WorldWideScience

Sample records for chondroitin

  1. Semi-synthesis of chondroitin sulfate-E from chondroitin sulfate-A

    OpenAIRE

    Cai, Chao; Solakyildirim, Kemal; Yang, Bo; Beaudet, Julie M.; Weyer, Amanda; Linhardt, Robert J.; Zhang, Fuming

    2012-01-01

    Chondroitin sulfate-E (chondroitin-4, 6-disulfate) was prepared from chondroitin sulfate-A (chondroitin-4 - sulfate) by regioselective sulfonation, performed using trimethylamine sulfur trioxide in formamide under argon. The structure of semi-synthetic chondroitin sulfate-E was analyzed by PAGE, 1H NMR, 13C NMR, 2D NMR and disaccharide analysis and compared with natural chondroitin sulfate-E. Both semi-synthetic and natural chondroitin sulfate-E were each biotinylated and immobilized on BIAco...

  2. Chondroitin for osteoarthritis

    Science.gov (United States)

    Singh, Jasvinder A.; Noorbaloochi, Shahrzad; MacDonald, Roderick; Maxwell, Lara J.

    2016-01-01

    Background Osteoarthritis, a common joint disorder, is one of the leading causes of disability. Chondroitin has emerged as a new treatment. Previous meta-analyses have shown contradictory results on the efficacy of chondroitin. This, in addition to the publication of more trials, necessitates a systematic review. Objectives To evaluate the benefit and harm of oral chondroitin for treating osteoarthritis compared with placebo or a comparator oral medication including, but not limited to, nonsteroidal anti-inflammatory drugs (NSAIDs), analgesics, opioids, and glucosamine or other “herbal” medications. Search methods We searched seven databases up to November 2013, including the Cochrane Central Register of Controlled Trials (CENTRAL), Ovid MEDLINE, CINAHL, EMBASE, Science Citation Index (Web of Science) and Current Controlled Trials. We searched the US Food and Drug Administration (FDA) and European Medicines Agency (EMEA) websites for adverse effects. Trial registers were not searched. Selection criteria All randomized or quasi-randomized clinical trials lasting longer than two weeks, studying adults with osteoarthritis in any joint, and comparing chondroitin with placebo, an active control such as NSAIDs, or other “herbal” supplements such as glucosamine. Data collection and analysis Two review authors independently performed all title assessments, data extractions, and risk of bias assessments. Main results Forty-three randomized controlled trials including 4,962 participants treated with chondroitin and 4,148 participants given placebo or another control were included. The majority of trials were in knee OA, with few in hip and hand OA. Trial duration varied from 1 month to 3 years. Participants treated with chondroitin achieved statistically significantly and clinically meaningful better pain scores (0–100) in studies less than 6 months than those given placebo with an absolute risk difference of 10% lower (95% confidence interval (CI), 15% to 6% lower

  3. Chondroitin Sulfate Perlecan Enhances Collagen Fibril Formation

    DEFF Research Database (Denmark)

    Kvist, A. J.; Johnson, A. E.; Mörgelin, M.

    2006-01-01

    in collagen type II fibril assembly by perlecan-null chondrocytes. Cartilage perlecan is a heparin sulfate or a mixed heparan sulfate/chondroitin sulfate proteoglycan. The latter form binds collagen and accelerates fibril formation in vitro, with more defined fibril morphology and increased fibril diameters...... produced in the presence of perlecan. Interestingly, the enhancement of collagen fibril formation is independent on the core protein and is mimicked by chondroitin sulfate E but neither by chondroitin sulfate D nor dextran sulfate. Furthermore, perlecan chondroitin sulfate contains the 4,6-disulfated...... disaccharides typical for chondroitin sulfate E. Indeed, purified glycosaminoglycans from perlecan-enriched fractions of cartilage extracts contain elevated levels of 4,6-disulfated chondroitin sulfate disaccharides and enhance collagen fibril formation. The effect on collagen assembly is proportional...

  4. Periodate Oxidation for Sulfated Glycosaminoglycans, with Special Reference to the Position of Extra Sulfate Groups in Chondroitin Polysulfates, Chondroitin Sulfate D and Chondroitin Sulfate K

    OpenAIRE

    Seno, Nobuko; Murakami, Keiko; Shibusawa, Haru

    1981-01-01

    The optimum conditions for periodate oxidation of sulfated disaccharides were investigated to determine the position of extra sulfate groups on the saturated disulfated disaccharides obtained from chondroitin polysulfates, chondroitin sulfates D and K. Under the conditions: 2mM saturated disulfated disaccharide with 20mM sodium periodate at 37°in the dark, the uronic acid residue in the disulfated disaccharide from chondroitin sulfate D was rapidly and completely destroyed, whereas that in th...

  5. Chondroitin sulfate proteoglycan synthesis and reutilization of beta-D-xyloside-initiated chondroitin/dermatan sulfate glycosaminoglycans in fetal kidney branching morphogenesis

    International Nuclear Information System (INIS)

    Klein, D.J.; Brown, D.M.; Moran, A.; Oegema, T.R. Jr.; Platt, J.L.

    1989-01-01

    Branching morphogenesis and chondroitin sulfate proteoglycan synthesis by explanted fetal mouse kidneys were previously shown to be inhibited by p-nitrophenyl beta-D-xylopyranoside (beta-D-xyloside) while glomerular development and heparan sulfate proteoglycan synthesis were unaffected. The metabolic fate of fetal kidney explant proteoglycans was investigated to determine whether or not recovery of proteoglycan synthesis and morphogenesis occur after exposure to beta-D-xyloside. Chondroitin sulfate proteoglycan synthesis resumed within 4 hr of removal of beta-D-xyloside and was enhanced once beta-D-xyloside-initiated chondroitin/dermatan- 35 SO 4 glycosaminoglycans (GAGs) were released from the tissue. Radioactivity incorporated into beta-D-xyloside-initiated chondroitin/dermatan- 35 SO 4 GAGs during labeling in the presence of beta-D-xyloside was reutilized in the synthesis of chondroitin- 35 SO 4 proteoglycan during a 24-hr chase in nonradioactive medium without beta-D-xyloside. Further, highly purified beta-D-xyloside-initiated chondroitin/dermatan- 35 SO 4 GAGs were taken up by kidneys more avidly than was free [ 35 S]sulfate. These 35 S-GAGs were degraded and reutilized in the synthesis of chondroitin- 35 SO 4 proteoglycan. Ureteric bud branching resumed 48 hr after beta-D-xyloside was removed from the incubation medium. These findings support the idea that both chondroitin sulfate proteoglycan synthesis and proteoglycan processing may be involved in branching morphogenesis

  6. Development of affinity-based delivery of NGF from a chondroitin sulfate biomaterial.

    Science.gov (United States)

    Butterfield, Karen Chao; Conovaloff, Aaron W; Panitch, Alyssa

    2011-01-01

    Chondroitin sulfate is a major component of the extracellular matrix in both the central and peripheral nervous systems. Chondroitin sulfate is upregulated at injury, thus methods to promote neurite extension through chondroitin sulfate-rich matrices and synthetic scaffolds are needed. We describe the use of both chondroitin sulfate and a novel chondroitin sulfate-binding peptide to control the release of nerve growth factor. Interestingly, the novel chondroitin sulfate-binding peptide enhances the controlled release properties of the chondroitin sulfate gels. While introduction of chondroitin sulfate into a scaffold inhibits primary cortical outgrowth, the combination of chondroitin sulfate, chondroitin sulfate-binding peptide and nerve growth factor promotes primary cortical neurite outgrowth in chondroitin sulfate gels.

  7. INTRACELLULAR SYNTHESIS OF CHONDROITIN SULFATE

    Science.gov (United States)

    Dziewiatkowski, Dominic D.

    1962-01-01

    In autoradiograms of slices of costal cartilage, incubated for 4 hours in a salt solution containing S35-sulfate and then washed extensively and dehydrated, about 85 per cent of the radioactivity was assignable to the chondrocytes. From alkaline extracts of similarly prepared slices of cartilage, 64 to 83 per cent of the total sulfur-35 in the slices was isolated as chondroitin sulfate by chromatography on an anion-exchange resin. In view of the estimate that only about 15 per cent of the radioactivity was in the matrix, the isolation of 64 to 83 per cent of the total sulfur-35 as chondroitin sulfate is a strong argument that the chondrocytes are the loci in which chondroitin sulfate(s) is synthesized. PMID:13888910

  8. A novel chondroitin sulfate hydrogel for nerve repair

    Science.gov (United States)

    Conovaloff, Aaron William

    Brachial plexus injuries affect numerous patients every year, with very debilitating results. The majority of these cases are very severe, and involve damage to the nerve roots. To date, repair strategies for these injuries address only gross tissue damage, but do not supply cells with adequate regeneration signals. As a result, functional recovery is often severely lacking. Therefore, a chondroitin sulfate hydrogel that delivers neurotrophic signals to damaged neurons is proposed as a scaffold to support nerve root regeneration. Capillary electrophoresis studies revealed that chondroitin sulfate can physically bind with a variety of neurotrophic factors, and cultures of chick dorsal root ganglia demonstrated robust neurite outgrowth in chondroitin sulfate hydrogels. Outgrowth in chondroitin sulfate gels was greater than that observed in control gels of hyaluronic acid. Furthermore, the chondroitin sulfate hydrogel's binding activity with nerve growth factor could be enhanced by incorporation of a synthetic bioactive peptide, as revealed by fluorescence recovery after photobleaching. This enhanced binding was observed only in chondroitin sulfate gels, and not in hyaluronic acid control gels. This enhanced binding activity resulted in enhanced dorsal root ganglion neurite outgrowth in chondroitin sulfate gels. Finally, the growth of regenerating dorsal root ganglia in these gels was imaged using label-free coherent anti-Stokes scattering microscopy. This technique generated detailed, high-quality images of live dorsal root ganglion neurites, which were comparable to fixed, F-actin-stained samples. Taken together, these results demonstrate the viability of this chondroitin sulfate hydrogel to serve as an effective implantable scaffold to aid in nerve root regeneration.

  9. Chondroitin sulfate synthase-2 is necessary for chain extension of chondroitin sulfate but not critical for skeletal development.

    Science.gov (United States)

    Ogawa, Hiroyasu; Hatano, Sonoko; Sugiura, Nobuo; Nagai, Naoko; Sato, Takashi; Shimizu, Katsuji; Kimata, Koji; Narimatsu, Hisashi; Watanabe, Hideto

    2012-01-01

    Chondroitin sulfate (CS) is a linear polysaccharide consisting of repeating disaccharide units of N-acetyl-D-galactosamine and D-glucuronic acid residues, modified with sulfated residues at various positions. Based on its structural diversity in chain length and sulfation patterns, CS provides specific biological functions in cell adhesion, morphogenesis, neural network formation, and cell division. To date, six glycosyltransferases are known to be involved in the biosynthesis of chondroitin saccharide chains, and a hetero-oligomer complex of chondroitin sulfate synthase-1 (CSS1)/chondroitin synthase-1 and chondroitin sulfate synthase-2 (CSS2)/chondroitin polymerizing factor is known to have the strongest polymerizing activity. Here, we generated and analyzed CSS2(-/-) mice. Although they were viable and fertile, exhibiting no overt morphological abnormalities or osteoarthritis, their cartilage contained CS chains with a shorter length and at a similar number to wild type. Further analysis using CSS2(-/-) chondrocyte culture systems, together with siRNA of CSS1, revealed the presence of two CS chain species in length, suggesting two steps of CS chain polymerization; i.e., elongation from the linkage region up to Mr ∼10,000, and further extension. There, CSS2 mainly participated in the extension, whereas CSS1 participated in both the extension and the initiation. Our study demonstrates the distinct function of CSS1 and CSS2, providing a clue in the elucidation of the mechanism of CS biosynthesis.

  10. Development of affinity-based delivery of NGF from a chondroitin sulfate biomaterial

    OpenAIRE

    Butterfield, Karen Chao; Conovaloff, Aaron W.; Panitch, Alyssa

    2011-01-01

    Chondroitin sulfate is a major component of the extracellular matrix in both the central and peripheral nervous systems. Chondroitin sulfate is upregulated at injury, thus methods to promote neurite extension through chondroitin sulfate-rich matrices and synthetic scaffolds are needed. We describe the use of both chondroitin sulfate and a novel chondroitin sulfate-binding peptide to control the release of nerve growth factor. Interestingly, the novel chondroitin sulfate-binding peptide enhanc...

  11. Chondroitin sulfate effects on neural stem cell differentiation.

    Science.gov (United States)

    Canning, David R; Brelsford, Natalie R; Lovett, Neil W

    2016-01-01

    We have investigated the role chondroitin sulfate has on cell interactions during neural plate formation in the early chick embryo. Using tissue culture isolates from the prospective neural plate, we have measured neural gene expression profiles associated with neural stem cell differentiation. Removal of chondroitin sulfate from stage 4 neural plate tissue leads to altered associations of N-cadherin-positive neural progenitors and causes changes in the normal sequence of neural marker gene expression. Absence of chondroitin sulfate in the neural plate leads to reduced Sox2 expression and is accompanied by an increase in the expression of anterior markers of neural regionalization. Results obtained in this study suggest that the presence of chondroitin sulfate in the anterior chick embryo is instrumental in maintaining cells in the neural precursor state.

  12. Amino acid sequence surrounding the chondroitin sulfate attachment site of thrombomodulin regulates chondroitin polymerization.

    Science.gov (United States)

    Izumikawa, Tomomi; Kitagawa, Hiroshi

    2015-05-01

    Thrombomodulin (TM) is a cell-surface glycoprotein and a critical mediator of endothelial anticoagulant function. TM exists as both a chondroitin sulfate (CS) proteoglycan (PG) form and a non-PG form lacking a CS chain (α-TM); therefore, TM can be described as a part-time PG. Previously, we reported that α-TM bears an immature, truncated linkage tetrasaccharide structure (GlcAβ1-3Galβ1-3Galβ1-4Xyl). However, the biosynthetic mechanism to generate part-time PGs remains unclear. In this study, we used several mutants to demonstrate that the amino acid sequence surrounding the CS attachment site influences the efficiency of chondroitin polymerization. In particular, the presence of acidic residues surrounding the CS attachment site was indispensable for the elongation of CS. In addition, mutants defective in CS elongation did not exhibit anti-coagulant activity, as in the case with α-TM. Together, these data support a model for CS chain assembly in which specific core protein determinants are recognized by a key biosynthetic enzyme involved in chondroitin polymerization. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Inhibitory effect of chondroitin sulfate oligosaccharides on bovine testicular hyaluronidase.

    Science.gov (United States)

    Kakizaki, Ikuko; Koizumi, Hideyo; Chen, Fengchao; Endo, Masahiko

    2015-05-05

    Hyaluronan and chondroitin sulfates are prominent components of the extracellular matrices of animal tissues; however, their functions in relation to their oligosaccharide structures have not yet been fully elucidated. The oligosaccharides of hyaluronan and chondroitin sulfate were prepared and used to investigate their effects on the hydrolysis and transglycosylation reactions of bovine testicular hyaluronidase when hyaluronan was used as a substrate. Hydrolysis and transglycosylation activities were assessed in independent reaction systems by analyzing the products by HPLC. The hydrolysis and transglycosylation reactions of bovine testicular hyaluronidase were dose-dependently inhibited by chondroitin sulfate oligosaccharides, but not by hyaluronan or chondroitin oligosaccharides. A kinetic analysis of the hydrolysis reaction using hyaluronan octasaccharide revealed that the inhibition mode by chondroitin sulfate oligosaccharides was competitive. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Characterization of a chondroitin sulfate hydrogel for nerve root regeneration

    Science.gov (United States)

    Conovaloff, Aaron; Panitch, Alyssa

    2011-10-01

    Brachial plexus injury is a serious medical problem that affects many patients annually, with most cases involving damage to the nerve roots. Therefore, a chondroitin sulfate hydrogel was designed to both serve as a scaffold for regenerating root neurons and deliver neurotrophic signals. Capillary electrophoresis showed that chondroitin sulfate has a dissociation constant in the micromolar range with several common neurotrophins, and this was determined to be approximately tenfold stronger than with heparin. It was also revealed that nerve growth factor exhibits a slightly stronger affinity for hyaluronic acid than for chondroitin sulfate. However, E8 chick dorsal root ganglia cultured in the presence of nerve growth factor revealed that ganglia cultured in chondroitin sulfate scaffolds showed more robust growth than those cultured in control gels of hyaluronic acid. It is hypothesized that, despite the stronger affinity of nerve growth factor for hyaluronic acid, chondroitin sulfate serves as a better scaffold for neurite outgrowth, possibly due to inhibition of growth by hyaluronic acid chains.

  15. Hexagonal-shaped chondroitin sulfate self-assemblies have exalted anti-HSV-2 activity.

    Science.gov (United States)

    Galus, Aurélia; Mallet, Jean-Maurice; Lembo, David; Cagno, Valeria; Djabourov, Madeleine; Lortat-Jacob, Hugues; Bouchemal, Kawthar

    2016-01-20

    The initial step in mucosal infection by the herpes simplex virus type 2 (HSV-2) requires its binding to certain glycosaminoglycans naturally present on host cell membranes. We took advantage of this interaction to design biomimetic supramolecular hexagonal-shaped nanoassemblies composed of chondroitin sulfate having exalted anti-HSV-2 activity in comparison with native chondroitin sulfate. Nanoassemblies were formed by mixing hydrophobically-modified chondroitin sulfate with α-cyclodextrin in water. Optimization of alkyl chain length grafted on chondroitin sulfate and the ratio between hydrophobically-modified chondroitin sulfate and α-cyclodextrin showed that more cohesive and well-structured nanoassemblies were obtained using higher α-cyclodextrin concentration and longer alkyl chain lengths. A structure-activity relationship was found between anti-HSV-2 activity and the amphiphilic nature of hydrophobically-modified chondroitin sulfate. Also, antiviral activity of hexagonal nanoassemblies against HSV-2 was further improved in comparison with hydrophobically-modified chondroitin sulfate. This work suggests a new biomimetic formulation approach that can be extended to other heparan-sulfate-dependent viruses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Biological functions of iduronic acid in chondroitin/dermatan sulfate.

    Science.gov (United States)

    Thelin, Martin A; Bartolini, Barbara; Axelsson, Jakob; Gustafsson, Renata; Tykesson, Emil; Pera, Edgar; Oldberg, Åke; Maccarana, Marco; Malmstrom, Anders

    2013-05-01

    The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of cytokine/growth factor activities. Under pathological conditions such as wound healing, inflammation and cancer, iduronic acid has diverse regulatory functions. Iduronic acid is formed by two epimerases (i.e. dermatan sulfate epimerase 1 and 2) that have different tissue distribution and properties. The role of iduronic acid in chondroitin/dermatan sulfate is highlighted by the vast changes in connective tissue features in patients with a new type of Ehler-Danlos syndrome: adducted thumb-clubfoot syndrome. Future research aims to understand the roles of the two epimerases and their interplay with the sulfotransferases involved in chondroitin sulfate/dermatan sulfate biosynthesis. Furthermore, a better definition of chondroitin/dermatan sulfate functions using different knockout models is needed. In this review, we focus on the two enzymes responsible for iduronic acid formation, as well as the role of iduronic acid in health and disease. © 2013 The Authors Journal compilation © 2013 FEBS.

  17. Purification and characterization of a 3'-phosphoadenylylsulfate:chondroitin 6-sulfotransferase from arterial tissue.

    Science.gov (United States)

    Hollmann, J; Niemann, R; Buddecke, E

    1986-01-01

    A 3'-phosphoadenylylsulfate:chondroitin sulfotransferase (EC 2.8.2.5) was purified to homogeneity (about 760-fold) from the cytosolic fraction of calf arterial tissue by Con A-Sepharose, ion exchange and affinity chromatography. The enzyme has a molecular mass of 38000 Da, optimal activity at pH 6.0 (100%) and 7.25 (75%), requires divalent cations for maximal activity (Mn2+ greater than Mg2+, Ca2+) and exhibits specificity towards desulfated chondroitin sulfate and oligosaccharides derived therefrom. The enzyme transfers sulfate groups from [35S]phosphoadenylylsulfate exclusively to C-6 OH groups of N-acetylgalactosamine units of the acceptor substrates. Maximal sulfate transfer occurs at 2mM chondroitin disaccharide units (100%), the transfer rates decreasing with decreasing chain length in the order deca (55%), octa (17%) and hexasaccharides (4%). Lineweaver-Burk plots revealed equal maximal velocities for chondroitin, deca-, octa- and hexasaccharide, but decreasing Km values. Chondroitin 4-sulfate has 21% of the acceptor potency exhibited by chondroitin, whereas dermatan sulfate, heparan sulfate and hyaluronate and the chondroitin tetrasaccharide showed no acceptor properties. Analysis of the reaction products formed by prolonged enzymatic sulfation of a reduced chondroitin hexasaccharide [GlcA-GalNAc]2-GlcA-GalNAc-ol revealed that the preterminal N-acetylgalactosamine from the non-reducing end and the internal N-acetylgalactosamine but not the N-acetylgalactosaminitol were sulfated and that no hexasaccharide disulfate was formed by the action of chondroitin 6-sulfotransferase. Chondroitin 6-sulfotransferase is considered to possess a binding region capable of accommodating a nonsulfated oligosaccharide sequence of at least six sugars and is believed to act in the course of chondroitin sulfate synthesis in cooperation with, but shortly after, the enzymes involved in the chain elongation reaction.

  18. Comparison of proteins involved in chondroitin sulfate utilization by three colonic Bacteroides species.

    OpenAIRE

    Lipeski, L; Guthrie, E P; O'Brien, M; Kotarski, S F; Salyers, A A

    1986-01-01

    Three species of colonic bacteria can ferment the mucopolysaccharide chondroitin sulfate: Bacteroides ovatus, Bacteroides sp. strain 3452A (an unnamed DNA homology group), and B. thetaiotaomicron. Proteins associated with the utilization of chondroitin sulfate by B. thetaiotaomicron have been characterized previously. In this report we compare chondroitin lyases and chondroitin sulfate-associated outer membrane polypeptides of B. ovatus and Bacteroides sp. strain 3452A with those of B. thetai...

  19. Immunohistochemical localization of chondroitin sulfate, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, entactin, and laminin in basement membranes of postnatal developing and adult rat lungs

    DEFF Research Database (Denmark)

    Sannes, P L; Burch, K K; Khosla, J

    1993-01-01

    Histologic preparations of lungs from 1-, 5-, 10-, 18-, and 25-day-old postnatal and adult rats were examined immunohistochemically with antibodies specific against chondroitin sulfate (CS), basement membrane chondroitin sulfate proteoglycan (BM-CSPG), heparan sulfate proteoglycan (HSPG), entactin...

  20. Chondroitin sulfate addition to CD44H negatively regulates hyaluronan binding

    International Nuclear Information System (INIS)

    Ruffell, Brian; Johnson, Pauline

    2005-01-01

    CD44 is a widely expressed cell adhesion molecule that binds hyaluronan, an extracellular matrix glycosaminoglycan, in a tightly regulated manner. This regulated interaction has been implicated in inflammation and tumor metastasis. CD44 exists in the standard form, CD44H, or as higher molecular mass isoforms due to alternative splicing. Here, we identify serine 180 in human CD44H as the site of chondroitin sulfate addition and show that lack of chondroitin sulfate addition at this site enhances hyaluronan binding by CD44. A CD44H-immunoglobulin fusion protein expressed in HEK293 cells, and CD44H expressed in murine L fibroblast cells were modified by chondroitin sulfate, as determined by reduced sulfate incorporation after chondroitinase ABC treatment. Mutation of serine 180 or glycine 181 in CD44H reduced chondroitin sulfate addition and increased hyaluronan binding, indicating that serine 180 is the site for chondroitin sulfate addition in CD44H and that this negatively regulates hyaluronan binding

  1. Holothurian Fucosylated Chondroitin Sulfate

    Directory of Open Access Journals (Sweden)

    Vitor H. Pomin

    2014-01-01

    Full Text Available Fucosylated chondroitin sulfate (FucCS is a structurally distinct glycosaminoglycan found in sea cucumber species. It has the same backbone composition of alternating 4-linked glucuronic acid and 3-linked N-acetyl galactosamine residues within disaccharide repeating units as regularly found in mammalian chondroitin sulfates. However, FucCS has also sulfated fucosyl branching units 3-O-linked to the acid residues. The sulfation patterns of these branches vary accordingly with holothurian species and account for different biological actions and responses. FucCSs may exhibit anticoagulant, antithrombotic, anti-inflammatory, anticancer, antiviral, and pro-angiogenic activities, besides its beneficial effects in hemodialysis, cellular growth modulation, fibrosis and hyperglycemia. Through an historical overview, this document covers most of the science regarding the holothurian FucCS. Both structural and medical properties of this unique GAG, investigated during the last 25 years, are systematically discussed herein.

  2. [Analysis of chondroitin sulfate content of Cervi Cornu Pantotrichum with different processing methods and different parts].

    Science.gov (United States)

    Gong, Rui-Ze; Wang, Yan-Hua; Sun, Yin-Shi

    2018-02-01

    The differences and the variations of chondroitin sulfate content in different parts of Cervi Cornu Pantotrichum(CCP) with different processing methods were investigated. The chondroitin sulfate from velvet was extracted by dilute alkali-concentrated salt method. Next, the chondroitin sulfate was digested by chondroitinase ABC.The contents of total chondroitin sulfate and chondroitin sulfate A, B and C in the samples were determined by high performance liquid chromatography(HPLC).The content of chondroitin sulfate in wax,powder,gauze,bone slices of CCP with freeze-drying processing is 14.13,11.99,1.74,0.32 g·kg⁻¹, respectively. The content of chondroitin sulfate in wax,powder,gauze,bone slices of CCP with boiling processing is 10.71,8.97,2.21,1.40 g·kg⁻¹, respectively. The content of chondroitin sulfate in wax,powder,gauze,bone slices of CCP without blood is 12.47,9.47,2.64,0.07 g·kg⁻¹, respectively. And the content of chondroitin sulfate in wax,powder,gauze,bone slices of CCP with blood is 8.22,4.39,0.87,0.28 g·kg⁻¹ respectively. The results indicated that the chondroitin sulfate content in different processing methods was significantly different.The content of chondroitin sulfate in CCP with freeze-drying is higher than that in CCP with boiling processing.The content of chondroitin sulfate in CCP without blood is higher than that in CCP with blood. The chondroitin sulfate content in differerent paris of the velvet with the same processing methods was arranged from high to low as: wax slices, powder, gauze slices, bone slices. Copyright© by the Chinese Pharmaceutical Association.

  3. Symptom and structure modification in osteoarthritis with pharmaceutical-grade chondroitin sulfate: what's the evidence?

    Science.gov (United States)

    Hochberg, M; Chevalier, X; Henrotin, Y; Hunter, D J; Uebelhart, D

    2013-03-01

    Osteoarthritis is a chronic disease characterized by irreversible damage to joint structures, including loss of articular cartilage, osteophyte formation, alterations in the subchondral bone and synovial inflammation. It has been shown that chondroitin sulfate interferes with the progression of structural changes in joint tissues and is used in the management of patients with osteoarthritis. This review summarizes data from relevant reports describing the mechanisms of action of chondroitin sulfate that may explain the beneficial effects of the drug and examines the evidence for clinical efficacy of oral chondroitin sulfate in osteoarthritis. Data included in the review were derived from a literature search in PubMed. Literature searches were performed in PubMed using the search terms 'chondroitin sulfate', 'pharmaceutical-grade', 'osteoarthritis', 'randomized clinical trials', 'humans'. The MEDLINE database was searched from January 1996 through August 2012 for all randomized controlled trials, meta-analyses, systematic reviews, and review articles of chondroitin sulfate in osteoarthritis. Chondroitin sulfate exerts in vitro a beneficial effect on the metabolism of different cell lines: chondrocytes, synoviocytes and cells from subchondral bone, all involved in osteoarthritis. It increases type II collagen and proteoglycan synthesis in human articular chondrocytes and is able to reduce the production of some pro-inflammatory factors and proteases, to reduce the cellular death process, and improve the anabolic/catabolic balance of the extracellular cartilage matrix (ECM). Clinical trials have reported a beneficial effect of chondroitin sulfate on pain and function. The structure-modifying effects of chondroitin sulfate have been reported and analyzed in recent meta-analyses. The results in knee osteoarthritis demonstrate a small but significant reduction in the rate of decline in joint space width. Because chondroitin sulfate quality of several nutraceuticals has

  4. Discrepancies in composition and biological effects of different formulations of chondroitin sulfate.

    Science.gov (United States)

    Martel-Pelletier, Johanne; Farran, Aina; Montell, Eulàlia; Vergés, Josep; Pelletier, Jean-Pierre

    2015-03-06

    Osteoarthritis is a common, progressive joint disease, and treatments generally aim for symptomatic improvement. However, SYmptomatic Slow-Acting Drugs in Osteoarthritis (SYSADOAs) not only reduce joint pain, but slow structural disease progression. One such agent is chondroitin sulfate-a complex, heterogeneous polysaccharide. It is extracted from various animal cartilages, thus has a wide range of molecular weights and different amounts and patterns of sulfation. Chondroitin sulfate has an excellent safety profile, and although various meta-analyses have concluded that it has a beneficial effect on symptoms and structure, others have concluded little or no benefit. This may be due, at least partly, to variations in the quality of the chondroitin sulfate used for a particular study. Chondroitin sulfate is available as pharmaceutical- and nutraceutical-grade products, and the latter have great variations in preparation, composition, purity and effects. Moreover, some products contain a negligible amount of chondroitin sulfate and among samples with reasonable amounts, in vitro testing showed widely varying effects. Of importance, although some showed anti-inflammatory effects, others demonstrated weak effects, and some instances were even pro-inflammatory. This could be related to contaminants, which depend on the origin, production and purification process. It is therefore vitally important that only pharmaceutical-grade chondroitin sulfate be used for treating osteoarthritis patients.

  5. Biological functions of iduronic acid in chondroitin/dermatan sulfate

    OpenAIRE

    Thelin, Martin A; Bartolini, Barbara; Axelsson, Jakob; Gustafsson, Renata; Tykesson, Emil; Pera, Edgar; Oldberg, ?ke; Maccarana, Marco; Malmstrom, Anders

    2013-01-01

    The presence of iduronic acid in chondroitin/dermatan sulfate changes the properties of the polysaccharides because it generates a more flexible chain with increased binding potentials. Iduronic acid in chondroitin/dermatan sulfate influences multiple cellular properties, such as migration, proliferation, differentiation, angiogenesis and the regulation of cytokine/growth factor activities. Under pathological conditions such as wound healing, inflammation and cancer, iduronic acid has diverse...

  6. Structural elucidation of fucosylated chondroitin sulfates from sea cucumber using FTICR-MS/MS.

    Science.gov (United States)

    Agyekum, Isaac; Pepi, Lauren; Yu, Yanlei; Li, Junhui; Yan, Lufeng; Linhardt, Robert J; Chen, Shiguo; Amster, I Jonathan

    2018-02-01

    Fucosylated chondroitin sulfates are complex polysaccharides extracted from sea cucumber. They have been extensively studied for their anticoagulant properties and have been implicated in other biological activities. While nuclear magnetic resonance spectroscopy has been used to extensively characterize fucosylated chondroitin sulfate oligomers, we herein report the first detailed mass characterization of fucosylated chondroitin sulfate using high-resolution Fourier transform ion cyclotron resonance mass spectrometry. The two species of fucosylated chondroitin sulfates considered for this work include Pearsonothuria graeffei (FCS-Pg) and Isostichopus badionotus (FCS-Ib). Fucosylated chondroitin sulfate oligosaccharides were prepared by N-deacetylation-deaminative cleavage of the two fucosylated chondroitin sulfates and purified by repeated gel filtration. Accurate mass measurements obtained from electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry measurements confirmed the oligomeric nature of these two fucosylated chondroitin sulfate oligosaccharides with each trisaccharide repeating unit averaging four sulfates per trisaccharide. Collision-induced dissociation of efficiently deprotonated molecular ions through Na/H + exchange proved useful in providing structurally relevant glycosidic and cross-ring product ions, capable of assigning the sulfate modifications on the fucosylated chondroitin sulfate oligomers. Careful examination of the tandem mass spectrometry of both species deferring in the positions of sulfate groups on the fucose residue (FCS-Pg-3,4- OS) and (FCS-Ib-2,4- OS) revealed cross-ring products 0,2 A αf and 2,4 X 2αf which were diagnostic for (FCS-Pg-3,4- OS) and 0,2 X 2αf diagnostic for (FCS-Ib-2,4- OS). Mass spectrometry and tandem mass spectrometry data acquired for both species varying in oligomer length (dp3-dp15) are presented.

  7. Chondroitin sulfates do not impede axonal regeneration in goldfish spinal cord.

    Science.gov (United States)

    Takeda, Akihito; Okada, Soichiro; Funakoshi, Kengo

    2017-10-15

    Chondroitin sulfate proteoglycans produced in glial scar tissue are a major inhibitory factor for axonal regeneration after central nervous system injury in mammals. The inhibition is largely due to chondroitin sulfates, whose effects differ according to the sulfation pattern. In contrast to mammals, fish nerves spontaneously regenerate beyond the scar tissue after spinal cord injury, although the mechanisms that allow for axons to pass through the scar are unclear. Here, we used immunohistochemistry to examine the expression of two chondroitin sulfates with different sulfation variants at the lesion site in goldfish spinal cord. The intact spinal cord was immunoreactive for both chondroitin sulfate-A (CS-A) and chondroitin sulfate-C (CS-C), and CS-A immunoreactivity overlapped extensively with glial processes positive for glial fibrillary acidic protein. At 1week after inducing the spinal lesion, CS-A immunoreactivity was observed in the cell bodies and extracellular matrix, as well as in glial processes surrounding the lesion center. At 2weeks after the spinal lesion, regenerating axons entering the lesion center overtook the CS-A abundant area. In contrast, at 1week after lesion induction, CS-C immunoreactivity was significantly decreased, and at 2weeks after lesion induction, CS-C immunoreactivity was observed along the regenerating axons entering the lesion center. The present findings suggest that after spinal cord injury in goldfish, chondroitin sulfate proteoglycans are deposited in the extracellular matrix at the lesion site but do not form an impenetrable barrier to the growth of regenerating axons. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Sulfation of chondroitin. Specificity, degree of sulfation, and detergent effects with 4-sulfating and 6-sulfating microsomal systems

    International Nuclear Information System (INIS)

    Sugumaran, G.; Silbert, J.E.

    1988-01-01

    Microsomal preparations from chondroitin 6-sulfate-producing chick embryo epiphyseal cartilage, and from chondroitin 4-sulfate-producing mouse mastocytoma cells, were incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine to form non-sulfated proteo[14C]chondroitin. Aliquots of the incubations were then incubated with 3'-phosphoadenylylphosphosulfate (PAPS) in the presence or absence of various detergents. In the absence of detergents, there was good sulfation of this endogenous proteo[14C]chondroitin by the original microsomes from both sources. Detergents, with the exception of Triton X-100, markedly inhibited sulfation in the mast cell system but not in the chick cartilage system. These results indicate that sulfation and polymerization are closely linked on cell membranes and that in some cases this organization can be disrupted by detergents. When aliquots of the original incubation were heat inactivated, and then reincubated with new microsomes from chick cartilage and/or mouse mastocytoma cells plus PAPS, there was no significant sulfation of this exogenous proteo[14C] chondroitin with either system unless Triton X-100 was added. Sulfation of exogenous chondroitin and chondroitin hexasaccharide was compared with sulfation of endogenous and exogenous proteo[14C]chondroitin. Sulfate incorporation into hexasaccharide and chondroitin decreased as their concentrations (based on uronic acid) approached that of the proteo[14C]chondroitin. At the same time, the degree of sulfation in percent of substituted hexosamine increased. However, the degree of sulfation did not reach that of the endogenous proteo[14C]chondroitin. Hexasaccharide and chondroitin sulfation were stimulated by the presence of Triton X-100. However, in contrast to the exogenous proteo[14C]chondroitin, there was some sulfation of hexasaccharide and chondroitin in the absence of this detergent

  9. Chondroitin-4-sulfation negatively regulates axonal guidance and growth

    Science.gov (United States)

    Wang, Hang; Katagiri, Yasuhiro; McCann, Thomas E.; Unsworth, Edward; Goldsmith, Paul; Yu, Zu-Xi; Tan, Fei; Santiago, Lizzie; Mills, Edward M.; Wang, Yu; Symes, Aviva J.; Geller, Herbert M.

    2008-01-01

    Summary Glycosaminoglycan (GAG) side chains endow extracellular matrix proteoglycans with diversity and complexity based upon the length, composition, and charge distribution of the polysaccharide chain. Using cultured primary neurons, we show that specific sulfation in the GAG chains of chondroitin sulfate (CS) mediates neuronal guidance cues and axonal growth inhibition. Chondroitin-4-sulfate (CS-A), but not chondroitin-6-sulfate (CS-C), exhibits a strong negative guidance cue to mouse cerebellar granule neurons. Enzymatic and gene-based manipulations of 4-sulfation in the GAG side chains alter their ability to direct growing axons. Furthermore, 4-sulfated CS GAG chains are rapidly and significantly increased in regions that do not support axonal regeneration proximal to spinal cord lesions in mice. Thus, our findings provide the evidence showing that specific sulfation along the carbohydrate backbone carries instructions to regulate neuronal function. PMID:18768934

  10. Immunological characterization of a basement membrane-specific chondroitin sulfate proteoglycan

    DEFF Research Database (Denmark)

    McCarthy, K J; Accavitti, M A; Couchman, J R

    1989-01-01

    with the proteoglycan preparation and four mAbs recognizing the core protein of a high-density, buoyant chondroitin sulfate proteoglycan were raised. Confirmation of antibody specificity was carried out by the preparation of affinity columns made from each of the mAbs. Chondroitin sulfate proteoglycans (CSPGs) were...... (Mr = 5-6 x 10(5)), with a core protein of Mr = approximately 1.5-1.6 x 10(5) and composed exclusively of chondroitin sulfate chains with an average Mr = 1.6-1.8 x 10(4). In addition, a CSPG was purified from adult rat kidney, whose core protein was also Mr = 1.6 x 10(5). The proteoglycan and its core...... sulfate proteoglycans, it therefore appears that at least one CSPG is a widespread basement membrane component....

  11. Effects of chondroitin sulfate and glucosamine in adult patients with Kaschin-Beck disease

    DEFF Research Database (Denmark)

    Zhang, Ya-xu; Dong, Wei; Liu, Hui

    2010-01-01

    The purpose is to investigate the effects of chondroitin sulfate and glucosamine on adult patients with Kaschin-Beck disease (KBD). A total of 80 patients, aged over 40 years, were randomized into two groups receiving either 1,600 mg oral mixture of chondroitin sulfate and glucosamine or placebo......). But the overall mean change in joint space was significant between the two groups (P chondroitin sulfate and glucosamine might play a protective role in preserving articular cartilage and provide...

  12. Basement membrane chondroitin sulfate proteoglycans: localization in adult rat tissues

    DEFF Research Database (Denmark)

    McCarthy, K J; Couchman, J R

    1990-01-01

    Heparan sulfate proteoglycans have been described as the major proteoglycan component of basement membranes. However, previous investigators have also provided evidence for the presence of chondroitin sulfate glycosaminoglycan in these structures. Recently we described the production...... and characterization of core protein-specific monoclonal antibodies (MAb) against a chondroitin sulfate proteoglycan (CSPG) present in Reichert's membrane, a transient extra-embryonic structure of rodents. This CSPG was also demonstrated to be present in adult rat kidney. We report here the tissue distribution...... of epitopes recognized by these MAb. The ubiquitous presence of these epitopes in the basement membranes of nearly all adult rat tissues demonstrates that at least one CSPG is a constituent of most basement membranes, and by virtue of its unique distribution is distinct from other chondroitin and dermatan...

  13. Heparan sulfate-chondroitin sulfate hybrid proteoglycan of the cell surface and basement membrane of mouse mammary epithelial cells

    International Nuclear Information System (INIS)

    David, G.; Van den Berghe, H.

    1985-01-01

    Chondroitin sulfate represents approximately 15% of the 35 SO 4 -labeled glycosaminoglycans carried by the proteoglycans of the cell surface and of the basolateral secretions of normal mouse mammary epithelial cells in culture. Evidence is provided that these chondroitin sulfate-carrying proteoglycans are hybrid proteoglycans, carrying both chondroitin sulfate and heparan sulfate chains. Complete N-desulfation but limited O-desulfation, by treatment with dimethyl sulfoxide, of the proteoglycans decreased the anionic charge of the chondroitin sulfate-carrying proteoglycans to a greater extent than it decreased the charge of their constituent chondroitin sulfate chains. Partial depolymerization of the heparan sulfate residues of the proteoglycans with nitrous acid or with heparin lyase also reduced the effective molecular radius of the chondroitin sulfate-carrying proteoglycans. The effect of heparin lyase on the chondroitin sulfate-carrying proteoglycans was prevented by treating the proteoglycan fractions with dimethyl sulfoxide, while the effect of nitrous acid on the dimethyl sulfoxide-treated proteoglycans was prevented by acetylation. This occurrence of heparan sulfate-chondroitin sulfate hybrid proteoglycans suggests that the substitution of core proteins by heparan sulfate or chondroitin sulfate chains may not solely be determined by the specific routing of these proteins through distinct chondroitin sulfate and heparan sulfate synthesizing mechanisms. Moreover, regional and temporal changes in pericellular glycosaminoglycan compositions might be due to variable postsynthetic modification of a single gene product

  14. The effect of divalent salt in chondroitin sulfate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Aranghel, D., E-mail: daranghe@nipne.ro [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); Extreme Light Intrastructure Nuclear Physics (ELI-NP), Reactorului 30,RO-077125, POB-MG6, Magurele-Bucharest (Romania); Badita, C. R. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); University of Bucharest, Faculty of Physics, Atomiştilor 405, CP MG - 11, RO – 077125, Bucharest-Magurele (Romania); Radulescu, A. [Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science, 85747 Garching (Germany); Moldovan, L.; Craciunescu, O. [National Institute R& D for Biological Sciences, Splaiul Independenţei 296, sector 6, cod 060031, C.P. 17-16, Bucharest (Romania); Balasoiu, M. [Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, RO-077125, POB-MG6, Magurele-Bucharest, Romania, daranghe@nipne.ro (Romania); Joint Institute for Nuclear Research, 141980 Dubna, Moscow region (Russian Federation)

    2016-03-25

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca{sup 2+} cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca{sup 2+} by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl{sub 2}) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  15. The effect of divalent salt in chondroitin sulfate solutions

    Science.gov (United States)

    Aranghel, D.; Badita, C. R.; Radulescu, A.; Moldovan, L.; Craciunescu, O.; Balasoiu, M.

    2016-03-01

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca2+ cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca2+ by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl2) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  16. The effect of divalent salt in chondroitin sulfate solutions

    International Nuclear Information System (INIS)

    Aranghel, D.; Badita, C. R.; Radulescu, A.; Moldovan, L.; Craciunescu, O.; Balasoiu, M.

    2016-01-01

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca"2"+ cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca"2"+ by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl_2) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  17. Combined gelatin-chondroitin sulfate hydrogels for controlled release of cationic antibacterial proteins

    NARCIS (Netherlands)

    Kuijpers, A. J.; Engbers, G. H. M.; Meyvis, T. K. L.; de Smedt, S. S. C.; Demeester, J.; Krijgsveld, J.; Zaat, S. A. J.; Dankert, J.; Feijen, J.

    2000-01-01

    Chemically cross-linked gelatin-chondroitin sulfate (ChS) hydrogels were prepared for the controlled release of small cationic proteins. The amount of chondroitin sulfate in the gelatin gels varied between 0 and 20 wt %. The chemical cross-link density, the degree of swelling, and the rheological

  18. Two fucosylated chondroitin sulfates from the sea cucumber Eupentacta fraudatrix.

    Science.gov (United States)

    Ustyuzhanina, Nadezhda E; Bilan, Maria I; Dmitrenok, Andrey S; Nifantiev, Nikolay E; Usov, Anatolii I

    2017-05-15

    Two fucosylated chondroitin sulfates EF1 and EF2 were isolated from the sea cucumber Eupentacta fraudatrix. Separation of the polysaccharides was performed using anion-exchange chromatography on DEAE-Sephacel by elution of 0.75M and 1.0M NaCl solutions. The structures of biopolymers were determined by chemical and NMR spectroscopic methods. The backbone of EF1 was found to be composed of chondroitin sulfate A and E units in a ratio of about 1:1. The core of EF2 along with chondroitin sulfate A and E fragments contained unusual disaccharide repeating units →4)-β-d-GlcpA2S3S-(1→3)-β-d-GalpNAc6S-(1→. The main type of branches in both polysaccharides was α-l-Fucp3S4S unit attached to O-3 of GlcA residues. Another type of branches was found to be the disaccharide fragment α-l-Fucp-(1→2)-α-l-Fucp3S4S-(1→ linked to O-3 of GlcA. The presence of structurally different fucosylated chondroitin sulfates in one species of sea cucumber is rather unusual and has not been described previously. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Photorefractive keratectomy: measuring the matrix metalloproteinase activity and chondroitin sulfate concentration in tear fluid

    Directory of Open Access Journals (Sweden)

    Tetsuya Mutoh

    2010-09-01

    Full Text Available Tetsuya Mutoh, Masaya Nishio, Yukihiro Matsumoto, Kiyomi Arai, Makoto ChikudaDepartment of Ophthalmology, Dokkyo Medical University Koshigaya Hospital, Saitama, JapanAbstract: We herein report the case of a 20-year-old man who underwent a photorefractive keratectomy (PRK. We measured matrix metalloproteinase-9 (MMP-9 activity and chondroitin 4 sulfate and chondroitin 6 sulfate concentrations in tear fluid. Tear fluid was collected preoperatively via microcapillary tube, and was collected postoperatively on the first and fourth days, and after one week, one month, three months, and six months. Samples were formulated by dilution with 200 µL of saline. MMP-9 activity was analyzed by an enzyme immunocapture activity assay, and the concentrations of chondroitin sulfate were analyzed by enzyme-linked immunosorbent assay. No complications were observed after surgery, except for a minimal subepithelial haze. Although MMP-9 activity changed on the fourth postoperative day, the activity changed only minimally at this time. Chondroitin 4 sulfate concentrations in tear fluid increased dramatically from one week to one month, decreased transiently at three months, and increased by six months. The chondroitin 6 sulfate concentration did not normalize within one week, and decreased from one week to three months compared with the preoperative score, and was close to the preoperative score at six months. We conclude that corneal wound healing was still incomplete six months after PRK, and chondroitin 4 sulfate appears to be critical in this process.Keywords: matrix metalloproteinase, chondroitin sulfate, human tear fluid, photorefractive keratectomy, corneal wound healing

  20. Effects of oversulfated and fucosylated chondroitin sulfates on coagulation. Challenges for the study of anticoagulant polysaccharides.

    Science.gov (United States)

    Fonseca, Roberto J C; Oliveira, Stephan-Nicollas M C G; Pomin, Vitor H; Mecawi, André S; Araujo, Iracema G; Mourão, Paulo A S

    2010-05-01

    We report the effects of a chemically oversulfated chondroitin sulfate and a naturally fucosylated chondroitin sulfate on the coagulation system. The former has been recently identified as a contaminant of heparin preparations and the latter has been proposed as an alternative anticoagulant. The mechanism of action of these polymers on coagulation is complex and target different components of the coagulation system. They have serpin-independent anticoagulant activity, which preponderates in plasma. They also have serpin-dependent anticoagulant activity but differ significantly in the target coagulation protease and preferential serpin. Their anticoagulant effects differ even more markedly when tested as inhibitors of coagulation proteases using plasma as a source of serpins. It is possible that the difference is due to the high availability of fucosylated chondroitin sulfate whereas oversulfated chondroitin sulfate has strong unspecific binding to plasma protein and low availability for the binding to serpins. When tested using a venous thrombosis experimental model, oversulfated chondroitin sulfate is less potent as an antithrombotic agent than fucosylated chondroitin sulfate. These highly sulfated chondroitin sulfates activate factor XII in in vitro assays, based on kallikrein release. However, only fucosylated chondroitin sulfate induces hypotension when intravenously injected into rats. In conclusion, the complexity of the regulatory mechanisms involved in the action of highly sulfated polysaccharides in coagulation requires their analysis by a combination of in vitro and in vivo assays. Our results are relevant due to the urgent need for new anticoagulant drugs or alternative sources of heparin.

  1. Anti-tumor Study of Chondroitin Sulfate-Methotrexate Nanogels

    Science.gov (United States)

    Wang, Jinyu; Zhao, Weibo; Chen, Haixiao; Qin, An; Zhu, Peizhi

    2017-10-01

    Self-assembly nanogels (NGs) were formed by bioconjugating methotrexate (MTX) with chondroitin sulfate (CS). MTX-CS NGs can greatly enhance the solubility and improve the delivery efficacy of MTX due to the CD44 binding property of CS. Vivo experiments revealed that MTX-CS NGs showed less toxicity than MTX. MTX-CS NGs can improve the anti-tumor effect while reducing the side effects of MTX. Due to their CD44 binding property, chondroitin sulfate-drug conjugates could be a promising and efficient platform for improving the solubility of sparingly soluble drug molecules as well as targeted delivery to cancer cells and tumor tissues.

  2. Glucosamine and chondroitin use in canines for osteoarthritis: A review

    Directory of Open Access Journals (Sweden)

    Angel Bhathal

    2017-02-01

    Full Text Available Osteoarthritis is a slowly progressive and debilitating disease that affects canines of all breeds. Pain and decreased mobility resulting from osteoarthritis often have a negative impact on the affected canine’s quality of life, level of comfort, daily functioning, activity, behaviour, and client-pet companionship. Despite limited and conflicting evidence, the natural products glucosamine hydrochloride (HCl and chondroitin sulfate are commonly recommended by veterinarians for treating osteoarthritis in dogs. There is a paucity of well-designed clinical veterinary studies investigating the true treatment effect of glucosamine and chondroitin. The purposes of this review article are to provide a brief background on glucosamine and chondroitin use in canine osteoarthritis and to critically review the available literature on the role of these products for improving clinical outcomes. Based on critical review, recommendations for practice are suggested and a future study design is proposed.

  3. Properties of aqueous dispersion of chitosan and chondroitin sulfate complex derived from aquatic organisms

    Directory of Open Access Journals (Sweden)

    Novikov V. Yu.

    2016-09-01

    Full Text Available Investigation of production of chondroitin sulfate, chitosan and polyelectrolyte complexes based on them received from the local marine raw materials is relevant from the point of view of developing a comprehensive waste-free technology for natural raw materials processing. The objects of study are chitosan derived from the shell of the Kamchatka crab Paralithodes camtschaticus and chondroitin sulfate derived from cartilage of salmon Salmon salar. To determine the surface tension of polyelectrolyte complex solutions and dispersions the Wilhelmy method has been used, the effective radius of particle dispersion has been calculated by light scattering, measurements of effective viscosity have been carried out under shear deformation. The conditions of formation, surface and rheological properties of the chitosan and chondroitin sulfate complex extracted from aquatic organisms in the Barents Sea have been studied. Obtaining conditions and molar ratios of these polyelectrolytes in which the aqueous dispersion of the complex remains stable for a long time have been established. It has been found that by addition of chondroitin sulfate solution to chitosan solution in molar ratios of 1 : 3; 1 : 6 the dispersion of the polyelectrolyte complex stable for 2 to 3 days has been formed. The polyelectrolyte complex dispersions behave as non-Newtonian pseudoplastic liquid. When the molar ratio of the mixed solution is 1 : 1 (regardless of the sequence of mixing suspension of the polyelectrolyte complex has been formed, then there is precipitation. Equilibrium surface tension of the aqueous dispersion of the polyelectrolyte complex is higher than that of solutions of chondroitin sulfate and chitosan. The effective radius of particles in the complex dispersion has been determined. The effective radius of the particles in the complex dispersion depends on the molar ratio of chondroitin sulfate : chitosan. A qualitative scheme of formation of polyelectrolyte

  4. Biphasic role of chondroitin sulfate in cardiac differentiation of embryonic stem cells through inhibition of Wnt/β-catenin signaling.

    Directory of Open Access Journals (Sweden)

    Robert D Prinz

    Full Text Available The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury.

  5. Biphasic role of chondroitin sulfate in cardiac differentiation of embryonic stem cells through inhibition of Wnt/β-catenin signaling.

    Science.gov (United States)

    Prinz, Robert D; Willis, Catherine M; van Kuppevelt, Toin H; Klüppel, Michael

    2014-01-01

    The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional importance in human disease. In contrast, very little is known about the roles of chondroitin sulfate molecules and sulfation patterns during mammalian development and cell lineage specification. Here, we report a novel biphasic role of chondroitin sulfate in the specification of the cardiac cell lineage during embryonic stem cell differentiation through modulation of Wnt/beta-catenin signaling. Lineage marker analysis demonstrates that enzymatic elimination of endogenous chondroitin sulfates leads to defects specifically in cardiac differentiation. This is accompanied by a reduction in the number of beating cardiac foci. Mechanistically, we show that endogenous chondroitin sulfate controls cardiac differentiation in a temporal biphasic manner through inhibition of the Wnt/beta-catenin pathway, a known regulatory pathway for the cardiac lineage. Treatment with a specific exogenous chondroitin sulfate, CS-E, could mimic these biphasic effects on cardiac differentiation and Wnt/beta-catenin signaling. These results establish chondroitin sulfate and its sulfation balance as important regulators of cardiac cell lineage decisions through control of the Wnt/beta-catenin pathway. Our work suggests that targeting the chondroitin biosynthesis and sulfation machinery is a novel promising avenue in regenerative strategies after heart injury.

  6. Biosynthesis and function of chondroitin sulfate.

    Science.gov (United States)

    Mikami, Tadahisa; Kitagawa, Hiroshi

    2013-10-01

    Chondroitin sulfate proteoglycans (CSPGs) are principal pericellular and extracellular components that form regulatory milieu involving numerous biological and pathophysiological phenomena. Diverse functions of CSPGs can be mainly attributed to structural variability of their polysaccharide moieties, chondroitin sulfate glycosaminoglycans (CS-GAG). Comprehensive understanding of the regulatory mechanisms for CS biosynthesis and its catabolic processes is required in order to understand those functions. Here, we focus on recent advances in the study of enzymatic regulatory pathways for CS biosynthesis including successive modification/degradation, distinct CS functions, and disease phenotypes that have been revealed by perturbation of the respective enzymes in vitro and in vivo. Fine-tuned machineries for CS production/degradation are crucial for the functional expression of CS chains in developmental and pathophysiological processes. Control of enzymes responsible for CS biosynthesis/catabolism is a potential target for therapeutic intervention for the CS-associated disorders. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Chondroitin Sulfate (CS) Lyases: Structure, Function and Application in Therapeutics.

    Science.gov (United States)

    Rani, Aruna; Patel, Seema; Goyal, Arun

    2018-01-01

    Glycosaminoglycans (GAGs) such as chondroitin sulfate (CS) are the chief natural polysaccharides which reside in biological tissues mainly in extracellular matrix. These CS along with adhesion molecules and growth factors are involved in central nervous system (CNS) development, cell progression and pathogenesis. The chondroitin lyases are the enzyme that degrade and alter the CS chains and hence modify various signalling pathways involving CS chains. These CS lyases are substrate specific, can precisely manipulate the CS polysaccharides and have various biotechnological, medical and therapeutic applications. These enzymes can be used to produce the unsaturated oligosaccharides, which have immune-modulatory, anti-inflammatory and neuroprotective properties. This review focuses on the major breakthrough of the chondroitin sulfate degrading enzymes, their structures and functioning mechanism. This also provides comprehensive information regarding production, purification, characterization of CS lyases and their major applications, both established as well as emerging ones such as neural development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. Modulation of the expression of chondroitin sulfate proteoglycan in stimulated human monocytes

    International Nuclear Information System (INIS)

    Uhlin-Hansen, L.; Eskeland, T.; Kolset, S.O.

    1989-01-01

    Proteoglycan biosynthesis was studied in human monocytes and monocyte-derived macrophages (MDM) after exposure to typical activators of the monocyte/macrophage system: interferon-gamma (IFN-gamma), lipopolysaccharide (LPS), and phorbol 12-myristate 13-acetate (PMA). By morphological examination, both monocytes and MDM were stimulated by these activators. Treatment with IFN-gamma resulted in a slight decrease in the expression of [35S]chondroitin sulfate proteoglycan (CSPG) in both monocytes and MDM, whereas LPS treatment increased the [35S]CSPG expression 1.8 and 2.2 times, respectively. PMA, in contrast, decreased the CSPG expression 0.4 times in monocytes, whereas MDM were stimulated to increase the biosynthesis 1.9 times. An increase in the sulfate density of the chondroitin sulfate chains was evident following differentiation of monocytes into MDM due to the expression of disulfated disaccharide units of the chondroitin sulfate E type (CS-E). However, monocytes exposed to PMA did also express disaccharides of the chondroitin sulfate E type. Furthermore, the expression of CS-E in MDM was increased 2 times following PMA treatment. An inactive phorbol ester, phorbol 12,13-diacetate, did not affect the expression of CS-E in either monocytes or MDM when compared with control cultures, suggesting that protein kinase C-dependent signal pathways may be involved in the regulation of sulfation of CSPG. Exposure to LPS or IFN-gamma did not lead to any changes in the sulfation of the chondroitin sulfate chains

  9. Inflammatory microRNA-194 and -515 attenuate the biosynthesis of chondroitin sulfate during human intervertebral disc degeneration.

    Science.gov (United States)

    Hu, Bo; Xu, Chen; Tian, Ye; Shi, Changgui; Zhang, Ying; Deng, Lianfu; Zhou, Hongyu; Cao, Peng; Chen, Huajiang; Yuan, Wen

    2017-07-25

    Intervertebral disc degeneration (IDD) is characterized by dehydration and loss of extracellular matrixes in the nucleus pulposus region. Chondroitin sulfate has been found to be the water-binding molecule that played a key role in IDD. Although investigators have reported that inflammatory cytokines are involved in the reduction of chondroitin sulfate in IDD, but the underlying mechanism is unrevealed. Since chondroitin sulfate synthesis is controlled by chondroitin sulfate glycosyltransferases CHSY-1/2/3 and CSGALNACT-1/2, their functional role and regulatory mechanism in IDD is not fully studied. Here, we set out to investigate the function and regulatory roles of these factors during IDD development. We found that among these chondroitin sulfate glycosyltransferases, CHSY-1/2/3 are significantly down-regulated in severe IDD samples than mild IDD samples. In vitro experiments revealed that Interleukin-1β and Tumor Necrosis Factor-α stimulation led to significant reduction of CHSY-1/2/3 at protein level than mRNA level in NP cells, indicating a post-transcriptional regulatory mechanisms are involved. By computational prediction and analysis, we found that inflammatory cytokines stimulated microRNA-194 and -515 target CHSY-1/2/3 mRNA and significantly interrupt their translation and downstream chondroitin sulfate deposition. Inhibition of microRNA-194 and -515 however, significantly rescued CHSY-1/2/3 expressions and chondroitin sulfate deposition. These findings together demonstrated a vital role of inflammatory stimulated microRNAs in promoting intervertebral disc degeneration by interrupt chondroitin sulfate synthesis, which may provide new insights into the mechanism and therapeutic approaches in IDD.

  10. Platelet lysate and chondroitin sulfate loaded contact lenses to heal corneal lesions.

    Science.gov (United States)

    Sandri, Giuseppina; Bonferoni, Maria Cristina; Rossi, Silvia; Delfino, Alessio; Riva, Federica; Icaro Cornaglia, Antonia; Marrubini, Giorgio; Musitelli, Giorgio; Del Fante, Claudia; Perotti, Cesare; Caramella, Carla; Ferrari, Franca

    2016-07-25

    Hemoderivative tear substitutes contain various ephiteliotrophic factors, such as growth factors (GF), involved in ocular surface homeostasis without immunogenic properties. The aim of the present work was the loading of platelet lysate into contact lenses to improve the precorneal permanence of platelet lysate growth factors on the ocular surface to enhance the treatment of corneal lesions. To this purpose, chondroitin sulfate, a sulfated glycosaminoglycan, which is normally present in the extracellular matrix, was associated with platelet lysate. In fact, chondroitin sulfate is capable of electrostatic interaction with positively charged growth factors, in particular, with bFGF, IGF, VEGF, PDGF and TGF-β, resulting in their stabilization and reduced degradation in solution. In the present work, various types of commercially available contact lenses have been loaded with chondroitin sulfate or chondroitin sulfate in association with platelet lysate to achieve a release of growth factors directly onto the corneal surface lesions. One type of contact lenses (PureVision(®)) showed in vitro good proliferation properties towards corneal cells and were able to enhance cut closure in cornea constructs. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. The combined therapy with chondroitin sulfate plus glucosamine sulfate or chondroitin sulfate plus glucosamine hydrochloride does not improve joint damage in an experimental model of knee osteoarthritis in rabbits.

    Science.gov (United States)

    Roman-Blas, Jorge A; Mediero, Aránzazu; Tardío, Lidia; Portal-Nuñez, Sergio; Gratal, Paula; Herrero-Beaumont, Gabriel; Largo, Raquel

    2017-01-05

    Osteoarthritis is the most common chronic joint disorder especially during aging. Although with controversies, glucosamine, both in its forms of sulfate and hydrochloride, and chondroitin sulfate are commonly employed to treat osteoarthritis. Due to the modest improve in the symptoms observed in patients treated with these drugs alone, a formulation combining both agents has been considered. The discrepant results achieved for pain control or structural improvement in osteoarthritis patients has been attributed to the quality of chemical formulations or different bias in clinical studies. The current study has been designed to test the effects of two different combined formulations with adequate pharmaceutical grade of these drugs in osteoarthritic joints, and to explore the underlying mechanisms modulated by both formulations in different osteoarthritis target tissues. Knee osteoarthritis was surgically induced in experimental rabbits. Some animals received the combined therapy (CT)1, (chondroitin sulfate 1200mg/day + glucosamine sulfate 1500mg/day), or the CT2 ((chondroitin sulfate 1200mg/day + glucosamine hydrochloride 1500mg/day). Neither CT1 nor CT2 significantly modified the cartilage damage or the synovial inflammation observed in osteoarthritic animals. Treatments were also unable to modify the presence of pro-inflammatory mediators, and the synthesis of metalloproteinases in the cartilage or in the synovium of osteoarthritic animals. Combined therapies did not modify the decrease in the subchondral bone mineral density observed in osteoarthritic rabbits. Therapies of chondroitin sulfate plus glucosamine sulfate or chondroitin sulfate plus glucosamine hydrochloride failed to improve structural damage or to ameliorate the inflammatory profile of joint tissues during experimental osteoarthritis. Published by Elsevier B.V.

  12. Biphasic Role of Chondroitin Sulfate in Cardiac Differentiation of Embryonic Stem Cells through Inhibition of Wnt/beta-Catenin Signaling

    NARCIS (Netherlands)

    Prinz, R.D.; Willis, C.M.; Kuppevelt, T.H. van; Kluppel, M.

    2014-01-01

    The glycosaminoglycan chondroitin sulfate is a critical component of proteoglycans on the cell surface and in the extracellular matrix. As such, chondroitin sulfate side chains and the sulfation balance of chondroitin play important roles in the control of signaling pathways, and have a functional

  13. Sequence determination of synthesized chondroitin sulfate dodecasaccharides.

    Science.gov (United States)

    Shioiri, Tatsumasa; Tsuchimoto, Jun; Watanabe, Hideto; Sugiura, Nobuo

    2016-06-01

    Chondroitin sulfate (CS) is a linear acidic polysaccharide composed of repeating disaccharide units of glucuronic acid and N-acetyl-d-galactosamine. The polysaccharide is modified with sulfate groups at different positions by a variety of sulfotransferases. CS chains exhibit various biological and pathological functions by interacting with cytokines and growth factors and regulating their signal transduction. The fine structure of the CS chain defines its specific biological roles. However, structural analysis of CS has been restricted to disaccharide analysis, hampering the understanding of the structure-function relationship of CS chains. Here, we chemo-enzymatically synthesized CS dodecasaccharides having various sulfate modifications using a bioreactor system of bacterial chondroitin polymerase mutants and various CS sulfotransferases. We developed a sequencing method for CS chains using the CS dodecasaccharides. The method consists of (i) labeling a reducing end with 2-aminopyridine (PA), (ii) partial digestion of CS with testicular hyaluronidase, followed by separation of PA-conjugated oligosaccharides with different chain lengths, (iii) limited digestion of these oligosaccharides with chondroitin lyase AC II into disaccharides, followed by labeling with 2-aminobenzamide, (iv) CS disaccharide analysis using a dual-fluorescence HPLC system (reversed-phase ion-pair and ion-exchange chromatography), and (v) estimation of the composition by calculating individual disaccharide ratios. This CS chain sequencing allows characterization of CS-modifying enzymes and provides a useful tool toward understanding the structure-function relationship of CS chains. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Chondroitin-6-sulfate-containing proteoglycan: a new component of human skin dermoepidermal junction

    DEFF Research Database (Denmark)

    Fine, J D; Couchman, J R

    1988-01-01

    chondroitin sulfate proteoglycan is present in adult, neonatal, and/or fetal skin, and if present, its ultrastructural localization. Indirect immunofluorescence was performed on human adult, neonatal, and fetal skin. To detect the antigen, specimens were pretreated with chondroitinase ABC; absence of enzyme...... treatment served as negative control. Chondroitin sulfate proteoglycan was detectable in linear homogeneous array along the dermoepidermal junction and within vascular (and when present, adnexal) basement membranes in both adult and neonatal skin. In fetal skin, basement membrane staining was noted as early...... as 54 gestational days. Indirect immunoelectron microscopy and NaCl-split skin studies were performed to ultrastructurally localize the antigen; immune deposits were detectable within the lamina densa in chondroitinase-treated skin. These findings demonstrate that chondroitin sulfate proteoglycan...

  15. Effects of sulfate deprivation on the production of chondroitin/dermatan sulfate by cultures of skin fibroblasts from normal and diabetic individuals

    International Nuclear Information System (INIS)

    Silbert, C.K.; Humphries, D.E.; Palmer, M.E.; Silbert, J.E.

    1991-01-01

    Human skin fibroblast monolayer cultures from two normal men, three Type I diabetic men, and one Type I diabetic woman were incubated with [3H]glucosamine in the presence of diminished concentrations of sulfate. Although total synthesis of [3H]chondroitin/dermatan glycosaminoglycans varied somewhat between cell lines, glycosaminoglycan production was not affected within any line when sulfate levels were decreased from 0.3 mM to 0.06 mM to 0.01 mM to 0 added sulfate. Lowering of sulfate concentrations resulted in diminished sulfation of chondroitin/dermatan in a progressive manner, so that overall sulfation dropped to as low as 19% for one of the lines. Sulfation of chondroitin to form chondroitin 4-sulfate and chondroitin 6-sulfate was progressively and equally affected by decreasing the sulfate concentration in the culture medium. However, sulfation to form dermatan sulfate was preserved to a greater degree, so that the relative proportion of dermatan sulfate to chondroitin sulfate increased. Essentially all the nonsulfated residues were susceptible to chondroitin AC lyase, indicating that little epimerization of glucuronic acid residues to iduronic acid had occurred in the absence of sulfation. These results confirm the previously described dependency of glucuronic/iduronic epimerization on sulfation, and indicate that sulfation of the iduronic acid-containing disaccharide residues of dermatan can take place with sulfate concentrations lower than those needed for 6-sulfation and 4-sulfation of the glucuronic acid-containing disaccharide residues of chondroitin. There were considerable differences among the six fibroblast lines in susceptibility to low sulfate medium and in the proportion of chondroitin 6-sulfate, chondroitin 4-sulfate, and dermatan sulfate. However, there was no pattern of differences between normals and diabetics

  16. Identification of chondroitin sulfate E proteoglycans and heparin proteoglycans in the secretory granules of human lung mast cells

    International Nuclear Information System (INIS)

    Stevens, R.L.; Austen, K.F.; Fox, C.C.; Lichtenstein, L.M.

    1988-01-01

    The predominant subclasses of mast cells in both the rat and the mouse can be distinguished from one another by their preferential synthesis of 35 S-labeled proteoglycans that contain either heparin or oversulfated chondroitin sulfate glycosaminoglycans. Although [ 35 S]heparin proteoglycans have been isolated from human lung mast cells of 40-70% purity and from a skin biopsy specimen of a patient with urticaria pigmentosa, no highly sulfated chondroitin sulfate proteoglycan has been isolated from any enriched or highly purified population of human mast cells. The authors demonstrate that human lung mast cells of 96% purity incorporate [ 35 S]sulfate into separate heparin and chondroitin sulfate proteoglycans in an ∼2:1 ratio. As assessed by HPLC of the chondroitinase ABC digests, the chondroitin [ 35 S]sulfate proteoglycans isolated from these human lung mast cells contain the same unusual chondroitin sulfate E disaccharide that is present in proteoglycans produced by interleukin 3-dependent mucosal-like mouse mast cells. Both the chondroitin [ 35 S]sulfate E proteoglycans and the [ 35 S]heparin proteoglycans were exocytosed from the [ 35 S]sulfate-labeled cells via perturbation of the IgE receptor, indicating that both types of 35 S-labeled proteoglycans reside in the secretory granules of these human lung mast cells

  17. Reduced sulfation of chondroitin sulfate but not heparan sulfate in kidneys of diabetic db/db mice.

    Science.gov (United States)

    Reine, Trine M; Grøndahl, Frøy; Jenssen, Trond G; Hadler-Olsen, Elin; Prydz, Kristian; Kolset, Svein O

    2013-08-01

    Heparan sulfate proteoglycans are hypothesized to contribute to the filtration barrier in kidney glomeruli and the glycocalyx of endothelial cells. To investigate potential changes in proteoglycans in diabetic kidney, we isolated glycosaminoglycans from kidney cortex from healthy db/+ and diabetic db/db mice. Disaccharide analysis of chondroitin sulfate revealed a significant decrease in the 4-O-sulfated disaccharides (D0a4) from 65% to 40%, whereas 6-O-sulfated disaccharides (D0a6) were reduced from 11% to 6%, with a corresponding increase in unsulfated disaccharides. In contrast, no structural differences were observed in heparan sulfate. Furthermore, no difference was found in the molar amount of glycosaminoglycans, or in the ratio of hyaluronan/heparan sulfate/chondroitin sulfate. Immunohistochemical staining for the heparan sulfate proteoglycan perlecan was similar in both types of material but reduced staining of 4-O-sulfated chondroitin and dermatan was observed in kidney sections from diabetic mice. In support of this, using qRT-PCR, a 53.5% decrease in the expression level of Chst-11 (chondroitin 4-O sulfotransferase) was demonstrated in diabetic kidney. These results suggest that changes in the sulfation of chondroitin need to be addressed in future studies on proteoglycans and kidney function in diabetes.

  18. Basement membrane chondroitin sulfate proteoglycan alterations in a rat model of polycystic kidney disease

    DEFF Research Database (Denmark)

    Ehara, T; Carone, F A; McCarthy, K J

    1994-01-01

    of distal tubules and collecting ducts was observed by 4 days with phenol II treatment, but the morphology returned to normal after 7 days of subsequent normal diet. Staining of tissue sections with two mouse monoclonal antibodies to a recently described basement membrane chondroitin sulfate proteoglycan...... to chondroitin sulfate chains confirmed these changes in cystic tubule basement membranes. During the recovery stage, interstitial chondroitin sulfate (representing a CSPG other than BM-CSPG) was greatly increased around these tubules, along with the glycoprotein fibronectin. Staining with antibody to a basement...... membrane heparan sulfate proteoglycan core protein related to perlecan did not diminish but rather stained affected tubules intensely, whereas laminin, on the other hand, was apparently diminished in the basement membranes of the cystic tubules. Type IV collagen staining did not change through disease...

  19. Acute Exacerbations of COPD Are Associated With Increased Expression of Heparan Sulfate and Chondroitin Sulfate in BAL.

    Science.gov (United States)

    Papakonstantinou, Eleni; Klagas, Ioannis; Roth, Michael; Tamm, Michael; Stolz, Daiana

    2016-03-01

    Acute exacerbations of COPD (AECOPDs) are associated with accelerated aggravation of clinical symptoms and deterioration of pulmonary function. The mechanisms by which exacerbations may contribute to airway remodeling and declined lung function are poorly understood. We investigated whether AECOPDs are associated with differential expression of glycosaminoglycans in BAL in a cohort of 97 patients with COPD. Patients with COPD with either stable disease (n = 53) or AECOPD (n = 44) and undergoing diagnostic bronchoscopy were matched for demographics and lung function parameters. Levels of heparan sulfate, chondroitin sulfate, dermatan sulfate, and matrix metalloproteinases (MMPs) in BAL were measured by enzyme-linked immunosorbent assay. Heparan sulfate and chondroitin sulfate were significantly increased in BAL of patients during exacerbations. Levels of heparan sulfate were higher in the BAL of patients with microbial infections. Chondroitin sulfate was negatively correlated with FEV1 % predicted but not with diffusing capacity of lung for carbon monoxide % predicted, indicating that chondroitin sulfate is associated with airway remodeling, leading to obstruction rather than to emphysema. Furthermore, heparan sulfate and chondroitin sulfate were significantly correlated with MMP-9, MMP-2, and MMP-12 in BAL, indicating that they were cleaved from their respective proteoglycans by MMPs and subsequently washed out in BAL. During AECOPD, there is increased expression of heparan sulfate and chondroitin sulfate in BAL. These molecules are significantly correlated with MMPs in BAL, indicating that they may be associated with airway remodeling and may lead to lung function decline during exacerbations of COPD. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  20. Chondroitin 4-O-Sulfotransferase Is Indispensable for Sulfation of Chondroitin and Plays an Important Role in Maintaining Normal Life Span and Oxidative Stress Responses in Nematodes*

    Science.gov (United States)

    Izumikawa, Tomomi; Dejima, Katsufumi; Watamoto, Yukiko; Nomura, Kazuko H.; Kanaki, Nanako; Rikitake, Marika; Tou, Mai; Murata, Daisuke; Yanagita, Eri; Kano, Ai; Mitani, Shohei; Nomura, Kazuya; Kitagawa, Hiroshi

    2016-01-01

    Chondroitin sulfate (CS)/chondroitin (Chn) chains are indispensable for embryonic cell division and cytokinesis in the early developmental stages in Caenorhabditis elegans and mice, whereas heparan sulfate (HS) is essential for axon guidance during nervous system development. These data indicate that the fundamental functions of CS and HS are conserved from worms to mammals and that the function of CS/Chn differs from that of HS. Although previous studies have shown that C. elegans produces HS and non-sulfated Chn, whether the organism produces CS remains unclear. Here, we demonstrate that C. elegans produces a small amount of 4-O-sulfated Chn and report the identification of C41C4.1, an orthologue of the human chondroitin 4-O-sulfotransferase gene. Loss of C41C4.1 in C. elegans resulted in a decline in 4-O-sulfation of CS and an increase in the number of sulfated units in HS. C41C4.1 deletion mutants exhibited reduced survival rates after synchronization with sodium hypochlorite. Collectively, these results show for the first time that CS glycans are present in C. elegans and that the Chn 4-O-sulfotransferase responsible for the sulfation plays an important role in protecting nematodes from oxidative stress. PMID:27645998

  1. Intestinal mucosal mast cells from rats infected with Nippostrongylus brasiliensis contain protease-resistant chondroitin sulfate di-B proteoglycans

    International Nuclear Information System (INIS)

    Stevens, R.L.; Lee, T.D.G.; Seldin, D.C.; Austen, K.F.; Befus, A.D.; Bienenstock, J.

    1986-01-01

    Rats infected with the helminth Nippostrongylus brasiliensis were injected i.p. with 2 mCi of [ 35 S] sulfate on days 13, 15, 17, and 19 after infection. The intestines were removed from animals on day 20 or 21 after infection, the intestinal cells were obtained by collagenase treatment and mechanical dispersion of the tissue, and the 35 S-labeled mucosal mast cells (MMC) were enriched to 60 to 65% purity by Percoll centrifugation. The isolated proteoglycans were of approx. 150,000 m.w., were resistant to pronase degradation, and contained highly sulfated chondroitin sulfate side chains. The presence in normal mammalian cells of chondroitin sulfate proteoglycans that contain a high percentage of the unusual disulfated di-B disaccharide has not been previously reported. The rat intestinal MMC proteoglycans are the first chondroitin sulfate proteoglycans that have been isolated from an enriched populations of normal mast cells. They are homologous to the chondroitin sulfate-rich proteoglycans of the transformed rat basophilic leumekia-1 cell and the cultured interleukin 3-dependent mouse bone marrow-derived mast cell, in that these chondroitin sulfate proteoglycans are all highly sulfated, protease-resistant proteoglycans

  2. Medical Gains of Chondroitin Sulfate Upon Fucosylation.

    Science.gov (United States)

    Pomin, Vitor H

    2015-01-01

    Chondroitin sulfate (CS) is a glycosaminoglycan (GAG) composed of alternating N-acetyl galactosamine and glucuronic acid units within disaccharide building blocks. CS is a key functional component in proteoglycans of cartilaginous tissues. Owing to its numerous biological roles, CS is widely explored in the pharmaceutical market as nutraceutical ingredient commonly utilized against arthritis, osteoarthrosis, and sometimes osteoporosis. Tissues like shark cartilage and bovine trachea are common sources of CS. Nonetheless, a new CS type has been introduced and investigated in the last few decades in what regards its medical potentials. It is named fucosylated chondroitin sulfate (FucCS). This less common CS type is isolated exclusively from the body wall of sea cucumbers. The presence of fucosyl branching units in the holothurian FucCS gives to this unique GAG, therapeutic properties in various pathophysiological systems which are inexistent in the common CS explored in the market. Examples of these systems are coagulation, thrombosis, hemodialysis, atherosclerosis, cellular growth, angiogenesis, fibrosis, tumor growth, inflammation, viral and protozoan infections, hyperglycemia, diabetes-related pathological events and tissue damage. This report aims at describing the medical benefits gained upon fucosylation of CS. Clinical prospects of these medical benefits are also discussed herein.

  3. Oncofetal chondroitin sulfate glycosaminoglycans are key players in integrin signaling and tumor cell motility

    DEFF Research Database (Denmark)

    Clausen, Thomas Mandel; Bento Ayres Pereira, Marina Maria; Al Nakouzi, Nader

    2016-01-01

    Many tumors express proteoglycans modified with oncofetal chondroitin sulfate glycosaminoglycan chains (ofCS), which are normally restricted to the placenta. However, the role of ofCS in cancer is largely unknown. The function of ofCS in cancer was analyzed using the recombinant ofCS-binding VAR2...... revealed an overrepresentation of proteins involved in cell motility and integrin signaling, such as integrin-β1 (ITGB1) and integrin-α4 (ITGA4). Saturating concentrations of rVAR2 inhibited downstream integrin signaling, which was mimicked by knockdown of the core chondroitin sulfate synthesis enzymes β-1......,3-glucuronyltransferase 1 (B3GAT1) and chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGALNACT1). The ofCS modification was highly expressed in both human and murine metastatic lesions in situ and preincubation or early intravenous treatment of tumor cells with rVAR2 inhibited seeding and spreading of tumor...

  4. A potential role for chondroitin sulfate/dermatan sulfate in arm regeneration in Amphiura filiformis.

    Science.gov (United States)

    Ramachandra, Rashmi; Namburi, Ramesh B; Dupont, Sam T; Ortega-Martinez, Olga; van Kuppevelt, Toin H; Lindahl, Ulf; Spillmann, Dorothe

    2017-05-01

    Glycosaminoglycans (GAGs), such as chondroitin sulfate (CS) and dermatan sulfate (DS) from various vertebrate and invertebrate sources are known to be involved in diverse cellular mechanisms during repair and regenerative processes. Recently, we have identified CS/DS as the major GAG in the brittlestar Amphiura filiformis, with high proportions of di- and tri-O-sulfated disaccharide units. As this echinoderm is known for its exceptional regeneration capacity, we aimed to explore the role of these GAG chains during A. filiformis arm regeneration. Analysis of CS/DS chains during the regeneration process revealed an increase in the proportion of the tri-O-sulfated disaccharides. Conversely, treatment of A. filiformis with sodium chlorate, a potent inhibitor of sulfation reactions in GAG biosynthesis, resulted in a significant reduction in arm growth rates with total inhibition at concentrations higher than 5 mM. Differentiation was less impacted by sodium chlorate exposure or even slightly increased at 1-2 mM. Based on the structural changes observed during arm regeneration we identified chondroitin synthase, chondroitin-4-O-sulfotransferase 2 and dermatan-4-O-sulfotransferase as candidate genes and sought to correlate their expression with the expression of the A. filiformis orthologue of bone morphogenetic factors, AfBMP2/4. Quantitative amplification by real-time PCR indicated increased expression of chondroitin synthase and chondroitin-4-O-sulfotransferase 2, with a corresponding increase in AfBMP2/4 during regeneration relative to nonregenerating controls. Our findings suggest that proper sulfation of GAGs is important for A. filiformis arm regeneration and that these molecules may participate in mechanisms controlling cell proliferation. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Chondroitin 4-O-Sulfotransferase Is Indispensable for Sulfation of Chondroitin and Plays an Important Role in Maintaining Normal Life Span and Oxidative Stress Responses in Nematodes.

    Science.gov (United States)

    Izumikawa, Tomomi; Dejima, Katsufumi; Watamoto, Yukiko; Nomura, Kazuko H; Kanaki, Nanako; Rikitake, Marika; Tou, Mai; Murata, Daisuke; Yanagita, Eri; Kano, Ai; Mitani, Shohei; Nomura, Kazuya; Kitagawa, Hiroshi

    2016-10-28

    Chondroitin sulfate (CS)/chondroitin (Chn) chains are indispensable for embryonic cell division and cytokinesis in the early developmental stages in Caenorhabditis elegans and mice, whereas heparan sulfate (HS) is essential for axon guidance during nervous system development. These data indicate that the fundamental functions of CS and HS are conserved from worms to mammals and that the function of CS/Chn differs from that of HS. Although previous studies have shown that C. elegans produces HS and non-sulfated Chn, whether the organism produces CS remains unclear. Here, we demonstrate that C. elegans produces a small amount of 4-O-sulfated Chn and report the identification of C41C4.1, an orthologue of the human chondroitin 4-O-sulfotransferase gene. Loss of C41C4.1 in C. elegans resulted in a decline in 4-O-sulfation of CS and an increase in the number of sulfated units in HS. C41C4.1 deletion mutants exhibited reduced survival rates after synchronization with sodium hypochlorite. Collectively, these results show for the first time that CS glycans are present in C. elegans and that the Chn 4-O-sulfotransferase responsible for the sulfation plays an important role in protecting nematodes from oxidative stress. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Is chondroitin sulfate responsible for the biological effects attributed to the GC protein-derived Macrophage Activating Factor (GcMAF)?

    Science.gov (United States)

    Ruggiero, Marco; Reinwald, Heinz; Pacini, Stefania

    2016-09-01

    We hypothesize that a plasma glycosaminoglycan, chondroitin sulfate, may be responsible for the biological and clinical effects attributed to the Gc protein-derived Macrophage Activating Factor (GcMAF), a protein that is extracted from human blood. Thus, Gc protein binds chondroitin sulfate on the cell surface and such an interaction may occur also in blood, colostrum and milk. This interpretation would solve the inconsistencies encountered in explaining the effects of GcMAF in vitro and in vivo. According to our model, the Gc protein or the GcMAF bind to chondroitin sulfate both on the cell surface and in bodily fluids, and the resulting multimolecular complexes, under the form of oligomers trigger a transmembrane signal or, alternatively, are internalized and convey the signal directly to the nucleus thus eliciting the diverse biological effects observed for both GcMAF and chondroitin sulfate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A 3D-structural model of unsulfated chondroitin from high-field NMR: 4-sulfation has little effect on backbone conformation

    Science.gov (United States)

    Sattelle, Benedict M.; Shakeri, Javad; Roberts, Ian S.; Almond, Andrew

    2010-01-01

    The glycosaminoglycan chondroitin sulfate is essential in human health and disease but exactly how sulfation dictates its 3D-strucutre at the atomic level is unclear. To address this, we have purified homogenous oligosaccharides of unsulfated chondroitin (with and without 15N-enrichment) and analysed them by high-field NMR to make a comparison published chondroitin sulfate and hyaluronan 3D-structures. The result is the first full assignment of the tetrasaccharide and an experimental 3D-model of the hexasaccharide (PDB code 2KQO). In common with hyaluronan, we confirm that the amide proton is not involved in strong, persistent inter-residue hydrogen bonds. However, in contrast to hyaluronan, a hydrogen bond is not inferred between the hexosamine OH-4 and the glucuronic acid O5 atoms across the β(1→3) glycosidic linkage. The unsulfated chondroitin bond geometry differs slightly from hyaluronan by rotation about the β(1→3) ψ dihedral (as previously predicted by simulation), while the β(1→4) linkage is unaffected. Furthermore, comparison shows that this glycosidic linkage geometry is similar in chondroitin-4-sulfate. We therefore hypothesise that both hexosamine OH-4 and OH-6 atoms are solvent exposed in chondroitin, explaining why it is amenable to sulfation and hyaluronan is not, and also that 4-sulfation has little effect on backbone conformation. Our conclusions exemplify the value of the 3D-model presented here and progress our understanding of glycosaminoglycan molecular properties. PMID:20022001

  8. Extraction and determination of chondroitin sulfate from fish processing byproducts

    Science.gov (United States)

    Chondroitin sulfate (CS) refers to a group of sulfated glycosaminoglycan containing a chain of alternating N-acetylgalactosamine and glucuronic acid sugars. It is a major component of the extracellular matrix of cartilage and attached to proteins. CS is usually an over the counter dietary supplement...

