WorldWideScience

Sample records for cholinergic putative catecholaminergic

  1. The catecholaminergic-cholinergic balance hypothesis of bipolar disorder revisited

    Science.gov (United States)

    van Enkhuizen, Jordy; Janowsky, David S; Olivier, Berend; Minassian, Arpi; Perry, William; Young, Jared W; Geyer, Mark A

    2014-01-01

    Bipolar disorder is a unique illness characterized by fluctuations between mood states of depression and mania. Originally, an adrenergic-cholinergic balance hypothesis was postulated to underlie these different affective states. In this review, we update this hypothesis with recent findings from human and animal studies, suggesting that a catecholaminergic-cholinergic hypothesis may be more relevant. Evidence from neuroimaging studies, neuropharmacological interventions, and genetic associations support the notion that increased cholinergic functioning underlies depression, whereas increased activations of the catecholamines (dopamine and norepinephrine) underlie mania. Elevated functional acetylcholine during depression may affect both muscarinic and nicotinic acetylcholine receptors in a compensatory fashion. Increased functional dopamine and norepinephrine during mania on the other hand may affect receptor expression and functioning of dopamine reuptake transporters. Despite increasing evidence supporting this hypothesis, a relationship between these two neurotransmitter systems that could explain cycling between states of depression and mania is missing. Future studies should focus on the influence of environmental stimuli and genetic susceptibilities that may affect the catecholaminergic-cholinergic balance underlying cycling between the affective states. Overall, observations from recent studies add important data to this revised balance theory of bipolar disorder, renewing interest in this field of research. PMID:25107282

  2. Catecholaminergic and cholinergic systems of mouse brain are modulated by LMN diet, rich in theobromine, polyphenols and polyunsaturated fatty acids.

    Science.gov (United States)

    Fernández-Fernández, Laura; Esteban, Gerard; Giralt, Mercedes; Valente, Tony; Bolea, Irene; Solé, Montse; Sun, Ping; Benítez, Susana; Morelló, José Ramón; Reguant, Jordi; Ramírez, Bartolomé; Hidalgo, Juan; Unzeta, Mercedes

    2015-04-01

    The possible modulatory effect of the functional LMN diet, rich in theobromine, polyphenols and polyunsaturated fatty acids, on the catecholaminergic and cholinergic neurotransmission, affecting cognition decline during aging has been studied. 129S1/SvlmJ mice were fed for 10, 20, 30 and 40 days with either LMN or control diets. The enzymes involved in catecholaminergic and cholinergic metabolism were determined by both immunohistological and western blot analyses. Noradrenalin, dopamine and other metabolites were quantified by HPLC analysis. Theobromine, present in cocoa, the main LMN diet component, was analysed in parallel using SH-SY5Y and PC12 cell lines. An enhanced modulatory effect on both cholinergic and catecholaminergic transmissions was observed on 20 day fed mice. Similar effect was observed with theobromine, besides its antioxidant capacity inducing SOD-1 and GPx expression. The enhancing effect of the LMN diet and theobromine on the levels of acetylcholine-related enzymes, dopamine and specially noradrenalin confirms the beneficial role of this diet on the "cognitive reserve" and hence a possible reducing effect on cognitive decline underlying aging and Alzheimer's disease.

  3. Distribution and morphology of cholinergic, putative catecholaminergic and serotonergic neurons in the brain of the Egyptian rousette flying fox, Rousettus aegyptiacus.

    Science.gov (United States)

    Maseko, Busisiwe C; Bourne, James A; Manger, Paul R

    2007-11-01

    Over the past decade much controversy has surrounded the hypothesis that the megachiroptera, or megabats, share unique neural characteristics with the primates. These observations, which include similarities in visual pathways, have suggested that the megabats are more closely related to the primates than to the other group of the Chiropteran order, the microbats, and suggests a diphyletic origin of the Chiroptera. To contribute data relevant to this debate, we used immunohistochemical techniques to reveal the architecture of the neuromodulatory systems of the Egyptian rousette (Rousettus aegypticus), an echolocating megabat. Our findings revealed many similarities in the nuclear parcellation of the cholinergic, putative catecholaminergic and serotonergic systems with that seen in other mammals including the microbat. However, there were 11 discrete nuclei forming part of these systems in the brain of the megabat studied that were not evident in an earlier study of a microbat. The occurrence of these nuclei align the megabat studied more closely with primates than any other mammalian group and clearly distinguishes them from the microbat, which aligns with the insectivores. The neural systems investigated are not related to such Chiropteran specializations as echolocation, flight, vision or olfaction. If neural characteristics are considered strong indicators of phylogenetic relationships, then the data of the current study strongly supports the diphyletic origin of Chiroptera and aligns the megabat most closely with primates in agreement with studies of other neural characters.

  4. The Brain of the Archerfish Toxotes chatareus: A Nissl-Based Neuroanatomical Atlas and Catecholaminergic/Cholinergic Systems

    Science.gov (United States)

    Karoubi, Naomi; Segev, Ronen; Wullimann, Mario F.

    2016-01-01

    Over recent years, the seven-spot archerfish (Toxotes chatareus) has emerged as a new model for studies in visual and behavioral neuroscience thanks to its unique hunting strategy. Its natural ability to spit at insects outside of water can be used in the laboratory for well controlled behavioral experiments where the fish is trained to aim at targets on a screen. The need for a documentation of the neuroanatomy of this animal became critical as more research groups use it as a model. Here we present an atlas of adult T. chatareus specimens caught in the wild in South East Asia. The atlas shows representative sections of the brain and specific structures revealed by a classic Nissl staining as well as corresponding schematic drawings. Additional immunostainings for catecholaminergic and cholinergic systems were conducted to corroborate the identification of certain nuclei and the data of a whole brain scanner is available online. We describe the general features of the archerfish brain as well as its specificities, especially for the visual system and compare the neuroanatomy of the archerfish with other teleosts. This atlas of the archerfish brain shows all levels of the neuraxis and intends to provide a solid basis for further neuroscientific research on T. chatareus, in particular electrophysiological studies. PMID:27891081

  5. Nervus terminalis ganglion of the bonnethead shark (Sphyrna tiburo): evidence for cholinergic and catecholaminergic influence on two cell types distinguished by peptide immunocytochemistry.

    Science.gov (United States)

    White, J; Meredith, M

    1995-01-16

    The nervus terminalis is a ganglionated vertebrate cranial nerve of unknown function that connects the brain and the peripheral nasal structures. To investigate its function, we have studied nervus terminalis ganglion morphology and physiology in the bonnethead shark (Sphyrna tiburo), where the nerve is particularly prominent. Immunocytochemistry for gonadotropin-releasing hormone (GnRH) and Leu-Pro-Leu-Arg-Phe-NH2 (LPLRFamide) revealed two distinct populations of cells. Both were acetylcholinesterase positive, but LPLR-Famide-immunoreactive cells consistently stained more darkly for acetylcholinesterase activity. Tyrosine hydroxylase immunocytochemistry revealed fibers and terminal-like puncta in the ganglion, primarily in areas containing GnRH-immunoreactive cells. Consistent with the anatomy, in vitro electrophysiological recordings provided evidence for cholinergic and catecholaminergic actions. In extracellular recordings, acetylcholine had a variable effect on baseline ganglion cell activity, whereas norepinephrine consistently reduced activity. Electrical stimulation of the nerve trunks suppressed ganglion activity, as did impulses from the brain in vivo. During electrical suppression, acetylcholine consistently increased activity, and norepinephrine decreased activity. Muscarinic and, to a lesser extent, alpha-adrenergic antagonists both increased activity during the electrical suppression, suggesting involvement of both systems. Intracellular recordings revealed two types of ganglion cells that were distinguishable pharmacologically and physiologically. Some cells were hyperpolarized by cholinergic agonists and unaffected by norepinephrine; these cells did not depolarize with peripheral nerve trunk stimulation. Another group of cells did depolarize with peripheral trunk stimulation; a representative of this group was depolarized by carbachol and hyperpolarized by norepinephrine. These and other data suggest that the bonnethead nervus terminalis ganglion

  6. Acute action of rotenone on excitability of catecholaminergic neurons in rostral ventrolateral medulla.

    Science.gov (United States)

    Zhang, Zhaoqiang; Shi, Limin; Du, Xixun; Jiao, Qian; Jiang, Hong

    2017-09-01

    The degeneration of the rostral ventrolateral medulla (RVLM) catecholaminergic neurons was responsible for some cardiovascular symptoms in Parkinson's disease (PD). Our previous study had observed the impairment of these neurons in the early stage of PD in the rotenone-induced PD rat model, but the related mechanisms remain unclear. Rotenone is a mitochondrial inhibitor, influencing the neuronal electrophysiological activity through activation of K-ATP channels that potentially participate in cell death processes. In the present study, effects of rotenone on electrophysiological properties of RVLM catecholaminergic neurons and its underlying mechanisms were investigated. In coronal slices of brain containing the RVLM through patch clamp technique, rotenone (0.5μM) induced gradual postsynaptic inhibition on the spontaneous firing and cell membrane hyperpolarization with outward currents of catecholaminergic neurons. The electrophysiological changes were blocked by glibenclamide (30μM), a blocker of K-ATP channels, and were nearly unchanged by diazoxide (100μM), an opener of K-ATP channels. Our results also showed that effects of rotenone on catecholaminergic neurons including reactive oxygen species (ROS) generation were prevented by pretreatment of coenzyme Q10 (CoQ10, 100μM), a scavenger of ROS. These suggest that rotenone-induced electrophysiological changes of RVLM catecholaminergic neurons are caused by the opening of K-ATP channels, which are partly related to ROS generation. The changes of K-ATP channels might account for the vulnerability of RVLM catecholaminergic neurons. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Catecholaminergic systems in stress: structural and molecular genetic approaches.

    Science.gov (United States)

    Kvetnansky, Richard; Sabban, Esther L; Palkovits, Miklos

    2009-04-01

    Stressful stimuli evoke complex endocrine, autonomic, and behavioral responses that are extremely variable and specific depending on the type and nature of the stressors. We first provide a short overview of physiology, biochemistry, and molecular genetics of sympatho-adrenomedullary, sympatho-neural, and brain catecholaminergic systems. Important processes of catecholamine biosynthesis, storage, release, secretion, uptake, reuptake, degradation, and transporters in acutely or chronically stressed organisms are described. We emphasize the structural variability of catecholamine systems and the molecular genetics of enzymes involved in biosynthesis and degradation of catecholamines and transporters. Characterization of enzyme gene promoters, transcriptional and posttranscriptional mechanisms, transcription factors, gene expression and protein translation, as well as different phases of stress-activated transcription and quantitative determination of mRNA levels in stressed organisms are discussed. Data from catecholamine enzyme gene knockout mice are shown. Interaction of catecholaminergic systems with other neurotransmitter and hormonal systems are discussed. We describe the effects of homotypic and heterotypic stressors, adaptation and maladaptation of the organism, and the specificity of stressors (physical, emotional, metabolic, etc.) on activation of catecholaminergic systems at all levels from plasma catecholamines to gene expression of catecholamine enzymes. We also discuss cross-adaptation and the effect of novel heterotypic stressors on organisms adapted to long-term monotypic stressors. The extra-adrenal nonneuronal adrenergic system is described. Stress-related central neuronal regulatory circuits and central organization of responses to various stressors are presented with selected examples of regulatory molecular mechanisms. Data summarized here indicate that catecholaminergic systems are activated in different ways following exposure to distinct

  8. In Vivo Observation of Structural Changes in Neocortical Catecholaminergic Projections in Response to Drugs of Abuse.

    Science.gov (United States)

    Morimoto, Mai M; Tanaka, Shinji; Mizutani, Shunsuke; Urata, Shinji; Kobayashi, Kazuto; Okabe, Shigeo

    2018-01-01

    Catecholaminergic (dopamine and norepinephrine) projections to the cortex play an important role in cognitive functions and dysfunctions including learning, addiction, and mental disorders. While dynamics of glutamatergic synapses have been well studied in such contexts, little is known regarding catecholaminergic projections, owing to lack of robust methods. Here we report a system to monitor catecholaminergic projections in vivo over the timeframes that such events occur. Green fluorescent protein (GFP) expression driven by tyrosine hydroxylase promoter in a transgenic mouse line enabled us to perform two-photon imaging of cortical catecholaminergic projections through a cranial window. Repetitive imaging of the same axons over 24 h revealed the highly dynamic nature of catecholaminergic boutons. Surprisingly, administration of single high dose methamphetamine (MAP) induced a transient increase in bouton volumes. This new method opens avenues for longitudinal in vivo evaluation of structural changes at single release sites of catecholamines in association with physiology and pathology of cortical functions.

  9. Cortical cholinergic deficiency enhances amphetamine-induced dopamine release in the accumbens but not striatum.

    Science.gov (United States)

    Mattsson, Anna; Olson, Lars; Svensson, Torgny H; Schilström, Björn

    2007-11-01

    Cholinergic dysfunction has been implicated as a putative contributing factor in the pathogenesis of schizophrenia. Recently, we showed that cholinergic denervation of the neocortex in adult rats leads to a marked increase in the behavioral response to amphetamine. The main objective of this study was to investigate if the enhanced locomotor response to amphetamine seen after cortical cholinergic denervation was paralleled by an increased amphetamine-induced release of dopamine in the nucleus accumbens and/or striatum. The corticopetal cholinergic projections were lesioned by intraparenchymal infusion of 192 IgG-saporin into the nucleus basalis magnocellularis of adult rats. Amphetamine-induced dopamine release in the nucleus accumbens or striatum was monitored by in vivo microdialysis 2 to 3 weeks after lesioning. We found that cholinergic denervation of the rat neocortex leads to a significantly increased amphetamine-induced dopamine release in the nucleus accumbens. Interestingly, the cholinergic lesion did not affect amphetamine-induced release of dopamine in the striatum. The enhanced amphetamine-induced dopamine release in the nucleus accumbens in the cholinergically denervated rats could be reversed by administration of the muscarinic agonist oxotremorine, but not nicotine, prior to the amphetamine challenge, suggesting that loss of muscarinic receptor stimulation is likely to have caused the observed effect. The results suggest that abnormal responsiveness of dopamine neurons can be secondary to cortical cholinergic deficiency. This, in turn, might be of relevance for the pathophysiology of schizophrenia and provides a possible link between cholinergic disturbances and alteration of dopamine transmission.

  10. Left cardiac sympathetic denervation for catecholaminergic polymorphic ventricular tachycardia

    NARCIS (Netherlands)

    Wilde, Arthur A. M.; Bhuiyan, Zahurul A.; Crotti, Lia; Facchini, Mario; de Ferrari, Gaetano M.; Paul, Thomas; Ferrandi, Chiara; Koolbergen, Dave R.; Odero, Attilio; Schwartz, Peter J.

    2008-01-01

    Catecholaminergic polymorphic ventricular tachycardia is a potentially lethal disease characterized by adrenergically mediated ventricular arrhythmias manifested especially in children and teenagers. Beta-blockers are the cornerstone of therapy, but some patients do not have a complete response to

  11. [Catecholaminergic polymorphic ventricular tachycardia is a rare inherited heart disease.

    DEFF Research Database (Denmark)

    Holst, Anders Gaarsdal; Tfelt-Hansen, 1jacob; Olesen, Morten S

    2010-01-01

    Catecholaminergic polymorphic ventricular tachycardia is a rare inherited heart disease, which can lead to life-threatening ventricular arrhythmias in patients with a structurally normal heart. The age of onset is usually between two and 12 years and the initial symptom is frequently syncope...

  12. Impaired mTORC2 signaling in catecholaminergic neurons exaggerates high fat diet-induced hyperphagia

    Directory of Open Access Journals (Sweden)

    Olga I. Dadalko

    2015-09-01

    Conclusions: Our data support a model in which mTORC2 signaling within catecholaminergic neurons constrains consumption of a high-fat diet, while disruption causes high-fat diet-specific exaggerated hyperphagia. In parallel, impaired mTORC2 signaling leads to aberrant striatal DA neurotransmission, which has been associated with obesity in human and animal models, as well as with escalating substance abuse. These data suggest that defects localized to the catecholaminergic pathways are capable of overriding homeostatic circuits, leading to obesity, metabolic impairment, and aberrant DA-dependent behaviors.

  13. Catecholaminergic polymorphic ventricular tachycardia in 2012

    Directory of Open Access Journals (Sweden)

    Christian van der Werf

    2011-12-01

    Full Text Available Catecholaminergic polymorphic ventricular tachycardia (CPVT is a rare, potentially lethal inherited arrhythmia syndrome characterized by stress or emotion-induced ventricular arrhythmias. CPVT was first described in 1960, while the genetic basis underlying this syndrome was discovered in 2001. The past decade has seen substantial advances in understanding the pathophysiology of CPVT. In addition, significant advances have been made in elucidating clinical characteristics of CPVT patients and new treatment options have become available. Here, we review current literature on CPVT to present state-of-the-art knowledge on the subject of the genetic basis, pathophysiology, clinical presentation, diagnosis, treatment and prognosis.

  14. Stimulation of renal afferent fibers leads to activation of catecholaminergic and non-catecholaminergic neurons in the medulla oblongata.

    Science.gov (United States)

    Nishi, Erika E; Martins, Beatriz S; Milanez, Maycon I O; Lopes, Nathalia R; de Melo, Jose F; Pontes, Roberto B; Girardi, Adriana C; Campos, Ruy R; Bergamaschi, Cássia T

    2017-05-01

    Presympathetic neurons in the rostral ventrolateral medulla (RVLM) including the adrenergic cell groups play a major role in the modulation of several reflexes required for the control of sympathetic vasomotor tone and blood pressure (BP). Moreover, sympathetic vasomotor drive to the kidneys influence natriuresis and diuresis by inhibiting the cAMP/PKA pathway and redistributing the Na + /H + exchanger isoform 3 (NHE3) to the body of the microvilli in the proximal tubules. In this study we aimed to evaluate the effects of renal afferents stimulation on (1) the neurochemical phenotype of Fos expressing neurons in the medulla oblongata and (2) the level of abundance and phosphorylation of NHE3 in the renal cortex. We found that electrical stimulation of renal afferents increased heart rate and BP transiently and caused activation of tyrosine hydroxylase (TH)-containing neurons in the RVLM and non-TH neurons in the NTS. Additionally, activation of the inhibitory renorenal reflex over a 30-min period resulted in increased natriuresis and diuresis associated with increased phosphorylation of NHE3 at serine 552, a surrogate for reduced activity of this exchanger, in the contralateral kidney. This effect was not dependent of BP changes considering that no effects on natriuresis or diuresis were found in the ipsilateral-stimulated kidney. Therefore, our data show that renal afferents leads to activation of catecholaminergic and non-catecholaminergic neurons in the medulla oblongata. When renorenal reflex is induced, NHE3 exchanger activity appears to be decreased, resulting in decreased sodium and water reabsorption in the contralateral kidney. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Cholinergic dysfunction and amnesia in patients with Wernicke-Korsakoff syndrome: a transcranial magnetic stimulation study.

    Science.gov (United States)

    Nardone, Raffaele; Bergmann, Jürgen; De Blasi, Pierpaolo; Kronbichler, Martin; Kraus, Jörg; Caleri, Francesca; Tezzon, Frediano; Ladurner, Gunther; Golaszewski, Stefan

    2010-03-01

    The specific neurochemical substrate underlying the amnesia in patients with Wernicke-Korsakoff syndrome (WKS) is still poorly defined. Memory impairment has been linked to dysfunction of neurons in the cholinergic system. A transcranial magnetic stimulation (TMS) protocol, the short latency afferent inhibition (SAI), may give direct information about the function of some cholinergic pathways in the human motor cortex. In the present study, we measured SAI in eight alcoholics with WKS and compared the data with those from a group of age-matched healthy individuals; furthermore, we correlated the individual SAI values of the WKS patients with memory and other cognitive functions. Mean SAI was significantly reduced in WKS patients when compared with the controls. SAI was increased after administration of a single dose of donezepil in a subgroup of four patients. The low score obtained in the Rey Complex Figure delayed recall test, the Digit Span subtest of the Wechsler Adult Intelligence Scale-Revised (WAIS-R) and the Corsi's Block Span subtest of the WAIS-R documented a severe impairment in the anterograde memory and short-term memory. None of the correlations between SAI values and these neuropsychological tests reached significance. We provide physiological evidence of cholinergic involvement in WKS. However, this putative marker of central cholinergic activity did not significantly correlate with the memory deficit in our patients. These findings suggest that the cholinergic dysfunction does not account for the memory disorder and that damage to the cholinergic system is not sufficient to cause a persisting amnesic syndrome in WKS.

  16. Histofluorescent labelling of catecholaminergic structures in rotifers (Aschelminthes). II. Males of Brachionus plicatilis and structures from sectioned females.

    Science.gov (United States)

    Keshmirian, J; Nogrady, T

    1988-01-01

    1. Catecholaminergic structures in the male Brachionus plicatilis were investigated, using aqueous dansylpropranolol as fluorescent label of neurotransmitter receptors. 2. All major organs of the male are innervated by catecholaminergic systems, that may also be involved in the regulation of copulatory behavior. 3. Cryostat-sectioned preparations of the female B. plicatilis were also investigated. They provided additional information to findings on whole animals reported in our previous paper (Keshmirian and Nogrady 1987 a).

  17. Catecholaminergic polymorphic ventricular tachycardia. An important diagnosis in children with syncope and normal heart

    Directory of Open Access Journals (Sweden)

    Luiz Roberto Leite

    2001-01-01

    Full Text Available Syncope in children is primarily related to vagal hyperreactivity, but ventricular tachycardia (VT way rarely be seen. Catecholaminergic polymorphic VT is a rare entity that can occur in children without heart disease and with a normal QT interval, which may cause syncope and sudden cardiac death. In this report, we describe the clinical features, treatment, and clinical follow-up of three children with syncope associated with physical effort or emotion and cathecolaminergic polymorphic VT. Symptoms were controlled with beta-blockers, but one patient died suddenly in the fourth year of follow-up. Despite the rare occurrence, catecholaminergic polymorphic VT is an important cause of syncope and sudden death in children with no identified heart disease and normal QT interval.

  18. Dynamics of cholinergic function

    International Nuclear Information System (INIS)

    Hanin, I.

    1986-01-01

    This book presents information on the following topics; cholinergic pathways - anatomy of the central nervous system; aging, DSAT and other clinical conditions; cholinergic pre- and post-synaptic receptors; acetylcholine release; cholinesterases, anticholinesterases and reactivators; acetylcholine synthesis, metabolism and precursors; second messenger messenger mechanisms; interaction of acetylcholine with other neurotransmitter systems; cholinergic mechanisms in physiological function, including cardiovascular events; and neurotoxic agents and false transmitters

  19. Enhanced catecholaminergic and serotoninergic activity in rat brain from weaning to sexual maturity: rationale for prophylactic (-)deprenyl (selegiline) medication.

    Science.gov (United States)

    Knoll, J; Miklya, I

    1995-01-01

    Food deprived rats in the late developmental phase of life (2 months of age) are significantly more active than those in the early postdevelopmental phase (4 months of age), pointing to enhanced catecholaminergic activity during the developmental phase. We therefore measured the resting release of dopamine from the striatum, substantia nigra and tuberculum olfactorium, and of noradrenaline from the locus coeruleus, as an indicator of the basic activity of catecholaminergic neurons in the brain, in 2,4,8,16 and 32 weeks old male and female rats. We also measured the release of serotonin from the raphe. Both in male and female rats, the resting release of transmitters from brain catecholaminergic and serotoninergic neurons between weaning and the end of the 2nd month of age, i.e. during the crucial developmental phase of their life, was significantly higher than either before or after that period, signalling a transition from a developmental to a postdevelopmental (aging) phase of life and indicating that safe and effective measures are needed to maintain the catecholaminergic system at a higher activity level during the postdevelopmental phase. Daily administration of low doses (0.01-0.25 mg/kg) of (-)deprenyl for 21 days significantly enhances the resting release of catecholamines and diminishes that of serotonin, providing a rationale for prophylactic medication with this drug during the postdevelopmental lifespan. We also show that (-)methamphetamine, the parent compound of (-)deprenyl and (-)1-phenyl-2-propylaminopentane (PPAP), a deprenyl analogue free of MAO-B inhibitory potency but otherwise possessing the same pharmacological profile as (-)deprenyl, act similarly, furnishing direct evidence that enhancement of catecholaminergic activity in the brain by multiple, small dose administration of (-)deprenyl is unrelated to MAO-B inhibition.

  20. Flecainide Therapy Reduces Exercise-Induced Ventricular Arrhythmias in Patients With Catecholaminergic Polymorphic Ventricular Tachycardia

    NARCIS (Netherlands)

    van der Werf, Christian; Kannankeril, Prince J.; Sacher, Frederic; Krahn, Andrew D.; Viskin, Sami; Leenhardt, Antoine; Shimizu, Wataru; Sumitomo, Naokata; Fish, Frank A.; Bhuiyan, Zahurul A.; Willems, Albert R.; van der Veen, Maurits J.; Watanabe, Hiroshi; Laborderie, Julien; Haïssaguerre, Michel; Knollmann, Björn C.; Wilde, Arthur A. M.

    2011-01-01

    Objectives This study evaluated the efficacy and safety of flecainide in addition to conventional drug therapy in patients with catecholaminergic polymorphic ventricular tachycardia (CPVT). Background CPVT is an inherited arrhythmia syndrome caused by gene mutations that destabilize cardiac

  1. The effect of acute moderate psychological stress on working memory-related neural activity is modulated by a genetic variation in catecholaminergic function in humans

    Directory of Open Access Journals (Sweden)

    Shaozheng eQin

    2012-05-01

    Full Text Available Acute stress has an important impact on higher-order cognitive functions supported by the prefrontal cortex (PFC such as working memory (WM. In rodents, such effects are mediated by stress-induced alterations in catecholaminergic signaling, but human data in support of this notion is lacking. A common variation in the gene encoding Catechol-O-methyltransferase (COMT is known to affect basal catecholaminergic availability and PFC functions. Here, we investigated whether this genetic variation (Val158Met modulates effects of stress on WM-related prefrontal activity in humans. In a counterbalanced crossover design, 41 healthy young men underwent functional Magnetic Resonance Imaging (fMRI while performing a numerical N-back WM task embedded in a stressful or neutral context. Moderate psychological stress was induced by a well-controlled procedure involving viewing strongly aversive (versus emotionally neutral movie material in combination with a self-referencing instruction. Acute stress resulted in genotype-dependent effects on WM performance and WM-related activation in the dorsolateral PFC, with a relatively negative impact of stress in COMT Met-homozygotes as opposed to a relatively positive effect in Val-carriers. A parallel interaction was found for WM-related deactivation in the anterior medial temporal lobe. Our findings suggest that individuals with higher baseline catecholaminergic availability (COMT Met-homozygotes appear to reach a supraoptimal state under moderate levels of stress. In contrast, individuals with lower baselines (Val-carriers may reach an optimal state. Thus, our data show that effects of acute stress on higher-order cognitive functions vary depending on catecholaminergic availability at baseline, and thereby corroborate animal models of catecholaminergic signaling that propose a non-linear relationship between catecholaminergic activity and prefrontal functions.

  2. Postexertional Supraventricular Tachycardia in Children with Catecholaminergic Polymorphic Ventricular Tachycardia

    Directory of Open Access Journals (Sweden)

    Scott D. N. Else

    2012-01-01

    Full Text Available Catecholaminergic polymorphic ventricular tachycardia (CPVT is a severe arrhythmia associated with sudden death in the young. It is caused by defective calcium handling in ventricular myocytes. The association of supraventricular tachycardia (SVT with CPVT is described in the literature, occurring in the lead-up to ventricular tachycardia during exercise testing. We describe three cases of SVT that were initiated in the recovery period of exercise testing in children with CPVT.

  3. Distribution and innervation of putative peripheral arterial chemoreceptors in the red-eared slider (Trachemys scripta elegans).

    Science.gov (United States)

    Reyes, Catalina; Fong, Angelina Y; Milsom, William K

    2015-06-15

    Peripheral arterial chemoreceptors have been isolated to the common carotid artery, aorta, and pulmonary artery of turtles. However, the putative neurotransmitters associated with these chemoreceptors have not yet been described. The goal of the present study was to determine the neurochemical content, innervations, and distribution of putative oxygen-sensing cells in the central vasculature of turtles and to derive homologies with peripheral arterial chemoreceptors of other vertebrates. We used tract tracing together with immunohistochemical markers for cholinergic cells (vesicular acetylcholine transporter [VAChT]), tyrosine hydroxylase (TH; the rate-limiting enzyme in catecholamine synthesis), and serotonin (5HT) to identify putative oxygen-sensing cells and to determine their anatomical relation to branches of the vagus nerve (Xth cranial nerve). We found potential oxygen-sensing cells in all three chemosensory areas innervated by branches of the Xth cranial nerve. Cells containing either 5HT or VAChT were found in all three sites. The morphology and size of these cells resemble glomus cells found in amphibians, mammals, tortoises, and lizards. Furthermore, we found populations of cholinergic cells located at the base of the aorta and pulmonary artery that are likely involved in efferent regulation of vessel resistance. Catecholamine-containing cells were not found in any of the putative chemosensitive areas. The presence of 5HT- and VAChT-immunoreactive cells in segments of the common carotid artery, aorta, and pulmonary artery appears to reflect a transition between cells containing the major neurotransmitters seen in fish (5HT) and mammals (ACh and adenosine). © 2015 Wiley Periodicals, Inc.

  4. Cholinergic Neurons in the Basal Forebrain Promote Wakefulness by Actions on Neighboring Non-Cholinergic Neurons: An Opto-Dialysis Study.

