WorldWideScience

Sample records for chp technologies opportunities

  1. Biomass CHP Catalog of Technologies

    Science.gov (United States)

    This report reviews the technical and economic characterization of biomass resources, biomass preparation, energy conversion technologies, power production systems, and complete integrated CHP systems.

  2. Micro CHP: implications for energy companies

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Jeremy [EA Technology (United Kingdom); Kolin, Simon; Hestevik, Svein [Sigma Elektroteknisk A/S (Norway)

    2000-08-01

    This article explains how micro combined heat and power (CHP) technology may help UK energy businesses to maintain their customer base in the current climate of liberalisation and competition in the energy market The need for energy companies to adopt new technologies and adapt to changes in the current aggressive environment, the impact of privatisation, and the switching of energy suppliers by customers are discussed. Three potential routes to success for energy companies are identified, namely, price reductions, branding and affinity marketing, and added value services. Details are given of the implementation of schemes to encourage energy efficiency, the impact of the emissions targets set at Kyoto, the advantages of micro CHP generation, business opportunities for CHP, business threats from existing energy companies and others entering the field, and the commercial viability of micro CHP.

  3. Micro-CHP Technologies Roadmap: Meeting 21st Century Residential Energy Needs

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2003-12-01

    On June 11-12, 2003, at Greenbelt, Maryland, key stakeholders from industry, government agencies, universities, and others involved in combined heat and power and the residential buildings industry explores solutions to technical, institutional, and market barriers facing micro-combined heat and power systems (mCHP). Participants outlined a desired future for mCHP systems, identified specific interim technology cost and performance targets, and developed actions to achieve the interim targets and vision. This document, The Micro-CHP Technologies Roadmap, is a result of their deliberations. It outlines a set of actions that can be pursued by both the government and industry to develop mCHP appliances for creating a new approach for households to meet their energy needs.

  4. IEA Energy Technology Essentials: Biomass for Power Generation and CHP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-01-15

    The IEA Energy Technology Essentials series offers concise four-page updates on the different technologies for producing, transporting and using energy. Biomass for Power Generation and CHP is the topic covered in this edition.

  5. Stockholm CHP potential - An opportunity for CO2 reductions?

    International Nuclear Information System (INIS)

    Danestig, Maria; Gebremehdin, Alemayehu; Karlsson, Bjoern

    2007-01-01

    The potential for combined heat and power (CHP) generation in Stockholm is large and a total heat demand of about 10 TWh/year can be met in a renewed large district heating system. This model of the Stockholm district heating system shows that CHP generation can increase from 8% in 2004 to 15.5% of the total electricity generation in Sweden. Increased electricity costs in recent years have awakened an interest to invest in new electricity generation. Since renewable alternatives are favoured by green certificates, bio-fuelled CHP is most profitable at low electricity prices. Since heat demand in the district heating network sets the limit for possible electricity generation, a CHP alternative with a high electricity to heat ratio will be more profitable at when electricity prices are high. The efficient energy use in CHP has the potential to contribute to reductions in carbon dioxide emissions in Europe, when they are required and the European electricity market is working perfectly. The potential in Stockholm exceeds Sweden's undertakings under the Kyoto protocol and national reduction goals. (author)

  6. Modeling and simulation of a residential micro-CHP system based on HT-PEMFC technology

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2009-01-01

    Combined-heat-and-power (CHP) technology is a well known and proved method to produce simultaneously power and heat at high efficiencies. This can be further improved by the introduction of a novel micro-CHP residential system based on High Temperature-Proton Exchange Membrane Fuel Cell (HT-PEMFC......). The HT-PEMFC (based on PBI-membrane technology) operates at temperatures near 200oC, and this can be an ideal match for cogeneration residential systems. The proposed system provides electric power, hot water, and space heating for a typical household (1-5 kWe, 5-10 kWth). The micro-CHP system...

  7. Screening of CHP Potential at Federal Sites in Select Regions of the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Energy Nexus Group, . .

    2002-02-25

    Combined Cooling Heat and Power (CHP) is a master term for onsite power generation technologies that sequentially produce electrical or mechanical energy and useful thermal energy. Some form of CHP has existed for more than 100 years and it is now achieving a greater level of acceptance due to an increasing need for reliable power service and energy cost management. Capturing and using the heat produced as a byproduct of generating electricity from fuel sources increases the usable energy that can be obtained from the original fuel source. CHP technologies have the potential to reduce energy consumption through increased efficiency--decreasing energy bills as well as pollution. The EPA recognizes CHP as a potent climate change mitigation measure. The U.S. Department of Energy (D.O.E.) Federal Energy Management Program (FEMP) is assisting Federal agencies to realize their energy efficiency goals. CHP is an efficiency measure that is receiving growing attention because of its sizable potential to provide efficiency, environmental, and reliability benefits. CHP therefore benefits the host facility, the electric infrastructure, and the U.S. society as a whole. This report and study seeks to make a preliminary inquiry into near term CHP opportunities for federal facilities in selected U.S. regions. It offers to help focus the attention of policy makers and energy facility managers on good candidate facilities for CHP. First, a ranked list of high potential individual sites is identified. Then, several classes of federal facilities are identified for the multiple opportunities they offer as a class. Recommendations are then offered for appropriate next steps for the evaluation and cost effective implementation of CHP. This study was designed to ultimately rank federal facilities in terms of their potential to take advantage of CHP economic and external savings in the near term. In order to best serve the purposes of this study, projections have been expressed in terms of

  8. Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies

    International Nuclear Information System (INIS)

    Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

    1999-01-01

    The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications

  9. CHP as a Boiler Replacement Opportunity (Webinar) – April 30, 2013

    Science.gov (United States)

    This webinar provides information about the benefits of replacing a boiler with a CHP system, describes CHP project analysis and delivery processes, and highlights a case study at Penn State University.

  10. MicroCHP: Overview of selected technologies, products and field test results

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Vollrad [Berliner Energieagentur GmbH, Franzoesische Strasse 23, 10117 Berlin (Germany); Klemes, Jiri; Bulatov, Igor [Centre for Process Integration, CEAS, The University of Manchester, P.O. Box 88, M60 1QD Manchester (United Kingdom)

    2008-11-15

    This paper gives an overview on selected microCHP technologies and products with the focus on Stirling and steam machines. Field tests in Germany, the UK and some other EC countries are presented, assessed and evaluated. Test results show the overall positive performance with differences in sectors (domestic vs. small business). Some negative experiences have been received, especially from tests with the Stirling engines and the free-piston steam machine. There are still obstacles for market implementation. Further projects and tests of microCHP are starting in various countries. When positive results will prevail and deficiencies are eliminated, a way to large-scale production and market implementation could be opened. (author)

  11. Analysis and optmization of CHP, CCHP, CHP-ORC, and CCHP-ORC systems

    Science.gov (United States)

    Hueffed, Anna Kathrine

    Increased demand for energy, rising energy costs, and heightened environmental concerns are driving forces that continually press for the improvement and development of new technologies to promote energy savings and emissions reduction. Combined heating and power (CHP), combined cooling, heating, and power (CCHP), and organic Rankine cycles (ORC) are a few of the technologies that promise to reduce primary energy consumption (PEC), cost, and emissions. CHP systems generate electricity at or near the place of consumption using a prime mover, e.g. a combustion engine or a turbine, and utilize the accompanying exhaust heat that would otherwise be wasted to satisfy the building's thermal demand. In the case of CCHP systems, exhaust heat also goes to satisfy a cooling load. An organic Rankine cycle (ORC) combined with a CHP or CCHP system can generate electricity from any surplus low-grade heat, thereby reducing the total primary energy, cost, and emissions.

  12. Micro-CHP Systems for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Timothy DeValve; Benoit Olsommer

    2007-09-30

    Integrated micro-CHP (Cooling, Heating and Power) system solutions represent an opportunity to address all of the following requirements at once: conservation of scarce energy resources, moderation of pollutant release into our environment, and assured comfort for home-owners. The objective of this effort was to establish strategies for development, demonstration, and sustainable commercialization of cost-effective integrated CHP systems for residential applications. A unified approach to market and opportunity identification, technology assessment, specific system designs, adaptation to modular product platform component conceptual designs was employed. UTRC's recommendation to U.S. Department of Energy is to go ahead with the execution of the proposed product development and commercialization strategy plan under Phase II of this effort. Recent indicators show the emergence of micro-CHP. More than 12,000 micro-CHP systems have been sold worldwide so far, around 7,500 in 2004. Market projections predict a world-wide market growth over 35% per year. In 2004 the installations were mainly in Europe (73.5%) and in Japan (26.4%). The market in North-America is almost non-existent (0.1%). High energy consumption, high energy expenditure, large spark-spread (i.e., difference between electricity and fuel costs), big square footage, and high income are the key conditions for market acceptance. Today, these conditions are best found in the states of New York, Pennsylvania, New Jersey, Wisconsin, Illinois, Indiana, Michigan, Ohio, New England states. A multiple stage development plan is proposed to address risk mitigation. These stages include concept development and supplier engagement, component development, system integration, system demonstration, and field trials. A two stage commercialization strategy is suggested based on two product versions. The first version--a heat and power system named Micro-Cogen, provides the heat and essential electrical power to the

  13. Review of CHP projections tp 2010

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, W.

    2003-07-01

    This report summarises the findings of a study examining market conditions for combined heat and power since 2000 and assessing the commercial position of cogeneration (CHP) in order to provide advice on likely distributed generation in relation to technology, location and commissioning timetables. Details are given of the modelling of the development of 'good quality' CHP by Cambridge Econometrics (CE), and the work carried out by ILEX updating the CE study. Modelling assumptions, market conditions for CHP since the CE study, the effect of market conditions on CE modelling assumptions, justified changes in assumptions, and evaluation of likely CHP capacity to 2010 are discussed.

  14. Deployment of FlexCHP System

    Energy Technology Data Exchange (ETDEWEB)

    Cygan, David [Gas Technology Inst., Des Plaines, IL (United States)

    2015-11-01

    The Gas Technology Institute (GTI), along with its partner Integrated CHP Systems Corporation, has developed and demonstrated an Ultra-Low-Nitrogen Oxide (ULN) Flexible Combined Heat and Power (FlexCHP) system that packages a state-of-the-art Capstone C65 gas microturbine and Johnston PFXX100 boiler with an innovative natural gas-fired supplemental burner. Supplemental burners add heat as needed in response to facility demand, which increases energy efficiency, but typically raises exhaust NOx levels, degrading local air quality unless a costly and complicated catalytic treatment system is added. The FlexCHP system increases energy efficiency and achieves the 2007 California Air Resource Board (CARB) distributed generation emissions standards for Nitrogen oxides (NOx), Carbon Monoxide (CO), and Total Hydrocarbons (THC) without catalytic exhaust gas treatment. The key to this breakthrough performance is a simple and reliable burner design which utilizes staged combustion with engineered internal recirculation. This ULN burner system successfully uses turbine exhaust as an oxidizer, while achieving high efficiencies and low emissions. In tests at its laboratory facilities in Des Plaines, Illinois, GTI validated the ability of the system to achieve emissions of NOx, CO, and THC below the CARB criteria of 0.07, 0.10, and 0.02 lb/MW-h respectively. The FlexCHP system was installed at the field demonstration site, Inland Empire Foods, in Riverside, California to verify performance of the technology in an applied environment. The resulting Combined Heat and Power (CHP) package promises to make CHP implementation more attractive, mitigate greenhouse gas emissions, and improve the reliability of electricity supply.

  15. Evaluation of an alkaline fuel cell system as a micro-CHP

    International Nuclear Information System (INIS)

    Verhaert, Ivan; Mulder, Grietus; De Paepe, Michel

    2016-01-01

    Highlights: • Sensitivity analysis on system configuration of the AFC as a micro-CHP. • Flow rate in the secondary heating circuit can be used to control water management. • Part load behavior of fuel cells is compared to other micro-CHP technologies. • For future energy demand in buildings fuel cells have the best performance. - Abstract: Micro-cogeneration is an emerging technology to reduce the non-renewable energy demand in buildings and reduce peak load in the grid. Fuel cell based cogeneration (CHP) has interesting prospects for building applications, even at relatively low heat demand. This is due to their partial load behavior which is completely different, compared to other micro-CHP technologies. Within the fuel cell technologies suitable for small scale CHP or micro-CHP, the existing configuration of an alkaline fuel cell system is analyzed. This analysis is based on validated models and offers a control strategy to optimize both water management and energy performance of the alkaline fuel cell system. Finally, the model of the alkaline fuel cell system with optimized control strategy is used to compare its part load behavior to other micro-CHP technologies.

  16. Design of Biomass Combined Heat and Power (CHP Systems based on Economic Risk using Minimax Regret Criterion

    Directory of Open Access Journals (Sweden)

    Ling Wen Choong

    2018-01-01

    Full Text Available It is a great challenge to identify optimum technologies for CHP systems that utilise biomass and convert it into heat and power. In this respect, industry decision makers are lacking in confidence to invest in biomass CHP due to economic risk from varying energy demand. This research work presents a linear programming systematic framework to design biomass CHP system based on potential loss of profit due to varying energy demand. Minimax Regret Criterion (MRC approach was used to assess maximum regret between selections of the given biomass CHP design based on energy demand. Based on this, the model determined an optimal biomass CHP design with minimum regret in economic opportunity. As Feed-in Tariff (FiT rates affects the revenue of the CHP plant, sensitivity analysis was then performed on FiT rates on the selection of biomass CHP design. Besides, design analysis on the trend of the optimum design selected by model was conducted. To demonstrate the proposed framework in this research, a case study was solved using the proposed approach. The case study focused on designing a biomass CHP system for a palm oil mill (POM due to large energy potential of oil palm biomass in Malaysia.

  17. An assessment of the present and future opportunities for combined heat and power with district heating (CHP-DH) in the United Kingdom

    International Nuclear Information System (INIS)

    Kelly, Scott; Pollitt, Michael

    2010-01-01

    As global fuel reserves are depleted, alternative and more efficient forms of energy generation and delivery will be required. Combined heat and power with district heating (CHP-DH) provides an alternative energy production and delivery mechanism that is less resource intensive, more efficient and provides greater energy security than many popular alternatives. It will be shown that the economic viability of CHP-DH networks depends on several principles, namely (1) the optimisation of engineering and design principles; (2) organisational and regulatory frameworks; (3) financial and economic factors. It was found that in the long term DH is competitive with other energy supply and distribution technologies such as electricity and gas. However, in the short to medium term it is shown that economic risk, regulatory uncertainty and lock-in of existing technology are the most significant barriers to CHP-DH development. This research suggests that under the present regulatory and economic paradigm, the infrastructure required for DH networks remains financially prohibitive; the implementation of government policies are complicated and impose high transaction costs, while engineering solutions are frequently not implemented or economically optimised. If CHP-DH is going to play any part in meeting climate change targets then collaboration between public and private organisations will be required. It is clear from this analysis that strong local government involvement is therefore necessary for the co-ordination, leadership and infrastructural deployment of CHP-DH.

  18. Evaluation of the impact of the liberalisation of the European electricity market on the CHP, District heating and cooling sector; 'Save CHP/DHC'. Final report

    International Nuclear Information System (INIS)

    2000-08-01

    Improved energy efficiency will play a key role in meeting the EU Kyoto target economically. In addition to a significant positive environmental impact, improved energy efficiency will lead to a more sustainable energy policy and enhanced security of supply. The study: 1) Identifies and evaluates parameters and conditions which in relation to the liberalisation of the electricity market will have an impact on the CHP/DHC sector in EU15 and Poland. 2) Establishes an information base on CHP/DHC systems in EU15 and Poland. 3) Analyses the CHP/DHC sector and its ability to meet changing market conditions. 4) Assesses the effect of the liberalised electricity market on electricity production in relation to CHP/district heating and cooling. 5) Identifies threats for the viability of CHP/DHC in a liberalised market and evaluates means and measures to overcome such threats. The study brings forward the goals and commitments in respect of European energy and environmental policy and gives an overview of the present and expected future framework in which CHP/DHC is to operate. The study evaluates the viability of the sector at an overall level and for different groups/categories of CHP/DHC systems in different countries. The effects of existing or proposed national public measures are analysed. The analyses are essential to decision makers in the transition process towards a fully liberalised market. Recognised uncertainties in the market during the transition period may cause either a temporary or a permanent recession for the CHP/DHC sector. Improved understanding and recognition of threats and opportunities is important to all actors just now. The study can be considered a first step of a process to create a market situation, where the energy customers can make their choices under competition rules and where environmentally friendly and efficient CHP and DHC is considered an attractive business opportunity in competition with other energy supplies. (EHS)

  19. Micro-CHP systems for residential applications

    International Nuclear Information System (INIS)

    Paepe, Michel de; D'Herdt, Peter; Mertens, David

    2006-01-01

    Micro-CHP systems are now emerging on the market. In this paper, a thorough analysis is made of the operational parameters of 3 types of micro-CHP systems for residential use. Two types of houses (detached and terraced) are compared with a two storey apartment. For each building type, the energy demands for electricity and heat are dynamically determined. Using these load profiles, several CHP systems are designed for each building type. Data were obtained for two commercially available gas engines, two Stirling engines and a fuel cell. Using a dynamic simulation, including start up times, these five system types are compared to the separate energy system of a natural gas boiler and buying electricity from the grid. All CHP systems, if well sized, result in a reduction of primary energy use, though different technologies have very different impacts. Gas engines seem to have the best performance. The economic analysis shows that fuel cells are still too expensive and that even the gas engines only have a small internal rate of return (<5%), and this only occurs in favourable economic circumstances. It can, therefore, be concluded that although the different technologies are technically mature, installation costs should at least be reduced by 50% before CHP systems become interesting for residential use. Condensing gas boilers, now very popular in new homes, prove to be economically more interesting and also have a modest effect on primary energy consumption

  20. Techno, Economic and Environmental Assessment of a Combined Heat and Power (CHP System—A Case Study for a University Campus

    Directory of Open Access Journals (Sweden)

    Khuram Pervez Amber

    2018-05-01

    Full Text Available Universities in the United Kingdom that have installed Combined Heat and Power (CHP technology are making good moves towards achieving their CO2 reduction targets. However, CHP may not always be an economical option for a university campus due to numerous factors. Identification of such factors is highly important before making an investment decision. A detailed technical, economic, and environmental feasibility of CHP is, therefore, indispensable. This study aims to undertake a detailed assessment of CHP for a typical university campus and attempts to highlight the significance of such factors. Necessary data and information were collected through site visits, whereas the CHP sizing was performed using the London South Bank University (LSBU CHP model. The results suggest that there is a strong opportunity of installing a 230 kW CHP that will offset grid electricity and boilers thermal supply by 47% and 75%, respectively, and will generate financial and environmental yearly savings of £51k and 395 t/CO2, respectively. A wider spark gap decreases the payback period of the project and vice versa. The capital cost of the project could affect the project’s economics due to factors, such as unavailability of space for CHP, complex existing infrastructure, and unavailability of a gas connection.

  1. ANALYSIS OF CHP POTENTIAL AT FEDERAL SITES

    Energy Technology Data Exchange (ETDEWEB)

    HADLEY, S.W.

    2002-03-11

    This document was prepared at the request of the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP) under its Technical Guidance and Assistance and Project Financing Programs. The purpose was to provide an estimate of the national potential for combined heat and power (also known as CHP; cogeneration; or cooling, heating, and power) applications at federal facilities and the associated costs and benefits including energy and emission savings. The report provides a broad overview for the U.S. Department of Energy (DOE) and other agencies on when and where CHP systems are most likely to serve the government's best interest. FEMP's mission is to reduce the cost to and environmental impact of the federal government by advancing energy efficiency and water conservation, promoting the use of renewable energy, and improving utility management decisions at federal sites. FEMP programs are driven by its customers: federal agency sites. FEMP monitors energy efficiency and renewable energy technology developments and mounts ''technology-specific'' programs to make technologies that are in strong demand by agencies more accessible. FEMP's role is often one of helping the federal government ''lead by example'' through the use of advanced energy efficiency/renewable energy (EERE) technologies in its own buildings and facilities. CHP was highlighted in the Bush Administration's National Energy Policy Report as a commercially available technology offering extraordinary benefits in terms of energy efficiencies and emission reductions. FEMP's criteria for emphasizing a technology are that it must be commercially available; be proven but underutilized; have a strong constituency and momentum; offer large energy savings and other benefits of interest to federal sites and FEMP mission; be in demand; and carry sufficient federal market potential. As discussed in the report, CHP meets all

  2. Performance study of an innovative natural gas CHP system

    International Nuclear Information System (INIS)

    Fu, Lin; Zhao, Xiling; Zhang, Shigang; Li, Yan; Jiang, Yi; Li, Hui; Sun, Zuoliang

    2011-01-01

    In the last decade, technological innovation and changes in the economic and regulatory environment have resulted in increased attention to distributed energy systems (DES). Combined cooling heating and power (CHP) systems based on the gas-powered internal combustion engine (ICE) are increasingly used as small-scale distribution co-generators. This paper describes an innovative ICE-CHP system with an exhaust-gas-driven absorption heat pump (AHP) that has been set up at the energy-saving building in Beijing, China. The system is composed of an ICE, an exhaust-gas-driven AHP, and a flue gas condensation heat exchanger (CHE), which could recover both the sensible and latent heat of the flue gas. The steady performance and dynamic response of the innovative CHP system with different operation modes were tested. The results show that the system's energy utilization efficiency could reach above 90% based on lower heating value (LHV) of natural gas; that is, the innovative CHP system could increase the heat utilization efficiency 10% compared to conventional CHP systems, and the thermally activated components of the system have much more thermal inertia than the electricity generation component. The detailed test results provide important insight into CHP performance characteristics and could be valuable references for the control of CHP systems. The novel CHP system could take on a very important role in the CHP market. (author)

  3. Benefits of CHP Partnership

    Science.gov (United States)

    Learn about the benefits of being a EPA CHP Partner, which include expert advice and answers to questions, CHP news, marketing resources, publicity and recognition, and being associated with EPA through a demonstrated commitment to CHP.

  4. CHP and District Cooling: An Assessment of Market and Policy Potential in India

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This report contains an assessment of India's CHP/DC status and recommendations for addressing barriers to allow India to meet its energy efficiency targets. Such barriers include a lack of governmental emphasis on CHP, the absence of a clear methodology for calculating CO2 emission reductions from CHP/DHC, and a tax and duty structure for CHP capital equipment that is not as attractive as for other renewable energy technologies.

  5. Procuring Stationary Fuel Cells For CHP: A Guide for Federal Facility Decision Makers

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, David P [ORNL; McGervey, Joseph [SRA International, Inc.; Curran, Scott [ORNL

    2011-11-01

    Federal agency leaders are expressing growing interest in using innovative fuel cell combined heat and power (CHP) technology at their sites, motivated by both executive branch sustainability targets and a desire to lead by example in the transition to a clean energy economy. Fuel cell CHP can deliver reliable electricity and heat with 70% to 85% efficiency. Implementing this technology can be a high efficiency, clean energy solution for agencies striving to meet ambitious sustainability requirements with limited budgets. Fuel cell CHP systems can use natural gas or renewable fuels, such as biogas. Procuring Stationary Fuel Cells for CHP: A Guide for Federal Facility Decision Makers presents an overview of the process for planning and implementing a fuel cell CHP project in a concise, step-by-step format. This guide is designed to help agency leaders turn their interest in fuel cell technology into successful installations. This guide concentrates on larger (100 kW and greater) fuel cell CHP systems and does not consider other fuel cell applications such as cars, forklifts, backup power supplies or small generators (<100 kW). Because fuel cell technologies are rapidly evolving and have high up front costs, their deployment poses unique challenges. The electrical and thermal output of the CHP system must be integrated with the building s energy systems. Innovative financing mechanisms allow agencies to make a make versus buy decision to maximize savings. This guide outlines methods that federal agencies may use to procure fuel cell CHP systems with little or no capital investment. Each agency and division, however, has its own set of procurement procedures. This guide was written as a starting point, and it defers to the reader s set of rules if differences exist. The fuel cell industry is maturing, and project developers are gaining experience in working with federal agencies. Technology improvements, cost reductions, and experienced project developers are making

  6. Optimal design of CHP-based microgrids: Multiobjective optimisation and life cycle assessment

    International Nuclear Information System (INIS)

    Zhang, Di; Evangelisti, Sara; Lettieri, Paola; Papageorgiou, Lazaros G.

    2015-01-01

    As an alternative to current centralised energy generation systems, microgrids are adopted to provide local energy with lower energy expenses and gas emissions by utilising distributed energy resources (DER). Several micro combined heat and power technologies have been developed recently for applications at domestic scale. The optimal design of DERs within CHP-based microgrids plays an important role in promoting the penetration of microgrid systems. In this work, the optimal design of microgrids with CHP units is addressed by coupling environmental and economic sustainability in a multi-objective optimisation model which integrates the results of a life cycle assessment of the microgrids investigated. The results show that the installation of multiple CHP technologies has a lower cost with higher environmental saving compared with the case when only a single technology is installed in each site, meaning that the microgrid works in a more efficient way when multiple technologies are selected. In general, proton exchange membrane (PEM) fuel cells are chosen as the basic CHP technology for most solutions, which offers lower environmental impacts at low cost. However, internal combustions engines (ICE) and Stirling engines (SE) are preferred if the heat demand is high. - Highlights: • Optimal design of microgrids is addressed by coupling environmental and economic aspects. • An MILP model is formulated based on the ε-constraint method. • The model selects a combination of CHP technologies with different technical characteristics for optimum scenarios. • The global warming potential (GWP) and the acidification potential (AP) are determined. • The output of LCA is used as an input for the optimisation model

  7. CHP expansion strategy in North Rhine-Westphalia. A blueprint for other regions

    International Nuclear Information System (INIS)

    Holzapfel, Dominik; Schneider, Sabine

    2015-01-01

    The North Rhine-Westphalian state government intends to increase the share of combined heat and power (CHP) generation to at least 25 % by 2020. Since 2013, the campaign ''CHP.NRW - Power Meets Heat'' (''KWK.NRW - Strom trifft Waerme'') of the EnergyAgency.NRW, is has been running on behalf of the NRW Climate Protection Ministry, to publicise this technology and to promote its expansion. The campaign accompanies the State Government's CHP Stimulus Programme. The EnergyAgency.NRW has organised companies and research institutions, associations and interest groups under the umbrella of ''CHP.NRW - Power Meets Heat'', aiming at co-ordinated and intensified activities in the field of combined heat and power generation. The target of the initial-project ''roadmap/CHP.NRW'' of the ''Virtual Institute / CHP.NRW'' is to develop a guideline for the application and optimisation of CHP-systems.

  8. Financing CHP Projects at Wastewater Treatment Facilities with Clean Water State Revolving Funds

    Science.gov (United States)

    This factsheet provides information about CHP at wastewater treatment facilities, including applications, financial challenges, and financial opportunities, such as the Clean Water State Revolving Fund.

  9. Mississippi State University Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center

    Energy Technology Data Exchange (ETDEWEB)

    Mago, Pedro [Mississippi State Univ., Mississippi State, MS (United States); Newell, LeLe [Mississippi State Univ., Mississippi State, MS (United States)

    2014-01-31

    Between 2008 and 2014, the U.S. Department of Energy funded the MSU Micro-CHP and Bio-Fuel Center located at Mississippi State University. The overall objective of this project was to enable micro-CHP (micro-combined heat and power) utilization, to facilitate and promote the use of CHP systems and to educate architects, engineers, and agricultural producers and scientists on the benefits of CHP systems. Therefore, the work of the Center focused on the three areas: CHP system modeling and optimization, outreach, and research. In general, the results obtained from this project demonstrated that CHP systems are attractive because they can provide energy, environmental, and economic benefits. Some of these benefits include the potential to reduce operational cost, carbon dioxide emissions, primary energy consumption, and power reliability during electric grid disruptions. The knowledge disseminated in numerous journal and conference papers from the outcomes of this project is beneficial to engineers, architects, agricultural producers, scientists and the public in general who are interested in CHP technology and applications. In addition, more than 48 graduate students and 23 undergraduate students, benefited from the training and research performed in the MSU Micro-CHP and Bio-Fuel Center.

  10. A CSP plant combined with biomass CHP using ORC-technology in Bronderslev Denmark

    DEFF Research Database (Denmark)

    Perers, Bengt; Furbo, Simon; Yuan, Guofeng

    2017-01-01

    A new CSP plant combined with biomass CHP, using ORC technology, will be built and taken into operation in Bronderslev, Denmark during spring 2017. The price for Biomass is expected to increase with more and more use of this very limited energy source and then CSP will be cost effective in the long...... run, also in the Danish climate. Oil is used as heat transfer fluid instead of steam giving several advantages in this application for district heating at high latitudes. Total efficiencies and costs, competitive to PV plants. are expected....

  11. Integration of hydrothermal carbonization and a CHP plant: Part 2 –operational and economic analysis

    International Nuclear Information System (INIS)

    Saari, Jussi; Sermyagina, Ekaterina; Kaikko, Juha; Vakkilainen, Esa; Sergeev, Vitaly

    2016-01-01

    Wood-fired combined heat and power (CHP) plants are a proven technology for producing domestic, carbon-neutral heat and power in Nordic countries. One drawback of CHP plants is the low capacity factors due to varying heat loads. In the current economic environment, uncertainty over energy prices creates also uncertainty over investment profitability. Hydrothermal carbonization (HTC) is a promising thermochemical conversion technology for producing an improved, more versatile wood-based fuel. Integrating HTC with a CHP plant allows simplifying the HTC process and extending the CHP plant operating time. An integrated polygeneration plant producing three energy products is also less sensitive to price changes in any one product. This study compares three integration cases chosen from the previous paper, and the case of separate stand-alone plants. The best economic performance is obtained using pressurized hot water from the CHP plant boiler drum as HTC process water. This has the poorest efficiency, but allows the greatest cost reduction in the HTC process and longest CHP plant operating time. The result demonstrates the suitability of CHP plants for integration with a HTC process, and the importance of economic and operational analysis considering annual load variations in sufficient detail. - Highlights: • Integration of wood hydrothermal carbonization with a small CHP plant studied. • Operation and economics of three concepts and stand-alone plants are compared. • Sensitivity analysis is performed. • Results show technical and thermodynamic analysis inadequate and misleading alone. • Minimizing HTC investment, extending CHP operating time important for profitability.

  12. Small-scale CHP Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels- Development, Technology and Operating Experiences

    DEFF Research Database (Denmark)

    Obernberger, I.; Carlsen, Henrik; Biedermann, F.

    2003-01-01

    ) process and the Stirling engine process. The ORC process represents an economically interesting technology for small-scale biomass-fired combined heat and power plants in a power range between 400 and 1,500 kWel. A newly developed ORC technology with a nominal electric capacity of 1,000 kW was implemented...... in the biomass CHP plant Lienz (A) in the framework of an EU demonstration project. This plant was put in operation in February 2002. Stirling engines are a promising solution for installations with nominal electric capacities between 10 and 150 kW. A biomass CHP pilot plant based on a 35 kWel-Stirling engine...

  13. Management of fluctuations in wind power and CHP comparing two possible Danish strategies

    International Nuclear Information System (INIS)

    Lund, H.; Clark, W.W.

    2002-01-01

    Both CHP (combined heat and power production) and wind power are important elements of Danish energy policy. Today, approximately 50% of both the Danish electricity and heat demand are produced in CHP and more than 15% of the electricity demand is produced by wind turbines. Both technologies are essential for the implementation of Danish climate change response objectives, and both technologies are intended for further expansion in the coming decade. Meanwhile, the integration of CHP and wind power is subject to fluctuations in electricity production. Wind turbines depend on the wind, and CHP depends on the heat demand. This article discusses and analyses two different national strategies for solving this problem. One strategy, which is the current official government policy known as the export strategy, proposes to take advantage of the Nordic and European markets for selling and buying electricity. In this case, surplus electricity from wind power and CHP simply will be sold to neighbouring countries. Another strategy, the self-supply strategy, runs the CHP units to meet both demand and the fluctuations in the wind scheduling. In this case, investments in heat storages are necessary and heat pumps have to be added to the CHP units. Based on official Danish energy policy and energy plans, this article quantifies the problem for the year 2015 in terms of the amount of surplus electricity, and investments in heat pumps, etc. needed to solve the problem are calculated. Based on these results between the two different strategies, the conclusion is that the self-supply strategy is recommended over the official export strategy. (author)

  14. Development of Next Generation micro-CHP System

    DEFF Research Database (Denmark)

    Arsalis, Alexandros

    Novel proposals for the modeling and operation of a micro-CHP (combined-heat-andpower) residential system based on HT-PEMFC (High Temperature-Proton Exchange Membrane Fuel Cell) technology are described and analyzed to investigate the technical feasibility of such systems. The proposed systems must...

  15. Hybrid Solid Oxide Fuel Cell and Thermoelectric Generator for Maximum Power Output in Micro-CHP Systems

    DEFF Research Database (Denmark)

    Rosendahl, Lasse; Mortensen, Paw Vestergård; Enkeshafi, Ali A.

    2011-01-01

    and market segments which are not yet quantified. This paper quantifies a micro-CHP system based on a solid oxide fuel cell (SOFC) and a high-performance TE generator. Based on a 3 kW fuel input, the hybrid SOFC implementation boosts electrical output from 945 W to 1085 W, with 1794 W available for heating...... the electricity production in micro-CHP systems by more than 15%, corresponding to system electrical efficiency increases of some 4 to 5 percentage points. This will make fuel cell-based micro-CHP systems very competitive and profitable and will also open opportunities in a number of other potential business...

  16. MICRO-CHP System for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Gerstmann

    2009-01-31

    This is the final report of progress under Phase I of a project to develop and commercialize a micro-CHP system for residential applications that provides electrical power, heating, and cooling for the home. This is the first phase of a three-phase effort in which the residential micro-CHP system will be designed (Phase I), developed and tested in the laboratory (Phase II); and further developed and field tested (Phase III). The project team consists of Advanced Mechanical Technology, Inc. (AMTI), responsible for system design and integration; Marathon Engine Systems, Inc. (MES), responsible for design of the engine-generator subsystem; AO Smith, responsible for design of the thermal storage and water heating subsystems; Trane, a business of American Standard Companies, responsible for design of the HVAC subsystem; and AirXchange, Inc., responsible for design of the mechanical ventilation and dehumidification subsystem.

  17. An updated assessment of the prospects for fuel cells in stationary power and CHP. An information paper

    Energy Technology Data Exchange (ETDEWEB)

    Sanderson, T.K. [Future Energy Solutions, Harwell (United Kingdom)

    2005-07-01

    This report presents updated conclusions of the Department of Trade and Industry's research and development programme to assess the commercial prospects for advanced fuel cells in stationary power and combined heat and power (CHP) systems. The programme has focussed on low temperature solid polymer fuel cells (SPFCs) for transport and combined heat and power (CHP)/distributed power and high temperature solid oxide fuel cells (SOFCs) for CHP/distributed power. As well as assessing the prospects for SPFCs and SOFCs in stationary power and CHP applications, the report examines those for molten carbonate fuel cells (MCFCs) and phosphoric acid fuel cells (PAFCs). The report provides an assessment of the status of technology development for these different types of fuel cells in terms of applications to stationary power and CHP, and offers estimates of market potential for SOFCs in CHP markets, SPFCs in CHP markets and SOFCs in distributed power generation markets. Both large SPFC and SOFC CHP systems require further development to deliver the necessary cost reductions in materials and manufacturing processes before pre-commercial sales can begin. The routes taken by different manufacturers and their choice of preferred technology are explained. A discussion of the prospects and barriers for fuel cell cars concludes that while cost reduction is a major barrier to the successful commercialisation of fuel cells, there are insufficient data available from operating fuel cells systems (other than PAFC) in stationary power and CHP applications to assess the economic attractiveness of fuel cells compared with existing systems. More field trials are required to confirm energy and environmental performance in such applications and to evaluate operational and economic performance under commercial operating conditions. Such field trials could also provide a focus for the required developments in fuel cells for stationary power/CHP systems.

  18. Alternative depreciation policies for promoting combined heat and power (CHP) development in Brazil

    International Nuclear Information System (INIS)

    Soares, Jeferson Borghetti; Szklo, Alexandre Salem; Tolmasquim, Mauricio Tiomno

    2006-01-01

    This paper assessed the economic impact of alternative depreciation methods on the development of combined heat-and-power (CHP) systems in the Brazilian industrial sector. Alternative depreciation methods were proposed and the case study of a Brazilian chemical plant showed that the most effective depreciation method for the promotion of CHP plants in Brazil was the Matheson method with an accelerated depreciation schedule of 7 years. This alternative method was then applied to the Brazilian chemical industry as a whole, increasing its installed capacity in CHP systems by 24%. Therefore, fiscal incentives can be an interesting tool for promoting energy efficiency in the Brazilian industrial sector, promoting the expansion of CHP plants. It reduces government fiscal revenues, but it also induces the technological reposition and improves the feasibility of ventures that are not installed without this kind of incentive

  19. Islanded house operation using a micro CHP

    NARCIS (Netherlands)

    Molderink, Albert; Bakker, Vincent; Hurink, Johann L.; Smit, Gerardus Johannes Maria

    2007-01-01

    The µCHP is expected as the successor of the conventional high-efficiency boiler producing next to heat also electricity with a comparable overall efficiency. A µCHP appliance saves money and reduces greenhouse gas emission. An additional functionality of the µCHP is using the appliance as a

  20. Development of a CHP/DH system for the new town of Parand: An opportunity to mitigate global warming in Middle East

    International Nuclear Information System (INIS)

    Mostafavi Tehrani, S. Saeed; Saffar-Avval, M.; Mansoori, Z.; Behboodi Kalhori, S.; Abbassi, A.; Dabir, B.; Sharif, M.

    2013-01-01

    As a result of the worldwide concern about global warming, projects that target reduction of greenhouse gas emissions have gained a lot of interest. The idea of this paper is to recover exhaust hot gases of an existing gas turbine power plant to meet dynamic thermal energy requirements of a residential area (the new town of Parand) situated in the suburb of Tehran, and also use the rest of the heat source potential to feed a steam turbine cycle. In close proximity to this town, there are two GT plants: Parand (954 MW e ) and Rudeshur (790 MW e ). For handling the CHP/STC/DH plant, two methods are considered along with thermal load following operation strategy: maximum power generation (MPG) and minimum fuel consumption (MFC). Then, the alternatives are compared in terms of annual PES, CO 2 abatement and NPV. For the best design from environmental viewpoint (Parand CHP-B), PES, CO 2 abatement and NPV are calculated to be 27.31%, 2.56 million tons and 1491 million dollar, respectively. -- Highlights: • To propose a technical and financial methodology to evaluate CHP/DH projects. • To address environmental advantages of CHPs with conventional plants. • To present practical operation strategies to increase benefits of CHP/DH plants. • To report/compare benefits of various CHP/DH alternatives for a case study in Iran. • To conduct a comprehensive energy analysis of proposed CHP/DH design options

  1. Decentralised CHP in a competitive market

    DEFF Research Database (Denmark)

    Lund, Henrik

    2004-01-01

    The article agues that decentralised CHP plants is an important part of energy supply in Denmark.......The article agues that decentralised CHP plants is an important part of energy supply in Denmark....

  2. Modeling work of a small scale gasifier/SOFC CHP system

    Energy Technology Data Exchange (ETDEWEB)

    Liu, M.; Aravind, P.V.; Qu, Z.; Woudstra, N.; Verkooijen, A.H.M. [Delft University of Technology (Netherlands). Dept. of Mechanical Engineering], Emails: ming.liu@tudelft.nl, p.v.aravind@tudelft.nl, z.qu@tudelft.nl, n.woudstra@tudelft.nl, a. h. m. verkooijen@tudelft.nl; Cobas, V.R.M. [Federal University of Itajuba (UNIFEI), Pinheirinhos, MG (Brazil). Dept. of Mechanical Engineering], E-mail: vlad@unifei.edu.br

    2009-07-01

    For a highly efficient biomass gasification/Solid Oxide Fuel Cell (SOFC) Combined Heat and Power (CHP) generation system, the gasifier, the accompanying gas cleaning technologies and the CHP unit must be carefully designed as an integrated unit. This paper describes such a system involving a two-stage fixed-bed down draft gasifier, a SOFC CHP unit and a gas cleaning system. A gas cleaning system with both low temperature and high temperature sections is proposed for coupling the gasifier and the SOFC. Thermodynamic modeling was carried out for the gasifier/SOFC system with the proposed gas cleaning system. The net AC electrical efficiency of this system is around 30% and the overall system efficiency is around 60%. This paper also describes various exergy losses in the system and the future plans for integrated gasifier-GCU-SOFC experiments from which the results will be used to validate the modeling results of this system. (author)

  3. Combined Heat and Power (CHP) Partnership

    Science.gov (United States)

    The CHP Partnership seeks to reduce air pollution and water usage associated with electric power generation by promoting the use of CHP. The Partnership works to remove policy barriers and to facilitate the development of new projects.

  4. Analysis of the location for peak heating in CHP based combined district heating systems

    International Nuclear Information System (INIS)

    Wang, Haichao; Lahdelma, Risto; Wang, Xin; Jiao, Wenling; Zhu, Chuanzhi; Zou, Pinghua

    2015-01-01

    Combined heat and power (CHP) is the main technology for providing the base load of district heating in China. However, CHP is not efficient for providing the peak load; instead, a peak boiler with high efficiency could be used to compensate the peak load. This paper studies how the location of the peak boiler can affect the energy efficiency and economic performance of such CHP based combined district heating system. Firstly, the connection mode and the control strategy for different peak heating locations are analyzed. Then the effect of the peak boiler's location on the initial investment of the network and the cost for distributing heat is studied. The objective is to place the peak boiler in a location where the overall costs are the smallest. Following this rule, the results indicate that the peak boiler should be located at the CHP plant if that allows using cheaper ‘self-use electricity’ in CHP for distributing the heat. However, if the market electricity price is used everywhere, or if energy efficiency is more emphasized, the location of the peak boiler should be closer to the users with dense heat loads. - Highlights: • Location for peak heating in the CHP based combined DH system is studied. • Regulation or control strategies for combined DH are summarized. • The heat load duration curve for combined DH is demonstrated. • Network design for combined DH with peak boiler outside of the CHP is analyzed

  5. Research, Development and Demonstration of Micro-CHP System for Residential Applications

    Energy Technology Data Exchange (ETDEWEB)

    Karl Mayer

    2010-03-31

    ECR International and its joint venture company, Climate Energy, are at the forefront of the effort to deliver residential-scale combined heat and power (Micro-CHP) products to the USA market. Part of this substantial program is focused on the development of a new class of steam expanders that offers the potential for significantly lower costs for small-scale power generation technology. The heart of this technology is the scroll expander, a machine that has revolutionized the HVAC refrigerant compressor industry in the last 15 years. The liquid injected cogeneration (LIC) technology is at the core of the efforts described in this report, and remains an excellent option for low cost Micro-CHP systems. ECR has demonstrated in several prototype appliances that the concept for LIC can be made into a practical product. The continuing challenge is to identify economical scroll machine designs that will meet the performance and endurance requirements needed for a long life appliance application. This report describes the numerous advances made in this endeavor by ECR International. Several important advances are described in this report. Section 4 describes a marketing and economics study that integrates the technical performance of the LIC system with real-world climatic data and economic analysis to assess the practical impact that different factors have on the economic application of Micro-CHP in residential applications. Advances in the development of a working scroll steam expander are discussed in Section 5. A rigorous analytical assessment of the performance of scroll expanders, including the difficult to characterize impact of pocket to pocket flank leakage, is presented in Section 5.1. This is followed with an FEA study of the thermal and pressure induced deflections that would result from the normal operation of an advanced scroll expander. Section 6 describes the different scroll expanders and test fixtures developed during this effort. Another key technical

  6. Utilization of straw in district heating and CHP plants

    International Nuclear Information System (INIS)

    Nikolaisen, L.

    1993-01-01

    In Denmark 64 straw-fired district heating plants and 6 decentral CHP plants have been built since 1980 which are completely or partly straw-fired. The annual straw consumption in the district heating plants is 275,000 tons and in the decentral plants about 200,000 tons. The size of the district heating plants amounts to 0.5 MW - 10 MW and that of the CHP plants to 7 MW - 67 MW heat flow rate. Either whole bales or cut/scarified straw is used for firing. Hesston bales of about 450 kg control the market. The Centre of Biomass Technology is an activity supported 100 % by the Danish Energy Agency with the purpose of increasing the use of straw and wood in the energy supply (orig.)

  7. Demonstration Stirling Engine based Micro-CHP with ultra-low emissions

    Energy Technology Data Exchange (ETDEWEB)

    Oeberg, Rolf; Olsson, Fredrik [Carl Bro Energikonsult AB (Sweden); Paalsson, Magnus [Lund Inst. of Technology (Sweden)

    2004-03-01

    This project has been initiated in order to develop a new type of natural gas fired low emission combustion system for a Stirling engine CHP-unit, and to demonstrate and evaluate the unit with the newly developed combustion system in a CHP application. The Stirling engine technology is well developed, but mostly used in special applications and CHP-applications are scarce. The very low exhaust emissions with the new combustion system would make the Stirling engine very suitable for installation in as a CHP-unit in domestic areas. The Stirling engine used in the project has been a V161 engine produced by Solo Kleinmotoren GmbH in Sindelfingen. The unit has a nominal output of 7,5 kW{sub el} and 20 kW{sub heat} (Hot water). The new combustion system was developed at Lund University and the very strict emission targets that were set up could be achieved, both in the laboratory tests and during the site-testing period. Typical performance and emission figures measured at the site installation are: Generator output (kW): 7,3; Hot water output (kW): 15; El. efficiency (%): 25,4; Total efficiency (%): 77,8; NO{sub x} (ppm): 14; CO (ppm): 112; HC (ppm): < 1; O{sub 2} (%): 8,0; Noise level 1 m from the unit (dBA): 83. The NO{sub x} emissions were reduced with almost 97 % as compared to a standard Stirling combustion system. The emission figures are considerably lower than what could be achieved in an internal combustion engine of similar size with an oxidation catalyst (report SGC 106), while the performance figures are similar for the two technologies. The site testing was carried out during a period of 1,5 year at a site owned by Goeteborg Energi. The site comprises a building structure with workshops, offices etc. covering a ground area of 2,500 m{sup 2}. A gas fired boiler with an output of 250 kW supplies hot water to a local grid for heating and tap water. The annual heat demand is typically 285 MWh and the hot water temperatures are normally 60-80 deg C. The site

  8. Kyoto commitments: CHP will help the UK

    International Nuclear Information System (INIS)

    Knowles, Michael

    1998-01-01

    In order to meet the United Kingdom's targets for carbon dioxide emissions reduction, agreed at the Kyoto Summit, the UK Government is promoting the use of combined heat and power (CHP) plants. Such schemes need to offer over 70% efficiency, have on-site or nearby heat uses, and allow flexibility for the export of electricity where this is appropriate. Electricity trading arrangements will need to be re-organised in line with similar commodities, in order to facilitate and promote the growth of CHP and renewable energy schemes. Financial incentives and regulation of electricity prices will also contribute to the promotion of CHP schemes, ultimately leading to reduced CO 2 pollution as a result of the growth in the UK's CHP capacity. (UK)

  9. Elimination of restraints on the propagation of combined heat and power (CHP) generation systems in Switzerland

    International Nuclear Information System (INIS)

    Rieder, S.; Landis, F.; Lienhard, A.; Marti Locher, F.; Krummenacher, S.

    2009-04-01

    This report for the Swiss Federal Office of Energy (SFOE) discusses the results of study initiated by the SFOE that was to investigate the reasons for the low level of proliferation of CHP technology in Switzerland. The two main questions asked - which factors inhibit the use of CHP in particular application areas and which energy-policy measures can remove such obstacles - are discussed. The use of CHP in various areas of application from waste incineration plants through to units used in residential buildings is analysed and commented on. Recommendations on measures that can be taken to enhance the use of CHP are discussed. Three strategy variants available to the public services area are presented and discussed. It is noted that a consensus between players in the technical and political areas is necessary

  10. Ecological assessment of new CHP systems and their combination; Oekologische Bewertung neuer WKK-Systeme und Systemkombinationen - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Primas, A.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) reports on new developments in the Combined Heat and Power (CHP) generation area. The objective of this study is an ecological and technical evaluation of various CHP systems and system combinations. These also include suitable combinations with other technologies. Systems for five different temperature levels are quantified according to their environmental impact. Various possible applications are compared with a highly efficient reference system using separate heat and power generation - a combined-cycle plant and a heat pump. For chilled water production a combination of the CHP system with an absorption chiller is investigated. The results of the investigations are presented and commented on. Also, advantageous applications of CHP systems are noted.

  11. Modeling of non-linear CHP efficiency curves in distributed energy systems

    DEFF Research Database (Denmark)

    Milan, Christian; Stadler, Michael; Cardoso, Gonçalo

    2015-01-01

    Distributed energy resources gain an increased importance in commercial and industrial building design. Combined heat and power (CHP) units are considered as one of the key technologies for cost and emission reduction in buildings. In order to make optimal decisions on investment and operation...... for these technologies, detailed system models are needed. These models are often formulated as linear programming problems to keep computational costs and complexity in a reasonable range. However, CHP systems involve variations of the efficiency for large nameplate capacity ranges and in case of part load operation......, which can be even of non-linear nature. Since considering these characteristics would turn the models into non-linear problems, in most cases only constant efficiencies are assumed. This paper proposes possible solutions to address this issue. For a mixed integer linear programming problem two...

  12. Combined Heat and Power Market Potential for Opportunity Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jones, David [Resource Dynamics Corporation, McLean, VA (United States); Lemar, Paul [Resource Dynamics Corporation, McLean, VA (United States

    2015-12-01

    This report estimates the potential for opportunity fuel combined heat and power (CHP) applications in the United States, and provides estimates for the technical and economic market potential compared to those included in an earlier report. An opportunity fuel is any type of fuel that is not widely used when compared to traditional fossil fuels. Opportunity fuels primarily consist of biomass fuels, industrial waste products and fossil fuel derivatives. These fuels have the potential to be an economically viable source of power generation in various CHP applications.

  13. 330 kWe Packaged CHP System with Reduced Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Plahn, Paul [Cummins Power Generation, Minneapolis, MN (United States); Keene, Kevin [Cummins Power Generation, Minneapolis, MN (United States); Pendray, John [Cummins Power Generation, Minneapolis, MN (United States)

    2015-03-31

    The objective of this project was to develop a flexible, 330 kWe packaged Combined Heat and Power (CHP) system that can be deployed to commercial and light industrial applications at a lower total cost of ownership than current CHP solutions. The project resulted in a CHP system that is easy to use and inexpensive to install, offering world class customer support, while providing a low-emissions, higher-efficiency internal combustion engine for a CHP system of this size.

  14. Dicty_cDB: CHP827 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available CH (Link to library) CHP827 (Link to dictyBase) - - - Contig-U15898-1 - (Link to Or...iginal site) CHP827F 148 - - - - - - Show CHP827 Library CH (Link to library) Clone ID CHP827 (Link to dicty...Base) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U15898-1 Original site URL http://dictycdb.b...ments: (bits) Value N AC116984 |AC116984.2 Dictyostelium discoideum chromosome 2 map 2567470-3108875 strain ...18q21 clone:RP11-866E20, WORKING DRAFT SEQUENCE, 18 unordered pieces. 42 0.073 4 CK406764 |CK406764.1 AUF_IfLvr_212_c09 Ict

  15. Toxin-antitoxin loci as stress-response-elements: ChpAK/MazF and ChpBK cleave translated RNAs and are counteracted by tmRNA

    DEFF Research Database (Denmark)

    Christensen, S.K.; Pedersen, K.; Hansen, Flemming G.

    2003-01-01

    Prokaryotic chromosomes encode toxin-antitoxin loci, often in multiple copies. In most cases, the function of these genes is not known. The chpA (mazEF) locus of Escherichia coli has been described as a cell killing module that induces bacterial apoptosis during nutritional stress. However, we...... found recently that ChpAK (MazF) does not confer cell killing but rather, induces a bacteriostatic condition from which the cells could be resuscitated. Results presented here yield a mechanistic explanation for the detrimental effect on cell growth exerted by ChpAK and the homologous ChpBK protein of E......AK cleaved tmRNA in its coding region. Thus, ChpAK and ChpBK inhibit translation by a mechanism very similar to that of E. coli RelE. On the basis of these results, we propose a model that integrates TA loci into general prokaryotic stress physiology....

  16. System analysis of CO_2 sequestration from biomass cogeneration plants (Bio-CHP-CCS). Technology, economic efficiency, sustainability

    International Nuclear Information System (INIS)

    Hartmann, Claus

    2014-10-01

    In the present work a system analysis is carried out to determine the extent to which a combination of the three areas of energetic biomass use, combined heat and power (CHP) and CO_2 sequestration (CCS - Carbon Capture and Storage) is fundamentally possible and meaningful. The term ''CO_2 sequestration'' refers to the process chain from CO_2 capture, CO_2 transport and CO_2 storage. While the use of biomass in combined heat and power plants is a common practice, CO_2 sequestration (based on fossil fuels) is at the research and development stage. A combination of CCS with biomass has so far been little studied, a combination with combined heat and power plants has not been investigated at all. The two technologies for the energetic use of biomass and cogeneration represent fixed variables in the energy system of the future in the planning of the German federal government. According to the lead scenario of the Federal Ministry of the Environment, electricity generation from biomass is to be almost doubled from 2008 to 2020. At the same time, the heat generated in cogeneration is to be trebled [cf. Nitsch and Wenzel, 2009, p. 10]. At the same time, the CCS technology is to be used in half of all German coal-fired power plants until 2030 [cf. Krassuki et al., 2009, p. 17]. The combination of biomass and CCS also represents an option which is conceivable for the German federal policy [cf. Bundestag, 2008b, p. 4]. In addition, the CCS technology will provide very good export opportunities for the German economy in the future [cf. Federal Government, 2010, p. 20]. The combination of biomass combined heat and power plants with CCS offers the interesting opportunity to actively remove CO_2 from the atmosphere as a future climate protection instrument by means of CO_2 neutrality. Therefore, in the energy concept of the German federal government called for a storage project for industrial or biogenic CO_2 emissions to be established until 2020, as well as the use of CO_2 as

  17. CHP expansion strategy in North Rhine-Westphalia. A blueprint for other regions; KWK-Ausbaustrategie in NRW. Eine Blaupause fuer andere Regionen

    Energy Technology Data Exchange (ETDEWEB)

    Holzapfel, Dominik [EnergieAgentur.NRW, Duesseldorf (Germany); Schneider, Sabine [EnergieAgentur.NRW, Wuppertal (Germany)

    2015-10-01

    The North Rhine-Westphalian state government intends to increase the share of combined heat and power (CHP) generation to at least 25 % by 2020. Since 2013, the campaign ''CHP.NRW - Power Meets Heat'' (''KWK.NRW - Strom trifft Waerme'') of the EnergyAgency.NRW, is has been running on behalf of the NRW Climate Protection Ministry, to publicise this technology and to promote its expansion. The campaign accompanies the State Government's CHP Stimulus Programme. The EnergyAgency.NRW has organised companies and research institutions, associations and interest groups under the umbrella of ''CHP.NRW - Power Meets Heat'', aiming at co-ordinated and intensified activities in the field of combined heat and power generation. The target of the initial-project ''roadmap/CHP.NRW'' of the ''Virtual Institute / CHP.NRW'' is to develop a guideline for the application and optimisation of CHP-systems.

  18. Evaluation of Combined Heat and Power (CHP Systems Using Fuzzy Shannon Entropy and Fuzzy TOPSIS

    Directory of Open Access Journals (Sweden)

    Fausto Cavallaro

    2016-06-01

    Full Text Available Combined heat and power (CHP or cogeneration can play a strategic role in addressing environmental issues and climate change. CHP systems require less fuel than separate heat and power systems in order to produce the same amount of energy saving primary energy, improving the security of the supply. Because less fuel is combusted, greenhouse gas emissions and other air pollutants are reduced. If we are to consider the CHP system as “sustainable”, we must include in its assessment not only energetic performance but also environmental and economic aspects, presenting a multicriteria issue. The purpose of the paper is to apply a fuzzy multicriteria methodology to the assessment of five CHP commercial technologies. Specifically, the combination of the fuzzy Shannon’s entropy and the fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS approach will be tested for this purpose. Shannon’s entropy concept, using interval data such as the α-cut, is a particularly suitable technique for assigning weights to criteria—it does not require a decision-making (DM to assign a weight to the criteria. To rank the proposed alternatives, a fuzzy TOPSIS method has been applied. It is based on the principle that the chosen alternative should be as close as possible to the positive ideal solution and be as far as possible from the negative ideal solution. The proposed approach provides a useful technical–scientific decision-making tool that can effectively support, in a consistent and transparent way, the assessment of various CHP technologies from a sustainable point of view.

  19. CHP Partnership Partners

    Science.gov (United States)

    Partners of EPA's Combined Heat and Power Partnership include federal, state, and local government agencies and private organizations such as energy users, energy service companies, CHP project developers and consultants, and equipment manufacturers.

  20. Opportunities for Combined Heat and Power in Data Centers

    Energy Technology Data Exchange (ETDEWEB)

    Darrow, Ken [ICF International; Hedman, Bruce [ICF International

    2009-03-01

    Data centers represent a rapidly growing and very energy intensive activity in commercial, educational, and government facilities. In the last five years the growth of this sector was the electric power equivalent to seven new coal-fired power plants. Data centers consume 1.5% of the total power in the U.S. Growth over the next five to ten years is expected to require a similar increase in power generation. This energy consumption is concentrated in buildings that are 10-40 times more energy intensive than a typical office building. The sheer size of the market, the concentrated energy consumption per facility, and the tendency of facilities to cluster in 'high-tech' centers all contribute to a potential power infrastructure crisis for the industry. Meeting the energy needs of data centers is a moving target. Computing power is advancing rapidly, which reduces the energy requirements for data centers. A lot of work is going into improving the computing power of servers and other processing equipment. However, this increase in computing power is increasing the power densities of this equipment. While fewer pieces of equipment may be needed to meet a given data processing load, the energy density of a facility designed to house this higher efficiency equipment will be as high as or higher than it is today. In other words, while the data center of the future may have the IT power of ten data centers of today, it is also going to have higher power requirements and higher power densities. This report analyzes the opportunities for CHP technologies to assist primary power in making the data center more cost-effective and energy efficient. Broader application of CHP will lower the demand for electricity from central stations and reduce the pressure on electric transmission and distribution infrastructure. This report is organized into the following sections: (1) Data Center Market Segmentation--the description of the overall size of the market, the size and

  1. CHP Integrated with Burners for Packaged Boilers

    Energy Technology Data Exchange (ETDEWEB)

    Castaldini, Carlo; Darby, Eric

    2013-09-30

    The objective of this project was to engineer, design, fabricate, and field demonstrate a Boiler Burner Energy System Technology (BBEST) that integrates a low-cost, clean burning, gas-fired simple-cycle (unrecuperated) 100 kWe (net) microturbine (SCMT) with a new ultra low-NOx gas-fired burner (ULNB) into one compact Combined Heat and Power (CHP) product that can be retrofit on new and existing industrial and commercial boilers in place of conventional burners. The Scope of Work for this project was segmented into two principal phases: (Phase I) Hardware development, assembly and pre-test and (Phase II) Field installation and demonstration testing. Phase I was divided into five technical tasks (Task 2 to 6). These tasks covered the engineering, design, fabrication, testing and optimization of each key component of the CHP system principally, ULNB, SCMT, assembly BBEST CHP package, and integrated controls. Phase I work culminated with the laboratory testing of the completed BBEST assembly prior to shipment for field installation and demonstration. Phase II consisted of two remaining technical tasks (Task 7 and 8), which focused on the installation, startup, and field verification tests at a pre-selected industrial plant to document performance and attainment of all project objectives. Technical direction and administration was under the management of CMCE, Inc. Altex Technologies Corporation lead the design, assembly and testing of the system. Field demonstration was supported by Leva Energy, the commercialization firm founded by executives at CMCE and Altex. Leva Energy has applied for patent protection on the BBEST process under the trade name of Power Burner and holds the license for the burner currently used in the product. The commercial term Power Burner is used throughout this report to refer to the BBEST technology proposed for this project. The project was co-funded by the California Energy Commission and the Southern California Gas Company (SCG), a

  2. Integrated Advanced Reciprocating Internal Combustion Engine System for Increased Utilization of Gaseous Opportunity Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Pratapas, John [Gas Technology Inst., Des Plaines, IL (United States); Zelepouga, Serguei [Gas Technology Inst., Des Plaines, IL (United States); Gnatenko, Vitaliy [Gas Technology Inst., Des Plaines, IL (United States); Saveliev, Alexei [North Carolina State Univ., Raleigh, NC (United States); Jangale, Vilas [North Carolina State Univ., Raleigh, NC (United States); Li, Hailin [West Virginia Univ., Morgantown, WV (United States); Getz, Timothy [West Virginia Univ., Morgantown, WV (United States); Mather, Daniel [Digital Engines, New York, NY (United States)

    2013-08-31

    The project is addressing barriers to or opportunities for increasing distributed generation (DG)/combined heat and power (CHP) use in industrial applications using renewable/opportunity fuels. This project brings together novel gas quality sensor (GQS) technology with engine management for opportunity fuels such as landfill gas, digester gas and coal bed methane. By providing the capability for near real-time monitoring of the composition of these opportunity fuels, the GQS output can be used to improve the performance, increase efficiency, raise system reliability, and provide improved project economics and reduced emissions for engines used in distributed generation and combined heat and power.

  3. The design of Chp plants

    International Nuclear Information System (INIS)

    Tomassetti, G.

    2001-01-01

    Chp is considered with a bottom-up view, as the most efficient way to satisfy the needs of the users. In order to achieve optimal results a particular care must be used in analyzing the thermal and electrical loads and their interactions. On this basis and taking into account the relationships among the user and the suppliers of electricity, fuels and heat, the energy market structure, the cost of energy and the tax assessment it is possible to properly design Chp plants with benefits for the users [it

  4. Combined Heat and Power (CHP) as a Compliance Option under the Clean Power Plan: A Template and Policy Options for State Regulators

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-07-30

    Combined Heat and Power (CHP) is an important option for states to consider in developing strategies to meet their emission targets under the US Environmental Protection Agency's Clean Power Plan. This Template is designed to highlight key issues that states should consider when evaluating whether CHP could be a meaningful component of their compliance plans. It demonstrates that CHP can be a valuable approach for reducing emissions and helping states achieve their targets. While the report does not endorse any particular approach for any state, and actual plans will vary dependent upon state-specific factors and determinations, it provides tools and resources that states can use to begin the process, and underscores the opportunity CHP represents for many states. . By producing both heat and electricity from a single fuel source, CHP offers significant energy savings and carbon emissions benefits over the separate generation of heat and power, with a typical unit producing electricity with half the emissions of conventional generation. These efficiency gains translate to economic savings and enhanced competitiveness for CHP hosts, and emissions reductions for the state, along with helping to lower electric bills; and creating jobs in the design, construction, installation and maintenance of equipment. In 2015, CHP represents 8 percent of electric capacity in the United States and provides 12 percent of total power generation. Projects already exist in all 50 states, but significant technical and economic potential remains. CHP offers a tested way for states to achieve their emission limits while advancing a host of ancillary benefits.

  5. Investment in new power generation under uncertainty: Benefits of CHP vs. condensing plants in a copula-based analysis

    International Nuclear Information System (INIS)

    Westner, Günther; Madlener, Reinhard

    2012-01-01

    In this paper, we apply a spread-based real options approach to analyze the decision-making problem of an investor who has the choice between an irreversible investment in a condensing power plant without heat utilization and a plant with combined heat-and-power (CHP) generation. Our investigation focuses on large-scale fossil-fueled generation technologies and is based on a stochastic model that uses copula functions to provide the input parameters of the real options model. We define the aggregated annual spread as assessment criteria for our investigation since it contains all relevant volatile input parameters that have an impact on the evaluation of investment decisions. We show that the specific characteristics of CHP plants, such as additional revenues from heat sales, promotion schemes, specific operational features, and a beneficial allocation of CO 2 allowances, have a significant impact on the option value and therefore on the optimal timing for investment. For the two fossil-fueled CHP technologies investigated (combined-cycle gas turbine and steam turbine), we conclude from our analysis that a high share of CHP generation reduces the risk exposure for the investor. The maximal possible CHP generation depends significantly on the local heat demand in the surroundings of the power plant. Considering this, the size of the heat sink available could gain more relevance in the future selection process of sites for new large-scale fossil power plants.

