WorldWideScience

Sample records for chromogranin-b deficient mice

  1. Chromogranin B and Secretogranin II in transgenic mice overexpressing human APP751 with the London (V717I) and Swedish (K670M/N671L) mutations and in Alzheimer patients.

    Science.gov (United States)

    Willis, Michael; Prokesch, Manuela; Hutter-Paier, Birgit; Windisch, Manfred; Stridsberg, Mats; Mahata, Sushil K; Kirchmair, Rudolf; Wietzorrek, Georg; Knaus, Hans-Günther; Jellinger, Kurt; Humpel, Christian; Marksteiner, Josef

    2008-03-01

    Chromogranin B and secretogranin II are major soluble constituents of large dense core vesicles of presynaptic structures and have been found in neuritic plaques of Alzheimer patients. We examined the distribution and expression of these peptides in both transgenic mice over expressing human amyloid-beta protein precursor APP751 with the London (V717I) and Swedish (K670M/N671L) mutations and in human post-mortem brain. In transgenic mice, the number of amyloid-beta plaques and chromogranin immunopositive plaques increased from 6 to 12 months. About 60% of amyloid-beta plaques were associated with chromogranin B and about 40% with secretogranin II. Chromogranin immunoreactivity appeared mainly as swollen dystrophic neurites. Neither synaptophysin- nor glial fibrillary acidic protein- immunoreactivity was expressed in chromogranin immunoreactive structures at any timepoint. Density of chromogranin peptides in hippocampal structures did not change in transgenic animals at any timepoint, even though animals had a poorer performance in the Morris water maze task. In conclusion, our findings in transgenic animals partly resembled findings in Alzheimer patients. Chromogranin peptides were associated with amyloid-beta plaques, but were not reduced in specific brain areas as previously reported by our group. Therefore specific changes of chromogranin peptides observed in Alzheimer patients can be related to amyloid-beta pathology only.

  2. Detection of chromogranins A and B in endocrine tissues with radioactive and biotinylated oligonucleotide probes

    International Nuclear Information System (INIS)

    Lloyd, R.V.; Jin, L.; Fields, K.

    1990-01-01

    We analyzed the distribution of chromogranins A and B in normal and neoplastic endocrine tissues with secretory granules using 35 S-labeled and biotin-labeled oligonucleotide probes by in situ hybridization (ISH). Both radioactive and nonradioactive probes detected messenger RNAs (mRNAs) in frozen and paraffin tissue sections. Endocrine tissues with variable immunoreactivities for chromogranin A protein, such as small-cell lung carcinomas, neuroblastomas, insulinomas, and parathyroid adenomas, expressed the mRNA for chromogranins A and B in most cells. Some technical problems with the biotinylated probes included nonspecific nuclear staining and endogenous alkaline phosphatase, which was not completely abolished by levamisole pretreatment. A differential distribution of chromogranins A and B was seen in pituitary prolactinomas, which expressed abundant chromogranin B but not chromogranin A mRNAs, and in parathyroid adenomas, which expressed abundant chromogranin A but only small amounts of chromogranin B mRNAs. These results indicate that ISH can be used to detect chromogranins A and B in endocrine tissues with radioactive and biotinylated oligonucleotide probes and that the mRNAs for chromogranin A and B are demonstrable in some tumors even when the chromogranin proteins cannot be detected by immunohistochemistry

  3. Detection of chromogranins A and B in endocrine tissues with radioactive and biotinylated oligonucleotide probes

    Energy Technology Data Exchange (ETDEWEB)

    Lloyd, R.V.; Jin, L.; Fields, K. (Univ. of Michigan, Ann Arbor (USA))

    1990-01-01

    We analyzed the distribution of chromogranins A and B in normal and neoplastic endocrine tissues with secretory granules using {sup 35}S-labeled and biotin-labeled oligonucleotide probes by in situ hybridization (ISH). Both radioactive and nonradioactive probes detected messenger RNAs (mRNAs) in frozen and paraffin tissue sections. Endocrine tissues with variable immunoreactivities for chromogranin A protein, such as small-cell lung carcinomas, neuroblastomas, insulinomas, and parathyroid adenomas, expressed the mRNA for chromogranins A and B in most cells. Some technical problems with the biotinylated probes included nonspecific nuclear staining and endogenous alkaline phosphatase, which was not completely abolished by levamisole pretreatment. A differential distribution of chromogranins A and B was seen in pituitary prolactinomas, which expressed abundant chromogranin B but not chromogranin A mRNAs, and in parathyroid adenomas, which expressed abundant chromogranin A but only small amounts of chromogranin B mRNAs. These results indicate that ISH can be used to detect chromogranins A and B in endocrine tissues with radioactive and biotinylated oligonucleotide probes and that the mRNAs for chromogranin A and B are demonstrable in some tumors even when the chromogranin proteins cannot be detected by immunohistochemistry.

  4. Chromogranins - new sensitive markers for neuroendocrine tumors

    International Nuclear Information System (INIS)

    Eriksson, B.; Arnberg, H.; Oeberg, K.; Hellman, U.; Lundqvist, G.; Wernstedt, C.; Wilander, E.; Uppsala Hospital; Uppsala Hospital

    1989-01-01

    Chromogranins A, B and C, proteins that are costored and coreleased with peptides and amines, have been identified in a variety of endocrine and nervous tissues, both normal and neoplastic. We examined the secretion of chromogranin A and chromogranin A+B by hormone-producing tumors in patients with endocrine pancreatic tumors (EPT), carcinoid tumors, pheochromocytomas and small cell lung cancer (SCLC). Radioimmunoassay (RIA) of the plasma/serum concentrations of chromogranin A+B showed a greater sensitivity than RIA of chromogranin A alone. All patients with EPT, carcinoids and pheochromocytomas had increased levels of chromogranin A+B, whereas a small number of the patients (5/18 with EPT and 1/3 with pheochromocytomas) had normal levels of chromogranin A. Also in immunocytochemical stainings, our polyclonal antiserum detecting both chromogranin A and B showed a greater sensitivity than other available antisera against chromogranin A, B and C. (orig.)

  5. Exhaustion of CTL memory and recrudescence of viremia in lymphocytic choriomeningitis virus-infected MHC class II-deficient mice and B cell-deficient mice

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Johansen, J; Marker, O

    1996-01-01

    To study the contribution of CD4+ T cells and B cells to antiviral immunity and long term virus control, MHC class II-deficient and B cell-deficient mice were infected with lymphocytic choriomeningitis virus. In class II-deficient mice, which lack CD4+ T cells, the primary CTL response is virtually...... this phenomenon could reflect participation of B cells and/or Abs in long term virus control, similar experiments were performed with mice that do not have mature B cells because of a disrupted membrane exon of the mu chain gene. In these mice, the cell-mediated immune response was slightly delayed, but transient...... and that in their absence, the virus-specific CTL potential becomes exhausted. Together our results indicate that while CD8+ cells play a dominant role in acute virus control, all three major components of the immune system are required for long term virus control....

  6. Severe osteogenesis imperfecta in cyclophilin B-deficient mice.

    Directory of Open Access Journals (Sweden)

    Jae Won Choi

    2009-12-01

    Full Text Available Osteogenesis Imperfecta (OI is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1. Although P3H1 is known to hydroxylate a single residue (pro-986 in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB, encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB-deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB-deficient cells and tissues from CypB-knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone.

  7. Severe osteogenesis imperfecta in cyclophilin B-deficient mice.

    Science.gov (United States)

    Choi, Jae Won; Sutor, Shari L; Lindquist, Lonn; Evans, Glenda L; Madden, Benjamin J; Bergen, H Robert; Hefferan, Theresa E; Yaszemski, Michael J; Bram, Richard J

    2009-12-01

    Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB-deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB-deficient cells and tissues from CypB-knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone.

  8. Immunity to sporozoite-induced malaria infection in mice. I. The effect of immunization of T and B cell-deficient mice

    International Nuclear Information System (INIS)

    Chen, D.H.; Tigelaar, R.E.; Weinbaum, F.I.

    1977-01-01

    The cellular basis of immunity to sporozoites was investigated by examining the effect of immunization of T and B cell-deficient C57BL/6N x BALB/c AnN F 1 (BLCF 1 ) mice compared to immunocompetent controls. Immunization of T cell-deficient (ATX-BM-ATS) BLCF 1 mice with x-irradiated sporozoites did not result in the generation of protective immunity. The same immunization protocols protected all immunocompetent controls. In contrast, B cell-deficient (μ-suppressed) BLCF 1 mice were protected by immunization in the majority of cases. The absence of detectable serum circumsporozoite precipitins or sporozoite neutralizing activity in the μ-suppressed mice that resisted a sporozoite challenge suggests a minor role for these humoral factors in protection. These data demonstrate a preeminent role for T cells in the induction of protective immunity in BLCF 1 mice against a P. berghei sporozoite infection

  9. Increased numbers of spleen colony forming units in B cell deficient CBA/N mice

    International Nuclear Information System (INIS)

    Wiktor-Jedrzejczak, W.; Krupienicz, A.; Scher, I.

    1986-01-01

    The formation of exogenous and endogenous spleen colonies was studied in immune-defective mice expressing the CBA/N X-linked xid gene. Bone marrow and spleen cells of immune deficient mice formed increased numbers of eight-day exogenous spleen colonies when transferred to either normal or B cell deficient lethally irradiated recipients. Moreover, defective mice showed increased formation of five-day endogenous spleen colonies (derived from transient endogenous colony forming units; T-CFU) and of ten-day endogenous spleen colonies (derived from CFU-S). Among the possible mechanisms responsible for the observed effects, the most probable appears the one in which decreased numbers of B cell precursors stimulate stem cell pools through a feedback mechanism. (orig.) [de

  10. Effects of Mild and Severe Vitamin B Deficiencies on the Meiotic Maturation of Mice Oocytes

    Directory of Open Access Journals (Sweden)

    Ai Tsuji

    2017-03-01

    Full Text Available We investigated the effects of vitamin B 1 deficiency on the meiosis maturation of oocytes. Female Crl:CD1 (ICR mice were fed a 20% casein diet (control group or a vitamin B 1 –free diet (test group. The vitamin B 1 concentration in ovary was approximately 30% lower in the test group than in the control group. Oocyte meiosis was not affected by vitamin B 1 deficiency when the deficiency was not accompanied by body weight loss. On the contrary, frequency of abnormal oocyte was increased by vitamin B 1 deficiency when deficiency was accompanied by body weight loss (referred to as severe vitamin B 1 deficiency; frequency of abnormal oocyte, 13.8% vs 43.7%, P  = .0071. The frequency of abnormal oocytes was decreased by refeeding of a vitamin B 1 –containing diet (13.9% vs 22.9%, P  = .503. These results suggest that severe vitamin B 1 deficiency inhibited meiotic maturation of oocytes but did not damage immature oocytes.

  11. Identifying activated T cells in reconstituted RAG deficient mice using retrovirally transduced Pax5 deficient pro-B cells.

    Directory of Open Access Journals (Sweden)

    Nadesan Gajendran

    Full Text Available Various methods have been used to identify activated T cells such as binding of MHC tetramers and expression of cell surface markers in addition to cytokine-based assays. In contrast to these published methods, we here describe a strategy to identify T cells that respond to any antigen and track the fate of these activated T cells. We constructed a retroviral double-reporter construct with enhanced green fluorescence protein (EGFP and a far-red fluorescent protein from Heteractis crispa (HcRed. LTR-driven EGFP expression was used to enrich and identify transduced cells, while HcRed expression is driven by the CD40Ligand (CD40L promoter, which is inducible and enables the identification and cell fate tracing of T cells that have responded to infection/inflammation. Pax5 deficient pro-B cells that can give rise to different hematopoietic cells like T cells, were retrovirally transduced with this double-reporter cassette and were used to reconstitute the T cell pool in RAG1 deficient mice that lack T and B cells. By using flow cytometry and histology, we identified activated T cells that had developed from Pax5 deficient pro-B cells and responded to infection with the bacterial pathogen Listeria monocytogenes. Microscopic examination of organ sections allowed visual identification of HcRed-expressing cells. To further characterize the immune response to a given stimuli, this strategy can be easily adapted to identify other cells of the hematopoietic system that respond to infection/inflammation. This can be achieved by using an inducible reporter, choosing the appropriate promoter, and reconstituting mice lacking cells of interest by injecting gene-modified Pax5 deficient pro-B cells.

  12. Human cathepsin L rescues the neurodegeneration and lethality incathepsin B/L double deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Sevenich, Lisa; Pennacchio, Len A.; Peters, Christoph; Reinheckel, Thomas

    2006-01-09

    Cathepsin B (CTSB) and cathepsin L (CTSL) are two widelyexpressed cysteine proteases thought to predominantly reside withinlysosomes. Functional analysis of CTSL in humans is complicated by theexistence of two CTSL-like homologues (CTSL and CTSL2), in contrast tomice which contain only one CTSL enzyme. Thus transgenic expression ofhuman CTSL in CTSL deficient mice provides an opportunity to study the invivo functions of this human protease without interference by its highlyrelated homologue. While mice with single gene deficiencies for murineCTSB or CTSL survive without apparent neuromuscular impairment, murineCTSB/CTSL double deficient mice display degeneration of cerebellarPurkinje cells and neurons of the cerebral cortex, resulting in severehypotrophy, motility defects, and lethality during their third to fourthweek of life. Here we show that expression of human CTSL through agenomic transgene results in widespread expression of human CTSL in themouse which is capable of rescuing the lethality found in CTSB/CTSLdouble-deficient animals. Human CTSL is expressed in the brain of thesecompound mutants predominantly in neurons of the cerebral cortex and inPurkinje cells of the cerebellum, where it appears to prevent neuronalcell death.

  13. Impaired liver regeneration is associated with reduced cyclin B1 in natural killer T cell-deficient mice.

    Science.gov (United States)

    Ben Ya'acov, Ami; Meir, Hadar; Zolotaryova, Lydia; Ilan, Yaron; Shteyer, Eyal

    2017-03-23

    It has been shown that the proportion of natural killer T cells is markedly elevated during liver regeneration and their activation under different conditions can modulate this process. As natural killer T cells and liver injury are central in liver regeneration, elucidating their role is important. The aim of the current study is to explore the role of natural killer T cells in impaired liver regeneration. Concanvalin A was injected 4 days before partial hepatectomy to natural killer T cells- deficient mice or to anti CD1d1-treated mice. Ki-67 and proliferating cell nuclear antigen were used to measure hepatocytes proliferation. Expression of hepatic cyclin B1 and proliferating cell nuclear antigen were evaluated by Western Blot and liver injury was assessed by ALT and histology. Natural killer T cells- deficient or mice injected with anti CD1d antibodies exhibited reduced liver regeneration. These mice were considerably resistant to ConA-induced liver injury. In the absence of NKT cells hepatic proliferating cell nuclear antigen and cyclin B1 decreased in mice injected with Concanvalin A before partial hepatectomy. This was accompanied with reduced serum interleukin-6 levels. Natural killer T cells play an important role in liver regeneration, which is associated with cyclin B1 and interleukin-6.

  14. Severe but Not Moderate Vitamin B12 Deficiency Impairs Lipid Profile, Induces Adiposity, and Leads to Adverse Gestational Outcome in Female C57BL/6 Mice.

    Science.gov (United States)

    Ghosh, Shampa; Sinha, Jitendra Kumar; Putcha, Uday Kumar; Raghunath, Manchala

    2016-01-01

    Vitamin B12 deficiency is widely prevalent in women of childbearing age, especially in developing countries. In the present study, through dietary restriction, we have established mouse models of severe and moderate vitamin B12 deficiencies to elucidate the impact on body composition, biochemical parameters, and reproductive performance. Female weanling C57BL/6 mice were fed for 4 weeks: (a) control AIN-76A diet, (b) vitamin B12-restricted AIN-76A diet with pectin as dietary fiber (severe deficiency group, as pectin inhibits vitamin B12 absorption), or (c) vitamin B12-restricted AIN-76A diet with cellulose as dietary fiber (moderate deficiency group as cellulose does not interfere with vitamin B12 absorption). After confirming deficiency, the mice were mated with male colony mice and maintained on their respective diets throughout pregnancy, lactation, and thereafter till 12 weeks. Severe vitamin B12 deficiency increased body fat% significantly, induced adiposity and altered lipid profile. Pregnant dams of both the deficient groups developed anemia. Severe vitamin B12 deficiency decreased the percentage of conception and litter size, pups were small-for-gestational-age and had significantly lower body weight at birth as well as weaning. Most of the offspring born to severely deficient dams died within 24 h of birth. Stress markers and adipocytokines were elevated in severe deficiency with concomitant decrease in antioxidant defense. The results show that severe but not moderate vitamin B12 restriction had profound impact on the physiology of C57BL/6 mice. Oxidative and corticosteroid stress, inflammation and poor antioxidant defense seem to be the probable underlying mechanisms mediating the deleterious effects.

  15. Severe but not moderate vitamin B12 deficiency impairs lipid profile, induces adiposity and leads to adverse gestational outcome in female C57BL/6 mice

    Directory of Open Access Journals (Sweden)

    Shampa eGhosh

    2016-01-01

    Full Text Available Vitamin B12 deficiency is widely prevalent in women of childbearing age especially in developing countries. In the present study, through dietary restriction, we have established mouse models of severe and moderate vitamin B12 deficiencies to elucidate the impact on body composition, biochemical parameters and reproductive performance. Female weanling C57BL/6 mice were fed for four weeks, (a control AIN-76A diet, (b vitamin B12 restricted AIN-76A diet with pectin as dietary fiber (severe deficiency group, as pectin inhibits vitamin B12 absorption or (c vitamin B12 restricted AIN-76A diet with cellulose as dietary fiber (moderate deficiency group as cellulose does not interfere with vitamin B12 absorption. After confirming deficiency, the mice were mated with male colony mice and maintained on their respective diets throughout pregnancy, lactation and thereafter till 12 weeks. Severe vitamin B12 deficiency increased body fat % significantly, induced adiposity and altered lipid profile. Pregnant dams of both the deficient groups developed anemia. Severe vitamin B12 deficiency decreased the percentage of conception and litter size, pups were small-for-gestational-age and had significantly lower body weight at birth as well as weaning. Most of the offspring born to severely deficient dams died within 24 hours of birth. Stress markers and adipocytokines were elevated in severe deficiency with concomitant decrease in antioxidant defense. The results show that severe but not moderate vitamin B12 restriction had profound impact on the physiology of C57BL/6 mice. Oxidative and corticosteroid stress, inflammation and poor antioxidant defense seem to be the probable underlying mechanisms mediating the deleterious effects.

  16. The P413L chromogranin B variation in French patients with sporadic amyotrophic lateral sclerosis.

    Science.gov (United States)

    Blasco, Hélène; Corcia, Philippe; Veyrat-Durebex, Charlotte; Coutadeur, Cathleen; Fournier, Clémentine; Camu, William; Gordon, Paul; Praline, Julien; Andres, Christian R; Vourc'h, Patrick

    2011-05-01

    Chromogranins interact with mutant forms of superoxide dismutase 1 (SOD1) responsible for a portion of familial amyotrophic lateral sclerosis (ALS). A particular variation (P413L) in the chromogranin B gene, CHGB, has been recently associated with an earlier age at onset in both familial and sporadic ALS. The aim of our study was to evaluate the P413L chromogranin variation in French patients with sporadic amyotrophic lateral sclerosis. We developed a High Resolution DNA Melting (HRM) protocol to analyse the P413L variation in the CHGB gene in 540 French patients with sporadic ALS and 504 controls. The clinical characteristics of patients were analysed in relation to their genotype. Results showed that our study on a large cohort of French-Caucasian patients with SALS and controls failed to confirm an increased frequency of the 413L variant in SALS patients. This frequency was 5.3% in the SALS population and 5.5% in the control group. Moreover, we did not observe a previous observation of a difference of age at onset between T-allele carriers and non-carriers (median age of onset 60.4 vs. 62.0 years of age, respectively). Thus, our findings do not support the 413L variant of rs742710 as a risk factor for sporadic ALS in the French population.

  17. Elevated serum levels of Chromogranin A in hepatocellular carcinoma.

    Science.gov (United States)

    Biondi, Antonio; Malaguarnera, Giulia; Vacante, Marco; Berretta, Massimiliano; D'Agata, Velia; Malaguarnera, Michele; Basile, Francesco; Drago, Filippo; Bertino, Gaetano

    2012-01-01

    During the past three decades, the incidence of hepatocellular carcinoma in the United States has tripled. The neuroendocrine character has been observed in some tumor cells within some hepatocellular carcinoma nodules and elevated serum chromogranin A also been reported in patients with hepatocellular carcinoma. The aim of this work was to investigate the role of serum concentration of chromogranin A in patients with hepatocellular carcinoma at different stages. The study population consisted of 96 patients (63 males and 33 females age range 52-84) at their first hospital admission for hepatocellular carcinoma. The control group consisted of 35 volunteers (20 males and 15 females age range 50-80). The hepatocellular carcinoma patients were stratified according the Barcelona-Clinic Liver Cancer classification. Venous blood samples were collected before treatment from each patients before surgery, centrifuged to obtain serum samples and stored at -80° C until assayed. The chromogranin A serum levels were elevated (> 100 ng/ml) in 72/96 patients with hepatocellular carcinoma. The serum levels of chromogranin A were significantly correlated (p<0.05) with alpha-fetoprotein. In comparison with controls, the hepatocellular carcinoma patients showed a significant increase (p<0.001) vs controls. The chromogranin A levels in the Barcelona staging of hepatocellular carcinoma was higher in stage D compared to stage C (p<0.01), to stage B (p<0.001), and to stage A (p<0.001). Molecular markers, such as chromogranin A, could be very useful tools for hepatocellular carcinoma diagnosis. However the molecular classification should be incorporated into a staging scheme, which effectively separated patients into groups with homogeneous prognosis and response to treatment, and thus serves to aid in the selection of appropriate therapy.

  18. Making sense of chromogranin A in heart disease

    DEFF Research Database (Denmark)

    Gøtze, Jens Peter; Alehagen, Urban; Flyvbjerg, Allan

    2013-01-01

    Chromogranin A is an acidic protein present in secretory granules of neuroendocrine cells. In plasma, chromogranin A is an important marker of neuroendocrine tumours. Chromogranin A measurement has gained interest in cardiovascular disease, because increased plasma concentrations are associated...... with risk of clinical deterioration and death in patients with acute coronary syndromes or chronic heart failure. Cardiac chromogranin A is stored in atrial granules with cardiac natriuretic peptides—the principal cardiac hormones associated with systemic homoeostasis of water and blood pressure. Expression...

  19. Normal macrophage function in copper deficient mice

    International Nuclear Information System (INIS)

    Lukasewycz, O.A.; Kolquist, K.L.; Prohaska, J.R.

    1986-01-01

    Copper deficiency (-Cu) was produced in C57 BL and C58 mice by feeding a low copper diet (modified AIN-76A) from birth. Mice given supplemental copper in the drinking water (+Cu) served as controls. Copper status was monitored by assay of ceruloplasmin (CP) activity. Macrophages (M0) were obtained from matched +Cu and -Cu male 7 week-old mice by peritoneal lavage 3 days after thioglycollate stimulation. M0 were assayed in terms of lipopolysaccharide-induced hexose monophosphate shunt activity by monitoring 14 CO 2 production from [1- 14 C]-glucose and by the determination of phagocytic index using fluorescein labelled latex bead ingestion. M0 from -Cu mice were equivalent to those of +Cu mice in both these parameters. However, superoxide dismutase and cytochrome oxidase activities were both significantly lower in -Cu M0, confirming a functional copper deficiency. Previous results from this laboratory have shown that -Cu mice have a decreased antibody response to sheep erythrocyte antigens and a diminished reactivity to B and T cell mitogens. These immunological insufficiencies appear to be proportional to the severity of copper depletion as determined by CP levels. Furthermore, -Cu lymphocytes exhibit depressed mixed lymphocyte reactivity consistent with alterations at the membrane surface. The present results suggest that M0/monocytes are less severely affected than lymphocytes in copper deficiency states

  20. Pervasive and stochastic changes in the TCR repertoire of regulatory T-cell-deficient mice.

    Science.gov (United States)

    Zheng, Lingjie; Sharma, Rahul; Kung, John T; Deshmukh, Umesh S; Jarjour, Wael N; Fu, Shu Man; Ju, Shyr-Te

    2008-04-01

    We hypothesize that regulatory T-cell (Treg)-deficient strains have an altered TCR repertoire in part due to the expansion of autoimmune repertoire by self-antigen. We compared the Vbeta family expression profile between B6 and Treg-lacking B6.Cg-Foxp3(sf)(/Y) (B6.sf) mice using fluorescent anti-Vbeta mAbs and observed no changes. However, while the spectratypes of 20 Vbeta families among B6 mice were highly similar, the Vbeta family spectratypes of B6.sf mice were remarkably different from B6 mice and from each other. Significant spectratype changes in many Vbeta families were also observed in Treg-deficient IL-2 knockout (KO) and IL-2Ralpha KO mice. Such changes were not observed with anti-CD3 mAb-treated B6 mice or B6 CD4+CD25- T cells. TCR transgenic (OT-II.sf) mice displayed dramatic reduction of clonotypic TCR with concomitant increase in T cells bearing non-transgenic Vbeta and Valpha families, including T cells with dual receptors expressing reduced levels of transgenic Valpha and endogenous Valpha. Collectively, the data demonstrate that Treg deficiency allows polyclonal expansion of T cells in a stochastic manner, resulting in widespread changes in the TCR repertoire.

  1. Skin wound healing in MMP2-deficient and MMP2 / plasminogen double-deficient mice

    DEFF Research Database (Denmark)

    Frøssing, Signe; Rønø, Birgitte; Hald, Andreas

    2010-01-01

    -sensitive MMPs during wound healing. To address whether MMP2 is accountable for the galardin-induced healing deficiency in wildtype and Plg-deficient mice, incisional skin wounds were generated in MMP2 single-deficient mice and in MMP2/Plg double-deficient mice and followed until healed. Alternatively, tissue...... was isolated 7 days post wounding for histological and biochemical analyses. No difference was found in the time from wounding to overt gross restoration of the epidermal surface between MMP2-deficient and wildtype control littermate mice. MMP2/Plg double-deficient mice were viable and fertile, and displayed...... an unchallenged general phenotype resembling that of Plg-deficient mice, including development of rectal prolapses. MMP2/Plg double-deficient mice displayed a slight increase in the wound length throughout the healing period compared with Plg-deficient mice. However, the overall time to complete healing...

  2. Inhibition of PTP1B Restores IRS1-Mediated Hepatic Insulin Signaling in IRS2-Deficient Mice

    Science.gov (United States)

    González-Rodríguez, Águeda; Gutierrez, Jose A. Mas; Sanz-González, Silvia; Ros, Manuel; Burks, Deborah J.; Valverde, Ángela M.

    2010-01-01

    OBJECTIVE Mice with complete deletion of insulin receptor substrate 2 (IRS2) develop hyperglycemia, impaired hepatic insulin signaling, and elevated gluconeogenesis, whereas mice deficient for protein tyrosine phosphatase (PTP)1B display an opposing hepatic phenotype characterized by increased sensitivity to insulin. To define the relationship between these two signaling pathways in the regulation of liver metabolism, we used genetic and pharmacological approaches to study the effects of inhibiting PTP1B on hepatic insulin signaling and expression of gluconeogenic enzymes in IRS2−/− mice. RESEARCH DESIGN AND METHODS We analyzed glucose homeostasis and insulin signaling in liver and isolated hepatocytes from IRS2−/− and IRS2−/−/PTP1B−/− mice. Additionally, hepatic insulin signaling was assessed in control and IRS2−/− mice treated with resveratrol, an antioxidant present in red wine. RESULTS In livers of hyperglycemic IRS2−/− mice, the expression levels of PTP1B and its association with the insulin receptor (IR) were increased. The absence of PTP1B in the double-mutant mice restored hepatic IRS1-mediated phosphatidylinositol (PI) 3-kinase/Akt/Foxo1 signaling. Moreover, resveratrol treatment of hyperglycemic IRS2−/− mice decreased hepatic PTP1B mRNA and inhibited PTP1B activity, thereby restoring IRS1-mediated PI 3-kinase/Akt/Foxo1 signaling and peripheral insulin sensitivity. CONCLUSIONS By regulating the phosphorylation state of IR, PTB1B determines sensitivity to insulin in liver and exerts a unique role in the interplay between IRS1 and IRS2 in the modulation of hepatic insulin action. PMID:20028942

  3. Analysis of glomerulosclerosis and atherosclerosis in lecithin cholesterol acyltransferase-deficient mice.

    Science.gov (United States)

    Lambert, G; Sakai, N; Vaisman, B L; Neufeld, E B; Marteyn, B; Chan, C C; Paigen, B; Lupia, E; Thomas, A; Striker, L J; Blanchette-Mackie, J; Csako, G; Brady, J N; Costello, R; Striker, G E; Remaley, A T; Brewer, H B; Santamarina-Fojo, S

    2001-05-04

    To evaluate the biochemical and molecular mechanisms leading to glomerulosclerosis and the variable development of atherosclerosis in patients with familial lecithin cholesterol acyl transferase (LCAT) deficiency, we generated LCAT knockout (KO) mice and cross-bred them with apolipoprotein (apo) E KO, low density lipoprotein receptor (LDLr) KO, and cholesteryl ester transfer protein transgenic mice. LCAT-KO mice had normochromic normocytic anemia with increased reticulocyte and target cell counts as well as decreased red blood cell osmotic fragility. A subset of LCAT-KO mice accumulated lipoprotein X and developed proteinuria and glomerulosclerosis characterized by mesangial cell proliferation, sclerosis, lipid accumulation, and deposition of electron dense material throughout the glomeruli. LCAT deficiency reduced the plasma high density lipoprotein (HDL) cholesterol (-70 to -94%) and non-HDL cholesterol (-48 to -85%) levels in control, apoE-KO, LDLr-KO, and cholesteryl ester transfer protein-Tg mice. Transcriptome and Western blot analysis demonstrated up-regulation of hepatic LDLr and apoE expression in LCAT-KO mice. Despite decreased HDL, aortic atherosclerosis was significantly reduced (-35% to -99%) in all mouse models with LCAT deficiency. Our studies indicate (i) that the plasma levels of apoB containing lipoproteins rather than HDL may determine the atherogenic risk of patients with hypoalphalipoproteinemia due to LCAT deficiency and (ii) a potential etiological role for lipoproteins X in the development of glomerulosclerosis in LCAT deficiency. The availability of LCAT-KO mice characterized by lipid, hematologic, and renal abnormalities similar to familial LCAT deficiency patients will permit future evaluation of LCAT gene transfer as a possible treatment for glomerulosclerosis in LCAT-deficient states.

  4. Chromogranin A as a biomarker in cardiovascular disease

    DEFF Research Database (Denmark)

    Goetze, Jens P; Alehagen, Urban; Flyvbjerg, Allan

    2014-01-01

    with acute coronary syndromes or chronic heart failure. In this article, we summarize the current clinical data on chromogranin A as a biomarker in cardiovascular disease from high-risk conditions; for example, obesity, hypertension and diabetes, to overt heart failure. Biological activity of the various......Chromogranin A is known as an important marker of neuroendocrine tumors. In cardiovascular medicine, however, chromogranin A measurement has only recently gained interest, since increased concentrations in the circulation are associated with risk of clinical worsening and death in patients...

  5. PLAG1 deficiency impairs spermatogenesis and sperm motility in mice.

    Science.gov (United States)

    Juma, Almas R; Grommen, Sylvia V H; O'Bryan, Moira K; O'Connor, Anne E; Merriner, D Jo; Hall, Nathan E; Doyle, Stephen R; Damdimopoulou, Pauliina E; Barriga, Daniel; Hart, Adam H; Van de Ven, Wim J M; De Groef, Bert

    2017-07-13

    Deficiency in pleomorphic adenoma gene 1 (PLAG1) leads to reduced fertility in male mice, but the mechanism by which PLAG1 contributes to reproduction is unknown. To investigate the involvement of PLAG1 in testicular function, we determined (i) the spatial distribution of PLAG1 in the testis using X-gal staining; (ii) transcriptomic consequences of PLAG1 deficiency in knock-out and heterozygous mice compared to wild-type mice using RNA-seq; and (iii) morphological and functional consequences of PLAG1 deficiency by determining testicular histology, daily sperm production and sperm motility in knock-out and wild-type mice. PLAG1 was sparsely expressed in germ cells and in Sertoli cells. Genes known to be involved in spermatogenesis were downregulated in the testes of knock-out mice, as well as Hsd17b3, which encodes a key enzyme in androgen biosynthesis. In the absence of Plag1, a number of genes involved in immune processes and epididymis-specific genes were upregulated in the testes. Finally, loss of PLAG1 resulted in significantly lowered daily sperm production, in reduced sperm motility, and in several animals, in sloughing of the germinal epithelium. Our results demonstrate that the subfertility seen in male PLAG1-deficient mice is, at least in part, the result of significantly reduced sperm output and sperm motility.

  6. Glycosylated Chromogranin A: Potential Role in the Pathogenesis of Heart Failure.

    Science.gov (United States)

    Ottesen, Anett H; Christensen, Geir; Omland, Torbjørn; Røsjø, Helge

    2017-12-01

    Endocrine and paracrine factors influence the cardiovascular system and the heart by a number of different mechanisms. The chromogranin-secretogranin (granin) proteins seem to represent a new family of proteins that exerts both direct and indirect effects on cardiac and vascular functions. The granin proteins are produced in multiple tissues, including cardiac cells, and circulating granin protein concentrations provide incremental prognostic information to established risk indices in patients with myocardial dysfunction. In this review, we provide recent data for the granin proteins in relation with cardiovascular disease, and with a special focus on chromogranin A and heart failure. Chromogranin A is the most studied member of the granin protein family, and shorter, functionally active peptide fragments of chromogranin A exert protective effects on myocardial cell death, ischemia-reperfusion injury, and cardiomyocyte Ca 2+ handling. Granin peptides have also been found to induce angiogenesis and vasculogenesis. Protein glycosylation is an important post-translational regulatory mechanism, and we recently found chromogranin A molecules to be hyperglycosylated in the failing myocardium. Chromogranin A hyperglycosylation impaired processing of full-length chromogranin A molecules into physiologically active chromogranin A peptides, and patients with acute heart failure and low rate of chromogranin A processing had increased mortality compared to other acute heart failure patients. Other studies have also demonstrated that circulating granin protein concentrations increase in parallel with heart failure disease stage. The granin protein family seems to influence heart failure pathophysiology, and chromogranin A hyperglycosylation could directly be implicated in heart failure disease progression.

  7. Severe Osteogenesis Imperfecta in Cyclophilin B–Deficient Mice

    Science.gov (United States)

    Choi, Jae Won; Sutor, Shari L.; Lindquist, Lonn; Evans, Glenda L.; Madden, Benjamin J.; Bergen, H. Robert; Hefferan, Theresa E.; Yaszemski, Michael J.; Bram, Richard J.

    2009-01-01

    Osteogenesis Imperfecta (OI) is a human syndrome characterized by exquisitely fragile bones due to osteoporosis. The majority of autosomal dominant OI cases result from point or splice site mutations in the type I collagen genes, which are thought to lead to aberrant osteoid within developing bones. OI also occurs in humans with homozygous mutations in Prolyl-3-Hydroxylase-1 (LEPRE1). Although P3H1 is known to hydroxylate a single residue (pro-986) in type I collagen chains, it is unclear how this modification acts to facilitate collagen fibril formation. P3H1 exists in a complex with CRTAP and the peptidyl-prolyl isomerase cyclophilin B (CypB), encoded by the Ppib gene. Mutations in CRTAP cause OI in mice and humans, through an unknown mechanism, while the role of CypB in this complex has been a complete mystery. To study the role of mammalian CypB, we generated mice lacking this protein. Early in life, Ppib-/- mice developed kyphosis and severe osteoporosis. Collagen fibrils in Ppib-/- mice had abnormal morphology, further consistent with an OI phenotype. In vitro studies revealed that in CypB–deficient fibroblasts, procollagen did not localize properly to the golgi. We found that levels of P3H1 were substantially reduced in Ppib-/- cells, while CRTAP was unaffected by loss of CypB. Conversely, knockdown of either P3H1 or CRTAP did not affect cellular levels of CypB, but prevented its interaction with collagen in vitro. Furthermore, knockdown of CRTAP also caused depletion of cellular P3H1. Consistent with these changes, post translational prolyl-3-hydroxylation of type I collagen by P3H1 was essentially absent in CypB–deficient cells and tissues from CypB–knockout mice. These data provide significant new mechanistic insight into the pathophysiology of OI and reveal how the members of the P3H1/CRTAP/CypB complex interact to direct proper formation of collagen and bone. PMID:19997487

  8. IL-25 inhibits atherosclerosis development in apolipoprotein E deficient mice.

    Directory of Open Access Journals (Sweden)

    Polyxeni T Mantani

    Full Text Available IL-25 has been implicated in the initiation of type 2 immunity and in the protection against autoimmune inflammatory diseases. Recent studies have identified the novel innate lymphoid type 2 cells (ILC2s as an IL-25 target cell population. The purpose of this study was to evaluate if IL-25 has any influence on atherosclerosis development in mice.Administration of 1 μg IL-25 per day for one week to atherosclerosis-prone apolipoprotein (apoE deficient mice, had limited effect on the frequency of T cell populations, but resulted in a large expansion of ILC2s in the spleen. The expansion was accompanied by increased levels of anti-phosphorylcholine (PC natural IgM antibodies in plasma and elevated levels of IL-5 in plasma and spleen. Transfer of ILC2s to apoE deficient mice elevated the natural antibody-producing B1a cell population in the spleen. Treatment of apoE/Rag-1 deficient mice with IL-25 was also associated with extensive expansion of splenic ILC2s and increased plasma IL-5, suggesting ILC2s to be the source of IL-5. Administration of IL-25 in IL-5 deficient mice resulted in an expanded ILC2 population, but did not stimulate generation of anti-PC IgM, indicating that IL-5 is not required for ILC2 expansion but for the downstream production of natural antibodies. Additionally, administration of 1 μg IL-25 per day for 4 weeks in apoE deficient mice reduced atherosclerosis in the aorta both during initiation and progression of the disease.The present findings demonstrate that IL-25 has a protective role in atherosclerosis mediated by innate responses, including ILC2 expansion, increased IL-5 secretion, B1a expansion and natural anti-PC IgM generation, rather than adaptive Th2 responses.

  9. Fucosylation Deficiency in Mice Leads to Colitis and Adenocarcinoma.

    Science.gov (United States)

    Wang, Yiwei; Huang, Dan; Chen, Kai-Yuan; Cui, Min; Wang, Weihuan; Huang, Xiaoran; Awadellah, Amad; Li, Qing; Friedman, Ann; Xin, William W; Di Martino, Luca; Cominelli, Fabio; Miron, Alex; Chan, Ricky; Fox, James G; Xu, Yan; Shen, Xiling; Kalady, Mathew F; Markowitz, Sanford; Maillard, Ivan; Lowe, John B; Xin, Wei; Zhou, Lan

    2017-01-01

    De novo synthesis of guanosine diphosphate (GDP)-fucose, a substrate for fucosylglycans, requires sequential reactions mediated by GDP-mannose 4,6-dehydratase (GMDS) and GDP-4-keto-6-deoxymannose 3,5-epimerase-4-reductase (FX or tissue specific transplantation antigen P35B [TSTA3]). GMDS deletions and mutations are found in 6%-13% of colorectal cancers; these mostly affect the ascending and transverse colon. We investigated whether a lack of fucosylation consequent to loss of GDP-fucose synthesis contributes to colon carcinogenesis. FX deficiency and GMDS deletion produce the same biochemical phenotype of GDP-fucose deficiency. We studied a mouse model of fucosylation deficiency (Fx-/- mice) and mice with the full-length Fx gene (controls). Mice were placed on standard chow or fucose-containing diet (equivalent to a control fucosylglycan phenotype). Colon tissues were collected and analyzed histologically or by enzyme-linked immunosorbent assays to measure cytokine levels; T cells also were collected and analyzed. Fecal samples were analyzed by 16s ribosomal RNA sequencing. Mucosal barrier function was measured by uptake of fluorescent dextran. We transplanted bone marrow cells from Fx-/- or control mice (Ly5.2) into irradiated 8-week-old Fx-/- or control mice (Ly5.1). We performed immunohistochemical analyses for expression of Notch and the hes family bHLH transcription factor (HES1) in colon tissues from mice and a panel of 60 human colorectal cancer specimens (27 left-sided, 33 right-sided). Fx-/- mice developed colitis and serrated-like lesions. The intestinal pathology of Fx-/- mice was reversed by addition of fucose to the diet, which restored fucosylation via a salvage pathway. In the absence of fucosylation, dysplasia appeared and progressed to adenocarcinoma in up to 40% of mice, affecting mainly the right colon and cecum. Notch was not activated in Fx-/- mice fed standard chow, leading to decreased expression of its target Hes1. Fucosylation deficiency

  10. Deficient CD4+ T cell priming and regression of CD8+ T cell functionality in virus-infected mice lacking a normal B cell compartment

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Kauffmann, Susanne Ørding; Thomsen, Allan Randrup

    2003-01-01

    of virus-specific CD4(+) T cells was markedly impaired in B(-/-) mice infected with either virus strain. Thus, our results indicate that B cells play an important role in antiviral immunity not only as Ab producers, but also in promoting an optimal and sustained T cell response. The T cell defects......In this study, we investigate the state of T cell-mediated immunity in B cell-deficient (B(-/-)) mice infected with two strains of lymphocytic choriomeningitis virus known to differ markedly in their capacity to persist. In B(-/-) C57BL mice infected with the more persisting virus, virus......-specific CD8(+) T cells are initially generated that are qualitatively similar to those in wild-type mice. However, although cell numbers are well sustained over time, the capacity to produce cytokines is rapidly impaired. In similarly infected B(-/-) BALB/c mice, virus-specific CD8(+) T cells are completely...

  11. Gender-specific effects of endogenous testosterone: female alpha-estrogen receptor-deficient C57Bl/6J mice develop glomerulosclerosis.

    Science.gov (United States)

    Elliot, S J; Berho, M; Korach, K; Doublier, S; Lupia, E; Striker, G E; Karl, M

    2007-08-01

    Young female mice on a C57Bl/6J (B6) background are considered glomerulosclerosis (GS)-resistant but aging B6 mice develop mild GS. Estrogen deficiency accelerates while estrogen replacement retards GS in young sclerosis-prone oligosyndactyly mutant mice on an ROP background. To explore the effects of sex hormones on glomerular structure and function in the context of gender and genetic background, we studied mice in which the estrogen-receptor (ER) genes alpha- or -beta were deleted (alpha- or betaER knockout (KO)) and crossed into the B6 background. We also studied ovariectomized (Ovx) B6 mice given testosterone. Male and female betaERKO and male alphaERKO mice had no glomerular dysfunction at 9 months of age; however, alphaERKO female mice displayed albuminuria and GS. Ovx prevented glomerular dysfunction in alphaERKO female mice by eliminating endogenous testosterone production while exogenous testosterone induced GS in Ovx B6 mice. Androgen receptor (AR) expression and function was found in microdissected glomeruli and cultured mesangial cells. Testosterone compared to placebo increased both AR expression and TGF-beta1 mRNA levels in glomeruli isolated from female B6 mice. Estrogen deficiency had no deleterious effects on the glomeruli in B6 mice. Our study shows that genetic traits strongly influence the GS-promoting effects of estrogen deficiency while testosterone induces GS in a gender-specific manner.

  12. Fucosylation Deficiency in Mice Leads to Colitis and Adenocarcinoma

    Science.gov (United States)

    Wang, Yiwei; Huang, Dan; Chen, Kai-Yuan; Cui, Min; Wang, Weihuan; Huang, Xiaoran; Awadellah, Amad; Li, Qing; Friedman, Ann; Xin, William W.; Di Martino, Luca; Cominelli, Fabio; Miron, Alex; Chan, Ricky; Fox, James; Xu, Yan; Shen, Xiling; Kalady, Mathew F.; Markowitz, Sanford; Maillard, Ivan; Lowe, John B.; Xin, Wei; Zhou, Lan

    2016-01-01

    Background & Aims De novo synthesis of GDP-fucose, a substrate for fucosylglycans, requires sequential reactions mediated by GDP-mannose 4,6-dehydratase (GMDS) and GDP-4-keto-6-deoxymannose 3,5-epimerase-4-reductase (FX or TSTA3). GMDS deletions and mutations are found in 6%–13% of colorectal cancers; these mostly affect ascending and transverse colon. We investigated whether lack of fucosylation consequent to loss of GDP-fucose synthesis contributes to colon carcinogenesis. Methods FX deficiency and GMDS deletion produce the same biochemical phenotype of GDP-fucose deficiency. We studied a mouse model of fucosylation deficiency (Fx–/– mice) and mice with the full-length Fx gene (controls). Mice were placed on standard chow or fucose-containing diet (equivalent to a control fucosylglycan phenotype). Colon tissues were collected and analyzed histologically or by ELISAs to measure cytokine levels; T cells were also collected and analyzed. Fecal samples were analyzed by 16s rRNA sequencing. Mucosal barrier function was measured by uptake of fluorescent dextran. We transplanted bone marrow cells from Fx–/– or control mice (Ly5.2) into irradiated 8-week old Fx–/– or control mice (Ly5.1). We performed immunohistochemical analyses for expression of Notch and the hes family bHLH transcription factor (HES1) in colon tissues from mice and a panel of 60 human colorectal cancer specimens (27 left-sided, 33 right-sided). Results Fx–/– mice developed colitis and serrated-like lesions. The intestinal pathology of Fx–/– mice was reversed by addition of fucose to the diet, which restored fucosylation via a salvage pathway. In the absence of fucosylation, dysplasia appeared and progressed to adenocarcinoma in up to 40% of mice, affecting mainly the right colon and cecum. Notch was not activated in Fx–/– mice fed standard chow, leading to decreased expression of its target Hes1. Fucosylation deficiency altered the composition of the fecal microbiota, reduced

  13. Naïve B cells reduce fungal dissemination in Cryptococcus neoformans infected Rag1-/- mice.

    Science.gov (United States)

    Dufaud, Chad; Rivera, Johanna; Rohatgi, Soma; Pirofski, Liise-Anne

    2018-01-01

    IgM and B-1 cell deficient mice exhibit early C. neoformans dissemination from lungs to brain, but a definitive role for B cells in conferring resistance to C. neoformans dissemination has not been established. To address this question, we developed an intranasal (i.n.) C. neoformans infection model in B and T cell deficient Rag1 -/- mice and found they also exhibit earlier fungal dissemination and higher brain CFU than wild-type C57Bl/6 (wild-type) mice. To probe the effect of B cells on fungal dissemination, Rag1 -/- mice were given splenic (intravenously) or peritoneal (intraperitoneally) B cells from wild-type mice and infected i.n. with C. neoformans 7 d later. Mice that received B cells had lung histopathology resembling wild type mice 14 d post-infection, and B-1, not B-2 or T cells in their lungs, and serum and lung IgM and IgG 21 d post-infection. Lung CFU were comparable in wild-type, Rag1 -/-, and Rag1 -/- mice that received B cells 21 d post-infection, but brain CFU were significantly lower in mice that received B cells than Rag1 -/- mice that did not. To determine if natural antibody can promote immunity in our model, we measured alveolar macrophage phagocytosis of C. neoformans in Rag1 -/- mice treated with naive wild-type IgM-sufficient or sIgM -/- IgM-deficient sera before infection. Compared to IgM-deficient sera, IgM-sufficient sera significantly increased phagocytosis. Our data establish B cells are able to reduce early C. neoformans dissemination in mice and suggest natural IgM may be a key mediator of early antifungal immunity in the lungs.

  14. Lack of association between the P413L variant of chromogranin B and ALS risk or age at onset: a meta-analysis.

    Science.gov (United States)

    Yang, Xinglong; Li, Shimei; Xing, Dongmei; Li, Peiyun; Li, Ci; Qi, Ling; Xu, Yanming; Ren, Hui

    2018-02-01

    Amyotrophic lateral sclerosis (ALS), the most common motor neuron disease, is thought to result from interaction of genetic and environmental risk factors. Whether the potentially functional exonic P413L variant in the chromogranin B gene influences ALS risk and age at onset is controversial. We meta-analysed or other studies assessing the association between the P413L variant and ALS risk or age at ALS onset indexed in Web of Science, PubMed, Embase, Chinese National Knowledge Infrastructure, Wanfang, and SinoMed databases. Five case-control studies were analysed, involving 2639 patients with sporadic ALS, 201 with familial ALS and 3381 controls. No association was detected between risk of either ALS type and the CT + TT genotype or T-allele of the P413L variant. Age at ALS onset was similar between carriers and non-carriers of the T-allele. The available evidence suggests that the P413L variant of chromogranin B is not associated with ALS risk or age at ALS onset. These results should be validated in large, well-designed studies.

  15. Left ventricular dysfunction with reduced functional cardiac reserve in diabetic and non-diabetic LDL-receptor deficient apolipoprotein B100-only mice

    Directory of Open Access Journals (Sweden)

    Bosch Fatima

    2011-06-01

    Full Text Available Abstract Background Lack of suitable mouse models has hindered the studying of diabetic macrovascular complications. We examined the effects of type 2 diabetes on coronary artery disease and cardiac function in hypercholesterolemic low-density lipoprotein receptor-deficient apolipoprotein B100-only mice (LDLR-/-ApoB100/100. Methods and results 18-month-old LDLR-/-ApoB100/100 (n = 12, diabetic LDLR-/-ApoB100/100 mice overexpressing insulin-like growth factor-II (IGF-II in pancreatic beta cells (IGF-II/LDLR-/-ApoB100/100, n = 14 and age-matched C57Bl/6 mice (n = 15 were studied after three months of high-fat Western diet. Compared to LDLR-/-ApoB100/100 mice, diabetic IGF-II/LDLR-/-ApoB100/100 mice demonstrated more calcified atherosclerotic lesions in aorta. However, compensatory vascular enlargement was similar in both diabetic and non-diabetic mice with equal atherosclerosis (cross-sectional lesion area ~60% and consequently the lumen area was preserved. In coronary arteries, both hypercholesterolemic models showed significant stenosis (~80% despite positive remodeling. Echocardiography revealed severe left ventricular systolic dysfunction and anteroapical akinesia in both LDLR-/-ApoB100/100 and IGF-II/LDLR-/-ApoB100/100 mice. Myocardial scarring was not detected, cardiac reserve after dobutamine challenge was preserved and ultrasructural changes revealed ischemic yet viable myocardium, which together with coronary artery stenosis and slightly impaired myocardial perfusion suggest myocardial hibernation resulting from chronic hypoperfusion. Conclusions LDLR-/-ApoB100/100 mice develop significant coronary atherosclerosis, severe left ventricular dysfunction with preserved but diminished cardiac reserve and signs of chronic myocardial hibernation. However, the cardiac outcome is not worsened by type 2 diabetes, despite more advanced aortic atherosclerosis in diabetic animals.

  16. The combination of two Sle2 lupus-susceptibility loci and Cdkn2c deficiency leads to T cell-mediated pathology in B6.Faslpr mice

    Science.gov (United States)

    Xu, Zhiwei; Croker, Byron P.; Morel, Laurence

    2013-01-01

    The NZM2410 Sle2c1 lupus susceptibility locus is responsible for the expansion of the B1a cell compartment and for the induction of T-cell induced renal and skin pathology on a CD95 deficient (Faslpr)-background. We have previously shown that deficiency in cyclin-dependent kinase inhibitor p18INK4c (p18) was responsible for the B1a cell expansion but was not sufficient to account for the pathology in B6.lpr mice. This study was designed to map the additional Sle2c1 loci responsible for autoimmune pathology when co-expressed with CD95 deficiency. The production, fine-mapping and phenotypic characterization of five recombinant intervals indicated that three interacting sub-loci were responsive for inducting autoimmune pathogenesis in B6.lpr mice. One of these sub-loci corresponds most likely to p18-deficiency. Another major locus mapping to a 2 Mb region at the telomeric end of Sle2c1 is necessary to both renal and skin pathology. Finally, a third locus centromeric to p18 enhances the severity of lupus nephritis. These results provide new insights into the genetic interactions leading to SLE disease presentation, and represent a major step towards the identification of novel susceptibility genes involved in T-cell mediated organ damage. PMID:23698709

  17. Intestinal colonization of IL-2 deficient mice with non-colitogenic B. vulgatus prevents DC maturation and T-cell polarization.

    Directory of Open Access Journals (Sweden)

    Martina Müller

    Full Text Available BACKGROUND: IL-2 deficient (IL-2(-/- mice mono-colonized with E. coli mpk develop colitis whereas IL-2(-/--mice mono-colonized with B. vulgatus mpk do not and are even protected from E. coli mpk induced colitis. METHODOLOGY/PRINCIPAL FINDINGS: We investigated if mono-colonization with E. coli mpk or B. vulgatus mpk differentially modulates distribution, activation and maturation of intestinal lamina propria (LP dendritic cells (DC. LP DC in mice mono-colonized with protective B. vulgatus mpk or co-colonized with E. coli mpk/B. vulgatus mpk featured a semi-mature LP DC phenotype (CD40(loCD80(loMHC-II(hi whereas mono-colonization with colitogenic E. coli mpk induced LP DC activation and maturation prior to onset of colitis. Accordingly, chemokine receptor (CCR 7 surface expression was more strikingly enhanced in mesenteric lymph node DC from E. coli mpk than B. vulgatus mpk mono- or co-colonized mice. Mature but not semi-mature LP DC promoted Th1 polarization. As B. vulgatus mpk promotes differentiation of semi-mature DC presumably by IL-6, mRNA and protein expression of IL-6 was investigated in LP DC. The data demonstrated that IL-6 mRNA and protein was increased in LP DC of B. vulgatus mpk as compared to E. coli mpk mono-colonized IL-2(-/--mice. The B. vulgatus mpk mediated suppression of CCR7 expression and DC migration was abolished in IL-6(-/--DC in vitro. CONCLUSIONS/SIGNIFICANCE: From this data we conclude that the B. vulgatus triggered IL-6 secretion by LP DC in absence of proinflammatory cytokines such as IL-12 or TNF-alpha induces a semi-mature LP DC phenotype, which might prevent T-cell activation and thereby the induction of colitis in IL-2(-/--mice. The data provide new evidence that IL-6 might act as an immune regulatory cytokine in the mucosa by targeting intestinal DC.

  18. Intestinal bile salt absorption in Atp8b1 deficient mice

    NARCIS (Netherlands)

    Groen, Annemiek; Kunne, Cindy; Paulusma, Coen C.; Kramer, Werner; Agellon, Luis B.; Bull, Laura N.; Elferink, Ronald P. J. Oude

    2007-01-01

    BACKGROUND/AIMS: Mutations in the ATP8B1 gene can cause Progressive Familial Intrahepatic Cholestasis type 1. We have previously reported that Atp8b1(G308V/G308V) mice, a model for PFIC1, have slightly, but significantly, higher baseline serum bile salt (BS) concentrations compared to wt mice. Upon

  19. Gender affects skin wound healing in plasminogen deficient mice.

    Directory of Open Access Journals (Sweden)

    Birgitte Rønø

    Full Text Available The fibrinolytic activity of plasmin plays a fundamental role in resolution of blood clots and clearance of extravascular deposited fibrin in damaged tissues. These vital functions of plasmin are exploited by malignant cells to accelerate tumor growth and facilitate metastases. Mice lacking functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation in neither wildtype nor plasmin deficient mice, and the existing differences in skin composition between males and females were unaffected by plasmin deficiency. In contrast, gender had a marked effect on the ability of plasmin deficient mice to heal skin wounds, which was seen as an accelerated wound closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds revealed larger amounts of fibrotic scars in the provisional matrix of plasmin deficient male mice compared to female mice. These fibrotic scars correlated to an obstruction of cell infiltration of the granulation tissue, which is a prerequisite for wound healing. In conclusion, the presented data show that the gender dependent effect of plasmin deficiency is tissue specific and may be secondary to already established differences between genders, such as skin

  20. Unconventional Pro-inflammatory CD4+ T Cell Response in B Cell-Deficient Mice Infected with Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Melisa Gorosito Serrán

    2017-11-01

    Full Text Available Chagas disease, caused by the parasite Trypanosoma cruzi, is endemic in Latin America but has become a global public health concern by migration of infected people. It has been reported that parasite persistence as well as the intensity of the inflammatory immune response are determinants of the clinical manifestations of the disease. Even though inflammation is indispensable for host defense, when deregulated, it can contribute to tissue injury and organ dysfunction. Here, we report the importance of B cells in conditioning T cell response in T. cruzi infection. Mice deficient in mature B cells (muMT mice infected with T. cruzi exhibited an increase in plasma TNF concentration, TNF-producing CD4+ T cells, and mortality. The increase in TNF-producing CD4+ T cells was accompanied by a reduction in IFNγ+CD4+ T cells and a decrease of the frequency of regulatory Foxp3+, IL-10+, and IL17+CD4+ T cells populations. The CD4+ T cell population activated by T. cruzi infection, in absence of mature B cells, had a high frequency of Ly6C+ cells and showed a lower expression of inhibitory molecules such as CTLA-4, PD-1, and LAG3. CD4+ T cells from infected muMT mice presented a high frequency of CD62LhiCD44− cells, which is commonly associated with a naïve phenotype. Through transfer experiments we demonstrated that CD4+ T cells from infected muMT mice were able to condition the CD4+ T cells response from infected wild-type mice. Interestingly, using Blimp-flox/flox-CD23icre mice we observed that in absence of plasmablast/plasma cell T. cruzi-infected mice exhibited a higher number of TNF-producing CD4+ T cells. Our results showed that the absence of B cells during T. cruzi infection affected the T cell response at different levels and generated a favorable scenario for unconventional activation of CD4+ T cell leading to an uncontrolled effector response and inflammation. The product of B cell differentiation, the plasmablast/plasma cells, could be able

  1. MCPIP1 deficiency in mice results in severe anemia related to autoimmune mechanisms.

    Directory of Open Access Journals (Sweden)

    Zhou Zhou

    Full Text Available Autoimmune gastritis is an organ-specific autoimmune disease of the stomach associated with pernicious anemia. The previous work from us and other groups identified MCPIP1 as an essential factor controlling inflammation and immune homeostasis. MCPIP1(-/- developed severe anemia. However, the mechanisms underlying this phenotype remain unclear. In the present study, we found that MCPIP1 deficiency in mice resulted in severe anemia related to autoimmune mechanisms. Although MCPIP1 deficiency did not affect erythropoiesis per se, the erythropoiesis in MCPIP1(-/- bone marrow erythroblasts was significantly attenuated due to iron and vitamin B12 (VB12 deficiency, which was mainly resulted from autoimmunity-associated gastritis and parietal cell loss. Consistently, exogenous supplement of iron and VB12 greatly improved the anemia phenotype of MCPIP1(-/- mice. Finally, we have evidence suggesting that autoimmune hemolysis may also contribute to anemia phenotype of MCPIP1(-/- mice. Taken together, our study suggests that MCPIP1 deficiency in mice leads to the development of autoimmune gastritis and pernicious anemia. Thus, MCPIP1(-/- mice may be a good mouse model for investigating the pathogenesis of pernicious anemia and testing the efficacy of some potential drugs for treatment of this disease.

  2. CHROMOGRANIN A DETECTION IN SALIVA OF TYPE 2 DIABETES PATIENTS

    Directory of Open Access Journals (Sweden)

    Martine Soell

    2010-02-01

    Full Text Available Chromogranin A is present in secretion granules of nerve, endocrine and immune cells and is a precursor of several peptides with antibacterial and antifungal properties at micromolar concentrations.Our aim in this prospective, double blind study, was to determine the expression of chromogranin A and its peptides at protein level in saliva of type 2 diabetic patients and thereby to obtain a new non-invasive diagnostic means for the future.Saliva was taken from 30 type 2 diabetic patients and 30 healthy individuals at the same time interval in the morning without any oral stimuli. Circadianic periodics in protein productions have been avoided. The presence of chromogranin A and its derived peptides was determined in whole saliva, after centrifugation at 40C for 12 min at 14 000 rpm, by SDS-PAGE electrophoresis and Immunoblotting (Western Blot. To ensure same protein concentrations Bradford protein quantification assay has been performed before.For the first time, we have determined an overexpression of chromogranin A in saliva of diabetic patients in 100% of the individuals.Chromogranin A, a circulating biomarker for epithelial tumours, is also overexpressed in saliva of type 2 diabetic patients. To confirm our results, more studies with a large amount of patients is necessary.

  3. Chromogranin A Detection in Saliva of Type 2 Diabetes Patients

    Directory of Open Access Journals (Sweden)

    Martine Soell

    2010-02-01

    Full Text Available Chromogranin A is present in secretion granules of nerve, endocrine and immune cells and is a precursor of several peptides with antibacterial and antifungal properties at micromolar concentrations.Our aim in this prospective, double blind study, was to determine the expression of chromogranin A and its peptides at protein level in saliva of type 2 diabetic patients and thereby to obtain a new non-invasive diagnostic means for the future.Saliva was taken from 30 type 2 diabetic patients and 30 healthy individuals at the same time interval in the morning without any oral stimuli. Circadianic periodics in protein productions have been avoided. The presence of chromogranin A and its derived peptides was determined in whole saliva, after centrifugation at 4°C for 12 min at 14 000 rpm, by SDS-PAGE electrophoresis and Immunoblotting (Western Blot. To ensure same protein concentrations Bradford protein quantification assay has been performed before.For the first time, we have determined an overexpression of chromogranin A in saliva of diabetic patients in 100% of the individuals.Chromogranin A, a circulating biomarker for epithelial tumours, is also overexpressed in saliva of type 2 diabetic patients. To confirm our results, more studies with a large amount of patients is necessary.

  4. Primary coenzyme Q deficiency in Pdss2 mutant mice causes isolated renal disease.

    Directory of Open Access Journals (Sweden)

    Min Peng

    2008-04-01

    Full Text Available Coenzyme Q (CoQ is an essential electron carrier in the respiratory chain whose deficiency has been implicated in a wide variety of human mitochondrial disease manifestations. Its multi-step biosynthesis involves production of polyisoprenoid diphosphate in a reaction that requires the enzymes be encoded by PDSS1 and PDSS2. Homozygous mutations in either of these genes, in humans, lead to severe neuromuscular disease, with nephrotic syndrome seen in PDSS2 deficiency. We now show that a presumed autoimmune kidney disease in mice with the missense Pdss2(kd/kd genotype can be attributed to a mitochondrial CoQ biosynthetic defect. Levels of CoQ9 and CoQ10 in kidney homogenates from B6.Pdss2(kd/kd mutants were significantly lower than those in B6 control mice. Disease manifestations originate specifically in glomerular podocytes, as renal disease is seen in Podocin/cre,Pdss2(loxP/loxP knockout mice but not in conditional knockouts targeted to renal tubular epithelium, monocytes, or hepatocytes. Liver-conditional B6.Alb/cre,Pdss2(loxP/loxP knockout mice have no overt disease despite demonstration that their livers have undetectable CoQ9 levels, impaired respiratory capacity, and significantly altered intermediary metabolism as evidenced by transcriptional profiling and amino acid quantitation. These data suggest that disease manifestations of CoQ deficiency relate to tissue-specific respiratory capacity thresholds, with glomerular podocytes displaying the greatest sensitivity to Pdss2 impairment.

  5. IGF-1 deficiency impairs cerebral myogenic autoregulation in hypertensive mice.

    Science.gov (United States)

    Toth, Peter; Tucsek, Zsuzsanna; Tarantini, Stefano; Sosnowska, Danuta; Gautam, Tripti; Mitschelen, Matthew; Koller, Akos; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2014-12-01

    Aging impairs autoregulatory protection in the brain, exacerbating hypertension-induced cerebromicrovascular injury, neuroinflammation, and development of vascular cognitive impairment. Despite the importance of the age-related decline in circulating insulin-like growth factor-1 (IGF-1) levels in cerebrovascular aging, the effects of IGF-1 deficiency on functional adaptation of cerebral arteries to high blood pressure remain elusive. To determine whether IGF-1 deficiency impairs autoregulatory protection, hypertension was induced in control and IGF-1-deficient mice (Igf1(f/f)+TBG-iCre-AAV8) by chronic infusion of angiotensin-II. In hypertensive control mice, cerebral blood flow (CBF) autoregulation was extended to higher pressure values and the pressure-induced tone of middle cerebral arteries (MCAs) was increased. In hypertensive IGF-1-deficient mice, autoregulation was markedly disrupted, and MCAs did not show adaptive increases in myogenic tone. In control mice, the mechanism of adaptation to hypertension involved upregulation of TRPC channels in MCAs and this mechanism was impaired in hypertensive IGF-1-deficient mice. Likely downstream consequences of cerebrovascular autoregulatory dysfunction in hypertensive IGF-1-deficient mice included exacerbated disruption of the blood-brain barrier and neuroinflammation (microglia activation and upregulation of proinflammatory cytokines and chemokines), which were associated with impaired hippocampal cognitive function. Collectively, IGF-1 deficiency impairs autoregulatory protection in the brain of hypertensive mice, potentially exacerbating cerebromicrovascular injury and neuroinflammation mimicking the aging phenotype.

  6. Monoclonal B-cell hyperplasia and leukocyte imbalance precede development of B-cell malignancies in uracil-DNA glycosylase deficient mice

    DEFF Research Database (Denmark)

    Andersen, Sonja; Ericsson, Madelene; Dai, Hong Yan

    2005-01-01

    causes a significant reduction of T-helper cells, and 50% of the young Ung(-/-) mice investigated have no detectable NK/NKT-cell population in their spleen. The immunological imbalance is confirmed in experiments with spleen cells where the production of the cytokines interferon gamma, interleukin 6....... The immunological imbalances shown here in the Ung-deficient mice may be central in the development of lymphomas in a background of generalised lymphoid hyperplasia....

  7. Elevated TMEM106B levels exaggerate lipofuscin accumulation and lysosomal dysfunction in aged mice with progranulin deficiency.

    Science.gov (United States)

    Zhou, Xiaolai; Sun, Lirong; Brady, Owen Adam; Murphy, Kira A; Hu, Fenghua

    2017-01-26

    Mutations resulting in haploinsufficiency of progranulin (PGRN) cause frontotemporal lobar degeneration with TDP-43-positive inclusions (FTLD-TDP), a devastating neurodegenerative disease. Accumulating evidence suggest a crucial role of progranulin in maintaining proper lysosomal function during aging. TMEM106B has been identified as a risk factor for frontotemporal lobar degeneration with progranulin mutations and elevated mRNA and protein levels of TMEM106B are associated with increased risk for frontotemporal lobar degeneration. Increased levels of TMEM106B alter lysosomal morphology and interfere with lysosomal degradation. However, how progranulin and TMEM106B interact to regulate lysosomal function and frontotemporal lobar degeneration (FTLD) disease progression is still unclear. Here we report that progranulin deficiency leads to increased TMEM106B protein levels in the mouse cortex with aging. To mimic elevated levels of TMEM106B in frontotemporal lobar degeneration (FTLD) cases, we generated transgenic mice expressing TMEM106B under the neuronal specific promoter, CamKII. Surprisingly, we found that the total protein levels of TMEM106B are not altered despite the expression of the TMEM106B transgene at mRNA and protein levels, suggesting a tight regulation of TMEM106B protein levels in the mouse brain. However, progranulin deficiency results in accumulation of TMEM106B protein from the transgene expression during aging, which is accompanied by exaggerated lysosomal abnormalities and increased lipofuscin accumulation. In summary, our mouse model nicely recapitulates the interaction between progranulin and TMEM106B in human patients and supports a critical role of lysosomal dysfunction in the frontotemporal lobar degeneration (FTLD) disease progression.

  8. Factors associated with elevated serum chromogranin A levels in patients with autoimmune gastritis.

    Science.gov (United States)

    Kalkan, Çağdaş; Karakaya, Fatih; Soykan, İrfan

    2016-11-01

    Chromogranin A is an important tool in the diagnosis of neuroendocrine tumors. Autoimmune gastritis is an autoimmune disorder marked by hypergastrinemia, which stimulates enterochromaffin-like cell proliferation. Chromogranin A is also elevated in autoimmune gastritis patients with a different level of increase in each patient. The goal of this study is to explore constituents that influence serum chromogranin A levels in autoimmune gastritis patients. One hundred and eighty-eight autoimmune gastritis patients and 20 patients with type I gastric carcinoid tumors were analyzed retrospectively and compared to 110 functional dyspepsia patients in terms of factors that might affect serum chromogranin A levels. The mean serum chromogranin A level was 171.17±67.3 ng/mL in autoimmune gastritis patients (n=62) without enterochromaffin-like cell hyperplasia, and 303.3±102.82 ng/mL in patients (n=126) with enterochromaffin-like cell hyperplasia (pgastritis were the presence of ECL cell hyperplasia and serum gastrin levels. Serum chromogranin A levels maybe helpful in distinguishing autoimmune gastritis patients and gastric carcinoid type I from the control group, but not useful in the differentiation of individuals with autoimmune gastritis from patients with gastric carcinoids.

  9. Circadian behaviour in neuroglobin deficient mice

    DEFF Research Database (Denmark)

    Hundahl, Christian A; Fahrenkrug, Jan; Hay-Schmidt, Anders

    2012-01-01

    on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light...

  10. Essential fatty acid deficiency in mice impairs lactose digestion

    NARCIS (Netherlands)

    Lukovac, S.; Los, E. L.; Stellaard, F.; Rings, E. H. H. M.; Verkade, H. J.

    Essential fatty acid (EFA) deficiency in mice induces fat malabsorption. We previously reported indications that the underlying mechanism is located at the level of the intestinal mucosa. We have investigated the effects of EFA deficiency on small intestinal morphology and function. Mice were fed an

  11. Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma.

    Science.gov (United States)

    Yan, Lin; Nielsen, Forrest H; Sundaram, Sneha; Cao, Jay

    2017-04-04

    Bone loss occurs in obesity and cancer-associated complications including wasting. This study determined whether a high-fat diet and a deficiency in monocyte chemotactic protein-1 (MCP-1) altered bone structural defects in male C57BL/6 mice with Lewis lung carcinoma (LLC) metastases in lungs. Compared to non-tumor-bearing mice, LLC reduced bone volume fraction, connectivity density, trabecular number, trabecular thickness and bone mineral density and increased trabecular separation in femurs. Similar changes occurred in vertebrae. The high-fat diet compared to the AIN93G diet exacerbated LLC-induced detrimental structural changes; the exacerbation was greater in femurs than in vertebrae. Mice deficient in MCP-1 compared to wild-type mice exhibited increases in bone volume fraction, connectivity density, trabecular number and decreases in trabecular separation in both femurs and vertebrae, and increases in trabecular thickness and bone mineral density and a decrease in structure model index in vertebrae. Lewis lung carcinoma significantly decreased osteocalcin but increased tartrate-resistant acid phosphatase 5b (TRAP 5b) in plasma. In LLC-bearing mice, the high-fat diet increased and MCP-1 deficiency decreased plasma TRAP 5b; neither the high-fat diet nor MCP-1 deficiency resulted in significant changes in plasma concentration of osteocalcin. In conclusion, pulmonary metastasis of LLC is accompanied by detrimental bone structural changes; MCP-1 deficiency attenuates and high-fat diet exacerbates the metastasis-associated bone wasting.

  12. Distinct expression of synaptic NR2A and NR2B in the central nervous system and impaired morphine tolerance and physical dependence in mice deficient in postsynaptic density-93 protein

    Directory of Open Access Journals (Sweden)

    Johns Roger A

    2008-10-01

    Full Text Available Abstract Postsynaptic density (PSD-93, a neuronal scaffolding protein, binds to and clusters N-methyl-D-aspartate receptor (NMDAR subunits NR2A and NR2B at cellular membranes in vitro. However, the roles of PSD-93 in synaptic NR2A and NR2B targeting in the central nervous system and NMDAR-dependent physiologic and pathologic processes are still unclear. We report here that PSD-93 deficiency significantly decreased the amount of NR2A and NR2B in the synaptosomal membrane fractions derived from spinal cord dorsal horn and forebrain cortex but did not change their levels in the total soluble fraction from either region. However, PSD-93 deficiency did not markedly change the amounts of NR2A and NR2B in either synaptosomal or total soluble fractions from cerebellum. In mice deficient in PSD-93, morphine dose-dependent curve failed to shift significantly rightward as it did in wild type (WT mice after acute and chronic morphine challenge. Unlike WT mice, PSD-93 knockout mice also showed marked losses of NMDAR-dependent morphine analgesic tolerance and associated abnormal sensitivity in response to mechanical, noxious thermal, and formalin-induced inflammatory stimuli after repeated morphine injection. In addition, PSD-93 knockout mice displayed dramatic loss of jumping activity, a typical NMDAR-mediated morphine withdrawal abstinence behavior. These findings indicate that impaired NMDAR-dependent neuronal plasticity following repeated morphine injection in PSD-93 knockout mice is attributed to PSD-93 deletion-induced alterations of synaptic NR2A and NR2B expression in dorsal horn and forebrain cortex neurons. The selective effect of PSD-93 deletion on synaptic NMDAR expression in these two major pain-related regions might provide the better strategies for the prevention and treatment of opioid tolerance and physical dependence.

  13. Adaptive gene regulation in the Striatum of RGS9-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kathy Busse

    Full Text Available BACKGROUND: RGS9-deficient mice show drug-induced dyskinesia but normal locomotor activity under unchallenged conditions. RESULTS: Genes related to Ca2+ signaling and their functions were regulated in RGS9-deficient mice. CONCLUSION: Changes in Ca2+ signaling that compensate for RGS9 loss-of-function can explain the normal locomotor activity in RGS9-deficient mice under unchallenged conditions. SIGNIFICANCE: Identified signaling components may represent novel targets in antidyskinetic therapy. The long splice variant of the regulator of G-protein signaling 9 (RGS9-2 is enriched in striatal medium spiny neurons and dampens dopamine D2 receptor signaling. Lack of RGS9-2 can promote while its overexpression prevents drug-induced dyskinesia. Other animal models of drug-induced dyskinesia rather pointed towards overactivity of dopamine receptor-mediated signaling. To evaluate changes in signaling pathways mRNA expression levels were determined and compared in wild-type and RGS9-deficient mice. Unexpectedly, expression levels of dopamine receptors were unchanged in RGS9-deficient mice, while several genes related to Ca2+ signaling and long-term depression were differentially expressed when compared to wild type animals. Detailed investigations at the protein level revealed hyperphosphorylation of DARPP32 at Thr34 and of ERK1/2 in striata of RGS9-deficient mice. Whole cell patch clamp recordings showed that spontaneous synaptic events are increased (frequency and size in RGS9-deficient mice while long-term depression is reduced in acute brain slices. These changes are compatible with a Ca2+-induced potentiation of dopamine receptor signaling which may contribute to the drug-induced dyskinesia in RGS9-deficient mice.

  14. Circadian behaviour in neuroglobin deficient mice.

    Directory of Open Access Journals (Sweden)

    Christian A Hundahl

    Full Text Available Neuroglobin (Ngb, a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN. The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1 and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night.

  15. Select cognitive deficits in Vasoactive Intestinal Peptide deficient mice

    Directory of Open Access Journals (Sweden)

    Hagopian Arkady

    2008-07-01

    Full Text Available Abstract Background The neuropeptide vasoactive intestinal peptide (VIP is widely distributed in the adult central nervous system where this peptide functions to regulate synaptic transmission and neural excitability. The expression of VIP and its receptors in brain regions implicated in learning and memory functions, including the hippocampus, cortex, and amygdala, raise the possibility that this peptide may function to modulate learned behaviors. Among other actions, the loss of VIP has a profound effect on circadian timing and may specifically influence the temporal regulation of learning and memory functions. Results In the present study, we utilized transgenic VIP-deficient mice and the contextual fear conditioning paradigm to explore the impact of the loss of this peptide on a learned behavior. We found that VIP-deficient mice exhibited normal shock-evoked freezing behavior and increases in corticosterone. Similarly, these mutant mice exhibited no deficits in the acquisition or recall of the fear-conditioned behavior when tested 24-hours after training. The VIP-deficient mice exhibited a significant reduction in recall when tested 48-hours or longer after training. Surprisingly, we found that the VIP-deficient mice continued to express circadian rhythms in the recall of the training even in those individual mice whose wheel running wheel activity was arrhythmic. One mechanistic explanation is suggested by the finding that daily rhythms in the expression of the clock gene Period2 continue in the hippocampus of VIP-deficient mice. Conclusion Together these data suggest that the neuropeptide VIP regulates the recall of at least one learned behavior but does not impact the circadian regulation of this behavior.

  16. Towards the generation of B-cell receptor retrogenic mice.

    Directory of Open Access Journals (Sweden)

    Jenny Freitag

    Full Text Available Transgenic expression of B- and T-cell receptors (BCRs and TCRs, respectively has been a standard tool to study lymphocyte development and function in vivo. The generation of transgenic mice is time-consuming and, therefore, a faster method to study the biology of defined lymphocyte receptors in vivo would be highly welcome. Using 2A peptide-linked multicistronic retroviral vectors to transduce stem cells, TCRs can be expressed rapidly in mice of any background. We aimed at adopting this retrogenic technology to the in vivo expression of BCRs. Using a well characterised BCR specific for hen egg lysozyme (HEL, we achieved surface expression of the retrogenically encoded BCR in a Rag-deficient pro B-cell line in vitro. In vivo, retrogenic BCRs were detectable only intracellularly but not on the surface of B cells from wild type or Rag2-deficient mice. This data, together with the fact that no BCR retrogenic mouse model has been published in the 7 years since the method was originally published for TCRs, strongly suggests that achieving BCR-expression in vivo with retrogenic technology is highly challenging if not impossible.

  17. Adipose tissue deficiency of hormone-sensitive lipase causes fatty liver in mice.

    Science.gov (United States)

    Xia, Bo; Cai, Guo He; Yang, Hao; Wang, Shu Pei; Mitchell, Grant A; Wu, Jiang Wei

    2017-12-01

    Fatty liver is a major health problem worldwide. People with hereditary deficiency of hormone-sensitive lipase (HSL) are reported to develop fatty liver. In this study, systemic and tissue-specific HSL-deficient mice were used as models to explore the underlying mechanism of this association. We found that systemic HSL deficient mice developed fatty liver in an age-dependent fashion between 3 and 8 months of age. To further explore the mechanism of fatty liver in HSL deficiency, liver-specific HSL knockout mice were created. Surprisingly, liver HSL deficiency did not influence liver fat content, suggesting that fatty liver in HSL deficiency is not liver autonomous. Given the importance of adipose tissue in systemic triglyceride metabolism, we created adipose-specific HSL knockout mice and found that adipose HSL deficiency, to a similar extent as systemic HSL deficiency, causes age-dependent fatty liver in mice. Mechanistic study revealed that deficiency of HSL in adipose tissue caused inflammatory macrophage infiltrates, progressive lipodystrophy, abnormal adipokine secretion and systemic insulin resistance. These changes in adipose tissue were associated with a constellation of changes in liver: low levels of fatty acid oxidation, of very low density lipoprotein secretion and of triglyceride hydrolase activity, each favoring the development of hepatic steatosis. In conclusion, HSL-deficient mice revealed a complex interorgan interaction between adipose tissue and liver: the role of HSL in the liver is minimal but adipose tissue deficiency of HSL can cause age-dependent hepatic steatosis. Adipose tissue is a potential target for treating the hepatic steatosis of HSL deficiency.

  18. Adaptation of enterovirus 71 to adult interferon deficient mice.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Caine

    Full Text Available Non-polio enteroviruses, including enterovirus 71 (EV71, have caused severe and fatal cases of hand, foot and mouth disease (HFMD in the Asia-Pacific region. The development of a vaccine or antiviral against these pathogens has been hampered by the lack of a reliable small animal model. In this study, a mouse adapted EV71 strain was produced by conducting serial passages through A129 (α/β interferon (IFN receptor deficient and AG129 (α/β, γ IFN receptor deficient mice. A B2 sub genotype of EV71 was inoculated intraperitoneally (i.p. into neonatal AG129 mice and brain-harvested virus was subsequently passaged through 12 and 15 day-old A129 mice. When tested in 10 week-old AG129 mice, this adapted strain produced 100% lethality with clinical signs including limb paralysis, eye irritation, loss of balance, and death. This virus caused only 17% mortality in same age A129 mice, confirming that in the absence of a functional IFN response, adult AG129 mice are susceptible to infection by adapted EV71 isolates. Subsequent studies in adult AG129 and young A129 mice with the adapted EV71 virus examined the efficacy of an inactivated EV71 candidate vaccine and determined the role of humoral immunity in protection. Passive transfer of rabbit immune sera raised against the EV71 vaccine provided protection in a dose dependent manner in 15 day-old A129 mice. Intramuscular injections (i.m. in five week-old AG129 mice with the alum adjuvanted vaccine also provided protection against the mouse adapted homologous strain. No clinical signs of disease or mortality were observed in vaccinated animals, which received a prime-and-boost, whereas 71% of control animals were euthanized after exhibiting systemic clinical signs (P<0.05. The development of this animal model will facilitate studies on EV71 pathogenesis, antiviral testing, the evaluation of immunogenicity and efficacy of vaccine candidates, and has the potential to establish correlates of protection

  19. Restoration of human B-cell differentiation into NOD-SCID mice engrafted with gene-corrected CD34+ cells isolated from Artemis or RAG1-deficient patients.

    Science.gov (United States)

    Lagresle-Peyrou, Chantal; Benjelloun, Fatine; Hue, Christophe; Andre-Schmutz, Isabelle; Bonhomme, Delphine; Forveille, Monique; Beldjord, Kheira; Hacein-Bey-Abina, Salima; De Villartay, Jean-Pierre; Charneau, Pierre; Durandy, Anne; Fischer, Alain; Cavazzana-Calvo, Marina

    2008-02-01

    Severe combined immunodeficiency (SCID) caused by mutation of the recombination-activating gene 1 (RAG1) or Artemis gene lead to the absence of B- and T-cell differentiation. The only curative treatment is allogeneic bone marrow (BM) transplantation, which displays a high survival rate when an HLA compatible donor is available but has a poorer prognosis when the donor is partially compatible. Consequently, gene therapy may be a promising alternative strategy for these diseases. Here, we report that lentiviral gene-corrected BM CD34(+) cells (isolated from Artemis- or RAG1-deficient patients) sustain human B-cell differentiation following injection into non-obese diabetic/SCID (NOD-SCID) mice previously infused with anti-interleukin-2 receptor beta chain monoclonal antibody. In most of the mice BM, engrafted with Artemis-transduced cells, human B-cell differentiation occurred until the mature stage. The B cells were functional as human immunoglobulin M (IgM) was present in the serum. Following injection with RAG1-transduced cells, human engraftment occurred in vivo but B-cell differentiation until the mature stage was less frequent. However, when it occurred, it was always associated with human IgM production. This overall approach represents a useful tool for evaluating gene transfer efficiency in human SCID forms affecting B-cell development (such as Artemis deficiency) and for testing new vectors for improving in vivo RAG1 complementation.

  20. Characterization of vitamin D-deficient klotho(-/-) mice: do increased levels of serum 1,25(OH)2D3 cause disturbed calcium and phosphate homeostasis in klotho(-/-) mice?

    NARCIS (Netherlands)

    Woudenberg-Vrenken, T.E.; van der Eerden, B.C.; van der Kemp, A.W.; Leeuwen, J.P. van; Bindels, R.J.M.; Hoenderop, J.G.J.

    2012-01-01

    BACKGROUND: Klotho(-/-) mice display disturbed Ca(2+) and vitamin D homeostasis. Renal cytochrome p450 27b1 (Cyp27b1), the enzyme that catalyzes the hydrolysis to 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), is increased in klotho(-/-) mice, and a 1,25(OH)(2)D(3)-deficient diet partially normalized

  1. Uptakes of trace elements in Zn-deficient mice

    International Nuclear Information System (INIS)

    Ohyama, T.; Yanaga, M.; Yoshida, T.; Maetsu, H.; Suganuma, H.; Omori, T.

    2002-01-01

    A multitracer technique was used to obtain uptake rates of essential trace elements in various organs and tissues in Zn-deficient mice. A multitracer solution, containing more than 20 radioisotopes, was injected intraperitoneally into Zn-deficient state mice and control ones. Uptake rates of the radioisotopes were compared with concentrations of trace elements determined by instrumental neutron activation analysis (INAA) in order to study a specific metabolism of Zn and other essential trace elements, such as Mn, Co, Se, Rb, and Sr. The result suggests that Zn is supplied from bone to other organs and tissues and an increase in Co concentration in all organs and tissues depends on its chemical form, under the Z-deficient state. (author)

  2. The surging role of Chromogranin A in cardiovascular homeostasis

    Science.gov (United States)

    Tota, Bruno; Angelone, Tommaso; Cerra, Maria

    2014-08-01

    Together with Chromogranin B and Secretogranins, Chromogranin A (CGA) is stored in secretory (chromaffin) granules of the diffuse neuroendocrine system and released with noradrenalin and adrenalin. Co-stored within the granule together with neuropeptideY, cardiac natriuretic peptide hormones, several prohormones and their proteolytic enzymes, CGA is a multifunctional protein and a major marker of the sympatho-adrenal neuroendocrine activity. Due to its partial processing to several biologically active peptides, CGA appears an important pro-hormone implicated in relevant modulatory actions on endocrine, cardiovascular, metabolic, and immune systems through both direct and indirect sympatho-adrenergic interactions. As a part of this scenario, we here illustrate the emerging role exerted by the full-length CGA and its three derived fragments, i.e. Vasostatin 1, catestatin and serpinin, in the control of circulatory homeostasis with particular emphasis on their cardio-vascular actions under both physiological and physio-pathological conditions. The Vasostatin 1- and catestatin-induced cardiodepressive influences are achieved through anti-beta-adrenergic-NO-cGMP signalling, while serpinin acts like beta1-adrenergic agonist through AD-cAMP-independent NO signalling. On the whole, these actions contribute to wide our knowledge regarding the sympatho-chromaffin control of the cardiovascular system and its highly integrated “whip-brake” networks.

  3. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke-Korsakoff syndrome.

    Science.gov (United States)

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-12-01

    Patients with severe Wernicke-Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation.

  4. Vitamin B1-deficient mice show impairment of hippocampus-dependent memory formation and loss of hippocampal neurons and dendritic spines: potential microendophenotypes of Wernicke–Korsakoff syndrome

    Science.gov (United States)

    Inaba, Hiroyoshi; Kishimoto, Takuya; Oishi, Satoru; Nagata, Kan; Hasegawa, Shunsuke; Watanabe, Tamae; Kida, Satoshi

    2016-01-01

    Patients with severe Wernicke–Korsakoff syndrome (WKS) associated with vitamin B1 (thiamine) deficiency (TD) show enduring impairment of memory formation. The mechanisms of memory impairment induced by TD remain unknown. Here, we show that hippocampal degeneration is a potential microendophenotype (an endophenotype of brain disease at the cellular and synaptic levels) of WKS in pyrithiamine-induced thiamine deficiency (PTD) mice, a rodent model of WKS. PTD mice show deficits in the hippocampus-dependent memory formation, although they show normal hippocampus-independent memory. Similarly with WKS, impairments in memory formation did not recover even at 6 months after treatment with PTD. Importantly, PTD mice exhibit a decrease in neurons in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus and reduced density of wide dendritic spines in the DG. Our findings suggest that TD induces hippocampal degeneration, including the loss of neurons and spines, thereby leading to enduring impairment of hippocampus-dependent memory formation. PMID:27576603

  5. Delayed onset of experimental autoimmune encephalomyelitis in Olig1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Xiaoli Guo

    Full Text Available BACKGROUND: Olig1 is a basic helix-loop-helix (bHLH transcription factor that is essential for oligodendrogenesis and efficient remyelination. However, its role in neurodegenerative disorders has not been well-elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here we investigated the effects of Olig1 deficiency on experimental autoimmune encephalomyelitis (EAE, an animal model of multiple sclerosis (MS. We show that the mean disease onset of myelin oligodendrocyte glycoprotein (MOG-induced EAE in Olig1(-/- mice is significantly slower than wide-type (WT mice (19.8 ± 2.2 in Olig1(-/- mice and 9.5 ± 0.3 days in WT mice. In addition, 10% of Olig1(-/- mice did not develop EAE by the end of the observation periods (60 days. The severity of EAE, the extent of demyelination, and the activation of microglial cells and astrocytes in spinal cords, were significantly milder in Olig1(-/- mice compared with WT mice in the early stage. Moreover, the visual function, as assessed by the second-kernel of multifocal electroretinograms, was better preserved, and the number of degenerating axons in the optic nerve was significantly reduced in Olig1(-/- mice. Interestingly, Olig1 deficiency had no effect on T cell response capability, however, it reduced the expression of myelin proteins such as MOG, myelin basic protein (MBP and myelin-associated glycoprotein (MAG. The expression of Olig2 remained unchanged in the optic nerve and brain, and it was reduced in the spinal cord of Olig1(-/- mice. CONCLUSIONS/SIGNIFICANCE: Our results suggest that the Olig1 signaling pathways may be involved in the incidence rate and the severity of neurological symptoms in MS.

  6. Absence of Wip1 partially rescues Atm deficiency phenotypes in mice

    Science.gov (United States)

    Darlington, Yolanda; Nguyen, Thuy-Ai; Moon, Sung-Hwan; Herron, Alan; Rao, Pulivarthi; Zhu, Chengming; Lu, Xiongbin; Donehower, Lawrence A.