  9. Visualization of liver on bone scintigraphy during treatment with iron chondroitin sulfate colloid

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Shigeko; Sawa, Hisashi; Fukuda, Teruo

    1983-09-01

    In order to see its probable cause in the incidental liver delineation on the bone scan with sup(99m)Tc-MDP, patients and experimental rabbits were intravenously injected with Blutal (iron chondroitin sulfate) at various times following the intravenous injection of sup(99m)Tc-MDP. The liver images were obtained during the early periods. An injection of Blutal-sup(99m)Tc pertechnetate mixture did not result in any appreciable hepatic delineation. Stannous chloride in the MDP kit could have enticed formation of radiocolloids in the presence of iron chondroitin sulfate. Diagnostic problems can be avoided by carefully planning the bone scintigraphy in relation to the Blutal administration. (author).

  10. Demonstration of immunogenic keratan sulphate in commercial chondroitin 6-sulphate from shark cartilage. Implications for ELISA assays

    DEFF Research Database (Denmark)

    Møller, H J; Møller-Pedersen, T; Damsgaard, T E

    1995-01-01

    The prototype monoclonal keratan sulphate (KS) antibody 5D4 that is widely used for detection of KS in tissues and biological fluids reacts strongly with commercial low grade shark cartilage chondroitin 6-sulphate. Characterization of the immunogenic material by chondroitinase ABC digestion, ELISA...... cartilage chondroitin 6-sulphate is an easy accessible source of immunogenic KS that can be used as a reference standard and as coating antigen in KS-ELISAs. The concentration of immunogenic KS in synovial fluid measured with an ELISA based solely on reagents of shark cartilage chondroitin 6-sulphate...... correlated well (r = 0.90) with the concentrations obtained with a traditional KS-ELISA that uses purified aggrecan as standard and coating antigen, and KS in both serum and synovial fluid could be measured with sufficient linearity....

  11. Molecular characterization and transcriptional analysis of the female-enriched chondroitin proteoglycan 2 of Toxocara canis.

    Science.gov (United States)

    Ma, G X; Zhou, R Q; Hu, L; Luo, Y L; Luo, Y F; Zhu, H H

    2018-03-01

    Toxocara canis is an important but neglected zoonotic parasite, and is the causative agent of human toxocariasis. Chondroitin proteoglycans are biological macromolecules, widely distributed in extracellular matrices, with a great diversity of functions in mammals. However, there is limited information regarding chondroitin proteoglycans in nematode parasites. In the present study, a female-enriched chondroitin proteoglycan 2 gene of T. canis (Tc-cpg-2) was cloned and characterized. Quantitative real-time polymerase chain reaction (qRT-PCR) was employed to measure the transcription levels of Tc-cpg-2 among tissues of male and female adult worms. A 485-amino-acid (aa) polypeptide was predicted from a continuous 1458-nuleotide open reading frame and designated as TcCPG2, which contains a 21-aa signal peptide. Conserved domain searching indicated three chitin-binding peritrophin-A (CBM_14) domains in the amino acid sequence of TcCPG2. Multiple alignment with the inferred amino acid sequences of Caenorhabditis elegans and Ascaris suum showed that CBM_14 domains were well conserved among these species. Phylogenetic analysis suggested that TcCPG2 was closely related to the sequence of chondroitin proteoglycan 2 of A. suum. Interestingly, a high level of Tc-cpg-2 was detected in female germline tissues, particularly in the oviduct, suggesting potential roles of this gene in reproduction (e.g. oogenesis and embryogenesis) of adult T. canis. The functional roles of Tc-cpg-2 in reproduction and development in this parasite and related parasitic nematodes warrant further functional studies.

  12. The effect of desulfation of chondroitin sulfate on interactions with positively charged growth factors and upregulation of cartilaginous markers in encapsulated MSCs.

    Science.gov (United States)

    Lim, Jeremy J; Temenoff, Johnna S

    2013-07-01

    Sulfated glycosaminoglycans (GAGs) are known to interact electrostatically with positively charged growth factors to modulate signaling. Therefore, regulating the degree of sulfation of GAGs may be a promising approach to tailor biomaterial carriers for controlled growth factor delivery and release. For this study, chondroitin sulfate (CS) was first desulfated to form chondroitin, and resulting crosslinked CS and chondroitin hydrogels were examined in vitro for release of positively charged model protein (histone) and for their effect on cartilaginous differentiation of encapsulated human mesenchymal stem cells (MSCs). Desulfation significantly increased the release of histone from chondroitin hydrogels (30.6 ± 2.3 μg released over 8 days, compared to natively sulfated CS with 20.2 ± 0.8 μg), suggesting that sulfation alone plays a significant role in modulating protein interactions with GAG hydrogels. MSCs in chondroitin hydrogels significantly upregulated gene expression of collagen II and aggrecan by day 21 in chondrogenic medium (115 ± 100 and 23.1 ± 7.9 fold upregulation of collagen II and aggrecan, respectively), compared to CS hydrogels and PEG-based swelling controls, indicating that desulfation may actually enhance the response of MSCs to soluble chondrogenic cues, such as TGF-β1. Thus, desulfated chondroitin materials present a promising biomaterial tool to further investigate electrostatic GAG/growth factor interactions, especially for repair of cartilaginous tissues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Effectiveness of intra-articular injections of sodium hyaluronate-chondroitin sulfate in knee osteoarthritis: a multicenter prospective study.

    Science.gov (United States)

    Rivera, Fabrizio; Bertignone, Luca; Grandi, Giancarlo; Camisassa, Roberto; Comaschi, Guido; Trentini, Diego; Zanone, Marco; Teppex, Giuseppe; Vasario, Gabriele; Fortina, Giorgio

    2016-03-01

    Intra-articular injection of hyaluronic acid is a well-established therapy for the treatment of knee osteoarthritis. The aim of the study was to assess the effectiveness and safety of the use of Arthrum HCS(®) (40 mg hyaluronic acid and 40 mg chondroitin sulfate in 2 mL). This was an open, multicenter, prospective study. Men or women over 40 years of age with documented knee osteoarthritis and WOMAC subscore A (severity of pain) ≥25 were enrolled. They received three weekly intra-articular injections of sodium hyaluronate 2 % and chondroitin sulfate 2 % in combination. WOMAC subscore A was assessed at 1, 3 and 6 months after the last injection. One hundred and twelve patients were included (women, 66 %). The mean (SD) WOMAC subscore A decreased from 52.1 (15.2) at inclusion to 20.5 (19.7) at month 6 (P chondroitin sulfate in reducing pain (77 %), improving mobility (78 %) and reducing the consumption of analgesics (74 %). Only one adverse effect was reported by one patient (knee tumefaction). These results suggest that intra-articular injections of Arthrum HCS(®) (sodium hyaluronate plus chondroitin sulfate) in patients with knee osteoarthritis are efficient and safe. These results should be confirmed in a randomized controlled study. IV.

  14. Demonstration of immunogenic keratan sulphate in commercial chondroitin 6-sulphate from shark cartilage. Implications for ELISA assays

    DEFF Research Database (Denmark)

    Møller, H J; Møller-Pedersen, T; Damsgaard, T E

    1995-01-01

    The prototype monoclonal keratan sulphate (KS) antibody 5D4 that is widely used for detection of KS in tissues and biological fluids reacts strongly with commercial low grade shark cartilage chondroitin 6-sulphate. Characterization of the immunogenic material by chondroitinase ABC digestion, ELISA...... inhibition studies, immunoblotting and HPLC analyses confirmed the presence of substantial amounts of KS, probably as a large proteoglycan (> 120 kDa). Commercial and heterogenic glycosaminoglycan preparations therefore must be used with great caution in immunological analyses. On the other hand the shark...... cartilage chondroitin 6-sulphate is an easy accessible source of immunogenic KS that can be used as a reference standard and as coating antigen in KS-ELISAs. The concentration of immunogenic KS in synovial fluid measured with an ELISA based solely on reagents of shark cartilage chondroitin 6-sulphate...

  15. Long-term experience with sodium chondroitin sulfate in patients with painful bladder syndrome.

    Science.gov (United States)

    Tornero, J I; Olarte, H; Escudero, F; Gómez, G

    2013-09-01

    To assess the response of patients diagnosed with painful bladder syndrome to treatment with instillations of sodium chondroitin sulfate. We present a series of cases of patients with painful bladder syndrome who followed a bladder instillation protocol with sodium chondroitin sulfate, according to our centre's regimen. The response to treatment was assessed with respect to pain, according to the Downie scale; urinary frequency, according to the voiding diary; and subjective improvement, according to the Patient Global Impression of Improvement (PGI-I) scale. A total of 28 patients with a median age of 59 years (range 22-90) followed this protocol. From the medical histories, 19.4% had suffered an infection of the urinary tract, 3.8% had suffered urinary tuberculosis, 7.6% received pelvic radiation therapy and 26.9% had taken anticholinergic drugs for overactive bladder syndrome. We evaluated the response to treatment at 0, 3, 6 and 12 months and found that at the end of treatment 72.3% of the patients had improved bladder pain and 75% were significantly better. Treatment with sodium chondroitin sulfate through endovesical instillation in painful bladder syndrome improves pain, voiding frequency and quality of life in the long term. Copyright © 2013 AEU. Published by Elsevier Espana. All rights reserved.

  16. Intravesical Glycosaminoglycan Replacement with Chondroitin Sulphate (Gepan(®) instill) in Patients with Chronic Radiotherapy- or Chemotherapy-Associated Cystitis.

    Science.gov (United States)

    Schwalenberg, Thilo; Berger, Frank Peter; Horn, Lars Christian; Thi, Phuc Ho; Stolzenburg, Jens-Uwe; Neuhaus, Jochen

    2015-08-01

    Intravesical instillation of glycosaminoglycans is a promising option for the treatment of chronic cystitis, as it supports the regeneration of the damaged urothelial layer. We investigated the efficacy of short-term intravesical chondroitin sulphate treatment (six courses of instillation) in patients with chronic radiotherapy- or chemotherapy-associated cystitis. This prospective, observational study included patients with chronic radiotherapy- or chemotherapy-associated cystitis, who received six once-weekly intravesical instillations of 0.2% chondroitin sulphate 40 mL. Every week, patients recorded their symptoms and their benefits and tolerance of treatment, using a self-completed questionnaire. The study included 16 patients (mean age 68.5 years; 50% male). During the study, a reduction in all evaluated parameters was observed. After one dose of chondroitin sulphate, symptom improvement was observed in 38% of patients, and after the second dose, an additional 31% of patients showed improvement. At week 6, 80% of patients had either improved or were symptom free, and significant improvements in urinary urgency (p = 0.0082), pollakisuria (p = 0.0022), urge frequency (p = 0.0033) and lower abdominal pain (p = 0.0449) were observed. Haematuria, present in 9 of the 16 patients at baseline, was completely resolved in all cases after 6 weeks. The majority of patients (93%) evaluated the tolerance of chondroitin sulphate as 'good' or 'very good'. No treatment-related adverse events were reported. Intravesical administration of chondroitin sulphate was effective for the treatment of radiotherapy- or chemotherapy-associated cystitis. Even short-term treatment appears to be effective in reducing symptoms and improving the quality of life of patients.

  17. sup(113m)indium-iron chondroitin sulfate colloid for quantitative assessment of the marrow RE function

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, S; Ito, Y; Takahashi, K; Sato, T; Matsuzawa, T [Tohoku Univ., Sendai (Japan). Research Inst. for Tuberculosis, Leprosy and Cancer

    1975-07-01

    sup(113m)In-iron chondroitin sulfate colloid shows a large accumulation in the bone marrow and is suitable for bone marrow imaging. Quantitative assessment of the marrow reticuloendotherial function was performed using this compound. When an appropriate amount of iron carrier was added for adjustment, the rate of accumulation of hyperfunction in the marrow reticuloendotherial system (RES) induced by acute loss of blood increased. Marrow RES hypofunction was efficiently exhibited regardless of the presence or absence of iron carrier. Deposition of sup(113m)In-iron chondroitin sulfate in the spleen increased remarkably in the presence of carrier In. sup(113m)In-iron chondroitin sulfate colloid appears to be suitable for the measurement of the conditions of marrow RES functions. If short half-life nuclide radio-colloids of the present type are clinically applied, it is possible not only to elaborately observe the bone marrow by scintigraphy but also to gradually decrease the absorbed dose of irradiation.

  18. sup(113m)indium-iron chondroitin sulfate colloid for quantitative assessment of the marrow RE function

    International Nuclear Information System (INIS)

    Okuyama, Shinichi; Ito, Yasuhiko; Takahashi, Kunibumi; Sato, Tachio; Matsuzawa, Taiju

    1975-01-01

    sup(113m)In-iron chondroitin sulfate colloid shows a large accumulation in the bone marrow and is suitable for bone marrow imaging. Quantitative assessment of the marrow reticuloendotherial function was performed using this compound. When an appropriate amount of iron carrier was added for adjustment, the rate of accumulation of hyperfunction in the marrow reticuloendotherial system (RES) induced by acute loss of blood increased. Marrow RES hypofunction was efficiently exhibited regardless of the presence or absence of iron carrier. Deposition of sup(113m)In-iron chondroitin sulfate in the spleen increased remarkably in the presence of carrier In. sup(113m)In-iron chondroitin sulfate colloid appears to be suitable for the measurement of the conditions of marrow RES functions. If short half-life nuclide radio-colloids of the present type are clinically applied, it is possible not only to elaborately observe the bone marrow by scintigraphy but also to gradually decrease the absorbed dose of irradiation. (Mukohata, S.)

  19. Safety assessment of non-animal chondroitin sulfate sodium: Subchronic study in rats, genotoxicity tests and human bioavailability.

    Science.gov (United States)

    Miraglia, Niccolò; Bianchi, Davide; Trentin, Antonella; Volpi, Nicola; Soni, Madhu G

    2016-07-01

    Chondroitin sulfate, an amino sugar polymer made of glucuronic acid and N-acetyl-galactosamine, is used in dietary supplements to promote joint health. Commonly used chondroitin sulfate is of animal origin and can pose potential safety problems including bovine spongiform encephalopathy (BSE). The objective of the present study was to investigate potential adverse effects, if any, of microbial derived chondroitin sulfate sodium (CSS) in subchronic toxicity, genotoxicity and bioavailability studies. In the toxicity study, Sprague Dawley rats (10/sex/group) were gavaged with CSS at dose levels of 0, 250, 500 and 1000 mg/kg body weight (bw)/day for 90-days. No mortality or significant changes in clinical signs, body weights, body weight gain or feed consumption were noted. Similarly, no toxicologically relevant treatment-related changes in hematological, clinical chemistry, urinalysis and organ weights were noted. Macroscopic and microscopic examinations did not reveal treatment-related abnormalities. In vitro mutagenic and clastogenic potentials as evaluated by Ames assay, chromosomal aberration test and micronucleus assay did not reveal genotoxicity of CSS. In pharmacokinetic study in human, CSS showed higher absorption as compared to chondroitin sulfate of animal origin. The results of subchronic toxicity study supports the no-observed-adverse-effect level (NOAEL) for CSS as 1000 mg/kg bw/day, the highest dose tested. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Molecular dissection of placental malaria protein VAR2CSA interaction with a chemo-enzymatically synthesized chondroitin sulfate library

    DEFF Research Database (Denmark)

    Sugiura, Nobuo; Clausen, Thomas Mandel; Shioiri, Tatsuasa

    2016-01-01

    with chondroitin sulfate (CS) proteoglycans present in the placental tissue. CS is a linear acidic polysaccharide composed of repeating disaccharide units of d-glucuronic acid and N-acetyl-d-galactosamine that are modified by sulfate groups at different positions. Previous reports have shown that placental......-adhering IEs were associated with an unusually low sulfated form of chondroitin sulfate A (CSA) and that a partially sulfated dodecasaccharide is the minimal motif for the interaction. However, the fine molecular structure of this CS chain remains unclear. In this study, we have characterized the CS chain...... that interacts with a recombinant minimal CS-binding region of VAR2CSA (rVAR2) using a CS library of various defined lengths and sulfate compositions. The CS library was chemo-enzymatically synthesized with bacterial chondroitin polymerase and recombinant CS sulfotransferases. We found that C-4 sulfation...

  1. Effects of a synthetic bioactive peptide on neurite growth and nerve growth factor release in chondroitin sulfate hydrogels

    OpenAIRE

    Conovaloff, Aaron W.; Beier, Brooke L.; Irazoqui, Pedro P.; Panitch, Alyssa

    2011-01-01

    Previous work has revealed robust dorsal root ganglia neurite growth in hydrogels of chondroitin sulfate. In the current work, it was determined whether addition of a synthetic bioactive peptide could augment neurite growth in these matrices via enhanced binding and sequestering of growth factors. Fluorescence recovery after photobleaching studies revealed that addition of peptide slowed nerve growth factor diffusivity in chondroitin sulfate gels, but not in control gels of hyaluronic acid. F...

  2. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Machado, C B [Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (Brazil); Ventura, J M G [Department of Ceramics and Glass Engineering, University of Aveiro (Portugal); Lemos, A F [Department of Ceramics and Glass Engineering, University of Aveiro (Portugal); Ferreira, J M F [Department of Ceramics and Glass Engineering, University of Aveiro (Portugal); Leite, M F [Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (Brazil); Goes, A M [Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais (Brazil)

    2007-06-01

    A porous 3D scaffold was developed to support and enhance the differentiation process of mesenchymal stem cells (MSC) into osteoblasts in vitro. The 3D scaffold was made with chitosan, gelatin and chondroitin and it was crosslinked by EDAC. The scaffold physicochemical properties were evaluated. SEM revealed the high porosity and interconnection of pores in the scaffold; rheological measurements show that the scaffold exhibits a characteristic behavior of strong gels. The elastic modulus found in compressive tests of the crosslinked scaffold was about 50 times higher than the non-crosslinked one. After 21 days, the 3D matrix submitted to hydrolytic degradation loses above 40% of its weight. MSC were collected from rat bone marrow and seeded in chitosan-gelatin-chondroitin 3D scaffolds and in 2D culture plates as well. MSC were differentiated into osteoblasts for 21 days. Cell proliferation and alkaline phosphatase activity were followed weekly during the osteogenic process. The osteogenic differentiation of MSC was improved in 3D culture as shown by MTT assay and alkaline phosphatase activity. On the 21st day, bone markers, osteopontin and osteocalcin, were detected by the PCR analysis. This study shows that the chitosan-gelatin-chondroitin 3D structure provides a good environment for the osteogenic process and enhances cellular proliferation.

  3. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Machado, C B; Ventura, J M G; Lemos, A F; Ferreira, J M F; Leite, M F; Goes, A M

    2007-06-01

    A porous 3D scaffold was developed to support and enhance the differentiation process of mesenchymal stem cells (MSC) into osteoblasts in vitro. The 3D scaffold was made with chitosan, gelatin and chondroitin and it was crosslinked by EDAC. The scaffold physicochemical properties were evaluated. SEM revealed the high porosity and interconnection of pores in the scaffold; rheological measurements show that the scaffold exhibits a characteristic behavior of strong gels. The elastic modulus found in compressive tests of the crosslinked scaffold was about 50 times higher than the non-crosslinked one. After 21 days, the 3D matrix submitted to hydrolytic degradation loses above 40% of its weight. MSC were collected from rat bone marrow and seeded in chitosan-gelatin-chondroitin 3D scaffolds and in 2D culture plates as well. MSC were differentiated into osteoblasts for 21 days. Cell proliferation and alkaline phosphatase activity were followed weekly during the osteogenic process. The osteogenic differentiation of MSC was improved in 3D culture as shown by MTT assay and alkaline phosphatase activity. On the 21st day, bone markers, osteopontin and osteocalcin, were detected by the PCR analysis. This study shows that the chitosan-gelatin-chondroitin 3D structure provides a good environment for the osteogenic process and enhances cellular proliferation.

  4. 3D chitosan-gelatin-chondroitin porous scaffold improves osteogenic differentiation of mesenchymal stem cells

    International Nuclear Information System (INIS)

    Machado, C B; Ventura, J M G; Lemos, A F; Ferreira, J M F; Leite, M F; Goes, A M

    2007-01-01

    A porous 3D scaffold was developed to support and enhance the differentiation process of mesenchymal stem cells (MSC) into osteoblasts in vitro. The 3D scaffold was made with chitosan, gelatin and chondroitin and it was crosslinked by EDAC. The scaffold physicochemical properties were evaluated. SEM revealed the high porosity and interconnection of pores in the scaffold; rheological measurements show that the scaffold exhibits a characteristic behavior of strong gels. The elastic modulus found in compressive tests of the crosslinked scaffold was about 50 times higher than the non-crosslinked one. After 21 days, the 3D matrix submitted to hydrolytic degradation loses above 40% of its weight. MSC were collected from rat bone marrow and seeded in chitosan-gelatin-chondroitin 3D scaffolds and in 2D culture plates as well. MSC were differentiated into osteoblasts for 21 days. Cell proliferation and alkaline phosphatase activity were followed weekly during the osteogenic process. The osteogenic differentiation of MSC was improved in 3D culture as shown by MTT assay and alkaline phosphatase activity. On the 21st day, bone markers, osteopontin and osteocalcin, were detected by the PCR analysis. This study shows that the chitosan-gelatin-chondroitin 3D structure provides a good environment for the osteogenic process and enhances cellular proliferation

  5. Interactions of oversulfated chondroitin sulfate (OSCS) from different sources with unfractionated heparin.

    Science.gov (United States)

    Gray, Angel; Litinas, Evangelos; Jeske, Walter; Fareed, Jawed; Hoppensteadt, Debra

    2012-01-01

    In 2008, oversulfated chondroitin sulfate (OSCS) was identified as the main contaminant in recalled heparin. Oversulfated chondroitin sulfate can be prepared from bovine (B), porcine (P), shark (Sh), or skate (S) origin and may produce changes in the antithrombotic, bleeding, and hemodynamic profile of heparins. This study examines the interactions of various OSCSs on heparin in animal models of thrombosis and bleeding, as well as on the anticoagulant and antiprotease effects in in vitro assays. Mixtures of 70% unfractionated heparin (UFH) with 30% OSCS from different sources were tested. In the in vitro activated partial thromboplastin time (aPTT) assay, all contaminant mixtures showed a decrease in clotting times. In addition, a significant increase in bleeding time compared to the control (UFH/saline) was observed. In the thrombosis model, no significant differences were observed. The OSCSs significantly increased anti-Xa activity in ex vivo blood samples. These results indicate that various sources of OSCS affect the hemostatic properties of heparin.

  6. Critical appraisal of the role of glucosamine and chondroitin in the management of osteoarthritis of the knee

    Directory of Open Access Journals (Sweden)

    Steven J Narvy

    2010-02-01

    Full Text Available Steven J Narvy1, C Thomas Vangsness Jr21Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; 2Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USAAbstract: Osteoarthritis (OA is the most common musculoskeletal disease in the United States, with rising prevalence. Medical management of OA involves acetaminophen, nonsteroidal anti-inflammatory drugs, and other analgesics, all of which are of variable efficacy and are associated with significant side effects and toxicities. The purpose of this review is to critically evaluate the efficacy of glucosamine and chondroitin, both as single agents and in combination, for the treatment of knee OA. Also evaluated were the level of evidence and funding support of the included articles. Almost every included trial of glucosamine sulfate, glucosamine hydrochloride, and chondroitin sulfate has found the safety of these compounds to be equal to that of placebo, though their therapeutic efficacy in decreasing knee OA pain and improving joint function is variable. Additionally, there are data to support a role of these agents in reducing radiographic progression of knee OA. Industry involvement, however, remains prominent. Further, more comprehensive study by independent researchers free of industry ties is necessary to identify a subset of patients in whom the use of glucosamine and/or chondroitin would be most beneficial. These agents may be safely tried as an initial therapy in select OA patients prior to initiating therapy with nonsteroidal anti-inflammatory drugs, acetaminophen, and other traditional medications.Keywords: glucosamine sulfate, glucosamine hydrochloride, chondroitin sulfate, knee osteoarthritis, nutritional supplement, nutraceutical

  7. The Compact and Biologically Relevant Structure of Inter-α-inhibitor Is Maintained by the Chondroitin Sulfate Chain and Divalent Cations.

    Science.gov (United States)

    Scavenius, Carsten; Nikolajsen, Camilla Lund; Stenvang, Marcel; Thøgersen, Ida B; Wyrożemski, Łukasz; Wisniewski, Hans-Georg; Otzen, Daniel E; Sanggaard, Kristian W; Enghild, Jan J

    2016-02-26

    Inter-α-inhibitor is a proteoglycan of unique structure. The protein consists of three subunits, heavy chain 1, heavy chain 2, and bikunin covalently joined by a chondroitin sulfate chain originating at Ser-10 of bikunin. Inter-α-inhibitor interacts with an inflammation-associated protein, tumor necrosis factor-inducible gene 6 protein, in the extracellular matrix. This interaction leads to transfer of the heavy chains from the chondroitin sulfate of inter-α-inhibitor to hyaluronan and consequently to matrix stabilization. Divalent cations and heavy chain 2 are essential co-factors in this transfer reaction. In the present study, we have investigated how divalent cations in concert with the chondroitin sulfate chain influence the structure and stability of inter-α-inhibitor. The results showed that Mg(2+) or Mn(2+), but not Ca(2+), induced a conformational change in inter-α-inhibitor as evidenced by a decrease in the Stokes radius and a bikunin chondroitin sulfate-dependent increase of the thermodynamic stability. This structure was shown to be essential for the ability of inter-α-inhibitor to participate in extracellular matrix stabilization. In addition, the data revealed that bikunin was positioned adjacent to both heavy chains and that the two heavy chains also were in close proximity. The chondroitin sulfate chain interacted with all protein components and inter-α-inhibitor dissociated when it was degraded. Conventional purification protocols result in the removal of the Mg(2+) found in plasma and because divalent cations influence the conformation and affect function it is important to consider this when characterizing the biological activity of inter-α-inhibitor. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Incorporation of 35S-sulfate and 3H-glucosamine into heparan and chondroitin sulfates during the cell cycle of B16-F10 cells

    International Nuclear Information System (INIS)

    Blair, O.C.; Sartorelli, A.C.

    1984-01-01

    Changes in glycosaminoglycan composition occurring during the cell cycle were determined in B16-F10 cells sorted flow cytometrically with respect to DNA content. Incorporation of 35 S-sulfate into heparan sulfate and chondroitin sulfate of unsorted and G1,S, and G2 +M sorted cells was determined following chondroitinase ABC or nitrous acid treatment; the incorporation into surface material was measured as the difference between the radioactivity of control and trypsin-treated cells. Incorporation of 35 S-sulfate and 3 H-glucosamine into cetyl pyridinium chloride (CPC)-precipitable material was characterized before and after chondroitinase or nitrous acid treatment by Sephadex G50 chromatography. Long-term (48 h) and short-term (1 h) labeling studies demonstrate that (a) the amount of total cellular chondroitin sulfate is greater than that of heparan sulfate, with larger amounts of unsulfated heparan than chondroitin being present; (b) the rate of turnover of heparan sulfate is greater than that of chondroitin sulfate; (c) greatest short-term incorporation of 3H-glucosamine into CPC-precipitable material occurs during S phase; and (d) the rate of turnover of both heparan sulfate and chondroitin sulfate is decreased in S phase relative to G1 and G2 + M

  9. Histamine and chondroitin sulfate E proteoglycan released by cultured human colonic mucosa: indication for possible presence of E mast cells

    International Nuclear Information System (INIS)

    Eliakim, R.; Gilead, L.; Ligumsky, M; Okon, E.; Rachmilewitz, D.; Razin, E.

    1986-01-01

    An association between the release of histamine and chondroitin sulfate E proteoglycan (PG) was demonstrates in human colonic mucosa (HCM). Colonic biopsy samples incorporated [ 35 S]sulfate into PG, which was partially released into the culture medium during the incubation period. Ascending thin-layer chromatography of the released 35 S-labeled PG after its digestion by chondroitin ABC lyase (chondroitinase, EC 4.2.2.4) followed by autoradiography yielded three products that migrated in the position of monosulfated disaccharides of N-acetylgalactosamine 4-sulfate and N-acetylgalactosoamine 6-sulfate and of an oversulfated disaccharide possessing N-acetylgalatosamine 4,6-disulfate. Cultured colonic mucosa released 23.6 +/- 3.7ng of histamine per mg of wet tissue without any special trigger. Comparison by linear regression analysis of the release of histamine and chondroitin [ 35 S]sulfate E PG revealed a correlation coefficient (r) of 0.7. Histological examination of the colonic biopsies revealed the presence of many mast cells in various degrees of degranulation in the mucosa and submucosa. The above correlation, the observation that most of the mast cells showed various degrees of degranulation, and the lack of heparin synthesis as opposed to the synthesis and immunological release of chondroitin sulfate E strongly suggest that the E mast cell exists in the human colon

  10. Ultrastructural immunocytochemical localization of chondroitin sulfate proteoglycan in Bruch's membrane of the rat

    DEFF Research Database (Denmark)

    Lin, W L; Essner, E; McCarthy, K J

    1992-01-01

    Two monoclonal antibodies (Mab 4D5 and 2D6) raised against the core protein of a basement membrane chondroitin sulfate proteoglycan from Reichert's membrane of the rat, were used for ultrastructural immunoperoxidase localization of this protein in Bruch's membrane of the rat. Immunoreactivity...

  11. Chondroitin 6-O-sulfate ameliorates experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Miyamoto, Katsuichi; Tanaka, Noriko; Moriguchi, Kota; Ueno, Rino; Kadomatsu, Kenji; Kitagawa, Hiroshi; Kusunoki, Susumu

    2014-05-01

    Chondroitin sulfate proteoglycans (CSPGs) are the main component of the extracellular matrix in the central nervous system (CNS) and influence neuroplasticity. Although CSPG is considered an inhibitory factor for nerve repair in spinal cord injury, it is unclear whether CSPG influences the pathogenetic mechanisms of neuroimmunological diseases. We induced experimental autoimmune encephalomyelitis (EAE) in chondroitin 6-O-sulfate transferase 1-deficient (C6st1(-/-)) mice. C6ST1 is the enzyme that transfers sulfate residues to position 6 of N-acetylgalactosamine in the sugar chain of CSPG. The phenotypes of EAE in C6st1(-/-) mice were more severe than those in wild-type (WT) mice were. In adoptive-transfer EAE, in which antigen-reactive T cells from WT mice were transferred to C6st1(-/-) and WT mice, phenotypes were significantly more severe in C6st1(-/-) than in WT mice. The recall response of antigen-reactive T cells was not significantly different among the groups. Furthermore, the number of pathogenic T cells within the CNS was also not considerably different. When EAE was induced in C6ST1 transgenic mice with C6ST1 overexpression, the mice showed considerably milder symptoms compared with those in WT mice. In conclusion, the presence of sulfate at position 6 of N-acetylgalactosamine of CSPG may influence the effecter phase of EAE to prevent the progression of pathogenesis. Thus, modification of the carbohydrate residue of CSPG may be a novel therapeutic strategy for neuroimmunological diseases such as multiple sclerosis.

  12. Inter vs. intraglycosidic acetal linkages control sulfation pattern in semi-synthetic chondroitin sulfate.

    Science.gov (United States)

    Laezza, Antonio; De Castro, Cristina; Parrilli, Michelangelo; Bedini, Emiliano

    2014-11-04

    Microbial-sourced unsulfated chondroitin could be converted into chondroitin sulfate (CS) polysaccharide by a multi-step strategy relying upon benzylidenation and acetylation reactions as key-steps for its regioselective protection. By conducting the two reactions one- or two-pots, CSs with different sulfation patterns could be obtained at the end of the semi-synthesis. In particular, a CS polysaccharide possessing sulfate groups randomly distributed between positions 4 and 6 of N-acetyl-galactosamine (GalNAc) units could be obtained through the two-pots route, whereas the one-pot pathway allowed an additional sulfation at position 3 of some glucuronic acid (GlcA) units. This difference was ascribed to the stabilization of a labile interglycosidic benzylidene acetal involving positions O-3 and O-6 of some GlcA and GalNAc, respectively, when the benzylidene-acetylation reactions were conducted in a one-pot fashion. Isolation and characterization of a polysaccharide intermediate showing interglycosidic acetal moieties was accomplished. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Transforming growth factor (type beta) promotes the addition of chondroitin sulfate chains to the cell surface proteoglycan (syndecan) of mouse mammary epithelia

    OpenAIRE

    1989-01-01

    Cultured monolayers of NMuMG mouse mammary epithelial cells have augmented amounts of cell surface chondroitin sulfate glycosaminoglycan (GAG) when cultured in transforming growth factor-beta (TGF-beta), presumably because of increased synthesis on their cell surface proteoglycan (named syndecan), previously shown to contain chondroitin sulfate and heparan sulfate GAG. This increase occurs throughout the monolayer as shown using soluble thrombospondin as a binding probe. However, comparison o...

  14. Iduronic Acid in chondroitin/dermatan sulfate affects directional migration of aortic smooth muscle cells

    NARCIS (Netherlands)

    Bartolini, B.; Thelin, M.A.; Svensson, L.; Ghiselli, G.; Kuppevelt, T.H. van; Malmstrom, A.; Maccarana, M.

    2013-01-01

    Aortic smooth muscle cells produce chondroitin/dermatan sulfate (CS/DS) proteoglycans that regulate extracellular matrix organization and cell behavior in normal and pathological conditions. A unique feature of CS/DS proteoglycans is the presence of iduronic acid (IdoA), catalyzed by two DS

  15. Comparison of Glucosamine-Chondroitin Sulfate with and without Methylsulfonylmethane in Grade I-II Knee Osteoarthritis: A Double Blind Randomized Controlled Trial.

    Science.gov (United States)

    Lubis, Andri M T; Siagian, Carles; Wonggokusuma, Erick; Marsetyo, Aldo F; Setyohadi, Bambang

    2017-04-01

    Glucosamine, chondroitinsulfate are frequently used to prevent further joint degeneration in osteoarthritis (OA). Methylsulfonylmethane (MSM) is a supplement containing organic sulphur and also reported to slow anatomical joint progressivity in the knee OA. The MSM is often combined with glucosamine and chondroitin sulfate. However, there are controversies whether glucosamine-chondroitin sulfate or their combination with methylsulfonylmethane could effectively reduce pain in OA. This study is aimed to compare clinical outcome of glucosamine-chondroitin sulfate (GC), glucosamine-chondroitin sulfate-methylsulfonylmethane (GCM), and placeboin patients with knee osteoarthritis (OA) Kellgren-Lawrence grade I-II. a double blind, randomized controlled clinical trial was conducted on 147 patients with knee OA Kellgren-Lawrence grade I-II. Patients were allocated by permuted block randomization into three groups: GC (n=49), GCM (n=50), or placebo (n=48) groups. GC group received 1500 mg of glucosamine + 1200 mg of chondroitin sulfate + 500 mg of saccharumlactis; GCM group received 1500 mg of glucosamine + 1200 mg of chondroitin sulfate + 500 mg of MSM; while placebo group received three matching capsules of saccharumlactis. The drugs were administered once daily for 3 consecutive months VAS and WOMAC scores were measured before treatment, then at 4th, 8th and 12th week after treatment. on statistical analysis it was found that at the 12th week, there are significant difference between three treatment groups on the WOMAC score (p=0.03) and on the VAS score (p=0.004). When analyzed between weeks, GCM treatment group was found statistically significant on WOMAC score (p=0.01) and VAS score (p<0.001). Comparing the score difference between weeks, WOMAC score analysis showed significant difference between GC, GCM, and placebo in week 4 (p=0.049) and week 12 (p=0.01). In addition, VAS score also showed significant difference between groups in week 8 (p=0.006) and week 12 (p<0

  16. Chondroitin sulfate A-adhering Plasmodium falciparum-infected erythrocytes express functionally important antibody epitopes shared by multiple variants

    DEFF Research Database (Denmark)

    Barfod, Lea; Dobrilovic, Tina; Magistrado, Pamela

    2010-01-01

    to chondroitin sulfate A in the intervillous space. Although interclonal variation of the var2csa gene is lower than that among var genes in general, VAR2CSA-specific Abs appear to target mainly polymorphic epitopes. This has raised doubts about the feasibility of VAR2CSA-based vaccines. We used eight human......) and recombinant VAR2CSA and interfered with IE and/or VAR2CSA binding to chondroitin sulfate A. Pair-wise mAb combinations were more inhibitory than single mAbs, and all of the mAbs together was the most efficient combination. Each mAb could opsonize IEs for phagocytosis, and a combination of the eight m...

  17. Sequencing of chondroitin sulfate oligosaccharides using a novel exolyase from a marine bacterium that degrades hyaluronan and chondroitin sulfate/dermatan sulfate.

    Science.gov (United States)

    Wang, Wenshuang; Cai, Xiaojuan; Han, Naihan; Han, Wenjun; Sugahara, Kazuyuki; Li, Fuchuan

    2017-11-09

    Glycosaminoglycans (GAGs) are a family of chemically heterogeneous polysaccharides that play important roles in physiological and pathological processes. Owing to the structural complexity of GAGs, their sophisticated chemical structures and biological functions have not been extensively studied. Lyases that cleave GAGs are important tools for structural analysis. Although various GAG lyases have been identified, exolytic lyases with unique enzymatic property are urgently needed for GAG sequencing. In the present study, a putative exolytic GAG lyase from a marine bacterium was recombinantly expressed and characterized in detail. Since it showed exolytic lyase activity toward hyaluronan (HA), chondroitin sulfate (CS), and dermatan sulfate (DS), it was designated as HCDLase. This novel exolyase exhibited the highest activity in Tris-HCl buffer (pH 7.0) at 30°C. Especially, it showed a specific activity that released 2-aminobenzamide (2-AB)-labeled disaccharides from the reducing end of 2-AB-labeled CS oligosaccharides, which suggest that HCDLase is not only a novel exolytic lyase that can split disaccharide residues from the reducing termini of sugar chains but also a useful tool for the sequencing of CS chains. Notably, HCDLase could not digest 2-AB-labeled oligosaccharides from HA, DS, or unsulfated chondroitin, which indicated that sulfates and bond types affect the catalytic activity of HCDLase. Finally, this enzyme combined with CSase ABC was successfully applied for the sequencing of several CS hexa- and octasaccharides with complex structures. The identification of HCDLase provides a useful tool for CS-related research and applications. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  18. Glucosamine:chondroitin or ginger root extract have little effect on articular cartilage in swine

    Science.gov (United States)

    Sows are culled at a high rate from breeding herds due to musclo-skeletal problems and lameness. Research in our laboratory has shown that even first-parity sows have significant amounts of osteochondritic lesions of their articular cartilage. Glusoamine chondroitin and ginger root extract have both...

  19. Preparation and characterization of hydroxyapatite/chondroitin sulfate composites by biomimetic synthesis

    International Nuclear Information System (INIS)

    Xiao Xiufeng; He Dan; Liu Fang; Liu Rongfang

    2008-01-01

    Based on the principles of biomineralization, flakelike hydroxyapatite/chondroitin sulfate composites were synthesized through biomimetic method using Ca(NO 3 ) 2 .4H 2 O and (NH 4 ) 3 PO 4 .3H 2 O as reagents and chondroitin sulfate as template. The crystalline phase, microstructure, chemical composition, morphology and thermal behavior of the composites obtained in the experiment were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), transmission electron microscope (TEM), Thermogravimetry-Differential thermal analyzer (TG-DTA) and Elemental analyzer, respectively. The interaction between the functional groups of ChS and HA was investigated by electrical conductivity and UV-vis spectrum. The results demonstrate that the as-prepared powders with small amount of carbonate have the component similar to human bone. It can be concluded that the nucleation and growth of HA crystals occurred through the chemical interactions between the HA crystals and preorganized functional groups of the ChS template. Furthermore, the concentration of ChS significantly affects the morphology of the composites. Short fiberlike crystals could be obtained at a low concentration of ChS, but flakelike crystals could be synthesized using a high concentration (≥0.5 wt%) of ChS as template

  20. Preparation and characterization of hydroxyapatite/chondroitin sulfate composites by biomimetic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Xiufeng; He Dan; Liu Fang [College of Chemistry and Materials Science, Fujian Normal University, Fujian, Fuzhou 350007 (China); Liu Rongfang [College of Chemistry and Materials Science, Fujian Normal University, Fujian, Fuzhou 350007 (China)], E-mail: rfliu@vip.sina.com

    2008-12-20

    Based on the principles of biomineralization, flakelike hydroxyapatite/chondroitin sulfate composites were synthesized through biomimetic method using Ca(NO{sub 3}){sub 2}.4H{sub 2}O and (NH{sub 4}){sub 3}PO{sub 4}.3H{sub 2}O as reagents and chondroitin sulfate as template. The crystalline phase, microstructure, chemical composition, morphology and thermal behavior of the composites obtained in the experiment were characterized by means of X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), transmission electron microscope (TEM), Thermogravimetry-Differential thermal analyzer (TG-DTA) and Elemental analyzer, respectively. The interaction between the functional groups of ChS and HA was investigated by electrical conductivity and UV-vis spectrum. The results demonstrate that the as-prepared powders with small amount of carbonate have the component similar to human bone. It can be concluded that the nucleation and growth of HA crystals occurred through the chemical interactions between the HA crystals and preorganized functional groups of the ChS template. Furthermore, the concentration of ChS significantly affects the morphology of the composites. Short fiberlike crystals could be obtained at a low concentration of ChS, but flakelike crystals could be synthesized using a high concentration ({>=}0.5 wt%) of ChS as template.

  1. A novel multistep method for chondroitin sulphate immobilization and its interaction with fibroblast cells

    Energy Technology Data Exchange (ETDEWEB)

    Ozaltin, Kadir; Lehocký, Marián, E-mail: lehocky@post.cz; Kuceková, Zdenka; Humpolíček, Petr; Sáha, Petr

    2017-01-01

    Polymeric biomaterials are widely used in medical applications owing to their low cost, processability and sufficient toughness. Surface modification by creating a thin film of bioactive agents is promising technique to enhance cellular interactions, regulate the protein adsorption and/or avoid bacterial infections. Polyethylene is one of the most used polymeric biomaterial but its hydrophobic nature impedes its further chemical modifications. Plasma treatment is unique method to increase its hydrophilicity by incorporating hydrophilic oxidative functional groups and tailoring the surface by physical etching. Furthermore, grafting of polymer brushes of amine group containing monomers onto the functionalized surface lead to strongly immobilized bioactive agents at the final step. Chondroitin sulphate is natural polysaccharide mainly found in connective cartilage tissue which used as a bioactive agent to immobilize onto polyethylene surface by multistep method in this study. - Highlights: • Attachment of chondroitin sulfate to polyethylene. • A robust way to modify surfaces using multistep approach. • The modified surfaces showed improved proliferation of mouse primary fibroblast cells.

  2. Purification, structural characterization and anticoagulant properties of fucosylated chondroitin sulfate isolated from Holothuria mexicana.

    Science.gov (United States)

    Mou, Jiaojiao; Wang, Cong; Li, Wenjing; Yang, Jie

    2017-05-01

    A novel fucosylated chondroitin sulfate (HmG) was isolated from sea cucumber Holothuria mexicana, the structure of which was characterized by monosaccharide composition, disaccharide composition, IR, 1 H and 13 C NMR spectrum, additionally with two dimensional NMR spectrum of degraded HmG (DHmG). The backbone of HmG was identified as chondroitin 6-O sulfate, while the major O-4 sulfated fucose branches linked to O-3 position of glucuronic acid in almost every disaccharide unit. The anticoagulant activities of HmG and DHmG were assessed and compared with heparin and low molecular weight heparin. The results indicated that HmG and DHmG both could significantly prolong the activated partial thrombo-plastin time, and the properties were well related to its molecular weight. DHmG showed similar anticoagulant properties to low molecular weight heparin with less bleeding risks, making it a safer anticoagulant drug. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. cDNA cloning of the basement membrane chondroitin sulfate proteoglycan core protein, bamacan: a five domain structure including coiled-coil motifs

    DEFF Research Database (Denmark)

    Wu, R R; Couchman, J R

    1997-01-01

    Basement membranes contain several proteoglycans, and those bearing heparan sulfate glycosaminoglycans such as perlecan and agrin usually predominate. Most mammalian basement membranes also contain chondroitin sulfate, and a core protein, bamacan, has been partially characterized. We have now....... The protein sequence has low overall homology, apart from very small NH2- and COOH-terminal motifs. At the junctions between the distal globular domains and the coiled-coil regions lie glycosylation sites, with up to three N-linked oligosaccharides and probably three chondroitin chains. Three other Ser...

  4. Pattern of chondroitin sulfate proteoglycan expression after ablation of the sensorimotor cortex of the neonatal and adult rat brain

    Directory of Open Access Journals (Sweden)

    Dacić Sanja

    2008-01-01

    Full Text Available The central nervous system has a limited capacity for self-repair after damage. However, the neonatal brain has agreater capacity for recovery than the adult brain. These differences in the regenerative capability depend on local environmental factors and the maturational stage of growing axons. Among molecules which have both growth-promoting and growth-inhibiting activities is the heterogeneous class of chondroitin sulfate proteoglycans (CSPGs. In this paper, we investigated the chondroitin-4 and chondroitin-6 sulfate proteoglycan expression profile after left sensorimotor cortex ablation of the neonatal and adult rat brain. Immunohistochemical analysis revealed that compared to the normal uninjured cortex, lesion provoked up regulation of CSPGs showing a different pattern of expression in the neonatal vs. the adult brain. Punctuate and membrane-bound labeling was predominate after neonatal lesion, where as heavy deposition of staining in the extracellular matrix was observed after adult lesion. Heavy deposition of CSPG immunoreactivity around the lesionsite in adult rats, in contrast to a less CSPG-rich environment in neonatal rats, indicated that enhancement of the recovery process after neonatal injury is due to amore permissive environment.

  5. Burkitt lymphoma expresses oncofetal chondroitin sulfate without being a reservoir for placental malaria sequestration

    DEFF Research Database (Denmark)

    Agerbaek, Mette Ø; Bento Ayres Pereira, Marina Maria; Clausen, Thomas M

    2017-01-01

    in other non-malignant tissues and thus VAR2CSA generally facilitates parasite sequestration and accumulation in pregnant women. In this study, we show that the specific receptor for VAR2CSA, the oncofetal chondroitin sulfate (ofCS), is likewise present in BL tissue and cell lines. We therefore explored...

  6. A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications

    NARCIS (Netherlands)

    Abbadessa, A.; Blokzijl, M. M.; Mouser, V. H. M.; Marica, P.; Malda, J.; Hennink, W. E.; Vermonden, T.

    2016-01-01

    The aim ofthis study was to design a hydrogel system based on methacrylated chondroitin sulfate (CSMA) and a thermo-sensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate)-polyethylene glycol triblock copolymer (M15P10) as a suitable material for additive manufacturing of scaffolds. CSMA

  7. [Sensitive Determination of Chondroitin Sulfate by Fluorescence Recovery of an Anionic Aluminum Phthalocyanine-Cationic Surfactant Ion-Association Complex Used as a Fluorescent Probe Emitting at Red Region].

    Science.gov (United States)

    Chen, Lin; Huang, Ping; Yang, Hui-qing; Deng, Ya-bin; Guo, Meng-lin; Li, Dong-hui

    2015-08-01

    Determination of chondroitin sulfate in the biomedical field has an important value. The conventional methods for the assay of chondroitin sulfate are still unsatisfactory in sensitivity, selectivity or simplicity. This work aimed at developing a novel method for sensitive and selective determination of chondroitin sulfate by fluorimetry. We found that some kinds of cationic surfactants have the ability to quench the fluorescence of tetrasulfonated aluminum phthalocyanine (AlS4Pc), a strongly fluorescent compound which emits at red region, with high efficiency. But, the fluorescence of the above-mentioned fluorescence quenching system recovered significantly when chondroitin sulfate (CS) exits. Tetradecyl dimethyl benzyl ammonium chloride(TDBAC) which was screened from all of the candidates of cationic surfactants was chosen as the quencher because it shows the most efficient quenching effect. It was found that the fluorescence of AlS4Pc was extremely quenched by TDBAC because of the formation of association complex between AlS4Pc and TDBAC. Fluorescence of the association complex recovered dramatically after the addition of chondroitin sulfate (CS) due to the ability of chondroitin sulfate to shift the association equilibrium of the association, leading to the release of AlS4Pc, thus resulting in an increase in the fluorescence of the reaction system. Based on this phenomenon, a novel method with simplicity, accuracy and sensitivity was developed for quantitative determination of CS. Factors including the reaction time, influencing factors and the effect of coexisting substances were investigated and discussed. Under optimum conditions the linear range of the calibration curve was 0.20~10.0 μg · mL(-1). The detection limit for CS was 0.070 μg · mL(-1). The method has been applied to the analysis of practical samples with satisfied results. This work expands the applications of AlS4Pc in biomedical area.

  8. A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications

    NARCIS (Netherlands)

    Abbadessa, A|info:eu-repo/dai/nl/369480376; Blokzijl, M M; Mouser, V H M; Marica, P; Malda, J|info:eu-repo/dai/nl/412461099; Hennink, W E|info:eu-repo/dai/nl/070880409; Vermonden, T|info:eu-repo/dai/nl/275124517

    2016-01-01

    The aim of this study was to design a hydrogel system based on methacrylated chondroitin sulfate (CSMA) and a thermo-sensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate)-polyethylene glycol triblock copolymer (M15P10) as a suitable material for additive manufacturing of scaffolds. CSMA

  9. Structural analysis of isomeric chondroitin sulfate oligosaccharides using regioselective 6-O-desulfation method and tandem mass spectrometry.

    Science.gov (United States)

    Chen, Shu-Ting; Her, Guor-Rong

    2014-09-16

    A strategy based on a regioselective 6-O-desulfation reaction and negative ion electrospray ionization tandem mass spectrometry (ESI-MS(n)) was developed for the structural delineation of isomeric chondroitin sulfate oligosaccharides. Product ions resulting from the glycosidic cleavage provided information about the number of sulfate groups in each sugar residue. After the regioselective 6-O-desulfation reaction, the number of sulfate groups on each residue was obtained using a tandem mass spectrometry analysis of the reaction product. The sulfation pattern could be obtained based on the product ions of analytes before and after the desulfation reaction. The strategy was demonstrated using a series of tetrasaccharides prepared from shark cartilage chondroitin sulfate D. Among the 12 identified tetrasaccharides, six structures had not been reported before. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Novel single-chain antibody GD3A10 defines a chondroitin sulfate biomarker for ovarian cancer

    NARCIS (Netherlands)

    Vallen, M.J.E.; Tilborg, A.G. van; Tesselaar, M.H.; Dam, G.B. ten; Bulten, J.; Kuppevelt, T.H. van; Massuger, L.F.A.G.

    2014-01-01

    AIMS: Ovarian cancer has the highest case-to-fatality-index of all gynecological cancers. In this study, tumor-related alterations in the extracellular matrix, especially regarding chondroitin sulfate glycosaminoglycans, are proposed as a novel biomarker in ovarian cancer. MATERIALS & METHODS: Phage

  11. Oncofetal Chondroitin Sulfate Glycosaminoglycans are Key Players in Integrin Signaling and Tumor Cell Motility

    Science.gov (United States)

    Clausen, Thomas Mandel; Pereira, Marina Ayres; Al Nakouzi, Nader; Oo, Htoo Zarni; Agerbæk, Mette Ø; Lee, Sherry; Ørum-Madsen, Maj Sofie; Christensen, Anders Riis; El-Naggar, Amal; Grandgenett, Paul M.; Grem, Jean L.; Hollingsworth, Michael A.; Holst, Peter J.; Theander, Thor; Sorensen, Poul H.; Daugaard, Mads; Salanti, Ali

    2016-01-01

    Many tumors express proteoglycans modified with oncofetal chondroitin sulfate glycosaminoglycan chains (ofCS), which are normally restricted to the placenta. However, the role of ofCS in cancer is largely unknown. The function of ofCS in cancer was analyzed using the recombinant ofCS-binding VAR2CSA protein (rVAR2) derived from the malaria parasite, Plasmodium falciparum. We demonstrate that ofCS plays a key role in tumor cell motility by affecting canonical integrin signaling pathways. Binding of rVAR2 to tumor cells inhibited the interaction of cells with extracellular matrix (ECM) components, which correlated with decreased phosphorylation of Src kinase. Moreover, rVAR2 binding decreased migration, invasion and anchorage-independent growth of tumor cells in vitro. Mass spectrometry of ofCS-modified proteoglycan complexes affinity purified from tumor cell lines on rVAR2 columns, revealed an overrepresentation of proteins involved in cell motility and integrin signaling, such as integrin β1 (ITGB1) and integrin α4 (ITGA4). Saturating concentrations of rVAR2 inhibited downstream integrin signaling, which was mimicked by knockdown of the core CS synthesis enzymes Beta-1,3-Glucuronyltransferase 1 (B3GAT1) and Chondroitin Sulfate N-Acetylgalactosaminyltransferase 1 (CSGALNACT1). The ofCS modification was highly expressed in both human and murine metastatic lesions in situ and pre-incubation or early intravenous treatment of tumor cells with rVAR2 inhibited seeding and spreading of tumor cells in mice. This was associated with a significant increase in survival of the animals. These data functionally link ofCS modifications with cancer cell motility and further highlights ofCS as a novel therapeutic cancer target. Implications The cancer specific expression of oncofetal chondroitin sulfate aids in metastatic phenotypes and is a candidate target for therapy. PMID:27655130

  12. Inhibition of chondroitin sulfate glycosaminoglycans incorporation affected odontoblast differentiation in cultured embryonic mouse molars.

    Science.gov (United States)

    Liu, Lipei; Chen, Weiting; Li, Lefeng; Xu, Fangfang; Jiang, Beizhan

    2017-12-01

    Chondroitin sulfate proteoglycan (CSPG) is an important component of extracellular matrix (ECM), it is composed of a core protein and one or more chondroitin sulfate glycosaminoglycan side chains (CS-GAGs). To investigate the roles of its CS-GAGs in dentinogenesis, the mouse mandibular first molar tooth germs at early bell stage were cultivated with or without β-xyloside. As expected, the CS-GAGs were inhibited on their incorporation to CSPGs by β-xyloside, accompanied by the change of morphology of the cultured tooth germs. The histological results and the transmission electron microscopy (TEM) investigation indicated that β-xyloside exhibited obvious inhibiting effects on odontoblasts differentiation compared with the control group. Meanwhile the results of immunohistochemistry, in situ hybridization and quantitative RT-PCR for type I collagen, dentin matrix acidic phosphoprotein 1 and dentin sialophosphoprotein, the products of differentiated odontoblasts, further proved that odontoblasts differentiation was inhibited. Collagen fibers detected in TEM decreased and arranged in disorder as well. Thus we conclude that the inhibition of CS-GAGs incorporation to CSPGs can affect odontoblast differentiation in cultured embryonic mouse molars.

  13. Phosphatidylcholine nanovesicles coated with chitosan or chondroitin sulfate as novel devices for bacteriocin delivery

    Science.gov (United States)

    da Silva, Indjara Mallmann; Boelter, Juliana Ferreira; da Silveira, Nádya Pesce; Brandelli, Adriano

    2014-07-01

    There is increased interest on the use of natural antimicrobial peptides in biomedicine and food preservation technologies. In this study, the antimicrobial activity of nisin encapsulated into nanovesicles containing polyanionic polysaccharides was investigated. Nisin was encapsulated in phosphatidylcholine (PC) liposomes containing chitosan or chondroitin sulfate by the thin-film hydration method and tested for antimicrobial activity against Listeria spp. The mean particle size of PC liposomes was 145 nm and varied to 210 and 134 nm with the incorporation of chitosan and chondroitin sulfate, respectively. Nisin-containing nanovesicles with and without incorporation of polysaccharides had a zeta potential values around -20 mV, showing mostly spherical structures when observed by transmission electron microscopy. Encapsulated nisin had similar efficiency as free nisin in inhibiting Listeria spp. isolated from bovine carcass, and greater efficiency in inhibiting Listeria monocytogenes. The formulation containing chitosan was more stable and more efficient in inhibiting L. monocytogenes when compared to the other nanovesicles tested. After 24 h, the viable cell counts were 2 log lower as compared with the other treatments and 7 log comparing to controls.

  14. An Injectable Enzymatically Crosslinked Carboxymethylated Pullulan/Chondroitin Sulfate Hydrogel for Cartilage Tissue Engineering

    Science.gov (United States)

    Chen, Feng; Yu, Songrui; Liu, Bing; Ni, Yunzhou; Yu, Chunyang; Su, Yue; Zhu, Xinyuan; Yu, Xiaowei; Zhou, Yongfeng; Yan, Deyue

    2016-01-01

    In this study, an enzymatically cross-linked injectable and biodegradable hydrogel system comprising carboxymethyl pullulan-tyramine (CMP-TA) and chondroitin sulfate-tyramine (CS-TA) conjugates was successfully developed under physiological conditions in the presence of both horseradish peroxidase (HRP) and hydrogen peroxide (H2O2) for cartilage tissue engineering (CTTE). The HRP crosslinking method makes this injectable system feasible, minimally invasive and easily translatable for regenerative medicine applications. The physicochemical properties of the mechanically stable hydrogel system can be modulated by varying the weight ratio and concentration of polymer as well as the concentrations of crosslinking reagents. Additionally, the cellular behaviour of porcine auricular chondrocytes encapsulated into CMP-TA/CS-TA hydrogels demonstrates that the hydrogel system has a good cyto-compatibility. Specifically, compared to the CMP-TA hydrogel, these CMP-TA/CS-TA composite hydrogels have enhanced cell proliferation and increased cartilaginous ECM deposition, which significantly facilitate chondrogenesis. Furthermore, histological analysis indicates that the hydrogel system exhibits acceptable tissue compatibility by using a mouse subcutaneous implantation model. Overall, the novel injectable pullulan/chondroitin sulfate composite hydrogels presented here are expected to be useful biomaterial scaffold for regenerating cartilage tissue.

  15. Conformational studies on five octasaccharides isolated from chondroitin sulfate using NMR spectroscopy and molecular modeling

    NARCIS (Netherlands)

    Blanchard, V.; Chevalier, F.; Imberty, A.; Leeflang, B.R.; Sugahara, K.; Kamerling, J.P.

    2007-01-01

    Chondroitin sulfate proteoglycans (CS-PG) are involved in the regulation of the central nervous system in vertebrates due to their presence on cell surfaces and in the extracellular matrix of tissues. The CS moieties are built up from repeating -4)GlcA(β 1-3)GalNAc(β 1- disaccharide units, partly

  16. Developmental and functional significance of the CSF-1 proteoglycan chondroitin sulfate chain

    OpenAIRE

    Nandi, Sayan; Akhter, Mohammed P.; Seifert, Mark F.; Dai, Xu-Ming; Stanley, E. Richard

    2006-01-01

    The primary macrophage growth factor, colony-stimulating factor-1 (CSF-1), is homodimeric and exists in 3 biologically active isoforms: a membrane-spanning, cell-surface glycoprotein (csCSF-1) and secreted glycoprotein (sgCSF-1) and proteoglycan (spCSF-1) isoforms. To investigate the in vivo role of the chondroitin sulfate glycosaminoglycan (GAG) chain of spCSF-1, we created mice that exclusively express, in a normal tissue-specific and developmental manner, either the secreted precursor of s...

  17. Preparation and antifouling property of polyurethane film modified by chondroitin sulfate

    Science.gov (United States)

    Yuan, Huihui; Xue, Jing; Qian, Bin; Chen, Huaying; Zhu, Yonggang; Lan, Minbo

    2017-02-01

    An antifouling polyurethane film modified by chondroitin sulfate (PU-CS) was prepared by chemical grafting with N-Boc-1,3-propanediamine as a spacer. The different mass fraction of N-Boc-1,3-propanediamine was investigated to obtain PU-CS films with different CS grafting density. The surface properties of PU-CS films were comprehensively characterized. Proteins adsorption and glycosaminoglycans adhesion on films were evaluated. Moreover, inorganic salt deposition on film with highest CS grafting density (3.70 μg/cm2) was briefly investigated. The results showed that the increase of CS grafting density improved not only the hydrophilicity but the antifouling performance of films. The best antifouling film reduced the adsorption of fibrinogen (BFG), human serum albumin (HSA) and lysozyme (LYS) by 81.4%, 95.0% and 76.5%, respectively, and the adhesion of chondroitin (CS), heparin (HP) and hyaluronic acid (HA) by 70.6%, 87.4% and 81.3%, respectively. In addition, the co-adsorption of proteins and glycosaminoglycans reduced up to 86.9% and 75.5%, respectively. Changes in inorganic salt deposition after co-adsorption of proteins and glycosaminoglycans on PU-CS(3) suggested that the proteins promoted the inorganic salt deposition, while glycosaminoglycans inhibited the crystal growth. The negatively charged polysaccharides might promote the generation of smaller crystals which could be conducive to provide theoretical and practical guide to develop novel urinary stents with significant anti-encrustation properties.

  18. The chondroitin sulfate A-binding site of the VAR2CSA protein involves multiple N-terminal domains

    DEFF Research Database (Denmark)

    Dahlbäck, Madeleine; Jørgensen, Lars M; Nielsen, Morten A

    2011-01-01

    Malaria during pregnancy is a major health problem for African women. The disease is caused by Plasmodium falciparum malaria parasites, which accumulate in the placenta by adhering to chondroitin sulfate A (CSA). The interaction between infected erythrocytes and the placental receptor is mediated...

  19. Prediction of the oversulphated chondroitin sulphate contamination of unfractionated heparin by ATR-IR spectrophotometry.

    Science.gov (United States)

    Norwig, J; Beyer, T; Brinz, D; Holzgrabe, U; Diller, M; Manns, D

    2009-03-01

    The detection of a contamination of heparin with oversulphated chondroitin sulphate (OSCS) was first analysed in an unfractionated heparin batch supplied to the US API-market in April 2006. OSCS is a semi-synthetic derivative of the natural occuring glycosaminoglycan chondroitin sulphate. Moreover some spectroscopic characteristics of the substance overlap with those of heparin, so that the infrared (IR) spectra are visually difficult to distinguish whereas (1)H-NMR (Nuclear Magnetic Resonance) spectroscopy or capillary electrophoresis (CE) provides identification by a simple visual inspection of either the spectrum or the electropherogram respectively. However, applying special tools of Multivariate Data Analysis (MVA) to the IR spectra an identification of the contaminated samples is possible. In detail a rapid Attenuation Total Reflectance-Infrared (ATR-IR) measurement was selected, which does not require any sample preparation. The result (contaminated or not contaminated) is predicted within a few minutes. A method transfer to mobile ATR-IR spectrometers seems to be possible. The analysis is based on the fact that the fingerprint of the OSCS IR spectrum (1st derivative) complies with a theoretically calculated principal component in the MVA.

  20. Oncofetal Chondroitin Sulfate Glycosaminoglycans Are Key Players in Integrin Signaling and Tumor Cell Motility.

    Science.gov (United States)

    Clausen, Thomas Mandel; Pereira, Marina Ayres; Al Nakouzi, Nader; Oo, Htoo Zarni; Agerbæk, Mette Ø; Lee, Sherry; Ørum-Madsen, Maj Sofie; Kristensen, Anders Riis; El-Naggar, Amal; Grandgenett, Paul M; Grem, Jean L; Hollingsworth, Michael A; Holst, Peter J; Theander, Thor; Sorensen, Poul H; Daugaard, Mads; Salanti, Ali

    2016-12-01

    Many tumors express proteoglycans modified with oncofetal chondroitin sulfate glycosaminoglycan chains (ofCS), which are normally restricted to the placenta. However, the role of ofCS in cancer is largely unknown. The function of ofCS in cancer was analyzed using the recombinant ofCS-binding VAR2CSA protein (rVAR2) derived from the malaria parasite, Plasmodium falciparum We demonstrate that ofCS plays a key role in tumor cell motility by affecting canonical integrin signaling pathways. Binding of rVAR2 to tumor cells inhibited the interaction of cells with extracellular matrix (ECM) components, which correlated with decreased phosphorylation of Src kinase. Moreover, rVAR2 binding decreased migration, invasion, and anchorage-independent growth of tumor cells in vitro Mass spectrometry of ofCS-modified proteoglycan complexes affinity purified from tumor cell lines on rVAR2 columns revealed an overrepresentation of proteins involved in cell motility and integrin signaling, such as integrin-β1 (ITGB1) and integrin-α4 (ITGA4). Saturating concentrations of rVAR2 inhibited downstream integrin signaling, which was mimicked by knockdown of the core chondroitin sulfate synthesis enzymes β-1,3-glucuronyltransferase 1 (B3GAT1) and chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGALNACT1). The ofCS modification was highly expressed in both human and murine metastatic lesions in situ and preincubation or early intravenous treatment of tumor cells with rVAR2 inhibited seeding and spreading of tumor cells in mice. This was associated with a significant increase in survival of the animals. These data functionally link ofCS modifications with cancer cell motility and further highlights ofCS as a novel therapeutic cancer target. The cancer-specific expression of ofCS aids in metastatic phenotypes and is a candidate target for therapy. Mol Cancer Res; 14(12); 1288-99. ©2016 AACR. ©2016 American Association for Cancer Research.

  1. High cell density cultivation of Escherichia coli K4 in a microfiltration bioreactor: a step towards improvement of chondroitin precursor production

    Directory of Open Access Journals (Sweden)

    De Rosa Mario

    2011-02-01

    Full Text Available Abstract Background The bacteria Escherichia coli K4 produces a capsular polysaccharide (K4 CPS whose backbone is similar to the non sulphated chondroitin chain. The chondroitin sulphate is one of the major components of the extra-cellular matrix of the vertebrate connective tissues and a high value molecule, widely employed as active principle in the treatment of osteoarthritis. It is usually obtained by extraction from animal tissues, but the risk of virus contaminations, as well as the scarceness of raw material, makes this productive process unsafe and unable to satisfy the growing market demand. In previous studies a new biotechnological process to produce chondroitin from Escherichia coli K4 capsular polysaccharide was investigated and a 1.4 g·L-1 K4 CPS concentration was reached using fed-batch fermentation techniques. In this work, on the trail of these results, we exploited new fermentation strategies to further improve the capsular polysaccharide production. Results The inhibitory effect of acetate on the bacterial cells growth and K4 CPS production was studied in shake flask conditions, while a new approach, that combined the optimization of the feeding profiles, the improvement of aeration conditions and the use of a microfiltration bioreactor, was investigated in three different types of fermentation processes. High polysaccharide concentrations (4.73 ± 0.2 g·L-1, with corresponding average yields (0.13 ± 0.006 gK4 CPS·gcdw-1, were obtained; the increase of K4 CPS titre, compared to batch and fed-batch results, was of 16-fold and 3.3-fold respectively, while average yield was almost 3.5 and 1.4 fold higher. Conclusion The increase of capsular polysaccharide titre confirmed the validity of the proposed fermentation strategy and opened the way to the use of the microfiltration bioreactor for the biotechnological production of chondroitin.

  2. Preparation of Low Molecular Weight Chondroitin Sulfates, Screening of a High Anti-Complement Capacity of Low Molecular Weight Chondroitin Sulfate and Its Biological Activity Studies in Attenuating Osteoarthritis.

    Science.gov (United States)

    Li, Lian; Li, Yan; Feng, Danyang; Xu, Linghua; Yin, Fengxin; Zang, Hengchang; Liu, Chunhui; Wang, Fengshan

    2016-10-11

    Chondroitin sulfate (CS) plays important roles in the complement system. However, the CS structure is complicated due to different sources and the number and positions of sulfate groups. The objective of this study was to prepare different low molecular weight chondroitin sulfates (LMWCSs) and to investigate the biological activity in anti-complement capacity. A series of LMWCSs was prepared from different sources and characterized by ultraviolet-visible (UV) spectroscopy, high-performance liquid chromatography (HPLC), size exclusion chromatography-multiangle laser light scattering (SEC-MALLS) and nuclear magnetic resonance (NMR) spectroscopy. Hemolytic, anti-complement 3 deposition capacity and cell viability assays were carried out to investigate the biological activities in vitro. The results showed that LMWCS prepared from shark cartilage with the oxidative degradation method (LMWCS-S-O) had the best anti-complement capacity. LMWCS-S-O could inhibit the alternative pathway of the complement system and protect chondrocytes from cell death. The attenuating effect of LMWCS-S-O on Osteoarthritis (OA) was investigated by destabilization of the medial meniscus (DMM) model in vivo. Functional wind-up, histological and C5b-9 analyses were used to evaluate the treatment effect on the OA model. In vivo results showed that LMWCS-S-O could attenuate OA. LMWCS-S-O with a high content of ΔDi-2,6diS and ΔDi-6S could be used for attenuating OA through regulating the complement system.

  3. Preparation of Low Molecular Weight Chondroitin Sulfates, Screening of a High Anti-Complement Capacity of Low Molecular Weight Chondroitin Sulfate and Its Biological Activity Studies in Attenuating Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Lian Li

    2016-10-01

    Full Text Available Chondroitin sulfate (CS plays important roles in the complement system. However, the CS structure is complicated due to different sources and the number and positions of sulfate groups. The objective of this study was to prepare different low molecular weight chondroitin sulfates (LMWCSs and to investigate the biological activity in anti-complement capacity. A series of LMWCSs was prepared from different sources and characterized by ultraviolet-visible (UV spectroscopy, high-performance liquid chromatography (HPLC, size exclusion chromatography-multiangle laser light scattering (SEC-MALLS and nuclear magnetic resonance (NMR spectroscopy. Hemolytic, anti-complement 3 deposition capacity and cell viability assays were carried out to investigate the biological activities in vitro. The results showed that LMWCS prepared from shark cartilage with the oxidative degradation method (LMWCS-S-O had the best anti-complement capacity. LMWCS-S-O could inhibit the alternative pathway of the complement system and protect chondrocytes from cell death. The attenuating effect of LMWCS-S-O on Osteoarthritis (OA was investigated by destabilization of the medial meniscus (DMM model in vivo. Functional wind-up, histological and C5b-9 analyses were used to evaluate the treatment effect on the OA model. In vivo results showed that LMWCS-S-O could attenuate OA. LMWCS-S-O with a high content of ΔDi-2,6diS and ΔDi-6S could be used for attenuating OA through regulating the complement system.

  4. Chondroitin sulphate-guided construction of polypyrrole nanoarchitectures

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhengnan [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Zhu, Wenjun [Department of Prosthodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Liao, Jingwen [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Huang, Shishu [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University (China); Department of Orthopaedics and Traumatology, The University of Hong Kong (China); Chen, Junqi; He, Tianrui [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); Tan, Guoxin, E-mail: tanguoxin@126.com [Faculty of Light and Chemical, Guangdong University of Technology, Guangzhou 510006 (China); Ning, Chengyun, E-mail: imcyning@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China)

    2015-03-01

    Nanospheres, nanocones, and nanowires are three typical polypyrrole (PPy) nanoarchitectures and electrochemically polymerized with the dope of chondroitin sulphate (CS) in this study. CS, a functional biomacromolecule, guides the formation of PPy nanoarchitectures as the dopant and morphology-directing agent. Combined with our previous reported other PPy nanoarchitectures (such as nanotube arrays and nanowires), this work further proposed the novel mechanism of the construction of PPy/CS nanoarchitectures with the synergistic effect of CS molecular chains structure and the steric hindrance. Compared to the undoped PPy, MC3T3-E1 cells with PPy/CS nanoarchitectures possessed stronger proliferation and osteogenic differentiation capability. This suggests that PPy/CS nanoarchitectures have appropriate biocompatibility. Altogether, the nanoarchitectured PPy/CS may find application in the regeneration of bone defect. - Highlights: • The formation mechanism of PPy nanoarchitectures was proposed. • CS acted as biofunctional dopant and morphology-directing agent in PPy forming. • PPy-CS nanoarchitectures were dependent on the Py/CS ratio.

  5. Effects of glucosamine, chondroitin, or placebo in patients with osteoarthritis of hip or knee: network meta-analysis

    DEFF Research Database (Denmark)

    Wandel, Simon; Jüni, Peter; Tendal, Britta

    2010-01-01

    OBJECTIVE: To determine the effect of glucosamine, chondroitin, or the two in combination on joint pain and on radiological progression of disease in osteoarthritis of the hip or knee. Design Network meta-analysis. Direct comparisons within trials were combined with indirect evidence from other t...... and health insurers should not cover the costs of these preparations, and new prescriptions to patients who have not received treatment should be discouraged....... visual analogue scale. DATA SOURCES: Electronic databases and conference proceedings from inception to June 2009, expert contact, relevant websites. Eligibility criteria for selecting studies Large scale randomised controlled trials in more than 200 patients with osteoarthritis of the knee or hip.......02 for interaction). The differences in changes in minimal width of joint space were all minute, with 95% credible intervals overlapping zero. Conclusions Compared with placebo, glucosamine, chondroitin, and their combination do not reduce joint pain or have an impact on narrowing of joint space. Health authorities...

  6. Brittlestars contain highly sulfated chondroitin sulfates/dermatan sulfates that promote fibroblast growth factor 2-induced cell signaling.

    Science.gov (United States)

    Ramachandra, Rashmi; Namburi, Ramesh B; Ortega-Martinez, Olga; Shi, Xiaofeng; Zaia, Joseph; Dupont, Sam T; Thorndyke, Michael C; Lindahl, Ulf; Spillmann, Dorothe

    2014-02-01

    Glycosaminoglycans (GAGs) isolated from brittlestars, Echinodermata class Ophiuroidea, were characterized, as part of attempts to understand the evolutionary development of these polysaccharides. A population of chondroitin sulfate/dermatan sulfate (CS/DS) chains with a high overall degree of sulfation and hexuronate epimerization was the major GAG found, whereas heparan sulfate (HS) was below detection level. Enzymatic digestion with different chondroitin lyases revealed exceptionally high proportions of di- and trisulfated CS/DS disaccharides. The latter unit appears much more abundant in one of four individual species of brittlestars, Amphiura filiformis, than reported earlier in other marine invertebrates. The brittlestar CS/DS was further shown to bind to growth factors such as fibroblast growth factor 2 and to promote FGF-stimulated cell signaling in GAG-deficient cell lines in a manner similar to that of heparin. These findings point to a potential biological role for the highly sulfated invertebrate GAGs, similar to those ascribed to HS in vertebrates.

  7. Chondroitin sulfate/dermatan sulfate sulfatases from mammals and bacteria.

    Science.gov (United States)

    Wang, Shumin; Sugahara, Kazuyuki; Li, Fuchuan

    2016-12-01

    Sulfatases that specifically catalyze the hydrolysis of the sulfate groups on chondroitin sulfate (CS)/dermatan sulfate (DS) poly- and oligosaccharides belong to the formylglycine-dependent family of sulfatases and have been widely found in various mammalian and bacterial organisms. However, only a few types of CS/DS sulfatase have been identified so far. Recently, several novel CS/DS sulfatases have been cloned and characterized. Advanced studies have provided significant insight into the biological function and mechanism of action of CS/DS sulfatases. Moreover, further studies will provide powerful tools for structural and functional studies of CS/DS as well as related applications. This article reviews the recent progress in CS/DS sulfatase research and is expected to initiate further research in this field.

  8. Distribution of radioactivity in the mouse organism after administration of 35S-chondroitin sulphate

    International Nuclear Information System (INIS)

    Konador, A.; Kawiak, J.

    1976-01-01

    The follow-up of chondroitin sulphate (ChS) distribution in the organism after its administration by various routes is interesting in view of the possibility of clinical applications. Mice received intraperitoneally and intragastrically 35 S-ChS and the distribution of radioactivity was followed in 10 chosen organs. The dynamics of changes in radioactivity were found to differ in dependence on the type of organ and route of administration. (author)

  9. Formulation and Evaluation of Chitosan-Chondroitin Sulphate Based Nasal Inserts for Zolmitriptan

    Directory of Open Access Journals (Sweden)

    Kirandeep Kaur

    2013-01-01

    Full Text Available Bioadhesive nasal dosage forms are an attractive method for overcoming rapid mucociliary clearance transport in the nose and for delivering the drug directly to brain. The present study was designed to formulate chondroitin sulphate (CS and chitosan (CH nasal inserts employing zolmitriptan, an antimigraine drug. The interpolymer complexes (IPC formed between –COO− and – groups of CS and group of CH were characterized by infrared spectroscopy (IR, differential scanning analysis (DSC, and zeta potential studies. The unloaded and loaded nasal inserts were evaluated for water uptake studies, and bioadhesive strength studies, scanning electron microscopic studies (SEM. The in vitro drug release and in situ permeation studies were carried out on loaded nasal inserts. The DSC and IR studies confirmed the formation of a complex between the two polymers. The results indicated that the formulation F1 (CH : CS; 30 : 70 was demonstrating the highest bioadhesive strength and zeta potential. The presence of porous structure in the nasal inserts was confirmed by the SEM analysis. Further, in vitro and in situ release studies demonstrated that formulations F9 and F11 (drug : polymer; 1 : 10 were releasing 90% and 98% zolmitriptan over a period of 8 h. It can be concluded that nasal inserts formulated from chitosan-chondroitin sulphate (CH-CS interpolymer complex (IPC can be used for delivery of antimigraine drug to brain.

  10. Purification, structural characterization and antiproliferative properties of chondroitin sulfate/dermatan sulfate from tunisian fish skins.

    Science.gov (United States)

    Krichen, Fatma; Volpi, Nicola; Sila, Assaâd; Maccari, Francesca; Mantovani, Veronica; Galeotti, Fabio; Ellouz-Chaabouni, Semia; Bougatef, Ali

    2017-02-01

    Chondroitin sulfate/dermatan sulfate GAGs were extracted and purified from the skins of grey triggerfish (GTSG) and smooth hound (SHSG). The disaccharide composition produced by chondroitinase ABC treatment showed the presence of nonsulfated disaccharide, monosulfated disaccharides ΔDi6S and ΔDi4S, and disulfated disaccharides in different percentages. In particular, the nonsulfated disaccharide ΔDi0S of GTSG and SHSG were 3.5% and 5.5%, respectively, while monosulfated disaccharides ΔDi6S and ΔDi4S were evaluated to be 18.2%, 59% and 14.6%, 47.0%, respectively. Capillary elecrophoresis analysis of GTSG and SHSG contained 99.2% and 95.4% of chondroitin sulfate/dermatan sulfate, respectively. PAGE analysis showed a GTSG and SHSG having molecular masses with average values of 41.72KDa and 23.8KDa, respectively. HCT116 cell proliferation was inhibited (p<0.05) by 70.6% and 72.65% at 200μg/mL of GTSG and SHSG respectively. Both GTSG and SHSG demonstrated promising antiproliferative potential, which may be used as a novel, effective agent. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Synthesis of Fucosylated Chondroitin Sulfate Glycoclusters: A Robust Route to New Anticoagulant Agents.

    Science.gov (United States)

    Zhang, Xiao; Yao, Wang; Xu, Xiaojiang; Sun, Huifang; Zhao, Jinhua; Meng, Xiangbao; Wu, Mingyi; Li, Zhongjun

    2018-02-01

    Fucosylated chondroitin sulfate (FuCS) is a structurally distinct glycosaminoglycan with excellent anticoagulant activity. Studies show that FuCS and its depolymerized fragments exhibit a different anticoagulant mechanism from that of heparin derivatives, with decreased risks of adverse effects and bleeding. However, further exploitation has been hindered by the scarcity of structurally defined oligosaccharides. Herein, facile method is reported for the synthesis of the repeating trisaccharide unit of FuCS based on the degradation of chondroitin sulfate polymers. A series of simplified FuCS glycomimetics that have highly tunable structures, controllable branches, and defined sulfation motifs were generated by copper-catalyzed alkyne-azide cycloaddition. Remarkable improvement in activated partial thromboplastin time (APTT) assay activities was observed as the branches increased, but no significant influences were observed for prothrombin time (PT) and thrombin time (TT) assay activities. Further FXase inhibition tests suggested that glycoclusters 33 b-40 b selectively inhibited intrinsic anticoagulant activities, but had little effect on the extrinsic and common coagulation pathways. Notably, glycoclusters with the 2,4-di-O-sulfated fucosyl residue displayed the most potency, which was in consistent with that of natural polysaccharides. These FuCS clusters demonstrated potency to mimic linear glycosaminoglycans and offer a new framework for the development of novel anticoagulant agents. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Chondroitin Sulfate-Rich Extract of Skate Cartilage Attenuates Lipopolysaccharide-Induced Liver Damage in Mice.

    Science.gov (United States)

    Song, Yeong Ok; Kim, Mijeong; Woo, Minji; Baek, Jang-Mi; Kang, Keon-Hee; Kim, Sang-Ho; Roh, Seong-Soo; Park, Chan Hum; Jeong, Kap-Seop; Noh, Jeong-Sook

    2017-06-15

    The protective effects of a chondroitin sulfate-rich extract (CSE) from skate cartilage against lipopolysaccharide (LPS)-induced hepatic damage were investigated, and its mechanism of action was compared with that of chondroitin sulfate (CS) from shark cartilage. ICR mice were orally administrated 200 mg/kg body weight (BW) of CS or 400 mg/kg BW of CSE for 3 consecutive days, followed by a one-time intraperitoneal injection of LPS (20 mg/kg BW). The experimental groups were vehicle treatment without LPS injection (NC group), vehicle treatment with LPS injection (LPS group), CS pretreatment with LPS injection (CS group), and CSE pretreatment with LPS injection (CSE group). Hepatic antioxidant enzyme expression levels in the CS and CSE groups were increased relative to those in the LPS group. In LPS-insulted hepatic tissue, inflammatory factors were augmented relative to those in the NC group, but were significantly suppressed by pretreatment with CS or CSE. Moreover, CS and CSE alleviated the LPS-induced apoptotic factors and mitogen-activated protein kinase (MAPK). In addition, CS and CSE effectively decreased the serum lipid concentrations and downregulated hepatic sterol regulatory element-binding proteins expression. In conclusion, the skate CSE could protect against LPS-induced hepatic dyslipidemia, oxidative stress, inflammation, and apoptosis, probably through the regulation of MAPK signaling.

  13. SRPX2 is a novel chondroitin sulfate proteoglycan that is overexpressed in gastrointestinal cancer.

    Directory of Open Access Journals (Sweden)

    Kaoru Tanaka

    Full Text Available SRPX2 (Sushi repeat-containing protein, X-linked 2 has recently emerged as a multifunctional protein that is involved in seizure disorders, angiogenesis and cellular adhesion. Here, we analyzed this protein biochemically. SRPX2 protein was secreted with a highly posttranslational modification. Chondroitinase ABC treatment completely decreased the molecular mass of purified SRPX2 protein to its predicted size, whereas heparitinase, keratanase and hyaluroinidase did not. Secreted SRPX2 protein was also detected using an anti-chondroitin sulfate antibody. These results indicate that SRPX2 is a novel chondroitin sulfate proteoglycan (CSPG. Furthermore, a binding assay revealed that hepatocyte growth factor dose-dependently binds to SRPX2 protein, and a ligand-glycosaminoglycans interaction was speculated to be likely in proteoglycans. Regarding its molecular architecture, SRPX2 has sushi repeat modules similar to four other CSPGs/lecticans; however, the molecular architecture of SRPX2 seems to be quite different from that of the lecticans. Taken together, we found that SRPX2 is a novel CSPG that is overexpressed in gastrointestinal cancer cells. Our findings provide key glycobiological insight into SRPX2 in cancer cells and demonstrate that SRPX2 is a new member of the cancer-related proteoglycan family.

  14. Rapid acquisition of isolate-specific antibodies to chondroitin sulfate A-adherent Plasmodium falciparum isolates in Ghanaian primigravidae

    DEFF Research Database (Denmark)

    Cox, Sharon E; Staalsoe, Trine; Arthur, Paul

    2005-01-01

    RBC to chondroitin sulfate A (CSA). The VSA mediating CSA binding (VSA(CSA)) and thus sequestration of pRBC in the placenta are antigenically distinct from those that mediate pRBC sequestration elsewhere in the body, and it has been suggested that VSA(CSA) are relatively conserved and may thus constitute...

  15. In Vivo Anti-Cancer Mechanism of Low-Molecular-Weight Fucosylated Chondroitin Sulfate (LFCS) from Sea Cucumber Cucumaria frondosa.

    Science.gov (United States)

    Liu, Xiaoxiao; Liu, Yong; Hao, Jiejie; Zhao, Xiaoliang; Lang, Yinzhi; Fan, Fei; Cai, Chao; Li, Guoyun; Zhang, Lijuan; Yu, Guangli

    2016-05-12

    The low-molecular-weight fucosylated chondroitin sulfate (LFCS) was prepared from native fucosylated chondroitin sulfate (FCS), which was extracted and isolated from sea cucumber Cucumaria frondosa, and the anti-cancer mechanism of LFCS on mouse Lewis lung carcinoma (LLC) was investigated. The results showed that LFCS remarkably inhibited LLC growth and metastasis in a dose-dependent manner. LFCS induced cell cycle arrest by increasing p53/p21 expression and apoptosis through activation of caspase-3 activity in LLC cells. Meanwhile, LFCS suppressed the expression of vascular endothelial growth factor (VEGF), increased the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1) and downregulated the matrix metalloproteinases (MMPs) level. Furthermore, LFCS significantly suppressed the activation of ERK1/2/p38 MAPK/NF-κB pathway, which played a prime role in expression of MMPs. All of these data indicate LFCS may be used as anti-cancer drug candidates and deserve further study.