  6. Analyzing a self-managed CHP system for greenhouse cultivation as a profitable way to reduce CO2-emissions

    International Nuclear Information System (INIS)

    Compernolle, Tine; Witters, Nele; Van Passel, Steven; Thewys, Theo

    2011-01-01

    To counter global warming, a transition to a low-carbon economy is needed. The greenhouse sector can contribute by installing Combined Heat and Power (CHP) systems, known for their excellent energy efficiency. Due to the recent European liberalization of the energy market, glass horticulturists have the opportunity to sell excess electricity to the market and by tailored policy and support measures, regional governments can fill the lack of technical and economic knowledge, causing initial resistance. This research investigates the economic and environmental opportunities using two detailed cases applying a self managed cogeneration system. The Net Present Value is calculated to investigate the economic feasibility. The Primary Energy Saving, the CO 2 Emission Reduction indicator and an Emission Balance are applied to quantify the environmental impact. The results demonstrate that a self-managed CHP system is economic viable and that CO 2 emissions are reduced.

  7. Stirling Energy Module (SEM) as Micro-CHP; Stirling Energy Module (SEM) als Mini-BHKW

    Energy Technology Data Exchange (ETDEWEB)

    Schlegel, A.

    2006-07-01

    Since many years, a lot of effort is being put into the development of combined heat and power units (CHP) for the decentralised production of electric power. For long time, the main focus was on fuel cells. In the meantime, the Stirling technology, which is based upon classical mechanical engineering and innovative technical concepts, proceeded in its development as well. The following article describes the technology and the actual state of the development of the Stirling Energy Module (SEM) for the application as Micro-CHP in one-family-houses. SEM is based on a free-piston engine with a linear power generator, producing electric power while heating. The Stirling engine is planned the be introduced into the market as a replacement for the conventional heating systems within a couple of years. (author)

  8. Should a small combined heat and power plant (CHP) open to its regional power and heat networks? Integrated economic, energy, and emergy evaluation of optimization plans for Jiufa CHP

    International Nuclear Information System (INIS)

    Peng, T.; Lu, H.F.; Wu, W.L.; Campbell, D.E.; Zhao, G.S.; Zou, J.H.; Chen, J.

    2008-01-01

    The development of industrial ecology has led company managers to increasingly consider their company's niche in the regional system, and to develop optimization plans. We used emergy-based, ecological-economic synthesis to evaluate two optimization plans for the Jiufa Combined Heat and Power (CHP) Plant, Shandong China. In addition, we performed economic input-output analysis and energy analysis on the system. The results showed that appropriately incorporating a firm with temporary extra productivity into its regional system will help maximize the total productivity and improve ecological-economic efficiency and benefits to society, even without technical optimization of the firm itself. In addition, developing a closer relationship between a company and its regional system will facilitate the development of new optimization opportunities. Small coal-based CHP plants have lower-energy efficiency, higher environmental loading, and lower sustainability than large fossil fuel and renewable energy-based systems. The emergy exchange ratio (EER) proved to be an important index for evaluating the vitality of highly developed ecological-economic systems

  9. Energy policy responses to the climate change challenge: The consistency of European CHP, renewables and energy efficiency policies

    International Nuclear Information System (INIS)

    Grohnheit, P.E.

    1999-09-01

    This report is Volume 14 of individual reports of the Shared Analysis Project prepared for the European Commission, Directorate General for Energy. The three major objectives of the project were: to design a common framework of energy analysis that aimed to involve all Member States and the experts of industrial research groups (the shared approach to energy analysis); To analyse generic EU-wide issues important for energy policy and for future energy demand and production, putting particular emphasis on world energy market trends, strategic energy policy responses to the Kyoto process, and evaluation of response strategies to increasing energy import dependence and to climate change activities; to carry out quantitative analyses of energy trends and scenarios as an input for discussion. The present volume considers three main issues concerning energy policy responses to the climate change challenge: the penetration of CHP and renewables according to official objectives, focusing on infrastructure and institutions rather than technology; the consistency of promotion of CHP, renewables and energy savings at the same time; consumers' choices and priorities in a liberalised market. The volume describes examples of policies in several Member States for these technologies with emphasis on CHP for both large-scale and small-scale district heating systems. The penetration of CHP technologies is analysed quantitatively using a traditional optimisation model approach for stylised regions with heat markets suitable for CHP and facing a competitive European market for electricity. The Joint Final Report of the project, titled 'Economic Foundations for Energy Policy' is published as a Special Issue of Energy in Europe, December 1999. All reports are available on the Internet, www.shared-analysis.fhg.de/ The project started in January 1998, involving about 100 months of scientific labour. The project consortium consisted of nine member institutes co-ordinated by the Fraunhofer

  10. Modeling and parametric study of a 1 kWe HT-PEMFC-based residential micro-CHP system

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2011-01-01

    A detailed thermodynamic, kinetic and geometric model of a micro-CHP (Combined-Heatand-Power) residential system based on High Temperature-Proton Exchange Membrane Fuel Cell (HT-PEMFC) technology is developed, implemented and validated. HT-PEMFC technology is investigated as a possible candidate...

  11. CHP plant Legionowo Poland. Description of the electricity market in Poland/CHP-feasibility analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-04-01

    In 1997, a new energy law was passed in Poland. An important element of the law is that local energy is made obligatory. The law describes obligatory tasks and procedures for the Polish municipalities related to planning and organisation of the energy sector. With the objective of supporting the Polish municipalities in their obligations according to the energy law, the project 'Energy Planning in Poland at Municipal Level - Support to Decision Makers' was launched. As part of the project, Municipal Guideline Reports have been elaborated for three model municipalities. These guidelines present the basis for energy supply plans in the three municipalities. For the city of Legionowo, the following was recommended: 1. The planning processes initiated during the project should be continued/followed up, 2. Master Plan for the district heating system should be prepared, 3. The possibilities of establishment of a major natural gas-fired CHP plant of the combined cycle type should be investigated. The present report describes the electricity market in Poland, the market in which a CHP plant in Legionowo will have to operate. Furthermore the report presents the results of the feasibility analysis carried out for a new CHP plant in Legionowo. (BA)

  12. Methodology for evaluation of industrial CHP production

    International Nuclear Information System (INIS)

    Pavlovic, Nenad V.; Studovic, Milovan

    2000-01-01

    At the end of the century industry switched from exclusive power consumer into power consumer-producer which is one of the players on the deregulated power market. Consequently, goals of industrial plant optimization have to be changed, making new challenges that industrial management has to be faced with. In the paper is reviewed own methodology for evaluation of industrial power production on deregulated power market. The methodology recognizes economic efficiency of industrial CHP facilities as a main criterion for evaluation. Energy and ecological efficiency are used as additional criteria, in which implicit could be found social goals. Also, methodology recognizes key and limit factors for CHP production in industry. It could be successful applied, by use of available commercial software for energy simulation in CHP plants and economic evaluation. (Authors)

  13. A Study of a Diesel Engine Based Micro-CHP System

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, C.R.; Andrews, J.; Tutu, N.; Butcher, T.

    2010-08-31

    This project, funded by New York State Energy Research and Development Agency (NYSERDA), investigated the potential for an oil-fired combined heat and power system (micro-CHP system) for potential use in residences that use oil to heat their homes. Obviously, this requires the power source to be one that uses heating oil (diesel). The work consisted of an experimental study using a diesel engine and an analytical study that examined potential energy savings and benefits of micro-CHP systems for 'typical' locations in New York State. A search for a small diesel engine disclosed that no such engines were manufactured in the U.S. A single cylinder engine manufactured in Germany driving an electric generator was purchased for the experimental work. The engine was tested using on-road diesel fuel (15 ppm sulfur), and biodiesel blends. One of the main objectives was to demonstrate the possibility of operation in the so-called HCCI (Homogeneous Charge Compression Ignition) mode. The HCCI mode of operation of engines is being explored as a way to reduce the emission of smoke, and NOx significantly without exhaust treatment. This is being done primarily in the context of engines used in transportation applications. However, it is felt that in a micro-CHP application using a single cylinder engine, such an approach would confer those emission benefits and would be much easier to implement. This was demonstrated successfully by injecting the fuel into the engine air intake using a heated atomizer made by Econox Technologies LLC to promote significant vaporization before entering the cylinder. Efficiency and emission measurements were made under different electrical loads provided by two space heaters connected to the generator in normal and HCCI modes of operation. The goals of the analytical work were to characterize, from the published literature, the prime-movers for micro-CHP applications, quantify parametrically the expected energy savings of using micro-CHP

  14. Experimental study on a project with CHP system basing on absorption cycles

    International Nuclear Information System (INIS)

    Sun, Jian; Fu, Lin; Sun, Fangtian; Zhang, Shigang

    2014-01-01

    A new heat recovery system for the CHP (combined heating and power) is presented, and HRU (heat recovery unit) and AHE (absorption heat exchanger) are invented to improve the total energy efficiency of the conventional CHP system by more than 20%, which are installed at the thermal power plant and the heating substation separately. The HRU could recover the low grade heat of exhausted steam from the turbine directly, and the AHE could decrease the temperature of back water of primary pipe to a lower temperature than that of secondary pipe without changing the flow rate of secondary pipe. A large demonstration project employing this technology has been built in Datong of China. And experimental results of HRU and AHE are presented to evaluate this system. - Highlights: • The total energy efficiency of CHP could by increased by more than 20%. • Temperature of back water of primary pipe could be lower than that of secondary pipe. • Heating capacity of primary pipe could be increased significantly. • Low grade heat of exhausted steam from turbine could be recovered directly

  15. The Significance of a Building’s Energy Consumption Profiles for the Optimum Sizing of a Combined Heat and Power (CHP System—A Case Study for a Student Residence Hall

    Directory of Open Access Journals (Sweden)

    Khuram Pervez Amber

    2018-06-01

    Full Text Available University buildings, such as student residence halls with year-round consistent energy demands, offer strong opportunities for Combined Heat and Power (CHP systems. The economic and environmental feasibility of a CHP project is strongly linked with its optimum sizing. This study aims to undertake such an assessment for a CHP system for a student residence hall located in London, the United Kingdom (UK. The study also aims to undertake a sensitivity analysis to investigate the effect of different parameters on the project’s economics. Necessary data are collected via interviews with the University’s Energy Manager. Modeling of the CHP system is performed using the London South Bank University (LSBU, London, the UK CHP model. Results demonstrate that optimum sizing of CHP is crucial for achieving higher economic and environmental benefits and strongly depends on the authenticity of the energy consumption data, based on which the CHP is being sized. Use of incorrect energy data could result in an undersized or oversized CHP system, where an oversized system will result in higher negative results compared to an undersized system. Finally, Monto Carlo statistical analysis shows that electricity price is the significant factor that could affect the project’s economics. With an increasing spark gap, the payback period decreases, and vice versa.

  16. Optimal designs of small CHP plants in a market with fluctuating electricity prices

    International Nuclear Information System (INIS)

    Lund, H.; Andersen, A.N.

    2005-01-01

    Combined Heat and Power production (CHP) are essential for implementation of the climate change response objectives in many countries. In an introduction period, small CHP plants have typically been offered fixed electricity prices, but in many countries, such pricing conditions are now being replaced by spot market prices. Consequently, new methodologies and tools for the optimisation of small CHP plant designs are needed. The small CHP plants in Denmark are already experienced in optimising their electricity production against the triple tariff, which has existed for almost 10 years. Consequently, the CHP plants have long term experience in organising when to switch on and off the CHP units in order to optimise their profit. Also, the CHP owners have long term experience in designing their plants. For instance, small CHP plants in Denmark have usually invested in excess capacity on the CHP units in combination with heat storage capacity. Thereby, the plants have increased their performance in order to optimise revenues. This paper presents the Danish experience with methodologies and software tools, which have been used to design investment and operation strategies for almost all small CHP plants in Denmark during the decade of the triple tariff. Moreover, the changes in such methodologies and tools in order to optimise performance in a market with fluctuating electricity prices are presented and discussed

  17. Multi-criteria evaluation for CHP system options

    International Nuclear Information System (INIS)

    Pilavachi, P.A.; Roumpeas, C.P.; Minett, S.; Afgan, N.H.

    2006-01-01

    Several Combined Heat and Power (CHP) system options have been considered for evaluation with respect to the end-user requirements. These included Internal Combustion Engines (Otto and Diesel), Gas Turbines, Steam Turbines and Combined Cycles covering a wide range of electrical output. Data have been obtained from literature and the CHP systems have been evaluated using different criteria such as overall efficiency, investment cost, fuel cost, electricity cost, heat cost, CO 2 production and footprint. A multi-criteria method is used with an agglomeration function based on the statistical evaluation of weight factors. The technical, economic and social aspects of each system have been evaluated in an integrated manner and the results have been compared by means of the Sustainability Index. Based on the above criteria and depending on the user requirements, the best CHP system options have been established

  18. CHP systems to save money and cut carbon.

    Science.gov (United States)

    Hopkins, Ian

    2014-10-01

    According to Ian Hopkins, a director of ENER-G Combined Power--which has delivered more than 50 CHP-led energy services contracts within the healthcare sector, having, for the past 30 years, designed and manufactured CHP systems at its global headquarters and R&D centre in Salford--'the energy cost and carbon-saving benefits of combined heat and power are difficult to match where there is a large heating/cooling demand over extended periods'. In this article, he explains how hospitals and other busy healthcare facilities thus 'make ideal bedfellows' for CHP, and outlines the key criteria and considerations, such as sizing, for healthcare engineers, when looking to specify such a system.

  19. Micro CHP as a new business model. Trianel distribution system decentralised production; Mikro-BHKW als neues Geschaeftsmodell. Trianel-Netzwerk Dezentrale Erzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, Michel [Trianel GmbH, Aachen (Germany)

    2013-04-29

    About four years ago, an energy distribution company in Hamburg (Federal Republic of Germany) reported on mini and micro CHP in the media. When it comes to a decentralized production of electricity and heat, however public utilities are the perfect partner: the decentralized power generation in flexible adjustable combined heat and power plants offers the opportunity to provide highly efficient heat and power directly at the place of consumption. In addition, regional and municipal utilities score with the theme mini and micro CHP for their customers due to the support on the way to more energy efficiency.

  20. Putney Basketville Site Biomass CHP Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hunsberger, Randolph [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mosey, Gail [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-10-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response Center for Program Analysis developed the RE-Powering America's Land initiative to reuse contaminated sites for renewable energy generation when aligned with the community's vision for the site. The Putney, Vermont, Basketville site, formerly the location of a basket-making facility and a paper mill andwoolen mill, was selected for a feasibility study under the program. Biomass was chosen as the renewable energy resource based on abundant woody-biomass resources available in the area. Biomass combined heat and power (CHP) was selected as the technology due to nearby loads, including Putney Paper and Landmark College.

  1. Energy policy responses to the climate change challenge: The consistency of European CHP, renewables and energy efficiency policies

    Energy Technology Data Exchange (ETDEWEB)

    Grohnheit, P.E.

    1999-09-01

    This report is Volume 14 of individual reports of the Shared Analysis Project prepared for the European Commission, Directorate General for Energy. The three major objectives of the project were: to design a common framework of energy analysis that aimed to involve all Member States and the experts of industrial research groups (the shared approach to energy analysis); To analyse generic EU-wide issues important for energy policy and for future energy demand and production, putting particular emphasis on world energy market trends, strategic energy policy responses to the Kyoto process, and evaluation of response strategies to increasing energy import dependence and to climate change activities; to carry out quantitative analyses of energy trends and scenarios as an input for discussion. The present volume considers three main issues concerning energy policy responses to the climate change challenge: the penetration of CHP and renewables according to official objectives, focusing on infrastructure and institutions rather than technology; the consistency of promotion of CHP, renewables and energy savings at the same time; consumers' choices and priorities in a liberalised market. The volume describes examples of policies in several Member States for these technologies with emphasis on CHP for both large-scale and small-scale district heating systems. The penetration of CHP technologies is analysed quantitatively using a traditional optimisation model approach for stylised regions with heat markets suitable for CHP and facing a competitive European market for electricity. The Joint Final Report of the project, titled 'Economic Foundations for Energy Policy' is published as a Special Issue of Energy in Europe, December 1999. All reports are available on the Internet, www.shared-analysis.fhg.de/ The project started in January 1998, involving about 100 months of scientific labour. The project consortium consisted of nine member institutes co-ordinated by

  2. Small-scale biomass CHP using gasa turbines: a scoping study

    International Nuclear Information System (INIS)

    James, D.W.; Landen, R.

    1996-01-01

    Various options for small-scale (up to 250 KWe) Combined Heat and Power (CHP) plants evaluated in this scoping study. Plants using small gas turbines, and able to use biomass fuels when available are included. Three detailed case studies of small-scale biomass CHP plants are compared to match specific technical options with customer requirements. The commercial development of such biomass-fired CHP units, using gas turbines, is shown to be economically viable depending on fuel costs and the continuation of existing financial incentives. (UK)

  3. Is micro-CHP price controllable under price signal controlled Virtual Power Plants?

    DEFF Research Database (Denmark)

    You, Shi; Træholt, Chresten; Poulsen, Bjarne

    2011-01-01

    As micro-combined heat and power (micro-CHP) systems move towards mass deployment together with other kinds of distributed energy resources (DER), an increasing emphasis has been placed on how to coordinate such a large diversified DER portfolio in an efficient way by the Virtual Power Plant (VPP...... for three different micro-CHP systems to investigate the feasibility of being controlled by price. Such analysis is relevant for both controller designs for micro-CHP systems and VPP related operations. The results indicate that controlling the micro-CHP systems by price is feasible but could result...

  4. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land

    DEFF Research Database (Denmark)

    Pfeifer, Antun; Dominkovic, Dominik Franjo; Ćosić, Boris

    2016-01-01

    In this paper, the energy potential of biomass from growing short rotation coppice on unused agricultural land in the Republic of Croatia is used to investigate the feasibility of Combined Heat and Power (CHP) facilities fueled by such biomass. Large areas of agricultural land that remain unused...... work and is now used to investigate the conditions in which such energy facilities could be feasible. The overall potential of biomass from short rotation coppice cultivated on unused agricultural land in the scenarios with 30% of the area is up to 10PJ/year. The added value of fruit trees pruning...... biomass represents an incentive for the development of fruit production on such agricultural land. Sensitivity analysis was conducted for several parameters: cost of biomass, investment costs in CHP systems and combined change in biomass and technology cost....

  5. The role of combined heat and power (CHP) in energy and climate policy

    International Nuclear Information System (INIS)

    Conrad, F.

    1993-03-01

    In the energy- and environment context CHP is said to be especially energy saving and climate preserving. This report shows that from the standpoint of energy economics as well as under technical aspects this judgement holds true only under special conditions. Depending on the technical parameters, the concrete circumstances of operation and the characteristics of the power plants and heating systems compared to CHP-plants the range of realistic energy savings turns out to be very large. Related overstimations are to a good extend caused by the traditional practice of granting the energetic advantage of CHP exclusively to the district heating. If this advantage is credited to heat and power as equal shares space heating with cogenerated power of 80% efficiency reveals to be very energy conserving. The uno actu utilization of cogenerated heat and power, for the same purpose could facilitate the expansion of CHP, since the problems related to the feeding of cogenerated power into the grid for general purposes would disappear. The second main issue of this report concerns the abatement of CO 2 -emissions with the aid of CHP. Fuelled with natural gas, CHP-plants are attractive instruments for climate policy. This is especially true if CHP is compared to old coal-based power plants and oil-fuelled old heating systems. In the FRG, however, hard coal, and not natural gas, will be the main fuel for future CHP, lowering its CO 2 -advantage considerably. On the other hand high efficient combi-power plants (gas turbine plus condensing turbine) and gas heating systems have to be included in the comparative analyse. Compared to these advanced systems the CO 2 -characteristics of CHP are inferior. Moreover, the specific CO 2 -advantage of natural gas is better used by such modern mono systems rather than CHP-plants. (orig.) [de

  6. Performance and cost results from a DOE Micro-CHP demonstration facility at Mississippi State University

    International Nuclear Information System (INIS)

    Giffin, Paxton K.

    2013-01-01

    Highlights: ► We examine the cost and performance results of a Micro-CHP demonstration facility. ► Evaluation includes both summer and winter performance. ► Evaluation in comparison to a conventional HVAC system using grid power. ► Influence of improperly sized equipment. ► Influence of natural gas prices on the viability of CHP projects using that fuel. - Abstract: Cooling, Heating, and Power (CHP) systems have been around for decades, but systems that utilize 20 kW or less, designated as Micro-CHP, are relatively new. A demonstration site has been constructed at Mississippi State University (MSU) to show the advantages of these micro scale systems. This study is designed to evaluate the performance of a Micro-CHP system as opposed to a conventional high-efficiency Heating, Ventilation, and Air Conditioning (HVAC) system that utilizes electrical power from the existing power grid. Raw data was collected for 7 months to present the following results. The combined cycle efficiency from the demonstration site was averaged at 29%. The average combined boiler and engine cost was $1.8 h −1 of operation for heating season and $3.9 h −1 of operation for cooling season. The cooling technology used, an absorption chiller exhibited an average Coefficient of Performance (COP) of 0.27. The conventional high-efficiency system, during cooling season, had a COP of 4.7 with a combined cooling and building cost of $0.2 h −1 of operation. During heating mode, the conventional system had an efficiency of 47% with a fuel and building electrical cost of $0.28 h −1 of operation.

  7. Fuel cell power plants for decentralised CHP applications

    International Nuclear Information System (INIS)

    Ohmer, Martin; Mattner, Katja

    2015-01-01

    Fuel cells are the most efficient technology to convert chemical energy into electricity and heat and thus they could have a major impact on reducing fuel consumption, CO 2 and other emissions (NO x , SO x and particulate matter). Fired with natural or biogas and operated with an efficiency of up to 49 % a significant reduction of fuel costs can be achieved in decentralised applications. Combined heat and power (CHP) configurations add value for a wide range of industrial applications. The exhaust heat of approximately 400 C can be utilised for heating purposes and the production of steam. Besides, it can be also fed directly to adsorption cooling systems. With more than 110 fuel cell power plants operating worldwide, this technology is a serious alternative to conventional gas turbines or gas engines.

  8. Economic analysis of a supercritical coal-fired CHP plant integrated with an absorption carbon capture installation

    International Nuclear Information System (INIS)

    Bartela, Łukasz; Skorek-Osikowska, Anna; Kotowicz, Janusz

    2014-01-01

    Energy investments in Poland are currently focused on supercritical coal-fired unit technology. It is likely, that in the future, these units are to be integrated with carbon capture and storage (CCS) installations, which enable a significant reduction of greenhouse gas emissions into the atmosphere. A significant share of the energy market in Poland is constituted by coal-fired combined heat and power (CHP) plants. The integration of these units with CCS installation can be economically inefficient. However, the lack of such integration enhances the investment risk due to the possibility of appearing on the market in the near future high prices of emission allowances. The aforementioned factors and additional favorable conditions for the development of cogeneration can cause one to consider investing in large supercritical CHP plants. This paper presents the results of an economic analysis aimed at comparing three cases of CHP plants, one without an integrated CCS installation and two with such installations. The same steam cycle structure for all variants was adopted. The cases of integrated CHP plants differ from each other in the manner in which they recover heat. For the evaluation of the respective solutions, the break-even price of electricity and avoided emission cost were used. - Highlights: • The simulations of operation of CHP plants under changing load have been realized. • For analyzed cases sensitivity analyses of economic indices have been conducted. • Conditions of competitiveness for integration with CCS units have been identified. • Integration can be profitable if prices of allowance will reach high values, exceeding 50 €/MgCO 2 . • Others important factors are the investment costs and operation and maintenance costs

  9. CHP plant Legionowo Poland - Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-12-01

    In 1997, a new Energy Law was passed in Poland. An important element of the law is that local energy planning is made obligatory. The law describes obligatory tasks and procedures for Polish municipalities related to planning and organisation of the energy sector. With the objective of supporting the Polish municipalities in their obligations according to the energy law of 1997, the project 'Energy Planning in Poland at Municipal Level - Support to Decision Makers' was launched. As part of the project, Municipal Guideline Reports have been elaborated for three model municipalities. These guidelines present the basis for the Energy Supply Plans in these municipalities. For the city of Legionowo, the following was recommended: 1. The planning processes initiated during the project should be continues/followed up, 2. Master Plan for the district heating system should be prepared, 3. The possibilities of establishment of a major natural gas-fired CHP plant of the Combined Cycle type should be investigated. The present report is the final Master Plan based on the following reports: Master Plan for Legionowo - Status Report; Master Plan for Legionowo - Hydraulic Analysis; CHP Plant Legionowo Poland - CHP Feasibility Analysis. The final Master Plan describes the status in the DH Company in Legionowo, possible improvements and an investment plan for the selected scenario. (BA)

  10. Modelling Danish local CHP on market conditions

    DEFF Research Database (Denmark)

    Ravn, Hans V.; Riisom, Jannik; Schaumburg-Müller, Camilla

    2004-01-01

    with the liberalisation process of the energy sectors of the EU countries, it is however anticipated that Danish local CHP are to begin operating on market conditions within the year 2005. This means that the income that the local CHPs previously gained from selling electricity at the feed-in tariff is replaced in part...... the consequences of acting in a liberalised market for a given CHP plant, based on the abovementioned bottom-up model. The key assumption determining the bottom line is the electricity spot price. The formation of the spot price in the Nordic area depends heavily upon the state of the water reservoirs in Norway...

  11. A study on electricity export capability of the μCHP system with spot price

    DEFF Research Database (Denmark)

    You, Shi; Træholt, Chresten; Poulsen, Bjarne

    2009-01-01

    of the muCHP unit, which influence the export capability of muCHP system, is firstly carried out in the intraday case study, followed by the annual case study which explores the annual system performance. The results show that the electricity export capability of a muCHP system is closely related to its...

  12. Assessment of the implementation issues for fuel cells in domestic and small scale stationary power generation and CHP applications

    Energy Technology Data Exchange (ETDEWEB)

    Graham, G.; Cruden, A.; Hart, J.

    2002-07-01

    This report discusses implementation issues associated with the use of fuel cells in <10 kW domestic, small-scale power generation and combined heat and power (CHP) operations in the UK. The report examines the key issues (fuel cell system standards and certification, fuel infrastructure, commercial issues and competing CHP technologies), before discussing non-technical issues including finance, ownership, import and export configuration, pricing structure, customer acceptability, installation, operation and training of servicing and commissioning personnel. The report goes on to discuss market and technical drivers, grid connection issues and solutions, operations and maintenance. Recommendations for the future are made.

  13. From Ideas to Opportunities: Exploring the Construction of Technology-Based Entrepreneurial Opportunities

    Directory of Open Access Journals (Sweden)

    Ferran Giones

    2013-06-01

    Full Text Available The transformation of business ideas into market opportunities is at the core of entrepreneurship. Nevertheless, the complexity of such a transformative process is seen to change depending on the variables influencing the opportunity-entrepreneur nexus. Although technology-entrepreneurship is regarded as a force of change and dynamism in socio-economic growth, it also depends upon an intricate process of opportunity development. The interest in understanding better how technology-based entrepreneurs simultaneously cope with technological uncertainty while trying to gain stakeholder support and access to resources, highlights a relevant research gap. The research described in this article uses the constructivist view to deepen our understanding of the technology-based entrepreneur’s conceptualization of the opportunity as a process of social construction. Our results show how initial consensus-building efforts and iteration with knowledgeable peers are an essential part of the emergence of the opportunity, changing both entrepreneur's and stakeholders' perceptions of the early business idea. Consequently, our results provide evidence in support of policy programs and measures that favour social-construction support mechanisms to foster technology-based entrepreneurship.

  14. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO

    International Nuclear Information System (INIS)

    Hsu, Jing-Ming; Su, Mao-Sheng; Huang, Chiao-Ying; Duh, Yih-Shing

    2012-01-01

    Highlights: ► We analyzed fire and explosion incidents in a plant producing CHP and DCPO. ► Data from calorimeters reveal causes and phenomena associated with the incidents. ► The credible worst scenario was thermal explosion. ► Incidents may be avoided by implementing DIERS methodology. - Abstract: Cumene hydroperoxide (CHP) has been used in producing phenol, dicumyl peroxide (DCPO) and as an initiator for synthesizing acrylonitrile–butadiene–styrene (ABS) resin by copolymerization in Taiwan. Four incidents of fire and explosion induced by thermal runaway reactions were occurred in a same plant producing CHP, DCPO and bis-(tert-butylperoxy isopropyl) benzene peroxide (BIBP). The fourth fire and explosion occurred in the CHP reactor that resulted in a catastrophic damage in reaction region and even spread throughout storage area. Descriptions on the occurrences of these incidents were assessed by the features of processes, reaction schemes and unexpected side reactions. Calorimetric data on thermokinetics and pressure were used for explaining the practical consequences or which the worst cases encountered in this kind of plant. Acceptable risk associated with emergency relief system design is vital for a plant producing organic peroxide. These basic data for designing an inherently safer plant can be conducted from adiabatic calorimetry. An encouraging deduction has been drawn here, these incidents may be avoided by the implementation of API RP 520, API RP 521, DIERS technology, OSHA 1910.119 and AIChE's CCPS recommended PSM elements.

  15. Future market relevance of CHP installations with electrical ratings from 1 to 1000 kW

    International Nuclear Information System (INIS)

    Eicher, H.; Rigassi, R.

    2003-12-01

    This report for the Swiss Federal Office of Energy (SFOE) discusses the future market relevance of combined heat and power (CHP) installations with electrical ratings from 1 to 1000 kW. Developments over the past ten years are reviewed. Important reductions in the price of motor-driven CHP units and the price of the electrical power produced are noted and commented on. The technical market potential of CHP units and the degree to which this potential has been implemented are commented on. Work done, including CHP implementation in the industrial, commercial and residential areas, is commented on. Future developments both in the technical area as well as in commercial areas are commented on. Micro-gas-turbine based CHP systems are also discussed, as are fuel-cell based systems in both the higher and lower capacity power generation area. The prospects for CHP systems in general in the electricity generation area are discussed

  16. Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882. Project report 5 - Emission factors and emission inventory for decentralised CHP production

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Thomsen, M.

    2010-06-15

    Updated emission factors for decentralised combined heat and power (CHP) plants with a capacity < 25MWe have been estimated based on project emission measurements as well as emission measurements performed in recent years that were collected. The emission factors valid for 2006/2007 have been estimated for the plant technologies: Municipal solid waste (MSW) incineration plants, plants combusting straw or wood, natural gas fuelled reciprocating engines, biogas fuelled engines, natural gas fuelled gas turbines, gas oil fuelled reciprocating engines, gas oil fuelled gas turbines, steam turbines combusting residual oil and reciprocating engines combusting biomass producer gas based on wood. The emission factors for MSW incineration plants are much lower than the emission factors that were estimated for year 2000. The considerable reduction in the emission factors is a result of lower emission limit values in Danish legislation since 2006 that has lead to installation of new and improved flue gas cleaning systems in most MSW incineration plants. For CHP plants combusting wood or straw no major technical improvements have been implemented. The emission factors for natural gas fuelled reciprocating engines have been reduced since year 2000 as a result of technical improvements that have been carried out due to lower emission limit values in Danish legislation. The NO{sub x} emission factor for natural gas fuelled gas turbines has decreased 62 % since year 2000. This is a result of installation of low-NO{sub x} burners in almost all gas turbines that has been necessary to meet new emission limits in Danish legislation. The emission measurements programme included screening of the emissions of HCB, PCB, PCDD/-F and PBDD/-F. Compared to the Danish national emission decentralized CHP plants are major emission sources for CH{sub 4}, NO{sub x}, SO{sub 2}, heavy metals and HCB. (author)

  17. National Accounts Energy Alliance : Field test and verification of CHP components and systems

    Energy Technology Data Exchange (ETDEWEB)

    Sweetser, R. [Exergy Partners Corporation, Herndon, VA (United States)

    2003-07-01

    Exergy is a consulting firm which specializes in capitalizing on opportunities that result from the nexus of utility deregulation and global climate change in both the construction and energy industries. The firm offers assistance in technical business and market planning, product development and high impact marketing and technology transfer programs. The author discussed National Accounts Energy Alliance (NAEA) program on distributed energy resources (DER) and identified some advantageous areas such as homeland security (less possible terrorist targets to be protected), food safety (protection of food supply and delivery system), reliability, power quality, energy density, grid congestion and energy price. In the future, an essential role in moderating energy prices for commercial buildings will probably be played by distributed generation (DG) and combined heat and power (CHP). The technical merits of these technologies is being investigated by national accounts and utilities partnering with non-profit organizations, the United States Department of Energy (US DOE), state governments and industry. In that light, in 2001 an Alliance program was developed, which allows investors to broaden their knowledge from the application and verification of Advanced Energy Technologies. This program was the result of a synergy between the American Gas Foundation and the Gas Technology Institute (GTI), and it assists investors with their strategic planning. It was proven that a customer-led Energy Technology Test and Verification Program (TA and VP) could be cost-effective and successful. The NAEA activities in five locations were reviewed and discussed. They were: (1) Russell Development, Portland, Oregon; (2) A and P-Waldbaums, Hauppage, New York; (3) HEB, Southern, Texas; (4) Cinemark, Plano, Texas; and McDonald's, Tampa, Florida. 4 tabs., figs.

  18. Thermodynamic evaluation of CHP (combined heat and power) plants integrated with installations of coal gasification

    International Nuclear Information System (INIS)

    Ziębik, Andrzej; Malik, Tomasz; Liszka, Marcin

    2015-01-01

    Integration of a CHP steam plant with an installation of coal gasification and gas turbine leads to an IGCC-CHP (integrated gasification combined cycle-combined heat and power). Two installations of coal gasification have been analyzed, i.e. pressurized entrained flow gasifier – case 1 and pressurized fluidized bed gasifier with CO_2 recirculation – case 2. Basing on the results of mathematical modelling of an IGCC-CHP plant, the algorithms of calculating typical energy indices have been derived. The following energy indices are considered, i.e. coefficient of heat performance and relative savings of chemical energy of fuels. The results of coefficients of heat performance are contained between 1.87 and 2.37. Values exceeding 1 are thermodynamically justified because the idea of cogeneration of heat and electricity based on combining cycles of the heat engine and heat pump the efficiency of which exceeds 1. Higher values concerning waste heat replace more thermodynamically effective sources of heat in CHP plants. Relative savings of the chemical energy of fuels are similar in both cases of IGCC-CHP plants and are contained between the lower value of the CHP (combined heat and power) plants fuelled with coal and higher value of CHP plants fired with natural gas. - Highlights: • Energy savings of fuel is an adequate measure of cogeneration. • Relative energy savings of IGCC-CHP is near the result of a gas and steam CHP. • COHP (coefficient of heat performance) can help to divide fuel between heat fluxes. • Higher values of COHP in the case of waste heat recovery result from the lower thermal parameters.

  19. A microeconomic analysis of decentralized small scale biomass based CHP plants—The case of Germany

    International Nuclear Information System (INIS)

    Wittmann, Nadine; Yildiz, Özgür

    2013-01-01

    Alternative energy sources, such as biomass CHP plants, have recently gained significantly in importance and action is due both on the large scale corporate level and on the small scale. Hence, making the scope and economic outline of such projects easily intelligible without losing relevant details seems a key factor to further promote the necessary developments. The model setup presented in this paper may therefore serve as a starting point for generating numerical results based on real life cases or scenarios. Its focus lies on the economic analysis of decentralized biomass CHP plants. It presents a new approach to analyzing the economic aspects of biomass CHP plants implementing a formal microeconomic approach. As Germany claims a leading role in the market for renewable energy production, the paper also takes a closer look on the effects of German energy policy with respect to biomass CHP plants. - Highlights: • A formal microeconomic model is used to analyse a decentralized biomass CHP plant. • Model setup is used to generate numerical results based on real life scenarios. • Nested CES production function is a new approach to model economics of biomass CHP. • Analysis presents insight into microeconomics and cost drivers of biomass CHP. • Evaluation of energy policy design with respect to environmental policy goals

  20. Dynamic analysis of PEMFC-based CHP systems for domestic application

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Gallorini, F.; Ottaviano, A.

    2012-01-01

    Highlights: ► Dynamic model of a CHP energy system based on a PEM fuel cell was developed. ► The CHP system behavior at variable electrical and thermal load was investigated. ► The optimal RH value was assessed maximizing PEMFC performance through simulations. ► The system best operating conditions are characterized by a RH value equal to 50%. -- Abstract: Fuel cell-based CHP systems for distributed residential power generation represent an interesting alternative to traditional thermoelectric plants. This is mainly due to the high efficiency obtainable in the production of electricity and heat in a decentralised, quiet and environmental friendly way. The current paper focuses on the development, in Matlab®Simulink environment, of a complete dynamic model of a residential cogenerative (CHP) energy system consisting of the Proton Exchange Membrane fuel cell (PEMFC), fuel processor, heat exchangers, humidifier and auxiliary hot water boiler. The target of the study is the investigation through such a model of the behavior of CHP systems based on fuel cell (FC) at variable electrical and thermal load, in reference to typical load curves of residential users. With the aim to evaluate the system performance (efficiency, fuel consumption, hot water production, response time) and then to characterize its better operating conditions with particular attention to air relative humidity, suitable simulations were carried out. They are characterized by the following of a typical electrical load trend and in relation to two different thermal load profiles. The dynamic model presented in this paper has allowed to observe the fully functioning of the FC based system under variable loads and it has permitted to design appropriate control logics for this system.

  1. Elimination of restraints on the propagation of combined heat and power (CHP) generation systems in Switzerland; Beseitigung von Hemmnissen bei der Verbreitung von Waermekraftkopplung (WKK) in der Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Rieder, S.; Landis, F. [Interface Politikstudien Forschung Beratung, Luzern (Switzerland); Lienhard, A.; Marti Locher, F. [Universitaet Bern, Kompetenzzentrum fuer Public Management (KPM), Bern (Switzerland); Krummenacher, S. [Enerprice Partners AG, Technopark Luzern, Root Laengenbold (Switzerland)

    2009-04-15

    This report for the Swiss Federal Office of Energy (SFOE) discusses the results of study initiated by the SFOE that was to investigate the reasons for the low level of proliferation of CHP technology in Switzerland. The two main questions asked - which factors inhibit the use of CHP in particular application areas and which energy-policy measures can remove such obstacles - are discussed. The use of CHP in various areas of application from waste incineration plants through to units used in residential buildings is analysed and commented on. Recommendations on measures that can be taken to enhance the use of CHP are discussed. Three strategy variants available to the public services area are presented and discussed. It is noted that a consensus between players in the technical and political areas is necessary

  2. Preliminary experimental investigation of a natural gas-fired ORC-based micro-CHP system for residential buildings

    International Nuclear Information System (INIS)

    Farrokhi, M.; Noie, S.H.; Akbarzadeh, A.A.

    2014-01-01

    The continual increases in energy demand and greenhouse gas emissions, call for efficient use of energy resources. Decentralized combined heat and power (CHP) technology provides an alternative for the world to meet and solve energy-related problems including energy shortages, energy supply security, emission control and conservation of energy. This paper presents the preliminary results of an experimental investigation of a natural gas-fired micro-CHP system for residential buildings based on an organic Rankine cycle (ORC). Isopentane was used as the ORC working fluid in consideration of several criteria including its environmentally-friendly characteristics. Experiments were conducted to evaluate the performance of the developed system at different heat source temperatures of nominally 85, 80, 75, 70, and 65 °C. The maximum electrical power output of 77.4 W was generated at heating water entry temperature of 84.1 °C, corresponding to net cycle electrical efficiency of 1.66%. Further work will be done with a view to increasing the cycle electrical efficiency by using more efficient components, in particular the expander and generator. - Highlights: •A natural gas-fired ORC-based micro-scale CHP system has been developed and tested. •The good agreement between the mechanical and gross power validates the assumptions. •A vane expander suits a micro-CHP system based on an organic Rankine cycle. •A vane expander does not suit power generation by a Trilateral Flash Cycle (TFC). •Domestic gas-fired ORC systems may reduce reliance on central power stations

  3. Calorimetric studies and lessons on fires and explosions of a chemical plant producing CHP and DCPO

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Jing-Ming; Su, Mao-Sheng; Huang, Chiao-Ying [Department of Occupational Safety and Health, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, ROC (China); Duh, Yih-Shing, E-mail: yihshingduh@yahoo.com.tw [Department of Safety, Health and Environmental Engineering, National United University, No. 1 Lien-Da, Miaoli, Taiwan, ROC (China)

    2012-05-30

    Highlights: Black-Right-Pointing-Pointer We analyzed fire and explosion incidents in a plant producing CHP and DCPO. Black-Right-Pointing-Pointer Data from calorimeters reveal causes and phenomena associated with the incidents. Black-Right-Pointing-Pointer The credible worst scenario was thermal explosion. Black-Right-Pointing-Pointer Incidents may be avoided by implementing DIERS methodology. - Abstract: Cumene hydroperoxide (CHP) has been used in producing phenol, dicumyl peroxide (DCPO) and as an initiator for synthesizing acrylonitrile-butadiene-styrene (ABS) resin by copolymerization in Taiwan. Four incidents of fire and explosion induced by thermal runaway reactions were occurred in a same plant producing CHP, DCPO and bis-(tert-butylperoxy isopropyl) benzene peroxide (BIBP). The fourth fire and explosion occurred in the CHP reactor that resulted in a catastrophic damage in reaction region and even spread throughout storage area. Descriptions on the occurrences of these incidents were assessed by the features of processes, reaction schemes and unexpected side reactions. Calorimetric data on thermokinetics and pressure were used for explaining the practical consequences or which the worst cases encountered in this kind of plant. Acceptable risk associated with emergency relief system design is vital for a plant producing organic peroxide. These basic data for designing an inherently safer plant can be conducted from adiabatic calorimetry. An encouraging deduction has been drawn here, these incidents may be avoided by the implementation of API RP 520, API RP 521, DIERS technology, OSHA 1910.119 and AIChE's CCPS recommended PSM elements.

  4. Risk analysis for CHP decision making within the conditions of an open electricity market

    International Nuclear Information System (INIS)

    Al-Mansour, Fouad; Kozuh, Mitja

    2007-01-01

    Decision making under uncertainty is a difficult task in most areas. Investment decisions for combined heat and power production (CHP) are certainly one of the areas where it is difficult to find an optimal solution since the payback period is several years and parameters change due to different perturbing factors of economic and mostly political nature. CHP is one of the most effective measures for saving primary energy and reduction of greenhouse gas emissions. The implementation of EU directives on the promotion of cogeneration based on useful heat demand in the internal energy market will accelerate CHP installation. The expected number of small CHP installations will be very high in the near future. A quick, reliable and simple tool for economic evaluation of small CHP systems is required. Since evaluation is normally made by sophisticated economic computer models which are rather expensive, a simple point estimate economic model was developed which was later upgraded by risk methodology to give more informative results for better decision making. This paper presents a reliable computer model entitled 'Computer program for economic evaluation analysis of CHP' as a tool for analysis and economic evaluation of small CHP systems with the aim of helping the decision maker. The paper describes two methods for calculation of the sensitivity of the economic results to changes of input parameters and the uncertainty of the results: the classic/static method and the risk method. The computer program uses risk methodology by applying RISK software on an existing conventional economic model. The use of risk methodology for economic evaluation can improve decisions by incorporating all possible information (knowledge), which cannot be done in the conventional economic model due to its limitations. The methodology was tested on the case of a CHP used in a smaller hospital

  5. Comparison of Technological Options for Distributed Generation-Combined Heat and Power in Rajasthan State of India

    Directory of Open Access Journals (Sweden)

    Ram Kumar Agrawal

    2013-01-01

    Full Text Available Distributed generation (DG of electricity is expected to become more important in the future electricity generation system. This paper reviews the different technological options available for DG. DG offers a number of potential benefits. The ability to use the waste heat from fuel-operated DG, known as combined heat and power (CHP, offers both reduced costs and significant reductions of CO2 emissions. The overall efficiency of DG-CHP system can approach 90 percent, a significant improvement over the 30 to 35 percent electric grid efficiency and 50 to 90 percent industrial boiler efficiency when separate production is used. The costs of generation of electricity from six key DG-CHP technologies; gas engines, diesel engines, biodiesel CI engines, microturbines, gas turbines, and fuel cells, are calculated. The cost of generation is dependent on the load factor and the discount rate. It is found that annualized life cycle cost (ALCC of the DG-CHP technologies is approximately half that of the DG technologies without CHP. Considering the ALCC of different DG-CHP technologies, the gas I.C. engine CHP is the most effective for most of the cases but biodiesel CI engine CHP seems to be a promising DG-CHP technology in near future for Rajasthan state due to renewable nature of the fuel.

  6. Annual energy balances of CHP-units supplying households; Jahresenergiebilanzen von KWK-Anlagen zur Hausenergieversorgung

    Energy Technology Data Exchange (ETDEWEB)

    Geiger, B.; Muehlbacher, H. [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Energiewirtschaft und Anwendungstechnik

    2008-07-01

    A method to balance CHP-units for use in households on an annual basis has been developed. Seasonal as well as intraday fluctuations of the CHP-units are accounted for in the model. The results of this new method were validated in a test facility for certain days. Together with experimentally obtained data from a CHP-unit, the potential for technical improvements and a more favourable operational mode can be derived from the model. (orig.)

  7. Optimization of a High Temperature PEMFC micro-CHP System by Formulation and Application of a Process Integration Methodology

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2013-01-01

    A 1 kWe micro combined heat and power (CHP) system based on high temperature proton exchange membrane fuel cell (PEMFC) technology is modeled and optimized by formulation and application of a process integration methodology. The system can provide heat and electricity for a singlefamily household...

  8. Local CHP Plants between the Natural Gas and Electricity Systems

    DEFF Research Database (Denmark)

    Bregnbæk, Lars; Schaumburg-Müller, Camilla

    2005-01-01

    , and they contribute significantly to the electricity production. CHP is, together with the wind power, the almost exclusive distributed generation in Denmark. This paper deals with the CHP as intermediary between the natural gas system and the electricity system. In particular, the relationship between the peak hour......Local combined heat and power (CHP) plants in Denmark constitute an important part of the national energy conversion capacity. In particular they supply a large share of the district heating networks with heat. At the same time they are important consumers as seen from the gas network system...... characteristics of the electricity and gas systems will be investigated. The point is here that the two systems will tend to have peak demand during the same hours. This is the typical situation, since load is high during the same hours of the day and of the year. Moreover, the random variations in the load...

  9. Opportunities for biomass-derived 'bio-oil' in European heat and power markets

    International Nuclear Information System (INIS)

    Brammer, J.G.; Lauer, M.; Bridgwater, A.V.

    2006-01-01

    Bio-oil (biomass fast pyrolysis) systems for heat, power or CHP production are nearing demonstration status. Their commercial attractiveness will depend on many factors, and will vary with the application, the scale, and importantly the location and its associated economic and logistical factors. The objective of this work, carried out as part of an EC-ALTENER project, was to evaluate the opportunities for bio-oil in the heat and power markets of Europe. Bio-oil applications were compared with conventional (fossil) alternatives for the same heat and power duty. The evaluation was carried out by a quantitative assessment of the economic competitiveness of standard applications in 14 European countries. Location-specific data were collected, and combined with technology-specific data obtained from earlier work. A competitiveness factor (c F ) was derived which represents the total annual cost of a conventional alternative relative to a bio-oil application. The results showed a wide variation across Europe. A total of six countries had at least one bio-oil application which was economically competitive. Heat-only applications were found to be the most economically competitive, followed by CHP applications, with electricity-only applications only very rarely competitive. For a given technology, the larger the scale, the better the competitiveness

  10. Opportunities for biomass-derived 'bio-oil' in European heat and power markets

    International Nuclear Information System (INIS)

    Brammer, J.G.; Bridgwater, A.V.

    2006-01-01

    Bio-oil (biomass fast pyrolysis) systems for heat, power or CHP production are nearing demonstration status. Their commercial attractiveness will depend on many factors, and will vary with the application, the scale, and importantly the location and its associated economic and logistical factors. The objective of this work, carried out as part of an EC-ALTENER project, was to evaluate the opportunities for bio-oil in the heat and power markets of Europe. Bio-oil applications were compared with conventional (fossil) alternatives for the same heat and power duty. The evaluation was carried out by a quantitative assessment of the economic competitiveness of standard applications in 14 European countries. Location-specific data were collected, and combined with technology-specific data obtained from earlier work. A competitiveness factor (c F ) was derived which represents the total annual cost of a conventional alternative relative to a bio-oil application. The results showed a wide variation across Europe. A total of six countries had at least one bio-oil application which was economically competitive. Heat-only applications were found to be the most economically competitive, followed by CHP applications, with electricity-only applications only very rarely competitive. For a given technology, the larger the scale, the better the competitiveness. (author)

  11. Network Capacity Assessment of CHP-based Distributed Generation on Urban Energy Distribution Networks

    Science.gov (United States)

    Zhang, Xianjun

    The combined heat and power (CHP)-based distributed generation (DG) or dis-tributed energy resources (DERs) are mature options available in the present energy market, considered to be an effective solution to promote energy efficiency. In the urban environment, the electricity, water and natural gas distribution networks are becoming increasingly interconnected with the growing penetration of the CHP-based DG. Subsequently, this emerging interdependence leads to new topics meriting serious consideration: how much of the CHP-based DG can be accommodated and where to locate these DERs, and given preexisting constraints, how to quantify the mutual impacts on operation performances between these urban energy distribution networks and the CHP-based DG. The early research work was conducted to investigate the feasibility and design methods for one residential microgrid system based on existing electricity, water and gas infrastructures of a residential community, mainly focusing on the economic planning. However, this proposed design method cannot determine the optimal DG sizing and siting for a larger test bed with the given information of energy infrastructures. In this context, a more systematic as well as generalized approach should be developed to solve these problems. In the later study, the model architecture that integrates urban electricity, water and gas distribution networks, and the CHP-based DG system was developed. The proposed approach addressed the challenge of identifying the optimal sizing and siting of the CHP-based DG on these urban energy networks and the mutual impacts on operation performances were also quantified. For this study, the overall objective is to maximize the electrical output and recovered thermal output of the CHP-based DG units. The electricity, gas, and water system models were developed individually and coupled by the developed CHP-based DG system model. The resultant integrated system model is used to constrain the DG's electrical

  12. Emissions from decentralised CHP plants 2007 - Energinet.dk Environmental project no. 07/1882

    DEFF Research Database (Denmark)

    Nielsen, Malene; Nielsen, Ole-Kenneth; Thomsen, Marianne

    Updated emission factors for decentralised combined heat and power (CHP) plants with a capacity project emission measurements as well as emission measurements performed in recent years that were collected. The emission factors valid for 2006/2007 have been...... estimated for the plant technologies: Municipal solid waste (MSW) incineration plants, plants combusting straw or wood, natural gas fuelled reciprocating engines, biogas fuelled engines, natural gas fuelled gas turbines, gas oil fuelled reciprocating engines, gas oil fuelled gas turbines, steam turbines...

  13. Energy efficiency analysis and impact evaluation of the application of thermoelectric power cycle to today's CHP systems

    DEFF Research Database (Denmark)

    Chen, Min; Lund, Henrik; Rosendahl, Lasse

    2010-01-01

    benefits, together with the environmental impact of this deployment, will then be estimated. By using the Danish thermal energy system as a paradigm, this paper will consider the TEG application to district heating systems and power plants through the EnergyPLAN model, which has been created to design......High efficiency thermoelectric generators (TEG) can recover waste heat from both industrial and private sectors. Thus, the development and deployment of TEG may represent one of the main drives for technological change and fuel substitution. This paper will present an analysis of system efficiency...... configurations for combustion systems. The feasible deployment of TEG in various CHP plants will be examined in terms of heat source temperature range, influences on CHP power specification and thermal environment, as well as potential benefits. The overall conversion efficiency improvements and economic...

  14. Critical technologies research: Opportunities for DOE

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Recent studies have identified a number of critical technologies that are essential to the nation`s defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy`s Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE`s capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  15. Critical technologies research: Opportunities for DOE

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    Recent studies have identified a number of critical technologies that are essential to the nation's defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy's Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE's capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  16. Small scale CHP: Alternative integration forms in the Danish energy system

    International Nuclear Information System (INIS)

    Boeg, Rasmus; Gatautis, Ramunas; Engberg Pedersen, Thomas; Schmidt, Rune; Ravn, Hans F.

    2003-01-01

    In Denmark, introduction of small scale combined heat and power (CHP) plants were part of the energy policy during the 1990's. Thus, the installed electricity capacity on this type of units multiplied approximately ten times during this decade, to constitute more than 2000 MW in 2000, or around 20% of total installed electricity capacity. The motivation for this development was mainly energy savings due to the relatively high thermal efficiency in combined production, and the associated reduction of emissions. The remuneration for the electricity delivered to the electrical network was in part based on a feed in tariff. The construction of the tariff reflected estimated benefits to the electrical system. With the liberalisation of the electricity markets this arrangement has been questioned, and it has been suggested that the differentiated payment to local CHP should be based on electricity market prising. For Denmark this would imply that the local CHP should trade the electricity on the Nordpool electricity spot market. This paper analyses parts of these two alternative ways of economic arrangements in relation to small scale CHP. First it describes the development and status till now. Then it analyses the production patterns and associated economic consequences of a change from the tariff based system to a market system. (BA)

  17. Development and Testing of the Advanced CHP System Utilizing the Off-Gas from the Innovative Green Coke Calcining Process in Fluidized Bed

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Yaroslav [Gas Technology Inst., Des Plaines, IL (United States); Kozlov, Aleksandr [Gas Technology Inst., Des Plaines, IL (United States)

    2013-08-15

    Green petroleum coke (GPC) is an oil refining byproduct that can be used directly as a solid fuel or as a feedstock for the production of calcined petroleum coke. GPC contains a high amount of volatiles and sulfur. During the calcination process, the GPC is heated to remove the volatiles and sulfur to produce purified calcined coke, which is used in the production of graphite, electrodes, metal carburizers, and other carbon products. Currently, more than 80% of calcined coke is produced in rotary kilns or rotary hearth furnaces. These technologies provide partial heat utilization of the calcined coke to increase efficiency of the calcination process, but they also share some operating disadvantages. However, coke calcination in an electrothermal fluidized bed (EFB) opens up a number of potential benefits for the production enhancement, while reducing the capital and operating costs. The increased usage of heavy crude oil in recent years has resulted in higher sulfur content in green coke produced by oil refinery process, which requires a significant increase in the calcinations temperature and in residence time. The calorific value of the process off-gas is quite substantial and can be effectively utilized as an “opportunity fuel” for combined heat and power (CHP) production to complement the energy demand. Heat recovered from the product cooling can also contribute to the overall economics of the calcination process. Preliminary estimates indicated the decrease in energy consumption by 35-50% as well as a proportional decrease in greenhouse gas emissions. As such, the efficiency improvement of the coke calcinations systems is attracting close attention of the researchers and engineers throughout the world. The developed technology is intended to accomplish the following objectives: - Reduce the energy and carbon intensity of the calcined coke production process. - Increase utilization of opportunity fuels such as industrial waste off-gas from the novel

  18. Modelling the Italian household sector at the municipal scale: Micro-CHP, renewables and energy efficiency

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Cioccolanti, Luca; Renzi, Massimiliano

    2014-01-01

    This study investigates the potential of energy efficiency, renewables, and micro-cogeneration to reduce household consumption in a medium Italian town and analyses the scope for municipal local policies. The study also investigates the effects of tourist flows on town's energy consumption by modelling energy scenarios for permanent and summer homes. Two long-term energy scenarios (to 2030) were modelled using the MarkAL-TIMES generator model: BAU (business as usual), which is the reference scenario, and EHS (exemplary household sector), which involves targets of penetration for renewables and micro-cogeneration. The analysis demonstrated the critical role of end-use energy efficiency in curbing residential consumption. Cogeneration and renewables (PV (photovoltaic) and solar thermal panels) were proven to be valuable solutions to reduce the energetic and environmental burden of the household sector (−20% in 2030). Because most of household energy demand is ascribable to space-heating or hot water production, this study finds that micro-CHP technologies with lower power-to-heat ratios (mainly, Stirling engines and microturbines) show a higher diffusion, as do solar thermal devices. The spread of micro-cogeneration implies a global reduction of primary energy but involves the internalisation of the primary energy, and consequently CO 2 emissions, previously consumed in a centralised power plant within the municipality boundaries. - Highlights: • Energy consumption in permanent homes can be reduced by 20% in 2030. • High efficiency appliances have different effect according to their market penetration. • Use of electrical heat pumps shift consumption from natural gas to electricity. • Micro-CHP entails a global reduction of energy consumption but greater local emissions. • The main CHP technologies entering the residential market are Stirling and μ-turbines

  19. Combustion Turbine CHP System for Food Processing Industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    This factsheet describes a combined heat and power (CHP) demonstration project that reduces the energy costs and environmental impact of a plant while easing congestion on the constrained Northeast power grid.

  20. Contribution to a Danish action plan for development and demonstration of CHP from solid biomass; Oplaeg til en national handlingsplan for udvikling og demonstration indenfor kraftvarme fra fast biomasse

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Morten Tony

    2011-01-15

    The report is the contribution from the industry to an action plan for development and demonstration of CHP technology for solid biomass. The report aims to serve as inspiration and basis for administrators and applicants of Danish funding schemes for development and demonstration in future tenders. Although Danish-based cogeneration technologies for solid biofuels are advanced compared to the competitors in many areas there is a large need to continuously improve the technology by sustained development and demonstration activities. The aim is to overcome the technological barriers that this project has identified and thus maintain competitiveness. The industry currently has very strong focus on market deployment of especially technologies for cogeneration in small scale (up to 15 MW thermal power) and on the overall economy of these plants. Reference installations that displays many operational hours with a reasonable economy, are crucial for investors. Currently, no companies market commercial plants that have sufficiently low costs to operate under Danish conditions and few do for the conditions found internationally. Thus, from the industry perspective there is still a need for development and demonstration of CHP technology below 15 MW thermal. The analysis does not exclude any technology tracks, but the development and demonstration efforts should lead to improvements in conditions such as availability, efficiencies and operating and maintenance costs. Also technologies for large plants and systems need to be improved with respect to availability and efficiency and reduced operating and maintenance costs. For all technologies, there is a need to develop the use of special solid biofuels that on the one hand may have troublesome characteristics but on the other may help lower operating costs. The Danish-based companies have good opportunities to find support for the development and demonstration effort. A number of support programs and pools are in place and

  1. Environmental & economic life cycle assessment of current & future sewage sludge to energy technologies.

    Science.gov (United States)

    Mills, N; Pearce, P; Farrow, J; Thorpe, R B; Kirkby, N F

    2014-01-01

    The UK Water Industry currently generates approximately 800GWh pa of electrical energy from sewage sludge. Traditionally energy recovery from sewage sludge features Anaerobic Digestion (AD) with biogas utilisation in combined heat and power (CHP) systems. However, the industry is evolving and a number of developments that extract more energy from sludge are either being implemented or are nearing full scale demonstration. This study compared five technology configurations: 1 - conventional AD with CHP, 2 - Thermal Hydrolysis Process (THP) AD with CHP, 3 - THP AD with bio-methane grid injection, 4 - THP AD with CHP followed by drying of digested sludge for solid fuel production, 5 - THP AD followed by drying, pyrolysis of the digested sludge and use of the both the biogas and the pyrolysis gas in a CHP. The economic and environmental Life Cycle Assessment (LCA) found that both the post AD drying options performed well but the option used to create a solid fuel to displace coal (configuration 4) was the most sustainable solution economically and environmentally, closely followed by the pyrolysis configuration (5). Application of THP improves the financial and environmental performance compared with conventional AD. Producing bio-methane for grid injection (configuration 3) is attractive financially but has the worst environmental impact of all the scenarios, suggesting that the current UK financial incentive policy for bio-methane is not driving best environmental practice. It is clear that new and improving processes and technologies are enabling significant opportunities for further energy recovery from sludge; LCA provides tools for determining the best overall options for particular situations and allows innovation resources and investment to be focused accordingly. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. A family of serine proteases of Clavibacter michiganensis subsp. michiganensis: chpC plays a role in colonization of the host plant tomato.

    Science.gov (United States)

    Stork, Ines; Gartemann, Karl-Heinz; Burger, Annette; Eichenlaub, Rudolf

    2008-09-01

    Genes for seven putative serine proteases (ChpA-ChpG) belonging to the trypsin subfamily and homologous to the virulence factor pat-1 were identified on the chromosome of Clavibacter michiganensis subsp. michiganensis (Cmm) NCPPB382. All proteases have signal peptides indicating export of these proteins. Their putative function is suggested by two motifs and an aspartate residue typical for serine proteases. Furthermore, six cysteine residues are located at conserved positions. The genes are clustered in a chromosomal region of about 50 kb with a significantly lower G + C content than common for Cmm. The genes chpA, chpB and chpD are pseudogenes as they contain frame shifts and/or in-frame stop codons. The genes chpC and chpG were inactivated by the insertion of an antibiotic resistance cassette. The chpG mutant was not impaired in virulence. However, in planta the titre of the chpC mutant was drastically reduced and only weak disease symptoms were observed. Complementation of the chpC mutant by the wild-type allele restored full virulence. ChpC is the first chromosomal gene of Cmm identified so far that affects the interaction of the pathogen with the host plant.

  3. ChpK and MazF of the toxin-antitoxin modules are involved in the virulence of Leptospira interrogans during infection.

    Science.gov (United States)

    Komi, Komi Koukoura; Ge, Yu-Mei; Xin, Xiao-Yang; Ojcius, David M; Sun, Dexter; Hu, Wei-Lin; Zhao, Xin; Lin, Xu'ai; Yan, Jie

    2015-01-01

    Pathogenic Leptospira species are the causative agents of leptospirosis, a global zoonotic infectious disease. Toxin-antitoxin (TA) modules have been confirmed as stress-response elements that induce prokaryotic and eukaryotic cell-growth arrest or death, but their role in the virulence of Leptospira has not been reported. Here, we confirmed that all the tested leptospiral strains had the chpIK and mazEF TA modules with highly-conserved sequences. The transcription and expression of the chpI, chpK, mazE, and mazF genes of Leptospira interrogans strain Lai were significantly increased during infection of phorbol 12-myristate 13-acetate-induced human THP-1 macrophages. The toxic ChpK and MazF but not the antitoxic ChpI and MazE proteins were detectable in the cytoplasmic fraction of leptospire-infected THP-1 cells, indicating the external secretion of ChpK and MazF during infection. Transfection of the chpK or mazF gene caused decreased viability and necrosis in THP-1 cells, whereas the chpI or mazE gene transfection did not affect the viability of THP-1 cells but blocked the ChpK or MazF-induced toxicity. Deletion of the chpK or mazF gene also decreased the late-apoptotic and/or necrotic ratios of THP-1 cells at the late stages of infection. The recombinant protein MazF (rMazF) cleaved the RNAs but not the DNAs from Leptospira and THP-1 cells, and this RNA cleavage was blocked by rMazE. However, the rChpK had no RNA or DNA-degrading activity. All these findings indicate that the ChpK and MazF proteins in TA modules are involved in the virulence of L. interrogans during infection. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land: Case of Croatia

    International Nuclear Information System (INIS)

    Pfeifer, Antun; Dominković, Dominik Franjo; Ćosić, Boris; Duić, Neven

    2016-01-01

    Highlights: • Potential of unused agricultural land for biomass and fruit production is assessed. • Technical and energy potential of biomass from SRC and fruit pruning is calculated. • Economic feasibility of CHP plants utilizing biomass from SRC is presented for Croatia. • Sensitivity analysis and recommendations for shift toward feasibility are provided. - Abstract: In this paper, the energy potential of biomass from growing short rotation coppice on unused agricultural land in the Republic of Croatia is used to investigate the feasibility of Combined Heat and Power (CHP) facilities fueled by such biomass. Large areas of agricultural land that remain unused for food crops, represent significant potential for growing biomass that could be used for energy. This biomass could be used to supply power plants of up to 15 MW_e in accordance with heat demands of the chosen locations. The methodology for regional energy potential assessment was elaborated in previous work and is now used to investigate the conditions in which such energy facilities could be feasible. The overall potential of biomass from short rotation coppice cultivated on unused agricultural land in the scenarios with 30% of the area is up to 10 PJ/year. The added value of fruit trees pruning biomass represents an incentive for the development of fruit production on such agricultural land. Sensitivity analysis was conducted for several parameters: cost of biomass, investment costs in CHP systems and combined change in biomass and technology cost.