    2011-01-01

    Wildtype p53-Induced Phosphatase 1 (WIP1) is a serine/threonine phosphatase that dephosphorylates proteins in the ataxia telangiectasia mutated (ATM)-initiated DNA damage response pathway. WIP1 may play a homeostatic role in ATM signaling by returning the cell to a normal pre-stress state following completion of DNA repair. To better understand the effects of WIP1 on ATM signaling, we crossed Atm-deficient mice to Wip1-deficient mice and characterized phenotypes of the double knockout progeny. We hypothesized that the absence of Wip1 might rescue Atm deficiency phenotypes. Atm null mice, like ATM-deficient humans with the inherited syndrome ataxia telangiectasia, exhibit radiation sensitivity, fertility defects, and are T-cell lymphoma prone. Most double knockout mice were largely protected from lymphoma development and had a greatly extended lifespan compared to Atm null mice. Double knockout mice had increased p53 and H2AX phosphorylation and p21 expression compared to their Atm null counterparts, indicating enhanced p53 and DNA damage responses. Additionally, double knockout splenocytes displayed reduced chromosomal instability compared to Atm null mice. Finally, doubly null mice were partially rescued from infertility defects observed in Atm null mice. These results indicate that inhibition of WIP1 may represent a useful strategy for cancer treatment in general and A-T patients in particular. PMID:21765465

  7. Reduced metastasis of transgenic mammary cancer in urokinase-deficient mice

    DEFF Research Database (Denmark)

    Almholt, Kasper; Lund, L.R.; Rygaard, Jørgen

    2005-01-01

    A prominent phenotype of plasmin deficiency in mice is reduced metastasis in the MMTV-PymT transgenic breast cancer model. Proteolytically active plasmin is generated from inactive plasminogen by one of 2 activators, uPA or tPA. We now find that uPA deficiency alone significantly reduces metastasis...... >7-fold in the MMTV-PymT model. We studied a cohort of 55 MMTV-PymT transgenic mice, either uPA-deficient or wild-type controls. Tumor incidence, latency, growth rate and final primary tumor burden were not significantly affected by uPA deficiency. In contrast, average lung metastasis volume...

  8. Aldose Reductase-Deficient Mice Develop Nephrogenic Diabetes Insipidus

    Science.gov (United States)

    Ho, Horace T. B.; Chung, Sookja K.; Law, Janice W. S.; Ko, Ben C. B.; Tam, Sidney C. F.; Brooks, Heddwen L.; Knepper, Mark A.; Chung, Stephen S. M.

    2000-01-01

    Aldose reductase (ALR2) is thought to be involved in the pathogenesis of various diseases associated with diabetes mellitus, such as cataract, retinopathy, neuropathy, and nephropathy. However, its physiological functions are not well understood. We developed mice deficient in this enzyme and found that they had no apparent developmental or reproductive abnormality except that they drank and urinated significantly more than their wild-type littermates. These ALR2-deficient mice exhibited a partially defective urine-concentrating ability, having a phenotype resembling that of nephrogenic diabetes insipidus. PMID:10913167

  9. Protein tyrosine phosphatase 1B deficiency ameliorates murine experimental colitis via the expansion of myeloid-derived suppressor cells.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B is a key molecule in modulating low-degree inflammatory conditions such as diabetes. The role of PTP1B in other chronic inflammations, however, remains unknown. Here, we report that PTP1B deficiency ameliorates Dextran Sulfate Sodium (DSS-induced murine experimental colitis via expanding CD11b(+Gr-1(+ myeloid-derived suppressor cells (MDSCs. Employing DSS-induced murine experimental colitis as inflammatory animal model, we found that, compared with wild-type littermates, PTP1B-null mice demonstrated greater resistance to DSS-induced colitis, as reflected by slower weight-loss, greater survival rates and decreased PMN and macrophage infiltration into the colon. The evidence collectively also demonstrated that the resistance of PTP1B-null mice to DSS-induced colitis is based on the expansion of MDSCs. First, PTP1B-null mice exhibited a greater frequency of MDSCs in the bone marrow (BM, peripheral blood and spleen when compared with wild-type littermates. Second, PTP1B levels in BM leukocytes were significantly decreased after cells were induced into MDSCs by IL-6 and GM-CSF, and the MDSC induction occurred more rapidly in PTP1B-null mice than in wild-type littermates, suggesting PTP1B as a negative regulator of MDSCs. Third, the adoptive transfer of MDSCs into mice with DSS-colitis significantly attenuated colitis, which accompanies with a decreased serum IL-17 level. Finally, PTP1B deficiency increased the frequency of MDSCs from BM cells likely through enhancing the activities of signal transducer and activator of transcription 3 (STAT3 and Janus kinase 2 (JAK2. In conclusion, our study provides the first evidences that PTP1B deficiency ameliorates murine experimental colitis via expanding MDSCs.

  10. Gender affects skin wound healing in plasminogen deficient mice

    DEFF Research Database (Denmark)

    Rønø, Birgitte; Engelholm, Lars Henning; Lund, Leif Røge

    2013-01-01

    closure in female versus male plasmin deficient mice. Further studies showed that this gender effect could not be reversed by ovariectomy, suggesting that female sex-hormones did not mediate the accelerated skin wound healing in plasmin deficient female mice. Histological examination of healed wounds...... functional plasmin thus display decreased tumor growth in a variety of cancer models. Interestingly, this role of plasmin has, in regard to skin cancer, been shown to be restricted to male mice. It remains to be clarified whether gender also affects other phenotypic characteristics of plasmin deficiency...... or if this gender effect is restricted to skin cancer. To investigate this, we tested the effect of gender on plasmin dependent immune cell migration, accumulation of hepatic fibrin depositions, skin composition, and skin wound healing. Gender did not affect immune cell migration or hepatic fibrin accumulation...

  11. Enhanced radiosensitivity in 1,25-dihydroxyvitamin D3 deficient mice

    International Nuclear Information System (INIS)

    Zhang Zengli; Ding Xiaofei; Tong Jian; Li Bingyan

    2011-01-01

    To investigate whether impaired osteogenesis resulting from vitamin D deficiency can influence hematopoiesis recovery after radiation, the 25-hydroxyvitamin D-1α-hydroxylase (1α-hydroxylase) gene knockout (KO) mice and wild type (WT) mice were subjected to different doses of gamma ray. The survival rates, peripheral blood cell counts and bone marrow cellularity were studied after irradiation (IR). The survival rates of the KO mice were significantly lower than that of WT mice after 6 or 8 Gy dose of radiation. The recovery of white blood cells in KO mice was significantly delayed compared with that in WT mice after radiation. The red blood cell number in WT mice was observed to increase more than that in KO mice at days 14 and 28 after radiation. The nadir platelet count in KO mice was nearly half of that in WT mice. Dramatically higher bone marrow cell numbers were found in WT mice compared with KO mice. Our findings demonstrate the enhanced radiosensitivity in 1,25-dihydroxyvitamin D3 (1,25-(OH) 2 D 3 ) deficient mice. (author)

  12. Vitamin B12 deficiency

    DEFF Research Database (Denmark)

    Green, Ralph; Allen, Lindsay H; Bjørke-Monsen, Anne-Lise

    2017-01-01

    , subclinical deficiency affects between 2.5% and 26% of the general population depending on the definition used, although the clinical relevance is unclear. B12 deficiency can affect individuals at all ages, but most particularly elderly individuals. Infants, children, adolescents and women of reproductive age...... remain debated. Management depends on B12 supplementation, either via high-dose oral routes or via parenteral administration. This Primer describes the current knowledge surrounding B12 deficiency, and highlights improvements in diagnostic methods as well as shifting concepts about the prevalence, causes...

  13. The role of interleukin-5 (IL-5 in vivo: studies with IL-5 deficient mice

    Directory of Open Access Journals (Sweden)

    Klaus I Matthaei

    1997-12-01

    Full Text Available Eosinophil recruitment is a characteristic feature of a number of pathological conditions and was the topic of the recent International Symposium on allergic inflammation, asthma, parasitic and infectious diseases (Rio de Janeiro, June 3-5, 1996. Since interleukin5 (IL5 is believed to regulate the growth, differentiation and activation of eosinophils (Coffman et al. 1989, Sanderson 1992, the role of eosinophils and IL5 are closely linked. Although IL5 specifically regulates eosinophilia in vivo and this is its most well established activity, it is becoming clear that IL5 also has other biological effects. The recent derivation of an IL5 deficient mouse (Kopf et al. 1996, provides a model for exploring not only the role of IL5 and eosinophils but also other novel activities of IL5. Of note is that although the IL5 deficient mice cannot elicit a pronounced eosinophilia in response to inflammatory stimulation following aeroallergen challenge or parasite infection they still produce basal levels of eosinophils that appear to be morphologically and functionally normal. However, the basal levels of eosinophils appear insufficient for normal host defence as IL5 deficiency has now been shown to compromise defence against several helminth infections. In addition, IL5 deficient mice appear to have functional deficiencies in B-1 B lymphocytes and in IgA production.

  14. Chronic transgenerational vitamin B12 deficiency of severe and moderate magnitudes modulates adiposity-probable underlying mechanisms.

    Science.gov (United States)

    Ghosh, Shampa; Sinha, Jitendra Kumar; Muralikrishna, Bojanapalli; Putcha, Uday Kumar; Raghunath, Manchala

    2017-05-06

    We have demonstrated previously that severe but not moderate vitamin B12 deficiency altered body composition and induced adiposity in female C57BL/6 mice. This study aims to elucidate the effects of chronic transgenerational dietary vitamin B12 restriction on body composition and various biochemical parameters in the F1 generation offspring of our mouse models of severe and moderate vitamin B12 deficiency established earlier. Female weanling C57BL/6 mice received, ad libitum, for 4 weeks a (i) control diet, (ii) vitamin B12-restricted diet with pectin as dietary fiber (severely deficient diet), or (iii) vitamin B12-restricted diet with cellulose as dietary fiber (moderately deficient diet) and then mated with control males. The offspring of control and severely deficient dams continued on the respective diets of their mothers. Few moderately deficient dams were rehabilitated to control diet from parturition and their pups were weaned to control diet. Also, some offspring born to moderately B12 deficient dams were weaned to control diet, while others continued on the same diet as their mothers. Various parameters were determined in the F1 offspring after 12 and 36 weeks of feeding. The results indicate that both severe and moderate maternal vitamin B12 restrictions were associated with accelerated catch-up growth, increased body fat percentage, visceral adiposity, dyslipidemia, fasting hyperglycemia and insulin resistance in the F1 offspring. Inflammation, increased glucocorticoid and oxidative stress and poor antioxidant defence probably underlie these adverse effects. Rehabilitation from parturition but not weaning was beneficial in delaying the onset of the adverse outcomes in the offspring. © 2016 BioFactors, 43(3):400-414, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  15. CORRELATION BETWEEN GUT MICROBIOTA AND DEVELOPMENT OF GLUCOSE INTOLERANCE IN B6.V-Lepob/J LEPTIN DEFICIENT MICE

    DEFF Research Database (Denmark)

    Ellekilde, Merete; Hansen, Camilla Hartmann Friis; Nielsen, Dennis Sandris

    , a large proportion of laboratory animals are used to study such diseases, but inter-individual variation in these animal models leads to the need for larger group sizes to reach statistical significance and adequate power. By standardizing the microbial and immunological status of laboratory animals we...... may therefore be able to produce animals with a more standardized response and less variation. This would lead to more precise results and a reduced number of animals needed for statistical significance. The aim of the present study was to investigate if the composition of the GM of B6.V...... the mechanisms of how the GM influences disease development is necessary, but based on these results it seems reasonable to assume, that by controlling the GM we may also influence disease development of type 2 diabetes in B6.V-Lepob/J leptin deficient mice, and thereby produce animals with less variation, which...

  16. Inner ear dysfunction in caspase-3 deficient mice

    Directory of Open Access Journals (Sweden)

    Woo Minna

    2011-10-01

    Full Text Available Abstract Background Caspase-3 is one of the most downstream enzymes activated in the apoptotic pathway. In caspase-3 deficient mice, loss of cochlear hair cells and spiral ganglion cells coincide closely with hearing loss. In contrast with the auditory system, details of the vestibular phenotype have not been characterized. Here we report the vestibular phenotype and inner ear anatomy in the caspase-3 deficient (Casp3-/- mouse strain. Results Average ABR thresholds of Casp3-/- mice were significantly elevated (P Casp3+/- mice and Casp3+/+ mice at 3 months of age. In DPOAE testing, distortion product 2F1-F2 was significantly decreased (P Casp3-/- mice, whereas Casp3+/- and Casp3+/+ mice showed normal and comparable values to each other. Casp3-/- mice were hyperactive and exhibited circling behavior when excited. In lateral canal VOR testing, Casp3-/- mice had minimal response to any of the stimuli tested, whereas Casp3+/- mice had an intermediate response compared to Casp3+/+ mice. Inner ear anatomical and histological analysis revealed gross hypomorphism of the vestibular organs, in which the main site was the anterior semicircular canal. Hair cell numbers in the anterior- and lateral crista, and utricle were significantly smaller in Casp3-/- mice whereas the Casp3+/- and Casp3+/+ mice had normal hair cell numbers. Conclusions These results indicate that caspase-3 is essential for correct functioning of the cochlea as well as normal development and function of the vestibule.

  17. Increased susceptibility to Yersinia enterocolitica Infection of Tff2 deficient mice.

    Science.gov (United States)

    Shah, Aftab A; Mihalj, Martina; Ratkay, Ivana; Lubka-Pathak, Maria; Balogh, Peter; Klingel, Karin; Bohn, Erwin; Blin, Nikolaus; Baus-Loncar, Mirela

    2012-01-01

    TFF2 is one of the members of the trefoil factor family, known for its role in protection of gastrointestinal epithelia upon injury; however, recent studies suggest that TFF2 could also play an important role in the immune system. In the present study Tff2 deficient and wild type mice were infected by Y. enterocolitica which resulted in a lethal outcome in all Tff2 deficient mice, but not in WT animals. Yersinia invaded Peyer's patches more efficiently as shown by high bacterial titers in the KO mice while wild type mice displayed lower titers and a visible bacterial accumulation in the intestine. Bacterial accumulation in Peyer's patches of Tff2 deficient mice was accompanied by increased recruitment of macrophages. While an increased level of MAC-1 positive cells was observed in the spleens of both Tff2 deficient and WT mice at third day post infection, bacterial dissemination to liver, lung and kidneys was observed only in Tff2 knock-out mice. Analysis of the cellular composition of spleen did not reveal any substantial alteration to WT animals, suggesting possible disregulation of hemopoietic cells involved in immune response to Y. enterocolitica. These new data indicate that Tff2 plays an important role in immune response by protecting the organism from consequences of infection and that Tff2 knock-out mice react adversely to bacterial infections, in this case specifically to Y. enterocolitica. Copyright © 2012 S. Karger AG, Basel.

  18. Mcph1-deficient mice reveal a role for MCPH1 in otitis media.

    Directory of Open Access Journals (Sweden)

    Jing Chen

    Full Text Available Otitis media is a common reason for hearing loss, especially in children. Otitis media is a multifactorial disease and environmental factors, anatomic dysmorphology and genetic predisposition can all contribute to its pathogenesis. However, the reasons for the variable susceptibility to otitis media are elusive. MCPH1 mutations cause primary microcephaly in humans. So far, no hearing impairment has been reported either in the MCPH1 patients or mouse models with Mcph1 deficiency. In this study, Mcph1-deficient (Mcph1(tm1a (/tm1a mice were produced using embryonic stem cells with a targeted mutation by the Sanger Institute's Mouse Genetics Project. Auditory brainstem response measurements revealed that Mcph1(tm1a (/tm1a mice had mild to moderate hearing impairment with around 70% penetrance. We found otitis media with effusion in the hearing-impaired Mcph1(tm1a (/tm1a mice by anatomic and histological examinations. Expression of Mcph1 in the epithelial cells of middle ear cavities supported its involvement in the development of otitis media. Other defects of Mcph1(tm1a (/tm1a mice included small skull sizes, increased micronuclei in red blood cells, increased B cells and ocular abnormalities. These findings not only recapitulated the defects found in other Mcph1-deficient mice or MCPH1 patients, but also revealed an unexpected phenotype, otitis media with hearing impairment, which suggests Mcph1 is a new gene underlying genetic predisposition to otitis media.

  19. Salmonella enterica serovar Typhimurium ΔmsbB triggers exacerbated inflammation in Nod2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Anne-Kathrin Claes

    Full Text Available The intracellular pathogen Salmonella enterica serovar Typhimurium causes intestinal inflammation characterized by edema, neutrophil influx and increased pro-inflammatory cytokine expression. A major bacterial factor inducing pro-inflammatory host responses is lipopolysaccharide (LPS. S. Typhimurium ΔmsbB possesses a modified lipid A, has reduced virulence in mice, and is being considered as a potential anti-cancer vaccine strain. The lack of a late myristoyl transferase, encoded by MsbB leads to attenuated TLR4 stimulation. However, whether other host receptor pathways are also altered remains unclear. Nod1 and Nod2 are cytosolic pattern recognition receptors recognizing bacterial peptidoglycan. They play important roles in the host's immune response to enteric pathogens and in immune homeostasis. Here, we investigated how deletion of msbB affects Salmonella's interaction with Nod1 and Nod2. S. Typhimurium Δ msbB-induced inflammation was significantly exacerbated in Nod2-/- mice compared to C57Bl/6 mice. In addition, S. Typhimurium ΔmsbB maintained robust intestinal colonization in Nod2-/- mice from day 2 to day 7 p.i., whereas colonization levels significantly decreased in C57Bl/6 mice during this time. Similarly, infection of Nod1-/- and Nod1/Nod2 double-knockout mice revealed that both Nod1 and Nod2 play a protective role in S. Typhimurium ΔmsbB-induced colitis. To elucidate why S. Typhimurium ΔmsbB, but not wild-type S. Typhimurium, induced an exacerbated inflammatory response in Nod2-/- mice, we used HEK293 cells which were transiently transfected with pathogen recognition receptors. Stimulation of TLR2-transfected cells with S. Typhimurium ΔmsbB resulted in increased IL-8 production compared to wild-type S. Typhimurium. Our results indicate that S. Typhimurium ΔmsbB triggers exacerbated colitis in the absence of Nod1 and/or Nod2, which is likely due to increased TLR2 stimulation. How bacteria with "genetically detoxified" LPS

  20. Untargeted Metabolomics Analysis of ABCC6-Deficient Mice Discloses an Altered Metabolic Liver Profile

    DEFF Research Database (Denmark)

    Rasmussen, Mie Rostved; Nielsen, Kirstine Lykke; Christensen, Mia Benedicte Lykke Roest

    2016-01-01

    as more features were upregulated than downregulated in ABCC6-deficient mice. However, no differences of the identified metabolites in liver could be detected in plasma, whereas urine reflected some of the changes. Of note, N-acetylated amino acids and pantothenic acid (vitamin B5), which is involved...

  1. Synchronization of the seminiferous epithelium after vitamin A replacement in vitamin A-deficient mice

    NARCIS (Netherlands)

    van Pelt, A. M.; de rooij, D. G.

    1990-01-01

    The effect of vitamin A deficiency and vitamin A replacement on spermatogenesis was studied in mice. Breeding pairs of Cpb-N mice were given a vitamin A-deficient diet for at least 4 wk. The born male mice received the same diet and developed signs of vitamin A deficiency at the age of 14-16 wk. At

  2. Sick sinus syndrome in HCN1-deficient mice.

    Science.gov (United States)

    Fenske, Stefanie; Krause, Stefanie C; Hassan, Sami I H; Becirovic, Elvir; Auer, Franziska; Bernard, Rebekka; Kupatt, Christian; Lange, Philipp; Ziegler, Tilman; Wotjak, Carsten T; Zhang, Henggui; Hammelmann, Verena; Paparizos, Christos; Biel, Martin; Wahl-Schott, Christian A

    2013-12-17

    Sinus node dysfunction (SND) is a major clinically relevant disease that is associated with sudden cardiac death and requires surgical implantation of electric pacemaker devices. Frequently, SND occurs in heart failure and hypertension, conditions that lead to electric instability of the heart. Although the pathologies of acquired SND have been studied extensively, little is known about the molecular and cellular mechanisms that cause congenital SND. Here, we show that the HCN1 protein is highly expressed in the sinoatrial node and is colocalized with HCN4, the main sinoatrial pacemaker channel isoform. To characterize the cardiac phenotype of HCN1-deficient mice, a detailed functional characterization of pacemaker mechanisms in single isolated sinoatrial node cells, explanted beating sinoatrial node preparation, telemetric in vivo electrocardiography, echocardiography, and in vivo electrophysiology was performed. On the basis of these experiments we demonstrate that mice lacking the pacemaker channel HCN1 display congenital SND characterized by bradycardia, sinus dysrhythmia, prolonged sinoatrial node recovery time, increased sinoatrial conduction time, and recurrent sinus pauses. As a consequence of SND, HCN1-deficient mice display a severely reduced cardiac output. We propose that HCN1 stabilizes the leading pacemaker region within the sinoatrial node and hence is crucial for stable heart rate and regular beat-to-beat variation. Furthermore, we suggest that HCN1-deficient mice may be a valuable genetic disease model for human SND.

  3. Lysosome associated membrane proteins maintain pancreatic acinar cell homeostasis: LAMP-2 deficient mice develop pancreatitis.

    Science.gov (United States)

    Mareninova, Olga A; Sendler, Matthias; Malla, Sudarshan Ravi; Yakubov, Iskandar; French, Samuel W; Tokhtaeva, Elmira; Vagin, Olga; Oorschot, Viola; Lüllmann-Rauch, Renate; Blanz, Judith; Dawson, David; Klumperman, Judith; Lerch, Markus M; Mayerle, Julia; Gukovsky, Ilya; Gukovskaya, Anna S

    2015-11-01

    The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated membrane proteins (LAMPs) in pancreatitis. We analyzed changes in LAMPs in experimental models and human pancreatitis, and the underlying mechanisms: LAMP de-glycosylation and degradation. LAMP cleavage by cathepsin B (CatB) was analyzed by mass spectrometry. We used mice deficient in LAMP-2 to assess its role in pancreatitis. Pancreatic levels of LAMP-1 and LAMP-2 greatly decrease across various pancreatitis models and in human disease. Pancreatitis does not trigger LAMPs' bulk de-glycosylation, but induces their degradation via CatB-mediated cleavage of LAMP molecule close to the boundary between luminal and transmembrane domains. LAMP-2 null mice spontaneously develop pancreatitis that begins with acinar cell vacuolization due to impaired autophagic flux, and progresses to severe pancreas damage characterized by trypsinogen activation, macrophage-driven inflammation, and acinar cell death. LAMP-2 deficiency causes a decrease in pancreatic digestive enzymes content, stimulates the basal and inhibits CCK-induced amylase secretion by acinar cells. The effects of LAMP-2 knockout and acute cerulein pancreatitis overlap, which corroborates the pathogenic role of LAMP decrease in experimental pancreatitis models. The results indicate a critical role for LAMPs, particularly LAMP-2, in maintaining pancreatic acinar cell homeostasis, and provide evidence that defective lysosomal function, resulting in impaired autophagy, leads to pancreatitis. Mice with LAMP-2 deficiency present a novel genetic model of human pancreatitis caused by lysosomal/autophagic dysfunction.

  4. Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice.

    Science.gov (United States)

    Oestreich, A K; Carleton, S M; Yao, X; Gentry, B A; Raw, C E; Brown, M; Pfeiffer, F M; Wang, Y; Phillips, C L

    2016-01-01

    Mice with osteogenesis imperfecta (+/oim), a disorder of bone fragility, were bred to mice with muscle over growth to test whether increasing muscle mass genetically would improve bone quality and strength. The results demonstrate that femora from mice carrying both mutations have greater mechanical integrity than their +/oim littermates. Osteogenesis imperfecta is a heritable connective tissue disorder due primarily to mutations in the type I collagen genes resulting in skeletal deformity and fragility. Currently, there is no cure, and therapeutic strategies encompass the use of antiresorptive pharmaceuticals and surgical bracing, with limited success and significant potential for adverse effects. Bone, a mechanosensing organ, can respond to high mechanical loads by increasing new bone formation and altering bone geometry to withstand increased forces. Skeletal muscle is a major source of physiological loading on bone, and bone strength is proportional to muscle mass. To test the hypothesis that congenic increases in muscle mass in the osteogenesis imperfecta murine model mouse (oim) will improve their compromised bone quality and strength, heterozygous (+/oim) mice were bred to mice deficient in myostatin (+/mstn), a negative regulator of muscle growth. The resulting adult offspring were evaluated for hindlimb muscle mass, and bone microarchitecture, physiochemistry, and biomechanical integrity. +/oim mice deficient in myostatin (+/mstn +/oim) were generated and demonstrated that myostatin deficiency increased body weight, muscle mass, and biomechanical strength in +/mstn +/oim mice as compared to +/oim mice. Additionally, myostatin deficiency altered the physiochemical properties of the +/oim bone but did not alter bone remodeling. Myostatin deficiency partially improved the reduced femoral bone biomechanical strength of adult +/oim mice by increasing muscle mass with concomitant improvements in bone microarchitecture and physiochemical properties.

  5. Bovine lactoferricin induces caspase-independent apoptosis in human B-lymphoma cells and extends the survival of immune-deficient mice bearing B-lymphoma xenografts.

    Science.gov (United States)

    Furlong, Suzanne J; Mader, Jamie S; Hoskin, David W

    2010-06-01

    Although current treatments based on the use of B-cell-specific anti-CD20 monoclonal antibodies and aggressive combinatorial chemotherapy have improved the survival of patients suffering from B-cell non-Hodgkin's lymphoma (NHL), some individuals fail to respond to treatment and relapses remain common. New and more effective treatments for B-cell NHL are therefore required. Bovine lactoferricin (LfcinB) is a cationic antimicrobial peptide that is cytotoxic for several human tumor cell lines but does not harm healthy cells. Here we show that in vitro treatment with LfcinB caused Raji and Ramos human B-lymphoma cells to die by apoptosis, as indicated by DNA fragmentation, chromatin condensation, and nuclear disintegration. LfcinB killed B-lymphoma cells more efficiently at low serum concentrations and was inhibited in the presence of exogenous bovine serum albumin, suggesting partial neutralization of cationic LfcinB by anionic serum components. LfcinB-induced apoptosis in B-lymphoma cells was caspase-independent since caspase-3 activation was not detected by Western blotting and the general caspase inhibitor z-VAD-fmk did not prevent LfcinB-induced DNA fragmentation. Importantly, immune-deficient SCID/beige mice that were inoculated intravenously with Ramos B-lymphoma cells in order to model B-cell NHL exhibited extended survival following systemic administration of LfcinB, indicating that LfcinB warrants further investigation as a novel therapeutic agent for the possible treatment of B-cell NHL. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Uptake by J774 macrophages of very-low-density lipoproteins isolated from apoE-deficient mice is mediated by a distinct receptor and stimulated by lipoprotein lipase

    NARCIS (Netherlands)

    Hendriks, W.L.; Sman van der - Beer, F. de; Vlijmen, B.J.M. van; Vark, L.C. van; Hofker, M.H.; Havekes, L.M.

    1997-01-01

    Apolipoprotein (apo) E-deficient mice display marked accumulation in the plasma of VLDL deficient in both apoE and apoBl00 but containing apoB48, apoA-1, apoCs, and apoA-IV. Since apoE-deficient mice develop severe atherosclerotic lesions with lipid-laden macrophages, we reasoned that the uptake of

  7. Completely ES cell-derived mice produced by tetraploid complementation using inner cell mass (ICM deficient blastocysts.

    Directory of Open Access Journals (Sweden)

    Duancheng Wen

    Full Text Available Tetraploid complementation is often used to produce mice from embryonic stem cells (ESCs by injection of diploid (2n ESCs into tetraploid (4n blastocysts (ESC-derived mice. This method has also been adapted to mouse cloning and the derivation of mice from induced pluripotent stem (iPS cells. However, the underlying mechanism(s of the tetraploid complementation remains largely unclear. Whether this approach can give rise to completely ES cell-derived mice is an open question, and has not yet been unambiguously proven. Here, we show that mouse tetraploid blastocysts can be classified into two groups, according to the presence or absence of an inner cell mass (ICM. We designate these as type a (presence of ICM at blastocyst stage or type b (absence of ICM. ESC lines were readily derived from type a blastocysts, suggesting that these embryos retain a pluripotent epiblast compartment; whereas the type b blastocysts possessed very low potential to give rise to ESC lines, suggesting that they had lost the pluripotent epiblast. When the type a blastocysts were used for tetraploid complementation, some of the resulting mice were found to be 2n/4n chimeric; whereas when type b blastocysts were used as hosts, the resulting mice are all completely ES cell-derived, with the newborn pups displaying a high frequency of abdominal hernias. Our results demonstrate that completely ES cell-derived mice can be produced using ICM-deficient 4n blastocysts, and provide evidence that the exclusion of tetraploid cells from the fetus in 2n/4n chimeras can largely be attributed to the formation of ICM-deficient blastocysts.

  8. Carrageenan-Induced Colonic Inflammation Is Reduced in Bcl10 Null Mice and Increased in IL-10-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Sumit Bhattacharyya

    2013-01-01

    Full Text Available The common food additive carrageenan is a known activator of inflammation in mammalian tissues and stimulates both the canonical and noncanonical pathways of NF-κB activation. Exposure to low concentrations of carrageenan (10 μg/mL in the water supply has produced glucose intolerance, insulin resistance, and impaired insulin signaling in C57BL/6 mice. B-cell leukemia/lymphoma 10 (Bcl10 is a mediator of inflammatory signals from Toll-like receptor (TLR 4 in myeloid and epithelial cells. Since the TLR4 signaling pathway is activated in diabetes and by carrageenan, we addressed systemic and intestinal inflammatory responses following carrageenan exposure in Bcl10 wild type, heterozygous, and null mice. Fecal calprotectin and circulating keratinocyte chemokine (KC, nuclear RelA and RelB, phospho(Thr559-NF-κB-inducing kinase (NIK, and phospho(Ser36-IκBα in the colonic epithelial cells were significantly less (P<0.001 in the carrageenan-treated Bcl10 null mice than in controls. IL-10-deficient mice exposed to carrageenan in a germ-free environment showed an increase in activation of the canonical pathway of NF-κB (RelA activation, but without increase in RelB or phospho-Bcl10, and exogenous IL-10 inhibited only the canonical pathway of NF-κB activation in cultured colonic cells. These findings demonstrate a Bcl10 requirement for maximum development of carrageenan-induced inflammation and lack of complete suppression by IL-10 of carrageenan-induced inflammation.

  9. Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice.

    Science.gov (United States)

    Takeda, K; Kamanaka, M; Tanaka, T; Kishimoto, T; Akira, S

    1996-10-15

    IL-13 shares many biologic responses with IL-4. In contrast to well-characterized IL-4 signaling pathways, which utilize STAT6 and 4PS/IRS2, IL-13 signaling pathways are poorly understood. Recent studies performed with STAT6-deficient mice have demonstrated that STAT6 plays an essential role in IL-4 signaling. In this study, the functions of peritoneal macrophages of STAT6-deficient mice in response to IL-13 were analyzed. In STAT6-deficient mice, neither morphologic changes nor augmentation of MHC class II expression in response to IL-13 was observed. In addition, IL-13 did not decrease the nitric oxide production by activated macrophages. Taken together, these results suggest that the macrophage functions in response to IL-13 were impaired in STAT6-deficient mice, indicating that IL-13 and IL-4 share the signaling pathway via STAT6.

  10. Endothelial dysfunction of resistance vessels in female apolipoprotein E-deficient mice

    Directory of Open Access Journals (Sweden)

    Vasquez Elisardo C

    2010-05-01

    Full Text Available Abstract Background The effects of hypercholesterolemia on vasomotricity in apolipoprotein E-deficient (ApoE mice, a murine model of spontaneous atherosclerosis, are still unclear. The studies were mostly performed in conductance vessels from male mice fed a high-fat diet. In the present study, we evaluated the endothelial function of resistance vessels from normal C57BL/6 (C57 and hypercholesterolemic (ApoE female mice in both normal and ovariectomized conditions. Methods Twenty week-old C57 and ApoE mice underwent ovariectomy or sham surgery and were studied 30 days later. The vascular reactivities to norepinephrine (NE, 10-9 to 2 × 10-3 mol/L, acetylcholine (ACh and sodium nitroprusside (SNP (10-10 to 10-3 mol/L were evaluated in the isolated mesenteric arteriolar bed through dose-response curves. Results ACh-induced relaxation was significantly reduced (P 50 (-5.67 ± 0.18 vs. -6.23 ± 0.09 mol/L. Ovariectomy caused a significant impairment in ACh-induced relaxation in the C57 group (maximal response: 61 ± 4% but did not worsen the deficient state of relaxation in ApoE animals (maximal response: 39 ± 5%. SNP-induced vasorelaxation and NE-induced vasoconstriction were similar in ApoE and C57 female mice. Conclusion These data show an impairment of endothelial function in the resistance vessels of spontaneously atherosclerotic (ApoE-deficient female mice compared with normal (C57 female mice. The endothelial dysfunction in hypercholesterolemic animals was so marked that ovariectomy, which impaired endothelial function in C57 mice, did not cause additional vascular damage in ApoE-deficient mice.

  11. Wound Healing in Mac-1 Deficient Mice

    Science.gov (United States)

    2017-05-01

    Dentistry, University of Illinois at Chicago, Chicago, IL, USA. 2 Department of Defense Biotechnology High Performance Computing Software...study, we used a commercially available Mac-1 deficient strain to examine whether this deficit 5 extends to slightly smaller wounds and incisional...levels of Collagen I and Collagen III in wounds from the two strains of mice at any time point. Unwounded skin from both WT and Mac-1 -/- mice contained

  12. PD-L1 Deficiency within Islets Reduces Allograft Survival in Mice.

    Directory of Open Access Journals (Sweden)

    Dongxia Ma

    Full Text Available Islet transplantation may potentially cure type 1 diabetes mellitus (T1DM. However, immune rejection, especially that induced by the alloreactive T-cell response, remains a restraining factor for the long-term survival of grafted islets. Programmed death ligand-1 (PD-L1 is a negative costimulatory molecule. PD-L1 deficiency within the donor heart accelerates allograft rejection. Here, we investigate whether PD-L1 deficiency in donor islets reduces allograft survival time.Glucose Stimulation Assays were performed to evaluate whether PD-L1 deficiency has detrimental effects on islet function. Islets isolated from PDL1-deficient mice or wild- type (WT mice (C57BL/6j were implanted beneath the renal capsule of streptozotocin (STZ-induced diabetic BALB/c mice. Blood glucose levels and graft survival time after transplantation were monitored. Moreover, we analyzed the residual islets, infiltrating immune cells and alloreactive cells from the recipients.PD-L1 deficiency within islets does not affect islet function. However, islet PD-L1 deficiency increased allograft rejection and was associated with enhanced inflammatory cell infiltration and recipient T-cell alloreactivity.This is the first report to demonstrate that PD-L1 deficiency accelerated islet allograft rejection and regulated recipient alloimmune responses.

  13. Strategies to rescue the consequences of inducible arginase-1 deficiency in mice.

    Directory of Open Access Journals (Sweden)

    Laurel L Ballantyne

    Full Text Available Arginase-1 catalyzes the conversion of arginine to ornithine and urea, which is the final step of the urea cycle used to remove excess ammonia from the body. Arginase-1 deficiency leads to hyperargininemia in mice and man with severe lethal consequences in the former and progressive neurological impairment to varying degrees in the latter. In a tamoxifen-induced arginase-1 deficient mouse model, mice succumb to the enzyme deficiency within 2 weeks after inducing the knockout and retain <2 % enzyme in the liver. Standard clinical care regimens for arginase-1 deficiency (low-protein diet, the nitrogen-scavenging drug sodium phenylbutyrate, ornithine supplementation either failed to extend lifespan (ornithine or only minimally prolonged lifespan (maximum 8 days with low-protein diet and drug. A conditional, tamoxifen-inducible arginase-1 transgenic mouse strain expressing the enzyme from the Rosa26 locus modestly extended lifespan of neonatal mice, but not that of 4-week old mice, when crossed to the inducible arginase-1 knockout mouse strain. Delivery of an arginase-1/enhanced green fluorescent fusion construct by adeno-associated viral delivery (rh10 serotype with a strong cytomegalovirus-chicken β-actin hybrid promoter rescued about 30% of male mice with lifespan prolongation to at least 6 months, extensive hepatic expression and restoration of significant enzyme activity in liver. In contrast, a vector of the AAV8 serotype driven by the thyroxine-binding globulin promoter led to weaker liver expression and did not rescue arginase-1 deficient mice to any great extent. Since the induced arginase-1 deficient mouse model displays a much more severe phenotype when compared to human arginase-1 deficiency, these studies reveal that it may be feasible with gene therapy strategies to correct the various manifestations of the disorder and they provide optimism for future clinical studies.

  14. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    International Nuclear Information System (INIS)

    Minegishi, Yoshiki; Sakai, Yasuo; Yahara, Yasuhito; Akiyama, Haruhiko; Yoshikawa, Hideki; Hosokawa, Ko; Tsumaki, Noriyuki

    2014-01-01

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1 Δchon cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone

  15. Alterations in cell growth and signaling in ErbB3 binding protein-1 (Ebp1 deficient mice

    Directory of Open Access Journals (Sweden)

    Lee Myounghee

    2008-12-01

    Full Text Available Abstract Background The ErbB3 binding protein-1 (Ebp1 belongs to a family of DNA/RNA binding proteins implicated in cell growth, apoptosis and differentiation. However, the physiological role of Ebp1 in the whole organism is not known. Therefore, we generated Ebp1-deficient mice carrying a gene trap insertion in intron 2 of the Ebp1 (pa2g4 gene. Results Ebp1-/- mice were on average 30% smaller than wild type and heterozygous sex matched littermates. Growth retardation was apparent from Day 10 until Day 30. IGF-1 production and IGBP-3 and 4 protein levels were reduced in both embryo fibroblasts and adult knock-out mice. The proliferation of fibroblasts derived from Day 12.5 knock out embryos was also decreased as compared to that of wild type cells. Microarray expression analysis revealed changes in genes important in cell growth including members of the MAPK signal transduction pathway. In addition, the expression or activation of proliferation related genes such as AKT and the androgen receptor, previously demonstrated to be affected by Ebp1 expression in vitro, was altered in adult tissues. Conclusion These results indicate that Ebp1 can affect growth in an animal model, but that the expression of proliferation related genes is cell and context specific. The Ebp1-/- mouse line represents a new in vivo model to investigate Ebp1 function in the whole organism.

  16. Commensal microbiota contributes to chronic endocarditis in TAX1BP1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Satoko Nakano

    Full Text Available Tax1-binding protein 1 (Tax1bp1 negatively regulates NF-κB by editing the ubiquitylation of target molecules by its catalytic partner A20. Genetically engineered TAX1BP1-deficient (KO mice develop age-dependent inflammatory constitutions in multiple organs manifested as valvulitis or dermatitis and succumb to premature death. Laser capture dissection and gene expression microarray analysis on the mitral valves of TAX1BP1-KO mice (8 and 16 week old revealed 588 gene transcription alterations from the wild type. SAA3 (serum amyloid A3, CHI3L1, HP, IL1B and SPP1/OPN were induced 1,180-, 361-, 187-, 122- and 101-fold respectively. WIF1 (Wnt inhibitory factor 1 exhibited 11-fold reduction. Intense Saa3 staining and significant I-κBα reduction were reconfirmed and massive infiltration of inflammatory lymphocytes and edema formation were seen in the area. Antibiotics-induced 'germ free' status or the additional MyD88 deficiency significantly ameliorated TAX1BP1-KO mice's inflammatory lesions. These pathological conditions, as we named 'pseudo-infective endocarditis' were boosted by the commensal microbiota who are usually harmless by their nature. This experimental outcome raises a novel mechanistic linkage between endothelial inflammation caused by the ubiquitin remodeling immune regulators and fatal cardiac dysfunction.

  17. SAP deficiency mitigated atherosclerotic lesions in ApoE(-/-) mice.

    Science.gov (United States)

    Zheng, Lingyun; Wu, Teng; Zeng, Cuiling; Li, Xiangli; Li, Xiaoqiang; Wen, Dingwen; Ji, Tianxing; Lan, Tian; Xing, Liying; Li, Jiangchao; He, Xiaodong; Wang, Lijing

    2016-01-01

    Serum amyloid P conpoent (SAP), a member of the pentraxin family, interact with pathogens and cell debris to promote their removal by macrophages and neutrophils and is co-localized with atherosclerotic plaques in patients. However, the exact mechanism of SAP in atherogenesis is still unclear. We investigated whether SAP influence macrophage recruitment and foam cell formation and ultimately affect atherosclerotic progression. we generated apoE(-/-); SAP(-/-) (DKO) mice and fed them western diet for 4 and 8 weeks to characterize atherosclerosis development. SAP deficiency effectively reduced plaque size both in the aorta (p = 0.0006 for 4 wks; p = 0.0001 for 8 wks) and the aortic root (p = 0.0061 for 4 wks; p = 0.0079 for 8wks) compared with apoE(-/-) mice. Meanwhile, SAP deficiency inhibited oxLDL-induced foam cell formation (p = 0.0004) compared with apoE(-/-) mice and SAP treatment increases oxLDL-induced foam cell formation (p = 0.002) in RAW cells. Besides, SAP deficiency reduced macrophages recruitment (p = 0.035) in vivo and in vitro (p = 0.026). Furthermore, SAP treatment enhanced CD36 (p = 0.007) and FcγRI (p = 0.031) expression induced by oxLDL through upregulating JNK and p38 MAPK phosphorylation whereas specific JNK1/2 inhibitor reduced CD36 (p = 0.0005) and FcγRI (P = 0.0007) expression in RAW cell. SAP deficiency also significantly decreased the expression of M1 and M2 macrophage markers and inflammatory cytokines in oxLDL-induced macrophages. SAP deficiency mitigated foam cell formation and atherosclerotic development in apoE(-/-) mice, due to reduction in macrophages recruitment, polarization and pro-inflammatory cytokines and inhibition the CD36/FcγR-dependent signaling pathway. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Attentional processing in C57BL/6J mice exposed to developmental vitamin D deficiency.

    Directory of Open Access Journals (Sweden)

    Lauren R Harms

    Full Text Available Epidemiological evidence suggests that Developmental Vitamin D (DVD deficiency is associated with an increased risk of schizophrenia. DVD deficiency in mice is associated with altered behaviour, however there has been no detailed investigation of cognitive behaviours in DVD-deficient mice. The aim of this study was to determine the effect of DVD deficiency on a range of cognitive tasks assessing attentional processing in C57BL/6J mice. DVD deficiency was established by feeding female C57BL/6J mice a vitamin D-deficient diet from four weeks of age. After six weeks on the diet, vitamin D-deficient and control females were mated with vitamin D-normal males and upon birth of the pups, all dams were returned to a diet containing vitamin D. The adult offspring were tested on a range of cognitive behavioural tests, including the five-choice serial reaction task (5C-SRT and five-choice continuous performance test (5C-CPT, as well as latent inhibition using a fear conditioning paradigm. DVD deficiency was not associated with altered attentional performance on the 5C-SRT. In the 5C-CPT DVD-deficient male mice exhibited an impairment in inhibiting repetitive responses by making more perseverative responses, with no changes in premature or false alarm responding. DVD deficiency did not affect the acquisition or retention of cued fear conditioning, nor did it affect the expression of latent inhibition using a fear conditioning paradigm. DVD-deficient mice exhibited no major impairments in any of the cognitive domains tested. However, impairments in perseverative responding in DVD-deficient mice may indicate that these animals have specific alterations in systems governing compulsive or reward-seeking behaviour.

  19. Improved muscle function and quality after diet intervention with leucine-enriched whey and antioxidants in antioxidant deficient aged mice.

    Science.gov (United States)

    van Dijk, Miriam; Dijk, Francina J; Bunschoten, Annelies; van Dartel, Dorien A M; van Norren, Klaske; Walrand, Stephane; Jourdan, Marion; Verlaan, Sjors; Luiking, Yvette

    2016-04-05

    Antioxidant (AOX) deficiencies are commonly observed in older adults and oxidative stress has been suggested to contribute to sarcopenia. Here we investigate if 1) low levels of dietary antioxidants had a negative impact on parameters of muscle mass, function and quality, and 2) to study if nutritional interventions with AOX and/or leucine-enriched whey protein could improve these muscle parameters in aged mice. 18-months-old mice were fed a casein-based antioxidant-deficient (lowox) diet or a casein-based control-diet (CTRL) for 7 months. During the last 3 months, lowox-mice were subjected to either: a) continued lowox, b) supplementation with vitamin A/E, Selenium and Zinc (AOX), c) substitution of casein with leucine-enriched whey protein (PROT) or d) a combination of both AOX and PROT (TOTAL). After 7 months lowox-mice displayed lower muscle strength and more muscle fatigue compared to CTRL. Compared to lowox-mice, PROT-mice showed improved muscle power, grip strength and less muscle fatigue. AOX-mice showed improved oxidative status, less muscle fatigue, improved grip strength and mitochondrial dynamics compared to lowox-mice. The TOTAL-mice showed the combined effects of both interventions compared to lowox-mice. In conclusion, nutritional intervention with AOX and/or leucine-enriched whey protein can play a role in improving muscle health in a AOX-deficient mouse model.

  20. Meta-analysis of melanin-concentrating hormone signaling-deficient mice on behavioral and metabolic phenotypes.

    Directory of Open Access Journals (Sweden)

    Kenkichi Takase

    Full Text Available The demand for meta-analyses in basic biomedical research has been increasing because the phenotyping of genetically modified mice does not always produce consistent results. Melanin-concentrating hormone (MCH has been reported to be involved in a variety of behaviors that include feeding, body-weight regulation, anxiety, sleep, and reward behavior. However, the reported behavioral and metabolic characteristics of MCH signaling-deficient mice, such as MCH-deficient mice and MCH receptor 1 (MCHR1-deficient mice, are not consistent with each other. In the present study, we performed a meta-analysis of the published data related to MCH-deficient and MCHR1-deficient mice to obtain robust conclusions about the role of MCH signaling. Overall, the meta-analysis revealed that the deletion of MCH signaling enhanced wakefulness, locomotor activity, aggression, and male sexual behavior and that MCH signaling deficiency suppressed non-REM sleep, anxiety, responses to novelty, startle responses, and conditioned place preferences. In contrast to the acute orexigenic effect of MCH, MCH signaling deficiency significantly increased food intake. Overall, the meta-analysis also revealed that the deletion of MCH signaling suppressed the body weight, fat mass, and plasma leptin, while MCH signaling deficiency increased the body temperature, oxygen consumption, heart rate, and mean arterial pressure. The lean phenotype of the MCH signaling-deficient mice was also confirmed in separate meta-analyses that were specific to sex and background strain (i.e., C57BL/6 and 129Sv. MCH signaling deficiency caused a weak anxiolytic effect as assessed with the elevated plus maze and the open field test but also caused a weak anxiogenic effect as assessed with the emergence test. MCH signaling-deficient mice also exhibited increased plasma corticosterone under non-stressed conditions, which suggests enhanced activity of the hypothalamic-pituitary-adrenal axis. To the best of our

  1. Loss of synaptic zinc transport in progranulin deficient mice may contribute to progranulin-associated psychopathology and chronic pain.

    Science.gov (United States)

    Hardt, Stefanie; Heidler, Juliana; Albuquerque, Boris; Valek, Lucie; Altmann, Christine; Wilken-Schmitz, Annett; Schäfer, Michael K E; Wittig, Ilka; Tegeder, Irmgard

    2017-11-01

    Affective and cognitive processing of nociception contributes to the development of chronic pain and vice versa, pain may precipitate psychopathologic symptoms. We hypothesized a higher risk for the latter with immanent neurologic diseases and studied this potential interrelationship in progranulin-deficient mice, which are a model for frontotemporal dementia, a disease dominated by behavioral abnormalities in humans. Young naïve progranulin deficient mice behaved normal in tests of short-term memory, anxiety, depression and nociception, but after peripheral nerve injury, they showed attention-deficit and depression-like behavior, over-activity, loss of shelter-seeking, reduced impulse control and compulsive feeding behavior, which did not occur in equally injured controls. Hence, only the interaction of 'pain x progranulin deficiency' resulted in the complex phenotype at young age, but neither pain nor progranulin deficiency alone. A deep proteome analysis of the prefrontal cortex and olfactory bulb revealed progranulin-dependent alterations of proteins involved in synaptic transport, including neurotransmitter transporters of the solute carrier superfamily. In particular, progranulin deficiency was associated with a deficiency of nuclear and synaptic zinc transporters (ZnT9/Slc30a9; ZnT3/Slc30a3) with low plasma zinc. Dietary zinc supplementation partly normalized the attention deficit of progranulin-deficient mice, which was in part reminiscent of autism-like and compulsive behavior of synaptic zinc transporter Znt3-knockout mice. Hence, the molecular studies point to defective zinc transport possibly contributing to progranulin-deficiency-associated psychopathology. Translated to humans, our data suggest that neuropathic pain may precipitate cognitive and psychopathological symptoms of an inherent, still silent neurodegenerative disease. Copyright © 2017. Published by Elsevier B.V.

  2. Age-related retinopathy in NRF2-deficient mice.

    Directory of Open Access Journals (Sweden)

    Zhenyang Zhao

    2011-04-01

    Full Text Available Cumulative oxidative damage is implicated in the pathogenesis of age-related macular degeneration (AMD. Nuclear factor erythroid 2-related factor 2 (NRF2 is a transcription factor that plays key roles in retinal antioxidant and detoxification responses. The purposes of this study were to determine whether NRF2-deficient mice would develop AMD-like retinal pathology with aging and to explore the underlying mechanisms.Eyes of both wild type and Nrf2(-/- mice were examined in vivo by fundus photography and electroretinography (ERG. Structural changes of the outer retina in aged animals were examined by light and electron microscopy, and immunofluorescence labeling. Our results showed that Nrf2(-/- mice developed age-dependent degenerative pathology in the retinal pigment epithelium (RPE. Drusen-like deposits, accumulation of lipofuscin, spontaneous choroidal neovascularization (CNV and sub-RPE deposition of inflammatory proteins were present in Nrf2(-/- mice after 12 months. Accumulation of autophagy-related vacuoles and multivesicular bodies was identified by electron microscopy both within the RPE and in Bruch's membrane of aged Nrf2(-/- mice.Our data suggest that disruption of Nfe2l2 gene increased the vulnerability of outer retina to age-related degeneration. NRF2-deficient mice developed ocular pathology similar to cardinal features of human AMD and deregulated autophagy is likely a mechanistic link between oxidative injury and inflammation. The Nrf2(-/- mice can provide a novel model for mechanistic and translational research on AMD.

  3. Crybb2 deficiency impairs fertility in female mice

    International Nuclear Information System (INIS)

    Gao, Qian; Sun, Li-Li; Xiang, Fen-Fen; Gao, Li; Jia, Yin; Zhang, Jian-Rong; Tao, Hai-Bo; Zhang, Jun-Jie; Li, Wen-Jie

    2014-01-01

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2 deficient (Crybb2 −/− ) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2 −/− mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2 −/− mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2 −/− female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2 −/− mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2 −/− mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells

  4. Crybb2 deficiency impairs fertility in female mice

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qian [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Sun, Li-Li [Aviation Medical Evaluation and Training Center of Airforce in Dalian, Dalian, Liaoning Province 116013 (China); Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Xiang, Fen-Fen [Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062 (China); Gao, Li [Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Jia, Yin; Zhang, Jian-Rong; Tao, Hai-Bo [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Zhang, Jun-Jie, E-mail: zhangjj910@163.com [Department of Obstetrics and Gynecology, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Li, Wen-Jie, E-mail: wenjieli@pku.org.cn [Department of Laboratory Diagnosis, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China)

    2014-10-10

    Highlights: • Crybb2 deletion impaired female fertility. • Crybb2 deletion dramatically affected the production of reproduction-related hormones and hormone response. • Crybb2 deletion impaired follicular development and inhibited the proliferation of granulosa cells. • Crybb2 deletion promoted follicular atresia and apoptosis in granulosa cells. - Abstract: Beta-B2-crystallin (CRYBB2), encoded by Crybb2 gene, is a major protein in the mammalian eye lens that plays an important role in maintaining the transparency of the ocular lens. However, CRYBB2 also plays important roles in many extra-lenticular tissues and organs such as the retina, brain and testis. Our previous studies demonstrated that male Crybb2 deficient (Crybb2{sup −/−}) mice have reduced fertility compared with wild-type (WT) mice, while female Crybb2{sup −/−} mice exhibited reduced ovary weights and shorter estrous cycle percentages. Here we specifically investigated the role of CRYBB2 in the female reproductive system. Our studies revealed that ovaries from female Crybb2{sup −/−} mice exhibited significantly reduced numbers of primordial, secondary and pre-ovulatory follicles when compared with WT mice, while the rate of atretic follicles was also increased. Additionally, fewer eggs were collected from the oviduct of Crybb2{sup −/−} female mice after superovulation. Estrogen levels were higher in the metestrus and diestrus cycles of female Crybb2{sup −/−} mice, while progesterone levels were lower in diestrus cycles. Furthermore, the expression of survival and cell cycle genes, Bcl-2, Cdk4 and Ccnd2, were significantly decreased in granulosa cells isolated from female Crybb2{sup −/−} mice, consistent with the predominant expression of CRYBB2 in ovarian granulosa cells. Our results reveal a critical role for CRYBB2 in female fertility and specific effects on the proliferation and survival status of ovarian granulosa cells.

  5. A toll-like receptor 2 pathway regulates the Ppargc1a/b metabolic co-activators in mice with Staphylococcal aureus sepsis.

    Directory of Open Access Journals (Sweden)

    Timothy E Sweeney

    Full Text Available Activation of the host antibacterial defenses by the toll-like receptors (TLR also selectively activates energy-sensing and metabolic pathways, but the mechanisms are poorly understood. This includes the metabolic and mitochondrial biogenesis master co-activators, Ppargc1a (PGC-1α and Ppargc1b (PGC-1β in Staphylococcus aureus (S. aureus sepsis. The expression of these genes in the liver is markedly attenuated inTLR2(-/- mice and markedly accentuated in TLR4(-/- mice compared with wild type (WT mice. We sought to explain this difference by using specific TLR-pathway knockout mice to test the hypothesis that these co-activator genes are directly regulated through TLR2 signaling. By comparing their responses to S. aureus with WT mice, we found that MyD88-deficient and MAL-deficient mice expressed hepatic Ppargc1a and Ppargc1b normally, but that neither gene was activated in TRAM-deficient mice. Ppargc1a/b activation did not require NF-kβ, but did require an interferon response factor (IRF, because neither gene was activated in IRF-3/7 double-knockout mice in sepsis, but both were activated normally in Unc93b1-deficient (3d mice. Nuclear IRF-7 levels in TLR2(-/- and TLR4(-/- mice decreased and increased respectively post-inoculation and IRF-7 DNA-binding at the Ppargc1a promoter was demonstrated by chromatin immunoprecipitation. Also, a TLR2-TLR4-TRAM native hepatic protein complex was detected by immunoprecipitation within 6 h of S. aureus inoculation that could support MyD88-independent signaling to Ppargc1a/b. Overall, these findings disclose a novel MyD88-independent pathway in S. aureus sepsis that links TLR2 and TLR4 signaling in innate immunity to Ppargc1a/b gene regulation in a critical metabolic organ, the liver, by means of TRAM, TRIF, and IRF-7.

  6. [Chromogranin A derived peptide CGA47-66 inhibits hyper-permeability of blood brain barrier in mice with sepsis].

    Science.gov (United States)

    Zeng, Yan; Zhang, Dan; Jiang, Liping; Wei, Fu; Xu, Shan

    2016-02-01

    To explore the effect of chromofungin (CHR), a chromogranin A (CGA) derived peptide CGA47-66, on hyper-permeability of blood brain barrier in septic mice. 120 healthy male C57BL/6 mice were randomly divided into groups, with 12 mice in each group. Seventy-two mice were used for dynamic observation of the contents of water and Evan blue (EB) in brain tissue after being treated with lipopolysaccharide (LPS). Another 48 mice were divided into normal saline control group (NS group), LPS induced sepsis model group (LPS group), low-dose CHR pretreatment group (CL+LPS group), and high-dose CHR pretreatment group (CH+LPS group). The septic model was reproduced by intraperitoneal injection of 10 mg/kg LPS 0.1 mL, and the mice in NS group was given equal volume of normal saline. The mice in CL+LPS group and CH+LPS group were intraperitoneally injected with 15.5 μg/kg and 77.5 μg/kg CHR 10 minutes before LPS injection. Six hours after LPS injection, 4 mL/kg of 2% EB was injected via caudal vein, the contents of water and EB in brain tissue were determined, and EB immune fluorescence in brain tissue was determined to assess the changes in permeability of blood brain barrier. Brain pathology was observed with hematoxylin and eosin (HE) staining. With the extension of time after LPS injection, the contents of water and EB in brain tissue were gradually increased, and the time of difference with statistical significance appeared earlier when compared with that of control group in the contents of water than that in EB contents (3 hours and 6 hours, respectively). The contents of water and EB in brain tissue in LPS group were significantly increased as compared with NS group [water content: (79.77±0.62)% vs. (78.28±0.44)%, P water and EB contents in brain tissue induced by LPS, and the effect was more significant in CH+LPS group [water content: (78.15±0.73)% vs. (79.77±0.62)%, EB (μg/g): 7.09±2.59 vs. 13.87±4.50, both P leakage in LPS group was more marked than that of NS

  7. Amelioration of behavioral abnormalities in BH(4-deficient mice by dietary supplementation of tyrosine.

    Directory of Open Access Journals (Sweden)

    Sang Su Kwak

    Full Text Available This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4-deficient Spr (-/- mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr (-/- mice. We found that Spr (-/- mice display variable 'open-field' behaviors, impaired motor functions on the 'rotating rod', and dystonic 'hind-limb clasping'. In this study, we report that these aberrant motor deficits displayed by Spr (-/- mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr (-/- mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA and its metabolites in Spr (-/- mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr (-/- mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency.

  8. Deletion of Galgt2 (B4Galnt2) reduces muscle growth in response to acute injury and increases muscle inflammation and pathology in dystrophin-deficient mice.

    Science.gov (United States)

    Xu, Rui; Singhal, Neha; Serinagaoglu, Yelda; Chandrasekharan, Kumaran; Joshi, Mandar; Bauer, John A; Janssen, Paulus M L; Martin, Paul T

    2015-10-01

    Transgenic overexpression of Galgt2 (official name B4Galnt2) in skeletal muscle stimulates the glycosylation of α dystroglycan (αDG) and the up-regulation of laminin α2 and dystrophin surrogates known to inhibit muscle pathology in mouse models of congenital muscular dystrophy 1A and Duchenne muscular dystrophy. Skeletal muscle Galgt2 gene expression is also normally increased in the mdx mouse model of Duchenne muscular dystrophy compared with the wild-type mice. To assess whether this increased endogenous Galgt2 expression could affect disease, we quantified muscular dystrophy measures in mdx mice deleted for Galgt2 (Galgt2(-/-)mdx). Galgt2(-/-) mdx mice had increased heart and skeletal muscle pathology and inflammation, and also worsened cardiac function, relative to age-matched mdx mice. Deletion of Galgt2 in wild-type mice also slowed skeletal muscle growth in response to acute muscle injury. In each instance where Galgt2 expression was elevated (developing muscle, regenerating muscle, and dystrophic muscle), Galgt2-dependent glycosylation of αDG was also increased. Overexpression of Galgt2 failed to inhibit skeletal muscle pathology in dystroglycan-deficient muscles, in contrast to previous studies in dystrophin-deficient mdx muscles. This study demonstrates that Galgt2 gene expression and glycosylation of αDG are dynamically regulated in muscle and that endogenous Galgt2 gene expression can ameliorate the extent of muscle pathology, inflammation, and dysfunction in mdx mice. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Effects of Nrf2 deficiency on arsenic metabolism in mice.

    Science.gov (United States)

    Wang, Huihui; Zhu, Jiayu; Li, Lu; Li, Yongfang; Lv, Hang; Xu, Yuanyuan; Sun, Guifan; Pi, Jingbo

    2017-12-15

    Inorganic arsenic (iAs) is a known toxicant and carcinogen. Worldwide arsenic exposure has become a threat to human health. The severity of arsenic toxicity is strongly correlated with the speed of arsenic metabolism (methylation) and clearance. Furthermore, oxidative stress is recognized as a major mechanism for arsenic-induced toxicity. Nuclear factor-E2-related factor 2 (Nrf2), a key regulator in cellular adaptive antioxidant response, is clearly involved in alleviation of arsenic-induced oxidative damage. Multiple studies demonstrate that Nrf2 deficiency mice are more vulnerable to arsenic-induced intoxication. However, what effect Nrf2 deficiency might have on arsenic metabolism in mice is still unknown. In the present study, we measured the key enzymes involved in arsenic metabolism in Nrf2-WT and Nrf2-KO mice. Our results showed that basal transcript levels of glutathione S-transferase omega 2 (Gsto2) were significantly higher and GST mu 1 (Gstm1) lower in Nrf2-KO mice compared to Nrf2-WT control. Arsenic speciation and methylation rate in liver and urine was then studied in mice treated with 5mg/kg sodium arsenite for 12h. Although there were some alterations in arsenic metabolism enzymes between Nrf2-WT and Nrf2-KO mice, the Nrf2 deficiency had no significant effect on arsenic methylation. These results suggest that the Nrf2-KO mice are more sensitive to arsenic than Nrf2-WT mainly because of differences in adaptive antioxidant detoxification capacity rather than arsenic methylation capacity. Copyright © 2017. Published by Elsevier Inc.

  10. Prefrontal single-unit firing associated with deficient extinction in mice

    Science.gov (United States)

    Fitzgerald, Paul J; Whittle, Nigel; Flynn, Shaun M; Graybeal, Carolyn; Pinard, Courtney; Gunduz-Cinar, Ozge; Kravitz, Alexxai; Singewald, Nicolas; Holmes, Andrew

    2014-01-01

    The neural circuitry mediating fear extinction has been increasingly well studied and delineated. The rodent infralimbic subregion (IL) of the ventromedial prefrontal cortex (vmPFC) has been found to promote extinction, whereas the prelimbic cortex (PL) demonstrates an opposing, pro-fear, function. Studies employing in vivo electrophysiological recordings have observed that while increased IL single-unit firing and bursting predicts robust extinction retrieval, increased PL firing can correlate with sustained fear and poor extinction. These relationships between single-unit firing and extinction do not hold under all experimental conditions, however. In the current study, we further investigated the relationship between vmPFC and PL single-unit firing and extinction using inbred mouse models of intact (C57BL/6J, B6) and deficient (129S1/SvImJ, S1) extinction strains. Simultaneous single-unit recordings were made in the PL and vmPFC (encompassing IL) as B6 and S1 mice performed extinction training and retrieval. Impaired extinction retrieval in S1 mice was associated with elevated PL single-unit firing, as compared to firing in extinguishing B6 mice, consistent with the hypothesized pro-fear contribution of PL. Analysis of local field potentials also revealed significantly higher gamma power in the PL of Sthan B6 mice during extinction training and retrieval. In the vmPFC, impaired extinction in S1 mice was also associated with exaggerated single-unit firing, relative to B6 mice. This is in apparent contradiction to evidence that IL activity promotes extinction, but could reflect a (failed) compensatory effort by the vmPFC to mitigate fear-promoting activity in other regions, such as the PL or amygdala. In support of this hypothesis, augmenting IL activity via direct infusion of the GABAA receptor antagonist picrotoxin rescued impaired extinction retrieval in S1 mice. Chronic fluoxetine treatment produced modest reductions in fear during extinction retrieval and

  11. Induction of B-cell lymphoma by UVB Radiation in p53 Haploinsufficient Mice

    International Nuclear Information System (INIS)

    Puebla-Osorio, Nahum; Miyahara, Yasuko; Coimbatore, Sreevidya; Limón-Flores, Alberto Y; Kazimi, Nasser; Ullrich, Stephen E; Zhu, Chengming

    2011-01-01

    The incidence of non-Hodgkin's lymphoma has increased over recent years. The exact etiology of lymphoma remains unknown. Ultraviolet light exposure has been associated with the development of internal lymphoid malignancies and some reports suggest that it may play a role in the development of lymphoma in humans. Here we describe the characterization and progression of lymphoma in p53 heterozygous mice exposed to UVB irradiation. UVB-irradiated p53 +/- mice developed enlargement of the spleen. Isolated spleen cells were transplanted into Rag deficient hosts. The UV-induced tumor cells were analyzed by flow cytometry. The tumor cells were tagged with GFP to study their metastatic potential. SKY and karyotypic analysis were carried out for the detection of chromosomal abnormalities. Functional assays included in vitro class switch recombination assay, immunoglobulin rearrangement assay, as well as cytokine profiling. UVB-exposed mice showed enlargement of the spleen and lymph nodes. Cells transplanted into Rag deficient mice developed aggressive tumors that infiltrated the lymph nodes, the spleen and the bone marrow. The tumor cells did not grow in immune competent syngeneic C57Bl/6 mice yet showed a modest growth in UV-irradiated B6 mice. Phenotypic analysis of these tumor cells revealed these cells are positive for B cell markers CD19 + , CD5 + , B220 + , IgM + and negative for T cell, NK or dendritic cell markers. The UV-induced tumor cells underwent robust in vitro immunoglobulin class switch recombination in response to lipopolysaccharide. Cytogenetic analysis revealed a t(14;19) translocation and trisomy of chromosome 6. These tumor cells secret IL-10, which can promote tumor growth and cause systemic immunosuppression. UV-irradiated p53 +/- mice developed lymphoid tumors that corresponded to a mature B cell lymphoma. Our results suggest that an indirect mechanism is involved in the development of internal tumors after chronic exposure to UV light. The

  12. Induction of B-cell lymphoma by UVB Radiation in p53 Haploinsufficient Mice

    Directory of Open Access Journals (Sweden)

    Ullrich Stephen E

    2011-01-01

    Full Text Available Abstract Background The incidence of non-Hodgkin's lymphoma has increased over recent years. The exact etiology of lymphoma remains unknown. Ultraviolet light exposure has been associated with the development of internal lymphoid malignancies and some reports suggest that it may play a role in the development of lymphoma in humans. Here we describe the characterization and progression of lymphoma in p53 heterozygous mice exposed to UVB irradiation. Methods UVB-irradiated p53+/- mice developed enlargement of the spleen. Isolated spleen cells were transplanted into Rag deficient hosts. The UV-induced tumor cells were analyzed by flow cytometry. The tumor cells were tagged with GFP to study their metastatic potential. SKY and karyotypic analysis were carried out for the detection of chromosomal abnormalities. Functional assays included in vitro class switch recombination assay, immunoglobulin rearrangement assay, as well as cytokine profiling. Results UVB-exposed mice showed enlargement of the spleen and lymph nodes. Cells transplanted into Rag deficient mice developed aggressive tumors that infiltrated the lymph nodes, the spleen and the bone marrow. The tumor cells did not grow in immune competent syngeneic C57Bl/6 mice yet showed a modest growth in UV-irradiated B6 mice. Phenotypic analysis of these tumor cells revealed these cells are positive for B cell markers CD19+, CD5+, B220+, IgM+ and negative for T cell, NK or dendritic cell markers. The UV-induced tumor cells underwent robust in vitro immunoglobulin class switch recombination in response to lipopolysaccharide. Cytogenetic analysis revealed a t(14;19 translocation and trisomy of chromosome 6. These tumor cells secret IL-10, which can promote tumor growth and cause systemic immunosuppression. Conclusion UV-irradiated p53+/- mice developed lymphoid tumors that corresponded to a mature B cell lymphoma. Our results suggest that an indirect mechanism is involved in the development of internal

  13. Reduced hepatic tumor incidence in cyclin G1-deficient mice

    DEFF Research Database (Denmark)

    Jensen, Michael Rugaard; Factor, Valentina M; Fantozzi, Anna

    2003-01-01

    found that the p53 levels in the cyclin G1-deficient mice are 2-fold higher that in wild-type mice. Moreover, we showed that treatment of mice with the alkylating agent 1,4-bis[N,N'-di(ethylene)-phosphamide]piperazine (Dipin), followed by partial hepatectomy, decreased G1-S transition in cyclin G1-null...

  14. Impaired bone formation in Pdia3 deficient mice.

    Directory of Open Access Journals (Sweden)

    Yun Wang

    Full Text Available 1α,25-Dihydroxyvitamin D3 [1α,25(OH2D3] is crucial for normal skeletal development and bone homeostasis. Protein disulfide isomerase family A, member 3 (PDIA3 mediates 1α,25(OH2D3 initiated-rapid membrane signaling in several cell types. To understand its role in regulating skeletal development, we generated Pdia3-deficient mice and examined the physiologic consequence of Pdia3-disruption in embryos and Pdia3+/- heterozygotes at different ages. No mice homozygous for the Pdia3-deletion were found at birth nor were there embryos after E12.5, indicating that targeted disruption of the Pdia3 gene resulted in early embryonic lethality. Pdia3-deficiency also resulted in skeletal manifestations as revealed by µCT analysis of the tibias. In comparison to wild type mice, Pdia3 heterozygous mice displayed expanded growth plates associated with decreased tether formation. Histomorphometry also showed that the hypertrophic zone in Pdia3+/- mice was more cellular than seen in wild type growth plates. Metaphyseal trabecular bone in Pdia3+/- mice exhibited an age-dependent phenotype with lower BV/TV and trabecular numbers, which was most pronounced at 15 weeks of age. Bone marrow cells from Pdia3+/- mice exhibited impaired osteoblastic differentiation, based on reduced expression of osteoblast markers and mineral deposition compared to cells from wild type animals. Collectively, our findings provide in vivo evidence that PDIA3 is essential for normal skeletal development. The fact that the Pdia3+/- heterozygous mice share a similar growth plate and bone phenotype to nVdr knockout mice, suggests that PDIA3-mediated rapid membrane signaling might be an alternative mechanism responsible for 1α,25(OH2D3's actions in regulating skeletal development.

  15. BTB and CNC homolog 1 (Bach1) deficiency ameliorates TNBS colitis in mice: role of M2 macrophages and heme oxygenase-1.

    Science.gov (United States)

    Harusato, Akihito; Naito, Yuji; Takagi, Tomohisa; Uchiyama, Kazuhiko; Mizushima, Katsura; Hirai, Yasuko; Higashimura, Yasuki; Katada, Kazuhiro; Handa, Osamu; Ishikawa, Takeshi; Yagi, Nobuaki; Kokura, Satoshi; Ichikawa, Hiroshi; Muto, Akihiko; Igarashi, Kazuhiko; Yoshikawa, Toshikazu

    2013-01-01

    BTB and CNC homolog 1 (Bach1) is a transcriptional repressor of heme oxygenase-1 (HO-1), which plays an important role in the protection of cells and tissues against acute and chronic inflammation. However, the role of Bach1 in the gastrointestinal mucosal defense system remains little understood. HO-1 supports the suppression of experimental colitis and localizes mainly in macrophages in colonic mucosa. This study was undertaken to elucidate the Bach1/HO-1 system's effects on the pathogenesis of experimental colitis. This study used C57BL/6 (wild-type) and homozygous Bach1-deficient C57BL/6 mice in which colonic damage was induced by the administration of an enema of 2,4,6-trinitrobenzene sulfonic acid (TNBS). Subsequently, they were evaluated macroscopically, histologically, and biochemically. Peritoneal macrophages from the respective mice were isolated and analyzed. Then, wild-type mice were injected with peritoneal macrophages from the respective mice. Acute colitis was induced similarly. TNBS-induced colitis was inhibited in Bach1-deficient mice. TNBS administration increased the expression of HO-1 messenger RNA and protein in colonic mucosa in Bach1-deficient mice. The expression of HO-1 mainly localized in F4/80-immunopositive and CD11b-immunopositive macrophages. Isolated peritoneal macrophages from Bach1-deficient mice highly expressed HO-1 and also manifested M2 macrophage markers, such as Arginase-1, Fizz-1, Ym1, and MRC1. Furthermore, TNBS-induced colitis was inhibited by the transfer of Bach1-deficient macrophages into wild-type mice. Deficiency of Bach1 ameliorated TNBS-induced colitis. Bach1-deficient macrophages played a key role in protection against colitis. Targeting of this mechanism is applicable to cell therapy for human inflammatory bowel disease.

  16. Bicarbonate-sensitive calcification and lifespan of klotho-deficient mice.

    Science.gov (United States)

    Leibrock, Christina B; Voelkl, Jakob; Kohlhofer, Ursula; Quintanilla-Martinez, Leticia; Kuro-O, Makoto; Lang, Florian

    2016-01-01

    Klotho, a protein counteracting aging, is a powerful inhibitor of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] formation and regulator of mineral metabolism. In klotho hypomorphic (kl/kl) mice, excessive 1,25(OH)2D3 formation leads to hypercalcemia, hyperphosphatemia and vascular calcification, severe growth deficits, accelerated aging and early death. Kl/kl mice further suffer from extracellular volume depletion and hypotension, leading to the stimulation of antidiuretic hormone and aldosterone release. A vitamin D-deficient diet, restriction of dietary phosphate, inhibition of mineralocorticoid receptors with spironolactone, and dietary NaCl all extend the lifespan of kl/kl mice. Kl/kl mice suffer from acidosis. The present study explored whether replacement of tap drinking water by 150 mM NaHCO3 affects the growth, tissue calcification, and lifespan of kl/kl mice. As a result, NaHCO3 administration to kl/kl mice did not reverse the growth deficit but substantially decreased tissue calcification and significantly increased the average lifespan from 78 to 127 days. NaHCO3 did not significantly affect plasma concentrations of 1,25(OH)2D3 and Ca(2+) but significantly decreased plasma phosphate concentration and plasma aldosterone concentration. The present study reveals a novel effect of bicarbonate, i.e., a favorable influence on vascular calcification and early death of klotho-deficient mice. Copyright © 2016 the American Physiological Society.

  17. Folate Deficiency Could Restrain Decidual Angiogenesis in Pregnant Mice

    Directory of Open Access Journals (Sweden)

    Yanli Li

    2015-08-01

    Full Text Available The mechanism of birth defects induced by folate deficiency was focused on mainly in fetal development. Little is known about the effect of folate deficiency on the maternal uterus, especially on decidual angiogenesis after implantation which establishes vessel networks to support embryo development. The aim of this study was to investigate the effects of folate deficiency on decidual angiogenesis. Serum folate levels were measured by electrochemiluminescence. The status of decidual angiogenesis was examined by cluster designation 34 (CD34 immunohistochemistry and the expression of angiogenic factors, including vascular endothelial growth factor A (VEGFA, placental growth factor (PLGF, and VEGF receptor 2 (VEGFR2 were also tested. Serum levels of homocysteine (Hcy, follicle stimulating hormone (FSH, luteinizing hormone (LH, prolactin (PRL, progesterone (P4, and estradiol (E2 were detected by Enzyme-linked immunosorbent assay. The folate-deficient mice had a lower folate level and a higher Hcy level. Folate deficiency restrained decidual angiogenesis with significant abnormalities in vascular density and the enlargement and elongation of the vascular sinus. It also showed a reduction in the expressions of VEGFA, VEGFR2, and PLGF. In addition, the serum levels of P4, E2, LH, and PRL were reduced in folate-deficient mice, and the expression of progesterone receptor (PR and estrogen receptor α (ERα were abnormal. These results indicated that folate deficiency could impaire decidual angiogenesis and it may be related to the vasculotoxic properties of Hcy and the imbalance of the reproductive hormone.

  18. Modest phenotypic improvements in ASA-deficient mice with only one UDP-galactose:ceramide-galactosyltransferase gene

    Directory of Open Access Journals (Sweden)

    De Deyn PP

    2006-08-01

    Full Text Available Summary Background Arylsulfatase A (ASA-deficient mice are a model for the lysosomal storage disorder metachromatic leukodystrophy. This lipidosis is characterised by the lysosomal accumulation of the sphingolipid sulfatide. Storage of this lipid is associated with progressive demyelination. We have mated ASA-deficient mice with mice heterozygous for a non-functional allele of UDP-galactose:ceramide-galactosyltransferase (CGT. This deficiency is known to lead to a decreased synthesis of galactosylceramide and sulfatide, which should reduce sulfatide storage and improve pathology in ASA-deficient mice. Results ASA-/- CGT+/- mice, however, showed no detectable decrease in sulfatide storage. Neuronal degeneration of cells in the spiral ganglion of the inner ear, however, was decreased. Behavioural tests showed small but clear improvements of the phenotype in ASA-/- CGT+/- mice. Conclusion Thus the reduction of galactosylceramide and sulfatide biosynthesis by genetic means overall causes modest improvements of pathology.

  19. Modest phenotypic improvements in ASA-deficient mice with only one UDP-galactose:ceramide-galactosyltransferase gene

    OpenAIRE

    Franken, S; Wittke, D; Mansson, JE; D'Hooge, R; De Deyn, PP; Lüllmann-Rauch, R; Matzner, U; Gieselmann, V

    2006-01-01

    Summary Background Arylsulfatase A (ASA)-deficient mice are a model for the lysosomal storage disorder metachromatic leukodystrophy. This lipidosis is characterised by the lysosomal accumulation of the sphingolipid sulfatide. Storage of this lipid is associated with progressive demyelination. We have mated ASA-deficient mice with mice heterozygous for a non-functional allele of UDP-galactose:ceramide-galactosyltransferase (CGT). This deficiency is known to lead to a decreased synthesis of gal...

  20. Increasing brain serotonin corrects CO2 chemosensitivity in methyl-CpG-binding protein 2 (Mecp2)-deficient mice

    Science.gov (United States)

    Toward, Marie A.; Abdala, Ana P.; Knopp, Sharon J.; Paton, Julian F. R.; Bissonnette, John M.

    2013-01-01

    Mice deficient in the transcription factor methyl-CpG-binding protein 2 (Mecp2), a mouse model of Rett syndrome, display reduced CO2 chemosensitivity, which may contribute to their breathing abnormalities. In addition, patients with Rett syndrome and male mice that are null for Mecp2 show reduced levels of brain serotonin (5-HT). Serotonin is known to play a role in central chemosensitivity, and we hypothesized that increasing the availability of 5-HT in this mouse model would improve their respiratory response to CO2. Here we determined the apnoeic threshold in heterozygous Mecp2-deficient female mice and examined the effects of blocking 5-HT reuptake on the CO2 response in Mecp2-null male mice. Studies were performed in B6.129P2(C)-Mecp2τm1.1Bird null males and heterozygous females. In an in situ preparation, seven of eight Mecp2-deficient heterozygous females showed arrest of phrenic nerve activity when arterial CO2 was lowered to 3%, whereas the wild-types maintained phrenic nerve amplitude at 53 ± 3% of maximal. In vivo plethysmography studies were used to determine CO2 chemosensitivity in null males. These mice were exposed sequentially to 1, 3 and 5% CO2. The percentage increase in minute ventilation in response to increased inspired CO2 was less in Mecp2−/y than in Mecp2+/y mice. Pretreatment with citalopram, a selective 5-HT reuptake inhibitor (2.5 mg kg−1 I.P.), 40 min prior to CO2 exposure, in Mecp2−/y mice resulted in an improvement in CO2 chemosensitivity to wild-type levels. These results suggest that decreased 5-HT in Mecp2-deficient mice reduces CO2 chemosensitivity, and restoring 5-HT levels can reverse this effect. PMID:23180809

  1. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    Energy Technology Data Exchange (ETDEWEB)

    Minegishi, Yoshiki [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Department of Plastic and Reconstructive Surgery, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193 (Japan); Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sakai, Yasuo [Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Plastic Surgery, Bellland General Hospital, 500-3 Higashiyama Naka-ku, Sakai, Osaka 599-8247 (Japan); Yahara, Yasuhito [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Akiyama, Haruhiko [Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagito, Gifu 501-1194 (Japan); Yoshikawa, Hideki [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Hosokawa, Ko [Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tsumaki, Noriyuki, E-mail: ntsumaki@cira.kyoto-u.ac.jp [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Japan Science and Technology Agency, CREST, Tokyo 102-0075 (Japan)

    2014-11-07

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1{sup Δchon} cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone.

  2. Chronic mild stress impairs latent inhibition and induces region-specific neural activation in CHL1-deficient mice, a mouse model of schizophrenia.

    Science.gov (United States)

    Buhusi, Mona; Obray, Daniel; Guercio, Bret; Bartlett, Mitchell J; Buhusi, Catalin V

    2017-08-30

    Schizophrenia is a neurodevelopmental disorder characterized by abnormal processing of information and attentional deficits. Schizophrenia has a high genetic component but is precipitated by environmental factors, as proposed by the 'two-hit' theory of schizophrenia. Here we compared latent inhibition as a measure of learning and attention, in CHL1-deficient mice, an animal model of schizophrenia, and their wild-type littermates, under no-stress and chronic mild stress conditions. All unstressed mice as well as the stressed wild-type mice showed latent inhibition. In contrast, CHL1-deficient mice did not show latent inhibition after exposure to chronic stress. Differences in neuronal activation (c-Fos-positive cell counts) were noted in brain regions associated with latent inhibition: Neuronal activation in the prelimbic/infralimbic cortices and the nucleus accumbens shell was affected solely by stress. Neuronal activation in basolateral amygdala and ventral hippocampus was affected independently by stress and genotype. Most importantly, neural activation in nucleus accumbens core was affected by the interaction between stress and genotype. These results provide strong support for a 'two-hit' (genes x environment) effect on latent inhibition in CHL1-deficient mice, and identify CHL1-deficient mice as a model of schizophrenia-like learning and attention impairments. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Interleukin-6-deficient mice refractory to IgA dysregulation but not anorexia induction by vomitoxin (deoxynivalenol) ingestion.

    Science.gov (United States)

    Pestka, J J; Zhou, H R

    2000-07-01

    Dietary exposure to the trichothecene vomitoxin (VT) causes feed refusal and elevates IgA production in the mouse. Based on the observations that IL-6 can cause anorexia and promote IgA production and that gene expression of this cytokine is increased in vivo and ex vivo on VT exposure, we hypothesized that IL-6 is an essential cytokine in VT-induced feed refusal and IgA dysregulation. To test this hypothesis, the effects of dietary VT on feed intake, weight gain, serum IgA levels and kidney mesangial IgA deposition in an IL-6-"knockout" mouse (B6129-IL6(tmi Kopf)) were compared to those in both a corresponding "wildtype" (B6129F2) and a previously characterized "sentinel" strain (B6C3F1) that possess the intact gene for this cytokine. IL-6 deficiency did not alter the capacity of VT to cause feed refusal or impair weight gain. VT-fed B6129F2 and B6C3F1 mice had significantly higher serum IgA concentrations than did their corresponding controls fed clean diet, whereas significant differences were not observed between IL-6 KO mice fed VT or control diets. Kidneys taken from VT-fed wild-type and sentinel mice had significantly increased mesangial IgA deposition as compared to controls. While slight increases in mesangial IgA were observed in VT-fed IL-6 KO mice, mean fluorescence intensities were significantly less than that found in the corresponding wild-type and sentinel strains. IL-6 KO mice appeared to be less prone to the development of microscopic haematuria following VT exposure than were the corresponding wild-type and sentinel strains. In total, the results suggested that IL-6-deficient mice were refractory to VT-induced dysregulation of IgA production and development of IgA nephropathy, whereas chronic VT-mediated nutritional effects related to feed intake and weight gain were unaffected.

  4. Melanocortin 1 Receptor Deficiency Promotes Atherosclerosis in Apolipoprotein E-/- Mice.

    Science.gov (United States)

    Rinne, Petteri; Kadiri, James J; Velasco-Delgado, Mauricio; Nuutinen, Salla; Viitala, Miro; Hollmén, Maija; Rami, Martina; Savontaus, Eriika; Steffens, Sabine

    2018-02-01

    The MC1-R (melanocortin 1 receptor) is expressed by monocytes and macrophages where it mediates anti-inflammatory actions. MC1-R also protects against macrophage foam cell formation primarily by promoting cholesterol efflux through the ABCA1 (ATP-binding cassette transporter subfamily A member 1) and ABCG1 (ATP-binding cassette transporter subfamily G member 1). In this study, we aimed to investigate whether global deficiency in MC1-R signaling affects the development of atherosclerosis. Apoe -/- (apolipoprotein E deficient) mice were crossed with recessive yellow (Mc1r e/e ) mice carrying dysfunctional MC1-R and fed a high-fat diet to induce atherosclerosis. Apoe -/- Mc1r e/e mice developed significantly larger atherosclerotic lesions in the aortic sinus and in the whole aorta compared with Apoe -/- controls. In terms of plaque composition, MC1-R deficiency was associated with less collagen and smooth muscle cells and increased necrotic core, indicative of more vulnerable lesions. These changes were accompanied by reduced Abca1 and Abcg1 expression in the aorta. Furthermore, Apoe -/- Mc1r e/e mice showed a defect in bile acid metabolism that aggravated high-fat diet-induced hypercholesterolemia and hepatic lipid accumulation. Flow cytometric analysis of leukocyte profile revealed that dysfunctional MC1-R enhanced arterial accumulation of classical Ly6C high monocytes and macrophages, effects that were evident in mice fed a normal chow diet but not under high-fat diet conditions. In support of enhanced arterial recruitment of Ly6C high monocytes, these cells had increased expression of L-selectin and P-selectin glycoprotein ligand 1. The present study highlights the importance of MC1-R in the development of atherosclerosis. Deficiency in MC1-R signaling exacerbates atherosclerosis by disturbing cholesterol handling and by increasing arterial monocyte accumulation. © 2017 The Authors.

  5. Marginal Biotin Deficiency Is Teratogenic in ICR Mice1,2

    OpenAIRE

    Mock, Donald M.; Mock, Nell I.; Stewart, Christopher W.; LaBorde, James B.; Hansen, Deborah K.

    2003-01-01

    The incidence of marginal biotin deficiency in normal human gestation is approximately one in three. In ICR mice, maternal biotin deficiency results in cleft palate, micrognathia, microglossia and limb hypoplasia. However, the relationships among the severity of maternal biotin deficiency, fetal biotin status and malformations have not been reported. This study utilized validated indices of biotin status to investigate the relationships among maternal biotin status, fetal biotin status and th...

  6. Deficiency in Protein Tyrosine Phosphatase PTP1B Shortens Lifespan and Leads to Development of Acute Leukemia.

    Science.gov (United States)

    Le Sommer, Samantha; Morrice, Nicola; Pesaresi, Martina; Thompson, Dawn; Vickers, Mark A; Murray, Graeme I; Mody, Nimesh; Neel, Benjamin G; Bence, Kendra K; Wilson, Heather M; Delibegović, Mirela

    2018-01-01

    Protein tyrosine phosphatase PTP1B is a critical regulator of signaling pathways controlling metabolic homeostasis, cell proliferation, and immunity. In this study, we report that global or myeloid-specific deficiency of PTP1B in mice decreases lifespan. We demonstrate that myeloid-specific deficiency of PTP1B is sufficient to promote the development of acute myeloid leukemia. LysM-PTP1B -/- mice lacking PTP1B in the innate myeloid cell lineage displayed a dysregulation of bone marrow cells with a rapid decline in population at midlife and a concomitant increase in peripheral blood blast cells. This phenotype manifested further with extramedullary tumors, hepatic macrophage infiltration, and metabolic reprogramming, suggesting increased hepatic lipid metabolism prior to overt tumor development. Mechanistic investigations revealed an increase in anti-inflammatory M2 macrophage responses in liver and spleen, as associated with increased expression of arginase I and the cytokines IL10 and IL4. We also documented STAT3 hypersphosphorylation and signaling along with JAK-dependent upregulation of antiapoptotic proteins Bcl2 and BclXL. Our results establish a tumor suppressor role for PTP1B in the myeloid lineage cells, with evidence that its genetic inactivation in mice is sufficient to drive acute myeloid leukemia. Significance: This study defines a tumor suppressor function for the protein tyrosine phosphatase PTP1B in myeloid lineage cells, with evidence that its genetic inactivation in mice is sufficient to drive acute myeloid leukemia. Cancer Res; 78(1); 75-87. ©2017 AACR . ©2017 American Association for Cancer Research.

  7. Aberrant Muscle Antigen Exposure in Mice Is Sufficient to Cause Myositis in a Treg Cell–Deficient Milieu

    Science.gov (United States)

    Young, Nicholas A; Sharma, Rahul; Friedman, Alexandra K; Kaffenberger, Benjamin H; Bolon, Brad; Jarjour, Wael N

    2013-01-01

    Objective Myositis is associated with muscle-targeted inflammation and is observed in some Treg cell–deficient mouse models. Because an autoimmune pathogenesis has been strongly implicated, the aim of this study was to investigate the hypothesis that abnormal exposure to muscle antigens, as observed in muscle injury, can induce autoimmune-mediated myositis in susceptible hosts. Methods FoxP3 mutant (scurfy) mice were mated to synaptotagmin VII (Syt VII) mutant mice, which resulted in a new mouse strain that combines impaired membrane resealing with Treg cell deficiency. Lymphocyte preparations from double-mutant mice were adoptively transferred intraperitoneally, with or without purified Treg cells, into recombination-activating gene 1 (RAG-1)–null recipients. Lymph node cells from mice with the FoxP3 mutation were transferred into RAG-1–null mice either 1) intraperitoneally in conjunction with muscle homogenate or purified myosin protein or 2) intramuscularly with or without cotransfer of purified Treg cells. Results FoxP3-deficient mouse lymph node cells transferred in conjunction with myosin protein or muscle homogenate induced robust skeletal muscle inflammation. The infiltrates consisted predominantly of CD4+ and CD8+ T cells, a limited number of macrophages, and no B cells. Significant inflammation was also seen in similar experiments using lymph node cells from FoxP3/Syt VII double-mutant mice but was absent in experiments using adoptive transfer of FoxP3 mutant mouse cells alone. The cotransfer of Treg cells completely suppressed myositis. Conclusion These data, derived from a new, reproducible model, demonstrate the critical roles of Treg cell deficiency and aberrant muscle antigen exposure in the priming of autoreactive cells to induce myositis. This mouse system has multifaceted potential for examining the interplay in vivo between tissue injury and autoimmunity. PMID:24022275

  8. Vitamin B12 deficiency

    Science.gov (United States)

    Vitamin B12 (B12; also known as cobalamin) is a B vitamin that has an important role in cellular metabolism, especially in DNA synthesis, methylation and mitochondrial metabolism. Clinical B12 deficiency with classic haematological and neurological manifestations is relatively uncommon. However, sub...

