WorldWideScience

Sample records for chrysoberyl

  1. Radioactivity of neutron-irradiated cat's-eye chrysoberyls

    Energy Technology Data Exchange (ETDEWEB)

    Tang, S.M. E-mail: phytsm@leonis.nus.edu.sg; Tay, T.S

    1999-04-02

    The recent report of marketing of radioactive chrysoberyl cat's-eyes in South-East Asian markets has led us to use an indirect method to estimate the threat to health these color-enhanced gemstones may pose if worn close to skin. We determined the impurity content of several cat's-eye chrysoberyls from Indian States of Orissa and Kerala using PIXE, and calculated the radioactivity that would be generated from these impurities and the constitutional elements if a chrysoberyl was irradiated by neutrons in a nuclear reactor for color enhancement. Of all the radioactive nuclides that could be created by neutron irradiation, only four ({sup 46}Sc, {sup 51}Cr, {sup 54}Mn and {sup 59}Fe) would not have cooled down within a month after irradiation to the internationally accepted level of specific residual radioactivity of 2 nCi/g. The radioactivity of {sup 46}Sc, {sup 51}Cr and {sup 59}Fe would only fall to this safe limit after 15 months and that of {sup 54}Mn could remain above this limit for several years.

  2. The sub-bandgap energy loss satellites in the RIXS spectra of beryllium compounds

    International Nuclear Information System (INIS)

    Kuusik, I.; Kaeaembre, T.; Kooser, K.; Pustovarov, V.; Ivanov, V.; Kukk, E.; Kikas, A.

    2011-01-01

    Research highlights: → Be 1s RIXS spectra have been measured in Be containing crystals phenakite and chrysoberyl. → A strong energy loss sideband to the elastic scattering peak similar to BeO is found in both minerals. → Additionally the Si 2p RIXS spectra of phenakite also show a strong energy loss sideband to the elastic scattering peak. → The energy loss shoulder appears to result from lattice relaxation in the absorption site. - Abstract: Resonant X-ray inelastic scattering spectra have been measured in BeO, phenakite (Be 2 SiO 4 ) and chrysoberyl (BeAl 2 O 4 ) with the excitation energy near the beryllium K edge. The RIXS spectra excited in the vicinity of the Be 1s core resonance show two principal features: the scattering on a valence excitation (which at higher excitation energies verges into the characteristic K α emission), and a remarkably strong energy loss sideband to the elastic scattering peak. The energy loss shoulder appears to result from lattice relaxation in the absorption site. The comparison of the RIXS spectra of phenakite, chrysoberyl and BeO shows that the strength of the low energy sideband differs greatly; it is strongest in BeO and weakest in phenakite. The Si 2p RIXS spectra of phenakite also display a similar strong sub-bandgap energy loss tail. To gain further insight to this process, transitions in a system with a single vibrational mode have been modelled. The phonon relaxation has been simulated empirically by 'smearing' the photoabsortion-populated vibrational levels with lower levels. This simple model is able to qualitatively explain this wide energy loss shoulder.

  3. The sub-bandgap energy loss satellites in the RIXS spectra of beryllium compounds

    Energy Technology Data Exchange (ETDEWEB)

    Kuusik, I., E-mail: ivar@fi.tartu.ee [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Kaeaembre, T. [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Kooser, K. [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia); Department of Physics and Astronomy, University of Turku, Turku (Finland); Pustovarov, V.; Ivanov, V. [Ural State Technical University-UPI, Yekaterinburg (Russian Federation); Kukk, E. [Department of Physics and Astronomy, University of Turku, Turku (Finland); Kikas, A. [Institute of Physics, University of Tartu, Riia 142, 51014 Tartu (Estonia)

    2011-07-15

    Research highlights: {yields} Be 1s RIXS spectra have been measured in Be containing crystals phenakite and chrysoberyl. {yields} A strong energy loss sideband to the elastic scattering peak similar to BeO is found in both minerals. {yields} Additionally the Si 2p RIXS spectra of phenakite also show a strong energy loss sideband to the elastic scattering peak. {yields} The energy loss shoulder appears to result from lattice relaxation in the absorption site. - Abstract: Resonant X-ray inelastic scattering spectra have been measured in BeO, phenakite (Be{sub 2}SiO{sub 4}) and chrysoberyl (BeAl{sub 2}O{sub 4}) with the excitation energy near the beryllium K edge. The RIXS spectra excited in the vicinity of the Be 1s core resonance show two principal features: the scattering on a valence excitation (which at higher excitation energies verges into the characteristic K{sub {alpha}} emission), and a remarkably strong energy loss sideband to the elastic scattering peak. The energy loss shoulder appears to result from lattice relaxation in the absorption site. The comparison of the RIXS spectra of phenakite, chrysoberyl and BeO shows that the strength of the low energy sideband differs greatly; it is strongest in BeO and weakest in phenakite. The Si 2p RIXS spectra of phenakite also display a similar strong sub-bandgap energy loss tail. To gain further insight to this process, transitions in a system with a single vibrational mode have been modelled. The phonon relaxation has been simulated empirically by 'smearing' the photoabsortion-populated vibrational levels with lower levels. This simple model is able to qualitatively explain this wide energy loss shoulder.