  16. In Vivo Anti-Cancer Mechanism of Low-Molecular-Weight Fucosylated Chondroitin Sulfate (LFCS from Sea Cucumber Cucumaria frondosa

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Liu

    2016-05-01

    Full Text Available The low-molecular-weight fucosylated chondroitin sulfate (LFCS was prepared from native fucosylated chondroitin sulfate (FCS, which was extracted and isolated from sea cucumber Cucumaria frondosa, and the anti-cancer mechanism of LFCS on mouse Lewis lung carcinoma (LLC was investigated. The results showed that LFCS remarkably inhibited LLC growth and metastasis in a dose-dependent manner. LFCS induced cell cycle arrest by increasing p53/p21 expression and apoptosis through activation of caspase-3 activity in LLC cells. Meanwhile, LFCS suppressed the expression of vascular endothelial growth factor (VEGF, increased the expression of tissue inhibitor of metalloproteinase-1 (TIMP-1 and downregulated the matrix metalloproteinases (MMPs level. Furthermore, LFCS significantly suppressed the activation of ERK1/2/p38 MAPK/NF-κB pathway, which played a prime role in expression of MMPs. All of these data indicate LFCS may be used as anti-cancer drug candidates and deserve further study.

  17. The effect of glucosamine and/or chondroitin sulfate on the progression of knee osteoarthritis: a report from the glucosamine/chondroitin arthritis intervention trial.

    Science.gov (United States)

    Sawitzke, Allen D; Shi, Helen; Finco, Martha F; Dunlop, Dorothy D; Bingham, Clifton O; Harris, Crystal L; Singer, Nora G; Bradley, John D; Silver, David; Jackson, Christopher G; Lane, Nancy E; Oddis, Chester V; Wolfe, Fred; Lisse, Jeffrey; Furst, Daniel E; Reda, Domenic J; Moskowitz, Roland W; Williams, H James; Clegg, Daniel O

    2008-10-01

    Osteoarthritis (OA) of the knee causes significant morbidity and current medical treatment is limited to symptom relief, while therapies able to slow structural damage remain elusive. This study was undertaken to evaluate the effect of glucosamine and chondroitin sulfate (CS), alone or in combination, as well as celecoxib and placebo on progressive loss of joint space width (JSW) in patients with knee OA. A 24-month, double-blind, placebo-controlled study, conducted at 9 sites in the United States as part of the Glucosamine/Chondroitin Arthritis Intervention Trial (GAIT), enrolled 572 patients with knee OA who satisfied radiographic criteria (Kellgren/Lawrence [K/L] grade 2 or grade 3 changes and JSW of at least 2 mm at baseline). Patients with primarily lateral compartment narrowing at any time point were excluded. Patients who had been randomized to 1 of the 5 groups in the GAIT continued to receive glucosamine 500 mg 3 times daily, CS 400 mg 3 times daily, the combination of glucosamine and CS, celecoxib 200 mg daily, or placebo over 24 months. The minimum medial tibiofemoral JSW was measured at baseline, 12 months, and 24 months. The primary outcome measure was the mean change in JSW from baseline. The mean JSW loss at 2 years in knees with OA in the placebo group, adjusted for design and clinical factors, was 0.166 mm. No statistically significant difference in mean JSW loss was observed in any treatment group compared with the placebo group. Treatment effects on K/L grade 2 knees, but not on K/L grade 3 knees, showed a trend toward improvement relative to the placebo group. The power of the study was diminished by the limited sample size, variance of JSW measurement, and a smaller than expected loss in JSW. At 2 years, no treatment achieved a predefined threshold of clinically important difference in JSW loss as compared with placebo. However, knees with K/L grade 2 radiographic OA appeared to have the greatest potential for modification by these treatments.

  18. Chondroitin sulfates and their binding molecules in the central nervous system.

    Science.gov (United States)

    Djerbal, L; Lortat-Jacob, H; Kwok, Jcf

    2017-06-01

    Chondroitin sulfate (CS) is the most abundant glycosaminoglycan (GAG) in the central nervous system (CNS) matrix. Its sulfation and epimerization patterns give rise to different forms of CS, which enables it to interact specifically and with a significant affinity with various signalling molecules in the matrix including growth factors, receptors and guidance molecules. These interactions control numerous biological and pathological processes, during development and in adulthood. In this review, we describe the specific interactions of different families of proteins involved in various physiological and cognitive mechanisms with CSs in CNS matrix. A better understanding of these interactions could promote a development of inhibitors to treat neurodegenerative diseases.

  19. The Effect of Glucosamine and/or Chondroitin Sulfate on the Progression of Knee Osteoarthritis: A GAIT Report

    Science.gov (United States)

    Sawitzke, Allen D; Shi, Helen; Finco, Martha; Dunlop, Dorothy D; Bingham, Clifton O; Harris, Crystal L; Singer, Nora G; Bradley, John D; Silver, David; Jackson, Christopher G; Lane, Nancy E; Oddis, Chester V; Wolfe, Fred; Lisse, Jeffrey; Furst, Daniel E; Reda, Domenic J; Moskowitz, Roland W; Williams, H James; Clegg, Daniel O

    2010-01-01

    Objective Osteoarthritis of the knee causes significant morbidity and current medical treatment is limited to symptom relief, as therapies able to slow structural damage remain elusive. This study sought to evaluate the effect of glucosamine hydrochloride (glucosamine, G), sodium chondroitin sulfate (chondroitin sulfate, CS) (alone and in combination), celecoxib and placebo on progressive loss of joint space width (JSW). Methods A double-blind twenty-four month placebo-controlled study conducted at nine sites in the United States enrolled 572 participants from Glucosamine/chondroitin Arthritis Intervention Trial (GAIT) who satisfied radiographic criteria (Kellgren and Lawrence (K&L) Grade 2 or 3 changes and JSW of at least 2mm at baseline). Persons with primarily lateral compartment narrowing at any time point were excluded. Patients continued G 500mg three times daily, CS 400mg three times daily, the combination, celecoxib 200mg daily or placebo as randomized for GAIT. Minimum medial tibiofemoral JSW was measured at baseline, 12 and 24 months. The primary outcome measure was JSW change from baseline. Results The average JSW loss at 2 years for placebo, adjusted for design and clinical factors, was 0.16mm. No statistically significant difference for any treatment group compared to the placebo group was observed. Treatment effects for K&L Grade 2 knees, but not K&L Grade 3 knees showed a trend toward improvement relative to placebo. The study’s power was diminished by sample size, variance of JSW measurement and a smaller than expected loss in JSW. Conclusions At two years, no treatment achieved a predefined clinically important difference in JSW loss compared to placebo. However, patients with K&L Grade 2 osteoarthritis appear to have the greatest potential for modification by these treatments (ClinicalTrials.gov number, NCT00032890). PMID:18821708

  20. Dynamic expression of a native chondroitin sulfate epitope reveals microheterogeneity of extracellular matrix organization in the embryonic chick heart.

    Science.gov (United States)

    Capehart, A A; Mjaatvedt, C H; Hoffman, S; Krug, E L

    1999-02-01

    TC2 is a novel monoclonal antibody produced by in vitro immunization of splenocytes with a peanut agglutinin-positive fraction from extracts of prechondrogenic micromass cultures of chick limb mesenchyme. ELISA results demonstrated TC2 reactivity with a native epitope on a glycosaminoglycan (GAG) enriched in chondroitin-4-sulfate and with multiple intact proteoglycans, but not with other GAGs tested. TC2 immunohistochemical reactivity was abolished by pretreatment of sections with chondroitinase AC or preadsorption with chondroitin-4-sulfate GAG. Strong TC2 localization occurred throughout the developing heart at stage 9. As looping ensued, a graded reactivity was observed from lowest in the atrium to highest in the conotruncus that correlated well with versican localization. The superior atrioventricular cushion stained preferentially with TC2 as compared to the inferior cushion at stages 16-18. At these later stages TC2 patterns did not agree completely with anti-versican reactivity. By stage 23 there was a marked reduction in TC2 localization in the heart, however, strong reactivity remained at certain sites, including the conotruncus and in subcompartments of both atrioventricular cushions. A heterogeneous distribution of other native chondroitin sulfate glycosaminoglycan epitopes recognized by monoclonal antibodies d1C4 and CS-56 was observed as well. The distribution of the TC2 epitope usually did not overlap with d1C4 or CS-56 localization at the stages examined. Overall, the spatiotemporal characteristics of TC2 reactivity in the developing chick heart appear to correlate with subdomains of the endocardial cushions as well as with trabecular and atrial septal formation.

  1. Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair.

    Science.gov (United States)

    Zhou, Feifei; Zhang, Xianzhu; Cai, Dandan; Li, Jun; Mu, Qin; Zhang, Wei; Zhu, Shouan; Jiang, Yangzi; Shen, Weiliang; Zhang, Shufang; Ouyang, Hong Wei

    2017-11-01

    The demand of favorable scaffolds has increased for the emerging cartilage tissue engineering. Chondroitin sulfate (CS) and silk fibroin have been investigated and reported with safety and excellent biocompatibility as tissue engineering scaffolds. However, the rapid degradation rate of pure CS scaffolds presents a challenge to effectively recreate neo-tissue similar to natural articular cartilage. Meanwhile the silk fibroin is well used as a structural constituent material because its remarkable mechanical properties, long-lasting in vivo stability and hypoimmunity. The application of composite silk fibroin and CS scaffolds for joint cartilage repair has not been well studied. Here we report that the combination of silk fibroin and CS could synergistically promote articular cartilage defect repair. The silk fibroin (silk) and silk fibroin/CS (silk-CS) scaffolds were fabricated with salt-leaching, freeze-drying and crosslinking methodologies. The biocompatibility of the scaffolds was investigated in vitro by cell adhesion, proliferation and migration with human articular chondrocytes. We found that silk-CS scaffold maintained better chondrocyte phenotype than silk scaffold; moreover, the silk-CS scaffolds reduced chondrocyte inflammatory response that was induced by interleukin (IL)-1β, which is in consistent with the well-documented anti-inflammatory activities of CS. The in vivo cartilage repair was evaluated with a rabbit osteochondral defect model. Silk-CS scaffold induced more neo-tissue formation and better structural restoration than silk scaffold after 6 and 12weeks of implantation in ICRS histological evaluations. In conclusion, we have developed a silk fibroin/ chondroitin sulfate scaffold for cartilage tissue engineering that exhibits immuno-inhibition property and can improve the self-repair capacity of cartilage. Severe cartilage defect such as osteoarthritis (OA) is difficult to self-repair because of its avascular, aneural and alymphatic nature

  2. Facile synthesis of chondroitin sulfate-stabilized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li Wei, E-mail: weilixj8510@163.com [School of Science, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, Henan 450002 (China); Li Xin; Su Hui; Zhao Shiju; Li Yanyun; Hu Jiandong [School of Science, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, Henan 450002 (China)

    2011-02-15

    A facile and simple method for the synthesis of biocompatible gold nanoparticles (AuNPs) at room temperature has been developed by using sodium borohydride as the reducing agent and employing an inexpensive water-soluble chondroitin sulfate (CS) biopolymer as the stabilizing agent. The as-prepared AuNPs were characterized with ultraviolet-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). Additionally, the stability of AuNPs in aqueous solution was investigated as a function of the electrolyte sodium chloride concentration. The experimental results showed that even high sodium chloride concentration (1 M) also did not destabilize the colloidal gold solution. So it could be speculated that the high stability of AuNPs should be attributed to the electrostatic repulsion and steric hindrance between the AuNPs stabilized by CS molecules, which wrapped around the surface of as-prepared AuNPs and prevented their agglomeration, and simultaneously improve biocompatibility of AuNPs as well.

  3. Facile synthesis of chondroitin sulfate-stabilized gold nanoparticles

    International Nuclear Information System (INIS)

    Li Wei; Li Xin; Su Hui; Zhao Shiju; Li Yanyun; Hu Jiandong

    2011-01-01

    A facile and simple method for the synthesis of biocompatible gold nanoparticles (AuNPs) at room temperature has been developed by using sodium borohydride as the reducing agent and employing an inexpensive water-soluble chondroitin sulfate (CS) biopolymer as the stabilizing agent. The as-prepared AuNPs were characterized with ultraviolet-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). Additionally, the stability of AuNPs in aqueous solution was investigated as a function of the electrolyte sodium chloride concentration. The experimental results showed that even high sodium chloride concentration (1 M) also did not destabilize the colloidal gold solution. So it could be speculated that the high stability of AuNPs should be attributed to the electrostatic repulsion and steric hindrance between the AuNPs stabilized by CS molecules, which wrapped around the surface of as-prepared AuNPs and prevented their agglomeration, and simultaneously improve biocompatibility of AuNPs as well.

  4. A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications.

    Science.gov (United States)

    Abbadessa, A; Blokzijl, M M; Mouser, V H M; Marica, P; Malda, J; Hennink, W E; Vermonden, T

    2016-09-20

    The aim of this study was to design a hydrogel system based on methacrylated chondroitin sulfate (CSMA) and a thermo-sensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate)-polyethylene glycol triblock copolymer (M15P10) as a suitable material for additive manufacturing of scaffolds. CSMA was synthesized by reaction of chondroitin sulfate with glycidyl methacrylate (GMA) in dimethylsulfoxide at 50°C and its degree of methacrylation was tunable up to 48.5%, by changing reaction time and GMA feed. Unlike polymer solutions composed of CSMA alone (20% w/w), mixtures based on 2% w/w of CSMA and 18% of M15P10 showed strain-softening, thermo-sensitive and shear-thinning properties more pronounced than those found for polymer solutions based on M15P10 alone. Additionally, they displayed a yield stress of 19.2±7.0Pa. The 3D printing of this hydrogel resulted in the generation of constructs with tailorable porosity and good handling properties. Finally, embedded chondrogenic cells remained viable and proliferating over a culture period of 6days. The hydrogel described herein represents a promising biomaterial for cartilage 3D printing applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Structural characterization of fucosylated chondroitin sulfates from sea cucumbers Apostichopus japonicus and Actinopyga mauritiana.

    Science.gov (United States)

    Ustyuzhanina, Nadezhda E; Bilan, Maria I; Dmitrenok, Andrey S; Tsvetkova, Eugenia A; Shashkov, Alexander S; Stonik, Valentin A; Nifantiev, Nikolay E; Usov, Anatolii I

    2016-11-20

    Two samples of fucosylated chondroitin sulfate (FCS), AJ and AM, were isolated from holothurian species Apostichopus japonicus and Actinopyga mauritiana, respectively. Purification of FCS was performed by ion exchange chromatography followed by gel filtration. Structure of the biopolymers was elucidated using chemical and NMR spectroscopic methods. Both polysaccharides were shown to contain a typical chondroitin core built up of repeating disaccharide units →3)-β-d-GalNAc-(1→4)-β-d-GlcA-(1→ and decorated by sulfate groups and α-l-Fuc branches. Two polysaccharides were different in pattern of sulfation of GalNAc and fucosyl branches connected to O-3 of GlcA. The ratio of GalNAc4S6S:GalNAc4S for AJ was about 2:1, whereas for AM this value was approximately 1:1. AJ contained Fucp2S4S and Fucp3S4S residues linked to O-3 of GlcA in a ratio of 3:1, while for AM this ratio was 1:4. Small portions of Fucp4S units attached to O-3 of GlcA were also found in both polysaccharides. Moreover, in a structure of AM the presence of Fucp3S residues linked to O-6 of GalNAc were determined using the data of NMR spectra. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Differentiating chondroitin sulfate glycosaminoglycans using collision-induced dissociation; uronic acid cross-ring diagnostic fragments in a single stage of tandem mass spectrometry.

    Science.gov (United States)

    Kailemia, Muchena J; Patel, Anish B; Johnson, Dane T; Li, Lingyun; Linhardt, Robert J; Amster, I Jonathan

    2015-01-01

    The stereochemistry of the hexuronic acid residues of the structure of glycosaminoglycans (GAGs) is a key feature that affects their interactions with proteins and other biological functions. Electron based tandem mass spectrometry methods, in particular electron detachment dissociation (EDD), have been able to distinguish glucuronic acid (GlcA) from iduronic acid (IdoA) residues in some heparan sulfate tetrasaccharides by producing epimer-specific fragments. Similarly, the relative abundance of glycosidic fragment ions produced by collision-induced dissociation (CID) or EDD has been shown to correlate with the type of hexuronic acid present in chondroitin sulfate GAGs. The present work examines the effect of charge state and degree of sodium cationization on the CID fragmentation products that can be used to distinguish GlcA and IdoA containing chondroitin sulfate A and dermatan sulfate chains. The cross-ring fragments (2,4)A(n) and (0,2)X(n) formed within the hexuronic acid residues are highly preferential for chains containing GlcA, distinguishing it from IdoA. The diagnostic capability of the fragments requires the selection of a molecular ion and fragment ions with specific ionization characteristics, namely charge state and number of ionizable protons. The ions with the appropriate characteristics display diagnostic properties for all the chondroitin sulfate and dermatan sulfate chains (degree of polymerization of 4-10) studied.

  7. Molecular dissection of placental malaria protein VAR2CSA interaction with a chemo-enzymatically synthesized chondroitin sulfate library.

    Science.gov (United States)

    Sugiura, Nobuo; Clausen, Thomas Mandel; Shioiri, Tatsumasa; Gustavsson, Tobias; Watanabe, Hideto; Salanti, Ali

    2016-12-01

    Placental malaria, a serious infection caused by the parasite Plasmodium falciparum, is characterized by the selective accumulation of infected erythrocytes (IEs) in the placentas of the pregnant women. Placental adherence is mediated by the malarial VAR2CSA protein, which interacts with chondroitin sulfate (CS) proteoglycans present in the placental tissue. CS is a linear acidic polysaccharide composed of repeating disaccharide units of D-glucuronic acid and N-acetyl-D-galactosamine that are modified by sulfate groups at different positions. Previous reports have shown that placental-adhering IEs were associated with an unusually low sulfated form of chondroitin sulfate A (CSA) and that a partially sulfated dodecasaccharide is the minimal motif for the interaction. However, the fine molecular structure of this CS chain remains unclear. In this study, we have characterized the CS chain that interacts with a recombinant minimal CS-binding region of VAR2CSA (rVAR2) using a CS library of various defined lengths and sulfate compositions. The CS library was chemo-enzymatically synthesized with bacterial chondroitin polymerase and recombinant CS sulfotransferases. We found that C-4 sulfation of the N-acetyl-D-galactosamine residue is critical for supporting rVAR2 binding, whereas no other sulfate modifications showed effects. Interaction of rVAR2 with CS is highly correlated with the degree of C-4 sulfation and CS chain length. We confirmed that the minimum structure binding to rVAR2 is a tri-sulfated CSA dodecasaccharide, and found that a highly sulfated CSA eicosasaccharide is a more potent inhibitor of rVAR2 binding than the dodecasaccharides. These results suggest that CSA derivatives may potentially serve as targets in therapeutic strategies against placental malaria.

  8. Intravesical Glycosaminoglycan Replacement with Chondroitin Sulphate (Gepan? instill) in Patients with Chronic Radiotherapy- or Chemotherapy-Associated Cystitis

    OpenAIRE

    Schwalenberg, Thilo; Berger, Frank Peter; Horn, Lars Christian; Thi, Phuc Ho; Stolzenburg, Jens?Uwe; Neuhaus, Jochen

    2015-01-01

    Background and Objective Intravesical instillation of glycosaminoglycans is a promising option for the treatment of chronic cystitis, as it supports the regeneration of the damaged urothelial layer. We investigated the efficacy of short-term intravesical chondroitin sulphate treatment (six courses of instillation) in patients with chronic radiotherapy- or chemotherapy-associated cystitis. Methods This prospective, observational study included patients with chronic radiotherapy- or chemotherap...

  9. Hexuronic Acid Stereochemistry Determination in Chondroitin Sulfate Glycosaminoglycan Oligosaccharides by Electron Detachment Dissociation

    Science.gov (United States)

    Leach, Franklin E.; Ly, Mellisa; Laremore, Tatiana N.; Wolff, Jeremy J.; Perlow, Jacob; Linhardt, Robert J.; Amster, I. Jonathan

    2012-09-01

    Electron detachment dissociation (EDD) has previously provided stereo-specific product ions that allow for the assignment of the acidic C-5stereochemistry in heparan sulfate glycosaminoglycans (GAGs), but application of the same methodology to an epimer pair in the chondroitin sulfate glycoform class does not provide the same result. A series of experiments have been conducted in which glycosaminoglycan precursor ions are independently activated by electron detachment dissociation (EDD), electron induced dissociation (EID), and negative electron transfer dissociation (NETD) to assign the stereochemistry in chondroitin sulfate (CS) epimers and investigate the mechanisms for product ion formation during EDD in CS glycoforms. This approach allows for the assignment of electronic excitation products formed by EID and detachment products to radical pathways in NETD, both of which occur simultaneously during EDD. The uronic acid stereochemistry in electron detachment spectra produces intensity differences when assigned glycosidic and cross-ring cleavages are compared. The variations in the intensities of the doubly deprotonated 0,2X3 and Y3 ions have been shown to be indicative of CS-A/DS composition during the CID of binary mixtures. These ions can provide insight into the uronic acid composition of binary mixtures in EDD, but the relative abundances, although reproducible, are low compared with those in a CID spectrum acquired on an ion trap. The application of principal component analysis (PCA) presents a multivariate approach to determining the uronic acid stereochemistry spectra of these GAGs by taking advantage of the reproducible peak distributions produced by electron detachment.

  10. Do chondroitin sulfates with different structures have different activities on chondrocytes and macrophages?

    Science.gov (United States)

    da Cunha, André L; Aguiar, Jair A K; Correa da Silva, Flavio S; Michelacci, Yara M

    2017-10-01

    The aim of the present study was to investigate the activities of natural chondroitin sulfates (CS) with different structures on cultured chondrocytes and macrophages. CS were isolated from cartilages of bovine trachea (BT), porcine trachea (PT), chicken sternum (Ch) and skate (Sk). The preparations were 90-98% pure, with ∼1% proteins, nucleic acids and keratan sulfate contaminants. Structural analysis of these CS and of commercial chondroitin 4- and 6-sulfate (C4S, C6S) have shown that most of their disaccharides are monosulfated, with varying proportions of 4- and 6-sulfation, and 2-7% non-sulfated disaccharides. Sk-CS and C6S contained detectable amounts of disulfated disaccharides. All the CS were polydisperse, with modal molecular weights of 26-135kDa. These CS had anti-inflammatory activities on both chondrocytes and macrophages, but with different efficiencies. On horse and human chondrocytes, they reduced the IL-1β-induced liberation of NO and PGE 2 , and on RAW 264.7 immortalized macrophage-like cell line, C4S, C6S, Ch and Sk-CS decreased the LPS-induced liberation of TNF-α, but did not affect IL-6. In contrast, on bone marrow derived macrophages, C4S, C6S, BT and PT-CS reduced the LPS-induced liberation of TNF-α, IL-6, IL-1β and NO, indicating that the RAW response to CS was different from that of primary macrophages. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Orbitrap mass spectrometry characterization of hybrid chondroitin/dermatan sulfate hexasaccharide domains expressed in brain.

    Science.gov (United States)

    Robu, Adrian C; Popescu, Laurentiu; Munteanu, Cristian V A; Seidler, Daniela G; Zamfir, Alina D

    2015-09-15

    In the central nervous system, chondroitin/dermatan sulfate (CS/DS) glycosaminoglycans (GAGs) modulate neurotrophic effects and glial cell maturation during brain development. Previous reports revealed that GAG composition could be responsible for CS/DS activities in brain. In this work, for the structural characterization of DS- and CS-rich domains in hybrid GAG chains extracted from neural tissue, we have developed an advanced approach based on high-resolution mass spectrometry (MS) using nanoelectrospray ionization Orbitrap in the negative ion mode. Our high-resolution MS and multistage MS approach was developed and applied to hexasaccharides obtained from 4- and 14-week-old mouse brains by GAG digestion with chondroitin B and in parallel with AC I lyase. The expression of DS- and CS-rich domains in the two tissues was assessed comparatively. The analyses indicated an age-related structural variability of the CS/DS motifs. The older brain was found to contain more structures and a higher sulfation of DS-rich regions, whereas the younger brain was found to be characterized by a higher sulfation of CS-rich regions. By multistage MS using collision-induced dissociation, we also demonstrated the incidence in mouse brain of an atypical [4,5-Δ-GlcAGalNAc(IdoAGalNAc)2], presenting a bisulfated CS disaccharide formed by 3-O-sulfate-4,5-Δ-GlcA and 6-O-sulfate-GalNAc moieties. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Sulfation pattern of fucose branches affects the anti-hyperlipidemic activities of fucosylated chondroitin sulfate.

    Science.gov (United States)

    Wu, Nian; Zhang, Yu; Ye, Xingqian; Hu, Yaqin; Ding, Tian; Chen, Shiguo

    2016-08-20

    Fucosylated chondroitin sulfates (fCSs) are glycosaminoglycans extracted from sea cucumbers, consisting of chondroitin sulfate E (CSE) backbones and sulfated fucose branches. The biological properties of fCSs could be affected by the sulfation pattern of their fucose branches. In the present study, two fCSs were isolated from sea cucumbers Isostichopus badionotus (fCS-Ib) and Pearsonothuria graeffei (fCS-Pg). Their monosaccharide compositions of glucuronic acid (GlcA), N-acetylgalactosamine (GalNAc), fucose (Fuc) and sulfate were at similar molar ratio with 1.0/0.7/0.9/3.1 for fCS-Ib and 1.0/0.8/1.5/2.6 for fCS-Pg. The two fCSs have different sulfation patterns on their fucose branches, fCS-Pg with 3,4-O-disulfation while fCS-Ib with 2,4-O-disulfation. Their antihyperlipidemic effects were compared using a high-fat high-fructose diet (HFFD)-fed C57BL/6J mice model. Both fCS-Ib and fCS-Pg had significant effects on lipid profile improvement, liver protection, blood glucose diminution and hepatic glycogen synthesis. Specifically, fCS-Pg with 3,4-O-disulfation fucose branches was more effective in reduction of blood cholesterol (TC), low density lipoprotein (LDL) and atherogenic index (AI). Our results indicate that both fCSs, especially fCS-Pg, could be used as a potential anti-hyperlipidemic drug. Copyright © 2016. Published by Elsevier Ltd.

  13. EGFR Activation Mediates Inhibition of Axon Regeneration by Myelin and Chondroitin Sulfate Proteoglycans

    Science.gov (United States)

    Koprivica, Vuk; Cho, Kin-Sang; Park, Jong Bae; Yiu, Glenn; Atwal, Jasvinder; Gore, Bryan; Kim, Jieun A.; Lin, Estelle; Tessier-Lavigne, Marc; Chen, Dong Feng; He, Zhigang

    2005-10-01

    Inhibitory molecules associated with myelin and the glial scar limit axon regeneration in the adult central nervous system (CNS), but the underlying signaling mechanisms of regeneration inhibition are not fully understood. Here, we show that suppressing the kinase function of the epidermal growth factor receptor (EGFR) blocks the activities of both myelin inhibitors and chondroitin sulfate proteoglycans in inhibiting neurite outgrowth. In addition, regeneration inhibitors trigger the phosphorylation of EGFR in a calcium-dependent manner. Local administration of EGFR inhibitors promotes significant regeneration of injured optic nerve fibers, pointing to a promising therapeutic avenue for enhancing axon regeneration after CNS injury.

  14. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate

    International Nuclear Information System (INIS)

    Huang, Zhao; Nooeaid, Patcharakamon; Kohl, Benjamin; Roether, Judith A.; Schubert, Dirk W.; Meier, Carola; Boccaccini, Aldo R.; Godkin, Owen; Ertel, Wolfgang; Arens, Stephan; Schulze-Tanzil, Gundula

    2015-01-01

    To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1–2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity ~ 93–95% with a mean pore sizes of 237 ± 48 μm (Alg) and 197 ± 61 μm (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell–cell contacts. - Highlights: • Alginate foam scaffolds revealed a high porosity and mean pore size of 197–237 μm. • Chondroitin sulfate was released over 14 days by the scaffolds. • Chondrocytes

  15. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhao [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Nooeaid, Patcharakamon [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Kohl, Benjamin [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Roether, Judith A.; Schubert, Dirk W. [Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Meier, Carola [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Boccaccini, Aldo R. [Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg (Germany); Godkin, Owen; Ertel, Wolfgang; Arens, Stephan [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Schulze-Tanzil, Gundula, E-mail: gundula.schulze@pmu.ac.at [Department of Orthopaedic, Trauma and Reconstructive Surgery, Charité-Universitätsmedizin-Berlin Campus Benjamin Franklin, Berlin (Germany); Institute of Anatomy, Paracelsus Medical University, Nuremberg (Germany)

    2015-05-01

    To overcome the limited intrinsic cartilage repair, autologous chondrocyte or bone-marrow-derived mesenchymal stromal cell (BM-MSC) was implanted into cartilage defects. For this purpose suitable biocompatible scaffolds are needed to provide cell retention, chondrogenesis and initial mechanical stability. The present study should indicate whether a recently developed highly porous alginate (Alg) foam scaffold supplemented with chondroitin sulfate (CS) allows the attachment, survival and chondrogenesis of BM-MSCs and articular chondrocytes. The foams were prepared using a freeze-drying method; some of them were supplemented with CS and subsequently characterized for porosity, biodegradation and mechanical profile. BM-MSCs were cultured for 1–2 weeks on the scaffold either under chondrogenic or maintenance conditions. Cell vitality assays, histology, glycosaminoglycan (sGAG) assay, and type II and I collagen immunolabelings were performed to monitor cell growth and extracellular matrix (ECM) synthesis in the scaffolds. Scaffolds had a high porosity ~ 93–95% with a mean pore sizes of 237 ± 48 μm (Alg) and 197 ± 61 μm (Alg/CS). Incorporation of CS increased mechanical strength of the foams providing gradually CS release over 7 days. Most of the cells survived in the scaffolds. BM-MSCs and articular chondrocytes formed rounded clusters within the scaffold pores. The BM-MSCs, irrespective of whether cultured under non/chondrogenic conditions and chondrocytes produced an ECM containing sGAGs, and types II and I collagen. Total collagen and sGAG contents were higher in differentiated BM-MSC cultures supplemented with CS than in CS-free foams after 14 days. The cell cluster formation induced by the scaffolds might stimulate chondrogenesis via initial intense cell–cell contacts. - Highlights: • Alginate foam scaffolds revealed a high porosity and mean pore size of 197–237 μm. • Chondroitin sulfate was released over 14 days by the scaffolds. • Chondrocytes

  16. Xyloside-primed Chondroitin Sulfate/Dermatan Sulfate from Breast Carcinoma Cells with a Defined Disaccharide Composition Has Cytotoxic Effects in Vitro.

    Science.gov (United States)

    Persson, Andrea; Tykesson, Emil; Westergren-Thorsson, Gunilla; Malmström, Anders; Ellervik, Ulf; Mani, Katrin

    2016-07-08

    We previously reported that the xyloside 2-(6-hydroxynaphthyl) β-d-xylopyranoside (XylNapOH), in contrast to 2-naphthyl β-d-xylopyranoside (XylNap), specifically reduces tumor growth both in vitro and in vivo Although there are indications that this could be mediated by the xyloside-primed glycosaminoglycans (GAGs) and that these differ in composition depending on xyloside and cell type, detailed knowledge regarding a structure-function relationship is lacking. In this study we isolated XylNapOH- and XylNap-primed GAGs from a breast carcinoma cell line, HCC70, and a breast fibroblast cell line, CCD-1095Sk, and demonstrated that both XylNapOH- and XylNap-primed chondroitin sulfate/dermatan sulfate GAGs derived from HCC70 cells had a cytotoxic effect on HCC70 cells and CCD-1095Sk cells. The cytotoxic effect appeared to be mediated by induction of apoptosis and was inhibited in a concentration-dependent manner by the XylNap-primed heparan sulfate GAGs. In contrast, neither the chondroitin sulfate/dermatan sulfate nor the heparan sulfate derived from CCD-1095Sk cells primed on XylNapOH or XylNap had any effect on the growth of HCC70 cells or CCD-105Sk cells. These observations were related to the disaccharide composition of the XylNapOH- and XylNap-primed GAGs, which differed between the two cell lines but was similar when the GAGs were derived from the same cell line. To our knowledge this is the first report on cytotoxic effects mediated by chondroitin sulfate/dermatan sulfate. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Effect of chondroitin sulfate on osteogenetic differentiation of human mesenchymal stem cells

    International Nuclear Information System (INIS)

    Schneiders, Wolfgang; Rentsch, Claudia; Rehberg, Sebastian; Rein, Susanne; Zwipp, Hans; Rammelt, Stefan

    2012-01-01

    Chondroitin sulfate (CS) has anti-inflammatory properties and increases the regeneration ability of injured bone. In different in vivo investigations on bone defects the addition of CS to calcium phosphate bone cement has lead to an enhanced bone remodeling and increased new bone formation. The goal of this study was to evaluate the cellular effects of CS on human mesenchymal stem cells (hMSCs). In cell culture experiments hMSCs were incubated on calcium phosphate bone cements with and without CS and cultivated in a proliferation and an osteogenetic differentiation media. Alkaline phosphatase and the proliferation rate were determined on days 1, 7 and 14. Concerning the proliferation rates, no significant differences were detected. On days 1, 7 and 14 a significantly higher activity of alkaline phosphatase, an early marker of osteogenesis, was detected around CS modified cements in both types of media. The addition of CS leads to a significant increase of osteogenetic differentiation of hMSCs. To evaluate the influence of the osteoconductive potency of CS in twelve adult male Wistar rats, the interface reaction of cancellous bone to a nanocrystalline hydroxyapatite cement containing type I collagen (CDHA/Coll) without and with CS (CDHA/Coll/CS) was evaluated. Cylindrical implants were inserted press-fit into a defect of the tibial head. 28 days after the operation the direct bone contact and the percentage of newly formed bone were significantly higher on CDHA/Coll/CS-implants (p < 0.05). The addition of CS appears to enhance new bone formation on CDHA/Coll-composites in the early stages of bone healing. Possible mechanisms are discussed. - Highlights: ► The influence of chondroitin sulfate (CS) on bone metabolism was evaluated. ► CS leads to a significant increase of osteogenetic differentiation of hMSCs. ► In small animal investigation CS seems to enhance osteogenesis in bone healing.

  18. Preparation of chondroitin sulfate libraries containing disulfated disaccharide units and inhibition of thrombin by these chondroitin sulfates.

    Science.gov (United States)

    Numakura, Mario; Kusakabe, Noriko; Ishige, Kazuya; Ohtake-Niimi, Shiori; Habuchi, Hiroko; Habuchi, Osami

    2010-07-01

    Chondroitin sulfate (CS) containing GlcA-GalNAc(4,6-SO(4)) (E unit) and CS containing GlcA(2SO(4))-GalNAc(6SO(4)) (D unit) have been implicated in various physiological functions. However, it has been poorly understood how the structure and contents of disulfated disaccharide units in CS contribute to these functions. We prepared CS libraries containing E unit or D unit in various proportions by in vitro enzymatic reactions using recombinant GalNAc 4-sulfate 6-O-sulfotransferase and uronosyl 2-O-sulfotransferase, and examined their inhibitory activity toward thrombin. The in vitro sulfated CSs containing disulfated disaccharide units showed concentration-dependent direct inhibition of thrombin when the proportion of E unit or D unit in the CSs was above 15-17%. The CSs containing both E unit and D unit exhibited higher inhibitory activity toward thrombin than the CSs containing either E unit or D unit alone, if the proportion of the total disulfated disaccharide units of these CSs was comparable. The thrombin-catalyzed degradation of fibrinogen, a physiological substrate for thrombin, was also inhibited by the CS containing both E unit and D unit. These observations indicate that the enzymatically prepared CS libraries containing various amounts of disulfated disaccharide units appear to be useful for elucidating the physiological function of disulfated disaccharide units in CS.

  19. Prophylactic vesical instillations with 0.2% chondroitin sulfate may reduce symptoms of acute radiation cystitis in patients undergoing radiotherapy for gynecological malignancies

    NARCIS (Netherlands)

    Hazewinkel, M.H.; Stalpers, L.J.A.; Dijkgraaf, M.G.; Roovers, J.P.W.R.

    2011-01-01

    We studied the feasibility and efficacy of intravesical instillations with 40 ml chondroitin sulfate 0.2% solution to prevent or reduce acute radiation cystitis in women undergoing pelvic radiotherapy. In a comparative pilot study in 20 patients, half of the patients received instillations.

  20. Overproduction, purification and crystallization of a chondroitin sulfate A-binding DBL domain from a Plasmodium falciparum var2csa-encoded PfEMP1 protein

    International Nuclear Information System (INIS)

    Higgins, Matthew K.

    2008-01-01

    A chondroitin sulfate A-binding DBL important in placental malaria has been overproduced, purified and crystallized. Diffraction data were collected to 1.9 Å resolution. The PfEMP1 proteins of the malaria parasite Plasmodium falciparum are inserted into the membrane of infected red blood cells, where they mediate adhesion to a variety of human receptors. The DBL domains of the var2csa-encoded PfEMP1 protein play a critical role in malaria of pregnancy, tethering infected cells to the surface of the placenta through interactions with the glycosaminoglycan carbohydrate chondroitin sulfate A (CSA). A CSA-binding DBL domain has been overproduced in a bacterial expression system, purified and crystallized. Native data sets extending to 1.9 Å resolution have been collected and phasing is under way

  1. Overproduction, purification and crystallization of a chondroitin sulfate A-binding DBL domain from a Plasmodium falciparum var2csa-encoded PfEMP1 protein

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Matthew K., E-mail: mkh20@cam.ac.uk [Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA (United Kingdom)

    2008-03-01

    A chondroitin sulfate A-binding DBL important in placental malaria has been overproduced, purified and crystallized. Diffraction data were collected to 1.9 Å resolution. The PfEMP1 proteins of the malaria parasite Plasmodium falciparum are inserted into the membrane of infected red blood cells, where they mediate adhesion to a variety of human receptors. The DBL domains of the var2csa-encoded PfEMP1 protein play a critical role in malaria of pregnancy, tethering infected cells to the surface of the placenta through interactions with the glycosaminoglycan carbohydrate chondroitin sulfate A (CSA). A CSA-binding DBL domain has been overproduced in a bacterial expression system, purified and crystallized. Native data sets extending to 1.9 Å resolution have been collected and phasing is under way.

  2. A cell surface chondroitin sulfate proteoglycan, immunologically related to CD44, is involved in type I collagen-mediated melanoma cell motility and invasion

    DEFF Research Database (Denmark)

    Faassen, A E; Schrager, J A; Klein, D J

    1992-01-01

    The metastatic spread of tumor cells occurs through a complex series of events, one of which involves the adhesion of tumor cells to extracellular matrix (ECM) components. Multiple interactions between cell surface receptors of an adherent tumor cell and the surrounding ECM contribute to cell...... collagen could also be inhibited by removing cell surface chondroitin sulfate with chondroitinase. In contrast, type I collagen-mediated melanoma cell adhesion and spreading were not affected by either beta-D-xyloside or chondroitinase treatments. These results suggest that mouse melanoma CSPG...... was shown to be mediated, at least in part, by chondroitin sulfate. Additionally we have determined that mouse melanoma CSPG is composed of a 110-kD core protein that is recognized by anti-CD44 antibodies on Western blots. Collectively, our data suggests that interactions between a cell surface CD44-related...

  3. Visualization of liver on bone scintigraphy during treatment with iron chondroitin sulfate colloid

    International Nuclear Information System (INIS)

    Tanaka, Shigeko; Sawa, Hisashi; Fukuda, Teruo

    1983-01-01

    In order to see its probable cause in the incidental liver delineation on the bone scan with sup(99m)Tc-MDP, patients and experimental rabbits were intravenously injected with Blutal (iron lhondroitin sulfate) varicus times following the intravenous injection of sup(99m)Tc-MDP. The liver images were obtained during the early periods. An injection of Blutal-sup(99m)Tc pertechnetate mixture did not result in any appreciable hepatic delineation. Stannous chloride in the MDP kit could have enticed formation of radiocolloids in the presence of iron chondroitin sulfate. Diagnostic problems can be evaded by carrefully planning the bone scintigraphy in relation to the Blutal administration. (author)

  4. Exploring the structure of fucosylated chondroitin sulfate through bottom-up nuclear magnetic resonance and electrospray ionization-high-resolution mass spectrometry approaches.

    Science.gov (United States)

    Santos, Gustavo Rc; Porto, Ana Co; Soares, Paulo Ag; Vilanova, Eduardo; Mourão, Paulo As

    2017-07-01

    Fucosylated chondroitin sulfate (FCS) from sea cucumbers is composed of a chondroitin sulfate (CS) central core and branches of sulfated fucose. The structure of this complex glycosaminoglycan is usually investigated via nuclear magnetic resonance (NMR) analyses of the intact molecule, ergo through a top-down approach, which often yield spectra with intricate sets of signals. Here we employed a bottom-up approach to analyze the FCSs from the sea cucumbers Isostichopus badionotus and Ludwigothurea grisea from their basic constituents, viz. CS cores and sulfated fucose branches, obtained via systematic fragmentation through mild acid hydrolysis. Oligosaccharides derived from the central CS core were analyzed via NMR spectroscopy and the disaccharides produced using chondroitin sulfate lyase via SAX-HPLC. The CS cores from the two species were similar, showing only slight differences in the proportions of 4- or 6-monosulfated and 4,6-disulfated β-d-GalNAc. Sulfated fucose units released from the FCSs were analyzed via NMR and ESI-HRMS spectroscopies. The fucose units from each species presented extensive qualitative differences, but quantitative assessments of these units were hindered, mostly because of their extensive desulfation during the hydrolysis. The bottom-up analysis performed here has proved useful to explore the structure of FCS through a sum-of-the-parts approach in a qualitative manner. We further demonstrate that under specific acidification conditions particular fucose branches can be removed preferentially from FCS. Preparation of derivatives enriched with particular fucose branches could be useful for studies on "structure vs. biological function" of FCS. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Structural and functional insight into how the Plasmodium falciparum VAR2CSA protein mediates binding to chondroitin sulfate A in placental malaria

    DEFF Research Database (Denmark)

    Clausen, Thomas M; Christoffersen, Stig; Dahlbäck, Madeleine

    2012-01-01

    Malaria is a major global health problem. Pregnant women are susceptible to infection regardless of previously acquired immunity. Placental malaria is caused by parasites capable of sequestering in the placenta. This is mediated by VAR2CSA, a parasite antigen that interacts with chondroitin sulfa...

  6. Chondroitin 6-O-sulfotransferases are required for morphogenesis of the notochord in the ascidian embryo.

    Science.gov (United States)

    Nakamura, Jun; Yoshida, Keita; Sasakura, Yasunori; Fujiwara, Shigeki

    2014-12-01

    Chondroitin sulfate (CS) is a sulfated polysaccharide chain that binds to various core proteins to form proteoglycans. The amount and position of sulfate groups in CS are variable among different tissues, and are determined by specific sulfotransferases. Although the ascidians are the closest relatives of vertebrates, the functions of their sulfotransferases have not been studied. The genome of the ascidian Ciona intestinalis contains eight genes encoding proteins similar to chondroitin 6-O-sulfotransferases (C6STs), which appear to have independently diverged in the ascidian lineage during evolution. Among them, Ci-C6ST-like1 and Ci-C6ST-like7 were predominantly expressed in the developing notochord. In addition, they were weakly expressed in the neural tube. The disruption of either one of them affected the convergent extension movement of notochordal cells. Presumptive notochord cells coming from both sides of the embryo did not intercalate. The results suggest that both of them are necessary. In some cases, the anterior neural tube failed to close. Forced expression of Ci-C6ST-like1 or Ci-C6ST-like7 in the notochord restored the normal intercalation of notochordal cells, indicating that the effects of morpholino oligos are specific. Ci-C6ST-like1 and Ci-C6ST-like7 are required for the morphogenesis of the notochord in the ascidian embryo. © 2014 Wiley Periodicals, Inc.

  7. Clinical efficacy and safety over two years use of glucosamine, chondroitin sulfate, their combination, celecoxib or placebo taken to treat osteoarthritis of the knee: a GAIT report

    Science.gov (United States)

    Shi, Helen; Finco, Martha F; Dunlop, Dorothy D; Harris, Crystal L; Singer, Nora G; Bradley, John D; Silver, David; Jackson, Christopher G; Lane, Nancy E; Oddis, Chester V; Wolfe, Fred; Lisse, Jeffrey; Furst, Daniel E; Bingham, Clifton O; Reda, Domenic J; Moskowitz, Roland W; Williams, H James; Clegg, Daniel O

    2011-01-01

    Objectives Osteoarthritis (OA) of the knee is a major cause of pain and limited function in older adults. Longer-term studies of medical therapy of OA are uncommon. This study was undertaken to evaluate the efficacy and safety of glucosamine and chondroitin sulfate (CS), alone or in combination, as well as celecoxib and placebo on painful knee OA over 24 months. Methods A 24-month, double-blind, placebo controlled study, conducted at 9 sites in the United States ancillary to the Glucosamine/Chondroitin Arthritis Intervention Trial (GAIT), enrolled 662 patients with knee OA who satisfied radiographic criteria (Kellgren/ Lawrence [K/L] grade 2 or grade 3 changes and JSW of at least 2 mm at baseline). Patients who had been randomized to 1 of the 5 groups in GAIT continued to receive glucosamine 500 mg 3 times daily, CS 400 mg 3 times daily, the combination of glucosamine and CS, celecoxib 200 mg daily, or placebo over 24 months. The primary outcome measure was the number who reached a 20% reduction in WOMAC pain over 24 months. Secondary outcomes included reaching an OMERACT/OARSI response and change from baseline in WOMAC pain and function. Results The odds of achieving a 20%WOMAC were 1.21 for celecoxib, 1.16 for glucosamine, 0.83 for glucosamine and chondroitin sulfate and 0.69 for chondroitin sulfate alone with widely overlapping confidence intervals for all treatments. Conclusions Over 2 years, no treatment achieved a clinically important difference in WOMAC Pain or Function as compared with placebo. However, glucosamine and celecoxib showed beneficial trends. Adverse reactions were not meaningfully different among treatment groups and serious adverse events were rare for all therapies. PMID:20525840

  8. Large-scale chondroitin sulfate proteoglycan digestion with chondroitinase gene therapy leads to reduced pathology and modulates macrophage phenotype following spinal cord contusion injury

    NARCIS (Netherlands)

    Bartus, Katalin; James, Nicholas D; Didangelos, Athanasios; Bosch, Karen D; Verhaagen, J.; Yáñez-Muñoz, Rafael J; Rogers, John H; Schneider, Bernard L; Muir, Elizabeth M; Bradbury, Elizabeth J

    2014-01-01

    Chondroitin sulfate proteoglycans (CSPGs) inhibit repair following spinal cord injury. Here we use mammalian-compatible engineered chondroitinase ABC (ChABC) delivered via lentiviral vector (LV-ChABC) to explore the consequences of large-scale CSPG digestion for spinal cord repair. We demonstrate

  9. Placental sequestration of Plasmodium falciparum malaria parasites is mediated by the interaction between VAR2CSA and chondroitin sulfate A on syndecan-1

    DEFF Research Database (Denmark)

    Ayres Pereira, Marina; Mandel Clausen, Thomas; Pehrson, Caroline

    2016-01-01

    During placental malaria, Plasmodium falciparum infected erythrocytes sequester in the placenta, causing health problems for both the mother and fetus. The specific adherence is mediated by the VAR2CSA protein, which binds to placental chondroitin sulfate (CS) on chondroitin sulfate proteoglycans......-down experiments using placental extracts from whole placenta or syncytiotrophoblast microvillous cell membranes showed three distinct CSPGs available for VAR2CSA adherence. Further examination of these three CSPGs by immunofluorescence and proximity ligation assays showed that syndecan-1 is the main receptor...... for VAR2CSA mediated placental adherence. We further show that the commonly used placental choriocarcinoma cell line, BeWo, express a different set of proteoglycans than those present on placental syncytiotrophoblast and may not be the most biologically relevant model to study placental malaria. Syncytial...

  10. Variations of pH as an additional tool in the analysis of crowded NMR spectra of fucosylated chondroitin sulfates.

    Science.gov (United States)

    Ustyuzhanina, Nadezhda E; Dmitrenok, Andrey S; Bilan, Maria I; Shashkov, Alexander S; Gerbst, Alexey G; Usov, Anatolii I; Nifantiev, Nikolay E

    2016-03-24

    The influence of pH variation on chemical shift values in NMR spectra of fucosylated chondroitin sulfates was studied using polysaccharides isolated from three sea cucumber species Apostichopus japonicus, Actinopyga mauritiana and Cucumaria japonica. The signals of glucuronic acid residues were found to be the most sensitive to pH changes in comparison to the chemical shifts of the sulfated galactosamine and fucosyl units, most of which were altered insignificantly. It was shown that in the presence of imidazole-HCl buffer (pH 7.2) NMR spectra of the polysaccharides from A. japonicus and A. mauritiana were sufficiently resolved, whereas under acidic conditions their (1)H NMR spectra were complicated by overlapping of H-1 signals of GlcA and GalNAc. In the case of polysaccharide from C. japonica bearing 3-O-fucosylated and 3-O-sulfated glucuronic acid residues in the backbone, acidification of the medium led to separation of H-1 signals of GlcA3S and GalNAc. Therefore, the combination of data obtained at different pH values may be useful for interpretation of overcrowded spectra of fucosylated chondroitin sulfates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Mast Cells Produce a Unique Chondroitin Sulfate Epitope.

    Science.gov (United States)

    Farrugia, Brooke L; Whitelock, John M; O'Grady, Robert; Caterson, Bruce; Lord, Megan S

    2016-02-01

    The granules of mast cells contain a myriad of mediators that are stored and protected by the sulfated glycosaminoglycan (GAG) chains that decorate proteoglycans. Whereas heparin is the GAG predominantly associated with mast cells, mast cell proteoglycans are also decorated with heparan sulfate and chondroitin sulfate (CS). This study investigated a unique CS structure produced by mast cells that was detected with the antibody clone 2B6 in the absence of chondroitinase ABC digestion. Mast cells in rodent tissue sections were characterized using toluidine blue, Leder stain and the presence of mast cell tryptase. The novel CS epitope was identified in rodent tissue sections and localized to cells that were morphologically similar to cells chemically identified as mast cells. The rodent mast cell-like line RBL-2H3 was also shown to express the novel CS epitope. This epitope co-localized with multiple CS proteoglycans in both rodent tissue and RBL-2H3 cultured cells. These findings suggest that the novel CS epitope that decorates mast cell proteoglycans may play a role in the way these chains are structured in mast cells. © 2016 The Histochemical Society.

  12. Biotechnological Chondroitin a Novel Glycosamminoglycan With Remarkable Biological Function on Human Primary Chondrocytes.

    Science.gov (United States)

    Stellavato, Antonietta; Tirino, Virginia; de Novellis, Francesca; Della Vecchia, Antonella; Cinquegrani, Fabio; De Rosa, Mario; Papaccio, Gianpaolo; Schiraldi, Chiara

    2016-09-01

    Cartilage tissue engineering, with in vitro expansion of autologus chondrocytes, is a promising technique for tissue regeneration and is a new potential strategy to prevent and/or treat cartilage damage (e.g., osteoarthritis). The aim of this study was (i) to investigate and compare the effects of new biotechnological chondroitin (BC) and a commercial extractive chondroitin sulfate (CS) on human chondrocytes in vitro culture; (ii) to evaluate the anti-inflammatory effects of the innovative BC compared to extractive CS. A chondrogenic cell population was isolated from human nasoseptal cartilage and in vitro cultures were studied through time-lapse video microscopy (TLVM), immunohistochemical staining and cytometry. In order to investigate the effect of BC and CS on phenotype maintainance, chondrogenic gene expression of aggrecan (AGN), of the transcriptor factor SOX9, of the types I and II collagen (COL1A1 and COL1A2), were quantified through transcriptional and protein evaluation at increasing cultivation time and passages. In addition to resemble the osteoarthritis-like in vitro model, chondrocytes were treated with IL-1β and the anti-inflammatory activity of BC and CS was assessed using cytokines quantification by multiplex array. BC significantly enhances cell proliferation also preserving chondrocyte phenotype increasing type II collagen expression up to 10 days of treatment and reduces inflammatory response in IL-1β treated chondrocytes respect to CS treated cells. Our results, taken together, suggest that this new BC is of foremost importance in translational medicine because it can be applied in novel scaffolds and pharmaceutical preparations aiming at cartilage pathology treatments such as the osteoarthritis. J. Cell. Biochem. 117: 2158-2169, 2016. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.

  13. An efficency of use phonophoresis with an ointment on the basis of chondroitin sulfate and dimetil sulfoxide at the treatment of patients with arthritis of knee joints

    Directory of Open Access Journals (Sweden)

    Виктор Александрович Вишневский

    2015-06-01

    Full Text Available Osteoarthritis is a frequent disease in people especially of the mean and elderly age.Aim of research: the study of an efficiency of phonophoresis with an ointment on the basis of chondroitin sulfate and dimethyl sulfoxide at treatment of patients with osteoarthritis of knee joints in the outpatient setting.  Material and methods. Research was carried out by the clinical and laboratory examinations of 40 patients with osteoarthritis of knee joints in the outpatient setting.   Patients were distributed between the main and control group depending on an approach to treatment. Indicators before and after treatment in all patients were assessed on 2 scales: the scale of assessment of knee joints (on J.N. Insall et al 1976 - (7 points and 2 Oxford scale for knee joints (on W. Dawson et al, 1998 - (12 point. The level of oxyproline in daily urine was examined in all patients.Results and discussions. The degree of manifestation of pain syndrome, movement amplitude and an everyday motor activity are the parameters of an efficiency of treatment.Author noticed the more apparent efficiency of treatment in patients of the main group who underwent phonophoresis after rubbing an ointment on the basis of chondroitin sulfate in the region of injured knee joint.Disappearance of pains after 10 PhPh with an ointment on the basis of chondroitin sulfate and dimethyl sulfoxide was noticed in 6 (30% patients and diminution of pain intensity in 12 (60% patients. So the general efficiency of treatment is 90% in the main group in relation to 70% of general efficiency of treatment without use this ointment in the control group.Conclusions. 1. Phonophoresis with an ointment on the basis of chondroitin sulfate and dimethyl sulfoxide is a safe and rather effective method of treatment patients with osteoarthritis of knee joints of I-III radiographic stage, an efficiency of treatment is 90%.2. The use of phonophoresis with an ointment containing combination of chondroitin

  14. Modelling the cancer growth process by Stochastic Differential Equations with the effect of Chondroitin Sulfate (CS) as anticancer therapeutics

    Science.gov (United States)

    Syahidatul Ayuni Mazlan, Mazma; Rosli, Norhayati; Jauhari Arief Ichwan, Solachuddin; Suhaity Azmi, Nina

    2017-09-01

    A stochastic model is introduced to describe the growth of cancer affected by anti-cancer therapeutics of Chondroitin Sulfate (CS). The parameters values of the stochastic model are estimated via maximum likelihood function. The numerical method of Euler-Maruyama will be employed to solve the model numerically. The efficiency of the stochastic model is measured by comparing the simulated result with the experimental data.

  15. Chondroitin sulfate and glucosamine in the cartilage and subchondral bone repair of dogs - Histological findings

    Directory of Open Access Journals (Sweden)

    R.B. Eleotério

    2015-04-01

    Full Text Available Chondroitin and glucosamine sulfate nutraceuticals are commonly used in the management of degenerative articular disease in veterinary routine. However, there are controversies on the contribution of these substances to articular cartilage. The purpose of this study was to evaluate the efficiency of a chondroitin and glucosamine sulfate-based veterinary nutraceutical on the repair of an induced osteochondral defect in a dog femoral condyle, by macroscopic, histological and histomorphometric analyses. The nutraceutical was orally administered the day following injury induction, every 24 hours (treated group, TG, n=24, compared with animals that did not receive the product (control group, CG, n=24. Six animals per group were anaesthetized for sample collection at 15, 30, 60 and 90 days after surgery. At 15 days, defects were macroscopically filled with red-pinkish tissue. After 30 days, whitish color tissue was observed, both in TG and CG animals, with firmer consistency to touch at 60 and 90 postoperative days. Histological analysis demonstrated that, in both groups, there was initial blood clot formation, which was subsequently substituted by a fibrin net, with capillary proliferation from the adjacent bone marrow and infiltration of mesenchymal cells in clot periphery. As cellular differentiation developed, repair tissue presented a fibrocartilage aspect most of the time, and new subchondral bone formation occurred in the deepest area corresponding to the defect. Histomorphometry suggested that the nutraceutical did not favor the articular cartilage repair process. It was concluded that nutraceutical did not significantly influence chondrocytes proliferation or hyaline architecture restoration.

  16. Chondroitin sulfate immobilization at the surface of electrospun nanofiber meshes for cartilage tissue regeneration approaches

    International Nuclear Information System (INIS)

    Piai, Juliana Francis; Alves da Silva, Marta; Martins, Albino; Torres, Ana Bela; Faria, Susana

    2017-01-01

    Highlights: • Chemical immobilization of chondroitin sulfate at the surface of nanofiber meshes. • CS-immobilized NFMs showed lower roughness and higher hydrophilicity. • CS-immobilized NFMs offer a highly effective substrate for hACs phenotypic stability. - Abstract: Aiming at improving the biocompatibility of biomaterial scaffolds, surface modification presents a way to preserve their mechanical properties and to improve the surface bioactivity. In this work, chondroitin sulfate (CS) was immobilized at the surface of electrospun poly(caprolactone) nanofiber meshes (PCL NFMs), previously functionalized by UV/O_3 exposure and aminolysis. Contact angle, SEM, optical profilometry, FTIR, X-ray photoelectron spectroscopy techniques confirmed the success of CS-immobilization in PCL NFMs. Furthermore, CS-immobilized PCL NFMs showed lower roughness and higher hydrophilicity than the samples without CS. Human articular chondrocytes (hACs) were cultured on electrospun PCL NFMs with or without CS immobilization. It was observed that hACs proliferated through the entire time course of the experiment in both types of nanofibrous scaffolds, as well as for the production of glycosaminoglycans. Quantitative-PCR results demonstrated over-expression of cartilage-related genes such as Aggrecan, Collagen type II, COMP and Sox9 on both types of nanofibrous scaffolds. Morphological observations from SEM and LSCM revealed that hACs maintained their characteristic round shape and cellular agglomeration exclusively on PCL NFMs with CS immobilization. In conclusion, CS immobilization at the surface of PCL NFMs was achieved successfully and provides a valid platform enabling further surface functionalization methods in scaffolds to be developed for cartilage tissue engineering.

  17. Chondroitin sulfate immobilization at the surface of electrospun nanofiber meshes for cartilage tissue regeneration approaches

    Energy Technology Data Exchange (ETDEWEB)

    Piai, Juliana Francis [3B’s Research Group − Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães (Portugal); ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães (Portugal); Grupo de Materiais Poliméricos e Compósitos, GMPC – Departamento de Química- Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900, Maringá, Paraná (Brazil); Alves da Silva, Marta; Martins, Albino; Torres, Ana Bela [3B’s Research Group − Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, 4805-017 Barco, Guimarães (Portugal); ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães (Portugal); Faria, Susana [Research Center Officinal Mathematical, Department of Mathematics for Science and Technology, University of Minho, Campus de Azurém, 4800-058 Guimarães (Portugal); and others

    2017-05-01

    Highlights: • Chemical immobilization of chondroitin sulfate at the surface of nanofiber meshes. • CS-immobilized NFMs showed lower roughness and higher hydrophilicity. • CS-immobilized NFMs offer a highly effective substrate for hACs phenotypic stability. - Abstract: Aiming at improving the biocompatibility of biomaterial scaffolds, surface modification presents a way to preserve their mechanical properties and to improve the surface bioactivity. In this work, chondroitin sulfate (CS) was immobilized at the surface of electrospun poly(caprolactone) nanofiber meshes (PCL NFMs), previously functionalized by UV/O{sub 3} exposure and aminolysis. Contact angle, SEM, optical profilometry, FTIR, X-ray photoelectron spectroscopy techniques confirmed the success of CS-immobilization in PCL NFMs. Furthermore, CS-immobilized PCL NFMs showed lower roughness and higher hydrophilicity than the samples without CS. Human articular chondrocytes (hACs) were cultured on electrospun PCL NFMs with or without CS immobilization. It was observed that hACs proliferated through the entire time course of the experiment in both types of nanofibrous scaffolds, as well as for the production of glycosaminoglycans. Quantitative-PCR results demonstrated over-expression of cartilage-related genes such as Aggrecan, Collagen type II, COMP and Sox9 on both types of nanofibrous scaffolds. Morphological observations from SEM and LSCM revealed that hACs maintained their characteristic round shape and cellular agglomeration exclusively on PCL NFMs with CS immobilization. In conclusion, CS immobilization at the surface of PCL NFMs was achieved successfully and provides a valid platform enabling further surface functionalization methods in scaffolds to be developed for cartilage tissue engineering.

  18. Structure and biological activity of a fucosylated chondroitin sulfate from the sea cucumber Cucumaria japonica.

    Science.gov (United States)

    Ustyuzhanina, Nadezhda E; Bilan, Maria I; Dmitrenok, Andrey S; Shashkov, Alexander S; Kusaykin, Mikhail I; Stonik, Valentin A; Nifantiev, Nikolay E; Usov, Anatolii I

    2016-05-01

    A fucosylated chondroitin sulfate (FCS) was isolated from the body wall of Pacific sea cucumber Cucumaria japonicaby extraction in the presence of papain followed by Cetavlon precipitation and anion-exchange chromatography. FCS was shown to contain D-GalNAc, D-GlcA, L-Fuc and sulfate in molar proportions of about 1:1:1:4.5. Structure of FCS was elucidated using NMR spectroscopy and methylation analysis of the native polysaccharide and products of its desulfation and carboxyl reduction. The polysaccharide was shown to contain a typical chondroitin core → 3)-β-D-GalNAc-(1 → 4)-β-D-GlcA-(1 →. Sulfate groups in this core occupy O-4 and the majority of O-6 of GalNAc. Fucosyl branches are represented by 3,4- and 2,4-disulfated units in a ratio of 4:1 and are linked to O-3 of GlcA. In addition, ∼ 33% of GlcA are 3-O-sulfated, and hence, the presence of short fucooligosaccharide chains side by side with monofucosyl branches cannot be excluded. FCS was shown to inhibit platelets aggregation in vitro mediated by collagen and ristocetin, but not adenosine diphosphate, and demonstrated significant anticoagulant activity, which is connected with its ability to enhance inhibition of thrombin and factor Xa by antithrombin III, as well as to influence von Willebrand factor activity. The latest property significantly distinguished FCS from low-molecular-weight heparin. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Highly sensitive ratiometric detection of heparin and its oversulfated chondroitin sulfate contaminant by fluorescent peptidyl probe.

    Science.gov (United States)

    Mehta, Pramod Kumar; Lee, Hyeri; Lee, Keun-Hyeung

    2017-05-15

    The selective and sensitive detection of heparin, an anticoagulant in clinics as well as its contaminant oversulfated chondroitin sulfate (OSCS) is of great importance. We first reported a ratiometric sensing method for heparin as well as OSCS contaminants in heparin using a fluorescent peptidyl probe (Pep1, pyrene-GSRKR) and heparin-digestive enzyme. Pep1 exhibited a highly sensitive ratiometric response to nanomolar concentration of heparin in aqueous solution over a wide pH range (2~11) and showed highly selective ratiometric response to heparin among biological competitors such as hyaluronic acid and chondroitin sulfate. Pep1 showed a linear ratiometric response to nanomolar concentrations of heparin in aqueous solutions and in human serum samples. The detection limit for heparin was calculated to be 2.46nM (R 2 =0.99) in aqueous solutions, 2.98nM (R 2 =0.98) in 1% serum samples, and 3.43nM (R 2 =0.99) in 5% serum samples. Pep1 was applied to detect the contaminated OSCS in heparin with heparinase I, II, and III, respectively. The ratiometric sensing method using Pep1 and heparinase II was highly sensitive, fast, and efficient for the detection of OSCS contaminant in heparin. Pep1 with heparinase II could detect as low as 0.0001% (w/w) of OSCS in heparin by a ratiometric response. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effect of chondroitin sulfate on osteogenetic differentiation of human mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Schneiders, Wolfgang, E-mail: schneidersw@gmx.de; Rentsch, Claudia; Rehberg, Sebastian; Rein, Susanne; Zwipp, Hans; Rammelt, Stefan

    2012-10-01

    Chondroitin sulfate (CS) has anti-inflammatory properties and increases the regeneration ability of injured bone. In different in vivo investigations on bone defects the addition of CS to calcium phosphate bone cement has lead to an enhanced bone remodeling and increased new bone formation. The goal of this study was to evaluate the cellular effects of CS on human mesenchymal stem cells (hMSCs). In cell culture experiments hMSCs were incubated on calcium phosphate bone cements with and without CS and cultivated in a proliferation and an osteogenetic differentiation media. Alkaline phosphatase and the proliferation rate were determined on days 1, 7 and 14. Concerning the proliferation rates, no significant differences were detected. On days 1, 7 and 14 a significantly higher activity of alkaline phosphatase, an early marker of osteogenesis, was detected around CS modified cements in both types of media. The addition of CS leads to a significant increase of osteogenetic differentiation of hMSCs. To evaluate the influence of the osteoconductive potency of CS in twelve adult male Wistar rats, the interface reaction of cancellous bone to a nanocrystalline hydroxyapatite cement containing type I collagen (CDHA/Coll) without and with CS (CDHA/Coll/CS) was evaluated. Cylindrical implants were inserted press-fit into a defect of the tibial head. 28 days after the operation the direct bone contact and the percentage of newly formed bone were significantly higher on CDHA/Coll/CS-implants (p < 0.05). The addition of CS appears to enhance new bone formation on CDHA/Coll-composites in the early stages of bone healing. Possible mechanisms are discussed. - Highlights: Black-Right-Pointing-Pointer The influence of chondroitin sulfate (CS) on bone metabolism was evaluated. Black-Right-Pointing-Pointer CS leads to a significant increase of osteogenetic differentiation of hMSCs. Black-Right-Pointing-Pointer In small animal investigation CS seems to enhance osteogenesis in bone healing.

  1. On the roles and regulation of chondroitin sulfate and heparan sulfate in zebrafish pharyngeal cartilage morphogenesis

    DEFF Research Database (Denmark)

    Holmborn, Katarina; Habicher, Judith; Kasza, Zsolt

    2012-01-01

    The present study addresses the roles of heparan sulfate (HS) proteoglycans and chondroitin sulfate (CS) proteoglycans in the development of zebrafish pharyngeal cartilage structures. uxs1 and b3gat3 mutants, predicted to have impaired biosynthesis of both HS and CS because of defective formation...... levels of CS than control larvae, whereas morpholino-mediated suppression of csgalnact1/csgalnact2 resulted in increased HS biosynthesis. Thus, the balance of the Extl3 and Csgalnact1/Csgalnact2 proteins influences the HS/CS ratio. A characterization of the pharyngeal cartilage element morphologies...

  2. Basement membrane proteoglycans in glomerular morphogenesis: chondroitin sulfate proteoglycan is temporally and spatially restricted during development

    DEFF Research Database (Denmark)

    McCarthy, K J; Bynum, K; St John, P L

    1993-01-01

    We previously reported the presence of a basement membrane-specific chondroitin sulfate proteoglycan (BM-CSPG) in basement membranes of almost all adult tissues. However, an exception to this ubiquitous distribution was found in the kidney, where BM-CSPG was absent from the glomerular capillary......, the present study used light and electron microscopic immunohistochemistry to examine the distribution of BM-CSPG and basement membrane heparan sulfate proteoglycan (BM-HSPG) during prenatal and postnatal renal development in the rat. Our results show that the temporal and spatial pattern of expression of BM...

  3. Differentiation of 3T3-L1 preadipocytes with 3-isobutyl-1-methylxanthine and dexamethasone stimulates cell-associated and soluble chondroitin 4-sulfate proteoglycans

    International Nuclear Information System (INIS)

    Calvo, J.C.; Rodbard, D.; Katki, A.; Chernick, S.; Yanagishita, M.

    1991-01-01

    The proteoglycans (cell-associated and culture media) in 3T3-L1 preadipocytes in culture were analyzed before and during differentiation into adipocytes. Cells were metabolically labeled with [35S]sulfate and [3H] glucosamine for 24 h and then extracted and analyzed. There was a 1.68 ± 0.07-fold increase in the 35S in medium proteoglycan during differentiation, whereas cell-associated proteoglycan radioactivity showed no increase. Analyses of radiolabeled molecules using ion-exchange chromatography, gel filtration, and high performance liquid chromatography after enzymatic or alkaline digestion indicated that all of the 35S label was recovered as two major species of chondroitin 4-sulfate proteoglycans (CSPG-I and CSPG-II) and 7% as heparan sulfate proteoglycan. CSPG-I has a mass of ∼ 970 kDa with multiple chondroitin sulfate chains (average of 50 kDa each) and a core protein of ∼ 370 kDa including oligosaccharides. CSPG-II has a mass of 140 kDa with one or two chondroitin sulfate chains (average of 68 kDa each) and a core protein of 41 kDa including oligosaccharides. CSPG-I appears to be similar to versican, whereas CSPG-II is similar to decorin and/or biglycan, found in other fibroblastic cells. Cell differentiation was associated with a specific increase in CSPG-I (4.0 ± 0.2-fold in media and 3.2 ± 0.5-fold in the cell-associated form). This system should facilitate study of the functional roles of proteoglycans during growth and differentiation

  4. Molecular interactions between chondroitin-dermatan sulfate and growth factors/receptors/matrix proteins.

    Science.gov (United States)

    Mizumoto, Shuji; Yamada, Shuhei; Sugahara, Kazuyuki

    2015-10-01

    Recent functional studies on chondroitin sulfate-dermatan sulfate (CS-DS) demonstrated its indispensable roles in various biological events including brain development and cancer. CS-DS proteoglycans exert their physiological activity through interactions with specific proteins including growth factors, cell surface receptors, and matrix proteins. The characterization of these interactions is essential for regulating the biological functions of CS-DS proteoglycans. Although amino acid sequences on the bioactive proteins required for these interactions have already been elucidated, the specific saccharide sequences involved in the binding of CS-DS to target proteins have not yet been sufficiently identified. In this review, recent findings are described on the interaction between CS-DS and some proteins which are especially involved in the central nervous system and cancer development/metastasis. Copyright © 2015. Published by Elsevier Ltd.

  5. Homologous overexpression of RfaH in E. coli K4 improves the production of chondroitin-like capsular polysaccharide.

    Science.gov (United States)

    Cimini, Donatella; De Rosa, Mario; Carlino, Elisabetta; Ruggiero, Alessandro; Schiraldi, Chiara

    2013-05-09

    Glycosaminoglycans, such as hyaluronic acid, heparin, and chondroitin sulfate, are among the top ranked products in industrial biotechnology for biomedical applications, with a growing world market of billion dollars per year. Recently a remarkable progress has been made in the development of tailor-made strains as sources for the manufacturing of such products. The genetic modification of E. coli K4, a natural producer of chondroitin sulfate precursor, is challenging considering the lack of detailed information on its genome, as well as its mobilome. Chondroitin sulfate is currently used as nutraceutical for the treatment of osteoarthritis, and several new therapeutic applications, spanning from the development of skin substitutes to live attenuated vaccines, are under evaluation. E. coli K4 was used as host for the overexpression of RfaH, a positive regulator that controls expression of the polysaccharide biosynthesis genes and other genes necessary for the virulence of E. coli K4. Various engineering strategies were compared to investigate different types of expression systems (plasmid vs integrative cassettes) and integration sites (genome vs endogenous mobile element). All strains analysed in shake flasks on different media showed a capsular polysaccharide production improved by 40 to 140%, compared to the wild type, with respect to the final product titer. A DO-stat fed-batch process on the 2L scale was also developed for the best performing integrative strain, EcK4r3, yielding 5.3 g ∙ L(-1) of K4 polysaccharide. The effect of rfaH overexpression in EcK4r3 affected the production of lipopolysaccharide and the expression of genes involved in the polysaccharide biosynthesis pathway (kfoC and kfoA), as expected. An alteration of cellular metabolism was revealed by changes of intracellular pools of UDP-sugars which are used as precursors for polysaccharide biosynthesis. The present study describes the identification of a gene target and the application of a

  6. Chondroitin Sulfate Inhibits Monocyte Chemoattractant Protein-1 Release From 3T3-L1 Adipocytes: A New Treatment Opportunity for Obesity-Related Inflammation?

    Directory of Open Access Journals (Sweden)

    Thomas V Stabler

    2017-08-01

    Full Text Available Monocyte chemoattractant protein-1 (MCP-1 overproduction from inflamed adipose tissue is a major contributor to obesity-related metabolic syndromes. 3T3-L1 embryonic fibroblasts were cultured and differentiated into adipocytes using an established protocol. Adipocytes were treated with lipopolysaccharide (LPS to induce inflammation and thus MCP-1 release. At the same time, varying concentrations of chondroitin sulfate (CS were added in a physiologically relevant range (10-200 µg/mL to determine its impact on MCP-1 release. Chondroitin sulfate, a natural glycosaminoglycan of connective tissue including the cartilage extracellular matrix, was chosen on the basis of our previous studies demonstrating its anti-inflammatory effect on macrophages. Because the main action of MCP-1 is to induce monocyte migration, cultured THP-1 monocytes were used to test whether CS at the highest physiologically relevant concentration could inhibit cell migration induced by human recombinant MCP-1. Chondroitin sulfate (100-200 µg/mL inhibited MCP-1 release from inflamed adipocytes in a dose-dependent manner ( P  < .01, 95% confidence interval [CI]: −5.89 to −3.858 at 100 µg/mL and P  < .001, 95% CI: −6.028 to −3.996 at 200 µg/mL but had no effect on MCP-1–driven chemotaxis of THP-1 monocytes. In summary, CS could be expected to reduce macrophage infiltration into adipose tissue by reduction in adipocyte expression and release of MCP-1 and as such might reduce adipose tissue inflammation in response to pro-inflammatory stimuli such as LPS, now increasingly recognized to be relevant in vivo.

  7. Sensitive detection of oversulfated chondroitin sulfate in heparin sodium or crude heparin with a colorimetric microplate based assay.

    Science.gov (United States)

    Sommers, Cynthia D; Mans, Daniel J; Mecker, Laura C; Keire, David A

    2011-05-01

    In this work we describe a 96-well microplate assay for oversulfated chondroitin sulfate A (OSCS) in heparin, based on a water-soluble cationic polythiophene polymer (3-(2-(N-(N'-methylimidazole))ethoxy)-4-methylthiophene (LPTP)) and heparinase digestion of heparin. The assay takes advantage of several unique properties of heparin, OSCS, and LPTP, including OSCS inhibition of heparinase I and II activity, the molecular weight dependence of heparin-LPTP spectral shifts, and the distinct association of heparin fragments and OSCS to LPTP. These factors combine to enable detection of the presence of 0.003% w/w spiked OSCS in 10 μg of heparin sodium active pharmaceutical ingredient (API) using a plate reader and with visual detection to 0.1% levels. The same detection limit for OSCS was observed in the presence of 10% levels of dermatan sulfate (DS) or chondroitin sulfate A (CSA) impurities. In addition, we surveyed a selection of crude heparin samples received by the agency in 2008 and 2009 to determine average and extreme DS, CSA, and galactosamine weight percent levels. In the presence of these impurities and the variable heparin content in the crude heparin samples, spiked OSCS was reliably detected to the 0.1% w/w level using a plate reader. Finally, authentically OSCS contaminated heparin sodium API and crude samples were distinguished visually by color from control samples using the LPTP/heparinase test.

  8. Chondroitin Sulfate-E Binds to Both Osteoactivin and Integrin αVβ3 and Inhibits Osteoclast Differentiation.

    Science.gov (United States)

    Miyazaki, Tatsuya; Miyauchi, Satoshi; Anada, Takahisa; Tawada, Akira; Suzuki, Osamu

    2015-10-01

    Integrins and their ligands have been suggested to be associated with osteoclast-mediated bone resorption. The present study was designed to investigate whether chondroitin sulfate E (CS-E), which is one of the sulfated glycosaminoglycans (GAGs), is involved in osteoactivin (OA) activity, and osteoclast differentiation. The binding affinity of sulfated GAGs to integrin and its ligand was measured using biotin-labeled CS-E, and the osteoclast differentiation was evaluated by tartrate-resistant acid phosphatase staining and a pit formation assay. CS-E as well as CS-B, synthetic chondroitin polysulfate, and heparin inhibited osteoclast differentiation of bone marrow-derived macrophages. Pre-coating of OA to synthetic calcium phosphate-coated plates enhanced the osteoclastic differentiation of RAW264 cells, and addition of a neutralizing antibody to OA inhibited its differentiation. CS-E bound not only to OA, fibronectin, and vitronectin, but also to its receptor integrin αVβ3, and inhibited the direct binding of OA to integrin αVβ3. Furthermore, CS-E blocked the binding of OA to cells and inhibited OA-induced osteoclastic differentiation. On the other hand, heparinase treatment of RAW264 cells inhibited osteoclastic differentiation. Since binding of OA to the cells was inhibited by the presence of heparan sulfate or heparinase treatment of cells, heparan sulfate proteoglycan (HSPG) was also considered to be an OA receptor. Taken together, the present results suggest that CS-E is capable of inhibiting OA-induced osteoclast differentiation by blocking the interaction of OA to integrin αVβ3 and HSPG. © 2015 Wiley Periodicals, Inc.

  9. Hypochlorite-mediated fragmentation of hyaluronan, chondroitin sulfates, and related N-acetyl glycosamines

    DEFF Research Database (Denmark)

    Rees, Martin D; Hawkins, Clare Louise; Davies, Michael Jonathan

    2003-01-01

    Myeloperoxidase released from activated phagocytes reacts with H(2)O(2) in the presence of chloride ions to give hypochlorous acid. This oxidant has been implicated in the fragmentation of glycosaminoglycans, such as hyaluronan and chondroitin sulfates. In this study it is shown that reaction...... processes. In the case of glycosaminoglycan-derived amidyl radicals, evidence has been obtained in studies with model glycosides that these radicals undergo rapid intramolecular abstraction reactions to give carbon-centered radicals at C-2 on the N-acetyl glycosamine rings (via a 1,2-hydrogen atom shift......) and at C-4 on the neighboring uronic acid residues (via 1,5-hydrogen atom shifts). The C-4 carbon-centered radicals, and analogous species derived from model glycosides, undergo pH-independent beta-scission reactions that result in glycosidic bond cleavage. With N-acetyl glucosamine C-1 alkyl glycosides...

  10. Is intravesical instillation of hyaluronic acid and chondroitin sulfate useful in preventing recurrent bacterial cystitis? A multicenter case control analysis

    OpenAIRE

    Giorgio Gugliotta; Gloria Calagna; Giorgio Adile; Salvatore Polito; Salvatore Saitta; Patrizia Speciale; Stefano Palomba; Antonino Perino; Roberta Granese; Biagio Adile

    2015-01-01

    Objective: Urinary tract infections (UTIs) are common in the female population and, over a lifetime, about half of women have at least one episode of UTI requiring antibiotic therapy. The aim of the current study was to compare two different strategies for preventing recurrent bacterial cystitis: intravesical instillation of hyaluronic acid (HA) plus chondroitin sulfate (CS), and antibiotic prophylaxis with sulfamethoxazole plus trimethoprim. Materials and methods: This was a retrospective...

  11. Chitosan-hyaluronan/nano chondroitin sulfate ternary composite sponges for medical use.

    Science.gov (United States)

    Anisha, B S; Sankar, Deepthi; Mohandas, Annapoorna; Chennazhi, K P; Nair, Shantikumar V; Jayakumar, R

    2013-02-15

    In this work chitosan-hyaluronan composite sponge incorporated with chondroitin sulfate nanoparticle (nCS) was developed. The fabrication of hydrogel was based on simple ionic cross-linking using EDC, followed by lyophilization to obtain the composite sponge. nCS suspension was characterized using DLS and SEM and showed a size range of 100-150 nm. The composite sponges were characterized using SEM, FT-IR and TG-DTA. Porosity, swelling, biodegradation, blood clotting and platelet activation of the prepared sponges were also evaluated. Nanocomposites showed a porosity of 67% and showed enhanced swelling and blood clotting ability. Cytocompatibility and cell adhesion studies of the sponges were done using human dermal fibroblast (HDF) cells and the nanocomposite sponges showed more than 90% viability. Nanocomposite sponges also showed enhanced proliferation of HDF cells within two days of study. These results indicated that this nanocomposite sponges would be a potential candidate for wound dressing. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Chondroitin sulfate template-mediated biomimetic synthesis of nano-flake hydroxyapatite

    Science.gov (United States)

    He, Dan; Xiao, Xiufeng; Liu, Fang; Liu, Rongfang

    2008-11-01

    By Ca(NO 3) 2·4H 2O and (NH 4) 3PO 4·3H 2O as reagents and chondroitin sulfate (ChS) as a template, nano-flake hydroxyapatite (HA) is synthesized using a biomimetic method according to the biomineralization theory. HA crystals obtained are characterized in crystalline phase, microstructure, chemical composition and morphology by X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), transmission electron microscopy (TEM) and elemental analysis respectively. UV-vis spectrum is adopted to investigate interactions between functional groups ChS and HA. The results show that HA crystal nucleation and growth take place in chemical interactions between HA crystals and ChS as a template. And elemental analysis indicates that obtained HA contains a small amount of ChS. Furthermore, ChS concentration significantly affects the morphology of HA crystals. Staple-fiber-like HA crystals can be obtained at a low concentration in ChS, and flake-like HA crystals synthesized at a high concentration (≥0.5 wt.%) of ChS as a template.

  13. Chondroitin sulfate template-mediated biomimetic synthesis of nano-flake hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    He Dan; Xiao Xiufeng; Liu Fang [College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007 (China); Liu Rongfang [College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007 (China)], E-mail: rfliu@vip.sina.com

    2008-11-15

    By Ca(NO{sub 3}){sub 2}.4H{sub 2}O and (NH{sub 4}){sub 3}PO{sub 4}.3H{sub 2}O as reagents and chondroitin sulfate (ChS) as a template, nano-flake hydroxyapatite (HA) is synthesized using a biomimetic method according to the biomineralization theory. HA crystals obtained are characterized in crystalline phase, microstructure, chemical composition and morphology by X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), transmission electron microscopy (TEM) and elemental analysis respectively. UV-vis spectrum is adopted to investigate interactions between functional groups ChS and HA. The results show that HA crystal nucleation and growth take place in chemical interactions between HA crystals and ChS as a template. And elemental analysis indicates that obtained HA contains a small amount of ChS. Furthermore, ChS concentration significantly affects the morphology of HA crystals. Staple-fiber-like HA crystals can be obtained at a low concentration in ChS, and flake-like HA crystals synthesized at a high concentration ({>=}0.5 wt.%) of ChS as a template.

  14. In vivo evaluation of hybrid patches composed of PLA based copolymers and collagen/chondroitin sulfate for ligament tissue regeneration.

    Science.gov (United States)

    Pinese, Coline; Gagnieu, Christian; Nottelet, Benjamin; Rondot-Couzin, Capucine; Hunger, Sylvie; Coudane, Jean; Garric, Xavier

    2017-10-01

    Biomaterials for soft tissues regeneration should exhibit sufficient mechanical strength, demonstrating a mechanical behavior similar to natural tissues and should also promote tissues ingrowth. This study was aimed at developing new hybrid patches for ligament tissue regeneration by synergistic incorporation of a knitted structure of degradable polymer fibers to provide mechanical strength and of a biomimetic matrix to help injured tissues regeneration. PLA- Pluronic ® (PLA-P) and PLA-Tetronic ® (PLA-T) new copolymers were shaped as knitted patches and were associated with collagen I (Coll) and collagen I/chondroitine-sulfate (Coll CS) 3-dimensional matrices. In vitro study using ligamentocytes showed the beneficial effects of CS on ligamentocytes proliferation. Hybrid patches were then subcutaneously implanted in rats for 4 and 12 weeks. Despite degradation, patches retained strength to answer the mechanical physiological needs. Tissue integration capacity was assessed with histological studies. We showed that copolymers, associated with collagen and chondroitin sulfate sponge, exhibited very good tissue integration and allowed neotissue synthesis after 12 weeks in vivo. To conclude, PLA-P/CollCS and PLA-T/CollCS hybrid patches in terms of structure and composition give good hopes for tendon and ligament regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1778-1788, 2017. © 2016 Wiley Periodicals, Inc.

  15. Deglycosylation of chondroitin sulfate proteoglycan and derived peptides

    International Nuclear Information System (INIS)

    Campbell, S.C.; Krueger, R.C.; Schwartz, N.B.