  9. Atypical B12 Deficiency with Nonresolving Paraesthesia

    Directory of Open Access Journals (Sweden)

    S. Haider

    2013-01-01

    Full Text Available Vitamin B12 deficiency can present with various hematological, gastrointestinal and neurological manifestations. We report a case of elderly female who presented with neuropathy and vitamin B12 deficiency where the final work-up revealed polyneuropathy, organomegaly, endocrinopathy, monoclonal gammopathy, and skin changes (POEMS. This case suggests that, although POEMS syndrome is a rare entity, it can present with vitamin-B12 deficiency and thus specific work up for early diagnosis of POEMS should be considered in patients with B12 deficiency unresponsive to therapy.

  10. Smoothelin-B deficiency results in reduced arterial contractility, hypertension, and cardiac hypertrophy in mice

    NARCIS (Netherlands)

    Rensen, Sander S.; Niessen, Petra M.; van Deursen, Jan M.; Janssen, Ben J.; Heijman, Edwin; Hermeling, Evelien; Meens, Merlijn; Lie, Natascha; Gijbels, Marion J.; Strijkers, Gustav J.; Doevendans, Pieter A.; Hofker, Marten H.; de Mey, Jo G. R.; van Eys, Guillaume J.

    2008-01-01

    Smoothelins are actin-binding proteins that are abundantly expressed in healthy visceral (smoothelin-A) and vascular (smoothelin-B) smooth muscle. Their expression is strongly associated with the contractile phenotype of smooth muscle cells. Analysis of mice lacking both smoothelins (Smtn-A/B(-/-)

  11. Inhibition of UDP-glucosylceramide synthase in mice prevents Gaucher disease-associated B-cell malignancy.

    Science.gov (United States)

    Pavlova, Elena V; Archer, Joy; Wang, Susan; Dekker, Nick; Aerts, Johannes Mfg; Karlsson, Stefan; Cox, Timothy M

    2015-01-01

    Clonal B-cell proliferation is a frequent manifestation of Gaucher disease - a sphingolipidosis associated with a high risk of multiple myeloma and non-Hodgkin lymphoma. Gaucher disease is caused by genetic deficiency of acid β-glucosidase, the natural substrates of which (β-d-glucosylceramide and β-d-glucosylsphingosine) accumulate, principally in macrophages. Mice with inducible deficiency of β-glucosidase [Gba(tm1Karl/tm1Karl)Tg(MX1-cre)1Cgn/0] serve as an authentic model of human Gaucher disease; we have recently reported clonal B-cell proliferation accompanied by monoclonal serum paraproteins and cognate tumours in these animals. To explore the relationship between B-cell malignancy and the biochemical defect, we treated Gaucher mice with eliglustat tartrate (GENZ 112638), a potent and selective inhibitor of the first committed step in glycosphingolipid biosynthesis. Twenty-two Gaucher mice received 300 mg/kg of GENZ 112638 daily for 3-10 months from 6 weeks of age. Plasma concentrations of β-d-glucosylceramide and the unacylated glycosphingolipid, β-d-glucosylsphingosine, declined. After administration of GENZ 112638 to Gaucher mice for 3-10 months, serum paraproteins were not detected and there was a striking reduction in the malignant lymphoproliferation: neither lymphomas nor plasmacytomas were found in animals that had received the investigational agent. In contrast, 14 out of 60 Gaucher mice without GENZ 112638 treatment developed these tumours; monoclonal paraproteins were detected in plasma from 18 of the 44 age-matched mice with Gaucher disease that had not received GENZ 112638. Long-term inhibition of glycosphingolipid biosynthesis suppresses the development of spontaneous B-cell lymphoma and myeloma in Gaucher mice. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  12. TLR4 deficiency promotes autophagy during cigarette smoke-induced pulmonary emphysema.

    Science.gov (United States)

    An, Chang Hyeok; Wang, Xiao Mei; Lam, Hilaire C; Ifedigbo, Emeka; Washko, George R; Ryter, Stefan W; Choi, Augustine M K

    2012-11-01

    Toll-like receptors (TLRs) exert important nonimmune functions in lung homeostasis. TLR4 deficiency promotes pulmonary emphysema. We examined the role of TLR4 in regulating cigarette smoke (CS)-induced autophagy, apoptosis, and emphysema. Lung tissue was obtained from chronic obstructive lung disease (COPD) patients. C3H/HeJ (Tlr4-mutated) mice and C57BL/10ScNJ (Tlr4-deficient) mice and their respective control strains were exposed to chronic CS or air. Human or mouse epithelial cells (wild-type, Tlr4-knockdown, and Tlr4-deficient) were exposed to CS-extract (CSE). Samples were analyzed for TLR4 expression, and for autophagic or apoptotic proteins by Western blot analysis or confocal imaging. Chronic obstructive lung disease lung tissues and human pulmonary epithelial cells exposed to CSE displayed increased TLR4 expression, and increased autophagic [microtubule-associated protein-1 light-chain-3B (LC3B)] and apoptotic (cleaved caspase-3) markers. Beas-2B cells transfected with TLR4 siRNA displayed increased expression of LC3B relative to control cells, basally and after exposure to CSE. The basal and CSE-inducible expression of LC3B and cleaved caspase-3 were elevated in pulmonary alveolar type II cells from Tlr4-deficient mice. Wild-type mice subjected to chronic CS-exposure displayed airspace enlargement;, however, the Tlr4-mutated or Tlr4-deficient mice exhibited a marked increase in airspace relative to wild-type mice after CS-exposure. The Tlr4-mutated or Tlr4-deficient mice showed higher levels of LC3B under basal conditions and after CS exposure. The expression of cleaved caspase-3 was markedly increased in Tlr4-deficient mice exposed to CS. We describe a protective regulatory function of TLR4 against emphysematous changes of the lung in response to CS.

  13. Vaccination against lymphocytic choriomeningitis virus infection in MHC class II-deficient mice

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Christensen, Jan Pravsgaard; Thomsen, Allan Randrup

    2011-01-01

    response could be elicited in MHC class II-deficient mice by vaccination with adenovirus encoding lymphocytic choriomeningitis virus (LCMV) glycoprotein tethered to MHC class II-associated invariant chain. Moreover, the response induced conferred significant cytolytic CD8(+) T cell-mediated protection...... against challenge with a high dose of the invasive clone 13 strain of LCMV. In contrast, vaccination with adenovirus encoding unlinked LCMV glycoprotein induced weak virus control in the absence of CD4(+) T cells, and mice may die of increased immunopathology associated with incomplete protection. Acute...... mortality was not observed in any vaccinated mice following infection with the less-invasive Traub strain. However, LCMV Traub infection caused accelerated late mortality in unvaccinated MHC class II-deficient mice; in this case, we observed a strong trend toward delayed mortality in vaccinated mice...

  14. Mice deficient in transmembrane prostatic acid phosphatase display increased GABAergic transmission and neurological alterations.

    Directory of Open Access Journals (Sweden)

    Heidi O Nousiainen

    Full Text Available Prostatic acid phosphatase (PAP, the first diagnostic marker and present therapeutic target for prostate cancer, modulates nociception at the dorsal root ganglia (DRG, but its function in the central nervous system has remained unknown. We studied expression and function of TMPAP (the transmembrane isoform of PAP in the brain by utilizing mice deficient in TMPAP (PAP-/- mice. Here we report that TMPAP is expressed in a subpopulation of cerebral GABAergic neurons, and mice deficient in TMPAP show multiple behavioral and neurochemical features linked to hyperdopaminergic dysregulation and altered GABAergic transmission. In addition to increased anxiety, disturbed prepulse inhibition, increased synthesis of striatal dopamine, and augmented response to amphetamine, PAP-deficient mice have enlarged lateral ventricles, reduced diazepam-induced loss of righting reflex, and increased GABAergic tone in the hippocampus. TMPAP in the mouse brain is localized presynaptically, and colocalized with SNARE-associated protein snapin, a protein involved in synaptic vesicle docking and fusion, and PAP-deficient mice display altered subcellular distribution of snapin. We have previously shown TMPAP to reside in prostatic exosomes and we propose that TMPAP is involved in the control of GABAergic tone in the brain also through exocytosis, and that PAP deficiency produces a distinct neurological phenotype.

  15. Leptin deficiency-induced obesity exacerbates ultraviolet B radiation-induced cyclooxygenase-2 expression and cell survival signals in ultraviolet B-irradiated mouse skin

    International Nuclear Information System (INIS)

    Sharma, Som D.; Katiyar, Santosh K.

    2010-01-01

    Obesity has been implicated in several inflammatory diseases and in different types of cancer. Chronic inflammation induced by exposure to ultraviolet (UV) radiation has been implicated in various skin diseases, including melanoma and nonmelanoma skin cancers. As the relationship between obesity and susceptibility to UV radiation-caused inflammation is not clearly understood, we assessed the role of obesity on UVB-induced inflammation, and mediators of this inflammatory response, using the genetically obese (leptin-deficient) mouse model. Leptin-deficient obese (ob/ob) mice and wild-type counterparts (C57/BL6 mice) were exposed to UVB radiation (120 mJ/cm 2 ) on alternate days for 1 month. The mice were then euthanized and skin samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. Here, we report that the levels of inflammatory responses were higher in the UVB-exposed skin of the ob/ob obese mice than those in the UVB-exposed skin of the wild-type non-obese mice. The levels of UVB-induced cyclooxygenase-2 expression, prostaglandin-E 2 production, proinflammatory cytokines (i.e., tumor necrosis factor-α, interleukin-1β, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser 473 ) were higher in the skin of the ob/ob obese mice than the those in skin of their wild-type non-obese counterparts. Compared with the wild-type non-obese mice, the leptin-deficient obese mice also exhibited greater activation of NF-κB/p65 and fewer apoptotic cells in the UVB-irradiated skin. Our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced inflammatory responses and, therefore, obesity may increase susceptibility to UVB-induced inflammation-associated skin diseases, including the risk of skin cancer.

  16. Slitrk1-deficient mice display elevated anxiety-like behavior and noradrenergic abnormalities.

    Science.gov (United States)

    Katayama, K; Yamada, K; Ornthanalai, V G; Inoue, T; Ota, M; Murphy, N P; Aruga, J

    2010-02-01

    Mutations in SLITRK1 are found in patients with Tourette's syndrome and trichotillomania. SLITRK1 encodes a transmembrane protein containing leucine-rich repeats that is produced predominantly in the nervous system. However, the role of this protein is largely unknown, except that it can modulate neurite outgrowth in vitro. To clarify the role of Slitrk1 in vivo, we developed Slitrk1-knockout mice and analyzed their behavioral and neurochemical phenotypes. Slitrk1-deficient mice exhibited elevated anxiety-like behavior in the elevated plus-maze test as well as increased immobility time in forced swimming and tail suspension tests. Neurochemical analysis revealed that Slitrk1-knockout mice had increased levels of norepinephrine and its metabolite 3-methoxy-4-hydroxyphenylglycol. Administration of clonidine, an alpha2-adrenergic agonist that is frequently used to treat patients with Tourette's syndrome, attenuated the anxiety-like behavior of Slitrk1-deficient mice in the elevated plus-maze test. These results lead us to conclude that noradrenergic mechanisms are involved in the behavioral abnormalities of Slitrk1-deficient mice. Elevated anxiety due to Slitrk1 dysfunction may contribute to the pathogenesis of neuropsychiatric diseases such as Tourette's syndrome and trichotillomania.

  17. Vitamin D deficiency in mice impairs colonic antibacterial activity and predisposes to colitis.

    Science.gov (United States)

    Lagishetty, Venu; Misharin, Alexander V; Liu, Nancy Q; Lisse, Thomas S; Chun, Rene F; Ouyang, Yi; McLachlan, Sandra M; Adams, John S; Hewison, Martin

    2010-06-01

    Vitamin D insufficiency is a global health issue. Although classically associated with rickets, low vitamin D levels have also been linked to aberrant immune function and associated health problems such as inflammatory bowel disease (IBD). To test the hypothesis that impaired vitamin D status predisposes to IBD, 8-wk-old C57BL/6 mice were raised from weaning on vitamin D-deficient or vitamin D-sufficient diets and then treated with dextran sodium sulphate (DSS) to induce colitis. Vitamin D-deficient mice showed decreased serum levels of precursor 25-hydroxyvitamin D(3) (2.5 +/- 0.1 vs. 24.4 +/- 1.8 ng/ml) and active 1,25-dihydroxyvitamin D(3) (28.8 +/- 3.1 vs. 45.6 +/- 4.2 pg/ml), greater DSS-induced weight loss (9 vs. 5%), increased colitis (4.71 +/- 0.85 vs. 1.57 +/- 0.18), and splenomegaly relative to mice on vitamin D-sufficient chow. DNA array analysis of colon tissue (n = 4 mice) identified 27 genes consistently (P < 0.05) up-regulated or down-regulated more than 2-fold in vitamin D-deficient vs. vitamin D-sufficient mice, in the absence of DSS-induced colitis. This included angiogenin-4, an antimicrobial protein involved in host containment of enteric bacteria. Immunohistochemistry confirmed that colonic angiogenin-4 protein was significantly decreased in vitamin D-deficient mice even in the absence of colitis. Moreover, the same animals showed elevated levels (50-fold) of bacteria in colonic tissue. These data show for the first time that simple vitamin D deficiency predisposes mice to colitis via dysregulated colonic antimicrobial activity and impaired homeostasis of enteric bacteria. This may be a pivotal mechanism linking vitamin D status with IBD in humans.

  18. SHIP-1 Deficiency in AID+ B Cells Leads to the Impaired Function of B10 Cells with Spontaneous Autoimmunity.

    Science.gov (United States)

    Chen, Yingjia; Hu, Fanlei; Dong, Xuejiao; Zhao, Meng; Wang, Jing; Sun, Xiaolin; Kim, Tae Jin; Li, Zhanguo; Liu, Wanli

    2017-11-01

    Unlike conventional B cells, regulatory B cells exhibit immunosuppressive functions to downregulate inflammation via IL-10 production. However, the molecular mechanism regulating the production of IL-10 is not fully understood. In this study, we report the finding that activation-induced cytidine deaminase (AID) is highly upregulated in the IL-10-competent B cell (B10) cell from Innp5d fl/fl Aicda Cre/+ mice, whereas the 5' inositol phosphatase SHIP-1 is downregulated. Notably, SHIP-1 deficiency in AID + B cells leads to a reduction in cell count and impaired IL-10 production by B10 cells. Furthermore, the Innp5d fl/fl Aicda Cre/+ mouse model shows B cell-dependent autoimmune lupus-like phenotypes, such as elevated IgG serum Abs, formation of spontaneous germinal centers, production of anti-dsDNA and anti-nuclear Abs, and the obvious deposition of IgG immune complexes in the kidney with age. We observe that these lupus-like phenotypes can be reversed by the adoptive transfer of B10 cells from control Innp5d fl/fl mice, but not from the Innp5d fl/fl Aicda Cre/+ mice. This finding highlights the importance of defective B10 cells in Innp5d fl/fl Aicda Cre/+ mice. Whereas p-Akt is significantly upregulated, MAPK and AP-1 activation is impaired in B10 cells from Innp5d fl/fl Aicda Cre/+ mice, resulting in the reduced production of IL-10. These results show that SHIP-1 is required for the maintenance of B10 cells and production of IL-10, and collectively suggests that SHIP-1 could be a new potential therapeutic target for the treatment of autoimmune diseases. Copyright © 2017 by The American Association of Immunologists, Inc.

  19. Comprehensive Behavioral Analysis of Activating Transcription Factor 5-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Mariko Umemura

    2017-07-01

    Full Text Available Activating transcription factor 5 (ATF5 is a member of the CREB/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5-/- mice demonstrated abnormal olfactory bulb development due to impaired interneuron supply. Furthermore, ATF5-/- mice were less aggressive than ATF5+/+ mice. Although ATF5 is widely expressed in the brain, and involved in the regulation of proliferation and development of neurons, the physiological role of ATF5 in the higher brain remains unknown. Our objective was to investigate the physiological role of ATF5 in the higher brain. We performed a comprehensive behavioral analysis using ATF5-/- mice and wild type littermates. ATF5-/- mice exhibited abnormal locomotor activity in the open field test. They also exhibited abnormal anxiety-like behavior in the light/dark transition test and open field test. Furthermore, ATF5-/- mice displayed reduced social interaction in the Crawley’s social interaction test and increased pain sensitivity in the hot plate test compared with wild type. Finally, behavioral flexibility was reduced in the T-maze test in ATF5-/- mice compared with wild type. In addition, we demonstrated that ATF5-/- mice display disturbances of monoamine neurotransmitter levels in several brain regions. These results indicate that ATF5 deficiency elicits abnormal behaviors and the disturbance of monoamine neurotransmitter levels in the brain. The behavioral abnormalities of ATF5-/- mice may be due to the disturbance of monoamine levels. Taken together, these findings suggest that ATF5-/- mice may be a unique animal model of some psychiatric disorders.

  20. Chromogranin A in the mammalian heart

    DEFF Research Database (Denmark)

    Hansen, Lasse H.; Darkner, Stine; Svendsen, Jesper H.

    2017-01-01

    Aim: To investigate whether chromogranin A (CgA) is secreted from the heart into circulation.  Materials & methods: Porcine cardiac tissue was analyzed for the presence of CgA-derived glycopeptides using a global O-glycoproteomic strategy. Blood was sampled from the femoral vein, right atrium...... from the heart (coronary sinus [795 pmol/l] vs left atrium [678 pmol/l]; p heart could be established (p = 0.6366).  Conclusion: The cardiac atria express but do not secrete CgA into circulation in patients with atrial disease....

  1. Increased susceptibility to diet-induced obesity in histamine-deficient mice

    DEFF Research Database (Denmark)

    Jørgensen, Emilie A; Vogelsang, Thomas W; Knigge, Ulrich

    2006-01-01

    in the development of high-fat diet (HFD)-induced obesity. METHODS: Histamine-deficient histidine decarboxylase knock-out (HDC-KO) mice and C57BL/6J wild-type (WT) mice were given either a standard diet (STD) or HFD for 8 weeks. Body weight, 24-hour caloric intake, epididymal adipose tissue size, plasma leptin...... weeks, whereas a significant difference in body weight gain was first observed after 5 weeks in WT mice. After 8 weeks 24-hour caloric intake was significantly lower in HFD- than in STD-fed WT mice. In HDC-KO mice no difference in caloric intake was observed between HFD- and STD-fed mice. After 8 weeks...

  2. Spontaneous chondroma formation in CD2-Cre-driven Erk-deficient mice.

    Science.gov (United States)

    Shiokawa, Moe; Lu, Xiuyuan; Miyake, Yasunobu; Ishikawa, Eri; Pagès, Gilles; Pouysségur, Jacques; Ogata, Masato; Yamasaki, Sho

    2017-12-18

    Lineage-specific Cre Tg mice are widely used to delineate the functions of genes in a tissue-specific manner. Several T-cell-specific promoter cassettes have been developed; however, the activities of those promoters in non-T cells have not been investigated extensively. Here, we report that CD2-Cre-mediated deletion of Erk proteins by generating CD2-Cre × Erk1-/-Erk2flox/flox (Erk∆CD2-Cre) mice results in abnormal cartilage hyperplasia. Histological analysis revealed that this abnormality is caused by aberrant hyperplasia of chondrocytes. The presence of Erk-deficient T cells is not required for this chondroma formation, as it was similarly observed in the absence of T cells in a CD3ε-deficient background. In addition, adoptive transfer of bone marrow cells from Erk∆CD2-Cre mice to wild-type recipients did not cause chondroma formation, suggesting that Erk-deficient non-immune cells are responsible for this abnormality. By tracing Cre-expressed tissues using a ROSA26-STOP-RFP allele, we found that the chondroma emitted RFP fluorescence, indicating that functional Cre is expressed in hyperplastic chondrocytes in Erk∆CD2-Cre mice. Furthermore, RFP+ chondrocytes were also found in an Erk-sufficient background, albeit without aberrant growth. These results suggest that unexpected expression of CD2-driven Cre in chondrocytes generates Erk-deficient chondrocytes, resulting in hyperplastic cartilage formation. Recently, two independent reports showed that CD4-Cre-mediated Ras-Erk signaling ablation led to similar abnormal cartilage formation (Guittard, G., Gallardo, D. L., Li, W. et al. 2017. Unexpected cartilage phenotype in CD4-Cre-conditional SOS-deficient mice. Front. Immunol. 8:343; Wehenkel, M., Corr, M., Guy, C. S. et al. 2017. Extracellular signal-regulated kinase signaling in CD4-expressing cells inhibits osteochondromas. Front. Immunol. 8:482). Together with these reports, our study suggests that an unexpected link exists between T-like cell and

  3. Cell type-specific deficiency of c-kit gene expression in mutant mice of mi/mi genotype.

    Science.gov (United States)

    Isozaki, K.; Tsujimura, T.; Nomura, S.; Morii, E.; Koshimizu, U.; Nishimune, Y.; Kitamura, Y.

    1994-01-01

    The mi locus of mice encodes a novel member of the basic-helix-loop-helix-leucine zipper protein family of transcription factors (hereafter called mi factor). In addition to microphthalmus, osteopetrosis, and lack of melanocytes, mice of mi/mi genotype are deficient in mast cells. Since the c-kit receptor tyrosine kinase plays an important role in the development of mast cells, and since the c-kit expression by cultured mast cells from mi/mi mice is deficient in both mRNA and protein levels, the mast cell deficiency of mi/mi mice has been attributed at least in part to the deficient expression of c-kit. However, it remained to be examined whether the c-kit expression was also deficient in tissues of mi/mi mice. In the present study, we examined the c-kit expression by mi/mi skin mast cells using in situ hybridization and immunohistochemistry. Moreover, we examined the c-kit expression by various cells other than mast cells in tissues of mi/mi mice. We found that the c-kit expression was deficient in mast cells but not in erythroid precursors, testicular germ cells, and neurons of mi/mi mice. This suggested that the regulation of the c-kit transcription by the mi factor was dependent on cell types. Mice of mi/mi genotype appeared to be a useful model to analyze the function of transcription factors in the whole-animal level. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7524330

  4. Correction of lysosomal enzyme deficiency in various organs of beta-glucuronidase-deficient mice by allogeneic bone marrow transplantation

    NARCIS (Netherlands)

    Hoogerbrugge, P. M.; Poorthuis, B. J.; Mulder, A. H.; Wagemaker, G.; Dooren, L. J.; Vossen, J. M.; van Bekkum, D. W.

    1987-01-01

    The correction of lysosomal enzyme deficiency was investigated for various organs of beta-glucuronidase-deficient C3H/Rij mice after allogeneic bone marrow transplantation from an enzymatically normal donor strain (C57BL/Rij). In the hemopoietic organs, the enzyme level increased to levels found in

  5. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice.

    Directory of Open Access Journals (Sweden)

    Jose Luis Ramirez-GarciaLuna

    Full Text Available In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic. Previous studies in combined mast cell- and Kit-deficient KitW-sh/W-sh mice (KitW-sh implicated mast cells in bone repair but KitW-sh mice suffer from additional Kit-dependent hematopoietic and non- hematopoietic deficiencies that could have confounded the outcome. The goal of the current study was to compare bone repair in normal wild type (WT and Cpa3Cre/+ mice, which lack mast cells in the absence of any other hematopoietic or non- hematopoietic deficiencies. Repair of a femoral window defect was characterized using micro CT imaging and histological analyses from the early inflammatory phase, through soft and hard callus formation, and finally the remodeling phase. The data indicate 1 mast cells appear in healing bone of WT mice but not Cpa3Cre/+ mice, beginning 14 days after surgery; 2 re-vascularization of repair tissue and deposition of mineralized bone was delayed and dis-organised in Cpa3Cre/+ mice compared with WT mice; 3 the defects in Cpa3Cre/+ mice were associated with little change in anabolic activity and biphasic alterations in osteoclast and macrophage activity. The outcome at 56 days postoperative was complete bridging of the defect in most WT mice and fibrous mal-union in most Cpa3Cre/+ mice. The results indicate that mast cells promote bone healing, possibly by recruiting vascular endothelial cells during the inflammatory phase and coordinating anabolic and catabolic activity during tissue remodeling. Taken together the data indicate that mast cells have a positive impact on bone repair.

  6. Defective bone repair in mast cell-deficient Cpa3Cre/+ mice.

    Science.gov (United States)

    Ramirez-GarciaLuna, Jose Luis; Chan, Daniel; Samberg, Robert; Abou-Rjeili, Mira; Wong, Timothy H; Li, Ailian; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Henderson, Janet E; Martineau, Paul A

    2017-01-01

    In the adult skeleton, cells of the immune system interact with those of the skeleton during all phases of bone repair to influence the outcome. Mast cells are immune cells best known for their pathologic role in allergy, and may be involved in chronic inflammatory and fibrotic disorders. Potential roles for mast cells in tissue homeostasis, vascularization and repair remain enigmatic. Previous studies in combined mast cell- and Kit-deficient KitW-sh/W-sh mice (KitW-sh) implicated mast cells in bone repair but KitW-sh mice suffer from additional Kit-dependent hematopoietic and non- hematopoietic deficiencies that could have confounded the outcome. The goal of the current study was to compare bone repair in normal wild type (WT) and Cpa3Cre/+ mice, which lack mast cells in the absence of any other hematopoietic or non- hematopoietic deficiencies. Repair of a femoral window defect was characterized using micro CT imaging and histological analyses from the early inflammatory phase, through soft and hard callus formation, and finally the remodeling phase. The data indicate 1) mast cells appear in healing bone of WT mice but not Cpa3Cre/+ mice, beginning 14 days after surgery; 2) re-vascularization of repair tissue and deposition of mineralized bone was delayed and dis-organised in Cpa3Cre/+ mice compared with WT mice; 3) the defects in Cpa3Cre/+ mice were associated with little change in anabolic activity and biphasic alterations in osteoclast and macrophage activity. The outcome at 56 days postoperative was complete bridging of the defect in most WT mice and fibrous mal-union in most Cpa3Cre/+ mice. The results indicate that mast cells promote bone healing, possibly by recruiting vascular endothelial cells during the inflammatory phase and coordinating anabolic and catabolic activity during tissue remodeling. Taken together the data indicate that mast cells have a positive impact on bone repair.

  7. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    Science.gov (United States)

    Kashyap, Sonu; Warner, Gina; Hu, Zeng; Gao, Feng; Osman, Mazen; Al Saiegh, Yousif; Lien, Karen R; Nath, Karl; Grande, Joseph P

    2017-01-01

    Renovascular hypertension (RVH) has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C) model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO) protects the stenotic kidney (STK) from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS) was established in Wild-type (WT) and Smad3 KO mice (129 genetic background) by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  8. Cardiovascular phenotype in Smad3 deficient mice with renovascular hypertension.

    Directory of Open Access Journals (Sweden)

    Sonu Kashyap

    Full Text Available Renovascular hypertension (RVH has deleterious effects on both the kidney and the heart. TGF-β signaling through Smad3 directs tissue fibrosis in chronic injury models. In the 2-kidney 1-clip (2K1C model of RVH, employing mice on the 129 genetic background, Smad3 deficiency (KO protects the stenotic kidney (STK from development of interstitial fibrosis. However, these mice have an increased incidence of sudden cardiac death following 2K1C surgery. The purpose of this study was to characterize the cardiovascular phenotype of these mice. Renal artery stenosis (RAS was established in Wild-type (WT and Smad3 KO mice (129 genetic background by placement of a polytetrafluoroethylene cuff on the right renal artery. Mortality was 25.5% for KO mice with RAS, 4.1% for KO sham mice, 1.2% for WT with RAS, and 1.8% for WT sham mice. Myocardial tissue of mice studied at 3 days following surgery showed extensive myocyte necrosis in KO but not WT mice. Myocyte necrosis was associated with a rapid induction of Ccl2 expression, macrophage influx, and increased MMP-9 activity. At later time points, both KO and WT mice developed myocardial fibrosis. No aortic aneurysms or dissections were observed at any time point. Smad3 KO mice were backcrossed to the C57BL/6J strain and subjected to RAS. Sudden death was observed at 10-14 days following surgery in 62.5% of mice; necropsy revealed aortic dissections as the cause of death. As observed in the 129 mice, the STK of Smad3 KO mice on the C57BL/6J background did not develop significant chronic renal damage. We conclude that the cardiovascular manifestations of Smad3 deficient mice are strain-specific, with myocyte necrosis in 129 mice and aortic rupture in C57BL/6J mice. Future studies will define mechanisms underlying this strain-specific effect on the cardiovascular system.

  9. T-cell-dependent control of acute Giardia lamblia infections in mice.

    Science.gov (United States)

    Singer, S M; Nash, T E

    2000-01-01

    We have studied immune mechanisms responsible for control of acute Giardia lamblia and Giardia muris infections in adult mice. Association of chronic G. lamblia infection with hypogammaglobulinemia and experimental infections of mice with G. muris have led to the hypothesis that antibodies are required to control these infections. We directly tested this hypothesis by infecting B-cell-deficient mice with either G. lamblia or G. muris. Both wild-type mice and B-cell-deficient mice eliminated the vast majority of parasites between 1 and 2 weeks postinfection with G. lamblia. G. muris was also eliminated in both wild-type and B-cell-deficient mice. In contrast, T-cell-deficient and scid mice failed to control G. lamblia infections, as has been shown previously for G. muris. Treatment of wild-type or B-cell-deficient mice with antibodies to CD4 also prevented elimination of G. lamblia, confirming a role for T cells in controlling infections. By infecting mice deficient in either alphabeta- or gammadelta-T-cell receptor (TCR)-expressing T cells, we show that the alphabeta-TCR-expressing T cells are required to control parasites but that the gammadelta-TCR-expressing T cells are not. Finally, infections in mice deficient in production of gamma interferon or interleukin 4 (IL-4) and mice deficient in responding to IL-4 and IL-13 revealed that neither the Th1 nor the Th2 subset is absolutely required for protection from G. lamblia. We conclude that a T-cell-dependent mechanism is essential for controlling acute Giardia infections and that this mechanism is independent of antibody and B cells.

  10. Oligoasthenoteratozoospermia and infertility in mice deficient for miR-34b/c and miR-449 loci.

    Directory of Open Access Journals (Sweden)

    Stefano Comazzetto

    2014-10-01

    Full Text Available Male fertility requires the continuous production of high quality motile spermatozoa in abundance. Alterations in all three metrics cause oligoasthenoteratozoospermia, the leading cause of human sub/infertility. Post-mitotic spermatogenesis inclusive of several meiotic stages and spermiogenesis (terminal spermatozoa differentiation are transcriptionally inert, indicating the potential importance for the post-transcriptional microRNA (miRNA gene-silencing pathway therein. We found the expression of miRNA generating enzyme Dicer within spermatogenesis peaks in meiosis with critical functions in spermatogenesis. In an expression screen we identified two miRNA loci of the miR-34 family (miR-34b/c and miR-449 that are specifically and highly expressed in post-mitotic male germ cells. A reduction in several miRNAs inclusive of miR-34b/c in spermatozoa has been causally associated with reduced fertility in humans. We found that deletion of both miR34b/c and miR-449 loci resulted in oligoasthenoteratozoospermia in mice. MiR-34bc/449-deficiency impairs both meiosis and the final stages of spermatozoa maturation. Analysis of miR-34bc-/-;449-/- pachytene spermatocytes revealed a small cohort of genes deregulated that were highly enriched for miR-34 family target genes. Our results identify the miR-34 family as the first functionally important miRNAs for spermatogenesis whose deregulation is causal to oligoasthenoteratozoospermia and infertility.

  11. Primer for non-immunologists on immune-deficient mice and their applications in research.

    Science.gov (United States)

    Croy, B A; Linder, K E; Yager, J A

    2001-08-01

    Studies of immune deficiencies have a history as long as that of immunology. However, reports of two key spontaneous recessive mutations in mice (nude in 1966-1968 and scid in 1983) laid the foundations for widespread application of immune-deficient rodents to a broad range of research topics. More recently, technologies modifying the mouse genome by transgenesis, gene ablation and crossbreeding for lines with multiple immune deficits have provided a large number of new types of immunologically impaired mice. The primary goals of this overview are to help non-immunologists understand key differences between some of the immunodeficient strains, develop an appreciation for the value of information derived from immunodeficient mouse-based research and to encourage expanded, creative use of these specialized research animals. Secondary goals are to promote greater awareness of unexpected outcomes that can arise when working with genetically immune-deficient mice, the need for vigilance in maintaining these research animals, and the care required in interpretation of the data that immune-deficient modeling provides. Two illustrations on developing appropriate immune deficient animal models for a new research application conclude the review.

  12. How common is vitamin B-12 deficiency?

    Science.gov (United States)

    Allen, Lindsay H

    2009-02-01

    In considering the vitamin B-12 fortification of flour, it is important to know who is at risk of vitamin B-12 deficiency and whether those individuals would benefit from flour fortification. This article reviews current knowledge of the prevalence and causes of vitamin B-12 deficiency and considers whether fortification would improve the status of deficient subgroups of the population. In large surveys in the United States and the United Kingdom, approximately 6% of those aged > or =60 y are vitamin B-12 deficient (plasma vitamin B-12 life. In developing countries, deficiency is much more common, starting in early life and persisting across the life span. Inadequate intake, due to low consumption of animal-source foods, is the main cause of low serum vitamin B-12 in younger adults and likely the main cause in poor populations worldwide; in most studies, serum vitamin B-12 concentration is correlated with intake of this vitamin. In older persons, food-bound cobalamin malabsorption becomes the predominant cause of deficiency, at least in part due to gastric atrophy, but it is likely that most elderly can absorb the vitamin from fortified food. Fortification of flour with vitamin B-12 is likely to improve the status of most persons with low stores of this vitamin. However, intervention studies are still needed to assess efficacy and functional benefits of increasing intake of the amounts likely to be consumed in flour, including in elderly persons with varying degrees of gastric atrophy.

  13. Ultrastructural analysis of development of myocardium in calreticulin-deficient mice

    Directory of Open Access Journals (Sweden)

    Michalak Marek

    2006-11-01

    Full Text Available Abstract Background Calreticulin is a Ca2+ binding chaperone of the endoplasmic reticulum which influences gene expression and cell adhesion. The levels of both vinculin and N-cadherin are induced by calreticulin expression, which play important roles in cell adhesiveness. Cardiac development is strictly dependent upon the ability of cells to adhere to their substratum and to communicate with their neighbours. Results We show here that the levels of N-cadherin are downregulated in calreticulin-deficient mouse embryonic hearts, which may lead to the disarray and wavy appearance of myofibrils in these mice, which we detected at all investigated stages of cardiac development. Calreticulin wild type mice exhibited straight, thick and abundant myofibrils, which were in stark contrast to the thin, less numerous, disorganized myofibrils of the calreticulin-deficient hearts. Interestingly, these major differences were only detected in the developing ventricles while the atria of both calreticulin phenotypes were similar in appearance at all developmental stages. Glycogen also accumulated in the ventricles of calreticulin-deficient mice, indicating an abnormality in cardiomyocyte metabolism. Conclusion Calreticulin is temporarily expressed during heart development where it is required for proper myofibrillogenesis. We postulate that calreticulin be considered as a novel cardiac fetal gene.

  14. Susceptibility to endotoxin induced uveitis is not reduced in mice deficient in BLT1, the high affinity leukotriene B4 receptor

    OpenAIRE

    Smith, J R; Subbarao, K; Franc, D T; Haribabu, B; Rosenbaum, J T

    2004-01-01

    Aim: To investigate the role of arachidonic acid derived chemotactic factor, LTB4, in the development of endotoxin induced uveitis (EIU), using mice deficient in the BLT1 gene which encodes the high affinity LTB4 receptor.

  15. Clearance of Giardia muris infection in mice deficient in natural killer cells.

    OpenAIRE

    Heyworth, M F; Kung, J E; Eriksson, E C

    1986-01-01

    Immunocompetent C57BL/6J mice and beige mice (which are deficient in natural killer cells) were infected with Giardia muris. Both types of mice cleared G. muris infection at similar rates. This observation suggests that clearance of G. muris parasites from the mouse intestine is not mediated by natural killer cells.

  16. Inducible arginase 1 deficiency in mice leads to hyperargininemia and altered amino acid metabolism.

    Directory of Open Access Journals (Sweden)

    Yuan Yan Sin

    Full Text Available Arginase deficiency is a rare autosomal recessive disorder resulting from a loss of the liver arginase isoform, arginase 1 (ARG1, which is the final step in the urea cycle for detoxifying ammonia. ARG1 deficiency leads to hyperargininemia, characterized by progressive neurological impairment, persistent growth retardation and infrequent episodes of hyperammonemia. Using the Cre/loxP-directed conditional gene knockout system, we generated an inducible Arg1-deficient mouse model by crossing "floxed" Arg1 mice with CreER(T2 mice. The resulting mice (Arg-Cre die about two weeks after tamoxifen administration regardless of the starting age of inducing the knockout. These treated mice were nearly devoid of Arg1 mRNA, protein and liver arginase activity, and exhibited symptoms of hyperammonemia. Plasma amino acid analysis revealed pronounced hyperargininemia and significant alterations in amino acid and guanidino compound metabolism, including increased citrulline and guanidinoacetic acid. Despite no alteration in ornithine levels, concentrations of other amino acids such as proline and the branched-chain amino acids were reduced. In summary, we have generated and characterized an inducible Arg1-deficient mouse model exhibiting several pathologic manifestations of hyperargininemia. This model should prove useful for exploring potential treatment options of ARG1 deficiency.

  17. Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH.

    Directory of Open Access Journals (Sweden)

    Mikael Bjursell

    Full Text Available Nuclear receptor subfamily 1, group H, member 4 (Nr1h4, FXR is a bile acid activated nuclear receptor mainly expressed in the liver, intestine, kidney and adrenal glands. Upon activation, the primary function is to suppress cholesterol 7 alpha-hydroxylase (Cyp7a1, the rate-limiting enzyme in the classic or neutral bile acid synthesis pathway. In the present study, a novel Fxr deficient mouse line was created and studied with respect to metabolism and liver function in ageing mice fed chow diet. The Fxr deficient mice were similar to wild type mice in terms of body weight, body composition, energy intake and expenditure as well as behaviours at a young age. However, from 15 weeks of age and onwards, the Fxr deficient mice had almost no body weight increase up to 39 weeks of age mainly because of lower body fat mass. The lower body weight gain was associated with increased energy expenditure that was not compensated by increased food intake. Fasting levels of glucose and insulin were lower and glucose tolerance was improved in old and lean Fxr deficient mice. However, the Fxr deficient mice displayed significantly increased liver weight, steatosis, hepatocyte ballooning degeneration and lobular inflammation together with elevated plasma levels of ALT, bilirubin and bile acids, findings compatible with non-alcoholic steatohepatitis (NASH and cholestasis. In conclusion, ageing Fxr deficient mice display late onset leanness associated with elevated energy expenditure and improved glucose control but develop severe NASH-like liver pathology.

  18. Ageing Fxr deficient mice develop increased energy expenditure, improved glucose control and liver damage resembling NASH.

    Science.gov (United States)

    Bjursell, Mikael; Wedin, Marianne; Admyre, Therése; Hermansson, Majlis; Böttcher, Gerhard; Göransson, Melker; Lindén, Daniel; Bamberg, Krister; Oscarsson, Jan; Bohlooly-Y, Mohammad

    2013-01-01

    Nuclear receptor subfamily 1, group H, member 4 (Nr1h4, FXR) is a bile acid activated nuclear receptor mainly expressed in the liver, intestine, kidney and adrenal glands. Upon activation, the primary function is to suppress cholesterol 7 alpha-hydroxylase (Cyp7a1), the rate-limiting enzyme in the classic or neutral bile acid synthesis pathway. In the present study, a novel Fxr deficient mouse line was created and studied with respect to metabolism and liver function in ageing mice fed chow diet. The Fxr deficient mice were similar to wild type mice in terms of body weight, body composition, energy intake and expenditure as well as behaviours at a young age. However, from 15 weeks of age and onwards, the Fxr deficient mice had almost no body weight increase up to 39 weeks of age mainly because of lower body fat mass. The lower body weight gain was associated with increased energy expenditure that was not compensated by increased food intake. Fasting levels of glucose and insulin were lower and glucose tolerance was improved in old and lean Fxr deficient mice. However, the Fxr deficient mice displayed significantly increased liver weight, steatosis, hepatocyte ballooning degeneration and lobular inflammation together with elevated plasma levels of ALT, bilirubin and bile acids, findings compatible with non-alcoholic steatohepatitis (NASH) and cholestasis. In conclusion, ageing Fxr deficient mice display late onset leanness associated with elevated energy expenditure and improved glucose control but develop severe NASH-like liver pathology.

  19. Abalation of Ghrelin receptor in leptin-deficient mice has paradoxical effects on glucose homeostasis compared to Ghrelin-abalated Leptin-deficient mice

    Science.gov (United States)

    Ghrelin is produced predominantly in stomach and is known to be the endogenous ligand of the growth hormone secretagogue receptor (GHSR). Ghrelin is a GH stimulator and an orexigenic hormone. In contrast, leptin is an anorexic hormone, and leptin-deficient ob/ob mice are obese and diabetic. To study...

  20. Data file of a deep proteome analysis of the prefrontal cortex in aged mice with progranulin deficiency or neuronal overexpression of progranulin.

    Science.gov (United States)

    Heidler, Juliana; Hardt, Stefanie; Wittig, Ilka; Tegeder, Irmgard

    2016-12-01

    Progranulin deficiency is associated with neurodegeneration in humans and in mice. The mechanisms likely involve progranulin-promoted removal of protein waste via autophagy. We performed a deep proteomic screen of the pre-frontal cortex in aged (13-15 months) female progranulin-deficient mice (GRN -/- ) and mice with inducible neuron-specific overexpression of progranulin (SLICK-GRN-OE) versus the respective control mice. Proteins were extracted and analyzed per liquid chromatography/mass spectrometry (LC/MS) on a Thermo Scientific™ Q Exactive Plus equipped with an ultra-high performance liquid chromatography unit and a Nanospray Flex Ion-Source. Full Scan MS-data were acquired using Xcalibur and raw files were analyzed using the proteomics software Max Quant. The mouse reference proteome set from uniprot (June 2015) was used to identify peptides and proteins. The DiB data file is a reduced MaxQuant output and includes peptide and protein identification, accession numbers, protein and gene names, sequence coverage and label free quantification (LFQ) values of each sample. Differences in protein expression in genotypes are presented in "Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy" (C. Altmann, S. Hardt, C. Fischer, J. Heidler, H.Y. Lim, A. Haussler, B. Albuquerque, B. Zimmer, C. Moser, C. Behrends, F. Koentgen, I. Wittig, M.H. Schmidt, A.M. Clement, T. Deller, I. Tegeder, 2016) [1].

  1. Data file of a deep proteome analysis of the prefrontal cortex in aged mice with progranulin deficiency or neuronal overexpression of progranulin

    Directory of Open Access Journals (Sweden)

    Juliana Heidler

    2016-12-01

    Full Text Available Progranulin deficiency is associated with neurodegeneration in humans and in mice. The mechanisms likely involve progranulin-promoted removal of protein waste via autophagy. We performed a deep proteomic screen of the pre-frontal cortex in aged (13–15 months female progranulin-deficient mice (GRN−/− and mice with inducible neuron-specific overexpression of progranulin (SLICK-GRN-OE versus the respective control mice. Proteins were extracted and analyzed per liquid chromatography/mass spectrometry (LC/MS on a Thermo Scientific™ Q Exactive Plus equipped with an ultra-high performance liquid chromatography unit and a Nanospray Flex Ion-Source. Full Scan MS-data were acquired using Xcalibur and raw files were analyzed using the proteomics software Max Quant. The mouse reference proteome set from uniprot (June 2015 was used to identify peptides and proteins. The DiB data file is a reduced MaxQuant output and includes peptide and protein identification, accession numbers, protein and gene names, sequence coverage and label free quantification (LFQ values of each sample. Differences in protein expression in genotypes are presented in "Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy" (C. Altmann, S. Hardt, C. Fischer, J. Heidler, H.Y. Lim, A. Haussler, B. Albuquerque, B. Zimmer, C. Moser, C. Behrends, F. Koentgen, I. Wittig, M.H. Schmidt, A.M. Clement, T. Deller, I. Tegeder, 2016 [1].

  2. The intravenous injection of oxidized LDL- or Apolipoprotein B100 – Coupled splenocytes promotes Th1 polarization in wildtype and Apolipoprotein E – Deficient mice

    International Nuclear Information System (INIS)

    Steinmetz, Martin; Ponnuswamy, Padmapriya; Laurans, Ludivine; Esposito, Bruno; Tedgui, Alain; Mallat, Ziad

    2015-01-01

    Background: Th1 responses in atherosclerosis are mainly associated with the aggravation of atherosclerotic plaques, whereas Th2 responses lead to a less pronounced disease in mouse models. The fixation of antigens on cells by means of ethylene carbodiimide (ECDI), and subsequent injection of these antigen-coupled splenocytes (Ag-SP) to induce tolerance against the attached antigens, has been successfully used to treat murine type 1 diabetes or encephalomyelitis in. We analyzed this approach in a mouse model for atherosclerosis. Methods and results: OTII-transgenic mice that were treated with a single dose of 5 × 10 7 OVA-coupled splenocytes (OVA-SP), had decreased splenocyte proliferation, and lower IFNγ production in vitro upon antigen recall. However, in vivo CD4 cell activation was increased. To try lipoprotein-derived, “atherosclerosis-associated” antigens, we first tested human oxidized LDL. In wild type mice, an increase of IFNγ production upon in vitro recall was detected in the oxLDL-SP group. In Apolipoprotein E − deficient (ApoE−/−) mice that received oxLDL-SP every 5 weeks for 20 weeks, we did not find any difference of atherosclerotic plaque burden, but again increased IFNγ production. To overcome xenogenous limitations, we then examined the effects of mouse Apolipoprotein B100 peptides P3 and P6. ApoB100-SP treatment again promoted a more IFNγ pronounced response upon in vitro recall. Flow cytometry analysis of cytokine secreting spleen cells revealed CD4 positive T cells to be mainly the source for IFNγ. In ApoE−/− mice that were administered ApoB100-SP during 20 weeks, the atherosclerotic plaque burden in aortic roots as well as total aorta was unchanged compared to PBS treated controls. Splenocyte proliferation upon antigen recall was not significantly altered in ApoB100-SP treated ApoE−/− mice. Conclusion: Although we did not observe a relevant anti-atherosclerotic benefit, the treatment with antigen

  3. The intravenous injection of oxidized LDL- or Apolipoprotein B100 – Coupled splenocytes promotes Th1 polarization in wildtype and Apolipoprotein E – Deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Steinmetz, Martin, E-mail: martin.steinmetz@ukb.uni-bonn.de [INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris (France); Internal Medicine II, University Hospital Bonn, 53105 Bonn (Germany); Ponnuswamy, Padmapriya; Laurans, Ludivine; Esposito, Bruno; Tedgui, Alain [INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris (France); Mallat, Ziad [INSERM, Unit 970, Paris Cardiovascular Research Center, 75015 Paris (France); Division of Cardiovascular Medicine, University of Cambridge, Addenbrooke' s Hospital, Cambridge, CB2 2QQ (United Kingdom)

    2015-08-14

    Background: Th1 responses in atherosclerosis are mainly associated with the aggravation of atherosclerotic plaques, whereas Th2 responses lead to a less pronounced disease in mouse models. The fixation of antigens on cells by means of ethylene carbodiimide (ECDI), and subsequent injection of these antigen-coupled splenocytes (Ag-SP) to induce tolerance against the attached antigens, has been successfully used to treat murine type 1 diabetes or encephalomyelitis in. We analyzed this approach in a mouse model for atherosclerosis. Methods and results: OTII-transgenic mice that were treated with a single dose of 5 × 10{sup 7} OVA-coupled splenocytes (OVA-SP), had decreased splenocyte proliferation, and lower IFNγ production in vitro upon antigen recall. However, in vivo CD4 cell activation was increased. To try lipoprotein-derived, “atherosclerosis-associated” antigens, we first tested human oxidized LDL. In wild type mice, an increase of IFNγ production upon in vitro recall was detected in the oxLDL-SP group. In Apolipoprotein E − deficient (ApoE−/−) mice that received oxLDL-SP every 5 weeks for 20 weeks, we did not find any difference of atherosclerotic plaque burden, but again increased IFNγ production. To overcome xenogenous limitations, we then examined the effects of mouse Apolipoprotein B100 peptides P3 and P6. ApoB100-SP treatment again promoted a more IFNγ pronounced response upon in vitro recall. Flow cytometry analysis of cytokine secreting spleen cells revealed CD4 positive T cells to be mainly the source for IFNγ. In ApoE−/− mice that were administered ApoB100-SP during 20 weeks, the atherosclerotic plaque burden in aortic roots as well as total aorta was unchanged compared to PBS treated controls. Splenocyte proliferation upon antigen recall was not significantly altered in ApoB100-SP treated ApoE−/− mice. Conclusion: Although we did not observe a relevant anti-atherosclerotic benefit, the treatment with antigen

  4. Leptin Increases Striatal Dopamine D2 Receptor Binding in Leptin-Deficient Obese (ob/ob) Mice

    Energy Technology Data Exchange (ETDEWEB)

    Pfaffly, J.; Michaelides, M.; Wang, G-J.; Pessin, J.E.; Volkow, N.D.; Thanos, P.K.

    2010-06-01

    Peripheral and central leptin administration have been shown to mediate central dopamine (DA) signaling. Leptin-receptor deficient rodents show decreased DA D2 receptor (D2R) binding in striatum and unique DA profiles compared to controls. Leptin-deficient mice show increased DA activity in reward-related brain regions. The objective of this study was to examine whether basal D2R-binding differences contribute to the phenotypic behaviors of leptin-deficient ob/ob mice, and whether D2R binding is altered in response to peripheral leptin treatment in these mice. Leptin decreased body weight, food intake, and plasma insulin concentration in ob/ob mice but not in wild-type mice. Basal striatal D2R binding (measured with autoradiography [{sup 3}H] spiperone) did not differ between ob/ob and wild-type mice but the response to leptin did. In wild-type mice, leptin decreased striatal D2R binding, whereas, in ob/ob mice, leptin increased D2R binding. Our findings provide further evidence that leptin modulates D2R expression in striatum and that these effects are genotype/phenotype dependent.

  5. [Vitamin B12 deficiency: what's new?].

    Science.gov (United States)

    Braillard, O; Casini, A; Samii, K; Rufenacht, P; Junod, Perron N

    2012-09-26

    Vitamin B12 screening is only recommended among symptomatic patients or in those with risk factors. The main cause of vitamin B12 deficiency is the food cobalamin malabsorption syndrom. Holotranscobalamin is a more reliable marker than cyanocobalamin to confirm vitamin B12 deficiency, but it has not been validated yet in complex situations. An autoimmune gastritis must be excluded in the absence of risk factors but in the presence of a probable deficiency. Oral substitution treatment is effective but requires excellent therapeutic compliance and close follow-up to monitor the response to treatment. It has not yet been studied among patients suffering from severe symptoms, inflammatory bowel disease and ileal resection.

  6. PTP1B deficiency improves hypothalamic insulin sensitivity resulting in the attenuation of AgRP mRNA expression under high-fat diet conditions.

    Science.gov (United States)

    Sugiyama, Mariko; Banno, Ryoichi; Mizoguchi, Akira; Tominaga, Takashi; Tsunekawa, Taku; Onoue, Takeshi; Hagiwara, Daisuke; Ito, Yoshihiro; Morishita, Yoshiaki; Iwama, Shintaro; Goto, Motomitsu; Suga, Hidetaka; Arima, Hiroshi

    2017-06-17

    Hypothalamic insulin receptor signaling regulates energy balance and glucose homeostasis via agouti-related protein (AgRP). While protein tyrosine phosphatase 1B (PTP1B) is classically known to be a negative regulator of peripheral insulin signaling by dephosphorylating both insulin receptor β (IRβ) and insulin receptor substrate, the role of PTP1B in hypothalamic insulin signaling remains to be fully elucidated. In the present study, we investigated the role of PTP1B in hypothalamic insulin signaling using PTP1B deficient (KO) mice in vivo and ex vivo. For the in vivo study, hypothalamic insulin resistance induced by a high-fat diet (HFD) improved in KO mice compared to wild-type (WT) mice. Hypothalamic AgRP mRNA expression levels were also significantly decreased in KO mice independent of body weight changes. In an ex vivo study using hypothalamic organotypic cultures, insulin treatment significantly increased the phosphorylation of both IRβ and Akt in the hypothalamus of KO mice compared to WT mice, and also significantly decreased AgRP mRNA expression levels in KO mice. While incubation with inhibitors of phosphatidylinositol-3 kinase (PI3K) had no effect on basal levels of Akt phosphorylation, these suppressed insulin induction of Akt phosphorylation to almost basal levels in WT and KO mice. The inhibition of the PI3K-Akt pathway blocked the downregulation of AgRP mRNA expression in KO mice treated with insulin. These data suggest that PTP1B acts on the hypothalamic insulin signaling via the PI3K-Akt pathway. Together, our results suggest a deficiency of PTP1B improves hypothalamic insulin sensitivity resulting in the attenuation of AgRP mRNA expression under HFD conditions. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Altered lipid partitioning and glucocorticoid availability in CBG-deficient male mice with diet-induced obesity.

    Science.gov (United States)

    Gulfo, José; Ledda, Angelo; Serra, Elisabet; Cabot, Cristina; Esteve, Montserrat; Grasa, Mar

    2016-08-01

    To evaluate how deficiency in corticosteroid-binding globulin (CBG), the specific carrier of glucocorticoids, affects glucocorticoid availability and adipose tissue in obesity. C57BL/6 (WT) and CBG-deficient (KO) male mice were fed during 12 weeks with standard or hyperlipidic diet (HL). Glucocorticoid availability and metabolic parameters were assessed. Body weight and food intake were increased in KO compared with WT mice fed a standard diet and were similar when fed a HL diet. Expression of CBG was found in white adipose tissue by immunochemistry, real-time PCR, and Western blot. In obesity, the subcutaneous depot developed less in KO mice compared with WT, which was associated with a minor adipocyte area and peroxisome proliferator-activated receptor-γ expression. Conversely, the epididymal depot displayed higher weight and adipocyte area in KO than in WT mice. CBG deficiency caused a fall of hepatic 11β-hydroxysteroid dehydrogenase type 2 expression and an increase in epidymal adipose tissue, particularly in HL mice. Deficiency in CBG drives lipid partitioning from subcutaneous to visceral adipose depot under a context of lipid excess and differentially modulates 11β-hydroxysteroid dehydrogenase type 2 expression. © 2016 The Obesity Society.

  8. Proteins Differentially Expressed in the Pancreas of Hepatic Alcohol Dehydrogenase-Deficient Deer Mice Fed Ethanol For 3 Months.

    Science.gov (United States)

    Bhopale, Kamlesh K; Amer, Samir M; Kaphalia, Lata; Soman, Kizhake V; Wiktorowicz, John E; Shakeel Ansari, Ghulam A; Kaphalia, Bhupendra S

    2017-07-01

    The aim of this study was to identify differentially expressed proteins in the pancreatic tissue of hepatic alcohol dehydrogenase-deficient deer mice fed ethanol to understand metabolic basis and mechanism of alcoholic chronic pancreatitis. Mice were fed liquid diet containing 3.5 g% ethanol daily for 3 months, and differentially expressed pancreatic proteins were identified by protein separation using 2-dimensional gel electrophoresis and identification by mass spectrometry. Nineteen differentially expressed proteins were identified by applying criteria established for protein identification in proteomics. An increased abundance was found for ribosome-binding protein 1, 60S ribosomal protein L31-like isoform 1, histone 4, calcium, and adenosine triphosphate (ATP) binding proteins and the proteins involved in antiapoptotic processes and endoplasmic reticulum function, stress, and/or homeostasis. Low abundance was found for endoA cytokeratin, 40S ribosomal protein SA, amylase 2b isoform precursor, serum albumin, and ATP synthase subunit β and the proteins involved in cell motility, structure, and conformation. Chronic ethanol feeding in alcohol dehydrogenase-deficient deer mice differentially expresses pancreatic functional and structural proteins, which can be used to develop biomarker(s) of alcoholic chronic pancreatitis, particularly amylase 2b precursor, and 60 kDa heat shock protein and those involved in ATP synthesis and blood osmotic pressure.

  9. Brain catecholamine depletion and motor impairment in a Th knock-in mouse with type B tyrosine hydroxylase deficiency.

    Science.gov (United States)

    Korner, Germaine; Noain, Daniela; Ying, Ming; Hole, Magnus; Flydal, Marte I; Scherer, Tanja; Allegri, Gabriella; Rassi, Anahita; Fingerhut, Ralph; Becu-Villalobos, Damasia; Pillai, Samyuktha; Wueest, Stephan; Konrad, Daniel; Lauber-Biason, Anna; Baumann, Christian R; Bindoff, Laurence A; Martinez, Aurora; Thöny, Beat

    2015-10-01

    Tyrosine hydroxylase catalyses the hydroxylation of L-tyrosine to l-DOPA, the rate-limiting step in the synthesis of catecholamines. Mutations in the TH gene encoding tyrosine hydroxylase are associated with the autosomal recessive disorder tyrosine hydroxylase deficiency, which manifests phenotypes varying from infantile parkinsonism and DOPA-responsive dystonia, also termed type A, to complex encephalopathy with perinatal onset, termed type B. We generated homozygous Th knock-in mice with the mutation Th-p.R203H, equivalent to the most recurrent human mutation associated with type B tyrosine hydroxylase deficiency (TH-p.R233H), often unresponsive to l-DOPA treatment. The Th knock-in mice showed normal survival and food intake, but hypotension, hypokinesia, reduced motor coordination, wide-based gate and catalepsy. This phenotype was associated with a gradual loss of central catecholamines and the serious manifestations of motor impairment presented diurnal fluctuation but did not improve with standard l-DOPA treatment. The mutant tyrosine hydroxylase enzyme was unstable and exhibited deficient stabilization by catecholamines, leading to decline of brain tyrosine hydroxylase-immunoreactivity in the Th knock-in mice. In fact the substantia nigra presented an almost normal level of mutant tyrosine hydroxylase protein but distinct absence of the enzyme was observed in the striatum, indicating a mutation-associated mislocalization of tyrosine hydroxylase in the nigrostriatal pathway. This hypomorphic mouse model thus provides understanding on pathomechanisms in type B tyrosine hydroxylase deficiency and a platform for the evaluation of novel therapeutics for movement disorders with loss of dopaminergic input to the striatum. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Estrogen deficiency heterogeneously affects tissue specific stem cells in mice

    Science.gov (United States)

    Kitajima, Yuriko; Doi, Hanako; Ono, Yusuke; Urata, Yoshishige; Goto, Shinji; Kitajima, Michio; Miura, Kiyonori; Li, Tao-Sheng; Masuzaki, Hideaki

    2015-01-01

    Postmenopausal disorders are frequently observed in various organs, but their relationship with estrogen deficiency and mechanisms remain unclear. As tissue-specific stem cells have been found to express estrogen receptors, we examined the hypothesis that estrogen deficiency impairs stem cells, which consequently contributes to postmenopausal disorders. Six-week-old C57BL/6 female mice were ovariectomized, following which they received 17β-estradiol replacement or vehicle (control). Sham-operated mice were used as healthy controls. All mice were killed for evaluation 2 months after treatments. Compared with the healthy control, ovariectomy significantly decreased uterine weight, which was partially recovered by 17β-estradiol replacement. Ovariectomy significantly increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, but impaired their capacity to grow mixed cell-type colonies in vitro. Estrogen replacement further increased the numbers of c-kit-positive hematopoietic stem/progenitor cells in bone marrow, without significantly affecting colony growth in vitro. The number of CD105-positive mesenchymal stem cells in bone marrow also significantly decreased after ovariectomy, but completely recovered following estrogen replacement. Otherwise, neither ovariectomy nor estrogen replacement changed the number of Pax7-positive satellite cells, which are a skeletal muscle-type stem cell. Estrogen deficiency heterogeneously affected tissue-specific stem cells, suggesting a likely and direct relationship with postmenopausal disorders. PMID:26245252

  11. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis

    International Nuclear Information System (INIS)

    Wu, Weibin; Liu, Xijun; Peng, Xiaomin; Xue, Ruyi; Ji, Lingling; Shen, Xizhong; Chen, She; Gu, Jianxin; Zhang, Si

    2014-01-01

    Highlights: • FXR deficiency enhanced MCD diet-induced hepatic fibrosis. • FXR deficiency attenuated MCD diet-induced hepatic steatosis. • FXR deficiency repressed genes involved in fatty acid uptake and triglyceride accumulation. - Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR −/− ) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR −/− mice fed MCD diet (FXR −/− /MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR −/− /MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR −/− /MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR −/− /MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection

  12. Bile acids override steatosis in farnesoid X receptor deficient mice in a model of non-alcoholic steatohepatitis

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Weibin; Liu, Xijun; Peng, Xiaomin [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Xue, Ruyi [Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, Shanghai 200032 (China); Ji, Lingling [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Shen, Xizhong [Department of Gastroenterology and Hepatology, Zhongshan Hospital, Shanghai Institute of Liver Disease, Fudan University, Shanghai 200032 (China); Chen, She, E-mail: shechen@fudan.edu.cn [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Gu, Jianxin [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China); Zhang, Si, E-mail: zhangsi@fudan.edu.cn [Gene Research Center, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai 200032 (China)

    2014-05-23

    Highlights: • FXR deficiency enhanced MCD diet-induced hepatic fibrosis. • FXR deficiency attenuated MCD diet-induced hepatic steatosis. • FXR deficiency repressed genes involved in fatty acid uptake and triglyceride accumulation. - Abstract: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases, and the pathogenesis is still not well known. The farnesoid X receptor (FXR) is a member of the nuclear hormone receptor superfamily and plays an essential role in maintaining bile acid and lipid homeostasis. In this study, we study the role of FXR in the pathogenesis of NFALD. We found that FXR deficient (FXR{sup −/−}) mice fed methionine- and choline-deficient (MCD) diet had higher serum ALT and AST activities and lower hepatic triglyceride levels than wild-type (WT) mice fed MCD diet. Expression of genes involved in inflammation (VCAM-1) and fibrosis (α-SMA) was increased in FXR{sup −/−} mice fed MCD diet (FXR{sup −/−}/MCD) compared to WT mice fed MCD diet (WT/MCD). Although MCD diet significantly induced hepatic fibrosis in terms of liver histology, FXR{sup −/−}/MCD mice showed less degree of hepatic steatosis than WT/MCD mice. Moreover, FXR deficiency synergistically potentiated the elevation effects of MCD diet on serum and hepatic bile acids levels. The super-physiological concentrations of hepatic bile acids in FXR{sup −/−}/MCD mice inhibited the expression of genes involved in fatty acid uptake and triglyceride accumulation, which may be an explanation for less steatosis in FXR{sup −/−}/MCD mice in contrast to WT/MCD mice. These results suggest that hepatic bile acids accumulation could override simple steatosis in hepatic injury during the progression of NAFLD and further emphasize the role of FXR in maintaining hepatic bile acid homeostasis in liver disorders and in hepatic protection.

  13. Learning and memory in mice with neuropathic pain: impact of old age and progranulin deficiency

    Directory of Open Access Journals (Sweden)

    Boris eAlbuquerque

    2013-11-01

    Full Text Available Persistent neuropathic pain is a frequent consequence of peripheral nerve injuries, particularly in the elderly. Using the IntelliCage we studied if a sciatic nerve injury obstructed learning and memory in young and aged mice, each in wild type and progranulin deficient mice, which develop premature signs of brain aging and are more susceptible to nerve injury evoked nociceptive hypersensitivity and hence allow to assess a potential mutual aggravation of pain and old age. Both young and aged mice developed long-term nerve injury-evoked hyperalgesia and allodynia but, in both genotypes, only aged mice with neuropathic pain showed high error rates in place avoidance acquisition tasks. Once learnt however, aged mice with neuropathic pain maintained the aversive memory longer, i.e. the extinction was significantly slowed. In addition, nerve injury in progranulin deficient mice impaired the learning of spatial sequences of awarded places, particularly in aged mice, whereas easy place preference learning was not affected by nerve injury or progranulin deficiency. The sequencing task required a discrimination of clockwise and anti-clockwise sequences and spatial flexibility to re-learn a novel sequence. The loss of spatial flexibility did not occur in sham operated mice, i.e. was a consequence of nerve injury and suggests that neuropathic pain accelerates manifestations of old age and progranulin deficiency. Neuropathic pain at old age, irrespective of the genotype, resulted in a long maintenance of aversive memory suggesting a negative alliance and possibly mutual aggravation of chronic neuropathic pain and aversive memory at old age.

  14. B-1a transitional cells are phenotypically distinct and are lacking in mice deficient in IκBNS

    Science.gov (United States)

    Pedersen, Gabriel K.; Àdori, Monika; Khoenkhoen, Sharesta; Dosenovic, Pia; Beutler, Bruce; Karlsson Hedestam, Gunilla B.

    2014-01-01

    B-1 cells mediate early protection against infection by responding to T cell-independent (TI) antigens found on the surface of various pathogens. Mice with impaired expression of the atypical IκB protein IκBNS have markedly reduced frequencies of B-1 cells. We used a mouse strain with dysfunctional IκBNS derived from an N-ethyl-N-nitrosourea (ENU) screen, named bumble, to investigate the point in the development of B-1 cells where IκBNS is required. The presence of wild-type (wt) peritoneal cells in mixed wt/bumble chimeras did not rescue the development of bumble B-1 cells, but wt peritoneal cells transferred to bumble mice restored natural IgM levels and response to TI antigens. The bumble and wt mice displayed similar levels of fetal liver B-1 progenitors and splenic neonatal transitional B (TrB) cells, both of which were previously shown to give rise to B-1 cells. Interestingly, we found that a subset of wt neonatal TrB cells expressed common B-1a markers (TrB-1a) and that this cell population was absent in the bumble neonatal spleen. Sorted TrB-1a (CD93+IgM+CD5+) cells exclusively generated B-1a cells when adoptively transferred, whereas sorted CD93+IgM+CD5− cells gave rise to B-2 cells and, to a lesser extent, B-1b and B-1a cells. This study identifies a phenotypically distinct splenic population of TrB-1a cells and establishes that the development of B-1a cells is blocked before this stage in the absence of IκBNS. PMID:25228759

  15. Wfs1-deficient mice display altered function of serotonergic system and increased behavioural response to antidepressants

    Directory of Open Access Journals (Sweden)

    Tanel eVisnapuu

    2013-07-01

    Full Text Available It has been shown that mutations in the WFS1 gene make humans more susceptible to mood disorders. Besides that, mood disorders are associated with alterations in the activity of serotonergic and noradrenergic systems. Therefore, in this study, the effects of imipramine, an inhibitor of serotonin (5-HT and noradrenaline (NA reuptake, and paroxetine, a selective inhibitor of 5-HT reuptake, were studied in tests of behavioural despair. The tail suspension test (TST and forced swimming test (FST were performed in Wfs1-deficient mice. Simultaneously, gene expression and monoamine metabolism studies were conducted to evaluate changes in 5-HT- and NA-ergic systems of Wfs1-deficient mice. The basal immobility time of Wfs1-deficient mice in TST and FST did not differ from that of their wild-type littermates. However, a significant reduction of immobility time in response to lower doses of imipramine and paroxetine was observed in homozygous Wfs1-deficient mice, but not in their wild-type littermates. In gene expression studies, the levels of 5-HT transporter (SERT were significantly reduced in the pons of homozygous animals. Monoamine metabolism was assayed separately in the dorsal and ventral striatum of naive mice and mice exposed for 30 minutes tobrightly lit motility boxes. We found that this aversive challenge caused a significant increase in the levels of 5-HT and 5-hydroxyindoleacetic acid (5-HIAA, a metabolite of 5-HT, in the ventral and dorsal striatum of wild-type mice, but not in their homozygous littermates. Taken together, the blunted 5-HT metabolism and reduced levels of SERT are a likely reason for the elevated sensitivity of these mice to the action of imipramine and paroxetine. These changes in the pharmacological and neurochemical phenotype of Wfs1-deficient mice may help to explain the increased susceptibility of Wolfram syndrome patients to depressive states.

  16. Germline mutation rates at tandem repeat loci in DNA-repair deficient mice

    International Nuclear Information System (INIS)

    Barber, Ruth C.; Miccoli, Laurent; Buul, Paul P.W. van; Burr, Karen L.-A.; Duyn-Goedhart, Annemarie van; Angulo, Jaime F.; Dubrova, Yuri E.

    2004-01-01

    Mutation rates at two expanded simple tandem repeat (ESTR) loci were studied in the germline of non-exposed and irradiated severe combined immunodeficient (scid) and poly(ADP-ribose) polymerase (PARP-1 -/- ) deficient male mice. Non-exposed scid and PARP -/- male mice showed considerably elevated ESTR mutation rates, far higher than those in wild-type isogenic mice and other inbred strains. The irradiated scid and PARP-1 -/- male mice did not show any detectable increases in their mutation rate, whereas significant ESTR mutation induction was observed in the irradiated wild-type isogenic males. ESTR mutation spectra in the scid and PARP-1 -/- strains did not differ from those in the isogenic wild-type strains. Considering these data and the results of previous studies, we propose that a delay in repair of DNA damage in scid and PARP-1 -/- mice could result in replication fork pausing which, in turn, may affect ESTR mutation rate in the non-irradiated males. The lack of mutation induction in irradiated scid and PARP-1 -/- can be explained by the high cell killing effects of irradiation on the germline of deficient mice

  17. Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein.

    Science.gov (United States)

    Son, Marjatta; Leary, Scot C; Romain, Nadine; Pierrel, Fabien; Winge, Dennis R; Haller, Ronald G; Elliott, Jeffrey L

    2008-05-02

    G93A SOD1 transgenic mice overexpressing CCS protein develop an accelerated disease course that is associated with enhanced mitochondrial pathology and increased mitochondrial localization of mutant SOD1. Because these results suggest an effect of mutant SOD1 on mitochondrial function, we assessed the enzymatic activities of mitochondrial respiratory chain complexes in the spinal cords of CCS/G93A SOD1 and control mice. CCS/G93A SOD1 mouse spinal cord demonstrates a 55% loss of complex IV (cytochrome c oxidase) activity compared with spinal cord from age-matched non-transgenic or G93A SOD1 mice. In contrast, CCS/G93A SOD1 spinal cord shows no reduction in the activities of complex I, II, or III. Blue native gel analysis further demonstrates a marked reduction in the levels of complex IV but not of complex I, II, III, or V in spinal cords of CCS/G93A SOD1 mice compared with non-transgenic, G93A SOD1, or CCS/WT SOD1 controls. With SDS-PAGE analysis, spinal cords from CCS/G93A SOD1 mice showed significant decreases in the levels of two structural subunits of cytochrome c oxidase, COX1 and COX5b, relative to controls. In contrast, CCS/G93A SOD1 mouse spinal cord showed no reduction in levels of selected subunits from complexes I, II, III, or V. Heme A analyses of spinal cord further support the existence of cytochrome c oxidase deficiency in CCS/G93A SOD1 mice. Collectively, these results establish that CCS/G93A SOD1 mice manifest an isolated complex IV deficiency which may underlie a substantial part of mutant SOD1-induced mitochondrial cytopathy.

  18. Diminished exercise capacity and mitochondrial bc1 complex deficiency in tafazzin-knockdown mice.

    Directory of Open Access Journals (Sweden)

    Corey ePowers

    2013-04-01

    Full Text Available The phospholipid, cardiolipin, is essential for maintaining mitochondrial structure and optimal function. Cardiolipin-deficiency in humans, Barth syndrome, is characterized by exercise intolerance, dilated cardiomyopathy, neutropenia and 3-methyl-glutaconic aciduria. The causative gene is the mitochondrial acyl-transferase, tafazzin that is essential for remodeling acyl chains of cardiolipin. We sought to determine metabolic rates in tafazzin-deficient mice during resting and exercise, and investigate the impact of cardiolipin deficiency on mitochondrial respiratory chain activities. Tafazzin knockdown in mice markedly impaired oxygen consumption rates during an exercise, without any significant effect on resting metabolic rates. CL-deficiency resulted in significant reduction of mitochondrial respiratory reserve capacity in neonatal cardiomyocytes that is likely to be caused by diminished activity of complex-III, which requires CL for its assembly and optimal activity. Our results may provide mechanistic insights of Barth syndrome pathogenesis.

  19. Adult vitamin D deficiency exacerbates impairments caused by social stress in BALB/c and C57BL/6 mice.

    Science.gov (United States)

    Groves, Natalie J; Zhou, Mei; Jhaveri, Dhanisha J; McGrath, John J; Burne, Thomas H J

    2017-12-01

    Vitamin D deficiency is prevalent in adults throughout the world. Epidemiological studies have shown significant associations between vitamin D deficiency and an increased risk of various neuropsychiatric and neurodegenerative disorders, such as schizophrenia, depression, Alzheimer's disease and cognitive impairment. However, studies based on observational epidemiology cannot address questions of causality; they cannot determine if vitamin D deficiency is a causal factor leading to the adverse health outcome. The main aim of this study was to determine if AVD deficiency would exacerbate the effects of a secondary exposure, in this case social stress, in BALB/c mice and in the more resilient C57BL/6 mice. Ten-week old male BALB/c and C57BL/6 mice were fed a control or vitamin D deficient diet for 10 weeks, and the mice were further separated into one of two groups for social treatment, either Separated (SEP) or Social Defeat (DEF). SEP mice were placed two per cage with a perforated Plexiglas divider, whereas the DEF mice underwent 10days of social defeat prior to behavioural testing. We found that AVD-deficient mice were more vulnerable to the effects of social stress using a social avoidance test, and this was dependent on strain. These results support the hypothesis that vitamin D deficiency may exacerbate behavioural outcomes in mice vulnerable to stress, a finding that can help guide future studies. Importantly, these discoveries support the epidemiological link between vitamin D deficiency and neuropsychiatric and neurodegenerative disorders; and has provided clues that can guide future studies related to unravelling the mechanisms of action linking adult vitamin D deficiency and adverse brain related outcomes. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  20. RIPK3 Mediates Necroptosis during Embryonic Development and Postnatal Inflammation in Fadd-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Qun Zhao

    2017-04-01

    Full Text Available RIPK3 mediates cell death and regulates inflammatory responses. Although genetic studies have suggested that RIPK3-MLKL-mediated necroptosis leads to embryonic lethality in Fadd or Caspase-8-deficient mice, the exact mechanisms are not fully understood. Here, we generated Ripk3 mutant mice by altering the RIPK3 kinase domain (Ripk3Δ/Δ mice, thus abolishing its kinase activity. Ripk3Δ/Δ cells were resistant to necroptosis stimulation in vitro, and Ripk3Δ/Δ mice were protected from necroptotic diseases. Although the Ripk3Δ/Δ mutation rescued embryonic lethality in Fadd−/− embryos, Fadd−/− Ripk3Δ/Δ mice died within 1 day after birth due to massive inflammation. These results indicate that Ripk3 ablation rescues embryonic lethality in Fadd-deficient mice by suppressing two RIPK3-mediating processes: necroptosis during embryogenesis and inflammation during postnatal development in Fadd−/− mice.

  1. Loss of stearoyl-CoA desaturase 1 rescues cardiac function in obese leptin-deficient mice.

    Science.gov (United States)

    Dobrzyn, Pawel; Dobrzyn, Agnieszka; Miyazaki, Makoto; Ntambi, James M

    2010-08-01

    The heart of leptin-deficient ob/ob mice is characterized by pathologic left ventricular hypertrophy along with elevated triglyceride (TG) content, increased stearoyl-CoA desaturase (SCD) activity, and increased myocyte apoptosis. In the present study, using an ob/ob;SCD1(-/-) mouse model, we tested the hypothesis that lack of SCD1 could improve steatosis and left ventricle (LV) function in leptin deficiency. We show that disruption of the SCD1 gene improves cardiac function in ob/ob mice by correcting systolic and diastolic dysfunction without affecting levels of plasma TG and FFA. The improvement is associated with reduced expression of genes involved in FA transport and lipid synthesis in the heart, as well as reduction in cardiac FFA, diacylglycerol, TG, and ceramide levels. The rate of FA beta-oxidation is also significantly lower in the heart of ob/ob;SCD1(-/-) mice compared with ob/ob controls. Moreover, SCD1 deficiency reduces cardiac apoptosis in ob/ob mice due to increased expression of antiapoptotic factor Bcl-2 and inhibition of inducible nitric oxide synthase and caspase-3 activities. Reduction in myocardial lipid accumulation and inhibition of apoptosis appear to be one of the main mechanisms responsible for improved LV function in ob/ob mice caused by SCD1 deficiency.

  2. Influence of depleted uranium on hepatic cholesterol metabolism in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Souidi, M; Racine, R; Grandcolas, L; Grison, S; Stefani, J; Gourmelon, P; Lestaevel, P

    2012-04-01

    Depleted uranium (DU) is uranium with a lower content of the fissile isotope U-235 than natural uranium. It is a radioelement and a waste product from the enrichment process of natural uranium. Because of its very high density, it is used in the civil industry and for military purposes. DU exposure can affect many vital systems in the human body, because in addition to being weakly radioactive, uranium is a toxic metal. It should be emphasized that, to be exposed to radiation from DU, you have to eat, drink, or breathe it, or get it on your skin. This particular study is focusing on the health effects of DU for the cholesterol metabolism. Previous studies on the same issue have shown that the cholesterol metabolism was modulated at molecular level in the liver of laboratory rodents contaminated for nine months with DU. However, this modulation was not correlated with some effects at organs or body levels. It was therefore decided to use a "pathological model" such as hypercholesterolemic apolipoprotein E-deficient laboratory mice in order to try to clarify the situation. The purpose of the present study is to assess the effects of a chronic ingestion (during 3 months) of a low level DU-supplemented water (20 mg L(-1)) on the above mentioned mice in order to determine a possible contamination effect. Afterwards the cholesterol metabolism was studied in the liver especially focused on the gene expressions of cholesterol-catabolising enzymes (CYP7A1, CYP27A1 and CYP7B1), as well as those of associated nuclear receptors (LXRα, FXR, PPARα, and SREBP 2). In addition, mRNA levels of other enzymes of interest were measured (ACAT 2, as well as HMGCoA Reductase and HMGCoA Synthase). The gene expression study was completed with SRB1 and LDLr, apolipoproteins A1 and B and membrane transporters ABC A1, ABC G5. The major effect induced by a low level of DU contamination in apo-E deficient mice was a decrease in hepatic gene expression of the enzyme CYP7B1 (-23%) and nuclear

  3. Lysosome-Associated Membrane Proteins (LAMP Maintain Pancreatic Acinar Cell Homeostasis: LAMP-2–Deficient Mice Develop PancreatitisSummary

    Directory of Open Access Journals (Sweden)

    Olga A. Mareninova

    2015-11-01

    Full Text Available Background & Aims: The pathogenic mechanism of pancreatitis is poorly understood. Recent evidence implicates defective autophagy in pancreatitis responses; however, the pathways mediating impaired autophagy in pancreas remain largely unknown. Here, we investigate the role of lysosome associated membrane proteins (LAMPs in pancreatitis. Methods: We analyzed changes in LAMPs in experimental models and human pancreatitis, and the underlying mechanisms: LAMP deglycosylation and degradation. LAMP cleavage by cathepsin B (CatB was analyzed by mass spectrometry. We used mice deficient in LAMP-2 to assess its role in pancreatitis. Results: Pancreatic levels of LAMP-1 and LAMP-2 greatly decrease across various pancreatitis models and in human disease. Pancreatitis does not trigger the LAMPs’ bulk deglycosylation but induces their degradation via CatB-mediated cleavage of the LAMP molecule close to the boundary between luminal and transmembrane domains. LAMP-2 null mice spontaneously develop pancreatitis that begins with acinar cell vacuolization due to impaired autophagic flux, and progresses to severe pancreas damage characterized by trypsinogen activation, macrophage-driven inflammation, and acinar cell death. LAMP-2 deficiency causes a decrease in pancreatic digestive enzymes content, and stimulates the basal and inhibits cholecystokinin-induced amylase secretion by acinar cells. The effects of LAMP-2 knockout and acute cerulein pancreatitis overlap, which corroborates the pathogenic role of LAMP decrease in experimental pancreatitis models. Conclusions: The results indicate a critical role for LAMPs, particularly LAMP-2, in maintaining pancreatic acinar cell homeostasis and provide evidence that defective lysosomal function, resulting in impaired autophagy, leads to pancreatitis. Mice with LAMP-2 deficiency present a novel genetic model of human pancreatitis caused by lysosomal/autophagic dysfunction. Keywords: Amylase Secretion, Autophagy

  4. Toll-like receptor 4 (TLR4) deficient mice are protected from adipose tissue inflammation in aging.

    Science.gov (United States)

    Ghosh, Amiya K; O'Brien, Martin; Mau, Theresa; Yung, Raymond

    2017-09-07

    Adipose tissue (AT) inflammation is a central mechanism for metabolic dysfunction in both diet-induced obesity and age-associated obesity. Studies in diet-induced obesity have characterized the role of Fetuin A (Fet A) in Free Fatty Acids (FFA)-mediated TLR4 activation and adipose tissue inflammation. However, the role of Fet A & TLR4 in aging-related adipose tissue inflammation is unknown. In the current study, analysis of epidymymal fat pads of C57/Bl6 male mice, we found that, in contrast to data from diet-induced obesity models, adipose tissue from aged mice have normal Fet A and TLR4 expression. Interestingly, aged TLR4-deficient mice have diminished adipose tissue inflammation compared to normal controls. We further demonstrated that reduced AT inflammation in old TLR4-deficient mice is linked to impaired ER stress, augmented autophagy activity, and diminished senescence phenomenon. Importantly, old TLR4-deficient mice have improved glucose tolerance compared to age-matched wild type mice, suggesting that the observed reduced AT inflammation in aged TLR4-deficient mice has important physiological consequences. Taken together, our present study establishes novel aspect of aging-associated AT inflammation that is distinct from diet-induced AT inflammation. Our results also provide strong evidence that TLR4 plays a significant role in promoting aging adipose tissue inflammation.

  5. Alleviation of lipopolysaccharide/d-galactosamine-induced liver injury in leukocyte cell-derived chemotaxin 2 deficient mice

    Directory of Open Access Journals (Sweden)

    Akinori Okumura

    2017-12-01

    Full Text Available Leukocyte cell-derived chemotaxin 2 (LECT2 is a secreted pleiotropic protein that is mainly produced by the liver. We have previously shown that LECT2 plays an important role in the pathogenesis of inflammatory liver diseases. Lipopolysaccharide/d-galactosamine (LPS/d-GalN-induced acute liver injury is a known animal model of fulminant hepatic failure. Here we found that this hepatic injury was alleviated in LECT2-deficient mice. The levels of TNF-α and IFN-γ, which mediate this hepatitis, had significantly decreased in these mice, with the decrease in IFN-γ production notably greater than that in TNF-α. We therefore analyzed IFN-γ-producing cells in liver mononuclear cells. Flow cytometric analysis showed significantly reduced IFN-γ production in hepatic NK and NKT cells in LECT2-deficient mice compared with in wild-type mice. We also demonstrated a decrease in IFN-γ production in LECT2-deficient mice after systemic administration of recombinant IL-12, which is known to induce IFN-γ in NK and NKT cells. These results indicate that a decrease of IFN-γ production in NK and NKT cells was involved in the alleviation of LPS/d-GalN-induced liver injury in LECT2-deficient mice.

  6. TAP1-deficiency does not alter atherosclerosis development in Apoe-/- mice.

    Directory of Open Access Journals (Sweden)

    Daniel Kolbus

    Full Text Available Antigen presenting cells (APC have the ability to present both extra-cellular and intra-cellular antigens via MHC class I molecules to CD8(+ T cells. The cross presentation of extra-cellular antigens is reduced in mice with deficient Antigen Peptide Transporter 1 (TAP1-dependent MHC class I antigen presentation, and these mice are characterized by a diminished CD8(+ T cell population. We have recently reported an increased activation of CD8(+ T cells in hypercholesterolemic Apoe(-/- mice. Therefore, this study included TAP1-deficient Apoe(-/- mice (Apoe(-/-Tap1(-/- to test the atherogenicity of CD8(+ T cells and TAP1-dependent cross presentation in a hypercholesterolemic environment. As expected the CD8(+ T cell numbers were low in Apoe(-/-Tap1(-/- mice in comparison to Apoe(-/- mice, constituting ~1% of the lymphocyte population. In spite of this there were no differences in the extent of atherosclerosis as assessed by en face Oil Red O staining of the aorta and cross-sections of the aortic root between Apoe(-/-Tap1(-/- and Apoe(-/- mice. Moreover, no differences were detected in lesion infiltration of macrophages or CD3(+ T cells in Apoe(-/-Tap1(-/- compared to Apoe(-/- mice. The CD3(+CD4(+ T cell fraction was increased in Apoe(-/-Tap1(-/- mice, suggesting a compensation for the decreased CD8(+ T cell population. Interestingly, the fraction of CD8(+ effector memory T cells was increased but this appeared to have little impact on the atherosclerosis development.In conclusion, Apoe(-/-Tap1(-/- mice develop atherosclerosis equal to Apoe(-/- mice, indicating a minor role for CD8(+ T cells and TAP1-dependent antigen presentation in the disease process.

  7. Activation of c-Raf-1 kinase signal transduction pathway in alpha(7) integrin-deficient mice.

    Science.gov (United States)

    Saher, G; Hildt, E

    1999-09-24

    Integrin alpha(7)-deficient mice develop a novel form of muscular dystrophy. Here we report that deficiency of alpha(7) integrin causes an activation of the c-Raf-1/mitogen-activated protein (MAP) 2 kinase signal transduction pathway in muscle cells. The observed activation of c-Raf-1/MAP2 kinases is a specific effect, because the alpha(7) integrin deficiency does not cause unspecific stress as determined by measurement of the Hsp72/73 level and activity of the JNK2 kinase. Because an increased level of activated FAK was found in muscle of alpha(7) integrin-deficient mice, the activation of c-Raf-1 kinase is triggered most likely by an integrin-dependent pathway. In accordance with this, in the integrin alpha(7)-deficient mice, part of the integrin beta(1D) variant in muscle is replaced by the beta(1A) variant, which permits the FAK activation. A recent report describes that integrin activity can be down-modulated by the c-Raf-1/MAP2 kinase pathway. Specific activation of the c-Raf-1/MAP2 kinases by cell-permeable peptides in skeletal muscle of rabbits causes degeneration of muscle fibers. Therefore, we conclude that in alpha(7) integrin-deficient mice, the continuous activation of c-Raf-1 kinase causes a permanent reduction of integrin activity diminishing integrin-dependent cell-matrix interactions and thereby contributing to the development of the dystrophic phenotype.

  8. ADAM12 overexpression does not improve outcome in mice with laminin alpha2-deficient muscular dystrophy

    DEFF Research Database (Denmark)

    Guo, Ling T; Shelton, G Diane; Wewer, Ulla M

    2005-01-01

    We have recently shown that overexpression of ADAM12 results in increased muscle regeneration and significantly reduced pathology in mdx, dystrophin deficient mice. In the present study, we tested the effect of overexpressing ADAM12 in dy(W) laminin-deficient mice. dy mice have a very severe...... clinical phenotype and would be expected to benefit greatly from enhanced regeneration. We found that dy(W) mice overexpressing ADAM12 indeed have increased muscle regeneration, as evidenced by increased numbers of muscle fibers expressing fetal myosin. However, overexpression of ADAM12 had no significant...

  9. Angiotensin II blockade causes acute renal failure in eNOS-deficient mice

    Directory of Open Access Journals (Sweden)

    Jürgen Schnermann

    2001-03-01

    Full Text Available Compared with wild-type mice, adult endothelial nitric oxide synthase (eNOS knockout mice (eight months of age have increased blood pressure (BP (126±9 mmHg vs. 100±4 mmHg, and an increased renal vascular resistance (155±16 vs. 65±4 mmHg.min/ml. Renal vascular resistance responses to i.v. administration of noradrenaline were markedly enhanced in eNOS knockout mice. Glomerular filtration rate (GFR of anaesthetised eNOS -/- mice was 324±57 µl/min gKW, significantly lower than the GFR of 761±126 µl/min.gKW in wild-type mice. AT1-receptor blockade with i.v. candesartan (1—1.5 mg/kg reduced arterial blood pressure and renal vascular resistance, and increased renal blood flow (RBF to about the same extent in wild-type and eNOS -/- mice. Candesartan did not alter GFR in wild-type mice (761±126 vs. 720±95 µl/min.gKW, but caused a marked decrease in GFR in eNOS -/- mice (324.5±75.2 vs. 77±18 µl/min.gKW. A similar reduction in GFR of eNOS deficient mice was also caused by angiotensin-converting enzyme (ACE inhibition. Afferent arteriolar granularity, a measure of renal renin expression, was found to be reduced in eNOS -/- compared with wild-type mice. In chronically eNOS-deficient mice, angiotensin II (Ang II is critical for maintaining glomerular filtration pressure and GFR, presumably through its effect on efferent arteriolar tone.

