    Science.gov (United States)

    Crous, P W; Wingfield, M J; Guarro, J; Cheewangkoon, R; van der Bank, M; Swart, W J; Stchigel, A M; Cano-Lira, J F; Roux, J; Madrid, H; Damm, U; Wood, A R; Shuttleworth, L A; Hodges, C S; Munster, M; de Jesús Yáñez-Morales, M; Zúñiga-Estrada, L; Cruywagen, E M; de Hoog, G S; Silvera, C; Najafzadeh, J; Davison, E M; Davison, P J N; Barrett, M D; Barrett, R L; Manamgoda, D S; Minnis, A M; Kleczewski, N M; Flory, S L; Castlebury, L A; Clay, K; Hyde, K D; Maússe-Sitoe, S N D; Chen, Shuaifei; Lechat, C; Hairaud, M; Lesage-Meessen, L; Pawłowska, J; Wilk, M; Sliwińska-Wyrzychowska, A; Mętrak, M; Wrzosek, M; Pavlic-Zupanc, D; Maleme, H M; Slippers, B; Mac Cormack, W P; Archuby, D I; Grünwald, N J; Tellería, M T; Dueñas, M; Martín, M P; Marincowitz, S; de Beer, Z W; Perez, C A; Gené, J; Marin-Felix, Y; Groenewald, J Z

    2013-12-01

    (Poland) and Stachybotrys oleronensis from Iris (France). Two species of Chrysosporium are described from Antarctica, namely C. magnasporum and C. oceanitesii. Finally, Licea xanthospora is described from Australia, Hypochnicium huinayensis from Chile and Custingophora blanchettei from Uruguay. Novel genera of Ascomycetes include Neomycosphaerella from Pseudopentameris macrantha (South Africa), and Paramycosphaerella from Brachystegia sp. (Zimbabwe). Novel hyphomycete genera include Pseudocatenomycopsis from Rothmannia (Zambia), Neopseudocercospora from Terminalia (Zambia) and Neodeightoniella from Phragmites (South Africa), while Dimorphiopsis from Brachystegia (Zambia) represents a novel coelomycetous genus. Furthermore, Alanphillipsia is introduced as a new genus in the Botryosphaeriaceae with four species, A. aloes, A. aloeigena and A. aloetica from Aloe spp. and A. euphorbiae from Euphorbia sp. (South Africa). A new combination is also proposed for Brachysporium torulosum (Deightoniella black tip of banana) as Corynespora torulosa. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa.

  9. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review

    Energy Technology Data Exchange (ETDEWEB)

    Haritash, A.K., E-mail: akharitash@gmail.com [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India); Kaushik, C.P. [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana (India)

    2009-09-30

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H{sub 2}O, CO{sub 2} (aerobic) or CH{sub 4} (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions

  10. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review

    International Nuclear Information System (INIS)

    Haritash, A.K.; Kaushik, C.P.

    2009-01-01

    PAHs are aromatic hydrocarbons with two or more fused benzene rings with natural as well as anthropogenic sources. They are widely distributed environmental contaminants that have detrimental biological effects, toxicity, mutagenecity and carcinogenicity. Due to their ubiquitous occurrence, recalcitrance, bioaccumulation potential and carcinogenic activity, the PAHs have gathered significant environmental concern. Although PAH may undergo adsorption, volatilization, photolysis, and chemical degradation, microbial degradation is the major degradation process. PAH degradation depends on the environmental conditions, number and type of the microorganisms, nature and chemical structure of the chemical compound being degraded. They are biodegraded/biotransformed into less complex metabolites, and through mineralization into inorganic minerals, H 2 O, CO 2 (aerobic) or CH 4 (anaerobic) and rate of biodegradation depends on pH, temperature, oxygen, microbial population, degree of acclimation, accessibility of nutrients, chemical structure of the compound, cellular transport properties, and chemical partitioning in growth medium. A number of bacterial species are known to degrade PAHs and most of them are isolated from contaminated soil or sediments. Pseudomonas aeruginosa, Pseudomons fluoresens, Mycobacterium spp., Haemophilus spp., Rhodococcus spp., Paenibacillus spp. are some of the commonly studied PAH-degrading bacteria. Lignolytic fungi too have the property of PAH degradation. Phanerochaete chrysosporium, Bjerkandera adusta, and Pleurotus ostreatus are the common PAH-degrading fungi. Enzymes involved in the degradation of PAHs are oxygenase, dehydrogenase and lignolytic enzymes. Fungal lignolytic enzymes are lignin peroxidase, laccase, and manganese peroxidase. They are extracellular and catalyze radical formation by oxidation to destabilize bonds in a molecule. The biodegradation of PAHs has been observed under both aerobic and anaerobic conditions and the rate can