    1990-01-01

    In order to define the domain structure of proteoglycans as well as identify primary amino acid sequences specific for attachment of the various carbohydrate substituents, reliable techniques for deglycosylating proteoglycans are required. In this study, deglycosylation of cartilage chondroitin sulfate proteoglycan (CSPG) with minimal core protein cleavage was accomplished by digestion with chondroitinase ABC and keratanase, followed by treatment with anhydrous HF in pyridine. Nearly complete deglycosylation of secreted proteoglycan was verified within 45 min of HF treatment by loss of incorporated [ 3 H]glucosamine label from the proteoglycan as a function of time of treatment, as well as by direct analysis of carbohydrate content and xylosyltransferase acceptor activity of unlabeled core protein preparations. The deglycosylated CSPG preparations were homogeneous and of high molecular weight. Comparison of the intact deglycosylated core protein preparations with newly synthesized unprocessed precursors suggested that extensive proteolytic cleavage of the core protein did not occur during normal intracellular processing. Furthermore, peptide patterns generated after clostripain digestion of core protein precursor and of deglycosylated secreted proteoglycan were comparable. With the use of the clostripain digestion procedure, peptides were produced from unlabeled proteoglycan, and two predominant peptides from the most highly glycosylated regions were isolated, characterized, and deglycosylated. These peptides were found to follow similar kinetics of deglycosylation and to acquire xylose activity comparable to the intact core protein

  16. Interface-Limited Spherulitic Growth of Hydroxyapatite/Chondroitin Sulfate Composite Enamel-like Films

    Science.gov (United States)

    Ma, Guobin; Xu, Yifei; Wang, Xiyan; Wang, Mu

    2012-02-01

    Understanding and mimicking the growth of hard tissues such as tooth enamel may lead to innovative approaches toward engineering novel functional materials and providing new therapeutics. Up to now, in vitro growth of enamel-like materials is still a great challenge, and the microscopic formation mechanisms are far from well understood. Here we report synthesis of large-scale hydroxyapatite (HAP) and chondroitin sulfate (ChS) composite films by an efficient solution-air interface growth method. The products have the characteristic hierarchical prism structures of enamel and the mechanical properties comparable to dentin. We demonstrate that the films are assembled by spherulites nucleated at the solution surface. The growth of the spherulites is limited by the interfaces between them as well as between the solution and air, leading to the ordered prism structure. The results are beneficial for a clearer understanding of the fundamentals of tooth enamel formation.

  17. Chondroitin sulfate-functionalized polyamidoamine as a tumor-targeted carrier for miR-34a delivery.

    Science.gov (United States)

    Chen, Wenqi; Liu, Yong; Liang, Xiao; Huang, Yu; Li, Quanshun

    2017-07-15

    Chondroitin sulfate (CS) was modified on a polyamidoamine dendrimer (PAMAM) through Michael addition to construct a tumor-targeted carrier CS-PAMAM for miR-34a delivery. The derivative CS-PAMAM was demonstrated to achieve an efficient cellular uptake of miR-34a in a CD44-dependent endocytosis way and further facilitate the endosomal escape of miR-34a after 4h. Through the miR-34a delivery, obvious inhibition of cell proliferation could be detected which was attributed to the enhancement of cell apoptosis and cell cycle arrest, and meanwhile the cell migration and invasion has been observed to be inhibited. Finally, the intravenous injection of CS-PAMAM/miR-34a formulation into mice bearing human lung adenocarcinoma cell A549 xenografts could efficiently inhibit the tumor growth and induce the tumor apoptosis owing to the enhanced accumulation of miR-34a in tumor tissue. Overall, CS-PAMAM is potential to be used as a tumor-targeted oligonucleotide carrier for achieving tumor gene therapy. The cationic dendrimer PAMAM was modified by chondroitin sulfate (CS) through Michael addition to construct a tumor-targeted carrier CS-PAMAM for miR-34a delivery. The introduction of CS could achieve an efficient cellular uptake and intracellular transfection of miR-34a in a CD44-dependent endocytosis manner. The miR-34a delivery could execute the anti-proliferation activity by simultaneously inducing cell apoptosis and cell cycle arrest, and also the anti-migration activity. The CS-PAMAM-mediated systemic delivery of miR-34a showed significant inhibition of tumor growth and induction of tumor apoptosis using a mice model of subcutaneously implanted tumors. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Chondroitin sulfate and sodium hialuronate in treatment of the degenerative joint disease in dogs. Clinical and radiological aspects

    International Nuclear Information System (INIS)

    Melo, E.G.; Rezende, C.M.F.; Gomes, M.G.; Freitas, P.M.; Arias, S.S.A.

    2003-01-01

    The aim of this study was the evaluation of the effects of chondroitin sulfate and sodium hyaluronate in the knee joint of dogs with experimentally induced degenerative joint disease (DJD). Fifteen mongrel dogs, weighing 18 to 25kg were used. DJD was induced by cranial cruciate ligament (CCL) arthroscopical transection. After three weeks, CCL was repaired by an intrarticular technique, which uses fascia lata. The dogs were then divided into three groups as follows: group I received no other treatment, but the CCL reconstitution, group II received 24mg/animal of chondroitin sulfate/IM every five days, totaling six injections, and group III received 20mg/animal of sodium hyaluronate /IV every five days, totaling three injections. All dogs were examined clinically and radiographically for 90 days after the repairment surgery. The clinical evaluation was performed by assessment of lameness, weight-bearing, limb muscle atrophy and range of motion. The results demonstrated that the group treated with sodium hyaluronate had lower degree of lameness in comparison with other groups. The radiographic evaluation showed marginal osteophytes and subchondral bone sclerosis. These changes were more severe in the group treated with sodium hyaluronate. The better clinical results observed in this group, compared with the others, was probably due to the greater action of the drug in the synovium, decreasing the pain and lameness. Radiographic findings correlated poorly with the clinical signs in the group treated with sodium hyaluronate [pt

  19. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    International Nuclear Information System (INIS)

    Im, A-Rang; Kim, Jee Young; Kim, Yeong Shik; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie

    2013-01-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds. (paper)

  20. Wound healing and antibacterial activities of chondroitin sulfate- and acharan sulfate-reduced silver nanoparticles

    Science.gov (United States)

    Im, A.-Rang; Kim, Jee Young; Kim, Hyun-Seok; Cho, Seonho; Park, Youmie; Kim, Yeong Shik

    2013-10-01

    For topical applications in wound healing, silver nanoparticles (AgNPs) have attracted much attention as antibacterial agents. Herein, we describe a green-synthetic route for the production of biocompatible and crystalline AgNPs using two glycosaminoglycans, chondroitin sulfate (CS) and acharan sulfate (AS), as reducing agents. The synthetic approach avoids the use of toxic chemicals, and the yield of AgNPs formation is found to be 98.1% and 91.1% for the chondroitin sulfate-reduced silver nanoparticles (CS-AgNPs) and the acharan sulfate-reduced silver nanoparticles (AS-AgNPs), respectively. Nanoparticles with mostly spherical and amorphous shapes were observed, with an average diameter of 6.16 ± 2.26 nm for CS-AgNPs and 5.79 ± 3.10 nm for AS-AgNPs. Images of the CS-AgNPs obtained from atomic force microscopy revealed the self-assembled structure of CS was similar to a densely packed woven mat with AgNPs sprinkled on the CS. These nanoparticles were stable under cell culture conditions without any noticeable aggregation. An approximately 128-fold enhancement of the antibacterial activities of the AgNPs was observed against Enterobacter cloacae and Escherichia coli when compared to CS and AS alone. In addition, an in vivo animal model of wound healing activity was tested using mice that were subjected to deep incision wounds. In comparison to the controls, the ointments containing CS-AgNPs and AS-AgNPs stimulated wound closure under histological examination and accelerated the deposition of granulation tissue and collagen in the wound area. The wound healing activity of the ointments containing CS-AgNPs and AS-AgNPs are comparable to that of a commercial formulation of silver sulfadiazine even though the newly prepared ointments contain a lower silver concentration. Therefore, the newly prepared AgNPs demonstrate potential for use as an attractive biocompatible nanocomposite for topical applications in the treatment of wounds.

  1. Structural studies on sulfated oligosaccharides derived from the carbohydrate-protein linkage region of chondroitin 6-sulfate proteoglycans of shark cartilage. (II.) Seven compounds containing 2 or 3 sulfate residues.

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Waard, P. de; Harada, T.; Sugahara, K.

    1992-01-01

    Shark cartilage proteoglycans bear predominantly chondroitin 6-sulfate. After exhaustive protease digestion, reductive beta-elimination and subsequent chondroitinase ABC digestion, 13 hexasaccharide alditols were obtained from the carbohydrate-protein linkage region and six of them contain 0 or 1

  2. A pharmacoproteomic study confirms the synergistic effect of chondroitin sulfate and glucosamine.

    Science.gov (United States)

    Calamia, Valentina; Mateos, Jesús; Fernández-Puente, Patricia; Lourido, Lucía; Rocha, Beatriz; Fernández-Costa, Carolina; Montell, Eulalia; Vergés, Josep; Ruiz-Romero, Cristina; Blanco, Francisco J

    2014-06-10

    Osteoarthritis (OA) is the most common age-related rheumatic disease. Chondrocytes play a primary role in mediating cartilage destruction and extracellular matrix (ECM) breakdown, which are main features of the OA joint. Quantitative proteomics technologies are demonstrating a very interesting power for studying the molecular effects of some drugs currently used to treat OA patients, such as chondroitin sulfate (CS) and glucosamine (GlcN). In this work, we employed the iTRAQ (isobaric tags for relative and absolute quantitation) technique to assess the effect of CS and GlcN, both alone and in combination, in modifying cartilage ECM metabolism by the analysis of OA chondrocytes secretome. 186 different proteins secreted by the treated OA chondrocytes were identified. 36 of them presented statistically significant differences (p ≤ 0.05) between untreated and treated samples: 32 were increased and 4 decreased. The synergistic chondroprotective effect of CS and GlcN, firstly reported by our group at the intracellular level, is now demonstrated also at the extracellular level.

  3. Chondroitin Sulfate Is Indispensable for Pluripotency and Differentiation of Mouse Embryonic Stem Cells

    Science.gov (United States)

    Izumikawa, Tomomi; Sato, Ban; Kitagawa, Hiroshi

    2014-01-01

    Chondroitin sulfate (CS) proteoglycans are present on the surfaces of virtually all cells and in the extracellular matrix and are required for cytokinesis at early developmental stages. Studies have shown that heparan sulfate (HS) is essential for maintaining mouse embryonic stem cells (ESCs) that are primed for differentiation, whereas the function of CS has not yet been elucidated. To clarify the role of CS, we generated glucuronyltransferase-I-knockout ESCs lacking CS. We found that CS was required to maintain the pluripotency of ESCs and promoted initial ESC commitment to differentiation compared with HS. In addition, CS-A and CS-E polysaccharides, but not CS-C polysaccharides, bound to E-cadherin and enhanced ESC differentiation. Multiple-lineage differentiation was inhibited in chondroitinase ABC-digested wild-type ESCs. Collectively, these results suggest that CS is a novel determinant in controlling the functional integrity of ESCs via binding to E-cadherin.

  4. Correlation between chondroitin sulfate iron colloid - enhanced MR imaging and the histological grade of hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Suto, Y. [Dept. of Radiology, Tottori University School of Medcine, Yonago (Japan); Kodama, F. [Dept. of Radiology, Tottori University School of Medcine, Yonago (Japan); Kamba, M. [Dept. of Radiology, Tottori University School of Medcine, Yonago (Japan); Ohta, Y. [Dept. of Radiology, Tottori University School of Medcine, Yonago (Japan)

    1995-01-01

    The association between contrast enhancement by chondroitin sulfate iron colloid (CSIC) and the histological grade of hepatocellular carcinoma (HCC) was evaluated in 24 patients diagnosed by histological examination of surgical specimens (26 nodules: 11 well-differentiated and 15 poorly-moderately-differentiated nodules). In the well-differentiated HCC nodules, the tumor-liver contrast to noise ratio (CNR) was not significantly increased after i.v. CSIC injection on both T1-weighted and T2-weighted images. In the moderately-poorly-differentiated HCC, CNR was significantly increased after CSIC administration on both T1-weighted and T2-weighted images (p<0.01). MR imaging using CSIC may be useful for diagnosing the degree of HCC differentiation. (orig.).

  5. Correlation between chondroitin sulfate iron colloid - enhanced MR imaging and the histological grade of hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Suto, Y.; Kodama, F.; Kamba, M.; Ohta, Y.

    1995-01-01

    The association between contrast enhancement by chondroitin sulfate iron colloid (CSIC) and the histological grade of hepatocellular carcinoma (HCC) was evaluated in 24 patients diagnosed by histological examination of surgical specimens (26 nodules: 11 well-differentiated and 15 poorly-moderately-differentiated nodules). In the well-differentiated HCC nodules, the tumor-liver contrast to noise ratio (CNR) was not significantly increased after i.v. CSIC injection on both T1-weighted and T2-weighted images. In the moderately-poorly-differentiated HCC, CNR was significantly increased after CSIC administration on both T1-weighted and T2-weighted images (p<0.01). MR imaging using CSIC may be useful for diagnosing the degree of HCC differentiation. (orig.)

  6. Antithrombotic activities of fucosylated chondroitin sulfates and their depolymerized fragments from two sea cucumbers.

    Science.gov (United States)

    Liu, Xiaoxiao; Hao, Jiejie; Shan, Xindi; Zhang, Xiao; Zhao, Xiaoliang; Li, Qinying; Wang, Xiaojiang; Cai, Chao; Li, Guoyun; Yu, Guangli

    2016-11-05

    Fucosylated chondroitin sulfate (FCS), a glycosaminoglycan extracted from the body wall of sea cucumber, is a promising antithrombotic agent. The chemical structures of FCSc isolated from sea cucumber Cucumaria frondosa and its depolymerized fragment (dFCSc) were characterized for the first time. Additionally, anticoagulant and antithrombotic activities were evaluated in vitro and in vivo. The results demonstrated that dFCSc exhibited better antithrombotic-hemorrhagic ratio than native FCSc on the electrical induced arterial thrombosis model in rats. Compared to FCSt obtained from Thelenota ananas, FCSc possessed different sulfation patterns but similar antithrombotic effects. Therefore, sulfation pattern of FCS might not affect anticoagulation and antithrombosis as much as molecular weight may. Our results proposed a new point of view to understand the structure-activity relationship of FCS as alternative agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Synthesis, characterization and application in biomedicine of a novel chondroitin sulfate based hydrogel and bioadhesive

    Science.gov (United States)

    Strehin, Iossif

    Clinically, there exists a need for adhesive biomaterials. There is room to improve upon what is currently on the market as it is either too toxic, lacks the required adhesive strength and/or lacks the desired degradation properties. The general goals of this thesis all focused on designing a biomaterial which would improve upon these shortcomings while at the same time allow for modifications to meet the needs for the specific application of interest. To accomplish this task, it was important to choose the appropriate composition and crosslinking chemistry which will allow the most flexibility. Chondroitin sulfate (CS) was chosen as the principle component of the hydrogel because it is a ubiquitous glycosaminoglycan (GAG) found in almost all tissues in the body. Many variants of CS exist with each one possessing unique biological activity allowing for tight control over these properties of the material. To modulate cell migration through the adhesive, polyethylene glycol (PEG) or blood was used as the second constituent. The former made the scaffold act as a cell barrier while the ladder could be used in varying concentrations to modulate cell adhesion and migration into the biomaterial. Also, the CS and blood components are both biodegradable and degradation can be controlled using various methods. While the constituents were chosen to allow flexibility in the biological activity and cell migration into the scaffold, the crosslinking chemistry was chosen to allow control over the mechanical properties as well as to increase tissue adhesion. By functionalizing the carboxyl groups of the GAG with N-hydroxysuccinimide (NHS), the resulting chondroitin sulfate succinimidyl succinate (CS-NHS) molecule could react with primary amines on polymers to form a hydrogel as well as the primary amines on proteins comprising tissue to anchor the hydrogel to the tissue. The material has been characterized and optimized for several applications. The applications described here

  8. Hyaluronic acid and chondroitin sulfate content of osteoarthritic human knee cartilage: site-specific correlation with weight-bearing force based on femorotibial angle measurement.

    Science.gov (United States)

    Otsuki, Shuhei; Nakajima, Mikio; Lotz, Martin; Kinoshita, Mitsuo

    2008-09-01

    This study analyzed glycosaminoglycan (GAG) content in specific compartments of the knee joint to determine the impact of malalignment and helped refine indications for osteotomy. To assess malalignment, the radiological femorotibial angle (FTA) was measured and knee joints were also graded for OA severity with the Kellgren/Lawrence (K/L) classification. Cartilage samples were obtained from 36 knees of 32 OA patients undergoing total knee replacement surgery. Explants were harvested from the medial femoral condyle (MFC), lateral femoral condyle (LFC), patellar groove (PG), and lateral posterior femoral condyle (LPC). Concentrations of hyaluronic acid (HA) and chondroitin sulfate (CS) were measured by high-performance liquid chromatography (HPLC). With OA severity, the average FTA significantly increased. HA and CS content in MFC was negatively correlated with radiographic FTA. In LFC, HA ratio, which is HA content in lateral condyle divided by medial condyle and chondroitin 6 sulfate, increased until about 190 degrees FTA. Importantly, at >190 degrees these contents were significantly decreased. HA and CS content of the femoral condyle shows topographic differences that are related to OA grade and weight-bearing force based on FTA. The clinical relevance is that osteotomy may not be indicated for patients with severe varus (>190 degrees) abnormalities. (c) 2008 Orthopaedic Research Society

  9. Role of chondroitin sulphate tethered silk scaffold in cartilaginous disc tissue regeneration.

    Science.gov (United States)

    Bhattacharjee, Maumita; Chawla, Shikha; Chameettachal, Shibu; Murab, Sumit; Bhavesh, Neel Sarovar; Ghosh, Sourabh

    2016-04-12

    Strategies for tissue engineering focus on scaffolds with tunable structure and morphology as well as optimum surface chemistry to simulate the anatomy and functionality of the target tissue. Silk fibroin has demonstrated its potential in supporting cartilaginous tissue formation both in vitro and in vivo. In this study, we investigate the role of controlled lamellar organization and chemical composition of biofunctionalized silk scaffolds in replicating the structural properties of the annulus region of an intervertebral disc using articular chondrocytes. Covalent attachment of chondroitin sulfate (CS) to silk is characterized. CS-conjugated silk constructs demonstrate enhanced cellular metabolic activity and chondrogenic redifferentiation potential with significantly improved mechanical properties over silk-only constructs. A matrix-assisted laser desorption ionization-time of flight analysis and protein-protein interaction studies help to generate insights into how CS conjugation can facilitate the production of disc associated matrix proteins, compared to a silk-only based construct. An in-depth understanding of the interplay between such extra cellular matrix associated proteins should help in designing more rational scaffolds for cartilaginous disc regeneration needs.

  10. Role of chondroitin sulphate tethered silk scaffold in cartilaginous disc tissue regeneration

    International Nuclear Information System (INIS)

    Bhattacharjee, Maumita; Chawla, Shikha; Chameettachal, Shibu; Murab, Sumit; Ghosh, Sourabh; Bhavesh, Neel Sarovar

    2016-01-01

    Strategies for tissue engineering focus on scaffolds with tunable structure and morphology as well as optimum surface chemistry to simulate the anatomy and functionality of the target tissue. Silk fibroin has demonstrated its potential in supporting cartilaginous tissue formation both in vitro and in vivo. In this study, we investigate the role of controlled lamellar organization and chemical composition of biofunctionalized silk scaffolds in replicating the structural properties of the annulus region of an intervertebral disc using articular chondrocytes. Covalent attachment of chondroitin sulfate (CS) to silk is characterized. CS-conjugated silk constructs demonstrate enhanced cellular metabolic activity and chondrogenic redifferentiation potential with significantly improved mechanical properties over silk-only constructs. A matrix-assisted laser desorption ionization-time of flight analysis and protein–protein interaction studies help to generate insights into how CS conjugation can facilitate the production of disc associated matrix proteins, compared to a silk-only based construct. An in-depth understanding of the interplay between such extra cellular matrix associated proteins should help in designing more rational scaffolds for cartilaginous disc regeneration needs. (paper)

  11. Radiolabeling procedure, quality control and stability of 99mTc-labeled chondroitin sulfate: A new approach of targeting osteoarthritis

    International Nuclear Information System (INIS)

    Sobal, Grazyna; Menzel, Ernst Johannes; Sinzinger, Helmut

    2008-01-01

    Chondroitin sulfate (CS) is an endogenous component of cartilage which could determine osteoarthritis after radiolabeling. Radiolabeling was performed by 99m TcO 4 - /tin method. We found that pH is a limiting factor. At pH 6.2 in 0.05 M Na acetate buffer 32.8% colloid was formed, at pH 5.0 in 0.5 M Na acetate, in our methodology only 4.7% colloid. The tracer was highly stable. We conclude that 99m TcCS could be a promising imaging agent of osteoarthritis due to simple radiolabeling and high stability

  12. Synthesis of chondroitin sulfate CC and DD tetrasaccharides and interactions with 2H6 and LY111.

    Science.gov (United States)

    Matsushita, Kenya; Nakata, Tomomi; Takeda-Okuda, Naoko; Nadanaka, Satomi; Kitagawa, Hiroshi; Tamura, Jun-Ichi

    2018-03-01

    We synthesized the biotinylated chondroitin sulfate tetrasaccharides CS-CC [-3)βGalNAc6S(1-4)βGlcA(1-] 2 and CS-DD [-3)βGalNAc6S(1-4)βGlcA2S(1-] 2 which possess sulfate groups at O-6 of GalNAc and an additional sulfate group at O-2 of GlcA, respectively. We also analyzed interactions among CS-CC and CS-DD and the antibodies 2H6 and LY111, both of which are known to bind with CS-A, while CS-DD was shown for the first time to bind with both antibodies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Plasma antibodies from malaria-exposed pregnant women recognize variant surface antigens on Plasmodium falciparum-infected erythrocytes in a parity-dependent manner and block parasite adhesion to chondroitin sulfate A

    DEFF Research Database (Denmark)

    Ricke, C H; Staalsoe, T; Koram, K

    2000-01-01

    -associated malaria (PAM) in endemic areas is concentrated in the first few pregnancies, indicating that protective immunity to PAM is a function of parity. The placenta is often heavily infected in PAM, and placental parasites show a striking preference for chondroitin sulfate A (CSA) as an adhesion receptor. Plasma...

  14. Layer-by-layer assembly of type I collagen and chondroitin sulfate on aminolyzed PU for potential cartilage tissue engineering application

    International Nuclear Information System (INIS)

    He Xianyun; Wang Yingjun; Wu Gang

    2012-01-01

    Highlights: ► A novel biodegradable polyurethane (PU) was successfully synthesized. ► Surface aminolyzing of the PU was performed by reacting it with 1,3-propanediamine. ► Collagen and chondroitin sulfate were deposited alternately on the PU surface. - Abstract: In this paper, a two-step method was used to synthesize a biodegradable polyurethane (PU) composed of L-lysine ethyl ester diisocyanate (LDI), poly(ε-caprolactone) diols (PCL-diol) and 1,4:3,6-dianhydro-D-sorbitol (isosorbide). Amino groups were introduced onto the surface of the PU membrane by an amination reacting with 1,3-propanediamine to produce polycationic substratum. And then, type I collagen (Col) and chondroitin sulfate (CS) were deposited alternately on the polycationic substratum through layer-by-layer (LBL) assembly technology. The FTIR and 1 H NMR results showed that the polyurethane was successfully synthesized. Rhodamine B isothiocyanate (RBITC) fluorescence spectrum indicated that amino groups were successfully introduced onto the PU surface. The results of quartz-crystal microbalance (QCM) and RBITC-Col fluorescence spectroscopy monitoring the LBL assemble process presented that the Col/CS deposited alternately on the PU surface. X-ray photoelectron spectroscopy (XPS) results displayed that the CS deposited on the PU surface as well. The surface of the assembled PU became even smoother observed from the surface morphology by atomic force microscopy (AFM) imaging. The hydrophilicity of the PU membrane was greatly enhanced though the modification of LBL assembly. The PU modified with the adsorption of Col/CS may be a potential application for cartilage tissue engineering due to its created mimicking chondrogenic environment.

  15. Extracellular matrix of cultured glial cells: Selective expression of chondroitin 4-sulfate by type-2 astrocytes and their progenitors

    International Nuclear Information System (INIS)

    Gallo, V.; Bertolotto, A.

    1990-01-01

    We have studied the extracellular matrix composition of cultured glial cells by immunocytochemistry with different monoclonal and polyclonal antibodies. Double immunofluorescence experiments and metabolic labeling with [3H]glucosamine performed in different types of cerebellar and cortical cultures showed that bipotential progenitors for type-2 astrocytes and for oligodendrocytes synthesize chondroitin sulfate (CS) and deposit this proteoglycan in their extracellular matrix. The distribution of the various [3H]glucosamine-labeled glycosaminoglycans between the intracellular and the extracellular space was different. CS was present both within the cells and in the culture medium, although in different amounts. Bi-potential progenitors became also O4-positive during their development in vitro. At the stage of O4-positivity they were still stained with antibodies against CS. However, when the progenitor cells were maintained in serum-free medium and differentiated into Gal-C-positive oligodendrocytes, they became CS-negative. In the presence of fetal calf serum in the culture medium, the bipotential progenitors differentiated into GFAP-positive type-2 astrocytes. These cells still expressed CS: their Golgi area and their surface were stained with anti-CS antibodies. Staining with monoclonal antibodies specific for different types of CS (4-sulfate, 6-sulfate, and unsulfated) revealed that both bipotential progenitors and type-2 astrocytes synthesized only chondroitin 4-sulfate. Type-1 astrocytes were negative for both the polyclonal and the monoclonal anti-CS antibodies. Finally, type-2 astrocytes and their progenitors were weakly stained with anti-laminin antibodies and unstained with anti-fibronectin. Type-1 astrocytes were positive for both anti-laminin and anti-fibronectin antibodies and appeared to secrete fibronectin in the extracellular space

  16. Chondroitin Sulfate Proteoglycan 4 and Its Potential As an Antibody Immunotherapy Target across Different Tumor Types

    Directory of Open Access Journals (Sweden)

    Kristina M. Ilieva

    2018-01-01

    Full Text Available Overexpression of the chondroitin sulfate proteoglycan 4 (CSPG4 has been associated with the pathology of multiple types of such as melanoma, breast cancer, squamous cell carcinoma, mesothelioma, neuroblastoma, adult and pediatric sarcomas, and some hematological cancers. CSPG4 has been reported to exhibit a role in the growth and survival as well as in the spreading and metastasis of tumor cells. CSPG4 is overexpressed in several malignant diseases, while it is thought to have restricted and low expression in normal tissues. Thus, CSPG4 has become the target of numerous anticancer treatment approaches, including monoclonal antibody-based therapies. This study reviews key potential anti-CSPG4 antibody and immune-based therapies and examines their direct antiproliferative/metastatic and immune activating mechanisms of action.

  17. Radiolabeling procedure, quality control and stability of {sup 99m}Tc-labeled chondroitin sulfate: A new approach of targeting osteoarthritis

    Energy Technology Data Exchange (ETDEWEB)

    Sobal, Grazyna [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna, Waehringer Guertel 18-20 (Austria)], E-mail: Grazyna.Sobal@meduniwien.ac.at; Menzel, Ernst Johannes [Institute of Immunology, Medical University of Vienna, Vienna (Austria); Sinzinger, Helmut [Department of Nuclear Medicine, Medical University of Vienna, A-1090 Vienna, Waehringer Guertel 18-20 (Austria)

    2008-04-15

    Chondroitin sulfate (CS) is an endogenous component of cartilage which could determine osteoarthritis after radiolabeling. Radiolabeling was performed by {sup 99m}TcO{sub 4}{sup -}/tin method. We found that pH is a limiting factor. At pH 6.2 in 0.05 M Na acetate buffer 32.8% colloid was formed, at pH 5.0 in 0.5 M Na acetate, in our methodology only 4.7% colloid. The tracer was highly stable. We conclude that {sup 99m}TcCS could be a promising imaging agent of osteoarthritis due to simple radiolabeling and high stability.

  18. Effect of chondroitin sulphate on synovitis of knee osteoarthritic patients.

    Science.gov (United States)

    Tío, Laura; Orellana, Cristobal; Pérez-García, Selene; Piqueras, Laura; Escudero, Paula; Juarranz, Yasmina; Garcia-Giralt, Natalia; Montañés, Francisco; Farran, Aina; Benito, Pere; Gomariz, Rosa P; Sanz, María-Jesús; Monfort, Jordi

    2017-07-07

    To evaluate by ultrasonography the effect of chondroitin sulfate (CS) on synovitis in patients with knee osteoarthritis (KOA). To collaborate in the understanding of the biochemical mechanisms involved in the synovial inflammation process. Randomized, single-blind, controlled trial involving 70 patients with primary KOA treated for 6 months with CS or acetaminophen (ACT). Evaluation of KOA status at baseline, 6 weeks, 3 and 6 months included: ultrasonography to assess synovitis (following the OMERACT expertise group definition), visual analogue scale and Lequesne index to measure pain and function, and ELISA to quantify inflammatory mediators in serum and synovial fluid. Synovitis presence was reduced by 50% in the CS group while a 123% increase was observed in ACT group. Conversely, patients without initial synovitis and treated with ACT reached 85.71% synovitis onset, but only 25% in CS group. Both therapies improved articular function, but only CS resulted in significant pain improvement at the end of the treatment. Changes in RANTES and UCN synovial fluid concentration were associated with CS treatment. Treatment with CS had a sustained beneficial effect, preventing synovitis onset or reducing its presence as well as reducing KOA symptoms. ACT ameliorated clinical symptoms but had no effect on inflammation. The CS anti-inflammatory effect could be related to the observed changes in RANTES and UCN concentration. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  19. Chemical characteristics and antithrombotic effect of chondroitin sulfates from sturgeon skull and sturgeon backbone.

    Science.gov (United States)

    Gui, Meng; Song, Juyi; Zhang, Lu; Wang, Shun; Wu, Ruiyun; Ma, Changwei; Li, Pinglan

    2015-06-05

    Chondroitin sulfates (CSs) were extracted from sturgeon skull and backbone, and their chemical composition, anticoagulant, anti-platelet and thrombolysis activities were evaluated. The average molecular weights of CS from sturgeon skull and backbone were 38.5kDa and 49.2kDa, respectively. Disaccharide analysis indicated that the sturgeon backbone CS was primarily composed of disaccharide monosulfated in position four of the GalNAc (37.8%) and disaccharide monosulfated in position six of the GalNAc (59.6%) while sturgeon skull CS was primarily composed of nonsulfated disaccharide (74.2%). Sturgeon backbone CS showed stronger antithrombotic effect than sturgeon skull CS. Sturgeon backbone CS could significantly prolong activated partial thromboplastin time (APTT) and thrombin time (TT), inhibited ADP-induced platelet aggregation and dissolved platelet plasma clots in vitro. The results suggested that sturgeon backbone CS can be explored as a functional food with antithrombotic function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. [Efficacy of chondroitin sulphate in the treatment of elderly patients with gonarthrosis and coxarthrosis].

    Science.gov (United States)

    Lazebnik, L B; Drozdov, V N

    2005-01-01

    To study chondroitin sulphate (CS) efficacy, tolerance and response duration in elderly patients with osteoarthrosis (OA) with consideration of OA duration and stage. A total of 97 patients aged 65-85 years with stage II-IV OA by Kellgren-Lawrence received CS treatment. The treatment efficacy was assessed by functional Lecken's index, pain intensity at walking and rest, general functional condition, need in nonsteroid anti-inflammatory (NSAI) drugs. Standardization was achieved with visual analogue scale (VAS). Positive effects (pain relief, better functional parameters, lower intake of NSAI drugs) were more pronounced and stable in patients with OA stage 1 and 2. In OA of stage 3 and 4, a beneficial effect of a 6-month CS course was unstable. Side effects were at the level of mean statistics. CS (structum) is recommended for treatment of OA stage 1-4 by Kellgren-Lawrence. Duration of the treatment depends on severity of x-ray symptoms of the disease.

  1. Perineuronal Nets in Spinal Motoneurones: Chondroitin Sulphate Proteoglycan around Alpha Motoneurones

    Directory of Open Access Journals (Sweden)

    Sian F. Irvine

    2018-04-01

    Full Text Available Perineuronal nets (PNNs are extracellular matrix structures surrounding neuronal sub-populations throughout the central nervous system, regulating plasticity. Enzymatically removing PNNs successfully enhances plasticity and thus functional recovery, particularly in spinal cord injury models. While PNNs within various brain regions are well studied, much of the composition and associated populations in the spinal cord is yet unknown. We aim to investigate the populations of PNN neurones involved in this functional motor recovery. Immunohistochemistry for choline acetyltransferase (labelling motoneurones, PNNs using Wisteria floribunda agglutinin (WFA and chondroitin sulphate proteoglycans (CSPGs, including aggrecan, was performed to characterise the molecular heterogeneity of PNNs in rat spinal motoneurones (Mns. CSPG-positive PNNs surrounded ~70–80% of Mns. Using WFA, only ~60% of the CSPG-positive PNNs co-localised with WFA in the spinal Mns, while ~15–30% of Mns showed CSPG-positive but WFA-negative PNNs. Selective labelling revealed that aggrecan encircled ~90% of alpha Mns. The results indicate that (1 aggrecan labels spinal PNNs better than WFA, and (2 there are differences in PNN composition and their associated neuronal populations between the spinal cord and cortex. Insights into the role of PNNs and their molecular heterogeneity in the spinal motor pools could aid in designing targeted strategies to enhance functional recovery post-injury.

  2. Preparation and characterization of chondroitin-sulfate-A-coated magnetite nanoparticles for biomedical applications

    Science.gov (United States)

    Tóth, Ildikó Y.; Illés, Erzsébet; Szekeres, Márta; Tombácz, Etelka

    2015-04-01

    Polysaccharides are promising candidates for manufacturing biocompatible core-shell nanoparticles with potential in vivo use. Superparamagnetic magnetite nanoparticles (MNPs) have prospective application in both diagnosis and therapy, and so developing a novel polysaccharide shell on MNP core is of great challenge. MNPs were prepared by co-precipitation, then the surface of purified MNPs was coated with chondroitin-sulfate-A (CSA) to obtain core-shell structured magnetite nanoparticles (CSA@MNP). The effect of the added amount of CSA on the surface charging and the aggregation state of MNPs at various pHs and 10 mM NaCl was measured by electrophoresis and dynamic light scattering. The amphoteric behavior of MNPs was fundamentally modified by adsorption of CSA polyanions. A very low CSA-loading induces the aggregation of MNPs, while four times more stabilizes the dispersions over the whole pH-range studied. The coagulation kinetics experiments measured at pH=6.3±0.3 showed that salt tolerance of CSA@MNPs rises up to ~150 mM NaCl.

  3. Layer-by-layer assembly of type I collagen and chondroitin sulfate on aminolyzed PU for potential cartilage tissue engineering application

    Energy Technology Data Exchange (ETDEWEB)

    He Xianyun [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Wang Yingjun, E-mail: imwangyj@163.com [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China) and National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China) and Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China); Wu Gang, E-mail: imwugang@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641 (China); National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006 (China); Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510006 (China)

    2012-10-01

    Highlights: Black-Right-Pointing-Pointer A novel biodegradable polyurethane (PU) was successfully synthesized. Black-Right-Pointing-Pointer Surface aminolyzing of the PU was performed by reacting it with 1,3-propanediamine. Black-Right-Pointing-Pointer Collagen and chondroitin sulfate were deposited alternately on the PU surface. - Abstract: In this paper, a two-step method was used to synthesize a biodegradable polyurethane (PU) composed of L-lysine ethyl ester diisocyanate (LDI), poly({epsilon}-caprolactone) diols (PCL-diol) and 1,4:3,6-dianhydro-D-sorbitol (isosorbide). Amino groups were introduced onto the surface of the PU membrane by an amination reacting with 1,3-propanediamine to produce polycationic substratum. And then, type I collagen (Col) and chondroitin sulfate (CS) were deposited alternately on the polycationic substratum through layer-by-layer (LBL) assembly technology. The FTIR and {sup 1}H NMR results showed that the polyurethane was successfully synthesized. Rhodamine B isothiocyanate (RBITC) fluorescence spectrum indicated that amino groups were successfully introduced onto the PU surface. The results of quartz-crystal microbalance (QCM) and RBITC-Col fluorescence spectroscopy monitoring the LBL assemble process presented that the Col/CS deposited alternately on the PU surface. X-ray photoelectron spectroscopy (XPS) results displayed that the CS deposited on the PU surface as well. The surface of the assembled PU became even smoother observed from the surface morphology by atomic force microscopy (AFM) imaging. The hydrophilicity of the PU membrane was greatly enhanced though the modification of LBL assembly. The PU modified with the adsorption of Col/CS may be a potential application for cartilage tissue engineering due to its created mimicking chondrogenic environment.

  4. Chondroitin / dermatan sulfate modification enzymes in zebrafish development.

    Directory of Open Access Journals (Sweden)

    Judith Habicher

    Full Text Available Chondroitin/dermatan sulfate (CS/DS proteoglycans consist of unbranched sulfated polysaccharide chains of repeating GalNAc-GlcA/IdoA disaccharide units, attached to serine residues on specific proteins. The CS/DS proteoglycans are abundant in the extracellular matrix where they have essential functions in tissue development and homeostasis. In this report a phylogenetic analysis of vertebrate genes coding for the enzymes that modify CS/DS is presented. We identify single orthologous genes in the zebrafish genome for the sulfotransferases chst7, chst11, chst13, chst14, chst15 and ust and the epimerase dse. In contrast, two copies were found for mammalian sulfotransferases CHST3 and CHST12 and the epimerase DSEL, named chst3a and chst3b, chst12a and chst12b, dsela and dselb, respectively. Expression of CS/DS modification enzymes is spatially and temporally regulated with a large variation between different genes. We found that CS/DS 4-O-sulfotransferases and 6-O-sulfotransferases as well as CS/DS epimerases show a strong and partly overlapping expression, whereas the expression is restricted for enzymes with ability to synthesize di-sulfated disaccharides. A structural analysis further showed that CS/DS sulfation increases during embryonic development mainly due to synthesis of 4-O-sulfated GalNAc while the proportion of 6-O-sulfated GalNAc increases in later developmental stages. Di-sulfated GalNAc synthesized by Chst15 and 2-O-sulfated GlcA/IdoA synthesized by Ust are rare, in accordance with the restricted expression of these enzymes. We also compared CS/DS composition with that of heparan sulfate (HS. Notably, CS/DS biosynthesis in early zebrafish development is more dynamic than HS biosynthesis. Furthermore, HS contains disaccharides with more than one sulfate group, which are virtually absent in CS/DS.

  5. Divergent Synthesis of Chondroitin Sulfate Disaccharides and Identification of Sulfate Motifs that Inhibit Triple Negative Breast Cancer

    Science.gov (United States)

    Wei Poh, Zhong; Heng Gan, Chin; Lee, Eric J.; Guo, Suxian; Yip, George W.; Lam, Yulin

    2015-09-01

    Glycosaminoglycans (GAGs) regulate many important physiological processes. A pertinent issue to address is whether GAGs encode important functional information via introduction of position specific sulfate groups in the GAG structure. However, procurement of pure, homogenous GAG motifs to probe the “sulfation code” is a challenging task due to isolation difficulty and structural complexity. To this end, we devised a versatile synthetic strategy to obtain all the 16 theoretically possible sulfation patterns in the chondroitin sulfate (CS) repeating unit; these include rare but potentially important sulfated motifs which have not been isolated earlier. Biological evaluation indicated that CS sulfation patterns had differing effects for different breast cancer cell types, and the greatest inhibitory effect was observed for the most aggressive, triple negative breast cancer cell line MDA-MB-231.

  6. Placental Sequestration of Plasmodium falciparum Malaria Parasites Is Mediated by the Interaction Between VAR2CSA and Chondroitin Sulfate A on Syndecan-1

    Science.gov (United States)

    Mao, Yang; Resende, Mafalda; Daugaard, Mads; Riis Kristensen, Anders; Damm, Peter; G. Theander, Thor; R. Hansson, Stefan; Salanti, Ali

    2016-01-01

    During placental malaria, Plasmodium falciparum infected erythrocytes sequester in the placenta, causing health problems for both the mother and fetus. The specific adherence is mediated by the VAR2CSA protein, which binds to placental chondroitin sulfate (CS) on chondroitin sulfate proteoglycans (CSPGs) in the placental syncytium. However, the identity of the CSPG core protein and the cellular impact of the interaction have remain elusive. In this study we identified the specific CSPG core protein to which the CS is attached, and characterized its exact placental location. VAR2CSA pull-down experiments using placental extracts from whole placenta or syncytiotrophoblast microvillous cell membranes showed three distinct CSPGs available for VAR2CSA adherence. Further examination of these three CSPGs by immunofluorescence and proximity ligation assays showed that syndecan-1 is the main receptor for VAR2CSA mediated placental adherence. We further show that the commonly used placental choriocarcinoma cell line, BeWo, express a different set of proteoglycans than those present on placental syncytiotrophoblast and may not be the most biologically relevant model to study placental malaria. Syncytial fusion of the BeWo cells, triggered by forskolin treatment, caused an increased expression of placental CS-modified syndecan-1. In line with this, we show that rVAR2 binding to placental CS impairs syndecan-1-related Src signaling in forskolin treated BeWo cells, but not in untreated cells. PMID:27556547

  7. N-glycolyl groups of nonhuman chondroitin sulfates survive in ancient fossils.

    Science.gov (United States)

    Bergfeld, Anne K; Lawrence, Roger; Diaz, Sandra L; Pearce, Oliver M T; Ghaderi, Darius; Gagneux, Pascal; Leakey, Meave G; Varki, Ajit

    2017-09-26

    Biosynthesis of the common mammalian sialic acid N -glycolylneuraminic acid (Neu5Gc) was lost during human evolution due to inactivation of the CMAH gene, possibly expediting divergence of the Homo lineage, due to a partial fertility barrier. Neu5Gc catabolism generates N -glycolylhexosamines, which are potential precursors for glycoconjugate biosynthesis. We carried out metabolic labeling experiments and studies of mice with human-like Neu5Gc deficiency to show that Neu5Gc degradation is the metabolic source of UDP-GlcNGc and UDP-GalNGc and the latter allows an unexpectedly selective incorporation of N -glycolyl groups into chondroitin sulfate (CS) over other potential glycoconjugate products. Partially N -glycolylated-CS was chemically synthesized as a standard for mass spectrometry to confirm its natural occurrence. Much lower amounts of GalNGc in human CS can apparently be derived from Neu5Gc-containing foods, a finding confirmed by feeding Neu5Gc-rich chow to human-like Neu5Gc-deficient mice. Unlike the case with Neu5Gc, N -glycolyl-CS was also stable enough to be detectable in animal fossils as old as 4 My. This work opens the door for investigating the biological and immunological significance of this glycosaminoglycan modification and for an "ancient glycans" approach to dating of Neu5Gc loss during the evolution of Homo .

  8. Chondroitin sulfate-derivatized agarose beads: a new system for studying cation binding to glycosaminoglycans

    International Nuclear Information System (INIS)

    Hunter, G.K.

    1987-01-01

    Chondroitin sulfate (CS) has been covalently attached to aminoethyl-agarose beads in a carbodiimide-catalyzed reaction. In this process, an amide bond is formed between carboxylate groups on the glycosaminoglycan (GAG) and the primary amine groups of the beads. Under optimal conditions, up to 160 micrograms of CS is attached per milligram of beads. CS-agarose beads have been used to study Ca binding to GAGs. The beads are mixed with a solution containing CaCl 2 and 45 Ca and allowed to sediment under unit gravity. An aliquot of supernatant is then removed and 45 Ca activity is determined to quantitate remaining (free) Ca. Using this system, it was shown that CS binds approximately 0.7 Ca/disaccharide unit at saturation. Under the conditions used, the apparent association constant (KA) is approximately 14 mM. In principle, this derivatization protocol may be used to attach any proteoglycan or GAG (except keratan sulfate) to an insoluble support. CS-agarose beads provide a rapid, simple, and relatively artifact-free system for studying cation-GAG interactions

  9. Purification and sequence characterization of chondroitin sulfate and dermatan sulfate from fishes.

    Science.gov (United States)

    Lin, Na; Mo, Xiaoli; Yang, Yang; Zhang, Hong

    2017-04-01

    Chondroitin sulfate (CS) and dermatan sulfate (DS) were extracted and purified from skins or bones of salmon (Salmo salar), snakehead (Channa argus), monkfish (Lophius litulon) and skipjack tuna (Katsuwonus pelamis). Size, structural sequences and sulfate groups of oligosaccharides in the purified CS and DS could be characterized and identified using high performance liquid chromatography (HPLC) combined with Orbitrap mass spectrometry. CS and DS chain structure varies depending on origin, but motif structure appears consistent. Structures of CS and DS oligosaccharides with different size and sulfate groups were compared between fishes and other animals, and results showed that some minor differences of special structures could be identified by hydrophilic interaction chromatography-liquid chromatography-fourier transform-mass/mass spectrometry (HILIC-LC-FT-MS/MS). For example, data showed that salmon and skipjack CS had a higher percentage content of high-level sulfated oligosaccharides than that porcine CS. In addition, structural information of different origins of CS and DS was analyzed by principal component analysis (PCA) and results showed that CS and DS samples could be differentiated according to their molecular conformation and oligosaccharide fragments information. Understanding CS and DS structure derived from different origins may lead to the production of CS or DS with unique disaccharides or oligosaccharides sequence composition and biological functions.

  10. Site-specific identification of heparan and chondroitin sulfate glycosaminoglycans in hybrid proteoglycans.

    Science.gov (United States)

    Noborn, Fredrik; Gomez Toledo, Alejandro; Green, Anders; Nasir, Waqas; Sihlbom, Carina; Nilsson, Jonas; Larson, Göran

    2016-10-03

    Heparan sulfate (HS) and chondroitin sulfate (CS) are complex polysaccharides that regulate important biological pathways in virtually all metazoan organisms. The polysaccharides often display opposite effects on cell functions with HS and CS structural motifs presenting unique binding sites for specific ligands. Still, the mechanisms by which glycan biosynthesis generates complex HS and CS polysaccharides required for the regulation of mammalian physiology remain elusive. Here we present a glycoproteomic approach that identifies and differentiates between HS and CS attachment sites and provides identity to the core proteins. Glycopeptides were prepared from perlecan, a complex proteoglycan known to be substituted with both HS and CS chains, further digested with heparinase or chondroitinase ABC to reduce the HS and CS chain lengths respectively, and thereafter analyzed by nLC-MS/MS. This protocol enabled the identification of three consensus HS sites and one hybrid site, carrying either a HS or a CS chain. Inspection of the amino acid sequence at the hybrid attachment locus indicates that certain peptide motifs may encode for the chain type selection process. This analytical approach will become useful when addressing fundamental questions in basic biology specifically in elucidating the functional roles of site-specific glycosylations of proteoglycans.

  11. Chondroitin sulphate extracted from antler cartilage using high hydrostatic pressure and enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Chong-Tai Kim

    2014-12-01

    Full Text Available Chondroitin sulphate (CS, a major glycosaminoglycan, is an essential component of the extracellular matrix in cartilaginous tissues. Wapiti velvet antlers are a rich source of these molecules. The purpose of the present study was to develop an effective isolation procedure of CS from fresh velvet antlers using a combination of high hydrostatic pressure (100 MPa and enzymatic hydrolysis (papain. High CS extractability (95.1 ± 2.5% of total uronic acid was obtained following incubation (4 h at 50 °C with papain at pH 6.0 in 100 MPa compared to low extractability (19 ± 1.1% in ambient pressure (0.1 MPa. Antler CS fractions were isolated by Sephacryl S-300 chromatography and identified by western blot using an anti-CS monoclonal antibody. The antler CS fraction did not aggregate with hyaluronic acid in CL-2B chromatography and possessed DPPH radical scavenging activity at 78.3 ± 1.5%. The results indicated that high hydrostatic pressure and enzymatic hydrolysis procedure may be a useful tool for the isolation of CS from antler cartilaginous tissues.

  12. Equivalence of a single dose (1200 mg) compared to a three-time a day dose (400 mg) of chondroitin 4&6 sulfate in patients with knee osteoarthritis. Results of a randomized double blind placebo controlled study.

    Science.gov (United States)

    Zegels, B; Crozes, P; Uebelhart, D; Bruyère, O; Reginster, J Y

    2013-01-01

    Evaluation of the efficacy and safety of a single oral dose of a 1200 mg sachet of chondroitin 4&6 sulfate (CS 1200) vs three daily capsules of chondroitin 4&6 sulfate 400 mg (CS 3*400) (equivalence study) and vs placebo (superiority study) during 3 months, in patients with knee osteoarthritis (OA). Comparative, double-blind, randomized, multicenter study, including 353 patients of both genders over 45 years with knee OA. Minimum inclusion criteria were a Lequesne index (LI) ≥ 7 and pain ≥ 40 mm on a visual analogue scale (VAS). LI and VAS were assessed at baseline and after 1-3 months. Equivalence between CS was tested using the per-protocol procedure and superiority of CS vs placebo was tested using an intent-to-treat procedure. After 3 months of follow-up, no significant difference was demonstrated between the oral daily single dose of CS 1200 formulation and the three daily capsules of CS 400. Patients treated with CS 1200 or CS 3*400 were significantly improved compared to placebo after 3 months of follow-up in terms of LI (security and tolerability was observed between the three groups. This study suggests that a daily administration of an oral sachet of 1200 mg of chondroitin 4&6 sulfate allows a significant clinical improvement compared to a placebo, and a similar improvement when compared to a regimen of three daily capsules of 400 mg of the same active ingredient. Copyright © 2012 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  13. Enhancing the intestinal absorption of low molecular weight chondroitin sulfate by conjugation with α-linolenic acid and the transport mechanism of the conjugates.

    Science.gov (United States)

    Xiao, Yuliang; Li, Pingli; Cheng, Yanna; Zhang, Xinke; Sheng, Juzheng; Wang, Decai; Li, Juan; Zhang, Qian; Zhong, Chuanqing; Cao, Rui; Wang, Fengshan

    2014-04-25

    The purpose of this report was to demonstrate the effect of amphiphilic polysaccharides-based self-assembling micelles on enhancing the oral absorption of low molecular weight chondroitin sulfate (LMCS) in vitro and in vivo, and identify the transepithelial transport mechanism of LMCS micelles across the intestinal barrier. α-Linolenic acid-low molecular weight chondroitin sulfate polymers(α-LNA-LMCS) were successfully synthesized, and characterized by FTIR, (1)HNMR, TGA/DSC, TEM, laser light scattering and zeta potential. The significant oral absorption enhancement and elimination half-life (t₁/₂) extension of LNA-LMCS2 in rats were evidenced by intragastric administration in comparison with CS and LMCS. Caco-2 transport studies demonstrated that the apparent permeability coefficient (Papp) of LNA-LMCS2 was significantly higher than that of CS and LMCS (p<0.001), and no significant effects on the overall integrity of the monolayer were observed during the transport process. In addition, α-LNA-LMCS micelles accumulated around the cell membrane and intercellular space observed by confocal laser scanning microscope (CLSM). Furthermore, evident alterations in the F-actin cytoskeleton were detected by CLSM observation following the treatment of the cell monolayers with α-LNA-LMCS micelles, which further certified the capacity of α-LNA-LMCS micelles to open the intercellular tight junctions rather than disrupt the overall integrity of the monolayer. Therefore, LNA-LMCS2 with low cytotoxicity and high bioavailability might be a promising substitute for CS in clinical use, such as treating osteoarthritis, atherosclerosis, etc. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Fucosylated chondroitin sulfate is covalently associated with collagen fibrils in sea cucumber Apostichopus japonicus body wall.

    Science.gov (United States)

    Wang, Jun; Chang, Yaoguang; Wu, Fanxiu; Xu, Xiaoqi; Xue, Changhu

    2018-04-15

    Fucosylated chondroitin sulfate (fCS) is the major carbohydrate constituent of sea cucumber. However, the distribution of fCS in the sea cucumber body wall has not been fully described. We addressed this in the present study employing Apostichopus japonicus as the material, a sea cucumber species with significant commercial importance. It was found that fCS was covalently attached to collagen fibrils via O-glycosidic linkages. Transmission electron microscopy analysis revealed that fCS precipitate was present in gap regions of collagen fibrils as roughly globular or ellipsoidal dots. The fCS dots arranged circumferentially around the fibrils with an axial repeat period that matched the periodicity of the fibrils. Physicochemical analysis indicated that the presence of fCS significantly increased the negative charge of the fibrils. These findings provide novel insight into fCS distribution in the sea cucumber body wall and its supramolecular organization with other macromolecules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Chondroitin sulfate iron colloid as MR contrast agent in differentiation between hepatocellular carcinoma and adenomatous hyperplasia

    Energy Technology Data Exchange (ETDEWEB)

    Suto, Y. (Department of Radiology, Tottori Univ. School of Medicine, Yonago (Japan)); Kato, T. (Department of Radiology, Tottori Univ. School of Medicine, Yonago (Japan)); Matsuo, T. (Department of Radiology, Tottori Univ. School of Medicine, Yonago (Japan)); Kamba, M. (Department of Radiology, Tottori Univ. School of Medicine, Yonago (Japan)); Shimatani, Y. (Department of Radiology, Tottori Univ. School of Medicine, Yonago (Japan)); Ohuchi, Y. (Department of Radiology, Tottori Univ. School of Medicine, Yonago (Japan)); Nakamura, K. (Department of Radiology, Tottori Univ. School of Medicine, Yonago (Japan)); Ohta, Y. (Department of Radiology, Tottori Univ. School of Medicine, Yonago (Japan))

    1993-05-01

    Using a 1.5 T MR imaging unit, T1- and T2-weighted images were obtained before and after i.v. administration of chondroitin sulfate iron colloid (CSIC) in order to differentiate hepatocellular carcinoma (n=20) from adenomatous hyperplasia without atypia (n=16). Differentiation was made from the tumor-liver contrast to noise ratio (CNR) and visual evaluation of the nodule, with reference to signal intensity relative to that of the surrounding liver. The CNR of adenomatous hyperplasia was on T1-weighted images significantly decreased after CSIC administration (p<0.01). On T2-weighted images, there was no significant difference in CNR after CSIC administration. On the other hand, the CNR of hepatocellular carcinoma was significantly increased after CSIC administration on both T1- and T2-weighted images (p<0.01). CSIC reflects intratumor reticuloendothelial cellular functions, and is therefore useful in differentiating hepatocellular carcinoma from adenomatous hyperplasia without atypia. (orig.).

  16. Chondroitin sulfate reduces the friction coefficient of articular cartilage.

    Science.gov (United States)

    Basalo, Ines M; Chahine, Nadeen O; Kaplun, Michael; Chen, Faye H; Hung, Clark T; Ateshian, Gerard A

    2007-01-01

    The objective of this study was to investigate the effect of chondroitin sulfate (CS)-C on the frictional response of bovine articular cartilage. The main hypothesis is that CS decreases the friction coefficient of articular cartilage. Corollary hypotheses are that viscosity and osmotic pressure are not the mechanisms that mediate the reduction in the friction coefficient by CS. In Experiment 1, bovine articular cartilage samples (n=29) were tested in either phosphate buffered saline (PBS) or in PBS containing 100mg/ml of CS following 48h incubation in PBS or in PBS+100mg/ml CS (control specimens were not subjected to any incubation). In Experiment 2, samples (n=23) were tested in four different solutions: PBS, PBS+100mg/ml CS, and PBS+polyethylene glycol (PEG) (133 or 170mg/ml). In Experiment 3, samples (n=18) were tested in three solutions of CS (0, 10 and 100mg/ml). Frictional tests (cartilage-on-glass) were performed under constant stress (0.5MPa) for 3600s and the time-dependent friction coefficient was measured. Samples incubated or tested in a 100mg/ml CS solution exhibited a significantly lower equilibrium friction coefficient than the respective PBS control. PEG solutions delayed the rise in the friction coefficient relative to the PBS control, but did not reduce the equilibrium value. Testing in PBS+10mg/ml of CS did not cause any significant decrease in the friction coefficient. In conclusion, CS at a concentration of 100mg/ml significantly reduces the friction coefficient of bovine articular cartilage and this mechanism is neither mediated by viscosity nor osmolarity. These results suggest that direct injection of CS into the joint may provide beneficial tribological effects.

  17. About the singular behavior of the ionic condensation of sodium chondroitin sulfate: Conductivity study in water and water dioxane mixture

    Science.gov (United States)

    M'halla, Jalel; Besbes, Rafik; Bouazzi, Ramzi; Boughammoura, Sondes

    2006-01-01

    In this work, we generalized the (Bjerrum-Debye-Fuoss-MSA) double layer model to an ellipsoidal polyion (chondroitin sulfate) of (∣ Zs∣ e) structural charge, Ls structural length, R minor axe and ( R2 + L2/4) 1/2 major axe. With L ⩽ Ls. Na + counter ions are distributed on the contact (or condensed) layer and on the Debye layer (ionic atmosphere). Both layers are ellipsoidal equipotentials of, respectively, R and d minor axes and are concentric to the polyion. With d = ( R + 1/2 Γ), Γ is the Debye-MSA screen parameter. The equilibrium distribution of Na + ions is derived from a "two states" statistical approach, leading to a general implicit expression for the rate of condensation (1 - α). The generality of this formula results from the fact that it takes into account the finite size of the polyion ( L ≠ ∞ and R ≠ 0) and allows to calculate α for different conformations of the polyion: (ellipsoidal L ≠ 0, cylindrical: L = Ls, spherical: L → 0, and Manning's model: RL-1 → 0). The main conclusion of this model is that, α obeys to the Ostwald's principle of dilution ( α → 1 when CNa+ → 0). This result is contrary to Manning's theory, for which α is a constant αM independent on the concentration Ci: αM = bS/(∣ Zi∣ Lb), with bS = Ls/∣ Zs∣ and Lb = e2/( ɛkT) is the Bjerrum length. However, our analysis shows that the rate of variation: (∂ α/∂ Ci) in a given range of concentration, depends on the structural parameter bS. Indeed, the critical Manning condition ( α-1αM = 1, ⇒(∂ α/∂ Ci) ≈ 0), is compatible with the general following "rod-like model" approximation: (1-α)≈|Zi|(πbS)[4πZi2Lb][αCiR2];withbS″=αM-1 only for some peculiar values of bS and Lb (i.e., dielectric constant: ɛ). In water at 25 °C ( ɛ = 78.3), this singular behavior occurs for a range of a relative low or moderate concentration for some polyelectrolytes of bS structural parameter of about 5.8 Å. This is the case of sodium chondroitin

  18. In vitro fermentation behaviors of fucosylated chondroitin sulfate from Pearsonothuria graeffei by human gut microflora.

    Science.gov (United States)

    Wei, Chao-Yang; Liao, Ning-Bo; Zhang, Yu; Ye, Xing-Qian; Li, Shan; Hu, Ya-Qin; Liu, Dong-Hong; Linhardt, Robert J; Wang, Xin; Chen, Shi-Guo

    2017-09-01

    A fucosylated chondroitin sulfate (FCS-pg) with highly repeated structure from Pearsonothuria graeffei was subjected to a in vitro fermentation model to investigate its fermentability and effects on human gut microflora. High performance liquid chromatography (HPLC) measurement found FCS-pg can be fermented to short chain fatty acids (SCFAs) by gut microflora from partial human fecal samples. 16S rRNA gene-based polymerase chain reaction-based denaturing gradient gel electrophoresis (PCR-DGGE) profiling and real-time quantitative PCR analysis showed that FCS-pg mainly increased the proportions of Clostridium cluster XI, Bacteriodes prevotella group, Bifidobacterium genus, Clostridium cluster I and Clostridium cluster XIVab, whereas the numbers of the Enterobacteriaceae and Lactobacillus decreased. These results indicated that FCS-pg was mainly fermented by Bacteroides, Bifidobacterium and Clostridium. It increased the content of probiotics bacteria in achieving health-enhancing effect, was slightly different than most sulfated polysaccharides from marine animals. The current study provides useful new information on the mechanism of absorption and functional activity on FCS-pg within the gastrointestinal tract of the human body. Copyright © 2017. Published by Elsevier B.V.

  19. Polyethylene glycol-conjugated chondroitin sulfate A derivative nanoparticles for tumor-targeted delivery of anticancer drugs.

    Science.gov (United States)

    Lee, Jae-Young; Park, Ju-Hwan; Lee, Jeong-Jun; Lee, Song Yi; Chung, Suk-Jae; Cho, Hyun-Jong; Kim, Dae-Duk

    2016-10-20

    Polyethylene glycol (PEG)-decorated chondroitin sulfate A-deoxycholic acid (CSD) nanoparticles (NPs) were fabricated for the selective delivery of doxorubicin (DOX) to ovarian cancer. CSD-PEG was synthesized via amide bond formation between the NH2 group of methoxypolyethylene glycol amine and the COOH group of CSD. CSD-PEG/DOX NPs with a 247nm mean diameter, negative zeta potential, and >90% drug encapsulation efficiency were prepared. Sustained and pH-dependent DOX release profiles from CSD-PEG NPs were observed in dissolution tests. Endocytosis of NPs by SKOV-3 cells (CD44 receptor-positive human ovarian cancer cells), based on the CSA-CD44 receptor interaction, was determined by flow cytometry and confocal laser scanning microscopy (CLSM) studies. PEGylation of NPs also resulted in reduced drug clearance (CL) in vivo and improved relative bioavailability, compared to non-PEGylated NPs, as determined by the pharmacokinetic study performed after intravenous administration in rats. Developed CSD-PEG NPs can be a promising delivery vehicle for the therapy of CD44 receptor-expressing ovarian cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Determination of Oversulphated Chondroitin Sulphate and Dermatan Sulphate in unfractionated heparin by (1)H-NMR - Collaborative study for quantification and analytical determination of LoD.

    Science.gov (United States)

    McEwen, I; Mulloy, B; Hellwig, E; Kozerski, L; Beyer, T; Holzgrabe, U; Wanko, R; Spieser, J-M; Rodomonte, A

    2008-12-01

    Oversulphated Chondroitin Sulphate (OSCS) and Dermatan Sulphate (DS) in unfractionated heparins can be identified by nuclear magnetic resonance spectrometry (NMR). The limit of detection (LoD) of OSCS is 0.1% relative to the heparin content. This LoD is obtained at a signal-to-noise ratio (S/N) of 2000:1 of the heparin methyl signal. Quantification is best obtained by comparing peak heights of the OSCS and heparin methyl signals. Reproducibility of less than 10% relative standard deviation (RSD) has been obtained. The accuracy of quantification was good.

  1. Mutations in Biosynthetic Enzymes for the Protein Linker Region of Chondroitin/Dermatan/Heparan Sulfate Cause Skeletal and Skin Dysplasias

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2015-01-01

    Full Text Available Glycosaminoglycans, including chondroitin, dermatan, and heparan sulfate, have various roles in a wide range of biological events such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Their polysaccharides covalently attach to the serine residues on specific core proteins through the common linker region tetrasaccharide, -xylose-galactose-galactose-glucuronic acid, which is produced through the stepwise addition of respective monosaccharides by four distinct glycosyltransferases. Mutations in the human genes encoding the glycosyltransferases responsible for the biosynthesis of the linker region tetrasaccharide cause a number of genetic disorders, called glycosaminoglycan linkeropathies, including Desbuquois dysplasia type 2, spondyloepimetaphyseal dysplasia, Ehlers-Danlos syndrome, and Larsen syndrome. This review focused on recent studies on genetic diseases caused by defects in the biosynthesis of the common linker region tetrasaccharide.

  2. Characterization and anti-tumor effects of chondroitin sulfate-chitosan nanoparticles delivery system

    Science.gov (United States)

    Hu, Chieh-Shen; Tang, Sung-Ling; Chiang, Chiao-Hsi; Hosseinkhani, Hossein; Hong, Po-Da; Yeh, Ming-Kung

    2014-11-01

    We prepared chondroitin sulfate (ChS)-chitosan (CS) nanoparticles (NPs) as a delivery carrier, and doxorubicin (Dox) was used as a model drug. The physicochemical properties and biological activities of the Dox-ChS-CS NPs including the release profile, cell cytotoxicity, cellular internalization, and in vivo anti-tumor effects were evaluated. The ChS-CS NPs and Dox-ChS-CS NPs had a mean size of 262.0 ± 15.0 and 369.4 ± 77.4 nm, and a zeta potential of 30.2 ± 0.9 and 20.6 ± 3.1 mV, respectively. In vitro release tests showed that the 50 % release time for the Dox-ChS-CS NPs was 20 h. Two hepatoma cell models, HepG2 and HuH6, were used for evaluating the cytotoxicity and cell uptake efficiency of the Dox-ChS-CS NPs. A significant difference was observed between doxorubicin solution and the Dox-ChS-CS NPs in the cellular uptake within 60 min ( p < 0.01). For the in vivo human xenograft-nude mouse model, the Dox-ChS-CS NPs were more effective with less body weight loss and anti-tumor growth suppression in comparison with the Dox solution. The prepared Dox-ChS-CS NPs offer a new effective targeting nanoparticle delivery system platform for anti-tumor therapy.

  3. Reconstrução do ligamento cruzado cranial em cães, associado ou não ao sulfato de condroitina Cranial cruciate ligament reconstruction in dogs associated or not to chondroitin sulfate

    Directory of Open Access Journals (Sweden)

    F. Biasi

    2005-08-01

    Full Text Available Avaliou-se o efeito da reconstrução do ligamento cruzado cranial, associado ou não ao sulfato de condroitina, na evolução da osteoartrite induzida experimentalmente em cães. Vinte cães hígidos, sem raça definida, machos e fêmeas, com peso corpóreo entre 19 e 25kg, foram submetidos à desmotomia do ligamento cruzado cranial. Trinta dias após, foram separados em dois grupos de 10 animais. Um grupo foi submetido à reconstrução do ligamento cruzado com uso de aloenxerto de ligamento patelar congelado, o outro não. Trinta e um dias após a desmotomia, cada grupo foi dividido em dois subgrupos de cinco animais. Um recebeu sulfato de condroitina, o outro não. Os cães foram avaliados clínica e radiograficamente antes da desmotomia e aos 30, 60 e 90 dias após a desmotomia. No último momento foram realizados exames macro e microscópico. Nos cães submetidos somente à desmotomia e tratados com sulfato de condroitina houve redução na progressão das alterações ósseas, ao exame radiográfico. A reconstrução do ligamento cruzado cranial melhorou a função do membro e, quando associada ao sulfato de condroitina, houve melhor resposta. Não houve diferença entre os subgrupos quanto aos exames macro e microscópico.The effect of cranial cruciate ligament reconstruction, associated or not to chondroitin sulfate, on the evolution of experimentally induced osteoarthritis in dogs was studied. Twenty healthy mixed dogs, weighing between 19 and 25kg were submitted to cranial cruciate desmotomy. Thirty days later, the animals were divided into two groups with ten dogs each. One was submitted to cranial cruciate ligament reconstruction using frozen patellar tendon allograft and the other received no surgical treatment. Thirty one days after desmotomy, each group was divided into two subgroups with five animals each. One subgroup for each group received chondroitin sulfate and the other received no medical treatment. The dogs were

  4. Iduronic acid in chondroitin/dermatan sulfate affects directional migration of aortic smooth muscle cells.

    Directory of Open Access Journals (Sweden)

    Barbara Bartolini

    Full Text Available Aortic smooth muscle cells produce chondroitin/dermatan sulfate (CS/DS proteoglycans that regulate extracellular matrix organization and cell behavior in normal and pathological conditions. A unique feature of CS/DS proteoglycans is the presence of iduronic acid (IdoA, catalyzed by two DS epimerases. Functional ablation of DS-epi1, the main epimerase in these cells, resulted in a major reduction of IdoA both on cell surface and in secreted CS/DS proteoglycans. Downregulation of IdoA led to delayed ability to re-populate wounded areas due to loss of directional persistence of migration. DS-epi1-/- aortic smooth muscle cells, however, had not lost the general property of migration showing even increased speed of movement compared to wild type cells. Where the cell membrane adheres to the substratum, stress fibers were denser whereas focal adhesion sites were fewer. Total cellular expression of focal adhesion kinase (FAK and phospho-FAK (pFAK was decreased in mutant cells compared to control cells. As many pathological conditions are dependent on migration, modulation of IdoA content may point to therapeutic strategies for diseases such as cancer and atherosclerosis.

  5. Effect of introduction of chondroitin sulfate into polymer-peptide conjugate responding to intracellular signals

    Science.gov (United States)

    Tomiyama, Tetsuro; Toita, Riki; Kang, Jeong-Hun; Koga, Haruka; Shiosaki, Shujiro; Mori, Takeshi; Niidome, Takuro; Katayama, Yoshiki

    2011-09-01

    We recently developed a novel tumor-targeted gene delivery system responding to hyperactivated intracellular signals. Polymeric carrier for gene delivery consists of hydrophilic neutral polymer as main chains and cationic peptide substrate for target enzyme as side chains, and was named polymer-peptide conjugate (PPC). Introduction of chondroitin sulfate (CS), which induces receptor-medicated endocytosis, into polymers mainly with a high cationic charge density such as polyethylenimine can increase tumor-targeted gene delivery. In the present study, we examined whether introduction of CS into PPC containing five cationic amino acids can increase gene expression in tumor cells. Size and zeta potential of plasmid DNA (pDNA)/PPC/CS complex were <200 nm and between -10 and -15 mV, respectively. In tumor cell experiments, pDNA/PPC/CS complex showed lower stability and gene regulation, compared with that of pDNA/PPC. Moreover, no difference in gene expression was identified between positive and negative polymer. These results were caused by fast disintegration of pDNA/PPC/CS complexes in the presence of serum. Thus, we suggest that introduction of negatively charged CS into polymers with a low charge density may lead to low stability and gene regulation of complexes.

  6. Effect of the chelation of metal cation on the antioxidant activity of chondroitin sulfates.

    Science.gov (United States)

    Ajisaka, Katsumi; Oyanagi, Yutaka; Miyazaki, Tatsuo; Suzuki, Yasuhiro

    2016-06-01

    The antioxidant potencies of chondroitin sulfates (CSs) from shark cartilage, salmon cartilage, bovine trachea, and porcine intestinal mucosa were compared by three representative methods for the measurement of the antioxidant activity; DPPH radical scavenging activity, superoxide radical scavenging activity, and hydroxyl radical scavenging activity. CSs from salmon cartilage and bovine trachea showed higher potency in comparison with CSs from shark cartilage and porcine intestinal mucosa. Next, CS from salmon cartilage chelating with Ca(2+), Mg(2+), Mn(2+), or Zn(2+) were prepared, and their antioxidant potencies were compared. CS chelating with Ca(2+) or Mg(2+) ions showed rather decreased DPPH radical scavenging activity in comparison with CS of H(+) form. In contrast, CS chelating with Ca(2+) or Mg(2+) ion showed remarkably enhanced superoxide radical scavenging activity than CS of H(+) or Na(+) form. Moreover, CS chelating with divalent metal ions, Ca(2+), Mg(2+), Mn(2+), or Zn(2+), showed noticeably higher hydroxyl radical scavenging activity than CS of H(+) or Na(+) form. The present results revealed that the scavenging activities of, at least, superoxide radical and hydroxyl radical were enhanced by the chelation with divalent metal ions.

  7. Influence of charge on FITC-BSA-loaded chondroitin sulfate-chitosan nanoparticles upon cell uptake in human Caco-2 cell monolayers

    Directory of Open Access Journals (Sweden)

    Hu CS

    2012-09-01

    Full Text Available Chieh-shen Hu,1 Chiao-hsi Chiang,2 Po-da Hong,1,4,* Ming-kung Yeh1–3,*1Biomedical Engineering Program, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology; 2School of Pharmacy, National Defence Medical Center; 3Bureau of Pharmaceutical Affairs, Ministry of National Defence Medical Affairs Bureau; 4Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taiwan, Republic of China*These authors contributed equally to this workBackground and methods: Chondroitin sulfate-chitosan (ChS-CS nanoparticles and positively and negatively charged fluorescein isothiocyanate-conjugated bovine serum albumin (FITC-BSA-loaded ChS-CS nanoparticles were prepared and characterized. The properties of ChS-CS nanoparticles, including cellular uptake, cytotoxicity, and transepithelial transport, as well as findings on field emission-scanning electron microscopy, transmission electron microscopy, and confocal laser scanning microscopy were evaluated in human epithelial colorectal adenocarcinoma (Caco-2 fibroblasts. ChS-CS nanoparticles with a mean particle size of 250 nm and zeta potentials ranging from –30 to +18 mV were prepared using an ionic gelation method.Results: Standard cell viability assays demonstrated that cells incubated with ChS-CS and FITC-BSA-loaded ChS-CS nanoparticles remained more than 95% viable at particle concentrations up to 0.1 mg/mL. Endocytosis of nanoparticles was confirmed by confocal laser scanning microscopy and measured by flow cytometry. Ex vivo transepithelial transport studies using Caco-2 cells indicated that the nanoparticles were effectively transported into Caco-2 cells via endocytosis. The uptake of positively charged FITC-BSA-loaded ChS-CS nanoparticles across the epithelial membrane was more efficient than that of the negatively charged nanoparticles.Conclusion: The ChS-CS nanoparticles fabricated in this study were

  8. Clinical efficacy and safety of glucosamine, chondroitin sulphate, their combination, celecoxib or placebo taken to treat osteoarthritis of the knee: 2-year results from GAIT.

    Science.gov (United States)

    Sawitzke, Allen D; Shi, Helen; Finco, Martha F; Dunlop, Dorothy D; Harris, Crystal L; Singer, Nora G; Bradley, John D; Silver, David; Jackson, Christopher G; Lane, Nancy E; Oddis, Chester V; Wolfe, Fred; Lisse, Jeffrey; Furst, Daniel E; Bingham, Clifton O; Reda, Domenic J; Moskowitz, Roland W; Williams, H James; Clegg, Daniel O

    2010-08-01

    Knee osteoarthritis (OA) is a major cause of pain and functional limitation in older adults, yet longer-term studies of medical treatment of OA are limited. To evaluate the efficacy and safety of glucosamine and chondroitin sulphate (CS), alone or in combination, as well as celecoxib and placebo on painful knee OA over 2 years. A 24-month, double-blind, placebo-controlled study, conducted at nine sites in the US ancillary to the Glucosamine/chondroitin Arthritis Intervention Trial, enrolled 662 patients with knee OA who satisfied radiographic criteria (Kellgren/Lawrence grade 2 or 3 changes and baseline joint space width of at least 2 mm). This subset continued to receive their randomised treatment: glucosamine 500 mg three times daily, CS 400 mg three times daily, the combination of glucosamine and CS, celecoxib 200 mg daily, or placebo over 24 months. The primary outcome was a 20% reduction in Western Ontario and McMaster University Osteoarthritis Index (WOMAC) pain over 24 months. Secondary outcomes included an Outcome Measures in Rheumatology/Osteoarthritis Research Society International response and change from baseline in WOMAC pain and function. Compared with placebo, the odds of achieving a 20% reduction in WOMAC pain were celecoxib: 1.21, glucosamine: 1.16, combination glucosamine/CS: 0.83 and CS alone: 0.69, and were not statistically significant. Over 2 years, no treatment achieved a clinically important difference in WOMAC pain or function as compared with placebo. However, glucosamine and celecoxib showed beneficial but not significant trends. Adverse reactions were similar among treatment groups and serious adverse events were rare for all treatments.

  9. Association between Human Plasma Chondroitin Sulfate Isomers and Carotid Atherosclerotic Plaques

    Directory of Open Access Journals (Sweden)

    Elisabetta Zinellu

    2012-01-01

    Full Text Available Several studies have evidenced variations in plasma glycosaminoglycans content in physiological and pathological conditions. In normal human plasma GAGs are present mainly as undersulfated chondroitin sulfate (CS. The aim of the present study was to evaluate possible correlations between plasma CS level/structure and the presence/typology of carotid atherosclerotic lesion. Plasma CS was purified from 46 control subjects and 47 patients undergoing carotid endarterectomy showing either a soft or a hard plaque. The concentration and structural characteristics of plasma CS were assessed by capillary electrophoresis of constituent unsaturated fluorophore-labeled disaccharides. Results showed that the concentration of total CS isomers was increased by 21.4% (P<0.01 in plasma of patients, due to a significant increase of undersulfated CS. Consequently, in patients the plasma CS charge density was significantly reduced with respect to that of controls. After sorting for plaque typology, we found that patients with soft plaques and those with hard ones differently contribute to the observed changes. In plasma from patients with soft plaques, the increase in CS content was not associated with modifications of its sulfation pattern. On the contrary, the presence of hard plaques was associated with CS sulfation pattern modifications in presence of quite normal total CS isomers levels. These results suggest that the plasma CS content and structure could be related to the presence and the typology of atherosclerotic plaque and could provide a useful diagnostic tool, as well as information on the molecular mechanisms responsible for plaque instability.

  10. Kinetics of corrosion inhibition of aluminum in acidic media by water-soluble natural polymeric chondroitin-4-sulfate as anionic polyelectrolyte inhibitor.

    Science.gov (United States)

    Hassan, Refat M; Ibrahim, Samia M; Takagi, Hideo D; Sayed, Suzan A

    2018-07-15

    Corrosion inhibition of aluminum (Al) in hydrochloric acid by anionic polyelectrolyte chondroitin-4-sulfate (CS) polysaccharide has been studied using both gasometrical and weight-loss techniques. The results drawn from these two techniques are comparable and exhibit negligible differences. The inhibition efficiency was found to increase with increasing the inhibitor concentration and decreased with increasing temperature. The inhibition action of CS on Al metal surface was found to obey both of Langmuir and Freundlich isotherms. The factors affecting the corrosion rates such as the concentration and geometrical structure of the inhibitor, concentration of the corrosive medium, and the temperature were examined. The kinetic parameters were evaluated and a suitable corrosion mechanism consistent with the results obtained is discussed. Copyright © 2018. Published by Elsevier Ltd.

  11. Facile analysis of contents and compositions of the chondroitin sulfate/dermatan sulfate hybrid chain in shark and ray tissues.

    Science.gov (United States)

    Takeda, Naoko; Horai, Sawako; Tamura, Jun-ichi

    2016-04-07

    The chondroitin sulfate (CS)/dermatan sulfate (DS) hybrid chain was extracted from specific tissues of several kinds of sharks and rays. The contents and sulfation patterns of the CS/DS hybrid chain were precisely analyzed by digestion with chondroitinases ABC and AC. All samples predominantly contained the A- and C-units. Furthermore, all samples characteristically contained the D-unit. Species-specific differences were observed in the contents of the CS/DS hybrid chain, which were the highest in Mako and Blue sharks and Sharpspine skates, but were lower in Hammerhead sharks. Marked differences were observed in the ratio of the C-unit/A-unit between sharks and rays. The contents of the CS/DS hybrid chain and the ratio of the C-unit/A-unit may be related to an oxidative stress-decreasing ability. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Extraction of Glycosaminoglycans Containing Glucosamine and Chondroitin Sulfate from Chicken Claw Cartilage

    Directory of Open Access Journals (Sweden)

    Tri Dewanti Widyaningsih

    2017-12-01

    Full Text Available Chicken cartilage (claw is a waste of chicken cuts which are widely available in Indonesia. Cartilage part of chicken claw becomes a potential source of chondroitin sulfate (CS and glucosamine (GS. This study aims to determine the most optimal extraction methods of CS and GS from cartilage of chicken claw. Various types of extraction methods used in this study are taken from the extraction by using boiling water (2 and 2.5 hours, acetic acid (7 and 17 hours, as well as proteolysis by papain (24 and 48 hours. Parameters observed include chemical characteristics of powdered cartilage of chicken claw as well as CS and GS levels in powdered cartilage of chicken claw extract. The results of this research show that the levels of CS and GS of chicken claw cartilage powder were 2.17% and 13%. Meanwhile, the highest GS level was obtained from the extraction with water treatment for 2.5 hours which was 8.1%. The treatment and duration of extraction will significantly affect the number of GS which was produced. The highest content of CS was obtained from the extraction with the enzyme treatment for 48 hours which was 2.47%. The best treatment is the extraction with water treatment for 2.5 hours which were the extracts with GS levels of 8.1% and 2.03% CS was selected through the analysis of multiple attribute.

  13. Development, characterization and biocompatibility of chondroitin sulfate/poly(vinyl alcohol)/bovine bone powder porous biocomposite.

    Science.gov (United States)

    da Silva, Gabriela T; Voss, Guilherme T; Kaplum, Vanessa; Nakamura, Celso V; Wilhelm, Ethel A; Luchese, Cristiane; Fajardo, André R

    2017-03-01

    Chondroitin sulfate (ChS), a sulfated glycosaminoglycan, poly(vinyl alcohol) (PVA) and bovine bone powder (BBP) were blended to form a novel eco-friendly biocomposite through cyclic freeze-thawing under mild conditions. The systematic investigation reveals that the content of BBP has a remarkable effect on the pore size, porosity, mechanical and liquid uptake properties and biodegradability. At 10wt.% BBP the biocomposite exhibited enhanced mechanical properties and biodegradability rate as compared to the pristine sample. Further, different properties of the biocomposite can be tailored according to the content of BBP. In vitro assays showed that ChS/PVA-BBP does not exert cytotoxicity against healthy cells. In vivo and ex vivo experiments revealed that ChS/PVA-BBP biocomposites are biocompatibility materials without exert pro-inflammatory responses. The biocomposite was completely biodegraded and bioresorbed after 15days of treatment. Taken together, BBP is a low-cost source of hydroxyapatite and collagen, which are insurance. All these results suggest that the biocomposite designed in this study is a promising biomaterial for potential skin tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The NTS-DBL2X region of VAR2CSA Induces cross-reactive antibodies that inhibit adhesion of several Plasmodium falciparum isolates to chondroitin sulfate A

    DEFF Research Database (Denmark)

    Bigey, Pascal; Gnidehou, Sédami; Doritchamou, Justin

    2011-01-01

    Background. Binding to chondroitin sulfate A by VAR2CSA, a parasite protein expressed on infected erythrocytes, allows placental sequestration of Plasmodium falciparum-infected erythrocytes. This leads to severe consequences such as maternal anemia, stillbirths, and intrauterine growth retardation....... The latter has been clearly associated to increased morbidity and mortality of the infants. Acquired anti-VAR2CSA antibodies have been associated with improved pregnancy outcomes, suggesting a vaccine could prevent the syndrome. However, identifying functionally important regions in the large VAR2CSA protein...

  15. Chondroitin sulfate-capped super-paramagnetic iron oxide nanoparticles as potential carriers of doxorubicin hydrochloride.

    Science.gov (United States)

    Mallick, Neha; Anwar, Mohammed; Asfer, Mohammed; Mehdi, Syed Hassan; Rizvi, Mohammed Moshahid Alam; Panda, Amulya Kumar; Talegaonkar, Sushama; Ahmad, Farhan Jalees

    2016-10-20

    Chondroitin-4-sulfate (CS), a glycosaminoglycan, was used to prepare CS-capped super-paramagnetic iron oxide nanoparticles, which were further employed for loading a water-soluble chemotherapeutic agent (doxorubicin hydrochloride, DOX). CS-capped SPIONs have potential biomedical application in cancer targeting. The optimized formulation had a hydrodynamic size of 91.2±0.8nm (PDI; 0.228±0.004) and zeta potential of -49.1±1.66mV. DOX was loaded onto the formulation up to 2% (w/w) by physical interaction with CS. TEM showed nano-sized particles having a core-shell structure. XRD confirmed crystal phase of iron oxide. FT-IR conceived the interaction of iron oxide with CS as bidentate chelation and also confirmed DOX loading. Vibration sample magnetometry confirmed super-paramagnetic nature of nanoparticles, with saturation magnetization of 0.238emug(-1). In vitro release profile at pH 7.4 showed that 96.67% of DOX was released within 24h (first order kinetics). MTT assay in MCF7 cells showed significantly higher (p<0.0001) cytotoxicity for DOX in SPIONs than DOX solution (IC50 values 6.294±0.4169 and 11.316±0.1102μgmL(-1), respectively). Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. LC-MS n Analysis of Isomeric Chondroitin Sulfate Oligosaccharides Using a Chemical Derivatization Strategy

    Science.gov (United States)

    Huang, Rongrong; Pomin, Vitor H.; Sharp, Joshua S.

    2011-09-01

    Improved methods for structural analyses of glycosaminoglycans (GAGs) are required to understand their functional roles in various biological processes. Major challenges in structural characterization of complex GAG oligosaccharides using liquid chromatography-mass spectrometry (LC-MS) include the accurate determination of the patterns of sulfation due to gas-phase losses of the sulfate groups upon collisional activation and inefficient on-line separation of positional sulfation isomers prior to MS/MS analyses. Here, a sequential chemical derivatization procedure including permethylation, desulfation, and acetylation was demonstrated to enable both on-line LC separation of isomeric mixtures of chondroitin sulfate (CS) oligosaccharides and accurate determination of sites of sulfation by MS n . The derivatized oligosaccharides have sulfate groups replaced with acetyl groups, which are sufficiently stable to survive MS n fragmentation and reflect the original sulfation patterns. A standard reversed-phase LC-MS system with a capillary C18 column was used for separation, and MS n experiments using collision-induced dissociation (CID) were performed. Our results indicate that the combination of this derivatization strategy and MS n methodology enables accurate identification of the sulfation isomers of CS hexasaccharides with either saturated or unsaturated nonreducing ends. Moreover, derivatized CS hexasaccharide isomer mixtures become separable by LC-MS method due to different positions of acetyl modifications.