  10. Autism-like Deficits in Shank3-Deficient Mice Are Rescued by Targeting Actin Regulators

    Directory of Open Access Journals (Sweden)

    Lara J. Duffney

    2015-06-01

    Full Text Available Haploinsufficiency of the Shank3 gene, which encodes a scaffolding protein at glutamatergic synapses, is a highly prevalent and penetrant risk factor for autism. Using combined behavioral, electrophysiological, biochemical, imaging, and molecular approaches, we find that Shank3-deficient mice exhibit autism-like social deficits and repetitive behaviors, as well as the significantly diminished NMDA receptor (NMDAR synaptic function and synaptic distribution in prefrontal cortex. Concomitantly, Shank3-deficient mice have a marked loss of cortical actin filaments, which is associated with the reduced Rac1/PAK activity and increased activity of cofilin, the major actin depolymerizing factor. The social deficits and NMDAR hypofunction are rescued by inhibiting cofilin or activating Rac1 in Shank3-deficient mice and are induced by inhibiting PAK or Rac1 in wild-type mice. These results indicate that the aberrant regulation of synaptic actin filaments and loss of synaptic NMDARs contribute to the manifestation of autism-like phenotypes. Thus, targeting actin regulators provides a strategy for autism treatment.

  11. Metabolic Effects of CX3CR1 Deficiency in Diet-Induced Obese Mice.

    Directory of Open Access Journals (Sweden)

    Rachana Shah

    Full Text Available The fractalkine (CX3CL1-CX3CR1 chemokine system is associated with obesity-related inflammation and type 2 diabetes, but data on effects of Cx3cr1 deficiency on metabolic pathways is contradictory. We examined male C57BL/6 Cx3cr1-/- mice on chow and high-fat diet to determine the metabolic effects of Cx3cr1 deficiency. We found no difference in body weight and fat content or feeding and energy expenditure between Cx3cr1-/- and WT mice. Cx3cr1-/- mice had reduced glucose intolerance assessed by intraperitoneal glucose tolerance tests at chow and high-fat fed states, though there was no difference in glucose-stimulated insulin values. Cx3cr1-/- mice also had improved insulin sensitivity at hyperinsulinemic-euglycemic clamp, with higher glucose infusion rate, rate of disposal, and hepatic glucose production suppression compared to WT mice. Enhanced insulin signaling in response to acute intravenous insulin injection was demonstrated in Cx3cr1-/- by increased liver protein levels of phosphorylated AKT and GSK3β proteins. There were no differences in adipose tissue macrophage populations, circulating inflammatory monocytes, adipokines, lipids, or inflammatory markers. In conclusion, we demonstrate a moderate and reproducible protective effect of Cx3cr1 deficiency on glucose intolerance and insulin resistance.

  12. Lessons learned from mice deficient in lectin complement pathway molecules

    DEFF Research Database (Denmark)

    Genster, Ninette; Takahashi, Minoru; Sekine, Hideharu

    2014-01-01

    in turn activate downstream complement components, ultimately leading to elimination of the pathogen. Mice deficient in the key molecules of lectin pathway of complement have been generated in order to build knowledge of the molecular mechanisms of the lectin pathway in health and disease. Despite......The lectin pathway of the complement system is initiated when the pattern-recognition molecules, mannose-binding lectin (MBL), ficolins or collectin-11, bind to invading pathogens or damaged host cells. This leads to activation of MBL/ficolin/collectin-11 associated serine proteases (MASPs), which...... differences in the genetic arrangements of murine and human orthologues of lectin pathway molecules, the knockout mice have proven to be valuable models to explore the effect of deficiency states in humans. In addition, new insight and unexpected findings on the diverse roles of lectin pathway molecules...

  13. Autophagy resolves early retinal inflammation in Igf1-deficient mice

    Directory of Open Access Journals (Sweden)

    Ana I. Arroba

    2016-09-01

    Full Text Available Insulin-like growth factor-1 (IGF-1 is a growth factor with differentiating, anti-apoptotic and metabolic functions in the periphery, and anti-inflammatory properties in the nervous system. Mice that have mutations in the Igf1 gene, rendering the gene product inactive (Igf1−/−, present with age-related visual loss accompanied by structural alterations in the first synapses of the retinal pathway. Recent advances have revealed a crucial role of autophagy in immunity and inflammation. Keeping in mind this close relationship, we aimed to decipher these processes in the context of the defects that occur during ageing in the retina of Igf1−/− mice. Tnfa and Il1b mRNAs, and phosphorylation of JNK and p38 MAPK were elevated in the retinas of 6- and 12-month old Igf1−/− mice compared to those in age-matched Igf1+/+ controls. In 6-month-old Igf1−/− retinas, increased mRNA levels of the autophagy mediators Becn1, Atg9, Atg5 and Atg4, decreased p62 (also known as SQSTM1 protein expression together with an increased LC3-II:LC3-I ratio reflected active autophagic flux. However, in retinas from 12-month-old Igf1−/− mice, Nlrp3 mRNA, processing of the IL1β pro-form and immunostaining of active caspase-1 were elevated compared to those in age-matched Igf1+/+ controls, suggesting activation of the inflammasome. This effect concurred with accumulation of autophagosomes and decreased autophagic flux in the retina. Microglia localization and status of activation in the retinas of 12-month-old Igf1+/+ and Igf1−/− mice, analyzed by immunostaining of Cd11b and Iba-1, showed a specific distribution pattern in the outer plexiform layer (OPL, inner plexiform layer (IPL and inner nuclear layer (INL, and revealed an increased number of activated microglia cells in the retina of 12-month-old blind Igf1−/− mice. Moreover, reactive gliosis was exclusively detected in the retinas from 12-month-old blind Igf1−/− mice. In conclusion, this study

  14. Increased demyelination and axonal damage in metallothionein I+II-deficient mice during experimental autoimmune encephalomyelitis

    DEFF Research Database (Denmark)

    Penkowa, M; Espejo, C; Martínez-Cáceres, E M

    2003-01-01

    Metallothioneins I+II (MT-I+II) are antioxidant, neuroprotective factors. We previously showed that MT-I+II deficiency during experimental autoimmune encephalomyelitis (EAE) leads to increased disease incidence and clinical symptoms. Moreover, the inflammatory response of macrophages and T cells......, oxidative stress, and apoptotic cell death during EAE were increased by MT-I+II deficiency. We now show for the first time that demyelination and axonal damage are significantly increased in MT-I+II deficient mice during EAE. Furthermore, oligodendroglial regeneration, growth cone formation, and tissue...... repair including expression of trophic factors were significantly reduced in MT-I+II-deficient mice during EAE. Accordingly, MT-I+II have protective and regenerative roles in the brain....

  15. High Prevalence of Vitamin B12 Deficiency and No Folate Deficiency in Young Children in Nepal

    Directory of Open Access Journals (Sweden)

    Bernadette N. Ng’eno

    2017-01-01

    Full Text Available Many children in low- and middle-income countries may have inadequate intake of vitamin B12 and folate; data confirming these inadequacies are limited. We used biochemical, demographic, behavioral and anthropometric data to describe the folate and vitamin B12 concentrations among six- to 23-month-old Nepalese children. Vitamin B12 (serum B12 < 150 pmol/L and folate deficiencies (red blood cell (RBC folate < 226.5 nmol/L were assessed. We used logistic regression to identify predictors of vitamin B12 deficiency. The vitamin B12 geometric mean was 186 pmol/L; 30.2% of children were deficient. The mean RBC folate concentration was 13,612 nmol/L; there was no deficiency. Factors associated with vitamin B12 deficiency included: (a age six to 11 months (adjusted odds ratio (aOR 1.51; 95% confidence interval (CI: 1.18, 1.92 or 12–17 months (aOR 1.38; 95% CI: 1.10, 1.72 compared to 18–23 months; (b being stunted (aOR 1.24; 95% CI: 1.03, 1.50 compared to not being stunted; (c and not eating animal-source foods (aOR 1.85; 95% CI: 1.42, 2.41 compared to eating animal-source foods the previous day. There was a high prevalence of vitamin B12 deficiency, but no folate deficiency. Improving early feeding practices, including the consumption of rich sources of vitamin B12, such as animal-source foods and fortified foods, may help decrease deficiency.

  16. PTP1B and SHP2 in POMC neurons reciprocally regulate energy balance in mice

    Science.gov (United States)

    Banno, Ryoichi; Zimmer, Derek; De Jonghe, Bart C.; Atienza, Marybless; Rak, Kimberly; Yang, Wentian; Bence, Kendra K.

    2010-01-01

    Protein tyrosine phosphatase 1B (PTP1B) and SH2 domain–containing protein tyrosine phosphatase–2 (SHP2) have been shown in mice to regulate metabolism via the central nervous system, but the specific neurons mediating these effects are unknown. Here, we have shown that proopiomelanocortin (POMC) neuron–specific deficiency in PTP1B or SHP2 in mice results in reciprocal effects on weight gain, adiposity, and energy balance induced by high-fat diet. Mice with POMC neuron–specific deletion of the gene encoding PTP1B (referred to herein as POMC-Ptp1b–/– mice) had reduced adiposity, improved leptin sensitivity, and increased energy expenditure compared with wild-type mice, whereas mice with POMC neuron–specific deletion of the gene encoding SHP2 (referred to herein as POMC-Shp2–/– mice) had elevated adiposity, decreased leptin sensitivity, and reduced energy expenditure. POMC-Ptp1b–/– mice showed substantially improved glucose homeostasis on a high-fat diet, and hyperinsulinemic-euglycemic clamp studies revealed that insulin sensitivity in these mice was improved on a standard chow diet in the absence of any weight difference. In contrast, POMC-Shp2–/– mice displayed impaired glucose tolerance only secondary to their increased weight gain. Interestingly, hypothalamic Pomc mRNA and α–melanocyte-stimulating hormone (αMSH) peptide levels were markedly reduced in POMC-Shp2–/– mice. These studies implicate PTP1B and SHP2 as important components of POMC neuron regulation of energy balance and point to what we believe to be a novel role for SHP2 in the normal function of the melanocortin system. PMID:20160350

  17. Deficiency of the Erc/mesothelin gene ameliorates renal carcinogenesis in Tsc2 knockout mice.

    Science.gov (United States)

    Zhang, Danqing; Kobayashi, Toshiyuki; Kojima, Tetsuo; Kanenishi, Kenji; Hagiwara, Yoshiaki; Abe, Masaaki; Okura, Hidehiro; Hamano, Yoshitomo; Sun, Guodong; Maeda, Masahiro; Jishage, Kou-ichi; Noda, Tetsuo; Hino, Okio

    2011-04-01

    Genetic crossing experiments were performed between tuberous sclerosis-2 (Tsc2) KO and expressed in renal carcinoma (Erc) KO mice to analyze the function of the Erc/mesothelin gene in renal carcinogenesis. We found the number and size of renal tumors were significantly less in Tsc2+/-;Erc-/- mice than in Tsc2+/-;Erc+/+ and Tsc2+/-;Erc+/- mice. Tumors from Tsc2+/-;Erc-/- mice exhibited reduced cell proliferation and increased apoptosis, as determined by proliferating cell nuclear antigen (Ki67) and TUNEL analysis, respectively. Adhesion to collagen-coated plates in vitro was enhanced in Erc-restored cells and decreased in Erc-suppressed cells with siRNA. Tumor formation by Tsc2-deficient cells in nude mice was remarkably suppressed by stable knockdown of Erc with shRNA. Western blot analysis showed that the phosphorylation of focal adhesion kinase, Akt and signal transducer and activator of transcription protein 3 were weaker in Erc-deficient/suppressed cells compared with Erc-expressed cells. These results indicate that deficiency of the Erc/mesothelin gene ameliorates renal carcinogenesis in Tsc2 KO mice and inhibits the phosphorylation of several kinases of cell adhesion mechanism. This suggests that Erc/mesothelin may have an important role in the promotion and/or maintenance of carcinogenesis by influencing cell-substrate adhesion via the integrin-related signal pathway. © 2011 Japanese Cancer Association.

  18. Zinc deficiency with reduced mastication impairs spatial memory in young adult mice.

    Science.gov (United States)

    Kida, Kumiko; Tsuji, Tadataka; Tanaka, Susumu; Kogo, Mikihiko

    2015-12-01

    Sufficient oral microelements such as zinc and fully chewing of foods are required to maintain cognitive function despite aging. No knowledge exists about the combination of factors such as zinc deficiency and reduced mastication on learning and memory. Here we show that tooth extraction only in 8-week-old mice did not change the density of glial fibrillary acidic protein-labeled astrocytes in the hippocampus or spatial memory parameters. However, tooth extraction followed by zinc deprivation strongly impaired spatial memory and led to an increase in astrocytic density in the hippocampal CA1 region. The impaired spatial performance in the zinc-deficient only (ZD) mice also coincided well with the increase in the astrocytic density in the hippocampal CA1 region. After switching both zinc-deficient groups to a normal diet with sufficient zinc, spatial memory recovered, and more time was spent in the quadrant with the goal in the probe test in the mice with tooth extraction followed by zinc deprivation (EZD) compared to the ZD mice. Interestingly, we found no differences in astrocytic density in the CA1 region among all groups at 22 weeks of age. Furthermore, the escape latency in a visible probe test at all times was longer in zinc-deficient groups than the others and demonstrated a negative correlation with body weight. No significant differences in escape latency were observed in the visible probe test among the ZD, EZD, and normal-fed control at 4 weeks (CT4w) groups in which body weight was standardized to that of the EZD group, or in the daily reduction in latency between the normal-fed control and CT4w groups. Our data showed that zinc-deficient feeding during a young age impairs spatial memory performance and leads to an increase in astrocytic density in the hippocampal CA1 region and that zinc-sufficient feeding is followed by recovery of the impaired spatial memory along with changes in astrocytic density. The combination of the two factors, zinc deficiency

  19. Pancreatic injury in hepatic alcohol dehydrogenase-deficient deer mice after subchronic exposure to ethanol

    International Nuclear Information System (INIS)

    Kaphalia, Bhupendra S.; Bhopale, Kamlesh K.; Kondraganti, Shakuntala; Wu Hai; Boor, Paul J.; Ansari, G.A. Shakeel

    2010-01-01

    Pancreatitis caused by activation of digestive zymogens in the exocrine pancreas is a serious chronic health problem in alcoholic patients. However, mechanism of alcoholic pancreatitis remains obscure due to lack of a suitable animal model. Earlier, we reported pancreatic injury and substantial increases in endogenous formation of fatty acid ethyl esters (FAEEs) in the pancreas of hepatic alcohol dehydrogenase (ADH)-deficient (ADH - ) deer mice fed 4% ethanol. To understand the mechanism of alcoholic pancreatitis, we evaluated dose-dependent metabolism of ethanol and related pancreatic injury in ADH - and hepatic ADH-normal (ADH + ) deer mice fed 1%, 2% or 3.5% ethanol via Lieber-DeCarli liquid diet daily for 2 months. Blood alcohol concentration (BAC) was remarkably increased and the concentration was ∼ 1.5-fold greater in ADH - vs. ADH + deer mice fed 3.5% ethanol. At the end of the experiment, remarkable increases in pancreatic FAEEs and significant pancreatic injury indicated by the presence of prominent perinuclear space, pyknotic nuclei, apoptotic bodies and dilation of glandular ER were found only in ADH - deer mice fed 3.5% ethanol. This pancreatic injury was further supported by increased plasma lipase and pancreatic cathepsin B (a lysosomal hydrolase capable of activating trypsinogen), trypsinogen activation peptide (by-product of trypsinogen activation process) and glucose-regulated protein 78 (endoplasmic reticulum stress marker). These findings suggest that ADH-deficiency and high alcohol levels in the body are the key factors in ethanol-induced pancreatic injury. Therefore, determining how this early stage of pancreatic injury advances to inflammation stage could be important for understanding the mechanism(s) of alcoholic pancreatitis.

  20. Differential effect of ionizing radiation on transcription in repair-deficient and repair-proficient mice

    International Nuclear Information System (INIS)

    Munson, G.P.; Woloschak, G.E.

    1990-01-01

    Experiments were designed to examine in vivo changes in total transcription and in the expression of the c-fos gene following whole-body exposure of mice to JANUS fission-spectrum neutrons. Radiation repair-deficient (wst/wst) and -proficient (wst/., C57BL/6 x C3H F1) mice were exposed to JANUS fission-spectrum neutrons calibrated to deliver a gut dose of 50 cGy. Animals were sacrificed less than 10 or at 60 min postirradiation, and gut tissues were removed for study. Our results revealed that, in repair-proficient mice, an immediate depression (relative to untreated control) in total transcription was evident that continued through 1 h postirradiation. Conversely, radiation-sensitive wst/wst mice displayed doubled transcription levels postirradiation. Expression of c-fos was consistently depressed following radiation exposure in control and wst/wst mice. However, the depression of c-fos mRNA was delayed in wst/wst mice relative to controls. These results demonstrate abnormal regulation of transcription and of c-fos mRNA accumulation in repair-deficient wasted mice following exposure to ionizing radiation. In addition, this work documents rapid total transcriptional depression in normal mice following radiation exposure

  1. Functional substitution by TAT-utrophin in dystrophin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kevin J Sonnemann

    2009-05-01

    Full Text Available The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of recombinant full-length utrophin (Utr or DeltaR4-21 "micro" utrophin (muUtr protein modified with the cell-penetrating TAT protein transduction domain could attenuate the phenotype of mdx mice.Recombinant TAT-Utr and TAT-muUtr proteins were expressed using the baculovirus system and purified using FLAG-affinity chromatography. Age-matched mdx mice received six twice-weekly intraperitoneal injections of either recombinant protein or PBS. Three days after the final injection, mice were analyzed for several phenotypic parameters of dystrophin deficiency. Injected TAT-muUtr transduced all tissues examined, integrated with members of the dystrophin complex, reduced serum levels of creatine kinase (11,290+/-920 U versus 5,950+/-1,120 U; PBS versus TAT, the prevalence of muscle degeneration/regeneration (54%+/-5% versus 37%+/-4% of centrally nucleated fibers; PBS versus TAT, the susceptibility to eccentric contraction-induced force drop (72%+/-5% versus 40%+/-8% drop; PBS versus TAT, and increased specific force production (9.7+/-1.1 N/cm(2 versus 12.8+/-0.9 N/cm(2; PBS versus TAT.These results are, to our knowledge, the first to establish the efficacy and feasibility of TAT-utrophin-based constructs as a novel direct protein-replacement therapy for the treatment of skeletal and cardiac muscle diseases caused by loss of dystrophin.

  2. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    International Nuclear Information System (INIS)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D.

    2012-01-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  3. Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu-Kun Jennifer; Wu, Kai Connie; Liu, Jie; Klaassen, Curtis D., E-mail: cklaasse@kumc.edu

    2012-11-01

    Nrf2, a master regulator of intracellular redox homeostasis, is indicated to participate in fatty acid metabolism in liver. However, its role in diet-induced obesity remains controversial. In the current study, genetically engineered Nrf2-null, wild-type (WT), and Nrf2-activated, Keap1-knockdown (K1-KD) mice were fed either a control or a high-fat Western diet (HFD) for 12 weeks. The results indicate that the absence or enhancement of Nrf2 activity did not prevent diet-induced obesity, had limited effects on lipid metabolism, but affected blood glucose homeostasis. Whereas the Nrf2-null mice were resistant to HFD-induced glucose intolerance, the Nrf2-activated K1-KD mice exhibited prolonged elevation of circulating glucose during a glucose tolerance test even on the control diet. Feeding a HFD did not activate the Nrf2 signaling pathway in mouse livers. Fibroblast growth factor 21 (Fgf21) is a liver-derived anti-diabetic hormone that exerts glucose- and lipid-lowering effects. Fgf21 mRNA and protein were both elevated in livers of Nrf2-null mice, and Fgf21 protein was lower in K1-KD mice than WT mice. The inverse correlation between Nrf2 activity and hepatic expression of Fgf21 might explain the improved glucose tolerance in Nrf2-null mice. Furthermore, a more oxidative cellular environment in Nrf2-null mice could affect insulin signaling in liver. For example, mRNA of insulin-like growth factor binding protein 1, a gene repressed by insulin in hepatocytes, was markedly elevated in livers of Nrf2-null mice. In conclusion, genetic alteration of Nrf2 does not prevent diet-induced obesity in mice, but deficiency of Nrf2 improves glucose homeostasis, possibly through its effects on Fgf21 and/or insulin signaling. -- Highlights: ► Nrf2 deficiency improves glucose tolerance in mice fed a high-fat diet. ► The anti-diabetic hormone, Fgf21, is highly expressed in livers of Nrf2-null mice. ► The absence of Nrf2 increases the insulin-regulated Igfbp-1 mRNA in liver.

  4. Aged PROP1 deficient dwarf mice maintain ACTH production.

    Directory of Open Access Journals (Sweden)

    Igor O Nasonkin

    Full Text Available Humans with PROP1 mutations have multiple pituitary hormone deficiencies (MPHD that typically advance from growth insufficiency diagnosed in infancy to include more severe growth hormone (GH deficiency and progressive reduction in other anterior pituitary hormones, eventually including adrenocorticotropic hormone (ACTH deficiency and hypocortisolism. Congenital deficiencies of GH, prolactin, and thyroid stimulating hormone have been reported in the Prop1(null (Prop1(-/- and the Ames dwarf (Prop1(df/df mouse models, but corticotroph and pituitary adrenal axis function have not been thoroughly investigated. Here we report that the C57BL6 background sensitizes mutants to a wasting phenotype that causes approximately one third to die precipitously between weaning and adulthood, while remaining homozygotes live with no signs of illness. The wasting phenotype is associated with severe hypoglycemia. Circulating ACTH and corticosterone levels are elevated in juvenile and aged Prop1 mutants, indicating activation of the pituitary-adrenal axis. Despite this, young adult Prop1 deficient mice are capable of responding to restraint stress with further elevation of ACTH and corticosterone. Low blood glucose, an expected side effect of GH deficiency, is likely responsible for the elevated corticosterone level. These studies suggest that the mouse model differs from the human patients who display progressive hormone loss and hypocortisolism.

  5. Failure of pulmonary clearance of Rhodococcus equi infection in CD4+ T-lymphocyte-deficient transgenic mice.

    OpenAIRE

    Kanaly, S T; Hines, S A; Palmer, G H

    1993-01-01

    Pulmonary clearance of Rhodococcus equi requires functional T lymphocytes. In this study, CD8+ T-lymphocyte-deficient transgenic mice cleared virulent R. equi from the lungs while infection in CD4+ T-lymphocyte-deficient transgenic mice persisted. Although both CD4+ and CD8+ T cells function early in pulmonary defense against R. equi, clearance is dependent on CD4+ T lymphocytes.

  6. Female Nur77-deficient mice show increased susceptibility to diet-induced obesity.

    Directory of Open Access Journals (Sweden)

    Sonia Perez-Sieira

    Full Text Available Adipose tissue is essential in the regulation of body weight. The key process in fat catabolism and the provision of energy substrate during times of nutrient deprivation or enhanced energy demand is the hydrolysis of triglycerides and the release of fatty acids and glycerol. Nur77 is a member of the NR4A subfamily of nuclear receptors that plays an important metabolic role, modulating hepatic glucose metabolism and lipolysis in muscle. However, its endogenous role on white adipose tissue, as well as the gender dependency of these mechanisms, remains largely unknown. Male and female wild type and Nur77 deficient mice were fed with a high fat diet (45% calories from fat for 4 months. Mice were analyzed in vivo with the indirect calorimetry system, and tissues were analyzed by real-time PCR and Western blot analysis. Female, but not male Nur77 deficient mice, gained more weight and fat mass when compared to wild type mice fed with high fat diet, which can be explained by decreased energy expenditure. The lack of Nur77 also led to a decreased pHSL/HSL ratio in white adipose tissue and increased expression of CIDEA in brown adipose tissue of female Nur77 deficient mice. Overall, these findings suggest that Nur77 is an important physiological modulator of lipid metabolism in adipose tissue and that there are gender differences in the sensitivity to deletion of the Nur77 signaling. The decreased energy expenditure and the actions of Nur77 on liver, muscle, brown and white adipose tissue contribute to the increased susceptibility to diet-induced obesity in females lacking Nur77.

  7. Effects of genetic deficiency of cyclooxygenase-1 or cyclooxygenase-2 on functional and histological outcomes following traumatic brain injury in mice

    Directory of Open Access Journals (Sweden)

    Scheff Stephen W

    2009-08-01

    Full Text Available Abstract Background Neuroinflammation contributes to the pathophysiology of acute CNS injury, including traumatic brain injury (TBI. Although prostaglandin lipid mediators of inflammation contribute to a variety of inflammatory responses, their importance in neuroinflammation is not clear. There are conflicting reports as to the efficacy of inhibiting the enzymes required for prostaglandin formation, cyclooxygenase (COX -1 and COX-2, for improving outcomes following TBI. The purpose of the current study was to determine the role of the COX isoforms in contributing to pathological processes resulting from TBI by utilizing mice deficient in COX-1 or COX-2. Results Following a mild controlled cortical impact injury, the amount of cortical tissue loss, the level of microglial activation, and the capacity for functional recovery was compared between COX-1-deficient mice or COX-2-deficient mice, and their matching wild-type controls. The deficiency of COX-2 resulted in a minor (6%, although statistically significant, increase in the sparing of cortical tissue following TBI. The deficiency of COX-1 resulted in no detectable effect on cortical tissue loss following TBI. As determined by 3[H]-PK11195 autoradiography, TBI produced a similar increase in microglial activation in multiple brain regions of both COX-1 wild-type and COX-1-deficient mice. In COX-2 wild-type and COX-2-deficient mice, TBI increased 3[H]-PK11195 binding in all brain regions that were analyzed. Following injury, 3[H]-PK11195 binding in the dentate gyrus and CA1 region of the hippocampus was greater in COX-2-deficient mice, as compared to COX-2 wild-type mice. Cognitive assessment was performed in the wild-type, COX-1-deficient and COX-2-deficient mice following 4 days of recovery from TBI. There was no significant cognitive effect that resulted from the deficiency of either COX-1 or COX-2, as determined by acquisition and spatial memory retention testing in a Morris water maze

  8. CXCL14 deficiency in mice attenuates obesity and inhibits feeding behavior in a novel environment.

    Directory of Open Access Journals (Sweden)

    Kosuke Tanegashima

    Full Text Available BACKGROUND: CXCL14 is a chemoattractant for macrophages and immature dendritic cells. We recently reported that CXCL14-deficient (CXCL14(-/- female mice in the mixed background are protected from obesity-induced hyperglycemia and insulin resistance. The decreased macrophage infiltration into visceral adipose tissues and the increased insulin sensitivity of skeletal muscle contributed to these phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we performed a comprehensive study for the body weight control of CXCL14(-/- mice in the C57BL/6 background. We show that both male and female CXCL14(-/- mice have a 7-11% lower body weight compared to CXCL14(+/- and CXCL14(+/+ mice in adulthood. This is mainly caused by decreased food intake, and not by increased energy expenditure or locomotor activity. Reduced body weight resulting from the CXCL14 deficiency was more pronounced in double mutant CXCL14(-/-ob/ob and CXCL14(-/-A(y mice. In the case of CXCL14(-/-A(y mice, oxygen consumption was increased compared to CXCL14(+/-A(y mice, in addition to the reduced food intake. In CXCL14(-/- mice, fasting-induced up-regulation of Npy and Agrp mRNAs in the hypothalamus was blunted. As intracerebroventricular injection of recombinant CXCL14 did not change the food intake of CXCL14(-/- mice, CXCL14 could indirectly regulate appetite. Intriguingly, the food intake of CXCL14(-/- mice was significantly repressed when mice were transferred to a novel environment. CONCLUSIONS/SIGNIFICANCE: We demonstrated that CXCL14 is involved in the body weight control leading to the fully obese phenotype in leptin-deficient or A(y mutant mice. In addition, we obtained evidence indicating that CXCL14 may play an important role in central nervous system regulation of feeding behavior.

  9. Restoring balance to B cells in ADA deficiency.

    Science.gov (United States)

    Luning Prak, Eline T

    2012-06-01

    It is paradoxical that immunodeficiency disorders are associated with autoimmunity. Adenosine deaminase (ADA) deficiency, a cause of X-linked severe combined immunodeficiency (SCID), is a case in point. In this issue of the JCI, Sauer and colleagues investigate the B cell defects in ADA-deficient patients. They demonstrate that ADA patients receiving enzyme replacement therapy had B cell tolerance checkpoint defects. Remarkably, gene therapy with a retrovirus that expresses ADA resulted in the apparent correction of these defects, with normalization of peripheral B cell autoantibody frequencies. In vitro, agents that either block ADA or overexpress adenosine resulted in altered B cell receptor and TLR signaling. Collectively, these data implicate a B cell-intrinsic mechanism for alterations in B cell tolerance in the setting of partial ADA deficiency that is corrected by gene therapy.

  10. Crif1 Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice

    Science.gov (United States)

    Ryu, Min Jeong; Kim, Soung Jung; Kim, Yong Kyung; Choi, Min Jeong; Tadi, Surendar; Lee, Min Hee; Lee, Seong Eun; Chung, Hyo Kyun; Jung, Saet Byel; Kim, Hyun-Jin; Jo, Young Suk; Kim, Koon Soon; Lee, Sang-Hee; Kim, Jin Man; Kweon, Gi Ryang; Park, Ki Cheol; Lee, Jung Uee; Kong, Young Yun; Lee, Chul-Ho; Chung, Jongkyeong; Shong, Minho

    2013-01-01

    Impaired mitochondrial oxidative phosphorylation (OXPHOS) has been proposed as an etiological mechanism underlying insulin resistance. However, the initiating organ of OXPHOS dysfunction during the development of systemic insulin resistance has yet to be identified. To determine whether adipose OXPHOS deficiency plays an etiological role in systemic insulin resistance, the metabolic phenotype of mice with OXPHOS–deficient adipose tissue was examined. Crif1 is a protein required for the intramitochondrial production of mtDNA–encoded OXPHOS subunits; therefore, Crif1 haploinsufficient deficiency in mice results in a mild, but specific, failure of OXPHOS capacity in vivo. Although adipose-specific Crif1-haploinsufficient mice showed normal growth and development, they became insulin-resistant. Crif1-silenced adipocytes showed higher expression of chemokines, the expression of which is dependent upon stress kinases and antioxidant. Accordingly, examination of adipose tissue from Crif1-haploinsufficient mice revealed increased secretion of MCP1 and TNFα, as well as marked infiltration by macrophages. These findings indicate that the OXPHOS status of adipose tissue determines its metabolic and inflammatory responses, and may cause systemic inflammation and insulin resistance. PMID:23516375

  11. Vitamin B12 deficiency in the brain leads to DNA hypomethylation in the TCblR/CD320 knockout mouse

    Directory of Open Access Journals (Sweden)

    Fernàndez-Roig Sílvia

    2012-05-01

    Full Text Available Abstract Background DNA methylation is an epigenetic phenomenon that can modulate gene function by up or downregulation of gene expression. Vitamin B12 and folate pathways are involved in the production of S-Adenosylmethionine, the universal methyl donor. Findings Brain vitamin B12 concentration and global DNA methylation was determined in transcobalamin receptor (TCblR/CD320 knock out (KO (n = 4 and control mice (n = 4 at 20–24 weeks of age. Median [IQR] brain vitamin B12 concentrations (pg/mg in TCblR/CD320 KO mice compared with control mice was 8.59 [0.52] vs 112.42 [33.12]; p CD320 KO compared with control mice (Median [IQR]: 0.31[0.16] % vs 0.55[0.15] %; p  Conclusions In TCblR/CD320 KO mice, brain vitamin B12 drops precipitously by as much as 90% during a 20 week period. This decrease is associated with a 40% decrease in global DNA methylation in the brain. Future research will reveal whether the disruption in gene expression profiles due to changes in DNA hypomethylation contribute to central nervous system pathologies that are frequently seen in vitamin B12 deficiency.

  12. Progressive Retinal Degeneration and Accumulation of Autofluorescent Lipopigments in Progranulin Deficient Mice

    Science.gov (United States)

    Hafler, Brian P.; Klein, Zoe A.; Zhou, Z. Jimmy; Strittmatter, Stephen M.

    2014-01-01

    Prior investigations have shown that patients with neuronal ceroid lipofuscinosis (NCL) develop neurodegeneration characterized by vision loss, motor dysfunction, seizures, and often early death. Neuropathological analysis of patients with NCL shows accumulation of intracellular autofluorescent storage material, lipopigment, throughout neurons in the central nervous system including in the retina. A recent study of a sibling pair with adult onset NCL and retinal degeneration showed linkage to the region of the progranulin (GRN) locus and a homozygous mutation was demonstrated in GRN. In particular, the sibling pair with a mutation in GRN developed retinal degeneration and optic atrophy. This locus for this form of adult onset neuronal ceroid lipofuscinosis was designated neuronal ceroid lipofuscinosis-11 (CLN11). Based on these clinical observations, we wished to determine whether Grn-null mice develop accumulation of autofluorescent particles and retinal degeneration. Retinas of both wild-type and Progranulin deficient mice were examined by immunostaining and autofluorescence. Accumulation of autofluorescent material was present in Progranulin deficient mice at 12 months. Degeneration of multiple classes of neurons including photoreceptors and retinal ganglion cells was noted in mice at 12 and 18 months. Our data shows that Grn−/− mice develop degenerative pathology similar to features of human CLN11. PMID:25234724

  13. Abnormalities in osteoclastogenesis and decreased tumorigenesis in mice deficient for ovarian cancer G protein-coupled receptor 1.

    Directory of Open Access Journals (Sweden)

    Hui Li

    2009-05-01

    Full Text Available Ovarian cancer G protein-coupled receptor 1 (OGR1 has been shown to be a proton sensing receptor in vitro. We have shown that OGR1 functions as a tumor metastasis suppressor gene when it is over-expressed in human prostate cancer cells in vivo. To examine the physiological functions of OGR1, we generated conditional OGR1 deficient mice by homologous recombination. OGR1 deficient mice were viable and upon gross-inspection appeared normal. Consistent with in vitro studies showing that OGR1 is involved in osteoclastogenesis, reduced osteoclasts were detected in OGR1 deficient mice. A pH-dependent osteoclasts survival effect was also observed. However, overall abnormality in the bones of these animals was not observed. In addition, melanoma cell tumorigenesis was significantly inhibited in OGR1 deficient mice. OGR1 deficient mice in the mixed background produced significantly less peritoneal macrophages when stimulated with thioglycolate. These macrophages also showed altered extracellular signal-regulated kinases (ERK activation and nitric oxide (NO production in response to lipopolysaccharide. OGR1-dependent pH responses assessed by cAMP production and cell survival in macrophages or brown fat cells were not observed, presumably due to the presence of other proton sensing receptors in these cells. Our results indicate that OGR1's role in osteoclastogenesis is not strong enough to affect overall bone development and its role in tumorigenesis warrants further investigation. The mice generated can be potentially used for several disease models, including cancers or osteoclast-related diseases.

  14. Colonic lesions, cytokine profiles, and gut microbiota in plasminogen-deficient mice

    DEFF Research Database (Denmark)

    Vestergaard, Bill; Krych, Lukasz; Lund, Leif R.

    2015-01-01

    Plasminogen-deficient (FVB/NPan-plg(tm1Jld), plg(tm1Jld)) mice, which are widely used as a wound-healing model, are prone to spontaneous rectal prolapses. The aims of this study were 1) to evaluate the fecal microbiome of plg(tm1Jld) mice for features that might contribute to the development...... the composition of the gut microbiota, and none of the clinical or biochemical parameters correlated with the gut microbiota composition....

  15. Biotin deficiency up-regulates TNF-alpha production in murine macrophages.

    Science.gov (United States)

    Kuroishi, Toshinobu; Endo, Yasuo; Muramoto, Koji; Sugawara, Shunji

    2008-04-01

    Biotin, a water-soluble vitamin of the B complex, functions as a cofactor of carboxylases that catalyze an indispensable cellular metabolism. Although significant decreases in serum biotin levels have been reported in patients with chronic inflammatory diseases, the biological roles of biotin in inflammatory responses are unclear. In this study, we investigated the effects of biotin deficiency on TNF-alpha production. Mice were fed a basal diet or a biotin-deficient diet for 8 weeks. Serum biotin levels were significantly lower in biotin-deficient mice than biotin-sufficient mice. After i.v. administration of LPS, serum TNF-alpha levels were significantly higher in biotin-deficient mice than biotin-sufficient mice. A murine macrophage-like cell line, J774.1, was cultured in a biotin-sufficient or -deficient medium for 4 weeks. Cell proliferation and biotinylation of intracellular proteins were decreased significantly in biotin-deficient cells compared with biotin-sufficient cells. Significantly higher production and mRNA expression of TNF-alpha were detected in biotin-deficient J774.1 cells than biotin-sufficient cells in response to LPS and even without LPS stimulation. Intracellular TNF-alpha expression was inhibited by actinomycin D, indicating that biotin deficiency up-regulates TNF-alpha production at the transcriptional level. However, the expression levels of TNF receptors, CD14, and TLR4/myeloid differentiation protein 2 complex were similar between biotin-sufficient and -deficient cells. No differences were detected in the activities of the NF-kappaB family or AP-1. The TNF-alpha induction by biotin deficiency was down-regulated by biotin supplementation in vitro and in vivo. These results indicate that biotin deficiency may up-regulate TNF-alpha production or that biotin excess down-regulates TNF-alpha production, suggesting that biotin status may influence inflammatory diseases.

  16. Impaired Latent Inhibition in GDNF-Deficient Mice Exposed to Chronic Stress

    Directory of Open Access Journals (Sweden)

    Mona Buhusi

    2017-10-01

    Full Text Available Increased reactivity to stress is maladaptive and linked to abnormal behaviors and psychopathology. Chronic unpredictable stress (CUS alters catecholaminergic neurotransmission and remodels neuronal circuits involved in learning, attention and decision making. Glial-derived neurotrophic factor (GDNF is essential for the physiology and survival of dopaminergic neurons in substantia nigra and of noradrenergic neurons in the locus coeruleus. Up-regulation of GDNF expression during stress is linked to resilience; on the other hand, the inability to up-regulate GDNF in response to stress, as a result of either genetic or epigenetic modifications, induces behavioral alterations. For example, GDNF-deficient mice exposed to chronic stress exhibit alterations of executive function, such as increased temporal discounting. Here we investigated the effects of CUS on latent inhibition (LI, a measure of selective attention and learning, in GDNF-heterozygous (HET mice and their wild-type (WT littermate controls. No differences in LI were found between GDNF HET and WT mice under baseline experimental conditions. However, following CUS, GDNF-deficient mice failed to express LI. Moreover, stressed GDNF-HET mice, but not their WT controls, showed decreased neuronal activation (number of c-Fos positive neurons in the nucleus accumbens shell and increased activation in the nucleus accumbens core, both key regions in the expression of LI. Our results add LI to the list of behaviors affected by chronic stress and support a role for GDNF deficits in stress-induced pathological behaviors relevant to schizophrenia and other psychiatric disorders.

  17. CDKL5 deficiency entails sleep apneas in mice.

    Science.gov (United States)

    Lo Martire, Viviana; Alvente, Sara; Bastianini, Stefano; Berteotti, Chiara; Silvani, Alessandro; Valli, Alice; Viggiano, Rocchina; Ciani, Elisabetta; Zoccoli, Giovanna

    2017-08-01

    A recently discovered neurodevelopmental disorder caused by the mutation of the cyclin-dependent kinase-like 5 gene (CDKL5) entails complex autistic-like behaviours similar to Rett syndrome, but its impact upon physiological functions remains largely unexplored. Sleep-disordered breathing is common and potentially life-threatening in patients with Rett syndrome; however, evidence is limited in children with CDKL5 disorder, and is lacking altogether in adults. The aim of this study was to test whether the breathing pattern during sleep differs between adult Cdkl5 knockout (Cdkl5-KO) and wild-type (WT) mice. Using whole-body plethysmography, sleep and breathing were recorded non-invasively for 8 h during the light period. Sleep apneas occurred more frequently in Cdkl5-KO than in WT mice. A receiver operating characteristic (ROC) analysis discriminated Cdkl5-KO significantly from WT mice based on sleep apnea occurrence. These data demonstrate that sleep apneas are a core feature of CDKL5 disorder and a respiratory biomarker of CDKL5 deficiency in mice, and suggest that sleep-disordered breathing should be evaluated routinely in CDKL5 patients. © 2017 European Sleep Research Society.

  18. Lhermitte's sign and vitamin B12 deficiency: case report

    OpenAIRE

    Teive, Hélio Afonso Ghizoni; Haratz, Salo; Zavala, Jorge; Munhoz, Renato Puppi; Scola, Rosana Hermínia; Werneck, Lineu César

    2009-01-01

    CONTEXT AND OBJECTIVE: Lhermitte's sign, a classical neurological sign, is a rare manifestation of vitamin B12 deficiency. The aim here was to report on a case of an elderly patient with vitamin B12 deficiency whose first clinical manifestation was the presence of Lhermitte's sign. CASE REPORT: We describe an elderly patient with vitamin B12 deficiency who presented cognitive dysfunction, peripheral polyneuropathy and sensory ataxia, and whose first clinical manifestation was the presence of ...

  19. Neurologic Manifestations of Vitamin B Deficiency after Bariatric Surgery.

    Science.gov (United States)

    Punchai, Suriya; Hanipah, Zubaidah Nor; Meister, Katherine M; Schauer, Philip R; Brethauer, Stacy A; Aminian, Ali

    2017-08-01

    The aim of this study was to assess the incidence, clinical presentation, and outcomes of neurologic disorders secondary to vitamin B deficiencies following bariatric surgery. Patients at a single academic institution who underwent bariatric surgery and developed neurologic complications secondary to low levels of vitamins B1, B2, B6, and B12 between the years 2004 and 2015 were studied. In total, 47 (0.7%) bariatric surgical patients (Roux-en-Y gastric bypass n = 36, sleeve gastrectomy n = 9, and duodenal switch n = 2) developed neurologic manifestations secondary to vitamin B deficiencies. Eleven (23%) patients developed postoperative anatomical complications contributed to poor oral intake. Median duration to onset of neurologic manifestation following surgery was 12 months (IQR, 5-32). Vitamin deficiencies reported in the cohort included B1 (n = 30), B2 (n = 1), B6 (n = 12), and B12 (n = 12) deficiency. The most common manifestations were paresthesia (n = 31), muscle weakness (n = 15), abnormal gait (n = 11), and polyneuropathy (n = 7). Four patients were diagnosed with Wernicke-Korsakoff syndrome (WKS) which was developed after gastric bypass (n = 3) and sleeve gastrectomy (n = 1). Seven patients required readmission for management of severe vitamin B deficiencies. Overall, resolution of neurologic symptoms with nutritional interventions and pharmacotherapy was noted in 40 patients (85%). The WKS was not reversible, and all four patients had residual mild ataxia and nystagmus at the last follow-up time. Nutritional neurologic disorders secondary to vitamin B deficiency are relatively uncommon after bariatric surgery. While neurologic disorders are reversible in most patients (85%) with vitamin replacements, persistent residual neurologic symptoms are common in patients with WKS.

  20. GRAF1 deficiency blunts sarcolemmal injury repair and exacerbates cardiac and skeletal muscle pathology in dystrophin-deficient mice.

    Science.gov (United States)

    Lenhart, Kaitlin C; O'Neill, Thomas J; Cheng, Zhaokang; Dee, Rachel; Demonbreun, Alexis R; Li, Jianbin; Xiao, Xiao; McNally, Elizabeth M; Mack, Christopher P; Taylor, Joan M

    2015-01-01

    The plasma membranes of striated muscle cells are particularly susceptible to rupture as they endure significant mechanical stress and strain during muscle contraction, and studies have shown that defects in membrane repair can contribute to the progression of muscular dystrophy. The synaptotagmin-related protein, dysferlin, has been implicated in mediating rapid membrane repair through its ability to direct intracellular vesicles to sites of membrane injury. However, further work is required to identify the precise molecular mechanisms that govern dysferlin targeting and membrane repair. We previously showed that the bin-amphiphysin-Rvs (BAR)-pleckstrin homology (PH) domain containing Rho-GAP GTPase regulator associated with focal adhesion kinase-1 (GRAF1) was dynamically recruited to the tips of fusing myoblasts wherein it promoted membrane merging by facilitating ferlin-dependent capturing of intracellular vesicles. Because acute membrane repair responses involve similar vesicle trafficking complexes/events and because our prior studies in GRAF1-deficient tadpoles revealed a putative role for GRAF1 in maintaining muscle membrane integrity, we postulated that GRAF1 might also play an important role in facilitating dysferlin-dependent plasma membrane repair. We used an in vitro laser-injury model to test whether GRAF1 was necessary for efficient muscle membrane repair. We also generated dystrophin/GRAF1 doubledeficient mice by breeding mdx mice with GRAF1 hypomorphic mice. Evans blue dye uptake and extensive morphometric analyses were used to assess sarcolemmal integrity and related pathologies in cardiac and skeletal muscles isolated from these mice. Herein, we show that GRAF1 is dynamically recruited to damaged skeletal and cardiac muscle plasma membranes and that GRAF1-depleted muscle cells have reduced membrane healing abilities. Moreover, we show that dystrophin depletion exacerbated muscle damage in GRAF1-deficient mice and that mice with dystrophin/GRAF1

  1. Consumption of a low-carbohydrate and high-fat diet (the ketogenic diet) exaggerates biotin deficiency in mice.

    Science.gov (United States)

    Yuasa, Masahiro; Matsui, Tomoyoshi; Ando, Saori; Ishii, Yoshie; Sawamura, Hiromi; Ebara, Shuhei; Watanabe, Toshiaki

    2013-10-01

    Biotin is a water-soluble vitamin that acts as a cofactor for several carboxylases. The ketogenic diet, a low-carbohydrate, high-fat diet, is used to treat drug-resistant epilepsy and promote weight loss. In Japan, the infant version of the ketogenic diet is known as the "ketone formula." However, as the special infant formulas used in Japan, including the ketone formula, do not contain sufficient amounts of biotin, biotin deficiency can develop in infants who consume the ketone formula. Therefore, the aim of this study was to evaluate the effects of the ketogenic diet on biotin status in mice. Male mice (N = 32) were divided into the following groups: control diet group, biotin-deficient (BD) diet group, ketogenic control diet group, and ketogenic biotin-deficient (KBD) diet group. Eight mice were used in each group. At 9 wk, the typical symptoms of biotin deficiency such as hair loss and dermatitis had only developed in the KBD diet group. The total protein expression level of biotin-dependent carboxylases and the total tissue biotin content were significantly decreased in the KBD and BD diet groups. However, these changes were more severe in the KBD diet group. These findings demonstrated that the ketogenic diet increases biotin bioavailability and consumption, and hence, promotes energy production by gluconeogenesis and branched-chain amino acid metabolism, which results in exaggerated biotin deficiency in biotin-deficient mice. Therefore, biotin supplementation is important for mice that consume the ketogenic diet. It is suggested that individuals that consume the ketogenic diet have an increased biotin requirement. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Aldose reductase deficiency protects from autoimmune- and endotoxin-induced uveitis in mice.

    Science.gov (United States)

    Yadav, Umesh C S; Shoeb, Mohammed; Srivastava, Satish K; Ramana, Kota V

    2011-10-17

    To investigate the effect of aldose reductase (AR) deficiency in protecting the chronic experimental autoimmune (EAU) and acute endotoxin-induced uveitis (EIU) in c57BL/6 mice. The WT and AR-null (ARKO) mice were immunized with human interphotoreceptor retinoid-binding peptide (hIRPB-1-20), to induce EAU, or were injected subcutaneously with lipopolysaccharide (LPS; 100 μg) to induce EIU. The mice were killed on day 21 for EAU and at 24 hours for EIU, when the disease was at its peak, and the eyes were immediately enucleated for histologic and biochemical studies. Spleen-derived T-lymphocytes were used to study the antigen-specific immune response in vitro and in vivo. In WT-EAU mice, severe damage to the retinal wall, especially to the photoreceptor layer was observed, corresponding to a pathologic score of ∼2, which was significantly prevented in the ARKO or AR inhibitor-treated mice. The levels of cytokines and chemokines increased markedly in the whole-eye homogenates of WT-EAU mice, but not in ARKO-EAU mice. Further, expression of inflammatory marker proteins such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, tumor necrosis factor (TNF)-α, and vascular cell adhesion molecule (VCAM)-1 was increased in the WT-EIU mouse eyes but not in the ARKO-EIU eyes. The T cells proliferated vigorously when exposed to the hIRPB antigen in vitro and secreted various cytokines and chemokines, which were significantly inhibited in the T cells isolated from the ARKO mice. These findings suggest that AR-deficiency/inhibition protects against acute as well as chronic forms of ocular inflammatory complications such as uveitis.

  3. Nongenomic effects of 1α,25-dihydroxyvitamin D3 on cartilage formation deduced from comparisons between Cyp27b1 and Vdr knockout mice

    International Nuclear Information System (INIS)

    Hirota, Yoshihisa; Nakagawa, Kimie; Mimatsu, Shino; Sawada, Natsumi; Sakaki, Toshiyuki; Kubodera, Noboru; Kamao, Maya; Tsugawa, Naoko; Suhara, Yoshitomo; Okano, Toshio

    2017-01-01

    The active form of vitamin D, 1α,25-dihydroxyvitamin D 3 (1α,25D 3 ), plays an important role in the maintenance of calcium (Ca) homeostasis, bone formation, and cell proliferation and differentiation via nuclear vitamin D receptor (VDR). It is formed by the hydroxylation of vitamin D at the 1α position by 25-hydroxyvitamin D 1α-hydroxylase (CYP27B1) in the kidney. However, Cyp27b1 −/− mice, deficient in CYP27B1, and VDR-deficient mice (Vdr −/− ) have not been extensively examined, particularly in a comparative framework. To clarify the physiological significance of 1α,25D 3 and VDR, we produced Cyp27b1 −/− mice and compared their phenotypes with those of Vdr −/− mice. Cyp27b1 −/− mice exhibited hypocalcemia, growth defects, and skeletogenesis dysfunction, similar to Vdr −/− mice. However, unlike Cyp27b1 −/− mice, Vdr −/− mice developed alopecia. Cyp27b1 −/− mice exhibited cartilage mass formation and had difficulty walking on hindlimbs. Furthermore, a phenotypic analysis was performed on Cyp27b1 −/− mice provided a high Ca diet to correct for the Ca metabolic abnormality. In addition, the effects of 1α,25D 3 that are not mediated by Ca metabolic regulatory activity were investigated. Even when the blood Ca concentration was corrected, abnormalities in growth and cartilage tissue formation did not improve in Cyp27b1 −/− mice. These results suggested that 1α,25D 3 directly controls chondrocyte proliferation and differentiation. Using Cyp27b1 −/− mice produced in this study, we can analyze the physiological effects of novel vitamin D derivatives in the absence of endogenous 1α,25D 3 . Accordingly, this study provides a useful animal model for the development of novel vitamin D formulations that are effective for the treatment and prevention of osteoporosis. - Highlights: • We produced Cyp27b1 −/− mice and analyzed their phenotypes. • Vdr −/− mice exhibited alopecia and Cyp27b1 −/− mice exhibited

  4. Gastric emptying in patients with vitamin B12 deficiency

    International Nuclear Information System (INIS)

    Yagci, Muenci; Yamac, Kadri; Acar, Kadir; Haznedar, Rauf; Cingi, Elif; Kitapci, Mehmet

    2002-01-01

    The clinical presentation of patients with vitamin B 12 deficiency varies in a spectrum ranging from haematological disorders to neuropsychiatric diseases. In rare cases, orthostatic hypotension, impotence, constipation and urinary retention have been attributed to autonomic nervous system dysfunction due to vitamin B 12 deficiency. The aim of this study was to evaluate the effect of vitamin B 12 deficiency on autonomic nervous system function by studying gastric emptying times (T 1/2 ). Twenty patients with newly diagnosed vitamin B 12 deficiency and 12 control patients with gastritis and normal vitamin B 12 levels were enrolled in this study. Gastroduodenoscopy, endoscopic biopsy, histopathological evaluation of the biopsy specimens and radionuclide gastric emptying studies were performed. After vitamin B 12 replacement therapy for 3 months, radionuclide gastric emptying studies were repeated. Mean gastric emptying T 1/2 in patients before and after treatment and in controls were 103.83±48.80 min, 90.00±17.29 min and 74.55±8.52 min, respectively. The difference in mean gastric emptying T 1/2 between patients before treatment and controls was statistically significant (P 12 treatment (P 1/2 was somewhat shorter. There were no positive or negative correlations between gastric emptying T 1/2 and the following parameters: haemoglobin, vitamin B 12 level and Helicobacter pylori positivity. In conclusion, gastric emptying T 1/2 was prolonged in patients with vitamin B 12 deficiency and this prolongation was not corrected after vitamin B 12 replacement therapy. Although autonomic nervous system dysfunction due to vitamin B 12 deficiency rarely gives rise to clinical manifestations, latent dysfunction demonstrated by laboratory tests seems to be a frequent phenomenon. The level of vitamin B 12 does not correlate with the degree of autonomic nervous system dysfunction measured by radionuclide gastric emptying studies. (orig.)

  5. Fetal deficiency of Lin28 programs life-long aberrations in growth and glucose metabolism

    Science.gov (United States)

    Shinoda, Gen; Shyh-Chang, Ng; de Soysa, T. Yvanka; Zhu, Hao; Seligson, Marc T.; Shah, Samar P.; Abo-Sido, Nora; Yabuuchi, Akiko; Hagan, John P.; Gregory, Richard I.; Asara, John M.; Cantley, Lewis C.; Moss, Eric G.; Daley, George Q.

    2013-01-01

    LIN28A/B are RNA binding proteins implicated by genetic association studies in human growth and glucose metabolism. Mice with ectopic over-expression of Lin28a have shown related phenotypes. Here we describe the first comprehensive analysis of the physiologic consequences of Lin28a and Lin28b deficiency in knockout (KO) mice. Lin28a/b-deficiency led to dwarfism starting at different ages, and compound gene deletions showed a cumulative dosage effect on organismal growth. Conditional gene deletion at specific developmental stages revealed that fetal but neither neonatal nor adult deficiency resulted in growth defects and aberrations in glucose metabolism. Tissue-specific KO mice implicated skeletal muscle-deficiency in the abnormal programming of adult growth and metabolism. The effects of Lin28b KO can be rescued by Tsc1 haplo-insufficiency in skeletal muscles. Our data implicate fetal expression of Lin28a/b in the regulation of life-long effects on metabolism and growth, and demonstrate that fetal Lin28b acts at least in part via mTORC1 signaling. PMID:23666760

  6. Vitamin B12 Deficiency in Relation to Functional Disabilities

    Directory of Open Access Journals (Sweden)

    Heather E. Rasmussen

    2013-11-01

    Full Text Available This study was designed to assess whether symptoms, functional measures, and reported disabilities were associated with vitamin B12 (B12 deficiency when defined in three ways. Participants, aged 60 or more years of age, in 1999–2002 National Health and Nutrition Examination Surveys (NHANES were categorized in relation to three previously used definitions of B12 deficiency: (1 serum B12 20 μmol/L; and (3 serum B12 0.21 μmol/L. Functional measures of peripheral neuropathy, balance, cognitive function, gait speed, along with self-reported disability (including activities of daily living were examined with standardized instruments by trained NHANES interviewers and technicians. Individuals identified as B12 deficient by definition 2 were more likely to manifest peripheral neuropathy OR (odds (95% confidence intervals, p value: 9.70 (2.24, 42.07, 0.004 and report greater total disability, 19.61 (6.22, 61.86 0.0001 after adjustments for age, sex, race, serum creatinine, and ferritin concentrations, smoking, diabetes, and peripheral artery disease. Smaller, but significantly increased, odds of peripheral neuropathy and total disability were also observed when definition 3 was applied. Functional measures and reported disabilities were associated with B12 deficiency definitions that include B12 biomarkers (homocysteine or methylmalonic acid. Further study of these definitions is needed to alert clinicians of possible subclinical B12 deficiency because functional decline amongst older adults may be correctable if the individual is B12 replete.

  7. Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice

    International Nuclear Information System (INIS)

    Bix, M.; Nanshih Liao; Raulet, D.; Zijlstra, M.; Loring, J.; Jaenisch, R.

    1991-01-01

    Irradiated MHC-heterozygous mice often reject bone marrow cells transplanted from one of the homozygous parental strains, a phenomenon ('hybrid resistance') that appears to violate the laws of transplantation. Rejection of parental and allogeneic marrow cells also differs from conventional T cell-mediated rejection mechanisms as it is effected by NK1.1 + cells. To account for the unusual specificity of bone marrow rejection, it has been proposed that NK1.1 + cells destroy marrow cells that fail to express the full complement of self MHC class I (MHC-I) molecules. We show here that NK1.1 + cells in normal mice reject haemopoietic transplants from mice that are deficient for normal cell-surface MHC-I expression because of a targeted mutation in the β 2 -microglobulin gene. These findings demonstrate that deficient expression of MHC-I molecules renders marrow cells susceptible to rejection. (author)

  8. Sex differences in obesity development in pair-fed neuronal lipoprotein lipase deficient mice

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2016-10-01

    Full Text Available Objective: Compared to men, postmenopausal women suffer from a disproportionate burden of many co-morbidities associated with obesity, e.g. cardiovascular disease, cancer, and dementia. The underlying mechanism for this sex difference is not well understood but is believed to relate to absence of the protective effect of estrogen through the action of estrogen receptor alpha (ERα in the central nervous system. With the recently developed neuron-specific lipoprotein lipase deficient mice (NEXLPL−/− (Wang et al., Cell Metabolism, 2011 [15], we set to explore the possible role of lipid sensing in sex differences in obesity development. Methods: Both male and female NEXLPL−/− mice and littermate WT controls were subjected to pair feeding (pf where daily food amount given was adjusted according to body weight to match the food intake of ad libitum (ad fed control WT mice. Food intake and body weight were measured daily, and pair feeding was maintained to 42 wk in male mice and to 38 wk in female mice. Various brain regions of the mice were harvested, and ERα gene expression was examined in both male and female NEXLPL−/− and WT control mice under both ad- and pf-fed conditions. Results: Although both male and female NEXLPL−/− mice developed obesity similarly on standard chow, male NEXLPL−/− mice still developed obesity under with pair feeding, but on a much delayed time course, while female NEXLPL−/− mice were protected from extra body weight and fat mass gain compared to pair-fed WT control mice. Pair feeding alone induced extra fat mass gain in both male and female WT mice, and this was mostly driven by the reduction in physical activity. LPL deficiency resulted in an increase in ERα mRNA in the hypothalamus of ad-fed female mice, while pair feeding alone also resulted in an increase of ERα in both female WT control and NEXLPL−/− mice. The effect on increasing ERα by pair feeding and LPL deficiency was additive in

  9. A chromogranin A ELISA absent of an apparent high-dose hook effect observed in other chromogranin A ELISAs.

    Science.gov (United States)

    Erickson, J Alan; Grenache, David G

    2016-01-15

    Routine testing for chromogranin A (CgA) using an established commercial ELISA revealed an apparent high-dose hook effect in approximately 15% of specimens. Investigations found the same effect in two additional ELISAs. We hypothesized that a CgA derived peptide(s) at high concentrations was responsible but experiments were inconclusive. Here we describe the analytical performance characteristics of the Chromoa™ CgA ELISA that did not display the apparent high-dose hook effect. Performance characteristics of the Chromoa ELISA were assessed. The reference interval was established utilizing healthy volunteers. Specimens producing the apparent high-dose hook effect in other assays were evaluated using the Chromoa ELISA. The limit of detection was 8ng/ml. Linearity was acceptable (slope=1.04, intercept=18.1 and r(2)=0.997). CVs were ≤4.6 and ≤9.3% for repeatability and within-laboratory imprecision, respectively. CgA was stable at ambient and refrigerated temperatures for a minimum of two and 14days, respectively. An upper reference interval limit of 95ng/ml was established. Specimens demonstrating the apparent high-dose hook effect in other ELISAs did not exhibit the phenomenon using the Chromoa ELISA. The Chromoa ELISA demonstrates acceptable performance for quantifying serum CgA. The apparent high-dose hook effect exhibited in other ELISAs was absent using the Chromoa assay. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Brain transcriptional responses to high-fat diet in Acads-deficient mice reveal energy sensing pathways.

    Directory of Open Access Journals (Sweden)

    Claudia Kruger

    Full Text Available How signals from fatty acid metabolism are translated into changes in food intake remains unclear. Previously we reported that mice with a genetic inactivation of Acads (acyl-coenzyme A dehydrogenase, short-chain, the enzyme responsible for mitochondrial beta-oxidation of C4-C6 short-chain fatty acids (SCFAs, shift consumption away from fat and toward carbohydrate when offered a choice between diets. In the current study, we sought to indentify candidate genes and pathways underlying the effects of SCFA oxidation deficiency on food intake in Acads-/- mice.We performed a transcriptional analysis of gene expression in brain tissue of Acads-/- and Acads+/+ mice fed either a high-fat (HF or low-fat (LF diet for 2 d. Ingenuity Pathway Analysis revealed three top-scoring pathways significantly modified by genotype or diet: oxidative phosphorylation, mitochondrial dysfunction, and CREB signaling in neurons. A comparison of statistically significant responses in HF Acads-/- vs. HF Acads+/+ (3917 and Acads+/+ HF vs. LF Acads+/+ (3879 revealed 2551 genes or approximately 65% in common between the two experimental comparisons. All but one of these genes were expressed in opposite direction with similar magnitude, demonstrating that HF-fed Acads-deficient mice display transcriptional responses that strongly resemble those of Acads+/+ mice fed LF diet. Intriguingly, genes involved in both AMP-kinase regulation and the neural control of food intake followed this pattern. Quantitative RT-PCR in hypothalamus confirmed the dysregulation of genes in these pathways. Western blotting showed an increase in hypothalamic AMP-kinase in Acads-/- mice and HF diet increased, a key protein in an energy-sensing cascade that responds to depletion of ATP.Our results suggest that the decreased beta-oxidation of short-chain fatty acids in Acads-deficient mice fed HF diet produces a state of energy deficiency in the brain and that AMP-kinase may be the cellular energy

  11. Deletion of Protein Tyrosine Phosphatase 1B (PTP1B Enhances Endothelial Cyclooxygenase 2 Expression and Protects Mice from Type 1 Diabetes-Induced Endothelial Dysfunction.

    Directory of Open Access Journals (Sweden)

    David J Herren

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B dephosphorylates receptors tyrosine kinase and acts as a molecular brake on insulin signaling pathway. Conditions of metabolic dysfunction increase PTP1B, when deletion of PTP1B protects against metabolic disorders by increasing insulin signaling. Although vascular insulin signaling contributes to the control of glucose disposal, little is known regarding the direct role of PTP1B in the control of endothelial function. We hypothesized that metabolic dysfunctions increase PTP1B expression in endothelial cells and that PTP1B deletion prevents endothelial dysfunction in situation of diminished insulin secretion. Type I diabetes (T1DM was induced in wild-type (WT and PTP1B-deficient mice (KO with streptozotocin (STZ injection. After 28 days of T1DM, KO mice exhibited a similar reduction in body weight and plasma insulin levels and a comparable increase in glycemia (WT: 384 ± 20 vs. Ko: 432 ± 29 mg/dL, cholesterol and triglycerides, as WT mice. T1DM increased PTP1B expression and impaired endothelial NO-dependent relaxation, in mouse aorta. PTP1B deletion did not affect baseline endothelial function, but preserved endothelium-dependent relaxation, in T1DM mice. NO synthase inhibition with L-NAME abolished endothelial relaxation in control and T1DM WT mice, whereas L-NAME and the cyclooxygenases inhibitor indomethacin were required to abolish endothelium relaxation in T1DM KO mice. PTP1B deletion increased COX-2 expression and PGI2 levels, in mouse aorta and plasma respectively, in T1DM mice. In parallel, simulation of diabetic conditions increased PTP1B expression and knockdown of PTP1B increased COX-2 but not COX-1 expression, in primary human aortic endothelial cells. Taken together these data indicate that deletion of PTP1B protected endothelial function by compensating the reduction in NO bioavailability by increasing COX-2-mediated release of the vasodilator prostanoid PGI2, in T1DM mice.

  12. Circadian rhythms and food anticipatory behavior in Wfs1-deficient mice

    DEFF Research Database (Denmark)

    Luuk, Hendrik; Fahrenkrug, Jan; Hannibal, Jens

    2012-01-01

    in significantly lower body weight and reduced wheel-running activity. Circadian rhythmicity of behavior was normal in Wfs1-deficient mice under ad libitum feeding apart from elongated free-running period in constant light. The amount of food anticipatory activity induced by restricted feeding...

  13. Sustained beta-cell dysfunction but normalized islet mass in aged thrombospondin-1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Carl Johan Drott

    Full Text Available Pancreatic islet endothelial cells have in recent years been shown to support beta-cell mass and function by paracrine interactions. Recently, we identified an islets endothelial-specific glycoprotein, thrombospondin-1 (TSP-1, that showed to be of importance for islet angiogenesis and beta-cell function in young mice. The present study aimed to investigate long-term consequences for islet morphology and beta-cell function of TSP-1 deficiency. Islet and beta-cell mass were observed increased at 10-12 weeks of age in TSP-1 deficient mice, but were normalized before 16 weeks of age when compared to wild-type controls. Islet vascularity was normal in 10-12 and 16-week-old TSP-1 deficient animals, whereas islets of one-year-old animals lacking TSP-1 were hypervascular. Beta-cell dysfunction in TSP-1 deficient animals was present at similar magnitudes between 10-12 and 52 weeks of age, as evaluated by glucose tolerance tests. The insulin secretion capacity in vivo of islets in one-year-old TSP-1 deficient animals was only ∼15% of that in wild-type animals. Using a transplantation model, we reconstituted TSP-1 in adult TSP-deficient islets. In contrast to neonatal TSP-1 deficient islets that we previously reported to regain function after TSP-1 reconstitution, adult islets failed to recover. We conclude that TSP-1 deficiency in islets causes changing vascular and endocrine morphological alterations postnatally, but is coupled to a chronic beta-cell dysfunction. The beta-cell dysfunction induced by TSP-1 deficiency is irreversible if not substituted early in life.

  14. CMKLR1 deficiency maintains ovarian steroid production in mice treated chronically with dihydrotestosterone.

    Science.gov (United States)

    Tang, Mi; Huang, Chen; Wang, Yu-Fei; Ren, Pei-Gen; Chen, Li; Xiao, Tian-Xia; Wang, Bao-Bei; Pan, Yan-Fei; Tsang, Benjamin K; Zabel, Brian A; Ma, Bao-Hua; Zhao, Hui-Ying; Zhang, Jian V

    2016-02-19

    Elevated serum chemerin levels correlate with increased severity of polycystic ovary syndrome (PCOS). However, the role of CMKLR1 signaling in ovarian biology under conditions of excess DHT remains unclear. In this study we compared the effects of continuous 90-day high dose DHT exposure (83.3 □g/day) on wild type and CMKLR1-deficient mice. DHT induced PCOS-like clinical signs in wild type mice as well as significant changes in the expression of hormone receptors, steroid synthesis enzymes, and BMPs and their receptors. In contrast, CMKLR1-deficient mice significantly attenuated DHT-induced clinical signs of PCOS and alterations in ovarian gene expression. To determine whether the BMP4 signaling pathway was involved in the pathogenic effects of CMKLR1 signaling in DHT-induced ovarian steroidogenesis, antral follicles were isolated from wild type and CMKLR1 knockout (KO) mice and treated in vitro with combinations of hCG, DHT, and BMP4 inhibitors. BMP4 inhibition attenuated the induction effects of hCG and DHT on estrogen and progesterone secretion in CMKLR1 KO mice, but not in WT mice, implicating the BMP4 signaling pathway in the CMKLR1-dependent response to DHT. In conclusion, CMKLR1 gene deletion attenuates the effects of chronic DHT treatment on ovarian function in experimental PCOS, likely via BMP4 signaling.

  15. Dietary magnesium deficiency affects gut microbiota and anxiety-like behaviour in C57BL/6N mice.

    Science.gov (United States)

    Pyndt Jørgensen, Bettina; Winther, Gudrun; Kihl, Pernille; Nielsen, Dennis S; Wegener, Gregers; Hansen, Axel K; Sørensen, Dorte B

    2015-10-01

    Magnesium deficiency has been associated with anxiety in humans, and rodent studies have demonstrated the gut microbiota to impact behaviour. We investigated the impact of 6 weeks of dietary magnesium deficiency on gut microbiota composition and anxiety-like behaviour and whether there was a link between the two. A total of 20 C57BL/6 mice, fed either a standard diet or a magnesium-deficient diet for 6 weeks, were tested using the light-dark box anxiety test. Gut microbiota composition was analysed by denaturation gradient gel electrophoresis. We demonstrated that the gut microbiota composition correlated significantly with the behaviour of dietary unchallenged mice. A magnesium-deficient diet altered the gut microbiota, and was associated with altered anxiety-like behaviour, measured by decreased latency to enter the light box. Magnesium deficiency altered behavior. The duration of magnesium deficiency is suggested to influence behaviour in the evaluated test.

  16. Deficiency of the miR-29a/b-1 cluster leads to ataxic features and cerebellar alterations in mice

    DEFF Research Database (Denmark)

    Papadopoulou, Aikaterini S; Serneels, Lutgarde; Achsel, Tilmann

    2015-01-01

    miR-29 is expressed strongly in the brain and alterations in expression have been linked to several neurological disorders. To further explore the function of this miRNA in the brain, we generated miR-29a/b-1 knockout animals. Knockout mice develop a progressive disorder characterized by locomotor...... up-regulated in the cerebella of the miR-29a/b knockout mice. Dysregulation of KCNC3 expression may contribute to the ataxic phenotype....

  17. Placental growth factor deficiency is associated with impaired cerebral vascular development in mice.

    Science.gov (United States)

    Luna, Rayana Leal; Kay, Vanessa R; Rätsep, Matthew T; Khalaj, Kasra; Bidarimath, Mallikarjun; Peterson, Nichole; Carmeliet, Peter; Jin, Albert; Croy, B Anne

    2016-02-01

    Placental growth factor (PGF) is expressed in the developing mouse brain and contributes to vascularization and vessel patterning. PGF is dynamically expressed in fetal mouse brain, particularly forebrain, and is essential for normal cerebrovascular development. PGF rises in maternal plasma over normal human and mouse pregnancy but is low in many women with the acute onset hypertensive syndrome, pre-eclampsia (PE). Little is known about the expression of PGF in the fetus during PE. Pgf  (-/-) mice appear normal but recently cerebral vascular defects were documented in adult Pgf  (-/-) mice. Here, temporal-spatial expression of PGF is mapped in normal fetal mouse brains and cerebral vasculature development is compared between normal and congenic Pgf  (-/-) fetuses to assess the actions of PGF during cerebrovascular development. Pgf/PGF, Vegfa/VEGF, Vegf receptor (Vegfr)1 and Vegfr2 expression were examined in the brains of embryonic day (E)12.5, 14.5, 16.5 and 18.5 C57BL/6 (B6) mice using quantitative PCR and immunohistochemistry. The cerebral vasculature was compared between Pgf  (-/-) and B6 embryonic and adult brains using whole mount techniques. Vulnerability to cerebral ischemia was investigated using a left common carotid ligation assay. Pgf/PGF and Vegfr1 are highly expressed in E12.5-14.5 forebrain relative to VEGF and Vegfr2. Vegfa/VEGF is relatively more abundant in hindbrain (HB). PGF and VEGF expression were similar in midbrain. Delayed HB vascularization was seen at E10.5 and 11.5 in Pgf  (-/-) brains. At E14.5, Pgf  (-/-) circle of Willis showed unilateral hypoplasia and fewer collateral vessels, defects that persisted post-natally. Functionally, adult Pgf  (-/-) mice experienced cerebral ischemia after left common carotid arterial occlusion while B6 mice did not. Since Pgf  (-/-) mice were used, consequences of complete absence of maternal and fetal PGF were defined. Therefore, the effects of maternal versus fetal PGF

  18. Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice.

    Science.gov (United States)

    Wang, B; Zheng, Y; Shi, H; Du, X; Zhang, Y; Wei, B; Luo, M; Wang, H; Wu, X; Hua, X; Sun, M; Xu, X

    2017-02-01

    Zfp462 is a newly identified vertebrate-specific zinc finger protein that contains nearly 2500 amino acids and 23 putative C2H2-type zinc finger domains. So far, the functions of Zfp462 remain unclear. In our study, we showed that Zfp462 is expressed predominantly in the developing brain, especially in the cerebral cortex and hippocampus regions from embryonic day 7.5 to early postnatal stage. By using a piggyBac transposon-generated Zfp462 knockout (KO) mouse model, we found that Zfp462 KO mice exhibited prenatal lethality with normal neural tube patterning, whereas heterozygous (Het) Zfp462 KO (Zfp462 +/- ) mice showed developmental delay with low body weight and brain weight. Behavioral studies showed that Zfp462 +/- mice presented anxiety-like behaviors with excessive self-grooming and hair loss, which were similar to the pathological grooming behaviors in Hoxb8 KO mice. Further analysis of grooming microstructure showed the impairment of grooming patterning in Zfp462 +/- mice. In addition, the mRNA levels of Pbx1 (pre-B-cell leukemia homeobox 1, an interacting protein of Zfp462) and Hoxb8 decreased in the brains of Zfp462 +/- mice, which may be the cause of anxiety-like behaviors. Finally, imipramine, a widely used and effective anti-anxiety medicine, rescued anxiety-like behaviors and excessive self-grooming in Zfp462 +/- mice. In conclusion, Zfp462 deficiency causes anxiety-like behaviors with excessive self-grooming in mice. This provides a novel genetic mouse model for anxiety disorders and a useful tool to determine potential therapeutic targets for anxiety disorders and screen anti-anxiety drugs. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  19. Magnesium deficiency induces anxiety-and depression-like behavior and metabolic dysfunction in C57Bl/6J mice

    DEFF Research Database (Denmark)

    Winther, G.; Wang, T.; Singewald, N.

    2012-01-01

    ) in mice through depression-and anxiety phenotyping experiments, namely the forced swim test and light-dark box respectively. We determined the behavioural effects 30 minutes after treatment with imipramine (20 mg/kg), diazepam (2 mg/kg) and ketamine (3 mg/kg). The glucose tolerance test was used to assess...... metabolic function in Mg deficient mice. Results: We found that, compared to control (n=10), mice receiving Mg deficient diet (n=10) (10 % RDA), were more immobile in the forced swim test....

  20. Caveolin-1 protects B6129 mice against Helicobacter pylori gastritis.

    Directory of Open Access Journals (Sweden)

    Ivana Hitkova

    Full Text Available Caveolin-1 (Cav1 is a scaffold protein and pathogen receptor in the mucosa of the gastrointestinal tract. Chronic infection of gastric epithelial cells by Helicobacter pylori (H. pylori is a major risk factor for human gastric cancer (GC where Cav1 is frequently down-regulated. However, the function of Cav1 in H. pylori infection and pathogenesis of GC remained unknown. We show here that Cav1-deficient mice, infected for 11 months with the CagA-delivery deficient H. pylori strain SS1, developed more severe gastritis and tissue damage, including loss of parietal cells and foveolar hyperplasia, and displayed lower colonisation of the gastric mucosa than wild-type B6129 littermates. Cav1-null mice showed enhanced infiltration of macrophages and B-cells and secretion of chemokines (RANTES but had reduced levels of CD25+ regulatory T-cells. Cav1-deficient human GC cells (AGS, infected with the CagA-delivery proficient H. pylori strain G27, were more sensitive to CagA-related cytoskeletal stress morphologies ("humming bird" compared to AGS cells stably transfected with Cav1 (AGS/Cav1. Infection of AGS/Cav1 cells triggered the recruitment of p120 RhoGTPase-activating protein/deleted in liver cancer-1 (p120RhoGAP/DLC1 to Cav1 and counteracted CagA-induced cytoskeletal rearrangements. In human GC cell lines (MKN45, N87 and mouse stomach tissue, H. pylori down-regulated endogenous expression of Cav1 independently of CagA. Mechanistically, H. pylori activated sterol-responsive element-binding protein-1 (SREBP1 to repress transcription of the human Cav1 gene from sterol-responsive elements (SREs in the proximal Cav1 promoter. These data suggested a protective role of Cav1 against H. pylori-induced inflammation and tissue damage. We propose that H. pylori exploits down-regulation of Cav1 to subvert the host's immune response and to promote signalling of its virulence factors in host cells.

  1. High Mutation Levels are Compatible with Normal Embryonic Development in Mlh1-Deficient Mice.

    Science.gov (United States)

    Fan, Xiaoyan; Li, Yan; Zhang, Yulong; Sang, Meixiang; Cai, Jianhui; Li, Qiaoxia; Ozaki, Toshinori; Ono, Tetsuya; He, Dongwei

    2016-10-01

    To elucidate the role of the mismatch repair gene Mlh1 in genome instability during the fetal stage, spontaneous mutations were studied in Mlh1-deficient lacZ-transgenic mouse fetuses. Mutation levels were high at 9.5 days post coitum (dpc) and gradually increased during the embryonic stage, after which they remained unchanged. In addition, mutations that were found in brain, liver, spleen, small intestine and thymus showed similar levels and no statistically significant difference was found. The molecular nature of mutations at 12.5 dpc in fetuses of Mlh1 +/+ and Mlh1 -/- mice showed their own unique spectra, suggesting that deletion mutations were the main causes in the deficiency of the Mlh1 gene. Of note, fetuses of irradiated mice exhibited marked differences such as post-implantation loss and Mendelian distribution. Collectively, these results strongly suggest that high mutation ofMlh1 -/- -deficient fetuses has little effect on the fetuses during their early developmental stages, whereas Mlh1 -/- -deficient fetuses from X-ray irradiated mothers are clearly effected.

  2. Telomerase-Deficient Mice Exhibit Bone Loss Owing to Defects in Osteoblasts and Increased Osteoclastogenesis by Inflammatory Microenvironment

    DEFF Research Database (Denmark)

    Saeed, H.; Abdallah, B. M.; Ditzel, N.

    2011-01-01

    Telomere shortening owing to telomerase deficiency leads to accelerated senescence of human skeletal (mesenchymal) stem cells (MSCs) in vitro, whereas overexpression leads to telomere elongation, extended life span, and enhanced bone formation. To study the role of telomere shortening in vivo, we...... studied the phenotype of telomerase-deficient mice (Terc(-/-)).Terc(-/-) mice exhibited accelerated age-related bone loss starting at 3 months of age and during 12 months of follow-up revealed by dual-energy X-ray absorptiometric (DXA) scanning and by micro-computed tomography (mu CT). Bone...... histomorphometry revealed decreased mineralized surface and bone-formation rate as well as increased osteoclast number and size in Terc(-/-) mice. Also, serum total deoxypyridinoline (tDPD) was increased in Terc(-/-) mice. MSCs and osteoprogenitors isolated from Terc(-l-) mice exhibited intrinsic defects...

  3. iPLA2β deficiency attenuates obesity and hepatic steatosis in ob/ob mice through hepatic fatty-acyl phospholipid remodeling.

    Science.gov (United States)

    Deng, Xiuling; Wang, Jiliang; Jiao, Li; Utaipan, Tanyarath; Tuma-Kellner, Sabine; Schmitz, Gerd; Liebisch, Gerhard; Stremmel, Wolfgang; Chamulitrat, Walee

    2016-05-01

    PLA2G6 or GVIA calcium-independent PLA2 (iPLA2β) is identified as one of the NAFLD modifier genes in humans, and thought to be a target for NAFLD therapy. iPLA2β is known to play a house-keeping role in phospholipid metabolism and remodeling. However, its role in NAFLD pathogenesis has not been supported by results obtained from high-fat feeding of iPLA2β-null (PKO) mice. Unlike livers of human NAFLD and genetically obese rodents, fatty liver induced by high-fat diet is not associated with depletion of hepatic phospholipids. We therefore tested whether iPLA2β could regulate obesity and hepatic steatosis in leptin-deficient mice by cross-breeding PKO with ob/ob mice to generate ob/ob-PKO mice. Here we observed an improvement in ob/ob-PKO mice with significant reduction in serum enzymes, lipids, glucose, insulin as well as improved glucose tolerance, and reduction in islet hyperplasia. The improvement in hepatic steatosis measured by liver triglycerides, fatty acids and cholesterol esters was associated with decreased expression of PPARγ and de novo lipogenesis genes, and the reversal of β-oxidation gene expression. Notably, ob/ob livers contained depleted levels of lysophospholipids and phospholipids, and iPLA2β deficiency in ob/ob-PKO livers lowers the former, but replenished the latter particularly phosphatidylethanolamine (PE) and phosphatidylcholine (PC) that contained arachidonic (AA) and docosahexaenoic (DHA) acids. Compared with WT livers, PKO livers also contained increased PE and PC containing AA and DHA. Thus, iPLA2β deficiency protected against obesity and ob/ob fatty liver which was associated with hepatic fatty-acyl phospholipid remodeling. Our results support the deleterious role of iPLA2β in severe obesity associated NAFLD. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. ST2 Deficiency Ameliorates High Fat Diet-Induced Liver Steatosis In BALB/c Mice

    Directory of Open Access Journals (Sweden)

    Jovicic Nemanja

    2015-03-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD is strongly associated with obesity, but the molecular mechanisms of liver steatosis and its progression to non-alcoholic steatohepatitis and fibrosis are incompletely understood. Immune reactivity plays an important role in the pathogenesis of NAFLD. The IL-33/ST2 axis has a protective role in adiposity and atherosclerosis, but its role in obesity-associated metabolic disorders requires further clarification. To investigate the unresolved role of IL-33/ST2 signalling in NAFLD, we used ST2-deficient (ST2-/- and wild type (WT BALB/c mice maintained on a high-fat diet (HFD for 24 weeks. HFD-fed ST2-/- mice exhibited increased weight gain, visceral adipose tissue weight and triglyceridaemia and decreased liver weight compared with diet-matched WT mice. Compared with WT mice on an HFD, ST2 deletion significantly reduced hepatic steatosis, liver inflammation and fibrosis and downregulated the expression of genes related to lipid metabolism in the liver. The frequency of innate immune cells in the liver, including CD68+ macrophages and CD11c+ dendritic cells, was lower in HFD-fed ST2-/- mice, accompanied by lower TNFα serum levels compared with diet-matched WT mice. Less collagen deposition in the livers of ST2-/- mice on an HFD was associated with lower numbers of profibrotic CD11b+Ly6clow monocytes and CD4+IL-17+ T cells in the liver, lower hepatic gene expression of procollagen, IL-33 and IL-13, and lower serum levels of IL-33 and IL-13 compared with diet-matched WT mice.

  5. Transplantation of Gene-Edited Hepatocyte-like Cells Modestly Improves Survival of Arginase-1-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Yuan Yan Sin

    2018-03-01

    Full Text Available Progress in gene editing research has been accelerated by utilizing engineered nucleases in combination with induced pluripotent stem cell (iPSC technology. Here, we report transcription activator-like effector nuclease (TALEN-mediated reincorporation of Arg1 exons 7 and 8 in iPSCs derived from arginase-1-deficient mice possessing Arg1Δ alleles lacking these terminal exons. The edited cells could be induced to differentiate into hepatocyte-like cells (iHLCs in vitro and were subsequently used for transplantation into our previously described (Sin et al., PLoS ONE 2013 tamoxifen-inducible Arg1-Cre arginase-1-deficient mouse model. While successful gene-targeted repair was achieved in iPSCs containing Arg1Δ alleles, only minimal restoration of urea cycle function could be observed in the iHLC-transplanted mice compared to control mice, and survival in this lethal model was extended by up to a week in some mice. The partially rescued phenotype may be due to inadequate regenerative capacity of arginase-1-expressing cells in the correct metabolic zones. Technical hurdles exist and will need to be overcome for gene-edited iPSC to iHLC rescue of arginase-1 deficiency, a rare urea cycle disorder.

  6. Histidine Decarboxylase Deficiency Prevents Autoimmune Diabetes in NOD Mice

    Directory of Open Access Journals (Sweden)

    Manal Alkan

    2015-01-01

    Full Text Available Recent evidence has highlighted the role of histamine in inflammation. Since this monoamine has also been strongly implicated in the pathogenesis of type-1 diabetes, we assessed its effect in the nonobese diabetic (NOD mouse model. To this end, we used mice (inactivated knocked out for the gene encoding histidine decarboxylase, the unique histamine-forming enzyme, backcrossed on a NOD genetic background. We found that the lack of endogenous histamine in NOD HDC−/− mice decreased the incidence of diabetes in relation to their wild-type counterpart. Whereas the proportion of regulatory T and myeloid-derived suppressive cells was similar in both strains, histamine deficiency was associated with increased levels of immature macrophages, as compared with wild-type NOD mice. Concerning the cytokine pattern, we found a decrease in circulating IL-12 and IFN-γ in HDC−/− mice, while IL-6 or leptin remained unchanged, suggesting that histamine primarily modulates the inflammatory environment. Paradoxically, exogenous histamine given to NOD HDC−/− mice provided also protection against T1D. Our study supports the notion that histamine is involved in the pathogenesis of diabetes, thus providing additional evidence for its role in the regulation of the immune response.

  7. PirB regulates asymmetries in hippocampal circuitry.

    Directory of Open Access Journals (Sweden)

    Hikari Ukai

    Full Text Available Left-right asymmetry is a fundamental feature of higher-order brain structure; however, the molecular basis of brain asymmetry remains unclear. We recently identified structural and functional asymmetries in mouse hippocampal circuitry that result from the asymmetrical distribution of two distinct populations of pyramidal cell synapses that differ in the density of the NMDA receptor subunit GluRε2 (also known as NR2B, GRIN2B or GluN2B. By examining the synaptic distribution of ε2 subunits, we previously found that β2-microglobulin-deficient mice, which lack cell surface expression of the vast majority of major histocompatibility complex class I (MHCI proteins, do not exhibit circuit asymmetry. In the present study, we conducted electrophysiological and anatomical analyses on the hippocampal circuitry of mice with a knockout of the paired immunoglobulin-like receptor B (PirB, an MHCI receptor. As in β2-microglobulin-deficient mice, the PirB-deficient hippocampus lacked circuit asymmetries. This finding that MHCI loss-of-function mice and PirB knockout mice have identical phenotypes suggests that MHCI signals that produce hippocampal asymmetries are transduced through PirB. Our results provide evidence for a critical role of the MHCI/PirB signaling system in the generation of asymmetries in hippocampal circuitry.

  8. Cell-intrinsic role for NF-kappa B-inducing kinase in peripheral maintenance but not thymic development of Foxp3+ regulatory T cells in mice.

    Directory of Open Access Journals (Sweden)

    Susan E Murray

    Full Text Available NF-κB inducing kinase (NIK, MAP3K14 is a key signaling molecule in non-canonical NF-κB activation, and NIK deficient mice have been instrumental in deciphering the immunologic role of this pathway. Global ablation of NIK prevents lymph node development, impairs thymic stromal development, and drastically reduces B cells. Despite altered thymic selection, T cell numbers are near normal in NIK deficient mice. The exception is CD4(+ regulatory T cells (Tregs, which are reduced in the thymus and periphery. Defects in thymic stroma are known to contribute to impaired Treg generation, but whether NIK also plays a cell intrinsic role in Tregs is unknown. Here, we compared intact mice with single and mixed BM chimeric mice to assess the intrinsic role of NIK in Treg generation and maintenance. We found that while NIK expression in stromal cells suffices for normal thymic Treg development, NIK is required cell-intrinsically to maintain peripheral Tregs. In addition, we unexpectedly discovered a cell-intrinsic role for NIK in memory phenotype conventional T cells that is masked in intact mice, but revealed in BM chimeras. These results demonstrate a novel role for NIK in peripheral regulatory and memory phenotype T cell homeostasis.

  9. Hormone-sensitive lipase deficiency suppresses insulin secretion from pancreatic islets of Lepob/ob mice

    International Nuclear Information System (INIS)

    Sekiya, Motohiro; Yahagi, Naoya; Tamura, Yoshiaki; Okazaki, Hiroaki; Igarashi, Masaki; Ohta, Keisuke; Takanashi, Mikio; Kumagai, Masayoshi; Takase, Satoru; Nishi, Makiko; Takeuchi, Yoshinori; Izumida, Yoshihiko; Kubota, Midori; Ohashi, Ken; Iizuka, Yoko; Yagyu, Hiroaki; Gotoda, Takanari; Nagai, Ryozo; Shimano, Hitoshi; Yamada, Nobuhiro

    2009-01-01

    It has long been a matter of debate whether the hormone-sensitive lipase (HSL)-mediated lipolysis in pancreatic β-cells can affect insulin secretion through the alteration of lipotoxicity. We generated mice lacking both leptin and HSL (Lep ob/ob /HSL -/- ) and explored the role of HSL in pancreatic β-cells in the setting of obesity. Lep ob/ob /HSL -/- developed elevated blood glucose levels and reduced plasma insulin levels compared with Lep ob/ob /HSL +/+ in a fed state, while the deficiency of HSL did not affect glucose homeostasis in Lep +/+ background. The deficiency of HSL exacerbated the accumulation of triglycerides in Lep ob/ob islets, leading to reduced glucose-stimulated insulin secretion. The deficiency of HSL also diminished the islet mass in Lep ob/ob mice due to decreased cell proliferation. In conclusion, HSL affects insulin secretary capacity especially in the setting of obesity.

  10. Improved Insulin Sensitivity despite Increased Visceral Adiposity in Mice Deficient for the Immune Cell Transcription Factor T-bet

    Science.gov (United States)

    Stolarczyk, Emilie; Vong, Chi Teng; Perucha, Esperanza; Jackson, Ian; Cawthorne, Michael A.; Wargent, Edward T.; Powell, Nick; Canavan, James B.; Lord, Graham M.; Howard, Jane K.