    Science.gov (United States)

    Zant, Janneke C; Kim, Tae; Prokai, Laszlo; Szarka, Szabolcs; McNally, James; McKenna, James T; Shukla, Charu; Yang, Chun; Kalinchuk, Anna V; McCarley, Robert W; Brown, Ritchie E; Basheer, Radhika

    2016-02-10

    Understanding the control of sleep-wake states by the basal forebrain (BF) poses a challenge due to the intermingled presence of cholinergic, GABAergic, and glutamatergic neurons. All three BF neuronal subtypes project to the cortex and are implicated in cortical arousal and sleep-wake control. Thus, nonspecific stimulation or inhibition studies do not reveal the roles of these different neuronal types. Recent studies using optogenetics have shown that "selective" stimulation of BF cholinergic neurons increases transitions between NREM sleep and wakefulness, implicating cholinergic projections to cortex in wake promotion. However, the interpretation of these optogenetic experiments is complicated by interactions that may occur within the BF. For instance, a recent in vitro study from our group found that cholinergic neurons strongly excite neighboring GABAergic neurons, including the subset of cortically projecting neurons, which contain the calcium-binding protein, parvalbumin (PV) (Yang et al., 2014). Thus, the wake-promoting effect of "selective" optogenetic stimulation of BF cholinergic neurons could be mediated by local excitation of GABA/PV or other non-cholinergic BF neurons. In this study, using a newly designed opto-dialysis probe to couple selective optical stimulation with simultaneous in vivo microdialysis, we demonstrated that optical stimulation of cholinergic neurons locally increased acetylcholine levels and increased wakefulness in mice. Surprisingly, the enhanced wakefulness caused by cholinergic stimulation was abolished by simultaneous reverse microdialysis of cholinergic receptor antagonists into BF. Thus, our data suggest that the wake-promoting effect of cholinergic stimulation requires local release of acetylcholine in the basal forebrain and activation of cortically projecting, non-cholinergic neurons, including the GABAergic/PV neurons. Optogenetics is a revolutionary tool to assess the roles of particular groups of neurons in behavioral

  5. Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex.

    Science.gov (United States)

    Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok

    2016-01-01

    Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits. We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by ¹⁸F-2-fluoro-2-deoxyglucose positron emission tomography. During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex. Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism.

  6. Estrogen-cholinergic interactions: Implications for cognitive aging.

    Science.gov (United States)

    Newhouse, Paul; Dumas, Julie

    2015-08-01

    This article is part of a Special Issue "Estradiol and Cognition". While many studies in humans have investigated the effects of estrogen and hormone therapy on cognition, potential neurobiological correlates of these effects have been less well studied. An important site of action for estrogen in the brain is the cholinergic system. Several decades of research support the critical role of CNS cholinergic systems in cognition in humans, particularly in learning and memory formation and attention. In humans, the cholinergic system has been implicated in many aspects of cognition including the partitioning of attentional resources, working memory, inhibition of irrelevant information, and improved performance on effort-demanding tasks. Studies support the hypothesis that estradiol helps to maintain aspects of attention and verbal and visual memory. Such cognitive domains are exactly those modulated by cholinergic systems and extensive basic and preclinical work over the past several decades has clearly shown that basal forebrain cholinergic systems are dependent on estradiol support for adequate functioning. This paper will review recent human studies from our laboratories and others that have extended preclinical research examining estrogen-cholinergic interactions to humans. Studies examined include estradiol and cholinergic antagonist reversal studies in normal older women, examinations of the neural representations of estrogen-cholinergic interactions using functional brain imaging, and studies of the ability of selective estrogen receptor modulators such as tamoxifen to interact with cholinergic-mediated cognitive performance. We also discuss the implications of these studies for the underlying hypotheses of cholinergic-estrogen interactions and cognitive aging, and indications for prophylactic and therapeutic potential that may exploit these effects. Published by Elsevier Inc.

  7. Risk of catecholaminergic crisis following glucocorticoid administration in patients with an adrenal mass: a literature review

    NARCIS (Netherlands)

    Barrett, C.; Uum, S.H. van; Lenders, J.W.M.

    2015-01-01

    BACKGROUND: Glucocorticoids as diagnostic or therapeutic agents have been reported to carry an increased risk of catecholaminergic crisis (CC) in patients with pheochromocytoma or paraganglioma (PPGL). METHODS: We searched literature databases using the following terms: pheochromocytoma,

  8. Molecular diagnostics of catecholaminergic polymorphic ventricular tachycardia using denaturing high-performance liquid chromatography and sequencing

    NARCIS (Netherlands)

    Postma, Alex V.; Bhuiyan, Zahurul A.; Bikker, Hennie

    2006-01-01

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an arrhythmogenic disease characterized by adrenergic-induced arrhythmias in the form of bidirectional and PVT. CPVT is a distinct clinical entity associated with a high mortality rate of up to 50% by the age of 30 yr. Recently, the

  9. MIDBRAIN CATECHOLAMINERGIC NEURONS CO-EXPRESS α-SYNUCLEIN AND TAU IN PROGRESSIVE SUPRANUCLEAR PALSY

    Directory of Open Access Journals (Sweden)

    María Elena eErro Aguirre

    2015-03-01

    Full Text Available Objective: To analyze the frequency and distribution of α-synuclein deposits in progressive supranuclear palsy (PSP.Methods: The brains of 25 cases of pathologically confirmed PSP were evaluated with immunohistochemistry for α-synuclein and tau. Multiple immunofluorescent stains were applied to analyze the expression of tau and α-synuclein aggregates in catecholaminergic neurons. Patients’ clinical symptoms were retrospectively recorded. Results: Deposits α-synuclein in the form of typical Lewy bodies (LBs were only found in two PSP cases (8% that fulfilled the clinical subtype of PSP known as Richardson’s syndrome (RS. LBs were present in the locus ceruleus, substantia nigra pars compacta, basal forebrain, amygdala and cingulated cortex in a distribution mimicking that of Parkinson’s disease. Triple-immunolabeling revealed co-expression of α-synuclein and tau proteins in some tyrosine hydroxilase-positive neurons of the locus ceruleus and substantia nigra pars compacta.Conclusions: There is no apparent clinical correlation between the presence of LBs in PSP. Tau protein co-aggregate with α-synuclein in catecholaminergic neurons of PSP brains suggesting a synergistic interaction between the two proteins. This is in keeping with the current view of neurodegenerative disorders as ‘misfolded protein diseases’.

  10. Depletion of catecholaminergic neurons of the rostral ventrolateral medulla in multiple systems atrophy with autonomic failure

    Science.gov (United States)

    Benarroch, E. E.; Smithson, I. L.; Low, P. A.; Parisi, J. E.

    1998-01-01

    The ventrolateral portion of the intermediate reticular formation of the medulla (ventrolateral medulla, VLM), including the C1/A1 groups of catecholaminergic neurons, is thought to be involved in control of sympathetic cardiovascular outflow, cardiorespiratory interactions, and reflex control of vasopressin release. As all these functions are affected in patients with multiple systems atrophy (MSA) with autonomic failure, we sought to test the hypothesis that catecholaminergic (tyrosine hydroxylase [TH]-positive) neurons of the VLM are depleted in these patients. Medullas were obtained at autopsy from 4 patients with MSA with prominent autonomic failure and 5 patients with no neurological disease. Patients with MSA had laboratory evidence of severe adrenergic sudomotor and cardiovagal failure. Tissue was immersion fixed in 2% paraformaldehyde at 4 degrees C for 24 hours and cut into 1-cm blocks in the coronal plane from throughout the medulla. Serial 50-microm sections were collected and one section every 300 microm was stained for TH. There was a pronounced depletion of TH neurons in the rostral VLM in all cases of MSA. There was also significant reduction of TH neurons in the caudal VLM in 3 MSA patients compared with 3 control subjects. In 2 MSA cases and in 2 control subjects, the thoracic spinal cord was available for study. There was also depletion of TH fibers and sympathetic preganglionic neurons (SPNs) in the 2 MSA cases examined. Thus, depletion of catecholaminergic neurons in the VLM may provide a substrate for some of the autonomic and endocrine manifestations of MSA.

  11. Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex

    OpenAIRE

    Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok

    2015-01-01

    Purpose Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused ...

  12. The Input-Output Relationship of the Cholinergic Basal Forebrain

    Directory of Open Access Journals (Sweden)

    Matthew R. Gielow

    2017-02-01

    Full Text Available Basal forebrain cholinergic neurons influence cortical state, plasticity, learning, and attention. They collectively innervate the entire cerebral cortex, differentially controlling acetylcholine efflux across different cortical areas and timescales. Such control might be achieved by differential inputs driving separable cholinergic outputs, although no input-output relationship on a brain-wide level has ever been demonstrated. Here, we identify input neurons to cholinergic cells projecting to specific cortical regions by infecting cholinergic axon terminals with a monosynaptically restricted viral tracer. This approach revealed several circuit motifs, such as central amygdala neurons synapsing onto basolateral amygdala-projecting cholinergic neurons or strong somatosensory cortical input to motor cortex-projecting cholinergic neurons. The presence of input cells in the parasympathetic midbrain nuclei contacting frontally projecting cholinergic neurons suggest that the network regulating the inner eye muscles are additionally regulating cortical state via acetylcholine efflux. This dataset enables future circuit-level experiments to identify drivers of known cortical cholinergic functions.

  13. The cholinergic system, circadian rhythmicity, and time memory

    NARCIS (Netherlands)

    Hut, R. A.; Van der Zee, E. A.

    2011-01-01

    This review provides an overview of the interaction between the mammalian cholinergic system and circadian system, and its possible role in time memory. Several studies made clear that circadian (daily) fluctuations in acetylcholine (ACh) release, cholinergic enzyme activity and cholinergic receptor

  14. Deletion of Rictor in catecholaminergic neurons alters locomotor activity and ingestive behavior.

    Science.gov (United States)

    Kaska, Sophia; Brunk, Rebecca; Bali, Vedrana; Kechner, Megan; Mazei-Robison, Michelle S

    2017-05-01

    While the etiology of depression is not fully understood, increasing evidence from animal models suggests a role for the ventral tegmental area (VTA) in pathogenesis. In this paper, we investigate the potential role of VTA mechanistic target of rapamycin 2 (TORC2) signaling in mediating susceptibility to chronic social defeat stress (CSDS), a well-established mouse model of depression. Utilizing genetic and viral knockout of Rictor (rapamycin-insensitive companion of target of rapamycin), a requisite component of TORC2, we demonstrate that decreasing Rictor-dependent TORC2 signaling in catecholaminergic neurons, or within the VTA specifically, does not alter susceptibility to CSDS. Opiate abuse and mood disorders are often comorbid, and previous data demonstrate a role for VTA TORC2 in mediating opiate reward. Thus, we also investigated its potential role in mediating changes in opiate reward following CSDS. Catecholaminergic deletion of Rictor increases water, sucrose, and morphine intake but not preference in a two-bottle choice assay in stress-naïve mice, and these effects are maintained after stress. VTA-specific knockout of Rictor increases water and sucrose intake after physical CSDS, but does not alter consummatory behavior in the absence of stress. These findings suggest a novel role for TORC2 in mediating stress-induced changes in consummatory behaviors that may contribute to some aspects of mood disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Cholinergic innervation of human mesenteric lymphatic vessels.

    Science.gov (United States)

    D'Andrea, V; Bianchi, E; Taurone, S; Mignini, F; Cavallotti, C; Artico, M

    2013-11-01

    The cholinergic neurotransmission within the human mesenteric lymphatic vessels has been poorly studied. Therefore, our aim is to analyse the cholinergic nerve fibres of lymphatic vessels using the traditional enzymatic techniques of staining, plus the biochemical modifications of acetylcholinesterase (AChE) activity. Specimens obtained from human mesenteric lymphatic vessels were subjected to the following experimental procedures: 1) drawing, cutting and staining of tissues; 2) staining of total nerve fibres; 3) enzymatic staining of cholinergic nerve fibres; 4) homogenisation of tissues; 5) biochemical amount of proteins; 6) biochemical amount of AChE activity; 6) quantitative analysis of images; 7) statistical analysis of data. The mesenteric lymphatic vessels show many AChE positive nerve fibres around their wall with an almost plexiform distribution. The incubation time was performed at 1 h (partial activity) and 6 h (total activity). Moreover, biochemical dosage of the same enzymatic activity confirms the results obtained with morphological methods. The homogenates of the studied tissues contain strong AChE activity. In our study, the lymphatic vessels appeared to contain few cholinergic nerve fibres. Therefore, it is expected that perivascular nerve stimulation stimulates cholinergic nerves innervating the mesenteric arteries to release the neurotransmitter AChE, which activates muscarinic or nicotinic receptors to modulate adrenergic neurotransmission. These results strongly suggest, that perivascular cholinergic nerves have little or no effect on the adrenergic nerve function in mesenteric arteries. The cholinergic nerves innervating mesenteric arteries do not mediate direct vascular responses.

  16. Cholinergic modulation of cognition: Insights from human pharmacological functional neuroimaging

    Science.gov (United States)

    Bentley, Paul; Driver, Jon; Dolan, Raymond J.

    2011-01-01

    Evidence from lesion and cortical-slice studies implicate the neocortical cholinergic system in the modulation of sensory, attentional and memory processing. In this review we consider findings from sixty-three healthy human cholinergic functional neuroimaging studies that probe interactions of cholinergic drugs with brain activation profiles, and relate these to contemporary neurobiological models. Consistent patterns that emerge are: (1) the direction of cholinergic modulation of sensory cortex activations depends upon top-down influences; (2) cholinergic hyperstimulation reduces top-down selective modulation of sensory cortices; (3) cholinergic hyperstimulation interacts with task-specific frontoparietal activations according to one of several patterns, including: suppression of parietal-mediated reorienting; decreasing ‘effort’-associated activations in prefrontal regions; and deactivation of a ‘resting-state network’ in medial cortex, with reciprocal recruitment of dorsolateral frontoparietal regions during performance-challenging conditions; (4) encoding-related activations in both neocortical and hippocampal regions are disrupted by cholinergic blockade, or enhanced with cholinergic stimulation, while the opposite profile is observed during retrieval; (5) many examples exist of an ‘inverted-U shaped’ pattern of cholinergic influences by which the direction of functional neural activation (and performance) depends upon both task (e.g. relative difficulty) and subject (e.g. age) factors. Overall, human cholinergic functional neuroimaging studies both corroborate and extend physiological accounts of cholinergic function arising from other experimental contexts, while providing mechanistic insights into cholinergic-acting drugs and their potential clinical applications. PMID:21708219

  17. New exome data question the pathogenicity of genetic variants previously associated with catecholaminergic polymorphic ventricular tachycardia

    DEFF Research Database (Denmark)

    Jabbari, Javad; Jabbari, Reza; Nielsen, Morten Wagner

    2013-01-01

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a lethal, rare hereditary disease with an estimated prevalence of 1:10 000. The genetic variants that cause CPVT are usually highly penetrant. To date, about 189 variants in 5 genes (RYR2, CASQ2, CALM1, TRND, and KCNJ2) have been...

  18. Increased phencyclidine-induced hyperactivity following cortical cholinergic denervation.

    Science.gov (United States)

    Mattsson, Anna; Lindqvist, Eva; Ogren, Sven Ove; Olson, Lars

    2005-11-07

    Altered cholinergic function is considered as a potential contributing factor in the pathogenesis of schizophrenia. We hypothesize that cortical cholinergic denervation may result in changes in glutamatergic activity. Therefore, we lesioned the cholinergic corticopetal projections by local infusion of 192 IgG-saporin into the nucleus basalis magnocellularis of rats. Possible effects of this lesion on glutamatergic systems were examined by phencyclidine-induced locomotor activity, and also by N-methyl-D-aspartate receptor binding. We find that cholinergic lesioning of neocortex leads to enhanced sensitivity to phencyclidine in the form of a dramatic increase in horizontal activity. Further, N-methyl-D-aspartate receptor binding is unaffected in denervated rats. These results suggest that aberrations in cholinergic function might lead to glutamatergic dysfunctions, which might be of relevance for the pathophysiology for schizophrenia.

  19. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity.

    Directory of Open Access Journals (Sweden)

    Marta Navarrete

    2012-02-01

    Full Text Available Long-term potentiation (LTP of synaptic transmission represents the cellular basis of learning and memory. Astrocytes have been shown to regulate synaptic transmission and plasticity. However, their involvement in specific physiological processes that induce LTP in vivo remains unknown. Here we show that in vivo cholinergic activity evoked by sensory stimulation or electrical stimulation of the septal nucleus increases Ca²⁺ in hippocampal astrocytes and induces LTP of CA3-CA1 synapses, which requires cholinergic muscarinic (mAChR and metabotropic glutamate receptor (mGluR activation. Stimulation of cholinergic pathways in hippocampal slices evokes astrocyte Ca²⁺ elevations, postsynaptic depolarizations of CA1 pyramidal neurons, and LTP of transmitter release at single CA3-CA1 synapses. Like in vivo, these effects are mediated by mAChRs, and this cholinergic-induced LTP (c-LTP also involves mGluR activation. Astrocyte Ca²⁺ elevations and LTP are absent in IP₃R2 knock-out mice. Downregulating astrocyte Ca²⁺ signal by loading astrocytes with BAPTA or GDPβS also prevents LTP, which is restored by simultaneous astrocyte Ca²⁺ uncaging and postsynaptic depolarization. Therefore, cholinergic-induced LTP requires astrocyte Ca²⁺ elevations, which stimulate astrocyte glutamate release that activates mGluRs. The cholinergic-induced LTP results from the temporal coincidence of the postsynaptic activity and the astrocyte Ca²⁺ signal simultaneously evoked by cholinergic activity. Therefore, the astrocyte Ca²⁺ signal is necessary for cholinergic-induced synaptic plasticity, indicating that astrocytes are directly involved in brain storage information.

  20. Nematode cholinergic pharmacology

    International Nuclear Information System (INIS)

    Segerberg, M.A.

    1989-01-01

    Nematode acetylcholine (ACh) receptors were characterized using both biochemical and electrophysiological techniques, including: (1) receptor binding studies in crude homogenates of the free-living nematode Caenorhabditis elegans and the parasitic nematode Ascaris lumbricoides with the high-affinity probe [ 3 H]N-methylscopolamine ([ 3 H]NMS) which binds to muscarinic receptors in many vertebrate and invertebrate tissues (2) measurement of depolarization and contraction induced by a variety of cholinergic agents, including N-methylscopolamine (NMS), in an innervated dorsal muscle strip preparation of Ascaris; (3) examination of the antagonistic actions of d-tubocurarine (dTC) and NMS at dorsal neuromuscular junction; (4) measurement of input resistance changes in Ascaris commissural motorneurons induced by ACh, dTC, NMS, pilocarpine and other cholinergic drugs

  1. Cholinergic connectivity: it’s implications for psychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Elizabeth eScarr

    2013-05-01

    Full Text Available Acetylcholine has been implicated in both the pathophysiology and treatment of a number of psychiatric disorders, with most of the data related to its role and therapeutic potential focussing on schizophrenia. However, there is little thought given to the consequences of the documented changes in the cholinergic system and how they may affect the functioning of the brain. This review looks at the cholinergic system and its interactions with the intrinsic neurotransmitters glutamate and gamma-amino butyric acid as well as those with the projection neurotransmitters most implicated in the pathophysiologies of psychiatric disorders; dopamine and serotonin. In addition, with the recent focus on the role of factors normally associated with inflammation in the pathophysiologies of psychiatric disorders, links between the cholinergic system and these factors will also be examined. These interfaces are put into context, primarily for schizophrenia, by looking at the changes in each of these systems in the disorder and exploring, theoretically, whether the changes are interconnected with those seen in the cholinergic system. Thus, this review will provide a comprehensive overview of the connectivity between the cholinergic system and some of the major areas of research into the pathophysiologies of psychiatric disorders, resulting in a critical appraisal of the potential outcomes of a dysregulated central cholinergic system.

  2. Modeling Parkinson's disease falls associated with brainstem cholinergic systems decline.

    Science.gov (United States)

    Kucinski, Aaron; Sarter, Martin

    2015-04-01

    In addition to the primary disease-defining symptoms, approximately half of patients with Parkinson's disease (PD) suffer from postural instability, impairments in gait control and a propensity for falls. Consistent with evidence from patients, we previously demonstrated that combined striatal dopamine (DA) and basal forebrain (BF) cholinergic cell loss causes falls in rats traversing dynamic surfaces. Because evidence suggests that degeneration of brainstem cholinergic neurons arising from the pedunculopontine nucleus (PPN) also contributes to impaired gait and falls, here we assessed the effects of selective cholinergic PPN lesions in combination with striatal DA loss or BF cholinergic cells loss as well as losses in all 3 regions. Results indicate that all combination losses that included the BF cholinergic system slowed traversal and increased slips and falls. However, the performance of rats with losses in all 3 regions (PPN, BF, and DA) was not more severely impaired than following combined BF cholinergic and striatal DA lesions. These results confirm the hypothesis that BF cholinergic-striatal disruption of attentional-motor interactions is a primary source of falls. Additional losses of PPN cholinergic neurons may worsen posture and gait control in situations not captured by the current testing conditions. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  3. The basal forebrain cholinergic system in aging and dementia : Rescuing cholinergic neurons from neurotoxic amyloid-beta 42 with memantine

    NARCIS (Netherlands)

    Nyakas, Csaba; Granic, Ivica; Halmy, Laszlo G.; Banerjee, Pradeep; Luiten, Paul G. M.

    2011-01-01

    The dysfunction and loss of basal forebrain cholinergic neurons and their cortical projections are among the earliest pathological events in the pathogenesis of Alzheimer's disease (AD). The evidence pointing to cholinergic impairments come from studies that report a decline in the activity of

  4. High performing rats are more sensitive toward catecholaminergic activity enhancer (CAE) compounds than their low performing peers.

    Science.gov (United States)

    Knoll, J; Knoll, B; Miklya, I

    1996-01-01

    Two breeds of rats, Charles River Wistar [Crl(Wi)Br.] and HSD Wistar [Wistar per LATI (Budapest) Br.], with remarkable difference in learning performance were selected. The rats were trained in the shuttle box with 100 trials per day and the number of conditioned avoidance responses (CARs), the escape failures (EFs) to the unconditioned stimulus and the intersignal reactions (IRs) were counted and evaluated by multi-way analysis of variance (ANOVA). Rats of the Crl (Wi) breed proved to be the 'low performing' (LP) animals and rats of the Wistar per LATI (Budapest) breed the 'high performing' (HP) ones. The HP rats produced higher number of CARs (pPPAP], which enhances action potential-transmitter release coupling in the catecholaminergic neurons, fully antagonized in a dose of 1 mg/kg, tetrabenazine-induced learning depression in HP rats and this dose was ineffective in LP rats. The findings were regarded as further support for the view that endogenous CAE substances regulate catecholaminergic activity in the brain and (-)PPAP acts via this regulation.

  5. Structural Characterization of the Putative Cholinergic Binding Region alpha(179-201) of the Nicotinic Acetylcholine Receptor. Part 1. Review and Experimental Design.

    Science.gov (United States)

    1993-04-01

    SUBJCT TERMS .. 15. NUMBER OF PAGES Nicotinic acetylcholine receptor FTIR 21 Vibrational spectroscopy Cholinergic 16. PRICE COOE Resonance raman 17...Wilson et al 1955). FMR spectroscopy measures the absorbance of infra-red rad iation, where as Raman spectroscopy measures inelastic scattering of...frequency is domrunated by that chromophore, then Raman scattering involving vibrations localized in that chromophore will be sharply enhanced(Cantor and

  6. Long-term relationships between cholinergic tone, synchronous bursting and synaptic remodeling.

    Directory of Open Access Journals (Sweden)

    Maya Kaufman

    Full Text Available Cholinergic neuromodulation plays key roles in the regulation of neuronal excitability, network activity, arousal, and behavior. On longer time scales, cholinergic systems play essential roles in cortical development, maturation, and plasticity. Presumably, these processes are associated with substantial synaptic remodeling, yet to date, long-term relationships between cholinergic tone and synaptic remodeling remain largely unknown. Here we used automated microscopy combined with multielectrode array recordings to study long-term relationships between cholinergic tone, excitatory synapse remodeling, and network activity characteristics in networks of cortical neurons grown on multielectrode array substrates. Experimental elevations of cholinergic tone led to the abrupt suppression of episodic synchronous bursting activity (but not of general activity, followed by a gradual growth of excitatory synapses over hours. Subsequent blockage of cholinergic receptors led to an immediate restoration of synchronous bursting and the gradual reversal of synaptic growth. Neither synaptic growth nor downsizing was governed by multiplicative scaling rules. Instead, these occurred in a subset of synapses, irrespective of initial synaptic size. Synaptic growth seemed to depend on intrinsic network activity, but not on the degree to which bursting was suppressed. Intriguingly, sustained elevations of cholinergic tone were associated with a gradual recovery of synchronous bursting but not with a reversal of synaptic growth. These findings show that cholinergic tone can strongly affect synaptic remodeling and synchronous bursting activity, but do not support a strict coupling between the two. Finally, the reemergence of synchronous bursting in the presence of elevated cholinergic tone indicates that the capacity of cholinergic neuromodulation to indefinitely suppress synchronous bursting might be inherently limited.

  7. Long-term Relationships between Cholinergic Tone, Synchronous Bursting and Synaptic Remodeling

    Science.gov (United States)

    Kaufman, Maya; Corner, Michael A.; Ziv, Noam E.

    2012-01-01

    Cholinergic neuromodulation plays key roles in the regulation of neuronal excitability, network activity, arousal, and behavior. On longer time scales, cholinergic systems play essential roles in cortical development, maturation, and plasticity. Presumably, these processes are associated with substantial synaptic remodeling, yet to date, long-term relationships between cholinergic tone and synaptic remodeling remain largely unknown. Here we used automated microscopy combined with multielectrode array recordings to study long-term relationships between cholinergic tone, excitatory synapse remodeling, and network activity characteristics in networks of cortical neurons grown on multielectrode array substrates. Experimental elevations of cholinergic tone led to the abrupt suppression of episodic synchronous bursting activity (but not of general activity), followed by a gradual growth of excitatory synapses over hours. Subsequent blockage of cholinergic receptors led to an immediate restoration of synchronous bursting and the gradual reversal of synaptic growth. Neither synaptic growth nor downsizing was governed by multiplicative scaling rules. Instead, these occurred in a subset of synapses, irrespective of initial synaptic size. Synaptic growth seemed to depend on intrinsic network activity, but not on the degree to which bursting was suppressed. Intriguingly, sustained elevations of cholinergic tone were associated with a gradual recovery of synchronous bursting but not with a reversal of synaptic growth. These findings show that cholinergic tone can strongly affect synaptic remodeling and synchronous bursting activity, but do not support a strict coupling between the two. Finally, the reemergence of synchronous bursting in the presence of elevated cholinergic tone indicates that the capacity of cholinergic neuromodulation to indefinitely suppress synchronous bursting might be inherently limited. PMID:22911726

  8. Long-term relationships between cholinergic tone, synchronous bursting and synaptic remodeling.

    Science.gov (United States)

    Kaufman, Maya; Corner, Michael A; Ziv, Noam E

    2012-01-01

    Cholinergic neuromodulation plays key roles in the regulation of neuronal excitability, network activity, arousal, and behavior. On longer time scales, cholinergic systems play essential roles in cortical development, maturation, and plasticity. Presumably, these processes are associated with substantial synaptic remodeling, yet to date, long-term relationships between cholinergic tone and synaptic remodeling remain largely unknown. Here we used automated microscopy combined with multielectrode array recordings to study long-term relationships between cholinergic tone, excitatory synapse remodeling, and network activity characteristics in networks of cortical neurons grown on multielectrode array substrates. Experimental elevations of cholinergic tone led to the abrupt suppression of episodic synchronous bursting activity (but not of general activity), followed by a gradual growth of excitatory synapses over hours. Subsequent blockage of cholinergic receptors led to an immediate restoration of synchronous bursting and the gradual reversal of synaptic growth. Neither synaptic growth nor downsizing was governed by multiplicative scaling rules. Instead, these occurred in a subset of synapses, irrespective of initial synaptic size. Synaptic growth seemed to depend on intrinsic network activity, but not on the degree to which bursting was suppressed. Intriguingly, sustained elevations of cholinergic tone were associated with a gradual recovery of synchronous bursting but not with a reversal of synaptic growth. These findings show that cholinergic tone can strongly affect synaptic remodeling and synchronous bursting activity, but do not support a strict coupling between the two. Finally, the reemergence of synchronous bursting in the presence of elevated cholinergic tone indicates that the capacity of cholinergic neuromodulation to indefinitely suppress synchronous bursting might be inherently limited.

  9. Distribution of Fos-Like Immunoreactivity, Catecholaminergic and Serotoninergic Neurons Activated by the Laryngeal Chemoreflex in the Medulla Oblongata of Rats.

    Science.gov (United States)

    Wang, Xiaolu; Guo, Ruichen; Zhao, Wenjing

    2015-01-01

    The laryngeal chemoreflex (LCR) induces apnea, glottis closure, bradycardia and hypertension in young and maturing mammals. We examined the distribution of medullary nuclei that are activated by the LCR and used immunofluorescent detection of Fos protein as a cellular marker for neuronal activation to establish that the medullary catecholaminergic and serotoninergic neurons participate in the modulation of the LCR. The LCR was elicited by the infusion of KCl-HCl solution into the laryngeal lumen of adult rats in the experimental group, whereas the control group received the same surgery but no infusion. In comparison, the number of regions of Fos-like immunoreactivity (FLI) that were activated by the LCR significantly increased in the nucleus of the solitary tract (NTS), the vestibular nuclear complex (VNC), the loose formation of the nucleus ambiguus (AmbL), the rostral ventral respiratory group (RVRG), the ventrolateral reticular complex (VLR), the pre-Bötzinger complex (PrBöt), the Bötzinger complex (Böt), the spinal trigeminal nucleus (SP5), and the raphe obscurus nucleus (ROb) bilaterally from the medulla oblongata. Furthermore, 12.71% of neurons with FLI in the dorsolateral part of the nucleus of the solitary tract (SolDL) showed tyrosine hydroxylase-immunoreactivity (TH-ir, catecholaminergic), and 70.87% of neurons with FLI in the ROb were serotoninergic. Our data demonstrated the distribution of medullary nuclei that were activated by the LCR, and further demonstrated that catecholaminergic neurons of the SolDL and serotoninergic neurons of the ROb were activated by the LCR, indicating the potential central pathway of the LCR.

  10. Distribution of Fos-Like Immunoreactivity, Catecholaminergic and Serotoninergic Neurons Activated by the Laryngeal Chemoreflex in the Medulla Oblongata of Rats.