  5. Comparative analysis of organizational obstacles to CHP/DH

    Energy Technology Data Exchange (ETDEWEB)

    Ruedig, W.

    1986-04-01

    An explanation is given of the vast differences between the countries of Western Europe in the adoption of combined heat and power (CHP) for district heating (DH). The history of this technology in FR Germany and the UK is analysed in detail, and experiences of other countries are reviewed. It is concluded that the over centralization of the electricity supply industry is a major obstacle in the widespread adoption of combined heat and power and district heating. Significant improvements of energy efficiency would thus require organizational reforms giving greater powers to local energy organizations. This, however, should not imply total decentralization of energy supply. Instead, a two-tier system is proposed in which central organizations remain responsible for bulk supply but where local or regional bodies are in charge of all gas, electricity and heat supplies to the final user.

  6. Increased power to heat ratio of small scale CHP plants using biomass fuels and natural gas

    International Nuclear Information System (INIS)

    Savola, Tuula; Fogelholm, Carl-Johan

    2006-01-01

    In this paper, we present a systematic study of process changes for increased power production in 1-20 MW e combined heat and power (CHP) plants. The changes are simulated, and their economic feasibility evaluated by using existing small scale CHP case plants. Increasing power production in decentralised CHP plants that operate according to a certain heat demand could reduce the fuel consumption and CO 2 emissions per power unit produced and improve the feasibility of CHP plant investments. The CHP plant process changes were simulated under design and off design conditions and an analysis of power and heat production, investment costs and CO 2 emissions was performed over the whole annual heat demand. The results show that using biomass fuels, there are profitable possibilities to increase the current power to heat ratios, 0.23-0.48, of the small scale CHP plants up to 0.26-0.56, depending on the size of the plant. The profitable changes were a two stage district heat exchanger and the addition of a steam reheater and a feed water preheater. If natural gas is used as an additional fuel, the power to heat ratio may be increased up to 0.35-0.65 by integrating a gas engine into the process. If the CO 2 savings from the changes are also taken into account, the economic feasibility of the changes increases. The results of this work offer useful performance simulation and investment cost knowledge for the development of more efficient and economically feasible small scale CHP processes

  7. CHP in Switzerland from 1990 to 1998. Thermal power generation including combined heat and power

    International Nuclear Information System (INIS)

    Kaufmann, U.

    1999-01-01

    The results of a study on thermal power generation in Switzerland show that combined heat and power (CHP) systems have grown rapidly. Statistics are presented on the development of CHP-based power and also on thermal power stations without waste heat usage. Figures are given for gas and steam turbine installations, combined gas and steam turbine stations and motor-driven CHP units. Power production is categorised, separating small and large (over 1 Megawatt electrical) power generation facilities. On-site, distributed power generation at consumers' premises and the geographical distribution of plant is described

  8. Reactive power control with CHP plants - A demonstration

    DEFF Research Database (Denmark)

    Nyeng, Preben; Østergaard, Jacob; Andersen, Claus A.

    2010-01-01

    power rating of 7.3 MW on two synchronous generators. A closed-loop control is implemented, that remote controls the CHP plant to achieve a certain reactive power flow in a near-by substation. The solution communicates with the grid operator’s existing SCADA system to obtain measurements from...... lines to underground cables has changed the reactive power balance, and third, the TSO has introduced restrictions in the allowed exchange of reactive power between the transmission system and distribution grids (known as the Mvar-arrangement). The demonstration includes a CHP plant with an electric......In this project the potential for ancillary services provision by distributed energy resources is investigated. Specifically, the provision of reactive power control by combined heat and power plants is examined, and the application of the new standard for DER communication systems, IEC 61850...

  9. New CHP plant for a rubber products manufacturer

    International Nuclear Information System (INIS)

    Vila, R.; Martí, C.

    2016-01-01

    At the end of 2014 the company Industrias de Hule Galgo decided to undertake the installation project of an efficient CHP plant for its production plant, with the aim of bringing down energy costs and improving the company’s competitive position in the market. The new plant has already started its first operational phase. The project has comprised the installation of a single cycle with gas-powered gensets providing a total electrical capacity of 6.6 MW. This provides the necessary thermal oil for the production plant; covers 100% of the electrical power consumed by the industrial complex; and also generates cooling water, giving improved production capacity by supercooling the extrusion system. To execute these works, Industrias de Hule Galgo contracted the services of engineering company AESA to provide the engineering, procurement and construction of the CHP plant. (Author)

  10. The status of development of energy technologies to reduce greenhousegas emissions in Finland

    International Nuclear Information System (INIS)

    Salokoski, P.; Aeijaelae, M.

    1997-01-01

    In Finland there is a versatile energy production in which the combined heat and power production (CHP) plays a remarkable role. In the total power supply, the CHP production accounts for about 30 %. Biomass is also widely used. In all fuels, wood and peat accounts for 21 %, the largest share in Western Countries. The utilization of wood based fuels is also remarkable, about 16 %. The high rate of CHP production and the utilization of biomass have contributed to the lower CO 2 -emissions. In future, fossil fuels will probably be utilized in larger volumes because there are limits to the increasing of the capacity of the CHP production, biomass utilization, nuclear power and hydro power. Consequently added use of fossil fuels will increase the CO 2 -emissions. The methods with most potential in reducing CO 2 -emissions in Finland are an increased use of biomass, an expanding production of nuclear power, a larger number of CHP plants and an increase in the utilization of natural gas. Other important methods with a minor effect are technologies which increase the power/heat ratio or the efficiency. These technologies include the IGCC-technologies, the gasification-diesel or the diesel technology in general with small heat loads. These technologies will grow in importance if the substitutive fuel is biomass. Most of the technologies mentioned above are in use in Finland and, in our experience, can be recommended to other countries. Viable commercial technologies are, for example, the CHP techniques in both district heating and industrial processes, various small-scale power plants integrated to CHP or condensate power plants, the fluidized-bed technology in power production or heat production only the diesel technology; the cofiring of biomass and coal as well as the harvesting, handling, drying and utilization technologies of biomass. Technologies still in the developmental stage include the IGCC-technology for biomasses, the gasification-diesel, and the production

  11. The Pseudomonas aeruginosa Chp Chemosensory System Regulates Intracellular cAMP Levels by Modulating Adenylate Cyclase Activity

    Science.gov (United States)

    Fulcher, Nanette B.; Holliday, Phillip M.; Klem, Erich; Cann, Martin J.; Wolfgang, Matthew C.

    2010-01-01

    Summary Multiple virulence systems in the opportunistic pathogen Pseudomonas aeruginosa are regulated by the second messenger signaling molecule adenosine 3’, 5’-cyclic monophosphate (cAMP). Production of cAMP by the putative adenylate cyclase enzyme CyaB represents a critical control point for virulence gene regulation. To identify regulators of CyaB, we screened a transposon insertion library for mutants with reduced intracellular cAMP. The majority of insertions resulting in reduced cAMP mapped to the Chp gene cluster encoding a putative chemotaxis-like chemosensory system. Further genetic analysis of the Chp system revealed that it has both positive and negative effects on intracellular cAMP and that it regulates cAMP levels by modulating CyaB activity. The Chp system was previously implicated in the production and function of type IV pili (TFP). Given that cAMP and the cAMP-dependent transcriptional regulator Vfr control TFP biogenesis gene expression, we explored the relationship between cAMP, the Chp system and TFP regulation. We discovered that the Chp system controls TFP production through modulation of cAMP while control of TFP-dependent twitching motility is cAMP-independent. Overall, our data define a novel function for a chemotaxis-like system in controlling cAMP production and establish a regulatory link between the Chp system, TFP and other cAMP-dependent virulence systems. PMID:20345659

  12. Changes of the thermodynamic parameters in failure conditions of the micro-CHP cycle

    Science.gov (United States)

    Matysko, Robert; Mikielewicz, Jarosław; Ihnatowicz, Eugeniusz

    2014-03-01

    The paper presents the calculations for the failure conditions of the ORC (organic Rankine cycle) cycle in the electrical power system. It analyses the possible reasons of breakdown, such as the electrical power loss or the automatic safety valve failure. The micro-CHP (combined heat and power) system should have maintenance-free configuration, which means that the user does not have to be acquainted with all the details of the ORC system operation. However, the system should always be equipped with the safety control systems allowing for the immediate turn off of the ORC cycle in case of any failure. In case of emergency, the control system should take over the safety tasks and protect the micro-CHP system from damaging. Although, the control systems are able to respond quickly to the CHP system equipped with the inertial systems, the negative effects of failure are unavoidable and always remain for some time. Moreover, the paper presents the results of calculations determining the inertia for the micro-CHP system of the circulating ORC pump, heat removal pump (cooling condenser) and the heat supply pump in failure conditions.

  13. Changes of the thermodynamic parameters in failure conditions of the micro-CHP cycle

    Directory of Open Access Journals (Sweden)

    Matysko Robert

    2014-03-01

    Full Text Available The paper presents the calculations for the failure conditions of the ORC (organic Rankine cycle cycle in the electrical power system. It analyses the possible reasons of breakdown, such as the electrical power loss or the automatic safety valve failure. The micro-CHP (combined heat and power system should have maintenance-free configuration, which means that the user does not have to be acquainted with all the details of the ORC system operation. However, the system should always be equipped with the safety control systems allowing for the immediate turn off of the ORC cycle in case of any failure. In case of emergency, the control system should take over the safety tasks and protect the micro-CHP system from damaging. Although, the control systems are able to respond quickly to the CHP system equipped with the inertial systems, the negative effects of failure are unavoidable and always remain for some time. Moreover, the paper presents the results of calculations determining the inertia for the micro-CHP system of the circulating ORC pump, heat removal pump (cooling condenser and the heat supply pump in failure conditions.

  14. Environmental sustainability analysis of UK whole-wheat bioethanol and CHP systems

    International Nuclear Information System (INIS)

    Martinez-Hernandez, Elias; Ibrahim, Muhammad H.; Leach, Matthew; Sinclair, Phillip; Campbell, Grant M.; Sadhukhan, Jhuma

    2013-01-01

    The UK whole-wheat bioethanol and straw and DDGS-based combined heat and power (CHP) generation systems were assessed for environmental sustainability using a range of impact categories or characterisations (IC): cumulative primary fossil energy (CPE), land use, life cycle global warming potential over 100 years (GWP 100 ), acidification potential (AP), eutrophication potential (EP) and abiotic resources use (ARU). The European Union (EU) Renewable Energy Directive's target of greenhouse gas (GHG) emission saving of 60% in comparison to an equivalent fossil-based system by 2020 seems to be very challenging for stand-alone wheat bioethanol system. However, the whole-wheat integrated system, wherein the CHP from the excess straw grown in the same season and from the same land is utilised in the wheat bioethanol plant, can be demonstrated for potential sustainability improvement, achieving 85% emission reduction and 97% CPE saving compared to reference fossil systems. The net bioenergy from this system and from 172,370 ha of grade 3 land is 12.1 PJ y −1 providing land to energy yield of 70 GJ ha −1 y −1 . The use of DDGS as an animal feed replacing soy meal incurs environmental emission credit, whilst its use in heat or CHP generation saves CPE. The hot spots in whole system identified under each impact category are as follows: bioethanol plant and wheat cultivation for CPE (50% and 48%), as well as for ARU (46% and 52%). EP and GWP 100 are distributed among wheat cultivation (49% and 37%), CHP plant (26% and 30%) and bioethanol plant (25%, and 33%), respectively. -- Highlights: ► UK whole-wheat energy system can achieve 85% GHG emission reduction. ► UK whole-wheat energy system can achieve 97% primary energy saving. ► The land to energy yield of the UK whole-wheat system is 70 GJ ha −1 y −1 . ► Fertiliser production is the hotspot. ► DDGS and straw-based CHP system integration to wheat bioethanol is feasible

  15. Research, Development and Demonstration of Micro-CHP Systems for Residential Applications - Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Robert A. Zogg

    2011-03-14

    The objective of the Micro-CHP Phase I effort was to develop a conceptual design for a Micro-CHP system including: Defining market potential; Assessing proposed technology; Developing a proof-of-principle design; and Developing a commercialization strategy. TIAX LLC assembled a team to develop a Micro-CHP system that will provide electricity and heating. TIAX, the contractor and major cost-share provider, provided proven expertise in project management, prime-mover design and development, appliance development and commercialization, analysis of residential energy loads, technology assessment, and market analysis. Kohler Company, the manufacturing partner, is a highly regarded manufacturer of standby power systems and other residential products. Kohler provides a compellingly strong brand, along with the capabilities in product development, design, manufacture, distribution, sales, support, service, and marketing that only a manufacturer of Kohler's status can provide. GAMA, an association of appliance and equipment manufacturers, provided a critical understanding of appliance commercialization issues, including regulatory requirements, large-scale market acceptance issues, and commercialization strategies. The Propane Education & Research Council, a cost-share partner, provided cost share and aided in ensuring the fuel flexibility of the conceptual design. Micro-CHP systems being commercialized in Europe and Japan are generally designed to follow the household thermal load, and generate electricity opportunistically. In many cases, any excess electricity can be sold back to the grid (net metering). These products, however, are unlikely to meet the demands of the U.S. market. First, these products generally cannot provide emergency power when grid power is lost--a critical feature to market success in the U.S. Even those that can may have insufficient electric generation capacities to meet emergency needs for many U.S. homes. Second, the extent to which net

  16. Contribution of wind power and CHP to exports from Western Denmark during 2000-2004

    International Nuclear Information System (INIS)

    Mignard, D.; Harrison, G.P.; Pritchard, C.L.

    2007-01-01

    The experience of Denmark is used by the United Kingdom's anti-wind lobby to demonstrate that intermittency and inaccuracies in wind forecasting make wind power ineffective and expensive. A further assertion is that most of the power is 'unwanted' since up to 80% of it is exported. Here, available data for Danish energy production for 2000-2004 is used to assess the link between wind generation and exports and test the validity of these claims. Net exports in Western Denmark showed good correlation with wind production. However, they were more significantly correlated with the production from local combined heat and power (CHP) plants. In order to test the 80% export claim, a simple technique was devised to correlate and rank hourly net exports and generation from wind and local CHP. In the case where net exports were primarily attributed to (or blamed on) wind, 44-84% of annual wind production was deemed to be exported, with wind 'causing' 57-79% of net annual exports. For this extreme scenario, the percentage values are in line with those of critics. However, under the opposite extreme scenario in which exports are attributed to local CHP, 77-94% of exports were caused by CHP and only 4-32% of wind production was exported. Overall, this study shows that there is some degree of correlation between net exports and wind power, but that the claim that 80% is exported is unwarranted since it ignores the demonstrably stronger influence of local CHP. (author)

  17. An assessment of the economics and market opportunities for municipal solid waste fired combined heat and power applications

    International Nuclear Information System (INIS)

    Frith, D.P.; Toothill, S.J.

    1995-01-01

    This study examines the issues surrounding the development of CHP applications of MSW combustion plants, and in particular the opportunities for new projects. The specific objectives of the study were as follows: (i) To assess the economics of CHP applications of MSW plant at three scales of operation, with waste throughputs of 400,000, 200,000 and 100,000 tonnes per year. (ii) To report on the market opportunities and barriers to implementation for such applications in the UK. (iii) To report on the commercial development of three such applications (case studies) in the UK and to examine the environmental benefits of such applications, with particular respect to greenhouse gas emissions. (author)

  18. Micro scale CHP based on biomass intelligent heat transfer with thermoelectric generators

    Energy Technology Data Exchange (ETDEWEB)

    Moser, W.; Aigenbauer, S.; Heckmann, M.; Friedl, G. (Austrian Bioenergy Centre GmbH, Wieselburg (Austria)); Hofbauer, H. (Institute of Chemical Engineering, Vienna University of Technology (Austria))

    2007-07-01

    Pellet burners need auxiliary electrical power to provide CO{sub 2} balanced heat in a comfortable and environment friendly way. The idea is to produce this and some extra electricity within the device in order to save resources and to gain operation reliability and independency. An option for micro scale CHP is the usage of thermoelectric generators (TEGs). They allow direct conversion of heat into electrical power. They have the advantage of a long maintenance free durability and noiseless operation without moving parts or any working fluid. The useful heat remains almost unaffected and can still be used for heating. TEGs are predestined for the use in micro scale CHP based on solid biomass. In this paper the first results from the fully integrated prototype are presented. The performance of the TEG was observed for different loads and operating conditions in order to realise an optimised micro scale CHP based on solid biomass. (orig.)

  19. Optimal designs of small CHP plants in a market with fluctuating electricity prices

    DEFF Research Database (Denmark)

    Lund, Henrik; Andersen, A.N.

    2005-01-01

    The paper presents the Danish experince with methodologies and software tools, which have been used to design investment and operation strategies for almost all small CHP plants in Denmark during the decade of the triple tariff.......The paper presents the Danish experince with methodologies and software tools, which have been used to design investment and operation strategies for almost all small CHP plants in Denmark during the decade of the triple tariff....

  20. Feasibility study of a Thermo-Photo-Voltaic system for CHP application in residential buildings

    International Nuclear Information System (INIS)

    Bianchi, Michele; Ferrari, Claudio; Melino, Francesco; Peretto, Antonio

    2012-01-01

    Highlights: ► The profitability of Thermo-Photo-Voltaic generator systems for a single-family dwelling is analyzed. ► Heat and electricity load profiles depending on hour of the day are considered for an entire year. ► The effect of Thermo-Photo-Voltaic generator size is evaluated for different household utilities. ► Results allow to identify the conditions for the energetic and economic convenience of Thermo-Photo-Voltaic system. -- Abstract: The growing demand of energy coupled with an increasing attention to the environmental impact have forced, in the last decades, toward the study and the development of new strategies in order to reduce primary energy consumptions. The cogeneration (CHP) and the on-site generation (also known as distributed generation) could be the key strategy to achieve this goal; CHP systems allow to reduce the fuel consumption and pollutant emissions (in particular the greenhouse gases) compared to separate generation; moreover on-site-generation contributes to the reduction of the energy which is lost in electricity transmission, and increases the security in the energy supply. In this scenario the Thermo-Photo-Voltaic generation (TPV) is obtaining an increasing attention; TPV is a system to convert into electrical energy the radiation emitted from an artificial heat source (i.e. the combustion of fuel) by the use of photovoltaic cells. A domestic gas furnace based on this technology can provide the entire thermal need of an apartment and can also contributes to satisfy the electrical demand. The aim of this study is the understanding of the behavior of a TPV in CHP application in case of residential buildings, under both the energetic and economical point of view; in particular a parametrical analysis is developed and discussed varying the TPV electrical efficiency, the thermal request and the apartment typology.

  1. Technological opportunities and paths of development

    DEFF Research Database (Denmark)

    Plichta, Kirsten

    1993-01-01

    the outcome of different firms development effort may also help shape a path at the industry level. This may be because the criteria by which the market selects between the different product may to some extent be anticipated by the developing firms or because the criteria by which the market select betwee...... technological knowledge, their production, development and other routines as well prior investments in products and production equipment play an important role with regard to the technological opportunities that firms' identify and select for development. 3) Because history matters and because firms are bounded...... in the industry. 6) It is argued that such paths of incremental improvement at the industry level may be an outcome of a) the dynamics that produce the technological opportunities; b) the institutions that govern decisions and expectations and c) the criteria by which the chooses between different firms...

  2. Designing Opportunities for Transformation with Emerging Technologies

    Science.gov (United States)

    Veletsianos, George

    2011-01-01

    In this article, the author argues that technology use in education has focused on combating instructional problems and inefficiencies. While technology use for such purposes is viable and important, the author proposes that practitioners and researchers in this field utilize emerging technologies as a means to provide opportunities for personally…

  3. Optimal integrated sizing and planning of hubs with midsize/large CHP units considering reliability of supply

    International Nuclear Information System (INIS)

    Moradi, Saeed; Ghaffarpour, Reza; Ranjbar, Ali Mohammad; Mozaffari, Babak

    2017-01-01

    Highlights: • New hub planning formulation is proposed to exploit assets of midsize/large CHPs. • Linearization approaches are proposed for two-variable nonlinear CHP fuel function. • Efficient operation of addressed CHPs & hub devices at contingencies are considered. • Reliability-embedded integrated planning & sizing is formulated as one single MILP. • Noticeable results for costs & reliability-embedded planning due to mid/large CHPs. - Abstract: Use of multi-carrier energy systems and the energy hub concept has recently been a widespread trend worldwide. However, most of the related researches specialize in CHP systems with constant electricity/heat ratios and linear operating characteristics. In this paper, integrated energy hub planning and sizing is developed for the energy systems with mid-scale and large-scale CHP units, by taking their wide operating range into consideration. The proposed formulation is aimed at taking the best use of the beneficial degrees of freedom associated with these units for decreasing total costs and increasing reliability. High-accuracy piecewise linearization techniques with approximation errors of about 1% are introduced for the nonlinear two-dimensional CHP input-output function, making it possible to successfully integrate the CHP sizing. Efficient operation of CHP and the hub at contingencies is extracted via a new formulation, which is developed to be incorporated to the planning and sizing problem. Optimal operation, planning, sizing and contingency operation of hub components are integrated and formulated as a single comprehensive MILP problem. Results on a case study with midsize CHPs reveal a 33% reduction in total costs, and it is demonstrated that the proposed formulation ceases the need for additional components/capacities for increasing reliability of supply.

  4. Potential for CHP in Africa

    International Nuclear Information System (INIS)

    Yameogo, Gabriel

    2000-01-01

    It is suggested that many industries in Africa could benefit from biomass-fired cogeneration so long as the correct structures and learning processes are put in place. The article discusses Africa's energy background and gives figures for generation sources and consumption. A profile of Sudan and its energy needs is presented. It is argued that although some barriers do exist, a move to cogeneration is essential. CHP should be particularly attractive for industries able to use thermal energy for drying, heating and cooling: typical areas would be pharmaceutical and chemical plants, textile factories, cement works and steel mills

  5. Research Opportunities for Fischer-Tropsch Technology

    International Nuclear Information System (INIS)

    Jackson, Nancy B.

    1999-01-01

    Fischer-Tropsch synthesis was discovered in Germany in the 1920's and has been studied by every generation since that time. As technology and chemistry, in general, improved through the decades, new insights, catalysts, and technologies were added to the Fischer-Tropsch process, improving it and making it more economical with each advancement. Opportunities for improving the Fischer-Tropsch process and making it more economical still exist. This paper gives an overview of the present Fischer-Tropsch processes and offers suggestions for areas where a research investment could improve those processes. Gas-to-liquid technology, which utilizes the Fischer Tropsch process, consists of three principal steps: Production of synthesis gas (hydrogen and carbon monoxide) from natural gas, the production of liquid fuels from syngas using a Fischer-Tropsch process, and upgrading of Fischer-Tropsch fuels. Each step will be studied for opportunities for improvement and areas that are not likely to reap significant benefits without significant investment

  6. Water Technology Innovation: 10 Market Opportunities

    Science.gov (United States)

    The Water Technology Innovation Blueprint offers an overview of market opportunities that include conserving and recovering energy, recovering nutrients, improving water infrastructure, reducing costs for water monitoring, and improving water quality.

  7. Exploring Challenges and Opportunities for Eco-Feedback Technology

    DEFF Research Database (Denmark)

    Verdezoto, Nervo

    This position paper explores challenges and opportunities for eco-feedback technology. Drawing on two design cases, I discuss the importance of supporting active participation as well as the articulation of work in everyday practices to facilitate reduction of consumption.......This position paper explores challenges and opportunities for eco-feedback technology. Drawing on two design cases, I discuss the importance of supporting active participation as well as the articulation of work in everyday practices to facilitate reduction of consumption....

  8. Micro Cooling, Heating, and Power (Micro-CHP) and Bio-Fuel Center, Mississippi State University

    Energy Technology Data Exchange (ETDEWEB)

    Louay Chamra

    2008-09-26

    Initially, most micro-CHP systems will likely be designed as constant-power output or base-load systems. This implies that at some point the power requirement will not be met, or that the requirement will be exceeded. Realistically, both cases will occur within a 24-hour period. For example, in the United States, the base electrical load for the average home is approximately 2 kW while the peak electrical demand is slightly over 4 kW. If a 3 kWe micro- CHP system were installed in this situation, part of the time more energy will be provided than could be used and for a portion of the time more energy will be required than could be provided. Jalalzadeh-Azar [6] investigated this situation and presented a comparison of electrical- and thermal-load-following CHP systems. In his investigation he included in a parametric analysis addressing the influence of the subsystem efficiencies on the total primary energy consumption as well as an economic analysis of these systems. He found that an increase in the efficiencies of the on-site power generation and electrical equipment reduced the total monthly import of electricity. A methodology for calculating performance characteristics of different micro-CHP system components will be introduced in this article. Thermodynamic cycles are used to model each individual prime mover. The prime movers modeled in this article are a spark-ignition internal combustion engine (Otto cycle) and a diesel engine (Diesel cycle). Calculations for heat exchanger, absorption chiller, and boiler modeling are also presented. The individual component models are then linked together to calculate total system performance values. Performance characteristics that will be observed for each system include maximum fuel flow rate, total monthly fuel consumption, and system energy (electrical, thermal, and total) efficiencies. Also, whether or not both the required electrical and thermal loads can sufficiently be accounted for within the system

  9. Grid Interaction of MV-connected CHP-plants during disturbances

    NARCIS (Netherlands)

    Coster, E.J.; Myrzik, J.M.A.; Kling, W.L.

    2009-01-01

    Nowadays the amount of distributed generation (DG) units is increasing rapidly. Most dominant are combined heat and power (CHP) plants and wind turbines. At this moment, in most systems, there are no requirements defined for short-circuit behavior of such generators connected to the medium voltage

  10. Fuel cell power plants for decentralised CHP applications; Brennstoffzellen-Kraftwerke fuer dezentrale KWK-Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Ohmer, Martin; Mattner, Katja [FuelCell Energy Solutions GmbH, Dresden (Germany)

    2015-06-01

    Fuel cells are the most efficient technology to convert chemical energy into electricity and heat and thus they could have a major impact on reducing fuel consumption, CO{sub 2} and other emissions (NO{sub x}, SO{sub x} and particulate matter). Fired with natural or biogas and operated with an efficiency of up to 49 % a significant reduction of fuel costs can be achieved in decentralised applications. Combined heat and power (CHP) configurations add value for a wide range of industrial applications. The exhaust heat of approximately 400 C can be utilised for heating purposes and the production of steam. Besides, it can be also fed directly to adsorption cooling systems. With more than 110 fuel cell power plants operating worldwide, this technology is a serious alternative to conventional gas turbines or gas engines.

  11. Validation of a HT-PEMFC stack for CHP applications

    Energy Technology Data Exchange (ETDEWEB)

    Pasupathi, S.; Ulleberg, Oe. [Western Cape Univ. (South Africa). HySA Systems, SAIAMC; Bujlo, P. [Western Cape Univ. (South Africa). HySA Systems, SAIAMC; Electrotechnical Institute Wroclaw Division (Poland); Scholta, J. [Centre for Solar Energy and Hydrogen Research (ZSW) (Germany)

    2010-07-01

    Fuel cell systems are very attractive for stationary co-generation applications as they can produce heat and electricity efficiently in a decentralized and environmentally friendly manner. PEMFC stacks operating at temperatures above 120 C, specifically in the range of 140-180 C, are ideal for co-generation purposes. In this study, preliminary results from a HTPEMFC stack designed for CHP applications is presented and discussed. A short, five-cell, HT-PEMFC stack was assembled with Celtec- P-2100 MEAs and validated in terms of electrical performance. The stack was operated with hydrogen and air at 160 C and the utilization curves for anode and cathode were recorded for a wide range of gas utilization at a current density of 0.52 A/cm{sup 2}. The current voltage characteristic was measured at optimal utilization values at 160 C. A 1kW stack is assembled and is currently being validated for its performance under various operating conditions for use in CHP applications. (orig.)

  12. Micro-CHP for self-supply in the housing industry. Profitability and system integration; Mikro-BHKW zur Eigenversorgung in der Wohnungswirtschaft. Wirtschaftlichkeit und Systemintegration

    Energy Technology Data Exchange (ETDEWEB)

    Hollinger, Raphael; Buettner, Markus; Erge, Thomas; Wille-Haussmann, Bernhard; Wittwer, Christof [Fraunhofer-Institut fuer Solare Energiesysteme ISE, Freiburg (Germany)

    2011-07-01

    The use of micro-CHP units in multifamily buildings is particularly profitable if the produced electricity - coupled with the thermal energy production - is used directly by the operator or sold locally. To maximize the share of own consumption the use of thermal storages to operate the CHP at times of high electrical demand is necessary. By conducting a field test it is shown that the share of own consumption can be increased by predictive control of CHP with thermal storages. The approach increases the profitability of the CHP operation under today's conditions as well as the system integration of the CHP electricity. (orig.)

  13. Energetic and environmental performance of three biomass upgrading processes integrated with a CHP plant

    International Nuclear Information System (INIS)

    Kohl, Thomas; Laukkanen, Timo; Järvinen, Mika; Fogelholm, Carl-Johan

    2013-01-01

    Highlights: ► We simulate CHP-integrated production of wood pellets, torrefied wood pellets and pyrolysis slurry. ► Integration increases operation hours and district heat output by up to 38% and 22%. ► Additionally installed equipment reduces yearly power generation by up to 7%. ► Wood pellet production performs best energetically and environmentally. ► Integrated concepts substantially reduce fuel consumption and CO 2 emissions. - Abstract: In order to react on future expected increased competition on restricted biomass resources, communal combined heat and power (CHP) plants can be integrated with biomass upgrading processes that add valuable products to the portfolio. In this paper, outgoing from a base case, the retrofit integration of production of wood pellets (WPs), torrefied wood pellets (TWPs) and wood fast pyrolysis slurry (PS) with an existing wood-fired CHP plant was simulated. Within the integration concept, free boiler capacity during times of low district heat demands is used to provide energy for the upgrading processes. By detailed part-load modelling, critical process parameters are discussed. With help of a multiperiod model of the heat duration curve, the work further shows the influence of the integration on plant operating hours, electricity production and biomass throughput. Environmental and energetic performance is assessed according to European standard EN 15603 and compared to the base case as well as to stand-alone production in two separate units. The work shows that all three integration options are well possible within the operational limits of the CHP plant. Summarising, this work shows that integration of WP, TWP and PS production from biomass with a CHP plant by increasing the yearly boiler workload leads to improved primary energy efficiency, reduced CO 2 emissions, and, when compared to stand-alone production, also to substantial fuel savings

  14. Technician Career Opportunities in Engineering Technology.

    Science.gov (United States)

    Engineers' Council for Professional Development, New York, NY.

    Career opportunities for engineering technicians are available in the technologies relating to air conditioning, heating, and refrigeration, aviation and aerospace, building construction, chemical engineering, civil engineering, electrical engineering, electronics, industrial engineering, instrumentation, internal combustion engines, mechanical…

  15. Anti-diabetic effect of Cyclo-His-Pro (CHP)-enriched yeast ...

    African Journals Online (AJOL)

    Anti-diabetic effect of Cyclo-His-Pro (CHP)-enriched yeast hydrolysate in ... The present study was designed to investigate the hypoglycemic effects of the daily ... in the area under curve (AUC) value of YH supplemented groups as compared ...

  16. IVO`s CHP know-how: experience, inventions, patents

    Energy Technology Data Exchange (ETDEWEB)

    Aeijaelae, M.; Ohtonen, V. [ed.

    1997-11-01

    IVO can justly claim mastery in the co-generation of district heat and electricity - CHP. As well as looking at the issue from the viewpoint of planners, builders and operators, IVO`s engineers also view power plants through the eyes of the product developer and inventor. This approach has resulted in successful power plant configurations, inventions and patents and visions

  17. Energy versus economic effectiveness in CHP (combined heat and power) applications: Investigation on the critical role of commodities price, taxation and power grid mix efficiency

    International Nuclear Information System (INIS)

    Comodi, Gabriele; Rossi, Mosè

    2016-01-01

    Starting from PES (primary energy saving) and CSR (cost saving ratio) definitions the work pinpoints a “grey area” in which CHP (combined heat and power – cogeneration) units can operate with profit and negative PES. In this case, CHP can be profitably operated with lower efficiency with respect to separate production of electrical and thermal energy. The work defines the R-index as the ratio between the cost of fuel and electricity. The optimal value of R-index for which CHP units operate with both environmental benefit (PES > 0) and economic profitability (CSR > 0) is the reference value of electrical efficiency, η_e_l_-_r_e_f, of separate production (national power grid mix). As a consequence, optimal R-index varies from Country to Country. The work demonstrates that the value of R corresponds to the minimum value of electrical efficiency for which any power generator operates with profit. The paper demonstrates that, with regard to the profitability of cogeneration, the ratio between the cost of commodities is more important than their absolute value so that different taxation of each commodity can be a good leverage for energy policy makers to promote high efficiency cogeneration, even in the absence of an incentive mechanism. The final part of the study presents an analysis on micro-CHP technologies payback times for different European Countries. - Highlights: • Investigation of the grey area where CHP profitably operates also with negative PES. • Study starts from definition of primary energy saving PES and cost saving ratio CSR. • Definition of the R-index as the ratio between the cost of fuel and electricity. • The optimal value of R for which the “grey area” disappears is R = η_e_l_-_r_e_f. • R is also the value of η_e_l for which any electric generator profitably operates.

  18. Crystallization and preliminary crystallographic analysis of the human calcineurin homologous protein CHP2 bound to the cytoplasmic region of the Na+/H+ exchanger NHE1

    International Nuclear Information System (INIS)

    Ben Ammar, Youssef; Takeda, Soichi; Sugawara, Mitsuaki; Miyano, Masashi; Mori, Hidezo; Wakabayashi, Shigeo

    2005-01-01

    Crystallization of the human CHP2–NHE1 binding domain complex. Calcineurin homologous protein (CHP) is a Ca 2+ -binding protein that directly interacts with and regulates the activity of all plasma-membrane Na + /H + -exchanger (NHE) family members. In contrast to the ubiquitous isoform CHP1, CHP2 is highly expressed in cancer cells. To understand the regulatory mechanism of NHE1 by CHP2, the complex CHP2–NHE1 (amino acids 503–545) has been crystallized by the sitting-drop vapour-diffusion method using PEG 3350 as precipitant. The crystals diffract to 2.7 Å and belong to a tetragonal space group, with unit-cell parameters a = b = 49.96, c = 103.20 Å

  19. Characterization of ultrafine and fine particles from CHP Plants

    Energy Technology Data Exchange (ETDEWEB)

    2009-08-15

    Samples of particles collected at CHP plants in the project 'Survey of emissions from CHP Plants' have been analysed in this project to give information on the morphology and chemical composition of individual particle size classes. The objective of this project was to characterize ultrafine and fine particles emitted to the atmosphere from Danish CHP plants. Nine CHP plants were selected in the Emission Survey Project as being representative for the different types of CHP plants operating in Denmark: 1) Three Waste-to Energy (WTE) plants. 2) Three biomass fired (BM) plants (two straw fired, one wood/saw dust fired). 3) Two gas fired (GF) plants (one natural gas, one landfill gas fired). 4) One gasoil (GO) fired plant. At the WTE and BM plants, various types of emission control systems implemented. The results from these plants represent the composition and size distribution of combustion particles that are emitted from the plants emission control systems. The measured emissions of particles from the waste-to-energy plants WTE1-3 are generally very low. The number and mass concentrations of ultrafine particles (PM{sub 0.1}) were particularly low in the flue gas from WTE2 and WTE3, where bag filters are used for the reduction of particle emissions. The EDX analysis of particles from the WTE plants indicates that the PM{sub 0.1} that penetrates the ECS at WTE can contain high fractions of metals such as Fe, Mn and Cu. The SEM analysis of particles from WTE1-3 showed that the particles were generally porous and irregular in shape. The concentrations of particles in the flue gas from the biomass plants were generally higher than found for the WTE plants. The time series results showed that periodical, high concentration peaks of PM emissions occur from BM1 and BM2. The chemical composition of the particles emitted from the three biomass plants is generally dominated by C, O and S, and to some extend also Fe and Si. A high amount of Cu was found in selected

  20. Multi-Objective Analysis of a CHP Plant Integrated Microgrid in Pakistan

    Directory of Open Access Journals (Sweden)

    Asad Waqar

    2017-10-01

    Full Text Available In developing countries like Pakistan, the capacity shortage (CS of electricity is a critical problem. The frequent natural gas (NG outages compel consumers to use electricity to fulfill the thermal loads, which ends up as an increase in electrical load. In this scenario, the authors have proposed the concept of a combined heat & power (CHP plant to be a better option for supplying both electrical and thermal loads simultaneously. A CHP plant-based microgrid comprising a PV array, diesel generators and batteries (operating in grid-connected as well as islanded modes has been simulated using the HOMER Pro software. Different configurations of distributed generators (DGs with/without batteries have been evaluated considering multiple objectives. The multiple objectives include the minimization of the total net present cost (TNPC, cost of generated energy (COE and the annual greenhouse gas (GHG emissions, as well as the maximization of annual waste heat recovery (WHR of thermal units and annual grid sales (GS. These objectives are subject to the constraints of power balance, battery operation within state of charge (SOC limits, generator operation within capacity limits and zero capacity shortage. The simulations have been performed on six cities including Islamabad, Lahore, Karachi, Peshawar, Quetta and Gilgit. The simulation results have been analyzed to find the most optimal city for the CHP plant integrated microgrid.

  1. Economic, energy and GHG emissions performance evaluation of a WhisperGen Mk IV Stirling engine μ-CHP unit in a domestic dwelling

    International Nuclear Information System (INIS)

    Conroy, G.; Duffy, A.; Ayompe, L.M.

    2014-01-01

    Highlights: • The performance of a Stirling engine MK IV micro-CHP unit was evaluated in a domestic dwelling in Ireland. • The performance of the micro-CHP was compare to that of a condensing gas boiler. • The micro-CHP unit resulted in an annual cost saving of €180 compared to the condensing gas boiler. • Electricity imported from the grid decreased by 20.8% while CO 2 emissions decreased by 16.1%. • The micro-CHP unit used 2889 kW h of gas more than the condensing gas boiler during one year of operation. - Abstract: This paper presents an assessment of the energy, economic and greenhouse gas emissions performances of a WhisperGen Mk IV Stirling engine μ-CHP unit for use in a conventional house in the Republic of Ireland. The energy performance data used in this study was obtained from a field trial carried out in Belfast, Northern Ireland during the period June 2004–July 2005 by Northern Ireland Electricity and Phoenix Gas working in collaboration with Whispertech UK. A comparative performance analysis between the μ-CHP unit and a condensing gas boiler revealed that the μ-CHP unit resulted in an annual cost saving of €180 with an incremental simple payback period of 13.8 years when compared to a condensing gas boiler. Electricity imported from the grid decreased by 20.8% while CO 2 emissions decreased by 16.1%. The μ-CHP unit used 2889 kW h of gas more than the condensing gas boiler

  2. EPA's Air Quality Rules for Reciprocating Internal Combustion Engines (RICE) and their Application to CHP (Webinar) – June 24, 2014

    Science.gov (United States)

    This webinar discusses the effect of EPA's air quality regulations on CHP facilities and stationary RICE, and describes how CHP systems can comply with air quality regulations by using stationary RICE.

  3. Can Technology Help Promote Equality of Educational Opportunities?

    Science.gov (United States)

    Jacob, Brian; Berger, Dan; Hart, Cassandra; Loeb, Susanna

    2016-01-01

    This chapter assesses the potential for several prominent technological innovations to promote equality of educational opportunities. We review the history of technological innovations in education and describe several prominent innovations, including intelligent tutoring, blended learning, and virtual schooling.

  4. Marketing opportunities for CHP electricity in a virtual power plant. Direct and indirect marketing of flexibility; Vermarktungschancen fuer KWK-Strom im virtuellen Kraftwerk. Direkte und indirekte Flexibilitaetsvermarktung

    Energy Technology Data Exchange (ETDEWEB)

    Otto, Achim; Baumgart, Bastian [Trianel GmbH, Aachen (Germany). Abt. Virtuelle Kraftwerke

    2013-07-15

    The increasingly fluctuating feed-in of electricity by means of a rapid expansion of renewable energies results in an increasing demand for flexible performance for the regulation of production and consumption. An important part of the necessary flexibility could be provided by CHP plants. Their potential of flexibility is not always fully exploited.

  5. Combined heat and power in Dutch greenhouses: A case study of technology diffusion

    International Nuclear Information System (INIS)

    Veen, Reinier A.C. van der; Kasmire, Julia

    2015-01-01

    This paper presents a case study of the rapid diffusion of combined heat and power (CHP) units through the Dutch greenhouse horticulture sector between 2003 and 2009 in order to gain new insights regarding technology transitions. We present a sectoral diffusion analysis framework, which we apply to identify and examine developments in technical, economic, institutional, cultural and ecological domains that all contributed to an emergent and thorough CHP diffusion in the Dutch greenhouse sector. Five identified key drivers behind the CHP diffusion are the opening of the energy market in 2002, the high spark spread during the transition period, the compatibility of output of a CHP unit with greenhouse demand, the flexibility provided by heat buffers, and the cooperative and competitive greenhouse sector culture. We conclude that policies to stimulate or steer technology diffusion will benefit from an in-depth analysis of domain interactions and company decision-making processes. Such an in-depth analysis makes for well informed and targeted policies that are better able to steer an industrial sector effectively and in a socially desired direction. - Highlights: • We present a sectoral diffusion analysis framework. • We describe the case of the diffusion of cogeneration (CHP) in Dutch greenhouses. • We extract five key drivers of CHP diffusion in the Dutch greenhouse sector. • The case shows how technology diffusion emerges from co-evolutionary mechanisms. • We conclude that a co-evolutionary sectoral analysis will inform innovation policy.

  6. Market Assessment of Biomass Gasification and Combustion Technology for Small- and Medium-Scale Applications

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.; Haase, S.

    2009-07-01

    This report provides a market assessment of gasification and direct combustion technologies that use wood and agricultural resources to generate heat, power, or combined heat and power (CHP) for small- to medium-scale applications. It contains a brief overview of wood and agricultural resources in the U.S.; a description and discussion of gasification and combustion conversion technologies that utilize solid biomass to generate heat, power, and CHP; an assessment of the commercial status of gasification and combustion technologies; a summary of gasification and combustion system economics; a discussion of the market potential for small- to medium-scale gasification and combustion systems; and an inventory of direct combustion system suppliers and gasification technology companies. The report indicates that while direct combustion and close-coupled gasification boiler systems used to generate heat, power, or CHP are commercially available from a number of manufacturers, two-stage gasification systems are largely in development, with a number of technologies currently in demonstration. The report also cites the need for a searchable, comprehensive database of operating combustion and gasification systems that generate heat, power, or CHP built in the U.S., as well as a national assessment of the market potential for the systems.

  7. Total cost of ownership of CHP SOFC systems: Effect of installation context

    International Nuclear Information System (INIS)

    Arduino, Francesco; Santarelli, Massimo

    2016-01-01

    Solid oxide fuel cells (SOFC) are one of the most interesting between the emerging technologies for energy production. Although some information about the production cost of these devices are already known, their operational cost has not been studied yet with sufficient accuracy. This paper presents a life cycle cost (LCC) analysis of CHP (combined heat and power) SOFC systems performed in hospitals located in various cities of the US and one in Italy. In this study the strong effects of the installation context will be analyzed using a customized use phase model for each location. The cost effectiveness of these devices has been proved without credits in Mondovi (IT), New York (NY) and Minneapolis (MN) where the payback time goes from 10 to 7 years. Considering the credits, it is possible to obtain economic feasibility also in Chicago (IL) and reduce the payback for other cities to values from 4 to 6 years. In other cities like Phoenix (AZ) and Houston (TX) the payback can’t be reached in any case. The life cycle impact assessment analysis has shown how, even in the cities with cleaner electricity grid, there is a reduction in the emissions of both greenhouse gases and pollutants. - Highlights: •Life cycle cost analysis has been performed for CHP SOFC systems. •The strong effects of the installation context have been analyzed. •Economic feasibility has been proven in new york, Minneapolis and Mondovi. •Economic feasibility can’t be reached in phoenix and Houston. •SOFC always provide a reduction in the emissions of greenhouse gases and pollutant.

  8. Distributed Control in a Network of Households with microCHP

    NARCIS (Netherlands)

    Larsen, Gunn; Scherpen, Jacquelien M.A.; van Foreest, Nicolaas

    2011-01-01

    This is an application of a dynamic price mechanism to distributed optimization of a network of houses which are both producers and consumers of electricity. One possibility for domestic generation is the Micro Combined Heat Power system (µCHP). We use a pricing mechanism based on dual

  9. Midwest Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Cuttica, John; Haefke, Cliff

    2013-12-31

    The Midwest Clean Energy Application Center (CEAC) was one of eight regional centers that promoted and assisted in transforming the market for combined heat and power (CHP), waste heat to power (WHP), and district energy (DE) technologies and concepts throughout the United States between October 1, 2009 and December 31, 2013. The key services the CEACs provided included: Market Opportunity Analyses – Supporting analyses of CHP market opportunities in diverse markets including industrial, federal, institutional, and commercial sectors. Education and Outreach – Providing information on the energy and non-energy benefits and applications of CHP to state and local policy makers, regulators, energy end-users, trade associations and others. Information was shared on the Midwest CEAC website: www.midwestcleanergy.org. Technical Assistance – Providing technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, and/or district energy with CHP in their facility and to help them through the project development process from initial CHP screening to installation. The Midwest CEAC provided services to the Midwest Region that included the states of Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin.

  10. Proceedings of Opportunity '95 -- Environmental technology through small business

    International Nuclear Information System (INIS)

    Kothari, V.P.

    1994-11-01

    The Opportunity '95--Environmental Technology Through Small Business conference was held November 16--17, 1994, at the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia. The overall objective of this conference was to review the latest environmental and waste management technologies being developed under the sponsorship of the Environmental Management--Office of Technology Development (EM-OTD) Program at METC. The focus of this conference was also to address the accomplishments and barriers affecting small businesses, and lay the groundwork for future technology development initiatives and opportunities. Twenty papers were presented in three EM-OTD focus areas: mixed waste characterization, treatment and disposal (6 papers); contaminant plume containment and remediation (6 papers); and facility transitioning, decommissioning and final disposition (8 papers). In addition to the presentations, nine posters of environmental management areas were displayed. A panel discussion was also held on technology development assistance to small businesses. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database

  11. The Design, Construction, and Experimental Evaluation of a Compact Thermoacoustic-Stirling Engine Generator for Use in a micro-CHP Appliance

    Science.gov (United States)

    Wilcox, Douglas A., Jr.

    T-E=8.32%, corresponding to 14% of Carnot etac. The volumetric power density of this TaSEG is 8.9 kW/m3. While the demonstrated overall efficiency is modest (for reasons that are largely understood), this TaSEG has moved the technology away from laboratory prototypes toward a commercially viable power module having a design configuration suitable for implementation in a micro-CHP appliance. Based on the TaSEG's measured experimental performance results, recommendations for future work that might improve the overall efficiency of the TaSEG are also presented.

  12. Crystallization and preliminary crystallographic analysis of the human calcineurin homologous protein CHP2 bound to the cytoplasmic region of the Na{sup +}/H{sup +} exchanger NHE1

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ammar, Youssef [Department of Molecular Physiology, National Cardiovascular Center Research Institute, Fujishiro-dai 5-7-1, Suita, Osaka 565-8565 (Japan); Takeda, Soichi [Department of Cardiac Physiology, National Cardiovascular Center Research Institute, Fujishiro-dai 5-7-1, Suita, Osaka 565-8565 (Japan); Sugawara, Mitsuaki; Miyano, Masashi [Structural Biophysics Laboratory, RIKEN Harima Institute at SPring-8, Kouto, Mikazuki, Sayo, Hyogo 679-5148 (Japan); Mori, Hidezo [Department of Cardiac Physiology, National Cardiovascular Center Research Institute, Fujishiro-dai 5-7-1, Suita, Osaka 565-8565 (Japan); Wakabayashi, Shigeo, E-mail: wak@ri.ncvc.go.jp [Department of Molecular Physiology, National Cardiovascular Center Research Institute, Fujishiro-dai 5-7-1, Suita, Osaka 565-8565 (Japan)

    2005-10-01

    Crystallization of the human CHP2–NHE1 binding domain complex. Calcineurin homologous protein (CHP) is a Ca{sup 2+}-binding protein that directly interacts with and regulates the activity of all plasma-membrane Na{sup +}/H{sup +}-exchanger (NHE) family members. In contrast to the ubiquitous isoform CHP1, CHP2 is highly expressed in cancer cells. To understand the regulatory mechanism of NHE1 by CHP2, the complex CHP2–NHE1 (amino acids 503–545) has been crystallized by the sitting-drop vapour-diffusion method using PEG 3350 as precipitant. The crystals diffract to 2.7 Å and belong to a tetragonal space group, with unit-cell parameters a = b = 49.96, c = 103.20 Å.

  13. DEVELOPMENT OF THE CHP-THERMAL SCHEMES IN CONTEXTS OF THE CONSOLIDATED ENERGY SYSTEM OF BELARUS

    Directory of Open Access Journals (Sweden)

    V. N. Romaniuk

    2015-01-01

    Full Text Available The paper deals with the structural specifics of the Belarus Consolidated Energy System capacities in view of their ongoing transfer to the combined-cycle technology, building the nuclear power plant and necessity for the generating capacity regulation in compliance with the load diagram. With the country’s economic complex energy utilization pattern being preserved, the generating capacities are subject to restructuring and the CHP characteristics undergo enhancement inter alia a well-known increase of the specific electricity production based on the heat consumption. Because of this the steam-turbine condensation units which are the traditional capacity regulators for the energy systems with heat power plants dominance are being pushed out of operation. In consequence of this complex of changes the issue of load diagram provision gains momentum which in evidence is relevant to the Consolidated Energy System of Belarus. One of the ways to alleviate acuteness of the problem could be the specific electric energy production cut on the CHP heat consumption with preserving the heat loads and without their handover to the heat generating capacities of direct combustion i.e. without fuel over-burning. The solution lies in integrating the absorption bromous-lithium heat pump units into the CHP thermal scheme. Through their agency low-temperature heat streams of the generator cooling, the lubrication and condensation heat-extraction of steam minimal passing to the condenser systems are utilized. As a case study the authors choose one of the CHPs in the conditions of which the corresponding employment of the said pumps leads to diminution of the fuel-equivalent specific flow-rate by 20−25 g for 1 kW⋅h production and conjoined electric energy generation capacity lowering. The latter will be handed over to other generating capacities, and the choice of them affects economic expediency of the absorption bromous-lithium heat pump-units installation

  14. Optimal design of integrated CHP systems for housing complexes

    International Nuclear Information System (INIS)

    Fuentes-Cortés, Luis Fabián; Ponce-Ortega, José María; Nápoles-Rivera, Fabricio; Serna-González, Medardo; El-Halwagi, Mahmoud M.

    2015-01-01

    Highlights: • An optimization formulation for designing domestic CHP systems is presented. • The operating scheme, prime mover and thermal storage system are optimized. • Weather conditions and behavior demands are considered. • Simultaneously economic and environmental objectives are considered. • Two case studies from Mexico are presented. - Abstract: This paper presents a multi-objective optimization approach for designing residential cogeneration systems based on a new superstructure that allows satisfying the demands of hot water and electricity at the minimum cost and the minimum environmental impact. The optimization involves the selection of technologies, size of required units and operating modes of equipment. Two residential complexes in different cities of the State of Michoacán in Mexico were considered as case studies. One is located on the west coast and the other one is in the mountainous area. The results show that the implementation of the proposed optimization method yields significant economic and environmental benefits due to the simultaneous reduction in the total annual cost and overall greenhouse gas emissions

  15. Analysis of the impact of Heat-to-Power Ratio for a SOFC-based mCHP system for residential application under different climate regions in Europe

    DEFF Research Database (Denmark)

    Liso, Vincenzo; Zhao, Yingru; Brandon, Nigel

    2011-01-01

    In this paper, the ability of a micro combined heat and power (mCHP) system to cover the heat and electricity demand of a single-family residence is investigated. A solid oxide fuel cell based mCHP system coupled with a hot water storage tank is analyzed. The energy profiles of single-family hous......In this paper, the ability of a micro combined heat and power (mCHP) system to cover the heat and electricity demand of a single-family residence is investigated. A solid oxide fuel cell based mCHP system coupled with a hot water storage tank is analyzed. The energy profiles of single...... according to the summer energy demand. The winter energy demand shows a Heat-to-Power Ratio which cannot be covered by the mCHP unit alone. To ensure that the mCHP system meets both the thermal and electrical energy demand over the entire year, an auxiliary boiler and a hot water storage tank need...

  16. Flue gas condensation in straw fired CHP plants; Roeggaskondensation i halmfyrede kraftvarmeanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-15

    The high price of straw and a general demand for increased use of straw in power and heat production are expected to result in an increased need for efficient fuel utilization. The use of flue gas condensation in straw fired CHP plants can contribute to a higher exploitation of energy, and at the same time open of the possibility of utilization of wet (cheaper) fuels without energy loss. Furthermore flue gas condensation can contribute to the flue gas cleaning process through removal of HCl and SO{sub 2} as well as in particle cleaning in wet cleaning processes. With starting point in a straw fired CHP plant the technical and economic consequences of installation of a flue gas condensation system are investigated. Fuel exploitation and power/heat production distribution is included in the investigation. (BA)

  17. Technology in Parkinson disease: Challenges and Opportunities

    Science.gov (United States)

    Espay, Alberto J.; Bonato, Paolo; Nahab, Fatta; Maetzler, Walter; Dean, John M.; Klucken, Jochen; Eskofier, Bjoern M.; Merola, Aristide; Horak, Fay; Lang, Anthony E.; Reilmann, Ralf; Giuffrida, Joe; Nieuwboer, Alice; Horne, Malcolm; Little, Max A.; Litvan, Irene; Simuni, Tanya; Dorsey, E. Ray; Burack, Michelle A.; Kubota, Ken; Kamondi, Anita; Godinho, Catarina; Daneault, Jean-Francois; Mitsi, Georgia; Krinke, Lothar; Hausdorff, Jeffery M.; Bloem, Bastiaan R.; Papapetropoulos, Spyros

    2016-01-01

    The miniaturization, sophistication, proliferation, and accessibility of technologies are enabling the capturing of more and previously inaccessible phenomena in Parkinson disease (PD). However, more information has not translated into greater understanding of disease complexity to satisfy diagnostic and therapeutic needs. Challenges include non-compatible technology platforms, the need for wide-scale and long-term deployment of sensor technology (in particular among vulnerable elderly patients), and the gap between the “big data” acquired with sensitive measurement technologies and their limited clinical application. Major opportunities could be realized if new technologies are developed as part of open-source and/or open-hardware platforms enabling multi-channel data capture, sensitive to the broad range of motor and non-motor problems that characterize PD, and adaptable into self-adjusting, individualized treatment delivery systems. The International Parkinson and Movement Disorders Society Task Force on Technology is entrusted to convene engineers, clinicians, researchers, and patients to promote the development of integrated measurement and closed-loop therapeutic systems with high patient adherence that also serve to: 1) encourage the adoption of clinico-pathophysiologic phenotyping and early detection of critical disease milestones; 2) enhance tailoring of symptomatic therapy; 3) improve subgroup targeting of patients for future testing of disease modifying treatments; and 4) identify objective biomarkers to improve longitudinal tracking of impairments in clinical care and research. This article summarizes the work carried out by the Task Force toward identifying challenges and opportunities in the development of technologies with potential for improving the clinical management and quality of life of individuals with PD. PMID:27125836

  18. Partnership in Opportunities for Employment through Technologies ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Partnership in Opportunities for Employment through Technologies in the ... POETA will work with designated local partners to provide training for youth at risk. ... of the program; a Web-based civic education module for use in POETA centres; ...

  19. A Stochastic Unit Commitment Model for a Local CHP Plant

    DEFF Research Database (Denmark)

    Ravn, Hans V.; Riisom, Jannik; Schaumburg-Müller, Camilla

    2005-01-01

    Local CHP development in Denmark has during the 90’s been characterised by large growth primarily due to government subsidies in the form of feed-in tariffs. In line with the liberalisation process in the EU, Danish local CHPs of a certain size must operate on market terms from 2005. This paper...

  20. Technology transfer from accelerator laboratories (challenges and opportunities)

    International Nuclear Information System (INIS)

    Verma, V.K.; Gardner, P.L.

    1994-06-01

    It is becoming increasingly evident that technology transfer from research laboratories must be a key element of their comprehensive strategic plans. Technology transfer involves using a verified and organized knowledge and research to develop commercially viable products. Management of technology transfer is the art of organizing and motivating a team of scientists, engineers and manufacturers and dealing intelligently with uncertainties. Concurrent engineering is one of the most effective approaches to optimize the process of technology transfer. The challenges, importance, opportunities and techniques of transferring technology from accelerator laboratories are discussed. (author)

  1. TaCHP: a wheat zinc finger protein gene down-regulated by abscisic acid and salinity stress plays a positive role in stress tolerance.

    Science.gov (United States)

    Li, Cuiling; Lv, Jian; Zhao, Xin; Ai, Xinghui; Zhu, Xinlei; Wang, Mengcheng; Zhao, Shuangyi; Xia, Guangmin

    2010-09-01

    The plant response to abiotic stresses involves both abscisic acid (ABA)-dependent and ABA-independent signaling pathways. Here we describe TaCHP, a CHP-rich (for cysteine, histidine, and proline rich) zinc finger protein family gene extracted from bread wheat (Triticum aestivum), is differentially expressed during abiotic stress between the salinity-sensitive cultivar Jinan 177 and its tolerant somatic hybrid introgression cultivar Shanrong No.3. TaCHP expressed in the roots of seedlings at the three-leaf stage, and the transcript localized within the cells of the root tip cortex and meristem. TaCHP transcript abundance was higher in Shanrong No.3 than in Jinan 177, but was reduced by the imposition of salinity or drought stress, as well as by the exogenous supply of ABA. When JN17, a salinity hypersensitive wheat cultivar, was engineered to overexpress TaCHP, its performance in the face of salinity stress was improved, and the ectopic expression of TaCHP in Arabidopsis (Arabidopsis thaliana) also improved the ability of salt tolerance. The expression level of a number of stress reporter genes (AtCBF3, AtDREB2A, AtABI2, and AtABI1) was raised in the transgenic lines in the presence of salinity stress, while that of AtMYB15, AtABA2, and AtAAO3 was reduced in its absence. The presence in the upstream region of the TaCHP open reading frame of the cis-elements ABRE, MYBRS, and MYCRS suggests that it is a component of the ABA-dependent and -independent signaling pathways involved in the plant response to abiotic stress. We suggest that TaCHP enhances stress tolerance via the promotion of CBF3 and DREB2A expression.

  2. 75 FR 10464 - Broadband Technology Opportunities Program

    Science.gov (United States)

    2010-03-08

    ... window for Public Computer Center (PCC) and Sustainable Broadband Adoption (SBA) projects. DATES: All...; Extension of Application Closing Deadline for Comprehensive Community Infrastructure (CCI) Projects. SUMMARY... Infrastructure (CCI) projects under the Broadband Technology Opportunities Program (BTOP) is extended until 5:00...

  3. Fuel cells and electricity companies - new risk management opportunities

    International Nuclear Information System (INIS)

    Whale, M.

    2004-01-01

    'Full text:' Deregulation, distributed generation, combined heat and power, renewables, fuel cells, hydrogen. Power companies are facing a rapidly evolving environment that is testing their ability to effectively deploy capital and earn profits. While recent deregulation trends have shifted the structure of power markets into separating generators from distributors, the improving economic value proposition offered by smaller scale distributed generation technologies - such as fuel cells - would seem to be a conflicting development. In this complex and changing environment, decisions based on the economic reality of the capital markets are likely to prevail. By examining the opportunity to enhance risk management offered by stationary fuel cells, particularly in CHP applications, we provide a context for the issues being discussed in today's sessions focusing on power companies and electric utilities. Our risk management perspective suggests a pathway for implementing fuel cells in combined heat and power applications that large power generators can introduce in increasingly smaller sizes. With capital costs of fuel cells high and risk tolerance of power companies low, the challenge for smaller technology developers will be to reduce the apparently long time horizon that persists for substantial deployment. (author)

  4. Optimization of operation for combined heat and power plants - CHP plants - with heat accumulators using a MILP formulation

    Energy Technology Data Exchange (ETDEWEB)

    Grue, Jeppe; Bach, Inger [Aalborg Univ. (Denmark). Inst. of Energy Technology]. E-mails: jeg@iet.auc.dk; ib@iet.auc.dk

    2000-07-01

    The power generation system in Denmark is extensively based on small combined heat and power plants (CHP plants), producing both electricity and district heating. This project deals with smaller plants spread throughout the country. Often a heat accumulator is used to enable electricity production, even when the heat demand is low. This system forms a very complex problem, both for sizing, designing and operation of CHP plants. The objective of the work is the development of a tool for optimisation of the operation of CHP plants, and to even considering the design of the plant. The problem is formulated as a MILP-problem. An actual case is being tested, involving CHP producing units to cover the demand. The results from this project show that it is of major importance to consider the operation of the plant in detail already in the design phase. It is of major importance to consider the optimisation of the plant operation, even at the design stage, as it may cause the contribution margin to rise significantly, if the plant is designed on the basis of a de-tailed knowledge of the expected operation. (author)

  5. Operational Strategies for a Portfolio of Wind Farms and CHP Plants in a Two-Price Balancing Market

    DEFF Research Database (Denmark)

    Hellmers, Anna; Zugno, Marco; Skajaa, Anders

    2015-01-01

    In this paper we explore the portfolio effect of a system consisting of a Combined Heat and Power (CHP) plant and a wind farm. The goal is to increase the overall profit of the portfolio by reducing imbalances, and consequently their implicit penalty in a two-price balancing market for electricity......-horizon fashion, so that forecasts for heat demand, wind power production and market prices are updated at each iteration. We conclude that the portfolio strategy is the most profitable due to the two-price structure of the balancing market. This encourages producers to handle their imbalances outside the market........ We investigate two different operational strategies, which differ in whether the CHP plant and the wind farm are operated jointly or independently, and we evaluate their economic performance on a real case study based on a CHP-wind system located in the western part of Denmark. We present...

  6. Optimal Design and Operation of A Syngas-fuelled SOFC Micro-CHP System for Residential Applications in Different Climate Zones in China

    DEFF Research Database (Denmark)

    Yang, Wenyuan; Liso, Vincenzo; Zhao, Yingru

    2013-01-01

    heat-to-power load ratio. Therefore, the aim of this study is to investigate the optimal design and operation of a syngas-fuelled SOFC micro-CHP system for small households located in five different climate zones in China. The ability of the micro-CHP to cover the heat and electricity demand of a 70m2...... demand. Numerical simulations are conducted in Matlab environment. System design trade-offs are discussed to determine the optimal match between the energy demand of the household for different climates across China and the energy supply of the micro-CHP during the whole year. Moreover, criteria...