    2013-01-01

    Summary Low-grade inflammation in fat is associated with insulin resistance, although the mechanisms are unclear. We report that mice deficient in the immune cell transcription factor T-bet have lower energy expenditure and increased visceral fat compared with wild-type mice, yet paradoxically are more insulin sensitive. This striking phenotype, present in young T-bet−/− mice, persisted with high-fat diet and increasing host age and was associated with altered immune cell numbers and cytokine secretion specifically in visceral adipose tissue. However, the favorable metabolic phenotype observed in T-bet-deficient hosts was lost in T-bet−/− mice also lacking adaptive immunity (T-bet−/−xRag2−/−), demonstrating that T-bet expression in the adaptive rather than the innate immune system impacts host glucose homeostasis. Indeed, adoptive transfer of T-bet-deficient, but not wild-type, CD4+ T cells to Rag2−/− mice improved insulin sensitivity. Our results reveal a role for T-bet in metabolic physiology and obesity-associated insulin resistance. PMID:23562076

  11. PKA-RIIB Deficiency Induces Brown Fatlike Adipocytes in Inguinal WAT and Promotes Energy Expenditure in Male FVB/NJ Mice.

    Science.gov (United States)

    Su, Jing; Wu, Wei; Huang, Shan; Xue, Ruidan; Wang, Yi; Wan, Yun; Zhang, Lv; Qin, Lang; Zhang, Qiongyue; Zhu, Xiaoming; Zhang, Zhaoyun; Ye, Hongying; Wu, Xiaohui; Li, Yiming

    2017-03-01

    Obesity has become the most common metabolic disorder worldwide. Promoting brown adipose tissue (BAT) and beige adipose tissue formation, and therefore, a functional increase in energy expenditure, may counteract obesity. Mice lacking type IIβ regulatory subunit of adenosine 3',5' cyclic monophosphate (cAMP)-dependent protein kinase A (PKA-RIIB) display reduced adiposity and resistance to diet-induced obesity. PKA-RIIB, encoded by the Prkar2b gene, is most abundant in BAT and white adipose tissue (WAT) and in the brain. In this study, we show that mice lacking PKA-RIIB have increased energy expenditure, limited weight gain, and improved glucose metabolism. PKA-RIIB deficiency induces brownlike adipocyte in inguinal WAT (iWAT). PKA-RIIB deficiency also increases the expression of uncoupling protein 1 and other thermogenic genes in iWAT and primary preadipocytes from iWAT through a mechanism involving increased PKA activity, which is represented by increased phosphorylation of PKA substrate, cAMP response element binding protein, and P38 mitogen-activated protein kinase. Our study provides evidence for the role of PKA-RIIB deficiency in regulating thermogenesis in WAT, which may potentially have therapeutic implications for the treatment of obesity and related metabolic disorders. Copyright © 2017 by the Endocrine Society.

  12. Deficiency of cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1 accelerates atherogenesis in apolipoprotein E-deficient mice

    International Nuclear Information System (INIS)

    Akyuerek, Levent M.; Boehm, Manfred; Olive, Michelle; Zhou, Alex-Xianghua; San, Hong; Nabel, Elizabeth G.

    2010-01-01

    Cyclin-dependent kinase inhibitors, p21 Cip1 and p27 Kip1 , are upregulated during vascular cell proliferation and negatively regulate growth of vascular cells. We hypothesized that absence of either p21 Cip1 or p27 Kip1 in apolipoprotein E (apoE)-deficiency may increase atherosclerotic plaque formation. Compared to apoE -/- aortae, both apoE -/- /p21 -/- and apoE -/- /p27 -/- aortae exhibited significantly more atherosclerotic plaque following a high-cholesterol regimen. This increase was particularly observed in the abdominal aortic regions. Deficiency of p27 Kip1 accelerated plaque formation significantly more than p21 -/- in apoE -/- mice. This increased plaque formation was in parallel with increased intima/media area ratios. Deficiency of p21 Cip1 and p27 Kip1 accelerates atherogenesis in apoE -/- mice. These findings have significant implications for our understanding of the molecular basis of atherosclerosis associated with excessive proliferation of vascular cells.

  13. Choline Deficiency Causes Colonic Type II Natural Killer T (NKT) Cell Loss and Alleviates Murine Colitis under Type I NKT Cell Deficiency.

    Science.gov (United States)

    Sagami, Shintaro; Ueno, Yoshitaka; Tanaka, Shinji; Fujita, Akira; Niitsu, Hiroaki; Hayashi, Ryohei; Hyogo, Hideyuki; Hinoi, Takao; Kitadai, Yasuhiko; Chayama, Kazuaki

    2017-01-01

    Serum levels of choline and its derivatives are lower in patients with inflammatory bowel disease (IBD) than in healthy individuals. However, the effect of choline deficiency on the severity of colitis has not been investigated. In the present study, we investigated the role of choline deficiency in dextran sulfate sodium (DSS)-induced colitis in mice. Methionine-choline-deficient (MCD) diet lowered the levels of type II natural killer T (NKT) cells in the colonic lamina propria, peritoneal cavity, and mesenteric lymph nodes, and increased the levels of type II NKT cells in the livers of wild-type B6 mice compared with that in mice fed a control (CTR) diet. The gene expression pattern of the chemokine receptor CXCR6, which promotes NKT cell accumulation, varied between colon and liver in a manner dependent on the changes in the type II NKT cell levels. To examine the role of type II NKT cells in colitis under choline-deficient conditions, we assessed the severity of DSS-induced colitis in type I NKT cell-deficient (Jα18-/-) or type I and type II NKT cell-deficient (CD1d-/-) mice fed the MCD or CTR diets. The MCD diet led to amelioration of inflammation, decreases in interferon (IFN)-γ and interleukin (IL)-4 secretion, and a decrease in the number of IFN-γ and IL-4-producing NKT cells in Jα18-/- mice but not in CD1d-/- mice. Finally, adaptive transfer of lymphocytes with type II NKT cells exacerbated DSS-induced colitis in Jα18-/- mice with MCD diet. These results suggest that choline deficiency causes proinflammatory type II NKT cell loss and alleviates DSS-induced colitis. Thus, inflammation in DSS-induced colitis under choline deficiency is caused by type II NKT cell-dependent mechanisms, including decreased type II NKT cell and proinflammatory cytokine levels.

  14. Surface-Associated Lipoproteins Link Enterococcus faecalis Virulence to Colitogenic Activity in IL-10-Deficient Mice Independent of Their Expression Levels.

    Directory of Open Access Journals (Sweden)

    Soeren Ocvirk

    2015-06-01

    Full Text Available The commensal Enterococcus faecalis is among the most common causes of nosocomial infections. Recent findings regarding increased abundance of enterococci in the intestinal microbiota of patients with inflammatory bowel diseases and induction of colitis in IL-10-deficient (IL-10-/- mice put a new perspective on the contribution of E. faecalis to chronic intestinal inflammation. Based on the expression of virulence-related genes in the inflammatory milieu of IL-10-/- mice using RNA-sequencing analysis, we characterized the colitogenic role of two bacterial structures that substantially impact on E. faecalis virulence by different mechanisms: the enterococcal polysaccharide antigen and cell surface-associated lipoproteins. Germ-free wild type and IL-10-/- mice were monoassociated with E. faecalis wild type OG1RF or the respective isogenic mutants for 16 weeks. Intestinal tissue and mesenteric lymph nodes (MLN were collected to characterize tissue pathology, loss of intestinal barrier function, bacterial adhesion to intestinal epithelium and immune cell activation. Bone marrow-derived dendritic cells (BMDC were stimulated with bacterial lysates and E. faecalis virulence was additionally investigated in three invertebrate models. Colitogenic activity of wild type E. faecalis (OG1RF score: 7.2±1.2 in monoassociated IL-10-/- mice was partially impaired in E. faecalis lacking enterococcal polysaccharide antigen (ΔepaB score: 4.7±2.3; p<0.05 and was almost completely abrogated in E. faecalis deficient for lipoproteins (Δlgt score: 2.3±2.3; p<0.0001. Consistently both E. faecalis mutants showed significantly impaired virulence in Galleria mellonella and Caenorhabditis elegans. Loss of E-cadherin in the epithelium was shown for all bacterial strains in inflamed IL-10-/- but not wild type mice. Inactivation of epaB in E. faecalis reduced microcolony and biofilm formation in vitro, altered bacterial adhesion to intestinal epithelium of germ

  15. Development of hepatocellular adenomas and carcinomas in mice with liver-specific G6Pase-α deficiency

    Directory of Open Access Journals (Sweden)

    Roberta Resaz

    2014-09-01

    Full Text Available Glycogen storage disease type 1a (GSD-1a is caused by a deficiency in glucose-6-phosphatase-α (G6Pase-α, and is characterized by impaired glucose homeostasis and a high risk of developing hepatocellular adenomas (HCAs. A globally G6Pase-α-deficient (G6pc−/− mouse model that shows pathological features similar to those of humans with GSD-1a has been developed. These mice show a very severe phenotype of disturbed glucose homeostasis and rarely live beyond weaning. We generated liver-specific G6Pase-α-deficient (LS‑G6pc−/− mice as an alternative animal model for studying the long-term pathophysiology of the liver and the potential treatment strategies, such as cell therapy. LS‑G6pc−/− mice were viable and exhibited normal glucose profiles in the fed state, but showed significantly lower blood glucose levels than their control littermates after 6 hours of fasting. LS‑G6pc−/− mice developed hepatomegaly with glycogen accumulation and hepatic steatosis, and progressive hepatic degeneration. Ninety percent of the mice analyzed developed amyloidosis by 12 months of age. Finally, 25% of the mice sacrificed at age 10–20 months showed the presence of multiple HCAs and in one case late development of hepatocellular carcinoma (HCC. In conclusion, LS‑G6pc−/− mice manifest hepatic symptoms similar to those of human GSD-1a and, therefore, represent a valid model to evaluate long-term liver pathogenesis of GSD-1a.

  16. Development of a reactive stroma associated with prostatic intraepithelial neoplasia in EAF2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Laura E Pascal

    Full Text Available ELL-associated factor 2 (EAF2 is an androgen-responsive tumor suppressor frequently deleted in advanced prostate cancer that functions as a transcription elongation factor of RNA Pol II through interaction with the ELL family proteins. EAF2 knockout mice on a 129P2/OLA-C57BL/6J background developed late-onset lung adenocarcinoma, hepatocellular carcinoma, B-cell lymphoma and high-grade prostatic intraepithelial neoplasia. In order to further characterize the role of EAF2 in the development of prostatic defects, the effects of EAF2 loss were compared in different murine strains. In the current study, aged EAF2(-/- mice on both the C57BL/6J and FVB/NJ backgrounds exhibited mPIN lesions as previously reported on a 129P2/OLA-C57BL/6J background. In contrast to the 129P2/OLA-C57BL/6J mixed genetic background, the mPIN lesions in C57BL/6J and FVB/NJ EAF2(-/- mice were associated with stromal defects characteristic of a reactive stroma and a statistically significant increase in prostate microvessel density. Stromal inflammation and increased microvessel density was evident in EAF2-deficient mice on a pure C57BL/6J background at an early age and preceded the development of the histologic epithelial hyperplasia and neoplasia found in the prostates of older EAF2(-/- animals. Mice deficient in EAF2 had an increased recovery rate and a decreased overall response to the effects of androgen deprivation. EAF2 expression in human cancer was significantly down-regulated and microvessel density was significantly increased compared to matched normal prostate tissue; furthermore EAF2 expression was negatively correlated with microvessel density. These results suggest that the EAF2 knockout mouse on the C57BL/6J and FVB/NJ genetic backgrounds provides a model of PIN lesions associated with an altered prostate microvasculature and reactive stromal compartment corresponding to that reported in human prostate tumors.

  17. Protection against high-fat diet-induced obesity in Helz2-deficient male mice due to enhanced expression of hepatic leptin receptor.

    Science.gov (United States)

    Yoshino, Satoshi; Satoh, Tetsurou; Yamada, Masanobu; Hashimoto, Koshi; Tomaru, Takuya; Katano-Toki, Akiko; Kakizaki, Satoru; Okada, Shuichi; Shimizu, Hiroyuki; Ozawa, Atsushi; Tuchiya, Takafumi; Ikota, Hayato; Nakazato, Yoichi; Mori, Munemasa; Matozaki, Takashi; Sasaki, Tsutomu; Kitamura, Tadahiro; Mori, Masatomo

    2014-09-01

    Obesity arises from impaired energy balance, which is centrally coordinated by leptin through activation of the long form of leptin receptor (Leprb). Obesity causes central leptin resistance. However, whether enhanced peripheral leptin sensitivity could overcome central leptin resistance remains obscure. A peripheral metabolic organ targeted by leptin is the liver, with low Leprb expression. We here show that mice fed a high-fat diet (HFD) and obese patients with hepatosteatosis exhibit increased expression of hepatic helicase with zinc finger 2, a transcriptional coactivator (Helz2), which functions as a transcriptional coregulator of several nuclear receptors, including peroxisome proliferator-activated receptor γ in vitro. To explore the physiological importance of Helz2, we generated Helz2-deficient mice and analyzed their metabolic phenotypes. Helz2-deficient mice showing hyperleptinemia associated with central leptin resistance were protected against HFD-induced obesity and had significantly up-regulated hepatic Leprb expression. Helz2 deficiency and adenovirus-mediated liver-specific exogenous Leprb overexpression in wild-type mice significantly stimulated hepatic AMP-activated protein kinase on HFD, whereas Helz2-deficient db/db mice lacking functional Leprb did not. Fatty acid-β oxidation was increased in Helz2-deficeint hepatocytes, and Helz2-deficient mice revealed increased oxygen consumption and decreased respiratory quotient in calorimetry analyses. The enhanced hepatic AMP-activated protein kinase energy-sensing pathway in Helz2-deficient mice ameliorated hyperlipidemia, hepatosteatosis, and insulin resistance by reducing lipogenic gene expression and stimulating lipid-burning gene expression in the liver. These findings together demonstrate that Helz2 deficiency ameliorates HFD-induced metabolic abnormalities by stimulating endogenous hepatic Leprb expression, despite central leptin resistance. Hepatic HELZ2 might be a novel target molecule for

  18. Cystathionine-gamma-lyase deficient mice are protected against the development of multiorgan failure and exhibit reduced inflammatory response during burn.

    Science.gov (United States)

    Ahmad, Akbar; Druzhyna, Nadiya; Szabo, Csaba

    2017-08-01

    Considering the role of H 2 S in critical illness, the aim of this study was to compare the outcome of burn in wild-type mice and in mice deficient in CSE, one of the principal mammalian H 2 S-generating enzymes. Animals were subjected to scald burn. Outcome variables included indices of organ injury, clinical chemistry parameters and plasma levels of inflammatory mediators. Plasma levels of H 2 S significantly increased in response to burn in wild-type mice, but remained unchanged in CSE -/- mice. Expression of the three H 2 S-producing enzymes (CSE, CBS and 3-MST) in the lung and liver, and the capacity of tissue homogenates to produce H 2 S, however, was not affected by burn. In CSE deficient mice there was a significant amelioration of burn-induced accumulation of myeloperoxidase levels in heart, lung, liver and kidney and significantly lower degree of malon dialdehyde accumulation in the heart, lung and kidney than in wild-type mice. CSE deficient mice, compared to wild-type mice, showed a significant attenuation of the burn-induced elevation in circulating alkaline aminotransferase and blood urea nitrogen and creatinine levels, indicative of protective effects of CSE deficiency against burn-induced hepatic, and renal functional impairment. Multiple burn-induced inflammatory mediators (TNF-α, IL-1β, IL-4, IL-6, IL-10 and IL-12) were significantly lower in the plasma of CSE -/- animals after burn than in the plasma of wild-type controls subjected to burns. In conclusion, CSE deficiency improves organ function and attenuates the inflammatory response in a murine model of burn. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  19. Factor XI Deficiency Alters the Cytokine Response and Activation of Contact Proteases during Polymicrobial Sepsis in Mice.

    Directory of Open Access Journals (Sweden)

    Charles E Bane

    Full Text Available Sepsis, a systemic inflammatory response to infection, is often accompanied by abnormalities of blood coagulation. Prior work with a mouse model of sepsis induced by cecal ligation and puncture (CLP suggested that the protease factor XIa contributed to disseminated intravascular coagulation (DIC and to the cytokine response during sepsis. We investigated the importance of factor XI to cytokine and coagulation responses during the first 24 hours after CLP. Compared to wild type littermates, factor XI-deficient (FXI-/- mice had a survival advantage after CLP, with smaller increases in plasma levels of TNF-α and IL-10 and delayed IL-1β and IL-6 responses. Plasma levels of serum amyloid P, an acute phase protein, were increased in wild type mice 24 hours post-CLP, but not in FXI-/- mice, supporting the impression of a reduced inflammatory response in the absence of factor XI. Surprisingly, there was little evidence of DIC in mice of either genotype. Plasma levels of the contact factors factor XII and prekallikrein were reduced in WT mice after CLP, consistent with induction of contact activation. However, factor XII and PK levels were not reduced in FXI-/- animals, indicating factor XI deficiency blunted contact activation. Intravenous infusion of polyphosphate into WT mice also induced changes in factor XII, but had much less effect in FXI deficient mice. In vitro analysis revealed that factor XIa activates factor XII, and that this reaction is enhanced by polyanions such polyphosphate and nucleic acids. These data suggest that factor XI deficiency confers a survival advantage in the CLP sepsis model by altering the cytokine response to infection and blunting activation of the contact (kallikrein-kinin system. The findings support the hypothesis that factor XI functions as a bidirectional interface between contact activation and thrombin generation, allowing the two processes to influence each other.

  20. [Vitamin B12 Deficiency in Type 2 Diabetes Mellitus].

    Science.gov (United States)

    Tavares Bello, Carlos; Capitão, Ricardo Miguel; Sequeira Duarte, João; Azinheira, Jorge; Vasconcelos, Carlos

    2017-10-31

    Type 2 diabetes mellitus is a common disease, affecting up to 13.1% of the Portuguese population. In addition to the known micro and macrovascular complications, drug side effects constitute a major concern, leading to changes in the treatment guidelines, which favor safety over efficacy. Metformin is the first-line pharmacological treatment for most patients with type 2 diabetes mellitus; however, it has been associated with vitamin B12 deficiency in up to 30% of treated patients. The authors describe the prevalence of vitamin B12 deficiency in a diabetic population and explore the possible underlying factors. Retrospective, observational study. Clinical and laboratory data of type 2 diabetes mellitus patients whose vitamin B12 status was evaluated in the last decade (2005 - 2016) were analyzed. Patients with known malabsorptive syndromes or having undergone bariatric surgery were excluded from the study. Statistical analysis of the data was done and the results were considered statistically significant at p values 2.2 years and 11 ± 10.4 years of type 2 diabetes mellitus duration. These patients had a high prevalence of complications: diabetic renal disease 47.7%, neuropathy 9.2%, retinopathy 14.9%, coronary artery disease 8.4%, cerebrovascular disease 10.9%, and peripheral arterial disease 5.5%. Vitamin B12 deficiency (21.4% of the population and this subgroup was older (68.4 vs 65.8 years, p = 0.006), had a longer type 2 diabetes mellitus duration (13.35 vs 10.36 years; p = 0.001), higher prevalence of retinopathy (20.9% vs 13.3%; p = 0.005) and thyroid dysfunction (34% vs 23.7%; p = 0.002). Vitamin B12 deficiency was also more frequent in patients treated with metformin (24.7% vs 15.8%; p = 0.017), antiplatelet agents (25.4% vs 16.2%, p 26.8% vs 18.2%; p = 0.001). After adjustment for possible confounders, the variables associated with B12 deficiency were: metformin, hypothyroidism, age and type 2 diabetes mellitus duration. Despite the retrospective design

  1. Advances in clinical determinants and neurological manifestations of B vitamin deficiency in adults.

    Science.gov (United States)

    Sechi, GianPietro; Sechi, Elia; Fois, Chiara; Kumar, Neeraj

    2016-05-01

    B vitamin deficiency is a leading cause of neurological impairment and disability throughout the world. Multiple B vitamin deficiencies often coexist, and thus an understanding of the complex relationships between the different biochemical pathways regulated in the brain by these vitamins may facilitate prompter diagnosis and improved treatment. Particular populations at risk for multiple B vitamin deficiencies include the elderly, people with alcoholism, patients with heart failure, patients with recent obesity surgery, and vegetarians/vegans. Recently, new clinical settings that predispose individuals to B vitamin deficiency have been highlighted. Moreover, other data indicate a possible pathogenetic role of subclinical chronic B vitamin deficiency in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In light of these findings, this review examines the clinical manifestations of B vitamin deficiency and the effect of B vitamin deficiency on the adult nervous system. The interrelationships of multiple B vitamin deficiencies are emphasized, along with the clinical phenotypes related to B vitamin deficiencies. Recent advances in the clinical determinants and diagnostic clues of B vitamin deficiency, as well as the suggested therapies for B vitamin disorders, are described. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Altered synaptic phospholipid signaling in PRG-1 deficient mice induces exploratory behavior and motor hyperactivity resembling psychiatric disorders.

    Science.gov (United States)

    Schneider, Patrick; Petzold, Sandra; Sommer, Angela; Nitsch, Robert; Schwegler, Herbert; Vogt, Johannes; Roskoden, Thomas

    2018-01-15

    Plasticity related gene 1 (PRG-1) is a neuron specific membrane protein located at the postsynaptic density of glutamatergic synapses. PRG-1 modulates signaling pathways of phosphorylated lipid substrates such as lysophosphatidic acid (LPA). Deletion of PRG-1 increases presynaptic glutamate release probability leading to neuronal over-excitation. However, due to its cortical expression, PRG-1 deficiency leading to increased glutamatergic transmission is supposed to also affect motor pathways. We therefore analyzed the effects of PRG-1 function on exploratory and motor behavior using homozygous PRG-1 knockout (PRG-1 -/- ) mice and PRG-1/LPA 2 -receptor double knockout (PRG-1 -/- /LPA 2 -/- ) mice in two open field settings of different size and assessing motor behavior in the Rota Rod test. PRG-1 -/- mice displayed significantly longer path lengths and higher running speed in both open field conditions. In addition, PRG-1 -/- mice spent significantly longer time in the larger open field and displayed rearing and self-grooming behavior. Furthermore PRG-1 -/- mice displayed stereotypical behavior resembling phenotypes of psychiatric disorders in the smaller sized open field arena. Altogether, this behavior is similar to the stereotypical behavior observed in animal models for psychiatric disease of autistic spectrum disorders which reflects a disrupted balance between glutamatergic and GABAergic synapses. These differences indicate an altered excitation/inhibition balance in neuronal circuits in PRG-1 -/- mice as recently shown in the somatosensory cortex [38]. In contrast, PRG-1 -/- /LPA 2 -/- did not show significant changes in behavior in the open field suggesting that these specific alterations were abolished when the LPA 2 -receptor was lacking. Our findings indicate that PRG-1 deficiency led to over-excitability caused by an altered LPA/LPA 2 -R signaling inducing a behavioral phenotype typically observed in animal models for psychiatric disorders. Copyright

  3. Vitamin B12 deficiency: Characterization of psychometrics and MRI morphometrics.

    Science.gov (United States)

    Hsu, Yen-Hsuan; Huang, Ching-Feng; Lo, Chung-Ping; Wang, Tzu-Lan; Tu, Min-Chien

    2016-01-01

    Vitamin B12 is essential for the integrity of the central nervous system. However, performances in different cognitive domains relevant to vitamin B12 deficiency remain to be detailed. To date, there have been limited studies that examined the relationships between cognitions and structural neuroimaging in a single cohort of low-vitamin B12 status. The present study aimed to depict psychometrics and magnetic resonance imaging (MRI) morphometrics among patients with vitamin B12 deficiency, and to examine their inter-relations. We compared 34 consecutive patients with vitamin B12 deficiency (serum level ≤ 250 pg/ml) to 34 demographically matched controls by their cognitive performances and morphometric indices of brain MRI. The correlations between psychometrics and morphometrics were analyzed. The vitamin B12 deficiency group had lower scores than the controls on total scores of Mini-Mental Status Examination (MMSE) and Cognitive Abilities Screening Instrument (CASI) (both P psychometric and morphometric indices, pronounced correlations between bicaudate ratio and long-term memory, mental manipulation, orientation, language, and verbal fluency were noted (all P < 0.01). Vitamin B12 deficiency is associated with a global cognition decline with language, orientation, and mental manipulation selectively impaired. Preferential atrophy in frontal regions is the main neuroimaging feature. Although the frontal ratio highlights the relevant atrophy among patients, the bicaudate ratio might be the best index on the basis of its strong association with global cognition and related cognitive domains, implying dysfunction of fronto-subcortical circuits as the fundamental pathogenesis related to vitamin B12 deficiency.

  4. Deficient Mechanical Activation of Anabolic Transcripts and Post-Traumatic Cartilage Degeneration in Matrilin-1 Knockout Mice.

    Directory of Open Access Journals (Sweden)

    Yupeng Chen

    Full Text Available Matrilin-1 (Matn1, a cartilage-specific peri-cellular and extracellular matrix (ECM protein, has been hypothesized to regulate ECM interactions and transmit mechanical signals in cartilage. Since Matn1 knock-out (Matn1-/- mice exhibit a normal skeleton, its function in vivo is unclear. In this study, we found that the anabolic Acan and Col2a transcript levels were significantly higher in wildtype (Matn1+/+ mouse cartilage than that of MATN1-/- mice in vivo. However, such difference was not observed between Matn1+/+ and MATN1-/- chondrocytes cultured under stationary conditions in vitro. Cyclic loading significantly stimulated Acan and Col2a transcript levels in Matn1+/+ but not in MATN1-/- chondrocytes. This suggests that, while Matn1+/+ chondrocytes increase their anabolic gene expression in response to mechanical loading, the MATN1-/- chondrocytes fail to do so because of the deficiency in mechanotransduction. We also found that altered elastic modulus of cartilage matrix in Matn1-/- mice, suggesting the mechanotransduction has changed due to the deficiency of Matn1. To understand the impact of such deficiency on joint disease, mechanical loading was altered in vivo by destabilization of medial meniscus. While Matn1+/+ mice exhibited superficial fissures and clefts consistent with mechanical damage to the articular joint, Matn1-/- mice presented more severe cartilage lesions characterized by proteoglycan loss and disorganization of cells and ECM. This suggests that Matn1 deficiency affects pathogenesis of post-traumatic osteoarthritis by failing to up-regulate anabolic gene expression. This is the first demonstration of Matn1 function in vivo, which suggests its protective role in cartilage degeneration under altered mechanical environment.

  5. Gene therapy/bone marrow transplantation in ADA-deficient mice: roles of enzyme-replacement therapy and cytoreduction.

    Science.gov (United States)

    Carbonaro, Denise A; Jin, Xiangyang; Wang, Xingchao; Yu, Xiao-Jin; Rozengurt, Nora; Kaufman, Michael L; Wang, Xiaoyan; Gjertson, David; Zhou, Yang; Blackburn, Michael R; Kohn, Donald B

    2012-11-01

    Gene therapy (GT) for adenosine deaminase-deficient severe combined immune deficiency (ADA-SCID) can provide significant long-term benefit when patients are given nonmyeloablative conditioning and ADA enzyme-replacement therapy (ERT) is withheld before autologous transplantation of γ-retroviral vector-transduced BM CD34+ cells. To determine the contributions of conditioning and discontinuation of ERT to the therapeutic effects, we analyzed these factors in Ada gene knockout mice (Ada(-/-)). Mice were transplanted with ADA-deficient marrow transduced with an ADA-expressing γ-retroviral vector without preconditioning or after 200 cGy or 900 cGy total-body irradiation and evaluated after 4 months. In all tissues analyzed, vector copy numbers (VCNs) were 100- to 1000-fold greater in mice receiving 900 cGy compared with 200 cGy (P < .05). In mice receiving 200 cGy, VCN was similar whether ERT was stopped or given for 1 or 4 months after GT. In unconditioned mice, there was decreased survival with and without ERT, and VCN was very low to undetectable. When recipients were conditioned with 200 cGy and received transduced lineage-depleted marrow, only recipients receiving ERT (1 or 4 months) had detectable vector sequences in thymocytes. In conclusion, cytoreduction is important for the engraftment of gene-transduced HSC, and short-term ERT after GT did not diminish the capacity of gene-corrected cells to engraft and persist.

  6. Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase.

    NARCIS (Netherlands)

    B.P. Engelward (Bevin); G. Weeda (Geert); M.D. Wyatt; J.L.M. Broekhof (Jose'); J. de Wit (Jan); I. Donker (Ingrid); J.M. Allan (James); B. Gold (Bert); J.H.J. Hoeijmakers (Jan); L.D. Samson (Leona)

    1997-01-01

    textabstract3-methyladenine (3MeA) DNA glycosylases remove 3MeAs from alkylated DNA to initiate the base excision repair pathway. Here we report the generation of mice deficient in the 3MeA DNA glycosylase encoded by the Aag (Mpg) gene. Alkyladenine DNA glycosylase turns out to be the major DNA

  7. Behavioral Characteristics of Ubiquitin-Specific Peptidase 46-Deficient Mice

    Science.gov (United States)

    Imai, Saki; Kano, Makoto; Nonoyama, Keiko; Ebihara, Shizufumi

    2013-01-01

    We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST) and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92), and mice with this mutation (MT mice), as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA) receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT) or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system. PMID:23472206

  8. Behavioral characteristics of ubiquitin-specific peptidase 46-deficient mice.

    Directory of Open Access Journals (Sweden)

    Saki Imai

    Full Text Available We have previously identified Usp46, which encodes for ubiquitin-specific peptidase 46, as a quantitative trait gene affecting the immobility time of mice in the tail suspension test (TST and forced swimming test. The mutation that we identified was a 3-bp deletion coding for lysine (Lys 92, and mice with this mutation (MT mice, as well as Usp46 KO mice exhibited shorter TST immobility times. Behavioral pharmacology suggests that the gamma aminobutyric acid A (GABAA receptor is involved in regulating TST immobility time. In order to understand how far Usp46 controls behavioral phenotypes, which could be related to mental disorders in humans, we subjected Usp46 MT and KO mice to multiple behavioral tests, including the open field test, ethanol preference test, ethanol-induced loss of righting reflex test, sucrose preference test, novelty-suppressed feeding test, marble burying test, and novel object recognition test. Although behavioral phenotypes of the Usp46 MT and KO mice were not always identical, deficiency of Usp46 significantly affected performance in all these tests. In the open field test, activity levels were lower in Usp46 KO mice than wild type (WT or MT mice. Both MT and KO mice showed lower ethanol preference and shorter recovery times after ethanol administration. Compared to WT mice, Usp46 MT and KO mice exhibited decreased sucrose preference, took longer latency periods to bite pellets, and buried more marbles in the sucrose preference test, novelty-suppressed feeding test, and marble burying test, respectively. In the novel object recognition test, neither MT nor KO mice showed an increase in exploration of a new object 24 hours after training. These findings indicate that Usp46 regulates a wide range of behavioral phenotypes that might be related to human mental disorders and provides insight into the function of USP46 deubiquitinating enzyme in the neural system.

  9. Reversible skeletal abnormalities in gamma-glutamyl transpeptidase-deficient mice

    Science.gov (United States)

    Levasseur, Regis; Barrios, Roberto; Elefteriou, Florent; Glass, Donald A 2nd; Lieberman, Michael W.; Karsenty, Gerard

    2003-01-01

    Gamma-glutamyl transpeptidase (GGT) is a widely distributed ectopeptidase responsible for the degradation of glutathione in the gamma-glutamyl cycle. This cycle is implicated in the metabolism of cysteine, and absence of GGT causes a severe intracellular decrease in this amino acid. GGT-deficient (GGT-/-) mice have multiple metabolic abnormalities and are dwarf. We show here that this latter phenotype is due to a decreased of the growth plate cartilage total height resulting from a proliferative defect of chondrocytes. In addition, analysis of vertebrae and tibiae of GGT-/- mice revealed a severe osteopenia. Histomorphometric studies showed that this low bone mass phenotype results from an increased osteoclast number and activity as well as from a marked decrease in osteoblast activity. Interestingly, neither osteoblasts, osteoclasts, nor chondrocytes express GGT, suggesting that the observed defects are secondary to other abnormalities. N-acetylcysteine supplementation has been shown to reverse the metabolic abnormalities of the GGT-/- mice and in particular to restore the level of IGF-1 and sex steroids in these mice. Consistent with these previous observations, N-acetylcysteine treatment of GGT-/- mice ameliorates their skeletal abnormalities by normalizing chondrocytes proliferation and osteoblastic function. In contrast, resorbtion parameters are only partially normalized in GGT-/- N-acetylcysteine-treated mice, suggesting that GGT regulates osteoclast biology at least partly independently of these hormones. These results establish the importance of cysteine metabolism for the regulation of bone remodeling and longitudinal growth.

  10. Fas-deficient mice have impaired alveolar neutrophil recruitment and decreased expression of anti-KC autoantibody:KC complexes in a model of acute lung injury

    Directory of Open Access Journals (Sweden)

    Gil Sucheol

    2012-10-01

    Full Text Available Abstract Background Exposure to mechanical ventilation enhances lung injury in response to various stimuli, such as bacterial endotoxin (LPS. The Fas/FasL system is a receptor ligand system that has dual pro-apoptotic and pro-inflammatory functions and has been implicated in the pathogenesis of lung injury. In this study we test the hypothesis that a functioning Fas/FasL system is required for the development of lung injury in mechanically ventilated mice. Methods C57BL/6 (B6 and Fas-deficient lpr mice were exposed to either intra-tracheal PBS followed by spontaneous breathing or intra-tracheal LPS followed by four hours mechanical ventilation with tidal volumes of 10 mL/kg, respiratory rate of 150 breaths per minute, inspired oxygen 0.21 and positive end expiratory pressure (PEEP of 3 cm of water. Results Compared with the B6 mice, the lpr mice showed attenuation of the neutrophilic response as measured by decreased numbers of BAL neutrophils and lung myeloperoxidase activity. Interestingly, the B6 and lpr mice had similar concentrations of pro-inflammatory cytokines, including CXCL1 (KC, and similar measurements of permeability and apoptosis. However, the B6 mice showed greater deposition of anti-KC:KC immune complexes in the lungs, as compared with the lpr mice. Conclusions We conclude that a functioning Fas/FasL system is required for full neutrophilic response to LPS in mechanically ventilated mice.

  11. Fuzzy modeling for Vitamin B12 deficiency

    NARCIS (Netherlands)

    Wilbik, A.M.; van Loon, S.L.M.; Boer, A.K.; Kaymak, U.; Scharnhorst, V.; Carvalho, J.; Lesot, M.J.; Kaymak, U.; Vieira, S.; Bouchon-Meunier, B.; Yager, R.

    2016-01-01

    Blood vitamin B12 levels are not representative for actual vitamin B12 status in tissue. Instead plasma methylmalonic acid (MMA) levels can be measured because MMA concentrations increase relatively early in the course of vitamin B12 deficiency. However, MMA levels in plasma may also be increased

  12. Trichloroethylene exposure aggravates behavioral abnormalities in mice that are deficient in superoxide dismutase.

    Science.gov (United States)

    Otsuki, Noriyuki; Homma, Takujiro; Fujiwara, Hiroki; Kaneko, Kenya; Hozumi, Yasukazu; Shichiri, Mototada; Takashima, Mizuki; Ito, Junitsu; Konno, Tasuku; Kurahashi, Toshihiro; Yoshida, Yasukazu; Goto, Kaoru; Fujii, Satoshi; Fujii, Junichi

    2016-08-01

    Trichloroethylene (TCE) has been implicated as a causative agent for Parkinson's disease (PD). The administration of TCE to rodents induces neurotoxicity associated with dopaminergic neuron death, and evidence suggests that oxidative stress as a major player in the progression of PD. Here we report on TCE-induced behavioral abnormality in mice that are deficient in superoxide dismutase 1 (SOD1). Wild-type (WT) and SOD1-deficient (Sod1(-/-)) mice were intraperitoneally administered TCE (500 mg/kg) over a period of 4 weeks. Although the TCE-administrated Sod1(-/-) mice showed marked abnormal motor behavior, no significant differences were observed among the experimental groups by biochemical and histopathological analyses. However, treating mouse neuroblastoma-derived NB2a cells with TCE resulted in the down regulation of the SOD1 protein and elevated oxidative stress under conditions where SOD1 production was suppressed. Taken together, these data indicate that SOD1 plays a pivotal role in protecting motor neuron function against TCE toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. IGF-1 deficiency impairs neurovascular coupling in mice: implications for cerebromicrovascular aging.

    Science.gov (United States)

    Toth, Peter; Tarantini, Stefano; Ashpole, Nicole M; Tucsek, Zsuzsanna; Milne, Ginger L; Valcarcel-Ares, Noa M; Menyhart, Akos; Farkas, Eszter; Sonntag, William E; Csiszar, Anna; Ungvari, Zoltan

    2015-12-01

    Aging is associated with marked deficiency in circulating IGF-1, which has been shown to contribute to age-related cognitive decline. Impairment of moment-to-moment adjustment of cerebral blood flow (CBF) via neurovascular coupling is thought to play a critical role in the genesis of age-related cognitive impairment. To establish the link between IGF-1 deficiency and cerebromicrovascular impairment, neurovascular coupling mechanisms were studied in a novel mouse model of IGF-1 deficiency (Igf1(f/f) -TBG-Cre-AAV8) and accelerated vascular aging. We found that IGF-1-deficient mice exhibit neurovascular uncoupling and show a deficit in hippocampal-dependent spatial memory test, mimicking the aging phenotype. IGF-1 deficiency significantly impaired cerebromicrovascular endothelial function decreasing NO mediation of neurovascular coupling. IGF-1 deficiency also impaired glutamate-mediated CBF responses, likely due to dysregulation of astrocytic expression of metabotropic glutamate receptors and impairing mediation of CBF responses by eicosanoid gliotransmitters. Collectively, we demonstrate that IGF-1 deficiency promotes cerebromicrovascular dysfunction and neurovascular uncoupling mimicking the aging phenotype, which are likely to contribute to cognitive impairment. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Transgenic neuronal expression of proopiomelanocortin attenuates hyperphagic response to fasting and reverses metabolic impairments in leptin-deficient obese mice.

    Science.gov (United States)

    Mizuno, Tooru M; Kelley, Kevin A; Pasinetti, Giulio M; Roberts, James L; Mobbs, Charles V

    2003-11-01

    Hypothalamic proopiomelanocortin (POMC) gene expression is reduced in many forms of obesity and diabetes, particularly in those attributable to deficiencies in leptin or its receptor. To assess the functional significance of POMC in mediating metabolic phenotypes associated with leptin deficiency, leptin-deficient mice bearing a transgene expressing the POMC gene under control of the neuron-specific enolase promoter were produced. The POMC transgene attenuated fasting-induced hyperphagia in wild-type mice. Furthermore, the POMC transgene partially reversed obesity, hyperphagia, and hypothermia and effectively normalized hyperglycemia, glucosuria, glucose intolerance, and insulin resistance in leptin-deficient mice. Effects of the POMC transgene on glucose homeostasis were independent of the partial correction of hyperphagia and obesity. Furthermore, the POMC transgene normalized the profile of hepatic and adipose gene expression associated with gluconeogenesis, glucose output, and insulin sensitivity. These results indicate that central POMC is a key modulator of glucose homeostasis and that agonists of POMC products may provide effective therapy in treating impairments in glucose homeostasis when hypothalamic POMC expression is reduced, as occurs with leptin deficiency, hypothalamic damage, and aging.

  15. Maternal Vitamin D Deficiency and Fetal Programming - Lessons Learned from Humans and Mice

    Directory of Open Access Journals (Sweden)

    Christoph Reichetzeder

    2014-09-01

    Full Text Available Background/Aims: Cardiovascular disease partially originates from poor environmental and nutritional conditions in early life. Lack of micronutrients like 25 hydroxy vitamin D3 (25OHD during pregnancy may be an important treatable causal factor. The present study explored the effect of maternal 25OHD deficiency on the offspring. Methods: We performed a prospective observational study analyzing the association of maternal 25OHD deficiency during pregnancy with birth outcomes considering confounding. To show that vitamin D deficiency may be causally involved in the observed associations, mice were set on either 25OHD sufficient or insufficient diets before and during pregnancy. Growth, glucose tolerance and mortality was analyzed in the F1 generation. Results: The clinical study showed that severe 25OHD deficiency was associated with low birth weight and low gestational age. ANCOVA models indicated that established confounding factors such as offspring sex, smoking during pregnancy and maternal BMI did not influence the impact of 25OHD on birth weight. However, there was a significant interaction between 25OHD and gestational age. Maternal 25OHD deficiency was also independently associated with low APGAR scores 5 minutes postpartum. The offspring of 25OHD deficient mice grew slower after birth, had an impaired glucose tolerance shortly after birth and an increased mortality during follow-up. Conclusions: Our study demonstrates an association between maternal 25OHD and offspring birth weight. The effect of 25OHD on birth weight seems to be mediated by vitamin D controlling gestational age. Results from an animal experiment suggest that gestational 25OHD insufficiency is causally linked to adverse pregnancy outcomes. Since birth weight and prematurity are associated with an adverse cardiovascular outcome in later life, this study emphasizes the need for novel monitoring and treatment guidelines of vitamin D deficiency during pregnancy.

  16. Dysregulation of Aldosterone Secretion in Mast Cell-Deficient Mice.

    Science.gov (United States)

    Boyer, Hadrien-Gaël; Wils, Julien; Renouf, Sylvie; Arabo, Arnaud; Duparc, Céline; Boutelet, Isabelle; Lefebvre, Hervé; Louiset, Estelle

    2017-12-01

    Resident adrenal mast cells have been shown to activate aldosterone secretion in rat and man. Especially, mast cell proliferation has been observed in adrenal tissues from patients with aldosterone-producing adrenocortical adenoma. In the present study, we show that the activity of adrenal mast cells is stimulated by low-sodium diet and correlates with aldosterone synthesis in C57BL/6 and BALB/c mice. We have also investigated the regulation of aldosterone secretion in mast cell-deficient C57BL/6 Kit W-sh/W-sh mice in comparison with wild-type C57BL/6 mice. Kit W-sh/W-sh mice submitted to normal sodium diet had basal plasma aldosterone levels similar to those observed in wild-type animals. Conversely, low-sodium diet unexpectedly induced an exaggerated aldosterone response, which seemed to result from an increase in adrenal renin and angiotensin type 1 receptor expression. Severe hyperaldosteronism was associated with an increase in systolic blood pressure and marked hypokalemia, which favored polyuria. Adrenal renin and angiotensin type 1 receptor overexpression may represent a compensatory mechanism aimed at activating aldosterone production in the absence of mast cells. Finally, C57BL/6 Kit W-sh/W-sh mice represent an unexpected animal model of primary aldosteronism, which has the particularity to be triggered by sodium restriction. © 2017 American Heart Association, Inc.

  17. Cardiac remodeling after myocardial infarction is impaired in IGF-1 deficient mice

    NARCIS (Netherlands)

    Palmen, M.; Daemen, M. J.; Bronsaer, R.; Dassen, W. R.; Zandbergen, H. R.; Kockx, M.; Smits, J. F.; van der Zee, R.; Doevendans, P. A.

    2001-01-01

    To obtain more insight in the role of IGF-1 in cardiac remodeling and function after experimental myocardial infarction. We hypothesized that cardiac remodeling is altered in IGF-1 deficient mice, which may affect cardiac function. A myocardial infarction was induced by surgical coronary artery

  18. Prevalence of Vitamin B12 and Folate Deficiencies and ...

    African Journals Online (AJOL)

    ... 2Faculty of Dentistry, International Branch, 3Department of Internal Medicine & Endocrine and ... Keywords: Vitamin B12 deficiency, Folate deficiency, Homocysteinemia, Elderly population ... gastritis, intestinal malabsorption, pancreatic.

  19. Vitamin D supplementation of initially vitamin D-deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity.

    Science.gov (United States)

    Gorman, Shelley; Buckley, Alysia G; Ling, Kak-Ming; Berry, Luke J; Fear, Vanessa S; Stick, Stephen M; Larcombe, Alexander N; Kicic, Anthony; Hart, Prue H

    2017-08-01

    In disease settings, vitamin D may be important for maintaining optimal lung epithelial integrity and suppressing inflammation, but less is known of its effects prior to disease onset. Female BALB/c dams were fed a vitamin D 3 -supplemented (2280 IU/kg, VitD + ) or nonsupplemented (0 IU/kg, VitD - ) diet from 3 weeks of age, and mated at 8 weeks of age. Male offspring were fed the same diet as their mother. Some offspring initially fed the VitD - diet were switched to a VitD + diet from 8 weeks of age (VitD -/+ ). At 12 weeks of age, signs of low-level inflammation were observed in the bronchoalveolar lavage fluid (BALF) of VitD - mice (more macrophages and neutrophils), which were suppressed by subsequent supplementation with vitamin D 3 There was no difference in the level of expression of the tight junction proteins occludin or claudin-1 in lung epithelial cells of VitD + mice compared to VitD - mice; however, claudin-1 levels were reduced when initially vitamin D-deficient mice were fed the vitamin D 3 -containing diet (VitD -/+ ). Reduced total IgM levels were detected in BALF and serum of VitD -/+ mice compared to VitD + mice. Lung mRNA levels of the vitamin D receptor (VDR) were greatest in VitD -/+ mice. Total IgG levels in BALF were greater in mice fed the vitamin D 3 -containing diet, which may be explained by increased activation of B cells in airway-draining lymph nodes. These findings suggest that supplementation of initially vitamin D-deficient mice with vitamin D 3 suppresses signs of lung inflammation but has limited effects on the epithelial integrity of the lungs. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  20. Whole-Body Vibration Mimics the Metabolic Effects of Exercise in Male Leptin Receptor-Deficient Mice.

    Science.gov (United States)

    McGee-Lawrence, Meghan E; Wenger, Karl H; Misra, Sudipta; Davis, Catherine L; Pollock, Norman K; Elsalanty, Mohammed; Ding, Kehong; Isales, Carlos M; Hamrick, Mark W; Wosiski-Kuhn, Marlena; Arounleut, Phonepasong; Mattson, Mark P; Cutler, Roy G; Yu, Jack C; Stranahan, Alexis M

    2017-05-01

    Whole-body vibration (WBV) has gained attention as a potential exercise mimetic, but direct comparisons with the metabolic effects of exercise are scarce. To determine whether WBV recapitulates the metabolic and osteogenic effects of physical activity, we exposed male wild-type (WT) and leptin receptor-deficient (db/db) mice to daily treadmill exercise (TE) or WBV for 3 months. Body weights were analyzed and compared with WT and db/db mice that remained sedentary. Glucose and insulin tolerance testing revealed comparable attenuation of hyperglycemia and insulin resistance in db/db mice following TE or WBV. Both interventions reduced body weight in db/db mice and normalized muscle fiber diameter. TE or WBV also attenuated adipocyte hypertrophy in visceral adipose tissue and reduced hepatic lipid content in db/db mice. Although the effects of leptin receptor deficiency on cortical bone structure were not eliminated by either intervention, exercise and WBV increased circulating levels of osteocalcin in db/db mice. In the context of increased serum osteocalcin, the modest effects of TE and WBV on bone geometry, mineralization, and biomechanics may reflect subtle increases in osteoblast activity in multiple areas of the skeleton. Taken together, these observations indicate that WBV recapitulates the effects of exercise on metabolism in type 2 diabetes.

  1. Vitamin E-deficiency did not exacerbate partial skin reactions in mice locally irradiated with X-rays

    International Nuclear Information System (INIS)

    Chi, C.; Hayashi, Daisuke; Nemoto, Masato; Nyui, Minako; Anzai, Kazunori; Urano, Shiro

    2011-01-01

    We previously showed that free radicals and oxidative stress are involved in radiation-induced skin reactions. Since vitamin E (VE) is a particularly important lipophilic antioxidant, VE-deficient mice were used to examine its effects on radiation-induced skin damage. The VE content of the skin was reduced to one fourth of levels of normal mice. Neither the time of onset nor the extent of the reactions quantified with a scoring system differed between normal and VE-deficient mice after local X-irradiation (50 Gy). Similarly, there was no difference in the levels of the ascorbyl radical between the groups, although they were higher in irradiated skin than non-irradiated skin. X-irradiation increased the amount of Bax protein in the skin of normal mice both in the latent and acute inflammatory stages, time- and dose-dependently. The increase was associated with an increase in cytochrome c in the cytosolic fraction, indicating that apoptosis was also promoted by the irradiation. The increase in Bax protein correlated well with the thickness of the skin. Although a deficiency in VE should lower resistance to free radicals in the mitochondrial membrane and thus enhance radiation-induced Bax expression and apoptosis, it actually attenuated the increase in Bax protein caused by irradiation. (author)

  2. Gastric emptying in patients with vitamin B{sub 12} deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Yagci, Muenci; Yamac, Kadri; Acar, Kadir; Haznedar, Rauf [Department of Hematology, Gazi Medical School (Turkey); Cingi, Elif; Kitapci, Mehmet [Department of Nuclear Medicine, Gazi Medical School (Turkey)

    2002-09-01

    The clinical presentation of patients with vitamin B{sub 12} deficiency varies in a spectrum ranging from haematological disorders to neuropsychiatric diseases. In rare cases, orthostatic hypotension, impotence, constipation and urinary retention have been attributed to autonomic nervous system dysfunction due to vitamin B{sub 12} deficiency. The aim of this study was to evaluate the effect of vitamin B{sub 12} deficiency on autonomic nervous system function by studying gastric emptying times (T{sub 1/2}). Twenty patients with newly diagnosed vitamin B{sub 12} deficiency and 12 control patients with gastritis and normal vitamin B{sub 12} levels were enrolled in this study. Gastroduodenoscopy, endoscopic biopsy, histopathological evaluation of the biopsy specimens and radionuclide gastric emptying studies were performed. After vitamin B{sub 12} replacement therapy for 3 months, radionuclide gastric emptying studies were repeated. Mean gastric emptying T{sub 1/2} in patients before and after treatment and in controls were 103.83{+-}48.80 min, 90.00{+-}17.29 min and 74.55{+-}8.52 min, respectively. The difference in mean gastric emptying T{sub 1/2} between patients before treatment and controls was statistically significant (P<0.01). The statistically significant difference persisted after vitamin B{sub 12} treatment (P<0.05), though mean gastric emptying T{sub 1/2} was somewhat shorter. There were no positive or negative correlations between gastric emptying T{sub 1/2} and the following parameters: haemoglobin, vitamin B{sub 12} level and Helicobacter pylori positivity. In conclusion, gastric emptying T{sub 1/2} was prolonged in patients with vitamin B{sub 12} deficiency and this prolongation was not corrected after vitamin B{sub 12} replacement therapy. Although autonomic nervous system dysfunction due to vitamin B{sub 12} deficiency rarely gives rise to clinical manifestations, latent dysfunction demonstrated by laboratory tests seems to be a frequent phenomenon

  3. Reducing inflammation and rescuing FTD-related behavioral deficits in progranulin-deficient mice with α7 nicotinic acetylcholine receptor agonists.

    Science.gov (United States)

    Minami, S Sakura; Shen, Vivian; Le, David; Krabbe, Grietje; Asgarov, Rustam; Perez-Celajes, Liberty; Lee, Chih-Hung; Li, Jinhe; Donnelly-Roberts, Diana; Gan, Li

    2015-10-15

    Mutations in the progranulin gene cause frontotemporal dementia (FTD), a debilitating neurodegenerative disease that involves atrophy of the frontal and temporal lobes and affects personality, behavior, and language. Progranulin-deficient mouse models of FTD exhibit deficits in compulsive and social behaviors reminiscent of patients with FTD, and develop excessive microgliosis and increased release of inflammatory cytokines. Activation of nicotinic acetylcholine receptors (nAChRs) by nicotine or specific α7 nAChR agonists reduces neuroinflammation. Here, we investigated whether activation of nAChRs by nicotine or α7 agonists improved the excessive inflammatory and behavioral phenotypes of a progranulin-deficient FTD mouse model. We found that treatment with selective α7 agonists, PHA-568487 or ABT-107, strongly suppressed the activation of NF-κB in progranulin-deficient cells. Treatment with ABT-107 also reduced microgliosis, decreased TNFα levels, and reduced compulsive behavior in progranulin-deficient mice. Collectively, these data suggest that targeting activation of the α7 nAChR pathway may be beneficial in decreasing neuroinflammation and reversing some of the behavioral deficits observed in progranulin-deficient FTD. Copyright © 2015. Published by Elsevier Inc.

  4. Na(v)1.8 channelopathy in mutant mice deficient for myelin protein zero is detrimental to motor axons

    DEFF Research Database (Denmark)

    Moldovan, Mihai; Alvarez Herrero, Susana; Pinchenko, Volodymyr

    2011-01-01

    Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe and prog......Myelin protein zero mutations were found to produce Charcot-Marie-Tooth disease phenotypes with various degrees of myelin impairment and axonal loss, ranging from the mild 'demyelinating' adult form to severe and early onset forms. Protein zero deficient homozygous mice ( ) show a severe...... and progressive dysmyelinating neuropathy from birth with compromised myelin compaction, hypomyelination and distal axonal degeneration. A previous study using immunofluorescence showed that motor nerves deficient of myelin protein zero upregulate the Na(V)1.8 voltage gated sodium channel isoform, which...... is normally present only in restricted populations of sensory axons. The aim of this study was to investigate the function of motor axons in protein zero-deficient mice with particular emphasis on ectopic Na(V)1.8 voltage gated sodium channel. We combined 'threshold tracking' excitability studies...

  5. Effect of Lowering Asymmetric Dimethylarginine (ADMA on Vascular Pathology in Atherosclerotic ApoE-Deficient Mice with Reduced Renal Mass

    Directory of Open Access Journals (Sweden)

    Johannes Jacobi

    2014-03-01

    Full Text Available The purpose of the work was to study the impact of the endogenous nitric oxide synthase (NOS inhibitor asymmetric dimethylarginine (ADMA and its degrading enzyme, dimethylarginine dimethylaminohydrolase (DDAH1, on atherosclerosis in subtotally nephrectomized (SNX ApoE-deficient mice. Male DDAH1 transgenic mice (TG, n = 39 and C57Bl/6J wild-type littermates (WT, n = 27 with or without the deletion of the ApoE gene underwent SNX at the age of eight weeks. Animals were sacrificed at 12 months of age, and blood chemistry, as well as the extent of atherosclerosis within the entire aorta were analyzed. Sham treated (no renal mass reduction ApoE-competent DDAH1 transgenic and wild-type littermates (n = 11 served as a control group. Overexpression of DDAH1 was associated with significantly lower ADMA levels in all treatment groups. Surprisingly, SNX mice did not exhibit higher ADMA levels compared to sham treated control mice. Furthermore, the degree of atherosclerosis in ApoE-deficient mice with SNX was similar in mice with or without overexpression of DDAH1. Overexpression of the ADMA degrading enzyme, DDAH1, did not ameliorate atherosclerosis in ApoE-deficient SNX mice. Furthermore, SNX in mice had no impact on ADMA levels, suggesting a minor role of this molecule in chronic kidney disease (CKD in this mouse model.

  6. The effect of iron-deficiency anemia on cytolytic activity of mice spleen and peritoneal cells against allogenic tumor cells

    International Nuclear Information System (INIS)

    Kuvibidila, S.R.; Baliga, B.S.; Suskind, R.M.

    1983-01-01

    The capacity of spleen and peritoneal cells from iron deficient mice, ad libitum fed control mice, and pair-fed mice to kill allogenic tumor cells (mastocytoma tumor P815) has been investigated. In the first study, mice were sensitized in vivo with 10(7) viable tumor cells 51 and 56 days after weaning. The capacity of splenic cells and peritoneal cells from sensitized and nonsensitized mice to kill tumor cells was evaluated 5 days after the second dose of tumor cells. At ratios of 2.5:1 to 100:1 of attacker to target cells, the percentage 51 Cr release after 4 h of incubation was significantly less in iron-deficient mice than control and/or pair-fed mice (p less than 0.05). Protein-energy undernutrition in pair-fed mice had no significant effect. In the second study, spleen cells and enriched T cell fractions were incubated in vitro for 5 days with uv irradiated Balb/C spleen cells in a 2:1 ratio. The cytotoxic capacity against the same allogenic tumor cells was again evaluated. The percentage chromium release at different attacker to target cells was less than 30% in the iron-deficient group compared to either control or pair-fed supporting the results of in vivo sensitized cells. The possible mode of impairment of the cytotoxic capacity is discussed

  7. Morphological study of tooth development in podoplanin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kenyo Takara

    Full Text Available Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.

  8. Morphological study of tooth development in podoplanin-deficient mice.

    Science.gov (United States)

    Takara, Kenyo; Maruo, Naoki; Oka, Kyoko; Kaji, Chiaki; Hatakeyama, Yuji; Sawa, Naruhiko; Kato, Yukinari; Yamashita, Junro; Kojima, Hiroshi; Sawa, Yoshihiko

    2017-01-01

    Podoplanin is a mucin-type highly O-glycosylated glycoprotein identified in several somatyic cells: podocytes, alveolar epithelial cells, lymphatic endothelial cells, lymph node stromal fibroblastic reticular cells, osteocytes, odontoblasts, mesothelial cells, glia cells, and others. It has been reported that podoplanin-RhoA interaction induces cytoskeleton relaxation and cell process stretching in fibroblastic cells and osteocytes, and that podoplanin plays a critical role in type I alveolar cell differentiation. It appears that podoplanin plays a number of different roles in contributing to cell functioning and growth by signaling. However, little is known about the functions of podoplanin in the somatic cells of the adult organism because an absence of podoplanin is lethal at birth by the respiratory failure. In this report, we investigated the tooth germ development in podoplanin-knockout mice, and the dentin formation in podoplanin-conditional knockout mice having neural crest-derived cells with deficiency in podoplanin by the Wnt1 promoter and enhancer-driven Cre recombinase: Wnt1-Cre;PdpnΔ/Δmice. In the Wnt1-Cre;PdpnΔ/Δmice, the tooth and alveolar bone showed no morphological abnormalities and grow normally, indicating that podoplanin is not critical in the development of the tooth and bone.

  9. Indomethacin induced gastropathy in CD18, intercellular adhesion molecule 1, or P-selectin deficient mice

    Science.gov (United States)

    Morise, Z; Granger, D; Fuseler, J; Anderson, D; Grisham, M

    1999-01-01

    BACKGROUND—Neutrophil-endothelial cell interactions are thought to play a critical role in the pathophysiology of non-steroidal anti-inflammatory drug (NSAID) induced gastropathy.
AIMS—To optimise a mouse model of NSAID induced gastropathy and to evaluate the importance of adhesion molecules using adhesion molecule deficient mice.
METHODS—Gastropathy was induced in C57BL/6 mice or their adhesion molecule deficient counterparts via oral administration of indomethacin (20 mg/kg). Lesion scores, mucosal permeability, and histopathology were used to assess gastric mucosal injury.
RESULTS—Intragastric administration of indomethacin induced linear haemorrhagic mucosal lesions, primarily in the corpus of the stomach that were first observed at six hours. These lesions continued to develop over the next six hours with maximal lesion scores and mucosal permeabilities at 12 hours. When indomethacin was administered to mice deficient in CD18, intercellular adhesion molecule 1 (ICAM-1), or P-selectin, there were significant decreases in lesion scores compared with their C57BL/6 controls. In addition, mucosal permeabilities were found to be significantly lower in CD18 or ICAM-1 deficient mice observed at 12 hours.
CONCLUSION—Certain leucocyte and endothelial cell adhesion molecules are important determinants for full expression of indomethacin induced gastropathy. It is proposed that this modification of the mouse model may be useful for the investigation of other pathophysiological mechanisms of NSAID induced gastropathy.


Keywords: indomethacin; gastropathy; cyclooxygenase; intercellular adhesion molecule; VCAM; vascular cell adhesion molecule; P-selectin PMID:10486359

  10. Genomic instability in mice is greater in Fanconi anemia caused by deficiency of Fancd2 than Fancg.

    Science.gov (United States)

    Reliene, Ramune; Yamamoto, Mitsuko L; Rao, P Nagesh; Schiestl, Robert H

    2010-12-01

    Fanconi anemia (FA) results from mutations in the FANC genes and is characterized by bone marrow failure, birth defects, and a high incidence of cancer. FANCG is a part of the FA core complex that is responsible for monoubiquitination of FANCD2 and FANCI. The precise role of the FA pathway is not well understood, although it may be involved in homologous recombination (HR), nonhomologous end joining, and translesion synthesis (TLS). Fancd2(-/-) mice have a more severe phenotype than Fancg(-/-), and other FA core complex-deficient mice, although both Fancg and Fancd2 belong to the same FA pathway. We hypothesized that Fancd2 deficiency results in a more severe phenotype because Fancd2 also has a FA pathway-independent function in the maintenance of genomic integrity. To test this hypothesis, we determined the level of DNA damage and genomic instability in Fancd2(-/-), Fancg(-/-), and wild-type controls. Fancd2(-/-) mice displayed a higher magnitude of chromosomal breakage and micronucleus formation than the wild-type or Fancg(-/-) mice. Also, DNA strand breaks were increased in Fancd2(-/-) but not in Fancg(-/-) mice. In addition, Fancd2(-/-) mice displayed an elevated frequency of DNA deletions, resulting from HR at the endogenous p(un) locus. In contrast, in Fancg(-/-) mice, the frequency of DNA deletions was decreased. Thus, Fancd2 but not Fancg deficiency results in elevated chromosomal/DNA breakage and permanent genome rearrangements. This provides evidence that Fancd2 plays an additional role in the maintenance of genomic stability than Fancg, which might explain the higher predisposition to cancer seen in the Fancd2(-/-) mice.

  11. Gene therapy/bone marrow transplantation in ADA-deficient mice: roles of enzyme-replacement therapy and cytoreduction

    Science.gov (United States)

    Jin, Xiangyang; Wang, Xingchao; Yu, Xiao-Jin; Rozengurt, Nora; Kaufman, Michael L.; Wang, Xiaoyan; Gjertson, David; Zhou, Yang; Blackburn, Michael R.; Kohn, Donald B.

    2012-01-01

    Gene therapy (GT) for adenosine deaminase–deficient severe combined immune deficiency (ADA-SCID) can provide significant long-term benefit when patients are given nonmyeloablative conditioning and ADA enzyme-replacement therapy (ERT) is withheld before autologous transplantation of γ-retroviral vector-transduced BM CD34+ cells. To determine the contributions of conditioning and discontinuation of ERT to the therapeutic effects, we analyzed these factors in Ada gene knockout mice (Ada−/−). Mice were transplanted with ADA-deficient marrow transduced with an ADA-expressing γ-retroviral vector without preconditioning or after 200 cGy or 900 cGy total-body irradiation and evaluated after 4 months. In all tissues analyzed, vector copy numbers (VCNs) were 100- to 1000-fold greater in mice receiving 900 cGy compared with 200 cGy (P < .05). In mice receiving 200 cGy, VCN was similar whether ERT was stopped or given for 1 or 4 months after GT. In unconditioned mice, there was decreased survival with and without ERT, and VCN was very low to undetectable. When recipients were conditioned with 200 cGy and received transduced lineage-depleted marrow, only recipients receiving ERT (1 or 4 months) had detectable vector sequences in thymocytes. In conclusion, cytoreduction is important for the engraftment of gene-transduced HSC, and short-term ERT after GT did not diminish the capacity of gene-corrected cells to engraft and persist. PMID:22833548

  12. Acute Liver Injury Is Independent of B Cells or Immunoglobulin M.

    Directory of Open Access Journals (Sweden)

    James A Richards

    Full Text Available Acute liver injury is a clinically important pathology and results in the release of Danger Associated Molecular Patterns, which initiate an immune response. Withdrawal of the injurious agent and curtailing any pathogenic secondary immune response may allow spontaneous resolution of injury. The role B cells and Immunoglobulin M (IgM play in acute liver injury is largely unknown and it was proposed that B cells and/or IgM would play a significant role in its pathogenesis.Tissue from 3 models of experimental liver injury (ischemia-reperfusion injury, concanavalin A hepatitis and paracetamol-induced liver injury and patients transplanted following paracetamol overdose were stained for evidence of IgM deposition. Mice deficient in B cells (and IgM were used to dissect out the role B cells and/or IgM played in the development or resolution of injury. Serum transfer into mice lacking IgM was used to establish the role IgM plays in injury.Significant deposition of IgM was seen in the explanted livers of patients transplanted following paracetamol overdose as well as in 3 experimental models of acute liver injury (ischemia-reperfusion injury, concanavalin A hepatitis and paracetamol-induced liver injury. Serum transfer into IgM-deficient mice failed to reconstitute injury (p = 0.66, despite successful engraftment of IgM. Mice deficient in both T and B cells (RAG1-/- mice (p<0.001, but not B cell deficient (μMT mice (p = 0.93, were significantly protected from injury. Further interrogation with T cell deficient (CD3εKO mice confirmed that the T cell component is a key mediator of sterile liver injury. Mice deficient in B cells and IgM mice did not have a significant delay in resolution following acute liver injury.IgM deposition appears to be common feature of both human and murine sterile liver injury. However, neither IgM nor B cells, play a significant role in the development of or resolution from acute liver injury. T cells appear to be key

  13. Limitations of Chromogranin A in clinical practice.

    Science.gov (United States)

    Marotta, Vincenzo; Nuzzo, Vincenzo; Ferrara, Teresa; Zuccoli, Alfonso; Masone, Milena; Nocerino, Lorenzo; Del Prete, Michela; Marciello, Francesca; Ramundo, Valeria; Lombardi, Gaetano; Vitale, Mario; Colao, Annamaria; Faggiano, Antongiulio

    2012-03-01

    Usefulness of circulating Chromogranin A (CgA) for the diagnosis of neuroendocrine tumors (NEN) is controversial. The aim of the present study was to assess the actual role of this marker as diagnostic tool. Serum blood samples were obtained from 42 subjects affected with NEN, 120 subjects affected with non-endocrine neoplasias (non-NEN) and 100 non-neoplastic subjects affected with benign nodular goitre (NNG). Determination of CgA was performed by means of immunoradiometric assay. The CgA levels among NEN-patients were not significantly different from NNG and non-NEN subjects. The Receiver operating characteristic (ROC) curves analysis failed to identify a feasible cut-off value for the differential diagnosis between NEN and the other conditions. Serum CgA is not helpful for the first-line diagnosis of NEN.

  14. Mice with Sort1 deficiency display normal cognition but elevated anxiety-like behavior.

    Science.gov (United States)

    Ruan, Chun-Sheng; Yang, Chun-Rui; Li, Jia-Yi; Luo, Hai-Yun; Bobrovskaya, Larisa; Zhou, Xin-Fu

    2016-07-01

    Exposure to stressful life events plays a central role in the development of mood disorders in vulnerable individuals. However, the mechanisms that link mood disorders to stress are poorly understood. Brain-derived neurotrophic factor (BDNF) has long been implicated in positive regulation of depression and anxiety, while its precursor (proBDNF) recently showed an opposing effect on such mental illnesses. P75(NTR) and sortilin are co-receptors of proBDNF, however, the role of these receptors in mood regulation is not established. Here, we aimed to investigate the role of sortilin in regulating mood-related behaviors and its role in the proBDNF-mediated mood abnormality in mice. We found that sortilin was up-regulated in neocortex (by 78.3%) and hippocampus (by 111%) of chronically stressed mice as assessed by western blot analysis. These changes were associated with decreased mobility in the open field test and increased depression-like behavior in the forced swimming test. We also found that sortilin deficiency in mice resulted in hyperlocomotion in the open field test and increased anxiety-like behavior in both the open field and elevated plus maze tests. No depression-like behavior in the forced swimming test and no deficit in spatial cognition in the Morris water maze test were found in the Sort1-deficient mice. Moreover, the intracellular and extracellular levels of mature BDNF and proBDNF were not changed when sortilin was absent in vivo and in vitro. Finally, we found that both WT and Sort1-deficient mice injected with proBDNF in lateral ventricle displayed increased depression-like behavior in the forced swimming test but not anxiety-like behaviors in the open field and elevated plus maze tests. The present study suggests that sortilin functions as a negative regulator of mood performance and can be a therapeutic target for the treatment of mental illness. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  15. Transient impairment of the adaptive response to fasting in FXR-deficient mice

    NARCIS (Netherlands)

    Cariou, B; van Harmelen, K; Duran-Sandoval, D; van Dijk, T; Grefhorst, A; Bouchaert, E; Fruchart, JC; Gonzalez, FJ; Kuipers, F; Staels, B

    2005-01-01

    The farnesoid X receptor (FXR) has been suggested to play a role in gluconeogenesis. To determine whether FXR modulates the response to fasting in vivo, FXR-deficient (FXR-/-) and wild-type mice were submitted to fasting for 48 h. Our results demonstrate that FXR modulates the kinetics of

  16. Impaired Coronary and Renal Vascular Function in Spontaneously Type 2 Diabetic Leptin-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Helena U Westergren

    Full Text Available Type 2 diabetes is associated with macro- and microvascular complications in man. Microvascular dysfunction affects both cardiac and renal function and is now recognized as a main driver of cardiovascular mortality and morbidity. However, progression of microvascular dysfunction in experimental models is often obscured by macrovascular pathology and consequently demanding to study. The obese type 2 diabetic leptin-deficient (ob/ob mouse lacks macrovascular complications, i.e. occlusive atherosclerotic disease, and may therefore be a potential model for microvascular dysfunction. The present study aimed to test the hypothesis that these mice with an insulin resistant phenotype might display microvascular dysfunction in both coronary and renal vascular beds.In this study we used non-invasive Doppler ultrasound imaging to characterize microvascular dysfunction during the progression of diabetes in ob/ob mice. Impaired coronary flow velocity reserve was observed in the ob/ob mice at 16 and 21 weeks of age compared to lean controls. In addition, renal resistivity index as well as pulsatility index was higher in the ob/ob mice at 21 weeks compared to lean controls. Moreover, plasma L-arginine was lower in ob/ob mice, while asymmetric dimethylarginine was unaltered. Furthermore, a decrease in renal vascular density was observed in the ob/ob mice.In parallel to previously described metabolic disturbances, the leptin-deficient ob/ob mice also display cardiac and renal microvascular dysfunction. This model may therefore be suitable for translational, mechanistic and interventional studies to improve the understanding of microvascular complications in type 2 diabetes.

  17. Treatment with N- and C-Terminal Peptides of Parathyroid Hormone-Related Protein Partly Compensate the Skeletal Abnormalities in IGF-I Deficient Mice

    Science.gov (United States)

    Portal-Núñez, Sergio; Murillo-Cuesta, Silvia; Lozano, Daniel; Cediel, Rafael; Esbrit, Pedro

    2014-01-01

    Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1–36) and PTHrP (107–111) (osteostatin) to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 µg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and 3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/receptor activator of NF-κB ligand ratio, Wnt3a , cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1–36) and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1–36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone. PMID:24503961

  18. OCD-like behavior is caused by dysfunction of thalamo-amygdala circuits and upregulated TrkB/ERK-MAPK signaling as a result of SPRED2 deficiency.

    Science.gov (United States)

    Ullrich, M; Weber, M; Post, A M; Popp, S; Grein, J; Zechner, M; Guerrero González, H; Kreis, A; Schmitt, A G; Üçeyler, N; Lesch, K-P; Schuh, K

    2018-02-01

    Obsessive-compulsive disorder (OCD) is a common neuropsychiatric disease affecting about 2% of the general population. It is characterized by persistent intrusive thoughts and repetitive ritualized behaviors. While gene variations, malfunction of cortico-striato-thalamo-cortical (CSTC) circuits, and dysregulated synaptic transmission have been implicated in the pathogenesis of OCD, the underlying mechanisms remain largely unknown. Here we show that OCD-like behavior in mice is caused by deficiency of SPRED2, a protein expressed in various brain regions and a potent inhibitor of Ras/ERK-MAPK signaling. Excessive self-grooming, reflecting OCD-like behavior in rodents, resulted in facial skin lesions in SPRED2 knockout (KO) mice. This was alleviated by treatment with the selective serotonin reuptake inhibitor fluoxetine. In addition to the previously suggested involvement of cortico-striatal circuits, electrophysiological measurements revealed altered transmission at thalamo-amygdala synapses and morphological differences in lateral amygdala neurons of SPRED2 KO mice. Changes in synaptic function were accompanied by dysregulated expression of various pre- and postsynaptic proteins in the amygdala. This was a result of altered gene transcription and triggered upstream by upregulated tropomyosin receptor kinase B (TrkB)/ERK-MAPK signaling in the amygdala of SPRED2 KO mice. Pathway overactivation was mediated by increased activity of TrkB, Ras, and ERK as a specific result of SPRED2 deficiency and not elicited by elevated brain-derived neurotrophic factor levels. Using the MEK inhibitor selumetinib, we suppressed TrkB/ERK-MAPK pathway activity in vivo and reduced OCD-like grooming in SPRED2 KO mice. Altogether, this study identifies SPRED2 as a promising new regulator, TrkB/ERK-MAPK signaling as a novel mediating mechanism, and thalamo-amygdala synapses as critical circuitry involved in the pathogenesis of OCD.

  19. [Effect of extracts from Dendrobii ifficinalis flos on hyperthyroidism Yin deficiency mice].

    Science.gov (United States)

    Lei, Shan-shan; Lv, Gui-yuan; Jin, Ze-wu; Li, Bo; Yang, Zheng-biao; Chen, Su-hong

    2015-05-01

    Some unhealthy life habits, such as long-term smoking, heavy drinking, sexual overstrain and frequent stay-up could induce the Yin deficiency symptoms of zygomatic red and dysphoria. Stems of Dendrobii officinalis flos (DOF) showed the efficacy of nourishing Yin. In this study, the hyperthyroidism Yin deficiency model was set up to study the yin nourishing effect and action mechanism of DOF, in order to provide the pharmacological basis for developing DOF resources and decreasing resource wastes. ICR mice were divided into five groups: the normal control group, the model control group, the positive control group and DOF extract groups (6.4 g · kg(-1)). Except for the normal group, the other groups were administrated with thyroxine for 30 d to set up the hyperthyroidism yin deficiency model. At the same time, the other groups were administrated with the corresponding drugs for 30 d. After administration for 4 weeks, the signs (facial temperature, pain domain, heart rate and autonomic activity) in mice were measured, and the facial and ear micro-circulation blood flow were detected by laser Doppler technology. After the last administration, all mice were fasted for 12 hours, blood were collected from their orbits, and serum were separated to detect AST, ALT, TG and TP by the automatic biochemistry analyzer and test T3, T4 and TSH levels by ELISA. (1) Compared with the normal control group, the model control group showed significant increases in facial and ear micro-circulation blood flow, facial temperature and heart rate (P effects by impacting thyroxin substance metabolism, improving micro-circulation and reducing heart rate.

  20. Suppressive effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Natsume, Midori; Baba, Seigo

    2014-01-01

    Previous studies in humans have shown that the cacao polyphenols, (-)-epicatechin and its oligomers, prevent in vitro and ex vivo low-density lipoprotein oxidation mediated by free radical generators and metal ions and also reduce plasma LDL-cholesterol levels. The aim of this study was to examine the effects of cacao polyphenols on the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice. Mice aged 8 weeks (n = 90) were randomized into three groups, and fed either normal mouse chow (controls) or chow supplemented with 0.25 or 0.40 % cacao polyphenols for 16 weeks. The mean plaque area in cross-sections of the brachiocephalic trunk was measured and found to be lower in the 0.25 % cacao polyphenol group than in the control group (p cacao polyphenol group (p cacao polyphenols inhibit the development of atherosclerosis in apolipoprotein E-deficient (-/-) mice by reducing oxidative stress and inflammatory responses.

  1. Aromatase deficiency causes altered expression of molecules critical for calcium reabsorption in the kidneys of female mice *.

    NARCIS (Netherlands)

    Oz, O.K.; Hajibeigi, A.; Howard, K.; Cummins, C.L.; Abel, M. van; Bindels, R.J.M.; Word, R.A.; Kuro-o, M.; Pak, C.Y.; Zerwekh, J.E.

    2007-01-01

    Kidney stones increase after menopause, suggesting a role for estrogen deficiency. ArKO mice have hypercalciuria and lower levels of calcium transport proteins, whereas levels of the klotho protein are elevated. Thus, estrogen deficiency is sufficient to cause altered renal calcium handling.

  2. Mechanical Vibration Mitigates the Decrease of Bone Quantity and Bone Quality of Leptin Receptor-Deficient Db/Db Mice by Promoting Bone Formation and Inhibiting Bone Resorption.

    Science.gov (United States)

    Jing, Da; Luo, Erping; Cai, Jing; Tong, Shichao; Zhai, Mingming; Shen, Guanghao; Wang, Xin; Luo, Zhuojing

    2016-09-01

    Leptin, a major hormonal product of adipocytes, is involved in regulating appetite and energy metabolism. Substantial studies have revealed the anabolic actions of leptin on skeletons and bone cells both in vivo and in vitro. Growing evidence has substantiated that leptin receptor-deficient db/db mice exhibit decreased bone mass and impaired bone microstructure despite several conflicting results previously reported. We herein systematically investigated bone microarchitecture, mechanical strength, bone turnover and its potential molecular mechanisms in db/db mice. More importantly, we also explored an effective approach for increasing bone mass in leptin receptor-deficient animals in an easy and noninvasive manner. Our results show that deterioration of trabecular and cortical bone microarchitecture and decreases of skeletal mechanical strength-including maximum load, yield load, stiffness, energy, tissue-level modulus and hardness-in db/db mice were significantly ameliorated by 12-week, whole-body vibration (WBV) with 0.5 g, 45 Hz via micro-computed tomography (μCT), three-point bending, and nanoindentation examinations. Serum biochemical analysis shows that WBV significantly decreased serum tartrate-resistant acid phosphatase 5b (TRACP5b) and CTx-1 levels and also mitigated the reduction of serum osteocalcin (OCN) in db/db mice. Bone histomorphometric analysis confirmed that decreased bone formation-lower mineral apposition rate, bone formation rate, and osteoblast numbers in cancellous bone-in db/db mice were suppressed by WBV. Real-time PCR assays show that WBV mitigated the reductions of tibial alkaline phosphatase (ALP), OCN, Runt-related transcription factor 2 (RUNX2), type I collagen (COL1), BMP2, Wnt3a, Lrp6, and β-catenin mRNA expression, and prevented the increases of tibial sclerostin (SOST), RANK, RANKL, RANL/osteoprotegerin (OPG) gene levels in db/db mice. Our results show that WBV promoted bone quantity and quality in db/db mice with obvious

  3. Myeloid differentiation factor 88 (MyD88-deficiency increases risk of diabetes in mice.

    Directory of Open Access Journals (Sweden)

    Toru Hosoi

    Full Text Available BACKGROUND: Multiple lines of evidence suggest innate immune response pathways to be involved in the development of obesity-associated diabetes although the molecular mechanism underling the disease is unknown. Recent observations suggest that saturated fatty acids can act as a ligand for toll-like receptor (TLR 4, which is thought to mediate obesity-associated insulin resistance. Myeloid differentiation factor 88 (MyD88 is an adapter protein for TLR/IL-1 receptor signaling, which is involved in the activation of inflammatory pathways. To evaluate molecular mechanisms linking obesity-associated diabetes down-stream of TLR4, we investigated physiological role of MyD88 in high-fat diet (HFD-induced obesity. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we found MyD88-deficient mice fed a HFD had increased circulating levels of insulin, leptin and cholesterol, as well as liver dysfunction (increased induction of ALT levels, increased activation of JNK and cleavage of PARP, which were linked to the onset of severe diabetes. On the other hand, TNF-alpha would not be involved in HFD-induced diabetes in MyD88-deficient mice, because TNF-alpha level was attenuated in MyD88-deficient mice fed with HFD. CONCLUSIONS/SIGNIFICANCE: The present finding of an unexpected role for MyD88 in preventing diabetes may provide a potential novel target/strategy for treating metabolic syndrome.

  4. The role of CD4+ T cells in cell-mediated immunity to LCMV: studies in MHC class I and class II deficient mice

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Marker, O; Thomsen, Allan Randrup

    1994-01-01

    Parameters of the virus-specific T-cell response were analysed in order to dissect the contribution of CD4+ and CD8+ T cells to cell-mediated immunity to lymphocytic choriomeningitis virus. In MHC class II deficient mice, initial T-cell responsiveness was not impaired, but virus clearance...... was delayed, and virus-specific Td activity declined more rapidly. Furthermore, class I restricted Tc memory appeared to be impaired in these mice. To directly evaluate the role of CD4+ cells in virus clearance and T-cell mediated inflammation, MHC class I deficient mice were also studied. No virus...... exudate. This low-grade response was associated with some degree of virus control as organ titres were lower in these animals than in matched T-cell deficient nu/nu mice or class I deficient mice treated with anti-CD4 monoclonal antibody. This confirms that CD4+ cells are not needed to induce a virus...

  5. GPR40/FFAR1 deficient mice increase noradrenaline levels in the brain and exhibit abnormal behavior.

    Science.gov (United States)

    Aizawa, Fuka; Nishinaka, Takashi; Yamashita, Takuya; Nakamoto, Kazuo; Kurihara, Takashi; Hirasawa, Akira; Kasuya, Fumiyo; Miyata, Atsuro; Tokuyama, Shogo

    2016-12-01

    The free fatty acid receptor 1 (GPR40/FFAR1) is a G protein-coupled receptor, which is activated by long chain fatty acids. We have previously demonstrated that activation of brain GPR40/FFAR1 exerts an antinociceptive effect that is mediated by the modulation of the descending pain control system. However, it is unclear whether brain GPR40/FFAR1 contributes to emotional function. In this study, we investigated the involvement of GPR40/FFAR1 in emotional behavior using GPR40/FFAR1 deficient (knockout, KO) mice. The emotional behavior in wild and KO male mice was evaluated at 9-10 weeks of age by the elevated plus-maze test, open field test, social interaction test, and sucrose preference test. Brain monoamines levels were measured using LC-MS/MS. The elevated plus-maze test and open field tests revealed that the KO mice reduced anxiety-like behavior. There were no differences in locomotor activity or social behavior between the wild and KO mice. In the sucrose preference test, the KO mice showed reduction in sucrose preference and intake. The level of noradrenaline was higher in the hippocampus, medulla oblongata, hypothalamus and midbrain of KO mice. Therefore, these results suggest that brain GPR40/FFAR1 is associated with anxiety- and depression-related behavior regulated by the increment of noradrenaline in the brain. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  6. Cartilage oligomeric matrix protein deficiency promotes early onset and the chronic development of collagen-induced arthritis

    DEFF Research Database (Denmark)

    Geng, Hui; Carlsen, Stefan; Nandakumar, Kutty

    2008-01-01

    ABSTRACT: INTRODUCTION: Cartilage oligomeric matrix protein (COMP) is a homopentameric protein in cartilage. The development of arthritis, like collagen-induced arthritis (CIA), involves cartilage as a target tissue. We have investigated the development of CIA in COMP-deficient mice. METHODS: COMP......-deficient mice in the 129/Sv background were backcrossed for 10 generations against B10.Q mice, which are susceptible to chronic CIA. COMP-deficient and wild-type mice were tested for onset, incidence, and severity of arthritis in both the collagen and collagen antibody-induced arthritis models. Serum anti......-collagen II and anti-COMP antibodies as well as serum COMP levels in arthritic and wild-type mice were measured by enzyme-linked immunosorbent assay. RESULTS: COMP-deficient mice showed a significant early onset and increase in the severity of CIA in the chronic phase, whereas collagen II-antibody titers were...

  7. Impact of PACAP and PAC1 receptor deficiency on the neurochemical and behavioral effects of acute and chronic restraint stress in male C57BL/6 mice.

    Science.gov (United States)

    Mustafa, Tomris; Jiang, Sunny Zhihong; Eiden, Adrian M; Weihe, Eberhard; Thistlethwaite, Ian; Eiden, Lee E

    2015-01-01

    Acute restraint stress (ARS) for 3 h causes corticosterone (CORT) elevation in venous blood, which is accompanied by Fos up-regulation in the paraventricular nucleus (PVN) of male C57BL/6 mice. CORT elevation by ARS is attenuated in PACAP-deficient mice, but unaffected in PAC1-deficient mice. Correspondingly, Fos up-regulation by ARS is greatly attenuated in PACAP-deficient mice, but much less so in PAC1-deficient animals. We noted that both PACAP- and PAC1-deficiency greatly attenuate CORT elevation after ARS when CORT measurements are performed on trunk blood following euthanasia by abrupt cervical separation: this latter observation is of critical importance in assessing the role of PACAP neurotransmission in ARS, based on previous reports in which serum CORT was sampled from trunk blood. Seven days of chronic restraint stress (CRS) induces non-habituating CORT elevation, and weight loss consequent to hypophagia, in wild-type male C57BL/6 mice. Both CORT elevation and weight loss following 7-day CRS are severely blunted in PACAP-deficient mice, but only slightly in PAC1-deficient mice. However, longer periods of daily restraint (14-21 days) resulted in sustained weight loss and elevated CORT in wild-type mice, and these effects of long-term chronic stress were attenuated or abolished in both PACAP- and PAC1-deficient mice. We conclude that while a PACAP receptor in addition to PAC1 may mediate some of the PACAP-dependent central effects of ARS and short-term (7 days) CRS.

  8. The transport of triglycerides through the secretory pathway of hepatocytes is impaired in apolipoprotein E deficient mice.

    NARCIS (Netherlands)

    Mensenkamp, A.R.; Luyn, M.J.A. van; Havinga, R.; Teusink, B.; Waterman, I.J.; Mann, C.J.; Elzinga, B.M.; Verkade, H.J.; Zammit, V.A.; Havekes, L.M.; Shoulders, C.C.; Kuipers, F.

    2004-01-01

    BACKGROUND/AIMS: Apolipoprotein E (apoE)-deficient mice develop hepatic steatosis and secrete reduced levels of VLDL-TG. METHODS AND RESULTS: We examined the effects of apoE-deficiency on intracellular lipid homeostasis and secretion of triglycerides (TG). We show that intracellular TG turnover and

  9. The transport of triglycerides through the secretory pathway of hepatocytes is impaired in apolipoprotein E deficient mice

    NARCIS (Netherlands)

    Mensenkamp, AR; van Luyn, MJA; Havinga, R; Teusink, B; Waterman, IJ; Mann, CJ; Elzinga, BM; Verkade, HJ; Zammit, VA; Havekes, LM; Shoulders, CC; Kuipers, F

    Background/Aims: Apolipoprotein E (apoE)-deficient mice develop hepatic steatosis and secrete reduced levels of VLDL-TG. Methods and results: We examined the effects of apoE-deficiency on intracellular lipid homeostasis and secretion of triglycerides (TG). We show that intracellular TG turnover and

  10. Impaired LDL receptor-related protein 1 translocation correlates with improved dyslipidemia and atherosclerosis in apoE-deficient mice.

    Directory of Open Access Journals (Sweden)

    Philip L S M Gordts

    Full Text Available OBJECTIVE: Determination of the in vivo significance of LDL receptor-related protein 1 (LRP1 dysfunction on lipid metabolism and atherosclerosis development in absence of its main ligand apoE. METHODS AND RESULTS: LRP1 knock-in mice carrying an inactivating mutation in the NPxYxxL motif were crossed with apoE-deficient mice. In the absence of apoE, relative to LRP1 wild-type animals, LRP1 mutated mice showed an increased clearance of postprandial lipids despite a compromised LRP1 endocytosis rate and inefficient insulin-mediated translocation of the receptor to the plasma membrane, likely due to inefficient slow recycling of the mutated receptor. Postprandial lipoprotein improvement was explained by increased hepatic clearance of triglyceride-rich remnant lipoproteins and accompanied by a compensatory 1.6-fold upregulation of LDLR expression in hepatocytes. One year-old apoE-deficient mice having the dysfunctional LRP1 revealed a 3-fold decrease in spontaneous atherosclerosis development and a 2-fold reduction in LDL-cholesterol levels. CONCLUSION: These findings demonstrate that the NPxYxxL motif in LRP1 is important for insulin-mediated translocation and slow perinuclear endosomal recycling. These LRP1 impairments correlated with reduced atherogenesis and cholesterol levels in apoE-deficient mice, likely via compensatory LDLR upregulation.

  11. Effects of Vector Backbone and Pseudotype on Lentiviral Vector-mediated Gene Transfer: Studies in Infant ADA-Deficient Mice and Rhesus Monkeys

    Science.gov (United States)

    Carbonaro Sarracino, Denise; Tarantal, Alice F; Lee, C Chang I.; Martinez, Michele; Jin, Xiangyang; Wang, Xiaoyan; Hardee, Cinnamon L; Geiger, Sabine; Kahl, Christoph A; Kohn, Donald B

    2014-01-01

    Systemic delivery of a lentiviral vector carrying a therapeutic gene represents a new treatment for monogenic disease. Previously, we have shown that transfer of the adenosine deaminase (ADA) cDNA in vivo rescues the lethal phenotype and reconstitutes immune function in ADA-deficient mice. In order to translate this approach to ADA-deficient severe combined immune deficiency patients, neonatal ADA-deficient mice and newborn rhesus monkeys were treated with species-matched and mismatched vectors and pseudotypes. We compared gene delivery by the HIV-1-based vector to murine γ-retroviral vectors pseudotyped with vesicular stomatitis virus-glycoprotein or murine retroviral envelopes in ADA-deficient mice. The vesicular stomatitis virus-glycoprotein pseudotyped lentiviral vectors had the highest titer and resulted in the highest vector copy number in multiple tissues, particularly liver and lung. In monkeys, HIV-1 or simian immunodeficiency virus vectors resulted in similar biodistribution in most tissues including bone marrow, spleen, liver, and lung. Simian immunodeficiency virus pseudotyped with the gibbon ape leukemia virus envelope produced 10- to 30-fold lower titers than the vesicular stomatitis virus-glycoprotein pseudotype, but had a similar tissue biodistribution and similar copy number in blood cells. The relative copy numbers achieved in mice and monkeys were similar when adjusted to the administered dose per kg. These results suggest that this approach can be scaled-up to clinical levels for treatment of ADA-deficient severe combined immune deficiency subjects with suboptimal hematopoietic stem cell transplantation options. PMID:24925206

  12. Effects of vector backbone and pseudotype on lentiviral vector-mediated gene transfer: studies in infant ADA-deficient mice and rhesus monkeys.