    Directory of Open Access Journals (Sweden)

    Xiaolu Wang

    Full Text Available The laryngeal chemoreflex (LCR induces apnea, glottis closure, bradycardia and hypertension in young and maturing mammals. We examined the distribution of medullary nuclei that are activated by the LCR and used immunofluorescent detection of Fos protein as a cellular marker for neuronal activation to establish that the medullary catecholaminergic and serotoninergic neurons participate in the modulation of the LCR. The LCR was elicited by the infusion of KCl-HCl solution into the laryngeal lumen of adult rats in the experimental group, whereas the control group received the same surgery but no infusion. In comparison, the number of regions of Fos-like immunoreactivity (FLI that were activated by the LCR significantly increased in the nucleus of the solitary tract (NTS, the vestibular nuclear complex (VNC, the loose formation of the nucleus ambiguus (AmbL, the rostral ventral respiratory group (RVRG, the ventrolateral reticular complex (VLR, the pre-Bötzinger complex (PrBöt, the Bötzinger complex (Böt, the spinal trigeminal nucleus (SP5, and the raphe obscurus nucleus (ROb bilaterally from the medulla oblongata. Furthermore, 12.71% of neurons with FLI in the dorsolateral part of the nucleus of the solitary tract (SolDL showed tyrosine hydroxylase-immunoreactivity (TH-ir, catecholaminergic, and 70.87% of neurons with FLI in the ROb were serotoninergic. Our data demonstrated the distribution of medullary nuclei that were activated by the LCR, and further demonstrated that catecholaminergic neurons of the SolDL and serotoninergic neurons of the ROb were activated by the LCR, indicating the potential central pathway of the LCR.

  11. Cholinergic imaging in dementia spectrum disorders

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Roman; Niccolini, Flavia; Pagano, Gennaro; Politis, Marios [Institute of Psychiatry, Psychology and Neuroscience, King' s College London, Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, London (United Kingdom)

    2016-07-15

    The multifaceted nature of the pathology of dementia spectrum disorders has complicated their management and the development of effective treatments. This is despite the fact that they are far from uncommon, with Alzheimer's disease (AD) alone affecting 35 million people worldwide. The cholinergic system has been found to be crucially involved in cognitive function, with cholinergic dysfunction playing a pivotal role in the pathophysiology of dementia. The use of molecular imaging such as SPECT and PET for tagging targets within the cholinergic system has shown promise for elucidating key aspects of underlying pathology in dementia spectrum disorders, including AD or parkinsonian dementias. SPECT and PET studies using selective radioligands for cholinergic markers, such as [{sup 11}C]MP4A and [{sup 11}C]PMP PET for acetylcholinesterase (AChE), [{sup 123}I]5IA SPECT for the α{sub 4}β{sub 2} nicotinic acetylcholine receptor and [{sup 123}I]IBVM SPECT for the vesicular acetylcholine transporter, have been developed in an attempt to clarify those aspects of the diseases that remain unclear. This has led to a variety of findings, such as cortical AChE being significantly reduced in Parkinson's disease (PD), PD with dementia (PDD) and AD, as well as correlating with certain aspects of cognitive function such as attention and working memory. Thalamic AChE is significantly reduced in progressive supranuclear palsy (PSP) and multiple system atrophy, whilst it is not affected in PD. Some of these findings have brought about suggestions for the improvement of clinical practice, such as the use of a thalamic/cortical AChE ratio to differentiate between PD and PSP, two diseases that could overlap in terms of initial clinical presentation. Here, we review the findings from molecular imaging studies that have investigated the role of the cholinergic system in dementia spectrum disorders. (orig.)

  12. Cholinergic imaging in dementia spectrum disorders

    International Nuclear Information System (INIS)

    Roy, Roman; Niccolini, Flavia; Pagano, Gennaro; Politis, Marios

    2016-01-01

    The multifaceted nature of the pathology of dementia spectrum disorders has complicated their management and the development of effective treatments. This is despite the fact that they are far from uncommon, with Alzheimer's disease (AD) alone affecting 35 million people worldwide. The cholinergic system has been found to be crucially involved in cognitive function, with cholinergic dysfunction playing a pivotal role in the pathophysiology of dementia. The use of molecular imaging such as SPECT and PET for tagging targets within the cholinergic system has shown promise for elucidating key aspects of underlying pathology in dementia spectrum disorders, including AD or parkinsonian dementias. SPECT and PET studies using selective radioligands for cholinergic markers, such as [ 11 C]MP4A and [ 11 C]PMP PET for acetylcholinesterase (AChE), [ 123 I]5IA SPECT for the α 4 β 2 nicotinic acetylcholine receptor and [ 123 I]IBVM SPECT for the vesicular acetylcholine transporter, have been developed in an attempt to clarify those aspects of the diseases that remain unclear. This has led to a variety of findings, such as cortical AChE being significantly reduced in Parkinson's disease (PD), PD with dementia (PDD) and AD, as well as correlating with certain aspects of cognitive function such as attention and working memory. Thalamic AChE is significantly reduced in progressive supranuclear palsy (PSP) and multiple system atrophy, whilst it is not affected in PD. Some of these findings have brought about suggestions for the improvement of clinical practice, such as the use of a thalamic/cortical AChE ratio to differentiate between PD and PSP, two diseases that could overlap in terms of initial clinical presentation. Here, we review the findings from molecular imaging studies that have investigated the role of the cholinergic system in dementia spectrum disorders. (orig.)

  13. Cholinergic innervation of the zebrafish olfactory bulb.

    Science.gov (United States)

    Edwards, Jeffrey G; Greig, Ann; Sakata, Yoko; Elkin, Dimitry; Michel, William C

    2007-10-20

    A number of fish species receive forebrain cholinergic input but two recent reports failed to find evidence of cholinergic cell bodies or fibers in the olfactory bulbs (OBs) of zebrafish. In the current study we sought to confirm these findings by examining the OBs of adult zebrafish for choline acetyltransferase (ChAT) immunoreactivity. We observed a diffuse network of varicose ChAT-positive fibers associated with the nervus terminalis ganglion innervating the mitral cell/glomerular layer (MC/GL). The highest density of these fibers occurred in the anterior region of the bulb. The cellular targets of this cholinergic input were identified by exposing isolated OBs to acetylcholine receptor (AChR) agonists in the presence of agmatine (AGB), a cationic probe that permeates some active ion channels. Nicotine (50 microM) significantly increased the activity-dependent labeling of mitral cells and juxtaglomerular cells but not of tyrosine hydroxlase-positive dopaminergic neurons (TH(+) cells) compared to control preparations. The nAChR antagonist mecamylamine, an alpha7-nAChR subunit-specific antagonist, calcium-free artificial cerebrospinal fluid, or a cocktail of ionotropic glutamate receptor (iGluR) antagonists each blocked nicotine-stimulated labeling, suggesting that AGB does not enter the labeled neurons through activated nAChRs but rather through activated iGluRs following ACh-stimulated glutamate release. Deafferentation of OBs did not eliminate nicotine-stimulated labeling, suggesting that cholinergic input is primarily acting on bulbar neurons. These findings confirm the presence of a functioning cholinergic system in the zebrafish OB.

  14. Cholinergic modulation of mesolimbic dopamine function and reward.

    Science.gov (United States)

    Mark, Gregory P; Shabani, Shkelzen; Dobbs, Lauren K; Hansen, Stephen T

    2011-07-25

    The substantial health risk posed by obesity and compulsive drug use has compelled a serious research effort to identify the neurobiological substrates that underlie the development these pathological conditions. Despite substantial progress, an understanding of the neurochemical systems that mediate the motivational aspects of drug-seeking and craving remains incomplete. Important work from the laboratory of Bart Hoebel has provided key information on neurochemical systems that interact with dopamine (DA) as potentially important components in both the development of addiction and the expression of compulsive behaviors such as binge eating. One such modulatory system appears to be cholinergic pathways that interact with DA systems at all levels of the reward circuit. Cholinergic cells in the pons project to DA-rich cell body regions in the ventral tegmental area (VTA) and substantial nigra (SN) where they modulate the activity of dopaminergic neurons and reward processing. The DA terminal region of the nucleus accumbens (NAc) contains a small but particularly important group of cholinergic interneurons, which have extensive dendritic arbors that make synapses with a vast majority of NAc neurons and afferents. Together with acetylcholine (ACh) input onto DA cell bodies, cholinergic systems could serve a vital role in gating information flow concerning the motivational value of stimuli through the mesolimbic system. In this report we highlight evidence that CNS cholinergic systems play a pivotal role in behaviors that are motivated by both natural and drug rewards. We argue that the search for underlying neurochemical substrates of compulsive behaviors, as well as attempts to identify potential pharmacotherapeutic targets to combat them, must include a consideration of central cholinergic systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Centrality of striatal cholinergic transmission in basal ganglia function

    Directory of Open Access Journals (Sweden)

    Paola eBonsi

    2011-02-01

    Full Text Available Work over the past two decades revealed a previously unexpected role for striatal cholinergic interneurons in the context of basal ganglia function. The recognition that these interneurons are essential in synaptic plasticity and motor learning represents a significant step ahead in deciphering how the striatum processes cortical inputs, and why pathological circumstances cause motor dysfunction.Loss of the reciprocal modulation between dopaminergic inputs and the intrinsic cholinergic innervation within the striatum appears to be the trigger for pathophysiological changes occurring in basal ganglia disorders. Accordingly, there is now compelling evidence showing profound changes in cholinergic markers in these disorders, in particular Parkinson’s disease and dystonia.Based on converging experimental and clinical evidence, we provide an overview of the role of striatal cholinergic transmission in physiological and pathological conditions, in the context of the pathogenesis of movement disorders.

  16. Basic and modern concepts on cholinergic receptor: A review

    Directory of Open Access Journals (Sweden)

    Prashant Tiwari

    2013-10-01

    Full Text Available Cholinergic system is an important system and a branch of the autonomic nervous system which plays an important role in memory, digestion, control of heart beat, blood pressure, movement and many other functions. This article serves as both structural and functional sources of information regarding cholinergic receptors and provides a detailed understanding of the determinants governing specificity of muscarinic and nicotinic receptor to researchers. The study helps to give overall information about the fundamentals of the cholinergic system, its receptors and ongoing research in this field.

  17. Evaluating the evidence surrounding pontine cholinergic involvement in REM sleep generation

    Directory of Open Access Journals (Sweden)

    Kevin P Grace

    2015-09-01

    Full Text Available Rapid eye movement (REM sleep - characterized by vivid dreaming, motor paralysis, and heightened neural activity - is one of the fundamental states of the mammalian central nervous system. Initial theories of rapid eye movement (REM sleep generation posited that induction of the state required activation of the ‘pontine REM sleep generator’ by cholinergic inputs. Here we review and evaluate the evidence surrounding cholinergic involvement in REM sleep generation. We submit that: (i the capacity of pontine cholinergic neurotransmission to generate REM sleep has been firmly established by gain-of-function experiments, (ii the function of endogenous cholinergic input to REM sleep generating sites cannot be determined by gain-of-function experiments; rather, loss-of-function studies are required, (iii loss-of-function studies show that endogenous cholinergic input to the PFT is not required for REM sleep generation, and (iv Cholinergic input to the pontine REM sleep generating sites serve an accessory role in REM sleep generation: reinforcing non-REM-to-REM sleep transitions making them quicker and less likely to fail.

  18. Cortical cholinergic innervation: Distribution and source in monkeys

    International Nuclear Information System (INIS)

    Struble, R.G.; Cork, L.C.; Coyle, J.T.; Lehmann, J.; Mitchell, S.J.; Price, D.L.

    1986-01-01

    In Alzheimer's disease (AD) and its late-life variant, senile dementia of the Alzheimer's type (SDAT), the predominant neurochemical abnormalities are marked decrements in the activities of ChAT and AChE, the high affinity uptake of tritium-choline, and synthesis of acetylcholine. Two studies are undertaken to delineate more clearly the variability of cortical cholinergic innervation and the contribution of the Ch system, particularly the Ch4, to this cholinergic innervation. In the first study, ChAT activity was assessed in multiple samples of neocortex from seven normal cynomolgus monkeys. In the second study, the nbM was lesioned in order to determine the contribution of the Ch system to cortical cholinergic innervation

  19. Nitric oxide and the non-adrenergic non-cholinergic neurotransmission

    NARCIS (Netherlands)

    Boeckxstaens, G. E.; Pelckmans, P. A.

    1997-01-01

    In the early 1960s, the first evidence was reported demonstrating neurally mediated responses in the presence of adrenergic and cholinergic antagonists, leading to the introduction of the concept of non-adrenergic non-cholinergic neurotransmission. The inhibitory component of this part of the

  20. CHOLINERGIC NEUROPHARMACOLOGY - AN UPDATE

    NARCIS (Netherlands)

    PALACIOS, JM; BODDEKE, HWGM; POMBOVILLAR, E

    1991-01-01

    The current status of the pharmacology of central cholinergic transmission is reviewed. Particular attention is paid to the compounds that have been or are potential candidates as therapeutic agents for the treatment of mental disorders, particularly senile dementia. Compounds affecting

  1. (-)Deprenyl and (-)1-phenyl-2-propylaminopentane, [(-)PPAP], act primarily as potent stimulants of action potential-transmitter release coupling in the catecholaminergic neurons.

    Science.gov (United States)

    Knoll, J; Miklya, I; Knoll, B; Markó, R; Kelemen, K

    1996-01-01

    The activity of the catecholaminergic neurons in the rat brain is enhanced significantly 30 min after the subcutaneous injection of very small doses of (-)deprenyl (threshold doses: 0.01 mg/kg for noradrenergic neurons and 0.025 mg/kg for dopaminergic neurons). As a catecholaminergic activity enhancer (CAE) substance (-)deprenyl is about ten times more potent than its parent compound, (-)methamphetamine. While the (+)methamphetamine is 3-5 times more potent than (-)methamphetammine in releasing catecholamines, the (-)methamphetamine is the more potent CAE substance. The mechanism of the CAE effect of (-)deprenyl and (-)PPAP, a deprenyl-derived substance devoid of MAO inhibitory potency, was studied in rats by measuring: a) the release of catecholamines from striatum, substantia nigra, tuberculum olfactorium and locus coeruleus; b) the stimulation induced release of 3H-noradrenaline from the isolated brain stem; and c) the antagonistic effect against tetrabenazine-induced depression of learning in the shuttle box. The CAE effect was found to be unrelated: a) to the inhibition of MAO activity; b) to the inhibition of presynaptic catecholamine receptors; c) to the inhibition of the uptake of catecholamines; and d) to the release of catecholamines. It was concluded that (-)deprenyl and (-)PPAP act primarily as potent stimulants of action potential-transmitter release coupling in the catecholaminergic neurons of the brain. We show that both (-)deprenyl and (-)PPAP enhance the inward Ca2+ current in sino-auricular fibers of the frog heart. (-)PPAP was much more potent than either (+)PPAP or (-)deprenyl in this test.

  2. Exposure to advertisement calls of reproductive competitors activates vocal-acoustic and catecholaminergic neurons in the plainfin midshipman fish, Porichthys notatus.

    Science.gov (United States)

    Petersen, Christopher L; Timothy, Miky; Kim, D Spencer; Bhandiwad, Ashwin A; Mohr, Robert A; Sisneros, Joseph A; Forlano, Paul M

    2013-01-01

    While the neural circuitry and physiology of the auditory system is well studied among vertebrates, far less is known about how the auditory system interacts with other neural substrates to mediate behavioral responses to social acoustic signals. One species that has been the subject of intensive neuroethological investigation with regard to the production and perception of social acoustic signals is the plainfin midshipman fish, Porichthys notatus, in part because acoustic communication is essential to their reproductive behavior. Nesting male midshipman vocally court females by producing a long duration advertisement call. Females localize males by their advertisement call, spawn and deposit all their eggs in their mate's nest. As multiple courting males establish nests in close proximity to one another, the perception of another male's call may modulate individual calling behavior in competition for females. We tested the hypothesis that nesting males exposed to advertisement calls of other males would show elevated neural activity in auditory and vocal-acoustic brain centers as well as differential activation of catecholaminergic neurons compared to males exposed only to ambient noise. Experimental brains were then double labeled by immunofluorescence (-ir) for tyrosine hydroxylase (TH), an enzyme necessary for catecholamine synthesis, and cFos, an immediate-early gene product used as a marker for neural activation. Males exposed to other advertisement calls showed a significantly greater percentage of TH-ir cells colocalized with cFos-ir in the noradrenergic locus coeruleus and the dopaminergic periventricular posterior tuberculum, as well as increased numbers of cFos-ir neurons in several levels of the auditory and vocal-acoustic pathway. Increased activation of catecholaminergic neurons may serve to coordinate appropriate behavioral responses to male competitors. Additionally, these results implicate a role for specific catecholaminergic neuronal groups in

  3. Simulated Cholinergic Reinnervation of β (INS-1 Cells: Antidiabetic Utility of Heterotypic Pseudoislets Containing β Cell and Cholinergic Cell

    Directory of Open Access Journals (Sweden)

    Ao Jiao

    2018-01-01

    Full Text Available Cholinergic neurons can functionally support pancreatic islets in controlling blood sugar levels. However, in islet transplantation, the level of cholinergic reinnervation is significantly lower compared to orthotopic pancreatic islets. This abnormal reinnervation affects the survival and function of islet grafts. In this study, the cholinergic reinnervation of beta cells was simulated by 2D and 3D coculture of INS-1 and NG108-15 cells. In 2D culture conditions, 20 mM glucose induced a 1.24-fold increase (p<0.0001 in insulin secretion from the coculture group, while in the 3D culture condition, a 1.78-fold increase (p<0.0001 in insulin secretion from heterotypic pseudoislet group was observed. Glucose-stimulated insulin secretion (GSIS from 2D INS-1 cells showed minimal changes when compared to 3D structures. E-cadherin expressed in INS-1 and NG108-15 cells was the key adhesion molecule for the formation of heterotypic pseudoislets. NG108-15 cells hardly affected the proliferation of INS-1 cells in vitro. Heterotypic pseudoislet transplantation recipient mice reverted to normoglycemic levels faster and had a greater blood glucose clearance compared to INS-1 pseudoislet recipient mice. In conclusion, cholinergic cells can promote insulin-secreting cells to function better in vitro and in vivo and E-cadherin plays an important role in the formation of heterotypic pseudoislets.

  4. Cholinergic Modulation of Type 2 Immune Responses

    Directory of Open Access Journals (Sweden)

    Goele Bosmans

    2017-12-01

    Full Text Available In recent years, the bidirectional relationship between the nervous and immune system has become increasingly clear, and its role in both homeostasis and inflammation has been well documented over the years. Since the introduction of the cholinergic anti-inflammatory pathway, there has been an increased interest in parasympathetic regulation of both innate and adaptive immune responses, including T helper 2 responses. Increasing evidence has been emerging suggesting a role for the parasympathetic nervous system in the pathophysiology of allergic diseases, including allergic rhinitis, asthma, food allergy, and atopic dermatitis. In this review, we will highlight the role of cholinergic modulation by both nicotinic and muscarinic receptors in several key aspects of the allergic inflammatory response, including barrier function, innate and adaptive immune responses, and effector cells responses. A better understanding of these cholinergic processes mediating key aspects of type 2 immune disorders might lead to novel therapeutic approaches to treat allergic diseases.

  5. Endogenous cholinergic neurotransmission contributes to behavioral sensitization to morphine.

    Directory of Open Access Journals (Sweden)

    Dusica Bajic

    Full Text Available Neuroplasticity in the mesolimbic dopaminergic system is critical for behavioral adaptations associated with opioid reward and addiction. These processes may be influenced by cholinergic transmission arising from the laterodorsal tegmental nucleus (LDTg, a main source of acetylcholine to mesolimbic dopaminergic neurons. To examine this possibility we asked if chronic systemic morphine administration affects expression of genes in ventral and ventrolateral periaqueductal gray at the level of the LDTg using rtPCR. Specifically, we examined gene expression changes in the area of interest using Neurotransmitters and Receptors PCR array between chronic morphine and saline control groups. Analysis suggested that chronic morphine administration led to changes in expression of genes associated, in part, with cholinergic neurotransmission. Furthermore, using a quantitative immunofluorescent technique, we found that chronic morphine treatment produced a significant increase in immunolabeling of the cholinergic marker (vesicular acetylcholine transporter in neurons of the LDTg. Finally, systemic administration of the nonselective and noncompetitive neuronal nicotinic antagonist mecamylamine (0.5 or 2 mg/kg dose-dependently blocked the expression, and to a lesser extent the development, of locomotor sensitization. The same treatment had no effect on acute morphine antinociception, antinociceptive tolerance or dependence to chronic morphine. Taken together, the results suggest that endogenous nicotinic cholinergic neurotransmission selectively contributes to behavioral sensitization to morphine and this process may, in part, involve cholinergic neurons within the LDTg.

  6. Development of myenteric cholinergic neurons in ChAT-Cre;R26R-YFP mice.

    Science.gov (United States)

    Hao, Marlene M; Bornstein, Joel C; Young, Heather M

    2013-10-01

    Cholinergic neurons are the major excitatory neurons of the enteric nervous system (ENS), and include intrinsic sensory neurons, interneurons, and excitatory motor neurons. Cholinergic neurons have been detected in the embryonic ENS; however, the development of these neurons has been difficult to study as they are difficult to detect prior to birth using conventional immunohistochemistry. In this study we used ChAT-Cre;R26R-YFP mice to examine the development of cholinergic neurons in the gut of embryonic and postnatal mice. Cholinergic (YFP+) neurons were first detected at embryonic day (E)11.5, and the proportion of cholinergic neurons gradually increased during pre- and postnatal development. At birth, myenteric cholinergic neurons comprised less than half of their adult proportions in the small intestine (25% of myenteric neurons were YFP+ at P0 compared to 62% in adults). The earliest cholinergic neurons appear to mainly project anally. Projections into the presumptive circular muscle were first observed at E14.5. A subpopulation of cholinergic neurons coexpress calbindin through embryonic and postnatal development, but only a small proportion coexpressed neuronal nitric oxide synthase. Our study shows that cholinergic neurons in the ENS develop over a protracted period of time. © 2013 Wiley Periodicals, Inc.

  7. Cholinergic enhancement of visual attention and neural oscillations in the human brain.

    Science.gov (United States)

    Bauer, Markus; Kluge, Christian; Bach, Dominik; Bradbury, David; Heinze, Hans Jochen; Dolan, Raymond J; Driver, Jon

    2012-03-06

    Cognitive processes such as visual perception and selective attention induce specific patterns of brain oscillations. The neurochemical bases of these spectral changes in neural activity are largely unknown, but neuromodulators are thought to regulate processing. The cholinergic system is linked to attentional function in vivo, whereas separate in vitro studies show that cholinergic agonists induce high-frequency oscillations in slice preparations. This has led to theoretical proposals that cholinergic enhancement of visual attention might operate via gamma oscillations in visual cortex, although low-frequency alpha/beta modulation may also play a key role. Here we used MEG to record cortical oscillations in the context of administration of a cholinergic agonist (physostigmine) during a spatial visual attention task in humans. This cholinergic agonist enhanced spatial attention effects on low-frequency alpha/beta oscillations in visual cortex, an effect correlating with a drug-induced speeding of performance. By contrast, the cholinergic agonist did not alter high-frequency gamma oscillations in visual cortex. Thus, our findings show that cholinergic neuromodulation enhances attentional selection via an impact on oscillatory synchrony in visual cortex, for low rather than high frequencies. We discuss this dissociation between high- and low-frequency oscillations in relation to proposals that lower-frequency oscillations are generated by feedback pathways within visual cortex. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Cholinergic neurotransmission in human corpus cavernosum. II. Acetylcholine synthesis

    International Nuclear Information System (INIS)

    Blanco, R.; De Tejada, S.; Goldstein, I.; Krane, R.J.; Wotiz, H.H.; Cohen, R.A.

    1988-01-01

    Physiological and histochemical evidence indicates that cholinergic nerves may participate in mediating penile erection. Acetylcholine synthesis and release was studied in isolated human corporal tissue. Human corpus cavernosum incubated with [ 3 H]choline accumulated [ 3 H]choline and synthesized [ 3 H]acethylcholine in an concentration-dependent manner. [ 3 H]Acetylcholine accumulation by the tissue was inhibited by hemicholinium-3, a specific antagonist of the high-affinity choline transport in cholinergic nerves. Transmural electrical field stimulation caused release of [ 3 H]acetylcholine which was significantly diminished by inhibiting neurotransmission with calcium-free physiological salt solution or tetrodotoxin. These observations provide biochemical and physiological evidence for the existence of cholinergic innervation in human corpus cavernosum

  9. Catecholaminergic activation in acute myocardial infarction: time course and relation to left ventricular performance

    DEFF Research Database (Denmark)

    Petersen, Claus Leth; Nielsen, Jens Rokkedal; Petersen, Bodil Laub

    2003-01-01

    AIM: The study was designed to assess (1) the time course of catecholaminergic activation in acute myocardial infarction (AMI) as estimated by adrenaline (ADR) and noradrenaline (NOR) concentrations, and (2) to relate activation of these hormones to predict the outcome of cardiac performance......-ventricular ejection fraction (LVEF). RESULTS: In the study group as a whole, the concentrations of ADR decreased from (mean +/- SEM) 0.80 +/- 0.12 nmol/l on admission to 0.33 +/- 0.03 nmol/l at discharge (p ... of both ADR and NOR on admission were correlated to LVEF at discharge (r = -0.56, p ADR and NOR after 1 year follow-up was 0...

  10. Catecholaminergic contributions to vocal communication signals.

    Science.gov (United States)

    Matheson, Laura E; Sakata, Jon T

    2015-05-01

    Social context affects behavioral displays across a variety of species. For example, social context acutely influences the acoustic and temporal structure of vocal communication signals such as speech and birdsong. Despite the prevalence and importance of such social influences, little is known about the neural mechanisms underlying the social modulation of communication. Catecholamines are implicated in the regulation of social behavior and motor control, but the degree to which catecholamines influence vocal communication signals remains largely unknown. Using a songbird, the Bengalese finch, we examined the extent to which the social context in which song is produced affected immediate early gene expression (EGR-1) in catecholamine-synthesising neurons in the midbrain. Further, we assessed the degree to which administration of amphetamine, which increases catecholamine concentrations in the brain, mimicked the effect of social context on vocal signals. We found that significantly more catecholaminergic neurons in the ventral tegmental area and substantia nigra (but not the central grey, locus coeruleus or subcoeruleus) expressed EGR-1 in birds that were exposed to females and produced courtship song than in birds that produced non-courtship song in isolation. Furthermore, we found that amphetamine administration mimicked the effects of social context and caused many aspects of non-courtship song to resemble courtship song. Specifically, amphetamine increased the stereotypy of syllable structure and sequencing, the repetition of vocal elements and the degree of sequence completions. Taken together, these data highlight the conserved role of catecholamines in vocal communication across species, including songbirds and humans. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. The cholinergic ligand binding material of axonal membranes

    International Nuclear Information System (INIS)

    Mautner, H.G.; Coronado, R.; Jumblatt, J.E.

    1986-01-01

    Choline acetyltransferase and acetylcholinesterase, the enzymes responsible for the synthesis and hydrolysis of ACh, are present in nerve fibers. In crustacean peripheral nerves, release of ACh from cut nerve fibers has been demonstrated. Previously closed membrane vesicles have been prepared from lobster walking leg nerve plasma membrane and saturable binding of cholinergic agonsist and antagonists to such membranes have been demonstrated. This paper studies this axonal cholinergic binding material, and elucidates its functions. The binding of tritium-nicotine to lobster nerve plasma membranes was antagonized by a series of cholinergic ligands as well as by a series of local anesthetics. This preparation was capable of binding I 125-alpha-bungarotoxin, a ligand widely believed to be a specific label for nicotinic ACh receptor. The labelling of 50 K petide band with tritium-MBTA following disulfide reduction is illustrated

  12. Chronic Cerebral Ischaemia Forms New Cholinergic Mechanisms of Learning and Memory

    Directory of Open Access Journals (Sweden)

    E. I. Zakharova

    2010-01-01

    Full Text Available The purpose of this research was a comparative analysis of cholinergic synaptic organization following learning and memory in normal and chronic cerebral ischaemic rats in the Morris water maze model. Choline acetyltransferase and protein content were determined in subpopulations of presynapses of “light” and “heavy” synaptosomal fractions of the cortex and the hippocampus, and the cholinergic projective and intrinsic systems of the brain structures were taken into consideration. We found a strong involvement of cholinergic systems, both projective and intrinsic, in all forms of cognition. Each form of cognition had an individual cholinergic molecular profile and the cholinergic synaptic compositions in the ischaemic rat brains differed significantly from normal ones. Our data demonstrated that under ischaemic conditions, instead of damaged connections new key synaptic relationships, which were stable against pathological influences and able to restore damaged cognitive functions, arose. The plasticity of neurochemical links in the individual organization of certain types of cognition gave a new input into brain pathology and can be used in the future for alternative corrections of vascular and other degenerative dementias.

  13. The involvement of cholinergic neurons in the spreading of tau pathology

    Directory of Open Access Journals (Sweden)

    Diana eSimon

    2013-06-01

    Full Text Available Long time ago, it was described the selective loss of cholinergic neurons during the development of Alzheimer disease. Recently, it has been suggested that tau protein may play a role in that loss of cholinergic neurons through a mechanism involving the interaction of extracellular tau with M1/M3 muscarinic receptors present in the cholinergic neurons. This interaction between tau and muscarinic receptors may be a way, although not the only one, to explain the spreading of tau pathology occurring in Alzheimer disease.

  14. Cholinergic Inputs from Basal Forebrain Add an Excitatory Bias to Odor Coding in the Olfactory Bulb

    Science.gov (United States)

    Rothermel, Markus; Carey, Ryan M.; Puche, Adam; Shipley, Michael T.

    2014-01-01

    Cholinergic modulation of central circuits is associated with active sensation, attention, and learning, yet the neural circuits and temporal dynamics underlying cholinergic effects on sensory processing remain unclear. Understanding the effects of cholinergic modulation on particular circuits is complicated by the widespread projections of cholinergic neurons to telencephalic structures that themselves are highly interconnected. Here we examined how cholinergic projections from basal forebrain to the olfactory bulb (OB) modulate output from the first stage of sensory processing in the mouse olfactory system. By optogenetically activating their axons directly in the OB, we found that cholinergic projections from basal forebrain regulate OB output by increasing the spike output of presumptive mitral/tufted cells. Cholinergic stimulation increased mitral/tufted cell spiking in the absence of inhalation-driven sensory input and further increased spiking responses to inhalation of odorless air and to odorants. This modulation was rapid and transient, was dependent on local cholinergic signaling in the OB, and differed from modulation by optogenetic activation of cholinergic neurons in basal forebrain, which led to a mixture of mitral/tufted cell excitation and suppression. Finally, bulbar cholinergic enhancement of mitral/tufted cell odorant responses was robust and occurred independent of the strength or even polarity of the odorant-evoked response, indicating that cholinergic modulation adds an excitatory bias to mitral/tufted cells as opposed to increasing response gain or sharpening response spectra. These results are consistent with a role for the basal forebrain cholinergic system in dynamically regulating the sensitivity to or salience of odors during active sensing of the olfactory environment. PMID:24672011

  15. Selective retrograde labeling of cholinergic neurons with [3H]choline

    International Nuclear Information System (INIS)

    Bagnoli, P.; Beaudet, A.; Stella, M.; Cuenod, M.