  7. Examination of energy price policies in Iran for optimal configuration of CHP and CCHP systems based on particle swarm optimization algorithm

    International Nuclear Information System (INIS)

    Tichi, S.G.; Ardehali, M.M.; Nazari, M.E.

    2010-01-01

    The current subsidized energy prices in Iran are proposed to be gradually eliminated over the next few years. The objective of this study is to examine the effects of current and future energy price policies on optimal configuration of combined heat and power (CHP) and combined cooling, heating, and power (CCHP) systems in Iran, under the conditions of selling and not-selling electricity to utility. The particle swarm optimization algorithm is used for minimizing the cost function for owning and operating various CHP and CCHP systems in an industrial dairy unit. The results show that with the estimated future unsubsidized utility prices, CHP and CCHP systems operating with reciprocating engine prime mover have total costs of 5.6 and $2.9x10 6 over useful life of 20 years, respectively, while both systems have the same capital recovery periods of 1.3 years. However, for the same prime mover and with current subsidized prices, CHP and CCHP systems require 4.9 and 5.2 years for capital recovery, respectively. It is concluded that the current energy price policies hinder the promotion of installing CHP and CCHP systems and, the policy of selling electricity to utility as well as eliminating subsidies are prerequisites to successful widespread utilization of such systems.

  8. Information Technology: Opportunities for Improving Acquisitions and Operations

    Science.gov (United States)

    2017-04-01

    1GAO, Federal Chief Information Officers : Opportunities Exist to Improve Role in Information Technology Management, GAO-11-634...approach and a collaborative relationship among agency executives (e.g., Chief Financial Officer and agency component leadership) had stopped 45...executives, including Chief Financial Officers and executives of major bureaus and component agencies for whom the technology is serving, to ensure that

  9. Future market relevance of CHP installations with electrical ratings from 1 to 1000 kW; Zukuenftige Marktbedeutung von WKK-Anlagen mit 1 - 1000 kW elektrischer Leistung

    Energy Technology Data Exchange (ETDEWEB)

    Eicher, H.; Rigassi, R.

    2003-12-15

    This report for the Swiss Federal Office of Energy (SFOE) discusses the future market relevance of combined heat and power (CHP) installations with electrical ratings from 1 to 1000 kW. Developments over the past ten years are reviewed. Important reductions in the price of motor-driven CHP units and the price of the electrical power produced are noted and commented on. The technical market potential of CHP units and the degree to which this potential has been implemented are commented on. Work done, including CHP implementation in the industrial, commercial and residential areas, is commented on. Future developments both in the technical area as well as in commercial areas are commented on. Micro-gas-turbine based CHP systems are also discussed, as are fuel-cell based systems in both the higher and lower capacity power generation area. The prospects for CHP systems in general in the electricity generation area are discussed

  10. Heat Pumps in CHP Systems

    DEFF Research Database (Denmark)

    Ommen, Torben Schmidt

    that three configurations are particular advantageous, whereas the two remaining configurations result in system performance close to or below what may be expected from an electric heater. One of the three advantageous configurations is required to be positioned at the location of the heat demand, whereas...... the two remaining can be located at positions with availability of high temperature sources by utilising the DH network to distribute the heat. A large amount of operational and economic constraints limit the applicability of HPs operated with natural working fluids, which may be the only feasible choice...... representation allows infeasible production. Using MIP or NLP optimisation, the number of operation hours and the total production of heat from HPs are significantly increased, as the HPs may be used to shave the load patterns of CHP units in significantly constrained energy systems. A MIP energy system model...

  11. A new methodology for greenhouse gas reduction in industry through improved heat exchanging and/or integration of combined heat and power

    International Nuclear Information System (INIS)

    Axelsson, H.; Asblad, A.; Berntsson, T.

    1999-01-01

    This paper presents a method that identifies economically optimal combinations of enhanced heat recovery, integration of combined heat and power (CHP), and fuel switching, in an existing industrial energy system at various emission levels. Novel types of composite curves based on pinch technology, representing the existing temperature levels for supplying heat and the possible ones that may be attained after retrofitting, are used as tools for estimating the opportunities for CHP and the trade-off between improved heat exchanging and CHP. The method is explained by an example. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  12. Innovative Hybrid CHP systems for high temperature heating plant in existing buildings

    NARCIS (Netherlands)

    de Santoli, Livio; Lo Basso, Gianluigi; Nastasi, B.; d’Ambrosio Alfano, Francesca R.; Mazzarella and Piercarlo, Livio

    2017-01-01

    This paper deals with the potential role of new hybrid CHP systems application providing both electricity and heat which are compatible with the building architectural and landscape limitations. In detail, three different plant layout options for high temperature heat production along with the

  13. Mobile Technologies Enhance the E-Learning Opportunity

    Science.gov (United States)

    Chuang, Keh-Wen

    2009-01-01

    The objective of this paper is to identify the mobile technologies that enhance the E-Learning opportunity, examine the educational benefits and implementation issues in mobile learning, discuss the guidelines for implementing effective mobile learning, identify the current application and operation of mobile learning, and discuss the future of…

  14. SOFC/TEG hybrid mCHP system. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2012-03-15

    The starting point for this project have been the challenge has been to develop a cost effective solution with long term stability. This is where a focused effort in a strong consortium covering material research, module development and manufacture as well as device design and optimization can make a real difference. In March 2010 the SOFTEG phase II project was initiated and a cooperation organization was established to implement the project as a development and demonstration project involving the staff from all project partners. The project is now completed with excellent and documented outcome. The final results by Alpcon have been demonstration as a TEG-based mCHP system calls CHP Dual Engine Power System, which will be applicable as both a standalone TEG-CHP hybrid system, but also as an auxiliary power unit and power booster for the SOFC system. However the SOFC system cannot cover the household's heat demand alone so it is necessary to combine a SOFC system together with a water heater/boiler system to cover the peak heat demand of a residential house or a complex building. The SOFTEG project partners achieved significant results that mainly can be outlined as following: 1) University of Aarhus has improved the thermal stability of ZnSb by optimizing the concentration of Nano composite material. 2) The grain size and its influence on the sintering process by spark plasma method are investigated by Aarhus University, but further work seems to be necessary. 3) The TE material is going to commercialization by Aarhus University. 4) Aalborg University has prepared simulation tools for complex thermoelectric simulation in non-steady state condition. 5) The new type DCDC interleaved converter using the MPPT system for optimal power tracing is designed, build and tested by Aalborg University in cooperation with Alpcon. This task is included overall system design, control system implementation and power electronic control design. 6) Full scale practical

  15. Optimal design and operation of a syngas-fuelled SOFC micro CHP system for residential applications in different climate zones in China

    DEFF Research Database (Denmark)

    Yang, Wenyuan; Zhao, Yingru; Liso, Vincenzo

    2014-01-01

    under difference climate conditions to ensure that it is well matched with the local heat-to-power ratio. The aim of this study is to investigate the optimal design and operation of a syngas-fuelled SOFC micro-CHP system for small households located in five different climate zones in China. The ability...... of the micro-CHP to cover the heat and electricity demand of a 70 m2 single-family apartment with an average number of occupants of 3 is evaluated. A detailed model of the micro-CHP unit coupled with a hot water storage tank and an auxiliary boiler is developed. System design trade-offs are discussed...

  16. Wood for energy production. Technology - environment - economy

    International Nuclear Information System (INIS)

    Serup, H.; Falster, H.; Gamborg, C.

    1999-01-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  17. Wood for energy production. Technology - environment - economy

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-10-01

    `Wood for Energy Production`, 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named `Wood Chips for Energy Production`. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. `Wood for Energy Production` is also available in German and Danish. (au)

  18. Applying Physics: Opportunities in Semiconductor Technology Companies

    Science.gov (United States)

    Redinbo, Greg

    2011-03-01

    While many physicists practice in university settings, physics skills can also be applied outside the traditional academic track. ~Identifying these opportunities requires a clear understanding of how your physics training can be used in an industrial setting, understanding what challenges technology companies face, and identifying how your problem solving skills can be broadly applied in technology companies. ~In this talk I will highlight the common features of such companies, discuss what specific skills are useful for an industrial physicist, and explain roles (possibly unfamiliar) that may be available to you.

  19. Economic feasibility of CHP facilities fueled by biomass from unused agriculture land

    DEFF Research Database (Denmark)

    Pfeifer, Antun; Dominkovic, Dominik Franjo; Ćosić, Boris

    2016-01-01

    In this paper, the energy potential of biomass from growing short rotation coppice on unused agricultural land in the Republic of Croatia is used to investigate the feasibility of Combined Heat and Power (CHP) facilities fueled by such biomass. Large areas of agricultural land that remain unused...

  20. Development of a Wood Powder Fuelled 35 kW Stirling CHP Unit

    DEFF Research Database (Denmark)

    Pålsson, M.; Carlsen, Henrik

    2003-01-01

    For biomass fuelled CHP in sizes below 100 kW, Stirling engines are the only feasible alternative today. Using wood powder as fuel, the Stirling engine can be heated directly by the flame like when using a gaseous or liquid fuel burner. However, the combustion chamber will have to be much larger...... recirculation (CGR) a smaller air preheater can be used, while system efficiency will increase compared with using excess air for flame cooling. In a three-year project, a wood powder fuelled Stirling engine CHP unit will be developed and run in field test. The project will use the double-acting four......-cylinder Stirling engine SM3D with an electric output of 35 kW. This engine is a further development of the engine SM3B that has been developed at the Technical University of Denmark. The engine heater is being adapted for use with wood powder as fuel. During a two-year period a combustion system for this engine...

  1. Economic potentials of CHP connected to district heat systems in Germany. Implementation of the EU Efficiency Directive

    International Nuclear Information System (INIS)

    Eikmeier, Bernd

    2015-01-01

    The EU Efficiency Directive (2012/27/EU) is requiring all member states to carry out an evaluation of the potential for highly efficient CHP and the efficient use of district heating and cooling by December 2015. The German Federal Ministry of Economic Affairs and Energy appointed this task to the Fraunhofer Institute for Manufacturing and Advanced Materials, division for Energy Systems Analysis (formerly Bremer Energie Institut) in conjunction with other partners. The results for the sector district- and communal heating with CHP, sub-sectors private households, trade and services industry, are presented in this article.

  2. EFFICIENCY OF THE USE OF HEAT PUMPS ON THE CHP PLANTS

    Directory of Open Access Journals (Sweden)

    Juravleov A.A.

    2007-04-01

    Full Text Available The work is dedicated to the calculus of the efficiency of the use of heat pumps on the CHP plants. There are presented the interdependences between the pay-back period and NPV of heat pump and the price of 1 kWt of thermal power of heat pump and of the tariff of electricity.

  3. UK-China review of opportunities for landfill gas (LFG) technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the results of a project to identify opportunities to transfer UK skills with regard to landfill gas (LFG) technologies to China and other countries looking to develop LFG as a commercially viable clean energy source. The aim of the project was to develop all aspects of LFG extraction and utilisation techniques. The project involved: examining current Chinese waste disposal practices; identifying key technologies and methods for maximising LFG recovery; considering end use options and methods to optimise gas use; assessing the environmental benefits; and identifying potential opportunities for UK industry. The report consider: barriers to the development of LFG; waste disposal and landfill design in China; China's experience of LFG use; UN Development Programme (UNDP) and Global Environmental Forum (GEF) LFG demonstration projects in China; environmental regulation and controls in China; LFG technology in the UK; support for renewable energy in China and the UK; design and operational needs in China from a UK perspective; technology needs, barriers and opportunities; and recommendations for action and future work.

  4. Energetic and exergetic efficiencies of coal-fired CHP (combined heat and power) plants used in district heating systems of China

    International Nuclear Information System (INIS)

    Liao, Chunhui; Ertesvåg, Ivar S.; Zhao, Jianing

    2013-01-01

    The efficiencies of coal-fired CHP (combined heat and power) plants used in the district heating systems of China were analyzed with a thermodynamic model in the Hysys program. The influences of four parameters were evaluated by the Taguchi method. The results indicated that the extraction steam flow rate and extraction steam pressure are the most important parameters for energetic and exergetic efficiencies, respectively. The relations between extraction steam flow rate, extraction steam pressure and the energetic and exergetic efficiencies were investigated. The energetic and exergetic efficiencies were compared to the RPES (relative primary energy savings) and the RAI (relative avoided irreversibility). Compared to SHP (separate heat and power) generation, the CHP systems save fuel energy when extraction ratio is larger than 0.15. In the analysis of RAI, the minimum extraction ratio at which CHP system has advantages compared with SHP varies between 0.25 and 0.6. The higher extraction pressure corresponds to a higher value. Two of the examined plants had design conditions giving RPES close to zero and negative RAI. The third had both positive RPES and RAI at design conditions. The minimum extraction ratio can be used as an indicator to design or choose CHP plant for a given district heating system. - Highlights: • Extraction flow rate and extraction pressure are the most important parameters. • The exergetic efficiency depends on the energy to exergy ratio and system boundary. • The minimum extraction ratio is a key indicator for CHP plants. • Program Hysys and Taguchi method are used in this research

  5. Computer experimental analysis of the CHP performance of a 100 kW e SOFC Field Unit by a factorial design

    Science.gov (United States)

    Calì, M.; Santarelli, M. G. L.; Leone, P.

    Gas Turbine Technologies (GTT) and Politecnico di Torino, both located in Torino (Italy), have been involved in the design and installation of a SOFC laboratory in order to analyse the operation, in cogenerative configuration, of the CHP 100 kW e SOFC Field Unit, built by Siemens-Westinghouse Power Corporation (SWPC), which is at present (May 2005) starting its operation and which will supply electric and thermal power to the GTT factory. In order to take the better advantage from the analysis of the on-site operation, and especially to correctly design the scheduled experimental tests on the system, we developed a mathematical model and run a simulated experimental campaign, applying a rigorous statistical approach to the analysis of the results. The aim of this work is the computer experimental analysis, through a statistical methodology (2 k factorial experiments), of the CHP 100 performance. First, the mathematical model has been calibrated with the results acquired during the first CHP100 demonstration at EDB/ELSAM in Westerwoort. After, the simulated tests have been performed in the form of computer experimental session, and the measurement uncertainties have been simulated with perturbation imposed to the model independent variables. The statistical methodology used for the computer experimental analysis is the factorial design (Yates' Technique): using the ANOVA technique the effect of the main independent variables (air utilization factor U ox, fuel utilization factor U F, internal fuel and air preheating and anodic recycling flow rate) has been investigated in a rigorous manner. Analysis accounts for the effects of parameters on stack electric power, thermal recovered power, single cell voltage, cell operative temperature, consumed fuel flow and steam to carbon ratio. Each main effect and interaction effect of parameters is shown with particular attention on generated electric power and stack heat recovered.

  6. Wood for energy production. Technology - environment - economy[Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Serup, H.; Falster, H.; Gamborg, C. [and others

    1999-07-01

    'Wood for Energy Production', 2nd edition, is a readily understood guide to the application of wood in the Danish energy supply. The first edition was named 'Wood Chips for Energy Production'. It describes the wood fuel from forest to consumer and provides a concise introduction to technological, environmental, and financial matters concerning heating systems for farms, institutions, district heating plants, and CHP plants. The individual sections deal with both conventional, well known technology, as well as the most recent technological advances in the field of CHP production. The purpose of this publication is to reach the largest possible audiance, and it is designed so that the layman may find its background information of special relevance. 'Wood for Energy Production' is also available in German and Danish. (au)

  7. Large-Scale Combined Heat and Power (CHP) Generation at Loviisa Nuclear Power Plant Unit 3

    International Nuclear Information System (INIS)

    Bergroth, N.

    2010-01-01

    Fortum has applied for a Decision in Principle concerning the construction of a new nuclear power plant unit (Loviisa 3) ranging from 2800-4600 MWth at its site located at the southern coast of Finland. An attractive alternative investigated is a co-generation plant designed for large-scale district heat generation for the Helsinki metropolitan area that is located approximately 75 km west of the site. The starting point is that the district heat generation capacity of 3 unit would be around 1 000 MWth.The possibility of generating district heat for the metropolitan area by Loviisa's two existing nuclear power plant units was investigated back in the 1980s, but it proved unpractical at the time. With the growing concern of the climate change and the subsequent requirements on heat and power generation, the idea is much more attractive today, when recognising its potential to decrease Finland's carbon dioxide emissions significantly. Currently the district heat generation in metropolitan area is based on coal and natural gas, producing some five to seven million tonnes of carbon dioxide emissions annually. Large-scale combined heat and power (CHP) generation at the 3 unit could cut this figure by up to four million tonnes. This would decrease carbon dioxide emissions by as much as six percent. In addition, large-scale CHP generation would increase the overall efficiency of the new unit significantly and hence, reduce the environmental impact on the local marine environment by cutting heat discharges into the Gulf of Nuclear energy has been used for district heating in several countries both in dedicated nuclear heating plants and in CHP generation plants. However, the heat generation capacity is usually rather limited, maximum being around 250 MWth per unit. Set against this, the 3 CHP concept is much more ambitious, not only because of the much larger heat generation output envisaged, but also because the district heating water would have to be transported over a

  8. Process Intensification in Fuel Cell CHP Systems, the ReforCELL Project

    Directory of Open Access Journals (Sweden)

    José Luis Viviente

    2016-10-01

    Full Text Available This paper reports the findings of a FP7/FCH JU project (ReforCELL that developed materials (catalysts and membranes and an advance autothermal membrane reformer for a micro Combined Heat and Power (CHP system of 5 kWel based on a polymer electrolyte membrane fuel cell (PEMFC. In this project, an active, stable and selective catalyst was developed for the reactions of interest and its production was scaled up to kg scale (TRL5 (TRL: Technology Readiness Level. Simultaneously, new membranes for gas separation were developed. In particular, dense supported thin palladium-based membranes were developed for hydrogen separation from reactive mixtures. These membranes were successfully scaled up to TRL4 and used in lab-scale reactors for fluidized bed steam methane reforming (SMR and autothermal reforming (ATR and in a prototype reactor for ATR. Suitable sealing techniques able to integrate the different membranes in lab-scale and prototype reactors were also developed. The project also addressed the design and optimization of the subcomponents (BoP for the integration of the membrane reformer to the fuel cell system.

  9. Experimental development, 1D CFD simulation and energetic analysis of a 15 kw micro-CHP unit based on reciprocating internal combustion engine

    International Nuclear Information System (INIS)

    Muccillo, M.; Gimelli, A.

    2014-01-01

    Cogeneration is commonly recognized as one of the most effective solutions to achieve the increasingly stringent reduction in primary energy consumption and greenhouse emissions. This characteristic led to the adoption of specific directives promoting this technique. In addition, a strategic role in power reliability is recognized to distributed generation. The study and prototyping of cogeneration plants, therefore, has involved many research centres. This paper deals with energetic aspects of CHP referring to the study of a 15 kW micro-CHP plant based on a LPG reciprocating engine designed, built and grid connected. The plant consists of a heat recovery system characterized by a single water circuit recovering heat from exhaust gases, from engine coolant and from the energy radiated by the engine within the shell hosting the plant. Some tests were carried out at whole open throttle and the experimental data were collected. However it was needed to perform a 1D thermo-fluid dynamics simulation of the engine to completely characterize the micro-CHP. As the heat actually recovered depends on the user's thermal load, particularly from the required temperature's level, a comparison of the results for six types of users were performed: residential, hospital, office, commercial, sports, hotel. Both Italian legislative indexes IRE and LT were evaluated, as defined by A.E.E.G resolution n. 42/02 and subsequent updates, as well as the plant's total Primary Energy Saving. - Highlights: • This paper deals with energetic aspects of CHP referring to the study of a 15 kW micro-CHP plant. • The 15 kW micro-CHP plant is based on a GPL reciprocating engine designed, built and grid connected. • Some tests were carried out at whole open throttle and the experimental data were collected. • It was needed to perform a 1D thermo-fluid dynamics simulation of the engine to completely characterize the micro-CHP. • The analysed solution is particularly suited for

  10. Generic model of a community-based microgrid integrating wind turbines, photovoltaics and CHP generations

    International Nuclear Information System (INIS)

    Ma, Xiandong; Wang, Yifei; Qin, Jianrong

    2013-01-01

    Highlights: ► Proposes a generic microgrid model comprising hybrid distributed generation units. ► Examines DG performance due to both environmental condition changes and electrical faults. ► Addresses island and grid connected modes of operation for DG units. ► We demonstrate the feasibility of the proposed residential microgrid system. - Abstract: Development and deployment of low-carbon energy technologies has been a national strategy of both the UK and China for a number of years, including the use of renewable generation technologies and the improvement of energy efficiency of operations and activities. The paper addresses several issues of generic importance to a residential microgrid system such as network modelling, advanced control and integration of intelligent monitoring techniques. The system, comprising representative distributed generation technologies of photovoltaics, wind turbines and combined heat and power, has been simulated by PSCAD/EMTDC under different operational scenarios. Studies include the effect of environmental condition changes, control systems and power electronics on wind turbines and PV cells, and the mixture of wind/solar/CHP energy generation under dominance of each technology. The performance and dynamics of the system are examined against symmetrical and asymmetrical electrical faults to seek an optimal isolation and restoration of the distributed generation unit from the connected grid system. Modelling these system interactions has demonstrated the feasibility of the proposed residential microgrid system

  11. Economic dispatch of a single micro-gas turbine under CHP operation

    International Nuclear Information System (INIS)

    Rist, Johannes F.; Dias, Miguel F.; Palman, Michael; Zelazo, Daniel; Cukurel, Beni

    2017-01-01

    Highlights: •Economic dispatch of a micro gas turbine is considered for smart grid integration. •A detailed thermodynamic cycle analysis is conducted for variable load CHP operation. •Benefits are shown for case studies with real demand profiles and energy tariffs. •Optimal unit schedule can be electricity, heat, revenue or maintenance-cost driven. -- Abstract: This work considers the economic dispatch of a single micro-gas turbine under combined heat and power (CHP) operation. A detailed thermodynamic cycle analysis is conducted on a representative micro-gas turbine unit with non-constant component efficiencies and recuperator bypass. Based on partial and full load configurations, an accurate optimization model is developed for solving the economic dispatch problem of integrating the turbine into the grid. The financial benefit and viability of this approach is then examined on four detailed scenarios using real data on energy demand profiles and electricity tariffs. The analysis considers the optimal operation in a large hotel, a full-service restaurant, a small hotel, and a residential neighborhood during various seasons. The optimal schedule follows four fundamental economic drivers which are electricity, heat, revenue, and maintenance-cost driven.

  12. An energetic-exergetic analysis of a residential CHP system based on PEM fuel cell

    International Nuclear Information System (INIS)

    Barelli, L.; Bidini, G.; Gallorini, F.; Ottaviano, A.

    2011-01-01

    Highlights: → A zero-dimensional of a micro cogenerative (CHP) energy system based on a Proton Exchange Membrane fuel cell (PEMFC) has been developed. → The electrochemical model has been validated with experimental data. → The performances of this CHP system have been evaluated through a series of simulations. → An energy/exergy analysis of the simulation results has allowed to define the PEMFC optimal operating conditions. → The PEMFC optimal operating conditions detected are: 1 atm, 353.15 K and 100% RH. -- Abstract: The use of fuel cell systems for distributed residential power generation represents an interesting alternative to traditional thermoelectric plants due to their high efficiency and the potential recovering of the heat generated by the internal electrochemical reactions. In this paper the study of a micro cogenerative (CHP) energy system based on a Proton Exchange Membrane fuel cell (PEMFC) is reported. With the aim to evaluate the performance and then the feasibility of this non-conventional energy system, in consideration of thermal and electrical basic demand of a multifamily apartment blocks, a zero-dimensional PEMFC model in Aspen Plus environment has been developed. A simulations sequence has been carried out at different operating conditions of the fuel cell (varying temperature, pressure and relative humidity). Subsequently, on the basis of the obtained results, an energy/exergy analysis has been conducted to define the optimal operating conditions of the PEMFC that ensures the most efficient use of the energy and exergy inputs.

  13. A MATHEMATICAL MODEL OF CHP 2000 TYPE PROGRESSIVE GEAR

    Directory of Open Access Journals (Sweden)

    Paweł Lonkwic

    2016-12-01

    Full Text Available The project of CHP2000 type progressive gear has been presented in the article. The offered solution from its construction point of view differs from the existing solutions due to the application of Belleville springs packets supporting the braking roller cam and achieving a flexible range of the gear loading. The standard concept of the gear loading within a mathematical and a geometrical model has been presented in the article. The proposed solution can be used in the friction lifts with the loading capacity from 8500 up to 20000 N.

  14. Technology Proliferation: Acquisition Strategies and Opportunities for an Uncertain Future

    Science.gov (United States)

    2018-04-20

    COVERED (From - To) 07/31/17 to 04/09/18 Technology Proliferation: Acquisition Strategies and Opportunities for an Uncertain Future Colonel Heather A...efficient and expeditious fielding of technologically superior capabilities. In today’s environment, it is commonplace for private industry to be the...first to develop and deploy technologies that can be adopted for defense systems. The result is that the Department of Defense (DoD) is largely a

  15. Exploring domestic micro-cogeneration in the Netherlands: An agent-based demand model for technology diffusion

    International Nuclear Information System (INIS)

    Faber, Albert; Valente, Marco; Janssen, Peter

    2010-01-01

    Micro-cogeneration (micro-CHP) is a new technology at the household level, producing electricity in cogeneration with domestic heating, thereby increasing the overall efficiency of domestic energy production. We have developed a prototypical agent-based simulation model for energy technologies competing for demand at the consumer level. The model is specifically geared towards the competition between micro-CHP and incumbent condensing boilers. In the model, both technologies compete on purchase price and costs of usage, to which various (types of) consumers decide on the installation of either technology. Simulations with various gas and electricity prices show that micro-CHP diffusion could be seriously inhibited if demand for natural gas decreases, e.g. due to insulation measures. Further simulations explore various subsidy schemes. A subsidy for purchase is only found to be effective within a limited range of Euro 1400-3250. A subsidy based on decreasing price difference between the competing technologies is much more cost effective than fixed purchase subsidies. Simulations of a subsidy scheme for usage show that a fast market penetration can be reached, but this does not yet take full advantage of technological progress in terms of decreasing CO 2 emissions. Selection of the most effective scheme thus depends on the policy criteria assumed.

  16. Economic opportunities resulting from a global deployment of concentrated solar power (CSP) technologies-The example of German technology providers

    International Nuclear Information System (INIS)

    Vallentin, Daniel; Viebahn, Peter

    2010-01-01

    Several energy scenario studies consider concentrated solar power (CSP) plants as an important technology option to reduce the world's CO 2 emissions to a level required for not letting the global average temperature exceed a threshold of 2-2.4 o C. A global ramp up of CSP technologies offers great economic opportunities for technology providers as CSP technologies include highly specialised components. This paper analyses possible value creation effects resulting from a global deployment of CSP until 2050 as projected in scenarios of the International Energy Agency (IEA) and Greenpeace International. The analysis focuses on the economic opportunities of German technology providers since companies such as Schott Solar, Flabeg or Solar Millennium are among the leading suppliers of CSP technologies on the global market.

  17. Optimal fuel-mix in CHP plants under a stochastic permit price. Risk-neutrality versus risk-aversion

    International Nuclear Information System (INIS)

    Lappi, Pauli; Ollikka, Kimmo; Ollikainen, Markku

    2010-01-01

    This paper studies the optimal fuel-mix of a CHP producer under emission permit price risk. The producer's multi-fuel plant uses two CO 2 -intensive fuels and one clean fuel. Using a mean-variance framework we develop three models. The models are divided into spot-models (risk neutral and risk averse cases) and a forward-model (risk averse case). We derive the effects of price risk on optimal fuel use. An increase in price risk can in fact increase the use of CO 2 -intensive fuel in the spot-model. In the forward-model, the production and financial decisions are separate. We also evaluate the risk-bearing behavior of seven Finnish CHP producers. We found that risk-neutrality describes behavior better than risk-aversion. (author)

  18. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Thekdi, Arvind [E3M Inc, North Potomac, MD (United States); Nimbalkar, Sachin U. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-01-01

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  19. Early recognition of technological opportunities. Realization and perspectives

    International Nuclear Information System (INIS)

    Stegelmann, H.U.; Peters, H.P.; Stein, G.; Muench, E.

    1988-03-01

    In cooperation with the American consulting company Arthur D. Little, a number of procedures, including evaluation of literature data banks, expert interviews and expert workshops, were tried. A three-step concept was finally developed involving identification of candidate technologies (identification), collection of information on these candidates (exploration), ultimately leading to an assessment of the candidate technologies (evaluation). Such a procedure basically enables long-term observation of the scientific policy decisions. This information may serve to identify the deficits and strength of the German scientific system in comparison to that of other countries. Such a system permits the survey and documentation of scientists' subjective expectations on the trends of technology developments and the associated economic and other social consequences. It became apparent that this concept should not raise expectations too high and that it is not essentially different from the advisory instruments already employed today (advisory councils, expert consultants), but rather that these established procedures are merely systematized and supplemented by further information sources (e.g. data banks). In implementing this study two central sets of problems were identified which must be overcome: The early recognition of opportunities is in the long run based on analysts infiltrating the existing network of specialist scientists and examining the information in circulation there with respect to the aims of early recognition so that access to this network is a decisive requirement for an institutionalization of early recognition; incentive systems must be created motivating scientists to become actively involved in the early recognition of technological opportunities. (orig./HP) [de

  20. Spatial distribution of pollutants in the area of the former CHP plant

    Science.gov (United States)

    Cichowicz, Robert

    2018-01-01

    The quality of atmospheric air and level of its pollution are now one of the most important issues connected with life on Earth. The frequent nuisance and exceedance of pollution standards often described in the media are generated by both low emission sources and mobile sources. Also local organized energy emission sources such as local boiler houses or CHP plants have impact on air pollution. At the same time it is important to remember that the role of local power stations in shaping air pollution immission fields depends on the height of emitters and functioning of waste gas treatment installations. Analysis of air pollution distribution was carried out in 2 series/dates, i.e. 2 and 10 weeks after closure of the CHP plant. In the analysis as a reference point the largest intersection of streets located in the immediate vicinity of the plant was selected, from which virtual circles were drawn every 50 meters, where 31 measuring points were located. As a result, the impact of carbon dioxide, hydrogen sulfide and ammonia levels could be observed and analyzed, depending on the distance from the street intersection.

  1. CHP and Local Governments: Case Studies and EPA’s New Guide (Webinar) – September 30, 2014

    Science.gov (United States)

    This webinar presents two case studies of CHP development projects undertaken through cooperation between private companies and government entities, and introduces an EPA guide to assist local governments to reduce greenhouse gas (GHG) emissions.

  2. Testing and model-aided analysis of a 2 kW el PEMFC CHP-system

    Science.gov (United States)

    König, P.; Weber, A.; Lewald, N.; Aicher, T.; Jörissen, L.; Ivers-Tiffée, E.; Szolak, R.; Brendel, M.; Kaczerowski, J.

    A prototype PEMFC CHP-system (combined heat and power) for decentralised energy supply in domestic applications has been installed in the Fuel Cell Testing Laboratory at the Institut für Werkstoffe der Elektrotechnik (IWE), Universität Karlsruhe (TH). The system, which was developed at the Zentrum für Sonnenenergie- und Wasserstoff-Forschung ZSW, Ulm (FC-stack) and the Fraunhofer-Institut für Solare Energiesysteme ISE, Freiburg (reformer) is operated and tested in close cooperation with the Stadtwerke Karlsruhe. The tests are carried out as part of the strategic project EDISon, which is supported by the German Federal Ministry of Economics and Technology (BMWA). The performance of the system is evaluated for different operating conditions. The tests include steady state measurements under different electrical and thermal loads as well as an analysis of the dynamic behaviour of the system during load changes. First results of these steady state and dynamic operation characteristics will be presented in this paper.

  3. Optimal fuel-mix in CHP plants under a stochastic permit price. Risk-neutrality versus risk-aversion

    Energy Technology Data Exchange (ETDEWEB)

    Lappi, Pauli; Ollikka, Kimmo; Ollikainen, Markku [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland)

    2010-02-15

    This paper studies the optimal fuel-mix of a CHP producer under emission permit price risk. The producer's multi-fuel plant uses two CO{sub 2}-intensive fuels and one clean fuel. Using a mean-variance framework we develop three models. The models are divided into spot-models (risk neutral and risk averse cases) and a forward-model (risk averse case). We derive the effects of price risk on optimal fuel use. An increase in price risk can in fact increase the use of CO{sub 2}-intensive fuel in the spot-model. In the forward-model, the production and financial decisions are separate. We also evaluate the risk-bearing behavior of seven Finnish CHP producers. We found that risk-neutrality describes behavior better than risk-aversion. (author)

  4. Optimal fuel-mix in CHP plants under a stochastic permit price: Risk-neutrality versus risk-aversion

    Energy Technology Data Exchange (ETDEWEB)

    Lappi, Pauli, E-mail: pauli.lappi@helsinki.f [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland); Ollikka, Kimmo, E-mail: kimmo.ollikka@helsinki.f [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland); Ollikainen, Markku, E-mail: markku.ollikainen@helsinki.f [Department of Economics and Management, P.O. Box 27, University of Helsinki, FIN-00014 Helsinki (Finland)

    2010-02-15

    This paper studies the optimal fuel-mix of a CHP producer under emission permit price risk. The producer's multi-fuel plant uses two CO{sub 2}-intensive fuels and one clean fuel. Using a mean-variance framework we develop three models. The models are divided into spot-models (risk neutral and risk averse cases) and a forward-model (risk averse case). We derive the effects of price risk on optimal fuel use. An increase in price risk can in fact increase the use of CO{sub 2}-intensive fuel in the spot-model. In the forward-model, the production and financial decisions are separate. We also evaluate the risk-bearing behavior of seven Finnish CHP producers. We found that risk-neutrality describes behavior better than risk-aversion.

  5. Gas-fired electric power generating technologies

    International Nuclear Information System (INIS)

    1994-09-01

    The workshop that was held in Madrid 25-27 May 1994 included participation by experts from 16 countries. They represented such diverse fields and disciplines as technology, governmental regulation, economics, and environment. Thus, the participants provided an excellent cross section of key areas and a diversity of viewpoints. At the workshop, a broad range of topics regarding gas-fired electric power generation was discussed. These included political, regulatory and financial issues as well as more specific technical questions regarding the environment, energy efficiency, advanced generation technologies and the status of competitive developments. Important technological advances in gas-based power and CHP technologies have already been achieved including higher energy efficiency and lower emissions, with further improvements expected in the near future. Advanced technology trends include: (a) The use of gas technology to reduce emissions from existing coal-fired power plants. (b) The wide-spread application of combined-cycle gas turbines in new power plants and the growing use of aero-derivative gas turbines in CHP applications. (c) Phosphoric acid fuel cells that are being introduced commercially. Their market penetration will grow over the next 10 years. The next generation of fuel cells (solid oxide and molten carbonate) is expected to enter the market around the year 2000. (EG)

  6. DOE Low-Level Waste Management Program perspective on technology transfer: opportunities and challenges

    International Nuclear Information System (INIS)

    Large, D.E.

    1982-01-01

    The Department of Energy's Low-Level Waste Management Program (DOE LLWMP) perspective in regard to transfer of LLWMP technology to current and potential users in both the commercial and defense sectors is discussed. Past, present, and future opportunities and challenges for the whole nuclear waste management are indicated. Elements considered include: historical and evolutionary events and activities; the purpose of the Program and its inherent opportunities and challenges; achievements and expected accomplishments; supporters and interactors; packaging and delivering technology; implementing and serving potential users; determining and meeting users' needs; and identifying and responding to opportunities and challenges. The low-level waste management effort to improve shallow land burial technology began in FY 1977 and has expanded to include waste treatment and alternative disposal methods. Milestones have been established and are used as principal management control items. This technology, the Program Product, is described and is made available. This year, the Program has drafted criteria for inclusion in a DOE order for radioactive waste management operations at DOE sites

  7. Nanomaterials and future aerospace technologies: opportunities and challenges

    Science.gov (United States)

    Vaia, Richard A.

    2012-06-01

    Two decades of extensive investment in nanomaterials, nanofabrication and nanometrology have provided the global engineering community a vast array of new technologies. These technologies not only promise radical change to traditional industries, such as transportation, information and aerospace, but may create whole new industries, such as personalized medicine and personalized energy harvesting and storage. The challenge today for the defense aerospace community is determining how to accelerate the conversion of these technical opportunities into concrete benefits with quantifiable impact, in conjunction with identifying the most important outstanding scientific questions that are limiting their utilization. For example, nanomaterial fabrication delivers substantial tailorablity beyond a traditional material data sheet. How can we integrate this tailorability into agile manufacturing and design methods to further optimize the performance, cost and durability of future resilient aerospace systems? The intersection of nano-based metamaterials and nanostructured devices with biotechnology epitomizes the technological promise of autonomous systems and enhanced human-machine interfaces. What then are the key materials and processes challenges that are inhibiting current lab-scale innovation from being integrated into functioning systems to increase effectiveness and productivity of our human resources? Where innovation is global, accelerating the use of breakthroughs, both for commercial and defense, is essential. Exploitation of these opportunities and finding solutions to the associated challenges for defense aerospace will rely on highly effective partnerships between commercial development, scientific innovation, systems engineering, design and manufacturing.

  8. Modeling and optimization of a 1 kWe HT-PEMFC-based micro-CHP residential system

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2012-01-01

    A high temperature-proton exchange membrane (HT-PEMFC)-based micro-combined-heat-and-power (CHP) residential system is designed and optimized, using a genetic algorithm (GA) optimization strategy. The proposed system consists of a fuel cell stack, steam methane reformer (SMR) reactor, water gas...

  9. Modelling the adoption of industrial cogeneration in Japan using manufacturing plant survey data

    International Nuclear Information System (INIS)

    Bonilla, David; Akisawa, Atsushi; Kashiwagi, Takao

    2003-01-01

    Electric power deregulation in Japan opens opportunity for further penetration of on-site generation (cogeneration) otherwise known as distributed generation. In the paper the authors present a survey on Japanese industrial plants to fill existing gaps for the assessment of modern cogeneration (combined heat and power, CHP). The objective of the paper is to empirically examine CHP systems based on cross-sectional binary models; second to review diffusion trends of CHP by system vintage during the 1980-2000 period in the manufacturing sector. The econometric results point that the probabilities of embracing this technology increase, in declining importance, with on-site power consumption, and steam demand, operational hours as well as with payback period, purchased power. For example the survey shows that the CHP is used for the purpose of exporting power rather than meeting the plant's own consumption. Some of our results are in line with those of Dismukes and Kleit (Resource Energy Econ. 21 (1999) 153) as well with Rose and Macdonald (Energy J. 12(12) (1991) 47). We also find that a unit increase in satisfaction with CHP will lead to a 54% in CHP capacity. We find significant evidence on the cost effectiveness of CHP under conservative assumptions. Regarding the influence of satisfaction and performance indicators for the several plants, the survey threw some unexpected evidence on the nature of CHP

  10. In-situ corrosion investigation at Masnedø CHP plant - a straw-fired power plant

    DEFF Research Database (Denmark)

    Montgomery, Melanie; Karlsson, Asger

    1999-01-01

    Various austenitic and ferritic steels were exposed on a water-cooled probe in the superheater area of a straw-fired CHP plant. The temperature of the probe ranged from 450-600°C and the period of exposure was 1400 hours. The rate of corrosion was assessed based on unattacked metal remaining...

  11. Information Technology in the Home Barriers, Opportunities, and Research Directions

    National Research Council Canada - National Science Library

    Lewis, Rosalind

    2000-01-01

    ...; but what are the implications of increased Information Technology (IT) in the home? Can increased in-home IT create opportunities that will change the way we live and function within our homes and communities and facilitate greater societal benefits...

  12. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    The nation's power system is facing a diverse and broad set of challenges. These range from restructuring and increased competitiveness in power production to the need for additional production and distribution capacity to meet demand growth, and demands for increased quality and reliability of power and power supply. In addition, there are growing concerns about emissions from fossil fuel powered generation units and generators are seeking methods to reduce the CO{sub 2} emission intensity of power generation. Although these challenges may create uncertainty within the financial and electricity supply markets, they also offer the potential to explore new opportunities to support the accelerated deployment of cleaner and cost-effective technologies to meet such challenges. The federal government and various state governments, for example, support the development of a sustainable electricity infrastructure. As part of this policy, there are a variety of programs to support the development of ''cleaner'' technologies such as combined heat and power (CHP, or cogeneration) and renewable energy technologies. Energy from renewable energy sources, such as solar, wind, hydro, and biomass, are considered carbon-neutral energy technologies. The production of renewable energy creates no incremental increase in fossil fuel consumption and CO{sub 2} emissions. Electricity and thermal energy production from all renewable resources, except biomass, produces no incremental increase in air pollutants such as nitrogen oxides, sulfur oxides, particulate matter, and carbon monoxide. There are many more opportunities for the development of cleaner electricity and thermal energy technologies called ''recycled'' energy. A process using fossil fuels to produce an energy service may have residual energy waste streams that may be recycled into useful energy services. Recycled energy methods would capture energy from sources that would otherwise

  13. Research and Development Opportunities for Joining Technologies in HVAC&R

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Guernsey, Matt [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States)

    2015-10-01

    The Building Technologies Office (BTO) works with researchers and industry partners to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. This opportunity assessment aims to advance BTO’s energy savings, GHG reduction, and other program goals by identifying research and development (R&D) initiatives for joining technologies in heating, ventilation, air-conditioning, and refrigeration (HVAC&R) systems. Improving joining technologies for HVAC&R equipment has the potential to increase lifetime equipment operating efficiency, decrease equipment and project cost, and most importantly reduce hydroflourocarbon (HFC) refrigerant leakage to support HFC phasedown and GHG reduction goals.

  14. Biomass polygeneration - technology state-of-the-art, systems and policy instruments; Bioenergikombinat - tekniktrender, system och styrmedel

    Energy Technology Data Exchange (ETDEWEB)

    Gode, Jenny; Hagberg, Linus; Holmgren, Kristina; Stripple, Haakan

    2007-09-15

    The development status of biofuel technologies and pellets has been reviewed, with focus on the possibilities for polygeneration with combined heat and power (CHP). Policy instruments important for the development of polygeneration plants have been analysed and interviews with potential stakeholders have been carried out. Fermentation of biomass for ethanol production, gasification and conversion to synthesis gas, biodiesel production from vegetable and animal oils, as well as anaerobic digestion for biogas production are examples of common biofuel technologies. Some of these are commercially available whereas others require further development. Substantial research and development is also spent to develop new technologies for biofuel production. Biofuel production can often benefit from integration with CHP resulting in increased efficiency and energy balances. The potentials for integration vary between different biofuels, but the most common options are integration with respect to the raw material, heat demand, waste heat and waste products. The integration potential for pellets is mainly associated with the raw material and the heat demand for drying of the raw material. Integration of biofuel and/or pellets production with CHP might increase the potential for power production since a new heat customer is provided the whole year around. The heat demand for some biofuels and for pellets can be covered by district heating, whereas some biofuels require steam. Policy instruments can strongly influence the development of biofuels and thereby has a potential to affect the incentives for investments in polygeneration. From a climate point of view, it can be argued that biomass is better used for emission reductions in other sectors where higher reduction of greenhouse gases can be achieved to a lower cost. However, there are other driving forces that motivate increased use of biofuels, such as security of supply, need of revised agriculture policy and reduction of

  15. Identification of an operon, Pil-Chp, that controls twitching motility and virulence in Xylella fastidiosa.

    Science.gov (United States)

    Cursino, Luciana; Galvani, Cheryl D; Athinuwat, Dusit; Zaini, Paulo A; Li, Yaxin; De La Fuente, Leonardo; Hoch, Harvey C; Burr, Thomas J; Mowery, Patricia

    2011-10-01

    Xylella fastidiosa is an important phytopathogenic bacterium that causes many serious plant diseases, including Pierce's disease of grapevines. Disease manifestation by X. fastidiosa is associated with the expression of several factors, including the type IV pili that are required for twitching motility. We provide evidence that an operon, named Pil-Chp, with genes homologous to those found in chemotaxis systems, regulates twitching motility. Transposon insertion into the pilL gene of the operon resulted in loss of twitching motility (pilL is homologous to cheA genes encoding kinases). The X. fastidiosa mutant maintained the type IV pili, indicating that the disrupted pilL or downstream operon genes are involved in pili function, and not biogenesis. The mutated X. fastidiosa produced less biofilm than wild-type cells, indicating that the operon contributes to biofilm formation. Finally, in planta the mutant produced delayed and less severe disease, indicating that the Pil-Chp operon contributes to the virulence of X. fastidiosa, presumably through its role in twitching motility.

  16. Patients' experiences with technology during inpatient rehabilitation: opportunities to support independence and therapeutic engagement.

    Science.gov (United States)

    Fager, Susan Koch; Burnfield, Judith M

    2014-03-01

    To understand individuals' perceptions of technology use during inpatient rehabilitation. A qualitative phenomenological study using semi-structured interviews of 10 individuals with diverse underlying diagnoses and/or a close family member who participated in inpatient rehabilitation. Core themes focused on assistive technology usage (equipment set-up, reliability and fragility of equipment, expertise required to use assistive technology and use of mainstream technologies) and opportunities for using technology to increase therapeutic engagement (opportunities for practice outside of therapy, goals for therapeutic exercises and technology for therapeutic exercises: motivation and social interaction). Interviews revealed the need for durable, reliable and intuitive technology without requiring a high level of expertise to install and implement. A strong desire for the continued use of mainstream devices (e.g. cell phones, tablet computers) reinforces the need for a wider range of access options for those with limited physical function. Finally, opportunities to engage in therapeutically meaningful activities beyond the traditional treatment hours were identified as valuable for patients to not only improve function but to also promote social interaction. Assistive technology increases functional independence of severely disabled individuals. End-users (patients and families) identified a need for designs that are durable, reliable, intuitive, easy to consistently install and use. Technology use (adaptive or commercially available) provides a mechanism to extend therapeutic practice beyond the traditional therapy day. Adapting skeletal tracking technology used in gaming software could automate exercise tracking, documentation and feedback for patient motivation and clinical treatment planning and interventions.

  17. Straw for energy production. Technology - Environment - Economy

    Energy Technology Data Exchange (ETDEWEB)

    Nikolaisen, L.; Nielsen, C.; Larsen, M.G.; Nielsen, V.; Zielke, U.; Kristensen, J.K.; Holm-Christensen, B.

    1998-12-31

    `Straw for Energy Production`, second edition, provides a readily accessible background information of special relevance to the use of straw in the Danish energy supply. Technical, environmental, and economic aspects are described in respect of boiler plants for farms, district heating plants, and combined heat and power plants (CHP). The individual sections deal with both well-known, tested technology and the most recent advances in the field of CHP production. This publication is designed with the purpose of reaching the largest possible numbers of people and so adapted that it provides a valuable aid and gives the non-professional, general reader a thorough knowledge of the subject. `Straw for Energy Production` is also available in German and Danish. (au)

  18. A price mechanism for supply demand matching in local grid of households with micro-CHP

    NARCIS (Netherlands)

    Larsen, G.K.H.; van Foreest, N.D.; Scherpen, J.M.A.

    2012-01-01

    This paper describes a dynamic price mechanism to coordinate eletric power generation from micro Combined Heat and Power (micro-CHP) systems in a network of households. It is assumed that the households are prosumers, i.e. both producers and consumers of electricity. The control is done on household

  19. Big Data Technologies: New Opportunities for Diabetes Management

    OpenAIRE

    Bellazzi, Riccardo; Dagliati, Arianna; Sacchi, Lucia; Segagni, Daniele

    2015-01-01

    The so-called big data revolution provides substantial opportunities to diabetes management. At least 3 important directions are currently of great interest. First, the integration of different sources of information, from primary and secondary care to administrative information, may allow depicting a novel view of patient’s care processes and of single patient’s behaviors, taking into account the multifaceted nature of chronic care. Second, the availability of novel diabetes technologies, ab...

  20. Guide to Combined Heat and Power Systems for Boiler Owners and Operators

    Energy Technology Data Exchange (ETDEWEB)

    Oland, CB

    2004-08-19

    Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits

  1. Technological learning in bioenergy systems

    International Nuclear Information System (INIS)

    Junginger, Martin; Visser, Erika de; Hjort-Gregersen, Kurt; Koornneef, Joris; Raven, Rob; Faaij, Andre; Turkenburg, Wim

    2006-01-01

    The main goal of this article is to determine whether cost reductions in different bioenergy systems can be quantified using the experience curve approach, and how specific issues (arising from the complexity of biomass energy systems) can be addressed. This is pursued by case studies on biofuelled combined heat and power (CHP) plants in Sweden, global development of fluidized bed boilers and Danish biogas plants. As secondary goal, the aim is to identify learning mechanisms behind technology development and cost reduction for the biomass energy systems investigated. The case studies reveal large difficulties to devise empirical experience curves for investment costs of biomass-fuelled power plants. To some extent, this is due to lack of (detailed) data. The main reason, however, are varying plant costs due to differences in scale, fuel type, plant layout, region etc. For fluidized bed boiler plants built on a global level, progress ratios (PRs) for the price of entire plants lies approximately between 90-93% (which is typical for large plant-like technologies). The costs for the boiler section alone was found to decline much faster. The experience curve approach delivers better results, when the production costs of the final energy carrier are analyzed. Electricity from biofuelled CHP-plants yields PRs of 91-92%, i.e. an 8-9% reduction of electricity production costs with each cumulative doubling of electricity production. The experience curve for biogas production displays a PR of 85% from 1984 to the beginning of 1990, and then levels to approximately 100% until 2002. For technologies developed on a local level (e.g. biogas plants), learning-by-using and learning-by-interacting are important learning mechanism, while for CHP plants utilizing fluidized bed boilers, upscaling is probably one of the main mechanisms behind cost reductions

  2. Opportunities and Challenges for Technology Development and Adoption in Public Libraries

    DEFF Research Database (Denmark)

    Serholt, Sofia; Eriksson, Eva; Dalsgaard, Peter

    2018-01-01

    In this paper, we discuss opportunities and challenges for technology development and adoption in public libraries. The results are based on a multi-site comparative study and thematic analysis of six months of extensive ethnographic work in libraries in three different European countries....... The results explore the socio-technical practices, understandings, and perspectives of library staff and patrons when it comes to the role(s) and function(s) of libraries today. The contribution of this paper is two fold. Firstly, the results from the analysis of rich ethnographic data presented under six...... themes. Secondly, we offer a list of identified key opportunities and challenges focusing on 1) media and technology literacy, 2) institutional transformation and technical infrastructures, 3) resource constraints among library staff, and 4) a shift in focus towards supporting activities....

  3. NASA funding opportunities for optical fabrication and testing technology development

    Science.gov (United States)

    Stahl, H. Philip

    2013-09-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to `Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs.

  4. Plasma Science Committee (PLSC) and study on new opportunities in plasma science and technology

    International Nuclear Information System (INIS)

    1992-01-01

    The Plasma Science Committee (PLSC) of the National Research Council (NRC) is charged with monitoring the health of the field of plasma science in the United States. Accordingly, the Committee identifies and examines both broad and specific issues affecting the field. Regular meetings, teleconferences, briefings from agencies and the scientific community, the formation of study panels to prepare reports, and special symposia are among the mechanisms used by the PLSC to meet its charge. This progress report presents a review of PLSC activities from July 15, 1991 to May 31, 1992. The details of prior activities are discussed in earlier reports. This report also includes the status of activities associated with the PLSC study on opportunities in plasma science and technology. During the above period, the PLSC has continued to track and participate in, when requested, discussions on the health of the field. Much of the perspective of the PLSC has been presented in the recently-published report Research Briefing on Contemporary Problems in Plasma Science. That report has served as the basis for briefings to representatives of the federal government as well as the community-at-large. In keeping with its charge to identify and highlight specific areas for scientific and technological opportunities, the PLSC completed publication of the report Plasma Processing of Materials: Scientific and Technological Opportunities and launched a study on new opportunities in plasma science and technology

  5. A Compound Herbal Preparation (CHP) in the Treatment of Children with ADHD: A Randomized Controlled Trial

    Science.gov (United States)

    Katz, M.; Adar Levine, A.; Kol-Degani, H.; Kav-Venaki, L.

    2010-01-01

    Objective: Evaluation of the efficacy of a patented, compound herbal preparation (CHP) in improving attention, cognition, and impulse control in children with ADHD. Method: Design: A randomized, double-blind, placebo-controlled trial. Setting: University-affiliated tertiary medical center. Participants: 120 children newly diagnosed with ADHD,…

  6. Expanding photovoltaic penetration with residential distributed generation from hybrid solar photovoltaic and combined heat and power systems

    International Nuclear Information System (INIS)

    Pearce, J.M.

    2009-01-01

    The recent development of small scale combined heat and power (CHP) systems has provided the opportunity for in-house power backup of residential-scale photovoltaic (PV) arrays. This paper investigates the potential of deploying a distributed network of PV + CHP hybrid systems in order to increase the PV penetration level in the U.S. The temporal distribution of solar flux, electrical and heating requirements for representative U.S. single family residences were analyzed and the results clearly show that hybridizing CHP with PV can enable additional PV deployment above what is possible with a conventional centralized electric generation system. The technical evolution of such PV + CHP hybrid systems was developed from the present (near market) technology through four generations, which enable high utilization rates of both PV-generated electricity and CHP-generated heat. A method to determine the maximum percent of PV-generated electricity on the grid without energy storage was derived and applied to an example area. The results show that a PV + CHP hybrid system not only has the potential to radically reduce energy waste in the status quo electrical and heating systems, but it also enables the share of solar PV to be expanded by about a factor of five. (author)

  7. Biomass gasification for CHP with dry gas cleaning and regenerative heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    Small scale CHP plants based on biomass gasification technologies are generally expensive and not very efficient due to gas quality problems which increase operation and maintenance cost as well as breakdown. To overcome this situation the team has developed, integrated and tested a complete biomass gasification combine heat and power prototype plant of 250 kWth equipped with a specifically developed dry gas cleaning and heat recovery system. The dry gas cleaning device is a simple dry gas regenerative heat exchanger where tars are stopped by condensation but working at a temperature above due point in order to avoid water condensation. Two types of heat particles separation devices have been tested in parallel multi-cyclone and ceramic filters. After several month spent on modelling design, construction and optimisation, a full test campaign of 400 hours continuous monitoring has been done where all working parameters has been monitored and gas cleaning device performances has been assessed. Results have shown: Inappropriateness of the ceramic filters for the small scale unit due to operation cost and too high sensibility of the filters to the operation conditions fluctuating in a wide range, despite a very high particle separation efficiency 99 %; Rather good efficiency of the multi-cyclone 72% but not sufficient for engine safety. Additional conventional filters where necessary for the finest part; Inappropriateness of the dry gas heat exchanger device for tar removal partly due to a low tar content of the syngas generated, below 100 mg/Nm{sup 3} , but also due to their composition which would have imposed, to be really efficient, a theoretical condensing temperature of 89 C below the water condensation temperature. These results have been confirmed by laboratory tests and modelling. However the tar cracking phase have shown very interesting results and proved the feasibility of thermal cracking with full cleaning of the heat exchanger without further mechanical

  8. Human Subjects Protection and Technology in Prevention Science: Selected Opportunities and Challenges

    OpenAIRE

    Pisani, Anthony R.; Wyman, Peter A.; Mohr, David C.; Perrino, Tatiana; Gallo, Carlos; Villamar, Juan; Kendziora, Kimberly; Howe, George W.; Sloboda, Zili; Brown, C. Hendricks

    2016-01-01

    Internet-connected devices are changing the way people live, work, and relate to one another. For prevention scientists, technological advances create opportunities to promote the welfare of human subjects and society. The challenge is to obtain the benefits while minimizing risks. In this article, we use the guiding principles for ethical human subjects research and proposed changes to the Common Rule regulations, as a basis for discussing selected opportunities and challenges that new techn...

  9. Advanced m-CHP fuel cell system based on a novel bio-ethanol fluidized bed membrane reformer

    NARCIS (Netherlands)

    Viviente, J.L.; Melendez Rey, J.; Pacheco Tanaka, D.A.; Gallucci, F.; Spallina, V.; Manzolini, G.; Foresti, S.; Palma, V.; Ruocco, C.; Roses, L.

    2017-01-01

    Distributed power generation via Micro Combined Heat and Power (m-CHP) systems, has been proven to over-come disadvantages of centralized generation since it can give savings in terms of Primary Energy consumption and energy costs. The FluidCELL FCH JU/FP7 project aims at providing the Proof of

  10. Are US utility standby rates inhibiting diffusion of customer-owned generating systems?

    International Nuclear Information System (INIS)

    Jackson, Jerry

    2007-01-01

    New, small-scale electric generation technologies permit utility customers to generate some of their own electric power and to utilize waste heat for space heating and other applications at the building site. This combined heat and power (CHP) characteristic can provide significant energy-cost savings. However, most current US utility regulations leave CHP standby rate specification largely to utility discretion resulting in claims by CHP advocates that excessive standby rates are significantly reducing CHP-related savings and inhibiting CHP diffusion. The impacts of standby rates on the adoption of CHP are difficult to determine; however, because of the characteristically slow nature of new technology diffusion. This study develops an agent-based microsimulation model of CHP technology choice using cellular automata to represent new technology information dispersion and knowledge acquisition. Applying the model as an n-factorial experiment quantifies the impacts of standby rates on CHP technologies under alternative diffusion paths. Analysis of a sample utility indicates that, regardless of the likely diffusion process, reducing standby rates to reflect the cost of serving a large number of small, spatially clustered CHP systems significantly increases the adoption of these technologies

  11. Experimental study and modelling of degradation phenomena in HTPEM fuel cell stacks for use in CHP systems

    DEFF Research Database (Denmark)

    Andreasen, Søren Juhl

    2009-01-01

    Degradation phenomena in HTPEM fuel cells for use in CHP systems were investigated experimentally and by modelling. It was found that the two main degradation mechanisms in HTPEM fuel cells are carbon corrosion and Pt agglomeration. On basis of this conclusion a mechanistic model, describing...

  12. Trends, Opportunities, and Challenges for Tall Wind Turbine and Tower Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Lantz, Eric; Roberts, Owen; Dykes, Katherine

    2017-06-28

    This presentation summarizes recent analysis focused on characterizing the opportunity for Tall Wind technologies generally and for tall tower technologies specifically. It seeks to illuminate and explain the concept of Tall Wind, its impact on the wind industry to date, and the potential value of Tall Wind in the future. It also explores the conditions and locations under which the impacts of Tall Wind offer the most significant potential to increase wind technology performance. In addition, it seeks to examine the status of tall tower technology as a key sub-component of Tall Wind, focusing on the potential for continued innovation in tubular steel wind turbine towers and the status and potential for a select set of alternative tall tower technologies.

  13. Renewables and CHP with District Energy in Support of Sustainable Communities

    Energy Technology Data Exchange (ETDEWEB)

    Snoek, Chris

    2010-09-15

    This paper addresses the powerful idea of connecting many energy users to environmentally optimum energy sources through integrated community energy systems. Such systems require piping networks for distributing thermal energy, i.e., district heating and cooling (DHC) systems. The possibilities and advantages of the application of integrated energy concepts are discussed, including the economic and environmental benefits of integrating localized electrical generating systems (CHP), transportation systems, industrial processes and other thermal energy requirements. Examples of a number of operating systems are provided. Some of the R and D carried out by the IEA Implementing Agreement on District Heating and Cooling is also described.

  14. Combined Heat and Power: Effective Energy Solutions for a Sustainable Future

    Energy Technology Data Exchange (ETDEWEB)

    Shipley, Ms. Anna [Sentech, Inc.; Hampson, Anne [Energy and Environmental Analysis, Inc., an ICF Company; Hedman, Mr. Bruce [Energy and Environmental Analysis, Inc., an ICF Company; Garland, Patricia W [ORNL; Bautista, Paul [Sentech, Inc.

    2008-12-01

    Combined Heat and Power (CHP) solutions represent a proven and effective near-term energy option to help the United States enhance energy efficiency, ensure environmental quality, promote economic growth, and foster a robust energy infrastructure. Using CHP today, the United States already avoids more than 1.9 Quadrillion British thermal units (Quads) of fuel consumption and 248 million metric tons of carbon dioxide (CO{sub 2}) emissions annually compared to traditional separate production of electricity and thermal energy. This CO{sub 2} reduction is the equivalent of removing more than 45 million cars from the road. In addition, CHP is one of the few options in the portfolio of energy alternatives that combines environmental effectiveness with economic viability and improved competitiveness. This report describes in detail the four key areas where CHP has proven its effectiveness and holds promise for the future as an: (1) Environmental Solution: Significantly reducing CO{sub 2} emissions through greater energy efficiency; (2) Competitive Business Solution: Increasing efficiency, reducing business costs, and creating green-collar jobs; (3) Local Energy Solution: Deployable throughout the US; and (4) Infrastructure Modernization Solution: Relieving grid congestion and improving energy security. CHP should be one of the first technologies deployed for near-term carbon reductions. The cost-effectiveness and near-term viability of widespread CHP deployment place the technology at the forefront of practical alternative energy solutions such as wind, solar, clean coal, biofuels, and nuclear power. Clear synergies exist between CHP and most other technologies that dominate the energy and environmental policy dialogue in the country today. As the Nation transforms how it produces, transports, and uses the many forms of energy, it must seize the clear opportunity afforded by CHP in terms of climate change, economic competitiveness, energy security, and infrastructure

  15. Innovative Technologies for Human Exploration: Opportunities for Partnerships and Leveraging Novel Technologies External to NASA

    Science.gov (United States)

    Hay, Jason; Mullins, Carie; Graham, Rachael; Williams-Byrd, Julie; Reeves, John D.

    2011-01-01

    Human spaceflight organizations have ambitious goals for expanding human presence throughout the solar system. To meet these goals, spaceflight organizations have to overcome complex technical challenges for human missions to Mars, Near Earth Asteroids, and other distant celestial bodies. Resolving these challenges requires considerable resources and technological innovations, such as advancements in human health and countermeasures for space environments; self-sustaining habitats; advanced power and propulsion systems; and information technologies. Today, government space agencies seek cooperative endeavors to reduce cost burdens, improve human exploration capabilities, and foster knowledge sharing among human spaceflight organizations. This paper looks at potential opportunities for partnerships and spin-ins from economic sectors outside the space industry. It highlights innovative technologies and breakthrough concepts that could have significant impacts on space exploration and identifies organizations throughout the broader economy that specialize in these technologies.

  16. Science in the Wild: Technology Needs and Opportunities in Scientific Fieldwork

    Science.gov (United States)

    Guice, Jon; Hoffower, Heidi; Norvig, Peter (Technical Monitor)

    1999-01-01

    Considering that much contemporary natural science involves field expeditions, fieldwork is an under-studied topic. There is also little information technology specifically designed to support scientific fieldwork, aside from portable scientific instruments. This article describes a variety of fieldwork practices in an interdisciplinary research area, proposes a framework linking types of fieldwork to types of needs in information technology, and identifies promising opportunities for technology development. Technologies that are designed to support the integration of field observations and samples with laboratory work are likely to aid nearly all research teams who conduct fieldwork. However, technologies that support highly detailed representations of field sites will likely trigger the deepest changes in work practice. By way of illustration, we present brief case studies of how fieldwork is done today and how it might be conducted with the introduction of new information technologies.

  17. Opportunities and Challenges of Using Technology in Mathematics Education of Creative Technical Studies

    DEFF Research Database (Denmark)

    Triantafyllou, Eva; Timcenko, Olga

    2014-01-01

    This paper explores the opportunities and challenges of integrating technology to support mathematics teaching and learning in creative engineer- ing disciplines. We base our discussion on data from our research in the Media Technology department of Aalborg University Copenhagen, Denmark. Our ana...... analysis proposes that unlike in other engineering disciplines, technology in these disciplines should be used for contextualizing mathematics rather than in- troducing and exploring mathematical concepts....