    Science.gov (United States)

    Carbonaro Sarracino, Denise; Tarantal, Alice F; Lee, C Chang I; Martinez, Michele; Jin, Xiangyang; Wang, Xiaoyan; Hardee, Cinnamon L; Geiger, Sabine; Kahl, Christoph A; Kohn, Donald B

    2014-10-01

    Systemic delivery of a lentiviral vector carrying a therapeutic gene represents a new treatment for monogenic disease. Previously, we have shown that transfer of the adenosine deaminase (ADA) cDNA in vivo rescues the lethal phenotype and reconstitutes immune function in ADA-deficient mice. In order to translate this approach to ADA-deficient severe combined immune deficiency patients, neonatal ADA-deficient mice and newborn rhesus monkeys were treated with species-matched and mismatched vectors and pseudotypes. We compared gene delivery by the HIV-1-based vector to murine γ-retroviral vectors pseudotyped with vesicular stomatitis virus-glycoprotein or murine retroviral envelopes in ADA-deficient mice. The vesicular stomatitis virus-glycoprotein pseudotyped lentiviral vectors had the highest titer and resulted in the highest vector copy number in multiple tissues, particularly liver and lung. In monkeys, HIV-1 or simian immunodeficiency virus vectors resulted in similar biodistribution in most tissues including bone marrow, spleen, liver, and lung. Simian immunodeficiency virus pseudotyped with the gibbon ape leukemia virus envelope produced 10- to 30-fold lower titers than the vesicular stomatitis virus-glycoprotein pseudotype, but had a similar tissue biodistribution and similar copy number in blood cells. The relative copy numbers achieved in mice and monkeys were similar when adjusted to the administered dose per kg. These results suggest that this approach can be scaled-up to clinical levels for treatment of ADA-deficient severe combined immune deficiency subjects with suboptimal hematopoietic stem cell transplantation options.

  13. Remodeling of Sensorimotor Brain Connectivity in Gpr88-Deficient Mice.

    Science.gov (United States)

    Arefin, Tanzil Mahmud; Mechling, Anna E; Meirsman, Aura Carole; Bienert, Thomas; Hübner, Neele Saskia; Lee, Hsu-Lei; Ben Hamida, Sami; Ehrlich, Aliza; Roquet, Dan; Hennig, Jürgen; von Elverfeldt, Dominik; Kieffer, Brigitte Lina; Harsan, Laura-Adela

    2017-10-01

    Recent studies have demonstrated that orchestrated gene activity and expression support synchronous activity of brain networks. However, there is a paucity of information on the consequences of single gene function on overall brain functional organization and connectivity and how this translates at the behavioral level. In this study, we combined mouse mutagenesis with functional and structural magnetic resonance imaging (MRI) to determine whether targeted inactivation of a single gene would modify whole-brain connectivity in live animals. The targeted gene encodes GPR88 (G protein-coupled receptor 88), an orphan G protein-coupled receptor enriched in the striatum and previously linked to behavioral traits relevant to neuropsychiatric disorders. Connectivity analysis of Gpr88-deficient mice revealed extensive remodeling of intracortical and cortico-subcortical networks. Most prominent modifications were observed at the level of retrosplenial cortex connectivity, central to the default mode network (DMN) whose alteration is considered a hallmark of many psychiatric conditions. Next, somatosensory and motor cortical networks were most affected. These modifications directly relate to sensorimotor gating deficiency reported in mutant animals and also likely underlie their hyperactivity phenotype. Finally, we identified alterations within hippocampal and dorsal striatum functional connectivity, most relevant to a specific learning deficit that we previously reported in Gpr88 -/- animals. In addition, amygdala connectivity with cortex and striatum was weakened, perhaps underlying the risk-taking behavior of these animals. This is the first evidence demonstrating that GPR88 activity shapes the mouse brain functional and structural connectome. The concordance between connectivity alterations and behavior deficits observed in Gpr88-deficient mice suggests a role for GPR88 in brain communication.

  14. Truncated recombinant human SP-D attenuates emphysema and type II cell changes in SP-D deficient mice

    Directory of Open Access Journals (Sweden)

    Mühlfeld Christian

    2007-10-01

    Full Text Available Abstract Background Surfactant protein D (SP-D deficient mice develop emphysema-like pathology associated with focal accumulations of foamy alveolar macrophages, an excess of surfactant phospholipids in the alveolar space and both hypertrophy and hyperplasia of alveolar type II cells. These findings are associated with a chronic inflammatory state. Treatment of SP-D deficient mice with a truncated recombinant fragment of human SP-D (rfhSP-D has been shown to decrease the lipidosis and alveolar macrophage accumulation as well as production of proinflammatory chemokines. The aim of this study was to investigate if rfhSP-D treatment reduces the structural abnormalities in parenchymal architecture and type II cells characteristic of SP-D deficiency. Methods SP-D knock-out mice, aged 3 weeks, 6 weeks and 9 weeks were treated with rfhSP-D for 9, 6 and 3 weeks, respectively. All mice were sacrificed at age 12 weeks and compared to both PBS treated SP-D deficient and wild-type groups. Lung structure was quantified by design-based stereology at the light and electron microscopic level. Emphasis was put on quantification of emphysema, type II cell changes and intracellular surfactant. Data were analysed with two sided non-parametric Mann-Whitney U-test. Main Results After 3 weeks of treatment, alveolar number was higher and mean alveolar size was smaller compared to saline-treated SP-D knock-out controls. There was no significant difference concerning these indices of pulmonary emphysema within rfhSP-D treated groups. Type II cell number and size were smaller as a consequence of treatment. The total volume of lamellar bodies per type II cell and per lung was smaller after 6 weeks of treatment. Conclusion Treatment of SP-D deficient mice with rfhSP-D leads to a reduction in the degree of emphysema and a correction of type II cell hyperplasia and hypertrophy. This supports the concept that rfhSP-D might become a therapeutic option in diseases that are

  15. Early-Life Persistent Vitamin D Deficiency Alters Cardiopulmonary Responses to Particulate Matter-Enhanced Atmospheric Smog in Adult Mice

    Science.gov (United States)

    This study demonstrates that early-life persistent vitamin D deficiency alters the cardiopulmonary response to smog in mice and may increase risk of adverse effects. Early life nutritional deficiencies can lead to increased cardiovascular susceptibility to environme...

  16. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    Directory of Open Access Journals (Sweden)

    C.V. Araújo

    2015-06-01

    Full Text Available Apolipoprotein E (APOE=gene, apoE=protein is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE-/- and wild-type (APOE+/+ C57BL6J male and female mice (N=86 were given either Ala-Gln (100 mM or phosphate buffered saline (PBS by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU challenge (450 mg/kg, via intraperitoneal injection. Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1 and B-cell lymphoma 2 (Bcl-2 intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001 in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05 were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE-/- mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE+/+ mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE-/--challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU challenge.

  17. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    Energy Technology Data Exchange (ETDEWEB)

    Araújo, C.V. [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Lazzarotto, C.R. [Laboratório de Biologia Molecular e do Desenvolvimento, Universidade de Fortaleza, Fortaleza, CE (Brazil); Aquino, C.C.; Figueiredo, I.L.; Costa, T.B.; Oliveira Alves, L.A. de [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Ribeiro, R.A. [Laboratório da Inflamação e Câncer, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Bertolini, L.R. [Laboratório de Biologia Molecular e do Desenvolvimento, Universidade de Fortaleza, Fortaleza, CE (Brazil); Lima, A.A.M. [Laboratório de Doenças Infecciosas, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Brito, G.A.C. [Laboratório da Inflamação e Câncer, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil); Oriá, R.B. [Laboratório da Biologia da Cicatrização, Ontogenia e Nutrição de Tecidos, INCT - Instituto de Biomedicina do Semiárido Brasileiro, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE (Brazil)

    2015-04-28

    Apolipoprotein E (APOE=gene, apoE=protein) is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln) treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE{sup -/-}) and wild-type (APOE{sup +/+}) C57BL6J male and female mice (N=86) were given either Ala-Gln (100 mM) or phosphate buffered saline (PBS) by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU) challenge (450 mg/kg, via intraperitoneal injection). Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1) and B-cell lymphoma 2 (Bcl-2) intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001) in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05) were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE{sup -/-} mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE{sup +/+} mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE{sup -/-}-challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU

  18. Alanyl-glutamine attenuates 5-fluorouracil-induced intestinal mucositis in apolipoprotein E-deficient mice

    International Nuclear Information System (INIS)

    Araújo, C.V.; Lazzarotto, C.R.; Aquino, C.C.; Figueiredo, I.L.; Costa, T.B.; Oliveira Alves, L.A. de; Ribeiro, R.A.; Bertolini, L.R.; Lima, A.A.M.; Brito, G.A.C.; Oriá, R.B.

    2015-01-01

    Apolipoprotein E (APOE=gene, apoE=protein) is a known factor regulating the inflammatory response that may have regenerative effects during tissue recovery from injury. We investigated whether apoE deficiency reduces the healing effect of alanyl-glutamine (Ala-Gln) treatment, a recognized gut-trophic nutrient, during tissue recovery after 5-FU-induced intestinal mucositis. APOE-knockout (APOE -/- ) and wild-type (APOE +/+ ) C57BL6J male and female mice (N=86) were given either Ala-Gln (100 mM) or phosphate buffered saline (PBS) by gavage 3 days before and 5 days after a 5-fluorouracil (5-FU) challenge (450 mg/kg, via intraperitoneal injection). Mouse body weight was monitored daily. The 5-FU cytotoxic effect was evaluated by leukometry. Intestinal villus height, villus/crypt ratio, and villin expression were monitored to assess recovery of the intestinal absorptive surface area. Crypt length, mitotic, apoptotic, and necrotic crypt indexes, and quantitative real-time PCR for insulin-like growth factor-1 (IGF-1) and B-cell lymphoma 2 (Bcl-2) intestinal mRNA transcripts were used to evaluate intestinal epithelial cell turnover. 5-FU challenge caused significant weight loss and leukopenia (P<0.001) in both mouse strains, which was not improved by Ala-Gln. Villus blunting, crypt hyperplasia, and reduced villus/crypt ratio (P<0.05) were found in all 5-FU-challenged mice but not in PBS controls. Ala-Gln improved villus/crypt ratio, crypt length and mitotic index in all challenged mice, compared with PBS controls. Ala-Gln improved villus height only in APOE -/- mice. Crypt cell apoptosis and necrotic scores were increased in all mice challenged by 5-FU, compared with untreated controls. Those scores were significantly lower in Ala-Gln-treated APOE +/+ mice than in controls. Bcl-2 and IGF-1 mRNA transcripts were reduced only in the APOE -/- -challenged mice. Altogether our findings suggest APOE-independent Ala-Gln regenerative effects after 5-FU challenge

  19. Amplification of EDHF-type vasodilatations in TRPC1-deficient mice

    DEFF Research Database (Denmark)

    Schmidt, Kjestine; Dubrovska, Galyna; Nielsen, Gorm

    2010-01-01

    -deficient mice (TRPC1-/-). Experimental approach. Vascular responses were studied using pressure/wire-myography and intravital microscopy. We performed electrophysiological measurements, and confocal Ca(2+) imaging for studying K(Ca)-channel functions and Ca(2+)sparks. Key results. TRPC1-deficiency...... in carotid arteries produced a twofold augmentation of TRAM-34- and UCL1684-sensitive EDHF-type vasodilatations and of endothelial hyperpolarization to acetylcholine. NO-mediated vasodilatations were unchanged. TRPC1-/- exhibited enhanced EDHF-type vasodilatations in resistance-sized arterioles in vivo...... associated with reduced spontaneous tone. Endothelial IK(Ca)/SK(Ca)-type K(Ca) currents, smooth muscle cell Ca(2+) sparks and associated BK(Ca)-mediated spontaneous transient outward currents (STOC) were unchanged in TRPC1-/-. Smooth muscle contractility induced by receptor-operated Ca(2+) influx or Ca(2...

  20. Thymidine kinase 2 deficiency-induced mitochondrial DNA depletion causes abnormal development of adipose tissues and adipokine levels in mice.

    Directory of Open Access Journals (Sweden)

    Joan Villarroya

    Full Text Available Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT and brown (BAT adipose tissues in thymidine kinase 2 (Tk2 H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues.

  1. Thymidine kinase 2 deficiency-induced mitochondrial DNA depletion causes abnormal development of adipose tissues and adipokine levels in mice.

    Science.gov (United States)

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. © 2011 Villarroya et al.

  2. Chronic Proliferative Dermatitis in Mice: NFκB Activation Autoinflammatory Disease

    Directory of Open Access Journals (Sweden)

    Yanhua Liang

    2011-01-01

    Full Text Available Autoinflammatory diseases are a heterogeneous group of congenital diseases characterized by the presence of recurrent inflammation, in the absence of infectious agents, detectable autoantibodies or antigen-specific autoreactive T-cells. SHARPIN deficient mice presents multiorgan chronic inflammation without known autoantibodies or autoreactive T-cells, designated Sharpincpdm. Histological studies demonstrated epidermal hyperproliferation, Th-2 inflammation, and keratinocyte apoptosis in this mutant. The mutant mice have decreased behavioral mobility, slower growth, and loss of body weight. Epidermal thickness and mitotic epidermal cells increase along with disease development. K5/K14 expression is distributed through all layers of epidermis, along with K6 expression in interfollicular epidermis, suggesting epidermal hyperproliferation. K1/K10 is only detectable in outer layers of spinosum epidermis, reflecting accelerated keratinocyte migration. Alpha smooth muscle actin is overexpressed in skin blood vessels, which may release the elevated white blood cells to dermis. CD3+CD45+ cells and granulocytes, especially eosinophils and mast cells, aggregate in the mutant skin. TUNEL assay, together with Annexin-V/propidium iodide FACS analysis, confirmed the increase of apoptotic keratinocytes in skin. These data validate and provide new lines of evidence of the proliferation-inflammation-apoptosis triad in Sharpincpdm mice, an NFκB activation autoinflammatory disease.

  3. ASCT2 (SLC1A5-Deficient Mice Have Normal B-Cell Development, Proliferation, and Antibody Production

    Directory of Open Access Journals (Sweden)

    Etienne Masle-Farquhar

    2017-05-01

    Full Text Available SLC1A5 (solute carrier family 1, member 5 is a small neutral amino acid exchanger that is upregulated in rapidly proliferating lymphocytes but also in many primary human cancers. Furthermore, cancer cell lines have been shown to require SLC1A5 for their survival in vitro. One of SLC1A5’s primary substrates is the immunomodulatory amino acid glutamine, which plays an important role in multiple key processes, such as energy supply, macromolecular synthesis, nucleotide biosynthesis, redox homeostasis, and resistance against oxidative stress. These processes are also essential to immune cells, including neutrophils, macrophages, B and T lymphocytes. We show here that mice with a stop codon in Slc1a5 have reduced glutamine uptake in activated lymphocytes and primary fibroblasts. B and T cell populations and maturation in resting mice were not affected by absence of SLC1A5. Antibody production in resting and immunized mice and the germinal center response to immunization were also found to be normal. SLC1A5 has been recently described as a novel target for the treatment of a variety of cancers, and our results indicate that inhibition of SLC1A5 in cancer therapy may be tolerated well by the immune system of cancer patients.

  4. Behavioural Effects of Adult Vitamin D Deficiency in BALB/c Mice Are not Associated with Proliferation or Survival of Neurons in the Adult Hippocampus.

    Directory of Open Access Journals (Sweden)

    Natalie J Groves

    Full Text Available Epidemiological studies have shown that up to one third of adults have insufficient levels of vitamin D and there is an association between low vitamin D concentrations and adverse brain outcomes, such as depression. Vitamin D has been shown to be involved in processes associated with neurogenesis during development. Therefore, the aim of this study was to test the hypothesis that adult vitamin D (AVD deficiency in BALB/c mice was associated with (a adult hippocampal neurogenesis at baseline, b following 6 weeks of voluntary wheel running and (c a depressive-like phenotype on the forced swim test (FST, which may be linked to alterations in hippocampal neurogenesis. We assessed proliferation and survival of adult born hippocampal neurons by counting the number of cells positive for Ki67 and doublecortin (DCX, and incorporation of 5-Bromo-2'-Deoxyuridine (BrdU within newly born mature neurons using immunohistochemistry. There were no significant effects of diet on number of Ki67+, DCX+ or BrdU+ cells in the dentate gyrus. All mice showed significantly increased number of Ki67+ cells and BrdU incorporation, and decreased immobility time in the FST, after voluntary wheel running. A significant correlation was found in control mice between immobility time in the FST and level of hippocampal neurogenesis, however, no such correlation was found for AVD-deficient mice. We conclude that AVD deficiency was not associated with impaired proliferation or survival of adult born neurons in BALB/c mice and that the impact on rodent behaviour may not be due to altered neurogenesis per se, but to altered function of new hippocampal neurons or processes independent of adult neurogenesis.

  5. Fetal skeletal muscle progenitors have regenerative capacity after intramuscular engraftment in dystrophin deficient mice.

    Directory of Open Access Journals (Sweden)

    Hiroshi Sakai

    Full Text Available Muscle satellite cells (SCs are stem cells that reside in skeletal muscles and contribute to regeneration upon muscle injury. SCs arise from skeletal muscle progenitors expressing transcription factors Pax3 and/or Pax7 during embryogenesis in mice. However, it is unclear whether these fetal progenitors possess regenerative ability when transplanted in adult muscle. Here we address this question by investigating whether fetal skeletal muscle progenitors (FMPs isolated from Pax3(GFP/+ embryos have the capacity to regenerate muscle after engraftment into Dystrophin-deficient mice, a model of Duchenne muscular dystrophy. The capacity of FMPs to engraft and enter the myogenic program in regenerating muscle was compared with that of SCs derived from adult Pax3(GFP/+ mice. Transplanted FMPs contributed to the reconstitution of damaged myofibers in Dystrophin-deficient mice. However, despite FMPs and SCs having similar myogenic ability in culture, the regenerative ability of FMPs was less than that of SCs in vivo. FMPs that had activated MyoD engrafted more efficiently to regenerate myofibers than MyoD-negative FMPs. Transcriptome and surface marker analyses of these cells suggest the importance of myogenic priming for the efficient myogenic engraftment. Our findings suggest the regenerative capability of FMPs in the context of muscle repair and cell therapy for degenerative muscle disease.

  6. Firing properties of dopamine neurons in freely moving dopamine-deficient mice: Effects of dopamine receptor activation and anesthesia

    OpenAIRE

    Robinson, Siobhan; Smith, David M.; Mizumori, Sheri J. Y.; Palmiter, Richard D.

    2004-01-01

    To examine the regulation of midbrain dopamine neurons, recordings were obtained from single neurons of freely moving, genetically engineered dopamine-deficient (DD) mice. DD mice were tested without dopamine signaling (basal state) and with endogenous dopamine signaling (after L-dopa administration). In the basal state, when dopamine concentration in DD mice is

  7. Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth.

    Science.gov (United States)

    Hornberger, Troy A; McLoughlin, Thomas J; Leszczynski, Jori K; Armstrong, Dustin D; Jameson, Ruth R; Bowen, Phyllis E; Hwang, Eun-Sun; Hou, Honglin; Moustafa, Mohamed E; Carlson, Bradley A; Hatfield, Dolph L; Diamond, Alan M; Esser, Karyn A

    2003-10-01

    Dietary intake of selenium has been implicated in a wide range of health issues, including aging, heart disease and cancer. Selenium deficiency, which can reduce selenoprotein levels, has been associated with several striated muscle pathologies. To investigate the role of selenoproteins in skeletal muscle biology, we used a transgenic mouse (referred to as i6A-) that has reduced levels of selenoproteins due to the introduction and expression of a dominantly acting mutant form of selenocysteine transfer RNA (tRNA[Ser]Sec). As a consequence, each organ contains reduced levels of most selenoproteins, yet these mice are normal with regard to fertility, overall health, behavior and blood chemistries. In the present study, although skeletal muscles from i6A- mice were phenotypically indistinguishable from those of wild-type mice, plantaris muscles were approximately 50% heavier after synergist ablation, a model of exercise overload. Like muscle in wild-type mice, the enhanced growth in the i6A- mice was completely blocked by inhibition of the mammalian target of rapamycin (mTOR) pathway. Muscles of transgenic mice exhibited increased site-specific phosphorylation on both Akt and p70 ribosomal S6 kinase (p70S6k) (P accounting for the enhanced response to synergist ablation. Thus, a single genetic alteration resulted in enhanced skeletal muscle adaptation after exercise, and this is likely through subtle changes in the resting phosphorylation state of growth-related kinases.

  8. PNPLA1 Deficiency in Mice and Humans Leads to a Defect in the Synthesis of Omega-O-Acylceramides

    Science.gov (United States)

    Grond, Susanne; Eichmann, Thomas O.; Dubrac, Sandrine; Kolb, Dagmar; Schmuth, Matthias; Fischer, Judith; Crumrine, Debra; Elias, Peter M.; Haemmerle, Guenter; Zechner, Rudolf; Lass, Achim; Radner, Franz P.W.

    2017-01-01

    Mutations in PNPLA1 have been identified as causative for autosomal recessive congenital ichthyosis in humans and dogs. So far, the underlying molecular mechanisms are unknown. In this study, we generated and characterized PNPLA1-deficient mice and found that PNPLA1 is crucial for epidermal sphingolipid synthesis. The absence of functional PNPLA1 in mice impaired the formation of omega-O-acylceramides and led to an accumulation of nonesterified omega-hydroxy-ceramides. As a consequence, PNPLA1-deficient mice lacked a functional corneocyte-bound lipid envelope leading to a severe skin barrier defect and premature death of newborn animals. Functional analyses of differentiated keratinocytes from a patient with mutated PNPLA1 demonstrated an identical defect in omega-O-acylceramide synthesis in human cells, indicating that PNPLA1 function is conserved among mammals and indispensable for normal skin physiology. Notably, topical application of epidermal lipids from wild-type onto Pnpla1-mutant mice promoted rebuilding of the corneocyte-bound lipid envelope, indicating that supplementation of ichthyotic skin with omega-O-acylceramides might be a therapeutic approach for the treatment of skin symptoms in individuals affected by omega-O-acylceramide deficiency. PMID:27751867

  9. Abnormal brain iron metabolism in Irp2 deficient mice is associated with mild neurological and behavioral impairments.

    Directory of Open Access Journals (Sweden)

    Kimberly B Zumbrennen-Bullough

    Full Text Available Iron Regulatory Protein 2 (Irp2, Ireb2 is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2-/- mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc, expression are increased and decreased, respectively, in the brain from Irp2-/- mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments.

  10. Opposing effects of CXCR3 and CCR5 deficiency on CD8+ T cell-mediated inflammation in the central nervous system of virus-infected mice

    DEFF Research Database (Denmark)

    de Lemos, Carina; Christensen, Jeanette Erbo; Nansen, Anneline

    2005-01-01

    and therefore protect mice against the otherwise fatal CD8+ T cell-mediated immune attack. Contrary to expectations, the accumulation of mononuclear cells in cerebrospinal fluid was only slightly delayed compared with mice with normal expression of both receptors. Even more surprising, CXCR3/CCR5 double-deficient......T cells play a key role in the control of viral infection in the CNS but may also contribute to immune-mediated cell damage. To study the redundancy of the chemokine receptors CXCR3 and CCR5 in regulating virus-induced CD8+ T cell-mediated inflammation in the brain, CXCR3/CCR5 double-deficient mice...... mice were more susceptible to intracerebral infection than CXCR3-deficient mice. Analysis of effector T cell generation revealed an accelerated antiviral CD8+ T cell response in CXCR3/CCR5 double-deficient mice. Furthermore, while the accumulation of CD8+ T cells in the neural parenchyma...

  11. Hepatic tissue environment in NEMO-deficient mice critically regulates positive selection of donor cells after hepatocyte transplantation.

    Directory of Open Access Journals (Sweden)

    Michaela Kaldenbach

    Full Text Available BACKGROUND: Hepatocyte transplantation (HT is a promising alternative treatment strategy for end-stage liver diseases compared with orthotopic liver transplantation. A limitation for this approach is the low engraftment of donor cells. The deletion of the I-kappa B kinase-regulatory subunit IKKγ/NEMO in hepatocytes prevents nuclear factor (NF-kB activation and triggers spontaneous liver apoptosis, chronic hepatitis and the development of liver fibrosis and hepatocellular carcinoma. We hypothesized that NEMOΔhepa mice may therefore serve as an experimental model to study HT. METHODS: Pre-conditioned NEMOΔhepa mice were transplanted with donor-hepatocytes from wildtype (WT and mice deficient for the pro-apoptotic mediator Caspase-8 (Casp8Δhepa. RESULTS: Transplantation of isolated WT-hepatocytes into pre-conditioned NEMOΔhepa mice resulted in a 6-7 fold increase of donor cells 12 weeks after HT, while WT-recipients showed no liver repopulation. The use of apoptosis-resistant Casp8Δhepa-derived donor cells further enhanced the selection 3-fold after 12-weeks and up to 10-fold increase after 52 weeks compared with WT donors. While analysis of NEMOΔhepa mice revealed strong liver injury, HT-recipient NEMOΔhepa mice showed improved liver morphology and decrease in serum transaminases. Concomitant with these findings, the histological examination elicited an improved liver tissue architecture associated with significantly lower levels of apoptosis, decreased proliferation and a lesser amount of liver fibrogenesis. Altogether, our data clearly support the therapeutic benefit of the HT procedure into NEMOΔhepa mice. CONCLUSION: This study demonstrates the feasibility of the NEMOΔhepa mouse as an in vivo tool to study liver repopulation after HT. The improvement of the characteristic phenotype of chronic liver injury in NEMOΔhepa mice after HT suggests the therapeutic potential of HT in liver diseases with a chronic inflammatory phenotype and

  12. Hematopoietic sphingosine 1-phosphate lyase deficiency decreases atherosclerotic lesion development in LDL-receptor deficient mice.

    Directory of Open Access Journals (Sweden)

    Martine Bot

    Full Text Available AIMS: Altered sphingosine 1-phosphate (S1P homeostasis and signaling is implicated in various inflammatory diseases including atherosclerosis. As S1P levels are tightly controlled by S1P lyase, we investigated the impact of hematopoietic S1P lyase (Sgpl1(-/- deficiency on leukocyte subsets relevant to atherosclerosis. METHODS AND RESULTS: LDL receptor deficient mice that were transplanted with Sgpl1(-/- bone marrow showed disrupted S1P gradients translating into lymphopenia and abrogated lymphocyte mitogenic and cytokine response as compared to controls. Remarkably however, Sgpl1(-/- chimeras displayed mild monocytosis, due to impeded stromal retention and myelopoiesis, and plasma cytokine and macrophage expression patterns, that were largely compatible with classical macrophage activation. Collectively these two phenotypic features of Sgpl1 deficiency culminated in diminished atherogenic response. CONCLUSIONS: Here we not only firmly establish the critical role of hematopoietic S1P lyase in controlling S1P levels and T cell trafficking in blood and lymphoid tissue, but also identify leukocyte Sgpl1 as critical factor in monocyte macrophage differentiation and function. Its, partly counterbalancing, pro- and anti-inflammatory activity spectrum imply that intervention in S1P lyase function in inflammatory disorders such as atherosclerosis should be considered with caution.

  13. Toll-like receptor 2 or toll-like receptor 4 deficiency does not modify lupus in MRLlpr mice.

    Directory of Open Access Journals (Sweden)

    Simon J Freeley

    Full Text Available Systemic lupus erythematosus is an autoimmune disease with a high morbidity and nephritis is a common manifestation. Previous studies in murine lupus models have suggest a role for Toll-like receptor 2 and 4. We examined the role of these molecules in MRL lpr mice which is one of the most established and robust murine models. We compared disease parameters in Toll-like receptor 2 or Toll-like receptor 4 deficient mice with their littermate controls. We found no difference in the severity of glomerulonephritis as assessed by histology, serum creatinine and albuminuria when Toll-like receptor 2 or Toll-like receptor 4 deficient MRLlpr mice were compared with Toll-like receptor sufficient controls. We also found similar levels of anti-dsDNA and anti-ssDNA antibodies. These results show that Toll-like receptor 2 and Toll-like receptor 4 do not play a significant role in MRLlpr mice, and therefore they may not be important in human lupus.

  14. Using "Mighty Mouse" to understand masticatory plasticity: myostatin-deficient mice and musculoskeletal function.

    Science.gov (United States)

    Ravosa, Matthew J; López, Elisabeth K; Menegaz, Rachel A; Stock, Stuart R; Stack, M Sharon; Hamrick, Mark W

    2008-09-01

    Knockout mice lacking myostatin (Mstn), a negative regulator of the growth of skeletal muscle, develop significant increases in the relative mass of masticatory muscles as well as the ability to generate higher maximal muscle forces. Wild-type and Mstn-deficient mice were compared to investigate the postnatal influence of elevated masticatory loads due to increased jaw-adductor and bite forces on the biomineralization of mandibular articular and cortical bone, the internal structure of the jaw joints, and the composition of temporomandibular joint (TMJ) articular cartilage. To provide an interspecific perspective on the long-term responses of mammalian jaw joints to altered loading conditions, the findings on mice were compared to similar data for growing rabbits subjected to long-term dietary manipulation. Statistically significant differences in joint proportions and bone mineral density between normal and Mstn-deficient mice, which are similar to those observed between rabbit loading cohorts, underscore the need for a comprehensive analysis of masticatory tissue plasticity vis-à-vis altered mechanical loads, one in which variation in external and internal structure are considered. Differences in the expression of proteoglycans and type-II collagen in TMJ articular cartilage between the mouse and rabbit comparisons suggest that the duration and magnitude of the loading stimulus will significantly affect patterns of adaptive and degradative responses. These data on mammals subjected to long-term loading conditions offer novel insights regarding variation in ontogeny, life history, and the ecomorphology of the feeding apparatus.

  15. scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair

    International Nuclear Information System (INIS)

    Biedermann, K.A.; Sun, J.R.; Giaccia, A.J.; Tosto, L.M.; Brown, J.M.

    1991-01-01

    C.B-17 severe combined immunodeficient (scid) mice carry the scid mutation and are severely deficient in both T cell- and B cell-mediated immunity, apparently as a result of defective V(D)J joining of the immunoglobulin and T-cell receptor gene elements. In the present studies, we have defined the tissue, cellular, and molecular basis of another characteristic of these mice: their hypersensitivity to ionizing radiation. Bone marrow stem cells, intestinal crypt cells, and epithelial skin cells from scid mice are 2- to 3-fold more sensitive when irradiated in situ than are congenic BALB/c or C.B-17 controls. Two independently isolated embryo fibroblastic scid mouse cell lines display similar hypersensitivities to gamma-rays. In addition, these cell lines are sensitive to cell killing by bleomycin, which also produces DNA strand breaks, but not by the DNA crosslinking agent mitomycin C or UV irradiation. Measurement of the rejoining of gamma-ray-induced DNA double-strand breaks by pulsed-field gel electrophoresis indicates that these animals are defective in this repair system. This suggests that the gamma-ray sensitivity of the scid mouse fibroblasts could be the result of reduced repair of DNA double-strand breaks. Therefore, a common factor may participate in both the repair of DNA double-strand breaks as well as V(D)J rejoining during lymphocyte development. This murine autosomal recessive mutation should prove extremely useful in fundamental studies of radiation-induced DNA damage and repair

  16. Methamphetamine Increases Locomotion and Dopamine Transporter Activity in Dopamine D5 Receptor-Deficient Mice

    OpenAIRE

    Hayashizaki, Seiji; Hirai, Shinobu; Ito, Yumi; Honda, Yoshiko; Arime, Yosefu; Sora, Ichiro; Okado, Haruo; Kodama, Tohru; Takada, Masahiko

    2013-01-01

    Dopamine regulates the psychomotor stimulant activities of amphetamine-like substances in the brain. The effects of dopamine are mediated through five known dopamine receptor subtypes in mammals. The functional relevance of D5 dopamine receptors in the central nervous system is not well understood. To determine the functional relevance of D5 dopamine receptors, we created D5 dopamine receptor-deficient mice and then used these mice to assess the roles of D5 dopamine receptors in the behaviora...

  17. Relative Tissue Factor Deficiency Attenuates Ventilator-Induced Coagulopathy but Does Not Protect against Ventilator-Induced Lung Injury in Mice

    Directory of Open Access Journals (Sweden)

    Esther K. Wolthuis

    2012-01-01

    Full Text Available Preventing tissue-factor-(TF- mediated systemic coagulopathy improves outcome in models of sepsis. Preventing TF-mediated pulmonary coagulopathy could attenuate ventilator-induced lung injury (VILI. We investigated the effect of relative TF deficiency on pulmonary coagulopathy and inflammation in a murine model of VILI. Heterozygous TF knockout (TF+/− mice and their wild-type (TF+/+ littermates were sedated (controls or sedated, tracheotomized, and mechanically ventilated with either low or high tidal volumes for 5 hours. Mechanical ventilation resulted in pulmonary coagulopathy and inflammation, with more injury after mechanical ventilation with higher tidal volumes. Compared with TF+/+ mice, TF+/− mice demonstrated significantly lower pulmonary thrombin-antithrombin complex levels in both ventilation groups. There were, however, no differences in lung wet-to-dry ratio, BALF total protein levels, neutrophil influx, and lung histopathology scores between TF+/− and TF+/+ mice. Notably, pulmonary levels of cytokines were significantly higher in TF+/− as compared to TF+/+ mice. Systemic levels of cytokines were not altered by the relative absence of TF. TF deficiency is associated with decreased pulmonary coagulation independent of the ventilation strategy. However, relative TF deficiency does not reduce VILI and actually results in higher pulmonary levels of inflammatory mediators.

  18. Caspase-1 deficiency in mice reduces intestinal triglyceride absorption and hepatic triglyceride secretion

    NARCIS (Netherlands)

    Diepen, J.A. van; Stienstra, R.; Vroegrijk, I.O.C.M.; Berg, S.A.A. van den; Salvatori, D.; Hooiveld, G.J.; Kersten, S.; Tack, C.J.; Netea, M.G.; Smit, J.W.A.; Joosten, L.A.B.; Havekes, L.M.; Dijk, K.W. van; Rensen, P.C.N.

    2013-01-01

    Caspase-1 is known to activate the proinflammatory cytokines IL-1β and IL-18. Additionally, it can cleave other substrates, including proteins involved in metabolism. Recently, we showed that caspase-1 deficiency in mice strongly reduces high-fat diet-induced weight gain, at least partly caused by

  19. Zinc deficiency promotes cystitis-related bladder pain by enhancing function and expression of Cav3.2 in mice.

    Science.gov (United States)

    Ozaki, Tomoka; Matsuoka, Junki; Tsubota, Maho; Tomita, Shiori; Sekiguchi, Fumiko; Minami, Takeshi; Kawabata, Atsufumi

    2018-01-15

    Ca v 3.2 T-type Ca 2+ channel activity is suppressed by zinc that binds to the extracellular histidine-191 of Ca v 3.2, and enhanced by H 2 S that interacts with zinc. Ca v 3.2 in nociceptors is upregulated in an activity-dependent manner. The enhanced Ca v 3.2 activity by H 2 S formed by the upregulated cystathionine-γ-lyase (CSE) is involved in the cyclophosphamide (CPA)-induced cystitis-related bladder pain in mice. We thus asked if zinc deficiency affects the cystitis-related bladder pain in mice by altering Ca v 3.2 function and/or expression. Dietary zinc deficiency for 2 weeks greatly decreased zinc concentrations in the plasma but not bladder tissue, and enhanced the bladder pain/referred hyperalgesia (BP/RH) following CPA at 200mg/kg, a subeffective dose, but not 400mg/kg, a maximal dose, an effect abolished by pharmacological blockade or gene silencing of Ca v 3.2. Acute zinc deficiency caused by systemic N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylendiamine (TPEN), a zinc chelator, mimicked the dietary zinc deficiency-induced Ca v 3.2-dependent promotion of BP/RH following CPA at 200mg/kg. CPA at 400mg/kg alone or TPEN plus CPA at 200mg/kg caused Ca v 3.2 overexpression accompanied by upregulation of Egr-1 and USP5, known to promote transcriptional expression and reduce proteasomal degradation of Ca v 3.2, respectively, in the dorsal root ganglia (DRG). The CSE inhibitor, β-cyano-l-alanine, prevented the BP/RH and upregulation of Ca v 3.2, Egr-1 and USP5 in DRG following TPEN plus CPA at 200mg/kg. Together, zinc deficiency promotes bladder pain accompanying CPA-induced cystitis by enhancing function and expression of Ca v 3.2 in nociceptors, suggesting a novel therapeutic avenue for treatment of bladder pain, such as zinc supplementation. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. New function for an old enzyme: NEP deficient mice develop late-onset obesity.

    Directory of Open Access Journals (Sweden)

    Matthias Becker

    Full Text Available BACKGROUND: According to the World Health Organization (WHO there is a pandemic of obesity with approximately 300 million people being obese. Typically, human obesity has a polygenetic causation. Neutral endopeptidase (NEP, also known as neprilysin, is considered to be one of the key enzymes in the metabolism of many active peptide hormones. METHODOLOGY/PRINCIPAL FINDINGS: An incidental observation in NEP-deficient mice was a late-onset excessive gain in body weight exclusively from a ubiquitous accumulation of fat tissue. In accord with polygenetic human obesity, mice were characterized by deregulation of lipid metabolism, higher blood glucose levels, with impaired glucose tolerance. The key role of NEP in determining body mass was confirmed by the use of the NEP inhibitor candoxatril in wild-type mice that increased body weight due to increased food intake. This is a peripheral and not a central NEP action on the switch for appetite control, since candoxatril cannot cross the blood-brain barrier. Furthermore, we demonstrated that inhibition of NEP in mice with cachexia delayed rapid body weight loss. Thus, lack in NEP activity, genetically or pharmacologically, leads to a gain in body fat. CONCLUSIONS/SIGNIFICANCE: In the present study, we have identified NEP to be a crucial player in the development of obesity. NEP-deficient mice start to become obese under a normocaloric diet in an age of 6-7 months and thus are an ideal model for the typical human late-onset obesity. Therefore, the described obesity model is an ideal tool for research on development, molecular mechanisms, diagnosis, and therapy of the pandemic obesity.

  1. Improvement of cardiac contractile function by peptide-based inhibition of NF-κB in the utrophin/dystrophin-deficient murine model of muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Guttridge Denis C

    2011-05-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is an inherited and progressive disease causing striated muscle deterioration. Patients in their twenties generally die from either respiratory or cardiac failure. In order to improve the lifespan and quality of life of DMD patients, it is important to prevent or reverse the progressive loss of contractile function of the heart. Recent studies by our labs have shown that the peptide NBD (Nemo Binding Domain, targeted at blunting Nuclear Factor κB (NF-κB signaling, reduces inflammation, enhances myofiber regeneration, and improves contractile deficits in the diaphragm in dystrophin-deficient mdx mice. Methods To assess whether cardiac function in addition to diaphragm function can be improved, we investigated physiological and histological parameters of cardiac muscle in mice deficient for both dystrophin and its homolog utrophin (double knockout = dko mice treated with NBD peptide. These dko mice show classic pathophysiological hallmarks of heart failure, including myocyte degeneration, an impaired force-frequency response and a severely blunted β-adrenergic response. Cardiac contractile function at baseline and frequencies and pre-loads throughout the in vivo range as well as β-adrenergic reserve was measured in isolated cardiac muscle preparations. In addition, we studied histopathological and inflammatory markers in these mice. Results At baseline conditions, active force development in cardiac muscles from NBD treated dko mice was more than double that of vehicle-treated dko mice. NBD treatment also significantly improved frequency-dependent behavior of the muscles. The increase in force in NBD-treated dko muscles to β-adrenergic stimulation was robustly restored compared to vehicle-treated mice. However, histological features, including collagen content and inflammatory markers were not significantly different between NBD-treated and vehicle-treated dko mice. Conclusions We conclude

  2. Delayed allogeneic skin graft rejection in CD26-deficient mice.

    Science.gov (United States)

    Zhao, Xiangli; Zhang, Kai; Daniel, Peter; Wisbrun, Natali; Fuchs, Hendrik; Fan, Hua

    2018-03-23

    Organ transplantation is an effective therapeutic tool for treating many terminal diseases. However, one of the biggest challenges of transplantation is determining how to achieve the long-term survival of the allogeneic or xenogeneic transplant by, for example, preventing transplant rejection. In the current study, CD26 gene-knockout mice were used to investigate the potential role of CD26/dipeptidyl peptidase-4 (DPPIV) in allogeneic skin graft rejection by tail-skin transplantation. Compared with wild-type (CD26 +/+ ) counterparts, CD26 -/- mice showed reduced necrosis of grafts and delayed graft rejection after skin transplantation. Concentrations of serum IgG, including its subclasses IgG1 and IgG2a, were significantly reduced in CD26 -/- mice during graft rejection. Moreover, after allogeneic skin transplantation, the secretion levels of the cytokines IFN-γ, IL-2, IL-6, IL-4, and IL-13 were significantly reduced, whereas the level of the cytokine IL-10 was increased in the serum of CD26 -/- mice compared with that in the serum of CD26 +/+ mice. Additionally, the concentration of IL-17 in serum and the percentage of cells secreting IL-17 in mouse peripheral blood lymphocytes (MPBLs) were both significantly lower, while the percentage of regulatory T cells (Tregs) was significantly higher in MPBLs of CD26 -/- mice than in those of CD26 +/+ mice. Furthermore, a lower percentage of CD8 + T cells in MPBLs and fewer infiltrated macrophages and T cells in graft tissues of CD26 -/- mice were detected during graft rejection. These results indicate that CD26 is involved in allogeneic skin graft rejection and provides another hint that CD26 deficiency leads to less rejection due to lower activation and proliferation of host immune cells.

  3. CLINICAL VALUE OF CHROMOGRANIN A IN GASTROENTEROPANCREATIC NEUROENDOCRINE TUMORS

    Directory of Open Access Journals (Sweden)

    N. V. Lyubimova

    2015-01-01

    Full Text Available Background: Neuroendocrine tumors (NET is a heterogeneous group of neoplasms characterized by hypersecretion of biologically active sub- stances that manifests by specific syndromes and determines the clinical course of the disease. The most common NET types are those of gastrointestinal tract. The obligatory biochemical marker used in the examination of NET patients is chromogranin A (CgA.Aim: Evaluation of the CgA value for diagnostics and monitoring of gastrointestinal NETs.Materials and methods: A comparative study of plasma CgA levels was performed in 146 patients with gastroenteropancreatic neuroendocrine tu- mors and 66 healthy individuals using the enzyme immunoassay “Chromogranin A ELISA kit” (Dako A/S, Denmark.Results: CgA levels were significantly higher in patients with NETs of all localizations, such as pancreas, stomach, gut, small and large bowel, than in the healthy subjects (р < 0.000001. In NET patients, CgA secretion was highly variable, with the highest value in the group of patients with gastric NETs (102000 U/l. The highest CgA medians were detected in patients with small intestinal (183.9 U/l, colon (148.4 U/l and pancreatic (135.9 U/l NETs. There was an association between CgA secretion and extension or activity of NETs, with the highest median values in patients with hepatic metastases (395 U/l and those with carcinoid syndrome (352 U/l. The clinical significance of CgA as a NET marker was assessed using the cut-off value of 33 U/l, calculated according to the results in the control group. Overall diagnostic sensitivity of CgA in NET patients was high (85.8% with a specificity of 98.5%. Conclusion: The results obtained confirm a high sensitivity of CgA as a NET marker whose determination helps to improve accuracy of diagnostics and to assess NET prevalence.

  4. Hematopoietic Kit Deficiency, rather than Lack of Mast Cells, Protects Mice from Obesity and Insulin Resistance.

    Science.gov (United States)

    Gutierrez, Dario A; Muralidhar, Sathya; Feyerabend, Thorsten B; Herzig, Stephan; Rodewald, Hans-Reimer

    2015-05-05

    Obesity, insulin resistance, and related pathologies are associated with immune-mediated chronic inflammation. Kit mutant mice are protected from diet-induced obesity and associated co-morbidities, and this phenotype has previously been attributed to their lack of mast cells. We performed a comprehensive metabolic analysis of Kit-dependent Kit(W/Wv) and Kit-independent Cpa3(Cre/+) mast-cell-deficient mouse strains, employing diet-induced or genetic (Lep(Ob/Ob) background) models of obesity. Our results show that mast cell deficiency, in the absence of Kit mutations, plays no role in the regulation of weight gain or insulin resistance. Moreover, we provide evidence that the metabolic phenotype observed in Kit mutant mice, while independent of mast cells, is immune regulated. Our data underscore the value of definitive mast cell deficiency models to conclusively test the involvement of this enigmatic cell in immune-mediated pathologies and identify Kit as a key hematopoietic factor in the pathogenesis of metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Effect of ultraviolet irradiation on mast cell-deficient W/Wv mice

    International Nuclear Information System (INIS)

    Ikai, K.; Danno, K.; Horio, T.; Narumiya, S.

    1985-01-01

    The effect of UV irradiation on the skin was investigated in (WB-W/+) X (C57BL/6J-Wv/+)F1-W/Wv mice, which are genetically deficient in tissue mast cells. Their congenic littermates (+/+) and normal albino mice (ICR or BALB/c) were used as controls. Mice were irradiated with 500 mJ/cm2 of UVB and the increment of ear thickness was measured before and 6, 12, and 24 h after irradiation. Ear swelling in W/Wv mice at 12 and 24 h after irradiation was significantly smaller than that in +/+ and ICR mice. In contrast, the number of sunburn cells formed 24 h after UVB irradiation (200 or 500 mJ/cm2) was similar in W/Wv, +/+ and ICR mice. On the other hand, when mice were treated with 8-methoxy-psoralen (0.5%) plus UVA irradiation (4 J/cm2) (topical PUVA), ears of W/Wv and BALB/c mice, which were both white in color, were thickened similarly 72 h after treatment, but less swelling was observed in +/+ mice, which were black in skin color. The amount of prostaglandin D2 (PGD2) in ears, determined by radioimmunoassay specific for PGD2, was elevated 3-fold in +/+ and ICR mice at 3 h after irradiation with 500 mJ/cm2 of UVB in comparison with basal level without irradiation. However, such elevation was not observed in W/Wv mice. These results suggest that mast cells play an important role in UVB-induced inflammation, and PGs from mast cells are responsible at least in part for the development of this reaction. However, neither mast cells nor PGs contribute to the sunburn cell formation and ear swelling response by PUVA treatment

  6. Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice

    DEFF Research Database (Denmark)

    Penkowa, M; Giralt, M; Carrasco, J

    2000-01-01

    of the antioxidants Cu/Zn-superoxide dismutase (Cu/Zn-SOD), Mn-SOD, and catalase remained unaffected by the IL-6 deficiency. The lesioned mice showed increased oxidative stress, as judged by malondialdehyde (MDA) and nitrotyrosine (NITT) levels and by formation of inducible nitric oxide synthase (iNOS). IL-6KO mice...

  7. Vitamin B12 and folate deficiency in chronic heart failure.

    Science.gov (United States)

    van der Wal, Haye H; Comin-Colet, Josep; Klip, Ijsbrand T; Enjuanes, Cristina; Grote Beverborg, Niels; Voors, Adriaan A; Banasiak, Waldemar; van Veldhuisen, Dirk J; Bruguera, Jordi; Ponikowski, Piotr; Jankowska, Ewa A; van der Meer, Peter

    2015-02-01

    To determine the prevalence, clinical correlates and the effects on outcome of vitamin B12 and folic acid levels in patients with chronic heart failure (HF). We studied an international pooled cohort comprising 610 patients with chronic HF. The main outcome measure was all-cause mortality. Mean age of the patients was 68±12 years and median serum N-terminal prohormone brain natriuretic peptide level was 1801 pg/mL (IQR 705-4335). Thirteen per cent of the patients had an LVEF >45%. Vitamin B12 deficiency (serum level <200 pg/mL), folate deficiency (serum level <4.0 ng/mL) and iron deficiency (serum ferritin level <100 µg/L, or 100-299 µg/L with a transferrin saturation <20%) were present in 5%, 4% and 58% of the patients, respectively. No significant correlation between mean corpuscular volume and vitamin B12, folic acid or ferritin levels was observed. Lower folate levels were associated with an impaired health-related quality of life (p=0.029). During a median follow-up of 2.10 years (1.31-3.60 years), 254 subjects died. In multivariable proportional hazard models, vitamin B12 and folic acid levels were not associated with prognosis. Vitamin B12 and folate deficiency are relatively rare in patients with chronic HF. Since no significant association was observed between mean corpuscular volume and neither vitamin B12 nor folic acid levels, this cellular index should be used with caution in the differential diagnosis of anaemia in patients with chronic HF. In contrast to iron deficiency, vitamin B12 and folic acid levels were not related to prognosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Acceleration of bone development and regeneration through the Wnt/β-catenin signaling pathway in mice heterozygously deficient for GSK-3β

    International Nuclear Information System (INIS)

    Arioka, Masaki; Takahashi-Yanaga, Fumi; Sasaki, Masanori; Yoshihara, Tatsuya; Morimoto, Sachio; Takashima, Akihiko; Mori, Yoshihide; Sasaguri, Toshiyuki

    2013-01-01

    Highlights: •The Wnt/β-catenin signaling pathway was activated in GSK-3β +/− mice. •The cortical and trabecular bone volumes were increased in GSK-3β +/− mice. •Regeneration of a partial bone defect was accelerated in GSK-3β +/− mice. -- Abstract: Glycogen synthase kinase (GSK)-3β plays an important role in osteoblastogenesis by regulating the Wnt/β-catenin signaling pathway. Therefore, we investigated whether GSK-3β deficiency affects bone development and regeneration using mice heterozygously deficient for GSK-3β (GSK-3β +/− ). The amounts of β-catenin, c-Myc, cyclin D1, and runt-related transcription factor-2 (Runx2) in the bone marrow cells of GSK-3β +/− mice were significantly increased compared with those of wild-type mice, indicating that Wnt/β-catenin signals were enhanced in GSK-3β +/− mice. Microcomputed tomography of the distal femoral metaphyses demonstrated that the volumes of both the cortical and trabecular bones were increased in GSK-3β +/− mice compared with those in wild-type mice. Subsequently, to investigate the effect of GSK-3β deficiency on bone regeneration, we established a partial bone defect in the femur and observed new bone at 14 days after surgery. The volume and mineral density of the new bone were significantly higher in GSK-3β +/− mice than those in wild-type mice. These results suggest that bone formation and regeneration in vivo are accelerated by inhibition of GSK-3β, probably through activation of the Wnt/β-catenin signaling pathway

  9. Black bear parathyroid hormone has greater anabolic effects on trabecular bone in dystrophin-deficient mice than in wild type mice.

    Science.gov (United States)

    Gray, Sarah K; McGee-Lawrence, Meghan E; Sanders, Jennifer L; Condon, Keith W; Tsai, Chung-Jui; Donahue, Seth W

    2012-09-01

    Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease that has deleterious consequences in muscle and bone, leading to decreased mobility, progressive osteoporosis, and premature death. Patients with DMD experience a higher-than-average fracture rate, particularly in the proximal and distal femur and proximal tibia. The dystrophin-deficient mdx mouse is a model of DMD that demonstrates muscle degeneration and fibrosis and osteoporosis. Parathyroid hormone, an effective anabolic agent for post-menopausal and glucocorticoid-induced osteoporosis, has not been explored for DMD. Black bear parathyroid hormone (bbPTH) has been implicated in the maintenance of bone properties during extended periods of disuse (hibernation). We cloned bbPTH and found 9 amino acid residue differences from human PTH. Apoptosis was mitigated and cAMP was activated by bbPTH in osteoblast cultures. We administered 28nmol/kg of bbPTH 1-84 to 4-week old male mdx and wild type mice via daily (5×/week) subcutaneous injection for 6 weeks. Vehicle-treated mdx mice had 44% lower trabecular bone volume fraction than wild type mice. No changes were found in femoral cortical bone geometry or mechanical properties with bbPTH treatment in wild type mice, and only medio-lateral moment of inertia changed with bbPTH treatment in mdx femurs. However, μCT analyses of the trabecular regions of the distal femur and proximal tibia showed marked increases in bone volume fraction with bbPTH treatment, with a greater anabolic response (7-fold increase) in mdx mice than wild type mice (2-fold increase). Trabecular number increased in mdx long bone, but not wild type bone. Additionally, greater osteoblast area and decreased osteoclast area were observed with bbPTH treatment in mdx mice. The heightened response to PTH in mdx bone compared to wild type suggests a link between dystrophin deficiency, altered calcium signaling, and bone. These findings support further investigation of PTH as an anabolic

  10. Gene expression deregulation in postnatal skeletal muscle of TK2 deficient mice reveals a lower pool of proliferating myogenic progenitor cells.

    Directory of Open Access Journals (Sweden)

    João A Paredes

    Full Text Available Loss of thymidine kinase 2 (TK2 causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA depletion syndrome (MDS in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.

  11. Gene expression deregulation in postnatal skeletal muscle of TK2 deficient mice reveals a lower pool of proliferating myogenic progenitor cells.

    Science.gov (United States)

    Paredes, João A; Zhou, Xiaoshan; Höglund, Stefan; Karlsson, Anna

    2013-01-01

    Loss of thymidine kinase 2 (TK2) causes a heterogeneous myopathic form of mitochondrial DNA (mtDNA) depletion syndrome (MDS) in humans that predominantly affects skeletal muscle tissue. In mice, TK2 deficiency also affects several tissues in addition to skeletal muscle, including brain, heart, adipose tissue, kidneys and causes death about 3 weeks after birth. We analysed skeletal muscle and heart muscle tissues of Tk2 knockout mice at postnatal development phase and observed that TK2 deficient pups grew slower and their skeletal muscles appeared significantly underdeveloped, whereas heart was close to normal in size. Both tissues showed mtDNA depletion and mitochondria with altered ultrastructure, as revealed by transmission electron microscopy. Gene expression microarray analysis showed a strong down-regulation of genes involved in cell cycle and cell proliferation in both tissues, suggesting a lower pool of undifferentiated proliferating cells. Analysis of isolated primary myoblasts from Tk2 knockout mice showed slow proliferation, less ability to differentiate and signs of premature senescence, even in absence of mtDNA depletion. Our data demonstrate that TK2 deficiency disturbs myogenic progenitor cells function in postnatal skeletal muscle and we propose this as one of the causes of underdeveloped phenotype and myopathic characteristic of the TK2 deficient mice, in addition to the progressive mtDNA depletion, mitochondrial damage and respiratory chain deficiency in post-mitotic differentiated tissue.

  12. Metabolomics of the Wolfram Syndrome 1 Gene (Wfs1) Deficient Mice.

    Science.gov (United States)

    Porosk, Rando; Terasmaa, Anton; Mahlapuu, Riina; Soomets, Ursel; Kilk, Kalle

    2017-12-01

    Wolfram syndrome 1 is a rare autosomal recessive neurodegenerative disease characterized by diabetes insipidus, diabetes mellitus, optic atrophy, and deafness. Mutations in the WFS1 gene encoding the wolframin glycoprotein can lead to endoplasmic reticulum stress and unfolded protein responses in cells, but the pathophysiology at whole organism level is poorly understood. In this study, several organs (heart, liver, kidneys, and pancreas) and bodily fluids (trunk blood and urine) of 2- and 6-month old Wfs1 knockout (KO), heterozygote (HZ), and wild-type (WT) mice were analyzed by untargeted and targeted metabolomics using liquid chromatography-mass spectrometry. The key findings were significant perturbations in the metabolism of pancreas and heart before the onset of related clinical signs such as glycosuria that precedes hyperglycemia and thus implies a kidney dysfunction before the onset of classical diabetic nephropathy. The glucose use and gluconeogenesis in KO mice are intensified in early stages, but later the energetic needs are mainly covered by lipolysis. Furthermore, in young mice liver and trunk blood hypouricemia, which in time turns to hyperuricemia, was detected. In summary, we show that the metabolism in Wfs1-deficient mice markedly differs from the metabolism of WT mice in many aspects and discuss the future biological and clinical relevance of these observations.

  13. B-vitamin deficiency is protective against DSS-induced colitis in mice

    Science.gov (United States)

    Vitamin deficiencies are common in patients with inflammatory bowel disease (IBD). Homocysteine (Hcys) is a thrombogenic amino acid produced from methionine (Met) and its increase in IBD patients indicates a disruption of Met metabolism, yet the role of Hcys and Met metabolism in IBD is not well und...

  14. Eμ/miR-125b transgenic mice develop lethal B-cell malignancies.

    Science.gov (United States)

    Enomoto, Y; Kitaura, J; Hatakeyama, K; Watanuki, J; Akasaka, T; Kato, N; Shimanuki, M; Nishimura, K; Takahashi, M; Taniwaki, M; Haferlach, C; Siebert, R; Dyer, M J S; Asou, N; Aburatani, H; Nakakuma, H; Kitamura, T; Sonoki, T

    2011-12-01

    MicroRNA-125b-1 (miR-125b-1) is a target of a chromosomal translocation t(11;14)(q24;q32) recurrently found in human B-cell precursor acute lymphoblastic leukemia (BCP-ALL). This translocation results in overexpression of miR-125b controlled by immunoglobulin heavy chain gene (IGH) regulatory elements. In addition, we found that six out of twenty-one BCP-ALL patients without t(11;14)(q24;q32) showed overexpression of miR-125b. Interestingly, four out of nine patients with BCR/ABL-positive BCP-ALL and one patient with B-cell lymphoid crisis that had progressed from chronic myelogenous leukemia overexpressed miR-125b. To examine the role of the deregulated expression of miR-125b in the development of B-cell tumor in vivo, we generated transgenic mice mimicking the t(11;14)(q24;q32) (Eμ/miR-125b-TG mice). Eμ/miR-125b-TG mice overexpressed miR-125b driven by IGH enhancer and promoter and developed IgM-negative or IgM-positive lethal B-cell malignancies with clonal proliferation. B cells obtained from the Eμ/miR-125b-TG mice were resistant to apoptosis induced by serum starvation. We identified Trp53inp1, a pro-apoptotic gene induced by cell stress, as a novel target gene of miR-125b in hematopoietic cells in vitro and in vivo. Our results provide direct evidence that miR-125b has important roles in the tumorigenesis of precursor B cells.

  15. Metastasis of transgenic breast cancer in plasminogen activator inhibitor-1 gene-deficient mice

    DEFF Research Database (Denmark)

    Almholt, Kasper; Nielsen, Boye Schnack; Frandsen, Thomas Leth

    2003-01-01

    , high levels of PAI-1 as well as uPA are equally associated with poor prognosis in cancer patients. PAI-1 is thought to play a vital role for the controlled extracellular proteolysis during tumor neovascularization. We have studied the effect of PAI-1 deficiency in a transgenic mouse model...... of metastasizing breast cancer. In these tumors, the expression pattern of uPA and PAI-1 resembles that of human ductal breast cancer and plasminogen is required for efficient metastasis. In a cohort of 63 transgenic mice that were either PAI-1-deficient or wild-type sibling controls, primary tumor growth...

  16. Neurokinin B is critical for normal timing of sexual maturation but dispensable for adult reproductive function in female mice.

    Science.gov (United States)

    True, Cadence; Nasrin Alam, Sayeda; Cox, Kimberly; Chan, Yee-Ming; Seminara, Stephanie B

    2015-04-01

    Humans carrying mutations in neurokinin B (NKB) or the NKB receptor fail to undergo puberty due to decreased secretion of GnRH. Despite this pubertal delay, many of these patients go on to achieve activation of their hypothalamic-pituitary-gonadal axis in adulthood, a phenomenon termed reversal, indicating that NKB signaling may play a more critical role for the timing of pubertal development than adult reproductive function. NKB receptor-deficient mice are hypogonadotropic but have no defects in the timing of sexual maturation. The current study has performed the first phenotypic evaluation of mice bearing mutations in Tac2, the gene encoding the NKB ligand, to determine whether they have impaired sexual development similar to their human counterparts. Male Tac2-/- mice showed no difference in the timing of sexual maturation or fertility compared with wild-type littermates and were fertile. In contrast, Tac2-/- females had profound delays in sexual maturation, with time to vaginal opening and first estrus occurring significantly later than controls, and initial abnormalities in estrous cycles. However, cycling recovered in adulthood and Tac2-/- females were fertile, although they produced fewer pups per litter. Thus, female Tac2-/- mice parallel humans harboring NKB pathway mutations, with delayed sexual maturation and activation of the reproductive cascade later in life. Moreover, direct comparison of NKB ligand and receptor-deficient females confirmed that only NKB ligand-deficient animals have delayed sexual maturation, suggesting that in the absence of the NKB receptor, NKB may regulate the timing of sexual maturation through other tachykinin receptors.

  17. Differential effects of silver nanoparticles on DNA damage and DNA repair gene expression in Ogg1-deficient and wild type mice.

    Science.gov (United States)

    Nallanthighal, Sameera; Chan, Cadia; Murray, Thomas M; Mosier, Aaron P; Cady, Nathaniel C; Reliene, Ramune

    2017-10-01

    Due to extensive use in consumer goods, it is important to understand the genotoxicity of silver nanoparticles (AgNPs) and identify susceptible populations. 8-Oxoguanine DNA glycosylase 1 (OGG1) excises 8-oxo-7,8-dihydro-2-deoxyguanine (8-oxoG), a pro-mutagenic lesion induced by oxidative stress. To understand whether defects in OGG1 is a possible genetic factor increasing an individual's susceptibly to AgNPs, we determined DNA damage, genome rearrangements, and expression of DNA repair genes in Ogg1-deficient and wild type mice exposed orally to 4 mg/kg of citrate-coated AgNPs over a period of 7 d. DNA damage was examined at 3 and 7 d of exposure and 7 and 14 d post-exposure. AgNPs induced 8-oxoG, double strand breaks (DSBs), chromosomal damage, and DNA deletions in both genotypes. However, 8-oxoG was induced earlier in Ogg1-deficient mice and 8-oxoG levels were higher after 7-d treatment and persisted longer after exposure termination. AgNPs downregulated DNA glycosylases Ogg1, Neil1, and Neil2 in wild type mice, but upregulated Myh, Neil1, and Neil2 glycosylases in Ogg1-deficient mice. Neil1 and Neil2 can repair 8-oxoG. Thus, AgNP-mediated downregulation of DNA glycosylases in wild type mice may contribute to genotoxicity, while upregulation thereof in Ogg1-deficient mice could serve as an adaptive response to AgNP-induced DNA damage. However, our data show that Ogg1 is indispensable for the efficient repair of AgNP-induced damage. In summary, citrate-coated AgNPs are genotoxic in both genotypes and Ogg1 deficiency exacerbates the effect. These data suggest that humans with genetic polymorphisms and mutations in OGG1 may have increased susceptibility to AgNP-mediated DNA damage.

  18. Prevalence of Vitamin B12 deficiency in patients of type 2 diabetes ...

    African Journals Online (AJOL)

    Conclusion: Our study demonstrated significantly high prevalence of vitamin B12 deficiency in patients treated with metformin with significant effect of dose and duration of metformin use on B12 levels. Physicians must recognize this important fact and screen diabetics on metformin therapy for underlying B12 deficiency.

  19. Effects of metallothionein on zinc metabolism in lethal-milk mutant mice

    International Nuclear Information System (INIS)

    Grider, A. Jr.

    1986-01-01

    The lethal-milk mice (C57BL/6J-Im) exhibit various pleiotropic effects, including a congenital otolith defect, production of zinc-deficient milk, and clinical signs of a systemic Zn deficiency by one year of age. The clinical signs include alopecia, dermatitis, and skin lesions. The systemic zinc deficiency may be due to increased levels of metallothionein (MT) in the intestine and/or liver of Im mice. The untreated Im mice contain twice as much intestinal MT as do C57BL/6J-(+/sup im//+ /sup Im/) (B6) controls. This was determined by a sulfhydryl assay, by the 109 Cd-saturation/hemolysate method, and by the 65 Zn-binding assay. Various concentrations of Cd or Zn were added to the drinking water three days before assaying for MT. Compared to B6 mice, the Im mice exhibited more MT in their liver by the 65 Zn-MT binding assay (3-fold) and by the 109 Cd-saturation/hemolysate method (18-fold). The effects of the two zinc treatments did not differ significantly between Im and B6 mice. The retention and excretion of 65 Zn (administered intraperitoneally) were determined over a 14-day period, but the results did not different between the Im and B6 mice. The increased concentrations of MT within the Im mice was not significantly different for the intestine and liver. Based on these data and other studies, the Im mice may exhibit alterations in zinc homeostasis due to some deregulation of MT metabolism, including the inner ear of the fetus, the lactating mammary gland, and the intestine and liver of adults by one year of age

  20. Effects of metallothionein on zinc metabolism in lethal-milk mutant mice

    Energy Technology Data Exchange (ETDEWEB)

    Grider, A. Jr.

    1986-01-01

    The lethal-milk mice (C57BL/6J-Im) exhibit various pleiotropic effects, including a congenital otolith defect, production of zinc-deficient milk, and clinical signs of a systemic Zn deficiency by one year of age. The clinical signs include alopecia, dermatitis, and skin lesions. The systemic zinc deficiency may be due to increased levels of metallothionein (MT) in the intestine and/or liver of Im mice. The untreated Im mice contain twice as much intestinal MT as do C57BL/6J-(+/sup im//+ /sup Im/) (B6) controls. This was determined by a sulfhydryl assay, by the /sup 109/Cd-saturation/hemolysate method, and by the /sup 65/Zn-binding assay. Various concentrations of Cd or Zn were added to the drinking water three days before assaying for MT. Compared to B6 mice, the Im mice exhibited more MT in their liver by the /sup 65/Zn-MT binding assay (3-fold) and by the /sup 109/Cd-saturation/hemolysate method (18-fold). The effects of the two zinc treatments did not differ significantly between Im and B6 mice. The retention and excretion of /sup 65/Zn (administered intraperitoneally) were determined over a 14-day period, but the results did not different between the Im and B6 mice. The increased concentrations of MT within the Im mice was not significantly different for the intestine and liver. Based on these data and other studies, the Im mice may exhibit alterations in zinc homeostasis due to some deregulation of MT metabolism, including the inner ear of the fetus, the lactating mammary gland, and the intestine and liver of adults by one year of age.

  1. Multiple non-cell-autonomous defects underlie neocortical callosal dysgenesis in Nfib-deficient mice

    Directory of Open Access Journals (Sweden)

    Sunn Nana

    2009-12-01

    Full Text Available Abstract Background Agenesis of the corpus callosum is associated with many human developmental syndromes. Key mechanisms regulating callosal formation include the guidance of axons arising from pioneering neurons in the cingulate cortex and the development of cortical midline glial populations, but their molecular regulation remains poorly characterised. Recent data have shown that mice lacking the transcription factor Nfib exhibit callosal agenesis, yet neocortical callosal neurons express only low levels of Nfib. Therefore, we investigate here how Nfib functions to regulate non-cell-autonomous mechanisms of callosal formation. Results Our investigations confirmed a reduction in glial cells at the midline in Nfib-/- mice. To determine how this occurs, we examined radial progenitors at the cortical midline and found that they were specified correctly in Nfib mutant mice, but did not differentiate into mature glia. Cellular proliferation and apoptosis occurred normally at the midline of Nfib mutant mice, indicating that the decrease in midline glia observed was due to deficits in differentiation rather than proliferation or apoptosis. Next we investigated the development of callosal pioneering axons in Nfib-/- mice. Using retrograde tracer labelling, we found that Nfib is expressed in cingulate neurons and hence may regulate their development. In Nfib-/- mice, neuropilin 1-positive axons fail to cross the midline and expression of neuropilin 1 is diminished. Tract tracing and immunohistochemistry further revealed that, in late gestation, a minor population of neocortical axons does cross the midline in Nfib mutants on a C57Bl/6J background, forming a rudimentary corpus callosum. Finally, the development of other forebrain commissures in Nfib-deficient mice is also aberrant. Conclusion The formation of the corpus callosum is severely delayed in the absence of Nfib, despite Nfib not being highly expressed in neocortical callosal neurons. Our

  2. Interleukin-18 gene-deficient mice show enhanced defense and reduced inflammation during pneumococcal meningitis

    NARCIS (Netherlands)

    Zwijnenburg, Petra J. G.; van der Poll, Tom; Florquin, Sandrine; Akira, Shizuo; Takeda, Kiyoshi; Roord, John J.; van Furth, A. Marceline

    2003-01-01

    To determine the role of endogenous interleukin-18 (IL-18) in pneumococcal meningitis, meningitis was induced in IL-18 gene-deficient (IL-18(-/-)) and wild-type (WT) mice by intranasal inoculation of Streptococcus pneumoniae with hyaluronidase. Induction of meningitis resulted in an upregulation of

  3. Interleukin-18 gene-deficient mice show enhanced defense and reduced inflammation during pneumococcal meningitis.

    NARCIS (Netherlands)

    Zwijnenburg, P.J.G.; Poll, van der T.; Florquin, S; Akira, S; Takeda, K; Roord, J.J.; Furth, van A.M.

    2003-01-01

    To determine the role of endogenous interleukin-18 (IL-18) in pneumococcal meningitis, meningitis was induced in IL-18 gene-deficient (IL-18(-/-)) and wild-type (WT) mice by intranasal inoculation of Streptococcus pneumoniae with hyaluronidase. Induction of meningitis resulted in an upregulation of

  4. Induction of premalignant host responses by cathepsin x/z-deficiency in Helicobacter pylori-infected mice.

    Directory of Open Access Journals (Sweden)

    Sabine Krueger

    Full Text Available Helicobacter pylori are responsible for the induction of chronic gastric inflammation progressing to atrophy, metaplasia, and gastric cancer. The overexpression of Cathepsin X/Z (Ctsz in H. pylori-infected mucosa and gastric cancer is mediated predominantly by an augmented migration of ctsz(-/-positive macrophages and the up-regulation of Ctsz in tumor epithelium. To explore the Ctsz-function in the context of chronic inflammation and the development of preneoplastic lesions, we used Ctsz-deficient mice in a H. pylori gastritis model. Ctsz (-/- and wild-type (wt mice were infected with H. pylori strain SS1. The mice were sacrificed at 24, 36, and 50 weeks post infection (wpi. The stomach was removed, and gastric strips were snap-frozen or embedded and stained with H&E. Tissue sections were scored for epithelial lesions and inflammation. Ki-67 and F4/80 immunostaining were used to measure epithelial cell proliferation and macrophage infiltration, respectively. The upregulation of compensating cathepsins and cytokines were confirmed by Western blotting and quantitative RT-PCR. SS1-infected wt and ctsz (-/- mice showed strong inflammation, foveolar hyperplasia, atrophy, and cystically-dilated glands. However, at 50 wpi, ctsz (-/- mice developed significantly more severe spasmolytic polypeptide-expressing metaplasia (SPEM, showed enhanced epithelial proliferation, and higher levels of infiltrating macrophages. Induction of cytokines was higher and significantly prolonged in ctsz (-/- mice compared to wt. Ctsz deficiency supports H. pylori-dependent development of chronic gastritis up to metaplasia, indicating a protective, but not proteolytic, function of Ctsz in inflammatory gastric disease.

  5. Differential outcome of infection with attenuated Salmonella in MyD88-deficient mice is dependent on the route of administration.

    Science.gov (United States)

    Issac, Jincy M; Sarawathiamma, Dhanya; Al-Ketbi, Mai I; Azimullah, Sheikh; Al-Ojali, Samia M; Mohamed, Yassir A; Flavell, Richard A; Fernandez-Cabezudo, Maria J; al-Ramadi, Basel K

    2013-01-01

    Activation of the innate immune system is a prerequisite for the induction of adaptive immunity to both infectious and non-infectious agents. TLRs are key components of the innate immune recognition system and detect pathogen-associated molecular patterns. Most TLRs utilize the MyD88 adaptor for their signaling pathways. In the current study, we investigated innate and adaptive immune responses to primary as well as secondary Salmonella infections in MyD88-deficient (MyD88(-/-)) mice. Using i.p. or oral route of inoculation, we demonstrate that MyD88(-/-) mice are hypersusceptible to infection by an attenuated, double auxotrophic, mutant of Salmonella enterica serovar Typhimurium (S. typhimurium). This is manifested by 2-3 logs higher bacterial loads in target organs, delayed recruitment of phagocytic cells, and defective production of proinflammatory cytokines in MyD88(-/-) mice. Despite these deficiencies, MyD88(-/-) mice developed Salmonella-specific memory Th1 responses and produced elevated serum levels of anti-Salmonella Abs, not only of Th1-driven (IgG2c, IgG3) but also IgG1 and IgG2b isotypes. Curiously, these adaptive responses were insufficient to afford full protection against a secondary challenge with a virulent strain of S. typhimurium. In comparison with the high degree of mortality seen in MyD88(-/-) mice following i.p. inoculation, oral infections led to the establishment of a state of long-term persistence, characterized by continuous bacterial shedding in animal feces that lasted for more than 6 months, but absence from systemic organs. These findings suggest that the absent expression of MyD88 affects primarily the innate effector arm of the immune system and highlights its critical role in anti-bacterial defense. Copyright © 2012 Elsevier GmbH. All rights reserved.

  6. Deficiency of the Cyclin-Dependent Kinase Inhibitor, CDKN1B, Results in Overgrowth and Neurodevelopmental Delay

    Science.gov (United States)

    Grey, William; Izatt, Louise; Sahraoui, Wafa; Ng, Yiu-Ming; Ogilvie, Caroline; Hulse, Anthony; Tse, Eric; Holic, Roman; Yu, Veronica

    2013-01-01

    Germline mutations in the cyclin-dependent kinase inhibitor, CDKN1B, have been described in patients with multiple endocrine neoplasia (MEN), a cancer predisposition syndrome with adult onset neoplasia and no additional phenotypes. Here, we describe the first human case of CDKN1B deficiency, which recapitulates features of the murine CDKN1B knockout mouse model, including gigantism and neurodevelopmental defects. Decreased mRNA and protein expression of CDKN1B were confirmed in the proband's peripheral blood, which is not seen in MEN syndrome patients. We ascribed the decreased protein level to a maternally derived deletion on chromosome 12p13 encompassing the CDKN1B locus (which reduced mRNA expression) and a de novo allelic variant (c.-73G>A) in the CDKN1B promoter (which reduced protein translation). We propose a recessive model where decreased dosage of CDKN1B during development in humans results in a neuronal phenotype akin to that described in mice, placing CDKN1B as a candidate gene involved in developmental delay. PMID:23505216

  7. Rearrangement of RAG-1 recombinase gene in DNA-repair deficient ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Libertin, C.R.; Weaver, P. [Loyola Univ., Chicago, IL (United States); Churchill, M.; Chang-Liu, C.M. [Argonne National Lab., IL (United States)

    1993-11-01

    Mice recessive for the autosomal gene ``wasted`` wst display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (RAG-l/RAG-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed expression of RAG-1 mRNA in spinal cord (but not brain) of control mice; no expression of RAG-1 mRNA was detected in spinal cord or brain from wst/wst mice or their normal littermates (wst/{center_dot}mice). In thymus tissue, a small RAG-1 transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{center_dot}mice, a two-fold increase in RAG-1 mRNA was evident in thymus tissue. RAG-2 mRNA could only be detected in thymus tissue from wst/{center_dot} and not from wst/wst or parental control BCF{sub 1} mice. Southern blots revealed a rearrangement/deletion within the RAG-1 gene of affected wasted mice, not evident in known strain-specific parental or littermate controls. These results support the idea that the RAG-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  8. Increased Plasmodium chabaudi malaria mortality in mice with nutritional iron deficiency can be reduced by short-term adjunctive iron supplementation

    DEFF Research Database (Denmark)

    Castberg, Filip C; Maretty, Lasse; Staalsoe, Trine

    2018-01-01

    infected mice had extramedullary splenic haematopoiesis, and iron-supplemented mice had visually detectable intracellular iron stores. CONCLUSIONS: Blood transfusions are the only currently available means to correct severe anaemia in children with malaria. The potential of carefully timed, short...... parts of the world. This has rendered interventions against iron deficiency in malaria-endemic areas controversial. METHODS: The effect of nutritional iron deficiency on the clinical outcome of Plasmodium chabaudi AS infection in A/J mice and the impact of intravenous iron supplementation with ferric...... deficiency was associated with increased mortality from P. chabaudi malaria. This increased mortality could be partially offset by carefully timed, short-duration adjunctive iron supplementation. Moribund animals were characterized by low levels of hepcidin and high levels of fibroblast growth factor 23. All...

  9. An oral Na(V)1.8 blocker improves motor function in mice completely deficient of myelin protein P-0

    DEFF Research Database (Denmark)

    Rosberg, Mette R.; Alvarez Herrero, Susana; Krarup, Christian

    2016-01-01

    Mice deficient of myelin protein P0 are established models of demyelinating Charcot-Marie-Tooth (CMT) disease. Dysmyelination in these mice is associated with an ectopic expression of the sensory neuron specific sodium channel isoform NaV1.8 on motor axons. We reported that in P0+/−, a model of CMT......1B, the membrane dysfunction could be acutely improved by a novel oral NaV1.8 blocker referred to as Compound 31 (C31, Bioorg. Med. Chem. Lett. 2010, 20, 6812; AbbVie Inc.). The aim of this study was to investigate the extent to which C31 treatment could also improve the motor axon function in P0......-of-concept that treatment with oral subtype-selective NaV1.8 blockers could be used to improve the motor function in severe forms of demyelinating CMT....

  10. Impaired endothelial barrier function in apolipoprotein M-deficient mice is dependent on sphingosine-1-phosphate receptor 1

    DEFF Research Database (Denmark)

    Christensen, Pernille M; Liu, Catherine H; Swendeman, Steven L

    2016-01-01

    Apolipoprotein M (ApoM) transports sphingosine-1-phosphate (S1P) in plasma, and ApoM-deficient mice (Apom(-/-)) have ∼50% reduced plasma S1P levels. There are 5 known S1P receptors, and S1P induces adherens junction formation between endothelial cells through the S1P1 receptor, which in turn...... suppresses vascular leak. Increased vascular permeability is a hallmark of inflammation. The purpose of this study was to explore the relationships between vascular leakage in ApoM deficiency and S1P1 function in normal physiology and in inflammation. Vascular permeability in the lungs was assessed...... by accumulation of dextran molecules (70 kDa) and was increased ∼40% in Apom(-/-) mice compared to WT (C57Bl6/j) mice. Reconstitution of plasma ApoM/S1P or treatment with an S1P1 receptor agonist (SEW2871) rapidly reversed the vascular leakage to a level similar to that in WT mice, suggesting that it is caused...

  11. Connective tissue integrity is lost in vitamin B-6-deficient chicks

    Science.gov (United States)

    Masse, P. G.; Yamauchi, M.; Mahuren, J. D.; Coburn, S. P.; Muniz, O. E.; Howell, D. S.

    1995-01-01

    The objective of the present investigation was to characterize further the connective tissue disorder produced by pyridoxine (vitamin B-6) deficiency, as previously evidenced by electron microscopy. Following the second post-natal week, fast growing male chicks were deprived of pyridoxine for a 1-mo period. Six weeks post-natally, blood concentrations in the experimental deficiency group had declined to deficiency levels as registered by low concentrations of pyridoxal phosphate (coenzyme form) in erythrocytes, but did not reach levels associated with neurological symptoms. Light microscopic study showed abnormalities in the extracellular matrix of the connective tissues. Collagen cross-links and the aldehyde contents were not significantly lower in cartilage and tendon collagens of vitamin B-6-deficient animals than in age-matched controls; also, their proteoglycan degrading protease and collagenase activities measured in articular cartilages were not greater. Thus, proteolysis was an unlikely alternative mechanism to account for the loss of connective tissue integrity. These results point to the need for further investigation into adhesive properties of collagen associated proteoglycans or other proteins in vitamin B-6-deficient connective tissue.

  12. In vivo imaging of chromogranin A-positive endocrine tumours by three-step monoclonal antibody targeting

    International Nuclear Information System (INIS)

    Siccardi, A.G.; Paganelli, G.; Pontiroli, A.E.; Pelagi, M.; Magnani, P.; Viale, G.; Faglia, G.; Fazio, F.

    1996-01-01

    The detection of chromogranins (Cg) by immunohistochemistry and serology represents a new in vitro diagnostic tool for endocrine tumours. We have recently reported on the feasibility of targeting chromogranin A (CgA) for in vivo detection of pituitary adenomas by immunoscintigraphy (ISG). The scintigraphic procedure, based on an anti-CgA monoclonal antibody and on the avidin-biotin three-step method (Cg-3S-ISG), was evaluated on a group of 29 consecutive patients with known or suspected endocrine tumours other than pituitary adenomas, i.e. medullary thyroid carcinoma, carcinoid, insulinoma and parathormone- or ACTH-producing tumours. Primary tumours (10) and recurrences (16) were visualised in 26 patients, whereas conventional imaging techniques (planar radiography, computerised tomography, magnetic resonance imaging and ultrasonography) failed to detect the tumour sites in ten of the same (Cg-3S-ISG-positive) patients. Therefore, these preliminary results indicate that Cg-3S-ISG, the first immunological method able to detect endocrine tumours in vivo, has a higher diagnostic accuracy than conventional imaging techniques (93.1% compared with 65.5%). (orig.). With 3 figs., 1 tab

  13. Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a NF-κB-dependent mechanism.

    Science.gov (United States)

    Flores, Rafael R; Clauson, Cheryl L; Cho, Joonseok; Lee, Byeong-Chel; McGowan, Sara J; Baker, Darren J; Niedernhofer, Laura J; Robbins, Paul D

    2017-06-01

    With aging, there is progressive loss of tissue homeostasis and functional reserve, leading to an impaired response to stress and an increased risk of morbidity and mortality. A key mediator of the cellular response to damage and stress is the transcription factor NF-κB. We demonstrated previously that NF-κB transcriptional activity is upregulated in tissues from both natural aged mice and in a mouse model of a human progeroid syndrome caused by defective repair of DNA damage (ERCC1-deficient mice). We also demonstrated that genetic reduction in the level of the NF-κB subunit p65(RelA) in the Ercc1 -/∆ progeroid mouse model of accelerated aging delayed the onset of age-related pathology including muscle wasting, osteoporosis, and intervertebral disk degeneration. Here, we report that the largest fraction of NF-κB -expressing cells in the bone marrow (BM) of aged (>2 year old) mice (C57BL/6-NF-κB EGFP reporter mice) are Gr-1 + CD11b + myeloid-derived suppressor cells (MDSCs). There was a significant increase in the overall percentage of MDSC present in the BM of aged animals compared with young, a trend also observed in the spleen. However, the function of these cells appears not to be compromised in aged mice. A similar increase of MDSC was observed in BM of progeroid Ercc1 -/∆ and BubR1 H/H mice. The increase in MDSC in Ercc1 -/∆ mice was abrogated by heterozygosity in the p65/RelA subunit of NF-κB. These results suggest that NF-κB activation with aging, at least in part, drives an increase in the percentage of MDSCs, a cell type able to suppress immune cell responses. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  14. Acceleration of bone development and regeneration through the Wnt/β-catenin signaling pathway in mice heterozygously deficient for GSK-3β

    Energy Technology Data Exchange (ETDEWEB)

    Arioka, Masaki [Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan); Department of Oral and Maxillofacial Surgery, Faculty of Dental Science, Kyushu University, Fukuoka (Japan); Takahashi-Yanaga, Fumi, E-mail: yanaga@clipharm.med.kyushu-u.ac.jp [Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan); Global Medical Science Education Unit, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan); Sasaki, Masanori [Department of Oral and Maxillofacial Surgery, Faculty of Dental Science, Kyushu University, Fukuoka (Japan); Yoshihara, Tatsuya; Morimoto, Sachio [Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan); Takashima, Akihiko [Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Oobu (Japan); Mori, Yoshihide [Department of Oral and Maxillofacial Surgery, Faculty of Dental Science, Kyushu University, Fukuoka (Japan); Sasaguri, Toshiyuki [Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan)

    2013-11-01

    Highlights: •The Wnt/β-catenin signaling pathway was activated in GSK-3β{sup +/−} mice. •The cortical and trabecular bone volumes were increased in GSK-3β{sup +/−} mice. •Regeneration of a partial bone defect was accelerated in GSK-3β{sup +/−} mice. -- Abstract: Glycogen synthase kinase (GSK)-3β plays an important role in osteoblastogenesis by regulating the Wnt/β-catenin signaling pathway. Therefore, we investigated whether GSK-3β deficiency affects bone development and regeneration using mice heterozygously deficient for GSK-3β (GSK-3β{sup +/−}). The amounts of β-catenin, c-Myc, cyclin D1, and runt-related transcription factor-2 (Runx2) in the bone marrow cells of GSK-3β{sup +/−} mice were significantly increased compared with those of wild-type mice, indicating that Wnt/β-catenin signals were enhanced in GSK-3β{sup +/−} mice. Microcomputed tomography of the distal femoral metaphyses demonstrated that the volumes of both the cortical and trabecular bones were increased in GSK-3β{sup +/−} mice compared with those in wild-type mice. Subsequently, to investigate the effect of GSK-3β deficiency on bone regeneration, we established a partial bone defect in the femur and observed new bone at 14 days after surgery. The volume and mineral density of the new bone were significantly higher in GSK-3β{sup +/−} mice than those in wild-type mice. These results suggest that bone formation and regeneration in vivo are accelerated by inhibition of GSK-3β, probably through activation of the Wnt/β-catenin signaling pathway.

  15. Transplantation of bone marrow-derived mesenchymal stem cells rescues partially rachitic phenotypes induced by 1,25-Dihydroxyvitamin D deficiency in mice

    OpenAIRE

    Zhang, Zengli; Yin, Shaomeng; Xue, Xian; Ji, Ji; Tong, Jian; Goltzman, David; Miao, Dengshun

    2016-01-01

    To determine whether the transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) can improve the 1,25(OH)2D deficiency-induced rachitic phenotype, 2×106 BM-MSCs from wild-type mice or vehicle were transplanted by tail vein injection into mice deficient in 1,25(OH)2D due to targeted deletion of 1α(OH)ase (1α(OH)ase-/-). Our results show that 1α(OH)ase mRNA was expressed in the BM-MSCs derived from wild-type mice, and was detected in long bone, kidney and intestine from BM-MSC-t...

  16. Evaluation of vitamin B 12 deficiency in various clinical condition

    International Nuclear Information System (INIS)

    Baig, J.A.; Alam, J.M.; Kazmi, T.; Waseem, S.; Hussain, A.; Arif, S.; Shaheen, R.; Sultana, I.

    2010-01-01

    Low levels of vitamin B 12 have been associated with several clinical conditions. However no single symptom or group of symptoms can be made responsible. Reported causes of deficiency among older population are hematologic or neurological, followed by gastrointestinal and possibly vascular symptoms. The present prospective observational study was, hence, initiated to evaluate the underlying clinical condition or symptoms associated with vitamin B12 deficiency. The study was prospective observational and carried out on 121 patients (males, n=63 and females, n=58) for the period from January 1, 2004 to January 24, 2007. Age ranges were between 16 - 70 years, and categorized as > 60 yrs and < 60 years. All blood parameters were analyzed by standardized methods on automated analyzers. The deficiency was found to be more prevalent in males and increased from 52.06% to 58.10% in individuals with vitamin B12 <150 pg/ml. Mal nourishment was noted among the most subjects and weakness and anemia were frequent clinical findings (35.55%, n=43, 14%, n=51). Other clinical conditions were neuropsychiatric. Whereas less frequent findings were paraesthesia and gastrointestinal symptoms. Hypertension was more prevalent in vitamin B12 deficient individuals followed by diabetes, dementia, stroke, ischemic heart disease and Parkinson's disease. (author)

  17. Unexpected Cartilage Phenotype in CD4-Cre-Conditional SOS-Deficient Mice.

    Science.gov (United States)

    Guittard, Geoffrey; Gallardo, Devorah L; Li, Wenmei; Melis, Nicolas; Lui, Julian C; Kortum, Robert L; Shakarishvili, Nicholas G; Huh, Sunmee; Baron, Jeffrey; Weigert, Roberto; Kramer, Joshua A; Samelson, Lawrence E; Sommers, Connie L

    2017-01-01

    RAS signaling is central to many cellular processes and SOS proteins promote RAS activation. To investigate the role of SOS proteins in T cell biology, we crossed Sos1 f/f Sos2 -/- mice to CD4-Cre transgenic mice. We previously reported an effect of these mutations on T cell signaling and T cell migration. Unexpectedly, we observed nodules on the joints of greater than 90% of these mutant mice at 5 months of age, especially on the carpal joints. As the mice aged further, some also displayed joint stiffness, hind limb paralysis, and lameness. Histological analysis indicated that the abnormal growth in joints originated from dysplastic chondrocytes. Second harmonic generation imaging of the carpal nodules revealed that nodules were encased by rich collagen fibrous networks. Nodules formed in mice also deficient in RAG2, indicating that conventional T cells, which undergo rearrangement of the T cell antigen receptor, are not required for this phenotype. CD4-Cre expression in a subset of cells, either immune lineage cells (e.g., non-conventional T cells) or non-immune lineage cells (e.g., chondrocytes) likely mediates the dramatic phenotype observed in this study. Disruptions of genes in the RAS signaling pathway are especially likely to cause this phenotype. These results also serve as a cautionary tale to those intending to use CD4-Cre transgenic mice to specifically delete genes in conventional T cells.