  17. Hydrogels based on chemically modified poly(vinyl alcohol (PVA-GMA and PVA-GMA/chondroitin sulfate: Preparation and characterization

    Directory of Open Access Journals (Sweden)

    E. C. Muniz

    2012-05-01

    Full Text Available This work reports the preparation of hydrogels based on PVA-GMA, PVA-GMA is poly(vinyl alcohol (PVA functionalized with vinyl groups from glycidyl methacrylate (GMA, and on PVA-GMA with different content of chondroitin sulfate (CS. The degrees of swelling of PVA-GMA and PVA-GMA/CS hydrogels were evaluated in distilled water and the swelling kinetics was performed in simulated gastric and intestinal fluids (SGF and SIF. PVA-GMA and PVAGMA/CS hydrogels demonstrated to be resistant on SGF and SIF fluids. The elastic modulus, E, of swollen-hydrogels were determined through compressive tests and, according to the obtained results, the hydrogels presented good mechanical properties. At last, the presence of CS enhances the hydrogel cell compatibility as gathered by cytotoxicity assays. It was concluded that the hydrogels prepared through this work presented characteristics that allow them to be used as biomaterial, as a carrier in drug delivery system or to act as scaffolds in tissue engineering as well.

  18. Chondroitin sulfate iron colloid-enhanced MR imaging in patients with hepatocellular carcinoma. Comparison with CT during arterial portography

    Energy Technology Data Exchange (ETDEWEB)

    Kamba, Masayuki [Dept. of Radiology, Tottori Univ., Yonago (Japan); Suto, Y. [Dept. of Radiology, Tottori Univ., Yonago (Japan); Kato, T. [Dept. of Radiology, Tottori Univ., Yonago (Japan)

    1994-11-01

    Chondroitin sulfate iron colloid (CSIC) was used as an MR contrast agent for the detection of hepatocellular carcinoma (HCC). The findings of 25 surgically confirmed HCCs in 19 patients were retrospectively analyzed. T1-, T2- and proton density-weighted spin echo MR images were obtained before and after i.v. injection of 23.6 {mu}M Fe/kg of CSIC. Unenhanced and CSIC-enhanced MR images and images obtained by CT during arterial protography (CT-AP) were correlated with surgical pathology findings. The sensitivities of CSIC-enhanced and unenhanced MR imaging, and CT-AP were 92%, 80%, and 88%, respectively. No significant differences were noted. Portal flow abnormalities demonstrated by CT-AP did not affect the detection of HCC by CSIC-enhanced MR imaging. CSIC-enhancement at MR imaging was a disadvantage in the detection of lesions less than 1 cm in diameter. CSIC-enhanced MR imaging is a supplemental method for the detection of HCC. (orig.).

  19. 99mTc-labeled chondroitin sulfate-uptake by chondrocytes and cartilage. Potential agent for osteoarthritis imaging?

    International Nuclear Information System (INIS)

    Sobal, G.; Sinzinger, H.; Menzel, J.

    2002-01-01

    Aim: Chondroitin sulfate (CS) is an endogenous component of cartilage proteoglycan which could monitor osteoarthritic cartilage degradation after radiolabeling. This substance is used in the treatment of human osteoarthritis as a slow acting symptomatic drug (CONDROSULF; Sanova Pharma, Vienna; Ibsa, Switzerland). Material and Methods: Radiolabeling of CS was performed using 99m TcO 4 -/stannous chloride in 0.50 M sodium acetate buffer at pH 5.0. The quality control of the tracer was performed using ITLC-SG chromatography and 0.2 M saline in 10% ethanol as solvent to detect colloid content. Aluminium oxide IB-F TLC-sheets and ethanol as solvent were used to estimate free pertechnetate. For uptake studies cultured human chondrocytes and age-matched cartilage were used. Uptake of the tracer in chondrocytes was studied in monolayer and in suspension cultures at 37 0 C. Uptake was monitored for a total of 120-180 minutes, samples being drawn every 10 minutes. Because the commercially available drug Condrosulf contains calcium stearate as additive to improve the resorption of the drug, we investigated also the uptake with and without additive. Results: The tracer was stable over 6h period after labeling (95% of the radiochemical purity). In plasma the stability was lower amounting to 75%. Viability of chondrocytes after incubation with either CS-preparation was found by trypan blue exclusion to be above 95 %. Uptake of the tracer performed in monolayer ± additives was low and amounted to 0.5%±0.05%, n=6. The cells were saturated already after an incubation interval of 10 minutes. In suspension cultures a maximal uptake of 1.0%±0.1%, n=6 and 5.9%±0.65%, n=6 was found, without and with additives, respectively, the saturation was achieved after 100 min. Thus, not only the resorption of the drug is enhanced by Ca-stearate, but also uptake increases in presence of this additive. Using human rib cartilage the uptake of the tracer was much higher amounting to 4.9%±2.3%, n

  20. In vivo gene transfer using pDNA/chitosan/chondroitin sulfate ternary complexes: influence of chondroitin sulfate on the stability of freeze-dried complexes and transgene expression in vivo.

    Science.gov (United States)

    Hagiwara, Kenji; Kishimoto, Satoko; Ishihara, Masayuki; Koyama, Yoshiyuki; Mazda, Osam; Sato, Toshinori

    2013-02-01

    Chitosan has been investigated as a promising nonviral vector. However, several problems still remain, such as a relatively low transfection efficiency and instability under physiological conditions. We previously demonstrated that a chondroitin sulfate (CS) coating enhanced the transfection efficiency and physicochemical stability of plasmid DNA (pDNA)/chitosan complexes in vitro. In the present study, the effects of coating pDNA/chitosan complexes with CS on the stability in freeze-dry rehydration processes and gene expression in vivo were investigated. Freeze-drying storage at -20 °C, 4 °C, or room temperature, freezing storage at -20 °C, or liquid storage at 4 °C or room temperature, were examined for preservation conditions of pDNA/chitosan/CS ternary complexes by a gel retardation assay, measurements of sizes and zeta potentials, and a luciferase assay. Moreover, to determine the transfection efficiency of the ternary complexes in vivo, suicide gene therapy was carried out in Huh-7-implanted mice using herpes simplex virus thymidine kinase coding pDNA and ganciclovir. The freeze-dried pDNA/chitosan/CS ternary complexes showed sufficient cell transfection ability in vitro and in vivo. In addition, ternary complexes were associated with a significant suppression of tumor growth and a histopathologically high anti-tumor effect by intratumoral injection to tumor-bearing mice. The CS coating enhanced the preservation stability of the pDNA/chitosan complexes after freeze-drying-rehydration and their transgene expression in vivo. Copyright © 2013 John Wiley & Sons, Ltd.

  1. A characteristic chondroitin sulfate trisaccharide unit with a sulfated fucose branch exhibits neurite outgrowth-promoting activity: Novel biological roles of fucosylated chondroitin sulfates isolated from the sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Shida, Miharu; Mikami, Tadahisa; Tamura, Jun-Ichi; Kitagawa, Hiroshi

    2017-06-03

    Chondroitin sulfate (CS) is a class of sulfated glycosaminoglycan (GAG) chains that consist of repeating disaccharide unit composed of glucuronic acid (GlcA) and N-acetylgalactosamine (GalNAc). CS chains are found throughout the pericellular and extracellular spaces and contribute to the formation of functional microenvironments for numerous biological events. However, their structure-function relations remain to be fully characterized. Here, a fucosylated CS (FCS) was isolated from the body wall of the sea cucumber Apostichopus japonicus. Its promotional effects on neurite outgrowth were assessed by using isolated polysaccharides and the chemically synthesized FCS trisaccharide β-D-GalNAc(4,6-O-disulfate) (1-4)[α-l-fucose (2,4-O-disulfate) (1-3)]-β-D-GlcA. FCS polysaccharides contained the E-type disaccharide unit GlcA-GalNAc(4,6-O-disulfate) as a CS major backbone structure and carried distinct sulfated fucose branches. Despite their relatively lower abundance of E unit, FCS polysaccharides exhibited neurite outgrowth-promoting activity comparable to squid cartilage-derived CS-E polysaccharides, which are characterized by their predominant E units, suggesting potential roles of the fucose branch in neurite outgrowth. Indeed, the chemically synthesized FCS trisaccharide was as effective as CS-E tetrasaccharide in stimulating neurite elongation in vitro. In conclusion, FCS trisaccharide units with 2,4-O-disulfated fucose branches may provide new insights into understanding the structure-function relations of CS chains. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Green synthesis of chondroitin sulfate-capped silver nanoparticles: characterization and surface modification.

    Science.gov (United States)

    Cheng, Kuang-ming; Hung, Yao-wen; Chen, Cheng-cheung; Liu, Cheng-che; Young, Jenn-jong

    2014-09-22

    A one-step route for the green synthesis of highly stable and nanosized silver metal particles with narrow distribution is reported. In this environmentally friendly synthetic method, silver nitrate was used as silver precursor and biocompatible chondroitin sulfate (ChS) was used as both reducing agent and stabilizing agent. The reaction was carried out in a stirring aqueous medium at the room temperature without any assisted by microwave, autoclave, laser irradiation, γ-ray irradiation or UV irradiation. The transparent colorless solution was converted to the characteristics light red then deep red-brown color as the reaction proceeds, indicating the formation of silver nanoparticles (Ag NPs). The Ag NPs were characterized by UV-visible spectroscopy (UV-vis), photon correlation spectroscopy, laser Doppler anemometry, transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FT-IR). The results demonstrated that the obtained metallic nanoparticles were Ag NPs capped with ChS. In this report, dynamic light scattering (DLS) was used as a routinely analytical tool for measuring size and distribution in a liquid environment. The effects of the reaction time, reaction temperature, concentration and the weight ratio of ChS/Ag+ on the particle size and zeta potential were investigated. The TEM image clearly shows the morphology of the well-dispersed ChS-capped Ag NPs are spherical in shape, and the average size (propyl] chitosan chloride (HTCC) were prepared by an ionic gelation method and the surface charge of Ag NPs was switched from negative to positive. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Nanostructured 3D constructs based on chitosan and chondroitin sulphate multilayers for cartilage tissue engineering.

    Directory of Open Access Journals (Sweden)

    Joana M Silva

    Full Text Available Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT and chondroitin sulphate (CS on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH. The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs.

  4. Nanostructured 3D constructs based on chitosan and chondroitin sulphate multilayers for cartilage tissue engineering.

    Science.gov (United States)

    Silva, Joana M; Georgi, Nicole; Costa, Rui; Sher, Praveen; Reis, Rui L; Van Blitterswijk, Clemens A; Karperien, Marcel; Mano, João F

    2013-01-01

    Nanostructured three-dimensional constructs combining layer-by-layer technology (LbL) and template leaching were processed and evaluated as possible support structures for cartilage tissue engineering. Multilayered constructs were formed by depositing the polyelectrolytes chitosan (CHT) and chondroitin sulphate (CS) on either bidimensional glass surfaces or 3D packet of paraffin spheres. 2D CHT/CS multi-layered constructs proved to support the attachment and proliferation of bovine chondrocytes (BCH). The technology was transposed to 3D level and CHT/CS multi-layered hierarchical scaffolds were retrieved after paraffin leaching. The obtained nanostructured 3D constructs had a high porosity and water uptake capacity of about 300%. Dynamical mechanical analysis (DMA) showed the viscoelastic nature of the scaffolds. Cellular tests were performed with the culture of BCH and multipotent bone marrow derived stromal cells (hMSCs) up to 21 days in chondrogenic differentiation media. Together with scanning electronic microscopy analysis, viability tests and DNA quantification, our results clearly showed that cells attached, proliferated and were metabolically active over the entire scaffold. Cartilaginous extracellular matrix (ECM) formation was further assessed and results showed that GAG secretion occurred indicating the maintenance of the chondrogenic phenotype and the chondrogenic differentiation of hMSCs.

  5. Molecular size is important for the safety and selective inhibition of intrinsic factor Xase for fucosylated chondroitin sulfate.

    Science.gov (United States)

    Yan, Lufeng; Li, Junhui; Wang, Danli; Ding, Tian; Hu, Yaqin; Ye, Xingqian; Linhardt, Robert J; Chen, Shiguo

    2017-12-15

    Fucosylated chondroitin sulfate from sea cucumber Isostichopus badionotus (FCS-Ib) showed potent anticoagulant activities without selectivity. The present study focused on developing safe FCS-Ib oligomers showing selective inhibition of intrinsic factor Xase (anti-FXase) prepared through partial N-deacetylation-deaminative cleavage. The N-deacetylation degree was regulated by reaction time, controlling the resulting oligomer distribution. Structure analysis confirmed the selectivity of degradation, and 12 high purity fractions with trisaccharide-repeating units were separated. In vitro anticoagulant assays indicated a decrease in molecular weight (Mw) dramatically reduced activated partial thromboplastin time (APTT), thrombin time (TT), AT-dependent anti-FIIa and anti-FXa activities, while the oligomers retained potent anti-FXase activity until they fell below 3kDa. Meanwhile, human FXII activation and platelet aggregation were markedly reduced with decreasing Mw and were moderate when under 12.0kDa. Thus, fragments of 3-12.0kDa should be safe and effective as selective inhibitors of intrinsic tenase complex for application as clinical anticoagulants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Silk fibroin/gelatin-chondroitin sulfate-hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Sawatjui, Nopporn; Damrongrungruang, Teerasak; Leeanansaksiri, Wilairat; Jearanaikoon, Patcharee; Hongeng, Suradej; Limpaiboon, Temduang

    2015-01-01

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin-chondroitin sulfate-hyaluronic acid (SF-GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF-GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF-GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF-GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Self-assembly of the hydrogel polymer chain consisting of chitosan and chondroitin sulphate in the presence of theophylline

    International Nuclear Information System (INIS)

    Lopes, Lais C.; Piai, Juliana F.; Fajardo, Andre R.; Rubira, Adley F.; Muniz, Edvani C.

    2009-01-01

    In this work, polyelectronic complex (PEC) consisting of two polysaccharides were developed. One is chitosan (QT), cationic polymer, produced by the chitin deacetylation and the other is chondroitin sulphate (CS), anionic polymer, extracted from bovine or porcine aorta. The PECs were prepared in the presence of theophylline (TEO) for evaluating the influence of this drug in the polymer chains reorganization, as well as, studying the mechanical properties and release of SC and TEO in aqueous solutions on different pH conditions. By the obtained results, it was observed that the 84QT/15SC/TEO (% in weight) hydrogel is pH responsive because the CS releasing is more effective at pH 8, while the release of the TEO is higher at pH 2. The hydrogel showed mechanical properties more resistant to pH 2, 8 and 10 and this was attributed to interactions between the polymer chains. Finally, the X-rays profile showed the presence of peaks associated to reorganization of the chains in the hydrogel is at times larger than the hydrogel in the absence of solute. (author)

  8. Microsphere-Based Scaffolds Carrying Opposing Gradients of Chondroitin Sulfate and Tricalcium Phosphate

    Directory of Open Access Journals (Sweden)

    Vineet eGupta

    2015-07-01

    Full Text Available Extracellular matrix (ECM components such as chondroitin sulfate (CS and tricalcium phosphate (TCP serve as raw materials and thus spatial patterning of these raw materials may be leveraged to mimic the smooth transition of physical, chemical and mechanical properties at the bone-cartilage interface. We hypothesized that encapsulation of opposing gradients of these raw materials in high molecular weight poly(D,L-lactic-co-glycolic acid (PLGA microsphere-based scaffolds would enhance differentiation of rat bone marrow stromal cells (rBMSCs. The raw material encapsulation altered the microstructure of the microspheres and also influenced the cellular morphology that depended on the type of material encapsulated. Moreover, the mechanical properties of the raw material encapsulating microsphere-based scaffolds initially relied on the composition of the scaffolds and later on were primarily governed by the degradation of the polymer phase and newly synthesized extracellular matrix by the seeded cells. Furthermore, raw materials had a mitogenic effect on the seeded cells and led to increased glycosaminoglycan (GAG, collagen, and calcium content. Interestingly, the initial effects of raw material encapsulation on a per-cell basis might have been overshadowed by medium-regulated environment that appeared to favor osteogenesis. However, it is to be noted that in vivo, differentiation of the cells would be governed by the surrounding native environment. Thus, the results of this study demonstrated the potential of the raw materials in facilitating neo-tissue synthesis in microsphere-based scaffolds and perhaps in combination with bioactive signals, these raw materials may be able to achieve intricate cell differentiation profiles required for regenerating the osteochondral interface.

  9. Structure of the DBL3x domain of pregnancy-associated malaria protein VAR2CSA complexed with chondroitin sulfate A

    Energy Technology Data Exchange (ETDEWEB)

    Singh, K.; Gittis, A.G.; Nguyen, P.; Gowda, D.C.; Miller, L.H.; Garboczi, D.N. (NIH); (Penn)

    2008-09-19

    Plasmodium falciparum-infected erythrocytes bind to chondroitin sulfate A (CSA) in the placenta via the VAR2CSA protein, a member of the P. falciparum erythrocyte membrane protein-1 family, leading to life-threatening malaria in pregnant women with severe effects on their fetuses and newborns. Here we describe the structure of the CSA binding DBL3x domain, a Duffy binding-like (DBL) domain of VAR2CSA. By forming a complex of DBL3x with CSA oligosaccharides and determining its structure, we have identified the CSA binding site to be a cluster of conserved positively charged residues on subdomain 2 and subdomain 3. Mutation or chemical modification of lysine residues at the site markedly diminished CSA binding to DBL3x. The location of the CSA binding site is an important step forward in the molecular understanding of pregnancy-associated malaria and offers a new target for vaccine development.

  10. Avaliação do efeito da glicosamina e condroitina na consolidação de fratura: estudo experimental em ratos Evaluating the effects of glucosamine and chondroitin in bone healing: experimental study in rats

    Directory of Open Access Journals (Sweden)

    Roberto Guarniero

    2007-07-01

    Full Text Available OBJETIVO: Avaliar o efeito da administração da condroitina e da glicosamina na consolidação de fratura em modelo animal. MÉTODOS: Este estudo experimental envolveu a utilização de 40 ratos machos adultos da raça Lewis. Os animais foram randomicamente divididos em quatro grupos de 10 animais cada, assim constituídos: grupo I, com administração de glicosamina; grupo II, com administração de condroitina; grupo III, administração da associação de glicosamina e condroitina; grupo IV, administração de água destilada (grupo controle. Realizou-se uma fratura fechada médio-diafisária da tíbia e fíbula direitas em cada animal, seguida da administração diária das drogas de acordo com o grupo, durante 30 dias. Após esse período, os animais foram sacrificados para estudo dos calos ósseos formados. Os critérios de avaliação foram a avaliação clínica da consolidação óssea, mensuração da densidade mineral do calo ósseo utilizando-se a densitometria óssea e cálculo da área do calo formado por meio de planigrafia. Os dados coletados foram avaliados com a técnica da análise de variância (ANOVA para verificar diferenças entre as médias nos quatro grupos estudados e com o teste de Tukey para comparação das médias duas a duas. Adotou-se nível de significância de 5% (alfa = 0,05. RESULTADOS: A utilização da condroitina e da glicosamina, tanto de maneira isolada quanto associadas, não resultou em aumento da área do calo ósseo ou da sua densidade mineral óssea, e não havendo melhora clínica da consolidação óssea. CONCLUSÃO: A administração de condroitina e glicosamina, neste estudo, não influenciou - quer de maneira positiva ou negativa - a consolidação de fraturas experimentais em ratos.OBJECTIVE: To evaluate the effects of administering chondroitin and glucosamine for bone healing in an animal model. METHODS: This experimental study involved the use of 50 male adult Lewis rats. The animals were

  11. Fabrication of Chitin/Poly(butylene succinate/Chondroitin Sulfate Nanoparticles Ternary Composite Hydrogel Scaffold for Skin Tissue Engineering

    Directory of Open Access Journals (Sweden)

    S. Deepthi

    2014-12-01

    Full Text Available Skin loss is one of the oldest and still not totally resolved problems in the medical field. Since spontaneous healing of the dermal defects would not occur, the regeneration of full thickness of skin requires skin substitutes. Tissue engineering constructs would provide a three dimensional matrix for the reconstruction of skin tissue and the repair of damage. The aim of the present work is to develop a chitin based scaffold, by blending it with poly(butylene succinate (PBS, an aliphatic, biodegradable and biocompatible synthetic polymer with excellent mechanical properties. The presence of chondroitin sulfate nanoparticles (CSnp in the scaffold would favor cell adhesion. A chitin/PBS/CSnp composite hydrogel scaffold was developed and characterized by SEM (Scanning Electron Microscope, FTIR (Fourier Transform Infrared Spectroscopy, and swelling ratio of scaffolds were analyzed. The scaffolds were evaluated for the suitability for skin tissue engineering application by cytotoxicity, cell attachment, and cell proliferation studies using human dermal fibroblasts (HDF. The cytotoxicity and cell proliferation studies using HDF confirm the suitability of the scaffold for skin regeneration. In short, these results show promising applicability of the developed chitin/PBS/CSnps ternary composite hydrogel scaffolds for skin tissue regeneration.

  12. MDA-MB-231 breast cancer cell viability, motility and matrix adhesion are regulated by a complex interplay of heparan sulfate, chondroitin-/dermatan sulfate and hyaluronan biosynthesis.

    Science.gov (United States)

    Viola, Manuela; Brüggemann, Kathrin; Karousou, Evgenia; Caon, Ilaria; Caravà, Elena; Vigetti, Davide; Greve, Burkhard; Stock, Christian; De Luca, Giancarlo; Passi, Alberto; Götte, Martin

    2017-06-01

    Proteoglycans and glycosaminoglycans modulate numerous cellular processes relevant to tumour progression, including cell proliferation, cell-matrix interactions, cell motility and invasive growth. Among the glycosaminoglycans with a well-documented role in tumour progression are heparan sulphate, chondroitin/dermatan sulphate and hyaluronic acid/hyaluronan. While the mode of biosynthesis differs for sulphated glycosaminoglycans, which are synthesised in the ER and Golgi compartments, and hyaluronan, which is synthesized at the plasma membrane, these polysaccharides partially compete for common substrates. In this study, we employed a siRNA knockdown approach for heparan sulphate (EXT1) and heparan/chondroitin/dermatan sulphate-biosynthetic enzymes (β4GalT7) in the aggressive human breast cancer cell line MDA-MB-231 to study the impact on cell behaviour and hyaluronan biosynthesis. Knockdown of β4GalT7 expression resulted in a decrease in cell viability, motility and adhesion to fibronectin, while these parameters were unchanged in EXT1-silenced cells. Importantly, these changes were associated with a decreased expression of syndecan-1, decreased signalling response to HGF and an increase in the synthesis of hyaluronan, due to an upregulation of the hyaluronan synthases HAS2 and HAS3. Interestingly, EXT1-depleted cells showed a downregulation of the UDP-sugar transporter SLC35D1, whereas SLC35D2 was downregulated in β4GalT7-depleted cells, indicating an intricate regulatory network that connects all glycosaminoglycans synthesis. The results of our in vitro study suggest that a modulation of breast cancer cell behaviour via interference with heparan sulphate biosynthesis may result in a compensatory upregulation of hyaluronan biosynthesis. These findings have important implications for the development of glycosaminoglycan-targeted therapeutic approaches for malignant diseases.

  13. Heparan Sulfate and Chondroitin Sulfate Glycosaminoglycans Are Targeted by Bleomycin in Cancer Cells.

    Science.gov (United States)

    Li, Xiulian; Lan, Ying; He, Yanli; Liu, Yong; Luo, Heng; Yu, Haibo; Song, Ni; Ren, Sumei; Liu, Tianwei; Hao, Cui; Guo, Yunliang; Zhang, Lijuan

    2017-01-01

    Bleomycin is a clinically used anti-cancer drug that produces DNA breaks once inside of cells. However, bleomycin is a positively charged molecule and cannot get inside of cells by free diffusion. We previously reported that the cell surface negatively charged glycosaminoglycans (GAGs) may be involved in the cellular uptake of bleomycin. We also observed that a class of positively charged small molecules has Golgi localization once inside of the cells. We therefore hypothesized that bleomycin might perturb Golgi-operated GAG biosynthesis. We used stable isotope labeling coupled with LC/MS analysis of GAG disaccharides simultaneously from bleomycin-treated and non-treated cancer cells. To further understand the cytotoxicity of bleomycin and its relationship to GAGs, we used sodium chlorate to inhibit GAG sulfation and commercially available GAGs to compete for cell surface GAG/bleomycin interactions in seven cell lines including CHO745 defective in both heparan sulfate and chondroitin sulfate biosynthesis. we discovered that heparan sulfate GAG was significantly undersulfated and the quantity and disaccharide compositions of GAGs were changed in bleomycin-treated cells in a concentration- and time-dependent manner. We revealed that bleomycin-induced cytotoxicity was directly related to cell surface GAGs. GAGs were targeted by bleomycin both at cell surface and at Golgi. Thus, GAGs might be the biological relevant molecules that might be related to the bleomycin-induced fibrosis in certain cancer patients, a severe side effect with largely unknown molecular mechanism. © 2017 The Author(s). Published by S. Karger AG, Basel.

  14. Electrospun Gelatin–Chondroitin Sulfate Scaffolds Loaded with Platelet Lysate Promote Immature Cardiomyocyte Proliferation

    Directory of Open Access Journals (Sweden)

    Francesca Saporito

    2018-02-01

    Full Text Available The aim of the present work was the development of heart patches based on gelatin (G and chondroitin sulfate (CS to be used as implants to improve heart recovery after corrective surgery for critical congenital heart defects (CHD. Patches were prepared by means of electrospinning to obtain nanofibrous scaffolds and they were loaded with platelet lysate (PL as a source of growth factors to further enhance the repair process. Scaffolds were characterized for morphology and mechanical properties and for the capability to support in vitro adhesion and proliferation of dermal fibroblasts in order to assess the system’s general biocompatibility. Adhesion and proliferation of endothelial cells and cardiac cells (cardiomyocytes and cardiac fibroblasts from rat fetuses onto PL-loaded patches was evaluated. Patches presented good elasticity and high stiffness suitable for in vivo adaptation to heart contraction. CS improved adhesion and proliferation of dermal fibroblasts, as proof of their biocompatibility. Moreover, they enhanced the adhesion and proliferation of endothelial cells, a crucial mediator of cardiac repair. Cell adhesion and proliferation could be related to elastic properties, which could favor cell motility. The presence of platelet lysate and CS was crucial for the adhesion and proliferation of cardiac cells and, in particular, of cardiomyocytes: G/CS scaffold embedded with PL appeared to selectively promote proliferation in cardiomyocytes but not cardiac fibroblasts. In conclusion, G/CS scaffold seems to be a promising system to assist myocardial-repair processes in young patient, preserving cardiomyocyte viability and preventing cardiac fibroblast proliferation, likely reducing subsequent uncontrolled collagen deposition by fibroblasts following repair.

  15. Improved anticoagulant effect of fucosylated chondroitin sulfate orally administered as gastro-resistant tablets.

    Science.gov (United States)

    Fonseca, Roberto J C; Sucupira, Isabela D; Oliveira, Stephan Nicollas M C G; Santos, Gustavo R C; Mourão, Paulo A S

    2017-04-03

    Fucosylated chondroitin sulfate (FucCS) is a potent anticoagulant polysaccharide extracted from sea cucumber. Its anticoagulant activity is attributed to the presence of unique branches of sulfated fucose. Although this glycosaminoglycan exerts an antithrombotic effect following oral administration, high doses are necessary to achieve the maximum effect. The diminished activity of FucCS following oral administration is likely due to its degradation in the gastrointestinal tract and its limited ability to cross the intestinal cell membranes. The latter aspect is particularly difficult to overcome. However, gastro-resistant tablet formulation may help limit the degradation of FucCS in the gastrointestinal tract. In the present work, we found that the oral administration of FucCS as gastro-resistant tablets produces a more potent and prolonged anticoagulant effect compared with its administration as an aqueous solution, with no significant changes in the bleeding tendency or arterial blood pressure. Experiments using animal models of arterial thrombosis initiated by endothelial injury demonstrated that FucCS delivered as gastro-protective tablets produced a potent antithrombotic effect, whereas its aqueous solution was ineffective. However, there was no significant difference between the effects of FucCS delivered as gastro-resistant tablets or as aqueous solution in a venous thrombosis model, likely due to the high dose of thromboplastin used. New oral anticoagulants tested in these experimental models for comparison showed significantly increased bleeding tendencies. Our study provides a framework for developing effective oral anticoagulants based on sulfated polysaccharides from marine organisms. The present results suggest that FucCS is a promising oral anticoagulant.

  16. Preparation and optimization of self-assembled chondroitin sulfate-nisin nanogel based on quality by design concept.

    Science.gov (United States)

    Mohtashamian, Shahab; Boddohi, Soheil; Hosseinkhani, Saman

    2018-02-01

    Self-assembled nanogel was prepared by electrostatic complexation of two oppositely charged biological macromolecules, which were cationic nisin and anionic chondroitin sulfate (ChS). The critical factors affected the physical properties of ChS-nisin nanogel was screened and optimized by Plackett-Burman design (PB) and central composite design (CCD). The independent factors selected were: concentration ratio of nisin to ChS, injection rate of nisin solution, buffer solvent type, magnetic stirring rate, pH of initial buffer solution, centrifuge-cooling temperature, and centrifuge rotation speed. Among these factors, concentration ratio changed the entrapment efficiency and loading capacity significantly. In addition, the hydrodynamic diameter and loading capacity were significantly influenced by injection rate and pH of initial buffer solution. The optimized nanogel structure was obtained by concentration ratio of 6.4mg/mL nisin to 1mg/mL ChS, pH of buffer solution at 4.6, and nisin solution injection rate of 0.2mL/min. The observed values of dependent responses were close to predicted values confirmed by model from response surface methodology. The results obviously showed that quality by design concept (QbD) could be effectively applied to optimize the developed ChS-nisin nanogel. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Bonding and fusion of meniscus fibrocartilage using a novel chondroitin sulfate bone marrow tissue adhesive.

    Science.gov (United States)

    Simson, Jacob A; Strehin, Iossif A; Allen, Brian W; Elisseeff, Jennifer H

    2013-08-01

    The weak intrinsic meniscus healing response and technical challenges associated with meniscus repair contribute to a high rate of repair failures and meniscectomies. Given this limited healing response, the development of biologically active adjuncts to meniscal repair may hold the key to improving meniscal repair success rates. This study demonstrates the development of a bone marrow (BM) adhesive that binds, stabilizes, and stimulates fusion at the interface of meniscus tissues. Hydrogels containing several chondroitin sulfate (CS) adhesive levels (30, 50, and 70 mg/mL) and BM levels (30%, 50%, and 70%) were formed to investigate the effects of these components on hydrogel mechanics, bovine meniscal fibrochondrocyte viability, proliferation, matrix production, and migration ability in vitro. The BM content positively and significantly affected fibrochondrocyte viability, proliferation, and migration, while the CS content positively and significantly affected adhesive strength (ranged from 60±17 kPa to 335±88 kPa) and matrix production. Selected material formulations were translated to a subcutaneous model of meniscal fusion using adhered bovine meniscus explants implanted in athymic rats and evaluated over a 3-month time course. Fusion of adhered meniscus occurred in only the material containing the highest BM content. The technology can serve to mechanically stabilize the tissue repair interface and stimulate tissue regeneration across the injury site.

  18. Effect of chondroitin sulfate proteoglycans on neuronal cell adhesion, spreading and neurite growth in culture

    Directory of Open Access Journals (Sweden)

    Jingyu Jin

    2018-01-01

    Full Text Available As one major component of extracellular matrix (ECM in the central nervous system, chondroitin sulfate proteoglycans (CSPGs have long been known as inhibitors enriched in the glial scar that prevent axon regeneration after injury. Although many studies have shown that CSPGs inhibited neurite outgrowth in vitro using different types of neurons, the mechanism by which CSPGs inhibit axonal growth remains poorly understood. Using cerebellar granule neuron (CGN culture, in this study, we evaluated the effects of different concentrations of both immobilized and soluble CSPGs on neuronal growth, including cell adhesion, spreading and neurite growth. Neurite length decreased while CSPGs concentration arised, meanwhile, a decrease in cell density accompanied by an increase in cell aggregates formation was observed. Soluble CSPGs also showed an inhibition on neurite outgrowth, but it required a higher concentration to induce cell aggregates formation than coated CSPGs. We also found that growth cone size was significantly reduced on CSPGs and neuronal cell spreading was restrained by CSPGs, attributing to an inhibition on lamellipodial extension. The effect of CSPGs on neuron adhesion was further evidenced by interference reflection microscopy (IRM which directly demonstrated that both CGNs and cerebral cortical neurons were more loosely adherent to a CSPG substrate. These data demonstrate that CSPGs have an effect on cell adhesion and spreading in addition to neurite outgrowth.

  19. Crystallization of calcium oxalate monohydrate at dipalmitoylphosphatidylcholine monolayers in the presence of chondroitin sulfate A

    Science.gov (United States)

    Ouyang, Jian-Ming; Deng, Sui-Ping; Zhong, Jiu-Ping; Tieke, Bernd; Yu, Shu-Hong

    2004-10-01

    The growth and aggregation of calcium oxalate monohydrate (COM) crystals beneath dipalmitoylphosphatidylcholine (DPPC) monolayers in the presence of chondroitin sulfate A (C4S) was systematically examined under different surface pressure. The results indicated that the addition of C4S can inhibit the crystal growth and prevent the aggregation of COM crystals. Under a DPPC monolayer, well-defined three-dimensional hexagonal prisms and three-dimensional rhombus prisms with sharply angled tips were obtained. The DPPC monolayer at a surface pressure of 10 mN/m can match the Ca2+ distance of the (1 bar 0 1) face of COM better than at 20 mN/m. The addition of C4S could cooperatively modulate the interaction strength between the monolayer (or itself) with the specific morphology determining faces such as (1 bar 0 1) and (0 2 0), and thus results in remarkable stabilization of the (1 bar 0 1) faces. The dramatic changes in morphological details were due to the strong electrostatic interactions between the Ca2+-rich (1 bar 0 1) crystal faces of COM and the polyanionic polysaccharide C4S together with the negatively charged sites of the zwitterionic DPPC monolayers. The increase of the concentration of C4S can further enhance the stabilization of the (1 bar 0 1) face.

  20. Chondroitin sulfate immobilization at the surface of electrospun nanofiber meshes for cartilage tissue regeneration approaches

    Science.gov (United States)

    Piai, Juliana Francis; da Silva, Marta Alves; Martins, Albino; Torres, Ana Bela; Faria, Susana; Reis, Rui L.; Muniz, Edvani Curti; Neves, Nuno M.

    2017-05-01

    Aiming at improving the biocompatibility of biomaterial scaffolds, surface modification presents a way to preserve their mechanical properties and to improve the surface bioactivity. In this work, chondroitin sulfate (CS) was immobilized at the surface of electrospun poly(caprolactone) nanofiber meshes (PCL NFMs), previously functionalized by UV/O3 exposure and aminolysis. Contact angle, SEM, optical profilometry, FTIR, X-ray photoelectron spectroscopy techniques confirmed the success of CS-immobilization in PCL NFMs. Furthermore, CS-immobilized PCL NFMs showed lower roughness and higher hydrophilicity than the samples without CS. Human articular chondrocytes (hACs) were cultured on electrospun PCL NFMs with or without CS immobilization. It was observed that hACs proliferated through the entire time course of the experiment in both types of nanofibrous scaffolds, as well as for the production of glycosaminoglycans. Quantitative-PCR results demonstrated over-expression of cartilage-related genes such as Aggrecan, Collagen type II, COMP and Sox9 on both types of nanofibrous scaffolds. Morphological observations from SEM and LSCM revealed that hACs maintained their characteristic round shape and cellular agglomeration exclusively on PCL NFMs with CS immobilization. In conclusion, CS immobilization at the surface of PCL NFMs was achieved successfully and provides a valid platform enabling further surface functionalization methods in scaffolds to be developed for cartilage tissue engineering.

  1. Synthesis of the oligosaccharides related to branching sites of fucosylated chondroitin sulfates from sea cucumbers.

    Science.gov (United States)

    Ustyuzhanina, Nadezhda E; Fomitskaya, Polina A; Gerbst, Alexey G; Dmitrenok, Andrey S; Nifantiev, Nikolay E

    2015-02-02

    Natural anionic polysaccharides fucosylated chondroitin sulfates (FCS) from sea cucumbers attract great attention nowadays due to their ability to influence various biological processes, such as blood coagulation, thrombosis, angiogenesis, inflammation, bacterial and viral adhesion. To determine pharmacophore fragments in FCS we have started systematic synthesis of oligosaccharides with well-defined structure related to various fragments of these polysaccharides. In this communication, the synthesis of non-sulfated and selectively O-sulfated di- and trisaccharides structurally related to branching sites of FCS is described. The target compounds are built up of propyl β-d-glucuronic acid residue bearing at O-3 α-l-fucosyl or α-l-fucosyl-(1→3)-α-l-fucosyl substituents. O-Sulfation pattern in the fucose units of the synthetic targets was selected according to the known to date holothurian FCS structures. Stereospecific α-glycoside bond formation was achieved using 2-O-benzyl-3,4-di-O-chloroacetyl-α-l-fucosyl trichloroacetimidate as a donor. Stereochemical outcome of the glycosylation was explained by the remote participation of the chloroacetyl groups with the formation of the stabilized glycosyl cations, which could be attacked by the glycosyl acceptor only from the α-side. The experimental results were in good agreement with the SCF/MP2 calculated energies of such participation. The synthesized oligosaccharides are regarded as model compounds for the determination of a structure-activity relationship in FCS.

  2. Spatiotemporal expression of chondroitin sulfate sulfotransferases in the postnatal developing mouse cerebellum.

    Science.gov (United States)

    Ishii, Maki; Maeda, Nobuaki

    2008-08-01

    Chondroitin sulfate (CS) proteoglycans are major components of the cell surface and the extracellular matrix in the developing brain and bind to various proteins via CS chains in a CS structure-dependent manner. This study demonstrated the expression pattern of three CS sulfotransferase genes, dermatan 4-O-sulfotransferase (D4ST), uronyl 2-O-sulfotransferase (UST), and N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST), in the mouse postnatal cerebellum. These sulfotransferases are responsible for the biosynthesis of oversulfated structures in CS chains such as B, D, and E units, which constitute the binding sites for various heparin-binding proteins. Real-time reverse transcription-polymerase chain reaction analysis indicated that the expression of UST increased remarkably during cerebellar development. The amounts of B and D units, which are generated by UST activity, in the cerebellar CS chains also increased during development. In contrast, the expression of GalNAc4S-6ST and its biosynthetic product, E unit, decreased during postnatal development. In situ hybridization experiments revealed the levels of UST and GalNAc4S-6ST mRNAs to correlate inversely in many cells including Purkinje cells, granule cells in the external granular layer, and inhibitory interneurons. In these neurons, the expression of UST increased and that of GalNAc4S-6ST decreased during development and/or maturation. D4ST was also expressed by many neurons, but its expression was not simply correlated with development, which might contribute to the diversification of CS structures expressed by distinct neurons. These results suggest that the CS structures of various cerebellar neurons change during development and such changes of CS are involved in the regulation of various signaling pathways.

  3. Novel bioadhesive polymers as intra-articular agents: Chondroitin sulfate-cysteine conjugates.

    Science.gov (United States)

    Suchaoin, Wongsakorn; Bonengel, Sonja; Griessinger, Julia Anita; Pereira de Sousa, Irene; Hussain, Shah; Huck, Christian W; Bernkop-Schnürch, Andreas

    2016-04-01

    The aim of this study was to generate and characterize a chondroitin sulfate-cysteine conjugate (CS-cys) as a novel bioadhesive agent for intra-articular use. Mucoadhesive properties of synthesized CS-cys were investigated by rheological measurement of polymer-mucus mixture and rotating cylinder method, while bioadhesive features of CS-cys on porcine articular cartilage were evaluated via tensile studies. Thiolation was achieved by attachment of l-cysteine to CS via amide bond formation mediated by carbodiimide as a coupling reagent. The conjugate exhibited 421.17±35.14 μmol free thiol groups per gram polymer. The reduced CS-cys displayed 675.09±39.67 μmol free thiol groups per gram polymer after disulfide bonds reduction using tris(2-carboxyethyl)phosphine hydrochloride. The increase in dynamic viscosity of thiolated CS due to oxidative disulfide bond formation was demonstrated using capillary viscometer. The combination of CS-cys and mucus led to 4.57-fold increase in dynamic viscosity in comparison with mucus control. Furthermore, adhesion time to porcine mucosa of CS-cys-based test disk was enhanced by 2.48-fold compared to unmodified CS as measured by rotating cylinder method suggesting the interaction between thiomers and mucus gel layer via disulfide bonds formation. Tensile studies of thiolated CS on porcine articular cartilage showed 5.37- and 1.76-fold increase in the total work of adhesion and the maximum detachment force, respectively, in comparison with unmodified CS indicating bioadhesive features of CS-cys. Cytotoxicity of CS-cys was assessed in Caco-2 cells and rat primary articular chondrocytes using MTT and LDH release assay, thereby showing the safety of CS-cys at a concentration of 0.25% (w/v) in Caco-2 cells. Furthermore, 0.1% of CS-cys was found non-toxic to rat primary articular chondrocytes. According to these results, CS-cys provides improved bioadhesive properties that might be useful as an intra-articular agent for treatment of

  4. Ice as a Green-Structure-Directing Agent in the Synthesis of Macroporous MWCNTs and Chondroitin Sulphate Composites

    Science.gov (United States)

    Nardecchia, Stefania; Serrano, María Concepción; García-Argüelles, Sara; Maia Da Costa, Marcelo E. H.; Ferrer, María Luisa; Gutiérrez, María C.

    2017-01-01

    The incorporation of multi-walled carbon nanotubes (MWCNTs) into chondroitin sulphate-based scaffolds and the effect on the structural, mechanical, conductive, and thermal properties of the resulting scaffolds is investigated. Three-dimensional hierarchical materials are prepared upon the application of the ice segregation-induced self-assembly (ISISA) process. The use of ice as structure-directing agents avoids chemicals typically used for this purpose (e.g., surfactants, block copolymers, etc.), hence, emphasising the green features of this soft-templating approach. We determine the critical parameters that control the morphology of the scaffolds formed upon ice-templating (i.e., MWCNTs type, freezing conditions, polymer and MWCNT concentration). MWCNTs are surface functionalized by acidic treatment. MWCNT functionalization is characterized by Raman, Fourier transfer infrared (FTIR) and X-ray Photoelectron (XPS) spectroscopies. Scanning electron microscopy (SEM) analysis and porosity studies reveal that MWCNT content modifies the morphology of the macroporous structure, which decreases by increasing MWCNT concentration. Differences in scaffold morphology should be translated into their conductivity and mechanical properties. As a general trend, the Young’s modulus and the electrical conductivity of the scaffolds increase with the MWCNT content. Preliminary biocompatibility tests with human osteoblast-like cells also reveal the capability of these structures to support cell growth. PMID:28772715

  5. Biocompatibility Assessment of Novel Collagen-Sericin Scaffolds Improved with Hyaluronic Acid and Chondroitin Sulfate for Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    Sorina Dinescu

    2013-01-01

    Full Text Available Cartilage tissue engineering (CTE applications are focused towards the use of implantable biohybrids consisting of biodegradable scaffolds combined with in vitro cultured cells. Hyaluronic acid (HA and chondroitin sulfate (CS were identified as the most potent prochondrogenic factors used to design new biomaterials for CTE, while human adipose-derived stem cells (ASCs were proved to display high chondrogenic potential. In this context, our aim was not only to build novel 3D porous scaffolds based on natural compounds but also to evaluate their in vitro biological performances. Therefore, for prospective CTE, collagen-sericin (Coll-SS scaffolds improved with HA (5% or 10% and CS (5% or 10% were used as temporary physical supports for ASCs and were analyzed in terms of structural, thermal, morphological, and swelling properties and cytotoxic potential. To complete biocompatibility data, ASCs viability and proliferation potential were also assessed. Our studies revealed that Coll-SS hydrogels improved with 10% HA and 5% CS displayed the best biological performances in terms of cell viability, proliferation, morphology, and distribution. Thus, further work will address a novel 3D system including both HA 10% and CS 5% glycoproteins, which will probably be exposed to prochondrogenic conditions in order to assess its potential use in CTE applications.

  6. Burkitt lymphoma express oncofetal Chondroitin Sulfate without being a reservoir for placental malaria sequestration

    Science.gov (United States)

    Agerbæk, Mette Ø.; Pereira, Marina A.; Clausen, Thomas M.; Pehrson, Caroline; Oo, Htoo Zarni; Spliid, Charlotte; Rich, Jamie R.; Fung, Vincent; Nkrumah, Francis; Neequaye, Janet; Biggar, Robert J.; Reynolds, Steven J.; Tosato, Giovanna; Pullarkat, Sheeja T.; Ayers, Leona W.; Theander, Thor G.; Daugaard, Mads; Bhatia, Kishor; Nielsen, Morten A.; Mbulaiteye, Sam M.; Salanti, Ali

    2016-01-01

    Burkitt lymphoma (BL) is a malignant disease, which is frequently found in areas with holoendemic Plasmodium falciparum malaria. We have previously found that the VAR2CSA protein is present on malaria-infected erythrocytes and facilitates a highly specific binding to the placenta. OfCS is absent from other non-malignant tissues and thus VAR2CSA generally facilitates parasite sequestration and accumulation in pregnant women. In this study, we show that the specific receptor for VAR2CSA, the oncofetal chondroitin sulfate (ofCS), is likewise present in BL tissue and cell lines. We therefore explored whether ofCS in BL could act as anchor-site for VAR2CSA-expressing infected erythrocytes. In contrast to the placenta, we found no evidence of in vivo sequestering of infected erythrocytes in the BL tissue. Furthermore, we found VAR2CSA specific antibody titers in children with endemic BL to be lower than in control children from the same malaria endemic region. The abundant presence of ofCS in BL tissue and the absence of ofCS in non-malignant tissue, encouraged us to examine whether recombinant VAR2CSA could be used to target BL. We confirmed the binding of VAR2CSA to BL-derived cells and showed that a VAR2CSA drug conjugate efficiently killed the BL-derived cell lines in vitro. These results identify ofCS as a novel therapeutic BL target and highlight how VAR2CSA could be used as a tool for the discovery of novel approaches for directing BL therapy. PMID:27997697

  7. Burkitt lymphoma expresses oncofetal chondroitin sulfate without being a reservoir for placental malaria sequestration.

    Science.gov (United States)

    Agerbaek, Mette Ø; Pereira, Marina A; Clausen, Thomas M; Pehrson, Caroline; Oo, Htoo Zarni; Spliid, Charlotte; Rich, Jamie R; Fung, Vincent; Nkrumah, Francis; Neequaye, Janet; Biggar, Robert J; Reynolds, Steven J; Tosato, Giovanna; Pullarkat, Sheeja T; Ayers, Leona W; Theander, Thor G; Daugaard, Mads; Bhatia, Kishor; Nielsen, Morten A; Mbulaiteye, Sam M; Salanti, Ali

    2017-04-01

    Burkitt lymphoma (BL) is a malignant disease, which is frequently found in areas with holoendemic Plasmodium falciparum malaria. We have previously found that the VAR2CSA protein is present on malaria-infected erythrocytes and facilitates a highly specific binding to the placenta. ofCS is absent in other non-malignant tissues and thus VAR2CSA generally facilitates parasite sequestration and accumulation in pregnant women. In this study, we show that the specific receptor for VAR2CSA, the oncofetal chondroitin sulfate (ofCS), is likewise present in BL tissue and cell lines. We therefore explored whether ofCS in BL could act as anchor site for VAR2CSA-expressing infected erythrocytes. In contrast to the placenta, we found no evidence of in vivo sequestering of infected erythrocytes in the BL tissue. Furthermore, we found VAR2CSA-specific antibody titers in children with endemic BL to be lower than in control children from the same malaria endemic region. The abundant presence of ofCS in BL tissue and the absence of ofCS in non-malignant tissue encouraged us to examine whether recombinant VAR2CSA could be used to target BL. We confirmed the binding of VAR2CSA to BL-derived cells and showed that a VAR2CSA drug conjugate efficiently killed the BL-derived cell lines in vitro. These results identify ofCS as a novel therapeutic BL target and highlight how VAR2CSA could be used as a tool for the discovery of novel approaches for directing BL therapy. © 2016 UICC.

  8. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications

    Science.gov (United States)

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon

    2015-01-01

    Hyaluronic acid (HA)/chondroitin sulfate (CS)/poly(acrylic acid) (PAAc) hydrogel systems were synthesized by gamma-ray irradiation without the use of additional initiators or crosslinking agents to achieve a biocompatible hydrogel system for skin tissue engineering. HA and CS derivatives with polymerizable residues were synthesized. Then, the hydrogels composed of glycosaminoglycans, HA, CS, and a synthetic ionic polymer, PAAc, were prepared using gamma-ray irradiation through simultaneous free radical copolymerization and crosslinking. The physicochemical properties of the HA/CS/PAAc hydrogels having various compositions were investigated to evaluate their feasibility as artificial skin substitutes. The gel fractions of the HA/CS/PAAc hydrogels increased in absorbed doses up to 15 kGy, and they exhibited 91-93% gel fractions under 15 kGy radiation. All of the HA/CS/PAAc hydrogels exhibited relatively high water contents of over 90% and reached an equilibrium swelling state within 24 h. The enzymatic degradation kinetics of the HA/CS/PAAc hydrogels depended on both the concentration of the hyaluronidase solution and the ratio of HA/CS/PAAc. The in vitro drug release profiles of the HA/CS/PAAc hydrogels were significantly influenced by the interaction between the ionic groups in the hydrogels and the ionic drug molecules as well as the swelling of the hydrogels. From the cytotoxicity results of human keratinocyte (HaCaT) cells cultured with extracts of the HA/CS/PAAc hydrogels, all of the HA/CS/PAAc hydrogel samples tested showed relatively high cell viabilities of more than 82%, and did not induce any significant adverse effects on cell viability.

  9. Quantitative analysis of glycosaminoglycans, chondroitin/dermatan sulfate, hyaluronic acid, heparan sulfate, and keratan sulfate by liquid chromatography-electrospray ionization-tandem mass spectrometry.

    Science.gov (United States)

    Osago, Harumi; Shibata, Tomoko; Hara, Nobumasa; Kuwata, Suguru; Kono, Michihaya; Uchio, Yuji; Tsuchiya, Mikako

    2014-12-15

    We developed a method using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) with a selected reaction monitoring (SRM) mode for simultaneous quantitative analysis of glycosaminoglycans (GAGs). Using one-shot analysis with our MS/MS method, we demonstrated the simultaneous quantification of a total of 23 variously sulfated disaccharides of four GAG classes (8 chondroitin/dermatan sulfates, 1 hyaluronic acid, 12 heparan sulfates, and 2 keratan sulfates) with a sensitivity of less than 0.5 pmol within 20 min. We showed the differences in the composition of GAG classes and the sulfation patterns between porcine articular cartilage and yellow ligament. In addition to the internal disaccharides described above, some saccharides derived from the nonreducing terminal were detected simultaneously. The simultaneous quantification of both internal and nonreducing terminal saccharides could be useful to estimate the chain length of GAGs. This method would help to establish comprehensive "GAGomic" analysis of biological tissues. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. A novel eliminase from a marine bacterium that degrades hyaluronan and chondroitin sulfate.

    Science.gov (United States)

    Han, Wenjun; Wang, Wenshuang; Zhao, Mei; Sugahara, Kazuyuki; Li, Fuchuan

    2014-10-03

    Lyases cleave glycosaminoglycans (GAGs) in an eliminative mechanism and are important tools for the structural analysis and oligosaccharide preparation of GAGs. Various GAG lyases have been identified from terrestrial but not marine organisms even though marine animals are rich in GAGs with unique structures and functions. Herein we isolated a novel GAG lyase for the first time from the marine bacterium Vibrio sp. FC509 and then recombinantly expressed and characterized it. It showed strong lyase activity toward hyaluronan (HA) and chondroitin sulfate (CS) and was designated as HA and CS lyase (HCLase). It exhibited the highest activities to both substrates at pH 8.0 and 0.5 m NaCl at 30 °C. Its activity toward HA was less sensitive to pH than its CS lyase activity. As with most other marine enzymes, HCLase is a halophilic enzyme and very stable at temperatures from 0 to 40 °C for up to 24 h, but its activity is independent of divalent metal ions. The specific activity of HCLase against HA and CS reached a markedly high level of hundreds of thousands units/mg of protein under optimum conditions. The HCLase-resistant tetrasaccharide Δ(4,5)HexUAα1-3GalNAc(6-O-sulfate)β1-4GlcUA(2-O-sulfate)β1-3GalNAc(6-O-sulfate) was isolated from CS-D, the structure of which indicated that HCLase could not cleave the galactosaminidic linkage bound to 2-O-sulfated d-glucuronic acid (GlcUA) in CS chains. Site-directed mutagenesis indicated that HCLase may work via a catalytic mechanism in which Tyr-His acts as the Brønsted base and acid. Thus, the identification of HCLase provides a useful tool for HA- and CS-related research and applications. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. A Novel Eliminase from a Marine Bacterium That Degrades Hyaluronan and Chondroitin Sulfate*

    Science.gov (United States)

    Han, Wenjun; Wang, Wenshuang; Zhao, Mei; Sugahara, Kazuyuki; Li, Fuchuan

    2014-01-01

    Lyases cleave glycosaminoglycans (GAGs) in an eliminative mechanism and are important tools for the structural analysis and oligosaccharide preparation of GAGs. Various GAG lyases have been identified from terrestrial but not marine organisms even though marine animals are rich in GAGs with unique structures and functions. Herein we isolated a novel GAG lyase for the first time from the marine bacterium Vibrio sp. FC509 and then recombinantly expressed and characterized it. It showed strong lyase activity toward hyaluronan (HA) and chondroitin sulfate (CS) and was designated as HA and CS lyase (HCLase). It exhibited the highest activities to both substrates at pH 8.0 and 0.5 m NaCl at 30 °C. Its activity toward HA was less sensitive to pH than its CS lyase activity. As with most other marine enzymes, HCLase is a halophilic enzyme and very stable at temperatures from 0 to 40 °C for up to 24 h, but its activity is independent of divalent metal ions. The specific activity of HCLase against HA and CS reached a markedly high level of hundreds of thousands units/mg of protein under optimum conditions. The HCLase-resistant tetrasaccharide Δ4,5HexUAα1-3GalNAc(6-O-sulfate)β1-4GlcUA(2-O-sulfate)β1-3GalNAc(6-O-sulfate) was isolated from CS-D, the structure of which indicated that HCLase could not cleave the galactosaminidic linkage bound to 2-O-sulfated d-glucuronic acid (GlcUA) in CS chains. Site-directed mutagenesis indicated that HCLase may work via a catalytic mechanism in which Tyr-His acts as the Brønsted base and acid. Thus, the identification of HCLase provides a useful tool for HA- and CS-related research and applications. PMID:25122756

  12. Collageneous matrix coatings on titanium implants modified with decorin and chondroitin sulfate: characterization and influence on osteoblastic cells.

    Science.gov (United States)

    Bierbaum, Susanne; Douglas, Timothy; Hanke, Thomas; Scharnweber, Dieter; Tippelt, Sonja; Monsees, Thomas K; Funk, Richard H W; Worch, Hartmut

    2006-06-01

    Studies in developmental and cell biology have established the fact that responses of cells are influenced to a large degree by morphology and composition of the extracellular matrix. Goal of this work is to use this basic principle to improve the biological acceptance of implants by modifying the surfaces with components of the extracellular matrix (ECM), utilizing the natural self-assembly potential of collagen in combination with further ECM components in close analogy to the situation in vivo. Aiming at load-bearing applications in bone contact, collagen type I in combination with the proteoglycan decorin and the glycosaminoglycan chondroitin sulfate (CS) was used; fibrillogenesis, fibril morphology, and adsorption of differently composed fibrils onto titanium were assessed. Both decorin and CS could be integrated into the fibrils during fibrillogenesis, the amount bound respectively desorbed depending on the ionic strength of fibrillogenesis buffer. Including decorin always resulted in a significant decrease of fibril diameter, CS in only a slight decrease or even increase, depending on the collagen preparation used. No significant changes in adsorption to titanium could be detected. Osteoblastic cells showed different reactions for cytoskeletal arrangement and osteopontin expression depending on the composition of the ECM, with CS enhancing the osteoblast phenotype.

  13. Immobilized Lentivirus Vector on Chondroitin Sulfate-Hyaluronate Acid-Silk Fibroin Hybrid Scaffold for Tissue-Engineered Ligament-Bone Junction

    Directory of Open Access Journals (Sweden)

    Liguo Sun

    2014-01-01

    Full Text Available The lack of a fibrocartilage layer between graft and bone remains the leading cause of graft failure after anterior cruciate ligament (ACL reconstruction. The objective of this study was to develop a gene-modified silk cable-reinforced chondroitin sulfate-hyaluronate acid-silk fibroin (CHS hybrid scaffold for reconstructing the fibrocartilage layer. The scaffold was fabricated by lyophilizing the CHS mixture with braided silk cables. The scanning electronic microscopy (SEM showed that microporous CHS sponges were formed around silk cables. Each end of scaffold was modified with lentiviral-mediated transforming growth factor-β3 (TGF-β3 gene. The cells on scaffold were transfected by bonded lentivirus. In vitro culture demonstrated that mesenchymal stem cells (MSCs on scaffolds proliferated vigorously and produced abundant collagen. The transcription levels of cartilage-specific genes also increased with culture time. After 2 weeks, the MSCs were distributed uniformly throughout scaffold. Deposited collagen was also found to increase. The chondral differentiation of MSCs was verified by expressions of collagen II and TGF-β3 genes in mRNA and protein level. Histology also confirmed the production of cartilage extracellular matrix (ECM components. The results demonstrated that gene-modified silk cable-reinforced CHS scaffold was capable of supporting cell proliferation and differentiation to reconstruct the cartilage layer of interface.

  14. Reduction-sensitive micelles self-assembled from amphiphilic chondroitin sulfate A-deoxycholic acid conjugate for triggered release of doxorubicin.

    Science.gov (United States)

    Liu, Hongxia; Wu, Shuqin; Yu, Jingmou; Fan, Dun; Ren, Jin; Zhang, Lei; Zhao, Jianguo

    2017-06-01

    Reduction-sensitive chondroitin sulfate A (CSA)-based micelles were developed. CSA was conjugated with deoxycholic acid (DOCA) via a disulfide linkage. The bioreducible conjugate (CSA-ss-DOCA) can form self-assembled micelles in aqueous medium. The critical micelle concentration (CMC) of CSA-ss-DOCA conjugate is 0.047mg/mL, and its mean diameter is 387nm. The anticancer drug doxorubicin (DOX) was chosen as a model drug, and was effectively encapsulated into the micelles with high loading efficiency. Reduction-sensitive micelles and reduction-insensitive control micelles displayed similar DOX release behavior in phosphate buffered saline (PBS, pH7.4). Notably, DOX release from the reduction-sensitive micelles in vitro was accelerated in the presence of 20mM glutathione-containing PBS environment. Moreover, DOX-loaded CSA-ss-DOCA (CSA-ss-DOCA/DOX) micelles exhibited intracellular reduction-responsive characteristics in human gastric cancer HGC-27 cells determined by confocal laser scanning microscopy (CLSM). Furthermore, CSA-ss-DOCA/DOX micelles demonstrated higher antitumor efficacy than reduction-insensitive control micelles in HGC-27 cells. These results suggested that reduction-sensitive CSA-ss-DOCA micelles had the potential as intracellular targeted carriers of anticancer drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells

    International Nuclear Information System (INIS)

    Sawatjui, Nopporn; Damrongrungruang, Teerasak; Leeanansaksiri, Wilairat; Jearanaikoon, Patcharee; Hongeng, Suradej; Limpaiboon, Temduang

    2015-01-01

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid (SF–GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF–GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF–GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF–GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. - Highlights: • SF–GCH scaffold enhances proliferation and chondrogenic differentiation of BM-MSCs. • SF–GCH acts as a supportive and biomimetic material for BM-MSC chondrogenesis. • SF–GCH is a potential biomimetic scaffold suitable for cartilage tissue engineering

  16. Silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid effectively enhances in vitro chondrogenesis of bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Sawatjui, Nopporn [Biomedical Sciences, Graduate School, Khon Kaen University, Khon Kaen 40002 (Thailand); Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Damrongrungruang, Teerasak [Department of Oral Diagnosis, Faculty of Dentistry, Khon Kaen University, Khon Kaen 40002 (Thailand); Leeanansaksiri, Wilairat [Stem Cell Therapy and Transplantation Research Group, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); School of Microbiology, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Jearanaikoon, Patcharee [Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand); Hongeng, Suradej [Department of Pediatrics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400 (Thailand); Limpaiboon, Temduang, E-mail: temduang@kku.ac.th [Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen 40002 (Thailand)

    2015-07-01

    Tissue engineering is becoming promising for cartilage repair due to the limited self-repair capacity of cartilage tissue. We previously fabricated and characterized a three-dimensional silk fibroin/gelatin–chondroitin sulfate–hyaluronic acid (SF–GCH) scaffold and showed that it could promote proliferation of human bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to evaluate its biological performance as a new biomimetic material for chondrogenic induction of BM-MSCs in comparison to an SF scaffold and conventional pellet culture. We found that the SF–GCH scaffold significantly enhanced the proliferation and chondrogenic differentiation of BM-MSCs compared to the SF scaffold and pellet culture in which the production of sulfated glycoaminoglycan was increased in concordance with the up-regulation of chondrogenic-specific gene markers. Our findings indicate the significant role of SF–GCH by providing a supportive structure and the mimetic cartilage environment for chondrogenesis which enables cartilage regeneration. Thus, our fabricated SF–GCH scaffold may serve as a potential biomimetic material for cartilage tissue engineering. - Highlights: • SF–GCH scaffold enhances proliferation and chondrogenic differentiation of BM-MSCs. • SF–GCH acts as a supportive and biomimetic material for BM-MSC chondrogenesis. • SF–GCH is a potential biomimetic scaffold suitable for cartilage tissue engineering.

  17. Russian experience with injectable chondroitin sulfate and glucosamine sulfate: a review of clinical trials

    Directory of Open Access Journals (Sweden)

    A. E. Karateev

    2018-01-01

    Full Text Available The widespread use of parenteral chondroprotectors is a feature of Russian medical practice. There are many drugs of this series in a Russian physician's arsenal, including chondroitin sulfate (CS,  glucosamine sulfate (GS, glycosaminoglycan-peptide complex, and  bioactive concentrate from small sea fish for intramuscular  injections. The paper analyzes Russian trials of the efficacy and  safety of two injectable formulations of CS and GS (ICS and IGS.  ICS was tested in 17 articles containing a total of 1639 patients with  osteoarthritis (OA, non-specific back pain (NBP, or shoulder  fractures and pain after stroke. Standard therapy (NSAIDs +  physiotherapy served as a control in the majority of the paper. In  these trials, the reductions in visual analog scale (VAS and WOMAC pain in OA treated with ICS averaged 58.2±22.3% and those were 26.1±14.7% in the control groups; the reductions in VAS NBP  reached an average of 87.1±16.8 and 62.2±21.7%, respectively.  ICS also showed a good effect in shoulder fractures and pain after a  stroke. The number of local adverse reactions after injections was  insignificant (4.4%; they did not threaten the health of patients and they caused ICS to be discontinued only in 3 cases. IGS was  investigated in two trials (n=154, which confirmed its efficacy (total pain relief >50% and relative safety. Thus, the data of Russian trials suggest that ICS and IGS have good therapeutic potential and favorable tolerance.

  18. Chondroitin Sulfate Immobilized on a Biomimetic Scaffold Modulates Inflammation While Driving Chondrogenesis.

    Science.gov (United States)

    Corradetti, Bruna; Taraballi, Francesca; Minardi, Silvia; Van Eps, Jeffrey; Cabrera, Fernando; Francis, Lewis W; Gazze, Salvatore A; Ferrari, Mauro; Weiner, Bradley K; Tasciotti, Ennio

    2016-05-01

    Costs associated with degenerative inflammatory conditions of articular cartilage are exponentially increasing in the aging population, and evidence shows a strong clinical need for innovative therapies. Stem cell-based therapies represent a promising strategy for the treatment of innumerable diseases. Their regenerative potential is undeniable, and it has been widely exploited in many tissue-engineering approaches, especially for bone and cartilage repair. Their immune-modulatory capacities in particular make stem cell-based therapeutics an attractive option for treating inflammatory diseases. However, because of their great plasticity, mesenchymal stem cells (MSCs) are susceptible to different external factors. Biomaterials capable of concurrently providing physical support to cells while acting as synthetic extracellular matrix have been established as a valuable strategy in cartilage repair. Here we propose a chondroitin sulfate-based biomimetic scaffold that recapitulates the physicochemical features of the chondrogenic niche and retains MSC immunosuppressive potential in vitro, either in response to a proinflammatory cytokine or in the presence of stimulated peripheral blood mononuclear cells. In both cases, a significant increase in the production of molecules associated with immunosuppression (nitric oxide and prostaglandins), as well as in the expression of their inducible enzymes (iNos, Pges, Cox-2, and Tgf-β). When implanted subcutaneously in rats, our scaffold revealed a reduced infiltration of leukocytes at 24 hours, which correlated with a greater upregulation of genes involved in inflammatory cell apoptotic processes. In support of its effective use in tissue-engineering applications of cartilage repair, the potential of the proposed platform to drive chondrogenic and osteogenic differentiation of MSC was also proven. Recently, increasing clinical evidence has highlighted the important role of proinflammatory mediators and infiltrating inflammatory

  19. Chondroitin sulfate microparticles modulate transforming growth factor-β1-induced chondrogenesis of human mesenchymal stem cell spheroids.

    Science.gov (United States)

    Goude, Melissa C; McDevitt, Todd C; Temenoff, Johnna S

    2014-01-01

    Mesenchymal stem cells (MSCs) have been previously explored as a part of cell-based therapies for the repair of damaged cartilage. Current MSC chondrogenic differentiation strategies employ large pellets; however, we have developed a technique to form small MSC aggregates (500-1,000 cells) that can reduce transport barriers while maintaining a multicellular structure analogous to cartilaginous condensations. The objective of this study was to examine the effects of incorporating chondroitin sulfate methacrylate (CSMA) microparticles (MPs) within small MSC spheroids cultured in the presence of transforming growth factor (TGF)-β1 on chondrogenesis. Spheroids with MPs induced earlier increases in collagen II and aggrecan gene expression (chondrogenic markers) than spheroids without MPs, although no large differences in immunostaining for these matrix molecules were observed by day 21 between these groups. Collagen I and X were also detected in the extracellular matrix (ECM) of all spheroids by immunostaining. Interestingly, histology revealed that CSMA MPs clustered together near the center of the MSC spheroids and induced circumferential alignment of cells and ECM around the material core. This study demonstrates the use of CSMA materials to further examine the effects of matrix molecules on MSC phenotype as well as potentially direct differentiation in a more spatially controlled manner that better mimics the architecture of specific musculoskeletal tissues. © 2014 S. Karger AG, Basel.

  20. Aerogels made of chitosan and chondroitin sulfate at high degree of neutralization: Biological properties toward wound healing.

    Science.gov (United States)

    Concha, Miguel; Vidal, Alejandra; Giacaman, Annesi; Ojeda, Javier; Pavicic, Francisca; Oyarzun-Ampuero, Felipe A; Torres, César; Cabrera, Marcela; Moreno-Villoslada, Ignacio; Orellana, Sandra L

    2018-02-09

    In this study, highly neutralized, highly porous, and ultralight polymeric aerogels prepared from aqueous colloidal suspensions of chitosan (CS) and chondroitin sulfate (ChS) nanocomplexes, formulated as quasi-equimolar amounts of both, are described. These aerogels were designed as healing agents under the inspiration of minimizing the amount of matter applied to wounds, reducing the electrostatic potential of the material and avoiding covalent cross-linkers in order to decrease metabolic stress over wounds. Aerogels synthesized under these criteria are biocompatible and provide specific properties for the induction of wound healing. They do not affect neither the metabolic activity of cultured 3T3 fibroblasts nor the biochemical parameters of experimental animals, open wounds close significantly faster and, unlike control wounds, complete reepithelialization and scarring can be attained 14 days after surgery. Because of its hydration abilities, rapid adaptation to the wound bed and the early accelerator effect of wound closure, the CS/ChS aerogels appear to be functional inducers of the healing. Previous information show that CS/ChS aerogels improve wound bed quality, increase granulation tissue and have pain suppressive effect. CS/ChS aerogels are useful as safe, inexpensive and easy to handle materials for topical applications, such as skin chronic wounds. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  1. Enzyme mediated synthesis of polypyrrole in the presence of chondroitin sulfate and redox mediators of natural origin

    International Nuclear Information System (INIS)

    Grijalva-Bustamante, G.A.; Evans-Villegas, A.G.; Castillo-Castro, T. del; Castillo-Ortega, M.M.; Cruz-Silva, R.; Huerta, F.; Morallón, E.

    2016-01-01

    Polypyrrole (PPy) was synthesized by enzyme mediated oxidation of pyrrole using naturally occurring compounds as redox mediators. The catalytic mechanism is an enzymatic cascade reaction in which hydrogen peroxide is the oxidizer and soybean peroxidase, in the presence of acetosyringone, syringaldehyde or vanillin, acts as a natural catalysts. The effect of the initial reaction composition on the polymerization yield and electrical conductivity of PPy was analyzed. Morphology of the PPy particles was studied by scanning electron microscopy and transmission electron microscopy whereas the chemical structure was studied by X-ray photoelectron and Fourier transformed infrared spectroscopic techniques. The redox mediators increased the polymerization yield without a significant modification of the electronic structure of PPy. The highest conductivity of PPy was reached when chondroitin sulfate was used simultaneously as dopant and template during pyrrole polymerization. Electroactive properties of PPy obtained from natural precursors were successfully used in the amperometric quantification of uric acid concentrations. PPy increases the amperometric sensitivity of carbon nanotube screen-printed electrodes toward uric acid detection. - Highlights: • A new method of pyrrole polymerization using naturally occurring redox mediators and doping agents was studied. • The catalytic efficiency of different redox mediators toward pyrrole oxidation was evaluated. • Two different naturally occurring polymers were studied as bifunctional steric stabilizer/doping agents. • Polypyrrole improves the amperometric response of carbon nanotube screen printed electrodes toward uric acid sensing.

  2. Preparation and Characterization of a Collagen-Liposome-Chondroitin Sulfate Matrix with Potential Application for Inflammatory Disorders Treatment

    Directory of Open Access Journals (Sweden)

    Oana Craciunescu

    2014-01-01

    Full Text Available Smart drug delivery systems with controllable properties play an important role in targeted therapy and tissue regeneration. The aim of our study was the preparation and in vitro evaluation of a collagen (Col matrix embedding a liposomal formulation of chondroitin sulfate (L-CS for the treatment of inflammatory disorders. Structural studies using Oil Red O specific staining for lipids and scanning electron microscopy showed an alveolar network of nanosized Col fibrils decorated with deposits of L-CS at both periphery and inner of the matrix. The porosity and density of Col-L-CS matrix were similar to those of Col matrix, while its mean pore size and biodegradability had significantly higher and lower values (P<0.05, respectively. In vitro cytotoxicity assays showed that the matrix system induced high cell viability and stimulated cell metabolism in L929 fibroblast cell culture. Light and electron micrographs of the cell-matrix construct showed that cells clustered into the porous structure at 72 h of cultivation. In vitro diffusion test indicated that the quantity of released CS was significantly lower (P<0.05 after embedment of L-CS within Col matrix. All these results indicated that the biocompatible and biodegradable Col-L-CS matrix might be a promising delivery system for local treatment of inflamed site.

  3. Enzyme mediated synthesis of polypyrrole in the presence of chondroitin sulfate and redox mediators of natural origin

    Energy Technology Data Exchange (ETDEWEB)

    Grijalva-Bustamante, G.A. [Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Evans-Villegas, A.G. [Departamento de Ciencias Químico Biológicas, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Castillo-Castro, T. del, E-mail: terecat@polimeros.uson.mx [Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Castillo-Ortega, M.M. [Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, CP 83000 Hermosillo, Sonora (Mexico); Cruz-Silva, R. [Research Center for Exotic Nanocarbons, Shinshu University, 4-17-1 Wakasato, 380-8553, Nagano (Japan); Huerta, F. [Departamento Ingeniería Textil y Papelera, Universitat Politecnica de Valencia, Plaza Ferrandiz y Carbonell, 1, E-03801 Alcoy (Spain); Morallón, E. [Departamento Química Física e Instituto Universitario de Materiales, Universidad de Alicante, Ap. 99, E-03080 Alicante (Spain)

    2016-06-01

    Polypyrrole (PPy) was synthesized by enzyme mediated oxidation of pyrrole using naturally occurring compounds as redox mediators. The catalytic mechanism is an enzymatic cascade reaction in which hydrogen peroxide is the oxidizer and soybean peroxidase, in the presence of acetosyringone, syringaldehyde or vanillin, acts as a natural catalysts. The effect of the initial reaction composition on the polymerization yield and electrical conductivity of PPy was analyzed. Morphology of the PPy particles was studied by scanning electron microscopy and transmission electron microscopy whereas the chemical structure was studied by X-ray photoelectron and Fourier transformed infrared spectroscopic techniques. The redox mediators increased the polymerization yield without a significant modification of the electronic structure of PPy. The highest conductivity of PPy was reached when chondroitin sulfate was used simultaneously as dopant and template during pyrrole polymerization. Electroactive properties of PPy obtained from natural precursors were successfully used in the amperometric quantification of uric acid concentrations. PPy increases the amperometric sensitivity of carbon nanotube screen-printed electrodes toward uric acid detection. - Highlights: • A new method of pyrrole polymerization using naturally occurring redox mediators and doping agents was studied. • The catalytic efficiency of different redox mediators toward pyrrole oxidation was evaluated. • Two different naturally occurring polymers were studied as bifunctional steric stabilizer/doping agents. • Polypyrrole improves the amperometric response of carbon nanotube screen printed electrodes toward uric acid sensing.

  4. Cloning and characterization of a novel chondroitin sulfate/dermatan sulfate 4-O-endosulfatase from a marine bacterium.

    Science.gov (United States)

    Wang, Wenshuang; Han, Wenjun; Cai, Xingya; Zheng, Xiaoyu; Sugahara, Kazuyuki; Li, Fuchuan

    2015-03-20

    Sulfatases are potentially useful tools for structure-function studies of glycosaminoglycans (GAGs). To date, various GAG exosulfatases have been identified in eukaryotes and prokaryotes. However, endosulfatases that act on GAGs have rarely been reported. Recently, a novel HA and CS lyase (HCLase) was identified for the first time from a marine bacterium (Han, W., Wang, W., Zhao, M., Sugahara, K., and Li, F. (2014) J. Biol. Chem. 289, 27886-27898). In this study, a putative sulfatase gene, closely linked to the hclase gene in the genome, was recombinantly expressed and characterized in detail. The recombinant protein showed a specific N-acetylgalactosamine-4-O-sulfatase activity that removes 4-O-sulfate from both disaccharides and polysaccharides of chondroitin sulfate (CS)/dermatan sulfate (DS), suggesting that this sulfatase represents a novel endosulfatase. The novel endosulfatase exhibited maximal reaction rate in a phosphate buffer (pH 8.0) at 30 °C and effectively removed 17-65% of 4-O-sulfates from various CS and DS and thus significantly inhibited the interactions of CS and DS with a positively supercharged fluorescent protein. Moreover, this endosulfatase significantly promoted the digestion of CS by HCLase, suggesting that it enhances the digestion of CS/DS by the bacterium. Therefore, this endosulfatase is a potential tool for use in CS/DS-related studies and applications. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Spectral study of interaction between chondroitin sulfate and nanoparticles and its application in quantitative analysis

    Science.gov (United States)

    Ma, Yi; Wei, Maojie; Zhang, Xiao; Zhao, Ting; Liu, Xiumei; Zhou, Guanglian

    2016-01-01

    In this work, the interaction between chondroitin sulfate (CS) and gold nanoparticles (GNPs) and silver nanoparticles (SNPs) was characterized for the first time. Plasma resonance scattering (PRS) and plasma resonance absorption (PRA) were used to investigate the characteristics of their spectrum. The results suggested that the CS with negative charge could interact with metal nanoparticles with negative charge and the adsorption of CS on the surface of SNPs was more regular than that of GNPs. The resonance scattering spectra also further confirmed the interaction between CS and SNPs. A new method for detection of CS based on the interaction was developed. CS concentrations in the range of 0.02-3.5 μg/mL were proportional to the decreases of absorbance of SNPs. Compared with other reported methods, the proposed method is simple and workable without complex process, high consumption and expensive equipments. The developed method was applied to the determination of the CS contents from different biological origins and the results were compared with those obtained by the method of Chinese Pharmacopeia. The effects of matrix in plasma and other glycosaminoglycans on the determination of CS were also investigated. The results showed that a small quantity of blood plasma had no effect on the determination of CS and when the concentration ratio of CS to heparin was more than 10:1, the influence of heparin on the detection of CS could be ignored. This work gave a specific research direction for the detection of CS in the presence of metal nanoparticles.

  6. “On-The-Spot” Arresting of Chondroitin Sulphate Proteoglycans: Implications for Ovarian Adenocarcinoma Recognition and Intervention

    Directory of Open Access Journals (Sweden)

    Priyamvada Pradeep

    2016-07-01

    Full Text Available Ovarian Cancer (OC is one of the leading causes of cancer-associated death among women. The underlying biochemical cause of OC proliferation is usually attributed to the over-expression of Chondroitin Sulphate Proteoglycans (CSPGs wherein the CS-E subgroup plays a major role in tumor cell proliferation by over-expressing vascular endothelial growth factor (VEGF. We hereby hypothesize that by targeting the OC extracellular matrix using a CS-E-specific antibody, GD3G7, we could provide spatial delivery of crosslinkers and anti-VEGF agents to firstly induce in vivo crosslinking and complexation (arresting of CS-E into a “biogel mass” for efficient and effective detection, detachment and reduction of tumorous tissue, and secondly inhibit angiogenesis in OC. It is further proposed that the antibody-assisted targeted delivery of CS-E crosslinkers can bind to highly anionic CS-E to form a polyelectrolyte complex to inhibit the formation of ovarian tumor spheroids that are responsible for spheroid-induced mesothelial clearance and progression of OC. The hypothesis also describes the potential in vivo “On-The-Spot” CSPG crosslinkers such as sodium trimetaphosphate (physical crosslinker, 1,12-diaminododecane (chemical crosslinker, poly(ethylene glycol diglycidyl ether (synthetic polymer, and chitosan (natural polyelectrolyte-forming agent. In conclusion, this hypothesis proposes in vivo spatial crosslinking of CSPGs as a potential theranostic intervention strategy for OC—a first in the field of cancer research.

  7. Chondroitin sulfate iron colloid-enhanced MR imaging of hepatocellular carcinoma; Correlation between histologic grade and detectability

    Energy Technology Data Exchange (ETDEWEB)

    Kamba, Masayuki; Suto, Yuji; Kodama, Fumiko; Kato, Terumi; Ohta, Yoshio; Horie, Yasushi; Hamazoe, Ryuichi; Kawasaki, Hironaka (Tottori Univ., Yonago (Japan). School of Medicine)

    1994-03-01

    We applied chondroitin sulfate iron colloid (CSIC) as an MR contrast agent to detect hepatocellular carcinoma (HCC). The MR and pathologic findings of 25 HCCs in 21 patients were analyzed. MR imaging was performed with a superconducting system operating at 1.5 T. Proton density-weighted (PDW), T[sub 2]-weighted (T[sub 2]W) and T[sub 1]-weighted (T[sub 1]W) images were obtained before and after an intravenous injection of 23.6 [mu]mol Fe/kg of CSIC. In moderately to poorly differentiated and moderately differentiated HCCs (n=15), all the lesions except a 5-mm satellite nodule were detectable with unenhanced T[sub 2]W images as well as CSIC-enhanced PDW, T[sub 2]W and T[sub 1]W images. In well to moderately differentiated HCCs (n=6), two to four lesions were detectable with unenhanced images. All the lesions except a 3-mm satellite nodule were detectable with CSIC-enhanced PDW, T[sub 2]W and T[sub 1]W images. In well differentiated HCCs (n=4), one or two lesions were detectable with unenhanced images. All the lesions were detectable with CSIC-enhanced T[sub 1]W images, while only two lesions were detectable with CSIC-enhanced PDW or T[sub 2]W images. CSIC administration improves detection rates, and is especially useful in detecting small foci of well to moderately or well differentiated HCC. (author).

  8. The Effect of Chondroitin Sulphate and Hyaluronic Acid on Chondrocytes Cultured within a Fibrin-Alginate Hydrogel

    Directory of Open Access Journals (Sweden)

    Christopher J. Little

    2014-09-01

    Full Text Available Osteoarthritis is a painful degenerative joint disease that could be better managed if tissue engineers can develop methods to create long-term engineered articular cartilage tissue substitutes. Many of the tissue engineered cartilage constructs currently available lack the chemical stimuli and cell-friendly environment that promote the matrix accumulation and cell proliferation needed for use in joint cartilage repair. The goal of this research was to test the efficacy of using a fibrin-alginate hydrogel containing hyaluronic acid (HA and/or chondroitin sulphate (CS supplements for chondrocyte culture. Neonatal porcine chondrocytes cultured in fibrin-alginate hydrogels retained their phenotype better than chondrocytes cultured in monolayer, as evidenced by analysis of their relative expression of type II versus type I collagen mRNA transcripts. HA or CS supplementation of the hydrogels increased matrix glycosaminoglycan (GAG production during the first week of culture. However, the effects of these supplements on matrix accumulation were not additive and were no longer observed after two weeks of culture. Supplementation of the hydrogels with CS or a combination of both CS and HA increased the chondrocyte cell population after two weeks of culture. Statistical analysis indicated that the HA and CS treatment effects on chondrocyte numbers may be additive. This research suggests that supplementation with CS and/or HA has positive effects on cartilage matrix production and chondrocyte proliferation in three-dimensional (3D fibrin-alginate hydrogels.

  9. Use of chondroitin sulphate and glucosamine sulphate in degenerative changes in TMJ: a systematic review Utilização de sulfato de condroitina e sulfato de glicosamina nas alterações degenerativas da ATM: uma revisão sistematica

    Directory of Open Access Journals (Sweden)

    Eduardo Machado

    2012-08-01

    Full Text Available INTRODUCTION: Degenerative changes in Temporomandibular Joint (TMJ have increased in prevalence and severity over the years. Within this context, it's necessary to obtain safe and effective therapies for control and management of the patient in cases of osteoarthritis and osteoarthrosis of the TMJ. Therapeutic options range from intra-articular infiltration protocols, occlusal splints, pharmacological therapies and physiotherapy and educational measures. The alternative treatment with structure-modifying agents, like as chondroitin and glucosamine sulphates, showed promising results, and especially safety. Thus, through a systematic literature review, this study aimed to analyze and discuss effectiveness and safety of chondroitin and glucosamine in degenerative changes of the TMJ. METHODS: Survey in research bases MEDLINE, Cochrane, EMBASE, Pubmed, Lilacs and BBO, between the years of 1966 and January 2009, with focus in randomized clinical trial (RCTs and quasi-randomized clinical trials, systematic reviews and meta-analysis. RESULTS: After application of the inclusion criteria 2 articles were selected, both randomized controlled double-blind clinical trials, which evaluated the effectiveness of chondroitin and glucosamine in degenerative changes of the TMJ. CONCLUSIONS: There is the necessity of further RCT, with representative samples and long follow-up time, to obtainment more precise cause-effect relationships and to achieve an effective and objective protocol involving chondroitin and glucosamine in cases of degenerative changes of the TMJ.INTRODUÇÃO: as alterações degenerativas da Articulação Temporomandibular (ATM têm aumentado em prevalência e em severidade ao longo dos anos. Dentro desse contexto, surge a necessidade de se obter terapêuticas efetivas e seguras para o controle e o manejo do paciente em situações de osteoartrite e osteoartrose da ATM. As opções terapêuticas variam desde protocolos de infiltra

  10. Chondroitin sulfate proteoglycans regulate the growth, differentiation and migration of multipotent neural precursor cells through the integrin signaling pathway

    Directory of Open Access Journals (Sweden)

    Lü He-Zuo

    2009-10-01

    Full Text Available Abstract Background Neural precursor cells (NPCs are defined by their ability to proliferate, self-renew, and retain the potential to differentiate into neurons and glia. Deciphering the factors that regulate their behaviors will greatly aid in their use as potential therapeutic agents or targets. Chondroitin sulfate proteoglycans (CSPGs are prominent components of the extracellular matrix (ECM in the central nervous system (CNS and are assumed to play important roles in controlling neuronal differentiation and development. Results In the present study, we demonstrated that CSPGs were constitutively expressed on the NPCs isolated from the E16 rat embryonic brain. When chondroitinase ABC was used to abolish the function of endogenous CSPGs on NPCs, it induced a series of biological responses including the proliferation, differentiation and migration of NPCs, indicating that CSPGs may play a critical role in NPC development and differentiation. Finally, we provided evidence suggesting that integrin signaling pathway may be involved in the effects of CSPGs on NPCs. Conclusion The present study investigating the influence and mechanisms of CSPGs on the differentiation and migration of NPCs should help us to understand the basic biology of NPCs during CNS development and provide new insights into developing new strategies for the treatment of the neurological disorders in the CNS.