    1981-01-01

    Evidence is presented which is consistent with a specific retrograde labeling of cholinergic neurons following [ 3 H]choline application in their zone of termination. [ 3 H]Choline injection in the rat hippocampus leads to perikaryal retrograde labeling in the ipsilateral medial septal nuclease and nucleus of the diagonal band, thus delineating an established cholinergic pathway, while only diffuse presumably anterograde labeling was observed in the lateral septum, the entorhinal cortex, and the opposite hippocampus. After [ 3 H]choline injection in the pigeon visual Wulst, only the ipsilateral thalamic relay, of all inputs, showed similar perikaryal retrograde labeling, an observation supporting the suggestion that at least some thalamo-Wulst neurons are cholinergic

  16. Early presymptomatic cholinergic dysfunction in a murine model of amyotrophic lateral sclerosis

    Science.gov (United States)

    Casas, Caty; Herrando-Grabulosa, Mireia; Manzano, Raquel; Mancuso, Renzo; Osta, Rosario; Navarro, Xavier

    2013-01-01

    Sporadic and familiar amyotrophic lateral sclerosis (ALS) cases presented lower cholinergic activity than in healthy individuals in their still preserved spinal motoneurons (MNs) suggesting that cholinergic reduction might occur before MN death. To unravel how and when cholinergic function is compromised, we have analyzed the spatiotemporal expression of choline acetyltransferase (ChAT) from early presymptomatic stages of the SOD1G93A ALS mouse model by confocal immunohistochemistry. The analysis showed an early reduction in ChAT content in soma and presynaptic boutons apposed onto MNs (to 76%) as well as in cholinergic interneurons in the lumbar spinal cord of the 30-day-old SOD1G93A mice. Cholinergic synaptic stripping occurred simultaneously to the presence of abundant surrounding major histocompatibility complex II (MHC-II)-positive microglia and the accumulation of nuclear Tdp-43 and the appearance of mild oxidative stress within MNs. Besides, there was a loss of neuronal MHC-I expression, which is necessary for balanced synaptic stripping after axotomy. These events occurred before the selective raise of markers of denervation such as ATF3. By the same time, alterations in postsynaptic cholinergic-related structures were also revealed with a loss of the presence of sigma-1 receptor, a Ca2+ buffering chaperone in the postsynaptic cisternae. By 2 months of age, ChAT seemed to accumulate in the soma of MNs, and thus efferences toward Renshaw interneurons were drastically diminished. In conclusion, cholinergic dysfunction in the local circuitry of the spinal cord may be one of the earliest events in ALS etiopathogenesis. PMID:23531559

  17. The Cholinergic System Modulates Memory and Hippocampal Plasticity via Its Interactions with Non-Neuronal Cells

    Directory of Open Access Journals (Sweden)

    Sara V. Maurer

    2017-11-01

    Full Text Available Degeneration of central cholinergic neurons impairs memory, and enhancement of cholinergic synapses improves cognitive processes. Cholinergic signaling is also anti-inflammatory, and neuroinflammation is increasingly linked to adverse memory, especially in Alzheimer’s disease. Much of the evidence surrounding cholinergic impacts on the neuroimmune system focuses on the α7 nicotinic acetylcholine (ACh receptor, as stimulation of this receptor prevents many of the effects of immune activation. Microglia and astrocytes both express this receptor, so it is possible that some cholinergic effects may be via these non-neuronal cells. Though the presence of microglia is required for memory, overactivated microglia due to an immune challenge overproduce inflammatory cytokines, which is adverse for memory. Blocking these exaggerated effects, specifically by decreasing the release of tumor necrosis factor α (TNF-α, interleukin 1β (IL-1β, and interleukin 6 (IL-6, has been shown to prevent inflammation-induced memory impairment. While there is considerable evidence that cholinergic signaling improves memory, fewer studies have linked the “cholinergic anti-inflammatory pathway” to memory processes. This review will summarize the current understanding of the cholinergic anti-inflammatory pathway as it relates to memory and will argue that one mechanism by which the cholinergic system modulates hippocampal memory processes is its influence on neuroimmune function via the α7 nicotinic ACh receptor.

  18. Control of sympathetic vasomotor tone by catecholaminergic C1 neurones of the rostral ventrolateral medulla oblongata

    Science.gov (United States)

    Marina, Nephtali; Abdala, Ana P.L.; Korsak, Alla; Simms, Annabel E.; Allen, Andrew M.; Paton, Julian F.R.; Gourine, Alexander V.

    2011-01-01

    Aims Increased sympathetic tone in obstructive sleep apnoea results from recurrent episodes of systemic hypoxia and hypercapnia and might be an important contributor to the development of cardiovascular disease. In this study, we re-evaluated the role of a specific population of sympathoexcitatory catecholaminergic C1 neurones of the rostral ventrolateral medulla oblongata in the control of sympathetic vasomotor tone, arterial blood pressure, and hypercapnia-evoked sympathetic and cardiovascular responses. Methods and results In anaesthetized rats in vivo and perfused rat working heart brainstem preparations in situ, C1 neurones were acutely silenced by application of the insect peptide allatostatin following cell-specific targeting with a lentiviral vector to express the inhibitory Drosophila allatostatin receptor. In anaesthetized rats with denervated peripheral chemoreceptors, acute inhibition of 50% of the C1 neuronal population resulted in ∼50% reduction in renal sympathetic nerve activity and a profound fall in arterial blood pressure (by ∼25 mmHg). However, under these conditions systemic hypercapnia still evoked vigorous sympathetic activation and the slopes of the CO2-evoked sympathoexcitatory and cardiovascular responses were not affected by inhibition of C1 neurones. Inhibition of C1 neurones in situ resulted in a reversible fall in perfusion pressure and the amplitude of respiratory-related bursts of thoracic sympathetic nerve activity. Conclusion These data confirm a fundamental physiological role of medullary catecholaminergic C1 neurones in maintaining resting sympathetic vasomotor tone and arterial blood pressure. However, C1 neurones do not appear to mediate sympathoexcitation evoked by central actions of CO2. PMID:21543384

  19. A cellular and regulatory map of the cholinergic nervous system of C. elegans

    Science.gov (United States)

    Pereira, Laura; Kratsios, Paschalis; Serrano-Saiz, Esther; Sheftel, Hila; Mayo, Avi E; Hall, David H; White, John G; LeBoeuf, Brigitte; Garcia, L Rene; Alon, Uri; Hobert, Oliver

    2015-01-01

    Nervous system maps are of critical importance for understanding how nervous systems develop and function. We systematically map here all cholinergic neuron types in the male and hermaphrodite C. elegans nervous system. We find that acetylcholine (ACh) is the most broadly used neurotransmitter and we analyze its usage relative to other neurotransmitters within the context of the entire connectome and within specific network motifs embedded in the connectome. We reveal several dynamic aspects of cholinergic neurotransmitter identity, including a sexually dimorphic glutamatergic to cholinergic neurotransmitter switch in a sex-shared interneuron. An expression pattern analysis of ACh-gated anion channels furthermore suggests that ACh may also operate very broadly as an inhibitory neurotransmitter. As a first application of this comprehensive neurotransmitter map, we identify transcriptional regulatory mechanisms that control cholinergic neurotransmitter identity and cholinergic circuit assembly. DOI: http://dx.doi.org/10.7554/eLife.12432.001 PMID:26705699

  20. Cholinergic Hypofunction in Presbycusis-Related Tinnitus With Cognitive Function Impairment: Emerging Hypotheses.

    Science.gov (United States)

    Ruan, Qingwei; Yu, Zhuowei; Zhang, Weibin; Ruan, Jian; Liu, Chunhui; Zhang, Ruxin

    2018-01-01

    Presbycusis (age-related hearing loss) is a potential risk factor for tinnitus and cognitive deterioration, which result in poor life quality. Presbycusis-related tinnitus with cognitive impairment is a common phenotype in the elderly population. In these individuals, the central auditory system shows similar pathophysiological alterations as those observed in Alzheimer's disease (AD), including cholinergic hypofunction, epileptiform-like network synchronization, chronic inflammation, and reduced GABAergic inhibition and neural plasticity. Observations from experimental rodent models indicate that recovery of cholinergic function can improve memory and other cognitive functions via acetylcholine-mediated GABAergic inhibition enhancement, nicotinic acetylcholine receptor (nAChR)-mediated anti-inflammation, glial activation inhibition and neurovascular protection. The loss of cholinergic innervation of various brain structures may provide a common link between tinnitus seen in presbycusis-related tinnitus and age-related cognitive impairment. We hypothesize a key component of the condition is the withdrawal of cholinergic input to a subtype of GABAergic inhibitory interneuron, neuropeptide Y (NPY) neurogliaform cells. Cholinergic denervation might not only cause the degeneration of NPY neurogliaform cells, but may also result in decreased AChR activation in GABAergic inhibitory interneurons. This, in turn, would lead to reduced GABA release and inhibitory regulation of neural networks. Reduced nAChR-mediated anti-inflammation due to the loss of nicotinic innervation might lead to the transformation of glial cells and release of inflammatory mediators, lowering the buffering of extracellular potassium and glutamate metabolism. Further research will provide evidence for the recovery of cholinergic function with the use of cholinergic input enhancement alone or in combination with other rehabilitative interventions to reestablish inhibitory regulation mechanisms of

  1. Cholinergic and VIPergic effects on thyroid hormone secretion in the mouse

    International Nuclear Information System (INIS)

    Ahren, B.

    1985-01-01

    The thyroid gland is known to harbor cholinergic and VIPergic nerves. In the present study, the influences of cholinergic stimulation by carbachol, cholinergic blockade by methylatropine and stimulation with various VIP sequences on basal, TSH-induced and VIP-induced thyroid hormone secretion were investigated in vivo in mice. The mice were pretreated with 125 I and thyroxine; the subsequent release of 125 I is an estimation of thyroid hormone secretion. It was found that basal radioiodine secretion was inhibited by both carbachol and methylatropine. Furthermore, TSH-induced radioiodine secretion was inhibited already by a low dose of carbachol. Moreover, a high dose of carbachol could inhibit VIP-induced radioiodine secretion. Methylatropine did not influence TSH- or VIP-stimulated radioiodine secretion, but counteracted the inhibitory action of carbachol on TSH- and VIP-induced radioiodine release. In addition, contrary to VIP, six various synthesized VIP fragments had no effect on basal or stimulated radioiodine release. It is concluded that basal thyroid hormone secretion is inhibited by both cholinergic activation and blockade. Furthermore, TSH-induced thyroid hormone secretion is more sensitive to inhibition with cholinergic stimulation than is VIP-induced thyroid hormone secretion. In addition, the VIP stimulation of thyroid hormone secretion seems to require the full VIP sequence

  2. Neuro-immune interactions via the cholinergic anti-inflammatory pathway

    Science.gov (United States)

    Gallowitsch-Puerta, Margot; Pavlov, Valentin A.

    2010-01-01

    The overproduction of TNF and other cytokines can cause the pathophysiology of numerous diseases. Controlling cytokine synthesis and release is critical for preventing unrestrained inflammation and maintaining health. Recent studies identified an efferent vagus nerve-based mechanism termed “the cholinergic anti-inflammatory pathway” that controls cytokine production and inflammation. Here we review current advances related to the role of this pathway in neuro-immune interactions that prevent excessive inflammation. Experimental evidence indicates that vagus nerve cholinergic anti-inflammatory signaling requires alpha7 nicotinic acetylcholine receptors expressed on non-neuronal cytokine producing cells. Alpha7 nicotinic acetylcholine receptor agonists inhibit cytokine release and protect animals in a variety of experimental lethal inflammatory models. Knowledge related to the cholinergic anti-inflammatory pathway can be exploited in therapeutic approaches directed towards counteracting abnormal chronic and hyper-activated inflammatory responses. PMID:17289087

  3. Orexin receptor activation generates gamma band input to cholinergic and serotonergic arousal system neurons and drives an intrinsic Ca2+-dependent resonance in LDT and PPT cholinergic neurons.

    Directory of Open Access Journals (Sweden)

    Masaru eIshibashi

    2015-06-01

    Full Text Available A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30-60 Hz - a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT and pedunculopontine (PPT tegmental neurons and serotonergic dorsal raphe (DR neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca2+-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca2+-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca2+-dependent resonance that peaked in the theta and alpha frequency range (4 - 14 Hz and extended up to 100 Hz. We propose that this orexin current noise and the Ca2+ dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep and intracortical

  4. Cholinergic signalling in gut immunity

    NARCIS (Netherlands)

    Dhawan, Shobhit; Cailotto, Cathy; Harthoorn, Lucien F.; de Jonge, Wouter J.

    2012-01-01

    The gut immune system shares many signalling molecules and receptors with the autonomic nervous system. A good example is the vagal neurotransmitter acetylcholine (ACh), for which many immune cell types express cholinergic receptors (AChR). In the last decade the vagal nerve has emerged as an

  5. Catecholaminergic consolidation of motor cortical neuroplasticity in humans.

    Science.gov (United States)

    Nitsche, Michael A; Grundey, Jessica; Liebetanz, David; Lang, Nicolas; Tergau, Frithjof; Paulus, Walter

    2004-11-01

    Amphetamine, a catecholaminergic re-uptake-blocker, is able to improve neuroplastic mechanisms in humans. However, so far not much is known about the underlying physiological mechanisms. Here, we study the impact of amphetamine on NMDA receptor-dependent long-lasting excitability modifications in the human motor cortex elicited by weak transcranial direct current stimulation (tDCS). Amphetamine significantly enhanced and prolonged increases in anodal, tDCS-induced, long-lasting excitability. Under amphetamine premedication, anodal tDCS resulted in an enhancement of excitability which lasted until the morning after tDCS, compared to approximately 1 h in the placebo condition. Prolongation of the excitability enhancement was most pronounced for long-term effects; the duration of short-term excitability enhancement was only slightly increased. Since the additional application of the NMDA receptor antagonist dextromethorphane blocked any enhancement of tDCS-driven excitability under amphetamine, we conclude that amphetamine consolidates the tDCS-induced neuroplastic effects, but does not initiate them. The fact that propanolol, a beta-adrenergic antagonist, diminished the duration of the tDCS-generated after-effects suggests that adrenergic receptors play a certain role in the consolidation of NMDA receptor-dependent motor cortical excitability modifications in humans. This result may enable researchers to optimize neuroplastic processes in the human brain on the rational basis of purpose-designed pharmacological interventions.

  6. Hippocampal "cholinergic interneurons" visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation.

    Science.gov (United States)

    Yi, Feng; Catudio-Garrett, Elizabeth; Gábriel, Robert; Wilhelm, Marta; Erdelyi, Ferenc; Szabo, Gabor; Deisseroth, Karl; Lawrence, Josh

    2015-01-01

    Release of acetylcholine (ACh) in the hippocampus (HC) occurs during exploration, arousal, and learning. Although the medial septum-diagonal band of Broca (MS-DBB) is the major extrinsic source of cholinergic input to the HC, cholinergic neurons intrinsic to the HC also exist but remain poorly understood. Here, ChAT-tauGFP and ChAT-CRE/Rosa26YFP (ChAT-Rosa) mice were examined in HC. The HC of ChAT-tauGFP mice was densely innervated with GFP-positive axons, often accompanied by large GFP-positive structures, some of which were Neurotrace/DAPI-negative and likely represent large axon terminals. In the HC of ChAT-Rosa mice, ChAT-YFP cells were Neurotrace-positive and more abundant in CA3 and dentate gyrus than CA1 with partial overlap with calretinin/VIP. Moreover, an anti-ChAT antibody consistently showed ChAT immunoreactivity in ChAT-YFP cells from MS-DBB but rarely from HC. Furthermore, ChAT-YFP cells from CA1 stratum radiatum/stratum lacunosum moleculare (SR/SLM) exhibited a stuttering firing phenotype but a delayed firing phenotype in stratum pyramidale (SP) of CA3. Input resistance and capacitance were also different between CA1 SR/LM and CA3 SP ChAT-YFP cells. Bath application of ACh increased firing frequency in all ChAT-YFP cells; however, cholinergic modulation was larger in CA1 SR/SLM than CA3 SP ChAT-YFP cells. Finally, CA3 SP ChAT-YFP cells exhibited a wider AP half-width and weaker cholinergic modulation than YFP-negative CA3 pyramidal cells. Consistent with CRE expression in a subpopulation of principal cells, optogenetic stimulation evoked glutamatergic postsynaptic currents in CA1 SR/SLM interneurons. In conclusion, the presence of fluorescently labeled hippocampal cells common to both ChAT-tauGFP and ChAT-Rosa mice are in good agreement with previous reports on the existence of cholinergic interneurons, but both transgenic mouse lines exhibited unexpected anatomical features that departed considerably from earlier observations.

  7. Hippocampal cholinergic interneurons visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation

    Directory of Open Access Journals (Sweden)

    Feng eYi

    2015-03-01

    Full Text Available Release of acetylcholine (ACh in the hippocampus (HC occurs during exploration, arousal, and learning. Although the medial septum-diagonal band of Broca (MS-DBB is the major extrinsic source of cholinergic input to the HC, cholinergic neurons intrinsic to the HC also exist but remain poorly understood. Here, ChAT-tauGFP and ChAT-CRE/Rosa26YFP (ChAT-Rosa mice were examined in HC. The HC of ChAT-tauGFP mice was densely innervated with GFP-positive axons, often accompanied by large GFP-positive structures, some of which were Neurotrace/DAPI-negative and likely represent large axon terminals. In the HC of ChAT-Rosa mice, ChAT-YFP cells were Neurotrace-positive and more abundant in CA3 and dentate gyrus than CA1 with partial overlapping with calretinin/VIP. Moreover, an anti-ChAT antibody consistently showed ChAT immunoreactivity in ChAT-YFP cells from MS-DBB but rarely from HC. Furthermore, ChAT-YFP cells from CA1 stratum radiatum/stratum lacunosum moleculare (SR/SLM exhibited a stuttering firing phenotype but a delayed firing phenotype in stratum pyramidale (SP of CA3. Input resistance and capacitance were also different between CA1 SR/LM and CA3 SP ChAT-YFP cells. Bath application of ACh increased firing frequency in all ChAT-YFP cells; however, cholinergic modulation was larger in CA1 SR/SLM than CA3 SP ChAT-YFP cells. Finally, CA3 SP ChAT-YFP cells exhibited a wider AP half-width and weaker cholinergic modulation than YFP-negative CA3 pyramidal cells. Consistent with CRE expression in a subpopulation of principal cells, optogenetic stimulation evoked glutamatergic postsynaptic currents in CA1 SR/SLM interneurons. In conclusion, the presence of fluorescently labeled hippocampal cells common to both ChAT-Rosa and ChAT-tauGFP mice are in good agreement with previous reports on the existence of cholinergic interneurons, but both transgenic mouse lines exhibited unexpected anatomical features that departed considerably from earlier observations.

  8. Cholinergic Hypofunction in Presbycusis-Related Tinnitus With Cognitive Function Impairment: Emerging Hypotheses

    Directory of Open Access Journals (Sweden)

    Qingwei Ruan

    2018-04-01

    Full Text Available Presbycusis (age-related hearing loss is a potential risk factor for tinnitus and cognitive deterioration, which result in poor life quality. Presbycusis-related tinnitus with cognitive impairment is a common phenotype in the elderly population. In these individuals, the central auditory system shows similar pathophysiological alterations as those observed in Alzheimer’s disease (AD, including cholinergic hypofunction, epileptiform-like network synchronization, chronic inflammation, and reduced GABAergic inhibition and neural plasticity. Observations from experimental rodent models indicate that recovery of cholinergic function can improve memory and other cognitive functions via acetylcholine-mediated GABAergic inhibition enhancement, nicotinic acetylcholine receptor (nAChR-mediated anti-inflammation, glial activation inhibition and neurovascular protection. The loss of cholinergic innervation of various brain structures may provide a common link between tinnitus seen in presbycusis-related tinnitus and age-related cognitive impairment. We hypothesize a key component of the condition is the withdrawal of cholinergic input to a subtype of GABAergic inhibitory interneuron, neuropeptide Y (NPY neurogliaform cells. Cholinergic denervation might not only cause the degeneration of NPY neurogliaform cells, but may also result in decreased AChR activation in GABAergic inhibitory interneurons. This, in turn, would lead to reduced GABA release and inhibitory regulation of neural networks. Reduced nAChR-mediated anti-inflammation due to the loss of nicotinic innervation might lead to the transformation of glial cells and release of inflammatory mediators, lowering the buffering of extracellular potassium and glutamate metabolism. Further research will provide evidence for the recovery of cholinergic function with the use of cholinergic input enhancement alone or in combination with other rehabilitative interventions to reestablish inhibitory regulation

  9. Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation.

    Directory of Open Access Journals (Sweden)

    Adam S Hamlin

    Full Text Available Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer's disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer's disease patients perform poorly on both real space and computerized cued (allothetic or uncued (idiothetic recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze, and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer's disease.

  10. Genetically-induced cholinergic hyper-innervation enhances taste learning

    Directory of Open Access Journals (Sweden)

    Selin eNeseliler

    2011-12-01

    Full Text Available Acute inhibition of acetylcholine (ACh has been shown to impair many forms of simple learning, and notably conditioned taste aversion (CTA. The most adhered-to theory that has emerged as a result of this work—that ACh increases a taste’s perceived novelty, and thereby its associability—would be further strengthened by evidence showing that enhanced cholinergic function improves learning above normal levels. Experimental testing of this corollary hypothesis has been limited, however, by side-effects of pharmacological ACh agonism and by the absence of a model that achieves long-term increases in cholinergic signaling. Here, we present this further test of the ACh hypothesis, making use of mice lacking the p75 pan-neurotrophin receptor gene, which show a resultant over-abundance of cholinergic neurons in subregions of the basal forebrain (BF. We first demonstrate that the p75-/- abnormality directly affects portions of the CTA circuit, locating mouse gustatory cortex (GC using a functional assay and then using immunohistochemisty to demonstrate cholinergic hyperinnervation of GC in the mutant mice—hyperinnervation that is unaccompanied by changes in cell numbers or compensatory changes in muscarinic receptor densities. We then demonstrate that both p75-/- and wild-type mice learn robust CTAs, which extinguish more slowly in the mutants. Further testing to distinguish effects on learning from alterations in memory retention demonstrate that p75-/- mice do in fact learn stronger CTAs than wild-type mice. These data provide novel evidence for the hypothesis linking ACh and taste learning.

  11. Synthesis of (±)-I-125-iodobenzovesamicol - A cholinergic neuron marker

    International Nuclear Information System (INIS)

    Jung, Y.W.; Van Dort, M.E.; Wieland, D.M.

    1990-01-01

    The authors are focusing efforts on developing markers for the cholinergic neuron. Vesamicol (VA) has been adopted as a basis for the design of a presynaptic cholinergic nerve marker. Benzovesamicol, an analog of VA, is equipotent with VA and displays remarkable bulk tolerance in the 5-position. They have synthesized (±)-[I-125]-5-iodobenzovesamicol, and have conducted in vivo screening with it in mice

  12. Cholinergic drugs as therapeutic tools in inflammatory diseases: participation of neuronal and non-neuronal cholinergic systems.

    Science.gov (United States)

    Sales, María Elena

    2013-01-01

    Acetylcholine (ACh) is synthesized by choline acetyltransferase (ChAT) from acetylcoenzime A and choline. This reaction occurs not only in pre-ganglionic fibers of the autonomic nervous system and post-ganglionic parasympathetic nervous fibers but also in non neuronal cells. This knowledge led to expand the role of ACh as a neurotransmitter and to consider it as a "cytotransmitter" and also to evaluate the existence of a non-neuronal cholinergic system comprising ACh, ChAT, acetylcholinesterase, and the nicotinic and muscarinic ACh receptors, outside the nervous system. This review analyzes the participation of cholinergic system in inflammation and discusses the role of different muscarinic and nicotinic drugs that are being used to treat skin inflammatory disorders, asthma, and chronic obstructive pulmonary disease as well as, intestinal inflammation and systemic inflammatory diseases, among others, to assess the potential application of these compounds as therapeutic tools.

  13. Cholinergic depletion and basal forebrain volume in primary progressive aphasia

    Directory of Open Access Journals (Sweden)

    Jolien Schaeverbeke

    2017-01-01

    In the PPA group, only LV cases showed decreases in AChE activity levels compared to controls. Surprisingly, a substantial number of SV cases showed significant AChE activity increases compared to controls. BF volume did not correlate with AChE activity levels in PPA. To conclude, in our sample of PPA patients, LV but not SV was associated with cholinergic depletion. BF atrophy in PPA does not imply cholinergic depletion.

  14. Hippocampal “cholinergic interneurons” visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation

    Science.gov (United States)

    Yi, Feng; Catudio-Garrett, Elizabeth; Gábriel, Robert; Wilhelm, Marta; Erdelyi, Ferenc; Szabo, Gabor; Deisseroth, Karl; Lawrence, Josh

    2015-01-01

    Release of acetylcholine (ACh) in the hippocampus (HC) occurs during exploration, arousal, and learning. Although the medial septum-diagonal band of Broca (MS-DBB) is the major extrinsic source of cholinergic input to the HC, cholinergic neurons intrinsic to the HC also exist but remain poorly understood. Here, ChAT-tauGFP and ChAT-CRE/Rosa26YFP (ChAT-Rosa) mice were examined in HC. The HC of ChAT-tauGFP mice was densely innervated with GFP-positive axons, often accompanied by large GFP-positive structures, some of which were Neurotrace/DAPI-negative and likely represent large axon terminals. In the HC of ChAT-Rosa mice, ChAT-YFP cells were Neurotrace-positive and more abundant in CA3 and dentate gyrus than CA1 with partial overlap with calretinin/VIP. Moreover, an anti-ChAT antibody consistently showed ChAT immunoreactivity in ChAT-YFP cells from MS-DBB but rarely from HC. Furthermore, ChAT-YFP cells from CA1 stratum radiatum/stratum lacunosum moleculare (SR/SLM) exhibited a stuttering firing phenotype but a delayed firing phenotype in stratum pyramidale (SP) of CA3. Input resistance and capacitance were also different between CA1 SR/LM and CA3 SP ChAT-YFP cells. Bath application of ACh increased firing frequency in all ChAT-YFP cells; however, cholinergic modulation was larger in CA1 SR/SLM than CA3 SP ChAT-YFP cells. Finally, CA3 SP ChAT-YFP cells exhibited a wider AP half-width and weaker cholinergic modulation than YFP-negative CA3 pyramidal cells. Consistent with CRE expression in a subpopulation of principal cells, optogenetic stimulation evoked glutamatergic postsynaptic currents in CA1 SR/SLM interneurons. In conclusion, the presence of fluorescently labeled hippocampal cells common to both ChAT-tauGFP and ChAT-Rosa mice are in good agreement with previous reports on the existence of cholinergic interneurons, but both transgenic mouse lines exhibited unexpected anatomical features that departed considerably from earlier observations. PMID:25798106

  15. Beta-amyloid and cholinergic neurons

    Czech Academy of Sciences Publication Activity Database

    Doležal, Vladimír; Kašparová, Jana

    2003-01-01

    Roč. 28, 3-4 (2003), s. 499-506 ISSN 0364-3190 R&D Projects: GA ČR GA305/01/0283; GA AV ČR IAA5011206 Institutional research plan: CEZ:AV0Z5011922 Keywords : cholinergic neurons * AlzheimerŽs disease * beta-amyloid Subject RIV: FH - Neurology Impact factor: 1.511, year: 2003

  16. Variable expression of GFP in different populations of peripheral cholinergic neurons of ChATBAC-eGFP transgenic mice.

    Science.gov (United States)

    Brown, T Christopher; Bond, Cherie E; Hoover, Donald B

    2018-03-01

    Immunohistochemistry is used widely to identify cholinergic neurons, but this approach has some limitations. To address these problems, investigators developed transgenic mice that express enhanced green fluorescent protein (GFP) directed by the promoter for choline acetyltransferase (ChAT), the acetylcholine synthetic enzyme. Although, it was reported that these mice express GFP in all cholinergic neurons and non-neuronal cholinergic cells, we could not detect GFP in cardiac cholinergic nerves in preliminary experiments. Our goals for this study were to confirm our initial observation and perform a qualitative screen of other representative autonomic structures for the presences of GFP in cholinergic innervation of effector tissues. We evaluated GFP fluorescence of intact, unfixed tissues and the cellular localization of GFP and vesicular acetylcholine transporter (VAChT), a specific cholinergic marker, in tissue sections and intestinal whole mounts. Our experiments identified two major tissues where cholinergic neurons and/or nerve fibers lacked GFP: 1) most cholinergic neurons of the intrinsic cardiac ganglia and all cholinergic nerve fibers in the heart and 2) most cholinergic nerve fibers innervating airway smooth muscle. Most cholinergic neurons in airway ganglia stained for GFP. Cholinergic systems in the bladder and intestines were fully delineated by GFP staining. GFP labeling of input to ganglia with long preganglionic projections (vagal) was sparse or weak, while that to ganglia with short preganglionic projections (spinal) was strong. Total absence of GFP might be due to splicing out of the GFP gene. Lack of GFP in nerve projections from GFP-positive cell bodies might reflect a transport deficiency. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Choline metabolism as a basis for the selective vulnerability of cholinergic neurons

    Science.gov (United States)

    Wurtman, R. J.

    1992-01-01

    The unique propensity of cholinergic neurons to use choline for two purposes--ACh and membrane phosphatidylcholine synthesis--may contribute to their selective vulnerability in Alzheimer's disease and other cholinergic neurodegenerative disorders. When physiologically active, the neurons use free choline taken from the 'reservoir' in membrane phosphatidylcholine to synthesize ACh; this can lead to an actual decrease in the quantity of membrane per cell. Alzheimer's disease (but not Down's syndrome, or other neurodegenerative disorders) is associated with characteristic neurochemical lesions involving choline and ethanolamine: brain levels of these compounds are diminished, while those of glycerophosphocholine and glycerophosphoethanolamine (breakdown products of their respective membrane phosphatides) are increased, both in cholinergic and noncholinergic brain regions. Perhaps this metabolic disturbance and the tendency of cholinergic neurons to 'export' choline--in the form of ACh--underlie the selective vulnerability of the neurons. Resulting changes in membrane composition could abnormally expose intramembraneous proteins such as amyloid precursor protein to proteases.