  18. The Opportunities and Challenges of Persuasive Technology in Creating Sustainable Innovation and Business Model Innovation

    DEFF Research Database (Denmark)

    Aagaard, Annabeth; Lindgren, Peter

    2015-01-01

    The opportunities of persuasive technology in facilitating sustainable innovation and business model innovation have been witnessed continuously during the last decade. The unique ability of persuasive technology in interacting and mediating across users, customers, decisions makers and other...... stakeholders provides access to core knowledge about behavior and opportunities to influence and even change their behavior in a positive and more sustainable manner. Sustainable innovation and business model innovation is gaining more and more competitive leverage due to customer requirements, the growing...

  19. Advances in precision machining and moulding technology bring design opportunities.

    Science.gov (United States)

    Glendening, Paul

    2008-09-01

    Machining of materials for medical applications has moved to a new level of precision. In parallel with this, moulding technology has improved through the increased use of sensors in moulds, enhanced design simulation and processes such as micromoulding. This article examines the opportunities offered by these developments and includes examples of mass produced parts that demonstrate the new capabilities useful to product designers.

  20. Windows of opportunities and technological innovation in the Brazilian pharmaceutical industry.

    Science.gov (United States)

    Tigre, Paulo Bastos; Nascimento, Caio Victor Machado França do; Costa, Laís Silveira

    2016-11-03

    The Brazilian pharmaceutical industry is heavily dependent on external sources of inputs, capital, and technology. However, the emergence of technological opportunities and the development of biotechnology and the decline of the patent boom and resulting advances by generic drugs have opened windows of opportunities for the local industry. The article examines the Brazilian industry's innovative behavior vis-à-vis these opportunities, showing that although the industry as a whole invests little in innovation, a few large Brazilian companies have expanded their market share and stepped up their investments in research and development, supported by public policies for innovation. Resumo: A indústria farmacêutica brasileira caracteriza-se pela grande dependência de fontes externas de insumos, capital e tecnologia. O surgimento de oportunidades tecnológicas, associadas ao desenvolvimento da biotecnologia e ao fim do boom das patentes com o consequente avanço dos medicamentos genéricos, entretanto, vem abrindo janelas de oportunidades para a indústria local. Este artigo examina o comportamento inovador da indústria brasileira à luz dessas oportunidades, revelando que, embora o conjunto da indústria mantenha baixos níveis de investimentos em inovação, um pequeno grupo de grandes empresas nacionais vem ampliando sua participação no mercado e intensificando seus investimentos em pesquisa e desenvolvimento, apoiados por políticas públicas de inovação.

  1. Energetic and Exergetic Analysis of a Heat Exchanger Integrated in a Solid Biomass-Fuelled Micro-CHP System with an Ericsson Engine

    Directory of Open Access Journals (Sweden)

    Marie Creyx

    2016-04-01

    Full Text Available A specific heat exchanger has been developed to transfer heat from flue gas to the working fluid (hot air of the Ericsson engine of a solid biomass-fuelled micro combined heat and power (CHP. In this paper, the theoretical and experimental energetic analyses of this heat exchanger are compared. The experimental performances are described considering energetic and exergetic parameters, in particular the effectiveness on both hot and cold sides. A new exergetic parameter called the exergetic effectiveness is introduced, which allows a comparison between the real and the ideal heat exchanger considering the Second Law of Thermodynamics. A global analysis of exergetic fluxes in the whole micro-CHP system is presented, showing the repartition of the exergy destruction among the components.

  2. Energy Management for Community Energy Network with CHP Based on Cooperative Game

    Directory of Open Access Journals (Sweden)

    Xiaofeng Liu

    2018-04-01

    Full Text Available Integrated energy system (IES has received increasing attention in micro grid due to the high energy efficiency and low emission of carbon dioxide. Based on the technology of combined heat and power (CHP, this paper develops a novel operation mechanism with community micro turbine and shared energy storage system (ESS for energy management of prosumers. In the proposed framework, micro-grid operator (MGO equipped with micro turbine and ESS provides energy selling business and ESS leasing business for prosumers. Prosumers can make energy trading with public grid and MGO, and ESS will be shared among prosumers when they pay for the rent to MGO. Based on such framework, we adopt a cooperative game for prosumers to determine optimal energy trading strategies from MGO and public grid for the next day. Concretely, a cooperative game model is formulated to search the optimal strategies aiming at minimizing the daily cost of coalition, and then a bilateral Shapley value (BSV is proposed to solve the allocation problem of coalition’s cost among prosumers. To verify the effectiveness of proposed energy management framework, a practical example is conducted with a community energy network containing MGO and 10 residential buildings. Simulation results show that the proposed scheme is able to provide financial benefits to all prosumers, while providing peak load leveling for the grid.

  3. The benefit of regional diversification of cogeneration investments in Europe: A mean-variance portfolio analysis

    Energy Technology Data Exchange (ETDEWEB)

    Westner, Guenther, E-mail: guenther.westner@eon-energie.co [E.ON Energy Projects GmbH, Arnulfstrasse 56, 80335 Munich (Germany); Madlener, Reinhard, E-mail: rmadlener@eonerc.rwth-aachen.d [Institute for Future Energy Consumer Needs and Behavior (FCN), Faculty of Business and Economics/E.ON Energy Research Center, RWTH Aachen University, Mathieustrasse 6, 52074 Aachen (Germany)

    2010-12-15

    The EU Directive 2004/8/EC, concerning the promotion of cogeneration, established principles on how EU member states can support combined heat and power generation (CHP). Up to now, the implementation of these principles into national law has not been uniform, and has led to the adoption of different promotion schemes for CHP across the EU member states. In this paper, we first give an overview of the promotion schemes for CHP in various European countries. In a next step, we take two standard CHP technologies, combined-cycle gas turbines (CCGT-CHP) and engine-CHP, and apply exemplarily four selected support mechanisms used in the four largest European energy markets: feed-in tariffs in Germany; energy efficiency certificates in Italy; benefits through tax reduction in the UK; and purchase obligations for power from CHP generation in France. For contracting companies, it could be of interest to diversify their investment in new CHP facilities regionally over several countries in order to reduce country and regulatory risk. By applying the Mean-Variance Portfolio (MVP) theory, we derive characteristic return-risk profiles of the selected CHP technologies in different countries. The results show that the returns on CHP investments differ significantly depending on the country, the support scheme, and the selected technology studied. While a regional diversification of investments in CCGT-CHP does not contribute to reducing portfolio risks, a diversification of investments in engine-CHP can decrease the risk exposure. - Research highlights: {yields}Preconditions for CHP investments differ significantly between the EU member states. {yields}Regional diversification of CHP investments can reduce the total portfolio risk. {yields}Risk reduction depends on the chosen CHP technology.

  4. Efficient identification of opportunities for Distributed Generation based on Smart Grid Technology

    DEFF Research Database (Denmark)

    Mutule, Anna; Obushevs, Artjoms; Lvov, Aleksandr

    2013-01-01

    The paper presents the main goals and achievements of the Smart Grids ERA-NET project named “Efficient identification of opportunities for Distributed Generation based on Smart Grid Technology (SmartGen)” during the second stage of project implementation. A description of Smart Grid Technology (S......) models developed within the framework of the project is given. The performed study cases where the SGT-models were implemented to analyze the impact of the electrical grid are discussed....

  5. NIH Common Fund - Disruptive Proteomics Technologies - Challenges and Opportunities | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    This Request for Information (RFI) is directed toward determining how best to accelerate research in disruptive proteomics technologies. The Disruptive Proteomics Technologies (DPT) Working Group of the NIH Common Fund wishes to identify gaps and opportunities in current technologies and methodologies related to proteome-wide measurements.  For the purposes of this RFI, “disruptive” is defined as very rapid, very significant gains, similar to the "disruptive" technology development that occurred in DNA sequencing technology.

  6. Integrated Building Energy Systems Design Considering Storage Technologies

    OpenAIRE

    Stadler, Michael

    2009-01-01

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 em...

  7. Emerging technology becomes an opportunity for EOS

    Science.gov (United States)

    Fargion, Giulietta S.; Harberts, Robert; Masek, Jeffrey G.

    1996-11-01

    During the last decade, we have seen an explosive growth in our ability to collect and generate data. When implemented, NASA's Earth observing system data information system (EOSDIS) will receive about 50 gigabytes of remotely sensed image data per hour. This will generate an urgent need for new techniques and tools that can automatically and intelligently assist in transforming this abundance of data into useful knowledge. Some emerging technologies that address these challenges include data mining and knowledge discovery in databases (KDD). The most basic data mining application is a content-based search (examples include finding images of particular meteorological phenomena or identifying data that have been previously mined or interpreted). In order that these technologies be effectively exploited for EOSDIS development, a better understanding of data mining and the requirements for using this technology is necessary. The authors are currently undertaking a project exploring the requirements and options of content-based search and data mining for use on EOSDIS. The scope of the project is to develop a prototype with which to investigate user interface concepts, requirements, and designs relevant for EOSDIS core system (ECS) subsystem utilizing these techniques. The goal is to identify a generic handling of these functions. This prototype will help identify opportunities which the earth science community and EOSDIS can use to meet the challenges of collecting, searching, retrieving, and interacting with abundant data resources in highly productive ways.

  8. Analyzing Sustainable Energy Opportunities for a Small Scale Off-Grid Facility: A Case Study at Experimental Lakes Area (ELA), Ontario

    Science.gov (United States)

    Duggirala, Bhanu

    This thesis explored the opportunities to reduce energy demand and renewable energy feasibility at an off-grid science "community" called the Experimental Lakes Area (ELA) in Ontario. Being off-grid, ELA is completely dependent on diesel and propane fuel supply for all its electrical and heating needs, which makes ELA vulnerable to fluctuating fuel prices. As a result ELA emits a large amount of greenhouse gases (GHG) for its size. Energy efficiency and renewable energy technologies can reduce energy consumption and consequently energy cost, as well as GHG. Energy efficiency was very important to ELA due to the elevated fuel costs at this remote location. Minor upgrades to lighting, equipment and building envelope were able to reduce energy costs and reduce load. Efficient energy saving measures were recommended that save on operating and maintenance costs, namely, changing to LED lights, replacing old equipment like refrigerators and downsizing of ice makers. This resulted in a 4.8% load reduction and subsequently reduced the initial capital cost for biomass by 27,000, by 49,500 for wind power and by 136,500 for solar power. Many alternative energies show promise as potential energy sources to reduce the diesel and propane consumption at ELA including wind energy, solar heating and biomass. A biomass based CHP system using the existing diesel generators as back-up has the shortest pay back period of the technologies modeled. The biomass based CHP system has a pay back period of 4.1 years at 0.80 per liter of diesel, as diesel price approaches $2.00 per liter the pay back period reduces to 0.9 years, 50% the generation cost compared to present generation costs. Biomass has been successfully tried and tested in many off-grid communities particularly in a small-scale off-grid setting in North America and internationally. Also, the site specific solar and wind data show that ELA has potential to harvest renewable resources and produce heat and power at competitive

  9. The economic performance of combined heat and power from biogas produced from manure in Sweden – A comparison of different CHP technologies

    International Nuclear Information System (INIS)

    Lantz, Mikael

    2012-01-01

    Highlights: ► Interest in biogas from manure is increasing rapidly due to its climate benefits. ► Farm-scale production of CHP from manure-based biogas is not profitable in Sweden. ► Minor changes in energy prices or suggested production subsidies will make it profitable. ► Profitability is also affected by efficiency of scale and introduction of thermophilic conditions. -- Abstract: Interest in the generation of biogas from agricultural residues is increasing rapidly due to its climate benefits. In this study, an evaluation of the economic feasibility of various technologies, also on different scales, for the production of combined heat and power from manure-based biogas in Sweden is presented. The overall conclusion is that such production is not profitable under current conditions. Thus, the gap between the calculated biogas production cost and the acceptable cost for break-even must be bridged by, for example, different policy instruments. In general, efficiency of scale favors large-scale plants compared to individual farm-scale ones. However, a large, centralized biogas plant, using manure from numerous farms, is not always more cost efficient than a large, farm-scale plant treating manure from a few neighboring farms. The utilization of the produced heat, electricity prices, and political incentives, all have a significant impact on the economic outcome, whereas the value of the digestate as fertilizer is currently having a minor impact. Utilization of heat is, however, often limited by the lack of local heat sinks, in which case the implementation of a biogas process operating under thermophilic conditions could increase the profitability due to a more efficient utilization of reactor volume by using more process heat. The results from this study could be utilized by policy makers when implementing policy instruments considering biogas production from manure as well as companies involved in production and utilization of biogas.

  10. Talking back to theory: the missed opportunities in learning technology research

    Directory of Open Access Journals (Sweden)

    Martin Oliver

    2011-12-01

    Full Text Available Research into learning technology has developed a reputation for being drivenby rhetoric about the revolutionary nature of new developments, for payingscant attention to theories that might be used to frame and inform research, andfor producing shallow analyses that do little to inform the practice of education.Although there is theoretically-informed research in learning technology, this isin the minority, and has been actively marginalised by calls for applied designwork. This limits opportunities to advance knowledge in the field. Using threeexamples, alternative ways to engage with theory are identified. The paper concludesby calling for greater engagement with theory, and the development of ascholarship of learning technology, in order to enrich practice within the fieldand demonstrate its relevance to other fields of work.

  11. Fuel-efficiency of hydrogen and heat storage technologies for integration of fluctuating renewable energy sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2005-01-01

    This paper presents the methodology and results of analysing the use of different energy storage technologies in the task of integration of fluctuating renewable energy sources (RES) into the electricity supply. The analysis is done on the complete electricity system including renewable energy...... sources as well as power plants and CHP (Combined heat and power production). Emphasis is put on the need for ancillary services. Devices to store electricity as well as devices to store heat can be used to help the integration of fluctuating sources. Electricity storage technologies can be used...... to relocate electricity production directly from the sources, while heat storage devices can be used to relocate the electricity production from CHP plants and hereby improve the ability to integrate RES. The analyses are done by advanced computer modelling and the results are given as diagrams showing...

  12. A Storable, Hybrid Mars Ascent Vehicle Technology Demonstrator for the 2020 Launch Opportunity

    Science.gov (United States)

    Chandler, A. A.; Karabeyoglu, M. A.; Cantwell, B. J.; Reeve, R.; Goldstein, B. G.; Hubbard, G. S.

    2012-06-01

    A Phoenix sized mission including a reduced payload, two-stage, hybrid Mars Ascent Vehicle technology demonstrator is proposed for the 2020 opportunity. The hybrid MAV is storable on Mars and would retire risk for a Mars Sample Return campaign.

  13. Determination of the potential for utilising combined heat and power and of the target reduction of CO{sub 2} emissions, inclusive of cost analysis (increased use of combined heat and power); Ermittlung der Potenziale fuer die Anwendung der Kraft-Waerme-Kopplung und der erzielbaren Minderung der CO{sub 2}-Emissionen einschliesslich Bewertung der Kosten (Verstaerkte Nutzung der Kraft-Waerme-Kopplung)

    Energy Technology Data Exchange (ETDEWEB)

    Horn, Manfred; Ziesing, Hans-Joachim [Deutsches Inst. fuer Wirtschaftsforschung, Berlin (Germany); Matthes, Felix Christian; Harthan, Ralph [Oeko Institut e.V., Berlin (Germany); Menzler, Gerald [VIK Verband der Industriellen Energie- und Kraftwirtschaft e.V., Essen (Germany)

    2007-07-15

    The report provides a statistical overview of CHP utilisation up to now in Germany, analyses the general economic and political conditions with a view to evaluating the competitiveness of CHP, discusses the effectiveness of the German CHP Act with respect to its contribution to meeting emissions-related goals, analyses the cost-effectiveness of investments in different types of new CHP installations, addresses mid- and longer term potential as well as impediments to the utilisation of CHP installations, presents model simulations of how CHP is expected to develop in the context of economic conditions subject to various general political conditions and makes recommendations with an eye to additional requirements and opportunities to support CHP, against the background of the findings of the analysis. (orig.)

  14. Mapping of Technological Opportunities-Labyrinth Seal Example

    Science.gov (United States)

    Clarke, Dana W., Sr.

    2006-01-01

    All technological systems evolve based on evolutionary sequences that have repeated throughout history and can be abstracted from the history of technology and patents. These evolutionary sequences represent objective patterns and provide considerable insights that can be used to proactively model future seal concepts. This presentation provides an overview of how to map seal technology into the future using a labyrinth seal example. The mapping process delivers functional descriptions of sequential changes in market/consumer demand, from today s current paradigm to the next major paradigm shift. The future paradigm is developed according to a simple formula: the future paradigm is free of all flaws associated with the current paradigm; it is as far into the future as we can see. Although revolutionary, the vision of the future paradigm is typically not immediately or completely realizable nor is it normally seen as practical. There are several reasons that prevent immediate and complete practical application, such as: 1) Some of the required technological or business resources and knowledge not being available; 2) Availability of other technological or business resources are limited; and/or 3) Some necessary knowledge has not been completely developed. These factors tend to drive the Total Cost of Ownership or Utilization out of an acceptable range and revealing the reasons for the high Total Cost of Ownership or Utilization which provides a clear understanding of research opportunities essential for future developments and defines the current limits of the immediately achievable improvements. The typical roots of high Total Cost of Ownership or Utilization lie in the limited availability or even the absence of essential resources and knowledge necessary for its realization. In order to overcome this obstacle, step-by-step modification of the current paradigm is pursued to evolve from the current situation toward the ideal future, i.e., evolution rather than

  15. Progressing opportunities for Australian renewable energy technology research, development and demonstration

    International Nuclear Information System (INIS)

    Beckitt, A.; Kile, R.

    2004-01-01

    In May 2004, a team of experienced Australian specialists in the field of renewable energy technology conducted a Mission to the United States of America led by the Renewable and Sustainable Energy ROUNDTABLE. The Mission was made possible by a generous grant from the Department of Education Science and Training (DEST), administered through the Australian Academy of Technological Sciences and Engineering (ATSE) under the Innovation Access Programme. Mission participants engaged in a three day structured workshop with the US National Renewable Energy Laboratory (NREL), and the opportunity was taken to meet leading USA research teams and visit relevant facilities ranging from solar thermal and photovoltaic testing, wind through to bioenergy an biorefining. The Mission concluded in Washington DC with a series of meetings with the US Department of Energy, the World Bank and Austrade. The Mission was extremely successful in terms of relationship building, technical learning and the development of future commercial opportunities for Australian businesses. It was conducted within the context of the United States - Australia Climate Action Partnership (CAP). This paper provides an overview of the Mission, its objectives and key outcomes

  16. Microscale technology and biocatalytic processes: opportunities and challenges for synthesis.

    Science.gov (United States)

    Wohlgemuth, Roland; Plazl, Igor; Žnidaršič-Plazl, Polona; Gernaey, Krist V; Woodley, John M

    2015-05-01

    Despite the expanding presence of microscale technology in chemical synthesis and energy production as well as in biomedical devices and analytical and diagnostic tools, its potential in biocatalytic processes for pharmaceutical and fine chemicals, as well as related industries, has not yet been fully exploited. The aim of this review is to shed light on the strategic advantages of this promising technology for the development and realization of biocatalytic processes and subsequent product recovery steps, demonstrated with examples from the literature. Constraints, opportunities, and the future outlook for the implementation of these key green engineering methods and the role of supporting tools such as mathematical models to establish sustainable production processes are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Big Data Technologies: New Opportunities for Diabetes Management.

    Science.gov (United States)

    Bellazzi, Riccardo; Dagliati, Arianna; Sacchi, Lucia; Segagni, Daniele

    2015-04-24

    The so-called big data revolution provides substantial opportunities to diabetes management. At least 3 important directions are currently of great interest. First, the integration of different sources of information, from primary and secondary care to administrative information, may allow depicting a novel view of patient's care processes and of single patient's behaviors, taking into account the multifaceted nature of chronic care. Second, the availability of novel diabetes technologies, able to gather large amounts of real-time data, requires the implementation of distributed platforms for data analysis and decision support. Finally, the inclusion of geographical and environmental information into such complex IT systems may further increase the capability of interpreting the data gathered and extract new knowledge from them. This article reviews the main concepts and definitions related to big data, it presents some efforts in health care, and discusses the potential role of big data in diabetes care. Finally, as an example, it describes the research efforts carried on in the MOSAIC project, funded by the European Commission. © 2015 Diabetes Technology Society.

  18. New CHP plant for a rubber products manufacturer; Nueva planta e cogeneración para un fabricante de productos de hule

    Energy Technology Data Exchange (ETDEWEB)

    Vila, R.; Martí, C.

    2016-07-01

    At the end of 2014 the company Industrias de Hule Galgo decided to undertake the installation project of an efficient CHP plant for its production plant, with the aim of bringing down energy costs and improving the company’s competitive position in the market. The new plant has already started its first operational phase. The project has comprised the installation of a single cycle with gas-powered gensets providing a total electrical capacity of 6.6 MW. This provides the necessary thermal oil for the production plant; covers 100% of the electrical power consumed by the industrial complex; and also generates cooling water, giving improved production capacity by supercooling the extrusion system. To execute these works, Industrias de Hule Galgo contracted the services of engineering company AESA to provide the engineering, procurement and construction of the CHP plant. (Author)

  19. Operating Experiences with a Small-scale CHP Pilot Plant based on a 35 kWel Hermetic Four Cylinder Stirling Engine for Biomass Fuels

    DEFF Research Database (Denmark)

    Biedermann, F.; Carlsen, Henrik; Schoech, M.

    2003-01-01

    Within the scope of the RD&D project presented a small-scale CHP plant with a hermetic four cylinder Stirling engine for biomass fuels was developed and optimised in cooperation with the Technical University of Denmark, MAWERA Holzfeuerungsanlagen GesmbH, an Austrian biomass furnace and boiler...... exchanger of the Stirling engine, of the air preheater and of the entire combustion system. Furthermore, the optimisation of the pneumatic cleaning system to reduce ash deposition in the hot heat exchanger is of great relevance....... manufacturer, and BIOS BIOENERGIESYSTEME GmbH, an Austrian development and engineering company. Based on the technology developed, a pilot plant was designed and erected in Austria. The nominal electric power output of the plant is 35 kWel and the nominal thermal output amounts to approx. 220 kWth. The plant...

  20. Proceedings of NewERA's 4. annual decentralised energy technology workshop

    International Nuclear Information System (INIS)

    2005-01-01

    The role of decentralised energy (DE) in meeting future electricity needs was discussed at this workshop. Decentralised energy is defined as the production, management and storage of heat and/or power, irrespective of generator size, fuel or technology, that is located close to a customer's load and point of consumption. With respect to electricity, DE complements traditional, centralized, large-scale power generation, which is located at some distance from end-users and connected to customers via bulk transmission system or grid. DE can be either grid-connected or off-grid. The barriers to widespread use of DE were also discussed. DE offers several advantages in terms of economics, security, transmission and distribution, fuel stewardship, emissions reductions and power quality. Examples of DE technologies at the industrial scale include gas fired cogeneration, biomass combustion, opportunistic hydro development and reciprocating engine cogeneration. Examples of DE at the commercial scale include microturbine CHP, wind electric, mini hydro, reciprocating cogeneration, fuel cell CHP, combined cooling heat and power, photovoltaic arrays, flow batteries and fly wheel storage

  1. Coupling renewables via hydrogen into utilities: Temporal and spatial issues, and technology opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Iannucci, J.J.; Horgan, S.A.; Eyer, J.M. [Distributed Utility Associates, San Ramon, CA (United States)] [and others

    1996-10-01

    This paper discusses the technical potential for hydrogen used as an energy storage medium to couple time-dependent renewable energy into time-dependent electric utility loads. This analysis will provide estimates of regional and national opportunities for hydrogen production, storage and conversion, based on current and near-term leading renewable energy and hydrogen production and storage technologies. Appropriate renewable technologies, wind, photovoltaics and solar thermal, are matched to their most viable regional resources. The renewables are assumed to produce electricity which will be instantaneously used by the local utility to meet its loads; any excess electricity will be used to produce hydrogen electrolytically and stored for later use. Results are derived based on a range of assumptions of renewable power plant capacity and fraction of regional electric load to be met (e.g., the amount of hydrogen storage required to meet the Northwest region`s top 10% of electric load). For each renewable technology national and regional totals will be developed for maximum hydrogen production per year and ranges of hydrogen storage capacity needed in each year (hydroelectric case excluded). The sensitivity of the answers to the fraction of peak load to be served and the land area dedicated for renewable resources are investigated. These analyses can serve as a starting point for projecting the market opportunity for hydrogen storage and distribution technologies. Sensitivities will be performed for hydrogen production, conversion. and storage efficiencies representing current and near-term hydrogen technologies.

  2. Modeling and off-design performance of a 1 kWe HT-PEMFC (high temperature-proton exchange membrane fuel cell)-based residential micro-CHP (combined-heat-and-power) system for Danish single-family households

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2011-01-01

    A novel proposal for the modeling and operation of a micro-CHP (combined-heat-and-power) residential system based on HT-PEMFC (High Temperature-Proton Exchange Membrane Fuel Cell) technology is described and analyzed to investigate its commercialization prospects. An HT-PEMFC operates at elevated...... temperatures, as compared to Nafion-based PEMFCs and therefore can be a significant candidate for cogeneration residential systems. The proposed system can provide electric power, hot water, and space heating for a typical Danish single-family household. A complete fuel processing subsystem, with all necessary...

  3. Carbon Debt Payback Time for a Biomass Fired CHP Plant—A Case Study from Northern Europe

    Directory of Open Access Journals (Sweden)

    Kristian Madsen

    2018-03-01

    Full Text Available The European Union (EU has experienced a large increase in the use of biomass for energy in the last decades. In 2015, biomass used to generate electricity, heat, and to a limited extent, liquid fuels accounted for 51% of the EU’s renewable energy production. Bioenergy use is expected to grow substantially to meet energy and climate targets for 2020 and beyond. This development has resulted in analyses suggesting the increased use of biomass for energy might initially lead to increased greenhouse gas (GHG emissions to the atmosphere, a so-called carbon debt. Here, we analyze carbon debt and payback time of substituting coal with forest residues for combined heat and power generation (CHP. The analysis is, in contrast to most other studies, based on empirical data from a retrofit of a CHP plant in northern Europe. The results corroborate findings of a carbon debt, here 4.4 kg CO2eq GJ−1. The carbon debt has a payback time of one year after conversion, and furthermore, the results show that GHG emissions are reduced to 50% relative to continued coal combustion after about 12 years. The findings support the use of residue biomass for energy as an effective means for climate change mitigation.

  4. Berkeley Foundation for Opportunities in Information Technology: A Decade of Broadening Participation

    Science.gov (United States)

    Crutchfield, Orpheus S. L.; Harrison, Christopher D.; Haas, Guy; Garcia, Daniel D.; Humphreys, Sheila M.; Lewis, Colleen M.; Khooshabeh, Peter

    2011-01-01

    The Berkeley Foundation for Opportunities in Information Technology is a decade-old endeavor to expose pre-college young women and underrepresented racial and ethnic minorities to the fields of computer science and engineering, and prepare them for rigorous, university-level study. We have served more than 150 students, and graduated more than 65…

  5. Optimal economic dispatch of FC-CHP based heat and power micro-grids

    International Nuclear Information System (INIS)

    Nazari-Heris, Morteza; Abapour, Saeed; Mohammadi-Ivatloo, Behnam

    2017-01-01

    Highlights: • The multi objective economic/environmental heat and power MG dispatch is solved. • The heat and power MG include FC, CHP, boiler, storage system, and heat buffer tank. • Multi objective scheduling of heat and power MG is solved using ε-constraint method. • DR program is employed in the stochastic programming of heat and power MG dispatch. • The uncertainties for load demand and price signals are taken into account. - Abstract: Micro-grids (MGs) are introduced as a solution for distributed energy resource (DER) units and energy storage systems (ESSs) to participate in providing the required electricity demand of controllable and non-controllable loads. In this paper, the authors study the short-term scheduling of grid-connected industrial heat and power MG which contains a fuel cell (FC) unit, combined heat and power (CHP) generation units, power-only unit, boiler, battery storage system, and heat buffer tank. The paper is aimed to solve the multi-objective MG dispatch problem containing cost and emission minimization with the considerations of demand response program and uncertainties. A probabilistic framework based on a scenario method, which is considered for load demand and price signals, is employed to overcome the uncertainties in the optimal energy management of the MG. In order to reduce operational cost, time-of-use rates of demand response programs have been modeled, and the effects of such programs on the load profile have been discussed. To solve the multi-objective optimization problem, the ε-constraint method is used and a fuzzy satisfying approach has been employed to select the best compromise solution. Three cases are studied in this research to confirm the performance of the proposed method: islanded mode, grid-connected mode, and the impact of time of the use-demand response program on MG scheduling.

  6. The benefit of regional diversification of cogeneration investments in Europe. A mean-variance portfolio analysis

    International Nuclear Information System (INIS)

    Westner, Guenther; Madlener, Reinhard

    2010-01-01

    The EU Directive 2004/8/EC, concerning the promotion of cogeneration, established principles on how EU member states can support combined heat and power generation (CHP). Up to now, the implementation of these principles into national law has not been uniform, and has led to the adoption of different promotion schemes for CHP across the EU member states. In this paper, we first give an overview of the promotion schemes for CHP in various European countries. In a next step, we take two standard CHP technologies, combined-cycle gas turbines (CCGT-CHP) and engine-CHP, and apply exemplarily four selected support mechanisms used in the four largest European energy markets: feed-in tariffs in Germany; energy efficiency certificates in Italy; benefits through tax reduction in the UK; and purchase obligations for power from CHP generation in France. For contracting companies, it could be of interest to diversify their investment in new CHP facilities regionally over several countries in order to reduce country and regulatory risk. By applying the Mean-Variance Portfolio (MVP) theory, we derive characteristic return-risk profiles of the selected CHP technologies in different countries. The results show that the returns on CHP investments differ significantly depending on the country, the support scheme, and the selected technology studied. While a regional diversification of investments in CCGT-CHP does not contribute to reducing portfolio risks, a diversification of investments in engine-CHP can decrease the risk exposure. (author)

  7. The benefit of regional diversification of cogeneration investments in Europe. A mean-variance portfolio analysis

    Energy Technology Data Exchange (ETDEWEB)

    Westner, Guenther; Madlener, Reinhard [E.ON Energy Projects GmbH, Arnulfstrasse 56, 80335 Munich (Germany)

    2010-12-15

    The EU Directive 2004/8/EC, concerning the promotion of cogeneration, established principles on how EU member states can support combined heat and power generation (CHP). Up to now, the implementation of these principles into national law has not been uniform, and has led to the adoption of different promotion schemes for CHP across the EU member states. In this paper, we first give an overview of the promotion schemes for CHP in various European countries. In a next step, we take two standard CHP technologies, combined-cycle gas turbines (CCGT-CHP) and engine-CHP, and apply exemplarily four selected support mechanisms used in the four largest European energy markets: feed-in tariffs in Germany; energy efficiency certificates in Italy; benefits through tax reduction in the UK; and purchase obligations for power from CHP generation in France. For contracting companies, it could be of interest to diversify their investment in new CHP facilities regionally over several countries in order to reduce country and regulatory risk. By applying the Mean-Variance Portfolio (MVP) theory, we derive characteristic return-risk profiles of the selected CHP technologies in different countries. The results show that the returns on CHP investments differ significantly depending on the country, the support scheme, and the selected technology studied. While a regional diversification of investments in CCGT-CHP does not contribute to reducing portfolio risks, a diversification of investments in engine-CHP can decrease the risk exposure. (author)

  8. U.S. DOE Roundtable and Workshop on Advanced Steel Technologies: Emerging Global Technologies and R&D Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrino, Joan [Energetics, Inc., Columbia, MD (United States); Jamison, Keith [Energetics, Inc., Columbia, MD (United States)

    2015-12-01

    This report is based on the proceedings of the U.S. DOE Roundtable and Workshop on Advanced Steel Technologies Workshop hosted by Oak Ridge National Laboratory (ORNL) in cooperation with the U.S. Department of Energy s (DOE s) Advanced Manufacturing Office (AMO) on held on June 23, 2015. Representatives from industry, government, and academia met at the offices of the National Renewable Energy Laboratory in Washington, DC, to share information on emerging steel technologies, issues impacting technology investment and deployment, gaps in research and development (R&D), and opportunities for greater energy efficiency. The results of the workshop are summarized in this report. They reflect a snapshot of the perspectives and ideas generated by the individuals who attended and not all-inclusive of the steel industry and stakeholder community.

  9. Optimal stochastic scheduling of CHP-PEMFC, WT, PV units and hydrogen storage in reconfigurable micro grids considering reliability enhancement

    International Nuclear Information System (INIS)

    Bornapour, Mosayeb; Hooshmand, Rahmat-Allah; Khodabakhshian, Amin; Parastegari, Moein

    2017-01-01

    Highlights: • Stochastic model is proposed for coordinated scheduling of renewable energy sources. • The effect of combined heat and power is considered. • Uncertainties of wind speed, solar radiation and electricity market price are considered. • Profit maximization, emission and AENS minimization are considered as objective functions. • Modified firefly algorithm is employed to solve the problem. - Abstract: Nowadays the operation of renewable energy sources and combined heat and power (CHP) units is increased in micro grids; therefore, to reach optimal performance, optimal scheduling of these units is required. In this regard, in this paper a micro grid consisting of proton exchange membrane fuel cell-combined heat and power (PEMFC-CHP), wind turbines (WT) and photovoltaic (PV) units, is modeled to determine the optimal scheduling state of these units by considering uncertain behavior of renewable energy resources. For this purpose, a scenario-based method is used for modeling the uncertainties of electrical market price, the wind speed, and solar irradiance. It should be noted that the hydrogen storage strategy is also applied in this study for PEMFC-CHP units. Market profit, total emission production, and average energy not supplied (AENS) are the objective functions considered in this paper simultaneously. Consideration of the above-mentioned objective functions converts the proposed problem to a mixed integer nonlinear programming. To solve this problem, a multi-objective firefly algorithm is used. The uncertainties of parameters convert the mixed integer nonlinear programming problem to a stochastic mixed integer nonlinear programming problem. Moreover, optimal coordinated scheduling of renewable energy resources and thermal units in micro-grids improve the value of the objective functions. Simulation results obtained from a modified 33-bus distributed network as a micro grid illustrates the effectiveness of the proposed method.

  10. Steel Industry Marginal Opportunity Analysis

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2005-09-01

    The Steel Industry Marginal Opportunity Analysis (PDF 347 KB) identifies opportunities for developing advanced technologies and estimates both the necessary funding and the potential payoff. This analysis determines what portion of the energy bandwidth can be captured through the adoption of state-of-the-art technology and practices. R&D opportunities for addressing the remainder of the bandwidth are characterized and plotted on a marginal opportunity curve.

  11. Cogeneration: A new opportunity for energy production market

    International Nuclear Information System (INIS)

    Minghetti, E.

    1997-03-01

    Cogeneration or Combined Heat and Power (CHP) is an advantageous technique based on the simultaneous utilisation of electricity and heat produced. For this purpose existing energetic technologies are used. Cogeneration is based on the thermodynamics principle that producing electricity by combustion process means, at the same time, producing waste heat that can be useful utilised. Three main advantages can be lay out in a cogeneration plant: 1. High efficiency (the global efficiency is often around 80-90%). 2. Economic profit (pay back time is usually not longer than 2-4 years). 3. Low pollutant emissions (as a consequence of the high efficiency less fuel is burned for generating the same quantity of electricity). In this report are analysed various aspects of cogeneration (technical and economical) and the conditions influencing is development. Some figures on the european and national situation are also given. Finally are presented the research and development activities carried out by Italian National Agency for new Technology Energy and the Environment Energy Department to improve the efficiency and the competitiveness of this technology

  12. Student Access to Information Technology and Perceptions of Future Opportunities in Two Small Labrador Communities

    Directory of Open Access Journals (Sweden)

    Della Healey

    2002-02-01

    Full Text Available The potential of information technology is increasingly being recognized for the access it provides to educational and vocational opportunities. In Canada, many small schools in rural communities have taken advantage of information technologies to help overcome geographic isolation for students. This article is about students in two small and geographically isolated Labrador communities. Twenty senior students were found to have varying degrees of access to information technologies. Differences were found in their perceptions of the benefits of information technology for their educational and vocational futures.

  13. Fiscal 2000 report of investigation. Research on effective use of technology for biomass waste and diffusion scenario of the technology; 2000 nendo biomass kei haikibutsu no yuko riyo gijutsu to sono fukyu scenario no chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Examination and proposal were made on the effective uses of technologies for biomass wastes and on the diffusion scenarios, with trial calculations done to find the maximum reducible amounts in terms of carbon dioxide. In the examination of the systems, it was focused on five technologies, namely, direct combustion of straw and rice straw/CHP/heat utilization, synthesis of gasified methanol from demolition wood, biogas/CHP from livestock feces and urine, conversion to ethanol through saccharification of used paper, and conversion to biodiesel from vegetable waste oil; the examination also covered each feature, core function, use situation inside and outside Japan, technological system for each energy conversion, etc. Further, solutions were examined and proposed concerning diffusion barriers in each scenario. Consequently, the maximum amount of CO2 reduction effect was found respectively 217 thousand t-C in the straw and rice straw, 500 thousand t-C in the demolition wood, 9.53 million t-C in the livestock feces/urine, 820 thousand t-C in the used paper, and 30 thousand t-C in the vegetable waste oil. (NEDO)

  14. Economic potentials of CHP connected to district heat systems in Germany. Implementation of the EU Efficiency Directive; Wirtschaftliche Potenziale der waermeleitungsgebundenen Siedlungs-KWK in Deutschland. Umsetzung der EU-Energieeffizienzrichtlinie

    Energy Technology Data Exchange (ETDEWEB)

    Eikmeier, Bernd [Fraunhofer-Institut fuer Fertigungstechnik und Angewandte Materialforschung IFAM, Bremen (Germany). Organisationseinheit Systemanalyse; Bremen Univ. (Germany)

    2015-07-01

    The EU Efficiency Directive (2012/27/EU) is requiring all member states to carry out an evaluation of the potential for highly efficient CHP and the efficient use of district heating and cooling by December 2015. The German Federal Ministry of Economic Affairs and Energy appointed this task to the Fraunhofer Institute for Manufacturing and Advanced Materials, division for Energy Systems Analysis (formerly Bremer Energie Institut) in conjunction with other partners. The results for the sector district- and communal heating with CHP, sub-sectors private households, trade and services industry, are presented in this article.

  15. Research on the Improvement of a Natural Gas Fired Burner for the CHP Application in a Central Heating Boiler using Radiant Burner Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bieleveld, T.

    2010-08-15

    These days, the reduction of CO2 emissions from combustion devices is one of the main priorities for each design improvement. For the domestic use of the central heating boiler, Microgen Engine Corporation produces free piston Stirling engines for the Combined Heat and Power (CHP) application in these central heating boilers (Dutch: 'HRe ketel'). With CHP, the generation of electricity and heat are combined to increase overall efficiency, as heat is generally a waste product from the combustion to electric generation process. In this application, the Stirling engine, which can be defined as an external combustion engine, is heated by a natural gas fired engine-burner and cooled by a coolant flow. The heat transfer into the engine is converted into mechanical work and a heat flux from the engine. The mechanical work is used to produce electricity via a linear alternator. Heat in the flue gasses from the engine-burner is reused in a secondary burner and condensing heat exchanger. The coolant flow from the engine, after passing the secondary burner, is used for heating purposes. The heat transfer from engine-burner to the Stirling engine is analyzed and via several motivations it is found that it is favorable to improve fuel to electric conversion efficiency, for which the heat transfer efficiency of the engine-burner to the Stirling engine should be improved, as the engine design is not to be altered. From an initially developed linear free piston Stirling engine model and measurements performed at Microgen Engine Corporation, St. Petersborough, (UK), the engine power demand and engine-burner performance are found. The results are used to visualize the current energy flows of the Stirling engine and engine burner subsystem. The heat transfer to the engine is analyzed to find possible heat transfer improvements. It is concluded that heat transfer from the engine-burner to the engine can be approved if the flue losses due to convective heat transfer are

  16. Techno-economic performance analysis of bio-oil based Fischer-Tropsch and CHP synthesis platform

    International Nuclear Information System (INIS)

    Ng, Kok Siew; Sadhukhan, Jhuma

    2011-01-01

    The techno-economic potential of the UK poplar wood and imported oil palm empty fruit bunch derived bio-oil integrated gasification and Fischer-Tropsch (BOIG-FT) systems for the generation of transportation fuels and combined heat and power (CHP) was investigated. The bio-oil was represented in terms of main chemical constituents, i.e. acetic acid, acetol and guaiacol. The compositional model of bio-oil was validated based on its performance through a gasification process. Given the availability of large scale gasification and FT technologies and logistic constraints in transporting biomass in large quantities, distributed bio-oil generations using biomass pyrolysis and centralised bio-oil processing in BOIG-FT system are technically more feasible. Heat integration heuristics and composite curve analysis were employed for once-through and full conversion configurations, and for a range of economies of scale, 1 MW, 675 MW and 1350 MW LHV of bio-oil. The economic competitiveness increases with increasing scale. A cost of production of FT liquids of 78.7 Euro/MWh was obtained based on 80.12 Euro/MWh of electricity, 75 Euro/t of bio-oil and 116.3 million Euro/y of annualised capital cost. -- Highlights: → Biomass to liquid process and gas to liquid process synthesis. → Biorefinery economic analysis. → Pyrolysis oil to biofuel. → Gasification and Fischer-Tropsch. → Process integration, pinch analysis and energy efficiency.

  17. Comparative analyses of seven technologies to facilitate the integration of fluctuating renewable energy sources

    DEFF Research Database (Denmark)

    Mathiesen, Brian Vad; Lund, Henrik

    2009-01-01

    An analysis of seven different technologies is presented. The technologies integrate fluctuating renewable energy sources (RES) such as wind power production into the electricity supply, and the Danish energy system is used as a case. Comprehensive hour-by-hour energy system analyses are conducted...... of a complete system meeting electricity, heat and transport demands, and including RES, power plants, and combined heat and power production (CHP) for district heating and transport technologies. In conclusion, the most fuel-efficient and least-cost technologies are identified through energy system...

  18. Innovation strategy management survey of the Chilean biomedical industry. Assessment of windows of opportunities to reduce technological gaps.

    Science.gov (United States)

    Bas, Tomas Gabriel; Oliu, Carolina Alejandra

    2018-04-01

    The convergence of different theories (ie, catch-up effect and windows of opportunities) allows for the interpretation of different "technological innovation gaps" in Chile's biomedical industry. It is common knowledge that Chile has always had an economy almost exclusively based on services, commodities, and mainly in the exploitation of natural resources with low value added. The literature confirms that countries that concentrate their economies on the knowledge, research, development, and commercialization of technology and innovation have a better and more stable growth rate in the medium and long run. The "Asian Tigers" are a good example of this. Analyzing the technological gaps that affect the Chilean biomedical industry, it is possible to find windows of opportunities to catch up. This could allow the country to take its knowledge, skills, and capabilities further, thus enabling Chile to not just depend on its unpredictable natural resources. For the first time, a quantitative diagnosis of the Chilean biomedical industry was made. This study considered the Chilean biomedical industry and its innovation and entrepreneurship environment, taking into account its productive capacities and its potential to make progress in technological innovation and, as a result, dramatically reducing technological gaps through windows of opportunities. Copyright © 2018 John Wiley & Sons, Ltd.

  19. Technology for site remediation: availability, needs and opportunities for R and D at SCK/CEN

    Energy Technology Data Exchange (ETDEWEB)

    Collard, G

    1996-09-18

    Considerable experience has been gained over the past years in the use of control and treatment technologies, applied to contaminated sites and environments. Although available technologies are adequate in many cases, it is recognized that many technologies are too costly or inadequate to address the multitude of contaminant problems. This insight has led national and international organizations as well as private organizations and universities to sponsor environment technology programmes to address technology needs. The United States Department of Energy for example has initiated an aggressive environmental technology development programme and the Commission of the European Union is sponsoring environmental technology development. An overview is given of innovative and emerging technologies that may become important. Opportunities for SCK/CEN in research, development, and demonstration programmes are outlined.

  20. Researching of the possibility of using absorption heat exchangers for creating the low return temperature heat supply systems based on CHP generation

    Science.gov (United States)

    Yavorovsky, Y. V.; Malenkov, A. S.; Zhigulina, Y. V.; Romanov, D. O.; Kurzanov, S. Y.

    2017-11-01

    This paper deals with the variant of modernization of the heat point within urban heat supply network in order to create the system of heat and cold supply on its basis, providing the suppliers with heat in cold months and with heat and cold in warm months. However, in cold months in the course of heating system operation, the reverse delivery water temperature is maintained below 40 °C. The analysis of heat and power indicators of the heat and cold supply system under different operating conditions throughout the year was conducted. The possibility to use the existing heat networks for the cold supply needs was estimated. The advantages of the system over the traditional heat supply systems that use Combined Heat and Power (CHP) plant as a heat source as exemplified by heat supply system from CHP with ST-80 turbine were demonstrated.

  1. Full report: Assessment and opportunity identification of energy efficient pollution prevention technologies and processes

    Energy Technology Data Exchange (ETDEWEB)

    1994-11-01

    US industry produces about 12 billion tons of waste a year, or two-thirds of the waste generated in the US. The costs of handling and disposing of these wastes are significant, estimated to be between $25 and $43 billion in 1991, and represent an increase of 66% since 1986. US industry also uses about one-third of all energy consumed in the nation, which adds to the environmental burden. Industrial wastes affect the environmental well-being of the nation and, because of their growing costs, the competitive abilities of US industry. As part of a national effort to reduce industrial wastes, the US Congress passed the Energy Policy Act (EPAct, P.L. 102-486). Section 2108, subsections (b) and (c), of EPAct requires the Department of Energy (DOE) to identify opportunities to demonstrate energy efficient pollution prevention technologies and processes; to assess their availability and the energy, environmental, and cost effects of such technologies; and to report the results. Work for this report clearly pointed to two things, that there is insufficient data on wastes and that there is great breadth and diversity in the US industrial sector. This report identifies: information currently available on industrial sector waste streams, opportunities for demonstration of energy efficient pollution prevention technologies in two industries that produce significant amounts of waste--chemicals and petroleum, characteristics of waste reducing and energy saving technologies identifiable in the public literature, and potential barriers to adoption of waste reducing technologies by industry.

  2. Thermodynamic, ecological and economic aspects of the use of the gas turbine for heat supply to the stripping process in a supercritical CHP plant integrated with a carbon capture installation

    International Nuclear Information System (INIS)

    Bartela, Łukasz; Skorek-Osikowska, Anna; Kotowicz, Janusz

    2014-01-01

    Highlights: • Variants of integration of CHP plant with CCS and gas turbine unit were analyzed. • The simulations of operation of plants under changing load were realized. • Conditions of competitiveness for all solutions were identified. • Integration can be profitable if prices of allowance will reach values >60 €/MgCO 2 . - Abstract: This paper presents the results of thermodynamic and economic analyses for eight variants of a combined heat and power (CHP) plant fuelled with coal working under supercritical steam parameters and integrated with a CO 2 capture installation and a gas turbine system. The motivation behind using a gas turbine in the system was to generate steam to supply heat for the stripping process that occurs in the separation installation to regenerate the sorbent. Additional analyses were conducted for the reference case, a CHP unit in which the CO 2 separation process was not conducted, to enable an economic evaluation of the integration of a CHP unit with a CO 2 separation installation according to the variants proposed. The break-even price of electricity and avoided emission costs were used to evaluate the respective solutions. In this paper, the results of the sensitivity analysis of the economic evaluation indicators in terms of the change in the annual operation time, price of emission allowance and heat demand rate for the realization of the stripping process for all cases are presented

  3. National energy policies: Obstructing the reduction of global CO2 emissions? An analysis of Swedish energy policies for the district heating sector

    International Nuclear Information System (INIS)

    Difs, Kristina

    2010-01-01

    The effect of national energy policies on a local Swedish district heating (DH) system has been studied, regarding the profitability of new investments and the potential for climate change mitigation. The DH system has been optimised regarding three investments: biomass-fuelled CHP (bio CHP), natural gas-fuelled combined cycle CHP (NGCC CHP) and biomass-fuelled heat-only boiler (bio HOB) in two scenarios (with or without national taxes and policy instruments). In both scenarios EU's tradable CO 2 emission permits are included. Results from the study show that when national policies are included, the most cost-effective investment option is the bio CHP technology. However, when national taxes and policy instruments are excluded, the DH system containing the NGCC CHP plant has 30% lower system cost than the bio CHP system. Regardless of the scenario and when coal condensing is considered as marginal electricity production, the NGCC CHP has the largest global CO 2 reduction potential, about 300 ktonne CO 2 . However, the CO 2 reduction potential is highly dependent on the marginal electricity production. Demonstrated here is that national policies such as tradable green certificates can, when applied to DH systems, contribute to investments that will not fully utilise the DH systems' potential for global CO 2 emissions reductions. - Research highlights: →Swedish energy policies are promoting biomass fuelled electricity generating technologies over efficient fossil fuel electricity generating technologies. →An efficient fossil fuel technology like the natural gas combine cycle CHP technology with high power-to-heat ratio has potential to reduce the global CO 2 emissions more than a biomass fuelled electricity generating technology. →Swedish energy policies such as tradable green certificates for renewable electricity can, when applied to district heating systems, contribute to investments that will not fully utilise the district heating systems potential for

  4. THE BREAKEVEN POINT GIVEN LIMIT COST USING BIOMASS CHP PLANT

    Directory of Open Access Journals (Sweden)

    Paula VOICU

    2015-06-01

    Full Text Available Biomass is a renewable source, non-fossil, from which can be obtained fuels, which can be used in power generation systems. The main difference of fossil fuels is the availability biomass in nature and that it is in continue "reproduction". The use its enable the use of materials that could be destined destruction, as a source of energy "renewable", though result with many ecological values. In this paper we will study, applying a calculation model in view optimal sizing of the cogeneration plant based on biomass, biomass cost limit for the net present value is zero. It will consider that in cogeneration systems and in heating peak systems using biomass. After applying the mathematical model for limit value of biomass cost will determine the nominal optimal coefficient of cogeneration, for which discounted net revenue value is zero. Optimal sizing of CHP plants based on using biomass will be given by optimum coefficient of cogeneration determined following the application of the proposed mathematical model.

  5. Combined heat and power in industry and buildings

    International Nuclear Information System (INIS)

    Hinnells, Mark

    2008-01-01

    Combined heat and power (CHP) has huge potential to deliver energy savings and emissions reductions, and in many cases cost reductions too. But the market and regulatory framework is the key to delivering large-scale installations, and government has a poor record in delivering an appropriate framework. Technology is central to the future competitiveness and therefore uptake of CHP. It could lead to more efficient CHP electricity generation, permit the use of lower-carbon, renewable fuels, and enable the development of new products for new end uses, including micro-CHP and CHP in heat networks. The market for CHP has been difficult in the past few years, largely as a result of government market reforms. The UK's level of CHP skills, for installing current technologies and developing new ones, is low. The key issue is the creation of the right market framework to deliver CHP, and part of this is support for the energy services approach

  6. Terahertz communication: The opportunities of wireless technology beyond 5G

    KAUST Repository

    Elayan, Hadeel; Amin, Osama; Shubair, Raed M.; Alouini, Mohamed-Slim

    2018-01-01

    Over the past years, carrier frequencies used for wireless communications have been increasing to meet bandwidth requirements. The engineering community witnessed the development of wide radio bands such as the millimeter-wave (mmW) frequencies to fulfill the explosive growth of mobile data demand and pave the way towards 5G networks. Other research interests have been steered towards optical wireless communication to allow higher data rates, improve physical security and avoid electromagnetic interference. Nevertheless, a paradigm change in the electromagnetic wireless world has been witnessed with the exploitation of the Terahertz (THz) frequency band (0.1–10 THz). With the dawn of THz technology, which fills the gap between radio and optical frequency ranges, ultimate promise is expected for the next generation of wireless networks. In this paper, the light is shed on a number of opportunities associated with the deployment of the THz wireless links. These opportunities offer a plethora of applications to meet the future communication requirements and satisfy the ever increasing user demand of higher data rates.

  7. Terahertz communication: The opportunities of wireless technology beyond 5G

    KAUST Repository

    Elayan, Hadeel

    2018-05-17

    Over the past years, carrier frequencies used for wireless communications have been increasing to meet bandwidth requirements. The engineering community witnessed the development of wide radio bands such as the millimeter-wave (mmW) frequencies to fulfill the explosive growth of mobile data demand and pave the way towards 5G networks. Other research interests have been steered towards optical wireless communication to allow higher data rates, improve physical security and avoid electromagnetic interference. Nevertheless, a paradigm change in the electromagnetic wireless world has been witnessed with the exploitation of the Terahertz (THz) frequency band (0.1–10 THz). With the dawn of THz technology, which fills the gap between radio and optical frequency ranges, ultimate promise is expected for the next generation of wireless networks. In this paper, the light is shed on a number of opportunities associated with the deployment of the THz wireless links. These opportunities offer a plethora of applications to meet the future communication requirements and satisfy the ever increasing user demand of higher data rates.

  8. High-Efficiency Small-Scale Combined Heat and Power Organic Binary Rankine Cycles

    Directory of Open Access Journals (Sweden)

    Costante Mario Invernizzi

    2018-04-01

    Full Text Available Small-CHP (Combined Heat and Power systems are generally considered a valuable technological option to the conventional boilers, in a technology developed context. If small-CHP systems are associated with the use of renewable energies (biomass, for example they could play an important role in distributed generation even in developing countries or, in any case, where there are no extensive electricity networks. Traditionally the considered heat engines for micro- or mini-CHP are: the gas engine, the gas turbine (with internal combustion, the steam engine, engine working according to the Stirling and to the Rankine cycles, the last with organic fluids. In principle, also fuel cells could be used. In this paper, we focus on small size Rankine cycles (10–15 k W with organic working fluids. The assumed heat source is hot combustion gases at high temperature (900–950 ∘ C and we assume to use only single stages axial turbines. The need to work at high temperatures, limits the choice of the right organic working fluids. The calculation results show the limitation in the performances of simple cycles and suggest the opportunity to resort to complex (binary cycle configurations to achieve high net conversion efficiencies (15–16%.

  9. Heading towards the nZEB through CHP+HP systems. A comparison between retrofit solutions able to increase the energy performance for the heating and domestic hot water production in residential buildings

    International Nuclear Information System (INIS)

    Salata, Ferdinando; Golasi, Iacopo; Domestico, Umberto; Banditelli, Matteo; Lo Basso, Gianluigi; Nastasi, Benedetto; Lieto Vollaro, Andrea de

    2017-01-01

    Highlights: • Energy optimization measures to increase the energy class of buildings. • Analysis of the demands related to the space-heating season and the production of annual DHW. • Case study related to a residential building of medium size located in Rome (Italy). • Improvements on building envelope and on systems (traditional technologies or CHP+HP). • Energy and economic analysis to achieve the performance of a nZEB. - Abstract: Optimizing consumptions in the field of civil construction led to define energy labels for residential buildings. To calculate the building energy demand the EPgl was determined, i.e. the annual consumption per m"2 of primary energy. This paper examines the technical solutions useful to optimize the energy demands for heating during space-heating season and domestic hot water production (thanks to energy analysis softwares as MC11300 and TRNSYS) and, at the same time, to take into account the financial issues those interventions implied. The total inside heated surface of the building case study is 1204.00 m"2, hence the inside heated volume is about 3250.80 m"3. Besides the more traditional interventions concerning the building envelope and its systems, the paper examined the performance of a system obtained through the combination of a cogenerator (CHP) and a heat pump (HP), thus, substituting the conventional boilers of the buildings. CHP+HP solution increases the most the energy label of the building (from a D class with EPgl = 59.62 kW h m"−"2 year"−"1, to an A class, with EPgl = 25.64 kW h m"−"2 year"−"1), determining an annual energy cost saving of 3,114 € year"−"1, allowing to amortize installation costs (54,560 €) in a reasonable payback period, i.e. 15.4 years. This innovative solution in the residential sector can be realized through retrofit interventions on existing buildings, hence it leads the current dwelling towards nZEB with a remarkable benefits for the environment.

  10. Appropriability, Technological Opportunity, Market Demand, and Technical Change - Empirical Evidence from Switzerland

    OpenAIRE

    Harabi, Najib

    1992-01-01

    The purpose of this paper is to analyze both theoretically and empirically those factors which underlay the - empirically observable - inter-industry differences in technical progress. At the theoretical level economists agree more and more that technical progress can be explained at the industry level by the following three factors: (1) the technological opportunities, (2) the appropriability conditions, meaning the ability to capture and protect the results of technical innovations and (3) ...

  11. Australian coal mine methane emissions mitigation potential using a Stirling engine-based CHP system

    International Nuclear Information System (INIS)

    Meybodi, Mehdi Aghaei; Behnia, Masud

    2013-01-01

    Methane, a major contributor to global warming, is a greenhouse gas emitted from coal mines. Abundance of coal mines and consequently a considerable amount of methane emission requires drastic measures to mitigate harmful effects of coal mining on the environment. One of the commonly adopted methods is to use emitted methane to fuel power generation systems; however, instability of fuel sources hinders the development of systems using conventional prime movers. To address this, application of Stirling engines may be considered. Here, we develop a techno-economic methodology for conducting an optimisation-based feasibility study on the application of Stirling engines as the prime movers of coal mine CHP systems from an economic and an environmental point of view. To examine the impact of environmental policies on the economics of the system, the two commonly implemented ones (i.e. a carbon tax and emissions trading scheme) are considered. The methodology was applied to a local coal mine. The results indicate that incorporating the modelled system not only leads to a substantial reduction in greenhouse gas emissions, but also to improved economics. Further, due to the heavy economic burden, the carbon tax scheme creates great incentive for coal mine industry to address the methane emissions. -- Highlights: •We study the application of Stirling engines in coal mine CHP systems. •We develop a thermo-economic approach based on the net present worth analysis. •We examine the impact of a carbon tax and ETS on the economics of the system. •The modeled system leads to a substantial reduction in greenhouse gas emissions. •Carbon tax provides a greater incentive to address the methane emissions

  12. Identification and assessment of site treatment plan implementation opportunities for emerging technologies

    International Nuclear Information System (INIS)

    Bernard, E.A.

    1995-01-01

    The Department of Energy (DOE), in response to the 1992 Federal Facility Compliance Act, has prepared Site Treatment Plans (STP) for the approximately 2,000 waste streams identified within its mixed waste inventory Concurrently, emerging mixed waste treatment technologies are in final development. This paper defines a three-phase process to identify and assess implementation opportunities for these emerging technologies within the STP. It highlights the first phase, functional matching of expected treatment capabilities with proposed treatment requirements. Matches are based on treatment type, regulated contaminant and waste matrix type, for both capabilities and requirements. Results identify specific waste streams and volumes that could be treated by each emerging technology. A study for Plasma Hearth Process, Delphi DETOX sm , Supercritical Water Oxidation and Vitrification shows that about 200,000 ml of DOE's mixed waste inventory can potentially be treated by one or more of these emerging technologies. Actual implementations are small fractions of the treatable inventory. Differences between potential and actual implementations must be minimized to accrue optimum benefit from implementation of emerging or alternative treatment technologies. Functional matching is the first phase in identifying and quantifying benefits, addressing technology system and treatment issues, and providing, in part, the basis for STP implementation decisions. DOE, through EM's Office of Technology Development, has funded this work

  13. Sustainable ground transportation – review of technologies, challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Ramesh K. [Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO 63130 (United States)

    2013-07-01

    Currently there are nearly 750 million ground vehicles in service worldwide. They are responsible for 50% of petroleum (oil) consumption and 60% of all greenhouse gas (GHG) emissions worldwide. The number of vehicles is forecasted to double by 2050. Therefore the environmental issues such as noise, emissions and fuel burn have become important for energy and environmental sustainability. This paper provides an overview of specific energy and environmental issues related to ground transportation. The technologies related to reduction in energy requirements such as reducing the vehicle mass by using the high strength low weight materials and reducing the viscous drag by active flow control and smoothing the operational profile, and reducing the contact friction by special tire materials are discussed along with the portable energy sources for reducing the GHG emissions such as low carbon fuels (biofuels), Lithium-ion batteries with high energy density and stability, and fuel cells. The technological challenges and opportunities for innovations are discussed.

  14. Experience of Implementing a Distributed Control System for Thermal and Mechanical and Electrical Equipment at the South-West CHP

    Energy Technology Data Exchange (ETDEWEB)

    Babkin, K. V., E-mail: babkin@uztec.ru; Tsvetkov, M. S.; Kostyuk, R. I.; Chugin, A. V. [SC “South-West CHP” (Russian Federation); Bilenko, V. A.; Molchanov, K. A.; Fedunov, V. V. [JSC “Interautomatika” (Russian Federation)

    2015-01-15

    Results of implementing an SPPA-T3000-based unified distributed control system for thermal and mechanical and electrical equipment at the South-West CHP are discussed. Hardware solutions for integration with local control systems, control of electrical equipment in compliance with the standards IEC 61850, Modbus RTU, and communication between the plant control system and the System Operator of the Unified Power System are described.

  15. Experience of Implementing a Distributed Control System for Thermal and Mechanical and Electrical Equipment at the South-West CHP

    International Nuclear Information System (INIS)

    Babkin, K. V.; Tsvetkov, M. S.; Kostyuk, R. I.; Chugin, A. V.; Bilenko, V. A.; Molchanov, K. A.; Fedunov, V. V.

    2015-01-01

    Results of implementing an SPPA-T3000-based unified distributed control system for thermal and mechanical and electrical equipment at the South-West CHP are discussed. Hardware solutions for integration with local control systems, control of electrical equipment in compliance with the standards IEC 61850, Modbus RTU, and communication between the plant control system and the System Operator of the Unified Power System are described

  16. Energy Analysis and Multi-Objective Optimization of an Internal Combustion Engine-Based CHP System for Heat Recovery

    Directory of Open Access Journals (Sweden)

    Abdolsaeid Ganjehkaviri

    2014-10-01

    Full Text Available A comprehensive thermodynamic study is conducted of a diesel based Combined Heat and Power (CHP system, based on a diesel engine and an Organic Rankine Cycle (ORC. Present research covers both energy and exergy analyses along with a multi-objective optimization. In order to determine the irreversibilities in each component of the CHP system and assess the system performance, a complete parametric study is performed to investigate the effects of major design parameters and operating conditions on the system’s performance. The main contribution of the current research study is to conduct both exergy and multi-objective optimization of a system using different working fluid for low-grade heat recovery. In order to conduct the evolutionary based optimization, two objective functions are considered in the optimization; namely the system exergy efficiency, and the total cost rate of the system, which is a combination of the cost associated with environmental impact and the purchase cost of each component. Therefore, in the optimization approach, the overall cycle exergy efficiency is maximized satisfying several constraints while the total cost rate of the system is minimized. To provide a better understanding of the system under study, the Pareto frontier is shown for multi-objective optimization and also an equation is derived to fit the optimized point. In addition, a closed form relationship between exergy efficiency and total cost rate is derived.