  11. Chondroitin sulfate iron colloid-enhanced MR imaging in patients with small hepatocellular carcinomas. Correlations with hemodynamic and pathologic examinations

    Energy Technology Data Exchange (ETDEWEB)

    Kamba, Masayuki; Suto, Yuji; Kodama, Fumiko; Sugihara, Shuji; Yoshida, Kotaro [Tottori Univ., Yonago (Japan). Faculty of Medicine

    1997-07-01

    To determine the usefulness of chondroitin sulfate iron colloid (CSIC)-enhanced magnetic resonance imaging (MRI) in evaluation of the histologic grade of hepatocellular carcinoma (HCC), we performed a comparative study with computed tomography during arterial portography (CTAP) and CT arteriography. Twenty-one surgically resected HCCs 3 cm or less in diameter were examined. There were five well-differentiated, six well- to moderately-differentiated and ten moderately- or poorly- differentiated HCCs. T2-weighted spin echo images (repetition time: 2,000 ms, echo time: 90 ms) were taken before and after intravenous injection of 23.6 {mu}molFe/kg of CSIC. The differences between precontrast and postcontrast contrast-to-noise ratios (enhancement index) was correlated with the findings of CTAP, CT arteriography and histological examination. The enhancement index increased with statistical significance as the intranodular arterial perfusion increased (p<0.01), and as the intranodular portal perfusion decreased (p<0.01). Though the enhancement index tended to increase as the grade of malignancy increased, no statistical significance was found. CSIC-enhanced MRI allowed a noninvasive evaluation of the intranodular reticuloendothelial function. We consider this procedure as a supplementary method for evaluation of the histologic grade of HCC prior to performing invasive procedures such as angiography and biopsy. (author)

  12. Anticoagulant and antithrombotic evaluation of native fucosylated chondroitin sulfates and their derivatives as selective inhibitors of intrinsic factor Xase.

    Science.gov (United States)

    Wu, Mingyi; Wen, Dandan; Gao, Na; Xiao, Chuang; Yang, Lian; Xu, Li; Lian, Wu; Peng, Wenlie; Jiang, Jianmin; Zhao, Jinhua

    2015-03-06

    Fucosylated chondroitin sulfate (FCS), a structurally unusual glycosaminoglycan, has distinct anticoagulant properties, and is an especially strong inhibitor of the intrinsic factor Xase (anti-Xase). To obtain a highly selective inhibitor of human Xase, we purified six native FCSs with various sulfation patterns, prepared a series of FCS derivatives, and then elucidated the relationship between the structures and the anticoagulant activities of FCSs. FCSs 1-3 containing higher Fuc2S4S exhibit stronger AT-dependent anti-IIa activities, whereas 4-6 containing more Fuc3S4S produce potent HCII-dependent anti-IIa activities. Saccharides containing a minimum of 6-8 trisaccharide units, free carboxyl groups, and full fucosylation of GlcA may be required for potent anti-Xase activity, and approximately six trisaccharide units and partial fucosylation of GlcA may contribute to potent HCII-dependent activity. Decreasing of the molecular weights markedly reduces their AT-dependent anti-IIa activities, and even eliminates human platelet and factor XII activation. Furthermore, in vitro and in vivo studies suggested that fractions of 6-12 kDa may be very promising compounds as putative selective intrinsic Xase inhibitors with antithrombotic action, but without the consequences of major bleeding and factor XII activation. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Levels of Urinary Trypsin Inhibitor and Structure of Its Chondroitin Sulphate Moiety in Type 1 and Type 2 Diabetes

    Science.gov (United States)

    Ucciferri, Nadia; Idini, Michela; De Muro, Pierina

    2018-01-01

    Background Diabetes mellitus is a global health problem representing the fifth leading cause of mortality and a major risk factor for cardiovascular diseases. In the last years, we reported an association among urinary trypsin inhibitor (UTI), a small proteoglycan that plays pleiotropic roles in many inflammatory processes, and both type 1 and 2 diabetes and developed a method for its direct quantitation and structural characterization. Methods Urine from 39 patients affected by type 1 diabetes, 32 patients with type 2 diabetes, and 52 controls were analysed. UTI was separated from the main glycosaminoglycans physiologically present in urine by anion exchange chromatography, treated for chondroitin sulphate (CS) chain complete depolymerisation, and analysed for both UTI content and CS structure. UTI identification was performed by nano-LC-MS/MS analysis. Results We evidenced increased UTI levels, as well as reduced sulphation of its CS moiety in association with diabetes, regardless of both age and medium-term glycaemic control. Furthermore, no association between UTI and albumin excretion rate was found. Conclusions Evidences suggest that UTI levels are not directly correlated with renal function or, otherwise, that they may increase before the onset of renal impairment in diabetes, representing a potential marker for the underlying inflammatory condition. PMID:29541644

  14. Structural Variation of Chondroitin Sulfate Chains Contributes to the Molecular Heterogeneity of Perineuronal Nets

    Directory of Open Access Journals (Sweden)

    Shinji Miyata

    2018-02-01

    Full Text Available Aggrecan, a chondroitin sulfate (CS proteoglycan, forms lattice-like extracellular matrix structures called perineuronal nets (PNNs. Neocortical PNNs primarily ensheath parvalbumin-expressing inhibitory neurons (parvalbumin, PV cells late in brain development. Emerging evidence indicates that PNNs promote the maturation of PV cells by enhancing the incorporation of homeobox protein Otx2 and regulating experience-dependent neural plasticity. Wisteria floribunda agglutinin (WFA, an N-acetylgalactosamine-specific plant lectin, binds to the CS chains of aggrecan and has been widely used to visualize PNNs. Although PNNs show substantial molecular heterogeneity, the importance of this heterogeneity in neural plasticity remains unknown. Here, in addition to WFA lectin, we used the two monoclonal antibodies Cat315 and Cat316, both of which recognize the glycan structures of aggrecan, to investigate the molecular heterogeneity of PNNs. WFA detected the highest number of PNNs in all cortical layers, whereas Cat315 and Cat316 labeled only a subset of PNNs. WFA+, Cat315+, and Cat316+ PNNs showed different laminar distributions in the adult visual cortex. WFA, Cat315 and Cat316 detected distinct, but partially overlapping, populations of PNNs. Based on the reactivities of these probes, we categorized PNNs into four groups. We found that two subpopulation of PNNs, one with higher and one with lower WFA-staining are differentially labeled by Cat316 and Cat315, respectively. CS chains recognized by Cat316 were diminished in mice deficient in an enzyme involved in the initiation of CS-biosynthesis. Furthermore, WFA+ and Cat316+ aggrecan were spatially segregated and formed microdomains in a single PNN. Otx2 co-localized with Cat316+ but not with WFA+ aggrecan in PNNs. Our results suggest that the heterogeneity of PNNs around PV cells may affect the functional maturation of these cells.

  15. Synthesis and Characterization of a Chondroitin Sulfate Based Hybrid Bio/Synthetic Biomimetic Aggrecan Macromolecule

    Science.gov (United States)

    Sarkar, Sumona

    Lower back pain resulting from intervertebral disc degeneration is one of the leading musculoskeletal disorders confronting our health system. In order to mechanically stabilize the disc early in the degenerative cascade and prevent the need for spinal fusion surgeries, we have proposed the development of a hybrid-bio/synthetic biomimetic proteoglycan macromolecule for injection into the disc in the early stages of degeneration. The goal of this thesis was to incorporate natural chondroitin sulfate (CS) chains into bottle brush polymer synthesis strategies for the fabrication of CS-macromolecules which mimic the proteoglycan structure and function while resisting enzymatic degradation. Both the "grafting-to" and "grafting-through" techniques of bottle brush synthesis were explored. CS was immobilized via a terminal primary amine onto a model polymeric backbone (polyacrylic acid) for investigation of the "grafting-to" strategy and an epoxy-amine step-growth polymerization technique was utilized for the "grafting-through" synthesis of CS-macromolecules with polyethylene glycol backbone segments. Incorporation of a synthetic polymeric backbone at the terminal amine of CS was confirmed via biochemical assays, 1H-NMR and FTIR spectroscopy, and CS-macromolecule size was demonstrated to be higher than that of natural CS via gel permeation chromatography, transmission electron microscopy and viscosity measurements. Further analysis of CS-macromolecule functionality indicated maintenance of natural CS properties such as high fixed charge density, high osmotic potential and low cytotoxicity with nucleus pulposus cells. These studies are the first attempt at the incorporation of natural CS into biomimetic bottle brush structures. CS-macromolecules synthesized via the methods developed in these studies may be utilized in the treatment and prevention of debilitating back pain as well as act as mimetics for other proteoglycans implicated in cartilage, heart valve, and nervous

  16. Electrophoretic separation of alginic sodium diester and sodium hexametaphosphate in chondroitin sulfate that interfere with the cetylpyridinium chloride titration assay.

    Science.gov (United States)

    Weiguo, Zhang; Giancaspro, Gabriel; Adams, Kristie M; Neal-Kababick, James; Hildreth, Jana; Li, Aishan; Roman, Mark C; Betz, Joseph M

    2014-01-01

    The most commonly used chondroitin sulfate (CS) assay method is cetylpyridinium chloride (CPC) titration. Cellulose acetate membrane electrophoresis (CAME) is the technique used for detection of impurities in the U.S. Pharmacopeia's CS monograph. Because CPC titration is a relatively nonspecific quantitative technique, the apparent amount of CS as determined by CPC titration alone may not reflect the true amount of CS due to possible interference with the CPC assay by impurities that contain CPC titratable functional groups. When CAME is used in conjunction with CPC titration, certain non-CS and adulterants can be visualized and estimated, and a true value for CS can be assigned once the presence of these non-CS impurities has been ruled out. This study examines conjunct application of CPC and CAME in ascertaining CS assay and purity in the presence of certain adulterants. These include propylene glycol alginate sulfate sodium, known in commerce as alginic sodium diester (ASD), and Zero One (Z1), a water-soluble agent newly reported in the CS marketplace and subsequently identified as sodium hexametaphosphate. ASD, Z1, and CS are similar in physical appearance and solubility in water and ethanol. They are also titratable anions and form ionic pairs with CPC, therefore interfering with the CPC titration assay for CS CAME separates these adulterants from each other and from CS by differences in their electrophoretic mobility. CAME is able to detect these impurities in CS at levels as low as 0.66% by weight. Although it is recommended that a method for detecting impurities (e.g., CAME) be used in cormbination with relatively nonspecific assay methods such as CPC titration, this is seldom done in practice. Assay results for CS derived fromn CPC titration may, therefore, be misleading, leaving the CS supply chain vulnerable to adulteration. In this study, the authors investigated ASD and Z1 adulteration of CS and developed an electrophoretic separation of these

  17. Composite hydrogel of chitosan-poly(hydroxybutyrate-co-valerate) with chondroitin sulfate nanoparticles for nucleus pulposus tissue engineering.

    Science.gov (United States)

    Nair, Manitha B; Baranwal, Gaurav; Vijayan, Prajuna; Keyan, Kripa S; Jayakumar, R

    2015-12-01

    Intervertebral disc degeneration, occurring mainly in nucleus pulposus (NP), is a leading cause of low back pain. In seeking to mitigate this condition, investigators in the field of NP tissue engineering have increasingly studied the use of hydrogels. However, these hydrogels should possess appropriate mechanical strength and swelling pressure, and concurrently support the proliferation of chondrocyte-like cells. The objective of this study was to develop and validate a composite hydrogel for NP tissue engineering, made of chitosan-poly(hydroxybutyrate-co-valerate) (CP) with chondroitin sulfate (CS) nanoparticles, without using a cross linker. The water uptake ability, as well as the viscoelastic properties of this composite hydrogel, was similar to native tissue, as reflected in the complex shear modulus and stress relaxation values. The hydrogel could withstand varying stress corresponding to daily activities like lying down (0.01 MPa), sitting (0.5 MPa) and standing (1.0 MPa) under dynamic conditions. The hydrogels were stable in PBS for 2 weeks and its stiffness, elastic and viscous modulus did not alter significantly during this period. Both CP and CP-CS hydrogels could assist the viability and adhesion of adipose derived rat mesenchymal stem cells (ADMSCs). The viability and chondrogenic differentiation of MSCs was significantly enhanced in presence of CS nanoparticles. Thus, CS nanoparticles-incorporated chitosan-PHBV hydrogels offer great potential for NP tissue engineering. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Accumulation of neurocan, a brain chondroitin sulfate proteoglycan, in association with the retinal vasculature in RCS rats.

    Science.gov (United States)

    Zhang, Yiqin; Rauch, Uwe; Perez, Maria-Thereza R

    2003-03-01

    To examine whether and how the retinal distribution of the chondroitin sulfate proteoglycan neurocan is affected after photoreceptor cell loss and whether it correlates with the multiple secondary cellular changes that accompany the photoreceptor degeneration. Retinas from normal rats (Sprague-Dawley; postnatal days [P]0-P70), RCS rats with dystrophic retinas (P0-P300), RCS-rdy(+) congenic rats with nondystrophic retinas (P0-202), and rhodopsin mutant rats, P23H (P0-P257) and S334ter (P0-P220), were processed for immunohistochemistry using a polyclonal antibody to rat neurocan. The overall distribution of neurocan was similar in all retinas examined. Neurocan immunostaining was detected over the nerve fiber layer, the plexiform layers, the photoreceptor outer segments region, and the ciliary epithelium. With age, labeling throughout the plexiform layers decreased continuously. In RCS rats however, conspicuous labeling was also seen in association with retinal vessels, from P15 onward. Accumulation of neurocan in association with the retinal vasculature does not correlate with photoreceptor cell loss, because it was not observed in the rhodopsin mutant rats. During the earliest stages of the disease, accumulation of debris in the subretinal space in RCS rats may be sufficient per se to initiate a cascade of metabolic changes that result in accumulation of neurocan. With time, the neurocan accumulated perivascularly may, by interaction with other matrix molecules, modulate at least some of the vascular alterations observed in this animal model.

  19. Spectral-fluorescent study of the interaction of the polymethine dye probe Cyan 2 with chondroitin-4-sulfate

    Science.gov (United States)

    Tatikolov, Alexander S.; Akimkin, Timofey M.; Panova, Ina G.; Yarmoluk, Sergiy M.

    2017-04-01

    The noncovalent interaction of the polymethine dye probe 3,3‧,9-trimethylthiacarbocyanine iodide (Cyan 2) with chondroitin-4-sulfate (C4S) in buffer solutions with different pH and in water in the absence of buffers has been studied by spectral-fluorescent methods. It has been shown that in all media studied, at relatively high concentrations, the dye is bound to C4S mainly as a monomer, which is accompanied by a steep rise of fluorescence (the intermediate formation of dye aggregates on the biopolymer is also observed). From the dependence of the fluorescence quantum yield on the concentration of C4S, the parameters of binding of the dye monomer to C4S were obtained: the effective binding constant K, the number of the monomeric C4S units n per one dye monomer bound to C4S, and the fluorescence quantum yield of the bound dye monomer Φfb. The dependence of Φfb (and K) on pH of the medium is not monotonic: it has a minimum in the region of neutral pH and a growth in the regions of acid and basic pH. This can be explained by changing the charge of a C4S macromolecule as a function of pH and related conformational alterations in the biopolymer, which can affect the rigidity of a dye molecule and the energy of its interaction with the biopolymer.

  20. Analysis of oversulfation in biglycan chondroitin/dermatan sulfate oligosaccharides by chip-based nanoelectrospray ionization multistage mass spectrometry.

    Science.gov (United States)

    Flangea, Corina; Sisu, Eugen; Seidler, Daniela G; Zamfir, Alina D

    2012-01-15

    Biglycan (BGN) is a small proteoglycan that consists of a protein core containing leucine-rich repeat regions and two glycosaminoglycan (GAG) chains of either chondroitin sulfate (CS) or dermatan sulfate (DS) type. The development of novel, highly efficient analytical methods for structural identification of BGN-derived CS/DS motifs, possibly implicated in biological events, is currently the focus of research. In this work, an improved analytical method based on fully automated chip-nanoelectrospray ionization (nanoESI) in conjunction with high-capacity ion trap (HCT) multistage mass spectrometry (MS) by collision-induced dissociation (CID) was for the first time applied to BGN CS/DS oligosaccharide analysis. The CS/DS chains were released from transfected 293 BGN by β-elimination. The chain was digested with AC I lyase, and the resulting mixture was purified and subsequently separated by size exclusion chromatography (SEC). Di- and tetrasaccharide fractions were pooled and characterized in detail using the developed chip-nanoESI protocol. The chip-nanoESI MS profile in the negative ion mode revealed the presence of under-, regularly, and oversulfated species in both di- and tetrasaccharide fractions. CID MS(2)-MS(3) yielded sequence patterns consistent with unusual oversulfated 4,5-Δ-GlcA(2S)-GalNAc(4S) and 4,5-Δ-GlcA(2S)-GalNAc(6S)-IdoA(2S)-GalNAc(6S) motifs. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. TOTAL NUMBER, DISTRIBUTION, AND PHENOTYPE OF CELLS EXPRESSING CHONDROITIN SULPHATE PROTEOGLYCANS IN THE NORMAL HUMAN AMYGDALA

    Science.gov (United States)

    Pantazopoulos, Harry; Murray, Elisabeth A.; Berretta, Sabina

    2009-01-01

    Chondroitin sulphate proteoglycans (CSPGs) are a key structural component of the brain extracellular matrix. They are involved in critical neurodevelopmental functions and are one of the main components of pericellular aggregates known as perineuronal nets. As a step toward investigating their functional and pathophysiological roles in the human amygdala, we assessed the pattern of CSPG expression in the normal human amygdala using wisteria floribunda agglutinin (WFA) lectin-histochemistry. Total numbers of WFA-labeled elements were measured in the lateral (LN), basal (BN), accessory basal (ABN) and cortical (CO) nuclei of the amygdala from 15 normal adult human subjects. For interspecies qualitative comparison, we also investigated the pattern of WFA labeling in the amygdala of naïve rats (n=32) and rhesus monkeys (Macaca mulatta; n=6). In human amygdala, WFA lectin-histochemistry resulted in labeling of perineuronal nets and cells with clear glial morphology, while neurons did not show WFA-labeling. Total numbers of WFA-labeled glial cells showed high interindividual variability. These cells aggregated in clusters with a consistent between-subjects spatial distribution. In a subset of human subjects (n=5), dual color fluorescence using an antibody raised against glial fibrillary acidic protein (GFAP) and WFA showed that the majority (93.7%) of WFA-labeled glial cells correspond to astrocytes. In rat and monkey amygdala, WFA histochemistry labeled perineuronal nets, but not glial cells. These results suggest that astrocytes are the main cell type expressing CSPGs in the adult human amygdala. Their highly segregated distribution pattern suggests that these cells serve specialized functions within human amygdalar nuclei. PMID:18374308

  2. Eudragit ® FS 30 D polymeric films containing chondroitin sulfate as candidates for use in coating seeking modified delivery of drugs

    Directory of Open Access Journals (Sweden)

    Camila Borges dos Reis

    Full Text Available ABSTRACT Polymeric films associating different concentrations of Eudragit(r FS 30 D (EFS and chondroitin sulfate (CS were produced by casting for the development of a new target-specific site material. Formed films kept a final polymer mass of 4% (w/v in the following proportions: EFS 100:00 CS (control, EFS 95:05 CS, EFS 90:10 CS and EFS 80:20 CS. They were analyzed for physical and chemical characteristics using Fourier transform infrared spectroscopy (FTIR, scanning electron microscopy (SEM and Raman spectroscopy. Furthermore, they were characterized by their water vapor permeability and degree of hydration at different conditions simulating the gastrointestinal tract. No chemical interactions were observed between CS and EFS, suggesting only a physical interaction between them in the different combinations tested. The results suggest that EFS and CS, when combined, may form films that are candidates for coating processes seeking a modified drug delivery, especially due to the synergism between pH dependency and specific biodegradability properties by the colonic microbiota. EFS 90:10 CS proved to be the most suitable for this purpose considering hydration and permeability characteristics of different associations analyzed.

  3. Role for chondroitin sulfate glycosaminoglycan in NEDD9-mediated breast cancer cell growth.

    Science.gov (United States)

    Iida, Joji; Dorchak, Jesse; Clancy, Rebecca; Slavik, Juliana; Ellsworth, Rachel; Katagiri, Yasuhiro; Pugacheva, Elena N; van Kuppevelt, Toin H; Mural, Richard J; Cutler, Mary Lou; Shriver, Craig D

    2015-01-15

    There are lines of evidence demonstrating that NEDD9 (Cas-L, HEF-1) plays a key role in the development, progression, and metastasis of breast cancer cells. We previously reported that NEDD9 plays a critical role for promoting migration and growth of MDA-MB-231. In order to further characterize the mechanisms of NEDD9-mediated cancer migration and growth, stable cells overexpressing NEDD9 were generated using HCC38 as a parental cell line which expresses low level of endogenous NEDD9. Microarray studies demonstrated that core proteins of CD44 and Serglycin were markedly upregulated in HCC38(NEDD9) cells compared to HCC38(Vector) cells, while those of Syndecan-1, Syndecan-2, and Versican were downregulated in HCC38(NEDD9). Importantly, enzymes generating chondroitin sulfate glycosaminoglycans (CS) such as CHST11, CHST15, and CSGALNACT1 were upregulated in HCC38(NEDD9) compared to HCC38(Vector). Immunofluorescence studies using specific antibody, GD3G7, confirmed the enhanced expression of CS-E subunit in HCC38(NEDD9). Immunoprecipitation and western blotting analysis demonstrated that CS-E was attached to CD44 core protein. We demonstrated that removing CS by chondroitinase ABC significantly inhibited anchorage-independent colony formation of HCC38(NEDD9) in methylcellulose. Importantly, the fact that GD3G7 significantly inhibited colony formation of HCC38(NEDD9) cells suggests that CS-E subunit plays a key role in this process. Furthermore, treatment of HCC38(NEDD9) cells with chondroitinase ABC or GD3G7 significantly inhibited mammosphere formation. Exogenous addition of CS-E enhanced colony formation and mammosphere formation of HCC38 parental and HCC38(Vector) cells. These results suggest that NEDD9 regulates the synthesis and expression of tumor associated glycocalyx structures including CS-E, which plays a key role in promoting and regulating breast cancer progression and metastasis and possibly stem cell phenotypes. Copyright © 2014 Elsevier Inc. All rights

  4. Effect of Bioactive Materials Modified with Chondroitin Sulfate on Human MSC =

    Science.gov (United States)

    De La Torre Torres, Jessica Elizabeth

    In this project chondroitin sulfate (CS) and growth factors were studied for their effect on hMSC in biomaterials. First, the effect of these biomolecules was tested in solution. Then, two kinds of biomaterials were created: bioactive surfaces for enhancing bioactivity of implantable devices and bioactive hydrogels which can be used as 3D scaffolds for cell encapsulation and delivery. A pro-survival effect of the growth factors studied in this project (epidermal growth factor, vascular endothelial growth factor and fibroblast growth factor) was not observed when tested in solution, therefore the project further focused on CS effect only. Interestingly, CS did not affect cell growth in media containing serum, while inducing cell detachment from substrate in serum free conditions. For the bioactive surfaces construction, CS was grafted to either an amine-rich plasmapolymerized coating created on polyethylene terephthalate (PET) films (further referred as LP) or to commercial cell culture plates functionalized with amino groups. The bioactive surfaces were characterized by different techniques such as contact angle, atomic force microscopy, Orange II dye and Toluidine Blue O dye colorimetric assays (for amino group and CS quantification respectively) and finally, cell culture experiments (adhesion, growth and survival). Results confirmed the presence of CS grafted on both substrates. Commercial amine plates grafted almost five times more CS compared to LP. This rendered the surface antifouling for proteins and cells as confirmed by protein adsorption and cell culture assays. Cell culture assays on bioactive surfaces based on LP demonstrated improved cell adhesion and growth when compared to tissue culture plates or bare PET films in serum containing conditions. Chitosan based hydrogels containing CS at a concentration of 500 mug/ml resulted in a cohesive hydrogel which supported hMSC viability up to 7 days. However increasing CS concentration to high level such as

  5. Down-regulation of ATF2 in the inhibition of T-2-toxin-induced chondrocyte apoptosis by selenium chondroitin sulfate nanoparticles

    Science.gov (United States)

    Han, Jing; Guo, Xiong

    2013-12-01

    Selenium chondroitin sulfate nanoparticles (SeCS) with a size range of 30-200 nm were obtained in our previous study. Meanwhile, the up-regulated expression of ATF2 mRNA and protein levels could be observed in the cartilage from Kashin-Beck disease (KBD) patients. In this paper, we investigated the inhibition effect of SeCS on T-2-toxin-induced apoptosis of chondrocyte from KBD patients. Here, we found that when the chondrocytes were treated with T-2 toxin, the chondrocyte apoptosis performed in a concentration-dependent manner. The apoptosis of chondrocyte induced by T-2 toxin involved the increased levels of ATF2, JNK and p38 mRNAs and related protein expression. SeCS could partly block the T-2-toxin-induced chondrocyte apoptosis by decreasing the expression of ATF2, JNK and p38 mRNAs and p-JNK, p-38, ATF2 and p-ATF2 proteins. JNK and p38 pathways involved in the apoptosis of chondrocyte induced by T-2 toxin, and SeCS was efficient in the inhibition of chondrocyte apoptosis by T-2 toxin. These results suggested that SeCS had a potential for further prevention and treatment for KBD as well as other selenium deficiency disease.

  6. Efficacy of a fixed combination of 0.09 % xanthan gum/0.1 % chondroitin sulfate preservative free vs polyethylene glycol/propylene glycol in subjects with dry eye disease: a multicenter randomized controlled trial.

    Science.gov (United States)

    Pérez-Balbuena, Ana L; Ochoa-Tabares, Juan C; Belalcazar-Rey, Sandra; Urzúa-Salinas, Cristian; Saucedo-Rodríguez, Laura R; Velasco-Ramos, Regina; Suárez-Sánchez, Raúl G; Rodríguez-Carrizalez, Adolfo D; Oregón-Miranda, Aldo A

    2016-09-20

    Dry eye disease (DED) is multifactorial, affecting 5-34 % of the global adult population and reducing quality of life. The artificial tears or lubricants are the therapy most used for the treatment of DED, due to their low side effect profile, which attempt to modify the properties of the tear film. The aim of the present study was to evaluate the clinical efficacy of a fixed combination of xanthan gum and chondroitin sulfate preservative free on the ocular surface of patients with dry eye disease during 60 days of intervention. A phase III, double-blind, masked, controlled, multicenter, clinical trial of 148 subjects, randomized to either a fixed combination of xanthan gum 0.09 % and chondroitin sulfate 0.1 % (XG/CS) ophthalmic solution (n = 76) or a fixed combination of polyethylene glycol 400 0.4 % and propylene glycol 0.3 % (PEG/PG) (n = 72). Subjects self-dosed four times daily during 60 days. Follow-up was set on days 2, 7, 15, 30 and 60. Assessments of anterior/posterior segment ocular signs were performed. The outcome measures included Schirmer test, tear film break-up time and OSDI score. Security variables included intraocular pressure, lisamine green and fluorescein ocular surface stains. The primary efficacy endpoints were similar between groups at baseline. After intervention time Schirmer test increased in both groups compared to baseline, XG/CS (6.4 ± 2.2 vs 11.0 ± 6.6; p = 0.002) and PEG/PG (6.5 ± 2.5 vs 10.5 ± 5.6; p = 0.019) respectively. Similar results were reported in the tear film break-up time in XG/CS (5.5 ± 2.1 vs 7.4 ± 2.9; p = 0.027) and PEG/PG (5.2 ± 2.0 vs 7.4 ± 2.7; p = 0.046) respectively. The OSDI score decreased to normal values in both groups, XG/CS (19.3 ± 7.4 vs 7.3 ± 5.9; p = 0.001) and PEG/PG (19.3 ± 7.5 vs 7.9 ± 8.2; p = 0.001) respectively. There was no significant difference between treatments for any parameter. Moreover, both

  7. Corneal Stromal Cell Growth on Gelatin/Chondroitin Sulfate Scaffolds Modified at Different NHS/EDC Molar Ratios

    Directory of Open Access Journals (Sweden)

    Jui-Yang Lai

    2013-01-01

    Full Text Available A nanoscale modification strategy that can incorporate chondroitin sulfate (CS into the cross-linked porous gelatin materials has previously been proposed to give superior performance for designed corneal keratocyte scaffolds. The purpose of this work was to further investigate the influence of carbodiimide chemistry on the characteristics and biofunctionalities of gelatin/CS scaffolds treated with varying N-hydroxysuccinimide (NHS/1-ethyl-3-(3-dimethyl aminopropyl carbodiimide hydrochloride (EDC molar ratios (0-1 at a constant EDC concentration of 10 mM. Results of Fourier transform infrared spectroscopy and dimethylmethylene blue assays consistently indicated that when the NHS to EDC molar ratio exceeds a critical level (i.e., 0.5, the efficiency of carbodiimide-mediated biomaterial modification is significantly reduced. With the optimum NHS/EDC molar ratio of 0.5, chemical treatment could achieve relatively high CS content in the gelatin scaffolds, thereby enhancing the water content, glucose permeation, and fibronectin adsorption. Live/Dead assays and interleukin-6 mRNA expression analyses demonstrated that all the test samples have good cytocompatibility without causing toxicity and inflammation. In the molar ratio range of NHS to EDC from 0 to 0.5, the cell adhesion ratio and proliferation activity on the chemically modified samples significantly increased, which is attributed to the increasing CS content. Additionally, the materials with highest CS content (0.143 ± 0.007 nmol/10 mg scaffold showed the greatest stimulatory effect on the biosynthetic activity of cultivated keratocytes. These findings suggest that a positive correlation is noticed between the NHS to EDC molar ratio and the CS content in the biopolymer matrices, thereby greatly affecting the corneal stromal cell growth.

  8. A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate.

    Science.gov (United States)

    Restaino, Odile Francesca; Finamore, Rosario; Diana, Paola; Marseglia, Mariacarmela; Vitiello, Mario; Casillo, Angela; Bedini, Emiliano; Parrilli, Michelangelo; Corsaro, Maria Michela; Trifuoggi, Marco; De Rosa, Mario; Schiraldi, Chiara

    2017-03-15

    Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.

  9. A dual-wavelength overlapping resonance Rayleigh scattering method for the determination of chondroitin sulfate with nile blue sulfate

    Science.gov (United States)

    Cui, Zhiping; Hu, Xiaoli; Liu, Shaopu; Liu, Zhongfang

    2011-12-01

    A dual-wavelength overlapping resonance Rayleigh scattering (DWO-RRS) method was developed to detect chondroitin sulfate (CS) with nile blue sulfate (NBS). At pH 3.0-4.0 Britton-Robinson (BR) buffer medium, CS interacted with NBS to form an ion-association complex. As a result, the new spectra of resonance Rayleigh scattering (RRS), second order scattering (SOS) and frequence doubling scattering (FDS) appeared and their intensities were enhanced greatly. Their maximum wavelengths were located at 303 nm (RRS), 362 nm (RRS), 588 nm (SOS) and 350 nm (FDS), respectively. The scattering intensities of the three methods were proportional to the concentration of CS in certain ranges. The methods had high sensitivity and the detection limits were between 1.5 and 7.1 ng mL -1. The DWO-RRS method had the highest sensitivity with the detection limit being 1.5 ng mL -1. The characteristics of the spectra and optimal reaction conditions of RRS method were investigated. The effects of coexistent substances on the determination of CS were evaluated. Owing to the high sensitivity, RRS method had been applied to the determination of CS in eye drops with satisfactory results. The recovery range was between 99.4% and 104.6% and the relative standard deviation (RSD) was between 0.4% and 0.8%. In addition, the reasons for RRS enhancement were discussed and the shape of ion-association complex was characterized by atomic force microscopy (AFM).

  10. Degree of Suppression of Mouse Myoblast Cell Line C₂C12 Differentiation Varies According to Chondroitin Sulfate Subtype.

    Science.gov (United States)

    Warita, Katsuhiko; Oshima, Nana; Takeda-Okuda, Naoko; Tamura, Jun-Ichi; Hosaka, Yoshinao Z

    2016-10-21

    Chondroitin sulfate (CS), a type of glycosaminoglycan (GAG), is a factor involved in the suppression of myogenic differentiation. CS comprises two repeating sugars and has different subtypes depending on the position and number of bonded sulfate groups. However, the effect of each subtype on myogenic differentiation remains unclear. In this study, we spiked cultures of C₂C 12 myoblasts, cells which are capable of undergoing skeletal muscle differentiation, with one of five types of CS (CS-A, -B, -C, -D, or -E) and induced differentiation over a fixed time. After immunostaining of the formed myotubes with an anti-MHC antibody, we counted the number of nuclei in the myotubes and then calculated the fusion index (FI) as a measure of myotube differentiation. The FI values of all the CS-treated groups were lower than the FI value of the control group, especially the group treated with CS-E, which displayed notable suppression of myotube formation. To confirm that the sugar chain in CS-E is important in the suppression of differentiation, chondroitinase ABC (ChABC), which catabolizes CS, was added to the media. The addition of ChABC led to the degradation of CS-E, and neutralized the suppression of myotube formation by CS-E. Collectively, it can be concluded that the degree of suppression of differentiation depends on the subtype of CS and that CS-E strongly suppresses myogenic differentiation. We conclude that the CS sugar chain has inhibitory action against myoblast cell fusion.

  11. FACE Analysis as a Fast and Reliable Methodology to Monitor the Sulfation and Total Amount of Chondroitin Sulfate in Biological Samples of Clinical Importance

    Directory of Open Access Journals (Sweden)

    Evgenia Karousou

    2014-06-01

    Full Text Available Glycosaminoglycans (GAGs due to their hydrophilic character and high anionic charge densities play important roles in various (pathophysiological processes. The identification and quantification of GAGs in biological samples and tissues could be useful prognostic and diagnostic tools in pathological conditions. Despite the noteworthy progress in the development of sensitive and accurate methodologies for the determination of GAGs, there is a significant lack in methodologies regarding sample preparation and reliable fast analysis methods enabling the simultaneous analysis of several biological samples. In this report, developed protocols for the isolation of GAGs in biological samples were applied to analyze various sulfated chondroitin sulfate- and hyaluronan-derived disaccharides using fluorophore-assisted carbohydrate electrophoresis (FACE. Applications to biologic samples of clinical importance include blood serum, lens capsule tissue and urine. The sample preparation protocol followed by FACE analysis allows quantification with an optimal linearity over the concentration range 1.0–220.0 µg/mL, affording a limit of quantitation of 50 ng of disaccharides. Validation of FACE results was performed by capillary electrophoresis and high performance liquid chromatography techniques.

  12. Transforming growth factor β-induced expression of chondroitin sulfate proteoglycans is mediated through non-Smad signaling pathways.

    Science.gov (United States)

    Jahan, Naima; Hannila, Sari S

    2015-01-01

    The expression of chondroitin sulfate proteoglycans (CSPGs) by reactive astrocytes is a major factor contributing to glial scarring and regenerative failure after spinal cord injury, but the molecular mechanisms underlying CSPG expression remain largely undefined. One contributing factor is transforming growth factor β (TGFβ), which is upregulated after injury and has been shown to induce expression of CSPGs in vitro. TGFβ typically mediates its effects through the Smad2/3 signaling pathway, and it has been suggested that this pathway is responsible for CSPG expression. However, there is evidence that TGFβ can also activate non-Smad signaling pathways. In this study, we report that TGFβ-induced expression of three different CSPGs--neurocan, brevican, and aggrecan--is mediated through non-Smad signaling pathways. We observed significant increases in TGFβ-induced expression of neurocan, brevican, and aggrecan following siRNA knockdown of Smad2 or Smad4, which indicates that Smad signaling is not required for the expression of these CSPGs. In addition, we show that neurocan, aggrecan, and brevican levels are significantly reduced when TGFβ is administered in the presence of either the PI3K inhibitor LY294002 or the mTOR inhibitor rapamycin, but not the MEK1/2 inhibitor U0126. This suggests that TGFβ mediates this effect through non-Smad-dependent activation of the PI3K-Akt-mTOR signaling pathway, and targeting this pathway may therefore be an effective means of reducing CSPG expression in the injured CNS. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Reactive oxygen species responsive drug releasing nanoparticle based on chondroitin sulfate-anthocyanin nanocomplex for efficient tumor therapy.

    Science.gov (United States)

    Jeong, Dooyong; Bae, Byoung-Chan; Park, Sin-Jung; Na, Kun

    2016-01-28

    To develop a reactive oxygen species (ROS) sensitive drug carrier, a chondroitin sulfate (CS)-anthocyanin (ATC) based nanocomplex was developed. Doxorubicin hydrochloride (DOX) was loaded in the CS-ATC nanocomplex (CS-ATC-DOX) via intermolecular stacking interaction. The nanocomplex was fabricated by a simple mixing method in the aqueous phase. The morphology and size of CS-ATC-DOX were determined by ATC content. In the group with 1.5mg/ml of ATC loaded CS-ATC-DOX (CS-ATC2-DOX), the drug content and loading efficiency were 8.5% and 99.1%, respectively. The ROS sensitive drug release of CS-ATC2-DOX was confirmed under in vitro physiological conditions. The results demonstrated that 1.67 times higher DOX release occurred in CS-ATC2-DOX for 48h compared to CS-DOX (ATC absent sample). Drug release and nanocomplex destruction were induced by ROS mediated ATC degradation. We determined that 66.7% of ROS was scavenged by CS-ATC2-DOX. Additionally, an HCT-116 tumor bearing animal model was used to confirm ROS sensitive therapeutic effects of CS-ATC2-DOX. The results indicate that DOX was released from the intravenously injected CS-ATC2-DOX in the tumor tissue. Thus, nuclei shrinkage and dead cells were observed in H&E staining and TUNEL assay, respectively. These data suggest that the tumor growth was effectively inhibited. This study means that CS-ATC2-DOX has potential in improving tumor therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Biosynthesis of promatrix metalloproteinase-9/chondroitin sulphate proteoglycan heteromer involves a Rottlerin-sensitive pathway.

    Directory of Open Access Journals (Sweden)

    Nabin Malla

    Full Text Available BACKGROUND: Previously we have shown that a fraction of the matrix metalloproteinase-9 (MMP-9 synthesized by the macrophage cell line THP-1 was bound to a chondroitin sulphate proteoglycan (CSPG core protein as a reduction sensitive heteromer. Several biochemical properties of the enzyme were changed when it was bound to the CSPG. METHODOLOGY/PRINCIPAL FINDINGS: By use of affinity chromatography, zymography, and radioactive labelling, various macrophage stimulators were tested for their effect on the synthesis of the proMMP-9/CSPG heteromer and its components by THP-1 cells. Of the stimulators, only PMA largely increased the biosynthesis of the heteromer. As PMA is an activator of PKC, we determined which PKC isoenzymes were expressed by performing RT-PCR and Western Blotting. Subsequently specific inhibitors were used to investigate their involvement in the biosynthesis of the heteromer. Of the inhibitors, only Rottlerin repressed the biosynthesis of proMMP-9/CSPG and its two components. Much lower concentrations of Rottlerin were needed to reduce the amount of CSPG than what was needed to repress the synthesis of the heteromer and MMP-9. Furthermore, Rottlerin caused a minor reduction in the activation of the PKC isoenzymes δ, ε, θ and υ (PKD3 in both control and PMA exposed cells. CONCLUSIONS/SIGNIFICANCE: The biosynthesis of the proMMP-9/CSPG heteromer and proMMP-9 in THP-1 cells involves a Rottlerin-sensitive pathway that is different from the Rottlerin sensitive pathway involved in the CSPG biosynthesis. MMP-9 and CSPGs are known to be involved in various physiological and pathological processes. Formation of complexes may influence both the specificity and localization of the enzyme. Therefore, knowledge about biosynthetic pathways and factors involved in the formation of the MMP-9/CSPG heteromer may contribute to insight in the heteromers biological function as well as pointing to future targets for therapeutic agents.

  15. Gamma ray-induced synthesis of hyaluronic acid/chondroitin sulfate-based hydrogels for biomedical applications

    International Nuclear Information System (INIS)

    Zhao, Linlin; Gwon, Hui-Jeong; Lim, Youn-Mook; Nho, Young-Chang; Kim, So Yeon

    2015-01-01

    Hyaluronic acid (HA)/chondroitin sulfate (CS)/poly(acrylic acid) (PAAc) hydrogel systems were synthesized by gamma-ray irradiation without the use of additional initiators or crosslinking agents to achieve a biocompatible hydrogel system for skin tissue engineering. HA and CS derivatives with polymerizable residues were synthesized. Then, the hydrogels composed of glycosaminoglycans, HA, CS, and a synthetic ionic polymer, PAAc, were prepared using gamma-ray irradiation through simultaneous free radical copolymerization and crosslinking. The physicochemical properties of the HA/CS/PAAc hydrogels having various compositions were investigated to evaluate their feasibility as artificial skin substitutes. The gel fractions of the HA/CS/PAAc hydrogels increased in absorbed doses up to 15 kGy, and they exhibited 91–93% gel fractions under 15 kGy radiation. All of the HA/CS/PAAc hydrogels exhibited relatively high water contents of over 90% and reached an equilibrium swelling state within 24 h. The enzymatic degradation kinetics of the HA/CS/PAAc hydrogels depended on both the concentration of the hyaluronidase solution and the ratio of HA/CS/PAAc. The in vitro drug release profiles of the HA/CS/PAAc hydrogels were significantly influenced by the interaction between the ionic groups in the hydrogels and the ionic drug molecules as well as the swelling of the hydrogels. From the cytotoxicity results of human keratinocyte (HaCaT) cells cultured with extracts of the HA/CS/PAAc hydrogels, all of the HA/CS/PAAc hydrogel samples tested showed relatively high cell viabilities of more than 82%, and did not induce any significant adverse effects on cell viability. - Highlights: • HA/CS/PAAc hydrogels were synthesized by gamma-ray irradiation. • HA/CS/PAAc hydrogels exhibited 91–93% gel fractions under 15 kGy radiation. • All of the HA/CS/PAAc hydrogels exhibited high water contents of over 90%. • The hydrogel samples showed relatively high cell viabilities of more than

  16. Drug: D07633 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available D07633 Mixture ... Drug Chondroitin sulfate sodium - flavin adenine dinucleotide sodium... mixt; Chondroitin sulfate sodium - FAD sodium mixt; Mucofadin (TN); Mucotear (TN) Chondroitin sulfate sodium... [DR:D04078], Flavin adenine dinucleotide sodium [DR:D02011] ... Therapeutic category: 1319 ... PubChem: 96024455 ...

  17. Reticuloendothelial negative contrast media for hepatocellular carcinoma. Initial comparison of chondroitin sulfate iron colloid and Ferrixan in fast T2-weighted MR imaging

    International Nuclear Information System (INIS)

    Sugihara, Shuji; Suto, Yuji; Kamba, Masayuki; Yoshida, Kotaro

    1996-01-01

    Chondroitin sulfate iron colloid (CSIC), a paramagnetic substance, and Ferrixan (SHU555A), a superparamagnetic substance, were administered to 20 patients with 26 nodules of hepatocellular carcinoma, and the visualization of the lesions by fast T2-weighted magnetic resonance imaging (MRI) was quantitatively evaluated. Conventional spin-echo (CSE), turbo spin-echo (TSE), and turbo gradient spin-echo (TGSE) sequences were performed in all patients before and after the administration of the iron colloid preparations. The signal-to-noise ratio (SNR) in the liver decreased significantly after administration of iron colloid preparations by all sequences and at all doses. A reduction in SNR in the liver similar to that obtained with SHU555A could be obtained by increasing the dose of CSIC, which has a weaker T2-shortening effect. In the TSE sequence with a weaker susceptibility effect, the decrease in SNR in the liver tended to be equalized to those in the CSE or TGSE sequences by high dose administration of the iron colloid preparation. We think perhaps that the imaging ability for hepatocellular carcinoma, similar to that of superparamagnetic contrast media, can be obtained with paramagnetic CSIC by administering it at a higher dose. (author)

  18. Reticuloendothelial negative contrast media for hepatocellular carcinoma. Initial comparison of chondroitin sulfate iron colloid and Ferrixan in fast T2-weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sugihara, Shuji; Suto, Yuji; Kamba, Masayuki; Yoshida, Kotaro [Tottori Univ., Yonago (Japan). Faculty of Medicine

    1996-11-01

    Chondroitin sulfate iron colloid (CSIC), a paramagnetic substance, and Ferrixan (SHU555A), a superparamagnetic substance, were administered to 20 patients with 26 nodules of hepatocellular carcinoma, and the visualization of the lesions by fast T2-weighted magnetic resonance imaging (MRI) was quantitatively evaluated. Conventional spin-echo (CSE), turbo spin-echo (TSE), and turbo gradient spin-echo (TGSE) sequences were performed in all patients before and after the administration of the iron colloid preparations. The signal-to-noise ratio (SNR) in the liver decreased significantly after administration of iron colloid preparations by all sequences and at all doses. A reduction in SNR in the liver similar to that obtained with SHU555A could be obtained by increasing the dose of CSIC, which has a weaker T2-shortening effect. In the TSE sequence with a weaker susceptibility effect, the decrease in SNR in the liver tended to be equalized to those in the CSE or TGSE sequences by high dose administration of the iron colloid preparation. We think perhaps that the imaging ability for hepatocellular carcinoma, similar to that of superparamagnetic contrast media, can be obtained with paramagnetic CSIC by administering it at a higher dose. (author)

  19. Layer-by-layer assembly of type I collagen and chondroitin sulfate on aminolyzed PU for potential cartilage tissue engineering application

    Science.gov (United States)

    He, Xianyun; Wang, Yingjun; Wu, Gang

    2012-10-01

    In this paper, a two-step method was used to synthesize a biodegradable polyurethane (PU) composed of L-lysine ethyl ester diisocyanate (LDI), poly(ɛ-caprolactone) diols (PCL-diol) and 1,4:3,6-dianhydro-D-sorbitol (isosorbide). Amino groups were introduced onto the surface of the PU membrane by an amination reacting with 1,3-propanediamine to produce polycationic substratum. And then, type I collagen (Col) and chondroitin sulfate (CS) were deposited alternately on the polycationic substratum through layer-by-layer (LBL) assembly technology. The FTIR and 1H NMR results showed that the polyurethane was successfully synthesized. Rhodamine B isothiocyanate (RBITC) fluorescence spectrum indicated that amino groups were successfully introduced onto the PU surface. The results of quartz-crystal microbalance (QCM) and RBITC-Col fluorescence spectroscopy monitoring the LBL assemble process presented that the Col/CS deposited alternately on the PU surface. X-ray photoelectron spectroscopy (XPS) results displayed that the CS deposited on the PU surface as well. The surface of the assembled PU became even smoother observed from the surface morphology by atomic force microscopy (AFM) imaging. The hydrophilicity of the PU membrane was greatly enhanced though the modification of LBL assembly. The PU modified with the adsorption of Col/CS may be a potential application for cartilage tissue engineering due to its created mimicking chondrogenic environment.

  20. Simultaneous analysis of heparan sulfate, chondroitin/dermatan sulfates, and hyaluronan disaccharides by glycoblotting-assisted sample preparation followed by single-step zwitter-ionic-hydrophilic interaction chromatography.

    Science.gov (United States)

    Takegawa, Yasuhiro; Araki, Kayo; Fujitani, Naoki; Furukawa, Jun-ichi; Sugiyama, Hiroaki; Sakai, Hideaki; Shinohara, Yasuro

    2011-12-15

    Glycosaminoglycans (GAGs) play important roles in cell adhesion and growth, maintenance of extracellular matrix (ECM) integrity, and signal transduction. To fully understand the biological functions of GAGs, there is a growing need for sensitive, rapid, and quantitative analysis of GAGs. The present work describes a novel analytical technique that enables high throughput cellular/tissue glycosaminoglycomics for all three families of uronic acid-containing GAGs, hyaluronan (HA), chondroitin sulfate (CS)/dermatan sulfate (DS), and heparan sulfate (HS). A one-pot purification and labeling procedure for GAG Δ-disaccharides was established by chemo-selective ligation of disaccharides onto high density hydrazide beads (glycoblotting) and subsequent labeling by fluorescence. The 17 most common disaccharides (eight comprising HS, eight CS/DS, and one comprising HA) could be separated with a single chromatography for the first time by employing a zwitter-ionic type of hydrophilic-interaction chromatography column. These novel analytical techniques were able to precisely characterize the glycosaminoglycome in various cell types including embryonal carcinoma cells and ocular epithelial tissues (cornea, conjunctiva, and limbus).

  1. Expression of N-Acetylgalactosamine 4-Sulfate 6-O-Sulfotransferase Involved in Chondroitin Sulfate Synthesis Is Responsible for Pulmonary Metastasis

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2013-01-01

    Full Text Available Chondroitin sulfate (CS containing E-disaccharide units, glucuronic acid-N-acetylgalactosamine(4, 6-O-disulfate, at surfaces of tumor cells plays a key role in tumor metastasis. However, the molecular mechanism of the metastasis involving the CS chain-containing E-units is not fully understood. In this study, to clarify the role of E-units in the metastasis and to search for potential molecular targets for anticancer drugs, the isolation and characterization of Lewis lung carcinoma (LLC cells stably downregulated by the knockdown for the gene encoding N-acetylgalactosamine 4-O-sulfate 6-O-sulfotransferase (GalNAc4S-6ST, which is responsible for the formation of E-units in CS chains, were performed. Knockdown of GalNAc4S-6ST in LLC cells resulted in a reduction in the proportion of E-units, in adhesiveness to extracellular matrix adhesion molecules and in proliferation in vitro. Furthermore, the stable downregulation of GalNAc4S-6ST expression in LLC cells markedly inhibited the colonization of the lungs by inoculated LLC cells and invasive capacity of LLC cells. These results provide clear evidence that CS chain-containing E-units and/or GalNAc4S-6ST play a crucial role in pulmonary metastasis at least through the increased adhesion and the invasive capacity of LLC cells and also provides insights into future drug targets for anticancer treatment.

  2. Chondroitin-6-sulfate attenuates inflammatory responses in murine macrophages via suppression of NF-κB nuclear translocation.

    Science.gov (United States)

    Tan, Guak-Kim; Tabata, Yasuhiko

    2014-06-01

    Inflammation is a host protective response to noxious stimuli, and excessive production of pro-inflammatory mediators by macrophages (mφ) can lead to numerous pathological conditions. In this study, immunomodulatory effects of immobilized and soluble glycosaminoglycans (GAGs) on mouse-bone-marrow-derived mφ were compared by measuring nitric oxide (NO). We demonstrate here that all GAGs studied except for heparin were able to modulate interferon-γ/lipopolysaccharide (IFN-γ/LPS)-induced NO release by mφ to varying extents after 24h of incubation. In particular, the modulatory activities of soluble chondroitin-6-sulfate (C6S), hyaluronic acid and heparan sulfate altered markedly after covalent immobilization. Of these, soluble C6S exhibited the strongest NO inhibitory activity, and the inhibition was dose- and time-dependent. Moreover, C6S significantly reduced pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor (TNF)-α production by IFN-γ/LPS- or LPS-activated mφ. Specifically, the C6S-mediated suppression of mφ pro-inflammatory phenotype was accompanied by an increase in the IL-10 level, suggesting a possible switch towards anti-inflammatory/wound healing M2 state. In addition, the highest magnitude of inhibitory effects was obtained when cells were pre-treated with C6S prior to IFN-γ/LPS or LPS challenge, suggesting an additional role for C6S in protection against microbial infection. Further investigations reveal that the anti-inflammatory effects of C6S on activated mφ may be ascribed at least in part to suppression of NF-κB nuclear translocation. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. The influence of conditioning film on antifouling properties of the polyurethane film modified by chondroitin sulfate in urine

    Science.gov (United States)

    Yuan, Huihui; Qian, Bin; Chen, Huaying; Lan, Minbo

    2017-12-01

    The encrustation and induced infection severely impact on the therapeutic effectiveness and service life of urinary stents due to the fast formation of conditioning film on urinary stents after implantation. The composition and properties of conditioning film have great influence on antifouling properties of stent materials. In our previous work, we modified polyurethane films by chondroitin sulfate (PU-CS) with different CS grafting densities to verify its anti-fouling properties. To obtain the in-depth understanding of encrustation on urinary stents, we investigated the impact of the composition and properties of conditioning film on the following inorganic salt deposition and bacteria adhesion in urine. The results showed that quantity of proteins and polysaccharides in conditioning films, and the roughness, water contact angle and zeta potential of PU-CSs covered with corresponding conditioning film decreased with the increase of CS grafting density on PU films.PU-CS(3) with highest CS grafting density (3.70 g/cm2) had the highest bacteria inhibition rate and least inorganic salt deposition among the PU-CSs in artificial urine. Moreover, inorganic salts depositing on the PU-CS(3) were less and smaller than those on other films. Bacteria were not detectable until day 21 in real urine. Meanwhile, the pH value was elevated. The results suggested that the component of conditioning films was more important than other surface properties such as hydrophilicity, zeta potential and roughness for inorganic salt deposition and bacteria adhesion. Moreover, the anti-encrustation properties of the surface was promoted by proteins and inhibited by polysaccharides.

  4. Protective effect of exogenous chondroitin 4,6-sulfate in the acute degradation of articular cartilage in the rabbit.

    Science.gov (United States)

    Uebelhart, D; Thonar, E J; Zhang, J; Williams, J M

    1998-05-01

    The injection of 2.0 mg chymopapain into the adolescent rabbit knee causes severe loss of articular cartilage proteoglycans (PG). Although chondrocytes attempt to restore lost PG, failure to repair ensues. Pure chondroitin 4,6-sulfate (Condrosulf, IBSA Lugano, Switzerland) has been used in clinical studies of human osteoarthritis (OA) as a slow-acting drug for OA (SYSADOA). Using our model of articular cartilage injury, we examined the effects of oral and intramuscular administration of Condrosulf after chymopapain-induced cartilage injury. In this study, animals received an injection of 2.0 mg chymopapain (Chymodiactin, Boots Pharmaceuticals) into the left knee and were sacrificed after 84 days. The contralateral right knee served as a noninjected control. Some animals received oral Condrosulf while others received intramuscular injections of Condrosulf. Serum keratan sulfate (KS) levels were monitored to ensure degradation of the cartilage PG. Those animals not exhibiting at least a 100% increase of serum KS following chymopapain injection were excluded from the study. At sacrifice, cartilage PG contents were markedly reduced in animals receiving an injection of 2.0 mg chymopapain with no further treatment. In contrast, oral administration of Condrosulf beginning 11 days prior to chymopapain injury resulted in significantly higher (P = 0.0036) cartilage PG contents. Intramuscular administration of Condrosulf resulted in higher, but less significantly so (P = 0.0457), cartilage PG contents. These results suggest that daily Condrosulf treatment prior to and continuing after chymopapain injury may have a protective effect on the damaged cartilage, allowing it to continue to re-synthesize matrix PG after the treatment is discontinued.

  5. Secreted NS1 of dengue virus attaches to the surface of cells via interactions with heparan sulfate and chondroitin sulfate E.

    Directory of Open Access Journals (Sweden)

    Panisadee Avirutnan

    2007-11-01

    Full Text Available Dengue virus (DENV nonstructural protein-1 (NS1 is a secreted glycoprotein that is absent from viral particles but accumulates in the supernatant and on the plasma membrane of cells during infection. Immune recognition of cell surface NS1 on endothelial cells has been hypothesized as a mechanism for the vascular leakage that occurs during severe DENV infection. However, it has remained unclear how NS1 becomes associated with the plasma membrane, as it contains no membrane-spanning sequence motif. Using flow cytometric and ELISA-based binding assays and mutant cell lines lacking selective glycosaminoglycans, we show that soluble NS1 binds back to the surface of uninfected cells primarily via interactions with heparan sulfate and chondroitin sulfate E. DENV NS1 binds directly to the surface of many types of epithelial and mesenchymal cells yet attaches poorly to most peripheral blood cells. Moreover, DENV NS1 preferentially binds to cultured human microvascular compared to aortic or umbilical cord vein endothelial cells. This binding specificity was confirmed in situ as DENV NS1 bound to lung and liver but not intestine or brain endothelium of mouse tissues. Differential binding of soluble NS1 by tissue endothelium and subsequent recognition by anti-NS1 antibodies could contribute to the selective vascular leakage syndrome that occurs during severe secondary DENV infection.

  6. Is intravesical instillation of hyaluronic acid and chondroitin sulfate useful in preventing recurrent bacterial cystitis? A multicenter case control analysis.

    Science.gov (United States)

    Gugliotta, Giorgio; Calagna, Gloria; Adile, Giorgio; Polito, Salvatore; Saitta, Salvatore; Speciale, Patrizia; Palomba, Stefano; Perino, Antonino; Granese, Roberta; Adile, Biagio

    2015-10-01

    Urinary tract infections (UTIs) are common in the female population and, over a lifetime, about half of women have at least one episode of UTI requiring antibiotic therapy. The aim of the current study was to compare two different strategies for preventing recurrent bacterial cystitis: intravesical instillation of hyaluronic acid (HA) plus chondroitin sulfate (CS), and antibiotic prophylaxis with sulfamethoxazole plus trimethoprim. This was a retrospective review of two different cohorts of women affected by recurrent bacterial cystitis. Cases (experimental group) were women who received intravesical instillations of a sterile solution of high concentration of HA + CS in 50 mL water with calcium chloride every week during the 1(st) month and then once monthly for 4 months. The control group included women who received traditional therapy for recurrent cystitis based on daily antibiotic prophylaxis using sulfamethoxazole 200 mg plus trimethoprim 40 mg for 6 weeks. Ninety-eight and 76 patients were treated with experimental and control treatments, respectively. At 12 months after treatment, 69 and 109 UTIs were detected in the experimental and control groups, respectively. The proportion of patients free from UTIs was significantly higher in the experimental than in the control group (36.7% vs. 21.0%; p = 0.03). Experimental treatment was well tolerated and none of the patients stopped it. The intravesical instillation of HA + CS is more effective than long-term antibiotic prophylaxis for preventing recurrent bacterial cystitis. Copyright © 2015. Published by Elsevier B.V.

  7. Reorganization of the 3D matrix of polyelectrolytes complexes of chitosan/chondroitin sulfate swollen in different conditions of pH and immersion time

    International Nuclear Information System (INIS)

    Fajardo, Andre R.; Piai, Juliana F.; Rubira, Adley F.; Muniz, Edvani C.

    2009-01-01

    The chitosan (CT), a polysaccharide that has excellent properties for use as biomaterials, shows cationic nature and properties of high charge density in acidic solutions, thus CT can form complex polyelectrolyte (PEC) with polyanionic moieties such as the chondroitin sulfate (CS), a key component of cartilage matrix. We studied the reorganization of chains on 3D matrix of CT/CS PEC at swollen state in different conditions of pH and immersion time. It was verified that this PEC (QT/CS) has the capacity to reorganize its 3D matrix but it depends of the pH of the medium in which it is swelled and the time that remains immersed. The reorganization of the 3D matrix is caused by the reordering of the chains forming the PEC after the release of the CS, that occurs mainly at pH values higher than or close to the pKa of CT (pKa CT) . Such reorganization was detected by X-ray diffraction profiles and allows an increase in crystallinity, thermal stability and pore size of the PEC. This shows that the PEC produced can be processed to suit its use as bio material, applied i.e. as drugs release devices. (author)

  8. Reorganization of the 3D matrix of polyelectrolytes complexes of chitosan/chondroitin sulfate swollen in different conditions of pH and immersion time

    Energy Technology Data Exchange (ETDEWEB)

    Fajardo, Andre R.; Piai, Juliana F.; Rubira, Adley F.; Muniz, Edvani C., E-mail: ecmuniz@uem.b [Universidade Estadual de Maringa (DG/UEM), PR (Brazil). Dept. de Quimica. Grupo de Materiais Polimericos e Compositos

    2009-07-01

    The chitosan (CT), a polysaccharide that has excellent properties for use as biomaterials, shows cationic nature and properties of high charge density in acidic solutions, thus CT can form complex polyelectrolyte (PEC) with polyanionic moieties such as the chondroitin sulfate (CS), a key component of cartilage matrix. We studied the reorganization of chains on 3D matrix of CT/CS PEC at swollen state in different conditions of pH and immersion time. It was verified that this PEC (QT/CS) has the capacity to reorganize its 3D matrix but it depends of the pH of the medium in which it is swelled and the time that remains immersed. The reorganization of the 3D matrix is caused by the reordering of the chains forming the PEC after the release of the CS, that occurs mainly at pH values higher than or close to the pKa of CT (pKa CT) . Such reorganization was detected by X-ray diffraction profiles and allows an increase in crystallinity, thermal stability and pore size of the PEC. This shows that the PEC produced can be processed to suit its use as bio material, applied i.e. as drugs release devices. (author)

  9. Stem/Progenitor Cell Proteoglycans Decorated with 7-D-4, 4-C-3 and 3-B-3(-) Chondroitin Sulphate Motifs Are Morphogenetic Markers Of Tissue Development.

    Science.gov (United States)

    Hayes, Anthony J; Smith, Susan M; Caterson, Bruce; Melrose, James

    2018-06-11

    This study reviewed the occurrence of chondroitin sulphate (CS) motifs 4-C-3, 7-D-4 and 3-B-3(-) which are expressed by progenitor cells in tissues undergoing morphogenesis. These motifs have a transient early expression pattern during tissue development and also appear in mature tissues during pathological remodeling and attempted repair processes by activated adult stem cells. The CS motifs are information and recognition modules, which may regulate cellular behavior and delineate stem cell niches in developmental tissues. One of the difficulties in determining the precise role of stem cells in tissue development and repair processes is their short engraftment period and the lack of specific markers, which differentiate the activated stem cell lineages from the resident cells. The CS sulphation motifs 7-D-4, 4-C-3 and 3-B-3 (-) decorate cell surface proteoglycans on activated stem/progenitor cells and appear to identify these cells in transitional areas of tissue development and in tissue repair and may be applicable to determining a more precise role for stem cells in tissue morphogenesis. This article is protected by copyright. All rights reserved. © 2018 AlphaMed Press.

  10. Construction of collagen II/hyaluronate/chondroitin-6-sulfate tri-copolymer scaffold for nucleus pulposus tissue engineering and preliminary analysis of its physico-chemical properties and biocompatibility.

    Science.gov (United States)

    Li, Chang-Qing; Huang, Bo; Luo, Gang; Zhang, Chuan-Zhi; Zhuang, Ying; Zhou, Yue

    2010-02-01

    To construct a novel scaffold for nucleus pulposus (NP) tissue engineering, The porous type II collagen (CII)/hyaluronate (HyA)-chondroitin-6-sulfate (6-CS) scaffold was prepared using 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysuccinimide (NHS) cross-linking system. The physico-chemical properties and biocompatibility of CII/HyA-CS scaffolds were evaluated. The results suggested CII/HyA-CS scaffolds have a highly porous structure (porosity: 94.8 +/- 1.5%), high water-binding capacity (79.2 +/- 2.8%) and significantly improved mechanical stability by EDC/NHS crosslinking (denaturation temperature: 74.6 +/- 1.8 and 58.1 +/- 2.6 degrees C, respectively, for the crosslinked scaffolds and the non-crosslinked; collagenase degradation rate: 39.5 +/- 3.4 and 63.5 +/- 2.0%, respectively, for the crosslinked scaffolds and the non-crosslinked). The CII/HyA-CS scaffolds also showed satisfactory cytocompatibility and histocompatibility as well as low immunogenicity. These results indicate CII/HyA-CS scaffolds may be an alternative material for NP tissue engineering due to the similarity of its composition and physico-chemical properties to those of the extracellular matrices (ECM) of native NP.

  11. Expression of the chondroitin sulphate proteoglycan molecular complex in six human melanoma xenograft lines studied by flow cytometry and immunohistochemistry.

    Science.gov (United States)

    Nagelhus, T A; Rofstad, E K

    1993-06-01

    The expression of the chondroitin sulphate proteoglycan (CSP) molecular complex in six human melanoma xenograft lines (BEX-t, COX-t, HUX-t, ROX-t, SAX-t, WIX-t) was studied by flow cytometry and immunohistochemistry using the monoclonal antibodies 9.2.27, ME31.3, G7A5, and NKI.M6. The two methods and the four antibodies gave consistent results. The six melanoma lines could be divided into three distinct groups of two lines each; expression was high in the HUX-t and ROX-t lines and intermediate in the BEX-t and SAX-t lines, whereas the COX-t and WIX-t lines were negative. The mean number of epitopes per cell for 9.2.27 was approximately twice as high as for ME31.3, G7A5, and NKI.M6 and was estimated to range from 0.8 +/- 0.1 x 10(5) to 1.9 +/- 0.2 x 10(5) in the positive xenograft lines. The expression of the CSP complex was heterogeneous. The immunofluorescence histograms measured by flow cytometry were therefore broad for all tumour lines. A significant fraction of the HUX-t cells was negative or weakly stained. These cells appeared as clear negative patches in the immunohistochemical preparations. Moreover, most morphologically intact tumour cells adjacent to necrotic areas did not show significant expression of the CSP complex, irrespective of tumour line. These cells were probably hypoxic and thus resistant to radiation therapy. The expression of the CSP complex in the xenograft lines was similar to that reported for melanoma in man.

  12. Characterization of Glycan Structures of Chondroitin Sulfate-Glycopeptides Facilitated by Sodium Ion-Pairing and Positive Mode LC-MS/MS

    Science.gov (United States)

    Nilsson, Jonas; Noborn, Fredrik; Gomez Toledo, Alejandro; Nasir, Waqas; Sihlbom, Carina; Larson, Göran

    2017-02-01

    Purification and liquid chromatography-tandem mass spectrometry (LC-MS/MS) characterization of glycopeptides, originating from protease digests of glycoproteins, enables site-specific analysis of protein N- and O-glycosylations. We have described a protocol to enrich, hydrolyze by chondroitinase ABC, and characterize chondroitin sulfate-containing glycopeptides (CS-glycopeptides) using positive mode LC-MS/MS. The CS-glycopeptides, originating from the Bikunin proteoglycan of human urine samples, had ΔHexAGalNAcGlcAGalGalXyl- O-Ser hexasaccharide structure and were further substituted with 0-3 sulfate and 0-1 phosphate groups. However, it was not possible to exactly pinpoint sulfate attachment residues, for protonated precursors, due to extensive fragmentation of sulfate groups using high-energy collision induced dissociation (HCD). To circumvent the well-recognized sulfate instability, we now introduced Na+ ions to form sodiated precursors, which protected sulfate groups from decomposition and facilitated the assignment of sulfate modifications. Sulfate groups were pinpointed to both Gal residues and to the GalNAc of the hexasaccharide structure. The intensities of protonated and sodiated saccharide oxonium ions were very prominent in the HCD-MS2 spectra, which provided complementary structural analysis of sulfate substituents of CS-glycopeptides. We have demonstrated a considerable heterogeneity of the bikunin CS linkage region. The realization of these structural variants should be beneficial in studies aimed at investigating the importance of the CS linkage region with regards to the biosynthesis of CS and potential interactions to CS binding proteins. Also, the combined use of protonated and sodiated precursors for positive mode HCD fragmentation analysis will likely become useful for additional classes of sulfated glycopeptides.

  13. Sulphated glycosaminoglycans and proteoglycans in the developing vertebral column of juvenile Atlantic salmon (Salmo salar)

    OpenAIRE

    Hannesson, Kirsten O.; Ytteborg, Elisabeth; Takle, Harald; Enersen, Grethe; B?verfjord, Grete; Pedersen, Mona E.

    2015-01-01

    In the present study, the distribution of sulphated glycosaminoglycans (GAGs) in the developing vertebral column of Atlantic salmon (Salmo salar) at 700, 900, 1100 and 1400?d? was examined by light microscopy. The mineralization pattern was outlined by Alizarin red S and soft structures by Alcian blue. The temporal and spatial distribution patterns of different types of GAGs: chondroitin-4-sulphate/dermatan sulphate, chondroitin-6-sulphate, chondroitin-0-sulphate and keratan sulphate were add...

  14. The spatiotemporal relationships between chondroitin sulfate proteoglycans and terminations of calcitonin gene related peptide and parvalbumin immunoreactive afferents in the spinal cord of mouse embryos.

    Science.gov (United States)

    Wang, Liqing; Yu, Chao; Wang, Jun; Zhao, Hui; Chan, Sun-On

    2017-08-10

    Chondroitin sulfate (CS) proteoglycans (PGs) are a family of complex molecules in the extracellular matrix and cell surface that regulate axon growth and guidance during development of the central nervous system. In this study, the expression of CSPGs was investigated in the mouse spinal cord at late embryonic and neonatal stages using CS-56 antibody. CS immunoreactivity was observed abundantly in ventral regions of spinal cord of embryonic day (E) 15 embryos. At E16 to E18, CS expression spread dorsally, but never reached the superficial layers of the dorsal horn. This pattern was maintained until postnatal day 4, the latest stage examined. Antibodies against calcitonin gene related peptide (CGRP) and parvalbumin (PV) were employed to label primary afferents from nociceptors and proprioceptors, respectively. CGRP-immunoreactive fibers terminated in the superficial regions of the dorsal horn where CSPGs were weakly expressed, whereas PV-immunoreactive fibers were found in CSPG-rich regions in the ventral horn. Therefore, we conclude that CS expression is spatiotemporally regulated in the spinal cord, which correlates to the termination of sensory afferents. This pattern suggests a role of CSPGs on patterning afferents in the spinal cord, probably through a differential response of axons to these growth inhibitory molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effects of diet type and supplementation of glucosamine, chondroitin, and MSM on body composition, functional status, and markers of health in women with knee osteoarthritis initiating a resistance-based exercise and weight loss program

    Directory of Open Access Journals (Sweden)

    Dugan Kristin

    2011-06-01

    Full Text Available Abstract Background The purpose of this study was to determine whether sedentary obese women with knee OA initiating an exercise and weight loss program may experience more beneficial changes in body composition, functional capacity, and/or markers of health following a higher protein diet compared to a higher carbohydrate diet with or without GCM supplementation. Methods Thirty sedentary women (54 ± 9 yrs, 163 ± 6 cm, 88.6 ± 13 kg, 46.1 ± 3% fat, 33.3 ± 5 kg/m2 with clinically diagnosed knee OA participated in a 14-week exercise and weight loss program. Participants followed an isoenergenic low fat higher carbohydrate (HC or higher protein (HP diet while participating in a supervised 30-minute circuit resistance-training program three times per week for 14-weeks. In a randomized and double blind manner, participants ingested supplements containing 1,500 mg/d of glucosamine (as d-glucosamine HCL, 1,200 mg/d of chondroitin sulfate (from chondroitin sulfate sodium, and 900 mg/d of methylsulfonylmethane or a placebo. At 0, 10, and 14-weeks, participants completed a battery of assessments. Data were analyzed by MANOVA with repeated measures. Results Participants in both groups experienced significant reductions in body mass (-2.4 ± 3%, fat mass (-6.0 ± 6%, and body fat (-3.5 ± 4% with no significant changes in fat free mass or resting energy expenditure. Perception of knee pain (-49 ± 39% and knee stiffness (-42 ± 37% was decreased while maximal strength (12%, muscular endurance (20%, balance indices (7% to 20%, lipid levels (-8% to -12%, homeostasis model assessment for estimating insulin resistance (-17%, leptin (-30%, and measures of physical functioning (59%, vitality (120%, and social function (66% were improved in both groups with no differences among groups. Functional aerobic capacity was increased to a greater degree for those in the HP and GCM groups while there were some trends suggesting that supplementation affected

  16. Chondroitinase C Selectively Degrades Chondroitin Sulfate Glycosaminoglycans that Inhibit Axonal Growth within the Endoneurium of Peripheral Nerve.

    Science.gov (United States)

    Graham, James B; Muir, David

    2016-01-01

    The success of peripheral nerve regeneration is highly dependent on the regrowth of axons within the endoneurial basal lamina tubes that promote target-oriented pathfinding and appropriate reinnervation. Restoration of nerve continuity at this structural level after nerve transection injury by direct repair and nerve grafting remains a major surgical challenge. Recently, biological approaches that alter the balance of growth inhibitors and promoters in nerve have shown promise to improve appropriate axonal regeneration and recovery of peripheral nerve function. Chondroitin sulfate proteoglycans (CSPGs) are known inhibitors of axonal growth. This growth inhibition is mainly associated with a CSPG's glycosaminoglycan chains. Enzymatic degradation of these chains with chondroitinase eliminates this inhibitory activity and, when applied in vivo, can improve the outcome of nerve repair. To date, these encouraging findings were obtained with chondroitinase ABC (a pan-specific chondroitinase). The aim of this study was to examine the distribution of CSPG subtypes in rodent, rabbit, and human peripheral nerve and to test more selective biological enzymatic approaches to improve appropriate axonal growth within the endoneurium and minimize aberrant growth. Here we provide evidence that the endoneurium, but not the surrounding epineurium, is rich in CSPGs that have glycosaminoglycan chains readily degraded by chondroitinase C. Biochemical studies indicate that chondroitinase C has degradation specificity for 6-sulfated glycosaminoglycans found in peripheral nerve. We found that chondroitinase C degrades and inactivates inhibitory CSPGs within the endoneurium but not so much in the surrounding nerve compartments. Cryoculture bioassays (neurons grown on tissue sections) show that chondroitinase C selectively and significantly enhanced neuritic growth associated with the endoneurial basal laminae without changing growth-inhibiting properties of the surrounding epineurium

  17. Human recombinant Fab fragment from combinatorial libraries of a B-cell lymphoma patient recognizes core protein of chondroitin sulphate proteoglycan 4.

    Science.gov (United States)

    Egami, Yoko; Narushima, Yuta; Ohshima, Motohiro; Yoshida, Akira; Yoneta, Naruki; Masaki, Yasufumi; Itoh, Kunihiko

    2018-01-01

    CD antigens are well known as therapeutic targets of B-cell lymphoma. To isolate therapeutic antibodies that recognize novel targets other than CD antigens, we constructed a phage display combinatorial antibody Fab library from bone marrow lymphocytes of B-cell lymphoma patient. To eliminate antibodies reactive with known B-cell lymphoma antigen, non-hematopoietic and patient's sera reactive HeLaS3 cells was selected as a target of whole cell panning. Five rounds of panning against live HeLaS3 cells retrieved single Fab clone, termed AHSA (Antibody to HeLa Surface Antigen). Using phage display random peptide library, LSYLEP was identified as an epitope sequence of AHSA. LC-MS/MS analysis of AHSA-precipitated HeLaS3 cell lysates detected several fragments corresponding to the sequence of chondroitin sulphate proteoglycan 4 (CSPG4) core protein. Since LSYLEP sequence was at the position of 313-318 of CSPG4, we considered that CSPG4 was AHSA-associated antigen. Double staining of CSPG4-postive MDA-MB-435S cells with AHSA and anti-CSPG4 rabbit antibody showed identical staining position, and reduced AHSA reactivity was observed in CSPG4-siRNA treated MDA-MB-435S cells. In conclusion, we retrieved a human Fab from antibody library of B-cell lymphoma patient, and identified CSPG4 as a recognizing antigen. AHSA may have potential benefits for development of CSPG4-targeting theranostics for B-cell lymphoma. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  18. Insights into the structural characteristics and substrate binding analysis of chondroitin AC lyase (PsPL8A) from Pedobacter saltans.

    Science.gov (United States)

    Rani, Aruna; Dhillon, Arun; Sharma, Kedar; Goyal, Arun

    2018-04-01

    The structure of chondroitin AC lyase (PsPL8A) of family 8 polysaccharide lyase was characterized. Modeled PsPL8A structure showed, it contains N-terminal (α/α) 6 incomplete toroidal fold and a layered β sandwich structure at C-terminal. Ramchandran plot displayed 98.5% residues in favoured and 1.2% in generously allowed region. Secondary structure of PsPL8A by CD revealed 27.31% α helices 22.7% β sheets and 49.9% random coils. Protein melting study showed, PsPL8A completely unfolds at 60°C. SAXS analysis showed, PsPL8A is fully folded in solution form. The ab initio derived dummy model of PsPL8A superposed well with its modeled structure excluding some α-helices and loop region. Structural superposition and docking analysis showed, N153, W105, H203, Y208, Y212, R266 and E349 were involved in catalysis. Mutants N153A, H203A, Y212F, R266A and E349A created by SDM revealed no residual activity. Isothermal titration calorimetry analysis of Y212F and H203A with C4S polysaccharide, showed moderate binding by Y212F (Ka=9.56±3.81×10 5 ) and no binding with H203A, showing active contribution of Y212 in substrate binding. Residues Y212 and H203 or R266 might act as general base and general acid respectively. Residues N153 and E349 are likely contributing in charge neutralization and stabilizing enolate anion intermediate during β-elimination. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Prognostic significance of highly sulfated chondroitin sulfates in ovarian cancer defined by the single chain antibody GD3A11.

    Science.gov (United States)

    van der Steen, Sophieke C H A; van Tilborg, Angela A G; Vallen, Myrtille J E; Bulten, Johan; van Kuppevelt, Toin H; Massuger, Leon F A G

    2016-03-01

    The extracellular matrix (ECM) of ovarian cancer may provide a number of potential biomarkers. Chondroitin sulfate (CS), a class of sulfated polysaccharides, is abundantly present in the ECM of ovarian cancer. Structural alterations of CS chains (i.e. sulfation pattern) have been demonstrated to play a role in cancer development and progression. In this study we investigate the potential of highly sulfated CS as a biomarker in ovarian cancer using the single chain antibody GD3A11 selected by the phage display technology. The specificity of the antibody was determined by an indirect ELISA. GD3A11 epitope expression was assessed by immunohistochemistry in healthy organs, benign and malignant ovarian tumors (N=359) and correlated to clinical parameters. The CHST15 gene, responsible for the biosynthesis of highly sulfated CS was evaluated for mutation and methylation status. The GD3A11 epitope was minimally expressed in normal organs. Intense expression was observed in the ECM of different ovarian cancer subtypes, in contrast to benign ovarian tumors. Expression was independent of tumor grade, FIGO stage, and the use chemotherapy. For the aggressive ovarian cancer phenotype, intense expression was identified as an independent predictor for poor prognosis. CHST15 gene analysis showed no mutations nor an altered methylation status. Specific highly sulfated CS motifs expressed in the tumoral ECM hold biomarker potential in ovarian cancer patients. These matrix motifs constitute a novel class of biomarkers with prognostic significance and may be instrumental for innovative diagnostic and therapeutic applications (e.g. targeted therapy) in management of ovarian cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Chondroitin sulfate and glucosamine sulfate associated to photobiomodulation prevents degenerative morphological changes in an experimental model of osteoarthritis in rats.

    Science.gov (United States)

    Sanches, Marcella; Assis, Lívia; Criniti, Cyntia; Fernandes, Danilo; Tim, Carla; Renno, Ana Claudia Muniz

    2018-04-01

    The aim of this study was to compare the effects of combined treatment with chondroitin sulfate and glucosamine sulfate (CS/Gl) and photobiomodulation (PBM) on the degenerative process related to osteoarthritis (OA) in the articular cartilage in rats. Forty male Wistar rats were randomly divided into four groups: OA control group (CG); OA animals submitted to PBM treatment (PBM); OA animals submitted to CS/Gl treatment (CS/Gl); OA submitted to CS/GS associated with PBM treatments (GS/Gl + PBM). The CS/Gl started 48 h after the surgery, and they were performed for 29 consecutive days. Moreover, PBM was performed after the CS/Gl administration on the left joint. Morphological characteristics and immunoexpression of interleukin 10 (IL-10) and 1 beta (IL-1β) and collagen type II (Col II) of the articular cartilage were evaluated. The results showed that all treated groups (CS/Gl and PBM) presented attenuation signs of degenerative process (measured by histopathological analysis) and lower density chondrocytes [PBM (p = 0.0017); CS/Gl (p = 0.0153) and CS/Gl + PBM (p = 0.002)]. Additionally, CS/Gl [associated (p = 0.0089) or not with PBM (p = 0.0059)] showed significative lower values for OARSI grade evaluation. Furthermore, CS/GS + PBM decreased IL-1β protein expression (p = 0.0359) and increased IL-10 (p = 0.028) and Col II imunoexpression (p = 0.0204) compared to CG. This study showed that CS/Gl associated with PBM was effective in modulating inflammatory process and preventing the articular tissue degradation in the knees OA rats.

  1. Altered expression of glycosaminoglycans in metastatic 13762NF rat mammary adenocarcinoma cells

    International Nuclear Information System (INIS)

    Steck, P.A.; Cheong, P.H.; Nakajima, M.; Yung, W.K.A.; Moser, R.P.; Nicolson, G.L.

    1987-01-01

    A difference in the expression and metabolism of [ 35 S]sulfated glycosaminoglycans between rat mammary tumor cells derived from a primary tumor and those from its metastatic lesions has been observed. Cells from the primary tumor possessed about equal quantities of chondroitin sulfate and heparan sulfate on their cell surfaces but released fourfold more chondroitin sulfate than heparan sulfate into their medium. In contrast, cells from distal metastatic lesions expressed approximately 5 times more heparan sulfate than chondroitin sulfate in both medium and cell surface fractions. This was observed to be the result of differential synthesis of the glycosaminoglycans and not of major structural alterations of the individual glycosaminoglycans. The degree of sulfation and size of heparan sulfate were similar for all cells examined. However, chondroitin sulfate, observed to be only chondroitin 4-sulfate, from the metastases-derived cells had a smaller average molecular weight on gel filtration chromatography and showed a decreased quantity of sulfated disaccharides upon degradation with chondroitin ABC lyase compared to the primary tumor derived cells. Major qualitative or quantitative alterations were not observed for hyaluronic acid among the various 13762NF cells. The metabolism of newly synthesized sulfated glycosaminoglycans was also different between cells from primary tumor and metastases. A pulse-chase kinetics study demonstrated that both heparan sulfate and chondroitin sulfate were degraded by the metastases-derived cells, whereas the primary tumor derived cells degraded only heparan sulfate and degraded it at a slower rate. These results suggested that altered glycosaminoglycan expression and metabolism may be associated with the metastatic process in 13762NF rat mammary tumor cells

  2. Synthesis and NMR analysis of model compounds related to fucosylated chondroitin sulfates: GalNAc and Fuc(1 → 6)GalNAc derivatives.

    Science.gov (United States)

    Vinnitskiy, Dmitry Z; Ustyuzhanina, Nadezhda E; Dmitrenok, Andrey S; Shashkov, Alexander S; Nifantiev, Nikolay E

    2017-01-13

    Unsubstituted and 6-O-α-L-fucosylated propyl 2-acetamido-2-deoxy-β-D-galactopyranosides and their selectively O-sulfated (both in GalNAc and Fuc units) derivatives were synthesized as model compounds representing the fragments of fucosylated chondroitin sulfates (FCS) from sea cucumbers. Per-O-acetylated 2-deoxy-2-N-phthalimido-D-glucopyranose was used as a key precursor for the preparation of all 2-acetamido-2-deoxy-D-galactopyranoside containing products. Attempts at 6-O-glycosylation of propyl 3-O-benzoyl-2-deoxy-2-N-phthalimido-D-galactoside by 2-O-benzyl-3,4-di-O-chloracetyl-L-fucosyl trichloracetimidate in the presence of TMSOTf gave a 1:1 mixture of the corresponding α- and β-isomeric disaccharides, while the use of structurally related fucosyl bromide donor with promotion by Bu 4 NBr led to the formation of desired α-isomeric disaccharide exclusively. Selective removal of orthogonal O-protections permitted subsequent O-sulfation both at the GalNAc and Fuc units. Further removal of blocking groups yielded the target products which were systematically studied by 1 H and 13 C NMR spectroscopy in order to determine the spectral effects of O-sulfation and α-L-fucosylation needed for the development of computer assisted structural analysis of natural FCS. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The Effect of Sodium Hyaluronate plus Sodium Chondroitin Sulfate Solution on Peritendinous Adhesion and Tendon Healing: An Experimental Study

    Directory of Open Access Journals (Sweden)

    Hacı Bayram Tosun

    2016-06-01

    Full Text Available Background: Adhesion formation following tendon injury is a serious clinical problem. Aims: In this experimental study, the effects of the combination of sodium hyaluronate (HA and chondroitin sulfate (CS on peritendinous adhesion and tendon healing were evaluated. Study Design: Animal experimentation. Methods: Twenty-one mature Sprague Dawley male rats were randomly divided into three equal groups. The rats’ Achilles tendons were cut and repaired with a modified Kessler technique. About 0.25 and 0.50 mL of the HA and CS (HA+CS combination were injected subcutaneously into the repair site of the rats in groups 1 and 2, respectively, on days 0, 3, 7, and 10. The subjects in group 3 were used as the control group. At 6 weeks, all rats were euthanized. The tenotomy site was examined macroscopically in all animal subjects. Four samples were assigned to the histopathological examination group, and the others were assigned to the biomechanical assessment group. Results: Inflammation and adhesion in both treatment groups were observed at a lower rate than in the control group. The collagen filaments in both treatment groups were regular and the number was low when compared to the control group. However, there was no statistically significant difference between group 1 and the control group. The quantity, quality, and grade of the adhesions were statistically significantly lower in group 2 when compared with the other groups. The mean maximum stress strength in group 2 was statistically significantly higher than that in group 1 and the control group. Conclusion: Local administration of the HA+CS combination solution is a valid tool for preventing peritendinous adhesion after extrasynovial tendon repair such as Achilles tendon, and is a treatment option in such cases.