  18. Divergent projections of catecholaminergic neurons in the nucleus of the solitary tract to limbic forebrain and medullary autonomic brain regions.

    Science.gov (United States)

    Reyes, Beverly A S; Van Bockstaele, Elisabeth J

    2006-10-30

    The nucleus of the solitary tract (NTS) is a critical structure involved in coordinating autonomic and visceral activities. Previous independent studies have demonstrated efferent projections from the NTS to the nucleus paragigantocellularis (PGi) and the central nucleus of the amygdala (CNA) in rat brain. To further characterize the neural circuitry originating from the NTS with postsynaptic targets in the amygdala and medullary autonomic targets, distinct green or red fluorescent latex microspheres were injected into the PGi and the CNA, respectively, of the same rat. Thirty-micron thick tissue sections through the lower brainstem and forebrain were collected. Every fourth section through the NTS region was processed for immunocytochemical detection of tyrosine hydroxylase (TH), a marker of catecholaminergic neurons. Retrogradely labeled neurons from the PGi or CNA were distributed throughout the rostro-caudal segments of the NTS. However, the majority of neurons containing both retrograde tracers were distributed within the caudal third of the NTS. Cell counts revealed that approximately 27% of neurons projecting to the CNA in the NTS sent collateralized projections to the PGi while approximately 16% of neurons projecting to the PGi sent collateralized projections to the CNA. Interestingly, more than half of the PGi and CNA-projecting neurons in the NTS expressed TH immunoreactivity. These data indicate that catecholaminergic neurons in the NTS are poised to simultaneously coordinate activities in limbic and medullary autonomic brain regions.

  19. TASK Channels on Basal Forebrain Cholinergic Neurons Modulate Electrocortical Signatures of Arousal by Histamine.

    Science.gov (United States)

    Vu, Michael T; Du, Guizhi; Bayliss, Douglas A; Horner, Richard L

    2015-10-07

    Basal forebrain cholinergic neurons are the main source of cortical acetylcholine, and their activation by histamine elicits cortical arousal. TWIK-like acid-sensitive K(+) (TASK) channels modulate neuronal excitability and are expressed on basal forebrain cholinergic neurons, but the role of TASK channels in the histamine-basal forebrain cholinergic arousal circuit is unknown. We first expressed TASK channel subunits and histamine Type 1 receptors in HEK cells. Application of histamine in vitro inhibited the acid-sensitive K(+) current, indicating a functionally coupled signaling mechanism. We then studied the role of TASK channels in modulating electrocortical activity in vivo using freely behaving wild-type (n = 12) and ChAT-Cre:TASK(f/f) mice (n = 12), the latter lacking TASK-1/3 channels on cholinergic neurons. TASK channel deletion on cholinergic neurons significantly altered endogenous electroencephalogram oscillations in multiple frequency bands. We then identified the effect of TASK channel deletion during microperfusion of histamine into the basal forebrain. In non-rapid eye movement sleep, TASK channel deletion on cholinergic neurons significantly attenuated the histamine-induced increase in 30-50 Hz activity, consistent with TASK channels contributing to histamine action on basal forebrain cholinergic neurons. In contrast, during active wakefulness, histamine significantly increased 30-50 Hz activity in ChAT-Cre:TASK(f/f) mice but not wild-type mice, showing that the histamine response depended upon the prevailing cortical arousal state. In summary, we identify TASK channel modulation in response to histamine receptor activation in vitro, as well as a role of TASK channels on cholinergic neurons in modulating endogenous oscillations in the electroencephalogram and the electrocortical response to histamine at the basal forebrain in vivo. Attentive states and cognitive function are associated with the generation of γ EEG activity. Basal forebrain

  20. Single-Cell Gene Expression Analysis of Cholinergic Neurons in the Arcuate Nucleus of the Hypothalamus.

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    Full Text Available The cholinoceptive system in the hypothalamus, in particular in the arcuate nucleus (ARC, plays a role in regulating food intake. Neurons in the ARC contain multiple neuropeptides, amines, and neurotransmitters. To study molecular and neurochemical heterogeneity of ARC neurons, we combine single-cell qRT-PCR and single-cell whole transcriptome amplification methods to analyze expression patterns of our hand-picked 60 genes in individual neurons in the ARC. Immunohistochemical and single-cell qRT-PCR analyses show choline acetyltransferase (ChAT-expressing neurons in the ARC. Gene expression patterns are remarkably distinct in each individual cholinergic neuron. Two-thirds of cholinergic neurons express tyrosine hydroxylase (Th mRNA. A large subset of these Th-positive cholinergic neurons is GABAergic as they express the GABA synthesizing enzyme glutamate decarboxylase and vesicular GABA transporter transcripts. Some cholinergic neurons also express the vesicular glutamate transporter transcript gene. POMC and POMC-processing enzyme transcripts are found in a subpopulation of cholinergic neurons. Despite this heterogeneity, gene expression patterns in individual cholinergic cells appear to be highly regulated in a cell-specific manner. In fact, membrane receptor transcripts are clustered with their respective intracellular signaling and downstream targets. This novel population of cholinergic neurons may be part of the neural circuitries that detect homeostatic need for food and control the drive to eat.

  1. Illuminating the role of cholinergic signaling in circuits of attention and emotionally salient behaviors

    Directory of Open Access Journals (Sweden)

    Antonio eLuchicchi

    2014-10-01

    Full Text Available Acetylcholine (ACh signaling underlies specific aspects of cognitive functions and behaviors, including attention, learning, memory and motivation. Alterations in ACh signaling are involved in the pathophysiology of multiple neuropsychiatric disorders. In the central nervous system, ACh transmission is mainly guaranteed by dense innervation of select cortical and subcortical regions from disperse groups of cholinergic neurons within the basal forebrain (e.g. diagonal band, medial septal, nucleus basalis and the pontine-mesencephalic nuclei, respectively. Despite the fundamental role of cholinergic signaling in the CNS and the long standing knowledge of the organization of cholinergic circuitry, remarkably little is known about precisely how ACh release modulates cortical and subcortical neural activity and the behaviors these circuits subserve. Growing interest in cholinergic signaling in the CNS focuses on the mechanism(s of action by which endogenously released ACh regulates cognitive functions, acting as a neuromodulator and /or as a direct transmitter via nicotinic and muscarinic receptors. The development of optogenetic techniques has provided a valuable toolbox with which we can address these questions, as it allows the selective manipulation of the excitability of cholinergic inputs to the diverse array of cholinergic target fields within cortical and subcortical domains. Here, we review recent papers that use the light-sensitive opsins in the cholinergic system to elucidate the role of ACh in circuits related to attention and emotionally salient behaviors. In particular, we highlight recent optogenetic studies which have tried to disentangle the precise role of ACh in the modulation of cortical-, hippocampal- and striatal-dependent functions.

  2. Brain Cholinergic Function and Response to Rivastigmine in Patients With Chronic Sequels of Traumatic Brain Injury

    DEFF Research Database (Denmark)

    Östberg, Anna; Virta, Jere; Rinne, Juha O

    2018-01-01

    subjects for more than 1 year after at least moderate traumatic brain injury. Ten of the subjects were respondents and 7 nonrespondents to cholinergic medication. DESIGN:: Cholinergic function was assessed with [methyl-C] N-methylpiperidyl-4-acetate-PET (C-MP4A-PET), which reflects the activity...... was notably lower throughout the cortex in both respondents and nonrespondents, without significant differences between them. CONCLUSION:: Our study suggests that frontal cholinergic dysfunction is associated with the clinical response to cholinergic stimulation in patients with traumatic brain injury....

  3. Optogenetic stimulation of cholinergic projection neurons as an alternative for deep brain stimulation for Alzheimer's treatment

    Science.gov (United States)

    Mancuso, James; Chen, Yuanxin; Zhao, Zhen; Li, Xuping; Xue, Zhong; Wong, Stephen T. C.

    2013-03-01

    Deep brain stimulation (DBS) of the cholinergic nuclei has emerged as a powerful potential treatment for neurodegenerative disease and is currently in a clinical trial for Alzheimer's therapy. While effective in treatment for a number of conditions from depression to epilepsy, DBS remains somewhat unpredictable due to the heterogeneity of the projection neurons that are activated, including glutamatergic, GABAergic, and cholinergic neurons, leading to unacceptable side effects ranging from apathy to depression or even suicidal behavior. It would be highly advantageous to confine stimulation to specific populations of neurons, particularly in brain diseases involving complex network interactions such as Alzheimer's. Optogenetics, now firmly established as an effective approach to render genetically-defined populations of cells sensitive to light activation including mice expressing Channelrhodopsin-2 specifically in cholinergic neurons, provides just this opportunity. Here we characterize the light activation properties and cell density of cholinergic neurons in healthy mice and mouse models of Alzheimer's disease in order to evaluate the feasibility of using optogenetic modulation of cholinergic synaptic activity to slow or reverse neurodegeneration. This paper is one of the very first reports to suggest that, despite the anatomical depth of their cell bodies, cholinergic projection neurons provide a better target for systems level optogenetic modulation than cholinergic interneurons found in various brain regions including striatum and the cerebral cortex. Additionally, basal forebrain channelrhodopsin-expressing cholinergic neurons are shown to exhibit normal distribution at 60 days and normal light activation at 40 days, the latest timepoints observed. The data collected form the basis of ongoing computational modeling of light stimulation of entire populations of cholinergic neurons.

  4. Effects of cholinergic deafferentation of the rhinal cortex on visual recognition memory in monkeys.

    Science.gov (United States)

    Turchi, Janita; Saunders, Richard C; Mishkin, Mortimer

    2005-02-08

    Excitotoxic lesion studies have confirmed that the rhinal cortex is essential for visual recognition ability in monkeys. To evaluate the mnemonic role of cholinergic inputs to this cortical region, we compared the visual recognition performance of monkeys given rhinal cortex infusions of a selective cholinergic immunotoxin, ME20.4-SAP, with the performance of monkeys given control infusions into this same tissue. The immunotoxin, which leads to selective cholinergic deafferentation of the infused cortex, yielded recognition deficits of the same magnitude as those produced by excitotoxic lesions of this region, providing the most direct demonstration to date that cholinergic activation of the rhinal cortex is essential for storing the representations of new visual stimuli and thereby enabling their later recognition.

  5. Cholinergic neurons in the dorsomedial hypothalamus regulate mouse brown adipose tissue metabolism

    Directory of Open Access Journals (Sweden)

    Jae Hoon Jeong

    2015-06-01

    Conclusion: DMH cholinergic neurons directly send efferent signals to sympathetic premotor neurons in the Rpa. Elevated cholinergic input to this area reduces BAT activity through activation of M2 mAChRs on serotonergic neurons. Therefore, the direct DMHACh–Rpa5-HT pathway may mediate physiological heat-defense responses to elevated environmental temperature.

  6. Development of cardiac parasympathetic neurons, glial cells, and regional cholinergic innervation of the mouse heart.

    Science.gov (United States)

    Fregoso, S P; Hoover, D B

    2012-09-27

    Very little is known about the development of cardiac parasympathetic ganglia and cholinergic innervation of the mouse heart. Accordingly, we evaluated the growth of cholinergic neurons and nerve fibers in mouse hearts from embryonic day 18.5 (E18.5) through postnatal day 21(P21). Cholinergic perikarya and varicose nerve fibers were identified in paraffin sections immunostained for the vesicular acetylcholine transporter (VAChT). Satellite cells and Schwann cells in adjacent sections were identified by immunostaining for S100β calcium binding protein (S100) and brain-fatty acid binding protein (B-FABP). We found that cardiac ganglia had formed in close association to the atria and cholinergic innervation of the atrioventricular junction had already begun by E18.5. However, most cholinergic innervation of the heart, including the sinoatrial node, developed postnatally (P0.5-P21) along with a doubling of the cross-sectional area of cholinergic perikarya. Satellite cells were present throughout neonatal cardiac ganglia and expressed primarily B-FABP. As they became more mature at P21, satellite cells stained strongly for both B-FABP and S100. Satellite cells appeared to surround most cardiac parasympathetic neurons, even in neonatal hearts. Mature Schwann cells, identified by morphology and strong staining for S100, were already present at E18.5 in atrial regions that receive cholinergic innervation at later developmental times. The abundance and distribution of S100-positive Schwann cells increased postnatally along with nerve density. While S100 staining of cardiac Schwann cells was maintained in P21 and older mice, Schwann cells did not show B-FABP staining at these times. Parallel development of satellite cells and cholinergic perikarya in the cardiac ganglia and the increase in abundance of Schwann cells and varicose cholinergic nerve fibers in the atria suggest that neuronal-glial interactions could be important for development of the parasympathetic nervous

  7. Cholinergic systems are essential for late-stage maturation and refinement of motor cortical circuits

    Science.gov (United States)

    Ramanathan, Dhakshin S.; Conner, James M.; Anilkumar, Arjun A.

    2014-01-01

    Previous studies reported that early postnatal cholinergic lesions severely perturb early cortical development, impairing neuronal cortical migration and the formation of cortical dendrites and synapses. These severe effects of early postnatal cholinergic lesions preclude our ability to understand the contribution of cholinergic systems to the later-stage maturation of topographic cortical representations. To study cholinergic mechanisms contributing to the later maturation of motor cortical circuits, we first characterized the temporal course of cortical motor map development and maturation in rats. In this study, we focused our attention on the maturation of cortical motor representations after postnatal day 25 (PND 25), a time after neuronal migration has been accomplished and cortical volume has reached adult size. We found significant maturation of cortical motor representations after this time, including both an expansion of forelimb representations in motor cortex and a shift from proximal to distal forelimb representations to an extent unexplainable by simple volume enlargement of the neocortex. Specific cholinergic lesions placed at PND 24 impaired enlargement of distal forelimb representations in particular and markedly reduced the ability to learn skilled motor tasks as adults. These results identify a novel and essential role for cholinergic systems in the late refinement and maturation of cortical circuits. Dysfunctions in this system may constitute a mechanism of late-onset neurodevelopmental disorders such as Rett syndrome and schizophrenia. PMID:25505106

  8. Co-expression of Cholinergic and Noradrenergic Phenotypes in Human and Non-Human Autonomic Nervous System

    OpenAIRE

    Weihe, Eberhard; Schütz, Burkhard; Hartschuh, Wolfgang; Anlauf, Martin; Schäfer, Martin K.; Eiden, Lee E.

    2005-01-01

    It has long been known that the sympathetic innervation of the sweat glands is cholinergic in most mammalian species, and that during development, rodent sympathetic cholinergic sweat gland innervation transiently expresses noradrenergic traits. We show here that some noradrenergic traits persist in cholinergic sympathetic innervation of the sweat glands in rodents, but that lack of expression of the vesicular monoamine transporter renders these cells functionally non-noradrenergic. Adult hum...

  9. Internal cholinergic regulation of learning and recall in a model of olfactory processing

    Directory of Open Access Journals (Sweden)

    Licurgo Benemann Almeida

    2016-11-01

    Full Text Available In the olfactory system, cholinergic modulation has been associated with contrast modulation and changes in receptive fields in the olfactory bulb, as well the learning of odor associations in olfactory cortex. Computational modeling and behavioral studies suggest that cholinergic modulation could improve sensory processing and learning while preventing pro-active interference when task demands are high. However, how sensory inputs and/or learning regulate incoming modulation has not yet been elucidated. We here use a computational model of the olfactory bulb, piriform cortex (PC and horizontal limb of the diagonal band of Broca (HDB to explore how olfactory learning could regulate cholinergic inputs to the system in a closed feedback loop. In our model, the novelty of an odor is reflected in firing rates and sparseness of cortical neurons in response to that odor and these firing rates can directly regulate learning in the system by modifying cholinergic inputs to the system. In the model, cholinergic neurons reduce their firing in response to familiar odors – reducing plasticity in the PC, but increase their firing in response to novel odor – increasing PC plasticity. Recordings from HDB neurons in awake behaving rats reflect predictions from the model by showing that a subset of neurons decrease their firing as an odor becomes familiar.

  10. Naltrexone pretreatment blocks microwave-induced changes in central cholinergic receptors

    Energy Technology Data Exchange (ETDEWEB)

    Lai, H.; Carino, M.A.; Wen, Y.F.; Horita, A.; Guy, A.W. (Univ. of Washington School of Medicine, Seattle (USA))

    1991-01-01

    Repeated exposure of rats to pulsed, circularly polarized microwaves (2,450-MHz, 2-microseconds pulses at 500 pps, power density 1 mW/cm2, at an averaged, whole-body SAR of 0.6 W/kg) induced biphasic changes in the concentration of muscarinic cholinergic receptors in the central nervous system. An increase in receptor concentration occurred in the hippocampus of rats subjected to ten 45-min sessions of microwave exposure, whereas a decrease in concentration was observed in the frontal cortex and hippocampus of rats exposed to ten 20-min sessions. These findings, which confirm earlier work in the authors' laboratory, were extended to include pretreatment of rats with the narcotic antagonist naltrexone (1 mg/kg, IP) before each session of exposure. The drug treatment blocked the microwave-induced changes in cholinergic receptors in the brain. These data further support the authors' hypothesis that endogenous opioids play a role in the effects of microwaves on central cholinergic systems.

  11. Modeling Parkinson’s Disease Falls Associated With Brainstem Cholinergic Systems Decline

    OpenAIRE

    Kucinski, Aaron; Sarter, Martin

    2015-01-01

    In addition to the primary disease-defining symptoms, approximately half of patients with Parkinson’s disease (PD) suffer from postural instability, impairments in gait control and a propensity for falls. Consistent with evidence from patients, we previously demonstrated that combined striatal dopamine (DA) and basal forebrain (BF) cholinergic cell loss causes falls in rats traversing dynamic surfaces. Because evidence suggests that degeneration of brainstem cholinergic neurons arising from t...

  12. The muscarinic stimulation of phospholipid labeling in hippocampus is independent of its cholinergic input

    International Nuclear Information System (INIS)

    Fisher, S.K.; Boast, C.A.; Agranoff, B.W.

    1980-01-01

    The authors have examined the role of cholinergic innervation on the acetylcholine (ACh)-induced 'phospholipid labeling effect' (PLE) in synaptosomes derived from the hippocampus. The hippocampus supports a robust PLE and its sole cholinergic input from the septal nuclei can be readily disrupted by the placement of lesions in the fornix. The lesion is expected to cause degeneration of cholinergic presynaptic fibers, but should have little effect on the integrity of postsynaptic structures, and thus provide a means of further localizing the synaptosomal PLE. (Auth.)

  13. Cholinergic enhancement modulates neural correlates of selective attention and emotional processing.

    Science.gov (United States)

    Bentley, Paul; Vuilleumier, Patrik; Thiel, Christiane M; Driver, Jon; Dolan, Raymond J

    2003-09-01

    Neocortical cholinergic afferents are proposed to influence both selective attention and emotional processing. In a study of healthy adults we used event-related fMRI while orthogonally manipulating attention and emotionality to examine regions showing effects of cholinergic modulation by the anticholinesterase physostigmine. Either face or house pictures appeared at task-relevant locations, with the alternative picture type at irrelevant locations. Faces had either neutral or fearful expressions. Physostigmine increased relative activity within the anterior fusiform gyrus for faces at attended, versus unattended, locations, but decreased relative activity within the posterolateral occipital cortex for houses in attended, versus unattended, locations. A similar pattern of regional differences in the effect of physostigmine on cue-evoked responses was also present in the absence of stimuli. Cholinergic enhancement augmented the relative neuronal response within the middle fusiform gyrus to fearful faces, whether at attended or unattended locations. By contrast, physostigmine influenced responses in the orbitofrontal, intraparietal and cingulate cortices to fearful faces when faces occupied task-irrelevant locations. These findings suggest that acetylcholine may modulate both selective attention and emotional processes through independent, region-specific effects within the extrastriate cortex. Furthermore, cholinergic inputs to the frontoparietal cortex may influence the allocation of attention to emotional information.

  14. Higher sensitivity to cadmium induced cell death of basal forebrain cholinergic neurons: A cholinesterase dependent mechanism

    International Nuclear Information System (INIS)

    Del Pino, Javier; Zeballos, Garbriela; Anadon, María José; Capo, Miguel Andrés; Díaz, María Jesús; García, Jimena; Frejo, María Teresa

    2014-01-01

    Cadmium is an environmental pollutant, which is a cause of concern because it can be greatly concentrated in the organism causing severe damage to a variety of organs including the nervous system which is one of the most affected. Cadmium has been reported to produce learning and memory dysfunctions and Alzheimer like symptoms, though the mechanism is unknown. On the other hand, cholinergic system in central nervous system (CNS) is implicated on learning and memory regulation, and it has been reported that cadmium can affect cholinergic transmission and it can also induce selective toxicity on cholinergic system at peripheral level, producing cholinergic neurons loss, which may explain cadmium effects on learning and memory processes if produced on central level. The present study is aimed at researching the selective neurotoxicity induced by cadmium on cholinergic system in CNS. For this purpose we evaluated, in basal forebrain region, the cadmium toxic effects on neuronal viability and the cholinergic mechanisms related to it on NS56 cholinergic mourine septal cell line. This study proves that cadmium induces a more pronounced, but not selective, cell death on acetylcholinesterase (AChE) on cholinergic neurons. Moreover, MTT and LDH assays showed a dose dependent decrease of cell viability in NS56 cells. The ACh treatment of SN56 cells did not revert cell viability reduction induced by cadmium, but siRNA transfection against AChE partially reduced it. Our present results provide new understanding of the mechanisms contributing to the harmful effects of cadmium on the function and viability of neurons, and the possible relevance of cadmium in the pathogenesis of neurodegenerative diseases

  15. Reversal of androgen inhibition of estrogen-activated sexual behavior by cholinergic agents.

    Science.gov (United States)

    Dohanich, G P; Cada, D A

    1989-12-01

    Androgens have been found to inhibit lordosis activated by estrogen treatment of ovariectomized female rats. In the present experiments, dihydrotestosterone propionate (200 micrograms for 3 days) inhibited the incidence of lordosis in ovariectomized females treated with estradiol benzoate (1 microgram for 3 days). This inhibition of lordosis was reversed 15 min after bilateral intraventricular infusion of physostigmine (10 micrograms/cannula), an acetylcholinesterase inhibitor, or carbachol (0.5 microgram/cannula), a cholinergic receptor agonist. This reversal of inhibition appears to be mediated by cholinergic muscarinic receptors since pretreatment with scopolamine (4 mg/kg, ip), a muscarinic receptor blocker, prevented the reversal of androgen inhibition by physostigmine. These results indicate that androgens may inhibit estrogen-activated lordosis through interference with central cholinergic muscarinic mechanisms.

  16. Cholinergic markers in the cortex and hippocampus of some animal species and their correlation to Alzheimer's disease.

    Science.gov (United States)

    Orta-Salazar, E; Cuellar-Lemus, C A; Díaz-Cintra, S; Feria-Velasco, A I

    2014-10-01

    The cholinergic system includes neurons located in the basal forebrain and their long axons that reach the cerebral cortex and the hippocampus. This system modulates cognitive function. In Alzheimer's disease (AD) and ageing, cognitive impairment is associated with progressive damage to cholinergic fibres, which leads us to the cholinergic hypothesis for AD. The AD produces alterations in the expression and activity of acetyltransferase (ChAT) and acetyl cholinesterase (AChE), enzymes specifically related to cholinergic system function. Both proteins play a role in cholinergic transmission, which is altered in both the cerebral cortex and the hippocampus due to ageing and AD. Dementia disorders are associated with the severe destruction and disorganisation of the cholinergic projections extending to both structures. Specific markers, such as anti-ChAT and anti-AChE antibodies, have been used in light immunohistochemistry and electron microscopy assays to study this system in adult members of certain animal species. This paper reviews the main immunomorphological studies of the cerebral cortex and hippocampus in some animal species with particular emphasis on the cholinergic system and its relationship with the AD. Copyright © 2012 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.

  17. Cholinergic modulation of the hippocampal region and memory function.

    Science.gov (United States)

    Haam, Juhee; Yakel, Jerrel L

    2017-08-01

    Acetylcholine (ACh) plays an important role in memory function and has been implicated in aging-related dementia, in which the impairment of hippocampus-dependent learning strongly manifests. Cholinergic neurons densely innervate the hippocampus, mediating the formation of episodic as well as semantic memory. Here, we will review recent findings on acetylcholine's modulation of memory function, with a particular focus on hippocampus-dependent learning, and the circuits involved. In addition, we will discuss the complexity of ACh actions in memory function to better understand the physiological role of ACh in memory. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. © 2017 International Society for Neurochemistry.

  18. Loss of catecholaminergic neuromodulation of persistent forms of hippocampal synaptic plasticity with increasing age

    Directory of Open Access Journals (Sweden)

    Hannah Twarkowski

    2016-09-01

    Full Text Available Neuromodulation by means of the catecholaminergic system is a key component of motivation-driven learning and behaviorally modulated hippocampal synaptic plasticity. In particular, dopamine acting on D1/D5 receptors and noradrenaline acting on beta-adrenergic receptors exert a very potent regulation of forms of hippocampal synaptic plasticity that last for very long-periods of time (>24h, and occur in conjunction with novel spatial learning. Antagonism of these receptors not only prevents long-term potentiation (LTP and long-term depression (LTD, but prevents the memory of the spatial event that, under normal circumstances, leads to the perpetuation of these plasticity forms. Spatial learning behavior that normally comes easily to rats, such as object-place learning and spatial reference learning, becomes increasingly impaired with aging. Middle-aged animals display aging-related deficits of specific, but not all, components of spatial learning, and one possibility is that this initial manifestation of decrements in learning ability that become manifest in middle-age relate to changes in motivation, attention and/or the regulation by neuromodulatory systems of these behavioral states.Here, we compared the regulation by dopaminergic D1/D5 and beta-adrenergic receptors of persistent LTP in young (2-4 month old and middle-aged (8-14 month old rats. We observed in young rats, that weak potentiation that typically lasts for ca. 2h could be strengthened into persistent (>24h LTP by pharmacological activation of either D1/D5 or beta-adrenergic receptors. By contrast, no such facilitation occurred in middle-aged rats. This difference was not related to an ostensible learning deficit: a facilitation of weak potentiation into LTP by spatial learning was possible both in young and middle-aged rats. It was also not directly linked to deficits in LTP: strong afferent stimulation resulted in equivalent LTP in both age groups. We postulate that this change in

  19. Cholinergic Neurons - Keeping Check on Amyloid beta in the Cerebral Cortex

    Directory of Open Access Journals (Sweden)

    Saak V. Ovsepian

    2013-12-01

    Full Text Available The physiological relevance of the uptake of ligands with no apparent trophic functions via the p75 neurotrophin receptor (p75NTR remains unclear. Herein, we propose a homeostatic role for this in clearance of amyloid β (Aβ in the brain. We hypothesize that uptake of Aβ in conjunction with p75NTR followed by its degradation in lysosomes endows cholinergic basalo-cortical projections enriched in this receptor a facility for maintaining physiological levels of Aβ in target areas. Thus, in addition to the diffuse modulator influence and channeling of extra-thalamic signals, cholinergic innervations could supply the cerebral cortex with an elaborate system for Aβ drainage. Interpreting the emerging relationship of new molecular data with established role of cholinergic modulator system in regulating cortical network dynamics should provide new insights into the brain physiology and mechanisms of neuro-degenerative diseases.

  20. PET study of cholinergic system in the brain

    Energy Technology Data Exchange (ETDEWEB)

    Shinotoh, Hitoshi [Chiba Univ. (Japan). School of Medicine

    1999-01-01

    Recently, we have developed a method to measure acetylcholinesterase (AChE) activity, a functional marker for cholinergic system, by positron emission tomography (PET) and carbon-11 labeled N-methyl-4-piperidyl acetate. Kinetic analysis of the radioactivity in the brain and the plasma yielded a rate constant ``k 3`` as an index of AChE activity. The ratios for the k 3 values for the cerebral cortex/thalamus/cerebellum/striatum found in healthy participants were 1/ 3/ 8/ 10, respectively, corresponding well with AChE activity ratios in the brain at necropsy (1/ 3/ 8/ 38), except for the striatum. In 23 healthy volunteers (age range: 24-89 years), there was no age-related decline of k 3 values in the cerebral cortex, suggesting AChE activity is preserved in aged cerebral cortex. In 11 patients with Alzheimer`s disease, there was a significant reduction (-24%) of k 3 values in the cerebral cortex and hippocampus, suggesting a loss of ascending cholinergic system from the basal forebrain to the cerebral cortex and hippocampus. In 16 patients with Parkinson`s disease, there was a significant reduction (-18%) of k 3 values in the cerebral cortex. In 10 patients with progressive supra nuclear palsy, there was a significant reduction (-38%) of k 3 values in the thalamus. This technique is useful for investigating central cholinergic system in neuro degenerative disorders with dementia. (author)

  1. PET study of cholinergic system in the brain

    International Nuclear Information System (INIS)

    Shinotoh, Hitoshi

    1999-01-01

    Recently, we have developed a method to measure acetylcholinesterase (AChE) activity, a functional marker for cholinergic system, by positron emission tomography (PET) and carbon-11 labeled N-methyl-4-piperidyl acetate. Kinetic analysis of the radioactivity in the brain and the plasma yielded a rate constant ''k 3'' as an index of AChE activity. The ratios for the k 3 values for the cerebral cortex/thalamus/cerebellum/striatum found in healthy participants were 1/ 3/ 8/ 10, respectively, corresponding well with AChE activity ratios in the brain at necropsy (1/ 3/ 8/ 38), except for the striatum. In 23 healthy volunteers (age range: 24-89 years), there was no age-related decline of k 3 values in the cerebral cortex, suggesting AChE activity is preserved in aged cerebral cortex. In 11 patients with Alzheimer's disease, there was a significant reduction (-24%) of k 3 values in the cerebral cortex and hippocampus, suggesting a loss of ascending cholinergic system from the basal forebrain to the cerebral cortex and hippocampus. In 16 patients with Parkinson's disease, there was a significant reduction (-18%) of k 3 values in the cerebral cortex. In 10 patients with progressive supra nuclear palsy, there was a significant reduction (-38%) of k 3 values in the thalamus. This technique is useful for investigating central cholinergic system in neuro degenerative disorders with dementia. (author)

  2. Cholinergic neuromodulation controls directed temporal communication in neocortex in vitro

    Directory of Open Access Journals (Sweden)

    Anita K Roopun

    2010-03-01

    Full Text Available Acetylcholine is the primary neuromodulator involved in cortical arousal in mammals. Cholinergic modulation is involved in conscious awareness, memory formation and attention – processes that involve intercommunication between different cortical regions. Such communication is achieved in part through temporal structuring of neuronal activity by population rhythms, particularly in the beta and gamma frequency ranges (12 – 80 Hz. Here we demonstrate, using in vitro and in silico models, that spectrally identical patterns of beta2 and gamma rhythms are generated in primary sensory areas and polymodal association areas by fundamentally different local circuit mechanisms: Glutamatergic excitation induced beta2 frequency population rhythms only in layer 5 association cortex whereas cholinergic neuromodulation induced this rhythm only in layer 5 primary sensory cortex. This region-specific sensitivity of local circuits to cholinergic modulation allowed for control of the extent of cortical temporal interactions. Furthermore, the contrasting mechanisms underlying these beta2 rhythms produced a high degree of directionality, favouring an influence of association cortex over primary auditory cortex.