  4. Characterization of emerald from Gujar Kili, Swat, Pakistan

    International Nuclear Information System (INIS)

    Qureshi, A.A.; Akram, M.; Khattak, N.U.; Khan, H.A.

    1997-01-01

    The green gem variety of beryl family having Cr as colouring agent is known as emerald. Thirteen emerald occurrences are known from northern Pakistan. These occurrences are in Mohamand Agency, Bajuar Agency, Swat District, Indus Kohistan and Gilgit which are located exclusively in the metamorphosed ophiolitic melange of the Indus Suture Zone. The ophiolitic rocks of this suture are the source of Cr which colours the beryl to make it emerald. Studies have been carried out for the characterisation of emerald from one locality, Gujar Kili in Swat district, using petrographic, XRD, XRF and fission track techniques. The Gujar Kili emerald is of green to deep green colour good quality gemstone and contains inclusions in some cases. In general, the Gujar Kili emerald has high Mg, Fe, Cr, V and Al values as compared to average composition of natural emeralds of Swat District. Two mineralogical phases, namely beryl and chrysoberyl have been identified in the four Gujar Kili samples analysed by us. The XRD data for the beryl and chrysoberyl is also presented. The Cr which colours the beryl to make it emerald, does not substitute any element in the beryl structure, rather it is present as an impurity in the crystal matrix. A new etchant to reveal fission tracks in a very short time is also being reported in this paper. (author)

  5. Electron excitations in BeAl2O4, Be2SiO4 and Be3Al2Si6O18 crystals

    International Nuclear Information System (INIS)

    Ivanov, V.Yu.; Pustovarov, V.A.; Shlygin, E.S.; Korotaev, A.V.; Kruzhalov, A.V.

    2005-01-01

    Low-temperature (T = 7 K) time-resolved selectively photoexcited luminescence spectra (2-6 eV) and luminescence excitation spectra (8-35 eV) of wide-bandgap chrysoberyl BeAl 2 O 4 , phenacite Be 2 SiO 4 , and beryl Be 3 Al 2 Si 6 O 18 crystals have been studied using time-resolved VUV spectroscopy. Both the intrinsic luminescence of the crystals and the luminescence associated with structural defects were assigned. Energy transfer to impurity luminescence centers in alexandrite and emerald was investigated. Luminescence characteristics of stable crystal lattice defects were probed by 3.6-MeV accelerated helium ion beams [ru

  6. Electron magnetic resonance investigation of chromium diffusion in yttria powders

    Energy Technology Data Exchange (ETDEWEB)

    Biasi, R.S. de, E-mail: rsbiasi@ime.eb.b [Secao de Engenharia Mecanica e de Materiais, Instituto Militar de Engenharia, Pr. General Tiburcio, 80, 22290-270 Rio de Janeiro, RJ (Brazil); Grillo, M.L.N., E-mail: mluciag@uerj.b [Instituto de Fisica, Universidade do Estado do Rio de Janeiro, 20550-013 Rio de Janeiro, RJ (Brazil)

    2010-03-01

    The electron magnetic resonance (EMR) technique was used to investigate the diffusion of chromium in yttria (Y{sub 2}O{sub 3}) powders. The EMR absorption intensity was measured for several annealing times and three different temperatures of isothermal annealing: 1273, 1323 and 1373 K. The activation temperature for diffusion, calculated from the experimental data using a theoretical model based on the Fick equation, was found to be E{sub A}=342+-5 kJ mol{sup -1}. This value is larger than the activation energy for the diffusion of chromium in rutile (TiO{sub 2}), periclase (MgO) and cobalt monoxide (CoO) and smaller than the activation energy for the diffusion of chromium in chrysoberyl (BeAl{sub 2}O{sub 4}).