  4. Fucosylated chondroitin sulfates from the body wall of the sea cucumber Holothuria forskali: conformation, selectin binding, and biological activity.

    Science.gov (United States)

    Panagos, Charalampos G; Thomson, Derek S; Moss, Claire; Hughes, Adam D; Kelly, Maeve S; Liu, Yan; Chai, Wengang; Venkatasamy, Radhakrishnan; Spina, Domenico; Page, Clive P; Hogwood, John; Woods, Robert J; Mulloy, Barbara; Bavington, Charlie D; Uhrín, Dušan

    2014-10-10

    Fucosylated chondroitin sulfate (fCS) extracted from the sea cucumber Holothuria forskali is composed of the following repeating trisaccharide unit: → 3)GalNAcβ4,6S(1 → 4) [FucαX(1 → 3)]GlcAβ(1 →, where X stands for different sulfation patterns of fucose (X = 3,4S (46%), 2,4S (39%), and 4S (15%)). As revealed by NMR and molecular dynamics simulations, the fCS repeating unit adopts a conformation similar to that of the Le(x) blood group determinant, bringing several sulfate groups into close proximity and creating large negative patches distributed along the helical skeleton of the CS backbone. This may explain the high affinity of fCS oligosaccharides for L- and P-selectins as determined by microarray binding of fCS oligosaccharides prepared by Cu(2+)-catalyzed Fenton-type and photochemical depolymerization. No binding to E-selectin was observed. fCS poly- and oligosaccharides display low cytotoxicity in vitro, inhibit human neutrophil elastase activity, and inhibit the migration of neutrophils through an endothelial cell layer in vitro. Although the polysaccharide showed some anti-coagulant activity, small oligosaccharide fCS fragments had much reduced anticoagulant properties, with activity mainly via heparin cofactor II. The fCS polysaccharides showed prekallikrein activation comparable with dextran sulfate, whereas the fCS oligosaccharides caused almost no effect. The H. forskali fCS oligosaccharides were also tested in a mouse peritoneal inflammation model, where they caused a reduction in neutrophil infiltration. Overall, the data presented support the action of fCS as an inhibitor of selectin interactions, which play vital roles in inflammation and metastasis progression. Future studies of fCS-selectin interaction using fCS fragments or their mimetics may open new avenues for therapeutic intervention. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Restaino, Odile Francesca, E-mail: odilefrancesca.restaino@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Finamore, Rosario, E-mail: rosario.finamore@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Diana, Paola, E-mail: paola.diana@unina2.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Marseglia, Mariacarmela, E-mail: marimars84@hotmail.it [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Vitiello, Mario, E-mail: mariovitiello.ita@gmail.com [Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania-L.Vanvitelli, ex Second University of Naples, Via De Crecchio 7, 80138, Naples (Italy); Casillo, Angela, E-mail: angela.casillo@unina.it [Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); Bedini, Emiliano, E-mail: emiliano.bedini@unina.it [Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); Parrilli, Michelangelo, E-mail: michelangelo.parrilli@unina.it [Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126, Naples (Italy); and others

    2017-03-15

    Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core. - Highlights: • A multi-analytical approach was set up, for the first time, for the determination of the residual keratan sulfate

  6. Sulfation and cation effects on the conformational properties of the glycan backbone of chondroitin sulfate disaccharides.

    Science.gov (United States)

    Faller, Christina E; Guvench, Olgun

    2015-05-21

    Chondroitin sulfate (CS) is one of several glycosaminoglycans that are major components of proteoglycans. A linear polymer consisting of repeats of the disaccharide -4GlcAβ1-3GalNAcβ1-, CS undergoes differential sulfation resulting in five unique sulfation patterns. Because of the dimer repeat, the CS glycosidic "backbone" has two distinct sets of conformational degrees of freedom defined by pairs of dihedral angles: (ϕ1, ψ1) about the β1-3 glycosidic linkage and (ϕ2, ψ2) about the β1-4 glycosidic linkage. Differential sulfation and the possibility of cation binding, combined with the conformational flexibility and biological diversity of CS, complicate experimental efforts to understand CS three-dimensional structures at atomic resolution. Therefore, all-atom explicit-solvent molecular dynamics simulations with Adaptive Biasing Force sampling of the CS backbone were applied to obtain high-resolution, high-precision free energies of CS disaccharides as a function of all possible backbone geometries. All 10 disaccharides (β1-3 vs β1-4 linkage × five different sulfation patterns) were studied; additionally, ion effects were investigated by considering each disaccharide in the presence of either neutralizing sodium or calcium cations. GlcAβ1-3GalNAc disaccharides have a single, broad, thermodynamically important free-energy minimum, whereas GalNAcβ1-4GlcA disaccharides have two such minima. Calcium cations but not sodium cations bind to the disaccharides, and binding is primarily to the GlcA -COO(-) moiety as opposed to sulfate groups. This binding alters the glycan backbone thermodynamics in instances where a calcium cation bound to -COO(-) can act to bridge and stabilize an interaction with an adjacent sulfate group, whereas, in the absence of this cation, the proximity of a sulfate group to -COO(-) results in two like charges being both desolvated and placed adjacent to each other and is found to be destabilizing. In addition to providing information

  7. A multi-analytical approach to better assess the keratan sulfate contamination in animal origin chondroitin sulfate

    International Nuclear Information System (INIS)

    Restaino, Odile Francesca; Finamore, Rosario; Diana, Paola; Marseglia, Mariacarmela; Vitiello, Mario; Casillo, Angela; Bedini, Emiliano; Parrilli, Michelangelo

    2017-01-01

    Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core. - Highlights: • A multi-analytical approach was set up, for the first time, for the determination of the residual keratan sulfate

  8. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin

    DEFF Research Database (Denmark)

    Maccarana, M.; Kalamajski, S.; Kongsgaard, M.

    2009-01-01

    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks...... of adjacent iduronic acids are greatly decreased in skin decorin and biglycan chondroitin/dermatan sulfate, along with a parallel decrease in iduronic-2-O-sulfated-galactosamine-4-O-sulfated structures. Both iduronic acid blocks and iduronic acids surrounded by glucuronic acids are also decreased in versican......-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found...

  9. Efficacy and safety of chondroitin sulfate/xanthan gum versus polyethylene glycol/propylene glycol/hydroxypropyl guar in patients with dry eye.

    Science.gov (United States)

    Llamas-Moreno, Juan Francisco; Baiza-Durán, Leopoldo Martín; Saucedo-Rodríguez, Laura Ray; Alaníz-De la O, José Félix

    2013-01-01

    To evaluate the efficacy and safety of two ophthalmic solutions in patients with mild to moderate dry eye. We performed a prospective, 2-month-long, randomized, double-blind, single-center, parallel clinical trial to compare the efficacy and safety of two ophthalmic solutions for dry eye treatment. Patients were randomly assigned to one of the two treatment groups, study group or active-control group, and received one drop four times a day. The primary efficacy endpoint was to extend the tear film break-up time (TBUT) after 2 months of treatment. The Ocular Surface Disease Index (OSDI) was also evaluated. Safety measures were assessed by the presence of adverse events. A total of 28 patients with mild to moderate dry eye were included in the per protocol analysis. TBUT was similar between groups at baseline (chondroitin sulfate and xanthan gum [CS/XG] group, 5.2 ± 2.3; Systane(®) group, 4.7 ± 2.6; P = 0.488), after 2 months of treatment, TBUT was still similar in both groups (CS/XG group, 6.1 ± 2.5; Systane(®) group, 7.3 ± 2.5; P = 0.088). Baseline OSDI was similar between the groups (CS/XG group, 18.8 ± 5.3; Systane(®) group, 19.8 ± 7.1; P = 0.810), but after 2 months of treatment, the OSDI was significantly lower in the CS/XG group (6.7 ± 5.7 versus 10.8 ± 6.4; P = 0.049). An adverse event was present in the CS/XG group, but it was not related to the treatment. In this population of patients with mild to moderate dry eye, treatment with CS/XG was as effective as treatment with Systane(®) with regard to TBUT; nevertheless, treatment in the CS/XG group was more effective at diminishing OSDI.

  10. The chondroitin sulfate/dermatan sulfate 4-O-endosulfatase from marine bacterium Vibrio sp FC509 is a dimeric species: Biophysical characterization of an endosulfatase.

    Science.gov (United States)

    Neira, José L; Medina-Carmona, Encarnación; Hernández-Cifre, José G; Montoliu-Gaya, Laia; Cámara-Artigás, Ana; Seffouh, Ilham; Gonnet, Florence; Daniel, Régis; Villegas, Sandra; de la Torre, José García; Pey, Angel L; Li, Fuchuan

    2016-12-01

    Sulfatases catalyze hydrolysis of sulfate groups. They have a key role in regulating the sulfation states that determine the function of several scaffold molecules. Currently, there are no studies of the conformational stability of endosulfatases. In this work, we describe the structural features and conformational stability of a 4-O-endosulfatase (EndoV) from a marine bacterium, which removes specifically the 4-O-sulfate from chondroitin sulfate/dermatan sulfate. For that purpose, we have used several biophysical techniques, namely, fluorescence, circular dichroism (CD), FTIR spectroscopy, analytical ultracentrifugation (AUC), differential scanning calorimetry (DSC), mass spectrometry (MS), dynamic light scattering (DLS) and size exclusion chromatography (SEC). The protein was a dimer with an elongated shape. EndoV acquired a native-like structure in a narrow pH range (7.0-9.0); it is within this range where the protein shows the maximum of enzymatic activity. The dimerization did not involve the presence of disulphide-bridges as suggested by AUC, SEC and DLS experiments in the presence of β-mercaptoethanol (β-ME). EndoV secondary structure is formed by a mixture of α and β-sheet topology, as judged by deconvolution of CD and FTIR spectra. Thermal and chemical denaturations showed irreversibility and the former indicates that protein did not unfold completely during heating. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  11. An optimized nanoparticle delivery system based on chitosan and chondroitin sulfate molecules reduces the toxicity of amphotericin B and is effective in treating tegumentary leishmaniasis

    Directory of Open Access Journals (Sweden)

    Ribeiro TG

    2014-11-01

    Full Text Available Tatiana G Ribeiro,1 Juçara R Franca,1 Leonardo L Fuscaldi,1 Mara L Santos,2 Mariana C Duarte,3 Paula S Lage,3 Vivian T Martins,4 Lourena E Costa,3 Simone OA Fernandes,1,5 Valbert N Cardoso,1,5 Rachel O Castilho,1,6 Manuel Soto,7 Carlos AP Tavares,4 André AG Faraco,1,6 Eduardo AF Coelho,3,8,* Miguel A Chávez-Fumagalli3,* 1Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, 2Departamento de Morfologia, Instituto de Ciências Biológicas, 3Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, 4Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, 5Departamento de Análises Clínicas e Toxicológicas, 6Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; 7Centro de Biología Molecular Severo Ochoa (CSIC-UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain; 8Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil *These authors contributed equally to this work Abstract: Amphotericin B (AmpB is active against leishmaniasis, but its use is hampered due to its high toxicity observed in patients. In this study, a nanoparticles-delivery system for AmpB (NQC-AmpB, containing chitosan and chondroitin sulfate molecules, was evaluated in BALB/c mice against Leishmania amazonensis. An in vivo biodistribution study, including biochemical and toxicological evaluations, was performed to evaluate the toxicity of AmpB. Nanoparticles were radiolabeled with technetium-99m and injected in mice. The products presented a similar biodistribution in the liver, spleen, and kidneys of the animals. Free AmpB induced alterations in the body weight of the mice, which, in the biochemical analysis, indicated hepatic and renal injury, as well as morphological damage to the kidneys of

  12. Dermatan Sulfate Epimerase 1-Deficient Mice Have Reduced Content and Changed Distribution of Iduronic Acids in Dermatan Sulfate and an Altered Collagen Structure in Skin

    DEFF Research Database (Denmark)

    Maccarana, M.; Kalamajski, S.; Kongsgaard, M.

    2009-01-01

    Dermatan sulfate epimerase 1 (DS-epi1) and DS-epi2 convert glucuronic acid to iduronic acid in chondroitin/dermatan sulfate biosynthesis. Here we report on the generation of DS-epi1-null mice and the resulting alterations in the chondroitin/dermatan polysaccharide chains. The numbers of long blocks......-derived chains. DS-epi1-deficient mice are smaller than their wild-type littermates but otherwise have no gross macroscopic alterations. The lack of DS-epi1 affects the chondroitin/dermatan sulfate in many proteoglycans, and the consequences for skin collagen structure were initially analyzed. We found...... that the skin collagen architecture was altered, and electron microscopy showed that the DS-epi1-null fibrils have a larger diameter than the wild-type fibrils. The altered chondroitin/dermatan sulfate chains carried by decorin in skin are likely to affect collagen fibril formation and reduce the tensile...

  13. Chondroitinase C Selectively Degrades Chondroitin Sulfate Glycosaminoglycans that Inhibit Axonal Growth within the Endoneurium of Peripheral Nerve.

    Directory of Open Access Journals (Sweden)

    James B Graham

    Full Text Available The success of peripheral nerve regeneration is highly dependent on the regrowth of axons within the endoneurial basal lamina tubes that promote target-oriented pathfinding and appropriate reinnervation. Restoration of nerve continuity at this structural level after nerve transection injury by direct repair and nerve grafting remains a major surgical challenge. Recently, biological approaches that alter the balance of growth inhibitors and promoters in nerve have shown promise to improve appropriate axonal regeneration and recovery of peripheral nerve function. Chondroitin sulfate proteoglycans (CSPGs are known inhibitors of axonal growth. This growth inhibition is mainly associated with a CSPG's glycosaminoglycan chains. Enzymatic degradation of these chains with chondroitinase eliminates this inhibitory activity and, when applied in vivo, can improve the outcome of nerve repair. To date, these encouraging findings were obtained with chondroitinase ABC (a pan-specific chondroitinase. The aim of this study was to examine the distribution of CSPG subtypes in rodent, rabbit, and human peripheral nerve and to test more selective biological enzymatic approaches to improve appropriate axonal growth within the endoneurium and minimize aberrant growth. Here we provide evidence that the endoneurium, but not the surrounding epineurium, is rich in CSPGs that have glycosaminoglycan chains readily degraded by chondroitinase C. Biochemical studies indicate that chondroitinase C has degradation specificity for 6-sulfated glycosaminoglycans found in peripheral nerve. We found that chondroitinase C degrades and inactivates inhibitory CSPGs within the endoneurium but not so much in the surrounding nerve compartments. Cryoculture bioassays (neurons grown on tissue sections show that chondroitinase C selectively and significantly enhanced neuritic growth associated with the endoneurial basal laminae without changing growth-inhibiting properties of the surrounding

  14. Glycosaminoglycan composition of PC12 pheochromocytoma cells: a comparison with PC12D cells, a new subline of PC12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Katoh-Semba, R.; Oohira, A.; Sano, M.; Watanabe, K.; Kitajima, S.; Kashiwamata, S.

    1989-03-01

    PC12D cells, a new subline of conventional PC12 cells, respond not only to nerve growth factor but also to cyclic AMP by extending their neurites. These cells are flat in shape and are similar in appearance to PC12 cells that have been treated with nerve growth factor for a few days. In both cell lines, we have characterized the glycosaminoglycans, the polysaccharide moieties of proteoglycans, which are believed to play an important role in cell adhesion and in cell morphology. Under the present culture conditions, only chondroitin sulfate was detected in the media from PC12 and PC12D cells, whereas both chondroitin sulfate and heparan sulfate were found in the cell layers. The levels of cell-associated heparan sulfate and chondroitin sulfate were about twofold and fourfold higher in PC12D cells than in PC12 cells, respectively. Compared to PC12 cells, the amounts of (/sup 35/S)sulfate incorporated for 48 h into chondroitin sulfate were twofold lower but those into heparan sulfate were 35% higher in PC12D cells. The amount of chondroitin sulfate released by PC12D cells into the medium was about a half of that released by PC12 cells. The ratio of (/sup 35/S)sulfate-labeled heparan sulfate to chondroitin sulfate was 6.2 in PC12D cells and 2.2 in PC12 cells. These results suggest that there may be some correlation between the increase in content of glycosaminoglycans and the change in cell morphology, which is followed by neurite outgrowth.

  15. Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation.

    Directory of Open Access Journals (Sweden)

    Asya Rolls

    2008-08-01

    Full Text Available BACKGROUND: Chondroitin sulfate proteoglycan (CSPG is a major component of the glial scar. It is considered to be a major obstacle for central nervous system (CNS recovery after injury, especially in light of its well-known activity in limiting axonal growth. Therefore, its degradation has become a key therapeutic goal in the field of CNS regeneration. Yet, the abundant de novo synthesis of CSPG in response to CNS injury is puzzling. This apparent dichotomy led us to hypothesize that CSPG plays a beneficial role in the repair process, which might have been previously overlooked because of nonoptimal regulation of its levels. This hypothesis is tested in the present study. METHODS AND FINDINGS: We inflicted spinal cord injury in adult mice and examined the effects of CSPG on the recovery process. We used xyloside to inhibit CSPG formation at different time points after the injury and analyzed the phenotype acquired by the microglia/macrophages in the lesion site. To distinguish between the resident microglia and infiltrating monocytes, we used chimeric mice whose bone marrow-derived myeloid cells expressed GFP. We found that CSPG plays a key role during the acute recovery stage after spinal cord injury in mice. Inhibition of CSPG synthesis immediately after injury impaired functional motor recovery and increased tissue loss. Using the chimeric mice we found that the immediate inhibition of CSPG production caused a dramatic effect on the spatial organization of the infiltrating myeloid cells around the lesion site, decreased insulin-like growth factor 1 (IGF-1 production by microglia/macrophages, and increased tumor necrosis factor alpha (TNF-alpha levels. In contrast, delayed inhibition, allowing CSPG synthesis during the first 2 d following injury, with subsequent inhibition, improved recovery. Using in vitro studies, we showed that CSPG directly activated microglia/macrophages via the CD44 receptor and modulated neurotrophic factor secretion by

  16. Preclinical evaluation of (99m)Tc labeled chondroitin sulfate for monitoring of cartilage degeneration in osteoarthritis.

    Science.gov (United States)

    Sobal, Grazyna; Velusamy, Kavitha; Kosik, Siegfried; Menzel, Johannes; Hacker, Marcus; Pagitz, Maximilian

    2016-06-01

    In previous in-vitro and ex-vivo studies we proved the specific uptake of (99m)Tc radiolabeled chondroitin sulfate (CS) in human articular cartilage. As a logical next step for the clinical use for imaging osteoarthritis we investigated in-vivo uptake of (99m)TcCS in dogs. The radiolabeling of CS Condrosulf (IBSA, Lugano, Switzerland) was performed using 25mg of CS and 20-40MBq/kg body weight of (99m)Tc by means of the tin method. In-vivo uptake of (99m)TcCS was evaluated in dogs (n=12, castrated males, 4-9years, with 15-51kg body weight). 6 healthy dogs served as controls and 6 with clinical and radiological signs of osteoarthritis in the carpal, elbow, and tarsal joint were examined. The tracer was i.v. injected into the external cephalic vein. The uptake was monitored after 2, 4, 6 and 24h in healthy and osteoarthritic dogs using a planar gamma camera by regional planar or whole body ventral and dorsal acquisition. For whole body scintigraphy animals were under general anesthesia, for planar under sedation only. In healthy control dogs we did not detect any specific uptake of (99m)TcCS in the cartilage. In contrast, in the diseased dogs suffering from osteoarthritis a significant, specific, persistent uptake between 4 and 6h in tarsal, carpal and cubital joints was documented. Median target (joint) to background (mid antebrachium) ratio (T/B) in the OA joints after 4, 6, and 24h was significantly higher than in healthy controls. Target to background ratio using soft tissue as a background (T/S) a similar significantly higher than in healthy controls. In all osteoarthritic joints we found a significant positive correlation (r=0.8, n=20) between grade of disease (I-III) and T/B. When matching radiographic (X ray) changes in osteoarthritic joints (grade II and III) we found also a maximal uptake of (99m)TcCS at the specific anatomical site of highest cartilage degeneration. None of the dogs experienced any side effects. These results suggest that (99m)TcCS might

  17. Highly sulfated hexasaccharide sequences isolated from chondroitin sulfate of shark fin cartilage: insights into the sugar sequences with bioactivities.

    Science.gov (United States)

    Mizumoto, Shuji; Murakoshi, Saori; Kalayanamitra, Kittiwan; Deepa, Sarama Sathyaseelan; Fukui, Shigeyuki; Kongtawelert, Prachya; Yamada, Shuhei; Sugahara, Kazuyuki

    2013-02-01

    Chondroitin sulfate (CS) chains regulate the development of the central nervous system in vertebrates and are linear polysaccharides consisting of variously sulfated repeating disaccharides, [-4GlcUAβ1-3GalNAcβ1-](n), where GlcUA and GalNAc represent D-glucuronic acid and N-acetyl-D-galactosamine, respectively. CS chains containing D-disaccharide units [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)] are involved in the development of cerebellar Purkinje cells and neurite outgrowth-promoting activity through interaction with a neurotrophic factor, pleiotrophin, resulting in the regulation of signaling. In this study, to obtain further structural information on the CS chains containing d-disaccharide units involved in brain development, oligosaccharides containing D-units were isolated from a shark fin cartilage. Seven novel hexasaccharide sequences, ΔO-D-D, ΔA-D-D, ΔC-D-D, ΔE-A-D, ΔD-D-C, ΔE-D-D and ΔA-B-D, in addition to three previously reported sequences, ΔC-A-D, ΔC-D-C and ΔA-D-A, were isolated from a CS preparation of shark fin cartilage after exhaustive digestion with chondroitinase AC-I, which cannot act on the galactosaminidic linkages bound to D-units. The symbol Δ stands for a 4,5-unsaturated bond of uronic acids, whereas A, B, C, D, E and O represent [GlcUA-GalNAc(4-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(4-O-sulfate)], [GlcUA-GalNAc(6-O-sulfate)], [GlcUA(2-O-sulfate)-GalNAc(6-O-sulfate)], [GlcUA-GalNAc(4-O-, 6-O-sulfate)] and [GlcUA-GalNAc], respectively. In binding studies using an anti-CS monoclonal antibody, MO-225, the epitopes of which are involved in cerebellar development in mammals, novel epitope structures, ΔA-D-A, ΔA-D-D and ΔA-B-D, were revealed. Hexasaccharides containing two consecutive D-units or a B-unit will be useful for the structural and functional analyses of CS chains particularly in the neuroglycobiological fields.

  18. Mating in the Closest Living Relatives of Animals Is Induced by a Bacterial Chondroitinase.

    Science.gov (United States)

    Woznica, Arielle; Gerdt, Joseph P; Hulett, Ryan E; Clardy, Jon; King, Nicole

    2017-09-07

    We serendipitously discovered that the marine bacterium Vibrio fischeri induces sexual reproduction in one of the closest living relatives of animals, the choanoflagellate Salpingoeca rosetta. Although bacteria influence everything from nutrition and metabolism to cell biology and development in eukaryotes, bacterial regulation of eukaryotic mating was unexpected. Here, we show that a single V. fischeri protein, the previously uncharacterized EroS, fully recapitulates the aphrodisiac-like activity of live V. fischeri. EroS is a chondroitin lyase; although its substrate, chondroitin sulfate, was previously thought to be an animal synapomorphy, we demonstrate that S. rosetta produces chondroitin sulfate and thus extend the ancestry of this important glycosaminoglycan to the premetazoan era. Finally, we show that V. fischeri, purified EroS, and other bacterial chondroitin lyases induce S. rosetta mating at environmentally relevant concentrations, suggesting that bacteria likely regulate choanoflagellate mating in nature. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effects of chondroitin sulfate on brain response to painful stimulation in knee osteoarthritis patients. A randomized, double-blind, placebo-controlled functional magnetic resonance imaging study.

    Science.gov (United States)

    Monfort, Jordi; Pujol, Jesús; Contreras-Rodríguez, Oren; Llorente-Onaindia, Jone; López-Solà, Marina; Blanco-Hinojo, Laura; Vergés, Josep; Herrero, Marta; Sánchez, Laura; Ortiz, Hector; Montañés, Francisco; Deus, Joan; Benito, Pere

    2017-06-21

    Knee osteoarthritis is causing pain and functional disability. One of the inherent problems with efficacy assessment of pain medication was the lack of objective pain measurements, but functional magnetic resonance imaging (fMRI) has emerged as a useful means to objectify brain response to painful stimulation. We have investigated the effect of chondroitin sulfate (CS) on brain response to knee painful stimulation in patients with knee osteoarthritis using fMRI. Twenty-two patients received CS (800mg/day) and 27 patients placebo, and were assessed at baseline and after 4 months of treatment. Two fMRI tests were conducted in each session by applying painful pressure on the knee interline and on the patella surface. The outcome measurement was attenuation of the response evoked by knee painful stimulation in the brain. fMRI of patella pain showed significantly greater activation reduction under CS compared with placebo in the region of the mesencephalic periaquecductal gray. The CS group, additionally showed pre/post-treatment activation reduction in the cortical representation of the leg. No effects of CS were detected using the interline pressure test. fMRI was sensitive to objectify CS effects on brain response to painful pressure on patellofemoral cartilage, which is consistent with the known CS action on chondrocyte regeneration. The current work yields further support to the utility of fMRI to objectify treatment effects on osteoarthritis pain. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  20. Chondroitin sulfate-polyethylenimine copolymer-coated superparamagnetic iron oxide nanoparticles as an efficient magneto-gene carrier for microRNA-encoding plasmid DNA delivery

    Science.gov (United States)

    Lo, Yu-Lun; Chou, Han-Lin; Liao, Zi-Xian; Huang, Shih-Jer; Ke, Jyun-Han; Liu, Yu-Sheng; Chiu, Chien-Chih; Wang, Li-Fang

    2015-04-01

    MicroRNA-128 (miR-128) is an attractive therapeutic molecule with powerful glioblastoma regulation properties. However, miR-128 lacks biological stability and leads to poor delivery efficacy in clinical applications. In our previous study, we demonstrated two effective transgene carriers, including polyethylenimine (PEI)-decorated superparamagnetic iron oxide nanoparticles (SPIONs) as well as chemically-conjugated chondroitin sulfate-PEI copolymers (CPs). In this contribution, we report optimized conditions for coating CPs onto the surfaces of SPIONs, forming CPIOs, for magneto-gene delivery systems. The optimized weight ratio of the CPs and SPIONs is 2 : 1, which resulted in the formation of a stable particle as a good transgene carrier. The hydrodynamic diameter of the CPIOs is ~136 nm. The gel electrophoresis results demonstrate that the weight ratio of CPIO/DNA required to completely encapsulate pDNA is >=3. The in vitro tests of CPIO/DNA were done in 293 T, CRL5802, and U87-MG cells in the presence and absence of an external magnetic field. The magnetofection efficiency of CPIO/DNA was measured in the three cell lines with or without fetal bovine serum (FBS). CPIO/DNA exhibited remarkably improved gene expression in the presence of the magnetic field and 10% FBS as compared with a gold non-viral standard, PEI/DNA, and a commercial magnetofection reagent, PolyMag/DNA. In addition, CPIO/DNA showed less cytotoxicity than PEI/DNA and PolyMag/DNA against the three cell lines. The transfection efficiency of the magnetoplex improved significantly with an assisted magnetic field. In miR-128 delivery, a microRNA plate array and fluorescence in situ hybridization were used to demonstrate that CPIO/pMIRNA-128 indeed expresses more miR-128 with the assisted magnetic field than without. In a biodistribution test, CPIO/Cy5-DNA showed higher accumulation at the tumor site where an external magnet is placed nearby.MicroRNA-128 (miR-128) is an attractive therapeutic molecule

  1. Determination of thermodynamic parameters for complexation of calcium and magnesium with chondroitin sulfate isomers using isothermal titration calorimetry: Implications for calcium kidney-stone research

    Science.gov (United States)

    Rodgers, Allen L.; Jackson, Graham E.

    2017-04-01

    Chondroitin sulfate (CS) occurs in human urine. It has several potential binding sites for calcium and as such may play an inhibitory role in calcium oxalate and calcium phosphate (kidney stone disease by reducing the supersaturation (SS) and crystallization of these salts. Urinary magnesium is also a role player in determining speciation in stone forming processes. This study was undertaken to determine the thermodynamic parameters for binding of the disaccharide unit of two different CS isomers with calcium and magnesium. These included the binding constant K. Experiments were performed using an isothermal titration calorimeter (ITC) at 3 different pH levels in the physiological range in human urine. Data showed that interactions between the CS isomers and calcium and magnesium occur via one binding site, thought to be sulfate, and that log K values are 1.17-1.93 and 1.77-1.80 for these two metals respectively. Binding was significantly stronger in Mg-CS than in Ca-CS complexes and was found to be dependent on pH in the latter but not in the former. Furthermore, binding in Ca-CS complexes was dependent on the location of the sulfate binding site. This was not the case in the Mg-CS complexes. Interactions were shown to be entropy driven and enthalpy unfavourable. These findings can be used in computational modeling studies to predict the effects of the calcium and magnesium CS complexes on the speciation of calcium and the SS of calcium salts in real urine samples.

  2. Fucosylated chondroitin sulfate oligosaccharides exert anticoagulant activity by targeting at intrinsic tenase complex with low FXII activation: Importance of sulfation pattern and molecular size.

    Science.gov (United States)

    Li, Junhui; Li, Shan; Yan, Lufeng; Ding, Tian; Linhardt, Robert J; Yu, Yanlei; Liu, Xinyue; Liu, Donghong; Ye, Xingqian; Chen, Shiguo

    2017-10-20

    Fucosylated chondroitin sulfates (fCSs) are structurally unusual glycosaminoglycans isolated from sea cucumbers that exhibit potent anticoagulant activity. These fCSs were isolated from sea cucumber, Isostichopus badionotus and Pearsonothuria graeffei. Fenton reaction followed by gel filtration chromatography afforded fCS oligosaccharides, with different sulfation patterns identified by mass and NMR spectroscopy, and these were used to clarify the relationship between the structures and the anticoagulant activities of fCSs. In vitro activities were measured by activated partial thromboplastin time (APTT), thrombin time (TT), thrombin and factor Xa inhibition, and activation of FXII. The results showed that free radicals preferentially acted on GlcA residues affording oligosaccharides that were purified from both fCSs. The inhibition of thrombin and factor X activities, mediated through antithrombin III and heparin cofactor II of fCSs oligosaccharides were affected by their molecular weight and fucose branches. Oligosaccharides with different sulfation patterns of the fucose branching had a similar ability to inhibit the FXa by the intrinsic factor Xase (factor IXa-VIIIa complex). Oligosaccharides with 2,4-O-sulfo fucose branches from fCS-Ib showed higher activities than ones with 3,4-O-disulfo branches obtained from fCS-Pg. Furthermore, a heptasaccharide is the minimum size oligosaccharide required for anticoagulation and FXII activation. This activity was absent for fCS oligosaccharides smaller than nonasaccharides. Molecular size and fucose branch sulfation are important for anticoagulant activity and reduction of size can reverse the activation of FXII caused by native fCSs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Chondroitin Sulfate

    Science.gov (United States)

    ... caused by drugs used to treat breast cancer, acid reflux, high cholesterol, muscle soreness after exercise, a bladder ... not reduce muscle soreness after exercise in men. Acid reflux. When taken along with conventional treatments such as ...

  4. Mapping by monoclonal antibody detection of glycosaminoglycans in connective tissues

    DEFF Research Database (Denmark)

    Couchman, J R; Caterson, B; Christner, J E

    1984-01-01

    Chondroitin sulphate proteoglycans are widespread connective tissue components and chemical analysis of cartilage and other proteoglycans has demonstrated molecular speciation involving the degree and position of sulphation of the carbohydrate chains. This may, in turn, affect the properties...... of the glycosaminoglycan (GAG), particularly with respect to self-association and interactions with other extracellular matrix components. Interactions with specific molecules from different connective tissue types, such as the collagens and their associated glycoproteins, could be favoured by particular charge...... and dermatan sulphate. These provide novel opportunities to study the in vivo distribution of chondroitin sulphate proteoglycans. We demonstrate that chondroitin sulphates exhibit remarkable connective tissue specificity and furthermore provide evidence that some proteoglycans may predominantly carry only one...

  5. Self-assembly of the hydrogel polymer chain consisting of chitosan and chondroitin sulphate in the presence of theophylline;Propriedades de higrogeis constituidos de quitosana e sulfato decondroitina na presenca de teofilina intumescidos em diferentes pHs

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Lais C.; Piai, Juliana F.; Fajardo, Andre R.; Rubira, Adley F.; Muniz, Edvani C., E-mail: ecmuniz@uem.b [Universidade Estadual de Maringa (GMPC/UEM), PR (Brazil). Grupo de Materiais Polimericos e Compositos

    2009-07-01

    In this work, polyelectronic complex (PEC) consisting of two polysaccharides were developed. One is chitosan (QT), cationic polymer, produced by the chitin deacetylation and the other is chondroitin sulphate (CS), anionic polymer, extracted from bovine or porcine aorta. The PECs were prepared in the presence of theophylline (TEO) for evaluating the influence of this drug in the polymer chains reorganization, as well as, studying the mechanical properties and release of SC and TEO in aqueous solutions on different pH conditions. By the obtained results, it was observed that the 84QT/15SC/TEO (% in weight) hydrogel is pH responsive because the CS releasing is more effective at pH 8, while the release of the TEO is higher at pH 2. The hydrogel showed mechanical properties more resistant to pH 2, 8 and 10 and this was attributed to interactions between the polymer chains. Finally, the X-rays profile showed the presence of peaks associated to reorganization of the chains in the hydrogel is at times larger than the hydrogel in the absence of solute. (author)

  6. Structural characterization of proteoglycans produced by testicular peritubular cells and Sertoli cells

    International Nuclear Information System (INIS)

    Skinner, M.K.; Fritz, I.B.

    1985-01-01

    The structural characteristics of proteoglycans produced by seminiferous peritubular cells and by Sertoli cells are defined. Peritubular cells secrete two proteoglycans designated PC I and PC II. PC I is a high molecular mass protein containing chondroitin glycosaminoglycan (GAG) chains (maximum 70 kDa). PC II has a protein core of 45 kDa and also contains chondroitin GAG chains (maximum 70 kDa). Preliminary results imply that PC II may be a degraded or processed form of PC I. Sertoli cells secrete two different proteoglycans, designated SC I and SC II. SC I is a large protein containing both chondroitin (maximum 62 kDa) and heparin (maximum 15 kDa) GAG chains. Results obtained suggest that this novel proteoglycan contains both chondroitin and heparin GAG chains bound to the same core protein. SC II has a 50-kDa protein core and contains chondroitin (maximum 25 kDa) GAG chains. A proteoglycan obtained from extracts of Sertoli cells is described which contains heparin (maximum 48 kDa) GAG chains. In addition, Sertoli cells secrete a sulfoprotein, SC III, which is not a proteoglycan. The stimulation by follicle-stimulating hormone of the incorporation of [ 35 S]SO 2 ) -4 ) into moieties secreted by Sertoli cells is shown to represent an increased production or sulfation of SC III, and not an increased production or sulfation of proteoglycans. Results are discussed in relation to the possible functions of proteoglycans in the seminiferous tubule

  7. Comparison of the effects of sodium hyaluronate-chondroitin sulphate and corticosteroid in the treatment of lateral epicondylitis: a prospective randomized trial.

    Science.gov (United States)

    Tosun, Haci Bayram; Gumustas, Seyitali; Agir, Ismail; Uludag, Abuzer; Serbest, Sancar; Pepele, Demet; Ertem, Kadir

    2015-09-01

    Hyaluronic acid and glycosaminoglycans have shown positive effects in improving lateral epicondylitis and other tendinosis conditions. Therefore, we designed a prospective, randomized study to compare the effects of a combined sodium hyaluronate and chondroitin sulfate (HA + CS) injection versus a triamcinolone injection in the treatment of lateral epicondylitis. In total, 57 consecutive patients with clinically diagnosed lateral epicondylitis were divided randomly into two groups. In the HA + CS group, 25 patients received a single injection of a solution containing an HA + CS combination and prilocaine HCl, while the 32 patients in the triamcinolone group received a single injection of a solution of triamcinolone and prilocaine HCl. We evaluated the pain and function outcome measures using the Patient-Rated Tennis Elbow Evaluation (PRTEE) questionnaire at the beginning of the study, and 3 and 6 months after the injection. Additionally, the Minimum Clinically Important Difference values and percentage changes in the PRTEE subscale scores between the assessments were calculated. No serious adverse events were reported throughout the study. The mean pain and function scores for the HA + CS and triamcinolone groups had significantly improved at 3 months, but the mean function scores in the HA + CS group were statistically significantly better when compared to the triamcinolone group. At 6 months, both groups had significantly improved mean pain and function scores, compared to the baseline scores; however, the mean pain and function scores in the 6-month HA + CS treatment group were better than in the 6-month triamcinolone group. The relative change for the mean total score in the HA + CS group was much better when compared with the triamcinolone group, and the HA + CS treatment group showed clinically significant improvement when compared with triamcinolone group at 3 and 6 months. This study supports the idea that for a single injection treatment of patients with

  8. Identification of glycosaminoglycans using high-performance liquid chromatography on a hydroxyapatite column.

    Science.gov (United States)

    Narita, H; Takeda, Y; Takagaki, K; Nakamura, T; Harata, S; Endo, M

    1995-11-20

    Glycosaminoglycans (heparin, heparan sulfate, dermatan sulfate, chondroitin sulfate, and hyaluronic acid) were labeled with a fluorescent reagent, 2-aminopyridine. The fluoro-labeled glycosaminoglycans were subjected to high-performance liquid chromatography on a hydroxyapatite column. The binding property of each glycosaminoglycan to hydroxyapatite was different. The structural properties of glycosaminoglycans bound to hydroxyapatite were then investigated using chemical desulfated or enzymic depolymerized glycosaminoglycans. This revealed that the sulfate content and molecular weight of the glycosaminoglycans correlated with their binding properties to hydroxyapatite. Desulfated dermatan sulfate but not desulfated chondroitin 6-sulfate bound to the hydroxyapatite. These data indicate that iduronic acid residues of glycosaminoglycans are important for the binding property. The method described which uses hydroxyapatite columns facilitates rapid separation and microanalysis of the glycosaminoglycans, especially dermatan sulfate and chondroitin sulfate.

  9. Age-related changes in the incorporation of [35S]sulfate into two proteoglycan populations from human cartilage

    International Nuclear Information System (INIS)

    Triphaus, G.F.; Schmidt, A.; Buddecke, E.

    1980-01-01

    From human hyaline cartilage (processus xyphoid) preincubated in the presence of [ 35 S] sulfate, proteoglycans were extracted by 4M guanidinium chloride and divided into 6 age groups. Fractionation of proteoglycans by gel filtration under dissociative conditions resulted in two proteoglycan fractions (a and b) with different hydrodynamic volumes. The higher molecular weight fraction a contained chondroitin sulfate, the fraction b keratan sulfate as predominant glycosaminoglycan, the chondroitin sulfate/keratan sulfate ratio decreasing with increasing age in either fraction. The relative portion of proteoglycan fraction b and its 35 S-labelling increased with increasing age. From the specific 35 S radioactivities of the chondroitin sulfate and keratan sulfate preparations, the occurrence of two independent proteoglycan populations is suggested. A precursorproduct relationship between proteoglycan fraction a and b could be excluded. (orig.)

  10. Age-related changes in the incorporation of (/sup 35/S)sulfate into two proteoglycan populations from human cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Triphaus, G.F.; Schmidt, A.; Buddecke, E.

    1980-12-01

    From human hyaline cartilage (processus xyphoid) preincubated in the presence of (/sup 35/S) sulfate, proteoglycans were extracted by 4M guanidinium chloride and divided into 6 age groups. Fractionation of proteoglycans by gel filtration under dissociative conditions resulted in two proteoglycan fractions (a and b) with different hydrodynamic volumes. The higher molecular weight fraction a contained chondroitin sulfate, the fraction b keratan sulfate as predominant glycosaminoglycan, the chondroitin sulfate/keratan sulfate ratio decreasing with increasing age in either fraction. The relative portion of proteoglycan fraction b and its /sup 35/S-labelling increased with increasing age. From the specific /sup 35/S radioactivities of the chondroitin sulfate and keratan sulfate preparations, the occurrence of two independent proteoglycan populations is suggested. A precursorproduct relationship between proteoglycan fraction a and b could be excluded.

  11. Differentiation of EL4 lymphoma cells by tumoral environment is associated with inappropriate expression of the large chondroitin sulfate proteoglycan PG-M and the tumor-associated antigen HTgp-175.

    Science.gov (United States)

    Rottiers, P; Verfaillie, T; Contreras, R; Revets, H; Desmedt, M; Dooms, H; Fiers, W; Grooten, J

    1998-11-09

    Progression to malignancy of transformed cells involves complex genetic alterations and aberrant gene expression patterns. While aberrant gene expression is often caused by alterations in individual genes, the contribution of the tumoral environment to the triggering of this gene expression is less well established. The stable but heterogeneous expression in cultured EL4/13 cells of a novel tumor-associated antigen, designated as HTgp-175, was chosen for the investigation of gene expression during tumor formation. Homogeneously HTgp-175-negative EL4/13 cells, isolated by cell sorting or obtained by subcloning, acquired HTgp-175 expression as a result of tumor formation. The tumorigenicity of HTgp-175-negative vs. HTgp-175-positive EL4 variants was identical, indicating that induction but not selection accounted for the phenotypic switch from HTgp-175-negative to HTgp-175-positive. Although mutagenesis experiments showed that the protein was not essential for tumor establishment, tumor-derived cells showed increased malignancy, linking HTgp-175 expression with genetic changes accompanying tumor progression. This novel gene expression was not an isolated event, since it was accompanied by ectopic expression of the large chondroitin sulfate proteoglycan PG-M and of normal differentiation antigens. We conclude that signals derived from the tumoral microenvironment contribute significantly to the aberrant gene expression pattern of malignant cells, apparently by fortuitous activation of differentiation processes and cause expression of novel differentiation antigens as well as of inappropriate tumor-associated and ectopic antigens.

  12. Uptake studies with chondrotropic 99mTc-chondroitin sulfate in articular cartilage. Implications for imaging osteoarthritis in the knee

    International Nuclear Information System (INIS)

    Sobal, Grazyna; Dorotka, Ronald; Menzel, Johannes; Sinzinger, Helmut

    2013-01-01

    Chondroitin sulfate (CS) is an endogenous component of extracellular matrix in the cartilage and can be valuable for imaging of cartilage degeneration after radiolabeling. Data monitoring the uptake of 99m TcCS by human cartilage are rare. Radiolabeling was performed by 99m TcO 4 − /tin method at pH 5.0 in 0.5 M sodium acetate. For uptake studies human articular cartilage (n = 4, 65–79a) derived from individuals undergoing knee replacement (pieces of 3–5 mg wet weight), or frozen tissue sections (5 μ) for autoradiography (10 μCi) were used. The uptake was monitored from 10 min up to 96 h to achieve saturation. As the commercially available drug Condrosulf (IBSA, Lugano) contains Mg-stearate (0.25%) as additive (to improve its gastrointestinal resorption), we investigated the uptake ± additive. The washout of the tracer was examined by tissue incubation after uptake experiments (3 h and 24 h) with PBS-buffer for 10 min to 3 h. Using human articular cartilage the maximal uptake of 99m TcCS (specific activity of 4.1–6.1 Ci/mmol) was continuously increasing with time amounting to a maximum of 53.2% ± 3.2% with additive, versus 39.4% ± 2.3%, without additive, at saturation. Additive increased the resorption of the drug and consecutively its uptake. The washout of the tracer from cartilage after 3 h uptake amounted to 1.5% ± 0.2% with additive, versus 2.6% ± 0.5%, without. After 24 h washout was lower amounting to 1.1% ± 0.1% versus 1.75% ± 0.15%, respectively. Autoradiography revealed also a continuous increase in uptake of 99m TcCS with time. After 10 min of incubation the uptake increase was proportional to the incubation time, reaching the maximum at 48–72 h. Enhanced uptake at the surface (superficial zone) as compared to the subchondral part (deep zone) of slices, was observed. The non-specific uptake in the presence of 50-fold excess of cold CS was time-dependent up to a maximum of 15% (tissue) and 10% (autoradiography), at saturation. The

  13. Chinese hamster ovary cell mutants defective in heparan sulfate biosynthesis

    International Nuclear Information System (INIS)

    Bame, K.J.; Kiser, C.S.; Esko, J.D.

    1987-01-01

    The authors have isolated Chinese hamster ovary cell mutants defective in proteoglycan synthesis by radiographic screening for cells unable to incorporate 35 SO 4 into acid-precipitable material. Some mutants did not incorporate 35 SO 4 into acid-precipitable material, whereas others incorporated about 3-fold less radioactivity. HPLC anion exchange chromatographic analysis of radiolabelled glycosaminoglycans isolated from these mutants revealed many are defective in heparan sulfate biosynthesis. Mutants 803 and 677 do not synthesize heparan sulfate, although they produce chondroitin sulfate: strain 803 makes chondroitin sulfate normally, whereas 677 overaccumulates chondroitin sulfate by a factor of three. These mutants fall into the same complementation group, suggesting that the mutations are allelic. A second group of heparan sulfate biosynthetic mutants, consisting of cell lines 625, 668 and 679, produce undersulfated heparan sulfate and normal chondroitin sulfate. Treatment of the chains with nitrous acid should determine the position of the sulfate groups along the chain. These mutants may define a complementation group that is defective in the enzymes which modify the heparan sulfate chain. To increase the authors repertoire of heparan sulfate mutants, they are presently developing an in situ enzyme assay to screen colonies replica plated on filter discs for sulfotransferase defects

  14. Proteoglycan metabolism associated with mouse metanephric development: morphologic and biochemical effects of beta-D-xyloside

    International Nuclear Information System (INIS)

    Platt, J.L.; Brown, D.M.; Granlund, K.; Oegema, T.R.; Klein, D.J.

    1987-01-01

    Morphology and de novo incorporation of [ 35 S]sulfate into proteoglycans were studied in fetal mouse kidneys at the onset of organogenesis. Branching morphogenesis and nephron development in organ culture and in vivo were associated with de novo synthesis of chondroitin-SO 4 and heparan-SO 4 proteoglycans. The role of proteoglycan metabolism in metanephrogenesis was then studied by analysis of the effects of p-nitrophenyl-beta-D-xylopyranoside (beta-D-xyloside) on renal development and proteoglycan metabolism. Incubation of fetal kidneys in beta-D-xyloside at concentrations of 1.0 and 0.5 mM, but not at 0.1 mM, caused inhibition of ureteric branching and markedly diminished synthesis of a large Mr 2.0 X 10(6) Da chondroitin-SO 4 proteoglycan. Incorporation of [ 35 S]sulfate was stimulated at all beta-D-xyloside concentrations, reflecting synthesis of xyloside initiated dermatan- 35 SO 4 chains. In contrast to dramatic effects on chondroitin-SO 4 synthesis and ureteric branching, beta-D-xyloside had no effect on heparan-SO 4 synthesis or on development of the glomerulus and glomerular basement membrane. We thus characterize the proteoglycans synthesized early in the course of renal organogenesis and describe observations which suggest an association between metabolism of chondroitin-SO 4 proteoglycan and development of the ureter

  15. Showiness or efficiency: what to choose?

    Directory of Open Access Journals (Sweden)

    D.G. Rekalov

    2013-08-01

    Full Text Available BACKGROUND: Osteoarthritis is a leading cause of disability in the world. Current treatment focuses on symptom relief and improving a patient's overall function. Pharmacological treatment’s aim is to correct symptomatic complaints as well as structural problems in osteoarthritis. Ibuprofen is a non-selective cyclo-oxygenase inhibitor approved for the relief of signs and symptoms of osteoarthritis. Glucosamine sulfate and chondroitin sulfate have been linked as an optional treatment in osteoarthritis for several years. There is controversy, however, surrounding their use and efficacy. Despite conflicting results on the degree of efficacy, the most current research suggested that glucosamine and chondroitin sulfate have the potential to provide pain-relieving benefits as well as possibly decrease the effects of joint space narrowing. They are thought to act by affecting cytokine-mediated pathways regulating inflammation, cartilage degradation, and immune responses. Given the results of recent studies, investigators have begun to question whether the popular combination of glucosamine and chondroitin alleviates disease progression or pain in people with mild to moderate knee osteoarthritis. Reasons proposed for the lack of benefit include incorrect dosing, suboptimal compound manufacture, and a lack of complete understanding of when and how to apply the compounds. In addition, adjuvant medications also could augment the therapeutic potential of these agents. Although these agents are considered safe, some uncommon and minor adverse effects have been reported. OBJECTIVE: The aim of the present study was to examine the effectiveness and safety of combination of ibuprofen, glucosamine sulfate and chondroitin sulfate in patients suffering from knee osteoarthritis. METHODS: 80 subjects (32 males and 48 females were enrolled into the study. 39 patients were treated with combination of glucosamine sulfate, chondroitin sulfate and ibuprofen (first group

  16. Digestion of proteoglycan by Bacteroides thetaiotaomicron.

    OpenAIRE

    Kuritza, A P; Salyers, A A

    1983-01-01

    It has been shown previously that Bacteroides thetaiotaomicron, a human colonic anaerobe, can utilize the tissue mucopolysaccharide chondroitin sulfate as a source of carbon and energy and that the enzymes involved in this utilization are all cell associated (A. A. Salyers and M. B. O'Brien, J. Bacteriol. 143:772-780, 1980). Since chondroitin sulfate does not generally occur in isolated form in tissue, but rather is bound covalently in proteoglycan, we investigated the extent to which chondro...

  17. Effect of compounds with antibacterial activities in human milk on respiratory syncytial virus and cytomegalovirus in vitro.

    Science.gov (United States)

    Portelli, J; Gordon, A; May, J T

    1998-11-01

    The effect of some antibacterial compounds present in human milk were tested for antiviral activity against respiratory syncytial virus, Semliki Forest virus and cytomegalovirus. These included the gangliosides GM1, GM2 and GM3, sialyl-lactose, lactoferrin and chondroitin sulphate A, B and C, which were all tested for their ability to inhibit the viruses in cell culture. Of the compounds tested, only the ganglioside GM2, chondroitin sulphate B and lactoferrin inhibited the absorption and growth of respiratory syncytial virus in cell culture, and none inhibited the growth of Semliki Forest virus, indicating that lipid antiviral activity was not associated with any of the gangliosides. While the concentrations of these two compounds required to inhibit respiratory syncytial virus were in excess of those present in human milk, sialyl-lactose concentrations similar to those present in human milk increased the growth of cytomegalovirus. Lactoferrin was confirmed as inhibiting both respiratory syncytial virus and cytomegalovirus growth in culture even when used at lower concentrations than those present in human milk. The antiviral activities of GM2, chondroitin sulphate B and lactoferrin were tested when added to an infant formula. Lactoferrin continued to have antiviral activity against cytomegalovirus, but a lower activity against respiratory syncytial virus; ganglioside GM2 and chondroitin sulphate B still maintained antiviral activity against respiratory syncytial virus.

  18. Exploration of Sea Cucumbers Stichopus hermanii from Karimunjawa Islands as Production of Marine Biological Resources

    Science.gov (United States)

    Pringgenies, Delianis; Rudiyanti, Siti; Yudiati, Ervia

    2018-02-01

    This research aim was to study the potential of Stichopus hermanii to determine the amino acid, chondroitin, and glucosamine contents, to discover its antibacterial and anti-cancer agent. The samples were rinsed prior to separation, with only the corpus being used in the study. Sea cucumber extract was then processed using HPLC to trace contents of amino acid, chondroitin, and glucosamine contents. The samples were then put into test against several strains of pathogenic bacteria by means of diffusion for any biological activity. The anti-cancer test was performed by human ovarian cancer cell line (KOC7C) method. The study showed that the extract of Stichopus hermanii has the potency to inhibit the growth of active ovarian cancer cells. The qualitative test of the sea cucumber extract showed that it is capable of suppressing the growth of several strains of pathogenic bacteria identified as Staphylococcus aureus, Escherichia coli, Vibrio voinivica, and Pseudomonas sp. HPLC results showed that the extract contained amino acid (mg/100g), the highest being Collagen (11200), followed by Glycine (3760), Glutamic Acid (3700), Aspartic Acid (2540), Alanine (2140), Proline (2050), Arginine (2050), Tyrosine (1430), Threonine (1270), Leucine (1170), Valine (1050), Serine (971), Isoleucine (816), Phenylalanine (713), Lysine (639), Methionine (383), Cystine (263) and Histidine (208). The extract also contained Chondroitin Sulfate (4200) and Glucosamine Hydrochloride (acids, as well as chondroitin and glucosamine.

  19. Uptake of {sup 99m}Tc-labeled chondroitin sulfate by chondrocytes and cartilage: a promising agent for imaging of cartilage degeneration?

    Energy Technology Data Exchange (ETDEWEB)

    Sobal, Grazyna [Department of Nuclear Medicine, Medical University of Vienna, Vienna 1090 (Austria)], E-mail: grazyna.sobal@meduniwien.ac.at; Menzel, Johannes [Institute of Immunology, Medical University of Vienna, Vienna 1090 (Austria); Sinzinger, Helmut [Department of Nuclear Medicine, Medical University of Vienna, Vienna 1090 (Austria)

    2009-01-15

    Chondroitin sulfate (CS) is used in the treatment of human osteoarthritis as a slow-acting symptomatic drug. For this reason, we performed uptake studies with {sup 99m}TcCS using different chondrocyte cultures, as well as cartilage tissue in vitro. For uptake studies, adherent monolayer cultures of human chondrocytes (2.7x10{sup 4} cells/well) and {sup 99m}TcCS (1 {mu}Ci) were used. In parallel, we also performed uptake studies with cell suspensions of human chondrocytes at 1x10{sup 6} cells/well incubated with {sup 99m}TcCS (5 {mu}Ci) under identical conditions. Uptake was studied also in cartilage tissue samples and frozen tissue sections for autoradiography. The uptake was monitored for 10-240 min, every 10-30 min for cell cultures and for cartilage tissue up to 72 h. As the commercially available drug Condrosulf (IBSA, Lugano, Switzerland) contains magnesium (Mg) stearate as additive, we investigated the uptake with and without this additive. The washout of the tracer was assessed after the uptake experiments with PBS buffer for different time intervals (10 min-3 h). Tracer uptake in monolayer{+-}additives with low number of cells was low. With the use of chondrocytes in culture suspensions with higher number of cells, a higher uptake of 5.9{+-}0.65% and 1.0{+-}0.1% (n=6) was found, with and without additive, respectively. The saturation was achieved after 100 min. With the use of human rib cartilage, the uptake of {sup 99m}TcCS was continuously increasing with time and was very high with additive amounting to 101.8{+-}5.2% vs. 53.0{+-}8.3% (n=6) without after 72 h and showing delayed saturation up to 30 h. Thus, not only the resorption of the drug is enhanced by Mg-stearate, but also the uptake. The washout of the tracer from cartilage after 3 h of uptake amounted to 3.75{+-}1.5% with additive vs. 13.1{+-}2.1% without. After 24 h, washout was lower amounting to 1.75{+-}0.15% vs. 3.25{+-}0.25%, respectively. The autoradiographic studies paralleled the results

  20. Farmacocinética da associação de glucosamina e sulfato de condroitina em humanos sadios do sexo masculino Pharmacokinetic profile of glucosamine and chondroitin sulfate association in healthy male individuals

    Directory of Open Access Journals (Sweden)

    Odaly Toffoletto

    2005-01-01

    Full Text Available A osteoartrose é uma doença crônica das articulações que, uma vez instalada, leva seus portadores a uma incapacidade funcional progressiva. Como os proteocondroitins sulfato são os maiores constituintes das cartilagens, espera-se que com a ingestão de glucosamina e condroitina haja uma melhora das condições biológicas desse tecido. Uma vez que não temos conhecimento de estudo da farmacocinética da administração oral dessa associação em seres humanos, o objetivo deste trabalho foi avaliá-la utilizando a associação entre o sulfato de glucosamina (SG e o sulfato de condroitina (SC administrada a dois grupos de doze voluntários sadios do sexo masculino (grupo I uma cápsula de (500 mg SG; 400 mg SC e grupo II quatro cápsulas. Amostras de sangue foram retiradas a intervalos de tempo pré-definidos até 48 horas pós-dose. O SG e o SC foram dosados no plasma pelo método de DMMB (azul de 1,9,dimetildimetileno. A concentração máxima foi atingida em 2 horas (média ±SE; 0,893±0,093 µg/mL, grupo I e 2,222±0,313 µg/mL, grupo II. As áreas sob a curva até 48 horas foram de 10,803±0,965 µg-hr/mL e 38,776±2,981 µg-hr/mL, respectivamente para os grupos I e II. Os dois grupos apresentaram um segundo pico após 18 horas, indicando circulação êntero-hepática. Os nossos resultados indicam que essa associação é absorvida por via oral por mecanismo saturável, o que pode facilitar o seu uso em tratamentos clínicos.Osteoarthrosis is a chronic joint disease that, once patent, leads to a progressive functional disability. As proteochondroitin sulfates are the major contents of the cartilage, it is expected that the ingestion of glucosamine and chondroitin might improve the biological status of that tissue. As we could not find any studies on the pharmacokinetic profile of this association by oral administration route in human beings, the objective of this study was to evaluate it by using the association of glucosamine sulfate

  1. Efficacy of an orally administered combination of hyaluronic acid, chondroitin sulfate, curcumin and quercetin for the prevention of recurrent urinary tract infections in postmenopausal women.

    Science.gov (United States)

    Torella, M; Del Deo, F; Grimaldi, A; Iervolino, S A; Pezzella, M; Tammaro, C; Gallo, P; Rappa, C; De Franciscis, P; Colacurci, N

    2016-12-01

    To assess whether the orally administered combination of hyaluronic acid (HA), chondroitin sulfate (CS), curcumin and quercetin could be effective in preventing recurrent cystitis in postmenopausal women and whether its efficacy was conditioned by the concurrent use of local estrogen therapy. This was a prospective evaluation of 145 postmenopausal women consecutively recruited from the database of three different investigators. All women should have mild-to-moderate urogenital atrophy and a history of recurrent urinary tract infections (≥2 episodes within 6 months or ≥3 episodes within 12 months documented by positive urine cultures) during the last year. Patients were assigned to three different therapeutic regimens: the first group was treated only with vaginal estrogens, the second group only with HA, CS, curcumin and quercetin per os, and the third group was treated with HA, CS, curcumin and quercetin associated with local estrogens. We evaluated the number of patients with <2 infective episodes in the 6-month follow-up and <3 episodes in the 12-month follow-up (main aim definition) and the reduction of related symptoms through a Visual Analog Scale (VAS) and the Pelvic Pain and Urgency/Frequency (PUF) patient symptom scale. Student's t-test and chi-squared test were used for data analysis as appropriate. At 6-month follow up, the main aim rate was 8%, 11.1% and 25% in the three groups, respectively (p<0.05 compared to baseline only in group 3). Although the reduction in the number of recurrent episodes became significant in all groups at 1 year follow-up, the main aim rate was almost double in women receiving both local estrogens and oral therapy (group 3) compared to those receiving single treatments. The improvement of related symptoms was significant in all groups at 12-month follow-up. In postmenopausal women, the combination of HA, CS, curcumin and quercetin per os was effective in preventing recurrent urinary tract infections, especially if

  2. Purification and characterization of a small dermatan sulphate proteoglycan implicated in the dilatation of the rat uterine cervix.

    Science.gov (United States)

    Kokenyesi, R; Woessner, J F

    1989-06-01

    A small dermatan sulphate proteoglycan (DSPG) was extracted from rat cervices and was purified by using DEAE-Sephacel ion-exchange chromatography, gel filtration on Sepharose CL-2B and CsCl-density-gradient centrifugation. Sedimentation-equilibrium centrifugation gave a weight-average Mr of 95,000. Amino acid analysis showed a high content of aspartic acid, glutamic acid, glycine and leucine. The glycosaminoglycan chains had Mr 50,000 as determined by gel filtration. Chondroitin AC lyase and chondroitin ABC lyase digestions of these chains showed that they were composed of 75% dermatan sulphate and 25% chondroitin sulphate. Chondroitin ABC lyase digestion produced a core protein of Mr 45,000. The core protein, after treatment with HF, had Mr 37,000. Amino acid sequences of the N-terminus and a CNBr-cleavage peptide showed similarity to the sequences of core proteins of small proteoglycans of bovine and human origin, but the N-terminal glycosaminoglycan-attachment site (Ser-Gly-Ile-Ile) differed from the consensus sequence (Ser-Gly-Xaa-Gly) [Bourdon, Krusius, Campbell, Schwartz & Ruoslahti (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 3194-3198]. A polyclonal antibody against the rat cervical DSPG reacted with small proteoglycans from cervices of human, mouse, dog, cow and sheep. DSPG is the major proteoglycan species present in the cervix. The amount of DSPG per cervix increases 4-fold during pregnancy, then falls precipitously within 1 day post partum. A role in cervical dilatation is postulated for this proteoglycan.

  3. Capillary electrophoresis of heparin and other glycosaminoglycans using a polyamine running electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Loegel, Thomas N.; Trombley, John D.; Taylor, Richard T. [Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056 (United States); Danielson, Neil D., E-mail: danielnd@muohio.edu [Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056 (United States)

    2012-11-13

    Highlights: Black-Right-Pointing-Pointer Ethylenediamine is likely acting as an ion-pairing agent. Black-Right-Pointing-Pointer Oversulfated chondroitin sulfate is last peak instead of first peak. Black-Right-Pointing-Pointer There is about a factor of five improved detectability with a 12.5 min analysis time. Black-Right-Pointing-Pointer Use of a 50 {mu}m ID capillary is possible. - Abstract: This study involves the use of polyamines as potential resolving agents for the capillary electrophoresis (CE) of glycosaminoglycans (GAGs), specifically heparin, dermatan sulfate, chondroitin sulfate, over-sulfated chondroitin sulfate (OSCS), and hyaluronan. All of the compounds can be separated from each other with the exception of chondroitin sulfate and hyaluronan. Using optimization software, the final run conditions are found to be 200 mM ethylenediamine and 45.5 mM phosphate as the electrolyte with -14 V applied across a 50 {mu}m ID Multiplication-Sign 24.5 cm fused silica capillary at 15 Degree-Sign C. The ion migration order, with OSCS as the last instead of the first peak, is in contrast to previous reports using either a high molarity TRIS or lithium phosphate run buffer with narrower bore capillaries. Total analysis time is 12. 5 min and the relative standard deviation of the heparin migration time is about 2.5% (n = 5). The interaction mechanism between selected polyamines and heparin is explored using conductivity measurements in addition to CE experiments to show that an ion-pairing mechanism is likely.

  4. Capillary electrophoresis of heparin and other glycosaminoglycans using a polyamine running electrolyte

    International Nuclear Information System (INIS)

    Loegel, Thomas N.; Trombley, John D.; Taylor, Richard T.; Danielson, Neil D.

    2012-01-01

    Highlights: ► Ethylenediamine is likely acting as an ion-pairing agent. ► Oversulfated chondroitin sulfate is last peak instead of first peak. ► There is about a factor of five improved detectability with a 12.5 min analysis time. ► Use of a 50 μm ID capillary is possible. - Abstract: This study involves the use of polyamines as potential resolving agents for the capillary electrophoresis (CE) of glycosaminoglycans (GAGs), specifically heparin, dermatan sulfate, chondroitin sulfate, over-sulfated chondroitin sulfate (OSCS), and hyaluronan. All of the compounds can be separated from each other with the exception of chondroitin sulfate and hyaluronan. Using optimization software, the final run conditions are found to be 200 mM ethylenediamine and 45.5 mM phosphate as the electrolyte with −14 V applied across a 50 μm ID × 24.5 cm fused silica capillary at 15 °C. The ion migration order, with OSCS as the last instead of the first peak, is in contrast to previous reports using either a high molarity TRIS or lithium phosphate run buffer with narrower bore capillaries. Total analysis time is 12. 5 min and the relative standard deviation of the heparin migration time is about 2.5% (n = 5). The interaction mechanism between selected polyamines and heparin is explored using conductivity measurements in addition to CE experiments to show that an ion-pairing mechanism is likely.

  5. Validated high-performance anion-exchange chromatography with pulsed amperometric detection method for the determination of residual keratan sulfate and other glucosamine impurities in sodium chondroitin sulfate.

    Science.gov (United States)

    Bottelli, Susanna; Grillo, Gianluca; Barindelli, Edoardo; Nencioni, Alessandro; Di Maria, Alessandro; Fossati, Tiziano

    2017-07-07

    An efficient and sensitive analytical method based on high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD) was devised for the determination of glucosamine (GlcN) in sodium chondroitin sulfate (CS). Glucosamine (GlcN) is intended as marker of residual keratan sulfate (KS) and other impurities generating glucosamine by acidic hydrolyzation. The latter brings CS and KS to their respective monomers. Since GlcN is present only in KS we developed a method that separates GlcN from GalN, the principal hydrolytic product of CS, and then we validated it in order to quantify GlcN. Method validation was performed by spiking CS raw material with known amounts of KS. Detection limit was 0.5% of KS in CS (corresponding to 0.1μg/ml), and the linear range was 0.5-5% of KS in CS (corresponding to 0.1-1μg/ml). The optimized analysis was carried out on an ICS-5000 system (Dionex, Sunnyvale, CA, USA) equipped with a Dionex Amino Trap guard column (3mm×30mm), Dionex CarboPac-PA20 (3mm×30mm) and a Dionex CarboPac-PA20 analytical column (3mm×150mm) using gradient elution at a 0.5ml/min flow rate. Regression equations revealed good linear relationship (R 2 =0.99, n=5) within the test ranges. Quality parameters, including precision and accuracy, were fully validated and found to be satisfactory. The fully validated HPAEC-PAD method was readily applied for the quantification of residual KS in CS in several raw materials and USP/EP reference substance. Results confirmed that the HPAEC-PAD method is more specific than the electrophoretic method for related substance reported in EP and provides sensitive determination of KS in acid-hydrolyzed CS samples, enabling the quantitation of KS and other impurities (generating glucosamine) in CS. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. 212Pb-Labeled Antibody 225.28 Targeted to Chondroitin Sulfate Proteoglycan 4 for Triple-Negative Breast Cancer Therapy in Mouse Models

    Directory of Open Access Journals (Sweden)

    Benjamin B. Kasten

    2018-03-01

    Full Text Available Triple-negative breast cancer (TNBC is an aggressive subtype of breast cancer with a poor prognosis. There is a clinical need for effective, targeted therapy strategies that destroy both differentiated TNBC cells and TNBC cancer initiating cells (CICs, as the latter are implicated in the metastasis and recurrence of TNBC. Chondroitin sulfate proteoglycan 4 (CSPG4 is overexpressed on differentiated tumor cells and CICs obtained from TNBC patient specimens, suggesting that CSPG4 may be a clinically relevant target for the imaging and therapy of TNBC. The purpose of this study was to determine whether α-particle radioimmunotherapy (RIT targeting TNBC cells using the CSPG4-specific monoclonal antibody (mAb 225.28 as a carrier was effective at eliminating TNBC tumors in preclinical models. To this end, mAb 225.28 labeled with 212Pb (212Pb-225.28 as a source of α-particles for RIT was used for in vitro Scatchard assays and clonogenic survival assays with human TNBC cells (SUM159 and 2LMP grown as adherent cells or non-adherent CIC-enriched mammospheres. Immune-deficient mice bearing orthotopic SUM159 or 2LMP xenografts were injected i.v. with the targeted (225.28 or irrelevant isotype-matched control (F3-C25 mAbs, labeled with 99mTc, 125I, or 212Pb for in vivo imaging, biodistribution, or tumor growth inhibition studies. 212Pb-225.28 bound to adherent SUM159 and 2LMP cells and to CICs from SUM159 and 2LMP mammospheres with a mean affinity of 0.5 nM. Nearly ten times more binding sites per cell were present on SUM159 cells and CICs compared with 2LMP cells. 212Pb-225.28 was six to seven times more effective than 212Pb-F3-C25 at inhibiting SUM159 cell and CIC clonogenic survival (p < 0.05. Radiolabeled mAb 225.28 showed significantly higher uptake than radiolabeled mAb F3-C25 in SUM159 and 2LMP xenografts (p < 0.05, and the uptake of 212Pb-225.28 in TNBC xenografts was correlated with target epitope expression. 212Pb-225.28 caused dose

  7. Raman spectroscopy: a structural probe of glycosaminoglycans

    International Nuclear Information System (INIS)

    Bansil, R.; Stanley, H.E.; Yannas, I.V.

    1978-01-01

    The authors report the first Raman spectroscopic study of the glycosaminoglycans chondroitin 4-sulfate, chondroitin 6-sulfate and hyaluronic acid, both in solution and in the solid state. To aid in spectral identification, infrared spectra were also recorded from films of these samples. Vibrational frequencies for important functional groups like the sulfate groups, glycosidic linkages, C-OH and the N-acetyl group can be identified from the Raman spectra. Certain differences in the spectra of the different glycosaminoglycans can be interpreted in terms of the geometry of the various substituents, while other differences can be related to differences in chemical composition. (Auth.)

  8. Chlorate: a reversible inhibitor of proteoglycan sulfation

    International Nuclear Information System (INIS)

    Humphries, D.E.; Silbert, J.E.

    1988-01-01

    Bovine aorta endothelial cells were cultured in medium containing [ 3 H]glucosamine, [ 35 S]sulfate, and various concentrations of chlorate. Cell growth was not affected by 10 mM chlorate, while 30 mM chlorate had a slight inhibitory effect. Chlorate concentrations greater than 10 mM resulted in significant undersulfation of chondroitin. With 30 mM chlorate, sulfation of chondroitin was reduced to 10% and heparan to 35% of controls, but [ 3 H]glucosamine incorporation on a per cell basis did not appear to be inhibited. Removal of chlorate from the culture medium of cells resulted in the rapid resumption of sulfation

  9. Intravesical administration of combined hyaluronic acid (HA) and chondroitin sulfate (CS) for the treatment of female recurrent urinary tract infections: a European multicentre nested case-control study.

    Science.gov (United States)

    Ciani, Oriana; Arendsen, Erik; Romancik, Martin; Lunik, Richard; Costantini, Elisabetta; Di Biase, Manuel; Morgia, Giuseppe; Fragalà, Eugenia; Roman, Tomaskin; Bernat, Marian; Guazzoni, Giorgio; Tarricone, Rosanna; Lazzeri, Massimo

    2016-03-31

    To compare the clinical effectiveness of the intravesical administration of combined hyaluronic acid and chondroitin sulfate (HA+CS) versus current standard management in adult women with recurrent urinary tract infections (RUTIs). A European Union-based multicentre, retrospective nested case-control study. 276 adult women treated for RUTIs starting from 2009 to 2013. Patients treated with either intravesical administration of HA+CS or standard of care (antimicrobial/immunoactive prophylaxis/probiotics/cranberry). The primary outcome was occurrence of bacteriologically confirmed recurrence within 12 months. Secondary outcomes were time to recurrence, total number of recurrences, health-related quality of life and healthcare resource consumption. Crude and adjusted results for unbalanced characteristics are presented. 181 patients treated with HA+CS and 95 patients treated with standard of care from 7 centres were included. The crude and adjusted ORs (95% CI) for the primary end point were 0.77 (0.46 to 1.28) and 0.51 (0.27 to 0.96), respectively. However, no evidence of improvement in terms of total number of recurrences (incidence rate ratio (95% CI), 0.99 (0.69 to 1.43)) or time to first recurrence was seen (HR (95% CI), 0.99 (0.61 to 1.61)). The benefit of intravesical HA+CS therapy improves when the number of instillations is ≥ 5. Our results show that bladder instillations of combined HA+CS reduce the risk of bacteriologically confirmed recurrences compared with the current standard management of RUTIs. Total incidence rates and hazard rates were instead non-significantly different between the 2 groups after adjusting for unbalanced factors. In contrast to what happens with antibiotic prophylaxis, the effectiveness of the HA+CS reinstatement therapy improves over time. NCT02016118. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Polysaccharides for stabilization of lipid particles; Polissacarideos na estabilizacao de particulas lipidicas

    Energy Technology Data Exchange (ETDEWEB)

    Lionzo, Maria I.Z.; Silveira, Nadya P. Da, E-mail: nadya@iq.ufrgs.br [Universidade Federal do Rio Grande do Sul - UFRGS, Campus do Vale, Porto Alegre, RS (Brazil); Muniz, Edvani Curti [Departamento de Quimica, Universidade Estadual de Maringa, PR (Brazil)

    2011-07-01

    The main goal of this paper was to investigate the impact of different amounts of polyelectrolytes on the size, surface charge and rigidity of the bilayers of multilamellar liposomes. For this purpose, composite liposomes were developed containing chitosan and chondroitin sulfate. The use of a second polyelectrolyte, chondroitin sulfate, for the coating of the liposomes was applied in order to modulate their surface charge, maintaining the stability given by the presence of chitosan. Light and X-rays small angle scattering were the main techniques applied. Zeta-potential values were used to determine the charge density and the amount of adsorbed polyelectrolytes on the liposomes. (author)

  11. Polysaccharides for stabilization of lipid particles

    International Nuclear Information System (INIS)

    Lionzo, Maria I.Z.; Silveira, Nadya P. Da; Muniz, Edvani Curti

    2011-01-01

    The main goal of this paper was to investigate the impact of different amounts of polyelectrolytes on the size, surface charge and rigidity of the bilayers of multilamellar liposomes. For this purpose, composite liposomes were developed containing chitosan and chondroitin sulfate. The use of a second polyelectrolyte, chondroitin sulfate, for the coating of the liposomes was applied in order to modulate their surface charge, maintaining the stability given by the presence of chitosan. Light and X-rays small angle scattering were the main techniques applied. Zeta-potential values were used to determine the charge density and the amount of adsorbed polyelectrolytes on the liposomes. (author)

  12. FY 1999 report on the results of R and D projects by local consortiums for immediate effects. R and D on advanced utilization of chondroitin sulfate derived from salmon nasal cartilage; 1999 nendo sake hana nankotsu yurai kondoroichin ryusan no kodo riyoka kenkyu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The R and D project has been conducted for production techniques and commercialization of salmon chondroitin sulfate (SCS) present in the salmon nasal cartilage. For the structural analysis of SCS, it is confirmed that sulfate group is distributed in SCS derived from the nasal cartilage by the analysis of unsaturated disaccharides. For the extraction and purification techniques, the SCS extraction process is optimized, to reduce extraction time to one-fourth, and thereby to reduce production cost. For application of SCS to cosmetics, the deodorization techniques using, e.g., ion-exchanged resin, are almost established, although some problems to be solved are left. For estimation of novel function of SCS, it is confirmed to possess some novel functions, e.g., inhibition of adhesion of E. coli O-157 to the intestinal tract and promotion of Ca absorption by the intestinal tract. For the powder drying techniques, the spray drier is improved by adopting tall-form type nozzles and a drying chamber to finely crushing SCS, and introducing a secondary drier, in order to reduce cost. For production of SCS films, it is found that the SCS film is high both in softness and tensile strength, and that it can easily form the blend film with sodium alginate. (NEDO)

  13. Proteoglycan biosynthesis in murine monocytic leukemic (M1) cells before and after differentiation

    International Nuclear Information System (INIS)

    McQuillan, D.J.; Yanagishita, M.; Hascall, V.C.; Bickel, M.

    1989-01-01

    Murine monocytic leukemic (M1) cells were cultured in the presence of [ 3 H]glucosamine and [ 35 S]sulfate. Labeled proteoglycans were purified by anion exchange chromatography and characterized by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis in combination with chemical and enzymatic degradation. M1 cells synthesize a single predominant species of proteoglycan which distributes almost equally between the cell and medium after 17 h labeling. The cell-associated proteoglycan has an overall size of about 135 kDa and contains three to five chondroitin sulfate chains (28-31 kDa each) attached to a chondroitinase-generated core protein of 28 kDa. The synthesis and subsequent secretion of this proteoglycan was enhanced 4-5-fold in cells induced to differentiate into macrophages. This was not a phenomenon of arrest in the G0/G1 stage of the cell cycle, since density inhibited undifferentiated cells arrested at this stage did not increase proteoglycan synthesis. The chondroitin sulfate chains contained exclusively chondroitin 4- and 6-sulfate; however, the ratio of these two disaccharides differed between the medium- and cell-associated proteoglycans, and changed during progression of the cells into a fully differentiated phenotype. Pulse-chase kinetics indicate the presence of two distinct pools of proteoglycan; one that is secreted very rapidly from the cell after a approximately 1-h lag, and a second pool that is turned over in the cell with a half-time of approximately 3.5 h. Subtle differences in the glycosylation patterns of the medium- and cell-associated species are consistent with synthesis of two pools. Papain digestion suggests that the chondroitin sulfate chains are clustered on a small protease resistant peptide. The data suggest that this proteoglycan is similar to the serglycin proteoglycan family

  14. Analysis of synovial fluid components of hydrarthrosis in long-term hemodialysis patients.

    Science.gov (United States)

    Shiota, E; Maekawa, M; Ohtani, M

    1999-01-01

    The synovial fluid components in long-term hemodialysis patients (HD; 43 knees in 43 patients) were investigated and compared with those in patients with osteoarthritis (OA; 21 knees in 21 patients) and rheumatoid arthritis (RA; 26 knees in 26 patients). The average ages in the three groups were, respectively, 60.7 years (range, 34-79 years), 63.2 years (range, 48-88 years), and 59.7 years (range, 37-76 years). The duration of hemodialysis in the HD group averaged 14.0 years (range, 4-24 years). The concentrations of hyaluronic acid, protein, and isomers of chondroitin sulfate (chondroitin 6-sulfate [C6S] and chondroitin 4-sulfate [C4S]) in the synovial fluid, and its viscosity were measured. Differences in each of the parameters were investigated according to disease clinical stage, roentgenological grade, and periods of dialysis in the HD group. The viscosity of the synovial fluid and the concentration of hyaluronic acid in HD patients were similar to those in OA patients; however, the C6S/C4S ratio in the synovial fluid of HD patients was similar to that in RA patients. The latter finding suggests that synovitis may be present in the hydrarthrosis of HD patients. The cause of this synovitis in HD patients remains to be elucidated.

  15. Sulphated glycosaminoglycans and proteoglycans in the developing vertebral column of juvenile Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Hannesson, Kirsten O; Ytteborg, Elisabeth; Takle, Harald; Enersen, Grethe; Bæverfjord, Grete; Pedersen, Mona E

    2015-08-01

    In the present study, the distribution of sulphated glycosaminoglycans (GAGs) in the developing vertebral column of Atlantic salmon (Salmo salar) at 700, 900, 1100 and 1400 d° was examined by light microscopy. The mineralization pattern was outlined by Alizarin red S and soft structures by Alcian blue. The temporal and spatial distribution patterns of different types of GAGs: chondroitin-4-sulphate/dermatan sulphate, chondroitin-6-sulphate, chondroitin-0-sulphate and keratan sulphate were addressed by immunohistochemistry using monoclonal antibodies against the different GAGs. The specific pattern obtained with the different antibodies suggests a unique role of the different GAG types in pattern formation and mineralization. In addition, the distribution of the different GAG types in normal and malformed vertebral columns from 15 g salmon was compared. A changed expression pattern of GAGs was found in the malformed vertebrae, indicating the involvement of these molecules during the pathogenesis. The molecular size of proteoglycans (PGs) in the vertebrae carrying GAGs was analysed with western blotting, and mRNA transcription of the PGs aggrecan, decorin, biglycan, fibromodulin and lumican by real-time qPCR. Our study reveals the importance of GAGs in development of vertebral column also in Atlantic salmon and indicates that a more comprehensive approach is necessary to completely understand the processes involved.

  16. Alternative method for determination of contaminated heparin using chiral recognition.

    Science.gov (United States)

    Szekely, J; Collins, M; Currie, C A

    2014-05-15

    Since 2008 a significant amount of work has focused on the development of methods to analyze contaminated heparin. This work focuses on utilizing heparin's ability to serve as a chiral selector as a means for determining contamination. Specifically, the effect of contamination on the separation of pheniramine and chloroquine enantiomers was explored. Separations were conducted using heparin contaminated with chondroitin sulfate at varying levels. For each pair of enantiomers, electrophoretic mobility and resolution were calculated. For pheniramine enantiomers, an increase in contamination leads to a decrease in the electrophoretic mobility and resolution. A linear relationship between contamination level and electrophoretic mobility of the pheniramine enantiomers was observed for the entire contamination range. A linear relationship was also found between contamination level and resolution of the enantiomers between 0 and 70 percent contamination. For the separation of chloroquine enantiomers, it was found that at low levels of contamination, the resolution of enantiomers was increased due to the secondary interaction between the chloroquine enantiomers and the chondroitin sulfate. Results of this study illustrate the potential of using chiral recognition as a means to determine heparin contamination as well as the improvement of the chiral resolution of chloroquine with the additional of low levels of chondroitin sulfate A. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. A study on the relationship between radiologic classification and glycosaminoglycan analysis of cystic fluids in oral region

    Energy Technology Data Exchange (ETDEWEB)

    Park, In Woo; You, Dong Soo [Dept. of Oral and Maxillofacial Radiology, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1993-08-15

    This study was designed to evaluate the correlationship between radiologic classifications of cysts in oral region and glycosaminoglycan analysis of cystic fluids using cellulose acetate electrophoresis. The materials for this study consisted of 37 cases-8 periapical cysts, 10 dentigerous cysts, 10 primordial cysts, 2 residual cyst, 3 incisive canal cysts, 2 post-operative maxillary cysts, 1 mucocele on maxillary sinus, and 1 unicystic ameloblastoma-diagnosed as cystic lesions radiologically. The obtained results were as follows: 1. At the stepwise discriminant analysis, four variables-low mobility material, hiparin, hyaluronic acid, and dermatan sulfate- were used to define diagnostic model for the odontogenic cyst. The model produced a seventeenths of 100% and a specificity of 85%. 2. The intensities of heparin and chondroitin-4-sulfate were greater in dentigerous cyst than periapical cyst (p<0.05). 3. It showed no statistically significant difference in glycosaminoglycan of the cystic fluids between dentigerous cyst and primordial cyst (p<0.05). 4. On the fluids of the cysts originated from maxillary sinus, there were especially high intensities of heparin and dermatan sulfate, and low intensity of chondroitin-4-sulfate. 5. On the fluids of unicystic ameloblastoma, there were high intensity of dermatan sulfate and low intensity of chondroitin-4-sulfate.

  18. A study on the relationship between radiologic classification and glycosaminoglycan analysis of cystic fluids in oral region

    International Nuclear Information System (INIS)

    Park, In Woo; You, Dong Soo

    1993-01-01

    This study was designed to evaluate the correlationship between radiologic classifications of cysts in oral region and glycosaminoglycan analysis of cystic fluids using cellulose acetate electrophoresis. The materials for this study consisted of 37 cases-8 periapical cysts, 10 dentigerous cysts, 10 primordial cysts, 2 residual cyst, 3 incisive canal cysts, 2 post-operative maxillary cysts, 1 mucocele on maxillary sinus, and 1 unicystic ameloblastoma-diagnosed as cystic lesions radiologically. The obtained results were as follows: 1. At the stepwise discriminant analysis, four variables-low mobility material, hiparin, hyaluronic acid, and dermatan sulfate- were used to define diagnostic model for the odontogenic cyst. The model produced a seventeenths of 100% and a specificity of 85%. 2. The intensities of heparin and chondroitin-4-sulfate were greater in dentigerous cyst than periapical cyst (p<0.05). 3. It showed no statistically significant difference in glycosaminoglycan of the cystic fluids between dentigerous cyst and primordial cyst (p<0.05). 4. On the fluids of the cysts originated from maxillary sinus, there were especially high intensities of heparin and dermatan sulfate, and low intensity of chondroitin-4-sulfate. 5. On the fluids of unicystic ameloblastoma, there were high intensity of dermatan sulfate and low intensity of chondroitin-4-sulfate.

  19. Novel Insights into Antiviral Gene Regulation of Red Swamp Crayfish, Procambarus clarkii, Infected with White Spot Syndrome Virus

    Directory of Open Access Journals (Sweden)

    Shaokui Yi

    2017-11-01

    Full Text Available White spot syndrome virus (WSSV, one of the major pathogens of Procambarus clarkii, has caused severe disruption to the aquaculture industry of P. clarkii in China. To reveal the gene regulatory mechanisms underlying WSSV infection, a comparative transcriptome analysis was performed among WSSV-infected susceptible individuals (GS, viral resistant individuals (GR, and a non-infected control group (GC. A total of 61,349 unigenes were assembled from nine libraries. Subsequently, 515 and 1033 unigenes exhibited significant differential expression in sensitive and resistant crayfish individuals compared to the control group (GC. Many differentially expressed genes (e.g., C-type lectin 4, Peroxinectin, Prophenoloxidase, and Serine/threonine-protein kinase observed in GR and GS play critical roles in pathogen recognition and viral defense reactions after WSSV infection. Importantly, the glycosaminoglycan biosynthesis-chondroitin sulfate/dermatan sulfate pathway was identified to play critical roles in defense to WSSV infection for resistant crayfish individuals by upregulating the chondroitin sulfate related genes for the synthesis of WSSV-sensitive, functional chondroitin sulfate chains containing E units. Numerous genes and the key pathways identified between resistant and susceptible P. clarkii individuals provide valuable insights regarding antiviral response mechanisms of decapoda species and may help to improve the selective breeding of P. clarkii WSSV-resistance.