  3. Cholinergic Neuromodulation Controls Directed Temporal Communication in Neocortex in Vitro

    Science.gov (United States)

    Roopun, Anita K.; LeBeau, Fiona E.N.; Rammell, James; Cunningham, Mark O.; Traub, Roger D.; Whittington, Miles A.

    2010-01-01

    Acetylcholine is the primary neuromodulator involved in cortical arousal in mammals. Cholinergic modulation is involved in conscious awareness, memory formation and attention – processes that involve intercommunication between different cortical regions. Such communication is achieved in part through temporal structuring of neuronal activity by population rhythms, particularly in the beta and gamma frequency ranges (12–80 Hz). Here we demonstrate, using in vitro and in silico models, that spectrally identical patterns of beta2 and gamma rhythms are generated in primary sensory areas and polymodal association areas by fundamentally different local circuit mechanisms: Glutamatergic excitation induced beta2 frequency population rhythms only in layer 5 association cortex whereas cholinergic neuromodulation induced this rhythm only in layer 5 primary sensory cortex. This region-specific sensitivity of local circuits to cholinergic modulation allowed for control of the extent of cortical temporal interactions. Furthermore, the contrasting mechanisms underlying these beta2 rhythms produced a high degree of directionality, favouring an influence of association cortex over primary auditory cortex. PMID:20407636

  4. Activation of vascular cholinergic and adrenergic receptors induced by gamma rays

    International Nuclear Information System (INIS)

    Alya, G.

    1999-10-01

    Activation of vascular cholinergic receptors and adrenoceptors plays an important role in vasomotoricity and peripheric vascular resistance. These factors are essential in maintaining a stable blood pressure. The aim of this study is to investigate the radiosensitivity differences between vascular cholinergic receptors and adrenoceptors, and consequently to determinate the effects of ionizing radiation (whole body irradiation) on contractile response regulation of vascular smooth muscle fibers VSMF isolated from rat portal vein. Our results show that Clonidine, (non-specific adrenergic agonist), and phenylephrine which is more specific α1-adrenoceptor agonist, increase the VSMF contractions. The maximum effect is obtained at 10 -5 - 3.10 -5 M. On irradiated rats (1-3-5 Gy), there is an important shift thus, the maximal response (E m ax) can be obtained in lower concentrations of clonidine and phenylephrine. Irradiation deceases the contractile responses of VSMF mediated by cholinergic stimulation, in a dose dependant manner. With E m ax 1 Gy>E m ax 3 Gy>E m ax 5 Gy. Irradiated muscular fibers became less sensitive to acetylcholine, thus 3.10 -8 M. A. ch induced more than 50% of contraction force increase in normal conditions. This concentration induce generally a negligible effect after irradiation. The results reveal the existence of radiosensitivity differences between vascular cholinergic and adrenergic receptors. (author)

  5. Noradrenergic and cholinergic innervation of the bone marrow.

    Science.gov (United States)

    Artico, Marco; Bosco, Sandro; Cavallotti, Carlo; Agostinelli, Enzo; Giuliani-Piccari, Gabriella; Sciorio, Salvatore; Cocco, Lucio; Vitale, Marco

    2002-07-01

    Bone marrow is supplied by sensory and autonomic innervation. Although it is well established that hematopoiesis is regulated by cytokines and cell-to-cell contacts, the role played by neuromediators on the proliferation, differentiation and release of hematopoietic cells is still controversial. We studied the innervation of rat femur bone marrow by means of fluorescence histochemistry and immunohistochemistry. Glyoxylic acid-induced fluorescence was used to demonstrate catecholaminergic nerve fibers. The immunoperoxidase method with nickel amplification was applied to detect the distribution of nerve fibers using antibodies against the general neuronal marker PGP 9.5 (neuron-specific cytoplasmic protein), while the cholinacetyltransferase immunoreactivity was studied by immunohistochemistry. Our results show the presence of an extensive network of innervation in the rat bone marrow, providing a morphological basis for the neural modulation of hemopoiesis.

  6. BMP9 ameliorates amyloidosis and the cholinergic defect in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Burke, Rebecca M; Norman, Timothy A; Haydar, Tarik F; Slack, Barbara E; Leeman, Susan E; Blusztajn, Jan Krzysztof; Mellott, Tiffany J

    2013-11-26

    Bone morphogenetic protein 9 (BMP9) promotes the acquisition of the cholinergic phenotype in basal forebrain cholinergic neurons (BFCN) during development and protects these neurons from cholinergic dedifferentiation following axotomy when administered in vivo. A decline in BFCN function occurs in patients with Alzheimer's disease (AD) and contributes to the AD-associated memory deficits. We infused BMP9 intracerebroventricularly for 7 d in transgenic AD model mice expressing green fluorescent protein specifically in cholinergic neurons (APP.PS1/CHGFP) and in wild-type littermate controls (WT/CHGFP). We used 5-mo-old mice, an age when the AD transgenics display early amyloid deposition and few cholinergic defects, and 10-mo-old mice, by which time these mice exhibit established disease. BMP9 infusion reduced the number of Aβ42-positive amyloid plaques in the hippocampus and cerebral cortex of 5- and 10-mo-old APP.PS1/CHGFP mice and reversed the reductions in choline acetyltransferase protein levels in the hippocampus of 10-mo-old APP.PS1/CHGFP mice. The treatment increased cholinergic fiber density in the hippocampus of both WT/CHGFP and APP.PS1/CHGFP mice at both ages. BMP9 infusion also increased hippocampal levels of neurotrophin 3, insulin-like growth factor 1, and nerve growth factor and of the nerve growth factor receptors, tyrosine kinase receptor A and p75/NGFR, irrespective of the genotype of the mice. These data show that BMP9 administration is effective in reducing the Aβ42 amyloid plaque burden, reversing cholinergic neuron abnormalities, and generating a neurotrophic milieu for BFCN in a mouse model of AD and provide evidence that the BMP9-signaling pathway may constitute a therapeutic target for AD.

  7. Serotonin 5-HT4 receptors and forebrain cholinergic system: receptor expression in identified cell populations.

    Science.gov (United States)

    Peñas-Cazorla, Raúl; Vilaró, M Teresa

    2015-11-01

    Activation of serotonin 5-HT4 receptors has pro-cognitive effects on memory performance. The proposed underlying neurochemical mechanism is the enhancement of acetylcholine release in frontal cortex and hippocampus elicited by 5-HT4 agonists. Although 5-HT4 receptors are present in brain areas related to cognition, e.g., hippocampus and cortex, the cellular localization of the receptors that might modulate acetylcholine release is unknown at present. We have analyzed, using dual label in situ hybridization, the cellular localization of 5-HT4 receptor mRNA in identified neuronal populations of the rat basal forebrain, which is the source of the cholinergic innervation to cortex and hippocampus. 5-HT4 receptor mRNA was visualized with isotopically labeled oligonucleotide probes, whereas cholinergic, glutamatergic, GABAergic and parvalbumin-synthesizing neurons were identified with digoxigenin-labeled oligonucleotide probes. 5-HT4 receptor mRNA was not detected in the basal forebrain cholinergic cell population. In contrast, basal forebrain GABAergic, parvalbumin synthesizing, and glutamatergic cells contained 5-HT4 receptor mRNA. Hippocampal and cortical glutamatergic neurons also express this receptor. These results indicate that 5-HT4 receptors are not synthesized by cholinergic cells, and thus would be absent from cholinergic terminals. In contrast, several non-cholinergic cell populations within the basal forebrain and its target hippocampal and cortical areas express these receptors and are thus likely to mediate the enhancement of acetylcholine release elicited by 5-HT4 agonists.

  8. Participation of the cholinergic system in the ethanol-induced suppression of paradoxical sleep in rats

    Directory of Open Access Journals (Sweden)

    L.A. Papale

    2008-09-01

    Full Text Available Sleep disturbance is among the many consequences of ethanol abuse in both humans and rodents. Ethanol consumption can reduce REM or paradoxical sleep (PS in humans and rats, respectively. The first aim of this study was to develop an animal model of ethanol-induced PS suppression. This model administered intragastrically (by gavage to male Wistar rats (3 months old, 200-250 g 0.5 to 3.5 g/kg ethanol. The 3.5 g/kg dose of ethanol suppressed the PS stage compared with the vehicle group (distilled water during the first 2-h interval (0-2 h; 1.3 vs 10.2; P < 0.001. The second aim of this study was to investigate the mechanisms by which ethanol suppresses PS. We examined the effects of cholinergic drug pretreatment. The cholinergic system was chosen because of the involvement of cholinergic neurotransmitters in regulating the sleep-wake cycle. A second set of animals was pretreated with 2.5, 5.0, and 10 mg/kg pilocarpine (cholinergic agonist or atropine (cholinergic antagonist. These drugs were administered 1 h prior to ethanol (3.5 g/kg or vehicle. Treatment with atropine prior to vehicle or ethanol produced a statistically significant decrease in PS, whereas pilocarpine had no effect on minutes of PS. Although the mechanism by which ethanol induces PS suppression is not fully understood, these data suggest that the cholinergic system is not the only system involved in this interaction.

  9. The Putative Son's Attractiveness Alters the Perceived Attractiveness of the Putative Father.

    Science.gov (United States)

    Prokop, Pavol

    2015-08-01

    A body of literature has investigated female mate choice in the pre-mating context (pre-mating sexual selection). Humans, however, are long-living mammals forming pair-bonds which sequentially produce offspring. Post-mating evaluations of a partner's attractiveness may thus significantly influence the reproductive success of men and women. I tested herein the theory that the attractiveness of putative sons provides extra information about the genetic quality of fathers, thereby influencing fathers' attractiveness across three studies. As predicted, facially attractive boys were more frequently attributed to attractive putative fathers and vice versa (Study 1). Furthermore, priming with an attractive putative son increased the attractiveness of the putative father with the reverse being true for unattractive putative sons. When putative fathers were presented as stepfathers, the effect of the boy's attractiveness on the stepfather's attractiveness was lower and less consistent (Study 2). This suggests that the presence of an attractive boy has the strongest effect on the perceived attractiveness of putative fathers rather than on non-fathers. The generalized effect of priming with beautiful non-human objects also exists, but its effect is much weaker compared with the effects of putative biological sons (Study 3). Overall, this study highlighted the importance of post-mating sexual selection in humans and suggests that the heritable attractive traits of men are also evaluated by females after mating and/or may be used by females in mate poaching.

  10. Measurement of functional cholinergic innervation in rat heart with a novel vesamicol receptor ligand

    International Nuclear Information System (INIS)

    Coffeen, Paul R.; Efange, S.M.N.; Haidet, George C.; McKnite, Scott; Langason, Rosemary B.; Khare, A.B.; Pennington, Jennifer; Lurie, Keith G.

    1996-01-01

    Regional differences in cholinergic activity in the cardiac conduction system have been difficult to study. We tested the utility of (+)-m-[ 125 I]iodobenzyl)trozamicol(+)-[ 125 I]MIBT), a novel radioligand that binds to the vesamicol receptor located on the synaptic vesicle in presynaptic cholinergic neurons, as a functional marker of cholinergic activity in the conduction system. The (+)-[ 125 I]MIBT was injected intravenously into four rats. Three hours later, the rats were killed and their hearts were frozen. Quantitative autoradiography was performed on 20-micron-thick sections that were subsequently stained for acetylcholinesterase to identify specific conduction-system elements. Marked similarities existed between (+)-[ 125 I]MIBT uptake and acetylcholinesterase-positive regions. Optical densitometric analysis of regional (+)-[ 125 I]MIBT uptake revealed significantly greater (+)-[ 125 I]MIBT binding (nCi/mg) in the atrioventricular node (AVN) and His bundle regions compared with other conduction and contractile elements (AVN: 3.43 ± 0.37; His bundle: 2.16 ± 0.30; right bundle branch: 0.95 ± 0.13; right atrium: 0.68 ± 0.05; right ventricle: 0.57 ± 0.03; and left ventricle: 0.57 ± 0.03; p 125 I]MIBT binds avidly to cholinergic nerve tissue innervating specific conduction-system elements. Thus, (+)-[ 125 I]MIBT may be a useful functional marker in studies on cholinergic innervation in the cardiac conduction system

  11. Cholinergic effects of HI-6 in Soman poisoning

    International Nuclear Information System (INIS)

    Shih, T.M.; Lockwood, P.A.; Lundy, P.M.; Valdes, J.J.; Whalley, C.E.

    1986-01-01

    The authors conduct studies to determine the role of cholinergic mechanisms in the antidotal effects of HI-6 in soman poisoning. The effects of HI-6 were studied in discrete brain areas and elevation of acetylcholine or choline levels in vivo as well as on muscarinic receptor binding and high affinity Ch uptake (HAChT) in vitro. The effect of pralidoxime chloride was studied on the same cholinergic mechanisms to compare its effects with HI-6. Methyl-tritium-choline chloride and tritium-quinuclidinyl benzilate were used in the experiments on male Wistar rats. The influence of antidotal treatments on time to death in soman intoxicated rats is shown. The effects of soman and its antidotal treatments on regional bain ChE activity are shown. The most significant protection was afforded by simultaneous treatment with both HI-6 and ATS

  12. Catecholaminergic System of Invertebrates: Comparative and Evolutionary Aspects in Comparison With the Octopaminergic System.

    Science.gov (United States)

    Gallo, Valentina P; Accordi, Fiorenza; Chimenti, Claudio; Civinini, Annalena; Crivellato, Enrico

    2016-01-01

    In this review we examined the catecholaminergic system of invertebrates, starting from protists and getting to chordates. Different techniques used by numerous researchers revealed, in most examined phyla, the presence of catecholamines dopamine, noradrenaline, and adrenaline or of the enzymes involved in their synthesis. The catecholamines are generally linked to the nervous system and they can act as neurotransmitters, neuromodulators, and hormones; moreover they play a very important role as regards the response to a large number of stress situations. Nevertheless, in some invertebrate phyla belonging to Protostoma, the monoamine octopamine is the main biogenic amine. The presence of catecholamines in some protists suggests a role as intracellular or interorganismal signaling molecules and an ancient origin of their synthetic pathways. The catecholamines appear also involved in the regulation of bioluminescence and in the control of larval development and metamorphosis in some marine invertebrate phyla. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. The role of muscarinic cholinergic signaling in cost-benefit decision making

    Science.gov (United States)

    Fobbs, Wambura

    Animals regularly face decisions that affect both their immediate success and long term survival. Such decisions typically involve some form of cost-benefit analysis and engage a number of high level cognitive processes, including learning, memory and motivational influences. While decision making has been a focus of study for over a century, it's only in the last 20 years that researchers have begun to identify functional neural circuits that subserve different forms of cost-benefit decision making. Even though the cholinergic system is both functionally and anatomically positioned to modulate cost-benefit decision circuits, the contribution of the cholinergic system to decision making has been little studied. In this thesis, I investigated the cognitive and neural contribution of muscarinic cholinergic signaling to cost-benefit decision making. I, first, re-examined the effects of systemic administration of 0.3 mg/kg atropine on delay and probability discounting tasks and found that blockade of muscarinic acetylcholine receptors by atropine induced suboptimal choices (impulsive and risky) in both tasks. Since the effect on delay discounting was restricted to the No Cue version of the delay discounting task, I concluded that muscarinic cholinergic signaling mediates both forms of cost-benefit decision making and is selectively engaged when decisions require valuation of reward options whose costs are not externally signified. Second, I assessed the impact of inactivating the nucleus basalis (NBM) on both forms decision making and the effect of injecting atropine locally into the orbitofrontal cortex (OFC), basolateral amygdala (BLA), or nucleus accumbens (NAc) core during the No Cue version of the delay discounting task. I discovered that although NBM inactivation failed to affect delay discounting, it induced risk aversion in the probability discounting task; and blockade of intra- NAc core, but not intra-OFC or intra-BLA, muscarinic cholinergic signaling lead to

  14. Cholinergic denervation of the hippocampal formation does not produce long-term changes in glucose metabolism

    International Nuclear Information System (INIS)

    Harrell, L.E.; Davis, J.N.

    1984-01-01

    Decreased glucose metabolism is found in Alzheimer's disease associated with a loss of cholinergic neurons. The relationship between the chronic cholinergic denervation produced by medial septal lesions and glucose metabolism was studied using 2-deoxy-D-[ 3 H]glucose in the rat hippocampal formation. Hippocampal glucose metabolism was increased 1 week after medial septal lesions. Three weeks after lesions, glucose metabolism was profoundly suppressed in all regions. By 3 months, intraregional hippocampal glucose metabolism had returned to control values. Our results demonstrate that chronic cholinergic denervation of the hippocampal formation does not result in permanent alterations of metabolic activity

  15. Activation of Phosphoinositide Metabolism by Cholinergic Agents.

    Science.gov (United States)

    1992-03-15

    most notably calcium. Cholinergic agonist-induced seizures; Brain second messenger systems; Neurotransmitter/ Neuromodulator interactions; RAV; Lab...have been described: modulation by protein kinase C and modulation by neurotransmitter (or neuromodulator ) interactions. Agents which stimulate...phosphoinositide hydrolysis that has been identified consists of interactions among neurotransmitter systems or neuromodulators . Perhaps those most widely

  16. Enhancement of learning capacity and cholinergic synaptic function by carnitine in aging rats.

    Science.gov (United States)

    Ando, S; Tadenuma, T; Tanaka, Y; Fukui, F; Kobayashi, S; Ohashi, Y; Kawabata, T

    2001-10-15

    The effects of a carnitine derivative, acetyl-L-carnitine (ALCAR), on the cognitive and cholinergic activities of aging rats were examined. Rats were given ALCAR (100 mg/kg) per os for 3 months and were subjected to the Hebb-Williams tasks and a new maze task, AKON-1, to assess their learning capacity. The learning capacity of the ALCAR-treated group was superior to that of the control. Cholinergic activities were determined with synaptosomes isolated from the cortices. The high-affinity choline uptake by synaptosomes, acetylcholine synthesis in synaptosomes, and acetylcholine release from synaptosomes on membrane depolarization were all enhanced in the ALCAR group. This study indicates that chronic administration of ALCAR increases cholinergic synaptic transmission and consequently enhances learning capacity as a cognitive function in aging rats. Copyright 2001 Wiley-Liss, Inc.

  17. Impaired social interaction and enhanced sensitivity to phencyclidine-induced deficits in novel object recognition in rats with cortical cholinergic denervation.

    Science.gov (United States)

    Savage, S; Kehr, J; Olson, L; Mattsson, A

    2011-11-10

    Dysregulated cholinergic neurotransmission has been implicated in the pathophysiology of schizophrenia, particularly negative symptoms and cognitive deficits. The aim of the present study was to evaluate the role of neocortical cholinergic innervation and of the N-methyl-d-aspartate (NMDA) receptor antagonist phencyclidine (PCP) on social interaction and novel object recognition (NOR), a declarative memory task. The cholinergic corticopetal projection was lesioned by local infusion of the immunotoxin 192 IgG-saporin into nucleus basalis magnocellularis of adult male Lister hooded rats. Behavior was assessed 2.5 weeks later in a social interaction paradigm followed by the NOR task. We found that selective cholinergic denervation of neocortex led to a significant reduction in duration of social interaction, specifically active social interaction. Acute administration of PCP (1.0 mg/kg, s.c.) caused a marked decrease of active social interaction, such that there was no longer a difference between intact and denervated animals. Neither cholinergic denervation alone, nor PCP (1.0 mg/kg, s.c.) alone blocked the ability of rats to recognize a novel object. However, when animals lacking cortical cholinergic innervation were challenged by PCP, they were no longer able to recognize a novel object. This study indicates that rats lacking cholinergic innervation of neocortex have impaired social interaction and specifically that the duration of active contact is shortened. Animals with severe cortical cholinergic hypofunction maintain the ability to perform in a declarative memory test, although the task is carried out less intensively. However, a provocation of psychosis-like behavior by a dose of PCP that does not by itself impair performance in normal animals, will abolish the ability to recognize novel objects in animals lacking cortical cholinergic innervation. The present findings support a possible role for cortical cholinergic hypofunction in the negative and cognitive

  18. Cholinergic stimulation enhances Bayesian belief updating in the deployment of spatial attention.

    Science.gov (United States)

    Vossel, Simone; Bauer, Markus; Mathys, Christoph; Adams, Rick A; Dolan, Raymond J; Stephan, Klaas E; Friston, Karl J

    2014-11-19

    The exact mechanisms whereby the cholinergic neurotransmitter system contributes to attentional processing remain poorly understood. Here, we applied computational modeling to psychophysical data (obtained from a spatial attention task) under a psychopharmacological challenge with the cholinesterase inhibitor galantamine (Reminyl). This allowed us to characterize the cholinergic modulation of selective attention formally, in terms of hierarchical Bayesian inference. In a placebo-controlled, within-subject, crossover design, 16 healthy human subjects performed a modified version of Posner's location-cueing task in which the proportion of validly and invalidly cued targets (percentage of cue validity, % CV) changed over time. Saccadic response speeds were used to estimate the parameters of a hierarchical Bayesian model to test whether cholinergic stimulation affected the trial-wise updating of probabilistic beliefs that underlie the allocation of attention or whether galantamine changed the mapping from those beliefs to subsequent eye movements. Behaviorally, galantamine led to a greater influence of probabilistic context (% CV) on response speed than placebo. Crucially, computational modeling suggested this effect was due to an increase in the rate of belief updating about cue validity (as opposed to the increased sensitivity of behavioral responses to those beliefs). We discuss these findings with respect to cholinergic effects on hierarchical cortical processing and in relation to the encoding of expected uncertainty or precision. Copyright © 2014 the authors 0270-6474/14/3415735-08$15.00/0.

  19. Control of cerebral cortical blood flow by stimulation of basal forebrain cholinergic areas in mice.

    Science.gov (United States)

    Hotta, Harumi; Uchida, Sae; Kagitani, Fusako; Maruyama, Naoki

    2011-05-01

    We examined whether activity of the nucleus basalis of Meynert (NBM) regulates regional cerebral cortical blood flow (rCBF) in mice, using laser speckle and laser Doppler flowmetry. In anesthetized mice, unilateral focal stimulation, either electrical or chemical, of the NBM increased rCBF of the ipsilateral cerebral cortex in the frontal, parietal and occipital lobes, independent of changes in systemic blood pressure. Most of vasodilative responses to low intensity stimuli (2 times threshold intensity: 2T) were abolished by atropine (a muscarinic cholinergic blocker), whereas responses to higher intensity stimuli (3T) were abolished by atropine and mecamylamine (a nicotinic cholinergic blocker). Blood flow changes were largest when the tip of the electrode was located within the area containing cholinergic neurons shown by choline acetyltransferase-immunocytochemistry. These results suggest that cholinergic projections from basal forebrain neurons in mice cause vasodilation in the ipsilateral cerebral cortex by a combination of muscarinic and nicotinic mechanisms, as previously found in rats and cats.

  20. Spontaneous Vesicle Fusion Is Differentially Regulated at Cholinergic and GABAergic Synapses

    Directory of Open Access Journals (Sweden)

    Haowen Liu

    2018-02-01

    Full Text Available The locomotion of C. elegans is balanced by excitatory and inhibitory neurotransmitter release at neuromuscular junctions. However, the molecular mechanisms that maintain the balance of synaptic transmission remain enigmatic. Here, we investigated the function of voltage-gated Ca2+ channels in triggering spontaneous release at cholinergic and GABAergic synapses. Recordings of the miniature excitatory/inhibitory postsynaptic currents (mEPSCs and mIPSCs, respectively showed that UNC-2/CaV2 and EGL-19/CaV1 channels are the two major triggers for spontaneous release. Notably, however, Ca2+-independent spontaneous release was observed at GABAergic but not cholinergic synapses. Functional screening led to the identification of hypomorphic unc-64/Syntaxin-1A and snb-1/VAMP2 mutants in which mEPSCs are severely impaired, whereas mIPSCs remain unaltered, indicating differential regulation of these currents at cholinergic and GABAergic synapses. Moreover, Ca2+-independent spontaneous GABA release was nearly abolished in the hypomorphic unc-64 and snb-1 mutants, suggesting distinct mechanisms for Ca2+-dependent and Ca2+-independent spontaneous release.

  1. Upregulating Nonneuronal Cholinergic Activity Decreases TNF Release from Lipopolysaccharide-Stimulated RAW264.7 Cells

    Directory of Open Access Journals (Sweden)

    Yi Lv

    2014-01-01

    Full Text Available Nonneuronal cholinergic system plays a primary role in maintaining homeostasis. It has been proved that endogenous neuronal acetylcholine (ACh could play an anti-inflammatory role, and exogenous cholinergic agonists could weaken macrophages inflammatory response to lipopolysaccharide (LPS stimulation through activation of α7 subunit-containing nicotinic acetylcholine receptor (α7nAChR. We assumed that nonneuronal cholinergic system existing in macrophages could modulate inflammation through autocrine ACh and expressed α7nAChR on the cells. Therefore, we explored whether LPS continuous stimulation could upregulate the nonneuronal cholinergic activity in macrophages and whether increasing autocrine ACh could decrease TNF release from the macrophages. The results showed that, in RAW264.7 cells incubated with LPS for 20 hours, the secretion of ACh was significantly decreased at 4 h and then gradually increased, accompanied with the enhancement of α7nAChR expression level. The release of TNF was greatly increased from RAW264.7 cells at 4 h and 8 h exposure to LPS; however, it was suppressed at 20 h. Upregulating choline acetyltransferase (ChAT expression through ChAT gene transfection could enhance ACh secretion and reduce TNF release from the infected RAW264. 7cells. The results indicated that LPS stimulation could modulate the activity of nonneuronal cholinergic system of RAW264.7 cells. Enhancing autocrine ACh production could attenuate TNF release from RAW264.7 cells.

  2. Cholinergic Modulation of Restraint Stress Induced Neurobehavioral ...

    African Journals Online (AJOL)

    The involvement of the cholinergic system in restraint stress induced neurobehavioral alterations was investigated in rodents using the hole board, elevated plus maze, the open field and the light and dark box tests. Restraint stress (3h) reduced significantly (p<0.05) the number of entries and time spent in the open arm, ...

  3. Selective effects of cholinergic modulation on task performance during selective attention.

    Science.gov (United States)

    Furey, Maura L; Pietrini, Pietro; Haxby, James V; Drevets, Wayne C

    2008-03-01

    The cholinergic neurotransmitter system is critically linked to cognitive functions including attention. The current studies were designed to evaluate the effect of a cholinergic agonist and an antagonist on performance during a selective visual attention task where the inherent salience of attended/unattended stimuli was modulated. Two randomized, placebo-controlled, crossover studies were performed, one (n=9) with the anticholinesterase physostigmine (1.0 mg/h), and the other (n=30) with the anticholinergic scopolamine (0.4 mc/kg). During the task, two double-exposure pictures of faces and houses were presented side by side. Subjects were cued to attend to either the face or the house component of the stimuli, and were instructed to perform a matching task with the two exemplars from the attended category. The cue changed every 4-7 trials to instruct subjects to shift attention from one stimulus component to the other. During placebo in both studies, reaction time (RT) associated with the first trial following a cued shift in attention was longer than RT associated with later trials (pattention to houses condition (pattention to faces. Scopolamine increased RT relative to placebo selectively during trials greater than one (pattention to faces condition (pselective attention (ie trials greater than 1). Moreover, effects of cholinergic manipulation depend on the selective attention condition (ie faces vs houses), which may suggest that cholinergic activity interacts with stimulus salience. The findings are discussed within the context of the role of acetylcholine both in stimulus processing and stimulus salience, and in establishing attention biases through top-down and bottom-up mechanisms of attention.

  4. Cholinergic basal forebrain structures are not essential for mediation of the arousing action of glutamate.

    Science.gov (United States)

    Lelkes, Zoltán; Abdurakhmanova, Shamsiiat; Porkka-Heiskanen, Tarja

    2017-09-18

    The cholinergic basal forebrain contributes to cortical activation and receives rich innervations from the ascending activating system. It is involved in the mediation of the arousing actions of noradrenaline and histamine. Glutamatergic stimulation in the basal forebrain results in cortical acetylcholine release and suppression of sleep. However, it is not known to what extent the cholinergic versus non-cholinergic basal forebrain projection neurones contribute to the arousing action of glutamate. To clarify this question, we administered N-methyl-D-aspartate (NMDA), a glutamate agonist, into the basal forebrain in intact rats and after destruction of the cholinergic cells in the basal forebrain with 192 immunoglobulin (Ig)G-saporin. In eight Han-Wistar rats with implanted electroencephalogram/electromyogram (EEG/EMG) electrodes and guide cannulas for microdialysis probes, 0.23 μg 192 IgG-saporin was administered into the basal forebrain, while the eight control animals received artificial cerebrospinal fluid. Two weeks later, a microdialysis probe targeted into the basal forebrain was perfused with cerebrospinal fluid on the baseline day and for 3 h with 0.3 mmNMDA on the subsequent day. Sleep-wake activity was recorded for 24 h on both days. NMDA exhibited a robust arousing effect in both the intact and the lesioned rats. Wakefulness was increased and both non-REM and REM sleep were decreased significantly during the 3-h NMDA perfusion. Destruction of the basal forebrain cholinergic neurones did not abolish the wake-enhancing action of NMDA. Thus, the cholinergic basal forebrain structures are not essential for the mediation of the arousing action of glutamate. © 2017 European Sleep Research Society.