  18. Leptin deficiency-induced obesity affects the density of mast cells in abdominal fat depots and lymph nodes in mice

    Directory of Open Access Journals (Sweden)

    Altintas Mehmet M

    2012-02-01

    Full Text Available Abstract Background Mast cells are implicated in the pathogenesis of obesity and insulin resistance. Here, we explored the effects of leptin deficiency-induced obesity on the density of mast cells in metabolic (abdominal fat depots, skeletal muscle, and liver and lymphatic (abdominal lymph nodes, spleen, and thymus organs. Fourteen-week-old male leptin-deficient ob/ob mice and their controls fed a standard chow were studied. Tissue sections were stained with toluidine blue to determine the density of mast cells. CD117/c-kit protein expression analysis was also carried out. Furthermore, mast cells containing immunoreactive tumor necrosis factor-α (TNF-α, a proinflammatory cytokine involved in obesity-linked insulin resistance, were identified by immunostaining. Results ob/ob mice demonstrated adiposity and insulin resistance. In abdominal fat depots, mast cells were distributed differentially. While most prevalent in subcutaneous fat in controls, mast cells were most abundant in epididymal fat in ob/ob mice. Leptin deficiency-induced obesity was accompanied by a 20-fold increase in the density of mast cells in epididymal fat, but a 13-fold decrease in subcutaneous fat. This finding was confirmed by CD117/c-kit protein expression analysis. Furthermore, we found that a subset of mast cells in epididymal and subcutaneous fat were immunoreactive for TNF-α. The proportion of mast cells immunoreactive for TNF-α was higher in epididymal than in subcutaneous fat in both ob/ob and control mice. Mast cells were also distributed differentially in retroperitoneal, mesenteric, and inguinal lymph nodes. In both ob/ob mice and lean controls, mast cells were more prevalent in retroperitoneal than in mesenteric and inguinal lymph nodes. Leptin deficiency-induced obesity was accompanied by increased mast cell density in all lymph node stations examined. No significant difference in the density of mast cells in skeletal muscle, liver, spleen, and thymus was

  19. Hepatitis B virus HBx protein localized to the nucleus restores HBx-deficient virus replication in HepG2 cells and in vivo in hydrodynamically-injected mice

    International Nuclear Information System (INIS)

    Keasler, Victor V.; Hodgson, Amanda J.; Madden, Charles R.; Slagle, Betty L.

    2009-01-01

    Identifying the requirements for the regulatory HBx protein in hepatitis B virus (HBV) replication is an important goal. A plasmid-based HBV replication assay was used to evaluate whether HBx subcellular localization influences its ability to promote virus replication, as measured by real time PCR quantitation of viral capsid-associated DNA. HBx targeted to the nucleus by a nuclear localization signal (NLS-HBx) was able to restore HBx-deficient HBV replication, while HBx containing a nuclear export signal (NES-HBx) was not. Both NLS-HBx and NES-HBx were expressed at similar levels (by immunoprecipitation and Western blotting), and proper localization of the signal sequence-tagged proteins was confirmed by deconvolution microscopy using HBx, NLS-HBx, and NES-HBx proteins fused to GFP. Importantly, these findings were confirmed in vivo by hydrodynamic injection into mice. Our results demonstrate that in these HBV replication assays, at least one function of HBx requires its localization to the nucleus.

  20. Increased glucocerebrosidase (GBA) 2 activity in GBA1 deficient mice brains and in Gaucher leucocytes.

    Science.gov (United States)

    Burke, Derek G; Rahim, Ahad A; Waddington, Simon N; Karlsson, Stefan; Enquist, Ida; Bhatia, Kailash; Mehta, Atul; Vellodi, Ashok; Heales, Simon

    2013-09-01

    Lysosomal glucocerebrosidase (GBA1) deficiency is causative for Gaucher disease. Not all individuals with GBA1 mutations develop neurological involvement raising the possibility that other factors may provide compensatory protection. One factor may be the activity of the non-lysosomal β-glucosidase (GBA2) which exhibits catalytic activity towards glucosylceramide and is reported to be highly expressed in brain tissue. Here, we assessed brain GBA2 enzymatic activity in wild type, heterozygote and GBA1 deficient mice. Additionally, we determined activity in leucocytes obtained from 13 patients with Gaucher disease, 10 patients with enzymology consistent with heterozygote status and 19 controls. For wild type animals, GBA2 accounted for over 85 % of total brain GBA activity and was significantly elevated in GBA1 deficient mice when compared to heterozygote and wild types (GBA1 deficient; 92.4 ± 5.6, heterozygote; 71.5 ± 2.4, wild type 76.8 ± 5.1 nmol/h/mg protein). For the patient samples, five Gaucher patients had GBA2 leucocyte activities markedly greater than controls. No difference in GBA2 activity was apparent between the control and carrier groups. Undetectable GBA2 activity was identified in four leucocyte preparations; one in the control group, two in the carrier group and one from the Gaucher disease group. Work is now required to ascertain whether GBA2 activity is a disease modifying factor in Gaucher disease and to identify the mechanism(s) responsible for triggering increased GBA2 activity in GBA1 deficiency states.

  1. Neutralisation of uPA with a monoclonal antibody reduces plasmin formation and delays skin wound healing in tPA-deficient mice

    DEFF Research Database (Denmark)

    Jögi, Annika; Rønø, Birgitte; Lund, Ida K

    2010-01-01

    Proteolytic degradation by plasmin and metalloproteinases is essential for epidermal regeneration in skin wound healing. Plasminogen deficient mice have severely delayed wound closure as have mice simultaneously lacking the two plasminogen activators, urokinase-type plasminogen activator (u......PA) and tissue-type plasminogen activator (tPA). In contrast, individual genetic deficiencies in either uPA or tPA lead to wound healing kinetics with no or only slightly delayed closure of skin wounds....

  2. PTIP chromatin regulator controls development and activation of B cell subsets to license humoral immunity in mice

    DEFF Research Database (Denmark)

    Su, Dan; Vanhee, Stijn; Soria, Rebeca

    2017-01-01

    B cell receptor signaling and downstream NF-κB activity are crucial for the maturation and functionality of all major B cell subsets, yet the molecular players in these signaling events are not fully understood. Here we use several genetically modified mouse models to demonstrate that expression...... of the multifunctional BRCT (BRCA1 C-terminal) domain-containing PTIP (Pax transactivation domain-interacting protein) chromatin regulator is controlled by B cell activation and potentiates steady-state and postimmune antibody production in vivo. By examining the effects of PTIP deficiency in mice at various ages during...... ontogeny, we demonstrate that PTIP promotes bone marrow B cell development as well as the neonatal establishment and subsequent long-term maintenance of self-reactive B-1 B cells. Furthermore, we find that PTIP is required for B cell receptor- and T:B interaction-induced proliferation, differentiation...

  3. Functional blockage of EMMPRIN ameliorates atherosclerosis in apolipoprotein E-deficient mice.

    Science.gov (United States)

    Liu, Hong; Yang, Li-xia; Guo, Rui-wei; Zhu, Guo-Fu; Shi, Yan-Kun; Wang, Xian-mei; Qi, Feng; Guo, Chuan-ming; Ye, Jin-shan; Yang, Zhi-hua; Liang, Xing

    2013-10-09

    Extracellular matrix metalloproteinase inducer (EMMPRIN), a 58-kDa cell surface glycoprotein, has been identified as a key receptor for transmitting cellular signals mediating metalloproteinase activities, as well as inflammation and oxidative stress. Clinical evidence has revealed that EMMPRIN is expressed in human atherosclerotic plaque; however, the relationship between EMMPRIN and atherosclerosis is unclear. To evaluate the functional role of EMMPRIN in atherosclerosis, we treated apolipoprotein E-deficient (ApoE(-/-)) mice with an EMMPRIN function-blocking antibody. EMMPRIN was found to be up-regulated in ApoE(-/-) mice fed a 12-week high-fat diet in contrast to 12 weeks of normal diet. Administration of a function-blocking EMMPRIN antibody (100 μg, twice per week for 4 weeks) to ApoE(-/-) mice, starting after 12 weeks of high-fat diet feeding caused attenuated and more stable atherosclerotic lesions, less reactive oxygen stress generation on plaque, as well as down-regulation of circulating interleukin-6 and monocyte chemotactic protein-1 in ApoE(-/-) mice. The benefit of EMMPRIN functional blockage was associated with reduced metalloproteinases proteolytic activity, which delayed the circulating monocyte transmigrating into atherosclerotic lesions. EMMPRIN antibody intervention ameliorated atherosclerosis in ApoE(-/-) mice by the down-regulation of metalloproteinase activity, suggesting that EMMPRIN may be a viable therapeutic target in atherosclerosis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Genetic deficiency in neprilysin or its pharmacological inhibition initiate excessive stress-induced alcohol consumption in mice.

    Directory of Open Access Journals (Sweden)

    Björn Maul

    Full Text Available Both acquired and inherited genetic factors contribute to excessive alcohol consumption and the corresponding development of addiction. Here we show that the genetic deficiency in neprilysin [NEP] did not change the kinetics of alcohol degradation but led to an increase in alcohol intake in mice in a 2-bottle-free-choice paradigm after one single stress stimulus (intruder. A repetition of such stress led to an irreversible elevated alcohol consumption. This phenomenon could be also observed in wild-type mice receiving an orally active NEP inhibitor. We therefore elucidated the stress behavior in NEP-deficient mice. In an Elevated Plus Maze, NEP knockouts crossed more often the area between the arms, implicating a significant stronger stress response. Furthermore, such animals showed a decreased locomotor activity under intense light in a locomotor activity test, identifying such mice to be more responsive in aversive situations than their wild-type controls. Since the reduction in NEP activity itself does not lead to significant signs of an altered alcohol preference in mice but requires an environmental stimulus, our findings build a bridge between stress components and genetic factors in the development of alcoholism. Therefore, targeting NEP activity might be a very attractive approach for the treatment of alcohol abuse in a society with increasing social and financial stress.

  5. Genetic Deficiency in Neprilysin or Its Pharmacological Inhibition Initiate Excessive Stress-Induced Alcohol Consumption in Mice

    Science.gov (United States)

    Gembardt, Florian; Becker, Axel; Schultheiss, Heinz-Peter; Siems, Wolf-Eberhard; Walther, Thomas

    2012-01-01

    Both acquired and inherited genetic factors contribute to excessive alcohol consumption and the corresponding development of addiction. Here we show that the genetic deficiency in neprilysin [NEP] did not change the kinetics of alcohol degradation but led to an increase in alcohol intake in mice in a 2-bottle-free-choice paradigm after one single stress stimulus (intruder). A repetition of such stress led to an irreversible elevated alcohol consumption. This phenomenon could be also observed in wild-type mice receiving an orally active NEP inhibitor. We therefore elucidated the stress behavior in NEP-deficient mice. In an Elevated Plus Maze, NEP knockouts crossed more often the area between the arms, implicating a significant stronger stress response. Furthermore, such animals showed a decreased locomotor activity under intense light in a locomotor activity test, identifying such mice to be more responsive in aversive situations than their wild-type controls. Since the reduction in NEP activity itself does not lead to significant signs of an altered alcohol preference in mice but requires an environmental stimulus, our findings build a bridge between stress components and genetic factors in the development of alcoholism. Therefore, targeting NEP activity might be a very attractive approach for the treatment of alcohol abuse in a society with increasing social and financial stress. PMID:23185571

  6. PX-RICS-deficient mice mimic autism spectrum disorder in Jacobsen syndrome through impaired GABAA receptor trafficking.

    Science.gov (United States)

    Nakamura, Tsutomu; Arima-Yoshida, Fumiko; Sakaue, Fumika; Nasu-Nishimura, Yukiko; Takeda, Yasuko; Matsuura, Ken; Akshoomoff, Natacha; Mattson, Sarah N; Grossfeld, Paul D; Manabe, Toshiya; Akiyama, Tetsu

    2016-03-16

    Jacobsen syndrome (JBS) is a rare congenital disorder caused by a terminal deletion of the long arm of chromosome 11. A subset of patients exhibit social behavioural problems that meet the diagnostic criteria for autism spectrum disorder (ASD); however, the underlying molecular pathogenesis remains poorly understood. PX-RICS is located in the chromosomal region commonly deleted in JBS patients with autistic-like behaviour. Here we report that PX-RICS-deficient mice exhibit ASD-like social behaviours and ASD-related comorbidities. PX-RICS-deficient neurons show reduced surface γ-aminobutyric acid type A receptor (GABAAR) levels and impaired GABAAR-mediated synaptic transmission. PX-RICS, GABARAP and 14-3-3ζ/θ form an adaptor complex that interconnects GABAAR and dynein/dynactin, thereby facilitating GABAAR surface expression. ASD-like behavioural abnormalities in PX-RICS-deficient mice are ameliorated by enhancing inhibitory synaptic transmission with a GABAAR agonist. Our findings demonstrate a critical role of PX-RICS in cognition and suggest a causal link between PX-RICS deletion and ASD-like behaviour in JBS patients.

  7. Interleukin-1 receptor type I gene-deficient mice are less susceptible to Staphylococcus epidermidis biomaterial-associated infection than are wild-type mice

    NARCIS (Netherlands)

    Boelens, J. J.; van der Poll, T.; Zaat, S. A.; Murk, J. L.; Weening, J. J.; Dankert, J.

    2000-01-01

    Elevated concentrations of interleukin-1 (IL-1) were found in tissue surrounding biomaterials infected with Staphylococcus epidermidis. To determine the role of IL-1 in biomaterial-associated infection (BAI), IL-1 receptor type I-deficient (IL-1R(-/-)) and wild-type mice received subcutaneous

  8. Biochemical Characterization of Porphobilinogen Deaminase–Deficient Mice During Phenobarbital Induction of Heme Synthesis and the Effect of Enzyme Replacement

    Science.gov (United States)

    Johansson, Annika; Möller, Christer; Fogh, Jens; Harper, Pauline

    2003-01-01

    Acute intermittent porphyria (AIP) is a genetic disorder caused by a deficiency of porphobilinogen deaminase (PBGD), the 3rd enzyme in heme synthesis. It is clinically characterized by acute attacks of neuropsychiatric symptoms and biochemically by increased urinary excretion of the porphyrin precursors porphobilinogen (PBG) and 5-aminolevulinic acid (ALA). A mouse model that is partially deficient in PBGD and biochemically mimics AIP after induction of the hepatic ALA synthase by phenobarbital was used in this study to identify the site of formation of the presumably toxic porphyrin precursors and study the effect of enzyme-replacement therapy by using recombinant human PBGD (rhPBGD). After 4 d of phenobarbital administration, high levels of PBG and ALA were found in liver, kidney, plasma, and urine of the PBGD-deficient mice. The administration of rhPBGD intravenously or subcutaneously after a 4-d phenobarbital induction was shown to lower the PBG level in plasma in a dose-dependent manner with maximal effect seen after 30 min and 2 h, respectively. Injection of rhPBGD subcutaneously twice daily during a 4-d phenobarbital induction reduced urinary PBG excretion to 25% of the levels found in PBGD-deficient mice administered with only phenobarbital. This study points to the liver as the main producer of PBG and ALA in the phenobarbital-induced PBGD-deficient mice and demonstrates efficient removal of accumulated PBG in plasma and urine by enzyme-replacement therapy. PMID:15208740

  9. T-cell-mediated immunity to lymphocytic choriomeningitis virus in beta2-integrin (CD18)- and ICAM-1 (CD54)-deficient mice

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Marker, O; Thomsen, Allan Randrup

    1996-01-01

    The T-cell response to lymphocytic choriomeningitis virus was studied in mice with deficient expression of beta2-integrins or ICAM-1. In such mice, the generation of virus-specific cytotoxic T lymphocytes was only slightly impaired and bystander activation was as extensive as that observed in wild-type...... mice. T-cell-mediated inflammation, assessed as primary footpad swelling and susceptibility to intracerebral infection, was slightly compromised only in beta2-integrin-deficient mice. However, adoptive immunization of mutant mice soon after local infection did reveal a reduced capacity to support...... the inflammatory reaction, indicating that under conditions of more limited immune activation both molecules do play a role in formation of the inflammatory exudate. Finally, virus control was found to be somewhat impaired in both mutant strains. In conclusion, our results indicate that although LFA-1-ICAM-1...

  10. Behavioral phenotyping of Parkin-deficient mice: looking for early preclinical features of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Daniel Rial

    Full Text Available There is considerable evidence showing that the neurodegenerative processes that lead to sporadic Parkinson's disease (PD begin many years before the appearance of the characteristic motor symptoms. Neuropsychiatric, sensorial and cognitive deficits are recognized as early non-motor manifestations of PD, and are not attenuated by the current anti-parkinsonian therapy. Although loss-of-function mutations in the parkin gene cause early-onset familial PD, Parkin-deficient mice do not display spontaneous degeneration of the nigrostriatal pathway or enhanced vulnerability to dopaminergic neurotoxins such as 6-OHDA and MPTP. Here, we employed adult homozygous C57BL/6 mice with parkin gene deletion on exon 3 (parkin-/- to further investigate the relevance of Parkin in the regulation of non-motor features, namely olfactory, emotional, cognitive and hippocampal synaptic plasticity. Parkin-/- mice displayed normal performance on behavioral tests evaluating olfaction (olfactory discrimination, anxiety (elevated plus-maze, depressive-like behavior (forced swimming and tail suspension and motor function (rotarod, grasping strength and pole. However, parkin-/- mice displayed a poor performance in the open field habituation, object location and modified Y-maze tasks suggestive of procedural and short-term spatial memory deficits. These behavioral impairments were accompanied by impaired hippocampal long-term potentiation (LTP. These findings indicate that the genetic deletion of parkin causes deficiencies in hippocampal synaptic plasticity, resulting in memory deficits with no major olfactory, emotional or motor impairments. Therefore, parkin-/- mice may represent a promising animal model to study the early stages of PD and for testing new therapeutic strategies to restore learning and memory and synaptic plasticity impairments in PD.

  11. Defective enamel and bone development in sodium-dependent citrate transporter (NaCT Slc13a5 deficient mice.

    Directory of Open Access Journals (Sweden)

    Armando R Irizarry

    Full Text Available There has been growing recognition of the essential roles of citrate in biomechanical properties of mineralized tissues, including teeth and bone. However, the sources of citrate in these tissues have not been well defined, and the contribution of citrate to the regulation of odontogenesis and osteogenesis has not been examined. Here, tooth and bone phenotypes were examined in sodium-dependent citrate transporter (NaCT Slc13a5 deficient C57BL/6 mice at 13 and 32 weeks of age. Slc13a5 deficiency led to defective tooth development, characterized by absence of mature enamel, formation of aberrant enamel matrix, and dysplasia and hyperplasia of the enamel organ epithelium that progressed with age. These abnormalities were associated with fragile teeth with a possible predisposition to tooth abscesses. The lack of mature enamel was consistent with amelogenesis imperfecta. Furthermore, Slc13a5 deficiency led to decreased bone mineral density and impaired bone formation in 13-week-old mice but not in older mice. The findings revealed the potentially important role of citrate and Slc13a5 in the development and function of teeth and bone.

  12. Trypanosoma brucei Co-opts NK Cells to Kill Splenic B2 B Cells.

    Directory of Open Access Journals (Sweden)

    Deborah Frenkel

    2016-07-01

    Full Text Available After infection with T. brucei AnTat 1.1, C57BL/6 mice lost splenic B2 B cells and lymphoid follicles, developed poor parasite-specific antibody responses, lost weight, became anemic and died with fulminating parasitemia within 35 days. In contrast, infected C57BL/6 mice lacking the cytotoxic granule pore-forming protein perforin (Prf1-/- retained splenic B2 B cells and lymphoid follicles, developed high-titer antibody responses against many trypanosome polypeptides, rapidly suppressed parasitemia and did not develop anemia or lose weight for at least 60 days. Several lines of evidence show that T. brucei infection-induced splenic B cell depletion results from natural killer (NK cell-mediated cytotoxicity: i B2 B cells were depleted from the spleens of infected intact, T cell deficient (TCR-/- and FcγRIIIa deficient (CD16-/- C57BL/6 mice excluding a requirement for T cells, NKT cell, or antibody-dependent cell-mediated cytotoxicity; ii administration of NK1.1 specific IgG2a (mAb PK136 but not irrelevant IgG2a (myeloma M9144 prevented infection-induced B cell depletion consistent with a requirement for NK cells; iii splenic NK cells but not T cells or NKT cells degranulated in infected C57BL/6 mice co-incident with B cell depletion evidenced by increased surface expression of CD107a; iv purified NK cells from naïve C57BL/6 mice killed purified splenic B cells from T. brucei infected but not uninfected mice in vitro indicating acquisition of an NK cell activating phenotype by the post-infection B cells; v adoptively transferred C57BL/6 NK cells prevented infection-induced B cell population growth in infected Prf1-/- mice consistent with in vivo B cell killing; vi degranulated NK cells in infected mice had altered gene and differentiation antigen expression and lost cytotoxic activity consistent with functional exhaustion, but increased in number as infection progressed indicating continued generation. We conclude that NK cells in T. brucei

  13. Mild pituitary phenotype in 3- and 12-month-old Aip-deficient male mice.

    Science.gov (United States)

    Lecoq, Anne-Lise; Zizzari, Philippe; Hage, Mirella; Decourtye, Lyvianne; Adam, Clovis; Viengchareun, Say; Veldhuis, Johannes D; Geoffroy, Valérie; Lombès, Marc; Tolle, Virginie; Guillou, Anne; Karhu, Auli; Kappeler, Laurent; Chanson, Philippe; Kamenický, Peter

    2016-10-01

    Germline mutations in the aryl hydrocarbon receptor-interacting protein (AIP) gene predispose humans to pituitary adenomas, particularly of the somatotroph lineage. Mice with global heterozygous inactivation of Aip (Aip(+/-)) also develop pituitary adenomas but differ from AIP-mutated patients by the high penetrance of pituitary disease. The endocrine phenotype of these mice is unknown. The aim of this study was to determine the endocrine phenotype of Aip(+/-) mice by assessing the somatic growth, ultradian pattern of GH secretion and IGF1 concentrations of longitudinally followed male mice at 3 and 12 months of age. As the early stages of pituitary tumorigenesis are controversial, we also studied the pituitary histology and somatotroph cell proliferation in these mice. Aip(+/-) mice did not develop gigantism but exhibited a leaner phenotype than wild-type mice. Analysis of GH pulsatility by deconvolution in 12-month-old Aip(+/-) mice showed a mild increase in total GH secretion, a conserved GH pulsatility pattern, but a normal IGF1 concentration. No pituitary adenomas were detected up to 12 months of age. An increased ex vivo response to GHRH of pituitary explants from 3-month-old Aip(+/-) mice, together with areas of enlarged acini identified on reticulin staining in the pituitary of some Aip(+/-) mice, was suggestive of somatotroph hyperplasia. Global heterozygous Aip deficiency in mice is accompanied by subtle increase in GH secretion, which does not result in gigantism. The absence of pituitary adenomas in 12-month-old Aip(+/-) mice in our experimental conditions demonstrates the important phenotypic variability of this congenic mouse model. © 2016 Society for Endocrinology.

  14. Vitamin B12 Deficiency in Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Carlos Tavares Bello

    2017-10-01

    Conclusion: Further studies are needed to identify the risk factors for the B12 deficit. The recognition of these variables will contribute to optimize the screening and prevention of the B12 deficiency in type 2 diabetes mellitus.

  15. Histone Deacetylase Inhibitor Alleviates the Neurodegenerative Phenotypes and Histone Dysregulation in Presenilins-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Ting Cao

    2018-05-01

    Full Text Available Histone acetylation has been shown to play a crucial role in memory formation, and histone deacetylase (HDAC inhibitor sodium butyrate (NaB has been demonstrated to improve memory performance and rescue the neurodegeneration of several Alzheimer’s Disease (AD mouse models. The forebrain presenilin-1 and presenilin-2 conditional double knockout (cDKO mice showed memory impairment, forebrain degeneration, tau hyperphosphorylation and inflammation that closely mimics AD-like phenotypes. In this article, we have investigated the effects of systemic administration of NaB on neurodegenerative phenotypes in cDKO mice. We found that chronic NaB treatment significantly restored contextual memory but did not alter cued memory in cDKO mice while such an effect was not permanent after treatment withdrawal. We further revealed that NaB treatment did not rescue reduced synaptic numbers and cortical shrinkage in cDKO mice, but significantly increased the neurogenesis in subgranular zone of dentate gyrus (DG. We also observed that tau hyperphosphorylation and inflammation related protein glial fibrillary acidic protein (GFAP level were decreased in cDKO mice by NaB. Furthermore, GO and pathway analysis for the RNA-Seq data demonstrated that NaB treatment induced enrichment of transcripts associated with inflammation/immune processes and cytokine-cytokine receptor interactions. RT-PCR confirmed that NaB treatment inhibited the expression of inflammation related genes such as S100a9 and Ccl4 found upregulated in the brain of cDKO mice. Surprisingly, the level of brain histone acetylation in cDKO mice was dramatically increased and was decreased by the administration of NaB, which may reflect dysregulation of histone acetylation underlying memory impairment in cDKO mice. These results shed some lights on the possible molecular mechanisms of HDAC inhibitor in alleviating the neurodegenerative phenotypes of cDKO mice and provide a promising target for treating AD.

  16. Methamphetamine- and 1-methyl-4-phenyl- 1,2,3, 6-tetrahydropyridine-induced dopaminergic neurotoxicity in inducible nitric oxide synthase-deficient mice.

    Science.gov (United States)

    Itzhak, Y; Martin, J L; Ali, S F

    1999-12-15

    Previous studies have suggested a role for the retrograde messenger, nitric oxide (NO), in methamphetamine (METH)- and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- induced dopaminergic neurotoxicity. Since evidence supported the involvement of the neuronal nitric oxide synthase (nNOS) isoform in the dopaminergic neurotoxicity, the present study was undertaken to investigate whether the inducible nitric oxide synthase (iNOS) isoform is also associated with METH- and MPTP-induced neurotoxicity. The administration of METH (5mg/kg x 3) to iNOS deficient mice [homozygote iNOS(-/-)] and wild type mice (C57BL/6) resulted in significantly smaller depletion of striatal dopaminergic markers in the iNOS(-/-) mice compared with the wild-type mice. METH-induced hyperthermia was also significantly lower in the iNOS(-/-) mice than in wild-type mice. In contrast to the outcome of METH administration, MPTP injections (20 mg/kg x 3) resulted in a similar decrease in striatal dopaminergic markers in iNOS(-/-) and wild-type mice. In the set of behavioral experiments, METH-induced locomotor sensitization was investigated. The acute administration of METH (1.0 mg/kg) resulted in the same intensity of locomotor activity in iNOS(-/-) and wild-type mice. Moreover, 68 to 72 h after the exposure to the high-dose METH regimen (5 mg/kg x 3), a marked sensitized response to a challenge injection of METH (1.0 mg/kg) was observed in both the iNOS(-/-) and wild-type mice. The finding that iNOS(-/-) mice were unprotected from MPTP-induced neurotoxicity suggests that the partial protection against METH-induced neurotoxicity observed was primarily associated with the diminished hyperthermic effect of METH seen in the iNOS(-/-) mice. Moreover, in contrast to nNOS deficiency, iNOS deficiency did not affect METH-induced behavioral sensitization. Copyright 1999 Wiley-Liss, Inc.

  17. Chromogranin A is present in and released by fish endocrine tissue

    International Nuclear Information System (INIS)

    Deftos, L.J.; Bjoernsson, B.T.; Burton, D.W.; O'Connor, D.T.; Copp, D.H.

    1987-01-01

    Chromogranin A (CgA) is a protein that is present in many mammalian endocrine cells and co-secreted with their resident hormones. The authors have demonstrated the presence of CgA by immunohistology in the ultimobranchial glands and corpuscles of Stannius of rainbow trout. CgA was also detected by radioimmunoassay in the medium of incubated coho salmon ultimobranchial glands. Their observations demonstrate the presence of CgA in endocrine glands of evolutionarily divergent species. These observations are consistent with the hypothesis that CgA participates in the secretory process of a wide variety of hormones. 18 references, 1 figure, 1 table

  18. Female Mice Deficient in Alpha-Fetoprotein Show Female-Typical Neural Responses to Conspecific-Derived Pheromones

    NARCIS (Netherlands)

    Brock, O.; Keller, M.; Douhard, Q.; Bakker, J.

    2012-01-01

    The neural mechanisms controlling sexual behavior are sexually differentiated by the perinatal actions of sex steroid hormones. We recently observed using female mice deficient in alpha-fetoprotein (AFP-KO) and which lack the protective actions of AFP against maternal estradiol, that exposure to

  19. Pumilio2-deficient mice show a predisposition for epilepsy

    Directory of Open Access Journals (Sweden)

    Philipp Follwaczny

    2017-11-01

    Full Text Available Epilepsy is a neurological disease that is caused by abnormal hypersynchronous activities of neuronal ensembles leading to recurrent and spontaneous seizures in human patients. Enhanced neuronal excitability and a high level of synchrony between neurons seem to trigger these spontaneous seizures. The molecular mechanisms, however, regarding the development of neuronal hyperexcitability and maintenance of epilepsy are still poorly understood. Here, we show that pumilio RNA-binding family member 2 (Pumilio2; Pum2 plays a role in the regulation of excitability in hippocampal neurons of weaned and 5-month-old male mice. Almost complete deficiency of Pum2 in adult Pum2 gene-trap mice (Pum2 GT causes misregulation of genes involved in neuronal excitability control. Interestingly, this finding is accompanied by the development of spontaneous epileptic seizures in Pum2 GT mice. Furthermore, we detect an age-dependent increase in Scn1a (Nav1.1 and Scn8a (Nav1.6 mRNA levels together with a decrease in Scn2a (Nav1.2 transcript levels in weaned Pum2 GT that is absent in older mice. Moreover, field recordings of CA1 pyramidal neurons show a tendency towards a reduced paired-pulse inhibition after stimulation of the Schaffer-collateral-commissural pathway in Pum2 GT mice, indicating a predisposition to the development of spontaneous seizures at later stages. With the onset of spontaneous seizures at the age of 5 months, we detect increased protein levels of Nav1.1 and Nav1.2 as well as decreased protein levels of Nav1.6 in those mice. In addition, GABA receptor subunit alpha-2 (Gabra2 mRNA levels are increased in weaned and adult mice. Furthermore, we observe an enhanced GABRA2 protein level in the dendritic field of the CA1 subregion in the Pum2 GT hippocampus. We conclude that altered expression levels of known epileptic risk factors such as Nav1.1, Nav1.2, Nav1.6 and GABRA2 result in enhanced seizure susceptibility and manifestation of epilepsy in the

  20. Vitamin B12 Deficiency Presenting as Pancytopenia in Pregnancy: A Case Report

    Directory of Open Access Journals (Sweden)

    Idris N

    2012-12-01

    Full Text Available Vitamin B12 deficiency is a well-known cause of megaloblastic anaemia and pancytopenia. However, the incidence in pregnancy is rarely reported. We present a case of a 32-year old multigravid woman who was diagnosed with megaloblastic anaemia since 22 weeks gestation and progressed to develop severe pancytopenia at 30 weeks gestation. she was also diagnosed with vitamin B12 deficiency related to dietary and sociocultural habits. Folate and iron levels were normal throughout pregnancy. treatment with parenteral cyano-cobalamin resulted in sustained improvement of haematological parameters. the pregnancy was carried to term and the baby was born weighing 2,050gm but otherwise well at birth and had normal developmental milestones thereafter. this case illustrates the clinical presentation of maternal vitamin B12 deficiency and demonstrates the importance of detecting and treating maternal vitamin B12 deficiency during pregnancy in at-risk patients. Failure to diagnose and institute treatment carries significant risks to both mother and child. oral vitamin B12 supplementation should be considered for patients who are strict vegetarians or consume very little animal products.

  1. Type 1 diabetes in NOD mice unaffected by mast cell deficiency.

    Science.gov (United States)

    Gutierrez, Dario A; Fu, Wenxian; Schonefeldt, Susann; Feyerabend, Thorsten B; Ortiz-Lopez, Adriana; Lampi, Yulia; Liston, Adrian; Mathis, Diane; Rodewald, Hans-Reimer

    2014-11-01

    Mast cells have been invoked as important players in immune responses associated with autoimmune diseases. Based on in vitro studies, or in vivo through the use of Kit mutant mice, mast cells have been suggested to play immunological roles in direct antigen presentation to both CD4(+) and CD8(+) T cells, in the regulation of T-cell and dendritic cell migration to lymph nodes, and in Th1 versus Th2 polarization, all of which could significantly impact the immune response against self-antigens in autoimmune disease, including type 1 diabetes (T1D). Until now, the role of mast cells in the onset and incidence of T1D has only been indirectly tested through the use of low-specificity mast cell inhibitors and activators, and published studies reported contrasting results. Our three laboratories have generated independently two strains of mast cell-deficient nonobese diabetic (NOD) mice, NOD.Cpa3(Cre/+) (Heidelberg) and NOD.Kit(W-sh/W-sh) (Leuven and Boston), to address the effects of mast cell deficiency on the development of T1D in the NOD strain. Our collective data demonstrate that both incidence and progression of T1D in NOD mice are independent of mast cells. Moreover, analysis of pancreatic lymph node cells indicated that lack of mast cells has no discernible effect on the autoimmune response, which involves both innate and adaptive immune components. Our results demonstrate that mast cells are not involved in T1D in the NOD strain, making their role in this process nonessential and excluding them as potential therapeutic targets. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  2. Serum cholinesterases are differentially regulated in normal and dystrophin-deficient mutant mice

    Directory of Open Access Journals (Sweden)

    Andrea R. Durrant

    2012-06-01

    Full Text Available The cholinesterases, acetylcholinesterase and butyrylcholinesterase (pseudocholinesterase, are abundant in the nervous system and in other tissues. The role of acetylcholinesterase in terminating transmitter action in the peripheral and central nervous system is well understood. However, both knowledge of the function(s of the cholinesterases in serum, and of their metabolic and endocrine regulation under normal and pathological conditions, is limited. This study investigates acetylcholinesterase and butyrylcholinesterase in sera of dystrophin-deficient mdx mutant mice, an animal model for the human Duchenne muscular dystrophy and in control healthy mice. The data show systematic and differential variations in the concentrations of both enzymes in the sera, and specific changes dictated by alteration of hormonal balance in both healthy and dystrophic mice. While acetylcholinesterase in mdx-sera is elevated, butyrylcholinesterase is markedly diminished, resulting in an overall cholinesterase decrease compared to sera of healthy controls. The androgen testosterone (T is a negative modulator of butyrylcholinesterase, but not of acetylcholinesterase, in male mouse sera. T-removal elevated both butyrylcholinesterase activity and the butyrylcholinesterase/acetylcholinesterase ratio in mdx male sera to values resembling those in healthy control male mice. Mechanisms of regulation of the circulating cholinesterases and their impairment in the dystrophic mice are suggested, and clinical implications for diagnosis and treatment are considered.

  3. High prevalence of mild hyperhomocysteinemia and folate, B/sub 12/ and B/sub 6/ deficiencies in an urban population in Karachi, Pakistan

    International Nuclear Information System (INIS)

    Yakub, M.; Iqbal, M.P.; Kakepoto, G.N.; Rafique, G.; Memon, Y.; Azam, I.; Mehboobali, N.; Parveen, S.

    2010-01-01

    To find out the prevalence of hyperhomocysteinemia, and deficiencies of folate, vitamin B6 and vitamin B12 in an urban population in Karachi, Pakistan. Methodology: In a pre and post experimental study, eight hundred and seventy-two apparently healthy adults (aged 18-60 years; 355 males and 517 females) were recruited from a low-income urban locality in East of Karachi from February 2006 to March 2007. Fasting venous blood was obtained. Serum was analyzed for folate and vitamin B12. Plasma was analyzed for pyridoxal phosphate (PLP, co enzymic form of B6) and total homocysteine. A group of vitamin-deficient individuals (n=194) was given 3-week supplementation with folic acid (5mg/ day), methylcobalamin (0.5mg/day) and pyridoxine hydrochloride (vitamin B6, 50 mg/day). After supplementation, serum/plasma levels of folate, vitamin B12, PLP and homocysteine were again determined. Prevalence of hyperhomocysteinemia (>15 mu mol/l) was 32%. Similarly percent values of folate deficiency (<3.5ng/ml), vitamin B6 deficiency (PLP<20 nmol/l) and vitamin B12 deficiency (<200pg/ml) in the study population were 27.5%, 33.7% and 9.74%, respectively. Hyperhomocysteinemia was associated with male sex, folate deficiency, vitamin B12 deficiency [OR (95%CI), 8.3(5.7-12.1); 2.5(1.76-3.58); 2.6(1.5-4.5), respectively]. A 3-week supplementation with folic acid, methylcobalamin and pyridoxine hydrochloride in vitamin deficient subjects decreased plasma homocysteine levels by 37%. High prevalence estimates of folate, vitamin B12, and vitamin B6 deficiencies appear to be the major determinants of hyperhomocysteinemia in a low income general population in Karachi. (author)

  4. Neuronal Glucose Transporter Isoform 3 Deficient Mice Demonstrate Features of Autism Spectrum Disorders

    OpenAIRE

    Zhao, Yuanzi; Fung, Camille; Shin, Don; Shin, Bo-Chul; Thamotharan, Shanthie; Sankar, Raman; Ehninger, Dan; Silva, Alcino; Devaskar, Sherin U.

    2009-01-01

    Neuronal glucose transporter (GLUT) isoform 3 deficiency in null heterozygous mice led to abnormal spatial learning and working memory but normal acquisition and retrieval during contextual conditioning, abnormal cognitive flexibility with intact gross motor ability, electroencephalographic seizures, perturbed social behavior with reduced vocalization and stereotypies at low frequency. This phenotypic expression is unique as it combines the neurobehavioral with the epileptiform characteristic...

  5. B12 deficiency increases with age in hospitalized patients: a study on 14,904 samples.

    Science.gov (United States)

    Mézière, Anthony; Audureau, Etienne; Vairelles, Stéphane; Krypciak, Sébastien; Dicko, Michèle; Monié, Marguerite; Giraudier, Stéphane

    2014-12-01

    Cobalamin deficiency is responsible for hematological, neurological, neurocognitive, and neuropsychiatric impairments and is a risk factor for cardiovascular diseases, particularly in the elderly people. In order to determine B12 status in old inpatients, a total number of 14,904 hospitalized patients in whom B12 measurements were performed in five hospitals in the Paris metropolitan area were included from January 1, 2011 to December 31, 2011. The aims of the study were to determine whether age had an impact on B12 and folate deficiencies and to evaluate correlations between B12 and biological parameters-folate, hemoglobin, mean cell volume, homocystein (tHcy)-and age. Patients were aged 70.3±19.5 years. Low B12 concentration ( 17 µmol/L), 20.4% had low folate concentration (folate 17 µmol/L), and 4.7% of patients were both functional B12 and folate deficient. The B12 or folate deficient patients had lower mean cell volume level than nondeficient patients. Increase in mean cell volume and tHcy concentrations with age and decrease in B12, folate, and hemoglobin levels with age were observed. Frequency of functional B12 deficiency was 9.6% in patients aged 30-60 years and 14.2% in patients over 90 years. Frequency of functional folate deficiency was 9.5% in 30-60 years and 12.1% in >90 years. In inpatients, functional B12 deficiency and functional folate deficiency increase with age and are not associated with anemia or macrocytosis. False vitamin B deficiencies are frequent. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Core neuropathological abnormalities in progranulin-deficient mice are penetrant on multiple genetic backgrounds.

    Science.gov (United States)

    Petkau, T L; Hill, A; Leavitt, B R

    2016-02-19

    Loss-of-function mutations in the progranulin gene (GRN) are a common cause of familial frontotemporal lobar degeneration (FTLD). A high degree of heterogeneity in the age-of-onset, duration of disease, and clinical presentation of FTLD, even among families carrying the same GRN mutation, suggests that additional modifying genes may be important to pathogenesis. Progranulin-knockout mice display subtle behavioral abnormalities and progressive neuropathological changes, as well as altered dendritic morphology and synaptic deficits in the hippocampus. In this study we evaluated multiple neuropathological endpoints in aged progranulin knockout mice and their wild-type littermates on two different genetic backgrounds: C57Bl/6 and 129/SvImJ. We find that in most brain regions, both strains are susceptible to progranulin-mediated neuropathological phenotypes, including astrogliosis, microgliosis, and highly accelerated deposition of the aging pigment lipofuscin. Neuroinflammation due to progranulin deficiency is exaggerated in the B6 strain and present, but less pronounced, in the 129 strain. Differences between the strains in hippocampal neuron counts and neuronal morphology suggest a complex role for progranulin in the hippocampus. We conclude that core progranulin-mediated neurodegenerative phenotypes are penetrant on multiple inbred mouse strains, but that genetic background modulates progranulin's role in neuroinflammation and hippocampal biology. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. DNA mismatch repair deficiency accelerates lung neoplasm development in K-rasLA1/+ mice: a brief report

    International Nuclear Information System (INIS)

    Downey, Charlene M; Jirik, Frank R

    2015-01-01

    Inherited as well as acquired deficiencies in specific DNA mismatch repair (MMR) components are associated with the development of a wide range of benign and malignant neoplasms. Loss of key members such as MSH2 and MLH1 severely cripples the ability of the cell to recognize and correct such lesions as base:base mismatches and replicative DNA polymerase errors such as slippages at repetitive sequences. Genomic instability resulting from MMR deficiency not only predisposes cells to malignant transformation but may also promote tumor progression. To test the latter, we interbred Msh2 −/− mice with the K-ras LA1/+ transgenic line that spontaneously develops a range of premalignant and malignant lung lesions. Compared to K-ras LA1/+ mice, K-ras LA1/+ ; Msh2 −/− mice developed lung adenomas and adenocarcinomas at an increased frequency and also demonstrated evidence of accelerated adenocarcinoma growth. Since MMR defects have been identified in some human lung cancers, the mutant mice may not only be of preclinical utility but they will also be useful in identifying gene alterations able to act in concert with Kras mutants to promote tumor progression

  8. Acid sphingomyelinase (aSMase) deficiency leads to abnormal microglia behavior and disturbed retinal function

    Energy Technology Data Exchange (ETDEWEB)

    Dannhausen, Katharina; Karlstetter, Marcus; Caramoy, Albert [Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne (Germany); Volz, Cornelia; Jägle, Herbert [Department of Ophthalmology, University Hospital Regensburg, Regensburg (Germany); Liebisch, Gerhard [Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg (Germany); Utermöhlen, Olaf [Institute for Medical Microbiology, Immunology and Hygiene and Center for Molecular Medicine Cologne, University of Cologne, Cologne (Germany); Langmann, Thomas, E-mail: thomas.langmann@uk-koeln.de [Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne (Germany)

    2015-08-21

    Mutations in the acid sphingomyelinase (aSMase) coding gene sphingomyelin phosphodiesterase 1 (SMPD1) cause Niemann-Pick disease (NPD) type A and B. Sphingomyelin storage in cells of the mononuclear phagocyte system cause hepatosplenomegaly and severe neurodegeneration in the brain of NPD patients. However, the effects of aSMase deficiency on retinal structure and microglial behavior have not been addressed in detail yet. Here, we demonstrate that retinas of aSMase{sup −/−} mice did not display overt neuronal degeneration but showed significantly reduced scotopic and photopic responses in electroretinography. In vivo fundus imaging of aSMase{sup −/−} mice showed many hyperreflective spots and staining for the retinal microglia marker Iba1 revealed massive proliferation of retinal microglia that had significantly enlarged somata. Nile red staining detected prominent phospholipid inclusions in microglia and lipid analysis showed significantly increased sphingomyelin levels in retinas of aSMase{sup −/−} mice. In conclusion, the aSMase-deficient mouse is the first example in which microglial lipid inclusions are directly related to a loss of retinal function. - Highlights: • aSMase-deficient mice show impaired retinal function and reactive microgliosis. • aSMase-deficient microglia express pro-inflammatory transcripts. • aSMase-deficient microglia proliferate and have increased cell body size. • In vivo imaging shows hyperreflective spots in the fundus of aSMase-deficient mice. • aSMase-deficient microglia accumulate sphingolipid-rich intracellular deposits.

  9. Increased periodontal bone loss in temporarily B lymphocyte-deficient rats

    DEFF Research Database (Denmark)

    Klausen, B; Hougen, H P; Fiehn, N E

    1989-01-01

    In order to study the role of T lymphocytes and B lymphocytes in the development of marginal periodontitis, experiments were performed on specific-pathogen-free (SPF) rats with various immunologic profiles. The study comprised nude (congenitally T lymphocyte-deficient), thymus-grafted nude (T-lym......-lymphocyte deficiency did not interfere with the development of periodontal disease in this model, whereas a temporary and moderate reduction in B-lymphocyte numbers seemed to predispose for aggravation of periodontal bone loss.......In order to study the role of T lymphocytes and B lymphocytes in the development of marginal periodontitis, experiments were performed on specific-pathogen-free (SPF) rats with various immunologic profiles. The study comprised nude (congenitally T lymphocyte-deficient), thymus-grafted nude (T...... had significantly less periodontal bone support than controls. Anti-mu treated inoculated rats had significantly less periodontal bone support than nude and normal rats, whereas no difference was found between normal, nude, and thymus-grafted rats. It is concluded that permanent T...

  10. Expansion of murine gammaherpesvirus latently infected B cells requires T follicular help.

    Directory of Open Access Journals (Sweden)

    Christopher M Collins

    2014-05-01

    Full Text Available X linked lymphoproliferative disease (XLP is an inherited immunodeficiency resulting from mutations in the gene encoding the slam associated protein (SAP. One of the defining characteristics of XLP is extreme susceptibility to infection with Epstein-Barr virus (EBV, a gammaherpesvirus belonging to the genus Lymphocryptovirus, often resulting in fatal infectious mononucleosis (FIM. However, infection of SAP deficient mice with the related Murine gammaherpesvirus 68 (MHV68, a gammaherpesvirus in the genus Rhadinovirus, does not recapitulate XLP. Here we show that MHV68 inefficiently establishes latency in B cells in SAP deficient mice due to insufficient CD4 T cell help during the germinal center response. Although MHV68 infected B cells can be found in SAP-deficient mice, significantly fewer of these cells had a germinal center phenotype compared to SAP-sufficient mice. Furthermore, we show that infected germinal center B cells in SAP-deficient mice fail to proliferate. This failure to proliferate resulted in significantly lower viral loads, and likely accounts for the inability of MHV68 to induce a FIM-like syndrome. Finally, inhibiting differentiation of T follicular helper (TFH cells in SAP-sufficient C57Bl/6 mice resulted in decreased B cell latency, and the magnitude of the TFH response directly correlated with the level of infection in B cells. This requirement for CD4 T cell help during the germinal center reaction by MHV68 is in contrast with EBV, which is thought to be capable of bypassing this requirement by expressing viral proteins that mimic signals provided by TFH cells. In conclusion, the outcome of MHV68 infection in mice in the setting of loss of SAP function is distinct from that observed in SAP-deficient patients infected with EBV, and may identify a fundamental difference between the strategies employed by the rhadinoviruses and lymphocryptoviruses to expand B cell latency during the early phase of infection.

  11. Glutamate carboxypeptidase II and folate deficiencies result in reciprocal protection against cognitive and social deficits in mice: implications for neurodevelopmental disorders.

    Science.gov (United States)

    Schaevitz, Laura R; Picker, Jonathan D; Rana, Jasmine; Kolodny, Nancy H; Shane, Barry; Berger-Sweeney, Joanne E; Coyle, Joseph T

    2012-06-01

    Interactions between genetic and environmental risk factors underlie a number of neuropsychiatric disorders, including schizophrenia (SZ) and autism (AD). Due to the complexity and multitude of the genetic and environmental factors attributed to these disorders, recent research strategies focus on elucidating the common molecular pathways through which these multiple risk factors may function. In this study, we examine the combined effects of a haplo-insufficiency of glutamate carboxypeptidase II (GCPII) and dietary folic acid deficiency. In addition to serving as a neuropeptidase, GCPII catalyzes the absorption of folate. GCPII and folate depletion interact within the one-carbon metabolic pathway and/or of modulate the glutamatergic system. Four groups of mice were tested: wild-type, GCPII hypomorphs, and wild-types and GCPII hypomorphs both fed a folate deficient diet. Due to sex differences in the prevalence of SZ and AD, both male and female mice were assessed on a number of behavioral tasks including locomotor activity, rotorod, social interaction, prepulse inhibition, and spatial memory. Wild-type mice of both sexes fed a folic acid deficient diet showed motor coordination impairments and cognitive deficits, while social interactions were decreased only in males. GCPII mutant mice of both sexes also exhibited reduced social propensities. In contrast, all folate-depleted GCPII hypomorphs performed similarly to untreated wild-type mice, suggesting that reduced GCPII expression and folate deficiency are mutually protective. Analyses of folate and neurometabolite levels associated with glutamatergic function suggest several potential mechanisms through which GCPII and folate may be interacting to create this protective effect. Copyright © 2011 Wiley Periodicals, Inc.

  12. Diet-Induced Alterations in Gut Microflora Contribute to Lethal Pulmonary Damage in TLR2/TLR4-Deficient Mice

    Directory of Open Access Journals (Sweden)

    Yewei Ji

    2014-07-01

    Full Text Available Chronic intake of Western diet has driven an epidemic of obesity and metabolic syndrome, but how it induces mortality remains unclear. Here, we show that chronic intake of a high-fat diet (HFD, not a low-fat diet, leads to severe pulmonary damage and mortality in mice deficient in Toll-like receptors 2 and 4 (DKO. Diet-induced pulmonary lesions are blocked by antibiotic treatment and are transmissible to wild-type mice upon either cohousing or fecal transplantation, pointing to the existence of bacterial pathogens. Indeed, diet and innate deficiency exert significant impact on gut microbiota composition. Thus, chronic intake of HFD promotes severe pulmonary damage and mortality in DKO mice in part via gut dysbiosis, a finding that may be important for immunodeficient patients, particularly those on chemotherapy or radiotherapy, where gut-microbiota-caused conditions are often life threatening.

  13. A general review on vitamin B12 deficiency with focus on the situation in Jordan

    International Nuclear Information System (INIS)

    Qutob, M. S.; Takruri, H. R.

    2011-01-01

    Vitamin B 12 (cobalamin) is an essential nutrient that is only obtained from foods of animal origin, such as meat, eggs and dairy products. Vitamin B 12 plays an important role in DNA synthesis and neurological function. Thus its deficiency can lead to several neurological symptoms such as memory loss, dizziness and in severe cases may lead to dementia. Many factors can cause or lead to vitamin B-1 2 deficiency. Among these are malabsorption, several gastron intestinal problems (i.e. celiac disease, Crobn's disease) and gastrointestinal surgeries. diagnosis of vitamin B-1 2 status depends commonly on serum vitamin B 12 which is nonspecific tool for the deficiency. Other more specific tests, which reflect true deficiency, include serum and urine methylmalonic aci de, total serum homocysteine and serum holotranscobalamin. Vitamin B 12 deficiency is a worldwide public health problem; epidemiological studies showed that its prevalence in industrialized countries ranges from 5-60% of the population depending on the used cutoff point of cobalamin level. In Jordan, many reports were published on vitamin B 12 deficiency. However, these reports gave different results of its prevalence ranging from 16-48% depending on the serum vitamin B 12 cutoff point used. A recent study showed a prevalence of true deficiency of 32.7% based on measuring both serum vitamin B 12 level and plasma methylmalonic acid. (authors).

  14. Differential programming of B cells in AID deficient mice.

    Directory of Open Access Journals (Sweden)

    Marc A Hogenbirk

    Full Text Available The Aicda locus encodes the activation induced cytidine deaminase (AID and is highly expressed in germinal center (GC B cells to initiate somatic hypermutation (SHM and class switch recombination (CSR of immunoglobulin (Ig genes. Besides these Ig specific activities in B cells, AID has been implicated in active DNA demethylation in non-B cell systems. We here determined a potential role of AID as an epigenetic eraser and transcriptional regulator in B cells. RNA-Seq on different B cell subsets revealed that Aicda(-/- B cells are developmentally affected. However as shown by RNA-Seq, MethylCap-Seq, and SNP analysis these transcriptome alterations may not relate to AID, but alternatively to a CBA mouse strain derived region around the targeted Aicda locus. These unexpected confounding parameters provide alternative, AID-independent interpretations on genotype-phenotype correlations previously reported in numerous studies on AID using the Aicda(-/- mouse strain.

  15. Secondary reduction of alpha7B integrin in laminin alpha2 deficient congenital muscular dystrophy supports an additional transmembrane link in skeletal muscle.

    Science.gov (United States)

    Cohn, R D; Mayer, U; Saher, G; Herrmann, R; van der Flier, A; Sonnenberg, A; Sorokin, L; Voit, T

    1999-03-01

    The integrins are a large family of heterodimeric transmembrane cellular receptors which mediate the association between the extracellular matrix (ECM) and cytoskeletal proteins. The alpha7beta1 integrin is a major laminin binding integrin in skeletal and cardiac muscle and is thought to be involved in myogenic differentiation and migration processes. The main binding partners of the alpha7 integrin are laminin-1 (alpha1-beta1-gamma1), laminin-2 (alpha2-beta1-gamma1) and laminin-4 (alpha2-beta2-gamma1). Targeted deletion of the gene for the alpha7 integrin subunit (ITGA7) in mice leads to a novel form of muscular dystrophy. In the present study we have investigated the expression of two alternative splice variants, the alpha7B and beta1D integrin subunits, in normal human skeletal muscle, as well as in various forms of muscular dystrophy. In normal human skeletal muscle the expression of the alpha7 integrin subunit appeared to be developmentally regulated: it was first detected at 2 years of age. In contrast, the beta1D integrin could be detected in immature and mature muscle in the sarcolemma of normal fetal skeletal muscle at 18 weeks gestation. The expression of alpha7B integrin was significantly reduced at the sarcolemma in six patients with laminin alpha2 chain deficient congenital muscular dystrophy (CMD) (age >2 years). However, this reduction was not correlated with the amount of laminin alpha2 chain expressed. In contrast, the expression of the laminin alpha2 chain was not altered in the skeletal muscle of the alpha7 knock-out mice. These data argue in favor that there is not a tight correlation between the expression of the alpha7 integrin subunit and that of the laminin alpha2 chain in either human or murine dystrophic muscle. Interestingly, in dystrophinopathies (Duchenne and Becker muscular dystrophy; DMD/BMD) expression of alpha7B was upregulated irrespective of the level of dystrophin expression as shown by a strong sarcolemmal staining pattern even

  16. Enhanced venous thrombus resolution in plasminogen activator inhibitor type-2 deficient mice.

    Science.gov (United States)

    Siefert, S A; Chabasse, C; Mukhopadhyay, S; Hoofnagle, M H; Strickland, D K; Sarkar, R; Antalis, T M

    2014-10-01

    The resolution of deep vein thrombosis requires an inflammatory response and mobilization of proteases, such as urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs), to degrade the thrombus and remodel the injured vein wall. Plasminogen activator inhibitor type 2 (PAI-2) is a serine protease inhibitor (serpin) with unique immunosuppressive and cell survival properties that was originally identified as an inhibitor of uPA. To investigate the role of PAI-2 in venous thrombus formation and resolution. Venous thrombus resolution was compared in wild-type C57BL/6, PAI-2(-/-) , and PAI-1(-/-) mice using the stasis model of deep vein thrombosis. Formed thrombi were harvested, thrombus weights were recorded, and tissue was analyzed for uPA and MMP activities, PAI-1 expression, and the nature of inflammatory cell infiltration. We found that the absence of PAI-2 enhanced venous thrombus resolution, while thrombus formation was unaffected. Enhanced venous thrombus resolution in PAI-2(-/-) mice was associated with increased uPA activity and reduced levels of PAI-1, with no significant effect on MMP-2 and -9 activities. PAI-1 deficiency resulted in an increase in thrombus resolution similar to PAI-2 deficiency, but additionally reduced venous thrombus formation and altered MMP activity. PAI-2-deficient thrombi had increased levels of the neutrophil chemoattractant CXCL2, which was associated with early enhanced neutrophil recruitment. These data identify PAI-2 as a novel regulator of venous thrombus resolution, which modulates several pathways involving both inflammatory and uPA activity mechanisms, distinct from PAI-1. Further examination of these pathways may lead to potential therapeutic prospects in accelerating thrombus resolution. © 2014 International Society on Thrombosis and Haemostasis.

  17. Ionizing radiation, inflammation, and their interactions in colon carcinogenesis in Mlh1-deficient mice.

    Science.gov (United States)

    Morioka, Takamitsu; Miyoshi-Imamura, Tomoko; Blyth, Benjamin J; Kaminishi, Mutsumi; Kokubo, Toshiaki; Nishimura, Mayumi; Kito, Seiji; Tokairin, Yutaka; Tani, Shusuke; Murakami-Murofushi, Kimiko; Yoshimi, Naoki; Shimada, Yoshiya; Kakinuma, Shizuko

    2015-03-01

    Genetic, physiological and environmental factors are implicated in colorectal carcinogenesis. Mutations in the mutL homolog 1 (MLH1) gene, one of the DNA mismatch repair genes, are a main cause of hereditary colon cancer syndromes such as Lynch syndrome. Long-term chronic inflammation is also a key risk factor, responsible for colitis-associated colorectal cancer; radiation exposure is also known to increase colorectal cancer risk. Here, we studied the effects of radiation exposure on inflammation-induced colon carcinogenesis in DNA mismatch repair-proficient and repair-deficient mice. Male and female Mlh1(-/-) and Mlh1(+/+) mice were irradiated with 2 Gy X-rays when aged 2 weeks or 7 weeks and/or were treated with 1% dextran sodium sulfate (DSS) in drinking water for 7 days at 10 weeks old to induce mild inflammatory colitis. No colon tumors developed after X-rays and/or DSS treatment in Mlh1(+/+) mice. Colon tumors developed after DSS treatment alone in Mlh1(-/-) mice, and exposure to radiation prior to DSS treatment increased the number of tumors. Histologically, colon tumors in the mice resembled the subtype of well-to-moderately differentiated adenocarcinomas with tumor-infiltrating lymphocytes of human Lynch syndrome. Immunohistochemistry revealed that expression of both p53 and β-catenin and loss of p21 and adenomatosis polyposis coli proteins were observed at the later stages of carcinogenesis, suggesting a course of molecular pathogenesis distinct from typical sporadic or colitis-associated colon cancer in humans. In conclusion, radiation exposure could further increase the risk of colorectal carcinogenesis induced by inflammation under the conditions of Mlh1 deficiency. © 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  18. CD4(+) T cell-mediated control of a gamma-herpesvirus in B cell-deficient mice is mediated by IFN-gamma

    DEFF Research Database (Denmark)

    Christensen, Jan Pravsgaard; Cardin, R D; Branum, K C

    1999-01-01

    The lack of B cells and antibody does not prevent mice from dealing effectively with a pathogenic gamma-herpesvirus. Both CD4(+) and CD8(+) T cells contribute to the control of virus replication in the respiratory tract, with the depletion of either lymphocyte subset leading to increased titers...... for direct interaction with virus-infected targets expressing MHC class II glycoproteins, suggesting that the IFN-gamma produced by these lymphocytes is functioning at short range. The numbers of latently infected cells in the spleens of carrier mice are also significantly increased by the concurrent...

  19. Is vitamin B12 deficiency a risk factor for cardiovascular disease in vegetarians?

    Science.gov (United States)

    Pawlak, Roman

    2015-06-01

    The goal of this paper is to describe the role of vitamin B12 deficiency in cardiovascular disease development among vegetarians. Vegetarians have a high prevalence of vitamin B12 deficiency. Deficiency of this vitamin is associated with a variety of atherogenic processes that are mainly, but not exclusively, due to vitamin B12 deficiency-induced hyperhomocysteinemia. Each 5-μmol/L increase above 10 μmol/L of serum homocysteine is associated with a 20% increased risk of circulatory health problems. Mean homocysteine concentration >10 μmol/L among vegetarians was reported in 32 of 34 reports. Macrocytosis associated with vitamin B12 deficiency is also associated with fatal and non-fatal coronary disease, myocardial infarction, stroke, and other circulatory health problems. Compared with non-vegetarians, vegetarians have an improved profile of the traditional cardiovascular disease risk factors, including serum lipids, blood pressure, serum glucose concentration, and weight status. However, not all studies that assessed cardiovascular disease incidence among vegetarians reported a protective effect. Among studies that did show a lower prevalence of circulatory health problems, the effect was not as pronounced as expected, which may be a result of poor vitamin B12 status due to a vegetarian diet. Vitamin B12 deficiency may negate the cardiovascular disease prevention benefits of vegetarian diets. In order to further reduce the risk of cardiovascular disease, vegetarians should be advised to use vitamin B12 supplements. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  20. Experimental demyelination and axonal loss are reduced in MicroRNA-146a deficient mice

    DEFF Research Database (Denmark)

    Martin, Nellie A.; Molnar, Viktor; Szilagyi, Gabor T.

    2018-01-01

    Background: The cuprizone (CPZ) model of multiple sclerosis (MS) was used to identify microRNAs (miRNAs) related to in vivo de- and remyelination. We further investigated the role of miR-146a in miR-146a-deficient (KO) mice: this miRNA is differentially expressed in MS lesions and promotes differ...

  1. Rearrangement of Rag-1 recombinase gene in DNA-repair deficient/immunodeficient ``wasted`` mice

    Energy Technology Data Exchange (ETDEWEB)

    Woloschak, G.E.; Weaver, P.; Churchill, M.; Chang-Liu, C-M. [Argonne National Lab., IL (United States); Libertin, C.R. [Loyola Univ., Maywood, IL (United States)

    1992-11-01

    Mice recessive for the autosomal gene ``wasted`` (wst) display a disease pattern which includes increased sensitivity to the killing effects of ionizing radiation, immunodeficiency, and neurologic dysfunction. The recent cloning and characterization of recombinase genes (Rag-l/Rag-2) expressed in lymphoid and possibly central nervous system tissues prompted us to examine expression of these genes in DNA repair-deficient/immunodeficient wasted mice. Our results revealed that in thymus tissue, a small Rag-I transcript (1.0 kb) was detected in wst/wst mice that was not evident in thymus from control mice. In wst/{sm_bullet} mice, a two-fold increase in Rag-1 mRNA was evident in thymus tissue. Rag-2 mRNA could only be detected in thymus tissue from wst/{sm_bullet} and not from wst/wst or parental control BCF, mice. Southern blots revealed a rearrangement or deletion within the Rag-1 gene of affected wasted mice that was not evident in known strain-specific parental or littermate controls. These results support the idea that the Rag-1 gene may map at or near the locus for the wasted mutation. In addition, they suggest the importance of recombinase function in normal immune and central nervous system development as well as the potential contribution of this gene family to the normal repair of radiation-induced DNA damage.

  2. Development of severe skeletal defects in induced SHP-2-deficient adult mice: a model of skeletal malformation in humans with SHP-2 mutations

    Directory of Open Access Journals (Sweden)

    Timothy J. Bauler

    2011-03-01

    SHP-2 (encoded by PTPN11 is a ubiquitously expressed protein tyrosine phosphatase required for signal transduction by multiple different cell surface receptors. Humans with germline SHP-2 mutations develop Noonan syndrome or LEOPARD syndrome, which are characterized by cardiovascular, neurological and skeletal abnormalities. To study how SHP-2 regulates tissue homeostasis in normal adults, we used a conditional SHP-2 mouse mutant in which loss of expression of SHP-2 was induced in multiple tissues in response to drug administration. Induced deletion of SHP-2 resulted in impaired hematopoiesis, weight loss and lethality. Most strikingly, induced SHP-2-deficient mice developed severe skeletal abnormalities, including kyphoses and scolioses of the spine. Skeletal malformations were associated with alterations in cartilage and a marked increase in trabecular bone mass. Osteoclasts were essentially absent from the bones of SHP-2-deficient mice, thus accounting for the osteopetrotic phenotype. Studies in vitro revealed that osteoclastogenesis that was stimulated by macrophage colony-stimulating factor (M-CSF and receptor activator of nuclear factor kappa B ligand (RANKL was defective in SHP-2-deficient mice. At least in part, this was explained by a requirement for SHP-2 in M-CSF-induced activation of the pro-survival protein kinase AKT in hematopoietic precursor cells. These findings illustrate an essential role for SHP-2 in skeletal growth and remodeling in adults, and reveal some of the cellular and molecular mechanisms involved. The model is predicted to be of further use in understanding how SHP-2 regulates skeletal morphogenesis, which could lead to the development of novel therapies for the treatment of skeletal malformations in human patients with SHP-2 mutations.

  3. Human CD4 restores normal T cell development and function in mice deficient in murine CD4

    OpenAIRE

    1994-01-01

    The ability of a human coreceptor to function in mice was investigated by generating human CD4 (hCD4)-expressing transgenic mice on a mouse CD4-deficient (mCD4-/-) background. From developing thymocyte to matured T lymphocyte functions, hCD4 was shown to be physiologically active. By examining the expansion and deletion of specific V beta T cell families in mutated mice with and without hCD4, it was found that hCD4 can participate in positive and negative selection. Mature hCD4 single positiv...

  4. Live vaccinia-rabies virus recombinants, but not an inactivated rabies virus cell culture vaccine, protect B-lymphocyte-deficient A/WySnJ mice against rabies: considerations of recombinant defective poxviruses for rabies immunization of immunocompromised individuals.

    Science.gov (United States)

    Lodmell, Donald L; Esposito, Joseph J; Ewalt, Larry C

    2004-09-03

    Presently, commercially available cell culture rabies vaccines for humans and animals consist of the five inactivated rabies virus proteins. The vaccines elicit a CD4+ helper T-cell response and a humoral B-cell response against the viral glycoprotein (G) resulting in the production of virus neutralizing antibody. Antibody against the viral nucleoprotein (N) is also present, but the mechanism(s) of its protection is unclear. HIV-infected individuals with low CD4+ T-lymphocyte counts and individuals undergoing treatment with immunosuppressive drugs have an impaired neutralizing antibody response after pre- and post-exposure immunization with rabies cell culture vaccines. Here we show the efficacy of live vaccinia-rabies virus recombinants, but not a cell culture vaccine consisting of inactivated rabies virus, to elicit elevated levels of neutralizing antibody in B-lymphocyte deficient A/WySnJ mice. The cell culture vaccine also failed to protect the mice, whereas a single immunization of a vaccinia recombinant expressing the rabies virus G or co-expressing G and N equally protected the mice up to 18 months after vaccination. The data suggest that recombinant poxviruses expressing the rabies virus G, in particular replication defective poxviruses such as canarypox or MVA vaccinia virus that undergo abortive replication in non-avian cells, or the attenuated vaccinia virus NYVAC, should be evaluated as rabies vaccines in immunocompromised individuals.

  5. Inflammation induced by mast cell deficiency rather than the loss of interstitial cells of Cajal causes smooth muscle dysfunction in W/Wv mice

    Science.gov (United States)

    Winston, John H.; Chen, Jinghong; Shi, Xuan-Zheng; Sarna, Sushil K.

    2014-01-01

    The initial hypothesis suggested that the interstitial cells of Cajal (ICC) played an essential role in mediating enteric neuronal input to smooth muscle cells. Much information for this hypothesis came from studies in W/Wv mice lacking ICC. However, mast cells, which play critical roles in regulating inflammation in their microenvironment, are also absent in W/Wv mice. We tested the hypothesis that the depletion of mast cells in W/Wv mice generates inflammation in fundus muscularis externa (ME) that impairs smooth muscle reactivity to Ach, independent of the depletion of ICC. We performed experiments on the fundus ME from wild type (WT) and W/Wv mice before and after reconstitution of mast cells by bone marrow transplant. We found that mast cell deficiency in W/Wv mice significantly increased COX-2 and iNOS expression and decreased smooth muscle reactivity to Ach. Mast cell reconstitution or concurrent blockade of COX-2 and iNOS restored smooth muscle contractility without affecting the suppression of c-kit in W/Wv mice. The expression of nNOS and ChAT were suppressed in W/Wv mice; mast cell reconstitution did not restore them. We conclude that innate inflammation induced by mast cell deficiency in W/Wv mice impairs smooth muscle contractility independent of ICC deficiency. The impairment of smooth muscle contractility and the suppression of the enzymes regulating the synthesis of Ach and NO in W/Wv mice need to be considered in evaluating the role of ICC in regulating smooth muscle and enteric neuronal function in W/Wv mice. PMID:24550836

  6. Primary structure of bovine pituitary secretory protein I (chromogranin A) deduced from the cDNA sequence

    International Nuclear Information System (INIS)

    Ahn, T.G.; Cohn, D.V.; Gorr, S.U.; Ornstein, D.L.; Kashdan, M.A.; Levine, M.A.

    1987-01-01

    Secretory protein I (SP-I), also referred to as chromogranin A, is an acidic glycoprotein that has been found in every tissue of endocrine and neuroendocrine origin examined but never in exocrine or epithelial cells. Its co-storage and co-secretion with peptide hormones and neurotransmitters suggest that it has an important endocrine or secretory function. The authors have isolated cDNA clones from a bovine pituitary λgt11 expression library using an antiserum to parathyroid SP-I. The largest clone (SP4B) hybridized to a transcript of 2.1 kilobases in RNA from parathyroid, pituitary, and adrenal medulla. Immunoblots of bacterial lysates derived from SP4B lysognes demonstrated specific antibody binding to an SP4B/β-galactosidase fusion protein (160 kDa) with a cDNA-derived component of 46 kDa. Radioimmunoassay of the bacterial lystates with SP-I antiserum yielded parallel displacement curves of 125 I-labeled SP-I by the SP4B lysate and authentic SP-I. SP4B contains a cDNA of 1614 nucleotides that encodes a 449-amino acid protein (calculated mass, 50 kDa). The nucleotide sequences of the pituitary SP-I cDNA and adrenal medullary SP-I cDNAs are nearly identical. Analysis of genomic DNA suggests that pituitary, adrenal, and parathyroid SP-I are products of the same gene

  7. Primary structure of bovine pituitary secretory protein I (chromogranin A) deduced from the cDNA sequence

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, T.G.; Cohn, D.V.; Gorr, S.U.; Ornstein, D.L.; Kashdan, M.A.; Levine, M.A.

    1987-07-01

    Secretory protein I (SP-I), also referred to as chromogranin A, is an acidic glycoprotein that has been found in every tissue of endocrine and neuroendocrine origin examined but never in exocrine or epithelial cells. Its co-storage and co-secretion with peptide hormones and neurotransmitters suggest that it has an important endocrine or secretory function. The authors have isolated cDNA clones from a bovine pituitary lambdagt11 expression library using an antiserum to parathyroid SP-I. The largest clone (SP4B) hybridized to a transcript of 2.1 kilobases in RNA from parathyroid, pituitary, and adrenal medulla. Immunoblots of bacterial lysates derived from SP4B lysognes demonstrated specific antibody binding to an SP4B/..beta..-galactosidase fusion protein (160 kDa) with a cDNA-derived component of 46 kDa. Radioimmunoassay of the bacterial lystates with SP-I antiserum yielded parallel displacement curves of /sup 125/I-labeled SP-I by the SP4B lysate and authentic SP-I. SP4B contains a cDNA of 1614 nucleotides that encodes a 449-amino acid protein (calculated mass, 50 kDa). The nucleotide sequences of the pituitary SP-I cDNA and adrenal medullary SP-I cDNAs are nearly identical. Analysis of genomic DNA suggests that pituitary, adrenal, and parathyroid SP-I are products of the same gene.

  8. Brain Lateralization in Mice Is Associated with Zinc Signaling and Altered in Prenatal Zinc Deficient Mice That Display Features of Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Stefanie Grabrucker

    2018-01-01

    Full Text Available A number of studies have reported changes in the hemispheric dominance in autism spectrum disorder (ASD patients on functional, biochemical, and morphological level. Since asymmetry of the brain is also found in many vertebrates, we analyzed whether prenatal zinc deficient (PZD mice, a mouse model with ASD like behavior, show alterations regarding brain lateralization on molecular and behavioral level. Our results show that hemisphere-specific expression of marker genes is abolished in PZD mice on mRNA and protein level. Using magnetic resonance imaging, we found an increased striatal volume in PZD mice with no change in total brain volume. Moreover, behavioral patterns associated with striatal lateralization are altered and the lateralized expression of dopamine receptor 1 (DR1 in the striatum of PZD mice was changed. We conclude that zinc signaling during brain development has a critical role in the establishment of brain lateralization in mice.

  9. Neuronal glucose transporter isoform 3 deficient mice demonstrate features of autism spectrum disorders.

    Science.gov (United States)

    Zhao, Y; Fung, C; Shin, D; Shin, B-C; Thamotharan, S; Sankar, R; Ehninger, D; Silva, A; Devaskar, S U

    2010-03-01

    Neuronal glucose transporter (GLUT) isoform 3 deficiency in null heterozygous mice led to abnormal spatial learning and working memory but normal acquisition and retrieval during contextual conditioning, abnormal cognitive flexibility with intact gross motor ability, electroencephalographic seizures, perturbed social behavior with reduced vocalization and stereotypies at low frequency. This phenotypic expression is unique as it combines the neurobehavioral with the epileptiform characteristics of autism spectrum disorders. This clinical presentation occurred despite metabolic adaptations consisting of an increase in microvascular/glial GLUT1, neuronal GLUT8 and monocarboxylate transporter isoform 2 concentrations, with minimal to no change in brain glucose uptake but an increase in lactate uptake. Neuron-specific glucose deficiency has a negative impact on neurodevelopment interfering with functional competence. This is the first description of GLUT3 deficiency that forms a possible novel genetic mechanism for pervasive developmental disorders, such as the neuropsychiatric autism spectrum disorders, requiring further investigation in humans.

  10. An evaluation of chromogranin A versus gastrin and progastrin in gastrinoma diagnosis and control

    DEFF Research Database (Denmark)

    Rehfeld, Jens F; Bardram, Linda; Hilsted, Linda

    2014-01-01

    AIM: The value of chromogranin A (CgA) versus gastrin and progastrin in diagnosis and control of gastrinoma patients is not settled because the peptides circulate as variable mixtures. We have addressed this complexity using defined sequence-specific assays. PATIENTS & METHODS: Six assays were......-amidated gastrins have high diagnostic value except for singular patients in whom only progastrin was elevated. By contrast, CgA measurements are not valid in diagnosis or control of gastrinomas....

  11. Surfactant protein d deficiency in mice is associated with hyperphagia, altered fat deposition, insulin resistance, and increased Basal endotoxemia

    DEFF Research Database (Denmark)

    Stidsen, Jacob V; Khorooshi, Reza; Rahbek, Martin K U

    2012-01-01

    Pulmonary surfactant protein D (SP-D) is a host defence lectin of the innate immune system that enhances clearance of pathogens and modulates inflammatory responses. Recently it has been found that systemic SP-D is associated with metabolic disturbances and that SP-D deficient mice are mildly obese....... However, the mechanism behind SP-D's role in energy metabolism is not known.Here we report that SP-D deficient mice had significantly higher ad libitum energy intake compared to wild-type mice and unchanged energy expenditure. This resulted in accumulation but also redistribution of fat tissue. Blood...... pressure was unchanged. The change in energy intake was unrelated to the basal levels of hypothalamic Pro-opiomelanocortin (POMC) and Agouti-related peptide (AgRP) gene expression. Neither short time systemic, nor intracereberoventricular SP-D treatment altered the hypothalamic signalling or body weight...

  12. NERVE EXCITABILITY CHANGES AFTER NA(V)1.8 CHANNEL BLOCKER TREATMENT IN MICE DEFICIENT OF MYELIN PROTEIN P-0

    DEFF Research Database (Denmark)

    Moldovan, M.; Rosberg, M. R.; Alvarez Herrero, Susana

    2016-01-01

    Mice deficient of myelin protein zero (P0) are established models of demyelinating Charcot-Marie-Tooth (CMT) disease. Recent work form our laboratory indicated that in severely affected P0−/− as well as in P0+/− (modeling CMT1B), the neuropathy is aggravated by associated changes in voltage...... function up to 2 hours after the blockers. Overall, the baseline excitability measures were much more abnormal in P0−/− at 4 months as compared to P0+/− at 20 months. Nevertheless, in both models, the NaV1.8 blockers produced similar deviations in excitability at a dose of 100 mg/Kg. Most notably...

  13. 4PS/insulin receptor substrate (IRS)-2 is the alternative substrate of the insulin receptor in IRS-1-deficient mice.

    Science.gov (United States)

    Patti, M E; Sun, X J; Bruening, J C; Araki, E; Lipes, M A; White, M F; Kahn, C R

    1995-10-20

    Insulin receptor substrate-1 (IRS-1) is the major cytoplasmic substrate of the insulin and insulin-like growth factor (IGF)-1 receptors. Transgenic mice lacking IRS-1 are resistant to insulin and IGF-1, but exhibit significant residual insulin action which corresponds to the presence of an alternative high molecular weight substrate in liver and muscle. Recently, Sun et al. (Sun, X.-J., Wang, L.-M., Zhang, Y., Yenush, L. P., Myers, M. G., Jr., Glasheen, E., Lane, W.S., Pierce, J. H., and White, M. F. (1995) Nature 377, 173-177) purified and cloned 4PS, the major substrate of the IL-4 receptor-associated tyrosine kinase in myeloid cells, which has significant structural similarity to IRS-1. To determine if 4PS is the alternative substrate of the insulin receptor in IRS-1-deficient mice, we performed immunoprecipitation, immunoblotting, and phosphatidylinositol (PI) 3-kinase assays using specific antibodies to 4PS. Following insulin stimulation, 4PS is rapidly phosphorylated in liver and muscle, binds to the p85 subunit of PI 3-kinase, and activates the enzyme. Insulin stimulation also results in the association of 4PS with Grb 2 in both liver and muscle. In IRS-1-deficient mice, both the phosphorylation of 4PS and associated PI 3-kinase activity are enhanced, without an increase in protein expression. Immunodepletion of 4PS from liver and muscle homogenates removes most of the phosphotyrosine-associated PI 3-kinase activity in IRS-1-deficient mice. Thus, 4PS is the primary alternative substrate, i.e. IRS-2, which plays a major role in physiologic insulin signal transduction via both PI 3-kinase activation and Grb 2/Sos association. In IRS-1-deficient mice, 4PS/IRS-2 provides signal transduction to these two major pathways of insulin signaling.

  14. High incidence of HPV-associated head and neck cancers in FA deficient mice is associated with E7's induction of DNA damage through its inactivation of pocket proteins.

    Science.gov (United States)

    Park, Jung Wook; Shin, Myeong-Kyun; Pitot, Henry C; Lambert, Paul F

    2013-01-01

    Fanconi anemia (FA) patients are highly susceptible to solid tumors at multiple anatomical sites including head and neck region. A subset of head and neck cancers (HNCs) is associated with 'high-risk' HPVs, particularly HPV16. However, the correlation between HPV oncogenes and cancers in FA patients is still unclear. We previously learned that FA deficiency in mice predisposes HPV16 E7 transgenic mice to HNCs. To address HPV16 E6's oncogenic potential under FA deficiency in HNCs, we utilized HPV16 E6-transgenic mice (K14E6) and HPV16 E6/E7-bi-transgenic mice (K14E6E7) on genetic backgrounds sufficient or deficient for one of the fanc genes, fancD2 and monitored their susceptibility to HNCs. K14E6 mice failed to develop tumor. However, E6 and fancD2-deficiency accelerated E7-driven tumor development in K14E6E7 mice. The increased tumor incidence was more correlated with E7-driven DNA damage than proliferation. We also found that deficiency of pocket proteins, pRb, p107, and p130 that are well-established targets of E7, could recapitulate E7's induction of DNA damage. Our findings support the hypothesis that E7 induces HPV-associated HNCs by promoting DNA damage through the inactivation of pocket proteins, which explains why a deficiency in DNA damage repair would increase susceptibility to E7-driven cancer. Our results further demonstrate the unexpected finding that FA deficiency does not predispose E6 transgenic mice to HNCs, indicating a specificity in the synergy between FA deficiency and HPV oncogenes in causing HNCs.

  15. High incidence of HPV-associated head and neck cancers in FA deficient mice is associated with E7's induction of DNA damage through its inactivation of pocket proteins.

    Directory of Open Access Journals (Sweden)

    Jung Wook Park

    Full Text Available Fanconi anemia (FA patients are highly susceptible to solid tumors at multiple anatomical sites including head and neck region. A subset of head and neck cancers (HNCs is associated with 'high-risk' HPVs, particularly HPV16. However, the correlation between HPV oncogenes and cancers in FA patients is still unclear. We previously learned that FA deficiency in mice predisposes HPV16 E7 transgenic mice to HNCs. To address HPV16 E6's oncogenic potential under FA deficiency in HNCs, we utilized HPV16 E6-transgenic mice (K14E6 and HPV16 E6/E7-bi-transgenic mice (K14E6E7 on genetic backgrounds sufficient or deficient for one of the fanc genes, fancD2 and monitored their susceptibility to HNCs. K14E6 mice failed to develop tumor. However, E6 and fancD2-deficiency accelerated E7-driven tumor development in K14E6E7 mice. The increased tumor incidence was more correlated with E7-driven DNA damage than proliferation. We also found that deficiency of pocket proteins, pRb, p107, and p130 that are well-established targets of E7, could recapitulate E7's induction of DNA damage. Our findings support the hypothesis that E7 induces HPV-associated HNCs by promoting DNA damage through the inactivation of pocket proteins, which explains why a deficiency in DNA damage repair would increase susceptibility to E7-driven cancer. Our results further demonstrate the unexpected finding that FA deficiency does not predispose E6 transgenic mice to HNCs, indicating a specificity in the synergy between FA deficiency and HPV oncogenes in causing HNCs.

  16. Vitamin D-deficient mice have more invasive urinary tract infection.

    Science.gov (United States)

    Hertting, Olof; Lüthje, Petra; Sullivan, Devin; Aspenström, Pontus; Brauner, Annelie

    2017-01-01

    Vitamin D deficiency is a common health problem with consequences not limited to bone and calcium hemostasis. Low levels have also been linked to tuberculosis and other respiratory infections as well as autoimmune diseases. We have previously shown that supplementation with vitamin D can induce the antimicrobial peptide cathelicidin during ex vivo infection of human urinary bladder. In rodents, however, cathelicidin expression is not linked to vitamin D and therefore this vitamin D-related effect fighting bacterial invasion is not relevant. To determine if vitamin D had further protective mechanisms during urinary tract infections, we therefore used a mouse model. In vitamin D-deficient mice, we detected more intracellular bacterial communities in the urinary bladder, higher degree of bacterial spread to the upper urinary tract and a skewed cytokine response. Furthermore, we show that the vitamin D receptor was upregulated in the urinary bladder and translocated into the cell nucleus after E. coli infection. This study supports a more general role for vitamin D as a local immune response mediator in the urinary tract.

  17. Dual role of Fcγ receptors in host defense and disease in Borrelia burgdorferi-infected mice

    Directory of Open Access Journals (Sweden)

    Alexia Anne Belperron

    2014-06-01

    Full Text Available Arthritis in mice infected with the Lyme disease spirochete, Borrelia burgdorferi, results from the influx of innate immune cells responding to the pathogen in the joint and is influenced in part by mouse genetics. Production of inflammatory cytokines by innate immune cells in vitro is largely mediated by Toll-like receptor (TLR interaction with Borrelia lipoproteins, yet surprisingly mice deficient in TLR2 or the TLR signaling molecule MyD88 still develop arthritis comparable to that seen in wild type mice after B. burgdorferi infection. These findings suggest that other, MyD88-independent inflammatory pathways can contribute to arthritis expression. Clearance of B. burgdorferi is dependent on the production of specific antibody and phagocytosis of the organism. As Fc receptors (FcγR are important for IgG-mediated clearance of immune complexes and opsonized particles by phagocytes, we examined the role that FcγR play in host defense and disease in B. burgdorferi-infected mice. B. burgdorferi-infected mice deficient in the Fc receptor common gamma chain (FcεRγ-/- mice harbored ~10 fold more spirochetes than similarly infected wild type mice, and this was associated with a transient increase in arthritis severity. While the elevated pathogen burdens seen in B. burgdorferi-infected MyD88-/- mice were not affected by concomitant deficiency in FcγR, arthritis was reduced in FcεRγ-/-MyD88-/- mice in comparison to wild type or single knockout mice. Gene expression analysis from infected joints demonstrated that absence of both MyD88 and FcγR lowers mRNA levels of proteins involved in inflammation, including Cxcl1 (KC, Xcr1 (Gpr5, IL-1beta, and C reactive protein. Taken together, our results demonstrate a role for FcγR-mediated immunity in limiting pathogen burden and arthritis in mice during the acute phase of B. burgdorferi infection, and further suggest that this pathway contributes to the arthritis that develops in B. burgdorferi

  18. Interleukin 1α-Deficient Mice Have an Altered Gut Microbiota Leading to Protection from Dextran Sodium Sulfate-Induced Colitis.

    Science.gov (United States)

    Nunberg, Moran; Werbner, Nir; Neuman, Hadar; Bersudsky, Marina; Braiman, Alex; Ben-Shoshan, Moshe; Ben Izhak, Meirav; Louzoun, Yoram; Apte, Ron N; Voronov, Elena; Koren, Omry

    2018-01-01

    Inflammatory bowel diseases (IBD) are a group of chronic inflammatory disorders of the intestine, with as-yet-unclear etiologies, affecting over a million people in the United States alone. With the emergence of microbiome research, numerous studies have shown a connection between shifts in the gut microbiota composition (dysbiosis) and patterns of IBD development. In a previous study, we showed that interleukin 1α (IL-1α) deficiency in IL-1α knockout (KO) mice results in moderate dextran sodium sulfate (DSS)-induced colitis compared to that of wild-type (WT) mice, characterized by reduced inflammation and complete healing, as shown by parameters of weight loss, disease activity index (DAI) score, histology, and cytokine expression. In this study, we tested whether the protective effects of IL-1α deficiency on DSS-induced colitis correlate with changes in the gut microbiota and whether manipulation of the microbiota by cohousing can alter patterns of colon inflammation. We analyzed the gut microbiota composition in both control (WT) and IL-1α KO mice under steady-state homeostasis, during acute DSS-induced colitis, and after recovery using 16S rRNA next-generation sequencing. Additionally, we performed cohousing of both mouse groups and tested the effects on the microbiota and clinical outcomes. We demonstrate that host-derived IL-1α has a clear influence on gut microbiota composition, as well as on severity of DSS-induced acute colon inflammation. Cohousing both successfully changed the gut microbiota composition and increased the disease severity of IL-1α-deficient mice to levels similar to those of WT mice. This study shows a strong and novel correlation between IL-1α expression, microbiota composition, and clinical outcomes of DSS-induced colitis. IMPORTANCE Here, we show a connection between IL-1α expression, microbiota composition, and clinical outcomes of DSS-induced colitis. Specifically, we show that the mild colitis symptoms seen in IL-1α-deficient

  19. Antioxidant therapy attenuates myocardial telomerase activity reduction in superoxide dismutase-deficient mice.

    Science.gov (United States)

    Makino, Naoki; Maeda, Toyoki; Oyama, Jun-ichi; Sasaki, Makoto; Higuchi, Yoshihiro; Mimori, Koji; Shimizu, Takahiko

    2011-04-01

    Oxidative stress plays a pathological role in the development of heart failure. This study examined telomere biology in heart/muscle-specific manganese superoxide dismutase-deficient mice (H/M-SOD2(-/-)), which develop progressive congestive heart failure and exhibit pathology typical of dilated cardiomyopathy. EUK-8 (25mg/kg/day), a superoxide dismutase and catalase mimetic, was administered to H/M-SOD2(-/-) mice for four weeks beginning at 8 weeks of age. Telomere length, telomerase activity, telomere-associated proteins, and cell death signals were assessed in hearts from control wild-type mice (H/M-Sod2 (lox/ lox)) and H/M-SOD2(-/-) mice either treated or untreated with EUK-8. While cardiac function was unchanged in these experimental mice, the end-diastolic dimension in H/M-SOD2(-/-) mice was notably dilated and could be significantly reduced by EUK-8 treatment. At the end of the study, no shortening of telomere length was observed in heart tissues from all mice tested, but telomerase activity was decreased in heart tissue from H/M-SOD2(-/-) mice compared to control mice. Protein expression for telomerase reverse transcriptase and telomere repeat binding factor 2 was also downregulated in H/M-SOD2(-/-) heart tissue as was expression of phospho-Akt, insulin-like growth factor, and endothelial nitric oxide synthase. Expression levels of Sirt1, a lifespan modulator, were enhanced while FoxO3a was depressed in H/M-SOD2(-/-) hearts. All of the changes seen in H/M-SOD2(-/-) heart tissue could be inhibited by EUK-8 treatment. Taken together, the results suggest that oxidant stress might affect myocardial telomerase activity and telomere-associated proteins. Telomerase may therefore play a pivotal role in antioxidant defense mechanisms, and may be useful as a novel therapeutic tool for treating human heart failure. Copyright © 2010 Elsevier Ltd. All rights reserved.

  20. Long Term Expression of Drosophila melanogaster Nucleoside Kinase in Thymidine Kinase 2-deficient Mice with No Lethal Effects Caused by Nucleotide Pool Imbalances*

    Science.gov (United States)

    Krishnan, Shuba; Paredes, João A.; Zhou, Xiaoshan; Kuiper, Raoul V.; Hultenby, Kjell; Curbo, Sophie; Karlsson, Anna

    2014-01-01

    Mitochondrial DNA depletion caused by thymidine kinase 2 (TK2) deficiency can be compensated by a nucleoside kinase from Drosophila melanogaster (Dm-dNK) in mice. We show that transgene expression of Dm-dNK in Tk2 knock-out (Tk2−/−) mice extended the life span of Tk2−/− mice from 3 weeks to at least 20 months. The Dm-dNK+/−Tk2−/− mice maintained normal mitochondrial DNA levels throughout the observation time. A significant difference in total body weight due to the reduction of subcutaneous and visceral fat in the Dm-dNK+/−Tk2−/− mice was the only visible difference compared with control mice. This indicates an effect on fat metabolism mediated through residual Tk2 deficiency because Dm-dNK expression was low in both liver and fat tissues. Dm-dNK expression led to increased dNTP pools and an increase in the catabolism of purine and pyrimidine nucleotides but these alterations did not apparently affect the mice during the 20 months of observation. In conclusion, Dm-dNK expression in the cell nucleus expanded the total dNTP pools to levels required for efficient mitochondrial DNA synthesis, thereby compensated the Tk2 deficiency, during a normal life span of the mice. The Dm-dNK+/− mouse serves as a model for nucleoside gene or enzyme substitutions, nucleotide imbalances, and dNTP alterations in different tissues. PMID:25296759

  1. Long term expression of Drosophila melanogaster nucleoside kinase in thymidine kinase 2-deficient mice with no lethal effects caused by nucleotide pool imbalances.