  17. Five-year outcomes for frontline brentuximab vedotin with CHP for CD30-expressing peripheral T-cell lymphomas.

    Science.gov (United States)

    Fanale, Michelle A; Horwitz, Steven M; Forero-Torres, Andres; Bartlett, Nancy L; Advani, Ranjana H; Pro, Barbara; Chen, Robert W; Davies, Andrew; Illidge, Tim; Uttarwar, Mayur; Lee, Shih-Yuan; Ren, Hong; Kennedy, Dana A; Shustov, Andrei R

    2018-05-10

    This phase 1 study evaluated frontline brentuximab vedotin in combination with cyclophosphamide, doxorubicin, and prednisone (BV+CHP; 6 cycles, then up to 10 cycles of brentuximab vedotin monotherapy) in 26 patients with CD30 + peripheral T-cell lymphoma, including 19 with systemic anaplastic large cell lymphoma. All patients (100%) achieved an objective response, with a complete remission (CR) rate of 92%; none received a consolidative stem cell transplant. After a median observation period of 59.6 months (range, 4.6-66.0) from first dose, neither the median progression-free survival (PFS) nor the median overall survival (OS) was reached. No progression or death was observed beyond 35 months. The estimated 5-year PFS and OS rates were 52% and 80%, respectively. Eighteen of 19 patients (95%) with treatment-emergent peripheral neuropathy (PN) reported resolution or improvement of symptoms. Thirteen patients (50%) remained in remission at the end of the study, with PFS ranging from 37.8+ to 66.0+ months. Eight of these 13 patients received the maximum 16 cycles of study treatment. These final results demonstrate durable remissions in 50% of patients treated with frontline BV+CHP, suggesting a potentially curative treatment option for some patients. This trial was registered at www.clinicaltrials.gov as #NCT01309789. © 2018 by The American Society of Hematology.

  18. Investigation of Continuous Gas Engine CHP Operation on Biomass Producer Gas

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper; Henriksen, Ulrik Birk; Jensen, Torben Kvist

    2005-01-01

    More than 2000 hours of gas engine operation with producer gas from biomass as fuel has been conducted on the gasification CHP demonstration and research plant, named “Viking” at the Technical University of Denmark. The gas engine is an integrated part of the entire gasification plant. The excess...... operates with varying excess of air due to variation in gas composition and thus stoichiometry, and a second where the excess of air in the exhaust gas is fixed and the flow rate of produced gas from the gasifier is varying. The interaction between the gas engine and the gasification system has been...... investigated. The engine and the plant are equipped with continuously data acquisition that monitors the operation including the composition of the producer gas and the flow. Producer gas properties and contaminations have been investigated. No detectable tar or particle content was observed...

  19. MO-E-BRF-01: Research Opportunities in Technology for Innovation in Radiation Oncology (Highlight of ASTRO NCI 2013 Workshop)

    International Nuclear Information System (INIS)

    Hahn, S; Jaffray, D; Chetty, I; Benedict, S

    2014-01-01

    Radiotherapy is one of the most effective treatments for solid tumors, in large part due to significant technological advances associated with, for instance, the ability to target tumors to very high levels of accuracy (within millimeters). Technological advances have played a central role in the success of radiation therapy as an oncologic treatment option for patients. ASTRO, AAPM and NCI sponsored a workshop “Technology for Innovation in Radiation Oncology” at the NCI campus in Bethesda, MD on June 13–14, 2013. The purpose of this workshop was to bring together expert clinicians and scientists to discuss the role of disruptive technologies in radiation oncology, in particular with regard to how they are being developed and translated to clinical practice in the face of current and future challenges and opportunities. The technologies discussed encompassed imaging and delivery aspects, along with methods to enable/facilitate application of them in the clinic. Measures for assessment of the performance of these technologies, such as techniques to validate quantitative imaging, were reviewed. Novel delivery technologies, incorporating efficient and safe delivery mechanisms enabled by development of tools for process automation and the associated field of oncology informatics formed one of the central themes of the workshop. The discussion on disruptive technologies was grounded in the need for evidence of efficacy. Scientists in the areas of technology assessment and bioinformatics provided expert views on different approaches toward evaluation of technology efficacy. Clinicians well versed in clinical trials incorporating disruptive technologies (e.g. SBRT for early stage lung cancer) discussed the important role of these technologies in significantly improving local tumor control and survival for these cohorts of patients. Recommendations summary focused on the opportunities associated with translating the technologies into the clinic and assessing their

  20. MO-E-BRF-01: Research Opportunities in Technology for Innovation in Radiation Oncology (Highlight of ASTRO NCI 2013 Workshop)

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, S [University of Pennsylvania, Philadelphia, PA (United States); Jaffray, D [Princess Margaret Hospital, Toronto, ON (Canada); Chetty, I [Henry Ford Health System, Detroit, MI (United States); Benedict, S [UC Davis Cancer Center, Sacramento, CA (United States)

    2014-06-15

    Radiotherapy is one of the most effective treatments for solid tumors, in large part due to significant technological advances associated with, for instance, the ability to target tumors to very high levels of accuracy (within millimeters). Technological advances have played a central role in the success of radiation therapy as an oncologic treatment option for patients. ASTRO, AAPM and NCI sponsored a workshop “Technology for Innovation in Radiation Oncology” at the NCI campus in Bethesda, MD on June 13–14, 2013. The purpose of this workshop was to bring together expert clinicians and scientists to discuss the role of disruptive technologies in radiation oncology, in particular with regard to how they are being developed and translated to clinical practice in the face of current and future challenges and opportunities. The technologies discussed encompassed imaging and delivery aspects, along with methods to enable/facilitate application of them in the clinic. Measures for assessment of the performance of these technologies, such as techniques to validate quantitative imaging, were reviewed. Novel delivery technologies, incorporating efficient and safe delivery mechanisms enabled by development of tools for process automation and the associated field of oncology informatics formed one of the central themes of the workshop. The discussion on disruptive technologies was grounded in the need for evidence of efficacy. Scientists in the areas of technology assessment and bioinformatics provided expert views on different approaches toward evaluation of technology efficacy. Clinicians well versed in clinical trials incorporating disruptive technologies (e.g. SBRT for early stage lung cancer) discussed the important role of these technologies in significantly improving local tumor control and survival for these cohorts of patients. Recommendations summary focused on the opportunities associated with translating the technologies into the clinic and assessing their

  1. Identification and assessment of site treatment plan implementation opportunities for emerging technologies

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, E.A. [Sandia National Labs., Germantown, MD (United States)

    1995-12-31

    The Department of Energy (DOE), in response to the 1992 Federal Facility Compliance Act, has prepared Site Treatment Plans (STP) for the approximately 2,000 waste streams identified within its mixed waste inventory Concurrently, emerging mixed waste treatment technologies are in final development. This paper defines a three-phase process to identify and assess implementation opportunities for these emerging technologies within the STP. It highlights the first phase, functional matching of expected treatment capabilities with proposed treatment requirements. Matches are based on treatment type, regulated contaminant and waste matrix type, for both capabilities and requirements. Results identify specific waste streams and volumes that could be treated by each emerging technology. A study for Plasma Hearth Process, Delphi DETOX{sup sm}, Supercritical Water Oxidation and Vitrification shows that about 200,000 ml of DOE`s mixed waste inventory can potentially be treated by one or more of these emerging technologies. Actual implementations are small fractions of the treatable inventory. Differences between potential and actual implementations must be minimized to accrue optimum benefit from implementation of emerging or alternative treatment technologies. Functional matching is the first phase in identifying and quantifying benefits, addressing technology system and treatment issues, and providing, in part, the basis for STP implementation decisions. DOE, through EM`s Office of Technology Development, has funded this work.

  2. Innovative Molecular Analysis Technologies Program Funding Opportunities | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    The NCI is very pleased to announce that the Innovative Molecular Analysis Technologies (IMAT) program funding opportunity announcements have been posted for calendar year (CY) 2013. Please visit this website for more information on these announcements. For your convenience, a link to each solicitation is provided below with associated submission deadlines for new applications and resubmissions. Please contact the NCI IMAT program director, Dr.

  3. Medical education for rural areas: Opportunities and challenges for information and communications technologies

    Directory of Open Access Journals (Sweden)

    Sargeant Joan

    2005-01-01

    Full Text Available Resources in medical education are not evenly distributed and access to education can be more problematic in rural areas. Similar to telemedicine′s positive influence on health care access, advances in information and communications technologies (ICTs increase opportunities for medical education. This paper provides a descriptive overview of the use of ICTs in medical education and suggests a conceptual model for reviewing ICT use in medical education, describes specific ICTs and educational interventions, and discusses opportunities and challenges of ICT use, especially in rural areas. The literature review included technology and medical education, 1996-2005. Using an educational model as a framework, the uses of ICTs in medical education are, very generally, to link learners, instructors, specific course materials and/or information resources in various ways. ICTs range from the simple (telephone, audio-conferencing to the sophisticated (virtual environments, learning repositories and can increase access to medical education and enhance learning and collaboration for learners at all levels and for institutions. While ICTs are being used and offer further potential for medical education enhancement, challenges exist, especially for rural areas. These are technological (e.g., overcoming barriers like cost, maintenance, access to telecommunications infrastructure, educational (using ICTs to best meet learners′ educational priorities, integrating ICTs into educational programs and social (sensitivity to remote needs, resources, cultures. Finally, there is need for more rigorous research to more clearly identify advantages and disadvantages of specific uses of ICTs in medical education.

  4. Flexible 75 kWel Stirling CHP-plant for bio-fuels with low emissions and a high fuel utilization. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    2011-07-01

    The objective of the project ''Flexible 75 kWel Stirling CHP-plant for bio-fuels with low emissions and a high fuel utilization'' was to combine the Danish experiences with the Stirling engine and updraft gasification with the application of the FLOX gas burner technology for developing and demonstrating a flexible biomass-based small scale CHP plant with 75 kW electrical output, high power efficiency and low emissions. Further, the project has aimed at increasing the technology's reliability and decreasing the need for service. Also, the project has included the development of a control and communication system for unmanned start-up and operation of the plant. During the project the objective was altered and so the development of a new Stirling engine design was done on the 4-cylindred 35 kWe Stirling engine instead of the 8-cylindred 75 kWe Stirling engine. Focus has been on designing a more durable engine designed for easy and fast service. Cold test of the engine has been successful and now full-scale hot tests are to be performed. In the project Stirling DK has also in cooperation with project partner Danish gas Technology Centre developed the Stirling Engine with Diluted Oxidation (SEDIOX) concept which is a combustion technology based on the diluted oxidation principle. A trademark is obtained and also a patent application is filed and pending regarding the SEDIOX combustion chamber concept. All components for the Stirling gasification plant were produced and installed at Svanholm Estate. The plant consisted of one conventional combustion chamber and one SD3E-type Stirling engine. The plant was commissioned in June 2009 and 1,472 hours of operation and 43 MWh of electricity production was achieved before the plant was de-commissioned in February 2010 due to divergences between Svanholm Estate and Stirling DK. During operation the control system including remote access was tested thoroughly and with great success. The new overall

  5. Hydrocarbon emissions from gas engine CHP-units. 2011 measurement program

    Energy Technology Data Exchange (ETDEWEB)

    Van Dijk, G.H.J. [KEMA, Arnhem (Netherlands)

    2012-06-15

    In December 2009, the Ministry of Infrastructure and Environment (IandM) issued the Decree on Emission Limits for Middle Sized Combustion Installations (BEMS). This decree imposes a first-time emission limit value (ELV) of 1500 mg C/m{sup 3}{sub o} at 3% O{sub 2} for hydrocarbons emitted by gas engines. IandM used the findings of two hydrocarbon emission measurement programs, executed in 2007 and 2009, as a guideline for this initial ELV. The programs did reveal substantial variation in the hydrocarbon emissions of the gas engines tested. This variation, and especially the uncertainty as to the role of engine and/or other parameters causing such variation, was felt to hamper further policy development. IandM therefore commissioned KEMA to perform follow-up measurements on ten gas engine CHP-units in 2011. Aim of this 2011 program is to assess hydrocarbon emission variation in relation to engine parameters and process conditions including maintenance status, and to atmospheric conditions. The 2011 program comprised two identical measurement sessions, one in spring and one in winter.

  6. Cubic Satellites, Vanguard Technology Integration, an Educational Opportunity of Modernization in Mexico

    Science.gov (United States)

    Moreno-Franco, Olmo A.; Muñoz-Ubando, L. A.; Moreno-Moreno, Prudenciano; Vargas-Méndez, Eduardo E.

    This paper provides a theoretical approach on the CubeSat standard making a cost-benefit analysis in the use of pico-satellites at the education and technology integration model for educational modernization. With the CubeSat format is planned to develop an orbit LEO pico-satellite as part of a multidisciplinary project led by the Robotics Institute of Yucatan (TRIY), assisted with previous experience in Mexico and Colombia, to build a satellite capable of stabilizing through a robotic device, which will be a training model for human resources in Mexico. The CubeSat initiative represents a technological development of more than 10 years who is still alive and growing, attracting new participants from different educational institutions and global business, which has proven to be a project that would be made and successful results with a significant low budget compared to other space missions, and finally is an opportunity to bring students and teachers to the aerospace industry, through a convergence of technology, and academic discipline.

  7. A Decade of Technology Enhanced Learning at the University of Dar es Salaam, Tanzania: Challenges, Achievements, and Opportunities

    Science.gov (United States)

    Mtebe, Joel S.; Raphael, Christina

    2017-01-01

    For a decade past, integration of technology in teaching and learning has been received with both apprehension and skeptism from academics and student majority at the University of Dar es Salaam (UDSM). The study recounts real, professional and practical experiences, challenges, and opportunities of integrating educational technologies using…

  8. The Dynamics of Opportunity and Threat Management in Turbulent Environments: The Role of Information Technologies

    Science.gov (United States)

    Park, Young Ki

    2011-01-01

    This study explains the role of information technologies in enabling organizations to successfully sense and manage opportunities and threats and achieve competitive advantage in turbulent environments. I use two approaches, a set-theoretic configurational theory approach and a variance theory approach, which are theoretically and methodologically…

  9. Testing of a Stirling engine for heat + power cogeneration; Test eines Stirlingmotors zur Kraft-Waerme-Kopplung

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, M.; Heinen, J. [RWE Energy AG, Essen (Germany)

    2007-01-15

    As part of a technology evaluation of distributed energy generators, RWE Energy AG extensively tested a micro combined heat and power appliance, powered by a Stirling engine developed by the British firm Microgen Energy Limited. Microgen Energy Limited is a specialist in micro combined heat and power (microCHP) based on unique Free-Piston Stirling generator technology Microgen is working with leading appliance manufacturers to integrate its core technology into a range of innovative microCHP products. The investigations concentrated on the determination of capacity, efficiency and emissions, the grid connection and behaviour at start-up and under varying loads. This article summarises the results of the tests and gives an overview of micro-CHP technologies (CHP=combined heat and power) and their possible significance to the market in the future. (orig.)

  10. Information and Communications Technologies (ICT) for Youth in MENA : Policies to Promote Employment Opportunities

    OpenAIRE

    Cava, Gloria La; Rossotto, Carlo Maria; Paradi-Guilford, Cecilia

    2011-01-01

    On January 18, 2011, the Arab Development Summit Youth Forum met in Sharm-el-Sheikh, Egypt, aiming to provide young Arab leaders and Information and Communications Technologies (ICT) entrepreneurs with the opportunity for dialogue with Arab decision makers, providing recommendations on how to empower youth in Middle East and North Africa (MENA) through ICT. Tunisia's Jasmine revolution and...

  11. Impact of feedstock, land use change, and soil organic carbon on energy and greenhouse gas performance of biomass cogeneration technologies

    International Nuclear Information System (INIS)

    Njakou Djomo, S.; Witters, N.; Van Dael, M.; Gabrielle, B.; Ceulemans, R.

    2015-01-01

    Highlights: • Comparison of 40 bioenergy pathways to a fossil-fuel based CHP system. • Not all energy efficient pathways led to lower GHG emissions. • iLUC through intensification increased the total energy input and GHG emissions. • Fluidized bed technologies maximize the energy and GHG benefits of all pathways. • Perennial crops are in some cases better than residues on GHG emissions criteria. - Abstract: Bioenergy (i.e., bioheat and bioelectricity) could simultaneously address energy insecurity and climate change. However, bioenergy’s impact on climate change remains incomplete when land use changes (LUC), soil organic carbon (SOC) changes, and the auxiliary energy consumption are not accounted for in the life cycle. Using data collected from Belgian farmers, combined heat and power (CHP) operators, and a life cycle approach, we compared 40 bioenergy pathways to a fossil-fuel CHP system. Bioenergy required between 0.024 and 0.204 MJ (0.86 MJ th + 0.14 MJ el ) −1 , and the estimated energy ratio (energy output-to-input ratio) ranged from 5 to 42. SOC loss increased the greenhouse gas (GHG) emissions of residue based bioenergy. On average, the iLUC represented ∼67% of the total GHG emissions of bioenergy from perennial energy crops. However, the net LUC (i.e., dLUC + iLUC) effects substantially reduced the GHG emissions incurred during all phases of bioenergy production from perennial crops, turning most pathways based on energy crops to GHG sinks. Relative to fossil-fuel based CHP all bioenergy pathways reduced GHG emissions by 8–114%. Fluidized bed technologies maximize the energy and the GHG benefits of all pathways. The size and the power-to-heat ratio for a given CHP influenced the energy and GHG performance of these bioenergy pathways. Even with the inclusion of LUC, perennial crops had better GHG performance than agricultural and forest residues. Perennial crops have a high potential in the multidimensional approach to increase energy

  12. Reducing the network load and optimization of the economic efficiency of CHP plants by forecast-guided control; Verringerung der Netzbelastung und Optimierung der Wirtschaftlichkeit von KWK-Anlagen durch prognosegefuehrte Steuerung

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Daniel; Adelhardt, Stefan [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Sensorik; beECO GmbH, Erlangen (Germany)

    2012-07-01

    Heat-guided combined heat and power (CHP) plants often cause large compensation energy amounts, additional costs to the operator respectively and another burden on the parent network. The balance energy is caused by errors in the production forecast whose quality heavily depends on the heat load performance. This paper identifies the forecasting problems with heat-guided CHP and reveals how the accompanying cost and the network burden can be reduced. This is achieved by an improvement of the forecast in conjunction with a forecast-guided control without affecting the heat supply. In addition, an outlook on further measures to the earnings with the system is presented. (orig.)

  13. Sizing a solar dish Stirling micro-CHP system for residential application in diverse climatic conditions based on 3E analysis

    International Nuclear Information System (INIS)

    Moghadam, Ramin Shabanpour; Sayyaadi, Hoseyn; Hosseinzade, Hadi

    2013-01-01

    Highlights: • 3E analysis was performed on solar CHP systems. • Significant primary energy saving and greenhouse gas reduction were obtained. • The engine was sized so that it had the best economic sound. • Various criteria at different weathers were used for sizing the engine. - Abstract: A solar dish Stirling cogeneration system is considered to provide energy demands of a residential building. As energy demands of the building and output power of the engine are functions of weather condition and solar irradiation flux, the benchmark building was considered to be located in five different cities in Iran with diverse climatic and solar irradiation conditions. The proposed solar dish Stirling micro-CHP system was analyzed based on 3E analysis. The 3E analysis evaluated primary energy saving analysis (energy analysis), carbon dioxide emission reduction (environmental analysis) and payback period for return of investment (economic analysis) and was compared to a reference building that utilized primary energy carriers for its demands. Three scenarios were considered for assessment and sizing the solar dish Stirling engine. In the first scenario, size of the solar dish Stirling engine was selected based on the lowest annual electric power demand while, in second, the highest annual electric power consumption was considered to specify size of the engine. In the third scenario, a solar dish Stirling engine with constant output capacity was considered for the five locations. It was shown that implementing the solar dish Stirling micro-CHP system had good potential in primary energy saving and carbon dioxide emission reduction in all scenarios and acceptable payback period for return of the investment in some scenarios. Finally, the best scenario for selecting size of the engine in each city was introduced using the TOPSIS decision making method. It was demonstrated that, for dry weather, the first scenario was the best while, for hot and humid cities and

  14. [Challenge and opportunity of entry to WTO brings to scientific and technological periodical].

    Science.gov (United States)

    Tian, Yun-Mei

    2004-11-01

    After our country enters WTO, confronted with the direct influence in big international market opening, editorial department will face fierce competition. Selecting the superior and eliminate the inferior will test every publishing house and every magazine directly. In order to improve the competition level, author has analyzed the current situation of China's periodical development, and then explored the scientific and technological periodical opportunity and challenge faced under the new situation.

  15. Gasification - Status and Technology; Foergasning - Status och teknik

    Energy Technology Data Exchange (ETDEWEB)

    Held, Joergen

    2011-07-15

    In this report gasification and gas cleaning techniques for biomass are treated. The main reason for gasifying biomass is to refine the fuel to make it suitable for efficient CHP production, as vehicle fuel or in industrial processes. The focus is on production of synthesis gas that can be used for production of vehicle fuel and for CHP production. Depending on application different types of gasifiers, gasification techniques and process parameters are of interest. Two gasification techniques have been identified as suitable for syngas generation, mainly due to the fact that they allow the production of a nitrogen free gas out of the gasifier; Indirect atmospheric gasification and Pressurized oxygen blown gasification For CHP production there are no restrictions on the gas composition in terms of nitrogen and here air-blown gasification is of interest as well. The main challenge when it comes to gas cleaning is related to sulphur and tars. There are different concepts and alternatives to handle sulphur and tars. Some of them is based on conventional techniques with well-proven components that are commercially available while others more advantageous solutions, still need further development. The report deals to a minor extent with the conversion of syngas to synthetic fuels. The ongoing research and development of gasification techniques is extensive, both on national and international level. Although many process concepts and components have been demonstrated, there is still no full-scale plant for the production of synthetic fuels based on biomass. Factors affecting the choice of technology are plant size, operating conditions, the possibility for process integration, access to feedstock, market aspects, incentives and economic instruments et cetera. Increased competition for biofuels will inevitably lead to higher raw material costs. This in turn means that the fuel chains with high efficiency, such as biomethane through gasification and methanation, are favored

  16. Liquidity, Technological Opportunities, and the Stage Distribution of Venture Capital Investments.

    Science.gov (United States)

    Lahr, Henry; Mina, Andrea

    2014-06-01

    This paper explores the determinants of the stage distribution of European venture capital investments from 1990 to 2011. Consistent with liquidity risk theory, we find that the likelihood of investing in earlier stages increases relative to all private equity investments during liquidity crisis years. While liquidity is the main driver of acquisition investments and, to some extent, of expansion financings, technological opportunities are overall the main driver of early and late stage venture capital investments. In contrast to the dotcom crash, the recent financial crisis negatively affected the relative likelihood of expansion investments, but not of early and late stage investments.

  17. Liquidity, Technological Opportunities, and the Stage Distribution of Venture Capital Investments

    Science.gov (United States)

    Lahr, Henry; Mina, Andrea

    2014-01-01

    This paper explores the determinants of the stage distribution of European venture capital investments from 1990 to 2011. Consistent with liquidity risk theory, we find that the likelihood of investing in earlier stages increases relative to all private equity investments during liquidity crisis years. While liquidity is the main driver of acquisition investments and, to some extent, of expansion financings, technological opportunities are overall the main driver of early and late stage venture capital investments. In contrast to the dotcom crash, the recent financial crisis negatively affected the relative likelihood of expansion investments, but not of early and late stage investments. PMID:26166906

  18. EU's forest fuel resources, energy technology market and international bioenergy trade

    International Nuclear Information System (INIS)

    Asikainen, A.; Laitila, J.; Parikka, H.

    2006-01-01

    The aim of the project is to provide for the Finnish bioenergy technology, machine and appliance manufactures information about forest fuel resources in the EU and international bioenergy trade mechanisms. The projects results act as an instrument for market potential assessments and provide information to the local energy producer about biomass as an energy source. The possibilities to use forest chips in CHP and heating plants will be investigated in the case studies. Total number of case studies will be 3-4, and they will mainly be located in Eastern Europe, where also large forest resources and utilisation potential are found. Case studies include three main tasks: 1) Assessment of forest fuel resources around the CHP or heating plant. 2) Forest fuel procurement cost study and 3) Study on the economics forest fuel based energy production. The project will be carried out as cooperation between Finnish research institutes and companies, and local actors. First case study was carried out at Poland. (orig.)

  19. Opportunities in biotechnology.

    Science.gov (United States)

    Gartland, Kevan M A; Gartland, Jill S

    2018-06-08

    Strategies for biotechnology must take account of opportunities for research, innovation and business growth. At a regional level, public-private collaborations provide potential for such growth and the creation of centres of excellence. By considering recent progress in areas such as genomics, healthcare diagnostics, synthetic biology, gene editing and bio-digital technologies, opportunities for smart, strategic and specialised investment are discussed. These opportunities often involve convergent or disruptive technologies, combining for example elements of pharma-science, molecular biology, bioinformatics and novel device development to enhance biotechnology and the life sciences. Analytical applications use novel devices in mobile health, predictive diagnostics and stratified medicine. Synthetic biology provides opportunities for new product development and increased efficiency for existing processes. Successful centres of excellence should promote public-private business partnerships, clustering and global collaborations based on excellence, smart strategies and innovation if they are to remain sustainable in the longer term. Copyright © 2018. Published by Elsevier B.V.

  20. Evaluation of the environmental sustainability of a micro CHP system fueled by low-temperature geothermal and solar energy

    International Nuclear Information System (INIS)

    Ruzzenenti, Franco; Bravi, Mirko; Tempesti, Duccio; Salvatici, Enrica; Manfrida, Giampaolo; Basosi, Riccardo

    2014-01-01

    Highlights: • Binary, ORC technology avoids CO 2 , but raises questions about environmental impact. • We proposed a micro-size system that combines geothermal energy with solar energy. • The small scale and the solar energy input edges the energy profitability. • The system’s performance is appreciable if applied to existing wells. • The feasibility of exploiting abandoned wells is preliminarily evaluated. - Abstract: In this paper we evaluate the environmental sustainability of a small combined heat and power (CHP) plant operating through an Organic Rankine Cycle (ORC). The heat sources of the system are from geothermal energy at low temperature (90–95 °C) and solar energy. The designed system uses a solar field composed only of evacuated, non-concentrating solar collectors, and work is produced by a single turbine of 50 kW. The project addresses an area of Tuscany, but it could be reproduced in areas where geothermal energy is extensively developed. Therefore, the aim is to exploit existing wells that are either unfit for high-enthalpy technology, abandoned or never fully developed. Furthermore, this project aims to aid in downsizing the geothermal technology in order to reduce the environmental impact and better tailor the production system to the local demand of combined electric and thermal energy. The environmental impact assessment was performed through a Life Cycle Analysis and an Exergy Life Cycle Analysis. According to our findings the reservoir is suitable for a long-term exploitation of the designed system, however, the sustainability and the energy return of this latter is edged by the surface of the heat exchanger and the limited running hours due to the solar plant. Therefore, in order to be comparable to other renewable resources or geothermal systems, the system needs to develop existing wells, previously abandoned

  1. 77 FR 55834 - Notice of Opportunity To Comment on a Methodology for Allocating Greenhouse Gas Emissions to a...

    Science.gov (United States)

    2012-09-11

    ... Station coal-fired power plant, which would operate in a combined heat and power (CHP) mode. EPA has not... Comment on a Methodology for Allocating Greenhouse Gas Emissions to a Combined Heat and Power... import process steam from a combined heat and power (CHP) system located at an offsite facility. EPA is...

  2. Understanding the Signature Pedagogy of the Design Studio and the Opportunities for Its Technological Enhancement

    Science.gov (United States)

    Crowther, Phillip

    2013-01-01

    This paper presents an analysis of the studio as the signature pedagogy of design education. A number of theoretical models of learning, pedagogy, and education are used to interrogate the studio for its advantages and shortcomings, and to identify opportunities for the integration of new technologies and to explore the affordances that they…

  3. The effectiveness of heat pumps as part of CCGT-190/220 Tyumen CHP-1

    Directory of Open Access Journals (Sweden)

    Tretyakova Polina

    2017-01-01

    Full Text Available The article considers the possibility of increasing the energy efficiency of CCGT-190/220 Tyumen CHP-1 due to the utilization of low-grade heat given off in the condenser unit of the steam turbine. To assess the effectiveness of the proposed system, the indexes of thermal efficiency are given. As a result of a research the following conclusions are received: The heat-transfer agent heat pump, when heated uses low-grade heat TPP and increases heat output, but consumes the electricity. Using a heat pump is effective for a small temperature difference between the condenser and the evaporator. Good example is heating water before chemical treatment. This method is more efficient than using a replacement boiler and it is used in steam selection.

  4. Survey of controllability in decentralized CHP plants. Optimal operation of priority production units; Kortlaegning af decentrale kraftvarmevaerkers regulerbarhed. Optimal drift af prioriterede anlaeg - Teknologisk grundlag

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-03-15

    The present report presents results from two closely related projects, carried out in parallel, under the PSO-F and U 2002. The one project is 'Survey of controllability in de-centralized combined heat and power plants' project number PSO 4724 and is fully reported here. The other project: 'Optimal operation of priority production units, project number PSO 4712, only the part project 'Technological foundations is reported here. In project 4724 the technical conditions that matter regarding controllability of electricity production in de-centralized heat and power stations are surveyed. In this context the term controllability means how fast and to which extent the load factors of the plants can be changed. Also, is has been investigated which options are available for improving the controllability, their potentials and estimates on required investments associated. The investigation covers CHP plants having a production capacity of up to 30 MW of electricity. The main part of the de-centralized CHP plants are based on spark ignited internal combustion engines (Otto engines). Most of these engines are fuelled by natural gas and a smaller part by biogas. A minor number are gas turbines fuelled by natural gas and steam turbines in industrial applications, waste incineration plants or in combined cycle power plants. The mapping has among others consisted of a number of visits on selected different types of plants including interview with people responsible for the daily operation. From these interviews data on the actual operating strategy and technical data have been provided. In addition suppliers of engines and other equipment involved have been contacted for technical information or recommendations regarding possible changes in operation strategy. Searching the Internet has been widely used for identification of technical investigations concerning e.g. operation and maintenance of relevant equipment. Finally, substantial statistical data from

  5. High-performance nanostructured thermoelectric generators for micro combined heat and power systems

    International Nuclear Information System (INIS)

    Zhang, Yanliang; Wang, Xiaowei; Cleary, Martin; Schoensee, Luke; Kempf, Nicholas; Richardson, Joseph

    2016-01-01

    Highlights: • A TEG is fabricated using high-efficiency nanostructured thermoelectric materials. • The TEG produces high power density of 2.1 W/cm"2 with 5.3% electrical efficiency. • A micro-CHP system is demonstrated by integrating the TEG into a gas-fired boiler. - Graphical Abstract: - Abstract: Micro combined heat and power (micro-CHP) systems are promising pathways to increase power generation efficiencies. Here a new class of micro-CHP system without moving parts is experimentally demonstrated by integrating high-temperature thermoelectric generators (TEGs) and residential gas-fired boilers, thus enabling wide applications. The TEGs fabricated using high-efficiency nanostructured bulk half-Heusler alloys generate ultrahigh power density of 2.1 W/cm"2 with 5.3% electrical efficiency under 500 °C temperature differences between the hot and cold sides. The TEG system harnesses the untapped exergy between the combustion gas and water, and converts thermal energy into electric power with 4% heat-to-electricity efficiency based on the total heat input into the TEGs. The high-performance TEGs open lots of opportunities to transform power generation technologies and improve energy efficiency.

  6. Integration of torrefaction in CHP plants – A case study

    International Nuclear Information System (INIS)

    Starfelt, Fredrik; Tomas Aparicio, Elena; Li, Hailong; Dotzauer, Erik

    2015-01-01

    Highlights: • We model the integration of a torrefaction reactor in a CHP plant. • Techno-economic analysis for the system is performed. • Flue gas integration of torrefaction show better performance. • Heat or electricity production is not compromised in the proposed system. - Abstract: Torrefied biomass shows characteristics that resemble those of coal. Therefore, torrefied biomass can be co-combusted with coal in existing coal mills and burners. This paper presents simulation results of a case study where a torrefaction reactor was integrated in an existing combined heat and power plant and sized to replace 25%, 50%, 75% or 100% of the fossil coal in one of the boilers. The simulations show that a torrefaction reactor can be integrated with existing plants without compromising heat or electricity production. Economic and sensitivity analysis show that the additional cost for integrating a torrefaction reactor is low which means that with an emission allowance cost of 37 €/ton CO 2 , the proposed integrated system can be profitable and use 100% renewable fuels. The development of subsidies will affect the process economy. The determinant parameters are electricity and fuel prices

  7. Implications of the modelling of stratified hot water storage tanks in the simulation of CHP plants

    Energy Technology Data Exchange (ETDEWEB)

    Campos Celador, A., E-mail: alvaro.campos@ehu.es [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain); Odriozola, M.; Sala, J.M. [ENEDI Research Group-University of the Basque Country, Departamento de Maquinas y Motores Termicos, E.T.S.I. de Bilbao Alameda de Urquijo, s/n 48013 Bilbao, Bizkaia (Spain)

    2011-08-15

    Highlights: {yields} Three different modelling approaches for simulation of hot water tanks are presented. {yields} The three models are simulated within a residential cogeneration plant. {yields} Small differences in the results are found by an energy and exergy analysis. {yields} Big differences between the results are found by an advanced exergy analysis. {yields} Results on the feasibility study are explained by the advanced exergy analysis. - Abstract: This paper considers the effect that different hot water storage tank modelling approaches have on the global simulation of residential CHP plants as well as their impact on their economic feasibility. While a simplified assessment of the heat storage is usually considered in the feasibility studies of CHP plants in buildings, this paper deals with three different levels of modelling of the hot water tank: actual stratified model, ideal stratified model and fully mixed model. These three approaches are presented and comparatively evaluated under the same case of study, a cogeneration plant with thermal storage meeting the loads of an urbanisation located in the Bilbao metropolitan area (Spain). The case of study is simulated by TRNSYS for each one of the three modelling cases and the so obtained annual results are analysed from both a First and Second-Law-based viewpoint. While the global energy and exergy efficiencies of the plant for the three modelling cases agree quite well, important differences are found between the economic results of the feasibility study. These results can be predicted by means of an advanced exergy analysis of the storage tank considering the endogenous and exogenous exergy destruction terms caused by the hot water storage tank.

  8. High-Efficiency Small-Scale Combined Heat and Power Organic Binary Rankine Cycles

    OpenAIRE

    Costante Mario Invernizzi; Nadeem Ahmed Sheikh

    2018-01-01

    Small-CHP (Combined Heat and Power) systems are generally considered a valuable technological option to the conventional boilers, in a technology developed context. If small-CHP systems are associated with the use of renewable energies (biomass, for example) they could play an important role in distributed generation even in developing countries or, in any case, where there are no extensive electricity networks. Traditionally the considered heat engines for micro- or mini-CHP are: the gas eng...

  9. Assessment of the competing technologies to fuel cells in the stationary power and CHP markets

    Energy Technology Data Exchange (ETDEWEB)

    Pears, T.J.

    1999-07-01

    This report summarises the results of a study assessing the commercial technologies that are likely to compete with fuel cells in the fields of stationary power and cogeneration markets. The competing technologies examined include clean coal technologies, reciprocating engines, gas turbines, microturbines, and stirling engines. Energy and environmental legislation, and the ranking of the competing technologies are discussed. (UK)

  10. ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM"PREMIUM POWER" APPLICATIONS IN CALIFORNIA

    Energy Technology Data Exchange (ETDEWEB)

    Norwood, Zack; Lipman, Timothy; Stadler, Michael; Marnay, Chris

    2010-06-01

    The effectiveness of combined heat and power (CHP) systems for power interruption intolerant,"premium power," facilities is the focus of this study. Through three real-world case studies and economic cost minimization modeling, the economic and environmental performance of"premium power" CHP is analyzed. The results of the analysis for a brewery, data center, and hospital lead to some interesting conclusions about CHP limited to the specific CHP technologies installed at those sites. Firstly, facilities with high heating loads prove to be the most appropriate for CHP installations from a purely economic standpoint. Secondly, waste heat driven thermal cooling systems are only economically attractive if the technology for these chillers can increase above the current best system efficiency. Thirdly, if the reliability of CHP systems proves to be as high as diesel generators they could replace these generators at little or no additional cost if the thermal to electric (relative) load of those facilities was already high enough to economically justify a CHP system. Lastly, in terms of greenhouse gas emissions, the modeled CHP systems provide some degree of decreased emissions, estimated at approximately 10percent for the hospital, the application with the highest relative thermal load in this case

  11. External costs related to power production technologies. ExternE national implementation for Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Schleisner, L; Sieverts Nielsen, P [eds.

    1997-12-01

    The objective of the ExternE National Implementation project has been to establish a comprehensive and comparable set of data on externalities of power generation for all EU member states and Norway. The tasks include the application of the ExternE methodology to the most important fuel cycles for each country as well as to update the already existing results, to aggregate these site- and technology-specific results to more general figures. The current report covers the detailed information concerning the ExternE methodology. Importance is attached to the computer system used in the project and the assessment of air pollution effects on health, materials and ecological effects. Also the assessment of global warming damages are described. Finally the report covers the detailed information concerning the national implementation for Denmark for an offshore wind farm and a wind farm on land, a decentralised CHP plant based on natural gas and a decentralised CHP plant base on biogas. (au) EU-JOULE 3. 79 tabs., 11 ills., 201 refs.

  12. External costs related to power production technologies. ExternE national implementation for Denmark

    International Nuclear Information System (INIS)

    Schleisner, L.; Sieverts Nielsen, P.

    1997-12-01

    The objective of the ExternE National Implementation project has been to establish a comprehensive and comparable set of data on externalities of power generation for all EU member states and Norway. The tasks include the application of the ExternE methodology to the most important fuel cycles for each country as well as to update the already existing results; to aggregate these site- and technology-specific results to more general figures. The current report covers the results of the national implementation for Denmark. Three different fuel cycles have been chosen as case studies. These are fuel cycles for an offshore wind farm and a wind farm on land, a decentralised CHP plant based on natural gas and a decentralised CHP plant based on biogas. The report covers all the details of the application of the methodology to these fuel cycles aggregation to a national level. (au) EU-JOULE 3. 59 tabs., 25 ills., 61 refs

  13. External costs related to power production technologies. ExternE national implementation for Denmark

    International Nuclear Information System (INIS)

    Schleisner, L.; Sieverts Nielsen, P.

    1997-12-01

    The objective of the ExternE National Implementation project has been to establish a comprehensive and comparable set of data on externalities of power generation for all EU member states and Norway. The tasks include the application of the ExternE methodology to the most important fuel cycles for each country as well as to update the already existing results, to aggregate these site- and technology-specific results to more general figures. The current report covers the detailed information concerning the ExternE methodology. Importance is attached to the computer system used in the project and the assessment of air pollution effects on health, materials and ecological effects. Also the assessment of global warming damages are described. Finally the report covers the detailed information concerning the national implementation for Denmark for an offshore wind farm and a wind farm on land, a decentralised CHP plant based on natural gas and a decentralised CHP plant base on biogas. (au) EU-JOULE 3. 79 tabs., 11 ills., 201 refs

  14. External costs related to power production technologies. ExternE national implementation for Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Schleisner, L; Sieverts Nielsen, P

    1997-12-01

    The objective of the ExternE National Implementation project has been to establish a comprehensive and comparable set of data on externalities of power generation for all EU member states and Norway. The tasks include the application of the ExternE methodology to the most important fuel cycles for each country as well as to update the already existing results; to aggregate these site- and technology-specific results to more general figures. The current report covers the results of the national implementation for Denmark. Three different fuel cycles have been chosen as case studies. These are fuel cycles for an offshore wind farm and a wind farm on land, a decentralised CHP plant based on natural gas and a decentralised CHP plant based on biogas. The report covers all the details of the application of the methodology to these fuel cycles aggregation to a national level. (au) EU-JOULE 3. 59 tabs., 25 ills., 61 refs.

  15. Integrated energy markets and varying degrees of liberalisation: price links, bundled sales and CHP production exemplified by Northern European experiences

    International Nuclear Information System (INIS)

    Jacobsen, H.K.; Fristrup, P.; Munksgaard, J.

    2006-01-01

    Liberalisation of energy markets has during the last 20 years been gradually introduced in many countries. The liberalisation has led to concerns regarding the markets' state of competition and fears that market power existence can result in less efficiency gains than what is expected from liberalisation. Concerns have also been raised as to whether specific consumer groups will be affected by limited competition in markets. Much of the concern has been concentrated on the electricity markets, but the development of energy sectors with integration of activities within natural gas, electricity and the oil sector creates the need to examine market power aspects across these markets. This paper examines the concentration trends in the Northern European markets for electricity and natural gas, combined with regional district heating aspects, especially with respect to the situation in Denmark. The situation with natural gas companies supplying to both small-scale CHP and to retail heat customers is discussed, for instance, which changes of regulatory regime for domestic heating customers should be considered when the natural gas market is being liberalised? The interlinked nature of the energy markets is described and examples of impacts from one market with limited competition to other markets with seemingly well-functioning competition are given. The specific case of large CHP production facilities with output on the regulated district heating market and the competitive Nordic electricity market is examined. How much of the fluctuations in price experienced in electricity markets should be reflected in the price of heating supplies? To which degree do the heating customers have to bear the burden of low-electricity market prices? Regulation of liberalised markets is discussed focusing on the interaction between one regulated market and the related energy markets that are liberalised. Existing regulation on the markets are compared to a situation where liberalisation

  16. Integrated energy markets and varying degrees of liberalisation: Price links, bundled sales and CHP production exemplified by Northern European experiences

    International Nuclear Information System (INIS)

    Klinge Jacobsen, Henrik; Fristrup, Peter; Munksgaard, Jesper

    2006-01-01

    Liberalisation of energy markets has during the last 20 years been gradually introduced in many countries. The liberalisation has led to concerns regarding the markets' state of competition and fears that market power existence can result in less efficiency gains than what is expected from liberalisation. Concerns have also been raised as to whether specific consumer groups will be affected by limited competition in markets. Much of the concern has been concentrated on the electricity markets, but the development of energy sectors with integration of activities within natural gas, electricity and the oil sector creates the need to examine market power aspects across these markets. This paper examines the concentration trends in the Northern European markets for electricity and natural gas, combined with regional district heating aspects, especially with respect to the situation in Denmark. The situation with natural gas companies supplying to both small-scale CHP and to retail heat customers is discussed, for instance, which changes of regulatory regime for domestic heating customers should be considered when the natural gas market is being liberalised? The interlinked nature of the energy markets is described and examples of impacts from one market with limited competition to other markets with seemingly well-functioning competition are given. The specific case of large CHP production facilities with output on the regulated district heating market and the competitive Nordic electricity market is examined. How much of the fluctuations in price experienced in electricity markets should be reflected in the price of heating supplies? To which degree do the heating customers have to bear the burden of low-electricity market prices? Regulation of liberalised markets is discussed focusing on the interaction between one regulated market and the related energy markets that are liberalised. Existing regulation on the markets are compared to a situation where liberalisation

  17. Energy efficiency - cogeneration - marketing - natural gas market: a complete cycle; Eficiencia energetica - cogeracao - marketing - mercado de gas natural: um ciclo completo

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, J. Ricardo Uchoa C. [PETROBRAS - Gas e Energia, Rio de Janeiro, RJ (Brazil). Unidade de Negocios de Gas Natural; Aragao, Raimundo [International Institute for Energy Conservation - IIEC, Rio de Janeiro, RJ (Brazil); Arruda, Rodrigo

    2004-07-01

    This paper shows the current level of some technologies which are applied in Combined Heat Power - CHP, having natural gas as fuel, and the future perspectives for its technological advances. The work introduces the economic feasibility of these technologies having as reference the present prices of electricity and natural gas in Brazilian Market. This report also informs the influence of specific parameters in Combined Heat Power - CHP projects net present value. Finally the paper shows the main barrels for Combined Heat Power - CHP dissemination in Brazil and indicates some recommendations on how to eliminate and/or attenuate them. (author)

  18. Opportune Landing Site Program: Opportune Landing Site Southeastern Indiana Field Data Collection and Assessment

    National Research Council Canada - National Science Library

    Barna, Lynette A; Ryerson, Charles C; Affleck, Rosa T

    2008-01-01

    .... The opportune landing site (OLS) program utilized existing technologies to rapidly accelerate the process of selecting OLSs using remote sensing technology and state-of-the-ground forecast tools...

  19. Opportunities for Waste Heat Recovery at Contingency Bases

    Science.gov (United States)

    2016-04-01

    are polymer electrolyte mem- brane fuel cells ( PEMFC ) and solid oxide fuel cells (SOFCs). The biggest drawback to fuel cell CHP systems are their high...Rankine Cycle ORNL Oak Ridge National Laboratory OSHA Occupational Safety and Health Administration PAX Personnel PCM Phase Change Material PEMFC

  20. Integrated HT-PEMFC and multi-fuel reformer for micro CHP. Final report

    Energy Technology Data Exchange (ETDEWEB)

    2010-07-01

    reformed both methane and biogas although the efficiency was low, on the order of 15% due to excessive slip and heat losses. The construction and test of an integrated micro CHP system revealed several problems with the core technology. Therefore, rather than working with the integrated system, individual system components were tested separately. In spite of the problems with the reformer and the fuel cell stack the system was successfully operated and an electric efficiency of 18%{sub LHV} was demonstrated. (Author)

  1. Development and test of a Stirling engine driven by waste gases for the micro-CHP system

    International Nuclear Information System (INIS)

    Li Tie; Tang Dawei; Li Zhigang; Du Jinglong; Zhou Tian; Jia Yu

    2012-01-01

    In recent years, micro-CHP systems are attracting world attention. As one kind of external heating engines, Stirling engines could be applied to the micro-CHP systems driven by solar, biogas, mid-high temperature waste gases and many other heat sources. The development of a Stirling engine driven by mid-high temperature waste gases is presented first. The thermodynamic design method, the key parameters of the designed Stirling engine and its combustion chamber adapted for waste gases are described in detail. Then the performance test of the Stirling engine is carried out. During the test, the temperature of the heater head is monitored by thermocouples, and the pressure of the working fluid helium in the Stirling engine is monitored by pressure sensors. The relationships among the output shaft power, torque and speed are studied, and the pressure losses of the working fluid in the heat exchanger system are also analyzed. The test results demonstrate that the output shaft power could reach 3476 W at 1248 RPM, which is in good agreement with the predicted value of 3901 W at 1500 RPM. The test results confirm the fact that Stirling engines driven by mid-high temperature waste gases are able to achieve a valuable output power for engineering application. - Highlights: ► A β-type Stirling engine whose output power could reach about 3.5 kW is developed by ourselves. ► Waste gases are used as the heat source to drive the Stirling engine. ► Test on the relationship among the power, torque, and speed are presented. ► The pressure changing process of the working fluid in the heat exchanger system during the test is recorded and analyzed.

  2. Innovative forming and fabrication technologies : new opportunities.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, B.; Hryn, J.; Energy Systems; Kingston Process Metallurgy, Inc.

    2008-01-31

    The advent of light metal alloys and advanced materials (polymer, composites, etc.) have brought the possibility of achieving important energy reductions into the full life cycle of these materials, especially in transportation applications. 1 These materials have gained acceptance in the aerospace industry but use of light metal alloys needs to gain wider acceptance in other commercial transportation areas. Among the main reasons for the relatively low use of these materials are the lack of manufacturability, insufficient mechanical properties, and increased material costs due to processing inefficiencies. Considering the enormous potential energy savings associated with the use of light metal alloys and advanced materials in transportation, there is a need to identify R&D opportunities in the fields of materials fabrication and forming aimed at developing materials with high specific mechanical properties combined with energy efficient processes and good manufacturability. This report presents a literature review of the most recent developments in the areas of fabrication and metal forming focusing principally on aluminum alloys. In the first section of the document, the different sheet manufacturing technologies including direct chill (DC) casting and rolling, spray forming, spray rolling, thin slab, and strip casting are reviewed. The second section of the document presents recent research on advanced forming processes. The various forming processes reviewed are: superplastic forming, electromagnetic forming, age forming, warm forming, hydroforming, and incremental forming. Optimization of conventional forming processes is also discussed. Potentially interesting light metal alloys for high structural efficiency including aluminum-scandium, aluminum-lithium, magnesium, titanium, and amorphous metal alloys are also reviewed. This section concludes with a discussion on alloy development for manufacturability. The third section of the document reviews the latest

  3. U.S. DOE Intermountain Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Case, Patti [Etc Group, LLC, Salt Lake City, UT (United States)

    2013-09-30

    The Intermountain Clean Energy Application Center helped promote, assist, and transform the market for combined heat and power (CHP), including waste heat to power and district energy with CHP, in the intermountain states of Arizona, Colorado, New Mexico, Utah, and Wyoming. We accomplished these objectives through a combination of the following methods, which proved in concert to be a technically and economically effective strategy: o Identifying and facilitating high-impact CHP projects o Helping industrial, commercial, institutional, federal, and other large energy users in evaluating the economic and technical viability of potential CHP systems o Disseminating essential information about CHP including benefits, technologies, applications, project development, project financing, electric and gas utility incentives, and state policies o Coordinating and collaborating on CHP advancement with regional stakeholders including electric utilities, gas utilities, state energy offices, municipal development and planning personnel, trade associations, industry groups, non-profits, energy users, and others Outcomes of the project included increased understanding of and deployment of efficient and well-designed CHP systems in the states of Arizona, Colorado, New Mexico, Utah, and Wyoming. Increased CHP deployment helps the United States to enhance energy efficiency, strengthen the competitiveness of American industries, promote economic growth, foster a robust and resilient energy infrastructure, reduce emissions of air pollutants and greenhouse gases, and increase the use of market-ready advanced technologies. Specific outcomes included direct assistance to energy-intensive industrial facilities and other businesses, workshops and CHP tours, communication materials, and state policy education, all contributing to implementation of CHP systems in the intermountain region.

  4. Big data: survey, technologies, opportunities, and challenges.

    Science.gov (United States)

    Khan, Nawsher; Yaqoob, Ibrar; Hashem, Ibrahim Abaker Targio; Inayat, Zakira; Ali, Waleed Kamaleldin Mahmoud; Alam, Muhammad; Shiraz, Muhammad; Gani, Abdullah

    2014-01-01

    Big Data has gained much attention from the academia and the IT industry. In the digital and computing world, information is generated and collected at a rate that rapidly exceeds the boundary range. Currently, over 2 billion people worldwide are connected to the Internet, and over 5 billion individuals own mobile phones. By 2020, 50 billion devices are expected to be connected to the Internet. At this point, predicted data production will be 44 times greater than that in 2009. As information is transferred and shared at light speed on optic fiber and wireless networks, the volume of data and the speed of market growth increase. However, the fast growth rate of such large data generates numerous challenges, such as the rapid growth of data, transfer speed, diverse data, and security. Nonetheless, Big Data is still in its infancy stage, and the domain has not been reviewed in general. Hence, this study comprehensively surveys and classifies the various attributes of Big Data, including its nature, definitions, rapid growth rate, volume, management, analysis, and security. This study also proposes a data life cycle that uses the technologies and terminologies of Big Data. Future research directions in this field are determined based on opportunities and several open issues in Big Data domination. These research directions facilitate the exploration of the domain and the development of optimal techniques to address Big Data.

  5. Big Data: Survey, Technologies, Opportunities, and Challenges

    Science.gov (United States)

    Khan, Nawsher; Yaqoob, Ibrar; Hashem, Ibrahim Abaker Targio; Inayat, Zakira; Mahmoud Ali, Waleed Kamaleldin; Alam, Muhammad; Shiraz, Muhammad; Gani, Abdullah

    2014-01-01

    Big Data has gained much attention from the academia and the IT industry. In the digital and computing world, information is generated and collected at a rate that rapidly exceeds the boundary range. Currently, over 2 billion people worldwide are connected to the Internet, and over 5 billion individuals own mobile phones. By 2020, 50 billion devices are expected to be connected to the Internet. At this point, predicted data production will be 44 times greater than that in 2009. As information is transferred and shared at light speed on optic fiber and wireless networks, the volume of data and the speed of market growth increase. However, the fast growth rate of such large data generates numerous challenges, such as the rapid growth of data, transfer speed, diverse data, and security. Nonetheless, Big Data is still in its infancy stage, and the domain has not been reviewed in general. Hence, this study comprehensively surveys and classifies the various attributes of Big Data, including its nature, definitions, rapid growth rate, volume, management, analysis, and security. This study also proposes a data life cycle that uses the technologies and terminologies of Big Data. Future research directions in this field are determined based on opportunities and several open issues in Big Data domination. These research directions facilitate the exploration of the domain and the development of optimal techniques to address Big Data. PMID:25136682

  6. Stochastic PSO-based heat and power dispatch under environmental constraints incorporating CHP and wind power units

    Energy Technology Data Exchange (ETDEWEB)

    Piperagkas, G.S.; Anastasiadis, A.G.; Hatziargyriou, N.D. [National Technical University of Athens, School of Electrical and Computer Engineering, Electric Power Division, 9, Iroon Polytechneiou Str., GR-15773 Zografou, Athens (Greece)

    2011-01-15

    In this paper an extended stochastic multi-objective model for economic dispatch (ED) is proposed, that incorporates in the optimization process heat and power from CHP units and expected wind power. Stochastic restrictions for the CO{sub 2}, SO{sub 2} and NO{sub x} emissions are used as inequality constraints. The ED problem is solved using a multi-objective particle swarm optimization technique. The available wind power is estimated from a transformation of the wind speed considered as a random variable to wind power. Simulations are performed on the modified IEEE 30 bus network with 2 cogeneration units and actual wind data. Results concerning minimum cost and emissions reduction options are finally drawn. (author)

  7. Digital Technology and Mental Health Interventions: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Aguilera, Adrian

    2015-02-01

    Full Text Available The growth of the Internet, mobile phones, social media and other digital technologies has changed our world in many ways. It has provided individuals with information that was previously only available to a select few. An example of the reach of technology is data that as of October 2012, there are over 6 billion phones worldwide (BBC, 2012. The availability of data in real time has presented hopes of intervening more efficiently and managing health problems by leveraging limited human resources. It also has an impact in changing the roles of providers and patients and in legal and ethical issues including privacy in digital health interactions. This paper will discuss why digital technology has received recent attention in the area of mental health, present some applications of technology for mental health to date, explore the challenges to full implementation in clinical settings, and present future opportunities for digital technologies.El crecimiento del Internet, los teléfonos móviles, las redes sociales y otras tecnologías digitales ha cambiado nuestro mundo de muchas maneras. Ha proporcionado a las personas con la información que antes sólo estaba disponible para un grupo selecto, por ejemplo a partir de octubre de 2012. Un ejemplo del alcance de la tecnología son los datos que dicen que hay más de 6 millones de teléfonos en todo el mundo (BBC, 2012. La disponibilidad de los datos en tiempo real a presentado la esperanza de intervenir de manera más eficiente y manejar los problemas de salud los recursos humanos limitados. También tiene un impacto en el cambio de los roles de los proveedores y los pacientes y en aspectos legales y éticos, incluyendo la privacidad en las interacciones de salud digital. Este artículo discutirá unas razones por cual la tecnología digital ha recibido atención recientemente en el área de salud mental, presentará algunas aplicaciones de la tecnología para mejorar la salud mental hasta la fecha

  8. Power and cogeneration technology environomic performance typification in the context of CO2 abatement part II: Combined heat and power cogeneration

    International Nuclear Information System (INIS)

    Li, Hongtao; Marechal, Francois; Favrat, Daniel

    2010-01-01

    This is the second of a series of two articles, dealing with a new approach of environomic (thermodynamic, economic and environmental) performance 'Typification' and optimization of power generation technologies. This part treats specifically of combined heat and power (CHP) cogeneration technologies in the context of CO 2 abatement and provides a methodology for a flexible and fast project based CHP system design evaluation. One of the aspect of the approach is the post-optimization integration of the operating and capital costs, in order to effectively deal with the uncertainty of the project specific design and operation conditions (fuel, electricity and heat selling prices, project financial conditions such as investment amortization periods, annual operating hours, etc). In addition the approach also allows to efficiently evaluate the influence of the external cost such as the CO 2 tax level under a tax scheme or the CO 2 permit price in the emission trading market. Application examples, including gas turbine and combined cycles are treated with the proposed methodology, by using superstructure based generic environomic models and a multi-objective optimizer.

  9. Opportunity on 'Cabo Frio' (Simulated)

    Science.gov (United States)

    2006-01-01

    This image superimposes an artist's concept of the Mars Exploration Rover Opportunity atop the 'Cabo Frio' promontory on the rim of 'Victoria Crater' in the Meridiani Planum region of Mars. It is done to give a sense of scale. The underlying image was taken by Opportunity's panoramic camera during the rover's 952nd Martian day, or sol (Sept. 28, 2006). This synthetic image of NASA's Opportunity Mars Exploration Rover at Victoria Crater was produced using 'Virtual Presence in Space' technology. Developed at NASA's Jet Propulsion Laboratory, Pasadena, Calif., this technology combines visualization and image processing tools with Hollywood-style special effects. The image was created using a photorealistic model of the rover and an approximately full-color mosaic.

  10. Energy use and CO2 emissions of China's industrial sector from a global perspective

    International Nuclear Information System (INIS)

    Zhou, Sheng; Kyle, G. Page; Yu, Sha; Clarke, Leon E.; Eom, Jiyong; Luckow, Patrick; Chaturvedi, Vaibhav; Zhang, Xiliang; Edmonds, James A.

    2013-01-01

    The industrial sector has accounted for more than 50% of China's final energy consumption in the past 30 years. Understanding the future emissions and emissions mitigation opportunities depends on proper characterization of the present-day industrial energy use, as well as industrial demand drivers and technological opportunities in the future. Traditionally, however, integrated assessment research has handled the industrial sector of China in a highly aggregate form. In this study, we develop a technologically detailed, service-oriented representation of 11 industrial subsectors in China, and analyze a suite of scenarios of future industrial demand growth. We find that, due to anticipated saturation of China's per-capita demands of basic industrial goods, industrial energy demand and CO 2 emissions approach a plateau between 2030 and 2040, then decrease gradually. Still, without emissions mitigation policies, the industrial sector remains heavily reliant on coal, and therefore emissions-intensive. With carbon prices, we observe some degree of industrial sector electrification, deployment of CCS at large industrial point sources of CO 2 emissions at low carbon prices, an increase in the share of CHP systems at industrial facilities. These technological responses amount to reductions of industrial emissions (including indirect emission from electricity) are of 24% in 2050 and 66% in 2095. - Highlights: • Eleven industrial subsectors in China are detail analyzed from a global perspective. • Industrial energy use and CO 2 emissions will approach a plateau between 2030 and 2040. • Industrial CHP and CCS are truly encouraged by carbon tax. • Some degree of industrial sector electrification are observed by carbon tax

  11. Increased electrical efficiency in biofueled CHP plants by biomass drying; Oekat elutbyte i biobraensleeldade kraftvaermeanlaeggningar med hjaelp av foertorkning

    Energy Technology Data Exchange (ETDEWEB)

    Berntsson, Mikael; Thorson, Ola; Wennberg, Olle

    2010-09-15

    In this report, integrated biofuel drying has been studied for two cases. One is the existing CHP plant at ENA Energi AB in Enkoeping and the other is a theoretical case. The thought plant is assumed to have a steam generating performance that is probable for a future CHP plant optimised for power production. The CHP plant at ENA Energi with its integrated bed drying system has been used as a model in this study. The plant has a grate fired boiler with the capacity to co-produce 24 MW electricity and 55 MW heat. It is designed to use biofuel with moisture content between 40 and 55 %. However, the boiler is able to manage even dryer fuels with the moisture content of about 35 % without complications. Since the boiler operates on part load during most of the season, there are free capacity which can be used for delivering heat to the drying system. The increased power production is a result of mainly two factors: Increased demand of heat as the dryer uses district heating and thus improved possibility to produce steam; and, The season of operation can be extended, since the point where the minimum load of the boiler occurs can be pushed forward as a result of increased demand of heat. For future CHP plants, an optimised plant has been used as a model. The steam data is assumed to be 170 bar and 540 deg C with reheating. For this plant, both on-site and offsite drying have been studied. The case study comprises a whole season of operation and the fuel is assumed to be dried from 50 to 10 %. The size of the optimised plant is as to fit the dimension of a main production unit in a district heating net equal to the tenth largest in Sweden. Heat delivery is assumed to be 896 GWh/year and the maximum heat delivery of district heating is 250 MW. The sizing of the boiler is made to maximise the production of electricity, and thus dependent of the drying strategy used. Flue gas condensation is assumed to be used as much as possible. It decreases the basis for power production

  12. CHP HIGHER EDUCATION, SCHOLARSHIPS AND DEMAND ABROAD ARE POLITICS (1942-1947

    Directory of Open Access Journals (Sweden)

    Suat ZEYREK

    2016-04-01

    Full Text Available Turkey was followed by a very slow development in the course of the republic’s first year in higher education.By 1955, there are only two universities in the three cities in Turkey.Although the new university will be declared opened by Ismet Inonu’s mouth several times it was not possible for various reasons.Turkey’s economic situation, the shortage of trained personel and it has been hampered by severe conditions of World War II.But even more important excuses should have prevented the spread of higher education in Turkey. This article will be presented in the light of the real causes of the problem of archival sources mentioned above.Period ruling party, the CHP’s higher education policy followed in scholarships and dormitories were investigated.CHP likely to promote higher education in the first primary education spread to the base and thus wants to create a higher demand.For this reason, it is necessary first of all to build infrastructure for higher education institutions and rules.Coming from big cities in different regions of Anatolia youth to take education to all students experience difficulties and inclusive, egalitarian policies were followed.

  13. Multi-period MINLP model for optimising operation and structural changes to CHP plants in district heating networks with long-term thermal storage

    International Nuclear Information System (INIS)

    Tveit, Tor-Martin; Savola, Tuula; Gebremedhin, Alemayehu; Fogelholm, Carl-Johan

    2009-01-01

    By using thermal storages it is possible to decouple the generation of power and heat, and it can also lead to an reduction in investments, as the storage can be used to cover the peak load periods. This work presents a MINLP model that can be used for analysing new investments and the long-term operation of CHP plants in a district heating network with long-term thermal storage. The model presented in this work includes the non-linear off-design behaviour of the CHP plants as well as a generic mathematical model of the thermal storage, without the need to fix temperatures and pressure. The model is formulated in such a way that it is suitable for deterministic MINLP solvers. The model is non-convex, and subsequently global optimality cannot be guaranteed with local solvers. In order to reduce the chance of obtaining a poor local optimum compared to the global optimum, the model should be solved many times with the initial values varying randomly. It is possible to extract a lot of results from the model, for instance total annual profit, the optimal selection of process options, mass flow through the plant, and generated power from each plant. The formulation of the model makes it suitable for deterministic MINLP solvers

  14. Two-phase optimizing approach to design assessments of long distance heat transportation for CHP systems

    International Nuclear Information System (INIS)

    Hirsch, Piotr; Duzinkiewicz, Kazimierz; Grochowski, Michał; Piotrowski, Robert

    2016-01-01

    Highlights: • New method for long distance heat transportation system effectivity evaluation. • Decision model formulation which reflects time and spatial structure of the problem. • Multi-criteria and complex approach to solving the decision-making problem. • Solver based on simulation-optimization approach with two-phase optimization method. • Sensitivity analysis of the optimization procedure elements. - Abstract: Cogeneration or Combined Heat and Power (CHP) for power plants is a method of putting to use waste heat which would be otherwise released to the environment. This allows the increase in thermodynamic efficiency of the plant and can be a source of environmental friendly heat for District Heating (DH). In the paper CHP for Nuclear Power Plant (NPP) is analyzed with the focus on heat transportation. A method for effectivity and feasibility evaluation of the long distance, high power Heat Transportation System (HTS) between the NPP and the DH network is proposed. As a part of the method the multi-criteria decision-making problem, having the structure of the mathematical programming problem, for optimized selection of design and operating parameters of the HTS is formulated. The constraints for this problem include a static model of HTS, that allows considerations of system lifetime, time variability and spatial topology. Thereby variation of annual heat demand within the DH area, variability of ground temperature, insulation and pipe aging and/or terrain elevation profile can be taken into account in the decision-making process. The HTS construction costs, pumping power, and heat losses are considered as objective functions. In general, the analyzed optimization problem is multi-criteria, hybrid and nonlinear. The two-phase optimization based on optimization-simulation framework is proposed to solve the decision-making problem. The solver introduces a number of assumptions concerning the optimization process. Methods for problem decomposition

  15. Challenges and opportunities of microbial fuel cells (MFCs technology development in Indonesia

    Directory of Open Access Journals (Sweden)

    Surya Ramadan Bimastyaji

    2017-01-01

    Full Text Available Indonesian government has committed to realize the goals of sustainable development in the field of energy as stipulated in Government Regulation Number 79/2014 on national energy policy. A feasibility study of the utilization of alternative energy is important for developing countries like Indonesia. It is expected to reduce dependence on fossil fuel use and meet the energy needs on rural areas in Indonesia. Microbial fuel cells (MFCs is a potential source of electrical energy from waste that is rich in organic matter. Trends in research and development of Microbial Fuel Cells (MFCs technology are increasing every year due to great opportunity to address a wide range of issues related to renewable energy needs, restoration of contaminated environment, water treatment electricity generators in remote areas and many more. MFCs can be used to treat domestic waste, biomass, algae, landfill leachate, agricultural runoff, and industrial waste. MFCs technology is a technology solution for cheap, fast, simple. MFCs use of technical challenges including low electricity production, current instability, and high internal resistance. Many challenges must be address, including a more detailed analysis in energy production, consumption, and application, understanding the relationship between the amount of electricity and contaminant removal, promoting the elimination of nutrients and optimizing system configuration and operations.