  20. The ligand-binding profile of HARE: hyaluronan and chondroitin sulfates A, C, and D bind to overlapping sites distinct from the sites for heparin, acetylated low-density lipoprotein, dermatan sulfate, and CS-E.

    Science.gov (United States)

    Harris, Edward N; Weigel, Paul H

    2008-08-01

    The hyaluronic acid receptor for endocytosis (HARE)/ Stabilin-2 is the primary systemic scavenger receptor for hyaluronan (HA), the chondroitin sulfates (CS), dermatan sulfate (DS), and nonglycosaminoglycan (GAG) ligands such as acetylated low-density lipoprotein (AcLDL), pro-collagen propeptides, and advanced glycation end products. We recently discovered that HARE is also a systemic scavenger receptor for heparin (Hep) (Harris EN, Weigel JA, Weigel PH. 2008. The human hyaluronan receptor for endocytosis [HARE/Stabilin-2] is a systemic clearance receptor for heparin. J Biol Chem. 283:17341-17350). Our goal was to map the binding sites of eight different ligands within HARE. We used biotinylated GAGs and radio-iodinated streptavidin or AcLDL to assess the binding activities of ligands directly or indirectly (by competition with unlabeled ligands) in endocytosis assays using stable cell lines expressing the 315 or 190 kDa HA receptor for endocytosis (315- or 190-HARE) isoforms, and ELISA-like assays, with purified recombinant soluble 190-HARE ecto-domain. For example, Hep binding to HARE was competed by DS, CS-E, AcLDL, and dextran sulfate, but not by other CS types, HA, dextran, or heparosan. (125)I-AcLDL binding to HARE was partially competed by Hep and dextran sulfate, but not competed by HA. Two ligands, DS and CS-E, competed with both Hep and HA to some degree. Hep and HA binding or endocytosis is mutually inclusive; binding of these two GAGs occurs with functionally separate, noncompetitive, and apparently noninteracting domains. Thus, HARE binds to HA and Hep simultaneously. Although the domain(s) responsible for Hep binding remains unknown, the Link domain was required for HARE binding to HA, CS-A, CS-C, and CS-D. These results enable us to outline, for the first time, a binding activity map for multiple ligands of HARE.

  1. SwissProt search result: AK110012 [KOME

    Lifescience Database Archive (English)

    Full Text Available ulfate proteoglycan 6) (Chromosome segregation protein SmcD) (Bamacan) (Basement membrane-associated chondroitin proteoglycan) (Mad member-interacting protein 1) SMC3_MOUSE 1e-14 ...

  2. SwissProt search result: AK105135 [KOME

    Lifescience Database Archive (English)

    Full Text Available ulfate proteoglycan 6) (Chromosome segregation protein SmcD) (Bamacan) (Basement membrane-associated chondroitin proteoglycan) (Mad member-interacting protein 1) SMC3_MOUSE 3e-61 ...

  3. SwissProt search result: AK065733 [KOME

    Lifescience Database Archive (English)

    Full Text Available lfate proteoglycan 6) (Chromosome segregation protein SmcD) (Bamacan) (Basement membrane-associated chondroitin proteoglycan) (Mad member-interacting protein 1) SMC3_MOUSE 4e-18 ...

  4. SwissProt search result: AK242597 [KOME

    Lifescience Database Archive (English)

    Full Text Available lfate proteoglycan 6) (Chromosome segregation protein SmcD) (Bamacan) (Basement membrane-associated chondroitin proteoglycan) (Mad member-interacting protein 1) SMC3_MOUSE 5e-19 ...

  5. SwissProt search result: AK103514 [KOME

    Lifescience Database Archive (English)

    Full Text Available lfate proteoglycan 6) (Chromosome segregation protein SmcD) (Bamacan) (Basement membrane-associated chondroitin proteoglycan) (Mad member-interacting protein 1) SMC3_MOUSE 1e-33 ...

  6. SwissProt search result: AK120333 [KOME

    Lifescience Database Archive (English)

    Full Text Available lfate proteoglycan 6) (Chromosome segregation protein SmcD) (Bamacan) (Basement membrane-associated chondroitin proteoglycan) (Mad member-interacting protein 1) SMC3_MOUSE 2e-18 ...

  7. SwissProt search result: AK064293 [KOME

    Lifescience Database Archive (English)

    Full Text Available ulfate proteoglycan 6) (Chromosome segregation protein SmcD) (Bamacan) (Basement membrane-associated chondroitin proteoglycan) (Mad member-interacting protein 1) SMC3_MOUSE 2e-15 ...

  8. Effects of chondroitin sulfate and sodium hyaluronate on chondrocytes and extracellular matrix of articular cartilage in dogs with degenerative joint disease Efeitos do sulfato de condroitina e do hialuronato de sódio nos condrócitos e na matriz extracelular na cartilagem articular de cães com doença articular degenerativa

    Directory of Open Access Journals (Sweden)

    G. Gonçalves

    2008-02-01

    Full Text Available Samples of articular cartilage of femur, tibia and patella of 15 dogs with experimentally induced degenerative joint disease (DJD were microscopically analyzed. Animals were distributed into three groups (n=5: the control group received no medication; the second group was treated with chondroitin sulfate and the third received sodium hyaluronate. Samples were processed and stained with HE and toluidine blue for morphological evaluation. The metabolic and proliferative activity of the chondrocytes was evaluated by the measurement of nucleolar organizer regions (NORs after impregnation by silver nitrate. Significant differences were not observed (P>0.05 in the morphology among the groups, however, the group treated with sodium hyaluronate had a higher score suggesting a trend to a greater severity of the lesions. Significant differences were not observed (P>0.05 in the measurement of NORs, cells and NORs/cells among the groups. Although differences were not significant, sodium hyaluronate group showed higher NOR and cell counts which suggested an increase of the proliferation rate of chondrocytes. In addition, a higher NOR/cell ratio in the group treated with chondroitin sulfate suggested that this drug may have stimulated the metabolic activity of the chondrocytes, minimizing the lesions resulting from DJD.Foram utilizadas amostras de cartilagem articular do fêmur, tíbia e patela de 15 cães com doença articular degenerativa (DAD, induzida experimentalmente. Foram constituídos três grupos de cinco animais: grupo 1 - controle, não medicado; grupo 2 - tratado com sulfato de condroitina e grupo 3 - tratado com hialuronato de sódio. As amostras foram processadas e coradas pelas técnicas de HE e de azul de toluidina para avaliação das alterações morfológicas, e impregnadas pelo nitrato de prata para análise da atividade metabólica e/ou proliferativa dos condrócitos, por meio da visualização e quantificação de regiões organizadoras

  9. Glucosamine and Chondroitin for Osteoarthritis

    Science.gov (United States)

    ... implications for human efficacy and toxicity. Archives of Biochemistry and Biophysics. 2011;510(1):11–18. Cahlin ... M.P.H., University of Maryland; Julian Leakey, Ph.D., U.S. Food and Drug Administration; Allen Sawitzke, ...

  10. Assessment of hyaline cartilage matrix composition using near infrared spectroscopy.

    Science.gov (United States)

    Palukuru, Uday P; McGoverin, Cushla M; Pleshko, Nancy

    2014-09-01

    Changes in the composition of the extracellular matrix (ECM) are characteristic of injury or disease in cartilage tissue. Various imaging modalities and biochemical techniques have been used to assess the changes in cartilage tissue but lack adequate sensitivity, or in the case of biochemical techniques, result in destruction of the sample. Fourier transform near infrared (FT-NIR) spectroscopy has shown promise for the study of cartilage composition. In the current study NIR spectroscopy was used to identify the contributions of individual components of cartilage in the NIR spectra by assessment of the major cartilage components, collagen and chondroitin sulfate, in pure component mixtures. The NIR spectra were obtained using homogenous pellets made by dilution with potassium bromide. A partial least squares (PLS) model was calculated to predict composition in bovine cartilage samples. Characteristic absorbance peaks between 4000 and 5000 cm(-1) could be attributed to components of cartilage, i.e. collagen and chondroitin sulfate. Prediction of the amount of collagen and chondroitin sulfate in tissues was possible within 8% (w/dw) of values obtained by gold standard biochemical assessment. These results support the use of NIR spectroscopy for in vitro and in vivo applications to assess matrix composition of cartilage tissues, especially when tissue destruction should be avoided. Copyright © 2014. Published by Elsevier B.V.

  11. Arabidopsis CDS blastp result: AK105135 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK105135 001-102-A05 At2g27170.1 structural maintenance of chromosomes (SMC) family protein similar to basem...ent membrane-associated chondroitin proteoglycan Bamacan [Rattus norvegicus] GI:178

  12. Hair follicle proteoglycans

    DEFF Research Database (Denmark)

    Couchman, J R

    1993-01-01

    that are present in the epithelial and stromal compartments of hair follicles. However, the transmembrane proteoglycan syndecan may be important in follicle morphogenesis, both with respect to the epithelium and dermal papilla cells. Syndecan may possess both heparan and chondroitin sulfate chains, interacts...... basement membranes, including those surrounding the epithelial compartment of hair follicles. Additionally, and quite unlike the dermis, the dermal papilla is enriched in basement-membrane components, especially a chondroitin 6-sulfate-containing proteoglycan, BM-CSPG. The function of this proteoglycan...... is not known, but developmental studies indicate that it may have a role in stabilizing basement membranes. In the hair cycle, BM-CSPG decreases through catagen and is virtually absent from the telogen papilla. One or more heparan sulfate proteoglycans, including perlecan, are also present in papilla...

  13. Distribution of two basement membrane proteoglycans through hair follicle development and the hair growth cycle in the rat

    DEFF Research Database (Denmark)

    Couchman, J R; King, J L; McCarthy, K J

    1990-01-01

    The distribution of two distinct populations of basement membrane proteoglycans has been monitored through hair growth development in the rat embryo and subsequent hair growth cycle. An antiserum against a small heparan sulfate proteoglycan uniformly stained the dermal-epidermal junction...... of embryonic rats throughout the period of hair follicle formation. On the other hand, monoclonal antibodies recognizing a basement membrane-specific chondroitin sulfate proteoglycan only weakly stained 16-d embryo dermal-epidermal junction, but strong staining was associated with hair follicle buds...... as they developed. Through the hair growth cycle, it was found that the heparan sulfate proteoglycan persisted around the follicles, while the chondroitin sulfate proteoglycan decreased in amount through catagen until it was undetectable at the base and dermal papilla of the telogen follicle. As anagen commenced...

  14. Lack of gender-specific antibody recognition of products from domains of a var gene implicated in pregnancy-associated Plasmodium falciparum malaria

    DEFF Research Database (Denmark)

    Jensen, Anja T R; Zornig, Hanne D; Buhmann, Caecilie

    2003-01-01

    Gender-specific and parity-dependent acquired antibody recognition is characteristic of variant surface antigens (VSA) expressed by chondroitin sulfate A (CSA)-adherent Plasmodium falciparum involved in pregnancy-associated malaria (PAM). However, antibody recognition of recombinant products...

  15. HYDROGELS BASED ON POLYMERS OF DEXTRAN TYRAMINE AND TYRAMINE CONJUGATES OF NATURAL POLYMERS

    NARCIS (Netherlands)

    Feijen, Jan; Karperien, Marcel; Jin, R.; Moreira Teixeira, Liliana; Dijkstra, Pieter J.

    2012-01-01

    The invention relates to composition comprising a dextran-tyramine conjugate and a conjugate selected from the group consisting of chondroitin sulphate-tyramine, collagen-tyramine, chitosan-tyramine, chitosan-phloretic acid, gelatine-tyramine, heparan sulphate-tyramine, keratin sulphate-tyramine,

  16. HYDROGELS BASED ON POLYMERS OF DEXTRAN TYRAMINE AND TYRAMINE CONJUGATES OF NATURAL POLYMERS

    NARCIS (Netherlands)

    Karperien, H.B.J.; Jin, R.; Moreira Teixeira, Liliana; Feijen, Jan; Dijkstra, Pieter J.

    2011-01-01

    The invention relates to composition comprising a dextran-tyramine conjugate and a conjugate selected from the group consisting of chondroitin sulphate-tyramine, collagen-tyramine, chitosan-tyramine, chitosan-phloretic acid, gelatine-tyramine, heparan sulphate-tyramine, keratin sulphate tyramine,

  17. Glycomics expression analysis of sulfated glycosaminoglycans of human colorectal cancer tissues and non-neoplastic mucosa by electrospray ionization mass spectrometry.

    Science.gov (United States)

    Marolla, Ana Paula Cleto; Waisberg, Jaques; Saba, Gabriela Tognini; Waisberg, Daniel Reis; Margeotto, Fernando Beani; Pinhal, Maria Aparecida da Silva

    2015-01-01

    To determine the presence of glycosaminoglycans in the extracellular matrix of connective tissue from neoplastic and non-neoplastic colorectal tissues, since it has a central role in tumor development and progression. Tissue samples from neoplastic and non-neoplastic colorectal tissues were obtained from 64 operated patients who had colorectal carcinoma with no distant metastases. Expressions of heparan sulphate, chondroitin sulphate, dermatan sulphate and their fragments were analyzed by electrospray ionization mass spectrometry, with the technique for extraction and quantification of glycosaminoglycans after proteolysis and electrophoresis. The statistical analysis included mean, standard deviation, and Student'st test. The glycosaminoglycans extracted from colorectal tissue showed three electrophoretic bands in agarose gel. Electrospray ionization mass spectrometry showed characteristic disaccharide fragments from glycosaminoglycans, indicating their structural characterization in the tissues analyzed. Some peaks in the electrospray ionization mass spectrometry were not characterized as fragments of sugars, indicating the presence of fragments of the protein structure of proteoglycans generated during the glycosaminoglycan purification. The average amount of chondroitin and dermatan increased in the neoplastic tissue compared to normal tissue (p=0.01). On the other hand, the average amount of heparan decreased in the neoplastic tissue compared to normal tissue (p= 0.03). The method allowed the determination of the glycosaminoglycans structural profile in colorectal tissue from neoplastic and non-neoplastic colorectal tissue. Neoplastic tissues showed greater amounts of chondroitin sulphate and dermatan sulphate compared to non-neoplastic tissues, while heparan sulphate was decreased in neoplastic tissues.

  18. Glycomics expression analysis of sulfated glycosaminoglycans of human colorectal cancer tissues and non-neoplastic mucosa by electrospray ionization mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Marolla, Ana Paula Cleto [Universidade Federal de São Paulo, São Paulo, SP (Brazil); Waisberg, Jaques [Hospital do Servidor Público Estadual, São Paulo, SP (Brazil); Faculdade de Medicina do ABC, Santo André, SP (Brazil); Saba, Gabriela Tognini [Faculdade de Medicina do ABC, Santo André, SP (Brazil); Waisberg, Daniel Reis [Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP (Brazil); Margeotto, Fernando Beani; Pinhal, Maria Aparecida da Silva [Faculdade de Medicina do ABC, Santo André, SP (Brazil)

    2015-07-01

    To determine the presence of glycosaminoglycans in the extracellular matrix of connective tissue from neoplastic and non-neoplastic colorectal tissues, since it has a central role in tumor development and progression. Tissue samples from neoplastic and non-neoplastic colorectal tissues were obtained from 64 operated patients who had colorectal carcinoma with no distant metastases. Expressions of heparan sulphate, chondroitin sulphate, dermatan sulphate and their fragments were analyzed by electrospray ionization mass spectrometry, with the technique for extraction and quantification of glycosaminoglycans after proteolysis and electrophoresis. The statistical analysis included mean, standard deviation, and Student’s t test. The glycosaminoglycans extracted from colorectal tissue showed three electrophoretic bands in agarose gel. Electrospray ionization mass spectrometry showed characteristic disaccharide fragments from glycosaminoglycans, indicating their structural characterization in the tissues analyzed. Some peaks in the electrospray ionization mass spectrometry were not characterized as fragments of sugars, indicating the presence of fragments of the protein structure of proteoglycans generated during the glycosaminoglycan purification. The average amount of chondroitin and dermatan increased in the neoplastic tissue compared to normal tissue (p=0.01). On the other hand, the average amount of heparan decreased in the neoplastic tissue compared to normal tissue (p= 0.03). The method allowed the determination of the glycosaminoglycans structural profile in colorectal tissue from neoplastic and non-neoplastic colorectal tissue. Neoplastic tissues showed greater amounts of chondroitin sulphate and dermatan sulphate compared to non-neoplastic tissues, while heparan sulphate was decreased in neoplastic tissues.

  19. The endogenous proteoglycan-degrading enzyme ADAMTS-4 promotes functional recovery after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Tauchi Ryoji

    2012-03-01

    Full Text Available Abstract Background Chondroitin sulfate proteoglycans are major inhibitory molecules for neural plasticity under both physiological and pathological conditions. The chondroitin sulfate degrading enzyme chondroitinase ABC promotes functional recovery after spinal cord injury, and restores experience-dependent plasticity, such as ocular dominance plasticity and fear erasure plasticity, in adult rodents. These data suggest that the sugar chain in a proteoglycan moiety is essential for the inhibitory activity of proteoglycans. However, the significance of the core protein has not been studied extensively. Furthermore, considering that chondroitinase ABC is derived from bacteria, a mammalian endogenous enzyme which can inactivate the proteoglycans' activity is desirable for clinical use. Methods The degradation activity of ADAMTS-4 was estimated for the core proteins of chondroitin sulfate proteoglycans, that is, brevican, neurocan and phosphacan. To evaluate the biological significance of ADMATS-4 activity, an in vitro neurite growth assay and an in vivo neuronal injury model, spinal cord contusion injury, were employed. Results ADAMTS-4 digested proteoglycans, and reversed their inhibition of neurite outgrowth. Local administration of ADAMTS-4 significantly promoted motor function recovery after spinal cord injury. Supporting these findings, the ADAMTS-4-treated spinal cord exhibited enhanced axonal regeneration/sprouting after spinal cord injury. Conclusions Our data suggest that the core protein in a proteoglycan moiety is also important for the inhibition of neural plasticity, and provides a potentially safer tool for the treatment of neuronal injuries.

  20. Glycomics expression analysis of sulfated glycosaminoglycans of human colorectal cancer tissues and non-neoplastic mucosa by electrospray ionization mass spectrometry

    International Nuclear Information System (INIS)

    Marolla, Ana Paula Cleto; Waisberg, Jaques; Saba, Gabriela Tognini; Waisberg, Daniel Reis; Margeotto, Fernando Beani; Pinhal, Maria Aparecida da Silva

    2015-01-01

    To determine the presence of glycosaminoglycans in the extracellular matrix of connective tissue from neoplastic and non-neoplastic colorectal tissues, since it has a central role in tumor development and progression. Tissue samples from neoplastic and non-neoplastic colorectal tissues were obtained from 64 operated patients who had colorectal carcinoma with no distant metastases. Expressions of heparan sulphate, chondroitin sulphate, dermatan sulphate and their fragments were analyzed by electrospray ionization mass spectrometry, with the technique for extraction and quantification of glycosaminoglycans after proteolysis and electrophoresis. The statistical analysis included mean, standard deviation, and Student’s t test. The glycosaminoglycans extracted from colorectal tissue showed three electrophoretic bands in agarose gel. Electrospray ionization mass spectrometry showed characteristic disaccharide fragments from glycosaminoglycans, indicating their structural characterization in the tissues analyzed. Some peaks in the electrospray ionization mass spectrometry were not characterized as fragments of sugars, indicating the presence of fragments of the protein structure of proteoglycans generated during the glycosaminoglycan purification. The average amount of chondroitin and dermatan increased in the neoplastic tissue compared to normal tissue (p=0.01). On the other hand, the average amount of heparan decreased in the neoplastic tissue compared to normal tissue (p= 0.03). The method allowed the determination of the glycosaminoglycans structural profile in colorectal tissue from neoplastic and non-neoplastic colorectal tissue. Neoplastic tissues showed greater amounts of chondroitin sulphate and dermatan sulphate compared to non-neoplastic tissues, while heparan sulphate was decreased in neoplastic tissues

  1. Growth-related variations in the glycosaminoglycan synthesis of ultraviolet light-induced murine cutaneous fibrosarcoma cells

    International Nuclear Information System (INIS)

    Piepkorn, M.; Carney, H.; Linker, A.

    1985-01-01

    Glycosaminoglycan synthesis was studied in cell populations of ultraviolet light-induced murine cutaneous fibrosarcoma cells under conditions of varying growth rates in vitro. After labeling with the precursors, 3 H-glucosamine and 35 SO 4 , sulfated glycosaminoglycans recoverable by direct proteolysis of the culture monolayers increased approximately 5-fold on a per cell basis from sparsely populated, exponential cell cultures (greater than 85% of cells in S, G2, or M phases) to stationary cultures inhibited by high cell density (greater than 50% of cells in G1). Within this cell surface-associated material, the relative ratio of heparan sulfate to the chondroitin sulfates was approximately 60/40% under conditions of exponential growth; in the growth-arrested cultures, the reverse ratio was found. The substratum attached material, obtained from the flask surface after ethyl glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA)-mediated detachment of the monolayers, contained relatively more hyaluronic acid, heparan sulfate, and chondroitin sulfates in the most actively proliferating cultures compared with the growth-inhibited cell populations. Furthermore, heparan sulfate and the chondroitin sulfates, which were enriched in the substratum material and in the cell pellet of exponential cultures, showed a relative shift to the cell surface-associated compartment (releasable by mild trypsinization after EGTA-mediated cell detachment) and to the compartment loosely associated with the pericellular matrix (i.e., released into the supernatant during detachment of the monolayers in the presence of EGTA)

  2. Mineralization of elastic fibers and alterations of extracellular matrix in pseudoxanthoma elasticum. Ultrastructure, immunocytochemistry, and X-ray analysis

    International Nuclear Information System (INIS)

    Walker, E.R.; Frederickson, R.G.; Mayes, M.D.

    1989-01-01

    Histologic paraffin sections of pseudoxanthoma elasticum (PXE)-involved skin of forearm and axilla were used for histochemistry and immunohistochemical and analytical electron microscopy to study the progressive mineralization in the dermis of patients with PXE. The von Kossa technique identified mineral deposits throughout the reticular PXE dermis. X-ray analysis revealed patterns of calcium and phosphorus deposition in the von Kossa-positive areas, and the immunohistochemical staining using monoclonal antibodies identified increased chondroitin-6-sulfate in these areas when compared with normal skin. Scanning transmission electron microscopy observation combined with X-ray dot mapping show calcium and phosphorus to be codistributed within the mineralized area. This study confirms by new methods the increase in chondroitin-6-sulfate, alterations in elastin and collagen, and a high calcium and phosphorus elemental distribution matching the mineralized area in the PXE dermis

  3. Epitope mapping and topographic analysis of VAR2CSA DBL3X involved in P-falciparum placental sequestration

    DEFF Research Database (Denmark)

    Dahlback, Madeleine; Rask, Thomas Salhøj; Andersen, Pernille

    2006-01-01

    Pregnancy-associated malaria is a major health problem, which mainly affects primigravidae living in malaria endemic areas. The syndrome is precipitated by accumulation of infected erythrocytes in placental tissue through an interaction between chondroitin sulphate A on syncytiotrophoblasts and a...

  4. Identification of glycosaminoglycan binding regions in the Plasmodium falciparum encoded placental sequestration ligand, VAR2CSA

    DEFF Research Database (Denmark)

    Resende, Mafalda; Nielsen, Morten A.; Dahlbaeck, Madeleine

    2008-01-01

    Background: Pregnancy malaria is caused by Plasmodium falciparum-infected erythrocytes binding the placental receptor chondroitin sulfate A (CSA). This results in accumulation of parasites in the placenta with severe clinical consequences for the mother and her unborn child. Women become resistan...

  5. Sulfated sugars in the extracellular matrix orchestrate ovarian cancer development: 'When sweet turns sour'

    NARCIS (Netherlands)

    Vallen, M.J.E.; Steen, S.C.H.A. van der; Tilborg, A.A. Van; Massuger, L.F.A.G.; Kuppevelt, T.H. van

    2014-01-01

    Considering the high mortality of ovarian cancer, novel approaches for diagnostics and therapy are urgently needed. Cancer initiation, progression, and invasion occur in a complex and dynamic microenvironment which depends on the interplay between host cell responses and tumor activity. Chondroitin

  6. Absence of differences among low, middle, and high molecular weight hyaluronan in activating murine immune cells in vitro

    Czech Academy of Sciences Publication Activity Database

    Šafránková, Barbora; Hermannová, M.; Nešporová, K.; Velebný, V.; Kubala, Lukáš

    2018-01-01

    Roč. 107, FEB2018 (2018), s. 1-8 ISSN 0141-8130 Institutional support: RVO:68081707 Keywords : mouse macrophages * chondroitin sulfate * prostaglandin e-2 * gene-expression Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Cell biology Impact factor: 3.671, year: 2016

  7. Production and characterization of monoclonal antibodies directed against connective tissue proteoglycans

    DEFF Research Database (Denmark)

    Caterson, B; Christner, J E; Baker, J R

    1985-01-01

    distribution of 4- and 6-sulfated and unsulfated proteoglycans in tissue sections of cartilage and other noncartilaginous tissues. Digestion with chondroitinase ABC or ACII can be used to differentiate between chondroitin sulfate and dermatan sulfate proteoglycan in different connective tissues. In addition...

  8. UniProt search blastx result: AK287474 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK287474 J043022N04 P04917|PGSG_RAT Secretory granule proteoglycan core protein pre...cursor (Chondroitin sulfate proteoglycan core protein) (Proteoglycan 10K core protein) (PG19 core protein) (Cytolytic granule proteoglycan core protein) - Rattus norvegicus (Rat) 0 ...

  9. Extracellular matrix in canine mammary tumors with special focus on versican, a versatile extracellular proteoglycan

    NARCIS (Netherlands)

    Erdélyi, Ildikó

    2006-01-01

    The extracellular matrix (ECM) research has become fundamental to understand cancer. This thesis focuses on the exploration of ECM composition and organization in canine mammary tumors, with a special interest in the large chondroitin-sulfate proteoglycan (PG), versican. Chapter 1 gives an

  10. Is chondroitin sulfate effective for osteoarthritis?

    Directory of Open Access Journals (Sweden)

    Valentina Rojas-Briones

    2017-06-01

    Full Text Available Resumen La artrosis es la enfermedad articular crónica que presenta mayor prevalencia, en la cual el dolor es uno de los principales síntomas y el mayor determinante de la pérdida de funcionalidad. Se han planteado múltiples opciones terapéuticas, entre ellas el condroitín sulfato, pero su real utilidad aún no ha sido claramente demostrada. Para aclarar esta interrogante utilizamos la base de datos Epistemonikos, la cual es mantenida mediante búsquedas en múltiples fuentes de información. Identificamos 13 revisiones sistemáticas que en conjunto incluyen 50 estudios aleatorizados que responden la pregunta de este resumen. Extrajimos la información relevante, realizamos un metanálisis y preparamos una tabla de resumen de los resultados utilizando el método GRADE. Concluimos que no está claro si el uso de condroitín sulfato produce una mejoría en el dolor o la funcionalidad en la artrosis porque la certeza de la evidencia es muy baja.

  11. Histopathologic and immunohistochemical features of capsular tissue around failed Ahmed glaucoma valves.

    Directory of Open Access Journals (Sweden)

    Alka Mahale

    Full Text Available Impervious encapsulation around Ahmed glaucoma valve (AGV results in surgical failure raising intraocular pressure (IOP. Dysregulation of extracellular matrix (ECM molecules and cellular factors might contribute to increased hydraulic resistance to aqueous drainage. Therefore, we examined these molecules in failed AGV capsular tissue. Immunostaining for ECM molecules (collagen I, collagen III, decorin, lumican, chondroitin sulfate, aggrecan and keratan sulfate and cellular factors (αSMA and TGFβ was performed on excised capsules from failed AGVs and control tenon's tissue. Staining intensity of ECM molecules was assessed using Image J. Cellular factors were assessed based on positive cell counts. Histopathologically two distinct layers were visible in capsules. The inner layer (proximal to the AGV showed significant decrease in most ECM molecules compared to outer layer. Furthermore, collagen III (p = 0.004, decorin (p = 0.02, lumican (p = 0.01 and chondroitin sulfate (p = 0.02 was significantly less in inner layer compared to tenon's tissue. Outer layer labelling however was similar to control tenon's for most ECM molecules. Significantly increased cellular expression of αSMA (p = 0.02 and TGFβ (p = 0.008 was detected within capsular tissue compared to controls. Our results suggest profibrotic activity indicated by increased αSMA and TGFβ expression and decreased expression of proteoglycan (decorin and lumican and glycosaminoglycans (chondroitin sulfate. Additionally, we observed decreased collagen III which might reflect increased myofibroblast contractility when coupled with increased TGFβ and αSMA expression. Together these events lead to tissue dysfunction potentially resulting in hydraulic resistance that may affect aqueous flow through the capsular wall.

  12. Histopathologic and immunohistochemical features of capsular tissue around failed Ahmed glaucoma valves.

    Science.gov (United States)

    Mahale, Alka; Fikri, Fatma; Al Hati, Khitam; Al Shahwan, Sami; Al Jadaan, Ibrahim; Al Katan, Hind; Khandekar, Rajiv; Maktabi, Azza; Edward, Deepak P

    2017-01-01

    Impervious encapsulation around Ahmed glaucoma valve (AGV) results in surgical failure raising intraocular pressure (IOP). Dysregulation of extracellular matrix (ECM) molecules and cellular factors might contribute to increased hydraulic resistance to aqueous drainage. Therefore, we examined these molecules in failed AGV capsular tissue. Immunostaining for ECM molecules (collagen I, collagen III, decorin, lumican, chondroitin sulfate, aggrecan and keratan sulfate) and cellular factors (αSMA and TGFβ) was performed on excised capsules from failed AGVs and control tenon's tissue. Staining intensity of ECM molecules was assessed using Image J. Cellular factors were assessed based on positive cell counts. Histopathologically two distinct layers were visible in capsules. The inner layer (proximal to the AGV) showed significant decrease in most ECM molecules compared to outer layer. Furthermore, collagen III (p = 0.004), decorin (p = 0.02), lumican (p = 0.01) and chondroitin sulfate (p = 0.02) was significantly less in inner layer compared to tenon's tissue. Outer layer labelling however was similar to control tenon's for most ECM molecules. Significantly increased cellular expression of αSMA (p = 0.02) and TGFβ (p = 0.008) was detected within capsular tissue compared to controls. Our results suggest profibrotic activity indicated by increased αSMA and TGFβ expression and decreased expression of proteoglycan (decorin and lumican) and glycosaminoglycans (chondroitin sulfate). Additionally, we observed decreased collagen III which might reflect increased myofibroblast contractility when coupled with increased TGFβ and αSMA expression. Together these events lead to tissue dysfunction potentially resulting in hydraulic resistance that may affect aqueous flow through the capsular wall.

  13. Dynamics of biochemical and immunological blood markers in patients with pseudoarthrosis of the femoral neck after total hip arthroplasty

    Directory of Open Access Journals (Sweden)

    S. E. Bondarenko

    2017-08-01

    Full Text Available The importance of biomarkers to predict recovery following total hip arthroplasty (THA is still unclear to clinicians. To assess the preoperative biomarkers of patients with pseudoarthrosis of the femoral neck and their dynamics in the early postoperative period after THA, 50 patients aged 33 to 82 years old, 18 males and 32 females diagnosed with pseudoarthrosis of the femoral neck after failed internal fixation and failed conservative management were studied. The control group consisted of 30 healthy people aged 27 to 50 years, 13 males, 17 females. Patients’ blood was examined for biochemical markers upon admission, and then on the 7th and 14th days after surgery. Their blood serum content of total protein, albumin, glycoproteins, sialic acids, chondroitin sulfates, haptoglobin, glucose, cholesterol, triglycerides, ALT, AST, alkaline phosphatase, GGT, acid phosphatase, thymol index; interleukins (IL-1, IL-4 and IL-6. and C-reactive protein was measured. The content of glycoproteins in the blood exceeded the norm by 2.3 times, chondroitin sulfate by 4.7 times, sialic acids by 1.5 times, haptoglobin by 55.8%, fibrinogen by 19.1%, globulin by 19,6%, alkaline phosphatase activity by 72.3%, IL-1 by 94.7 and IL-6 by 3 times, C-reactive protein by 2.6 times. After THA there was a gradual decrease in blood biochemical and immunological markers. The most informative laboratory markers were glycoproteins, chondroitin sulfates, sialic acids, haptoglobin, activity of alkaline phosphatase, IL-1, IL-6 and IL-4, and C-reactive protein. Subsequent research is required to validate these dynamics.

  14. Evidence for globally shared, cross-reacting polymorphic epitopes in the pregnancy-associated malaria vaccine candidate VAR2CSA

    DEFF Research Database (Denmark)

    Avril, Marion; Kulasekara, Bridget R; Gose, Severin O

    2008-01-01

    Pregnancy-associated malaria (PAM) is characterized by the placental sequestration of Plasmodium falciparum-infected erythrocytes (IEs) with the ability to bind to chondroitin sulfate A (CSA). VAR2CSA is a leading candidate for a pregnancy malaria vaccine, but its large size ( approximately 350 k...

  15. Comparison of functional assays used in the clinical development of a placental malaria vaccine

    DEFF Research Database (Denmark)

    Pehrson, Caroline; Heno, Kristine Klysner; Adams, Yvonne

    2017-01-01

    BACKGROUND: Malaria in pregnancy is associated with significant morbidity in pregnant women and their offspring. Plasmodium falciparum infected erythrocytes (IE) express VAR2CSA that mediates binding to chondroitin sulphate A (CSA) in the placenta. Two VAR2CSA-based vaccines for placental malaria...

  16. Novel adenovirus encoded virus-like particles displaying the placental malaria associated VAR2CSA antigen

    DEFF Research Database (Denmark)

    Andersson, Anne-Marie C; dos Santos Marques Resende, Mafalda; Salanti, Ali

    2017-01-01

    The malaria parasite Plasmodium falciparum presents antigens on the infected erythrocyte surface that bind human receptors expressed on the vascular endothelium. The VAR2CSA mediated binding to a distinct chondroitin sulphate A (CSA) is a crucial step in the pathophysiology of placental malaria a...

  17. The effects of three-month oral supplementation with a nutraceutical and exercise on the locomotor pattern of aged horses

    NARCIS (Netherlands)

    Higler, M H; Brommer, H; L'Ami, J J; de Grauw, J C; Nielen, M; van Weeren, P R; Laverty, S; Barneveld, A; Back, W

    REASONS FOR PERFORMING STUDY: Multiple in vitro studies assessing articular tissues have indicated that glucosamine and chondroitin sulphate may possess anti-inflammatory effects, but little is known of their clinical effects in vivo. Many old horses have stiff joints, which is likely to be

  18. Basement membrane proteoglycans are of epithelial origin in rodent skin

    DEFF Research Database (Denmark)

    Yamane, Y; Yaoita, H; Couchman, J R

    1996-01-01

    . For in vivo experiments, pieces of newborn rat epidermis obtained by dispase treatment were grafted onto athymic nude mice. Three and six weeks after grafting, immunofluorescence analysis of the grafted skin was carried out, using monoclonal antibodies specific for rat basement membrane chondroitin sulfate...

  19. Development and in vitro characterization of 5-flurouracilloaded ...

    African Journals Online (AJOL)

    Purpose: To prepare chondroitin sulphate–polyvinyl alcohol cross-linked microcapsules (miCAPs) for controlled delivery of 5-flurouracil (5-FU) in cancer patients. Method: Nine different miCAP formulations were prepared using emulsion cross-linking procedure. The formulations were evaluated for their physicochemical ...

  20. Targeting Human Cancer by a Glycosaminoglycan Binding Malaria Protein

    DEFF Research Database (Denmark)

    Salanti, Ali; Clausen, Thomas M.; Agerbæk, Mette Ø.

    2015-01-01

    Plasmodium falciparum engineer infected erythrocytes to present the malarial protein, VAR2CSA, which binds a distinct type chondroitin sulfate (CS) exclusively expressed in the placenta. Here, we show that the same CS modification is present on a high proportion of malignant cells and that it can...

  1. Structural Insight into Epitopes in the Pregnancy-Associated Malaria Protein VAR2CSA

    DEFF Research Database (Denmark)

    Andersen, P; Nielsen, MA; Resende, M

    2008-01-01

    Pregnancy-associated malaria is caused by Plasmodium falciparum malaria parasites binding specifically to chondroitin sulfate A in the placenta. This sequestration of parasites is a major cause of low birth weight in infants and anemia in the mothers. VAR2CSA, a polymorphic multi-domain protein o...

  2. Defining the role of common variation in the genomic and biological architecture of adult human height

    DEFF Research Database (Denmark)

    Wood, Andrew R.; Esko, Tonu; Yang, Jian

    2014-01-01

    to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/beta-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR...

  3. A microRNA signature associated with chondrogenic lineage ...

    Indian Academy of Sciences (India)

    peroxisome proliferator-activated receptor gamma. PPAR signalling hsa-mir-143. MAP3K7 mitogen-activated protein kinase kinase kinase 7. MAPK signalling. CHST10 carbohydrate sulfotransferase 10. Sulfation of chondroitin. MAPK7 mitogen-activated protein kinase 7. MAPK signalling. COL1A1 collagen, type I, alpha 1.

  4. Cell-surface proteoglycan in sea urchin primary mesenchyme cell migration

    International Nuclear Information System (INIS)

    Lane, M.C.

    1989-01-01

    Early in the development of the sea urchin embryo, the primary mesenchyme cells (PMC) migrate along the basal lamina of the blastocoel. Migration is inhibited in L. pictus embryos cultured in sulfate-free seawater and in S. purpuratus embryos exposed to exogenous β-D-xylosides. An in vitro assay was developed to test the migratory capacity of normal PMC on normal and treated blastocoelic matrix. Sulfate deprivation and exposure to exogenous xyloside render PMC nonmotile on either matrix. Materials removed from the surface of normal PMC by treatment with 1 M urea restored migratory ability to defective cells, whereas a similar preparation isolated from the surface of epithelial cells at the same stage did not. Migration also resumed when cells were removed from the xyloside or returned to normal seawater. The urea extract was partially purified and characterized by radiolabeling, gel electrophoresis, fluorography, ion exchange chromatography, and western blotting. The PMC synthesize a large chondroitin sulfate/dermatan sulfate proteoglycan that is present in an active fraction isolated by chromatography. Chondroitinase ABC digestion of live cells blocked migration reversibly, further supporting the identification of the chondroitin sulfate/dermatan sulfate proteoglycan as the active component in the urea extract. Much of the incorporated sulfate was distributed along the filopodia in 35 SO 4 -labelled PMC by autoradiography. The morphology of normal and treated S. purpuratus PMC was examined by scanning electron microscopy, and differences in spreading, particularly of the extensive filopodia present on the cells, was observed. A model for the role of the chondroitin sulfate/dermatan sulfate proteoglycan in cell detachment during migration is proposed

  5. Carbohydrate as covalent crosslink in human inter-alpha-trypsin inhibitor

    DEFF Research Database (Denmark)

    Jessen, T E; Faarvang, K L; Ploug, M

    1988-01-01

    The primary structure of inter-alpha-trypsin inhibitor is partially elucidated, but controversy about the construction of the polypeptide backbone still exists. We present evidence suggesting that inter-alpha-trypsin inhibitor represents a novel plasma protein structure with two separate polypept...... polypeptide chains covalently crosslinked only by carbohydrate (chondroitin sulphate)....

  6. The antibody response of pregnant Cameroonian women to VAR2CSA ID1-ID2a, a small recombinant protein containing the CSA-binding site

    DEFF Research Database (Denmark)

    Babakhanyan, Anna; Leke, Rose G F; Salanti, Ali

    2014-01-01

    In pregnant women, Plasmodium falciparum-infected erythrocytes expressing the VAR2CSA antigen bind to chondroitin sulfate A in the placenta causing placental malaria. The binding site of VAR2CSA is present in the ID1-ID2a region. This study sought to determine if pregnant Cameroonian women natura...

  7. Selective rab11 transport and the intrinsic regenerative ability of CNS axons

    Czech Academy of Sciences Publication Activity Database

    Koseki, H.; Donegá, M.; Lam, B.Y.H.; Petrová, V.; van Erp, S.; Yeo, G.S.H.; Kwok, Jessica; Ffrench-Constant, Ch.; Eva, R.; Fawcett, James

    2017-01-01

    Roč. 6, aug (2017), e26956 ISSN 2050-084X R&D Projects: GA MŠk(CZ) EF15_003/0000419 Institutional support: RVO:68378041 Keywords : spinal-cord-injury * chondroitin sulfate proteoglycans * growth cone Subject RIV: FH - Neurology OBOR OECD: Neuroscience s (including psychophysiology Impact factor: 7.725, year: 2016

  8. The efficacy and safety of a combination of glucosamine hydrochloride, chondroitin sulfate and bio-curcumin with exercise in the treatment of knee osteoarthritis: a randomized, double-blind, placebo-controlled study.

    Science.gov (United States)

    Sterzi, Silvia; Giordani, Laura; Morrone, Michelangelo; Lena, Emanuela; Magrone, Giovanni; Scarpini, Claudia; Milighetti, Stefano; Pellicciari, Leonardo; Bravi, Marco; Panni, Ilaria; Ljoka, Concetta; Bressi, Federica; Foti, Calogero

    2016-06-01

    Knee osteoarthritis (OA) conservative treatment aims to delay cartilage degeneration; chondroprotective agents are a valid approach in this sense. A commercially available dietary supplement, CartiJoint Forte, containing glucosamine hydrochloride (GH), chondroitin sulfate (CS) and Bio-Curcumin BCM-95®, was used in this trial. The aim of this study was to assess efficacy and safety of CartiJoint Forte combined with physical therapy in treating subjects with knee OA. A multicenter, prospective, randomized, double blind, placebo-controlled clinical trial. Outpatients referred to the Rehabilitation Departments of two University Hospitals. Fifty-three patients were randomly assigned to an experimental group (N=26) or a control group (N.=27). Experimental subjects received two tablets of CartiJoint Forte each day for 8 weeks, while those in the control group were provided with a placebo. Three subjects dropped out during the course of the study. The two groups both received 20 sessions of physical therapy during the course of the trial. Primary outcome was pain intensity, measured both at motion and at rest, using the Visual Analogue Scale (VAS). A secondary outcome was an assessment of knee function by Western Ontario and McMaster Universities Arthritis Index and Lequesne Index, knee ROM, and two inflammation markers (C-reactive protein and erythrocyte sedimentation rate). Each assessment was carried out at baseline (T0), at 8 weeks (T1) and at 12 weeks (T2). VAS at rest was found to be reduced between T0 and T1, as well as between T0 and T2 (F=13.712; P=0.0001), with no differences between groups (F=1.724; P=0.191). VAS at motion revealed a significant "group × time-check" interaction (F=2.491; P=0.032), with increasing effect of time on VAS reduction (F=17.748; P=0.0001). This was most pronounced in the experimental group at 8 weeks (F=3.437; P=0.045). The Lequesne Index showed reductions at T1 and T2 compared to T0 (F=9.535; P=0.0001), along with group effect

  9. Differential expression of proteoglycans in tissue remodeling and lymphangiogenesis after experimental renal transplantation in rats.

    Directory of Open Access Journals (Sweden)

    Heleen Rienstra

    Full Text Available BACKGROUND: Chronic transplant dysfunction explains the majority of late renal allograft loss and is accompanied by extensive tissue remodeling leading to transplant vasculopathy, glomerulosclerosis and interstitial fibrosis. Matrix proteoglycans mediate cell-cell and cell-matrix interactions and play key roles in tissue remodeling. The aim of this study was to characterize differential heparan sulfate proteoglycan and chondroitin sulfate proteoglycan expression in transplant vasculopathy, glomerulosclerosis and interstitial fibrosis in renal allografts with chronic transplant dysfunction. METHODS: Renal allografts were transplanted in the Dark Agouti-to-Wistar Furth rat strain combination. Dark Agouti-to-Dark Agouti isografts and non-transplanted Dark Agouti kidneys served as controls. Allograft and isograft recipients were sacrificed 66 and 81 days (mean after transplantation, respectively. Heparan sulfate proteoglycan (collXVIII, perlecan and agrin and chondroitin sulfate proteoglycan (versican expression, as well as CD31 and LYVE-1 (vascular and lymphatic endothelium, respectively expression were (semi- quantitatively analyzed using immunofluorescence. FINDINGS: Arteries with transplant vasculopathy and sclerotic glomeruli in allografts displayed pronounced neo-expression of collXVIII and perlecan. In contrast, in interstitial fibrosis expression of the chondroitin sulfate proteoglycan versican dominated. In the cortical tubular basement membranes in both iso- and allografts, induction of collXVIII was detected. Allografts presented extensive lymphangiogenesis (p<0.01 compared to isografts and non-transplanted controls, which was associated with induced perlecan expression underneath the lymphatic endothelium (p<0.05 and p<0.01 compared to isografts and non-transplanted controls, respectively. Both the magnitude of lymphangiogenesis and perlecan expression correlated with severity of interstitial fibrosis and impaired graft function

  10. Proteoglycan from salmon nasal cartridge promotes in vitro wound healing of fibroblast monolayers via the CD44 receptor

    International Nuclear Information System (INIS)

    Ito, Gen; Kobayashi, Takeshi; Takeda, Yoshie; Sokabe, Masahiro

    2015-01-01

    Highlights: • Proteoglycan from salmon nasal cartridge (SNC-PG) promoted wound healing in fibroblast monolayers. • SNC-PG stimulated both cell proliferation and cell migration. • Interaction between chondroitin sulfate-units and CD44 is responsible for the effect. - Abstract: Proteoglycans (PGs) are involved in various cellular functions including cell growth, adhesion, and differentiation; however, their physiological roles are not fully understood. In this study, we examined the effect of PG purified from salmon nasal cartilage (SNC-PG) on wound closure using tissue-cultured cell monolayers, an in vitro wound-healing assay. The results indicated that SNC-PG significantly promoted wound closure in NIH/3T3 cell monolayers by stimulating both cell proliferation and cell migration. SNC-PG was effective in concentrations from 0.1 to 10 μg/ml, but showed much less effect at higher concentrations (100–1000 μg/ml). The effect of SNC-PG was abolished by chondroitinase ABC, indicating that chondroitin sulfates (CSs), a major component of glycosaminoglycans (GAGs) in SNC-PG, are crucial for the SNC-PG effect. Furthermore, chondroitin 6-sulfate (C-6-S), a major CS of SNC-PG GAGs, could partially reproduce the SNC-PG effect and partially inhibit the binding of SNC-PG to cells, suggesting that SNC-PG exerts its effect through an interaction between the GAGs in SNC-PG and the cell surface. Neutralization by anti-CD44 antibodies or CD44 knockdown abolished SNC-PG binding to the cells and the SNC-PG effect on wound closure. These results suggest that interactions between CS-rich GAG-chains of SNC-PG and CD44 on the cell surface are responsible for the SNC-PG effect on wound closure

  11. Proteoglycan from salmon nasal cartridge promotes in vitro wound healing of fibroblast monolayers via the CD44 receptor

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Gen; Kobayashi, Takeshi; Takeda, Yoshie [Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550 (Japan); Sokabe, Masahiro, E-mail: msokabe@med.nagoya-u.ac.jp [Department of Physiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550 (Japan); Mechanobiology Laboratory, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550 (Japan); Mechanobiology Institute Singapore, National University of Singapore, Singapore 117411 (Singapore)

    2015-01-16

    Highlights: • Proteoglycan from salmon nasal cartridge (SNC-PG) promoted wound healing in fibroblast monolayers. • SNC-PG stimulated both cell proliferation and cell migration. • Interaction between chondroitin sulfate-units and CD44 is responsible for the effect. - Abstract: Proteoglycans (PGs) are involved in various cellular functions including cell growth, adhesion, and differentiation; however, their physiological roles are not fully understood. In this study, we examined the effect of PG purified from salmon nasal cartilage (SNC-PG) on wound closure using tissue-cultured cell monolayers, an in vitro wound-healing assay. The results indicated that SNC-PG significantly promoted wound closure in NIH/3T3 cell monolayers by stimulating both cell proliferation and cell migration. SNC-PG was effective in concentrations from 0.1 to 10 μg/ml, but showed much less effect at higher concentrations (100–1000 μg/ml). The effect of SNC-PG was abolished by chondroitinase ABC, indicating that chondroitin sulfates (CSs), a major component of glycosaminoglycans (GAGs) in SNC-PG, are crucial for the SNC-PG effect. Furthermore, chondroitin 6-sulfate (C-6-S), a major CS of SNC-PG GAGs, could partially reproduce the SNC-PG effect and partially inhibit the binding of SNC-PG to cells, suggesting that SNC-PG exerts its effect through an interaction between the GAGs in SNC-PG and the cell surface. Neutralization by anti-CD44 antibodies or CD44 knockdown abolished SNC-PG binding to the cells and the SNC-PG effect on wound closure. These results suggest that interactions between CS-rich GAG-chains of SNC-PG and CD44 on the cell surface are responsible for the SNC-PG effect on wound closure.

  12. Acquisition and decay of antibodies to pregnancy-associated variant antigens on the surface of Plasmodium falciparum-infected erythrocytes that protect against placental parasitemia

    DEFF Research Database (Denmark)

    Staalsoe, T; Megnekou, R; Fievét, N

    2001-01-01

    Otherwise clinically immune women in areas endemic for malaria are highly susceptible to Plasmodium falciparum malaria during their first pregnancy. Pregnancy-associated malaria (PAM) is characterized by placental accumulation of infected erythrocytes that adhere to chondroitin sulfate A (CSA). S...... adhesion to CSA. Data suggest that VSA(CSA) is a target for vaccination against PAM....

  13. Molecular cloning, purification, and characterization of a novel polyMG-specific alginate lyase responsible for alginate MG block degradation in Stenotrophomas maltophilia KJ-2

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su In; Kim, Hee Sook [Kyungsung Univ., Busan (Korea, Republic of). Dept. of Food Science and Biotechnology; Choi, Sung Hee; Lee, Eun Yeol [Kyung Hee Univ., Gyeonggi-do (Korea, Republic of). Dept. of Chemical Engineering

    2012-09-15

    A gene for a polyMG-specific alginate lyase possessing a novel structure was identified and cloned from Stenotrophomas maltophilia KJ-2 by using PCR with homologous nucleotide sequences-based primers. The recombinant alginate lyase consisting of 475 amino acids was purified on Ni-Sepharose column and exhibited the highest activity at pH 8 and 40 C. Interestingly, the recombinant alginate lyase was expected to have a similar catalytic active site of chondroitin B lyase but did not show chondroitin lyase activity. In the test of substrate specificity, the recombinant alginate lyase preferentially degraded the glycosidic bond of polyMG-block than polyM-block and polyG-block. The chemical structures of the degraded alginate oligosaccharides were elucidated to have mannuronate (M) at the reducing end on the basis of NMR analysis, supporting that KJ-2 polyMG-specific alginate lyase preferably degraded the glycosidic bond in M-G linkage than that in G-M linkage. The KJ-2 polyMG-specific alginate lyase can be used in combination with other alginate lyases for a synergistic saccharification of alginate. (orig.)

  14. Tissue-specific expression of type IX collagen

    International Nuclear Information System (INIS)

    Nishimura, I.; Muragaki, Y.; Ninomiya, Y.; Olsen, B.R.; Hayashi, M.

    1990-01-01

    This paper reports on the tissue-specific expression of type IX collagen, a major component of cartilage fibrils. It contains molecules with three genetically distinct subunits. The subunits form three triple-helical (CO) domains separated by non-triple-helical (NC) sequences. One of the subunits in cartilage, α1(IX), contains a large amino-terminal globular domain, NC4, while a second subunit, α2(IX), contains a covalently attached chondroitin sulfate chain. The site of attachment for this chain is located within the non-triple-helical sequence NC3, which separates the amino-terminal and central triple-helical domains of the type IX molecules. The NC3 region is 5 amino acid residues longer in the α2(IX) chain than in the α1(IX) and α3(IX) chains. This may explain why type IX molecules tend to show a sharp angle in the NC3 region, and why monoclonal antibody molecules that are specific for the stub left after chondroitinase ABC digestion of the chondroitin sulfate side chain always are located on the outside of the angle

  15. Effects of retinal growth factor and of the increase of the number of subcultures on sulfated glycosaminoglycans of bovine lens epithelial cells

    International Nuclear Information System (INIS)

    Moczar, E.; Courtois, Y.

    1981-01-01

    Sulfated glycosaminoglycans of cultured bovine lens epithelial cells grown in the presence and in the absence of a retinal growth factor were investigated comparatively. The newly formed [ 35 S] sulfate-labeled glycosaminoglycans were analysed in the extra-, peri- and intracellular compartments of early (4-5th) and late (17-18h) subcultures. The following results were obtained: (1) Cultured lens epithelial cells grown in the presence or in the absence of the growth factor synthesize chondroitin 4- and 6-sulfates and dermatan sulfate, with heparan sulfate as the main component, the pericellular compartments were particularly rich in heparan sulfate; (2) The distribution pattern of the glycosaminoglycans changes during successive subcultures; the proportion of heparan sulfate increases in the pericellular compartment, the dermatan sulfate to chondroitin sulfate ratio increases in all three compartments; (3) In contrast to the drastic decrease in the fibronectin levels in the presence of growth factor in the early subcultures, only minor differences were found between the glycosaminoglycan patterns for the treated and non-treated cells. ( orig.)

  16. Syndecans, signaling, and cell adhesion

    DEFF Research Database (Denmark)

    Couchman, J R; Woods, A

    1996-01-01

    structures within the heparan sulfate chains, leaving the roles of chondroitin sulfate chains and extracellular portion of the core proteins to be elucidated. Evidence that syndecans are a class of receptor involved in cell adhesion is mounting, and their small cytoplasmic domains may link...... transmembrane signaling from matrix to cytoskeleton, as proposed for other classes of adhesion receptors....

  17. Glycosaminoglycans from earthworms (Eisenia andrei).

    Science.gov (United States)

    Im, A-Rang; Park, Youmie; Sim, Joon-Soo; Zhang, Zhenqing; Liu, Zhenling; Linhardt, Robert J; Kim, Yeong Shik

    2010-02-01

    The whole tissue of the earthworm (Eisenia andrei) was lyophilized and extracted to purify glycosaminoglycans. Fractions, eluting from an anion-exchange column at 1.0 M and 2.0 M NaCl, showed the presence of acidic polysaccharides on agarose gel electrophoresis. Monosaccharide compositional analysis showed that galactose and glucose were most abundant monosaccharides in both fractions. Depolymerization of the polysaccharide mixture with glycosaminoglycan-degrading enzymes confirmed the presence of chondroitin sulfate/dermatan sulfate and heparan sulfate in the 2.0 M NaCl fraction. The content of GAGs (uronic acid containing polysaccharide) in the 2.0 M NaCl fraction determined by carbazole assay was 2%. Disaccharide compositional analysis using liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) analysis after chondroitinase digestion (ABC and ACII), showed that the chondroitin sulfate/dermatan sulfate contained a 4-O-sulfo (76%), 2,4-di-O-sulfo (15%), 6-O-sulfo (6%), and unsulfated (4%) uronic acid linked N-acetylgalactosamine residues. LC-ESI-MS analysis of heparin lyase I/II/III digests demonstrated the presence of N-sulfo (69%), N-sulfo-6-O-sulfo (25%) and 2-O-sulfo-N-sulfo-6-O-sulfo (5%) uronic acid linked N-acetylglucosamine residues.

  18. Occurrence and structural characterization of versican-like proteoglycan in human vitreous.

    Science.gov (United States)

    Theocharis, Achilleas D; Papageorgakopoulou, Nickoletta; Feretis, Elias; Theocharis, Dimitrios A

    2002-12-01

    Human vitreous gel is a special type of extracellular matrix, in which interpenetrating networks of collagen fibrils and hyaluronan are found. In this study, we report that apart from significant amounts of collagen, hyaluronan and sialylated glycoproteins, it was found that the human vitreous gel also contained low amounts of versican-like proteoglycan. The concentration of versican-like proteoglycan in the whole vitreous is 0.06 mg protein/ml of vitreous gel and represents a small percentage (about 5%) of the total protein content. The versican-like proteoglycan has a molecular mass of 380 kDa, as estimated by gel chromatography. Its core protein is substituted by chondroitin sulphate side chains (average molecular weight 37 kDa), in which 6-sulphated disaccharides predominated. According to the physicochemical data, the number of chondroitin sulphate chains is likely to be 5-7 per molecule. These proteoglycan monomers form large aggregates with endogenous hyaluronan. Versican, which is able to bind lectins via its C-terminal region, may bridge or interconnect various constituents of the extracellular matrix via its terminal domains in order to stabilize large supramolecular complexes at the vitreous, contributing towards the integrity and specific properties of the tissue.

  19. Surface physical chemistry properties in coated bacterial cellulose membranes with calcium phosphate.

    Science.gov (United States)

    de Olyveira, Gabriel Molina; Basmaji, Pierre; Costa, Ligia Maria Manzine; Dos Santos, Márcio Luiz; Dos Santos Riccardi, Carla; Guastaldi, Fernando Pozzi Semeghini; Scarel-Caminaga, Raquel Mantuaneli; de Oliveira Capote, Ticiana Sidorenko; Pizoni, Elisabeth; Guastaldi, Antônio Carlos

    2017-06-01

    Bacterial cellulose has become established as a new biomaterial, and it can be used for medical applications. In addition, it has called attention due to the increasing interest in tissue engineering materials for wound care. In this work, the bacterial cellulose fermentation process was modified by the addition of chondroitin sulfate to the culture medium before the inoculation of the bacteria. The biomimetic process with heterogeneous calcium phosphate precipitation of biological interest was studied for the guided regeneration purposes on bacterial cellulose. FTIR results showed the incorporation of the chondroitin sulfate in the bacterial cellulose, SEM images confirmed the deposition of the calcium phosphate on the bacterial cellulose surface, XPS analysis showed a selective chemical group influences which change calcium phosphate deposition, besides, the calcium phosphate phase with different Ca/P ratios on bacterial cellulose surface influences wettability. XTT results concluded that these materials did not affect significantly in the cell viability, being non-cytotoxic. Thus, it was produced one biomaterial with the surface charge changes for calcium phosphate deposition, besides different wettability which builds new membranes for Guided Tissue Regeneration. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Purification and partial characterization of glycosaminoglycans and proteoglycans from cultured rabbit smooth muscle cells

    International Nuclear Information System (INIS)

    Sabatino, R.D.

    1985-01-01

    Glycosaminoglycans synthesized by cultured rabbit smooth muscle cells were isolated after incorporation of [ 3 H]-glucosamine into glycosaminoglycans in the presence or absence of 10% fetal bovine serum. Glycosaminoglycans were quantitated by two-dimensional electrophoresis after proteolytic digestion of the cell layers and media. The results show that the presence of serum has no effect on the chondroitin sulfate, heparan sulfate and dermatan sulfate content of the cell layers. The incorporation of [ 3 H]-glucosamine into hyaluronic acid of the cell layers was three times higher in the presence of serum. In the medium , the quantity of hyaluronic was two times higher in the presence of serum while the other glycosaminoglycans remained unchanged. The incorporation of [ 3 H]-glucosamine into hyaluronic acid was unaffected by the presence of serum. Specific proteoglycans were isolated from medium after with [ 35 S]-sulfate and [ 3 H]-serine by isopycnic ultracentrifugation and chromatography on Sepharose CL-4B and DEAE-cellulose. Preparations contained a chondroitin sulfate proteoglycan, a condroitin sulfate-dermatan sulfate proteoglycan and a heparan sulfate proteoglycan. Glycosaminoglycans and proteoglycans synthesized by rabbit aorta smooth muscle cells are similar to those from human aorta

  1. N-acetylgalactosamine positive perineuronal nets in the saccade-related-part of the cerebellar fastigial nucleus do not maintain saccade gain.

    Directory of Open Access Journals (Sweden)

    Adrienne Mueller

    Full Text Available Perineuronal nets (PNNs accumulate around neurons near the end of developmental critical periods. PNNs are structures of the extracellular matrix which surround synaptic contacts and contain chondroitin sulfate proteoglycans. Previous studies suggest that the chondroitin sulfate chains of PNNs inhibit synaptic plasticity and thereby help end critical periods. PNNs surround a high proportion of neurons in the cerebellar nuclei. These PNNs form during approximately the same time that movements achieve normal accuracy. It is possible that PNNs in the cerebellar nuclei inhibit plasticity to maintain the synaptic organization that produces those accurate movements. We tested whether or not PNNs in a saccade-related part of the cerebellar nuclei maintain accurate saccade size by digesting a part of them in an adult monkey performing a task that changes saccade size (long term saccade adaptation. We use the enzyme Chondroitinase ABC to digest the glycosaminoglycan side chains of proteoglycans present in the majority of PNNs. We show that this manipulation does not result in faster, larger, or more persistent adaptation. Our result indicates that intact perineuronal nets around saccade-related neurons in the cerebellar nuclei are not important for maintaining long-term saccade gain.

  2. Development of an enzyme-linked immunosorbent assay (ELISA)-like fluorescence assay to investigate the interactions of glycosaminoglycans to cells

    Energy Technology Data Exchange (ETDEWEB)

    Boucas, Rodrigo Ippolito [Disciplina de Biologia Molecular, Departamento de Bioquimica, Universidade Federal de Sao Paulo, SP (Brazil); Trindade, Edvaldo S. [Disciplina de Biologia Molecular, Departamento de Bioquimica, Universidade Federal de Sao Paulo, SP (Brazil); Departamento de Biologia Celular, Universidade Federal do Parana, Curitiba, Parana (Brazil); Tersariol, Ivarne L.S. [Disciplina de Biologia Molecular, Departamento de Bioquimica, Universidade Federal de Sao Paulo, SP (Brazil); Centro Interdisciplinar de Investigacao Bioquimica, Universidade de Mogi das Cruzes, Mogi das Cruzes, SP (Brazil); Dietrich, Carl P. [Disciplina de Biologia Molecular, Departamento de Bioquimica, Universidade Federal de Sao Paulo, SP (Brazil); Nader, Helena B. [Disciplina de Biologia Molecular, Departamento de Bioquimica, Universidade Federal de Sao Paulo, SP (Brazil)], E-mail: hbnader.bioq@epm.br

    2008-06-23

    Sulfated glycosaminoglycans were labeled with biotin to study their interaction with cells in culture. Thus, heparin, heparan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate and dermatan sulfate were labeled using biotin-hydrazide, under different conditions. The structural characteristics of the biotinylated products were determined by chemical (molar ratios of hexosamine, uronic acid, sulfate and biotin) and enzymatic methods (susceptibility to degradation by chondroitinases and heparitinases). The binding of biotinylated glycosaminoglycans was investigated both in endothelial and smooth muscle cells in culture, using a novel time resolved fluorometric method based on interaction of europium-labeled streptavidin with the biotin covalently linked to the compounds. The interactions of glycosaminoglycans were saturable and number of binding sites could be obtained for each individual compound. The apparent dissociation constant varied among the different glycosaminoglycans and between the two cell lines. The interactions of the biotinylated glycosaminoglycans with the cells were also evaluated using confocal microscopy. We propose a convenient and reliable method for the preparation of biotinylated glycosaminoglycans, as well as a sensitive non-competitive fluorescence-based assay for studies of the interactions and binding of these compounds to cells in culture.

  3. Sertoli cells in culture secrete paracrine factor(s) that inhibit peritubular myoid cell proliferation: identification of heparinoids as likely candidates

    International Nuclear Information System (INIS)

    Tung, P.S.; Fritz, I.B.

    1991-01-01

    Conditioned medium from Sertoli cells, prepared from testes of 20-day-old rats, contains component(s) that inhibit the incorporation of [3H]-thymidine into DNA of peritubular myoid cells (PMC) and inhibit the proliferation of PMC. These components are trypsin-resistant, heat-stable compounds having a molecular weight less than 30,000. The active inhibitory components in Sertoli cell conditioned medium are inactivated by treatment with heparinase, but not by treatment with hyaluronidase or chondroitin sulfate lyases. Addition of heparin or heparan sulfate results in inhibition of DNA synthesis by PMC in a dose-dependent manner, whereas other glycosaminoglycans (GAGs) examined (hyaluronic acid, keratan sulfate, and chondroitin sulfate) have no detectable effects. Heparin and heparan sulfate are unique among GAGs tested in inhibiting the characteristic multilayer growth pattern of PMC following the attainment of confluence in serum-rich medium. On the basis of these and other data presented, it is concluded that heparin and other heparin-like GAGs synthesized by Sertoli cells are implicated in the modulation of growth of PMC in vitro during co-culture. It is postulated that heparin may play a similar role in maintaining the quiescent peritubular myoid cell phenotype in vivo

  4. Development of an enzyme-linked immunosorbent assay (ELISA)-like fluorescence assay to investigate the interactions of glycosaminoglycans to cells

    International Nuclear Information System (INIS)

    Boucas, Rodrigo Ippolito; Trindade, Edvaldo S.; Tersariol, Ivarne L.S.; Dietrich, Carl P.; Nader, Helena B.

    2008-01-01

    Sulfated glycosaminoglycans were labeled with biotin to study their interaction with cells in culture. Thus, heparin, heparan sulfate, chondroitin 4-sulfate, chondroitin 6-sulfate and dermatan sulfate were labeled using biotin-hydrazide, under different conditions. The structural characteristics of the biotinylated products were determined by chemical (molar ratios of hexosamine, uronic acid, sulfate and biotin) and enzymatic methods (susceptibility to degradation by chondroitinases and heparitinases). The binding of biotinylated glycosaminoglycans was investigated both in endothelial and smooth muscle cells in culture, using a novel time resolved fluorometric method based on interaction of europium-labeled streptavidin with the biotin covalently linked to the compounds. The interactions of glycosaminoglycans were saturable and number of binding sites could be obtained for each individual compound. The apparent dissociation constant varied among the different glycosaminoglycans and between the two cell lines. The interactions of the biotinylated glycosaminoglycans with the cells were also evaluated using confocal microscopy. We propose a convenient and reliable method for the preparation of biotinylated glycosaminoglycans, as well as a sensitive non-competitive fluorescence-based assay for studies of the interactions and binding of these compounds to cells in culture

  5. Viscoelastic response of a model endothelial glycocalyx

    International Nuclear Information System (INIS)

    Nijenhuis, Nadja; Spaan, Jos A E; Mizuno, Daisuke; Schmidt, Christoph F

    2009-01-01

    Many cells cover themselves with a multifunctional polymer coat, the pericellular matrix (PCM), to mediate mechanical interactions with the environment. A particular PCM, the endothelial glycocalyx (EG), is formed by vascular endothelial cells at their luminal side, forming a mechanical interface between the flowing blood and the endothelial cell layer. The glycosaminoglycan (GAG) hyaluronan (HA) is involved in the main functions of the EG, mechanotransduction of fluid shear stress and molecular sieving. HA, due to its length, is the only GAG in the EG or any other PCM able to form an entangled network. The mechanical functions of the EG are, however, impaired when any one of its components is removed. We here used microrheology to measure the effect of the EG constituents heparan sulfate, chondroitin sulfate, whole blood plasma and albumin on the high-bandwidth mechanical properties of a HA solution. Furthermore, we probed the effect of the hyaldherin aggrecan, a constituent of the PCM of chondrocytes, and very similar to versican (present in the PCM of various cells, and possibly in the EG). We show that components directly interacting with HA (chondroitin sulfate and aggrecan) can increase the viscoelastic shear modulus of the polymer composite

  6. Human monoclonal IgG selection of Plasmodium falciparum for the expression of placental malaria-specific variant surface antigens

    DEFF Research Database (Denmark)

    Soerli, J; Barfod, L; Lavstsen, T

    2009-01-01

    Pregnancy-associated Plasmodium falciparum malaria (PAM) is a major cause of morbidity and mortality in African women and their offspring. PAM is characterized by accumulation of infected erythrocytes (IEs) that adhere to chondroitin sulphate A (CSA) in the placental intervillous space. We show h...... transcription of var2csa. The results corroborate current efforts to develop PAM-specific vaccines based on VAR2CSA....

  7. Procarti Forte in the Complex Treatment of Patients with Early-Stage Osteoarthritis

    Directory of Open Access Journals (Sweden)

    O.A. Burianov

    2016-04-01

    Full Text Available The article deals with the issue of the treatment of osteoarthritis. The review of current recommendations on the feasibility of using glucosamine sulfate, chondroitin sulfate, hyaluronic acid, using of SYSADOA drugs, metabolic drugs was performed. The study on the efficacy and safety of using combination drug Procarti Forte in the system of treatment of patients with early-stage osteoarthritis is presented.

  8. Galactosaminoglycan Function and Oligosaccharide Structure Determination

    Directory of Open Access Journals (Sweden)

    Daniela G. Seidler

    2007-01-01

    Full Text Available This review will discuss the importance of sequencing long chondroitin sulfate and dermatan sulfate chains specifically derived from decorin. Decorin is a member of the small leucine-rich repeat proteoglycans and ubiquitously expressed primarily in the skin. Sequence information and diverse function of glycosaminoglycans is further influenced by variable expression through the core protein indicating the importance to analyse glycosaminoglycans from specific proteoglycans.

  9. Isolation, N-glycosylations and Function of a Hyaluronidase-Like Enzyme from the Venom of the Spider Cupiennius salei.

    Directory of Open Access Journals (Sweden)

    Olivier Biner

    Full Text Available Hyaluronidases are important venom components acting as spreading factor of toxic compounds. In several studies this spreading effect was tested on vertebrate tissue. However, data about the spreading activity on invertebrates, the main prey organisms of spiders, are lacking. Here, a hyaluronidase-like enzyme was isolated from the venom of the spider Cupiennius salei. The amino acid sequence of the enzyme was determined by cDNA analysis of the venom gland transcriptome and confirmed by protein analysis. Two complex N-linked glycans akin to honey bee hyaluronidase glycosylations, were identified by tandem mass spectrometry. A C-terminal EGF-like domain was identified in spider hyaluronidase using InterPro. The spider hyaluronidase-like enzyme showed maximal activity at acidic pH, between 40-60°C, and 0.2 M KCl. Divalent ions did not enhance HA degradation activity, indicating that they are not recruited for catalysis.Besides hyaluronan, the enzyme degrades chondroitin sulfate A, whereas heparan sulfate and dermatan sulfate are not affected. The end products of hyaluronan degradation are tetramers, whereas chondroitin sulfate A is mainly degraded to hexamers. Identification of terminal N-acetylglucosamine or N-acetylgalactosamine at the reducing end of the oligomers identified the enzyme as an endo-β-N-acetyl-D-hexosaminidase hydrolase. The spreading effect of the hyaluronidase-like enzyme on invertebrate tissue was studied by coinjection of the enzyme with the Cupiennius salei main neurotoxin CsTx-1 into Drosophila flies. The enzyme significantly enhances the neurotoxic activity of CsTx-1. Comparative substrate degradation tests with hyaluronan, chondroitin sulfate A, dermatan sulfate, and heparan sulfate with venoms from 39 spider species from 21 families identified some spider families (Atypidae, Eresidae, Araneidae and Nephilidae without activity of hyaluronidase-like enzymes. This is interpreted as a loss of this enzyme and fits quite well

  10. Matrix development in self-assembly of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Gidon Ofek

    2008-07-01

    Full Text Available Articular cartilage is a highly functional tissue which covers the ends of long bones and serves to ensure proper joint movement. A tissue engineering approach that recapitulates the developmental characteristics of articular cartilage can be used to examine the maturation and degeneration of cartilage and produce fully functional neotissue replacements for diseased tissue.This study examined the development of articular cartilage neotissue within a self-assembling process in two phases. In the first phase, articular cartilage constructs were examined at 1, 4, 7, 10, 14, 28, 42, and 56 days immunohistochemically, histologically, and through biochemical analysis for total collagen and glycosaminoglycan (GAG content. Based on statistical changes in GAG and collagen levels, four time points from the first phase (7, 14, 28, and 56 days were chosen to carry into the second phase, where the constructs were studied in terms of their mechanical characteristics, relative amounts of collagen types II and VI, and specific GAG types (chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate, and hyaluronan. Collagen type VI was present in initial abundance and then localized to a pericellular distribution at 4 wks. N-cadherin activity also spiked at early stages of neotissue development, suggesting that self-assembly is mediated through a minimization of free energy. The percentage of collagen type II to total collagen significantly increased over time, while the proportion of collagen type VI to total collagen decreased between 1 and 2 wks. The chondroitin 6- to 4- sulfate ratio decreased steadily during construct maturation. In addition, the compressive properties reached a plateau and tensile characteristics peaked at 4 wks.The indices of cartilage formation examined in this study suggest that tissue maturation in self-assembled articular cartilage mirrors known developmental processes for native tissue. In terms of tissue engineering, it is

  11. Isolation, N-glycosylations and Function of a Hyaluronidase-Like Enzyme from the Venom of the Spider Cupiennius salei

    Science.gov (United States)

    Trachsel, Christian; Moser, Aline; Kopp, Lukas; Langenegger, Nicolas; Kämpfer, Urs; von Ballmoos, Christoph; Nentwig, Wolfgang; Schürch, Stefan; Schaller, Johann

    2015-01-01

    Structure of Cupiennius salei venom hyaluronidase Hyaluronidases are important venom components acting as spreading factor of toxic compounds. In several studies this spreading effect was tested on vertebrate tissue. However, data about the spreading activity on invertebrates, the main prey organisms of spiders, are lacking. Here, a hyaluronidase-like enzyme was isolated from the venom of the spider Cupiennius salei. The amino acid sequence of the enzyme was determined by cDNA analysis of the venom gland transcriptome and confirmed by protein analysis. Two complex N-linked glycans akin to honey bee hyaluronidase glycosylations, were identified by tandem mass spectrometry. A C-terminal EGF-like domain was identified in spider hyaluronidase using InterPro. The spider hyaluronidase-like enzyme showed maximal activity at acidic pH, between 40–60°C, and 0.2 M KCl. Divalent ions did not enhance HA degradation activity, indicating that they are not recruited for catalysis. Function of venom hyaluronidases Besides hyaluronan, the enzyme degrades chondroitin sulfate A, whereas heparan sulfate and dermatan sulfate are not affected. The end products of hyaluronan degradation are tetramers, whereas chondroitin sulfate A is mainly degraded to hexamers. Identification of terminal N-acetylglucosamine or N-acetylgalactosamine at the reducing end of the oligomers identified the enzyme as an endo-β-N-acetyl-D-hexosaminidase hydrolase. The spreading effect of the hyaluronidase-like enzyme on invertebrate tissue was studied by coinjection of the enzyme with the Cupiennius salei main neurotoxin CsTx-1 into Drosophila flies. The enzyme significantly enhances the neurotoxic activity of CsTx-1. Comparative substrate degradation tests with hyaluronan, chondroitin sulfate A, dermatan sulfate, and heparan sulfate with venoms from 39 spider species from 21 families identified some spider families (Atypidae, Eresidae, Araneidae and Nephilidae) without activity of hyaluronidase-like enzymes

  12. Characterization of human placental glycosaminoglycans and regional binding to VAR2CSA in malaria infected erythrocytes

    DEFF Research Database (Denmark)

    Beaudet, Julie M; Mansur, Leandra; Joo, Eun Ji

    2014-01-01

    expressing VAR2CSA on the erythrocyte surface. This protein adheres to a low-sulfated chondroitin sulfate-A found in placental tissue causing great harm to both mother and developing fetus. In rare cases, the localization of infected erythrocytes to the placenta can even result in the vertical transmission...... placental tissue accessible to parasites in the bloodstream, suggesting it is the primary receptor for parasite infected red blood cells....

  13. Electrophoretic deposition of organic/inorganic composite coatings on metallic substrates for bone replacement applications: mechanisms and development of new bioactive materials based on polysaccharides

    OpenAIRE

    Cordero Arias, Luis Eduardo

    2015-01-01

    Regarding the need to improve the usually encountered osteointegration of metallic implants with the surrounding body tissue in bone replacement applications, bioactive organic/inorganic composite coatings on metallic substrates were developed in this work using electrophoretic deposition (EPD) as coating technology. In the present work three polysaccharides, namely alginate, chondroitin sulfate and chitosan were used as the organic part, acting as the matrix of the coating and enabling the c...

  14. Effect of Arctium lappa (burdock) extract on canine dermal fibroblasts.

    Science.gov (United States)

    Pomari, Elena; Stefanon, Bruno; Colitti, Monica

    2013-12-15

    Although the biological activities of Arctium lappa (burdock) have been already investigated in human and other species, data evaluating the molecular mechanisms have not been reported in the dog. In this study we analyzed for the first time the effect of a root extract of burdock on molecular responses in canine dermal fibroblasts with H2O2 stimulation (H group), with burdock treatment (B group) and with H2O2 stimulation and burdock treatment (BH group), using RNAseq technology. Differentially expressed genes (P<0.05) of H, B and BH groups in comparison to the untreated sample (negative control, C group) were identified with MeV software and were functional annotated and monitored for signaling pathways and candidate biomarkers using the Ingenuity Pathways Analysis (IPA). The expression profile of canine dermal fibroblasts treated with burdock extract with or without H2O2 stimulation, showed an up-regulation of mitochondrial superoxide dismutase (SOD2), disheveled 3 (DVL3) and chondroitin sulfate N-acetylgalactosaminyltransferase 2 (CSGALNACT2). The data suggested that burdock has implications in cell adhesion and gene expression with the modulation of Wnt/β catenin signaling and Chondroitin Sulphate Biosynthesis that are particularly important for the wound healing process. © 2013 Elsevier B.V. All rights reserved.

  15. Solute transport across the articular surface of injured cartilage.

    Science.gov (United States)

    Chin, Hooi Chuan; Moeini, Mohammad; Quinn, Thomas M

    2013-07-15

    Solute transport through extracellular matrix (ECM) is important to physiology and contrast agent-based clinical imaging of articular cartilage. Mechanical injury is likely to have important effects on solute transport since it involves alteration of ECM structure. Therefore it is of interest to characterize effects of mechanical injury on solute transport in cartilage. Using cartilage explants injured by an established mechanical compression protocol, effective partition coefficients and diffusivities of solutes for transport across the articular surface were measured. A range of fluorescent solutes (fluorescein isothiocyanate, 4 and 40kDa dextrans, insulin, and chondroitin sulfate) and an X-ray contrast agent (sodium iodide) were used. Mechanical injury was associated with a significant increase in effective diffusivity versus uninjured explants for all solutes studied. On the other hand, mechanical injury had no effects on effective partition coefficients for most solutes tested, except for 40kDa dextran and chondroitin sulfate where small but significant changes in effective partition coefficient were observed in injured explants. Findings highlight enhanced diffusive transport across the articular surface of injured cartilage, which may have important implications for injury and repair situations. Results also support development of non-equilibrium methods for identification of focal cartilage lesions by contrast agent-based clinical imaging. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Synthesis of glycosaminoglycans by undifferentiated and differentiated HT29 human colonic cancer cells.

    Science.gov (United States)

    Simon-Assmann, P; Bouziges, F; Daviaud, D; Haffen, K; Kedinger, M

    1987-08-15

    Among the extracellular matrix components which have been suggested to be involved in developmental and neoplastic changes are glycosaminoglycans (GAGs). To try to correlate their amount and nature with the process of enterocytic differentiation, we studied glycosaminoglycan synthesis of human colonic adenocarcinoma cells (HT29 cell line) by [3H]glucosamine and [35S]sulfate incorporation. Enterocytic differentiation of the cells obtained in a sugar-free medium (for review, see A. Zweibaum et al. In: Handbook of Physiology. Intestinal Transport of the Gastrointestinal System, in press, 1987) resulted in a marked increase in total incorporation of labeled precursors (20-fold for [3H]glucosamine, 4.5-fold for [35S]sulfate) as well as in uronic acid content (5-fold); most of the synthesized GAGs were found associated with the cell pellet. Chromatographic and electrophoretic analysis of the labeled GAGs revealed that undifferentiated cells synthesized and secreted hyaluronic acid, heparan sulfate, and one class of chondroitin sulfate. Differentiation of HT29 cells because associated with the synthesis of an additional class of chondroitin sulfate (CS4) concomitant to a decrease in heparan sulfate which is no longer found secreted in the medium. Furthermore, the charge density of this latter GAG component varied as assessed by a shift of its affinity on ion-exchange chromatography.

  17. Agrin and Perlecan Mediate Tumorigenic Processes in Oral Squamous Cell Carcinoma

    Science.gov (United States)

    Kawahara, Rebeca; Granato, Daniela C.; Carnielli, Carolina M.; Cervigne, Nilva K.; Oliveria, Carine E.; Martinez, César A. R.; Yokoo, Sami; Fonseca, Felipe P.; Lopes, Marcio; Santos-Silva, Alan R.; Graner, Edgard; Coletta, Ricardo D.; Leme, Adriana Franco Paes

    2014-01-01

    Oral squamous cell carcinoma is the most common type of cancer in the oral cavity, representing more than 90% of all oral cancers. The characterization of altered molecules in oral cancer is essential to understand molecular mechanisms underlying tumor progression as well as to contribute to cancer biomarker and therapeutic target discovery. Proteoglycans are key molecular effectors of cell surface and pericellular microenvironments, performing multiple functions in cancer. Two of the major basement membrane proteoglycans, agrin and perlecan, were investigated in this study regarding their role in oral cancer. Using real time quantitative PCR (qRT-PCR), we showed that agrin and perlecan are highly expressed in oral squamous cell carcinoma. Interestingly, cell lines originated from distinct sites showed different expression of agrin and perlecan. Enzymatically targeting chondroitin sulfate modification by chondroitinase, oral squamous carcinoma cell line had a reduced ability to adhere to extracellular matrix proteins and increased sensibility to cisplatin. Additionally, knockdown of agrin and perlecan promoted a decrease on cell migration and adhesion, and on resistance of cells to cisplatin. Our study showed, for the first time, a negative regulation on oral cancer-associated events by either targeting chondroitin sulfate content or agrin and perlecan levels. PMID:25506919

  18. Molecular polymorphism of a cell surface proteoglycan: distinct structures on simple and stratified epithelia.

    Science.gov (United States)

    Sanderson, R D; Bernfield, M

    1988-12-01

    Epithelial cells are organized into either a single layer (simple epithelia) or multiple layers (stratified epithelia). Maintenance of these cellular organizations requires distinct adhesive mechanisms involving many cell surface molecules. One such molecule is a cell surface proteoglycan, named syndecan, that contains both heparan sulfate and chondroitin sulfate chains. This proteoglycan binds cells to fibrillar collagens and fibronectin and thus acts as a receptor for interstitial matrix. The proteoglycan is restricted to the basolateral surface of simple epithelial cells, but is located over the entire surface of stratified epithelial cells, even those surfaces not contacting matrix. We now show that the distinct localization in simple and stratified epithelia correlates with a distinct proteoglycan structure. The proteoglycan from simple epithelia (modal molecular size, 160 kDa) is larger than that from stratified epithelia (modal molecular size, 92 kDa), but their core proteins are identical in size and immunoreactivity. The proteoglycan from simple epithelia has more and larger heparan sulfate and chondroitin sulfate chains than the proteoglycan from stratified epithelia. Thus, the cell surface proteoglycan shows a tissue-specific structural polymorphism due to distinct posttranslational modifications. This polymorphism likely reflects distinct proteoglycan functions in simple and stratified epithelia, potentially meeting the different adhesive requirements of the cells in these different organizations.

  19. Horizontal gene transfer contributed to the evolution of extracellular surface structures: the freshwater polyp Hydra is covered by a complex fibrous cuticle containing glycosaminoglycans and proteins of the PPOD and SWT (sweet tooth families.

    Directory of Open Access Journals (Sweden)

    Angelika Böttger

    Full Text Available The single-cell layered ectoderm of the fresh water polyp Hydra fulfills the function of an epidermis by protecting the animals from the surrounding medium. Its outer surface is covered by a fibrous structure termed the cuticle layer, with similarity to the extracellular surface coats of mammalian epithelia. In this paper we have identified molecular components of the cuticle. We show that its outermost layer contains glycoproteins and glycosaminoglycans and we have identified chondroitin and chondroitin-6-sulfate chains. In a search for proteins that could be involved in organising this structure we found PPOD proteins and several members of a protein family containing only SWT (sweet tooth domains. Structural analyses indicate that PPODs consist of two tandem β-trefoil domains with similarity to carbohydrate-binding sites found in lectins. Experimental evidence confirmed that PPODs can bind sulfated glycans and are secreted into the cuticle layer from granules localized under the apical surface of the ectodermal epithelial cells. PPODs are taxon-specific proteins which appear to have entered the Hydra genome by horizontal gene transfer from bacteria. Their acquisition at the time Hydra evolved from a marine ancestor may have been critical for the transition to the freshwater environment.

  20. Disruption of Var2csa Gene Impairs Placental Malaria Associated Adhesion Phenotype

    OpenAIRE

    Viebig, Nicola K.; Levin, Emily; Dechavanne, Sébastien; Rogerson, Stephen J.; Gysin, Jürg; Smith, Joseph D.; Scherf, Artur; Gamain, Benoit

    2007-01-01

    Infection with Plasmodium falciparum during pregnancy is one of the major causes of malaria related morbidity and mortality in newborn and mothers. The complications of pregnancy-associated malaria result mainly from massive adhesion of Plasmodium falciparum-infected erythrocytes (IE) to chondroitin sulfate A (CSA) present in the placental intervillous blood spaces. Var2CSA, a member of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family is the predominant parasite ligand mediati...