  11. Biotransformation of Domestic Wastewater Treatment Plant Sludge by Two-Stage Integrated Processes -Lsb & Ssb

    Directory of Open Access Journals (Sweden)

    Md. Zahangir Alam, A. H. Molla and A. Fakhru’l-Razi

    2012-10-01

    Full Text Available The study of biotransformation of domestic wastewater treatment plant (DWTP sludge was conducted in laboratory-scale by two-stage integrated process i.e. liquid state bioconversion (LSB and solid state bioconversion (SSB processes. The liquid wastewater sludge [4% w/w of total suspended solids (TSS] was treated by mixed filamentous fungi Penicillium corylophilum and Aspergillus niger, isolated, screened and mixed cultured in terms of their higher biodegradation potential to wastewater sludge. The biosolids was increased to about 10% w/w. Conversely, the soluble [i.e. Total dissolve solid (TDS] and insoluble substances (TSS in treated supernatant were decreased effectively in the LSB process. In the developed LSB process, 93.8 g kg-1of biosolids were enriched with fungal biomass protein and nutrients (NPK, and 98.8% of TSS, 98.2% of TDS, 97.3% of turbidity, 80.2% of soluble protein, 98.8% of reducing sugar and 92.7% of chemical oxygen demand (COD in treated sludge supernatant were removed after 8 days of treatment. Specific resistance to filtration (1.39x1012 m/kg was decreased tremendously by the microbial treatment of DWTP sludge after 6 days of fermentation. The treated biosolids in DWTP sludge was considered as pretreated resource materials for composting and converted into compost by SSB process. The SSB process was evaluated for composting by monitoring the microbial growth and its subsequent roles in biodegradation in composting bin (CB. The process was conducted using two mixed fungal cultures, Trichoderma harzianum with Phanerochaete chrysosporium 2094 and (T/P and T. harzianum and Mucor hiemalis (T/M; and two bulking materials, sawdust (SD and rice straw (RS. The most encouraging results of microbial growth and subsequent solid state bioconversion were exhibited in the RS than the SD. Significant decrease of the C/N ratio and germination index (GI were attained as well as the higher value of glucosamine was exhibited in compost; which

  12. Deterioration and spoilage of peanuts and desiccated coconuts from two sub-Saharan tropical East African countries due to the associated mycobiota and their degradative enzymes.

    Science.gov (United States)

    Ismail, M A

    2001-01-01

    A broad variety of fungi (84 species belonging to 36 genera) were identified with more taxa infesting peanut seed samples from two tropical countries (29 genera and 61 species) compared to those found in desiccated coconuts (20 genera and 55 species) on both DRBC and DG18 media. This may be due to the higher moisture levels in peanuts (5.07-7.97%) compared with coconuts (1.5-4.17%). More taxa and propagules were recovered on DG18 in both cases. The dominant fungi from both substrates on both isolation media were Aspergillus and Penicillium, with other fungi from only one substrate/medium. The aflatoxigenic species (A. flavus) dominated Kenyan samples more so than Ugandan samples on both substrates. However only 71.5% and 87.5% of the peanut kernels, on DRBC and DG18, respectively, were found to be infested with fungi. The aflatoxigenic species (A. flavus/parasiticus) were found in 75% of the samples, however only 15.75% and 13% of the kernels analyzed were infested. The most frequently isolated species from peanuts were A. niger followed by A. flavus and M. phaseolina. E. repens, E. amstelodami, E. rubrum and E. chevalieri dominated peanut seeds on DG18, and R. stolonifer, A. parasiticus, F. solani, L. theobromae and P. chrysogenum on DRBC. The mean count of fungal propagules in coconut samples were approximately 0.7 x 10(3) and 0.8 x 10(3) on DRBC and DG18, respectively, with a high proportion of those propagules recorded for the aflatoxigenic species (about 0. 17 x 10(3) and 0.25 x 10(3) colonies/g). The mycobiota of desiccated coconut was dominated by A. niger, A. flavus and P. chrysogenum. Also A. ochraceus, P. waksmanii, Paecilomyces variotii, P. islandicum and R. mucilaginosa were more frequent on DRBC, while, species of Cladosporium. Chrysosporium and Eurotium were more frequent on DG18. Enzyme indices (or the activities) for each specific strain, when determined after 5 and 8 days of incubation, proved to be similar. A recommendation is given. The