  16. Hanford Site Cleanup Challenges and Opportunities for Science and Technology - A Strategic Assessment

    International Nuclear Information System (INIS)

    Johnson, W.; Reichmuth, B.; Wood, T.; Glasper, M.; Hanson, J.

    2002-01-01

    In November 2000, the U.S. Department of Energy (DOE) Richland Operations Office (RL) initiated an effort to produce a single, strategic perspective of RL Site closure challenges and potential Science and Technology (S and T) opportunities. This assessment was requested by DOE Headquarters (HQ), Office of Science and Technology, EM-50, as a means to provide a site level perspective on S and T priorities in the context of the Hanford 2012 Vision. The objectives were to evaluate the entire cleanup lifecycle (estimated at over $24 billion through 2046), to identify where the greatest uncertainties exist, and where investments in S and T can provide the maximum benefit. The assessment identified and described the eleven strategic closure challenges associated with the cleanup of the Hanford Site. The assessment was completed in the spring of 2001 and provided to DOE-HQ and the Hanford Site Technology Coordination Group (STCG) for review and input. It is the first step in developing a Site-level S and T strategy for RL. To realize the full benefits of this assessment, RL and Site contractors will work with the Hanford STCG to ensure: identified challenges and opportunities are reflected in project baselines; detailed S and T program-level road maps reflecting both near- and long-term investments are prepared using this assessment as a starting point; and integrated S and T priorities are incorporated into Environmental Management (EM) Focus Areas, Environmental Management Science Program (EMSP) and other research and development (R and D) programs to meet near-term and longer-range challenges. Hanford is now poised to begin the detailed planning and road mapping necessary to ensure that the integrated Site level S and T priorities are incorporated into the national DOE S and T program and formally incorporated into the relevant project baselines. DOE-HQ's response to this effort has been very positive and similar efforts are likely to be undertaken at other sites

  17. Gasification - Status and technology

    Energy Technology Data Exchange (ETDEWEB)

    Held, Joergen

    2012-06-15

    In this report gasification and gas cleaning techniques for biomass are treated. The main reason for gasifying biomass is to refine the fuel to make it suitable for efficient CHP production, as vehicle fuel or in industrial processes. The focus is on production of synthesis gas that can be used for production of vehicle fuel and for CHP production. Depending on application different types of gasifiers, gasification techniques and process parameters are of interest. Two gasification techniques have been identified as suitable for syngas generation, mainly due to the fact that they allow the production of a nitrogen free gas out of the gasifier; Indirect gasification and pressurized oxygen-blown gasification For CHP production there are no restrictions on the gas composition in terms of nitrogen and here air-blown gasification is of interest as well. The main challenge when it comes to gas cleaning is related to sulphur and tars. There are different concepts and alternatives to handle sulphur and tars. Some of them are based on conventional techniques with well-proven components that are commercially available while others, more advantageous solutions, still need further development.

  18. Fiber in access technologies and network convergence: an opportunity for optical integration

    Science.gov (United States)

    Ghiggino, Pierpaolo C.

    2008-11-01

    Broadband networks are among the fastest growing segment in telecom. The initial and still very significant push originated with xDSL technologies and indeed a significant amount of research and development is still occurring in this field with impressive results and allowing for a remarkable use of the installed copper infrastructure way beyond its originally planned bandwidth capabilities. However it is clear that ultimately a more suitable fiber based infrastructure will be needed in order to reduce both operational and network technology costs. Such cost reduction in inevitable as the added value to end users is only related to services and these cannot be priced outside a sensible window, whilst the related bandwidth increase is much more dramatic and its huge variability must be met with little or no cost impact by the network and its operation. Fiber in access has indeed the potential to cope with a huge bandwidth demand for many years to come as its inherent bandwidth capabilities are only just tapped by current service requirements. However the whole technology supply chain must follow in line. In particular optical technology must brace itself to cope with the required much larger deployment and greater cost effectiveness, whilst at the same time deliver performance suitable to the bandwidth increase offered in the longer term by the fiber medium. This paper looks at this issues and debates the opportunities for a new class of optical devices making use of the progress in optical integration

  19. Electricity to natural gas competition under customer-side technological change: a marginal cost pricing analysis

    International Nuclear Information System (INIS)

    Gulli', Francesco

    2004-01-01

    This paper aims at evaluating the impact of technological change (on the customer side of the meter) on the network energy industry (electricity and natural gas). The performances of the small gas fired power technologies and the electrical reversible heat pumps have improved remarkably over the last ten years, making possible (or more viable) two opposite technological trajectories: the fully gas-based system, based on the use of small CHP (combined heat and power generation) plants, which would involve a wide decentralisation of energy supply; the fully electric-based system, based on the use of reversible electric heat pumps, which would imply increasing centralisation of energy supply. The analysis described in this paper attempts to evaluate how these two kinds of technological solutions can impact on inter-service competition when input prices are ste equals to marginal costs of supply in each stage of the electricity and natural gas industries. For this purpose, unbundled prices over time and over space are simulated. In particular the paper shows that unbundling prices over space in not very important in affecting electricity to natural gas competition and that, when prices are set equal to long-run marginal costs, the fully electric-based solution (the reversible heat pump) is by far preferable to the fully gas-based solution (the CHP gas fired small power plant). In consequence, the first best outcome of the technological change would involve increasing large power generation and imported (from the utility grid) electricity consumption. Given this framework, we have to ask ourselves why operators, regulators and legislators are so optimistic about the development of the fully gas-based solutions. In this respect, the paper suggests that market distortions (such as market power, energy taxation and inefficient pricing regulation) might have give an ambiguous representation of the optimal technological trajectory, inducing to overestimate the social value

  20. Big Data: Survey, Technologies, Opportunities, and Challenges

    Directory of Open Access Journals (Sweden)

    Nawsher Khan

    2014-01-01

    Full Text Available Big Data has gained much attention from the academia and the IT industry. In the digital and computing world, information is generated and collected at a rate that rapidly exceeds the boundary range. Currently, over 2 billion people worldwide are connected to the Internet, and over 5 billion individuals own mobile phones. By 2020, 50 billion devices are expected to be connected to the Internet. At this point, predicted data production will be 44 times greater than that in 2009. As information is transferred and shared at light speed on optic fiber and wireless networks, the volume of data and the speed of market growth increase. However, the fast growth rate of such large data generates numerous challenges, such as the rapid growth of data, transfer speed, diverse data, and security. Nonetheless, Big Data is still in its infancy stage, and the domain has not been reviewed in general. Hence, this study comprehensively surveys and classifies the various attributes of Big Data, including its nature, definitions, rapid growth rate, volume, management, analysis, and security. This study also proposes a data life cycle that uses the technologies and terminologies of Big Data. Future research directions in this field are determined based on opportunities and several open issues in Big Data domination. These research directions facilitate the exploration of the domain and the development of optimal techniques to address Big Data.

  1. US Department of Energy Environmental Cleanup Technology Development program: Business and research opportunities guide

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The US Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) is charged with overseeing a multi-billion dollar environmental cleanup effort. EM leads an aggressive national research, development, demonstration, testing, and evaluation program to provide environmental restoration and waste management technologies to DOE sites, and to manage DOE-generated waste. DOE is firmly committed to working with industry to effectuate this cleanup effort. We recognize that private industry, university, and other research and development programs are valuable sources of technology innovation. The primary purpose of this document is to provide you with information on potential business opportunities in the following technical program areas: Remediation of High-Level Waste Tanks; Characterization, Treatment, and Disposal of Mixed Waste; Migration of Contaminants; Containment of Existing Landfills; Decommissioning and Final Disposition, and Robotics.

  2. Advanced secondary batteries: Their applications, technological status, market and opportunity

    Science.gov (United States)

    Yao, M.

    1989-03-01

    Program planning for advanced battery energy storage technology is supported within the NEMO Program. Specifically this study had focused on the review of advanced battery applications; the development and demonstration status of leading battery technologies; and potential marketing opportunity. Advanced secondary (or rechargeable) batteries have been under development for the past two decades in the U.S., Japan, and parts of Europe for potential applications in electric utilities and for electric vehicles. In the electric utility applications, the primary aim of a battery energy storage plant is to facilitate peak power load leveling and/or dynamic operations to minimize the overall power generation cost. In the application for peak power load leveling, the battery stores the off-peak base load energy and is discharged during the period of peak power demand. This allows a more efficient use of the base load generation capacity and reduces the need for conventional oil-fired or gas-fire peak power generation equipment. Batteries can facilitate dynamic operations because of their basic characteristics as an electrochemical device capable of instantaneous response to the changing load. Dynamic operating benefits results in cost savings of the overall power plant operation. Battery-powered electric vehicles facilitate conservation of petroleum fuel in the transportation sector, but more importantly, they reduce air pollution in the congested inner cities.

  3. System analysis of CO{sub 2} sequestration from biomass cogeneration plants (Bio-CHP-CCS). Technology, economic efficiency, sustainability; Systemanalyse der CO{sub 2}-Sequestrierung aus Biomasse-Heizkraftwerken (Bio-KWK-CCS). Technik, Wirtschaftlichkeit, Nachhaltigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Claus

    2014-10-15

    In the present work a system analysis is carried out to determine the extent to which a combination of the three areas of energetic biomass use, combined heat and power (CHP) and CO{sub 2} sequestration (CCS - Carbon Capture and Storage) is fundamentally possible and meaningful. The term ''CO{sub 2} sequestration'' refers to the process chain from CO{sub 2} capture, CO{sub 2} transport and CO{sub 2} storage. While the use of biomass in combined heat and power plants is a common practice, CO{sub 2} sequestration (based on fossil fuels) is at the research and development stage. A combination of CCS with biomass has so far been little studied, a combination with combined heat and power plants has not been investigated at all. The two technologies for the energetic use of biomass and cogeneration represent fixed variables in the energy system of the future in the planning of the German federal government. According to the lead scenario of the Federal Ministry of the Environment, electricity generation from biomass is to be almost doubled from 2008 to 2020. At the same time, the heat generated in cogeneration is to be trebled [cf. Nitsch and Wenzel, 2009, p. 10]. At the same time, the CCS technology is to be used in half of all German coal-fired power plants until 2030 [cf. Krassuki et al., 2009, p. 17]. The combination of biomass and CCS also represents an option which is conceivable for the German federal policy [cf. Bundestag, 2008b, p. 4]. In addition, the CCS technology will provide very good export opportunities for the German economy in the future [cf. Federal Government, 2010, p. 20]. The combination of biomass combined heat and power plants with CCS offers the interesting opportunity to actively remove CO{sub 2} from the atmosphere as a future climate protection instrument by means of CO{sub 2} neutrality. Therefore, in the energy concept of the German federal government called for a storage project for industrial or biogenic CO{sub 2

  4. Development of Science and Technology Parks in Poland: Opportunities for New Modes of Cooperation in the Biopharmaceutical Industry

    Directory of Open Access Journals (Sweden)

    Michal Staszkow

    2017-03-01

    Full Text Available The aim of the article is to verify the development of science and technology parks in Poland as well as the opportunities of development of new forms of cooperation with the use of science and technology parks in the bio pharmaceutical industry in Poland. The first section reviews the origins and definitions of science and technology parks in order to clarify and systematize the concepts used in existing research and practice. Subsequently, the ensuing sections discuss the evolution of science and technology parks and different organizational models of STPS. Further, the analysis centres on science and technology parks in Poland. Then the importance of science and technology parks for the development of new modes of cooperation in the bio pharmaceutical industry is elaborated upon. The paper ends with a set of implications and conclusions.

  5. Life-Cycle Analysis of Greenhouse Gas Emissions and Water Consumption – Effects of Coal and Biomass Conversion to Liquid Fuels as Analyzed with the GREET Model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qianfeng [Argonne National Lab. (ANL), Argonne, IL (United States); Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-06-01

    The vast reserves of coal in the U.S. provide a significant incentive for the development of processes for coal conversion to liquid fuels (CTL). Also, CTL using domestic coal can help move the U.S. toward greater energy independence and security. However, current conversion technologies are less economically competitive and generate greater greenhouse gas (GHG) emissions than production of petroleum fuels. Altex Technologies Corporation (Altex, hereinafter) and Pennsylvania State University have developed a hybrid technology to produce jet fuel from a feedstock blend of coal and biomass. Collaborating with Altex, Argonne National Laboratory has expanded and used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET®) model to assess the life-cycle GHG emissions and water consumption of this hybrid technology. Biomass feedstocks include corn stover, switchgrass, and wheat straw. The option of biomass densification (bales to pellets) is also evaluated in this study. The results show that the densification process generates additional GHG emissions as a result of additional biomass process energy demand. This process coproduces a large amount of char, and this study investigates two scenarios to treat char: landfill disposal (Char-LF) and combustion for combined heat and power (CHP). Since the CHP scenarios export excess heat and electricity as coproducts, two coproduct handling methods are used for well-to-wake (WTWa) analysis: displacement (Char-CHP-Disp) and energy allocation (Char-CHP-EnAllo). When the feedstock contains 15 wt% densified wheat straw and 85 wt% lignite coal, WTWa GHG emissions of the coal-and-biomass-to-liquid pathways are 116, 97, and 137 gCO2e per megajoule (MJ) under the Char-LF, Char-CHP-Disp, and Char-CHP-EnAllo scenarios, respectively, as compared to conventional jet fuel production at 84 gCO2e/MJ. WTWa water consumption values are 0.072, -0.046, and 0.044 gal/MJ for Char-LF, Char-CHP-Disp, and Char-CHP

  6. Ceramic Integration Technologies for Advanced Energy Systems: Critical Needs, Technical Challenges, and Opportunities

    Science.gov (United States)

    Singh, Mrityunjay

    2010-01-01

    Advanced ceramic integration technologies dramatically impact the energy landscape due to wide scale application of ceramics in all aspects of alternative energy production, storage, distribution, conservation, and efficiency. Examples include fuel cells, thermoelectrics, photovoltaics, gas turbine propulsion systems, distribution and transmission systems based on superconductors, nuclear power generation and waste disposal. Ceramic integration technologies play a key role in fabrication and manufacturing of large and complex shaped parts with multifunctional properties. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various needs, challenges, and opportunities in design, fabrication, and testing of integrated similar (ceramic ceramic) and dissimilar (ceramic metal) material www.nasa.gov 45 ceramic-ceramic-systems have been discussed. Experimental results for bonding and integration of SiC based Micro-Electro-Mechanical-Systems (MEMS) LDI fuel injector and advanced ceramics and composites for gas turbine applications are presented.

  7. Optimisation of Combined Cycle Gas Turbine Power Plant in Intraday Market: Riga CHP-2 Example

    Science.gov (United States)

    Ivanova, P.; Grebesh, E.; Linkevics, O.

    2018-02-01

    In the research, the influence of optimised combined cycle gas turbine unit - according to the previously developed EM & OM approach with its use in the intraday market - is evaluated on the generation portfolio. It consists of the two combined cycle gas turbine units. The introduced evaluation algorithm saves the power and heat balance before and after the performance of EM & OM approach by making changes in the generation profile of units. The aim of this algorithm is profit maximisation of the generation portfolio. The evaluation algorithm is implemented in multi-paradigm numerical computing environment MATLab on the example of Riga CHP-2. The results show that the use of EM & OM approach in the intraday market can be profitable or unprofitable. It depends on the initial state of generation units in the intraday market and on the content of the generation portfolio.

  8. Advanced Materials, Technologies, and Complex Systems Analyses: Emerging Opportunities to Enhance Urban Water Security.

    Science.gov (United States)

    Zodrow, Katherine R; Li, Qilin; Buono, Regina M; Chen, Wei; Daigger, Glen; Dueñas-Osorio, Leonardo; Elimelech, Menachem; Huang, Xia; Jiang, Guibin; Kim, Jae-Hong; Logan, Bruce E; Sedlak, David L; Westerhoff, Paul; Alvarez, Pedro J J

    2017-09-19

    Innovation in urban water systems is required to address the increasing demand for clean water due to population growth and aggravated water stress caused by water pollution, aging infrastructure, and climate change. Advances in materials science, modular water treatment technologies, and complex systems analyses, coupled with the drive to minimize the energy and environmental footprints of cities, provide new opportunities to ensure a resilient and safe water supply. We present a vision for enhancing efficiency and resiliency of urban water systems and discuss approaches and research needs for overcoming associated implementation challenges.

  9. Analysis of a CHP plant in a municipal solid waste landfill in the South of Spain

    International Nuclear Information System (INIS)

    Chacartegui, Ricardo; Carvalho, Monica; Abrahão, Raphael; Becerra, José

    2015-01-01

    The most effective strategy to manage and treat solid urban residues, with the least environmental impact as well as lowest economic and energy costs, is a challenge for sustainability in current society, who actually pay for the final management of these residues. This manuscript analyzes the potential of biogas generation in an urban solid residue treatment plant, and the potential use for cogeneration in situ at the landfill. The objective is to identify the energy potential associated with the landfill and its potential use to accelerate the evaporation of leachate through the supply of heat, reducing the risks of exceeding the collection capacity of the leachate ponds. The change in legislation for generation within the special regime in Spain (2014) introduced a sudden change in the direction of energy policies, which affected significantly the profitability of these facilities. This manuscript analyzes the application of both legislations, previous (2007) and current (2014), for the case of a cogeneration system installed in this landfill. The results obtained indicate that even with a much more restrictive legislation in force, acceptable values are obtained for the evaluation of the investment – however, better results were obtained for the previous legislation that favored the special regime. The new regulation constrains the maximum and minimum annual operating hours for landfill cogeneration. It results in relevant periods with limited use of biogas for electricity generation. Biogas storage for delayed future consumption in the same installation and biogas selling for external use in boilers are proposed as options for this biogas in excess. They can reduce greenhouse gases emissions from the non-used biogas and can improve the economic results of the facility. - Highlights: • Analysis of biogas generation capacity in an existing landfill at South of Spain. • Analysis of the integration of gas engine for cogeneration. • CHP integration for

  10. The effectiveness of absorption heat pumps application for the increase of economic efficiency of CHP operation

    Directory of Open Access Journals (Sweden)

    Luzhkovoy Dmitriy S.

    2017-01-01

    Full Text Available The article deals with a comparative analysis of CHP operational efficiency in various working modes before and after the absorption heat pumps installation. The calculation was performed using a mathematical model of the extraction turbine PT- 80/100-130/13. Absorption heat pumps of LLC “OKB Teplosibmash” were used as AHP models for the analysis. The most effective way of absorption lithium-bromide heat pumps application as a part of the turbine PT-80/100-130/13 turned out to be their usage in a heat-producing mode during a non-heating season with a load of hot water supply. For this mode the dependence of the turbine heat efficiency on the heat load of the external consumer at a given throttle flow was analyzed.

  11. Implementation strategy for small CHP-plants in a competitive market: the case of Lithuania

    International Nuclear Information System (INIS)

    Lund, H.; Siupsinskas, G.; Martinaitis, V.

    2005-01-01

    Within five years from now, Lithuania is going to close down Ignalina, the only nuclear-power plant in the country. Since Ignalina generates more than 75% of the Lithuanian electricity production, new generation capacities are needed. Traditional steam-turbines, fuelled with fossil fuels, would mean further imports of fuel as well as a rise in CO 2 emissions. At the same time, several small district-heating companies one suffering from high heating-prices. Typically, the price in small towns is 20-50% higher than the price in large urban areas. Consequently, alternative strategies should be considered. This article analyses the conditions for one such strategy, namely the replacement of boilers in the existing district-heating supplies with combined heat-and-power production (CHP). Compared with new power stations, fuel can be saved and CO 2 -emissions reduced. Also this strategy can be used to level the difference between low heating prices in the large urban areas and high prices in small towns and villages. (Author)

  12. Synchrotron Physics and Industry: new opportunities for technology transfer

    International Nuclear Information System (INIS)

    Williams, P.

    2002-01-01

    , using the facility of variable energy selection, may provide new clinical insights. While X-ray lithography remains on hold, nanotechnology involving micromachining is already producing its first routine products and is attracting intense worldwide interest. The industrial opportunities for technology transfer are immense

  13. Design and analysis of permanent magnet moving coil type generator used in a micro-CHP generation system

    Science.gov (United States)

    Oros Pop, Susana Teodora; Berinde, Ioan; Vadan, Ioan

    2015-12-01

    This paper presents the design and analysis of a permanent magnet moving coil type generator driven by a free piston Stirling engine. This assemble free piston Stirling engine - permanent magnet moving coil type generator will be used in a combined heat and power (CHP) system for producing heat and power in residential area. The design procedure for moving coil type linear generator starts from the rated power imposed and finally uses the Faraday law of induction. The magneto-static magnetic field generated by permanent magnets is analyzed by means of Reluctance method and Finite Element Method in order to evaluate the magnetic flux density in the air gap, which is a design data imposed in the design stage, and the results are compared.

  14. Stochastic Multicriteria Acceptability Analysis for Evaluation of Combined Heat and Power Units

    Directory of Open Access Journals (Sweden)

    Haichao Wang

    2014-12-01

    Full Text Available Combined heat and power (CHP is a promising technology that can contribute to energy efficiency and environmental protection. More CHP-based energy systems are planned for the future. This makes the evaluation and selection of CHP systems very important. In this paper, 16 CHP units representing different technologies are taken into account for multicriteria evaluation with respect to the end users’ requirements. These CHP technologies cover a wide range of power outputs and fuel types. They are evaluated from the energy, economy and environment (3E points of view, specifically including the criteria of efficiency, investment cost, electricity cost, heat cost, CO2 production and footprint. Uncertainties and imprecision are common both in criteria measurements and weights, therefore the stochastic multicriteria acceptability analysis (SMAA model is used in aiding this decision making problem. These uncertainties are treated better using a probability distribution function and Monte Carlo simulation in the model. Moreover, the idea of “feasible weight space (FWS” which represents the union of all preference information from decision makers (DMs is proposed. A complementary judgment matrix (CJM is introduced to determine the FWS. It can be found that the idea of FWS plus CJM is well compatible with SMAA and thus make the evaluation reliable.

  15. Optimisation of Combined Cycle Gas Turbine Power Plant in Intraday Market: Riga CHP-2 Example

    Directory of Open Access Journals (Sweden)

    Ivanova P.

    2018-02-01

    Full Text Available In the research, the influence of optimised combined cycle gas turbine unit – according to the previously developed EM & OM approach with its use in the intraday market – is evaluated on the generation portfolio. It consists of the two combined cycle gas turbine units. The introduced evaluation algorithm saves the power and heat balance before and after the performance of EM & OM approach by making changes in the generation profile of units. The aim of this algorithm is profit maximisation of the generation portfolio. The evaluation algorithm is implemented in multi-paradigm numerical computing environment MATLab on the example of Riga CHP-2. The results show that the use of EM & OM approach in the intraday market can be profitable or unprofitable. It depends on the initial state of generation units in the intraday market and on the content of the generation portfolio.

  16. WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Allan Jones

    2003-09-01

    This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

  17. Industrial opportunities - offshore

    International Nuclear Information System (INIS)

    Gerrits, D.J.

    1998-01-01

    Industrial opportunities available in the Canadian offshore petroleum industry are discussed. Oil has been produced offshore from Nova Scotia since 1992, and offshore from Newfoundland since 1997. Special needs that must be addressed in offshore operations in eastern Canada such as the cold North Atlantic environment, isolation, logistics, safety, and quality assurance, are examined. The most obvious opportunities lie with the designing, building and installing the facilities needed to extract oil and gas from beneath the sea floor and transport it to market. However, there are also opportunities in designing and fabricating clothing, customized food containers and other equipment for offshore needs. Short term opportunities also exist in the decommissioning of depleted production fields and their facilities. One of the greatest obstacles facing new entrants into the offshore oil and gas industry is the lack of a track record. To meet this challenge, the ability to seek out partners to pursue local and international opportunities through joint ventures, strategic alliances and technology sharing partnering arrangements is of great importance. It may be the difference between success and failure. 6 figs

  18. Defense Technology Opportunities for First Responders

    National Research Council Canada - National Science Library

    White, Rodney; Bedard, Louis; Derrah, Scott; Boucher, Robert

    2004-01-01

    For this study, the US and Canadian governments assessed the potential for technology transfer of five technologies, which were developed to meet military requirements, to civilian first responders...

  19. A Geothermal Energy Supported Gas-steam Cogeneration Unit as a Possible Replacement for the Old Part of a Municipal CHP Plant (TEKO

    Directory of Open Access Journals (Sweden)

    L. Böszörményi

    2001-01-01

    Full Text Available The need for more intensive utilization of local renewable energy sources is indisputable. Under the current economic circumstances their competitiveness in comparison with fossil fuels is rather low, if we do not take into account environmental considerations. Integrating geothermal sources into combined heat and power production in a municipal CHP plant would be an excellent solution to this problem. This concept could lead to an innovative type of power plant - a gas-steam cycle based, geothermal energy supported cogeneration unit.

  20. Seizing the strategic opportunities of emerging technologies by building up innovation system: monoclonal antibody development in China.

    Science.gov (United States)

    Zhang, Mao-Yu; Li, Jian; Hu, Hao; Wang, Yi-Tao

    2015-11-04

    Monoclonal antibodies (mAbs), as an emerging technology, have become increasingly important in the development of human therapeutic agents. How developing countries such as China could seize this emerging technological opportunity remains a poorly studied issue in prior literature. Thus, this paper aims to investigate the research and development of mAbs in China based on an innovation system functions approach and probes into the question of how China has been taking advantage of emerging technologies to overcome its challenges of building up a complete innovation system in developing mAbs. Mixed research methods were applied by combining archival data and field interviews. Archival data from the China Food and Drug Administration, Web of Science, the United States Patent and Trademark Office, the Chinese Clinical Trial Registry, and the National Science and Technology Report Service were used to examine the status quo of the technology and research and development (R&D) activities in China, while the opinions of researchers and managers in this field were synthesized from the interviews. From the perspective of innovation system functions, technological development of mAb in China is being driven by incentives such as the subsidies from the State and corporate R&D funding. Knowledge diffusion has been well served over the last 10 years through exchanging information on networks and technology transfer with developed countries. The State has provided clear guidance on search of emerging mAb technologies. Legitimacy of mAb in China has gained momentum owing to the implementation of government policies stipulated in the "The Eleventh Five-year Plan" in 2007, as well as national projects such as the "973 Program" and "863 Program", among others. The potential of market formation stays high because of the rising local demand and government support. Entrepreneurial activities for mAb continue to prosper. In addition, the situation of resource supply has been improved

  1. Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Freihaut, Jim [Pennsylvania State Univ., University Park, PA (United States)

    2013-09-30

    The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive

  2. Strandby Harbour on solar cooling. Demonstration of 8.000 m{sup 2} solar collectors combined with flue gas cooling with a absorption cooling system; Combined heat and power plant (CHP); Strandby havn paa solkoeling. Demonstration af 8.000 m{sup 2} solfangere kombineret med roeggaskoeling med absorptionskoeleanlaeg

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Flemming (Strandby Varmevaerk, Strandby (Denmark)); Soerensen, Per Alex (PlanEnergi, Skoerping (Denmark)); Ulbjerg, F. (Ramboell, Odense (Denmark)); Sloth, H. (Houe and Olsen, Thisted (Denmark))

    2010-04-15

    The aim of the project was to demonstrate 1) high solar heating ratio (18% annually) at a decentralized natural gas combined heat and power plant; 2) increased efficiency (5% of the heat consumption) in a natural gas CHP by using an extra flue gas cooler and an absorption heat pump; 3) a double tank system where a new tank during winter is used for cooling/ heat storage for the absorption heat pump and during summer for solar heat storage in serial operation with the old tank. The concept of combining solar power, absorption cooling and natural gas-fired small-scale CHP in Strandby met expectations and could be replicated in other CHP plants. However, it is important to note that if major construction modifications in the flue gas condensation system in the boiler or engine are required, the operating hours must not be reduced significantly in the amortisation period for the conversion. (ln)

  3. Analysis of strengths, weaknesses, opportunities, and threats in the development of a health technology assessment program in Turkey.

    Science.gov (United States)

    Kahveci, Rabia; Meads, Catherine

    2008-01-01

    The Turkish healthcare system is currently undergoing reform, and efficient use of resources has become a key factor in determining the allocation of resources. The objective of this study was to analyze strengths, weaknesses, opportunities, and threats (SWOT) in the development of a health technology assessment (HTA) program in Turkey. A SWOT analysis was performed using a literature review and interviews with key people in the Turkish Ministry of Health and Ministry of Labor and Social Security. Regarding recent reforms in health care, investments for information network and databank are the strengths, but the traditional "expert-based" decision making, poor availability of data, and poor quality of data could be seen as some of the weaknesses. Another major weakness is lack of general awareness of HTA. Increasing demand for transparency in decision making, demand for evidence, and demand for credibility by decision makers are some of the opportunities, and current healthcare reforms, i.e., restructuring of healthcare and general health insurance, could also be seen as major opportunities. These opportunities unfortunately could be threatened by lack of funding, and resources are challenged by large, recent national investments. There is a good opportunity for Turkey to use the skills in HTA currently being developed through activities in Europe and the Americas to assist in the development of a much more cost-effective and transparent healthcare system in Turkey.

  4. Field tests applying multi-agent technology for distributed control. Virtual power plants and wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, G.J.; Warmer, C.J.; Hommelberg, M.P.F.; Kamphuis, I.G.; Kok, J.K. [Energy in the Built Environment and Networks, Petten (Netherlands)

    2007-01-15

    Multi-agent technology is state of the art ICT. It is not yet widely applied in power control systems. However, it has a large potential for bottom-up, distributed control of a network with large-scale renewable energy sources (RES) and distributed energy resources (DER) in future power systems. At least two major European R and D projects (MicroGrids and CRISP) have investigated its potential. Both grid-related as well as market-related applications have been studied. This paper will focus on two field tests, performed in the Netherlands, applying multi-agent control by means of the PowerMatcher concept. The first field test focuses on the application of multi-agent technology in a commercial setting, i.e. by reducing the need for balancing power in the case of intermittent energy sources, such as wind energy. In this case the flexibility is used of demand and supply of industrial and residential consumers and producers. Imbalance reduction rates of over 40% have been achieved applying the PowerMatcher, and with a proper portfolio even larger rates are expected. In the second field test the multi-agent technology is used in the design and implementation of a virtual power plant (VPP). This VPP digitally connects a number of micro-CHP units, installed in residential dwellings, into a cluster that is controlled to reduce the local peak demand of the common low-voltage grid segment the micro-CHP units are connected to. In this way the VPP supports the local distribution system operator (DSO) to defer reinforcements in the grid infrastructure (substations and cables)

  5. Field tests applying multi-agent technology for distributed control. Virtual power plants and wind energy

    International Nuclear Information System (INIS)

    Schaeffer, G.J.; Warmer, C.J.; Hommelberg, M.P.F.; Kamphuis, I.G.; Kok, J.K.

    2007-01-01

    Multi-agent technology is state of the art ICT. It is not yet widely applied in power control systems. However, it has a large potential for bottom-up, distributed control of a network with large-scale renewable energy sources (RES) and distributed energy resources (DER) in future power systems. At least two major European R and D projects (MicroGrids and CRISP) have investigated its potential. Both grid-related as well as market-related applications have been studied. This paper will focus on two field tests, performed in the Netherlands, applying multi-agent control by means of the PowerMatcher concept. The first field test focuses on the application of multi-agent technology in a commercial setting, i.e. by reducing the need for balancing power in the case of intermittent energy sources, such as wind energy. In this case the flexibility is used of demand and supply of industrial and residential consumers and producers. Imbalance reduction rates of over 40% have been achieved applying the PowerMatcher, and with a proper portfolio even larger rates are expected. In the second field test the multi-agent technology is used in the design and implementation of a virtual power plant (VPP). This VPP digitally connects a number of micro-CHP units, installed in residential dwellings, into a cluster that is controlled to reduce the local peak demand of the common low-voltage grid segment the micro-CHP units are connected to. In this way the VPP supports the local distribution system operator (DSO) to defer reinforcements in the grid infrastructure (substations and cables)

  6. Opportunities and barriers for OHS consultants in a technological change process at a client enterprise

    DEFF Research Database (Denmark)

    Broberg, Ole; Hermund, Ingelise

    2003-01-01

    In a case study of the design of inside finish and equipment of a new factory building the opportunities and barriers for OHS consultants in integrating work environment aspects are discussed. The work prac-tice of OHS consultants is studied in terms of theories from the sociology of technology....... Taking initially the role as experts the consultants in a reflective process change their strategy towards establishing a net-work in the client enterprise, going beyond the joint safety organization and more directly to the designers of new buildings and equipment. This indicates that the conditions...

  7. Investigating the Challenges and Opportunities in Home Care to Facilitate Effective Information Technology Adoption.

    Science.gov (United States)

    Koru, Güneş; Alhuwail, Dari; Topaz, Maxim; Norcio, Anthony F; Mills, Mary Etta

    2016-01-01

    As home care utilization increases, information technology (IT) becomes a critical tool for providing quality home care. However, most home health agencies (HHAs) in the United States are in a position to adopt and leverage IT solutions in budget-constrained settings, where it is crucial to address important and pressing challenges and opportunities for achieving effectiveness in IT adoption. (1) Explore HHAs' challenges and opportunities related to delivering home care as well as performing administrative functions and conducting business, (2) learn about current IT implementation levels and activities in home care, and (3) make recommendations to facilitate efforts and initiatives designed for adopting IT in home care effectively. Semistructured interviews were conducted to elicit rich contextual information from the participants recruited from 13 local HHAs in one of the states in the United States. Established systems analysis techniques were used to ask questions during the interviews. Framework, a qualitative research method, was used to analyze the qualitative data obtained from the interviews. Coordinating clinical and administrative workflows was an important challenge. Inadequate access to patients' medical history and difficulties with medication reconciliation detracted from the quality of care. Hiring, training, scheduling, and retaining qualified personnel constituted another important challenge. Training and educating patients, caregivers, and families hold important opportunities for improving the quality of care. All except one HHA adopted electronic health records (EHR) but many continued to struggle considerably in their day-to-day functions. Health information exchange (HIE) seems to be the most needed technology. Telehealth solutions were perceived to be promising but their added value and financial viability in the long run were questioned. The recommendations for effective IT adoption include keeping a quality improvement focus, keeping a

  8. Technology transfer

    International Nuclear Information System (INIS)

    1998-01-01

    On the base of technological opportunities and of the environmental target of the various sectors of energy system this paper intend to conjugate the opportunity/objective with economic and social development through technology transfer and information dissemination [it

  9. U.S. DOE Southeast Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Panzarella, Isaac [North Carolina State Univ., Raleigh, NC (United States); Mago, Pedro [North Carolina State Univ., Raleigh, NC (United States); Kalland, Stephen [North Carolina State Univ., Raleigh, NC (United States)

    2013-12-31

    Between 2010 and 2013, the U.S. Department of Energy (DOE) funded the Southeast Clean Energy Application Center (SE-CEAC), co-located at the North Carolina Solar Center at NC State University (NCSU) and at Mississippi State University. The SE-CEAC was one of eight regional CEACs established to promote and assist in transforming the market for combined heat and power (CHP), district energy (DE) and waste heat to power (WHP) throughout the U.S. CHP locates power generation at the point of demand and makes productive use of the residual thermal energy for process and space heating in factories and businesses, thus lowering the cost of meeting electricity and heat requirements and increasing energy efficiency. The overall goal of the SE-CEAC was to support end-user implementation and overall market transformation for CHP and related clean energy technologies. Five objectives were targeted to achieve the goal: 1. Market Analysis and Information Dissemination 2. Outreach and Education for Potential CHP End-users 3. Policy Support for State and Regional Stakeholders 4. Technical Assistance to Support CHP Deployment 5. Collaboration with DOE and other CEACs Throughout the project, the CEACs provided key services of education and outreach, technical assistance and market analysis in support of project objectives. These services were very effective at achieving key objectives of assisting prospective CHP end-users and informing policy makers, utilities and others about the benefits of CHP. There is a marked increase in the awareness of CHP technologies and applications as an energy resource among end-users, policymakers, utility regulators, electric utilities and natural gas utilities in the Southeast region as a result. At the end of 2013, a number of best-practice policies for CHP were applied or under consideration in various Southeast states. The SE-CEAC met its targets for providing technical assistance with over 50 analyses delivered for 412 MW of potential end

  10. Trial operation of a phosphoric acid fuel cell (PC25) for CHP applications in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Uhrig, M.; Droste, W.; Wolf, D. [Ruhrgas AG, Dorsten (Germany)

    1996-12-31

    In Europe, ten 200 kW phosphoric acid fuel cells (PAFCs) produced by ONSI (PC25) are currently in operation. Their operators collaborate closely in the European Fuel Cell Users Group (EFCUG). The experience gained from trial operation by the four German operators - HEAG, HGW/HEW, Thyssengas and Ruhrgas - coincides with that of the other European operators. This experience can generally be regarded as favourable. With a view to using fuel cells in combined heat and power generation (CHP), the project described in this report, which was carried out in cooperation with the municipal utility of Bochum and Gasunie of the Netherlands, aimed at gaining experience with the PC 25 in field operation under the specific operating conditions prevailing in Europe. The work packages included heat-controlled operation, examination of plant behavior with varying gas properties and measurement of emissions under dynamic load conditions. The project received EU funding under the JOULE programme.

  11. Research opportunities to advance solar energy utilization.

    Science.gov (United States)

    Lewis, Nathan S

    2016-01-22

    Major developments, as well as remaining challenges and the associated research opportunities, are evaluated for three technologically distinct approaches to solar energy utilization: solar electricity, solar thermal, and solar fuels technologies. Much progress has been made, but research opportunities are still present for all approaches. Both evolutionary and revolutionary technology development, involving foundational research, applied research, learning by doing, demonstration projects, and deployment at scale will be needed to continue this technology-innovation ecosystem. Most of the approaches still offer the potential to provide much higher efficiencies, much lower costs, improved scalability, and new functionality, relative to the embodiments of solar energy-conversion systems that have been developed to date. Copyright © 2016, American Association for the Advancement of Science.

  12. Combined Heat and Power: A Decade of Progress, A Vision for the Future

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-08-01

    Over the past 10 years, DOE has built a solid foundation for a robust CHP marketplace. We have aligned with key partners to produce innovative technologies and spearhead market-transforming projects. Our commercialization activities and Clean Energy Regional Application Centers have expanded CHP across the nation. More must be done to tap CHP’s full potential. Read more about DOE’s CHP Program in “Combined Heat and Power: A Decade of Progress, A Vision for the Future.”

  13. Efficient production of automotive biofuels; Effektiv produktion av biodrivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Gode, Jenny; Hagberg, Linus; Rydberg, Tomas; Raadberg, Henrik; Saernholm, Erik

    2008-07-01

    The report describes opportunities and consequences associated with biomass polygeneration plants, in particular the role that heat plants (HP) or combined heat and power plants (CHP) in district heating systems can play in the production of automotive biofuels. The aim of the report is to provide a knowledge base to stakeholders to help assess energy and environmental benefits associated with collaborative approaches in planning, constructing and operating energy plants. Several configurations are possible for an energy polygeneration plant, but this report focuses on configurations in which a plant for automotive biofuel production and a district heating system with HPs or CHPs have been integrated in some way in order to achieve added value. The modes of integration are several, e.g.: - Supply of process steam from the CHP to the fuel plant, by which the time of operation for the CHP can be extended; Supply of surplus heat from the fuel plant to the district heating system; Material exchange between the systems, by use of residue streams from the fuel plant as fuel in the HP/CHP; Surplus heat from the fuel plant used for drying of the solid fuel to the HP/CHP or for drying of raw material for pellets production; Co-location providing opportunities for shared infrastructure for raw material handling, service systems, utilities and/or logistics. The report principally addresses integration options of the first three types, but describes briefly also pellets production. The starting point for the analysis of integration options is the description of technologies of interest for the production of automotive biofuels. Commercially available technologies are of prime interest, but also a couple of technologies under development are included in this part of the study. In addition to outlining the process characteristics for these processes, surrounding conditions and system requirements are briefly outlined. The results are summarized in Table S1. Ethanol fermentation

  14. Thermal Energy Corporation Combined Heat and Power Project

    Energy Technology Data Exchange (ETDEWEB)

    Turner, E. Bruce [Thermal Energy Corporation, Houston, TX (United States); Brown, Tim [Thermal Energy Corporation, Houston, TX (United States); Mardiat, Ed [Burns and McDonnell Engineering Company, Inc., Kansas City, MI (United States)

    2011-12-31

    To meet the planned heating and cooling load growth at the Texas Medical Center (TMC), Thermal Energy Corporation (TECO) implemented Phase 1 of a Master Plan to install an additional 32,000 tons of chilled water capacity, a 75,000 ton-hour (8.8 million gallon) Thermal Energy Storage (TES) tank, and a 48 MW Combined Heat and Power (CHP) system. The Department of Energy selected TMC for a $10 million grant award as part of the Financial Assistance Funding Opportunity Announcement, U.S. Department of Energy National Energy Technology, Recovery Act: Deployment of Combined Heat and Power (CHP) Systems, District Energy Systems, Waste Energy Recovery Systems, and Efficiency Industrial Equipment Funding Opportunity Number: DE-FOA-0000044 to support the installation of a new 48 MW CHP system at the TMC located just outside downtown Houston. As the largest medical center in the world, TMC is home to many of the nation's best hospitals, physicians, researchers, educational institutions, and health care providers. TMC provides care to approximately six million patients each year, and medical instruction to over 71,000 students. A medical center the size of TMC has enormous electricity and thermal energy demands to help it carry out its mission. Reliable, high-quality steam and chilled water are of utmost importance to the operations of its many facilities. For example, advanced medical equipment, laboratories, laundry facilities, space heating and cooling all rely on the generation of heat and power. As result of this project TECO provides this mission critical heating and cooling to TMC utilizing a system that is both energy-efficient and reliable since it provides the capability to run on power independent of the already strained regional electric grid. This allows the medical center to focus on its primary mission providing top quality medical care and instruction without worrying about excessive energy costs or the loss of heating and cooling due to the risk of power

  15. Teaching and research opportunities in technology entrepreneurship

    OpenAIRE

    Mosey, Simon

    2016-01-01

    Technology entrepreneurship as a discipline of study has come of age. The international research community is no longer debating what technology entrepreneurship means or spending time justifying its importance. We are rather engaged in building theory to encourage and enhance technology entrepreneurship in those organisations and institutions that wish to do so. In this paper, we define technology entrepreneurship as the interface between the more established academic fields of entrepreneurs...

  16. Nanotechnology in biorobotics: opportunities and challenges

    International Nuclear Information System (INIS)

    Ricotti, Leonardo; Menciassi, Arianna

    2015-01-01

    Nanotechnology recently opened a series of unexpected technological opportunities that drove the emergence of novel scientific and technological fields, which have the potential to dramatically change the lives of millions of citizens. Some of these opportunities have been already caught by researchers working in the different fields related to biorobotics, while other exciting possibilities still lie on the horizon. This article highlights how nanotechnology applications recently impacted the development of advanced solutions for actuation and sensing and the achievement of microrobots, nanorobots, and non-conventional larger robotic systems. The open challenges are described, together with the most promising research avenues involving nanotechnology

  17. Application of an improved operational strategy for a high temperature-proton exchange membrane fuel cell-based micro-combined heat and power system for Danish single-family households

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Nielsen, Mads Pagh; Kær, Søren Knudsen

    2013-01-01

    be justified as compared to other micro-CHP system technologies. The most important findings of this research study indicate that in comparison to non-fuel cell-based micro-CHP systems, such as Stirling Engine-based systems, the proposed system has significantly higher efficiencies. Moreover, the lower heat...

  18. Environmental implications of carbon limits on market penetration of combined heat and power with the U.S. energy sector (Slides)

    Science.gov (United States)

    Combined heat and power (CHP) is promoted as an economical, energy-efficient option for combating climate change. To fully examine the viability of CHP as a clean-technology solution, its market potential and impacts need to be analyzed as part of scenarios of the future energy s...

  19. Northwest Region Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Sjoding, David [Washington State Univ., Pullman, WA (United States)

    2013-09-30

    The main objective of the Northwest Clean Energy Application Center (NW CEAC) is to promote and support implementation of clean energy technologies. These technologies include combined heat and power (CHP), district energy, waste heat recovery with a primary focus on waste heat to power, and other related clean energy systems such as stationary fuel cell CHP systems. The northwest states include AK, ID, MT, OR, and WA. The key aim/outcome of the Center is to promote and support implementation of clean energy projects. Implemented projects result in a number of benefits including increased energy efficiency, renewable energy development (when using opportunity fuels), reduced carbon emissions, improved facility economics helping to preserve jobs, and reduced criteria pollutants calculated on an output-based emissions basis. Specific objectives performed by the NW CEAC fall within the following five broad promotion and support categories: 1) Center management and planning including database support; 2) Education and Outreach including plan development, website, target market workshops, and education/outreach materials development 3) Identification and provision of screening assessments & feasibility studies as funded by the facility or occasionally further support of Potential High Impact Projects; 4) Project implementation assistance/trouble shooting; and 5) Development of a supportive clean energy policy and initiative/financing framework.

  20. Performance of U.S. hybrid distributed energy systems: Solar photovoltaic, battery and combined heat and power

    International Nuclear Information System (INIS)

    Shah, Kunal K.; Mundada, Aishwarya S.; Pearce, J.M.

    2015-01-01

    Highlights: • Simulated PV + battery + CHP hybrid systems deployed in three U.S. regions. • Used hybrid optimization model for electric renewable pro microgrid analysis. • Limited size of each sub-module to singe family house size. • Results show that the electricity generated meets residential load demand. • Hybrid systems are technically viable in hot, moderate and cold climates in U.S. - Abstract: Until recently, the relatively high levelized cost of electricity from solar photovoltaic (PV) technology limited deployment; however, recent cost reductions, combined with various financial incentives and innovative financing techniques, have made PV fully competitive with conventional sources in many American regions. In addition, the costs of electrical storage have also declined enough to make PV + battery systems potentially economically viable for a mass-scale off-grid low-emission transition. However, many regions in the U.S. (e.g. Northern areas) cannot have off-grid PV systems without prohibitively large battery systems. Small-scale combined heat and power (CHP) systems provide a potential solution for off-grid power backup of residential-scale PV + battery arrays, while also minimizing emissions from conventional sources. Thus, an opportunity is now available to maximize the use of solar energy and gain the improved efficiencies possible with CHPs to deploy PV + battery + CHP systems throughout the U.S. The aim of this study is to determine the technical viability of such systems by simulating PV + battery + CHP hybrid systems deployed in three representative regions in the U.S., using the Hybrid Optimization Model for Electric Renewable (HOMER) Pro Microgrid Analysis tool. The results show that the electricity generated by each component of the hybrid system can be coupled to fulfill the residential load demand. A sensitivity analysis of these hybrid off grid systems is carried out as a function capacity factor of both the PV and CHP units. The

  1. Opportunities for microfluidic technologies in synthetic biology

    OpenAIRE

    Gulati, Shelly; Rouilly, Vincent; Niu, Xize; Chappell, James; Kitney, Richard I.; Edel, Joshua B.; Freemont, Paul S.; deMello, Andrew J.

    2009-01-01

    We introduce microfluidics technologies as a key foundational technology for synthetic biology experimentation. Recent advances in the field of microfluidics are reviewed and the potential of such a technological platform to support the rapid development of synthetic biology solutions is discussed.

  2. Biological opportunities for metal recovery

    International Nuclear Information System (INIS)

    Holmes, D.S.; Debus, S.H.

    1991-01-01

    An overview is presented of existing biological technologies for the recovery of copper and uranium. Engineering and biological challenges and opportunities in these areas are discussed. New opportunities for the bio oxidation of refractory goal ore are described. Techniques for the development of new strains of microorganisms for commercial metal recovery applications are discussed with special reference to the use of genetic manipulation for bacterial strain improvement. (author)

  3. Reviews on Solid Oxide Fuel Cell Technology

    Directory of Open Access Journals (Sweden)

    Apinan Soottitantawat

    2009-02-01

    Full Text Available Solid Oxide Fuel Cell (SOFC is one type of high temperature fuel cell that appears to be one of the most promising technology to provide the efficient and clean energy production for wide range of applications (from small units to large scale power plants. This paper reviews the current status and related researches on SOFC technologies. In details, the research trend for the development of SOFC components(i.e. anode, electrolyte, cathode, and interconnect are presented. Later, the current important designs of SOFC (i.e. Seal-less Tubular Design, Segmented Cell in Series Design, Monolithic Design and Flat Plate Design are exampled. In addition, the possible operations of SOFC (i.e. external reforming, indirect internal reforming, and direct internal reforming are discussed. Lastly, the research studies on applications of SOFCs with co-generation (i.e. SOFC with Combined Heat and Power (SOFC-CHP, SOFC with Gas Turbine (SOFC-GT and SOFC with chemical production are given.

  4. Competition in the market for space heating. District heating as the infrastructure for competition among fuels and technologies

    International Nuclear Information System (INIS)

    Grohnheit, Poul Erik; Gram Mortensen, Bent Ole

    2003-01-01

    None of the EU directives on liberalisation of the electricity and gas markets are considering the district heating systems, although the district heating networks offer the possibility of competition between natural gas and a range of other fuels on the market for space heating. Cogeneration of electricity and heat for industrial processes or district heating is a technology option for increased energy efficiency and thus reduction of CO 2 emissions. In the mid-1990s less than 10% of the electricity generation in the European Union was combined production with significant variations among Member States. These variations are explained by different national legislation and relative power of institutions, rather than difference in industrial structure, climate or urban physical structure. The 'single energy carrier' directives have provisions that support the development of combined heat and power (CHP), but they do not support the development and expansion of the district heating infrastructure. The article is partly based on a contribution to the Shared Analysis Project for the European Commission DG Energy, concerning the penetration of CHP, energy saving, and renewables as instruments to meet the targets of the Kyoto Protocol within the liberalised European energy market. The quantitative and legal differences of the heat markets in selected Member States are described, and the consequences of the directives are discussed. Finally, we summarise the tasks for a European policy concerning the future regulation of district heating networks for CHP, emphasising the need for rules for a fair competition between natural gas and district heating networks

  5. CHP biomass gasifier for the Zwarts Gerbera Nursery. Technical and economic feasibility; Biomassavergasser-WKK voor Gerberakwekerij Zwarts. Technische inpassing en economische haalbaarheid

    Energy Technology Data Exchange (ETDEWEB)

    Peeters, S.; Hart, A. [Energy Matters, Driebergen (Netherlands)

    2011-10-15

    This report describes the feasibility of a CHP gasifier at the Zwarts gerbera nursery. Using the insights from this study, a picture has been sketched for energy production by means of gasification in the horticultural sector. Note, however, that each plant specie has its own specific growth requirements in terms of nutrients, heating-cooling, light, but also relative humidity and CO2. So a 'typical' horticulturer with an 'average' energy requirement is hard to define. The economic viability must be determined for each individual situation. The outcomes of this study can therefore not be automatically used for other projects. Technically, a lot is possible, so the submitted quotes show. Of the 16 suppliers, 3 offer CHP gasifiers which, subject to conditions, not only burn wood but also other low-grade residual waste such as road verge grass, reed and miscanthus. This low-grade residual waste has the advantage of being cheaper than wood. A low biomass price lowers the operating costs and improves the economic profitability of the relatively expensive installations. The investment for a complete CHP gasifier is 5 to 10 times higher than for a normal gas CHP installation. The CO2 consumption also influences the economic profitability. Buying CO2 is a costly business. The technical and economic feasibility of harvesting CO2 from flue gas was therefore explored. Two CO2 harvesting installations (of Procede and Knook) were examined for this purpose. According to Procede and Knook, CO2 harvesting is not economically profitable for a CHP gasifier with a relatively low power capacity (up to 800 kWe). CO2 procurement or generation by means of the existing gas-fired boiler therefore seems more viable. The technical-economic feasibility study shows that an investment in a CHP gasifier is not profitable due to the relatively high investment and maintenance costs. CO2 demand and the uncertain biomass prices are stumbling blocks. However, the picture changes

  6. Emerging Concepts, Technologies and Opportunities for Mezzo-scale Terahertz and Infrared Facilities

    International Nuclear Information System (INIS)

    Swapan Chattopadhyay; Steven T. Corneliussen; Gwyn P. Williams

    2004-01-01

    Recent advances in high-current particle beam, bright photoinjector, laser and radiofrequency technologies, combined with innovative techniques such as energy recovery and laser-slicing of particle beams, have opened up new scientific opportunities with terahertz and infrared sources. They present new scientific frontiers not just in sources but in basic research applications involving timescale measurements and investigations at the quantum level. Such long-wavelength sources complement high-energy, short-wavelength x-ray sources by allowing collective processes and their ''function'' in complex systems to be probed in a fashion complementary to probing 'structure' via x-rays. This paper outlines and gives examples of the scientific reach of such sources and discusses some actual and envisioned facilities worldwide. Such facilities fall in the mezzo-scale category, bracketed by tabletop lasers and large synchrotrons. They offer unique and directed advances in life, materials and other sciences

  7. Telerehabilitation Clinical and Vocational Applications for Assistive Technology: Research, Opportunities, and Challenges

    Directory of Open Access Journals (Sweden)

    Mark R. Schmeler

    2009-09-01

    Full Text Available Rehabilitation service providers in rural or underserved areas are often challenged in meeting the needs of their complex patients due to limited resources in their geographical area. Recruitment and retention of the rural clinical workforce are beset by the ongoing problems associated with limited continuing education opportunities, professional isolation, and the challenges inherent in coordinating rural community healthcare. People with disabilities who live in rural communities also face challenges accessing healthcare. Traveling long distances to a specialty clinic for necessary expertise may be troublesome due to inadequate or unavailable transportation, disability specific limitations, and financial limitations. Distance and lack of access are just two threats to quality of care that now being addressed by the use of videoconferencing, information exchange, and other telecommunication technologies that facilitate telerehabilitation. This white paper illustrates and summarizes clinical and vocational applications of telerehabilitation. We provide definitions related to the fields of telemedicine, telehealth, and telerehabilitation, and consider the impetus for telerehabilitation. We review the telerehabilitation literature for assistive technology applications; pressure ulcer prevention; virtual reality applications; speech-language pathology applications; seating and wheeled mobility applications; vocational rehabilitation applications; and cost effectiveness. We then discuss external telerehabilitation influencers, such as the positions of professional organizations. Finally, we summarize clinical and policy issues in a limited context appropriate to the scope of this paper. Keywords: Telerehabilitation, Telehealth, Telemedicine, Telepractice

  8. Telerehabilitation clinical and vocational applications for assistive technology: research, opportunities, and challenges.

    Science.gov (United States)

    Schmeler, Mark R; Schein, Richard M; McCue, Michael; Betz, Kendra

    2009-01-01

    Rehabilitation service providers in rural or underserved areas are often challenged in meeting the needs of their complex patients due to limited resources in their geographical area. Recruitment and retention of the rural clinical workforce are beset by the ongoing problems associated with limited continuing education opportunities, professional isolation, and the challenges inherent in coordinating rural community healthcare. People with disabilities who live in rural communities also face challenges accessing healthcare. Traveling long distances to a specialty clinic for necessary expertise may be troublesome due to inadequate or unavailable transportation, disability specific limitations, and financial limitations. Distance and lack of access are just two threats to quality of care that now being addressed by the use of videoconferencing, information exchange, and other telecommunication technologies that facilitate telerehabilitation. This white paper illustrates and summarizes clinical and vocational applications of telerehabilitation. We provide definitions related to the fields of telemedicine, telehealth, and telerehabilitation, and consider the impetus for telerehabilitation. We review the telerehabilitation literature for assistive technology applications; pressure ulcer prevention; virtual reality applications; speech-language pathology applications; seating and wheeled mobility applications; vocational rehabilitation applications; and cost-effectiveness. We then discuss external telerehabilitation influencers, such as the positions of professional organizations. Finally, we summarize clinical and policy issues in a limited context appropriate to the scope of this paper.

  9. Impact of future urban form on the potential to reduce greenhouse gas emissions from residential, commercial and public buildings in Utsunomiya, Japan

    International Nuclear Information System (INIS)

    Ishii, Satoshi; Tabushi, Shoichi; Aramaki, Toshiya; Hanaki, Keisuke

    2010-01-01

    Energy-saving technologies' applicability to making cities more environmentally sustainable can be strongly influenced by the city's form, building uses and their density pattern. Technological developments have clearly shown specific urban forms to be more conducive to installing certain mitigation technologies. In this study, the capacity for implementation and impacts on energy savings and subsequent greenhouse gas (GHG) reduction potential of mitigation technologies such as photovoltaic cells (PV) and combined heat and power (CHP) technologies were analysed with respect to three potential urban forms (high density centralised, medium density averaged and low density de-centralized) for Utsunomiya City, Japan. Given current building use patterns, scenarios for 2030 and 2050, showed the medium density averaged form, which benefits from both PV and CHP technologies, to outperform the other forms, resulting in an energy savings and GHG reduction potential of 27.6% in 2030 and 67.6% in 2050. Interestingly, GHG reduction in 2050 was primarily attributable to PV, while CHP technology had the greater influence in 2030. Despite the limitation of the analysis, the study provides a useful insight, highlighting the relationship between urban forms and GHG reduction potential by two energy-saving technologies.

  10. Virtual reality technologies for research and education in obesity and diabetes: research needs and opportunities.

    Science.gov (United States)

    Ershow, Abby G; Peterson, Charles M; Riley, William T; Rizzo, Albert Skip; Wansink, Brian

    2011-03-01

    The rising rates, high prevalence, and adverse consequences of obesity and diabetes call for new approaches to the complex behaviors needed to prevent and manage these conditions. Virtual reality (VR) technologies, which provide controllable, multisensory, interactive three-dimensional (3D) stimulus environments, are a potentially valuable means of engaging patients in interventions that foster more healthful eating and physical activity patterns. Furthermore, the capacity of VR technologies to motivate, record, and measure human performance represents a novel and useful modality for conducting research. This article summarizes background information and discussions for a joint July 2010 National Institutes of Health - Department of Defense workshop entitled Virtual Reality Technologies for Research and Education in Obesity and Diabetes. The workshop explored the research potential of VR technologies as tools for behavioral and neuroscience studies in diabetes and obesity, and the practical potential of VR in fostering more effective utilization of diabetes- and obesity-related nutrition and lifestyle information. Virtual reality technologies were considered especially relevant for fostering desirable health-related behaviors through motivational reinforcement, personalized teaching approaches, and social networking. Virtual reality might also be a means of extending the availability and capacity of health care providers. Progress in the field will be enhanced by further developing available platforms and taking advantage of VR's capabilities as a research tool for well-designed hypothesis-testing behavioral science. Multidisciplinary collaborations are needed between the technology industry and academia, and among researchers in biomedical, behavioral, pedagogical, and computer science disciplines. Research priorities and funding opportunities for use of VR to improve prevention and management of obesity and diabetes can be found at agency websites (National

  11. Decentralised energy supply as our future energy supply system? - An interview with Prof. Alexander Wokaun

    International Nuclear Information System (INIS)

    Nagel, Ch.

    2002-01-01

    In this interview with Professor Alexander Wokaun, head of General Energy Research at the Paul Scherrer Institute (PSI) in Villigen, Switzerland, the decentralised use of small, gas-fired combined heat and power (CHP) units is discussed as a means of meeting Switzerland's Kyoto CO 2 commitments. The question on which of several new CHP technologies such as gas-fired engines and turbines, Stirling engines, fuel cells and thermo-photovoltaics will win the race is discussed. The efficiency and application areas of CHP technologies are examined and the problems involved when controlling complex electricity grids with many small decentrally placed generating facilities is discussed. Finally, Professor Wokaun is asked for his opinion on what the Swiss power mix will look like in 20 years

  12. Opportunities for First Nations

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Rodrigo [Anaia Global (Canada)

    2011-07-01

    The recent development of wind energy project creates opportunities for First Nations. Although they are interested by such projects, First Nations nevertheless have questions such about how they can be a part of the wind industry, what are their rights, what investment would they need to make, and how to judge if they are getting a favourable deal. This presentation aimed at answering those questions an maintained that wind energy would bring social and economic development to First Nations communities as well as diversifying their sources of revenue. Several companies offer their services to First Nations and Anaia Global is a company which helps aboriginal people identify to promote their investment opportunities in renewable energy projects and benefit from the technology transferred to them. This presentation showed that there are significant opportunities for First Nations in the wind energy sector and that Anaia Global is focusing on helping them seize these opportunities.

  13. Environmental implications of carbon limits on market ...

    Science.gov (United States)

    Combined heat and power (CHP) is promoted as an economical, energy-efficient option for combating climate change. To fully examine the viability of CHP as a clean-technology solution, its market potential and impacts need to be analyzed as part of scenarios of the future energy system, particularly those with policies limiting greenhouse gas (GHG) emissions. This paper develops and analyzes scenarios using a bottom-up, technology rich optimization model of the U.S. energy system. Two distinct carbon reduction goals were set up for analysis. In Target 1, carbon emission reduction goals were only included for the electric sector. In Target 2, carbon emission reduction goals were set across the entire energy system with the target patterned after the U.S.’s commitment to reducing GHG emissions as part of the Paris Agreement reached at the COP21 summit. From a system-wide carbon reduction standpoint, Target 2 is significantly more stringent. In addition, these scenarios examine the implications of various CHP capacity expansion and contraction assumptions and energy prices. The largest CHP capacity expansion are observed in scenarios that included Target 1, but investments were scaled back in scenarios that incorporated Target 2. The latter scenario spurred rapid development of zero-emissions technologies within the electric sector, and purchased electricity increased dramatically in many end-use sectors. The results suggest that CHP may play a role in a carbon-c

  14. Technology watch of polymer fuel cells (PEMFC) 2012; Teknikbevakning av polymera braensleceller (PEMFC) 2012

    Energy Technology Data Exchange (ETDEWEB)

    Wreland Lindstroem, Rakel; Lindbergh, Goeran

    2013-03-15

    The commercial development of the PEMFC has made strong progress in recent years. Between 2010 and 2011, the number of units shipped increased by 87%. The forecast for 2012 is a further tripling of the number of units delivered to about 71000 during the year. Sales of stationary units are increasing, and they account for a third of the number of units and almost half of the rated power with a total of over 20 MW. The increase consists of a few large units and a continued growth in small combined heat and power plant for residential use (micro-CHP). The increase is also reflected by the Japanese catalyst manufacturer Tanaka which increased its sales of catalysts for fuel cells by 67% in 2011. The number of units for transport is still small but is believed to take over the market when fuel cell vehicles enter the market around the 2015. Combined heat and power plant for residential, micro-CHP, has gained ground in Japan. The systems under the name ENE-FARM is based on natural gas reformed and used in a PEMFC. The demand increased even further after the tsunami and nuclear disaster in 2011. The global market for micro-CHP, which is dominated by the Japanese market, grew by 38%. Since 2010, the Japanese system has improved and obtained higher electrical efficiency and become 20% cheaper. The interest in micro-CHP increase also in other countries. A Germany program had in June 2012 260 systems installed, and projected 550 systems at the end of 2013. A European program called ene.field brings together European producers and users in 12 member states to test various fuel cell technologies in around 1000 installations in buildings. In Korea, 350 micro-CHP systems have been produced in 2012. The large amount of hydrogen produced as a by-product in the chemical industry has recently been highlighted. The hydrogen is today typically burned to provide heat, but calculations show that if the gas instead is used in fuel cells the industry's electricity costs could be

  15. Mobile Opportunities and Applications for E-service Innovations

    DEFF Research Database (Denmark)

    Scupola, Ada

    Mobile technology continues to shape our society, delivering information and knowledge right to our finger tips. It is only fitting that these advancements and opportunities are applied to the area of electronic services. Mobile Opportunities and Applications for E-Service Innovations brings...