  5. Age-related changes in nicotine response of cholinergic and non-cholinergic laterodorsal tegmental neurons: implications for the heightened adolescent susceptibility to nicotine addiction

    DEFF Research Database (Denmark)

    Christensen, Mark Holm; Ishibashi, Masaru; Nielsen, Michael Linnemann

    2014-01-01

    The younger an individual starts smoking, the greater the likelihood that addiction to nicotine will develop, suggesting that neurobiological responses vary across age to the addictive component of cigarettes. Cholinergic neurons of the laterodorsal tegmental nucleus (LDT) are importantly involved...... in the development of addiction, however, the effects of nicotine on LDT neuronal excitability across ontogeny are unknown. Nicotinic effects on LDT cells across different age groups were examined using calcium imaging and whole-cell patch clamping. Within the youngest age group (P7–P15), nicotine induced larger...... intracellular calcium transients and inward currents. Nicotine induced a greater number of excitatory synaptic currents in the youngest animals, whereas larger amplitude inhibitory synaptic events were induced in cells from the oldest animals (P15–P34). Nicotine increased neuronal firing of cholinergic cells...

  6. Lesions of cholinergic pedunculopontine tegmental nucleus neurons fail to affect cocaine or heroin self-administration or conditioned place preference in rats.

    Directory of Open Access Journals (Sweden)

    Stephan Steidl

    Full Text Available Cholinergic input to the ventral tegmental area (VTA is known to contribute to reward. Although it is known that the pedunculopontine tegmental nucleus (PPTg provides an important source of excitatory input to the dopamine system, the specific role of PPTg cholinergic input to the VTA in cocaine reward has not been previously determined. We used a diphtheria toxin conjugated to urotensin-II (Dtx::UII, the endogenous ligand for urotensin-II receptors expressed by PPTg cholinergic but not glutamatergic or GABAergic cells, to lesion cholinergic PPTg neurons. Dtx::UII toxin infusion resulted in the loss of 95.78 (±0.65% of PPTg cholinergic cells but did not significantly alter either cocaine or heroin self-administration or the development of cocaine or heroin conditioned place preferences. Thus, cholinergic cells originating in PPTg do not appear to be critical for the rewarding effects of cocaine or of heroin.

  7. Cholinergic enhancement reduces functional connectivity and BOLD variability in visual extrastriate cortex during selective attention.

    Science.gov (United States)

    Ricciardi, Emiliano; Handjaras, Giacomo; Bernardi, Giulio; Pietrini, Pietro; Furey, Maura L

    2013-01-01

    Enhancing cholinergic function improves performance on various cognitive tasks and alters neural responses in task specific brain regions. We have hypothesized that the changes in neural activity observed during increased cholinergic function reflect an increase in neural efficiency that leads to improved task performance. The current study tested this hypothesis by assessing neural efficiency based on cholinergically-mediated effects on regional brain connectivity and BOLD signal variability. Nine subjects participated in a double-blind, placebo-controlled crossover fMRI study. Following an infusion of physostigmine (1 mg/h) or placebo, echo-planar imaging (EPI) was conducted as participants performed a selective attention task. During the task, two images comprised of superimposed pictures of faces and houses were presented. Subjects were instructed periodically to shift their attention from one stimulus component to the other and to perform a matching task using hand held response buttons. A control condition included phase-scrambled images of superimposed faces and houses that were presented in the same temporal and spatial manner as the attention task; participants were instructed to perform a matching task. Cholinergic enhancement improved performance during the selective attention task, with no change during the control task. Functional connectivity analyses showed that the strength of connectivity between ventral visual processing areas and task-related occipital, parietal and prefrontal regions reduced significantly during cholinergic enhancement, exclusively during the selective attention task. Physostigmine administration also reduced BOLD signal temporal variability relative to placebo throughout temporal and occipital visual processing areas, again during the selective attention task only. Together with the observed behavioral improvement, the decreases in connectivity strength throughout task-relevant regions and BOLD variability within stimulus

  8. A cholinergic hypothesis of the unconscious in affective disorders.

    Directory of Open Access Journals (Sweden)

    Costa eVakalopoulos

    2013-11-01

    Full Text Available The interactions between distinct pharmacological systems are proposed as a key dynamic in the formation of unconscious memories underlying rumination and mood disorder, but also reflect the plastic capacity of neural networks that can aid recovery. An inverse and reciprocal relationship is postulated between cholinergic and monoaminergic receptor subtypes. M1-type muscarinic receptor transduction facilitates encoding of unconscious, prepotent behavioural repertoires at the core of affective disorders and ADHD. Behavioural adaptation to new contingencies is mediated by the classic prototype receptor: 5-HT1A (Gi/o and its modulation of m1-plasticity. Reversal of learning is dependent on increased phasic activation of midbrain monoaminergic nuclei and is a function of hippocampal theta. Acquired hippocampal dysfunction due to abnormal activation of the hypothalamic-pituitary-adrenal (HPA axis predicts deficits in hippocampal-dependent memory and executive function and further impairments to cognitive inhibition. Encoding of explicit memories is mediated by Gq/11 and Gs signalling of monoamines only. A role is proposed for the phasic activation of the basal forebrain cholinergic nucleus by cortical projections from the complex consisting of the insula and claustrum. Although controversial. recent studies suggest a common ontogenetic origin of the two structures and a functional coupling. Lesions of the region result in loss of motivational behaviour and familiarity based judgements. A major hypothesis of the paper is that these lost faculties result indirectly, from reduced cholinergic tone.

  9. Cholinergic and dopaminergic activities in senile dementia of Lewy body type.

    Science.gov (United States)

    Perry, E K; Marshall, E; Perry, R H; Irving, D; Smith, C J; Blessed, G; Fairbairn, A F

    1990-01-01

    Analyses of brain tissue in a recently identified group of elderly demented patients suggest a neurochemical basis for some of the clinical features. Senile dementia of the Lewy body type (SDLT) can be distinguished from classical Alzheimer disease (AD) clinically by its acute presentation with confusion frequently accompanied by visual hallucinations, and neuropathologically by the presence of Lewy bodies and senile plaques (but not generally neurofibrillary tangles) in the cerebral cortex. Reductions in the cortical cholinergic enzyme choline acetyltransferase were more pronounced in individuals with (80%) compared to those without (50%) hallucinations and correlated strongly with mental test scores in the group as a whole. In the caudate nucleus, dopamine levels were related to the number of neurons in the substantia nigra, there being a 40-60% loss of both in SDLT--probably accounting for mild extrapyramidal features in some of these cases--compared with an 80% loss in Parkinson disease and no change in AD. The cholinergic correlates of mental impairment in SDLT together with the relative absence of cortical neurofibrillary tangles and evidence for postsynaptic cholinergic receptor compensation raise the question of whether this type of dementia may be more amenable to cholinotherapy than classical AD.

  10. Optogenetic activation of septal cholinergic neurons suppresses sharp wave ripples and enhances theta oscillations in the hippocampus.

    Science.gov (United States)

    Vandecasteele, Marie; Varga, Viktor; Berényi, Antal; Papp, Edit; Barthó, Péter; Venance, Laurent; Freund, Tamás F; Buzsáki, György

    2014-09-16

    Theta oscillations in the limbic system depend on the integrity of the medial septum. The different populations of medial septal neurons (cholinergic and GABAergic) are assumed to affect different aspects of theta oscillations. Using optogenetic stimulation of cholinergic neurons in ChAT-Cre mice, we investigated their effects on hippocampal local field potentials in both anesthetized and behaving mice. Cholinergic stimulation completely blocked sharp wave ripples and strongly suppressed the power of both slow oscillations (0.5-2 Hz in anesthetized, 0.5-4 Hz in behaving animals) and supratheta (6-10 Hz in anesthetized, 10-25 Hz in behaving animals) bands. The same stimulation robustly increased both the power and coherence of theta oscillations (2-6 Hz) in urethane-anesthetized mice. In behaving mice, cholinergic stimulation was less effective in the theta (4-10 Hz) band yet it also increased the ratio of theta/slow oscillation and theta coherence. The effects on gamma oscillations largely mirrored those of theta. These findings show that medial septal cholinergic activation can both enhance theta rhythm and suppress peri-theta frequency bands, allowing theta oscillations to dominate.

  11. Hypo Activity of Cholinergic System in Patients with Early Stage of Alzheimer's Disease

    International Nuclear Information System (INIS)

    Davidescu, L.; Codorean, I.; Matei, C.; Barret, O.; Mazere, J.; Guyot, M.; Rimbu, A.; Allard, M.

    2006-01-01

    Full text: Objective A cholinergic dysfunction was documented in advanced stages of Alzheimer's disease. In order to specify the cholinergic involvement in early stages, we performed a presynaptic imaging study of the cholinergic system using a vesicular Acetylcholine transporter ligand labelled with iodine 123 ( 123 I-IBVM - Iodobenzovesamicol) Materials And Methods Eight patients (5 women and 3 men, 74-89 years, MMS>23) and 8 controls (6 women and 2 men, 72-80 years, MMS>30) have been evaluated using the neuropsychological tests; cerebral SPECT was performed 6 hours after intravenous injection of 218±19 MBq of 123 I - IBVM (30 min, 3 volume, 128x128) and the 3D MRI (T1 weighted images). Acquisition data were processed by filtered retroprojection (Butterworth 5.35) and analysed with SPM software. Each examination was co-registered with the MRI of the patient, normalised in the MNI template and smoothed (10mm). Results The analyse of the group (two sample T-test, p 123 I-IBVM has been detected in the patients group, compared to the control. Conclusions Our results indicate that cholinergic dysfunctions appear very early in the development of Alzheimer's disease and affect the cortical structures involved in the attention process. Some studies are in progress to analyze imaging data with cognitive impairments of each patient. (author)

  12. Cognitive performance as a zeitgeber: cognitive oscillators and cholinergic modulation of the SCN entrain circadian rhythms.

    Directory of Open Access Journals (Sweden)

    Howard J Gritton

    Full Text Available The suprachiasmatic nucleus (SCN is the primary circadian pacemaker in mammals that can synchronize or entrain to environmental cues. Although light exerts powerful influences on SCN output, other non-photic stimuli can modulate the SCN as well. We recently demonstrated that daily performance of a cognitive task requiring sustained periods of attentional effort that relies upon basal forebrain (BF cholinergic activity dramatically alters circadian rhythms in rats. In particular, normally nocturnal rats adopt a robust diurnal activity pattern that persists for several days in the absence of cognitive training. Although anatomical and pharmacological data from non-performing animals support a relationship between cholinergic signaling and circadian rhythms, little is known about how endogenous cholinergic signaling influences SCN function in behaving animals. Here we report that BF cholinergic projections to the SCN provide the principal signal allowing for the expression of cognitive entrainment in light-phase trained animals. We also reveal that oscillator(s outside of the SCN drive cognitive entrainment as daily timed cognitive training robustly entrains SCN-lesioned arrhythmic animals. Ablation of the SCN, however, resulted in significant impairments in task acquisition, indicating that SCN-mediated timekeeping benefits new learning and cognitive performance. Taken together, we conclude that cognition entrains non-photic oscillators, and cholinergic signaling to the SCN serves as a temporal timestamp attenuating SCN photic-driven rhythms, thereby permitting cognitive demands to modulate behavior.

  13. Thoracoscopic Left Cardiac Sympathetic Denervation for a Patient with Catecholaminergic Polymorphic Ventricular Tachycardia and Recurrent Implantable Cardioverter-Defibrillator Shocks

    Directory of Open Access Journals (Sweden)

    Woo-Sik Yu

    2015-06-01

    Full Text Available A patient presented with loss of consciousness and conversion. During an exercise test, catecholaminergic polymorphic ventricular tachycardia (CPVT resulted in cardiac arrest. He started taking medication (a beta-blocker and flecainide and an implantable cardioverter defibrillator (ICD was inserted, but the ventricular tachycardia did not resolve. Left cardiac sympathetic denervation (LCSD was then performed under general anesthesia, and the patient was discharged on the second postoperative day without complications. One month after the operation, no shock had been administered by the ICD, and an exercise stress test did not induce ventricular tachycardia. Although beta- blockers are the gold standard of therapy in patients with CPVT, thoracoscopic LCSD is safe and can be an effective alternative treatment option for patients with intractable CPVT.

  14. Regulation of drugs affecting striatal cholinergic activity by corticostriatal projections

    International Nuclear Information System (INIS)

    Ladinsky, H.

    1986-01-01

    Research demonstrates that the chronic degeneration of the corticostriatal excitatory pathway makes the cholinergic neurons of the striatum insensitive to the neuropharmacological action of a number of different drugs. Female rats were used; they were killed and after the i.v. infusion of tritium-choline precursor, choline acetyltransferase activity was measured. Striatal noradrenaline, dopamine and serotonin content was measured by electrochemical detection coupled with high pressure liquid chromatography. Uptake of tritium-glutamic acid was estimated. The data were analyzed statistically. It is shown that there is evidence that the effects of a number of drugs capable of depressing cholinergic activity through receptor-mediated responses are operative only if the corticostriatal pathway is integral. Neuropharmacological responses in the brain appear to be the result of an interaction between several major neurotransmitter systems

  15. Adenosine Inhibits the Excitatory Synaptic Inputs to Basal Forebrain Cholinergic, GABAergic and Parvalbumin Neurons in mice

    Directory of Open Access Journals (Sweden)

    Chun eYang

    2013-06-01

    Full Text Available Coffee and tea contain the stimulants caffeine and theophylline. These compounds act as antagonists of adenosine receptors. Adenosine promotes sleep and its extracellular concentration rises in association with prolonged wakefulness, particularly in the basal forebrain (BF region involved in activating the cerebral cortex. However, the effect of adenosine on identified BF neurons, especially non-cholinergic neurons, is incompletely understood. Here we used whole-cell patch-clamp recordings in mouse brain slices prepared from two validated transgenic mouse lines with fluorescent proteins expressed in GABAergic or parvalbumin (PV neurons to determine the effect of adenosine. Whole-cell recordings were made BF cholinergic neurons and from BF GABAergic & PV neurons with the size (>20 µm and intrinsic membrane properties (prominent H-currents corresponding to cortically projecting neurons. A brief (2 min bath application of adenosine (100 μM decreased the frequency but not the amplitude of spontaneous excitatory postsynaptic currents in all groups of BF cholinergic, GABAergic and PV neurons we recorded. In addition, adenosine decreased the frequency of miniature EPSCs in BF cholinergic neurons. Adenosine had no effect on the frequency of spontaneous inhibitory postsynaptic currents in cholinergic neurons or GABAergic neurons with large H-currents but reduced them in a group of GABAergic neurons with smaller H-currents. All effects of adenosine were blocked by a selective, adenosine A1 receptor antagonist, cyclopentyltheophylline (CPT, 1 μM. Adenosine had no postsynaptic effects. Taken together, our work suggests that adenosine promotes sleep by an A1-receptor mediated inhibition of glutamatergic inputs to cortically-projecting cholinergic and GABA/PV neurons. Conversely, caffeine and theophylline promote attentive wakefulness by inhibiting these A1 receptors in BF thereby promoting the high-frequency oscillations in the cortex required for

  16. The benefits of cholinergic enhancement during perceptual learning are long-lasting

    Directory of Open Access Journals (Sweden)

    Ariel eRokem

    2013-05-01

    Full Text Available The neurotransmitter acetylcholine (ACh regulates many aspects of cognition, including attention and memory. Previous research in animal models has shown that plasticity in sensory systems often depends on the behavioral relevance of a stimulus and/or task. However, experimentally increasing ACh release in the cortex can result in experience-dependent plasticity, even in the absence of behavioral relevance. In humans, the pharmacological enhancement of ACh transmission by administration of the cholinesterase inhibitor donepezil during performance of a perceptual task increases the magnitude of perceptual learning (PL and its specificity to physical parameters of the stimuli used for training. Behavioral effects of PL have previously been shown to persist for many months. In the present study, we tested whether enhancement of PL by donepezil is also long-lasting. Healthy human subjects were trained on a motion direction discrimination task during cholinergic enhancement, and follow-up testing was performed 5-15 months after the end of training and without additional drug administration. Increases in performance associated with training under donepezil were evident in follow-up retesting, indicating that cholinergic enhancement has beneficial long-term effects on PL. These findings suggest that cholinergic enhancement of training procedures used to treat clinical disorders should improve long-term outcomes of these procedures.

  17. Acetylcholine receptors and cholinergic ligands: biochemical and genetic aspects in Torpedo californica and Drosophila melanogaster

    International Nuclear Information System (INIS)

    Rosenthal, L.S.

    1987-01-01

    This study evaluates the biochemical and genetic aspects of the acetylcholine receptor proteins and cholinergic ligands in Drosophila melanogaster and Torpedo californica. Included are (1) a comparative study of nicotinic ligand-induced cation release from acetylcholine receptors isolated from Torpedo californica and from Drosophila melanogaster, (2) solution studies of the cholinergic ligands, nikethamide and ethamivan, aimed at measuring internal molecular rotational barriers in solvents of different polarity; and (3) the isolation and characterization of the gene(s) for the acetylcholine receptor in Drosophila melasogaster. Acetylcholine receptor proteins isolated from Drosphila melanogaster heads were found to behave kinetically similar (with regards to cholinergic ligand-induced 155 Eu: 3+ displacement from prelabeled proteins) to receptor proteins isolated from Torpedo californica electric tissue, providing additional biochemical evidence for the existence of a Drosophila acetylcholine receptor

  18. [Modulation of the cholinergic system during inflammation].

    Science.gov (United States)

    Nezhinskaia, G I; Vladykin, A L; Sapronov, N S

    2008-01-01

    This review describes the effects of realization of the central and peripheral "cholinergic antiinflammatory pathway" in a model of endotoxic and anaphylactic shock. Under endotoxic shock conditions, a pharmacological correction by means of the central m-cholinomimetic action (electrical stimulation of the distal ends of nervus vagus after bilateral cervical vagotomy, surgical implantation of the stimulant devise, activation of efferent vagal neurons by means of muscarinic agonist) is directed toward the elimination of LPS-induced hypotension. During the anaphylaxis, peripheral effects of the cholinergic system induced by blocking m-AChR on the target cells (neuronal and non-neuronal lung cells) and acetylcholinesterase inhibition are related to suppression of the bronchoconstrictor response. The role of immune system in the pathogenesis of endotoxic shock is associated with the production of proinflammatory cytokines by macrophages, increase in IgM concentration, and complement activation, while the role in the pathogenesis of anaphylactic shock is associated with IgE, IgG1 augmentation. Effects of B cell stimulation may be important in hypoxia and in the prophylaxis of stress ulcers and other diseases. Plasma proteins can influence the effects of the muscarinic antagonist methacine: IgG enhance its action while albumin and CRP abolish it.

  19. A cholinergic contribution to the circulatory responses evoked at the onset of handgrip exercise in humans

    DEFF Research Database (Denmark)

    Vianna, Lauro C; Fadel, Paul J; Secher, Niels H

    2015-01-01

    A cholinergic (muscarinic) contribution to the initial circulatory response to exercise in humans remains controversial. Herein, we posit that this may be due to exercise mode with a cholinergic contribution being important during isometric handgrip exercise, where the hyperemic response......-induced fall in SVR and, thereby, augmented the pressor response (+13 ± 3 mmHg at 10 s; P exercise. These findings suggest that a cholinergic mechanism is important for the BP...... resistance (SVR) in young healthy males, while performing either 20 s of isometric handgrip contraction at 40% maximum voluntary contraction (protocol 1; n = 9) or 20 s of low-intensity leg cycling exercise (protocol 2; n = 8, 42 ± 8 W). Exercise trials were conducted under control (no drug) conditions...

  20. Analysis of the Catecholaminergic Phenotype in Human SH-SY5Y and BE(2-M17 Neuroblastoma Cell Lines upon Differentiation.

    Directory of Open Access Journals (Sweden)

    Roberta Filograna

    Full Text Available Human cell lines are often used to investigate cellular pathways relevant for physiological or pathological processes or to evaluate cell toxicity or protection induced by different compounds, including potential drugs. In this study, we analyzed and compared the differentiating activities of three agents (retinoic acid, staurosporine and 12-O-tetradecanoylphorbol-13-acetate on the human neuroblastoma SH-SY5Y and BE(2-M17 cell lines; the first cell line is largely used in the field of neuroscience, while the second is still poorly characterized. After evaluating their effects in terms of cell proliferation and morphology, we investigated their catecholaminergic properties by assessing the expression profiles of the major genes involved in catecholamine synthesis and storage and the cellular concentrations of the neurotransmitters dopamine and noradrenaline. Our results demonstrate that the two cell lines possess similar abilities to differentiate and acquire a neuron-like morphology. The most evident effects in SH-SY5Y cells were observed in the presence of staurosporine, while in BE(2-M17 cells, retinoic acid induced the strongest effects. Undifferentiated SH-SY5Y and BE(2-M17 cells are characterized by the production of both NA and DA, but their levels are considerably higher in BE(2-M17 cells. Moreover, the NAergic phenotype appears to be more pronounced in SH-SY5Y cells, while BE(2-M17 cells have a more prominent DAergic phenotype. Finally, the catecholamine concentration strongly increases upon differentiation induced by staurosporine in both cell lines. In conclusion, in this work the catecholaminergic phenotype of the human BE(2-M17 cell line upon differentiation was characterized for the first time. Our data suggest that SH-SY5Y and BE(2-M17 represent two alternative cell models for the neuroscience field.

  1. Analysis of the Catecholaminergic Phenotype in Human SH-SY5Y and BE(2)-M17 Neuroblastoma Cell Lines upon Differentiation.

    Science.gov (United States)

    Filograna, Roberta; Civiero, Laura; Ferrari, Vanni; Codolo, Gaia; Greggio, Elisa; Bubacco, Luigi; Beltramini, Mariano; Bisaglia, Marco

    2015-01-01

    Human cell lines are often used to investigate cellular pathways relevant for physiological or pathological processes or to evaluate cell toxicity or protection induced by different compounds, including potential drugs. In this study, we analyzed and compared the differentiating activities of three agents (retinoic acid, staurosporine and 12-O-tetradecanoylphorbol-13-acetate) on the human neuroblastoma SH-SY5Y and BE(2)-M17 cell lines; the first cell line is largely used in the field of neuroscience, while the second is still poorly characterized. After evaluating their effects in terms of cell proliferation and morphology, we investigated their catecholaminergic properties by assessing the expression profiles of the major genes involved in catecholamine synthesis and storage and the cellular concentrations of the neurotransmitters dopamine and noradrenaline. Our results demonstrate that the two cell lines possess similar abilities to differentiate and acquire a neuron-like morphology. The most evident effects in SH-SY5Y cells were observed in the presence of staurosporine, while in BE(2)-M17 cells, retinoic acid induced the strongest effects. Undifferentiated SH-SY5Y and BE(2)-M17 cells are characterized by the production of both NA and DA, but their levels are considerably higher in BE(2)-M17 cells. Moreover, the NAergic phenotype appears to be more pronounced in SH-SY5Y cells, while BE(2)-M17 cells have a more prominent DAergic phenotype. Finally, the catecholamine concentration strongly increases upon differentiation induced by staurosporine in both cell lines. In conclusion, in this work the catecholaminergic phenotype of the human BE(2)-M17 cell line upon differentiation was characterized for the first time. Our data suggest that SH-SY5Y and BE(2)-M17 represent two alternative cell models for the neuroscience field.

  2. Cholinergic Modulation of Cortical Microcircuits Is Layer-Specific: Evidence from Rodent, Monkey and Human Brain

    Directory of Open Access Journals (Sweden)

    Joshua Obermayer

    2017-12-01

    Full Text Available Acetylcholine (ACh signaling shapes neuronal circuit development and underlies specific aspects of cognitive functions and behaviors, including attention, learning, memory and motivation. During behavior, activation of muscarinic and nicotinic acetylcholine receptors (mAChRs and nAChRs by ACh alters the activation state of neurons, and neuronal circuits most likely process information differently with elevated levels of ACh. In several brain regions, ACh has been shown to alter synaptic strength as well. By changing the rules for synaptic plasticity, ACh can have prolonged effects on and rearrange connectivity between neurons that outlasts its presence. From recent discoveries in the mouse, rat, monkey and human brain, a picture emerges in which the basal forebrain (BF cholinergic system targets the neocortex with much more spatial and temporal detail than previously considered. Fast cholinergic synapses acting on a millisecond time scale are abundant in the mammalian cerebral cortex, and provide BF cholinergic neurons with the possibility to rapidly alter information flow in cortical microcircuits. Finally, recent studies have outlined novel mechanisms of how cholinergic projections from the BF affect synaptic strength in several brain areas of the rodent brain, with behavioral consequences. This review highlights these exciting developments and discusses how these findings translate to human brain circuitries.

  3. Cholinergic axon length reduced by 300 meters in the brain of an Alzheimer mouse model

    DEFF Research Database (Denmark)

    Nikolajsen, Gitte; Jensen, Morten Skovgaard; West, Mark J.

    2011-01-01

    Modern stereological techniques have been used to show that the total length of the cholinergic fibers in the cerebral cortex of the APPswe/PS1deltaE9 mouse is reduced by almost 300 meters at 18 months of age and has a nonlinear relationship to the amount of transgenetically-induced amyloidosis. ....... These data provide rigorous quantitative morphological evidence that Alzheimer's-like amyloidosis affects the axons of the cholinergic enervation of the cerebral cortex....

  4. Histamine H3 Receptors Decrease Dopamine Release in the Ventral Striatum by Reducing the Activity of Striatal Cholinergic Interneurons.

    Science.gov (United States)

    Varaschin, Rafael Koerich; Osterstock, Guillaume; Ducrot, Charles; Leino, Sakari; Bourque, Marie-Josée; Prado, Marco A M; Prado, Vania Ferreira; Salminen, Outi; Rannanpää Née Nuutinen, Saara; Trudeau, Louis-Eric

    2018-04-15

    Histamine H 3 receptors are widely distributed G i -coupled receptors whose activation reduces neuronal activity and inhibits release of numerous neurotransmitters. Although these receptors are abundantly expressed in the striatum, their modulatory role on activity-dependent dopamine release is not well understood. Here, we observed that histamine H 3 receptor activation indirectly diminishes dopamine overflow in the ventral striatum by reducing cholinergic interneuron activity. Acute brain slices from C57BL/6 or channelrhodopsin-2-transfected DAT-cre mice were obtained, and dopamine transients evoked either electrically or optogenetically were measured by fast-scan cyclic voltammetry. The H 3 agonist α-methylhistamine significantly reduced electrically- evoked dopamine overflow, an effect blocked by the nicotinic acetylcholine receptor antagonist dihydro-β-erythroidine, suggesting involvement of cholinergic interneurons. None of the drug treatments targeting H 3 receptors affected optogenetically evoked dopamine overflow, indicating that direct H 3 -modulation of dopaminergic axons is unlikely. Next, we used qPCR and confirmed the expression of histamine H 3 receptor mRNA in cholinergic interneurons, both in ventral and dorsal striatum. Activation of H 3 receptors by α-methylhistamine reduced spontaneous firing of cholinergic interneurons in the ventral, but not in the dorsal striatum. Resting membrane potential and number of spontaneous action potentials in ventral-striatal cholinergic interneurons were significantly reduced by α-methylhistamine. Acetylcholine release from isolated striatal synaptosomes, however, was not altered by α-methylhistamine. Together, these results indicate that histamine H 3 receptors are important modulators of dopamine release, specifically in the ventral striatum, and that they do so by decreasing the firing rate of cholinergic neurons and, consequently, reducing cholinergic tone on dopaminergic axons. Copyright © 2018 IBRO

  5. Age-related changes in nicotine response of cholinergic and non-cholinergic laterodorsal tegmental neurons: implications for the heightened adolescent susceptibility to nicotine addiction

    Science.gov (United States)

    Christensen, Mark H.; Ishibashi, Masaru; Nielsen, Michael L.; Leonard, Christopher S.; Kohlmeier, Kristi A.

    2015-01-01

    The younger an individual starts smoking, the greater the likelihood that addiction to nicotine will develop, suggesting that neurobiological responses vary across age to the addictive component of cigarettes. Cholinergic neurons of the laterodorsal tegmental nucleus (LDT) are importantly involved in the development of addiction, however, the effects of nicotine on LDT neuronal excitability across ontogeny are unknown. Nicotinic effects on several parameters affecting LDT cells across different age groups were examined using calcium imaging and whole-cell patch clamping. Within the youngest age group (P7-P15), nicotine was found to induce larger intracellular calcium transients and inward currents. Nicotine induced a greater number of excitatory synaptic currents in the youngest animals, whereas larger amplitude inhibitory synaptic events were induced in cells from the oldest animals (P15-P34). Nicotine increased neuronal firing of cholinergic cells to a greater degree in younger animals, possibly linked to development associated differences found in nicotinic effects on action potential shape and afterhyperpolarization. We conclude that in addition to age-associated alterations of several properties expected to affect resting cell excitability, parameters affecting cell excitability are altered by nicotine differentially across ontogeny. Taken together, our data suggest that nicotine induces a larger excitatory response in cholinergic LDT neurons from the youngest animals, which could result in a greater excitatory output from these cells to target regions involved in development of addiction. Such output would be expected to be promotive of addiction; therefore, ontogenetic differences in nicotine-mediated increases in the excitability of the LDT could contribute to the differential susceptibility to nicotine addiction seen across age. PMID:24863041

  6. Elevated Hippocampal Cholinergic Neurostimulating Peptide precursor protein (HCNP-pp) mRNA in the amygdala in major depression.