  13. Fungal Planet description sheets: 400-468.

    Science.gov (United States)

    Crous, P W; Wingfield, M J; Richardson, D M; Le Roux, J J; Strasberg, D; Edwards, J; Roets, F; Hubka, V; Taylor, P W J; Heykoop, M; Martín, M P; Moreno, G; Sutton, D A; Wiederhold, N P; Barnes, C W; Carlavilla, J R; Gené, J; Giraldo, A; Guarnaccia, V; Guarro, J; Hernández-Restrepo, M; Kolařík, M; Manjón, J L; Pascoe, I G; Popov, E S; Sandoval-Denis, M; Woudenberg, J H C; Acharya, K; Alexandrova, A V; Alvarado, P; Barbosa, R N; Baseia, I G; Blanchette, R A; Boekhout, T; Burgess, T I; Cano-Lira, J F; Čmoková, A; Dimitrov, R A; Dyakov, M Yu; Dueñas, M; Dutta, A K; Esteve-Raventós, F; Fedosova, A G; Fournier, J; Gamboa, P; Gouliamova, D E; Grebenc, T; Groenewald, M; Hanse, B; Hardy, G E St J; Held, B W; Jurjević, Ž; Kaewgrajang, T; Latha, K P D; Lombard, L; Luangsa-Ard, J J; Lysková, P; Mallátová, N; Manimohan, P; Miller, A N; Mirabolfathy, M; Morozova, O V; Obodai, M; Oliveira, N T; Ordóñez, M E; Otto, E C; Paloi, S; Peterson, S W; Phosri, C; Roux, J; Salazar, W A; Sánchez, A; Sarria, G A; Shin, H-D; Silva, B D B; Silva, G A; Smith, M Th; Souza-Motta, C M; Stchigel, A M; Stoilova-Disheva, M M; Sulzbacher, M A; Telleria, M T; Toapanta, C; Traba, J M; Valenzuela-Lopez, N; Watling, R; Groenewald, J Z

    2016-06-01

    ), Ochroconis dracaenae (on Dracaena reflexa), Rasamsonia columbiensis (air of a hotel conference room), Paecilomyces tabacinus (on Nicotiana tabacum), Toxicocladosporium hominis (from human broncoalveolar lavage fluid), Nothophoma macrospora (from respiratory secretion of a patient with pneumonia), and Penidiellopsis radicularis (incl. Penidiellopsis gen. nov.) from a human nail. Novel taxa described from Malaysia include Prosopidicola albizziae (on Albizzia falcataria), Proxipyricularia asari (on Asarum sp.), Diaporthe passifloricola (on Passiflora foetida), Paramycoleptodiscus albizziae (incl. Paramycoleptodiscus gen. nov.) on Albizzia falcataria, and Malaysiasca phaii (incl. Malaysiasca gen. nov.) on Phaius reflexipetalus. Two species are newly described from human patients in the Czech Republic, namely Microascus longicollis (from toenails of patient with suspected onychomycosis), and Chrysosporium echinulatum (from sole skin of patient). Furthermore, Alternaria quercicola is described on leaves of Quercus brantii (Iran), Stemphylium beticola on leaves of Beta vulgaris (The Netherlands), Scleroderma capeverdeanum on soil (Cape Verde Islands), Scleroderma dunensis on soil, and Blastobotrys meliponae from bee honey (Brazil), Ganoderma mbrekobenum on angiosperms (Ghana), Geoglossum raitviirii and Entoloma kruticianum on soil (Russia), Priceomyces vitoshaensis on Pterostichus melas (Carabidae) (Bulgaria) is the only one for which the family is listed, Ganoderma ecuadoriense on decaying wood (Ecuador), Thyrostroma cornicola on Cornus officinalis (Korea), Cercophora vinosa on decorticated branch of Salix sp. (France), Coprinus pinetorum, Coprinus littoralis and Xerocomellus poederi on soil (Spain). Two new genera from Colombia include Helminthosporiella and Uwemyces on leaves of Elaeis oleifera. Two species are described from India, namely Russula intervenosa (ectomycorrhizal with Shorea robusta), and Crinipellis odorata (on bark of Mytragyna parviflora). Novelties from Thailand