  16. Phase-chronometric measuring systems for the provision of technological processes and diagnostics of the production of electromechanical engineering systems

    Directory of Open Access Journals (Sweden)

    Tumakova Ekaterina

    2017-01-01

    Full Text Available In paper the main problems and objectives assessment of the current technical condition of the machine-building equipment are considered. Modern measuring systems used in engineering analysis. The paper considers a phase-chronometric information technology-metrological support for the evaluation of the technical condition of the synchronous electromechanical systems on the example of turbine CHP. Analysis of the main problems in the diagnosis of electromechanical systems is given. Phase-chronometric method as a basis for building a new system of diagnosis of electromechanical systems reviewed. The paper describes the main elements of technology, assessment of the economic effects of its introduction in the industry.

  17. Addressing diverse learner preferences and intelligences with emerging technologies: Matching models to online opportunities

    Directory of Open Access Journals (Sweden)

    Ke Zhang

    2009-03-01

    Full Text Available This paper critically reviews various learning preferences and human intelligence theories and models with a particular focus on the implications for online learning. It highlights a few key models, Gardner’s multiple intelligences, Fleming and Mills’ VARK model, Honey and Mumford’s Learning Styles, and Kolb’s Experiential Learning Model, and attempts to link them to trends and opportunities in online learning with emerging technologies. By intersecting such models with online technologies, it offers instructors and instructional designers across educational sectors and situations new ways to think about addressing diverse learner needs, backgrounds, and expectations. Learning technologies are important for effective teaching, as are theories and models and theories of learning. We argue that more immense power can be derived from connections between the theories, models and learning technologies. Résumé : Cet article passe en revue de manière critique les divers modèles et théories sur les préférences d’apprentissage et l’intelligence humaine, avec un accent particulier sur les implications qui en découlent pour l’apprentissage en ligne. L’article présente quelques-uns des principaux modèles (les intelligences multiples de Gardner, le modèle VAK de Fleming et Mills, les styles d’apprentissage de Honey et Mumford et le modèle d’apprentissage expérientiel de Kolb et tente de les relier à des tendances et occasions d’apprentissage en ligne qui utilisent les nouvelles technologies. En croisant ces modèles avec les technologies Web, les instructeurs et concepteurs pédagogiques dans les secteurs de l’éducation ou en situation éducationnelle se voient offrir de nouvelles façons de tenir compte des divers besoins, horizons et attentes des apprenants. Les technologies d’apprentissage sont importantes pour un enseignement efficace, tout comme les théories et les modèles d’apprentissage. Nous sommes d

  18. Generic Combined Heat and Power (CHP Model for the Concept Phase of Energy Planning Process

    Directory of Open Access Journals (Sweden)

    Satya Gopisetty

    2016-12-01

    Full Text Available Micro gas turbines (MGTs are regarded as combined heat and power (CHP units which offer high fuel utilization and low emissions. They are applied in decentralized energy generation. To facilitate the planning process of energy systems, namely in the context of the increasing application of optimization techniques, there is a need for easy-to-parametrize component models with sufficient accuracy which allow a fast computation. In this paper, a model is proposed where the non-linear part load characteristics of the MGT are linearized by means of physical insight of the working principles of turbomachinery. Further, it is shown that the model can be parametrized by the data usually available in spec sheets. With this model a uniform description of MGTs from several manufacturers covering an electrical power range from 30 k W to 333 k W can be obtained. The MGT model was implemented by means of Modelica/Dymola. The resulting MGT system model, comprising further heat exchangers and hydraulic components, was validated using the experimental data of a 65 k W MGT from a trigeneration energy system.

  19. Corporate governance for trillion dollar opportunities

    Directory of Open Access Journals (Sweden)

    Hugh Grove

    2017-12-01

    Full Text Available Boards of Directors will have to play a key role in the technological survival and development of companies by asking corporate executives about their plans and strategies for these emerging technological changes and challenges. Key challenges and opportunities discussed in this paper, with corresponding corporate governance implications, included Big Data, Artificial Intelligence (AI with Industry 4.0, AI with the Internet of Things (IoT, Deep Learning, and Neural Networks. Survival should not be the goal, but it may be the necessary first step for today’s companies. Potential winners seizing these trillion dollar opportunities will be company executives and Boards of Directors who can incorporate these technological changes into specific new business models, strategies, and practices. While the awareness on boards regarding risks originating from disruptive innovation, cyber threats and privacy risks has been increasing, Boards of Directors must equally be able to challenge executives and identify opportunities and threats for their companies. This shift for companies is not only about digital technology but also cultural. How can people be managed when digital, virtual ways of working are increasing? What do robotics and Big Data analysis mean for managing people? One way to accelerate the digital learning process has been advocated: the use of digital apprentices for boards. For example, Board Apprentice, a non-profit organization, has already placed digital apprentices on boards for a year-long period (which helps to educate both apprentices and boards in five different countries. Additional plans and strategies are needed in this age of digitalization and lifelong learning. For example, cybersecurity risks are magnified by all these new technology trends, such as Big Data, AI, Industry 4.0, and IoT. Accordingly, the main findings of this paper are analysing the challenges and opportunities for corporate executives, Boards of Directors

  20. Student Experiential Opportunities in National Security Careers

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2007-12-31

    This report documents student experiential opportunities in national security careers as part of the National Security Preparedness Project (NSPP), being performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This report includes a brief description of how experiential opportunities assist students in the selection of a career and a list of opportunities in the private sector and government. The purpose of the NSPP is to promote national security technologies through business incubation, technology demonstration and validation, and workforce development. Workforce development activities will facilitate the hiring of students to work with professionals in both the private and public sectors, as well as assist in preparing a workforce for careers in national security. The goal of workforce development under the NSPP grant is to assess workforce needs in national security and implement strategies to develop the appropriate workforce.

  1. Appropriate Technology as Indian Technology.

    Science.gov (United States)

    Barry, Tom

    1979-01-01

    Describes the mounting enthusiasm of Indian communities for appropriate technology as an inexpensive means of providing much needed energy and job opportunities. Describes the development of several appropriate technology projects, and the goals and activities of groups involved in utilizing low scale solar technology for economic development on…

  2. District heating as the infrastructure for competition among fuels and technologies

    DEFF Research Database (Denmark)

    Grohnheit, Poul Erik; Mortensen, Bent Ole Gram

    2016-01-01

    for increased energy efficiency. Additional technologies suitable for small-scale networks are heat pumps, solar panels and local biomass in the form of straw or biogas. For large-scale urban networks, incineration of urban waste and geothermal heat are key technologies. With heat storages district heating...... infrastructure can contribute significantly to balancing the intermittency of wind power. This paper is an update of the authors' article published in Energy Policy in 2003 focusing on the European directives focusing on competition in the electricity and gas network industries and promotion of renewables...... and cogeneration but limited support for the development and expansion of the district heating infrastructure. It was partly based on a contribution to the Shared Analysis Project for the European Commission Directorate-General for Energy, concerning the penetration of combined heat and power (CHP), energy saving...

  3. Virtual Reality Technologies for Research and Education in Obesity and Diabetes: Research Needs and Opportunities

    Science.gov (United States)

    Ershow, Abby G; Peterson, Charles M; Riley, William T; Rizzo, Albert “Skip”; Wansink, Brian

    2011-01-01

    The rising rates, high prevalence, and adverse consequences of obesity and diabetes call for new approaches to the complex behaviors needed to prevent and manage these conditions. Virtual reality (VR) technologies, which provide controllable, multisensory, interactive three-dimensional (3D) stimulus environments, are a potentially valuable means of engaging patients in interventions that foster more healthful eating and physical activity patterns. Furthermore, the capacity of VR technologies to motivate, record, and measure human performance represents a novel and useful modality for conducting research. This article summarizes background information and discussions for a joint July 2010 National Institutes of Health – Department of Defense workshop entitled Virtual Reality Technologies for Research and Education in Obesity and Diabetes. The workshop explored the research potential of VR technologies as tools for behavioral and neuroscience studies in diabetes and obesity, and the practical potential of VR in fostering more effective utilization of diabetes- and obesity-related nutrition and lifestyle information. Virtual reality technologies were considered especially relevant for fostering desirable health-related behaviors through motivational reinforcement, personalized teaching approaches, and social networking. Virtual reality might also be a means of extending the availability and capacity of health care providers. Progress in the field will be enhanced by further developing available platforms and taking advantage of VR’s capabilities as a research tool for well-designed hypothesis-testing behavioral science. Multidisciplinary collaborations are needed between the technology industry and academia, and among researchers in biomedical, behavioral, pedagogical, and computer science disciplines. Research priorities and funding opportunities for use of VR to improve prevention and management of obesity and diabetes can be found at agency websites (National

  4. Cogeneration: A new opportunity for energy production market; La cogenerazione: Una nuova opportunita` per il mercato della produzione di energia

    Energy Technology Data Exchange (ETDEWEB)

    Minghetti, E [ENEA, Centro Ricerche Casaccia, Rome (Italy)

    1997-03-01

    Cogeneration or Combined Heat and Power (CHP) is an advantageous technique based on the simultaneous utilisation of electricity and heat produced. For this purpose existing energetic technologies are used. Cogeneration is based on the thermodynamics principle that producing electricity by combustion process means, at the same time, producing waste heat that can be useful utilised. Three main advantages can be lay out in a cogeneration plant: 1. High efficiency (the global efficiency is often around 80-90%). 2. Economic profit (pay back time is usually not longer than 2-4 years). 3. Low pollutant emissions (as a consequence of the high efficiency less fuel is burned for generating the same quantity of electricity). In this report are analysed various aspects of cogeneration (technical and economical) and the conditions influencing is development. Some figures on the european and national situation are also given. Finally are presented the research and development activities carried out by Italian National Agency for new Technology Energy and the Environment Energy Department to improve the efficiency and the competitiveness of this technology.

  5. Technology Roadmaps: Energy-efficient Buildings: Heating and Cooling Equipment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Buildings account for almost a third of final energy consumption globally and are an equally important source of CO2 emissions. Currently, both space heating and cooling as well as hot water are estimated to account for roughly half of global energy consumption in buildings. Energy-efficient and low/zero-carbon heating and cooling technologies for buildings have the potential to reduce CO2 emissions by up to 2 gigatonnes (Gt) and save 710 million tonnes oil equivalent (Mtoe) of energy by 2050. Most of these technologies -- which include solar thermal, combined heat and power (CHP), heat pumps and thermal energy storage -- are commercially available today. The Energy-Efficient Buildings: Heating and Cooling Equipment Roadmap sets out a detailed pathway for the evolution and deployment of the key underlying technologies. It finds that urgent action is required if the building stock of the future is to consume less energy and result in lower CO2 emissions. The roadmap concludes with a set of near-term actions that stakeholders will need to take to achieve the roadmap's vision.

  6. Factors that are influencing the economical efficiency of the CHP plants

    International Nuclear Information System (INIS)

    Ruieneanu, Liviu; Ion, Mircea

    2004-01-01

    This paper presents some factors that might influence the economical efficiency of a cogeneration plant. These factors are: the understanding of the fuel economy at consumers; - the influence of the electricity production efficiency; - the influence of exergy losses. The statistical data for different countries of Europe show that under the conditions of a deregulated liberalized market of energy the cogeneration plants have numerous financial difficulties. Even if the use of cogeneration ensures a fuel saving, if this economy it is not obvious for the consumers, those consumers might prefer for the production of heat the use of a heat only generating plant. This trend might spread rapidly if the increase of the electricity will not be present immediately in the bill of the consumers that renounce to the heat produced by the CHP plant. The method used for cost allocation on both types of energy has also a great importance, because it might facilitate the rehabilitation measures and doing so it might allow lower prices for both types of energy. Perhaps the most important factor for the economical efficiency of the plant are the exergy losses. The analysis presented above shows two things, namely: - that the electricity production has a very high price, and this cost might be lowered down by some rehabilitation measures (for example repowering); - and that the heat only plants (boilers) are not affected by the exergy losses and that's why if we analyse only the heat production, the use of cogeneration might seem inappropriate

  7. The capacity credit of micro-combined heat and power

    International Nuclear Information System (INIS)

    Hawkes, A.D.; Leach, M.A.

    2008-01-01

    This article is concerned with development of a methodology to determine the capacity credit of micro-combined heat and power (micro-CHP), and application of the method for the UK. Capacity credit is an important parameter in electricity system planning because it measures the amount of conventional generation that would be displaced by an alternative technology. Firstly, a mathematical formulation is presented. Capacity credit is then calculated for three types of micro-CHP units-Stirling engine, internal combustion engine, and fuel cell systems-operating under various control strategies. It is found that low heat-to-power ratio fuel cell technologies achieve the highest capacity credit of approximately 85% for a 1.1 GW penetration when a heat-led control strategy is applied. Higher heat-to-power ratio Stirling engine technology achieves approximately 33% capacity credit for heat-led operation. Low heat-to-power ratio technologies achieve higher capacity credit because they are able to continue operating even when heat demand is relatively low. Capacity credit diminishes as penetration of the technology increases. Overall, the high capacity credit of micro-CHP contributes to the viewpoint that the technology can help meet a number of economic and environmental energy policy aims

  8. Characteristics of Exemplary Science, Technology, Engineering, and Math (STEM)-Related Experiential Learning Opportunities

    Science.gov (United States)

    Simmons, Jamie Munn

    Experiential opportunities at the secondary level give students the "intimate and necessary relation between the processes of actual experience and education" (Dewey, 1938, p. 19- 20). Career and Technical Education classes (CTE) and co-curricular experiences, one type of experiential learning, underpin and cultivate student curiosity and often channel interests into STEM-related post-secondary disciplines and career choices. There is little existent research on the characteristics of exemplary experiential learning opportunities and the impact on stakeholders. This study is intended to identify the qualities and characteristics of an exemplary secondary experience through the lived experiences of the stakeholders; students, STEM-related teachers, and CTE/STEM Administrators. A qualitative research design was used to examine characteristics and implications for students of four STEM-related programs throughout Virginia. Conclusions from the study include fundamental principles for providing exemplary experiential STEM-related learning opportunities. These principles include: providing hands-on, real world learning opportunities for students, providing learning opportunities that will enhance student ownership in their learning, providing unique and comprehensive career exploration opportunities for students, providing a schedule for teachers that will give them time to plan, deliver, and manage exemplary experiential learning opportunities, providing continual teacher and administrator in-service training relative to planning and implementing exemplary experiential learning opportunities, investing appropriate funds for providing exemplary experiential learning opportunities. Establishing and maintaining active partnerships with business/industry and colleges/universities, and maintaining active advisory communities, providing appropriate staff to support the provision of exemplary experiential learning opportunities is needed. The need for adequate funding

  9. Plant genetic resources for food and agriculture: opportunities and challenges emerging from the science and information technology revolution.

    Science.gov (United States)

    Halewood, Michael; Chiurugwi, Tinashe; Sackville Hamilton, Ruaraidh; Kurtz, Brad; Marden, Emily; Welch, Eric; Michiels, Frank; Mozafari, Javad; Sabran, Muhamad; Patron, Nicola; Kersey, Paul; Bastow, Ruth; Dorius, Shawn; Dias, Sonia; McCouch, Susan; Powell, Wayne

    2018-03-01

    Contents Summary 1407 I. Introduction 1408 II. Technological advances and their utility for gene banks and breeding, and longer-term contributions to SDGs 1408 III. The challenges that must be overcome to realise emerging R&D opportunities 1410 IV. Renewed governance structures for PGR (and related big data) 1413 V. Access and benefit sharing and big data 1416 VI. Conclusion 1417 Acknowledgements 1417 ORCID 1417 References 1417 SUMMARY: Over the last decade, there has been an ongoing revolution in the exploration, manipulation and synthesis of biological systems, through the development of new technologies that generate, analyse and exploit big data. Users of Plant Genetic Resources (PGR) can potentially leverage these capacities to significantly increase the efficiency and effectiveness of their efforts to conserve, discover and utilise novel qualities in PGR, and help achieve the Sustainable Development Goals (SDGs). This review advances the discussion on these emerging opportunities and discusses how taking advantage of them will require data integration and synthesis across disciplinary, organisational and international boundaries, and the formation of multi-disciplinary, international partnerships. We explore some of the institutional and policy challenges that these efforts will face, particularly how these new technologies may influence the structure and role of research for sustainable development, ownership of resources, and access and benefit sharing. We discuss potential responses to political and institutional challenges, ranging from options for enhanced structure and governance of research discovery platforms to internationally brokered benefit-sharing agreements, and identify a set of broad principles that could guide the global community as it seeks or considers solutions. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  10. The spallation neutron source: New opportunities

    Indian Academy of Sciences (India)

    The spallation neutron source (SNS) facility became operational in the spring of ... the opportunity to develop science and instrumentation programs which take ... in telecommunications, manufacturing, transportation, information technology, ...

  11. Autonomous vehicles:challenges, opportunities, and future implications for transportation policies

    Institute of Scientific and Technical Information of China (English)

    Saeed Asadi Bagloee; Madjid Tavana; Mohsen Asadi; Tracey Oliver

    2016-01-01

    This study investigates the challenges and opportunities pertaining to transportation policies that may arise as a result of emerging autonomous vehicle (AV) technologies. AV technologies can decrease the trans-portation cost and increase accessibility to low-income households and persons with mobility issues. This emerg-ing technology also has far-reaching applications and implications beyond all current expectations. This paper provides a comprehensive review of the relevant literature and explores a broad spectrum of issues from safety to machine ethics. An indispensable part of a prospective AV development is communication over cars and infrastructure (connected vehicles). A major knowledge gap exists in AV technology with respect to routing behaviors. Connected-vehicle technology provides a great opportunity to imple-ment an efficient and intelligent routing system. To this end, we propose a conceptual navigation model based on a fleet of AVs that are centrally dispatched over a network seeking system optimization. This study contributes to the literature on two fronts: (i) it attempts to shed light on future opportunities as well as possible hurdles associated with AV technology;and (ii) it conceptualizes a navigation model for the AV which leads to highly efficient traffic circulations.

  12. Mechanical Properties in Metal-Organic Frameworks: Emerging Opportunities and Challenges for Device Functionality and Technological Applications

    International Nuclear Information System (INIS)

    Burtch, Nicholas C.; Heinen, Jurn

    2017-01-01

    We report that some of the most remarkable recent developments in metal–organic framework (MOF) performance properties can only be rationalized by the mechanical properties endowed by their hybrid inorganic–organic nanoporous structures. While these characteristics create intriguing application prospects, the same attributes also present challenges that will need to be overcome to enable the integration of MOFs with technologies where these promising traits can be exploited. In this review, emerging opportunities and challenges are identified for MOF-enabled device functionality and technological applications that arise from their fascinating mechanical properties. This is discussed not only in the context of their more well-studied gas storage and separation applications, but also for instances where MOFs serve as components of functional nanodevices. Recent advances in understanding MOF mechanical structure–property relationships due to attributes such as defects and interpenetration are highlighted, and open questions related to state-of-the-art computational approaches for quantifying their mechanical properties are critically discussed.

  13. Support schemes and ownership structures - the policy context for fuel cell based micro-combined heat and power

    Science.gov (United States)

    Schroeder, Sascha Thorsten; Costa, Ana; Obé, Elisabeth

    In recent years, fuel cell based micro-combined heat and power (mCHP) has received increasing attention due to its potential contribution to European energy policy goals, i.e., sustainability, competitiveness and security of supply. Besides technical advances, regulatory framework and ownership structures are of crucial importance in order to achieve greater diffusion of the technology in residential applications. This paper analyses the interplay of policy and ownership structures for the future deployment of mCHP. Furthermore, it regards the three country cases Denmark, France and Portugal. Firstly, the implications of different kinds of support schemes on investment risk and the diffusion of a technology are explained conceptually. Secondly, ownership arrangements are addressed. Then, a cross-country comparison on present support schemes for mCHP and competing technologies discusses the national implementation of European legislation in Denmark, France and Portugal. Finally, resulting implications for ownership arrangements on the choice of support scheme are explained. From a conceptual point of view, investment support, feed-in tariffs and price premiums are the most appropriate schemes for fuel cell mCHP. This can be used for improved analysis of operational strategies. The interaction of this plethora of elements necessitates careful balancing from a private- and socio-economic point of view.

  14. Combined heat and power's potential to meet New York City's sustainability goals

    International Nuclear Information System (INIS)

    Howard, Bianca; Saba, Alexis; Gerrard, Michael; Modi, Vijay

    2014-01-01

    Combined Heat and Power (CHP) has been proven as a mature technology that can benefit both building owners and utility operators. As the economic and environmental benefits of CHP in urban centers gain recognition, regulations and policies have evolved to encourage their deployment. However, the question remains whether these policies are sufficient in helping to achieve the larger sustainability goals, such as the New York City-specific goal of incorporating 800 MW of distributed generation. In this paper, the current regulatory and policy environment for CHP is discussed. Then, an engineering analysis estimating the potential for CHP in NYC at the individual building and microgrid scale, considered a city block, is performed. This analysis indicates that over 800 MW of individual building CHP systems would qualify for the current incentives but many systems would need to undergo more cumbersome air permitting processes reducing the viable capacity to 360 MW. In addition microgrid CHP systems with multiple owners could contribute to meeting the goal even after considering air permits; however, these systems may incorporate many residential customers. The regulatory framework for microgrids with multiple owners and especially residential customers is particularly uncertain therefore additional policies would be needed to facilitate their development. - Highlights: • Estimates 1580 MW and 3042 MW CHP capacity at the building and microgrid scales. • Citywide emissions could reduce 4% at the building and 9% at the microgrid scale. • CHP microgrid systems operate at similar efficiencies while providing energy to buildings not viable for CHP. • Current regulatory and policy mechanisms would affect at least 800 MW of CHP systems. • Microgrid CHP systems may be necessary to the City's meet distributed generation goals

  15. Biogas and Fuel Cells Workshop Summary Report: Proceedings from the Biogas and Fuel Cells Workshop, Golden, Colorado, June 11-13, 2012

    Energy Technology Data Exchange (ETDEWEB)

    2013-01-01

    The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) held a Biogas and Fuel Cells Workshop June 11-13, 2012, in Golden, Colorado, to discuss biogas and waste-to-energy technologies for fuel cell applications. The overall objective was to identify opportunities for coupling renewable biomethane with highly efficient fuel cells to produce electricity; heat; combined heat and power (CHP); or combined heat, hydrogen and power (CHHP) for stationary or motive applications. The workshop focused on biogas sourced from wastewater treatment plants (WWTPs), landfills, and industrial facilities that generate or process large amounts of organic waste, including large biofuel production facilities (biorefineries).

  16. Gas process technology for fuel cells. Desulfurization and other key problems; Gasprozesstechnik fuer Brennstoffzellen. Entschwefelung und andere Kernfragen

    Energy Technology Data Exchange (ETDEWEB)

    Heinzel, A.; Kalk, T.; Kvasnicka, A.; Roes, J.; Steffen, M.; Witzany, R. [Duisburg-Essen Univ., (Germany). ZBT Duisburg

    2008-07-01

    Fuel cells as Micro-CHP units for residential energy supply are one important technology option to improve energy efficiency and reduce emissions. Starting from natural gas as energy carrier, hydrogen is generated by catalytic processes. Prototypes are operated in field test in the meanwhile, but there are still important technical and scientific questions to deal with, as there are e.g. the desulfurisation of natural gas, the optimisation of heat integration in order to improve the efficiency of the complete system, the realisation of a closed water loop and last but not least the formation and impact of ammonia. At the same time, cost aspects and production technology have to be considered. (orig.)

  17. Technology transfer of brain-computer interfaces as assistive technology: barriers and opportunities.

    Science.gov (United States)

    Nijboer, F

    2015-02-01

    This paper provides an analysis of perspectives from different stakeholders on the state-of-the-art of BCI. Three barriers for technology transfer of BCIs as access technologies are identified. First, BCIs are developed with a narrow focus on creating a reliable technology, while a broader focus on creating a usable technology is needed. Second, the potential target group, which could benefit from BCIs as access technologies is expected to be very small. Development costs are therefore high, while reimbursements are expected to be low, which challenges the commercial viability. Third, potential target users should be much more included in the design process of BCIs to ensure that the end-products meet technical, ethical, legal and social requirements. These three issues need to be urgently addressed so that target users may benefit from this promising technology. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  18. The role of heat pump technologies in the design of future sustainable energy systems

    DEFF Research Database (Denmark)

    Blarke, Morten Boje; Lund, Henrik

    2005-01-01

    source results in an 8% cost reduction. Furthermore, the operational analysis shows that when a large-scale heat pump is integrated with an existing CHP unit, the projected spot market situation in Nord Pool, which reflects a growing share of wind power and heat-bound power generation electricity......In this paper, it is shown that in support of its ability to improve the overall economic cost-effectiveness and flexibility of the Danish energy system, the financially feasible integration of large-scale heat pumps with existing CHP units, is critically sensitive to the operational mode...... of the heat pump vis-à-vis the operational coefficient of performance (COP), which is set by the temperature level of the heat source. When using only ambient air as the heat source, the total heat production costs increases by about 10%, while the partial use of condensed flue gas from the CHP unit as a heat...

  19. SHORT, MEDIUM AND LONG-TERM OPPORTUNITIES AND NEEDS FOR RESEARCH FOR SUSTAINABLE FARM ANIMAL BREEDING AND REPRODUCTION TECHNOLOGY IN EU

    Directory of Open Access Journals (Sweden)

    D. Kompan

    2007-06-01

    Full Text Available The European landscape is characterised by a range of diverse farming systems. These relate not only to varied geographical environments, but also to different social and cultural environments for farming and food production. This diversity is unique to Europe and underlines the importance of European agriculture. Animal breeding is a knowledge intensive sector, and for the future competitiveness of animal breeding and animal production, high level European research is indispensable. The preparation of Strategic Research Agenda were in a full process: opportunities and problems, gaps, short, medium and long term opportunities and needs for research. Each country experts from different group have opportunity to help define his country dimension of animal breeding in its regional and country context, and also in relation to European and global developments. The Farm Animal Breeding and Reproduction European Technology Platform, brings together a wide range of interested parties to produce a vision of how livestock breeding might develop in the next 20 years, and constitutes the first step in achieving that vision.

  20. Study into solar thermal electricity export opportunities for the UK

    International Nuclear Information System (INIS)

    1996-01-01

    The overall objectives of the project described in this report were: to provide an assessment of the world-wide opportunities currently available for the development of high temperature solar thermal (H-TSTh) technology; to identify United Kingdom companies and expertise which could benefit from the exploitation of export markets for H-TSTh; to estimate the potential benefits to the UK of such exploitation; and to review the current status of H-TSTh technology. Despite limited involvement at present, it is concluded that the UK would be well placed with respect to longer term market opportunities if current developments by UK companies in fixed bowl technology and Stirling engines for dish Stirling system are successful. Opportunities also exist for turbine supply, civil contractors, insurance, finance and operation, but discussions with relevant UK companies has revealed only limited interest. (Author)

  1. CTI capacity building seminar for CEE/FSU countries. Climate technology and energy efficiency. Challenges and changes for climate technology. Seminar proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Tempel, Sybille; Moench, Harald (eds.); Mez, Lutz; Krug, Michael (comps.) [Free Univ. Berlin (DE). Environmental Policy Research Centre (FFU)

    2005-01-15

    Within the CTI Capacity Building Seminar for CEE/FSU Countries at 20th to 24th September, 2003 in Tutzing (Federal Republic of Germany) the following lectures were held: (1) Excursion to fuel cell pilot project (Peter Fleischmann); (2) How to construct a climate change program - some basics (Franzjosef Schafhausen); (3) The EU emissions trading directive (Felix Matthes); (4) Emissions trading - The implementation of the EU-Directive in Germany (Franzjosef Schafhausen); (5) Emissions trading from a buyer's perspective (Albrecht von Ruffer); (6) Emissions trading from a seller's perspective: Czech Republic (Toma Chmelik); (7) Discussant notes: Emissions trading (Sonja Butzengeiger); (8) Carbon finance and the world bank: Chances, experiences, lessons learned (Charlotte Streck); (9) Joint implementation: Relationship to and compatibility with the emission trading scheme (Franzjosef Schafhausen); (10) Clean development mechanism in Central Asia (Liliya Zavyalova); (11) Creating a national CDM system in Georgia (Paata Janelidze); (12) Experiences from the certification of JI/CDM projects (Michael Rumberg); (13) Discussant notes Session JI and CDM (Tiit Kallaste); (14) The EU Directive on electricity from renewable energy sources 2001/77/EC (Volkmar Lauber); (15) Amending the Renewable Energy Source Act (Thorsten Mueller); (16) The new renewables support scheme in te Czech Republic (Martin Busik); (17) Replacing nuclear energy by renewables. The case of Lithunia (Kestutis Buinevicius); (18) Renewables in the New Energy Acts of Estonia (Villu Vares); (19) Discussant notes: Session incentive schemes for renewables (Hans-Joachim Ziesing); (20) Bankable energy efficiency projects - How to get energy efficiency investment financed (Petra Opitz); (21) Clear contract - clearinghouse for contracting (Ralf Goldmann); (22) CHP as an important element of a sustainable energy use in Germany (Juergen Landrebe); (23) The European CHP Directive - a step towards the smarter

  2. An Overview of the Challenges and Opportunities for Globalization ...

    African Journals Online (AJOL)

    The paper is an overview of the existing challenges and opportunities of globalization of Nigerian libraries. It examine the challenges and opportunities for the establishment of viable information and communication. Technologies (ICTs) and recommends the way forward for interconnectivity of Nigerian libraries to facilitate ...

  3. Cost-benefit analysis for combined heat and power plant

    International Nuclear Information System (INIS)

    Sazdovski, Ace; Fushtikj, Vangel

    2004-01-01

    The paper presents a methodology and practical application of Cost-Benefit Analysis for Combined Heat and Power Plant (Cogeneration facility). Methodology include up-to-date and real data for cogeneration plant in accordance with the trends ill development of the CHP technology. As a case study a CHP plant that could be built-up in Republic of Macedonia is analyzed. The main economic parameters for project evaluation, such as NPV and IRR are calculated for a number of possible scenarios. The analyze present the economic outputs that could be used as a decision for CHP project acceptance for investment. (Author)

  4. Energy Savings Potential and Research & Development Opportunities for Commercial Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-09-01

    This study documents the energy consumption of commercial refrigeration equipment (CRE) in the U.S. and evaluated the energy savings potential of various technologies and energy efficiency measures that could be applied to such equipment. The study provided an overview of CRE applications, assessed the energy-savings potential of CRE in the U.S., outline key barriers to adoption of energy-savings technologies, and recommended opportunities for advanced energy saving technology research. The study was modeled after an earlier 1996 report by Arthur D. Little, Inc., and updated key information, examined more equipment types, and outlined long-term research and development opportunities.

  5. Sandia National Laboratories: Business Opportunities Website

    Science.gov (United States)

    Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Does Sandia Buy? Opportunities Small Business Procurement Technical Assistance Program (PTAP) Current Technology Partnerships Business, Industry, & Non-Profits Government Universities Center for

  6. Opportunities and barriers for OHS consultants in a technological change process at a client enterprise

    DEFF Research Database (Denmark)

    Hermund, Ingelise; Broberg, Ole

    2003-01-01

    . Taking initially the role as experts the consultants in a reflective process change their strategy towards establishing a net-work in the client enterprise, going beyond the joint safety organization and more directly to the designers of new buildings and equipment. This indicates that the conditions......In a case study of the design of inside finish and equipment of a new factory building the opportunities and barriers for OHS consultants in integrating work environment aspects are discussed. The work prac-tice of OHS consultants is studied in terms of theories from the sociology of technology...... for the work of OHS consultants can be challenged and changed if the consultants are able to take the role of a political reflective navigator....

  7. Integration Science and Technology of Silicon-Based Ceramics and Composites:Technical Challenges and Opportunities

    Science.gov (United States)

    Singh, M.

    2013-01-01

    Ceramic integration technologies enable hierarchical design and manufacturing of intricate ceramic and composite parts starting with geometrically simpler units that are subsequently joined to themselves and/or to metals to create components with progressively higher levels of complexity and functionality. However, for the development of robust and reliable integrated systems with optimum performance for high temperature applications, detailed understanding of various thermochemical and thermomechanical factors is critical. Different technical approaches are required for the integration of ceramic to ceramic and ceramic to metal systems. Active metal brazing, in particular, is a simple and cost-effective method to integrate ceramic to metallic components. Active braze alloys usually contain a reactive filler metal (e.g., Ti, Cr, V, Hf etc) that promotes wettability and spreading by inducing chemical reactions with the ceramics and composites. In this presentation, various examples of brazing of silicon nitride to themselves and to metallic systems are presented. Other examples of joining of ceramic composites (C/SiC and SiC/SiC) using ceramic interlayers and the resulting microstructures are also presented. Thermomechanical characterization of joints is presented for both types of systems. In addition, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be presented.

  8. The biomass energy market in Finland

    International Nuclear Information System (INIS)

    2002-01-01

    In 2001, it was estimated that the Finnish biomass market was in excess of 235 million dollars. The development of renewable energy, with special emphasis on biomass, was supported by the development of an energy strategy by the government of Finland. The installed capacity of biomass in Finland in 2002 was 1400 megawatt electrical (MWe). Extensive use of combined heat and power (CHP) is made in Finland, and district heating (DH) systems using biomass are gaining in popularity. Wood-based biomass technologies, retrofits to fluidized bed combustion, and wood procurement technologies were identified as the best opportunities for Canadian companies interested in operating in Finland. A country with high standards, Finland seems to look favorably on new innovative solutions. Joint ventures with Finnish companies might be an excellent way for Canadian companies to gain a foothold in Finland and expand into the European Union, the Nordic countries, the Baltic, Russia and the Central and Eastern European markets. It was further noted that Finland is one of the leading exporters of biomass technology in the world. The document provided quick facts, examined opportunities, and looked at key players. 19 refs., 4 tabs

  9. Analysis of risks and investments’ opportunities in water sector

    Directory of Open Access Journals (Sweden)

    Fjona Zeneli

    2016-01-01

    These opportunities result from the difference between water supply and water demand; an increasingly difference that requires capital investments in production and water treatment technologies. Investments need to be combined with the knowledge on the legislation, regulatory framework and technological developments. This article may serve to clarify type of investments in drinking water sector, known by literature, to identify opportunities of investment in this sector, indicating the theoretical framework of beta and alpha risk ratio coefficient calculation and to suggest how these types of investments can be allocated to the investment portfolios.

  10. Nano-enabled environmental products and technologies - opportunities and drawbacks

    DEFF Research Database (Denmark)

    Møller Christensen, Frans; Brinch, Anna; Kjølholt, Jesper

    The project aims to investigate the benefits for health and environment that the use of nanomaterials in products and technologies may have. More specifically, the project provides an overview of the most relevant nano-enabled environmental technologies, different types of products and technologies...... on the (Danish) market, as well as products and technologies, which are still in R&D and it will provide a qualitative overview of health and environmental pros and cons of these technologies. The project has focused on technologies applied in: 1) purification of water and wastewater, 2) remediation of soil...

  11. Institutional opportunities and constraints to biomass development

    International Nuclear Information System (INIS)

    Costello, R.; Finnell, J.

    1998-01-01

    This paper examines a number of institutional opportunities and constraints applicable to biomass as well as other renewable energy technologies. Technological progress that improves performance or increases system efficiencies can open doors to deployment; however, market success depends on overcoming the institutional challenges that these technologies will face. It can be far more difficult to put into place the necessary institutional mechanisms which will drive these commercialization efforts. The keys to the successful implementation of energy technologies and, in particular, biomass power technologies, are issues that can be categorized as: (1) regulatory; (2) financial; (3) infrastructural; and (4) perceptual. (author)

  12. Review of tri-generation technologies: Design evaluation, optimization, decision-making, and selection approach

    International Nuclear Information System (INIS)

    Al Moussawi, Houssein; Fardoun, Farouk; Louahlia-Gualous, Hasna

    2016-01-01

    Highlights: • Trigeneration technologies classified and reviewed according to prime movers. • Relevant heat recovery equipment discussed with thermal energy storage. • Trigeneration evaluated based on energy, exergy, economy, environment criteria. • Design, optimization, and decision-making methods classified and presented. • System selection suggested according to user preferences. - Abstract: Electricity, heating, and cooling are the three main components constituting the tripod of energy consumption in residential, commercial, and public buildings all around the world. Their separate generation causes higher fuel consumption, at a time where energy demands and fuel costs are continuously rising. Combined cooling, heating, and power (CCHP) or trigeneration could be a solution for such challenge yielding an efficient, reliable, flexible, competitive, and less pollutant alternative. A variety of trigeneration technologies are available and their proper choice is influenced by the employed energy system conditions and preferences. In this paper, different types of trigeneration systems are classified according to the prime mover, size and energy sequence usage. A leveled selection procedure is subsequently listed in the consecutive sections. The first level contains the applied prime mover technologies which are considered to be the heart of any CCHP system. The second level comprises the heat recovery equipment (heating and cooling) of which suitable selection should be compatible with the used prime mover. The third level includes the thermal energy storage system and heat transfer fluid to be employed. For each section of the paper, a survey of conducted studies with CHP/CCHP implementation is presented. A comprehensive table of evaluation criteria for such systems based on energy, exergy, economy, and environment measures is performed, along with a survey of the methods used in their design, optimization, and decision-making. Moreover, a classification

  13. Opportunities of the energy revolution. Scientific contributions to the KIT

    International Nuclear Information System (INIS)

    Breh, Wolfgang; Schaetzler, Katharina

    2013-01-01

    ''Opportunities for energy revolution'' was the title under which the KIT Energy Center of Karlsruhe Institute of Technology (KIT) in May 2012 held its first annual meeting. The meeting covered the whole Topic of the KIT Energy Center. The present proceedings give those interested the opportunity to delve into the contributions and to provide a differentiated picture of the challenges and opportunities of the energy transition.

  14. Building for tomorrow today: opportunities and directions in radiology resident research.

    Science.gov (United States)

    Yu, John-Paul J; Kansagra, Akash P; Thaker, Ashesh; Colucci, Andrew; Sherry, Steven J; Subramaniam, Rathan M

    2015-01-01

    With rapid scientific and technological advancements in radiological research, there is renewed emphasis on promoting early research training to develop researchers who are capable of tackling the hypothesis-driven research that is typically funded in contemporary academic research enterprises. This review article aims to introduce radiology residents to the abundant radiology research opportunities available to them and to encourage early research engagement among trainees. To encourage early resident participation in radiology research, we review the various research opportunities available to trainees spanning basic, clinical, and translational science opportunities to ongoing research in information technology, informatics, and quality improvement research. There is an incredible breadth and depth of ongoing research at academic radiology departments across the country, and the material presented herein aspires to highlight both subject matter and opportunities available to radiology residents eager to engage in radiologic research. The opportunities for interested radiology residents are as numerous as they are broad, spanning the basic sciences to clinical research to informatics, with abundant opportunities to shape our future practice of radiology. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  15. Summary of the Physics Opportunities Working Group

    International Nuclear Information System (INIS)

    Chen, Pisin; McDonald, K.T.

    1992-12-01

    The Physics Opportunities Working Group was convened with the rather general mandate to explore physic opportunities that may arise as new accelerator technologies and facilities come into play. Five topics were considered during the workshop: QED at critical field strength, novel positron sources, crystal accelerators, suppression of beamstrahlung, and muon colliders. Of particular interest was the sense that a high energy muon collider might be technically feasible and certainly deserves serious study

  16. Emerging Energy-Efficient Technologies in Buildings Technology Characterizations for Energy Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hadley, SW

    2004-10-11

    The energy use in America's commercial and residential building sectors is large and growing. Over 38 quadrillion Btus (Quads) of primary energy were consumed in 2002, representing 39% of total U.S. energy consumption. While the energy use in buildings is expected to grow to 52 Quads by 2025, a large number of energy-related technologies exist that could curtail this increase. In recent years, improvements in such items as high efficiency refrigerators, compact fluorescent lights, high-SEER air conditioners, and improved building shells have all contributed to reducing energy use. Hundreds of other technology improvements have and will continue to improve the energy use in buildings. While many technologies are well understood and are gradually penetrating the market, more advanced technologies will be introduced in the future. The pace and extent of these advances can be improved through state and federal R&D. This report focuses on the long-term potential for energy-efficiency improvement in buildings. Five promising technologies have been selected for description to give an idea of the wide range of possibilities. They address the major areas of energy use in buildings: space conditioning (33% of building use), water heating (9%), and lighting (16%). Besides describing energy-using technologies (solid-state lighting and geothermal heat pumps), the report also discusses energy-saving building shell improvements (smart roofs) and the integration of multiple energy service technologies (CHP packaged systems and triple function heat pumps) to create synergistic savings. Finally, information technologies that can improve the efficiency of building operations are discussed. The report demonstrates that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The five technology areas alone can potentially result in total primary energy savings of between 2 and

  17. Validation of innovative technologies and strategies for regulatory safety assessment methods: challenges and opportunities.

    Science.gov (United States)

    Stokes, William S; Wind, Marilyn

    2010-01-01

    Advances in science and innovative technologies are providing new opportunities to develop test methods and strategies that may improve safety assessments and reduce animal use for safety testing. These include high throughput screening and other approaches that can rapidly measure or predict various molecular, genetic, and cellular perturbations caused by test substances. Integrated testing and decision strategies that consider multiple types of information and data are also being developed. Prior to their use for regulatory decision-making, new methods and strategies must undergo appropriate validation studies to determine the extent that their use can provide equivalent or improved protection compared to existing methods and to determine the extent that reproducible results can be obtained in different laboratories. Comprehensive and optimal validation study designs are expected to expedite the validation and regulatory acceptance of new test methods and strategies that will support improved safety assessments and reduced animal use for regulatory testing.

  18. MOBILE TELEVISION: UNDERSTANDING THE TECHNOLOGY AND OPPORTUNITIES

    OpenAIRE

    Omar AlSheikSalem

    2015-01-01

    Television have converged the technologies of movies and radio and now being converged with mobile phones. Mobile TV is the result of the convergence between mobile devices and television. Mobile TV is a key device and service that enrich civilization with applications, vast market and great investment. Mobile TV is an important subject that has a potential impact on leading edge technologies for promising future. In the time being Mobile TV is still in its early stages and has many potential...

  19. Telecommunications: international opportunities for power utilities

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, A. [Teleglobe Canada, Ottawa, ON (Canada)

    1996-08-01

    International telecommunications services markets and trends were reviewed in an effort to identify business opportunities for Canadian power utilities. With increasing deregulation in the U.S. and Canada, and other countries around the globe, market opportunities are beginning to open up. In monopoly markets opportunities exist in providing dual infrastructures to upgrade both the power delivery services (frequently poor), and telecommunications. Billing, collection and customer service expertise might be other marketable commodities, perhaps packaged as part of a network provision project as a service to existing power and telecommunications service providers. In countries with directed competition markets local partnerships may be the only vehicle for entering the market. In managed competition markets opportunities were said to exist in cellular radio technology, as well as in switched telephone service, local, long distance, or international. In general, opportunities outside telecommunications-rich North America were considered to have better potential, due to rapid deregulation and higher current growth rates in telecommunications. Careful examination and research of the political and business environment prior to entering any of the potentially fertile areas was advised.

  20. Modeling and optimization of a heat-pump-assisted high temperature proton exchange membrane fuel cell micro-combined-heat-and-power system for residential applications

    DEFF Research Database (Denmark)

    Arsalis, Alexandros; Kær, Søren Knudsen; Nielsen, Mads Pagh

    2015-01-01

    In this study a micro-combined-heat-and-power (micro-CHP) system is coupled to a vapor-compression heat pump to fulfill the residential needs for heating (space heating and water heating) and electricity in detached single-family households in Denmark. Such a combination is assumed to be attractive...... for application, since both fuel cell technology and electric heat pumps are found to be two of the most efficient technologies for generation/conversion of useful energy. The micro-CHP system is fueled with natural gas and includes a fuel cell stack, a fuel processor and other auxiliary components. The micro......-CHP system assumes heat-led operation, to avoid dumping of heat and the use of complicated thermal energy storage. The overall system is grid-interconnected to allow importing and exporting of electricity as necessary. In this study emphasis is given on the operational characterization of the system...

  1. Decentralized resource allocation and load scheduling for multicommodity smart energy systems

    NARCIS (Netherlands)

    Blaauwbroek, N.; Nguyen, H.P.; Konsman, M.J.; Shi, H.; Kamphuis, I.G.; Kling, W.L.

    2015-01-01

    Due to the expected growth in district heating systems in combination with the development of hybrid energy appliances such as heat pumps (HPs) and micro-combined heat and power (CHP) installations, new opportunities arise for the management of multicommodity energy systems, including electricity,

  2. Corporate governance for trillion dollar opportunities

    OpenAIRE

    Hugh Grove; Maclyn Clouse

    2017-01-01

    Boards of Directors will have to play a key role in the technological survival and development of companies by asking corporate executives about their plans and strategies for these emerging technological changes and challenges. Key challenges and opportunities discussed in this paper, with corresponding corporate governance implications, included Big Data, Artificial Intelligence (AI) with Industry 4.0, AI with the Internet of Things (IoT), Deep Learning, and Neural Networks. Survival should...

  3. Opportunities and challenges for the future utilization of bio methane in regional energy supply structures; Chancen und Herausforderungen fuer die zukuenftige Nutzung von Biomethan in regionalen Energieversorgungsstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Scholwin, Frank; Nelles, Michael [Rostock Univ. (Germany). Professur Biogas/Bioenergie

    2013-10-01

    In fact, that the transition of the energy system needs a decentralisation of energy supply. Energy from biomass will play an important role for stabilisation of energy supply and compensation of fluctuating energy demand and energy supply from solar and wind power. Especially biomethane what can be stored in the natural gas grid allows high flexibility in its use. Therefore the following options are analysed: - Integration of biomethane/biogas driven CHP units in local heat supply structures - Flexible operation of biomethane/biogas driven CHP units - Synergies through utilisation of biomethane as vehicle fuel. (orig.)

  4. Opportunities for electricity storage in deregulating markets

    International Nuclear Information System (INIS)

    Graves, F.; Jenkin, T.; Murphy, D.

    1999-01-01

    This article addresses the value of electricity storage and its ability to take advantage of emerging energy arbitrage opportunities: buying power when it is inexpensive, and reselling it at a higher price. The focus of this article is on electricity markets and the opportunities they present for a merchant storage device, rather than on storage technologies themselves. There are a number of existing and emerging storage technologies: pumped hydro, various batteries, compressed air energy storage (CAES), superconducting magnetic energy storage (SMES), flywheels--even conventional hydro has storage-like properties. However, all these technologies operated on the same basic principle of exploiting short-term differentials in electricity prices: buy low, sell high (a strategy that is actually meaningful in electricity markets, unlike in financial markets). The object of this article is to develop and demonstrate a means for assessing the potential value of storage in different electricity markets, rather than to attempt to assess the prospects of a particular technology. The approach taken here is to look at price data from a number of actual electricity markets to determine what opportunities they might offer to a generic storage device. A storage technology is described here by its basic performance parameters--charge and generate capacity, energy inventory limits, and efficiency--which are sufficient to assess the basic economic potential of storage in a given market. The authors look primarily at US markets, but also compare and contrast findings with the situation in foreign markets in the U.K., Norway, Canada, and Australia, and discuss how market structure can influence the value of storage. Moreover, the authors use empirically observed relationships between hourly and 5 x 16 blocked prices to infer a rule for adjusting the value of storage assets in regions where only blocked price information is available

  5. New business opportunity: Green field project with new technology

    Directory of Open Access Journals (Sweden)

    Seung Jae Lee

    2014-06-01

    Full Text Available Since 2009 of global financial crisis, shipbuilding industry has undergone hard times seriously. After such a long depression, the latest global shipping market index shows that the economic recovery of global shipbuilding market is underway. Especially, nations with enormous resources are going to increase their productivity or expanding their shipyards to accommodate a large amount of orders expected in the near future. However, few commercial projects have been carried out for the practical shipyard layout designs even though those can be good commercial opportunities for shipbuilding engineers. Shipbuilding starts with a shipyard construction with a large scale investment initially. Shipyard design and the equipment layout problem, which is directly linked to the productivity of ship production, is an important issue in the production planning of mass production of ships. In many cases, shipbuilding yard design has relied on the experience of the internal engineer, resulting in sporadic and poorly organized processes. Consequently, economic losses and the trial and error involved in such a design process are inevitable problems. The starting point of shipyard construction is to design a shipyard layout. Four kinds of engineering parts required for the shipyard layout design and construction. Those are civil engineering, building engineering, utility engineering and production layout engineering. Among these parts, production layout engineering is most important because its result is used as a foundation of the other engineering parts, and also, determines the shipyard capacity in the shipyard lifecycle. In this paper, the background of shipbuilding industry is explained in terms of engineering works for the recognition of the macro trend. Nextly, preliminary design methods and related case study is introduced briefly by referencing the previous research. Lastly, the designed work of layout design is validated using the computer simulation

  6. New business opportunity: Green field project with new technology

    Science.gov (United States)

    Lee, Seung Jae; Woo, Jong Hun; Shin, Jong Gye

    2014-06-01

    Since 2009 of global financial crisis, shipbuilding industry has undergone hard times seriously. After such a long depression, the latest global shipping market index shows that the economic recovery of global shipbuilding market is underway. Especially, nations with enormous resources are going to increase their productivity or expanding their shipyards to accommodate a large amount of orders expected in the near future. However, few commercial projects have been carried out for the practical shipyard layout designs even though those can be good commercial opportunities for shipbuilding engineers. Shipbuilding starts with a shipyard construction with a large scale investment initially. Shipyard design and the equipment layout problem, which is directly linked to the productivity of ship production, is an important issue in the production planning of mass production of ships. In many cases, shipbuilding yard design has relied on the experience of the internal engineer, resulting in sporadic and poorly organized processes. Consequently, economic losses and the trial and error involved in such a design process are inevitable problems. The starting point of shipyard construction is to design a shipyard layout. Four kinds of engineering parts required for the shipyard layout design and construction. Those are civil engineering, building engineering, utility engineering and production layout engineering. Among these parts, production layout engineering is most important because its result is used as a foundation of the other engineering parts, and also, determines the shipyard capacity in the shipyard lifecycle. In this paper, the background of shipbuilding industry is explained in terms of engineering works for the recognition of the macro trend. Nextly, preliminary design methods and related case study is introduced briefly by referencing the previous research. Lastly, the designed work of layout design is validated using the computer simulation technology.

  7. Challenges and opportunities for controlling and preventing animal diseases in developing countries through gene-based technologies

    International Nuclear Information System (INIS)

    Crowther, J.R.; Jeggo, M.H.

    2005-01-01

    Polymerase Chain Reaction (PCR) technology allows scientist to amplify, copy, identify, characterize and manipulate genes in a relatively simple way. Exploitation of the technology to devise new products and translate these to the commercial sector has been remarkable. Molecular technologies are not difficult to establish and use, and can appear to offer developing countries many opportunities. However, developing countries should look in a different way at the apparent advantages offered. Whilst molecular biological science appears to offer solutions to many problems, there are a number of drawbacks. This desire to adopt the latest technology often overrides any considerations of the use of more conventional technologies to address needs. The conventional, and often more practical, methods already provide many specific tools in the disease control area. Changing the technology can also deflect critical resources into the molecular field in terms of laboratory funding and training. This may cause redundancy of staff, limit further development in conventional techniques, and polarize scientists into the older (less glossy) and newer (molecular) camps. Animal disease diagnosis still primarily utilizes conventional techniques such as Enzyme Linked Immunosorbent Assay (ELISA). This will not change drastically in developing countries, but developments will combine such methods with more discriminatory molecular techniques, and a balanced and parallel development is needed. An understanding of the use and possible advantages of the various technologies is required by both scientists and policy-makers in developing nations. Vaccines based on molecular science could have a real impact in developing countries, but 'vaccinology' needs to examine both the animal (immunology of target species) and the disease agent itself. This is a research-based science and, as such, is expensive, with no surety of success. Developing countries should exploit links with developed countries

  8. Technologies for building integrated energy supply; Teknologier for bygningsintegreret energiforsyning

    Energy Technology Data Exchange (ETDEWEB)

    Katic, I.

    2011-07-15

    The current report is part of the deliverables from the project ''Building Integrated Energy Supply'' supported by the Danish Energy Authority R and D program. It describes a range of technologies for individual supply of heat and/or electricity to dwellings with respect to their stage of development and possible application in the near future. Energy supply of buildings is becoming more and more complex, partly as a result of increasing demands for comfort, efficiency and reduced emissions, partly as a result of rising oil prices and improved competitiveness of alternative energy sources. The days where ordinary boilers were the dominant source of individual supply of dwellings are becoming past these years. The challenge of the new range of technologies lies to a high extent in the fluctuating nature of their energy conversion and their interaction with the supply grids for heat and electricity. There is thus an increasing demand to understand the nature of the different supply technologies, besides a regular update of their economical key figures. The technologies briefly described in this study are: Solar heating, passive solar energy, biofuel boilers, heat pumps, micro CHP, solar photovoltaic and energy storage systems. The selected technologies are all assessed to play an important role in future's mix of supply technologies in Denmark, especially heat pumps and solar. (Author)

  9. A strategic framework for proliferation resistance: a systematic approach for the identification and evaluation of technology opportunities to enhance the proliferation resistance of civilian nuclear energy systems

    International Nuclear Information System (INIS)

    Hassberger, J.A.; Isaac, T.; Schock, R.N.

    2001-01-01

    The United State Department of Energy Nuclear Energy Research Advisory Committee recently completed a study ''Technological Opportunities To Increase The Proliferation Resistance Of Global Civilian Nuclear Power Systems (TOPS)''. That effort included the development of a set of both intrinsic and extrinsic barriers to proliferation that technologies can directly impact. In this paper we will review these barriers as and framework for assisting in the evaluation of the relative proliferation resistance of various nuclear fuel cycles, technologies and alternatives. (author)

  10. Clinical review of supracricoid laryngectomy with CHEP and CHP. 50 patients treated in 11 years

    International Nuclear Information System (INIS)

    Nakayama, Meijin; Seino, Yutomo; Hayashi, Seiichi; Miyamoto, Shunsuke; Takeda, Masahiko; Masaki, Takashi; Yokobori, Satoru; Okamoto, Makito

    2009-01-01

    An analysis of clinical data on 50 patients undergoing supracricoid laryngectomy (SCL) between 1997 and 2008 id est (i.e.), cricohyoidoepiglottopexy (CHEP) in 47 and cricohyoidopexy (CHP) in 3 cases showed that the number of SCL cases operated on within a year surpassed that of Total Laryngectomy after 2003. Selection criteria included performance status 0-1 and blood gas PO2>80 torr, especially in those patients over 70 years old. Postoperative wound infection occurred in 16 patients (32%), with four requiring additional surgical intervention (two ruptured pexis and two chondritis induced by C3-C4 osteophytes). A history of radiotherapy and systemic complications, i.e., diabetes and renal failure, added to the risk of wound infection. Introducing a clinical pathway shortened hospitalization. Vocal function was achieved in 96% and swallowing function in 89% of patients. Five-year crude survival in CHEP was 69% and in total laryngectomy (TL) 51%. Laryngeal preservation was 70%, increasing to 89% after the introduction of SCL. SCL-CHEP is thus indicated for unfavorable T2 (ASCO 2006), well-selected T3, T4, and rT1-4 (radiation failures). Effort should emphasize a good balance in prognosis and function in organ preservation for laryngeal cancer. (author)

  11. Technological Implications for Assessment Ecosystems: Opportunities for Digital Technology to Advance Assessment

    Science.gov (United States)

    Behrens, John T.; DiCerbo, Kristen E.

    2014-01-01

    Background: It would be easy to think the technological shifts in the digital revolution are simple incremental progressions in societal advancement. However, the nature of digital technology is resulting in qualitative differences in nearly all parts of daily life. Purpose: This paper investigates how the new possibilities for understanding,…

  12. Emission and economic performance assessment of a solid oxide fuel cell micro-combined heat and power system in a domestic building

    International Nuclear Information System (INIS)

    Elmer, Theo; Worall, Mark; Wu, Shenyi; Riffat, Saffa B.

    2015-01-01

    Combined heat and power (CHP) is a promising technological configuration for reducing energy consumption and increasing energy security in the domestic built environment. Fuel cells, on account of their: high electrical efficiency, low emissions and useful heat output have been identified as a key technological option for improving both building energy efficiency and reducing emissions in domestic CHP applications. The work presented in this paper builds upon results currently reported in the literature of fuel cells operating in domestic building applications, with an emission and economic performance assessment of a real, commercially available SOFC mCHP system operating in a real building; under a UK context. This paper aims to assess the emission and economic performance of a commercially available solid oxide fuel cell (SOFC) mCHP system, operating at The University of Nottingham's Creative Energy Homes. The performance assessment evaluates, over a one year period, the associated carbon (emission assessment) and operational costs (economic assessment) of the SOFC mCHP case compared to a ‘base case’ of grid electricity and a highly efficient gas boiler. Results from the annual assessment show that the SOFC mCHP system can generate annual emission reductions of up to 56% and cost reductions of 177% compared to the base case scenario. However support mechanisms such as; electrical export, feed in tariff and export tariff, are required in order to achieve this, the results are significantly less without. A net present value (NPV) analysis shows that the base case is still more profitable over a 15 year period, even though the SOFC mCHP system generates annual revenue; this is on account of the SOFC's high capital cost. In summary, grid interaction and incubator support is essential for significant annual emission and cost reductions compared to a grid electricity and gas boiler scenario. Currently capital cost is the greatest barrier to the economic

  13. Life cycle assessment of different strategies for energy and nutrient recovery from source sorted organic fraction of household waste

    DEFF Research Database (Denmark)

    Khoshnevisan, Benyamin; Tsapekos, Panagiotis; Alvarado-Morales, Merlin

    2018-01-01

    and different biogas applications. Biopulp technology, screw press, and disc screen were chosen as three available pretreatment methods and electricity production, combined heat and power (CHP) production, as well as biogas upgrading were selected as three downstream management strategies. In all scenarios...... obtained, it can be concluded that CHP production would be the best downstream management option while the results were so sensitive to the source of substituted energy....

  14. Britain stays cool on district heating

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G

    1982-04-08

    Britain's wealth of energy sources has kept interest in the energy conservation potential of combined heat and power (CHP) and district heating (DH) at a low level. An active lobby for CHP/DH continues to argue against formidable odds. The Marshall group set up in the early days of the oil crisis reported on several strategies for CHP/DH and proposed technologies already proven in other European countries. The economics of abundant natural gas and coal, however, precludes commercial interest until energy prices reach higher levels. The lobbyists point out that this could occur within a short time, and local governments would do well to examine the lead-city concept for application on a national level. The present government's preference for the private sector pursuing development beyond the feasibility-study stage could make CHP/DH more of a political issue as unemployment increases. (DCK)

  15. From Quanta to the Continuum: Opportunities for Mesoscale Science

    Energy Technology Data Exchange (ETDEWEB)

    Crabtree, George [Argonne National Lab. (ANL), Argonne, IL (United States); Sarrao, John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Alivisatos, Paul [Univ. of California, Berkeley, CA (United States); Barletta, William [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Bates, Frank [Univ. of Minnesota, Minneapolis, MN (United States); Brown, Gordon [Stanford Univ., CA (United States); French, Roger [Case Western Reserve Univ., Cleveland, OH (United States); Greene, Laura [Univ. of Illinois, Urbana, IL (United States); Hemminger, John [Univ. of California, Irvine, CA (United States); Kastner, Marc [MIT (Massachusetts Inst. of Technology), Cambridge, MA (United States); Kay, Bruce [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lewis, Jennifer [Univ. of Illinois, Urbana, IL (United States); Ratner, Mark [Northwestern Univ., Evanston, IL (United States); Anthony, Rollett [Carnegie Mellon Univ., Pittsburgh, PA (United States); Rubloff, Gary [University of Maryland, College Park, MD (United States); Spence, John [Arizona State Univ., Mesa, AZ (United States); Tobias, Douglas [Univ. of California, Irvine, CA (United States); Tranquada, John [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2012-09-01

    This report explores the opportunity and defines the research agenda for mesoscale science—discovering, understanding, and controlling interactions among disparate systems and phenomena to reach the full potential of materials complexity and functionality. The ability to predict and control mesoscale phenomena and architectures is essential if atomic and molecular knowledge is to blossom into a next generation of technology opportunities, societal benefits, and scientific advances.. The body of this report outlines the need, the opportunities, the challenges, and the benefits of mastering mesoscale science.

  16. Starting a New Technology Course?: An Opportunity to Develop Student Technological Literacy

    Science.gov (United States)

    Moye, Johnny J.

    2008-01-01

    Starting a new course can be intimidating, especially if the person is the first to teach it in his or her school district. A teacher must take many things into consideration when constructing the content for a new course. The primary focus should be on the development of student technological literacy. The International Technology Education…

  17. On the ATW-concepts: ITP approach and opportunities

    Science.gov (United States)

    Simonenko, V. A.; Grebyonkin, K. F.

    1995-09-01

    It is discussed the interest of Russian Federal Nuclear Center-Institute of Technical Physics at Chelyabinsk-70 in the research of Accelerator Driven Technologies applications for radioactive waste transmutation, cumulated actinides burning, energy production. The ITP background and opportunities for this research are presented. It is shown the ITP possibilities for testing and experimental development of Accelerator Driven Technologies.

  18. On the ATW-concepts: ITP approach and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Simonenko, V.A.; Gregyonkin, K.F. [Institute of Technical Physics, Chelyabinsk (Russian Federation)

    1995-10-01

    It is discussed the interest of Russian Federal Nuclear Center - Institute of Technical Physics at Chelyabinsk-70 in the research of Accelerator Driven Technologies applications for radioactive waste transmutation, cumulated actinides burning, energy production. The ITP background and opportunities for this research are presented. It is shown the ITP possibilities for testing and experimental development of Accelerator Driven Technologies.

  19. Challenges and Opportunities Facing Technology Education in Taiwan

    Science.gov (United States)

    Lee, Lung-Sheng Steven

    2009-01-01

    The technology education in Taiwan is prescribed in the national curriculum and provided to all students in grades 1-12. However, it faces the following challenges: (1) Lack of worthy image, (2) Inadequate teachers in elementary schools, (3) Deficient teaching vitality in secondary schools, and (4) Diluted technology teacher education programs. In…

  20. Digital divide and digital opportunity: Comparison, analysis and strategies for sustainable development in developing nations

    International Nuclear Information System (INIS)

    Bhunia, C.T.; Onime, C.

    2007-07-01

    The world is witnessing a new digital economic order which may be quantified by the diffusion of information technology and globalization process. The current information technology gap (digital divide) between developed countries and developing countries is huge. Improvements in information technology (measured by the digital opportunity index) usually open up an opportunity for national/regional growth and development. There is a need for scientific investigation on the digital divide, digital opportunity index and their consequences. This paper presents a critical analysis of existing digital divide and its trends, it also investigates the relationship between the digital divide and the digital opportunity index. A mathematical model based on analysis of the growing digital divide is presented as a possible tool for combating and eradicate the digital divide gap which is only possible if developing and poor nations take advantage of the digital opportunities that can transform them into global competitive partners in digital knowledge economy. (author)