  7. Detection of beryllium in oxides and silicates by electron-probe microanalysis

    Directory of Open Access Journals (Sweden)

    V. V. Khiller

    2017-12-01

    Full Text Available The author developed the technique of electron-probe microanalysis for quantitative determination of beryllium content, providing the example of studying natural minerals (aluminosilicates and oxides. This technique allowed to obtain a quantitative content of beryllium (in combination with other elements in the emeralds of the Mariinsky beryllium deposit and in zonal mariinskite-chrysoberyl from the chromitites of the Bazhenov ophiolite complex. All analyzes of minerals were performed on a CAMECA SX 100 electron probe microanalyzer with five wave spectrometers (IGG UB RAS. The pressure in the sample chamber was 2 × 10–4 Pa, in the electron gun region – 4 × 10–6 Pa, in wave spectrometers – 7 Pa. Accelerating voltage was 10 kV, the current of absorbed electrons on the Faraday cylinder (beam current was 100–150 nA. Diameter of the electron beam focused on the sample was 2 μm, the angle of x-ray extraction was 40°. The spectra were obtained on wave spectrometers with TAP crystal analyzers (2d = 25.745 Å, LPET (2d = 8.75 Å, LiF (2d = 4.0226 Å, and PC3 (2d = 211.4 Å, a specialized crystal for determining the content of beryllium and boron; the author carried out all the elements measurements along the Kα-lines. To determine position of the analytical peak and the background from two sides with the minimum possible spectral overlap, the author preliminarily recorded spectra on wave spectrometers. The obtained microprobe analyzes of minerals with quantitative determination of beryllium converge well with the available theoretical compositions of beryl and chrysoberyl, which indicates the high efficiency of the developed technique. By using this technique, we can relatively quickly and reliably determine the quantitative content of beryllium in natural silicates and oxides, which is an acute need for geological researchers studying the mineralogy of beryllium deposits.

  8. Features of phenacite mineralization from the Ural emerald mines

    Directory of Open Access Journals (Sweden)

    M. P. Popov

    2017-09-01

    Full Text Available The authors consider the problems of development of phenacite mineralization at the Ural Emerald Mines, which is rather well developed and described in the Mariinsky (Malyshevsky and Sretensky (Sverdlovsk emerald-beryllium deposits. Phenacite is widespread in many beryllium deposits, but crystals of jewelry quality, with such large sizes as at the Emerald Mines, form rarely. Despite the prescription of the discovery (1833, and because of the rare occurrence of jewelry quality of crystals, and the presence of more expensive and valuable stones – emeralds and alexandrites – in deposits of the Emerald mines, phenacite remains almost unknown in the precious stones market, and especially abroad. Phenacite mineralization mostly occurs in the micaceous veins represented by gray and greenish-gray phlogopite. Distribution of phenacite in the micaceous veins is extremely uneven. Mineralization is typically nesting. High content of phenacite appears in the micaceous veins, mineral composition of which is mostly phlogopite, veins and concretions of beryllium-containing margarite (B-margarite and chlorite. Content of phenacite is low in the micaceous veins that include phlogopite, plagioclase, beryl, fluorite, smoky quartz. At the Sretensky deposit is located a vein that refers to a new type of ore bodies of the chrysoberyl-phenacite composition lying in ultrabasic rocks. Unlike emerald-bearing micaceous veins that have a northwestern spread, the chrysoberyl-phenacite ore bodies are oriented in the near-latitudinal direction and have a northern incidence at an angle of 75°–80°. The most common form of phenacite crystals on the Emerald Mines is rhombohedral and short columned. Crystals have a large number of faces. The usual shapes are a hexagonal prism and rhombohedrons. Twin crystals are common, druses, columnar aggregates, and spherulites are characteristic. Phenacite can be colorless or slightly colored in wine yellow, sometimes pinkish, light

  9. Neutron beam applications - Development of single crystal structure analysis technique using the HANARO neutron four circle diffractometer

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Il Hwan; Kim, Moon Jib; Kim, Jin Gyu [Chungnam National University, Taejon (Korea)

    2000-04-01

    As the four circle diffractometer (FCD) has been set up in HANARO, it has become possible to study the single crystal structures by means of the neutron diffraction. Taking account of the geometry of the FCD, a program for the control of te FCD and neutron data acquisition operating under Windows' circumstance has been accomplished. Also, a computer program which can automatically measure the diffraction intensity data has been developed. All data obtained from the FCD are processed automatically for further work and a software for the single crystal structure analyses has been prepared. A KC1 single crystal was selected as first test sample for a structure analysis had been successfully performed on the FCD using in-house developed program and accordingly their functionings with precision were confirmed. For regular single crystal diffraction experiments, the structure analyses of chrysoberyl and Zr(Y)0{sub 1.87} single crystals were performed using both neutron and X-ray diffraction methods, and the result showed that the neutron diffraction work is superior to the X-ray one from the viewpoint of certain crystallographic information obtainable only from the former one. 24 refs., 15 figs., 15 tabs. (Author)