    Science.gov (United States)

    Krishnan, Shuba; Paredes, João A; Zhou, Xiaoshan; Kuiper, Raoul V; Hultenby, Kjell; Curbo, Sophie; Karlsson, Anna

    2014-11-21

    Mitochondrial DNA depletion caused by thymidine kinase 2 (TK2) deficiency can be compensated by a nucleoside kinase from Drosophila melanogaster (Dm-dNK) in mice. We show that transgene expression of Dm-dNK in Tk2 knock-out (Tk2(-/-)) mice extended the life span of Tk2(-/-) mice from 3 weeks to at least 20 months. The Dm-dNK(+/-)Tk2(-/-) mice maintained normal mitochondrial DNA levels throughout the observation time. A significant difference in total body weight due to the reduction of subcutaneous and visceral fat in the Dm-dNK(+/-)Tk2(-/-) mice was the only visible difference compared with control mice. This indicates an effect on fat metabolism mediated through residual Tk2 deficiency because Dm-dNK expression was low in both liver and fat tissues. Dm-dNK expression led to increased dNTP pools and an increase in the catabolism of purine and pyrimidine nucleotides but these alterations did not apparently affect the mice during the 20 months of observation. In conclusion, Dm-dNK expression in the cell nucleus expanded the total dNTP pools to levels required for efficient mitochondrial DNA synthesis, thereby compensated the Tk2 deficiency, during a normal life span of the mice. The Dm-dNK(+/-) mouse serves as a model for nucleoside gene or enzyme substitutions, nucleotide imbalances, and dNTP alterations in different tissues. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Impact of diesel exhaust exposure on the liver of mice fed on omega-3 polyunsaturated fatty acids-deficient diet.

    Science.gov (United States)

    Umezawa, Masakazu; Nakamura, Masayuki; El-Ghoneimy, Ashraf A; Onoda, Atsuto; Shaheen, Hazem M; Hori, Hiroshi; Shinkai, Yusuke; El-Sayed, Yasser S; El-Far, Ali H; Takeda, Ken

    2018-01-01

    Exposure to diesel exhaust (DE) exacerbates non-alcoholic fatty liver disease, and may systemically affect lipid metabolism. Omega-3 polyunsaturated fatty acids (n-3 PUFA) have anti-inflammatory activity and suppresses hepatic triacylglycerol accumulation, but many daily diets are deficient in this nutrient. Therefore, the effect of DE exposure in mice fed n-3 PUFA-deficient diet was investigated. Mice were fed control chow or n-3 PUFA-deficient diet for 4 weeks, then exposed to clean air or DE by inhalation for further 4 weeks. Liver histology, plasma parameters, and expression of fatty acid synthesis-related genes were evaluated. N-3 PUFA-deficient diet increased hepatic lipid droplets accumulation and expression of genes promoting fatty acid synthesis: Acaca, Acacb, and Scd1. DE further increased the plasma leptin and the expression of fatty acid synthesis-related genes: Acacb, Fasn, and Scd1. N-3 PUFA-deficient diet and DE exposure potentially enhanced hepatic fatty acid synthesis and subsequently accumulation of lipid droplets. The combination of low-dose DE exposure and intake of n-3 PUFA-deficient diet may be an additional risk factor for the incidence of non-alcoholic fatty liver disease. The present study suggests an important mechanism for preventing toxicity of DE on the liver through the incorporation of n-3 PUFAs in the diet. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Effects of Cerebral Ischemia in Mice Deficient in Neuronal Nitric Oxide Synthase

    Science.gov (United States)

    Huang, Zhihong; Huang, Paul L.; Panahian, Nariman; Dalkara, Turgay; Fishman, Mark C.; Moskowitz, Michael A.

    1994-09-01

    The proposal that nitric oxide (NO) or its reactant products mediate toxicity in brain remains controversial in part because of the use of nonselective agents that block NO formation in neuronal, glial, and vascular compartments. In mutant mice deficient in neuronal NO synthase (NOS) activity, infarct volumes decreased significantly 24 and 72 hours after middle cerebral artery occlusion, and the neurological deficits were less than those in normal mice. This result could not be accounted for by differences in blood flow or vascular anatomy. However, infarct size in the mutant became larger after endothelial NOS inhibition by nitro-L-arginine administration. Hence, neuronal NO production appears to exacerbate acute ischemic injury, whereas vascular NO protects after middle cerebral artery occlusion. The data emphasize the importance of developing selective inhibitors of the neuronal isoform.

  4. Bleomycin-Treated Chimeric Thy1-Deficient Mice with Thy1-Deficient Myofibroblasts and Thy-Positive Lymphocytes Resolve Inflammation without Affecting the Fibrotic Response

    Directory of Open Access Journals (Sweden)

    Pazit Y. Cohen

    2015-01-01

    Full Text Available Lung fibrosis is characterized by abnormal accumulation of fibroblasts in the interstitium of the alveolar space. Two populations of myofibroblasts, distinguished by Thy1 expression, are detected in human and murine lungs. Accumulation of Thy1-negative (Thy1− myofibroblasts was shown in the lungs of humans with idiopathic pulmonary fibrosis (IPF and of bleomycin-treated mice. We aimed to identify genetic changes in lung myofibroblasts following Thy1 crosslinking and assess the impact of specific lung myofibroblast Thy1-deficiency, in vivo, in bleomycin-injured mouse lungs. Thy1 increased in mouse lung lymphocytes following bleomycin injury but decreased in myofibroblasts when fibrosis was at the highest point (14 days, as assessed by immunohistochemistry. Using gene chip analysis, we detected that myofibroblast Thy1 crosslinking mediates downregulation of genes promoting cell proliferation, survival, and differentiation, and reduces production of extracellular matrix (ECM components, while concurrently mediating the upregulation of genes known to foster inflammation and immunological functions. Chimeric Thy1-deficient mice with Thy1+ lymphocytes and Thy1− myofibroblasts showed fibrosis similar to wild-type mice and an increased number of CD4/CD25 regulatory T cells, with a concomitant decrease in inflammation. Lung myofibroblasts downregulate Thy1 expression to increase their proliferation but to diminish the in vivo inflammatory milieu. Inflammation is not essential for evolution of fibrosis as was previously stated.

  5. Intranasal siRNA administration reveals IGF2 deficiency contributes to impaired cognition in Fragile X syndrome mice.

    Science.gov (United States)

    Pardo, Marta; Cheng, Yuyan; Velmeshev, Dmitry; Magistri, Marco; Eldar-Finkelman, Hagit; Martinez, Ana; Faghihi, Mohammad A; Jope, Richard S; Beurel, Eleonore

    2017-03-23

    Molecular mechanisms underlying learning and memory remain imprecisely understood, and restorative interventions are lacking. We report that intranasal administration of siRNAs can be used to identify targets important in cognitive processes and to improve genetically impaired learning and memory. In mice modeling the intellectual deficiency of Fragile X syndrome, intranasally administered siRNA targeting glycogen synthase kinase-3β (GSK3β), histone deacetylase-1 (HDAC1), HDAC2, or HDAC3 diminished cognitive impairments. In WT mice, intranasally administered brain-derived neurotrophic factor (BDNF) siRNA or HDAC4 siRNA impaired learning and memory, which was partially due to reduced insulin-like growth factor-2 (IGF2) levels because the BDNF siRNA- or HDAC4 siRNA-induced cognitive impairments were ameliorated by intranasal IGF2 administration. In Fmr1 -/- mice, hippocampal IGF2 was deficient, and learning and memory impairments were ameliorated by IGF2 intranasal administration. Therefore intranasal siRNA administration is an effective means to identify mechanisms regulating cognition and to modulate therapeutic targets.

  6. Plasma chromogranin A levels are increased in a small portion of patients with hereditary head and neck paragangliomas

    NARCIS (Netherlands)

    van Duinen, Nicolette; Kema, Ido P.; Romijn, Johannes A.; Corssmit, Eleonora P. M.

    2011-01-01

    The majority of patients with head and neck paragangliomas (HNPGL) have biochemically silent tumours. Chromogranin A (CgA) is a tumour marker for neuroendocrine tumours. To assess the role of CgA as a tumour marker in patients with hereditary HNPGL. We included 95 consecutive patients with

  7. High-salt diet combined with elevated angiotensin II accelerates atherosclerosis in apolipoprotein E-deficient mice

    DEFF Research Database (Denmark)

    Johansson, Maria E; Bernberg, Evelina; Andersson, Irene J

    2009-01-01

    to atherosclerosis. METHODS: Apolipoprotein E-deficient (ApoE-/-) mice received standard or high-salt diet (8%) alone or in combination with fixed angiotensin II (Ang II) infusion (0.5 microg/kg per min). BP was measured using telemetry, and plaque burden was assessed in the thoracic aorta and innominate artery. We...

  8. Metallochaperone for Cu,Zn-superoxide dismutase (CCS) protein but not mRNA is higher in organs from copper-deficient mice and rats.

    Science.gov (United States)

    Prohaska, Joseph R; Broderius, Margaret; Brokate, Bruce

    2003-09-15

    Cu,Zn-superoxide dismutase (SOD1) is an abundant metalloenzyme important in scavenging superoxide ions. Cu-deficient rats and mice have lower SOD1 activity and protein, possibly because apo-SOD1 is degraded faster than holo-SOD1. SOD1 interacts with and requires its metallochaperone CCS for donating copper. We produced dietary Cu deficiency in rodents to determine if the reduction in SOD1 was related to the level of its specific metallochaperone CCS. CCS levels determined by immunoblot were 2- to 3-fold higher in liver, heart, kidney, and brain from male Cu-deficient rats and mice under a variety of conditions. CCS was also higher in livers of Cu-deficient dams. Interestingly, CCS levels in brain of Cu-deficient mice were also higher even though SOD1 activity and protein were not altered, suggesting that the rise in CCS is correlated with altered Cu status rather than a direct result of lower SOD1. A DNA probe specific for rat CCS detected a single transcript by Northern blot hybridization with liver RNA. CCS mRNA levels in mouse and rat liver were not altered by dietary treatment. These results suggest a posttranscriptional mechanism for higher CCS protein when Cu is limiting in the cell, perhaps due to slower protein turnover. Elevation in CCS level is one of the most dramatic alterations in Cu binding proteins accompanying Cu deficiency and may be useful to assess Cu status.

  9. A modified choline-deficient, ethionine-supplemented diet reduces morbidity and retains a liver progenitor cell response in mice

    Directory of Open Access Journals (Sweden)

    Adam M. Passman

    2015-12-01

    Full Text Available The choline-deficient, ethionine-supplemented (CDE dietary model induces chronic liver damage, and stimulates liver progenitor cell (LPC-mediated repair. Long-term CDE administration leads to hepatocellular carcinoma in rodents and lineage-tracing studies show that LPCs differentiate into functional hepatocytes in this model. The CDE diet was first modified for mice by our laboratory by separately administering choline-deficient chow and ethionine in the drinking water (CD+E diet. Although this CD+E diet is widely used, concerns with variability in weight loss, morbidity, mortality and LPC response have been raised by researchers who have adopted this model. We propose that these inconsistencies are due to differential consumption of chow and ethionine in the drinking water, and that incorporating ethionine in the choline-deficient chow, and altering the strength, will achieve better outcomes. Therefore, C57Bl/6 mice, 5 and 6 weeks of age, were fed an all-inclusive CDE diet of various strengths (67% to 100% for 3 weeks. The LPC response was quantitated and cell lines were derived. We found that animal survival, LPC response and liver damage are correlated with CDE diet strength. The 67% and 75% CDE diet administered to mice older than 5 weeks and greater than 18 g provides a consistent and acceptable level of animal welfare and induces a substantial LPC response, permitting their isolation and establishment of cell lines. This study shows that an all-inclusive CDE diet for mice reproducibly induces an LPC response conducive to in vivo studies and isolation, whilst minimizing morbidity and mortality.

  10. Living Without Creatine: Unchanged Exercise Capacity and Response to Chronic Myocardial Infarction in Creatine-Deficient Mice

    Science.gov (United States)

    Lygate, Craig A.; Aksentijevic, Dunja; Dawson, Dana; Hove, Michiel ten; Phillips, Darci; de Bono, Joseph P.; Medway, Debra J.; Sebag-Montefiore, Liam; Hunyor, Imre; Channon, Keith M.; Clarke, Kieran; Zervou, Sevasti; Watkins, Hugh; Balaban, Robert S.; Neubauer, Stefan

    2014-01-01

    Rationale Creatine is thought to be involved in the spatial and temporal buffering of ATP in energetic organs such as heart and skeletal muscle. Creatine depletion affects force generation during maximal stimulation, while reduced levels of myocardial creatine are a hallmark of the failing heart, leading to the widely held view that creatine is important at high workloads and under conditions of pathological stress. Objective We therefore hypothesised that the consequences of creatine-deficiency in mice would be impaired running capacity, and exacerbation of heart failure following myocardial infarction. Methods and Results Surprisingly, mice with whole-body creatine deficiency due to knockout of the biosynthetic enzyme (guanidinoacetate N-methyltransferase – GAMT) voluntarily ran just as fast and as far as controls (>10km/night) and performed the same level of work when tested to exhaustion on a treadmill. Furthermore, survival following myocardial infarction was not altered, nor was subsequent LV remodelling and development of chronic heart failure exacerbated, as measured by 3D-echocardiography and invasive hemodynamics. These findings could not be accounted for by compensatory adaptations, with no differences detected between WT and GAMT−/− proteomes. Alternative phosphotransfer mechanisms were explored; adenylate kinase activity was unaltered, and although GAMT−/− hearts accumulated the creatine pre-cursor guanidinoacetate, this had negligible energy-transfer activity, while mitochondria retained near normal function. Conclusions Creatine-deficient mice show unaltered maximal exercise capacity and response to chronic myocardial infarction, and no obvious metabolic adaptations. Our results question the paradigm that creatine is essential for high workload and chronic stress responses in heart and skeletal muscle. PMID:23325497

  11. Analysis of B chromosome nondisjunction induced by the r-X1 deficiency in maize.

    Science.gov (United States)

    Tseng, Shih-Hsuan; Peng, Shu-Fen; Cheng, Ya-Ming

    2017-11-20

    The maize B chromosome typically undergoes nondisjunction during the second microspore division. For normal A chromosomes, the r-X1 deficiency in maize can induce nondisjunction during the second megaspore and first microspore divisions. However, it is not known whether the r-X1 deficiency also induces nondisjunction of the maize B chromosome during these cell divisions. To answer this question, chromosome numbers were determined in the progeny of r-X1/R-r female parents carrying two B chromosomes. Some of the r-X1-lacking progeny (21.2%) contained zero or two B chromosomes. However, a much higher percentage of the r-X1-containing progeny (43.4%) exhibited zero or two B chromosomes, but none displayed more than two B chromosomes. Thus, the results indicated that the r-X1 deficiency could also induce nondisjunction of the B chromosome during the second megaspore division; moreover, the B chromosome in itself could undergo nondisjunction during the same division. In addition, pollen grains from plants with two B chromosomes lacking or exhibiting the r-X1 deficiency were compared via pollen fluorescence in situ hybridization (FISH) using a B chromosome-specific probe. The results revealed that the r-X1 deficiency could induce the occurrence of B chromosome nondisjunction during the first microspore division and that the B chromosome in itself could undergo nondisjunction during the same division at a lower frequency. Our data shed more light on the behavior of the maize B chromosome during cell division.

  12. Ataxia and peripheral nerve hypomyelination in ADAM22-deficient mice

    Directory of Open Access Journals (Sweden)

    Ino Mitsuhiro

    2005-05-01

    Full Text Available Abstract Background ADAM22 is a member of the ADAM gene family, but the fact that it is expressed only in the nervous systems makes it unique. ADAM22's sequence similarity to other ADAMs suggests it to be an integrin binder and thus to have a role in cell-cell or cell-matrix interactions. To elucidate the physiological functions of ADAM22, we employed gene targeting to generate ADAM22 knockout mice. Results ADAM22-deficient mice were produced in a good accordance with the Mendelian ratio and appeared normal at birth. After one week, severe ataxia was observed, and all homozygotes died before weaning, probably due to convulsions. No major histological abnormalities were detected in the cerebral cortex or cerebellum of the homozygous mutants; however, marked hypomyelination of the peripheral nerves was observed. Conclusion The results of our study demonstrate that ADAM22 is closely involved in the correct functioning of the nervous system. Further analysis of ADAM22 will provide clues to understanding the mechanisms of human diseases such as epileptic seizures and peripheral neuropathy.

  13. Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin32-deficient mice.

    OpenAIRE

    Nelles, E; Bützler, C; Jung, D; Temme, A; Gabriel, H D; Dahl, U; Traub, O; Stümpel, F; Jungermann, K; Zielasek, J; Toyka, K V; Dermietzel, R; Willecke, K

    1996-01-01

    The gap junctional protein connexin32 is expressed in hepatocytes, exocrine pancreatic cells, Schwann cells, and other cell types. We have inactivated the connexin32 gene by homologous recombination in the mouse genome and have generated homozygous connexin32-deficient mice that were viable and fertile but weighed on the average approximately 17% less than wild-type controls. Electrical stimulation of sympathetic nerves in connexin32-deficient liver triggered a 78% lower amount of glucose mob...

  14. Plasma chromogranin A levels are increased in a small portion of patients with hereditary head and neck paragangliomas

    NARCIS (Netherlands)

    van Duinen, Nicolette; Kema, Ido P.; Romijn, Johannes A.; Corssmit, Eleonora P. M.

    P>Context The majority of patients with head and neck paragangliomas (HNPGL) have biochemically silent tumours. Chromogranin A (CgA) is a tumour marker for neuroendocrine tumours. Objective To assess the role of CgA as a tumour marker in patients with hereditary HNPGL. Patients and Methods We

  15. Induction of experimental autoimmune encephalomyelitis in C57BL/6 mice deficient in either the chemokine macrophage inflammatory protein-1alpha or its CCR5 receptor

    DEFF Research Database (Denmark)

    Tran, E H; Kuziel, W A; Owens, T

    2000-01-01

    -type mice in Th1 cytokine gene expression, the kinetics and severity of disease, and infiltration of the central nervous system by lymphocytes, macrophages and granulocytes. RNase protection assays showed comparable accumulation of mRNA for the chemokines interferon-inducible protein-10, RANTES, macrophage...... and its CCR5 receptor in the induction of EAE by immunizing C57BL / 6 mice deficient in either MIP-1alpha or CCR5 with myelin oligodendrocyte glycoprotein (MOG). We found that MIP-1alpha-deficient mice were fully susceptible to MOG-induced EAE. These knockout animals were indistinguishable from wild...... chemoattractant protein-1, MIP-1beta, MIP-2, lymphotactin and T cell activation gene-3 during the course of the disease. CCR5-deficient mice were also susceptible to disease induction by MOG. The dispensability of MIP-1alpha and CCR5 for MOG-induced EAE in C57BL / 6 mice supports the idea that differential...

  16. Th2 Regulation of Viral Myocarditis in Mice: Different Roles for TLR3 versus TRIF in Progression to Chronic Disease

    Directory of Open Access Journals (Sweden)

    Eric D. Abston

    2012-01-01

    Full Text Available Viral infections are able to induce autoimmune inflammation in the heart. Here, we investigated the role of virus-activated Toll-like receptor (TLR3 and its adaptor TRIF on the development of autoimmune coxsackievirus B3 (CVB3 myocarditis in mice. Although TLR3- or TRIF-deficient mice developed similarly worse acute CVB3 myocarditis and viral replication compared to control mice, disease was significantly worse in TRIF compared to TLR3-deficient mice. Interestingly, TLR3-deficient mice developed an interleukin (IL-4-dominant T helper (Th2 response during acute CVB3 myocarditis with elevated markers of alternative activation, while TRIF-deficient mice elevated the Th2-associated cytokine IL-33. Treatment of TLR3-deficient mice with recombinant IL-33 improved heart function indicating that elevated IL-33 in the context of a classic Th2-driven response protects against autoimmune heart disease. We show for the first time that TLR3 versus TRIF deficiency results in different Th2 responses that uniquely influence the progression to chronic myocarditis.

  17. High Incidence of HPV-Associated Head and Neck Cancers in FA Deficient Mice Is Associated with E7’s Induction of DNA Damage through Its Inactivation of Pocket Proteins

    Science.gov (United States)

    Park, Jung Wook; Shin, Myeong-Kyun; Pitot, Henry C.; Lambert, Paul F.

    2013-01-01

    Fanconi anemia (FA) patients are highly susceptible to solid tumors at multiple anatomical sites including head and neck region. A subset of head and neck cancers (HNCs) is associated with ‘high-risk’ HPVs, particularly HPV16. However, the correlation between HPV oncogenes and cancers in FA patients is still unclear. We previously learned that FA deficiency in mice predisposes HPV16 E7 transgenic mice to HNCs. To address HPV16 E6’s oncogenic potential under FA deficiency in HNCs, we utilized HPV16 E6-transgenic mice (K14E6) and HPV16 E6/E7-bi-transgenic mice (K14E6E7) on genetic backgrounds sufficient or deficient for one of the fanc genes, fancD2 and monitored their susceptibility to HNCs. K14E6 mice failed to develop tumor. However, E6 and fancD2-deficiency accelerated E7-driven tumor development in K14E6E7 mice. The increased tumor incidence was more correlated with E7-driven DNA damage than proliferation. We also found that deficiency of pocket proteins, pRb, p107, and p130 that are well-established targets of E7, could recapitulate E7’s induction of DNA damage. Our findings support the hypothesis that E7 induces HPV-associated HNCs by promoting DNA damage through the inactivation of pocket proteins, which explains why a deficiency in DNA damage repair would increase susceptibility to E7-driven cancer. Our results further demonstrate the unexpected finding that FA deficiency does not predispose E6 transgenic mice to HNCs, indicating a specificity in the synergy between FA deficiency and HPV oncogenes in causing HNCs. PMID:24086435

  18. Wild-type bone marrow transplant partially reverses neuroinflammation in progranulin-deficient mice.

    Science.gov (United States)

    Yang, Yue; Aloi, Macarena S; Cudaback, Eiron; Josephsen, Samuel R; Rice, Samantha J; Jorstad, Nikolas L; Keene, C Dirk; Montine, Thomas J

    2014-11-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease with devastating changes in behavioral performance and social function. Mutations in the progranulin gene (GRN) are one of the most common causes of inherited FTD due to reduced progranulin expression or activity, including in brain where it is expressed primarily by neurons and microglia. Thus, efforts aimed at enhancing progranulin levels might be a promising therapeutic strategy. Bone marrow (BM)-derived cells are able to engraft in the brain and adopt a microglial phenotype under myeloablative irradiation conditioning. This ability makes BM-derived cells a potential cellular vehicle for transferring therapeutic molecules to the central nervous system. Here, we utilized BM cells from Grn(+/+) (wild type or wt) mice labeled with green fluorescence protein for delivery of progranulin to progranulin-deficient (Grn(-/-)) mice. Our results showed that wt bone marrow transplantation (BMT) partially reconstituted progranulin in the periphery and in cerebral cortex of Grn(-/-) mice. We demonstrated a pro-inflammatory effect in vivo and in ex vivo preparations of cerebral cortex of Grn(-/-) mice that was partially to fully reversed 5 months after BMT. Our findings suggest that BMT can be administered as a stem cell-based approach to prevent or to treat neurodegenerative diseases.

  19. Wild Type Bone Marrow Transplant Partially Reverses Neuroinflammation in Progranulin-Deficient Mice

    Science.gov (United States)

    Yang, Yue; Aloi, Macarena S.; Cudaback, Eiron; Josephsen, Samuel R.; Rice, Samantha J.; Jorstad, Nikolas L.; Keene, C. Dirk; Montine, Thomas J.

    2014-01-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease with devastating changes in behavioral performance and social function. Mutations in the progranulin gene (GRN) are one of the most common causes of inherited FTD due to reduced progranulin expression or activity, including in brain where it is expressed primarily by neurons and microglia. Thus, efforts aimed at enhancing progranulin levels might be a promising therapeutic strategy. Bone marrow-derived cells are able to engraft in the brain and adopt a microglial phenotype under myeloablative irradiation conditioning. This ability makes bone marrow (BM)-derived cells a potential cellular vehicle for transferring therapeutic molecules to the central nervous system. Here, we utilized BM cells from Grn+/+ (wild type or wt) mice labeled with green fluorescence protein for delivery of progranulin to progranulin deficient (Grn−/−) mice. Our results showed that wt bone marrow transplantation (BMT) partially reconstituted progranulin in the periphery and in cerebral cortex of Grn−/− mice. We demonstrated a pro-inflammatory effect in vivo and in ex vivo preparations of cerebral cortex of Grn−/− mice that was partially to fully reversed five months after BMT. Our findings suggest that BMT can be administered as a stem cell-based approach to prevent or to treat neurodegenerative diseases. PMID:25199051

  20. Influences of a-tocopherol on cholesterol metabolism and fatty streak development in apolipoprotein E-deficient mice fed an atherogenic diet

    Directory of Open Access Journals (Sweden)

    Peluzio M.C.G.

    2001-01-01

    Full Text Available Although the role of oxidized lipoproteins is well known in atherogenesis, the role of vitamin E supplementation is still controversial. There is also little information about cholesterol metabolism (hepatic concentration and fecal excretion in the new models of atherosclerosis. In the present study, we evaluated the effect of moderate vitamin E supplementation on cholesterol metabolism and atherogenesis in apolipoprotein E (apo E-deficient mice. Apo E-deficient mice were fed an atherogenic diet containing 40 or 400 mg/kg of alpha-tocopherol acetate for 6 weeks. Total cholesterol in serum and liver and 3-OH-alpha-sterols in feces, and fecal excretion of bile acids were determined and histological analyses of aortic lesion were performed. A vitamin E-rich diet did not affect body weight, food intake or serum cholesterol. Serum and hepatic concentrations of cholesterol as well as sterol concentration in feces were similar in both groups. However, when compared to controls, the alpha-tocopherol-treated mice showed a reduction of about 60% in the atherosclerotic lesions when both the sum of lesion areas and the average of the largest lesion area were considered. These results demonstrate that supplementation of moderate doses of alpha-tocopherol was able to slow atherogenesis in apo E-deficient mice and to reduce atherogenic lipoproteins without modifying the hepatic pool or fecal excretion of cholesterol and bile acids.

  1. The Relationship of Vitamin B12 Deficiency and Red Cell Distribution Width-Platelet Ratio

    Directory of Open Access Journals (Sweden)

    Nigar Yilmaz

    2016-09-01

    Full Text Available Objective: We aimed to investigate the relationship between vitamin B12 deficiency and red cell distribution widthplatelet ratio (RPR, and the variations in the parameters on vitamin B12 treatment. Methods: One hundred fifty-four patients with untreated vitamin B12 deficiency (56% men, mean age: 50 ± 12.7 years (untreated group, 86 patients with vitamin B12 deficiency (62% men, mean age: 42 ± 20.7 years on vitamin B12 treatment (treated group, and 92 age- and sex-matched control group (54% men, mean age: 45 ± 15.1 years were included in the study. Hematological parameters were evaluated by the method of laser-based flow cytometric impedance, using an automated blood cell counter (ABX Pentra 120 Hematology Blood Analyzer. Results: RPR was significantly reduced in treated group compared with untreated group (4.88 ± 1.06; 6.13 ± 1.27; p0.05. Conclusion: We proposed that vitamin B12 deficiency has effects on RPR and supplementation with vitamin B12 corrects the RPR levels. J Clin Exp Invest 2016; 7 (3: 211-215

  2. Loss of neutrophil polarization in colon carcinoma liver metastases of mice with an inducible, liver-specific IGF-I deficiency.

    Science.gov (United States)

    Rayes, Roni F; Milette, Simon; Fernandez, Maria Celia; Ham, Boram; Wang, Ni; Bourdeau, France; Perrino, Stephanie; Yakar, Shoshana; Brodt, Pnina

    2018-03-20

    The growth of cancer metastases in the liver depends on a permissive interaction with the hepatic microenvironment and neutrophils can contribute to this interaction, either positively or negatively, depending on their phenotype. Here we investigated the role of IGF-I in the control of the tumor microenvironment in the liver, using mice with a conditional, liver-specific, IGF-I deficiency (iLID) induced by a single tamoxifen injection. In mice that had a sustained (3 weeks) IGF-I deficiency prior to the intrasplenic/portal inoculation of colon carcinoma MC-38 cells, we observed an increase in neutrophil accumulation in the liver relative to controls. However, unlike controls, these neutrophils did not acquire the (anti-inflammatory) tumor-promoting phenotype, as evidenced by retention of high ICAM-1 expression and nitric oxide production and low CXCR4, CCL5, and VEGF expression and arginase production, all characteristic of the (pro-inflammatory) phenotype. This coincided with an increase in apoptotic tumor cells and reduced metastasis. Neutrophils isolated from these mice also had reduced IGF-IR expression levels. These changes were not observed in iLID mice with a short-term (2 days) IGF-I depletion, despite a 70% reduction in their circulating IGF-I levels, indicating that a sustained IGF-I deficiency was necessary to alter the neutrophil phenotype. Similar results were obtained with the highly metastatic Lewis lung carcinoma subline H-59 cells and in mice injected with an IGF-Trap that blocks IGF-IR signaling by reducing ligand bioavailability. Our results implicate the IGF axis in neutrophil polarization and the induction of a pro-metastatic microenvironment in the liver.

  3. Loss of PDZK1 causes coronary artery occlusion and myocardial infarction in Paigen diet-fed apolipoprotein E deficient mice.

    Directory of Open Access Journals (Sweden)

    Ayce Yesilaltay

    2009-12-01

    Full Text Available PDZK1 is a four PDZ-domain containing protein that binds to the carboxy terminus of the HDL receptor, scavenger receptor class B type I (SR-BI, and regulates its expression, localization and function in a tissue-specific manner. PDZK1 knockout (KO mice are characterized by a marked reduction of SR-BI protein expression ( approximately 95% in the liver (lesser or no reduction in other organs with a concomitant 1.7 fold increase in plasma cholesterol. PDZK1 has been shown to be atheroprotective using the high fat/high cholesterol ('Western' diet-fed murine apolipoprotein E (apoE KO model of atherosclerosis, presumably because of its role in promoting reverse cholesterol transport via SR-BI.Here, we have examined the effects of PDZK1 deficiency in apoE KO mice fed with the atherogenic 'Paigen' diet for three months. Relative to apoE KO, PDZK1/apoE double KO (dKO mice showed increased plasma lipids (33% increase in total cholesterol; 49 % increase in unesterified cholesterol; and 36% increase in phospholipids and a 26% increase in aortic root lesions. Compared to apoE KO, dKO mice exhibited substantial occlusive coronary artery disease: 375% increase in severe occlusions. Myocardial infarctions, not observed in apoE KO mice (although occasional minimal fibrosis was noted, were seen in 7 of 8 dKO mice, resulting in 12 times greater area of fibrosis in dKO cardiac muscle.These results show that Paigen-diet fed PDZK1/apoE dKO mice represent a new animal model useful for studying coronary heart disease and suggest that PDZK1 may represent a valuable target for therapeutic intervention.

  4. Neuropeptide Y deficiency attenuates responses to fasting and high-fat diet in obesity-prone mice.

    Science.gov (United States)

    Patel, Hiralben R; Qi, Yong; Hawkins, Evan J; Hileman, Stanley M; Elmquist, Joel K; Imai, Yumi; Ahima, Rexford S

    2006-11-01

    Neuropeptide Y (NPY) stimulates feeding and weight gain, but deletion of the NPY gene does not affect food intake and body weight in mice bred on a mixed genetic background. We reasoned that the orexigenic action of NPY would be evident in C57Bl/6J mice susceptible to obesity. NPY deficiency has no significant effect in mice fed a normal rodent diet. However, energy expenditure is elevated during fasting, and hyperphagia and weight gain are blunted during refeeding. Expression of agouti-related peptide (AGRP) in the hypothalamus is increased in NPY knockout (NPYko) than wild-type mice, but unlike wild type there is no further increase in AGRP when NPYko mice are fasted. Moreover, NPYko mice have higher oxygen consumption and uncoupling protein-1 expression in brown adipose tissue during fasting. The failure of an increase in orexigenic peptides and higher thermogenesis may contribute to attenuation of weight gain when NPYko mice are refed. C57Bl/6J mice lacking NPY are also less susceptible to diet-induced obesity (DIO) as a result of reduced feeding and increased energy expenditure. The resistance to DIO in NPYko mice is associated with a reduction in nocturnal feeding and increased expression of anorexigenic hypothalamic peptides. Insulin, leptin, and triglyceride levels increase with adiposity in both wild-type and NPYko mice.

  5. Androgen-sensitive hypertension associated with soluble guanylate cyclase-α1 deficiency is mediated by 20-HETE.

    Science.gov (United States)

    Dordea, Ana C; Vandenwijngaert, Sara; Garcia, Victor; Tainsh, Robert E T; Nathan, Daniel I; Allen, Kaitlin; Raher, Michael J; Tainsh, Laurel T; Zhang, Fan; Lieb, Wolfgang S; Mikelman, Sarah; Kirby, Andrew; Stevens, Christine; Thoonen, Robrecht; Hindle, Allyson G; Sips, Patrick Y; Falck, John R; Daly, Mark J; Brouckaert, Peter; Bloch, Kenneth D; Bloch, Donald B; Malhotra, Rajeev; Schwartzman, Michal L; Buys, Emmanuel S

    2016-06-01

    Dysregulated nitric oxide (NO) signaling contributes to the pathogenesis of hypertension, a prevalent and often sex-specific risk factor for cardiovascular disease. We previously reported that mice deficient in the α1-subunit of the NO receptor soluble guanylate cyclase (sGCα1 (-/-) mice) display sex- and strain-specific hypertension: male but not female sGCα1 (-/-) mice are hypertensive on an 129S6 (S6) but not a C57BL6/J (B6) background. We aimed to uncover the genetic and molecular basis of the observed sex- and strain-specific blood pressure phenotype. Via linkage analysis, we identified a suggestive quantitative trait locus associated with elevated blood pressure in male sGCα1 (-/-)S6 mice. This locus encompasses Cyp4a12a, encoding the predominant murine synthase of the vasoconstrictor 20-hydroxy-5,8,11,14-eicosatetraenoic acid (20-HETE). Renal expression of Cyp4a12a in mice was associated with genetic background, sex, and testosterone levels. In addition, 20-HETE levels were higher in renal preglomerular microvessels of male sGCα1 (-/-)S6 than of male sGCα1 (-/-)B6 mice. Furthermore, treating male sGCα1 (-/-)S6 mice with the 20-HETE antagonist 20-hydroxyeicosa-6(Z),15(Z)-dienoic acid (20-HEDE) lowered blood pressure. Finally, 20-HEDE rescued the genetic background- and testosterone-dependent impairment of acetylcholine-induced relaxation in renal interlobar arteries associated with sGCα1 deficiency. Elevated Cyp4a12a expression and 20-HETE levels render mice susceptible to hypertension and vascular dysfunction in a setting of sGCα1 deficiency. Our data identify Cyp4a12a as a candidate sex-specific blood pressure-modifying gene in the context of deficient NO-sGC signaling. Copyright © 2016 the American Physiological Society.

  6. Glutamic acid ameliorates estrogen deficiency-induced menopausal-like symptoms in ovariectomized mice.

    Science.gov (United States)

    Han, Na-Ra; Kim, Hee-Yun; Yang, Woong Mo; Jeong, Hyun-Ja; Kim, Hyung-Min

    2015-09-01

    Some amino acids are considered alternative therapies for improving menopausal symptoms. Glutamic acid (GA), which is abundant in meats, fish, and protein-rich plant foods, is known to be a neurotransmitter or precursor of γ-aminobutyric acid. Although it is unclear if GA functions in menopausal symptoms, we hypothesized that GA would attenuate estrogen deficiency-induced menopausal symptoms. The objective to test our hypothesis was to examine an estrogenic effect of GA in ovariectomized (OVX) mice, estrogen receptor (ER)-positive human osteoblast-like MG-63 cells, and ER-positive human breast cancer MCF-7 cells. The results demonstrated that administration with GA to mice suppressed body weight gain and vaginal atrophy when compared with the OVX mice. A microcomputed tomographic analysis of the trabecular bone showed increases in bone mineral density, trabecular number, and connectivity density as well as a significant decrease in total porosity of the OVX mice treated with GA. In addition, GA increased serum levels of alkaline phosphatase and estrogen compared with the OVX mice. Furthermore, GA induced proliferation and increased ER-β messenger RNA (mRNA) expression, estrogen response element (ERE) activity, extracellular signal-regulated kinase phosphorylation, and alkaline phosphatase activity in MG-63 cells. In MCF-7 cells, GA also increased proliferation, Ki-67 mRNA expression, ER-β mRNA expression, and ERE activity. Estrogen response element activity increased by GA was inhibited by an estrogen antagonist. Taken together, our data demonstrated that GA has estrogenic and osteogenic activities in OVX mice, MG-63 cells, and MCF-7 cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Novel Toll-like receptor-4 deficiency attenuates trastuzumab (Herceptin induced cardiac injury in mice

    Directory of Open Access Journals (Sweden)

    Yousif Nasser

    2011-10-01

    Full Text Available Abstract Background Cardiac inflammation and generation of oxidative stress are known to contribute to trastuzumab (herceptin induced cardiac toxicity. Toll-like receptors (TLRs are a part of the innate immune system and are involved in cardiac stress reactions. Since TLR4 might play a relevant role in cardiac inflammatory signaling, we investigated whether or not TLR4 is involved in trastuzumab induced cardiotoxicity. Methods Seven days after a single injection of herceptin (2 mg/kg; i.p., left ventricular pressure volume loops were measured in HeN compotent (TLR4+/+ and HeJ mutant (TLR4-/- treated with trastuzumab and control mice. Immunofluorescent staining for monocyte infiltration and analyses of plasma by (ELISAs for different chemokines including: MCP-1and tumor necrosis factor-α (TNF-α, Western immunoblotting assay for ICAM-1, and used troponin I for cardiac injury marker. Results Trastuzumab injection resulted in an impairment of left ventricular function in TLR-4 competent (HeN, in contrast TLR4-/- trastuzumab mice showed improved left ventricular function EF%, CO; p -/-; p -/-, marked reduction of myocardial troponin-I levels in TLR4-deficient mice. Data are presented as means ± SE; n = 8 in each group p Conclusions Treatment with trastuzumab induces an inflammatory response that contributes to myocardial tissue TLR4 mediates chemokine expression (TNF-α, MCP-1and ICAM-1, so in experimental animals TLR4 deficiency improves left ventricular function and attenuates pathophysiological key mechanisms in trastuzumab induced cardiomyopathy.

  8. High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice.

    Science.gov (United States)

    Christensen, Karen E; Mikael, Leonie G; Leung, Kit-Yi; Lévesque, Nancy; Deng, Liyuan; Wu, Qing; Malysheva, Olga V; Best, Ana; Caudill, Marie A; Greene, Nicholas D E; Rozen, Rima

    2015-03-01

    Increased consumption of folic acid is prevalent, leading to concerns about negative consequences. The effects of folic acid on the liver, the primary organ for folate metabolism, are largely unknown. Methylenetetrahydrofolate reductase (MTHFR) provides methyl donors for S-adenosylmethionine (SAM) synthesis and methylation reactions. Our goal was to investigate the impact of high folic acid intake on liver disease and methyl metabolism. Folic acid-supplemented diet (FASD, 10-fold higher than recommended) and control diet were fed to male Mthfr(+/+) and Mthfr(+/-) mice for 6 mo to assess gene-nutrient interactions. Liver pathology, folate and choline metabolites, and gene expression in folate and lipid pathways were examined. Liver and spleen weights were higher and hematologic profiles were altered in FASD-fed mice. Liver histology revealed unusually large, degenerating cells in FASD Mthfr(+/-) mice, consistent with nonalcoholic fatty liver disease. High folic acid inhibited MTHFR activity in vitro, and MTHFR protein was reduced in FASD-fed mice. 5-Methyltetrahydrofolate, SAM, and SAM/S-adenosylhomocysteine ratios were lower in FASD and Mthfr(+/-) livers. Choline metabolites, including phosphatidylcholine, were reduced due to genotype and/or diet in an attempt to restore methylation capacity through choline/betaine-dependent SAM synthesis. Expression changes in genes of one-carbon and lipid metabolism were particularly significant in FASD Mthfr(+/-) mice. The latter changes, which included higher nuclear sterol regulatory element-binding protein 1, higher Srepb2 messenger RNA (mRNA), lower farnesoid X receptor (Nr1h4) mRNA, and lower Cyp7a1 mRNA, would lead to greater lipogenesis and reduced cholesterol catabolism into bile. We suggest that high folic acid consumption reduces MTHFR protein and activity levels, creating a pseudo-MTHFR deficiency. This deficiency results in hepatocyte degeneration, suggesting a 2-hit mechanism whereby mutant hepatocytes cannot

  9. Resistance to diet-induced adiposity in cannabinoid receptor-1 deficient mice is not due to impaired adipocyte function

    Directory of Open Access Journals (Sweden)

    Oosterveer Maaike H

    2011-12-01

    Full Text Available Abstract Background Overactivity and/or dysregulation of the endocannabinoid system (ECS contribute to development of obesity. In vitro studies indicate a regulatory role for the cannabinoid receptor 1 (CB1 in adipocyte function and CB1-receptor deficient (CB1-/- mice are resistant to high fat diet-induced obesity. Whether this phenotype of CB1-/- mice is related to altered fat metabolism in adipose tissue is unknown. Methods We evaluated adipose tissue differentiation/proliferation markers and quantified lipogenic and lipolytic activities in fat tissues of CB1-/- and CB1+/+ mice fed a high-fat (HF or a high-fat/fish oil (HF/FO diet as compared to animals receiving a low-fat chow diet. Comparison between HF diet and HF/FO diet allowed to investigate the influence of dietary fat quality on adipose tissue biology in relation to CB1 functioning. Results The adiposity-resistant phenotype of the CB1-/- mice was characterized by reduced fat mass and adipocyte size in HF and HF/FO-fed CB1-/- mice in parallel to a significant increase in energy expenditure as compared to CB1+/+ mice. The expression levels of adipocyte differentiation and proliferation markers were however maintained in these animals. Consistent with unaltered lipogenic gene expression, the fatty acid synthesis rates in adipose tissues from CB1-/- and CB1+/+ mice were unchanged. Whole-body and adipose-specific lipoprotein lipase (LPL activities were also not altered in CB1-/- mice. Conclusions These findings indicate that protection against diet-induced adiposity in CB1-deficient mice is not related to changes in adipocyte function per se, but rather results from increased energy dissipation by oxidative and non-oxidative pathways.

  10. Deficiency of NOX1 or NOX4 Prevents Liver Inflammation and Fibrosis in Mice through Inhibition of Hepatic Stellate Cell Activation.

    Directory of Open Access Journals (Sweden)

    Tian Lan

    Full Text Available Reactive oxygen species (ROS produced by nicotinamide adenine dinucleotide phosphate oxidase (NOX play a key role in liver injury and fibrosis. Previous studies demonstrated that GKT137831, a dual NOX1/4 inhibitor, attenuated liver fibrosis in mice as well as pro-fibrotic genes in hepatic stellate cells (HSCs as well as hepatocyte apoptosis. The effect of NOX1 and NOX4 deficiency in liver fibrosis is unclear, and has never been directly compared. HSCs are the primary myofibroblasts in the pathogenesis of liver fibrosis. Therefore, we aimed to determine the role of NOX1 and NOX4 in liver fibrosis, and investigated whether NOX1 and NOX4 signaling mediates liver fibrosis by regulating HSC activation. Mice were treated with carbon tetrachloride (CCl4 to induce liver fibrosis. Deficiency of either NOX1 or NOX4 attenuates liver injury, inflammation, and fibrosis after CCl4 compared to wild-type mice. NOX1 or NOX4 deficiency reduced lipid peroxidation and ROS production in mice with liver fibrosis. NOX1 and NOX4 deficiency are approximately equally effective in preventing liver injury in the mice. The NOX1/4 dual inhibitor GKT137831 suppressed ROS production as well as inflammatory and proliferative genes induced by lipopolysaccharide (LPS, platelet-derived growth factor (PDGF, or sonic hedgehog (Shh in primary mouse HSCs. Furthermore, the mRNAs of proliferative and pro-fibrotic genes were downregulated in NOX1 and NOX4 knock-out activated HSCs (cultured on plastic for 5 days. Finally, NOX1 and NOX4 protein levels were increased in human livers with cirrhosis compared with normal controls. Thus, NOX1 and NOX4 signaling mediates the pathogenesis of liver fibrosis, including the direct activation of HSC.

  11. Modeling chronic myeloid leukemia in immunodeficient mice reveals expansion of aberrant mast cells and accumulation of pre-B cells

    International Nuclear Information System (INIS)

    Askmyr, M; Ågerstam, H; Lilljebjörn, H; Hansen, N; Karlsson, C; Palffy, S von; Landberg, N; Högberg, C; Lassen, C; Rissler, M; Richter, J; Ehinger, M; Järås, M; Fioretos, T

    2014-01-01

    Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm that, if not treated, will progress into blast crisis (BC) of either myeloid or B lymphoid phenotype. The BCR-ABL1 fusion gene, encoding a constitutively active tyrosine kinase, is thought to be sufficient to cause chronic phase (CP) CML, whereas additional genetic lesions are needed for progression into CML BC. To generate a humanized CML model, we retrovirally expressed BCR-ABL1 in the cord blood CD34 + cells and transplanted these into NOD-SCID (non-obese diabetic/severe-combined immunodeficient) interleukin-2-receptor γ-deficient mice. In primary mice, BCR-ABL1 expression induced an inflammatory-like state in the bone marrow and spleen, and mast cells were the only myeloid lineage specifically expanded by BCR-ABL1. Upon secondary transplantation, the pronounced inflammatory phenotype was lost and mainly human mast cells and macrophages were found in the bone marrow. Moreover, a striking block at the pre-B-cell stage was observed in primary mice, resulting in an accumulation of pre-B cells. A similar block in B-cell differentiation could be confirmed in primary cells from CML patients. Hence, this humanized mouse model of CML reveals previously unexplored features of CP CML and should be useful for further studies to understand the disease pathogenesis of CML

  12. SnoRNA Snord116 (Pwcr1/MBII-85 deletion causes growth deficiency and hyperphagia in mice.

    Directory of Open Access Journals (Sweden)

    Feng Ding

    Full Text Available Prader-Willi syndrome (PWS is the leading genetic cause of obesity. After initial severe hypotonia, PWS children become hyperphagic and morbidly obese, if intake is not restricted. Short stature with abnormal growth hormone secretion, hypogonadism, cognitive impairment, anxiety and behavior problems are other features. PWS is caused by lack of expression of imprinted genes in a approximately 4 mb region of chromosome band 15q11.2. Our previous translocation studies predicted a major role for the C/D box small nucleolar RNA cluster SNORD116 (PWCR1/HBII-85 in PWS. To test this hypothesis, we created a approximately 150 kb deletion of the > 40 copies of Snord116 (Pwcr1/MBII-85 in C57BL/6 mice. Snord116del mice with paternally derived deletion lack expression of this snoRNA. They have early-onset postnatal growth deficiency, but normal fertility and lifespan. While pituitary structure and somatotrophs are normal, liver Igf1 mRNA is decreased. In cognitive and behavior tests, Snord116del mice are deficient in motor learning and have increased anxiety. Around three months of age, they develop hyperphagia, but stay lean on regular and high-fat diet. On reduced caloric intake, Snord116del mice maintain their weight better than wild-type littermates, excluding increased energy requirement as a cause of hyperphagia. Normal compensatory feeding after fasting, and ability to maintain body temperature in the cold indicate normal energy homeostasis regulation. Metabolic chamber studies reveal that Snord116del mice maintain energy homeostasis by altered fuel usage. Prolonged mealtime and increased circulating ghrelin indicate a defect in meal termination mechanism. Snord116del mice, the first snoRNA deletion animal model, reveal a novel role for a non-coding RNA in growth and feeding regulation.

  13. Cardiovascular changes in atherosclerotic ApoE-deficient mice exposed to Co60 (γ radiation.

    Directory of Open Access Journals (Sweden)

    Prem Kumarathasan

    Full Text Available BACKGROUND: There is evidence for a role of ionizing radiation in cardiovascular diseases. The goal of this work was to identify changes in oxidative and nitrative stress pathways and the status of the endothelinergic system during progression of atherosclerosis in ApoE-deficient mice after single and repeated exposure to ionizing radiation. METHODS AND RESULTS: B6.129P2-ApoE tmlUnc mice on a low-fat diet were acutely exposed (whole body to Co60 (γ (single dose 0, 0.5, and 2 Gy at a dose rate of 36.32 cGy/min, or repeatedly (cumulative dose 0 and 2 Gy at a dose-rate of 0.1 cGy/min for 5 d/wk, over a period of 4 weeks. Biological endpoints were investigated after 3-6 months of recovery post-radiation. The nitrative stress marker 3-nitrotyrosine and the vasoregulator peptides endothelin-1 and endothelin-3 in plasma were increased (p<0.05 in a dose-dependent manner 3-6 months after acute or chronic exposure to radiation. The oxidative stress marker 8-isoprostane was not affected by radiation, while plasma 8-hydroxydeoxyguanosine and L-3,4-dihydroxyphenylalanine decreased (p<0.05 after treatment. At 2Gy radiation dose, serum cholesterol was increased (p = 0.008 relative to controls. Percent lesion area increased (p = 0.005 with age of animal, but not with radiation treatment. CONCLUSIONS: Our observations are consistent with persistent nitrative stress and activation of the endothelinergic system in ApoE-/- mice after low-level ionizing radiation exposures. These mechanisms are known factors in the progression of atherosclerosis and other cardiovascular diseases.

  14. Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia.

    Science.gov (United States)

    Pinho, Andreia V; Bensellam, Mohammed; Wauters, Elke; Rees, Maxine; Giry-Laterriere, Marc; Mawson, Amanda; Ly, Le Quan; Biankin, Andrew V; Wu, Jianmin; Laybutt, D Ross; Rooman, Ilse

    2015-01-01

    Sirtuin 1 (Sirt1) has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear. This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas. We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r) as well as a marked down regulation of endoplasmic reticulum (ER) chaperones that participate in the Unfolded Protein Response (UPR) pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP) cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas. This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.

  15. Pancreas-Specific Sirt1-Deficiency in Mice Compromises Beta-Cell Function without Development of Hyperglycemia.

    Directory of Open Access Journals (Sweden)

    Andreia V Pinho

    Full Text Available Sirtuin 1 (Sirt1 has been reported to be a critical positive regulator of glucose-stimulated insulin secretion in pancreatic beta-cells. The effects on islet cells and blood glucose levels when Sirt1 is deleted specifically in the pancreas are still unclear.This study examined islet glucose responsiveness, blood glucose levels, pancreatic islet histology and gene expression in Pdx1Cre; Sirt1ex4F/F mice that have loss of function and loss of expression of Sirt1 specifically in the pancreas.We found that in the Pdx1Cre; Sirt1ex4F/F mice, the relative insulin positive area and the islet size distribution were unchanged. However, beta-cells were functionally impaired, presenting with lower glucose-stimulated insulin secretion. This defect was not due to a reduced expression of insulin but was associated with a decreased expression of the glucose transporter Slc2a2/Glut2 and of the Glucagon like peptide-1 receptor (Glp1r as well as a marked down regulation of endoplasmic reticulum (ER chaperones that participate in the Unfolded Protein Response (UPR pathway. Counter intuitively, the Sirt1-deficient mice did not develop hyperglycemia. Pancreatic polypeptide (PP cells were the only other islet cells affected, with reduced numbers in the Sirt1-deficient pancreas.This study provides new mechanistic insights showing that beta-cell function in Sirt1-deficient pancreas is affected due to altered glucose sensing and deregulation of the UPR pathway. Interestingly, we uncovered a context in which impaired beta-cell function is not accompanied by increased glycemia. This points to a unique compensatory mechanism. Given the reduction in PP, investigation of its role in the control of blood glucose is warranted.

  16. Normal viability and altered pharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins

    NARCIS (Netherlands)

    Schinkel, A. H.; Mayer, U.; Wagenaar, E.; Mol, C. A.; van Deemter, L.; Smit, J. J.; van der Valk, M. A.; Voordouw, A. C.; Spits, H.; van Tellingen, O.; Zijlmans, J. M.; Fibbe, W. E.; Borst, P.

    1997-01-01

    The mdr1-type P-glycoproteins (P-gps) confer multidrug resistance to cancer cells by active extrusion of a wide range of drugs from the cell. To study their physiological roles, we have generated mice genetically deficient in the mdr1b gene [mdr1b (-/-) mice] and in both the mdr1a and mdr1b genes

  17. Chronic Giardia muris infection in anti-IgM-treated mice. I. Analysis of immunoglobulin and parasite-specific antibody in normal and immunoglobulin-deficient animals.

    Science.gov (United States)

    Snider, D P; Gordon, J; McDermott, M R; Underdown, B J

    1985-06-01

    To investigate the role of B cells and antibody in the immune response of mice to the murine intestinal parasite Giardia muris, we used mice treated from birth with rabbit anti-IgM antisera (aIgM). Such mice developed in serum and in gut secretions extreme Ig deficiency (IgM, IgA, and IgG) relative to control animals. The aIgM-treated mice showed no anti-G. muris antibody in serum or in gut wash material. Infections of G. muris in these mice were chronic, with a high load of parasite present in the small bowel, as reflected by prolonged cyst excretion (greater than 11 wk) and high trophozoite counts. In contrast, normal, untreated mice or NRS-treated animals developed anti-parasite IgA and IgG antibody in serum, demonstrated IgA antibody against the parasite in gut washings, and expelled the parasite within 9 wk. These effects of aIgM treatment on the murine response to primary infection with G. muris were demonstrated in two strains of mice: BALB/c and (C57BL/6 X C3H/He) F1. It was also observed that the response to G. muris infection in untreated animals was characterized by higher than normal total secretion of IgA into the gut and a concomitant increase in the serum polymeric IgA level. Mice treated with aIgM had a marked decrease of both monomeric and polymeric IgA in serum, and little detectable IgA in the intestinal lumen. These experiments provide the first demonstration that anti-IgM treatment suppresses a specific intestinal antibody response to antigen, and provide evidence that B cells and antibody play a role in the development of an effective response to a primary infection with G. muris in mice.

  18. The In Vivo Granulopoietic Response to Dexamethasone Injection Is Abolished in Perforin-Deficient Mutant Mice and Corrected by Lymphocyte Transfer from Nonsensitized Wild-Type Donors

    Directory of Open Access Journals (Sweden)

    Pedro Xavier-Elsas

    2015-01-01

    Full Text Available Exogenously administered glucocorticoids enhance eosinophil and neutrophil granulocyte production from murine bone-marrow. A hematological response dependent on endogenous glucocorticoids underlies bone-marrow eosinophilia induced by trauma or allergic sensitization/challenge. We detected a defect in granulopoiesis in nonsensitized, perforin-deficient mice. In steady-state conditions, perforin- (Pfp- deficient mice showed significantly decreased bone-marrow and blood eosinophil and neutrophil counts, and colony formation in response to GM-CSF, relative to wild-type controls of comparable age and/or weight. By contrast, peripheral blood or spleen total cell and lymphocyte numbers were not affected by perforin deficiency. Dexamethasone enhanced colony formation by GM-CSF-stimulated progenitors from wild-type controls, but not Pfp mice. Dexamethasone injection increased bone-marrow eosinophil and neutrophil counts in wild-type controls, but not Pfp mice. Because perforin is expressed in effector lymphocytes, we examined whether this defect would be corrected by transferring wild-type lymphocytes into perforin-deficient recipients. Short-term reconstitution of the response to dexamethasone was separately achieved for eosinophils and neutrophils by transfer of distinct populations of splenic lymphocytes from nonsensitized wild-type donors. Transfer of the same amount of splenic lymphocytes from perforin-deficient donors was ineffective. This demonstrates that the perforin-dependent, granulopoietic response to dexamethasone can be restored by transfer of innate lymphocyte subpopulations.

  19. Citrullus lanatus `Sentinel' (Watermelon) Extract Reduces Atherosclerosis in LDL Receptor Deficient Mice

    Science.gov (United States)

    Poduri, Aruna; Rateri, Debra L.; Saha, Shubin K.; Saha, Sibu; Daugherty, Alan

    2012-01-01

    Watermelon (Citrullus lanatus or C. lanatus) has many potentially bioactive compounds including citrulline, which may influence atherosclerosis. In this study, we determined the effects of C. lanatus, provided as an extract of the cultivar `sentinel', on hypercholesterolemia-induced atherosclerosis in mice. Male LDL receptor deficient mice at 8 weeks old were given either C. lanatus `sentinel' extract (2% vol/vol; n=10) or a mixture of matching carbohydrates (2% vol/vol; n=8) as the control in drinking water, while fed a saturated fat-enriched diet for 12 weeks ad libitum. Mice consuming C. lanatus `sentinel' extract had significantly increased plasma citrulline concentrations. Systolic blood pressure was comparable between the two groups. Consumption of C. lanatus `sentinel' extract led to lower body weight and fat mass without influencing lean mass. There were no differences in food and water intake, and urine output between the two groups. C. lanatus `sentinel' extract administration decreased plasma cholesterol concentrations that were attributed to reductions of intermediate/low density lipoprotein cholesterol. Plasma concentrations of MCP-1 and IFN-γ were decreased and IL-10 increased in mice consuming C. lanatus `sentinel' extract. Intake of C. lanatus `sentinel' extract resulted in reductions of atherosclerosis in both aortic arch and thoracic regions. In conclusion, consumption of C. lanatus `sentinel' extract led to reduced body weight gain, decreased plasma cholesterol concentrations, improved homeostasis of pro- and anti-inflammatory cytokines, and attenuated development of atherosclerosis without affecting systolic blood pressure in hypercholesterolemic mice. PMID:22902326

  20. Role of light and the circadian clock in the rhythmic oscillation of intraocular pressure: Studies in VPAC2 receptor and PACAP deficient mice.

    Science.gov (United States)

    Fahrenkrug, Jan; Georg, Birgitte; Hannibal, Jens; Jørgensen, Henrik Løvendahl

    2018-04-01

    The intraocular pressure of mice displays a daily rhythmicity being highest during the dark period. The present study was performed to elucidate the role of the circadian clock and light in the diurnal and the circadian variations in intraocular pressure in mice, by using animals with disrupted clock function (VPAC2 receptor knockout mice) or impaired light information to the clock (PACAP knockout mice). In wildtype mice, intraocular pressure measured under light/dark conditions showed a statistically significant 24 h sinusoidal rhythm with nadir during the light phase and peak during the dark phase. After transfer of the wildtype mice into constant darkness, the intraocular pressure increased, but the rhythmic changes in intraocular pressure continued with a pattern identical to that obtained during the light/dark cycle. The intraocular pressure in VPAC2 receptor deficient mice during light/dark conditions also showed a sinusoidal pattern with significant changes as a function of a 24 h cycle. However, transfer of the VPAC2 receptor knockout mice into constant darkness completely abolished the rhythmic changes in intraocular pressure. The intraocular pressure in PACAP deficient mice oscillated significantly during both 24 h light and darkness and during constant darkness. During LD conditions, the amplitude of PACAP deficient was significantly lower compared to wildtype mice, resulting in higher daytime and lower nighttime values. In conclusion, by studying the VPAC2 receptor knockout mouse which lacks circadian control and the PACAP knockout mouse which displays impaired light signaling, we provided evidence that the daily intraocular pressure rhythms are primarily generated by the circadian master clock and to a lesser extent by environmental light and darkness. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Five year remission of GHRH secreting bronchial neuroendocrine tumor with symptoms of acromegaly. Utility of chromogranin A in the monitoring of the disease

    International Nuclear Information System (INIS)

    Bolanowski, M.; Zatonska, K.; Kos-Kudla, B.; Rzeszutko, M.; Marciniak, M.

    2006-01-01

    Acromegaly is usually caused by excess GH (growth hormone) secretion by pituitary adenoma. Extremely rare (< 1% of cases) acromegaly can be a result of ectopic GHRH (growth hormone releasing hormone) secretion by bronchial tubes, lung, pancreatic or intestinal tumor. The aim of this description is to present the case of successfully treated acromegaly caused by ectopic GHRH secretion by bronchial neuroendocrine tumor and the usefulness of chromogranin A assay in the disease monitoring. The diagnosis of acromegaly in 61-year old woman was based on typical clinical picture and elevated GH and IGF-1(insulin-like growth factor-1) levels. MRI (magnetic resonance imaging) images revealed no tumor in the pituitary but only the pituitary enlargement. Moreover, the right lung tumor (10 cm size) and elevated GHRH level were documented. The secretion of GH, IGF-1 and GHRH were normalized and progression of acromegaly was stopped after the carcinoid tumor surgery. Currently, 5 year after surgery, acromegaly is still in the remission, as the normal levels of GH, IGF-1, chromogranin A and normal chest and pituitary images confirm. The authors emphasize usefulness of measurement of chromogranin A concentration for the evaluation of the tumor remission in case the routine GHRH assay is not accessible. (authors)

  2. Role of stress system disturbance and enhanced novelty response in spatial learning of NCAM-deficient mice.

    Science.gov (United States)

    Brandewiede, Joerg; Jakovcevski, Mira; Stork, Oliver; Schachner, Melitta

    2013-11-01

    The neural cell adhesion molecule (NCAM) plays a crucial role in stress-related brain function, emotional behavior and memory formation. In this study, we investigated the functions of the glucocorticoid and serotonergic systems in mice constitutively deficient for NCAM (NCAM-/- mice). Our data provide evidence for a hyperfunction of the hypothalamic-pituitary-adrenal axis, with enlarged adrenal glands and increased stress-induced corticosterone release, but reduced hippocampal glucocorticoid receptor expression in NCAM-/- mice when compared to NCAM+/+ mice. We also obtained evidence for a hypofunction of 5-HT1A autoreceptors as indicated by increased 8-0H-DPAT-induced hypothermia. These findings suggest a disturbance of both humoral and neural stress systems in NCAM-/- mice. Accordingly, we not only confirmed previously observed hyperarousal of NCAM-/- mice in various anxiety tests, but also observed an increased response to novelty exposure in these animals. Spatial learning deficits of the NCAM-/- mice in a Morris Water maze persisted, even when mice were pretrained to prevent effects of novelty or stress. We suggest that NCAM-mediated processes are involved in both novelty/stress-related emotional behavior and in cognitive function during spatial learning.

  3. Hemorheological abnormalities in lipoprotein lipase deficient mice with severe hypertriglyceridemia

    International Nuclear Information System (INIS)

    Zhao Tieqiang; Guo Jun; Li Hui; Huang Wei; Xian Xunde; Ross, Colin J.D.; Hayden, Michael R.; Wen Zongyao; Liu George

    2006-01-01

    Severe hypertriglyceridemia (HTG) is a metabolic disturbance often seen in clinical practice. It is known to induce life-threatening acute pancreatitis, but its role in atherogenesis remains elusive. Hemorheological abnormality was thought to play an important role in pathogenesis of both pancreatitis and atherosclerosis. However, hemorheology in severe HTG was not well investigated. Recently, we established a severe HTG mouse model deficient in lipoprotein lipase (LPL) in which severe HTG was observed to cause a significant increase in plasma viscosity. Disturbances of erythrocytes were also documented, including decreased deformability, electrophoresis rate, and membrane fluidity, and increased osmotic fragility. Scanning electron microscopy demonstrated that most erythrocytes of LPL deficient mice deformed with protrusions, irregular appearances or indistinct concaves. Analysis of erythrocyte membrane lipids showed decreased cholesterol (Ch) and phospholipid (PL) contents but unaltered Ch/PL ratio. The changes of membrane lipids may be partially responsible for the hemorheological and morphologic abnormalities of erythrocytes. This study indicated that severe HTG could lead to significant impairment of hemorheology and this model may be useful in delineating the role of severe HTG in the pathogenesis of hyperlipidemic pancreatitis and atherosclerosis

  4. Mice Deficient in NF-κB p50 and p52 or RANK Have Defective Growth Plate Formation and Post-natal Dwarfism.

    Science.gov (United States)

    Xing, Lianping; Chen, Di; Boyce, Brendan F

    2013-12-01

    NF-κBp50/p52 double knockout (dKO) and RANK KO mice have no osteoclasts and develop severe osteopetrosis associated with dwarfism. In contrast, Op/Op mice, which form few osteoclasts, and Src KO mice, which have osteoclasts with defective resorptive function, are osteopetrotic, but they are not dwarfed. Here, we compared the morphologic features of long bones from p50/p52 dKO, RANK KO, Op/Op and Src KO mice to attempt to explain the differences in their long bone lengths. We found that growth plates in p50/p52 dKO and RANK KO mice are significantly thicker than those in WT mice due to a 2-3-fold increase in the hypertrophic chondrocyte zone associated with normal a proliferative chondrocyte zone. This growth plate abnormality disappears when animals become older, but their dwarfism persists. Op/Op or Src KO mice have relatively normal growth plate morphology. In-situ hybridization study of long bones from p50/p52 dKO mice showed marked thickening of the growth plate region containing type 10 collagen-expressing chondrocytes. Treatment of micro-mass chondrocyte cultures with RANKL did not affect expression levels of type 2 collagen and Sox9, markers for proliferative chondrocytes, but RANKL reduced the number of type 10 collagen-expressing hypertrophic chondrocytes. Thus, RANK/NF-κB signaling plays a regulatory role in post-natal endochondral ossification that maintains hypertrophic conversion and prevents dwarfism in normal mice.

  5. Preliminary evidence of apathetic-like behavior in aged vesicular monoamine transporter 2 deficient mice

    Directory of Open Access Journals (Sweden)

    Aron Baumann

    2016-11-01

    Full Text Available Apathy is considered to be a core feature of Parkinson’s disease (PD and has been associated with a variety of states and symptoms of the disease, such as increased severity of motor symptoms, impaired cognition, executive dysfunction, and dementia. Apart from the high prevalence of apathy in PD, which is estimated to be about 40%, the underlying pathophysiology remains poorly understood and current treatment approaches are unspecific and proved to be only partially effective. In animal models, apathy has been sub-optimally modeled, mostly by means of pharmacological and stress-induced methods, whereby concomitant depressive-like symptoms could not be ruled out. In the context of PD only a few studies on toxin-based models (i.e. 6-OHDA or MPTP claimed to have determined apathetic symptoms in animals. The assessment of apathetic symptoms in more elaborated and multifaceted genetic animal models of PD could help to understand the pathophysiological development of apathy in PD and eventually advance specific treatments for afflicted patients. Here we report the presence of behavioral signs of apathy in 12 months old mice that express only ~5% of the vesicular monoamine transporter 2 (VMAT2. Apathetic-like behavior in VMAT2 deficient (LO mice was evidenced by impaired burrowing and nest building skills, and a reduced preference for sweet solution in the saccharin preference test, while the performance in the forced swimming test was normal. Our preliminary results suggest that VMAT2 deficient mice show an apathetic-like phenotype that might be independent of depressive-like symptoms. Therefore VMAT2 LO mice could be a useful tool to study of the pathophysiological substrates of apathy and to test novel treatment strategies for apathy in the context of PD.

  6. Plasminogen activation independent of uPA and tPA maintains wound healing in gene-deficient mice

    DEFF Research Database (Denmark)

    Lund, Leif R; Green, Kirsty A; Stoop, Allart A

    2006-01-01

    Simultaneous ablation of the two known activators of plasminogen (Plg), urokinase-type (uPA) and the tissue-type (tPA), results in a substantial delay in skin wound healing. However, wound closure and epidermal re-epithelialization are significantly less impaired in uPA;tPA double-deficient mice ...

  7. Arid1b haploinsufficient mice reveal neuropsychiatric phenotypes and reversible causes of growth impairment.

    Science.gov (United States)

    Celen, Cemre; Chuang, Jen-Chieh; Luo, Xin; Nijem, Nadine; Walker, Angela K; Chen, Fei; Zhang, Shuyuan; Chung, Andrew S; Nguyen, Liem H; Nassour, Ibrahim; Budhipramono, Albert; Sun, Xuxu; Bok, Levinus A; McEntagart, Meriel; Gevers, Evelien F; Birnbaum, Shari G; Eisch, Amelia J; Powell, Craig M; Ge, Woo-Ping; Santen, Gijs We; Chahrour, Maria; Zhu, Hao

    2017-07-11

    Sequencing studies have implicated haploinsufficiency of ARID1B , a SWI/SNF chromatin-remodeling subunit, in short stature (Yu et al., 2015), autism spectrum disorder (O'Roak et al., 2012), intellectual disability (Deciphering Developmental Disorders Study, 2015), and corpus callosum agenesis (Halgren et al., 2012). In addition, ARID1B is the most common cause of Coffin-Siris syndrome, a developmental delay syndrome characterized by some of the above abnormalities (Santen et al., 2012; Tsurusaki et al., 2012; Wieczorek et al., 2013). We generated Arid1b heterozygous mice, which showed social behavior impairment, altered vocalization, anxiety-like behavior, neuroanatomical abnormalities, and growth impairment. In the brain, Arid1b haploinsufficiency resulted in changes in the expression of SWI/SNF-regulated genes implicated in neuropsychiatric disorders. A focus on reversible mechanisms identified Insulin-like growth factor (IGF1) deficiency with inadequate compensation by Growth hormone-releasing hormone (GHRH) and Growth hormone (GH), underappreciated findings in ARID1B patients. Therapeutically, GH supplementation was able to correct growth retardation and muscle weakness. This model functionally validates the involvement of ARID1B in human disorders, and allows mechanistic dissection of neurodevelopmental diseases linked to chromatin-remodeling.

  8. Developmental consequences of in utero sodium arsenate exposure in mice with folate transport deficiencies

    International Nuclear Information System (INIS)

    Spiegelstein, Ofer; Gould, Amy; Wlodarczyk, Bogdan; Tsie, Marlene; Lu Xiufen; Le, Chris; Troen, Aron; Selhub, Jacob; Piedrahita, Jorge A.; Salbaum, J. Michael; Kappen, Claudia; Melnyk, Stepan; James, Jill; Finnell, Richard H.

    2005-01-01

    Previous studies have demonstrated that mice lacking a functional folate binding protein 2 gene (Folbp2 -/- ) were significantly more sensitive to in utero arsenic exposure than were the wild-type mice similarly exposed. When these mice were fed a folate-deficient diet, the embryotoxic effect of arsenate was further exacerbated. Contrary to expectations, studies on 24-h urinary speciation of sodium arsenate did not demonstrate any significant difference in arsenic biotransformation between Folbp2 -/- and Folbp2 +/+ mice. To better understand the influence of folate pathway genes on arsenic embryotoxicity, the present investigation utilized transgenic mice with disrupted folate binding protein 1 (Folbp1) and reduced folate carrier (RFC) genes. Because complete inactivation of Folbp1 and RFC genes results in embryonic lethality, we used heterozygous animals. Overall, no RFC genotype-related differences in embryonic susceptibility to arsenic exposure were observed. Embryonic lethality and neural tube defect (NTD) frequency in Folbp1 mice was dose-dependent and differed from the RFC mice; however, no genotype-related differences were observed. The RFC heterozygotes tended to have higher plasma levels of S-adenosylhomocysteine (SAH) than did the wild-type controls, although this effect was not robust. It is concluded that genetic modifications at the Folbp1 and RFC loci confers no particular sensitivity to arsenic toxicity compared to wild-type controls, thus disproving the working hypothesis that decreased methylating capacity of the genetically modified mice would put them at increased risk for arsenic-induced reproductive toxicity

  9. A modified choline-deficient, ethionine-supplemented diet reduces morbidity and retains a liver progenitor cell response in mice.

    Science.gov (United States)

    Passman, Adam M; Strauss, Robyn P; McSpadden, Sarah B; Finch-Edmondson, Megan L; Woo, Ken H; Diepeveen, Luke A; London, Roslyn; Callus, Bernard A; Yeoh, George C

    2015-12-01

    The choline-deficient, ethionine-supplemented (CDE) dietary model induces chronic liver damage, and stimulates liver progenitor cell (LPC)-mediated repair. Long-term CDE administration leads to hepatocellular carcinoma in rodents and lineage-tracing studies show that LPCs differentiate into functional hepatocytes in this model. The CDE diet was first modified for mice by our laboratory by separately administering choline-deficient chow and ethionine in the drinking water (CD+E diet). Although this CD+E diet is widely used, concerns with variability in weight loss, morbidity, mortality and LPC response have been raised by researchers who have adopted this model. We propose that these inconsistencies are due to differential consumption of chow and ethionine in the drinking water, and that incorporating ethionine in the choline-deficient chow, and altering the strength, will achieve better outcomes. Therefore, C57Bl/6 mice, 5 and 6 weeks of age, were fed an all-inclusive CDE diet of various strengths (67% to 100%) for 3 weeks. The LPC response was quantitated and cell lines were derived. We found that animal survival, LPC response and liver damage are correlated with CDE diet strength. The 67% and 75% CDE diet administered to mice older than 5 weeks and greater than 18 g provides a consistent and acceptable level of animal welfare and induces a substantial LPC response, permitting their isolation and establishment of cell lines. This study shows that an all-inclusive CDE diet for mice reproducibly induces an LPC response conducive to in vivo studies and isolation, whilst minimizing morbidity and mortality. © 2015. Published by The Company of Biologists Ltd.

  10. Synaptic changes in the thalamocortical system of cathepsin D-deficient mice: a model of human congenital neuronal ceroid-lipofuscinosis.

    Science.gov (United States)

    Partanen, Sanna; Haapanen, Aleksi; Kielar, Catherine; Pontikis, Charles; Alexander, Noreen; Inkinen, Teija; Saftig, Paul; Gillingwater, Thomas H; Cooper, Jonathan D; Tyynelä, Jaana

    2008-01-01

    Cathepsin D (CTSD; EC 3.4.23.5) is a lysosomal aspartic protease, the deficiency of which causes early-onset and particularly aggressive forms of neuronal ceroid-lipofuscinosis in infants, sheep, and mice. Cathepsin D deficiencies are characterized by severe neurodegeneration, but the molecular mechanisms behind the neuronal death remain poorly understood. In this study, we have systematically mapped the distribution of neuropathologic changes in CTSD-deficient mouse brains by stereologic, immunologic, and electron microscopic methods. We report highly accentuated neuropathologic changes within the ventral posterior nucleus (ventral posteromedial [VPM]/ventral posterolateral [VPL]) of thalamus and in neuronal laminae IV and VI of the somatosensory cortex (S1BF), which receive and send information to the thalamic VPM/VPL. These changes included pronounced astrocytosis and microglial activation that begin in the VPM/VPL thalamic nucleus of CTSD-deficient mice and are associated with reduced neuronal number and redistribution of presynaptic markers. In addition, loss of synapses, axonal pathology, and aggregation of synaptophysin and synaptobrevin were observed in the VPM/VPL. These synaptic alterations are accompanied by changes in the amount of synaptophysin/synaptobrevin heterodimer, which regulates formation of the SNARE complex at the synapse. Taken together, these data reveal the somatosensory thalamocortical circuitry as a particular focus of pathologic changes and provide the first evidence for synaptic alterations at the molecular and ultrastructural levels in CTSD deficiency.

  11. Vitamin B12 deficiency presenting as an acute confusional state: a ...

    African Journals Online (AJOL)

    EB

    2013-09-03

    Sep 3, 2013 ... occurred following parenteral vitamin B12 replacement therapy. Conclusion: This case report highlights one of the neuro-psychiatric presentations of vitamin B12 deficiency .... and Occupational Health Abstract No:.

  12. Dual specificity phosphatase 6 deficiency is associated with impaired systemic glucose tolerance and reversible weight retardation in mice.

    Directory of Open Access Journals (Sweden)

    Katrin Pfuhlmann

    Full Text Available Here, we aimed to investigate the potential role of DUSP6, a dual specificity phosphatase, that specifically inactivates extracellular signal-regulated kinase (ERK, for the regulation of body weight and glucose homeostasis. We further assessed whether metabolic challenges affect Dusp6 expression in selected brain areas or white adipose tissue. Hypothalamic Dusp6 mRNA levels remained unchanged in chow-fed lean vs. high fat diet (HFD fed obese C57Bl/6J mice, and in C57Bl/6J mice undergoing prolonged fasting or refeeding with fat free diet (FFD or HFD. Similarly, Dusp6 expression levels were unchanged in selected brain regions of Lepob mice treated with 1 mg/kg of leptin for 6 days, compared to pair-fed or saline-treated Lepob controls. Dusp6 expression levels remained unaltered in vitro in primary adipocytes undergoing differentiation, but were increased in eWAT of HFD-fed obese C57Bl/6J mice, compared to chow-fed lean controls. Global chow-fed DUSP6 KO mice displayed reduced body weight and lean mass and slightly increased fat mass at a young age, which is indicative for early-age weight retardation. Subsequent exposure to HFD led to a significant increase in lean mass and body weight in DUSP6 deficient mice, compared to WT controls. Nevertheless, after 26 weeks of high-fat diet exposure, we observed comparable body weight, fat and lean mass in DUSP6 WT and KO mice, suggesting overall normal susceptibility to develop obesity. In line with the increased weight gain to compensate for early-age weight retardation, HFD-fed DUSP6 KO displayed increased expression levels of anabolic genes involved in lipid and cholesterol metabolism in the epididymal white adipose tissue (eWAT, compared to WT controls. Glucose tolerance was perturbed in both chow-fed lean or HFD-fed obese DUSP6 KO, compared to their respective WT controls. Overall, our data indicate that DUSP6 deficiency has limited impact on the regulation of energy metabolism, but impairs systemic

  13. Timing of growth hormone treatment affects trabecular bone microarchitecture and mineralization in growth hormone deficient mice.

    Science.gov (United States)

    Kristensen, Erika; Hallgrímsson, Benedikt; Morck, Douglas W; Boyd, Steven K

    2010-08-01

    Growth hormone (GH) is essential in the development of bone mass, and a growth hormone deficiency (GHD) in childhood is frequently treated with daily injections of GH. It is not clear what effect GHD and its treatment has on bone. It was hypothesized that GHD would result in impaired microarchitecture, and an early onset of treatment would result in a better recovery than late onset. Growth hormone deficient homozygous (lit/lit) mice of both sexes were divided into two treatment groups receiving daily injections of GH, starting at an early (21 days of age) or a late time point (35 days of age, corresponding to the end of puberty). A group of heterozygous mice with normal levels of growth hormone served as controls. In vivo micro-computed tomography scans of the fourth lumbar vertebra were obtained at five time points between 21 and 60 days of age, and trabecular morphology and volumetric BMD were analyzed to determine the effects of GH on bone microarchitecture. Early GH treatment led to significant improvements in bone volume ratio (p=0.006), tissue mineral density (p=0.005), and structure model index (p=0.004) by the study endpoint (day 60), with no detected change in trabecular thickness. Trabecular number increased and trabecular separation decreased in GHD mice regardless of treatment compared to heterozygous mice. This suggests fundamental differences in the structure of trabecular bone in GHD and GH treated mice, reflected by an increased number of thinner trabeculae in these mice compared to heterozygous controls. There were no significant differences between the late treatment group and GHD mice except for connectivity density. Taken together, these results indicate that bone responds to GH treatment initiated before puberty but not to treatment commencing post-puberty, and that GH treatment does not rescue the structure of trabecular bone to that of heterozygous controls. Copyright 2010 Elsevier Inc. All rights reserved.

  14. Inhibition of elastase-pulmonary emphysema in dominant-negative MafB transgenic mice.

    Science.gov (United States)

    Aida, Yasuko; Shibata, Yoko; Abe, Shuichi; Inoue, Sumito; Kimura, Tomomi; Igarashi, Akira; Yamauchi, Keiko; Nunomiya, Keiko; Kishi, Hiroyuki; Nemoto, Takako; Sato, Masamichi; Sato-Nishiwaki, Michiko; Nakano, Hiroshi; Sato, Kento; Kubota, Isao

    2014-01-01

    Alveolar macrophages (AMs) play important roles in the pathogenesis of chronic obstructive pulmonary disease (COPD). We previously demonstrated upregulation of the transcription factor MafB in AMs of mice exposed to cigarette smoke. The aim of this study was to elucidate the roles of MafB in the development of pulmonary emphysema. Porcine pancreatic elastase was administered to wild-type (WT) and dominant-negative (DN)-MafB transgenic (Tg) mice in which MafB activity was suppressed only in macrophages. We measured the mean linear intercept and conducted cell differential analysis of bronchoalveolar lavage (BAL) cells, surface marker analysis using flow cytometry, and immunohistochemical staining using antibodies to matrix metalloproteinase (MMP)-9 and MMP-12. Airspace enlargement of the lungs was suppressed significantly in elastase-treated DN-MafB Tg mice compared with treated WT mice. AMs with projected pseudopods were decreased in DN-MafB Tg mice. The number of cells intermediately positive for F4/80 and weakly or intermediately positive for CD11b, which are considered cell subsets of matured AMs, decreased in the BAL of DN-MafB Tg mice. Furthermore, MMP-9 and -12 were significantly downregulated in BAL cells of DN-MafB Tg mice. Because MMPs exacerbate emphysema, MafB may be involved in pulmonary emphysema development through altered maturation of macrophages and MMP expression.

  15. Vitamin B12 deficiency - a major cause of megaloblastic anaemia in patients attending a tertiary care hospital

    International Nuclear Information System (INIS)

    Iqbal, S.P.; Kakepoto, G.N.; Iqbal, S.P.

    2009-01-01

    Folate and vitamin B12 deficiencies have been known to cause megaloblastic anaemia. Since the deficiencies of these two vitamins are very common in Pakistani population, it would be imperative to investigate their role in causing megaloblastic anaemia. The objective of this study was to find out the contribution of folate and vitamin B12 deficiencies in causing megaloblastic anaemia in our patient population. Methods: In this retrospective cohort study, clinical records of 220 patients (101 females and 119 males with an age range of 1 - 80 years) who presented themselves with macrocytic anaemia at the Aga Khan University Hospital were collected. Data pertaining to complete blood count and serum levels of folate and vitamin B12 were analysed. Results: The mean haemoglobin (Hb) level was 6.8 +- 0.2 gm/dl. Sixty-nine percent of the patients had severe anaemia (Hb<8 gm/dl). Mean +- SEM values of haemoglobin, serum folate and serum B12 were not significantly different between males and females (Hb 6.4 +- 0.3 gm/dl vs 6.3 +- 0.3 gm/dl; folate 6.9 +- 0.8 mu g/ml vs 7.8 +- 1 mu g/ml; B12 259 +- 65 mu g/ml vs 225 +- 45 mu g/ml, respectively). Linear regression analysis showed that serum folate was inversely related with the mean corpuscular volume (MCV, p=0.04). Spearman's correlation analysis indicated an inverse mild association between MCV and serum folate (correlation coefficient= -0.18). Folate deficiency was 43.4%, while vitamin B12 deficiency was 78.5% in these patients. Seventy-one percent of folate-deficient patients had vitamin B12 deficiency as well, while 26.1% of patients with B12 deficiency had a co-occurrence of folate deficiency. Conclusion: Vitamin B12 deficiency appears to be the major factor leading to megaloblastic anaemia in our study population. Inadequate dietary intake, over-cooking of our food and poor absorption might be contributing to high prevalence of vitamin B12 deficiency in this population. (author)

  16. Folate and S-adenosylmethionine modulate synaptic activity in cultured cortical neurons: acute differential impact on normal and apolipoprotein-deficient mice

    International Nuclear Information System (INIS)

    Serra, Michael; Chan, Amy; Dubey, Maya; Shea, Thomas B; Gilman, Vladimir

    2008-01-01

    Folate deficiency is accompanied by a decline in the cognitive neurotransmitter acetylcholine and a decline in cognitive performance in mice lacking apolipoprotein E (ApoE−/− mice), a low-density lipoprotein that regulates aspects of lipid metabolism. One direct consequence of folate deficiency is a decline in S-adenosylmethionine (SAM). Since dietary SAM supplementation maintains acetylcholine levels and cognitive performance in the absence of folate, we examined herein the impact of folate and SAM on neuronal synaptic activity. Embryonic cortical neurons from mice expressing or lacking ApoE (ApoE+/+ or −/−, respectively) were cultured for 1 month on multi-electrode arrays, and signaling was recorded. ApoE+/+ cultures displayed significantly more frequent spontaneous signals than ApoE−/− cultures. Supplementation with 166 µm SAM (not normally present in culture medium) increased signal frequency and decreased signal amplitude in ApoE+/+ cultures. SAM also increased the frequency of tightly clustered signal bursts. Folate deprivation reversibly reduced signal frequency in ApoE+/+ cultures; SAM supplementation maintained signal frequency despite folate deprivation. These findings support the importance of dietary supplementation with folate and SAM on neuronal health. Supplementation with 166 µm SAM did not alter signaling in ApoE−/− cultures, which may be a reflection of the reduced SAM levels in ApoE−/− mice. The differential impact of SAM on ApoE+/+ and −/− neurons underscores the combined impact of nutritional and genetic deficiencies on neuronal homeostasis. (communication)

  17. Exacerbation of spontaneous autoimmune nephritis following regulatory T cell depletion in B cell lymphoma 2-interacting mediator knock-out mice.

    Science.gov (United States)

    Wang, Y M; Zhang, G Y; Wang, Y; Hu, M; Zhou, J J; Sawyer, A; Cao, Q; Wang, Y; Zheng, G; Lee, V W S; Harris, D C H; Alexander, S I

    2017-05-01

    Regulatory T cells (T regs ) have been recognized as central mediators for maintaining peripheral tolerance and limiting autoimmune diseases. The loss of T regs or their function has been associated with exacerbation of autoimmune disease. However, the temporary loss of T regs in the chronic spontaneous disease model has not been investigated. In this study, we evaluated the role of T regs in a novel chronic spontaneous glomerulonephritis model of B cell lymphoma 2-interacting mediator (Bim) knock-out mice by transient depleting T regs . Bim is a pro-apoptotic member of the B cell lymphoma 2 (Bcl-2) family. Bim knock-out (Bim -/- ) mice fail to delete autoreactive T cells in thymus, leading to chronic spontaneous autoimmune kidney disease. We found that T reg depletion in Bim -/- mice exacerbated the kidney injury with increased proteinuria, impaired kidney function, weight loss and greater histological injury compared with wild-type mice. There was a significant increase in interstitial infiltrate of inflammatory cells, antibody deposition and tubular damage. Furthermore, the serum levels of cytokines interleukin (IL)-2, IL-4, IL-6, IL-10, IL-17α, interferon (IFN)-γ and tumour necrosis factor (TNF)-α were increased significantly after T reg depletion in Bim -/- mice. This study demonstrates that transient depletion of T regs leads to enhanced self-reactive T effector cell function followed by exacerbation of kidney disease in the chronic spontaneous kidney disease model of Bim-deficient mice. © 2017 British Society for Immunology.

  18. Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis when compared with ablation of ghrelin in ob/ob mice

    Science.gov (United States)

    The orexigenic hormone ghrelin is important in diabetes because it has an inhibitory effect on insulin secretion. Ghrelin ablation in leptin-deficient ob/ob (Ghrelin(-/-):ob/ob) mice increases insulin secretion and improves hyperglycemia. The physiologically relevant ghrelin receptor is the growth ...

  19. OCA-B regulation of B-cell development and function.

    Science.gov (United States)

    Teitell, Michael A

    2003-10-01

    The transcriptional co-activator OCA-B [for Oct co-activator from B cells, also known as OBF-1 (OCT-binding factor-1) and Bob1] is not required for B-cell genesis but does regulate subsequent B-cell development and function. OCA-B deficient mice show strain-specific, partial blocks at multiple stages of B-cell maturation and a complete disruption of germinal center formation in all strains, causing humoral immune deficiency and susceptibility to infection. OCA-B probably exerts its effects through the regulation of octamer-motif controlled gene expression. The OCA-B gene encodes two proteins of distinct molecular weight, designated p34 and p35. The p34 isoform localizes in the nucleus, whereas the p35 isoform is myristoylated and is bound to the cytoplasmic membrane. p35 can traffic to the nucleus and probably activates octamer-dependent transcription, although this OCA-B isoform might regulate B cells through membrane-related signal transduction.

  20. Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Suzana Gispert

    Full Text Available BACKGROUND: Parkinson's disease (PD is an adult-onset movement disorder of largely unknown etiology. We have previously shown that loss-of-function mutations of the mitochondrial protein kinase PINK1 (PTEN induced putative kinase 1 cause the recessive PARK6 variant of PD. METHODOLOGY/PRINCIPAL FINDINGS: Now we generated a PINK1 deficient mouse and observed several novel phenotypes: A progressive reduction of weight and of locomotor activity selectively for spontaneous movements occurred at old age. As in PD, abnormal dopamine levels in the aged nigrostriatal projection accompanied the reduced movements. Possibly in line with the PARK6 syndrome but in contrast to sporadic PD, a reduced lifespan, dysfunction of brainstem and sympathetic nerves, visible aggregates of alpha-synuclein within Lewy bodies or nigrostriatal neurodegeneration were not present in aged PINK1-deficient mice. However, we demonstrate PINK1 mutant mice to exhibit a progressive reduction in mitochondrial preprotein import correlating with defects of core mitochondrial functions like ATP-generation and respiration. In contrast to the strong effect of PINK1 on mitochondrial dynamics in Drosophila melanogaster and in spite of reduced expression of fission factor Mtp18, we show reduced fission and increased aggregation of mitochondria only under stress in PINK1-deficient mouse neurons. CONCLUSION: Thus, aging Pink1(-/- mice show increasing mitochondrial dysfunction resulting in impaired neural activity similar to PD, in absence of overt neuronal death.