    Science.gov (United States)

    Bassi, Sabrina; Seney, Marianne L; Argibay, Pablo; Sibille, Etienne

    2015-04-01

    The amygdala is innervated by the cholinergic system and is involved in major depressive disorder (MDD). Evidence suggests a hyper-activate cholinergic system in MDD. Hippocampal Cholinergic Neurostimulating Peptide (HCNP) regulates acetylcholine synthesis. The aim of the present work was to investigate expression levels of HCNP-precursor protein (HCNP-pp) mRNA and other cholinergic-related genes in the postmortem amygdala of MDD patients and matched controls (females: N = 16 pairs; males: N = 12 pairs), and in the mouse unpredictable chronic mild stress (UCMS) model that induced elevated anxiety-/depressive-like behaviors (females: N = 6 pairs; males: N = 6 pairs). Results indicate an up-regulation of HCNP-pp mRNA in the amygdala of women with MDD (p < 0.0001), but not males, and of UCMS-exposed mice (males and females; p = 0.037). HCNP-pp protein levels were investigated in the human female cohort, but no difference was found. There were no differences in gene expression of acetylcholinesterase (AChE), muscarinic (mAChRs) or nicotinic receptors (nAChRs) between MDD subjects and controls or UCMS and control mice, except for an up-regulation of AChE in UCMS-exposed mice (males and females; p = 0.044). Exploratory analyses revealed a baseline expression difference of cholinergic signaling-related genes between women and men (p < 0.0001). In conclusion, elevated amygdala HCNP-pp expression may contribute to mechanisms of MDD in women, potentially independently from regulating the cholinergic system. The differential expression of genes between women and men could also contribute to the increased vulnerability of females to develop MDD. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Role of the thalamic parafascicular nucleus cholinergic system in the modulation of acute corneal nociception in rats

    Directory of Open Access Journals (Sweden)

    Esmaeal Tamaddonfard

    2011-11-01

    Full Text Available The present study investigated the effects of microinjections of acetylcholine (a cholinergic agonist, physostigmine (a cholinesterase inhibitor, atropine (an antagonist of muscarinic cholinergic receptors and hexamethonium (an antagonist of nicotinic cholinergic receptors into the parafascicular nucleus of thalamus on the acute corneal nociception in rats. Acute corneal nociception was induced by putting a drop of 5 M NaCl solution onto the corneal surface of the eye and the number of eye wipes was counted during the first 30s. Both acetylcholine and physostigmine at the same doses of 0.5, 1 and 2 μg significantly (P < 0.05 reduced the number of eye wipes. The intensity of corneal nociception was not changed when atropine and hexamethonium were used alone. Atropine (4 μg, but not hexamethonium (4 μg significantly (P < 0.05 prevented acetylcholine (2 μg- and physostigmine (2 μg-induced antinociceptive effects. The results indicated that at the level of the parafascicular nucleus of thalamus, the muscarinic cholinergic receptors might be involved in the antinociceptive effects of acetylcholine and physostigmine.

  8. Chaoborus and gasterosteus anti-predator responses in Daphnia pulex are mediated by independent cholinergic and gabaergic neuronal signals.

    Directory of Open Access Journals (Sweden)

    Linda C Weiss

    Full Text Available Many prey species evolved inducible defense strategies that protect effectively against predation threats. Especially the crustacean Daphnia emerged as a model system for studying the ecology and evolution of inducible defenses. Daphnia pulex e.g. shows different phenotypic adaptations against vertebrate and invertebrate predators. In response to the invertebrate phantom midge larvae Chaoborus (Diptera D. pulex develops defensive morphological defenses (neckteeth. Cues originating from predatory fish result in life history changes in which resources are allocated from somatic growth to reproduction. While there are hints that responses against Chaoborus cues are transmitted involving cholinergic neuronal pathways, nothing is known about the neurophysiology underlying the transmission of fish related cues. We investigated the neurophysiological basis underlying the activation of inducible defenses in D. pulex using induction assays with the invertebrate predator Chaoborus and the three-spined stickleback Gasterosteus aculeatus. Predator-specific cues were combined with neuro-effective substances that stimulated or inhibited the cholinergic and gabaergic nervous system. We show that cholinergic-dependent pathways are involved in the perception and transmission of Chaoborus cues, while GABA was not involved. Thus, the cholinergic nervous system independently mediates the development of morphological defenses in response to Chaoborus cues. In contrast, only the inhibitory effect of GABA significantly influence fish-induced life history changes, while the application of cholinergic stimulants had no effect in combination with fish related cues. Our results show that cholinergic stimulation mediates signal transmission of Chaoborus cues leading to morphological defenses. Fish cues, which are responsible for predator-specific life history adaptations involve gabaergic control. Our study shows that both pathways are independent and thus potentially

  9. Asynchronous Cholinergic Drive Correlates with Excitation-Inhibition Imbalance via a Neuronal Ca2+ Sensor Protein

    Directory of Open Access Journals (Sweden)

    Keming Zhou

    2017-05-01

    Full Text Available Excitation-inhibition imbalance in neural networks is widely linked to neurological and neuropsychiatric disorders. However, how genetic factors alter neuronal activity, leading to excitation-inhibition imbalance, remains unclear. Here, using the C. elegans locomotor circuit, we examine how altering neuronal activity for varying time periods affects synaptic release pattern and animal behavior. We show that while short-duration activation of excitatory cholinergic neurons elicits a reversible enhancement of presynaptic strength, persistent activation results to asynchronous and reduced cholinergic drive, inducing imbalance between endogenous excitation and inhibition. We find that the neuronal calcium sensor protein NCS-2 is required for asynchronous cholinergic release in an activity-dependent manner and dampens excitability of inhibitory neurons non-cell autonomously. The function of NCS-2 requires its Ca2+ binding and membrane association domains. These results reveal a synaptic mechanism implicating asynchronous release in regulation of excitation-inhibition balance.

  10. Dynamic changes in GABAA receptors on basal forebrain cholinergic neurons following sleep deprivation and recovery

    Directory of Open Access Journals (Sweden)

    Jones Barbara E

    2007-02-01

    Full Text Available Abstract Background The basal forebrain (BF cholinergic neurons play an important role in cortical activation and arousal and are active in association with cortical activation of waking and inactive in association with cortical slow wave activity of sleep. In view of findings that GABAA receptors (Rs and inhibitory transmission undergo dynamic changes as a function of prior activity, we investigated whether the GABAARs on cholinergic cells might undergo such changes as a function of their prior activity during waking vs. sleep. Results In the brains of rats under sleep control (SC, sleep deprivation (SD or sleep recovery (SR conditions in the 3 hours prior to sacrifice, we examined immunofluorescent staining for β2–3 subunit GABAARs on choline acetyltransferase (ChAT immunopositive (+ cells in the magnocellular BF. In sections also stained for c-Fos, β2–3 GABAARs were present on ChAT+ neurons which expressed c-Fos in the SD group alone and were variable or undetectable on other ChAT+ cells across groups. In dual-immunostained sections, the luminance of β2–3 GABAARs over the membrane of ChAT+ cells was found to vary significantly across conditions and to be significantly higher in SD than SC or SR groups. Conclusion We conclude that membrane GABAARs increase on cholinergic cells as a result of activity during sustained waking and reciprocally decrease as a result of inactivity during sleep. These changes in membrane GABAARs would be associated with increased GABA-mediated inhibition of cholinergic cells following prolonged waking and diminished inhibition following sleep and could thus reflect a homeostatic process regulating cholinergic cell activity and thereby indirectly cortical activity across the sleep-waking cycle.

  11. Cholinergic Machinery as Relevant Target in Acute Lymphoblastic T Leukemia

    Directory of Open Access Journals (Sweden)

    Oxana Dobrovinskaya

    2016-08-01

    Full Text Available Various types of non-neuronal cells, including tumors, are able to produce acetylcholine (ACh, which acts as an autocrine/paracrine growth factor. T lymphocytes represent a key component of the non-neuronal cholinergic system. T cells-derived ACh is involved in a stimulation of their activation and proliferation, and acts as a regulator of immune response. The aim of the present work was to summarize the data about components of cholinergic machinery in T lymphocytes, with an emphasis on the comparison of healthy and leukemic T cells. Cell lines derived from acute lymphoblastic leukemias of T lineage (T-ALL were found to produce a considerably higher amount of ACh than healthy T lumphocytes. Additionally, ACh produced by T-ALL is not efficiently hydrolyzed, because acetylcholinesterase (AChE activity is drastically decreased in these cells. Up-regulation of muscarinic ACh receptors was also demonstrated at expression and functional level, whereas nicotinic ACh receptors seem to play a less important role and not form functional channels in cells derived from T-ALL. We hypothesized that ACh over-produced in T-ALL may act as an autocrine growth factor and play an important role in leukemic clonal expansion through shaping of intracellular Ca2+ signals. We suggest that cholinergic machinery may be attractive targets for new drugs against T-ALL. Specifically, testing of high affinity antagonists of muscarinic ACh receptors as well as antagomiRs, which interfere with miRNAs involved in the suppression of AChE expression, may be the first choice options.

  12. Central cholinergic dysfunction could be associated with oropharyngeal dysphagia in early Parkinson's disease.

    Science.gov (United States)

    Lee, Kyung Duck; Koo, Jung Hoi; Song, Sun Hong; Jo, Kwang Deog; Lee, Moon Kyu; Jang, Wooyoung

    2015-11-01

    Dysphagia is an important issue in the prognosis of Parkinson's disease (PD). Although several studies have reported that oropharyngeal dysphagia may be associated with cognitive dysfunction, the exact relationship between cortical function and swallowing function in PD patients is unclear. Therefore, we investigated the association between an electrophysiological marker of central cholinergic function, which reflected cognitive function, and swallowing function, as measured by videofluoroscopic studies (VFSS). We enrolled 29 early PD patients. Using the Swallowing Disturbance Questionnaire (SDQ), we divided the enrolled patients into two groups: PD with dysphagia and PD without dysphagia. The videofluoroscopic dysphagia scale (VDS) was applied to explore the nature of the dysphagia. To assess central cholinergic dysfunction, short latency afferent inhibition (SAI) was evaluated. We analyzed the relationship between central cholinergic dysfunction and oropharyngeal dysphagia and investigated the characteristics of the dysphagia. The SAI values were significantly different between the two groups. The comparison of each VFSS component between the PD with dysphagia group and the PD without dysphagia group showed statistical significance for most of the oral phase components and for a single pharyngeal phase component. The total score on the VDS was higher in the PD with dysphagia group than in the PD without dysphagia group. The Mini-Mental State Examination and SAI values showed significant correlations with the total score of the oral phase components. According to binary logistic regression analysis, SAI value independently contributed to the presence of dysphagia in PD patients. Our findings suggest that cholinergic dysfunction is associated with dysphagia in early PD and that an abnormal SAI value is a good biomarker for predicting the risk of dysphagia in PD patients.

  13. Localization of pre- and postsynaptic cholinergic markers in rodent forebrain : A brief history and comparison of rat and mouse

    NARCIS (Netherlands)

    Van der Zee, E. A.; Keijser, J.N.

    2011-01-01

    Rat and mouse models are widely used for studies in cognition and pathophysiology, among others. Here, we sought to determine to what extent these two model species differ for cholinergic and cholinoceptive features. For this purpose, we focused on cholinergic innervation patterns based on choline

  14. Young Human Cholinergic Neurons Respond to Physiological Regulators and Improve Cognitive Symptoms in an Animal Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Annamaria Morelli

    2017-10-01

    Full Text Available The degeneration of cholinergic neurons of the nucleus basalis of Meynert (NBM in the basal forebrain (BF is associated to the cognitive decline of Alzheimer’s disease (AD patients. To date no resolutive therapies exist. Cell-based replacement therapy is a strategy currently under consideration, although the mechanisms underlying the generation of stem cell-derived NBM cholinergic neurons able of functional integration remain to be clarified. Since fetal brain is an optimal source of neuronal cells committed towards a specific phenotype, this study is aimed at isolating cholinergic neurons from the human fetal NBM (hfNBMs in order to study their phenotypic, maturational and functional properties. Extensive characterization confirmed the cholinergic identity of hfNBMs, including positivity for specific markers (such as choline acetyltransferase and acetylcholine (Ach release. Electrophysiological measurements provided the functional validation of hfNBM cells, which exhibited the activation of peculiar sodium (INa and potassium (IK currents, as well as the presence of functional cholinergic receptors. Accordingly, hfNBMs express both nicotinic and muscarinic receptors, which were activated by Ach. The hfNBMs cholinergic phenotype was regulated by the nerve growth factor (NGF, through the activation of the high-affinity NGF receptor TrkA, as well as by 17-β-estradiol through a peculiar recruitment of its own receptors. When intravenously administered in NBM-lesioned rats, hfNBMs determined a significant improvement in memory functions. Histological examination of brain sections showed that hfNBMs (labeled with PKH26 fluorescent dye prior to administration reached the damaged brain areas. The study provides a useful model to study the ontogenetic mechanisms regulating the development and maintenance of the human brain cholinergic system and to assess new lines of research, including disease modeling, drug discovery and cell-based therapy for AD.

  15. Selective Activation of Cholinergic Interneurons Enhances Accumbal Phasic Dopamine Release: Setting the Tone for Reward Processing

    Directory of Open Access Journals (Sweden)

    Roger Cachope

    2012-07-01

    Full Text Available Dopamine plays a critical role in motor control, addiction, and reward-seeking behaviors, and its release dynamics have traditionally been linked to changes in midbrain dopamine neuron activity. Here, we report that selective endogenous cholinergic activation achieved via in vitro optogenetic stimulation of nucleus accumbens, a terminal field of dopaminergic neurons, elicits real-time dopamine release. This mechanism occurs via direct actions on dopamine terminals, does not require changes in neuron firing within the midbrain, and is dependent on glutamatergic receptor activity. More importantly, we demonstrate that in vivo selective activation of cholinergic interneurons is sufficient to elicit dopamine release in the nucleus accumbens. Therefore, the control of accumbal extracellular dopamine levels by endogenous cholinergic activity results from a complex convergence of neurotransmitter/neuromodulator systems that may ultimately synergize to drive motivated behavior.

  16. Transplantation of Human Chorion-Derived Cholinergic Progenitor Cells: a Novel Treatment for Neurological Disorders.

    Science.gov (United States)

    Mohammadi, Alireza; Maleki-Jamshid, Ali; Sanooghi, Davood; Milan, Peiman Brouki; Rahmani, Arash; Sefat, Farshid; Shahpasand, Koorosh; Soleimani, Mansoureh; Bakhtiari, Mehrdad; Belali, Rafie; Faghihi, Faezeh; Joghataei, Mohammad Taghi; Perry, George; Mozafari, Masoud

    2018-03-16

    A neurological disorder is any disorder or abnormality in the nervous system. Among different neurological disorders, Alzheimer's disease (AD) is recognized as the sixth leading cause of death globally. Considerable research has been conducted to find pioneer treatments for this devastating disorder among which cell therapy has attracted remarkable attentions over the last decade. Up to now, targeted differentiation into specific desirable cell types has remained a major obstacle to clinical application of cell therapy. Also, potential risks including uncontrolled growth of stem cells could be disastrous. In our novel protocol, we used basal forebrain cholinergic progenitor cells (BFCN) derived from human chorion-derived mesenchymal stem cells (hC-MSCs) which made it possible to obtain high-quality population of cholinergic neurons and in vivo in much shorter time period than previous established methods. Remarkably, the transplanted progenitors fully differentiated to cholinergic neurons which in turn integrated in higher cortical networks of host brains, resulting in significant improvement in cognitive assessments. This method may have profound implications in cell therapies for any other neurodegenerative disorders. Graphical Abstract ᅟ.

  17. Cholinergic receptor binding in the frontal cortex of suicide victims

    International Nuclear Information System (INIS)

    Stanley, M.

    1986-01-01

    Because there is a high incidence of individuals diagnosed as having an affective disorder who subsequently commit suicide, the author thought it would be of interest to determine QNB binding in the brains of a large sample of suicide victims, and to compare the findings with a well-matched control group. Brain samples were obtained at autopsy from 22 suicide victims and 22 controls. Frontal cortex samples were diseected, frozen, and stored until assayed. Samples of tissue homogenate were incubated in duplicate with 10 concentrations of tritium-QNB. Specific binding was determined with and without atropine. The results confirmed previous studies in which no changes were noted in suicide versus control brains. While the findings neither disprove nor support the cholinergic hypothesis of depression, they do suggest that the neurochemical basis for the in vivo observations of increased responsivity of depressed individuals to muscarinic cholinergic agents might not involve changes in receptors estimated by QNB binding

  18. Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart.

    Science.gov (United States)

    Malloy, Cole A; Ritter, Kyle; Robinson, Jonathan; English, Connor; Cooper, Robin L

    2016-01-01

    The Drosophila melanogaster heart is a popular model in which to study cardiac physiology and development. Progress has been made in understanding the role of endogenous compounds in regulating cardiac function in this model. It is well characterized that common neurotransmitters act on many peripheral and non-neuronal tissues as they flow through the hemolymph of insects. Many of these neuromodulators, including acetylcholine (ACh), have been shown to act directly on the D. melanogaster larval heart. ACh is a primary neurotransmitter in the central nervous system (CNS) of vertebrates and at the neuromuscular junctions on skeletal and cardiac tissue. In insects, ACh is the primary excitatory neurotransmitter of sensory neurons and is also prominent in the CNS. A full understanding regarding the regulation of the Drosophila cardiac physiology by the cholinergic system remains poorly understood. Here we use semi-intact D. melanogaster larvae to study the pharmacological profile of cholinergic receptor subtypes, nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs), in modulating heart rate (HR). Cholinergic receptor agonists, nicotine and muscarine both increase HR, while nAChR agonist clothianidin exhibits no significant effect when exposed to an open preparation at concentrations as low as 100 nM. In addition, both nAChR and mAChR antagonists increase HR as well but also display capabilities of blocking agonist actions. These results provide evidence that both of these receptor subtypes display functional significance in regulating the larval heart's pacemaker activity.

  19. Reorganization of Motor Cortex by Vagus Nerve Stimulation Requires Cholinergic Innervation.

    Science.gov (United States)

    Hulsey, Daniel R; Hays, Seth A; Khodaparast, Navid; Ruiz, Andrea; Das, Priyanka; Rennaker, Robert L; Kilgard, Michael P

    2016-01-01

    Vagus nerve stimulation (VNS) paired with forelimb training drives robust, specific reorganization of movement representations in the motor cortex. The mechanisms that underlie VNS-dependent enhancement of map plasticity are largely unknown. The cholinergic nucleus basalis (NB) is a critical substrate in cortical plasticity, and several studies suggest that VNS activates cholinergic circuitry. We examined whether the NB is required for VNS-dependent enhancement of map plasticity in the motor cortex. Rats were trained to perform a lever pressing task and then received injections of the immunotoxin 192-IgG-saporin to selectively lesion cholinergic neurons of the NB. After lesion, rats underwent five days of motor training during which VNS was paired with successful trials. At the conclusion of behavioral training, intracortical microstimulation was used to document movement representations in motor cortex. VNS paired with forelimb training resulted in a substantial increase in the representation of proximal forelimb in rats with an intact NB compared to untrained controls. NB lesions prevent this VNS-dependent increase in proximal forelimb area and result in representations similar to untrained controls. Motor performance was similar between groups, suggesting that differences in forelimb function cannot account for the difference in proximal forelimb representation. Together, these findings indicate that the NB is required for VNS-dependent enhancement of plasticity in the motor cortex and may provide insight into the mechanisms that underlie the benefits of VNS therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Demodex canis regulates cholinergic system mediated immunosuppressive pathways in canine demodicosis.

    Science.gov (United States)

    Kumari, P; Nigam, R; Singh, A; Nakade, U P; Sharma, A; Garg, S K; Singh, S K

    2017-09-01

    Demodex canis infestation in dogs remains one of the main challenges in veterinary dermatology. The exact pathogenesis of canine demodicosis is unknown but an aberration in immune status is considered very significant. No studies have underpinned the nexus between induction of demodicosis and neural immunosuppressive pathways so far. We have evaluated the involvement of cholinergic pathways in association with cytokines regulation as an insight into the immuno-pathogenesis of canine demodicosis in the present study. Remarkable elevations in circulatory immunosuppressive cytokine interleukin-10 and cholinesterase activity were observed in dogs with demodicosis. Simultaneously, remarkable reduction in circulatory pro-inflammatory cytokine tumour necrosis factor-alpha level was observed in dogs with demodicosis. Findings of the present study evidently suggest that Demodex mites might be affecting the cholinergic pathways to induce immunosuppression in their host and then proliferate incessantly in skin microenvironment to cause demodicosis.

  1. Elimination of the vesicular acetylcholine transporter in the striatum reveals regulation of behaviour by cholinergic-glutamatergic co-transmission.

    Directory of Open Access Journals (Sweden)

    Monica S Guzman

    2011-11-01

    Full Text Available Cholinergic neurons in the striatum are thought to play major regulatory functions in motor behaviour and reward. These neurons express two vesicular transporters that can load either acetylcholine or glutamate into synaptic vesicles. Consequently cholinergic neurons can release both neurotransmitters, making it difficult to discern their individual contributions for the regulation of striatal functions. Here we have dissected the specific roles of acetylcholine release for striatal-dependent behaviour in mice by selective elimination of the vesicular acetylcholine transporter (VAChT from striatal cholinergic neurons. Analysis of several behavioural parameters indicates that elimination of VAChT had only marginal consequences in striatum-related tasks and did not affect spontaneous locomotion, cocaine-induced hyperactivity, or its reward properties. However, dopaminergic sensitivity of medium spiny neurons (MSN and the behavioural outputs in response to direct dopaminergic agonists were enhanced, likely due to increased expression/function of dopamine receptors in the striatum. These observations indicate that previous functions attributed to striatal cholinergic neurons in spontaneous locomotor activity and in the rewarding responses to cocaine are mediated by glutamate and not by acetylcholine release. Our experiments demonstrate how one population of neurons can use two distinct neurotransmitters to differentially regulate a given circuitry. The data also raise the possibility of using VAChT as a target to boost dopaminergic function and decrease high striatal cholinergic activity, common neurochemical alterations in individuals affected with Parkinson's disease.

  2. Thyroid hormone modulates the development of cholinergic terminal fields in the rat forebrain: relation to nerve growth factor receptor.

    Science.gov (United States)

    Oh, J D; Butcher, L L; Woolf, N J

    1991-04-24

    Hyperthyroidism, induced in rat pups by the daily intraperitoneal administration of 1 microgram/g body weight triiodothyronine, facilitated the development of ChAT fiber plexuses in brain regions innervated by basal forebrain cholinergic neurons, leading to an earlier and increased expression of cholinergic markers in those fibers in the cortex, hippocampus and amygdala. A similar enhancement was seen in the caudate-putamen complex. This histochemical profile was correlated with an accelerated appearance of ChAT-positive telencephalic puncta, as well as with a larger total number of cholinergic terminals expressed, which persisted throughout the eight postnatal week, the longest time examined in the present study. Hypothyroidism was produced in rat pups by adding 0.5% propylthiouracil to the dams' diet beginning the day after birth. This dietary manipulation resulted in the diminished expression of ChAT in forebrain fibers and terminals. Hypothyroid treatment also reduced the quantity of ChAT puncta present during postnatal weeks 2 and 3, and, from week 4 and continuing through week 6, the number of ChAT-positive terminals in the telencephalic regions examined was actually less than the amount extant during the former developmental epoch. Immunostaining for nerve growth factor receptor (NGF-R), which is associated almost exclusively with ChAT-positive somata and fibers in the basal forebrain, demonstrated a different time course of postnatal development. Forebrain fibers and terminals demonstrating NGF-R were maximally visualized 1 week postnatally, a time at which these same neuronal elements evinced minimal ChAT-like immunopositivity. Thereafter and correlated with increased immunoreactivity for ChAT, fine details of NGF-R stained fibers were observed less frequently. Although propylthiouracil administration decreased NGF-R immunodensity, no alteration in the development of that receptor was observed as a function of triiodothyronine treatment. Cholinergic

  3. Hypoglycemia induced changes in cholinergic receptor expression in the cerebellum of diabetic rats

    Directory of Open Access Journals (Sweden)

    Anju TR

    2010-02-01

    Full Text Available Abstract Glucose homeostasis in humans is an important factor for the functioning of nervous system. Hypoglycemia and hyperglycemia is found to be associated with central and peripheral nerve system dysfunction. Changes in acetylcholine receptors have been implicated in the pathophysiology of many major diseases of the central nervous system (CNS. In the present study we showed the effects of insulin induced hypoglycemia and streptozotocin induced diabetes on the cerebellar cholinergic receptors, GLUT3 and muscle cholinergic activity. Results showed enhanced binding parameters and gene expression of Muscarinic M1, M3 receptor subtypes in cerebellum of diabetic (D and hypoglycemic group (D + IIH and C + IIH. α7nAchR gene expression showed a significant upregulation in diabetic group and showed further upregulated expression in both D + IIH and C + IIH group. AchE expression significantly upregulated in hypoglycemic and diabetic group. ChAT showed downregulation and GLUT3 expression showed a significant upregulation in D + IIH and C + IIH and diabetic group. AchE activity enhanced in the muscle of hypoglycemic and diabetic rats. Our studies demonstrated a functional disturbance in the neuronal glucose transporter GLUT3 in the cerebellum during insulin induced hypoglycemia in diabetic rats. Altered expression of muscarinic M1, M3 and α7nAchR and increased muscle AchE activity in hypoglycemic rats in cerebellum is suggested to cause cognitive and motor dysfunction. Hypoglycemia induced changes in ChAT and AchE gene expression is suggested to cause impaired acetycholine metabolism in the cerebellum. Cerebellar dysfunction is associated with seizure generation, motor deficits and memory impairment. The results shows that cerebellar cholinergic neurotransmission is impaired during hyperglycemia and hypoglycemia and the hypoglycemia is causing more prominent imbalance in cholinergic neurotransmission which is suggested to be a cause of cerebellar

  4. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer's Disease.

    Science.gov (United States)

    Kwakowsky, Andrea; Milne, Michael R; Waldvogel, Henry J; Faull, Richard L

    2016-12-17

    The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer's disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer's disease.

  5. Rapid effects of hearing song on catecholaminergic activity in the songbird auditory pathway.

    Directory of Open Access Journals (Sweden)

    Lisa L Matragrano

    Full Text Available Catecholaminergic (CA neurons innervate sensory areas and affect the processing of sensory signals. For example, in birds, CA fibers innervate the auditory pathway at each level, including the midbrain, thalamus, and forebrain. We have shown previously that in female European starlings, CA activity in the auditory forebrain can be enhanced by exposure to attractive male song for one week. It is not known, however, whether hearing song can initiate that activity more rapidly. Here, we exposed estrogen-primed, female white-throated sparrows to conspecific male song and looked for evidence of rapid synthesis of catecholamines in auditory areas. In one hemisphere of the brain, we used immunohistochemistry to detect the phosphorylation of tyrosine hydroxylase (TH, a rate-limiting enzyme in the CA synthetic pathway. We found that immunoreactivity for TH phosphorylated at serine 40 increased dramatically in the auditory forebrain, but not the auditory thalamus and midbrain, after 15 min of song exposure. In the other hemisphere, we used high pressure liquid chromatography to measure catecholamines and their metabolites. We found that two dopamine metabolites, dihydroxyphenylacetic acid and homovanillic acid, increased in the auditory forebrain but not the auditory midbrain after 30 min of exposure to conspecific song. Our results are consistent with the hypothesis that exposure to a behaviorally relevant auditory stimulus rapidly induces CA activity, which may play a role in auditory responses.

  6. Heavy metal uranium affects the brain cholinergic system in rat following sub-chronic and chronic exposure

    International Nuclear Information System (INIS)

    Bensoussan, Helene; Grancolas, Line; Dhieux-Lestaevel, Bernadette; Delissen, Olivia; Vacher, Claire-Marie; Dublineau, Isabelle; Voisin, Philippe; Gourmelon, Patrick; Taouis, Mohammed; Lestaevel, Philippe

    2009-01-01

    Uranium is a heavy metal naturally present in the environment that may be chronically ingested by the population. Previous studies have shown that uranium is present in the brain and alters behaviour, notably locomotor activity, sensorimotor ability, sleep/wake cycle and the memory process, but also metabolism of neurotransmitters. The cholinergic system mediates many cognitive systems, including those disturbed after chronic exposure to uranium i.e., spatial memory, sleep/wake cycle and locomotor activity. The objective of this study was to assess whether these disorders follow uranium-induced alteration of the cholinergic system. In comparison with 40 control rats, 40 rats drank 40 mg/L uranyl nitrate for 1.5 or 9 months. Cortex and hippocampus were removed and gene expression and protein level were analysed to determine potential changes in cholinergic receptors and acetylcholine levels. The expression of genes showed various alterations in the two brain areas after short- and long-term exposure. Nevertheless, protein levels of the choline acetyltransferase enzyme (ChAT), the vesicular transporter of acetylcholine (VAChT) and the nicotinic receptor β2 sub-unit (nAChRβ2) were unmodified in all cases of the experiment and muscarinic receptor type 1 (m1AChR) protein level was disturbed only after 9 months of exposure in the cortex (-30%). Acetylcholine levels were unchanged in the hippocampus after 1.5 and 9 months, but were decreased in the cortex after 1.5 months only (-22%). Acetylcholinesterase (AChE) activity was also unchanged in the hippocampus but decreased in the cortex after 1.5 and 9 months (-16% and -18%, respectively). Taken together, these data indicate that the cholinergic system is a target of uranium exposure in a structure-dependent and time-dependent manner. These cholinergic alterations could participate in behavioural impairments.

  7. The role of the intrinsic cholinergic system of the striatum: What have we learned from TAN recordings in behaving animals?

    Science.gov (United States)

    Apicella, Paul

    2017-09-30

    Cholinergic interneurons provide rich local innervation of the striatum and play an important role in controlling behavior, as evidenced by the variety of movement and psychiatric disorders linked to disrupted striatal cholinergic transmission. Much progress has been made in recent years regarding our understanding of how these interneurons contribute to the processing of information in the striatum. In particular, investigation of the activity of presumed striatal cholinergic interneurons, identified as tonically active neurons or TANs in behaving animals, has pointed to their role in the signaling and learning of the motivational relevance of environmental stimuli. Although the bulk of this work has been conducted in monkeys, several studies have also been carried out in behaving rats, but information remains rather disparate across studies and it is still questionable whether rodent TANs correspond to TANs described in monkeys. Consequently, our current understanding of the function of cholinergic transmission in the striatum is challenged by the rapidly growing, but often confusing literature on the relationship between TAN activity and specific behaviors. As regards the precise nature of the information conveyed by the cholinergic TANs, a recent influential view emphasized that these local circuit neurons may play a special role in the processing of contextual information that is important for reinforcement learning and selection of appropriate actions. This review provides a summary of recent progress in TAN physiology from which it is proposed that striatal cholinergic interneurons are crucial elements for flexible switching of behaviors under changing environmental conditions. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Effects of acute exposure to chlorpyrifos on cholinergic and non-cholinergic targets in normal and high-fat fed male C57BL/6J mice.

    Science.gov (United States)

    Kondakala, Sandeep; Lee, Jung Hwa; Ross, Matthew K; Howell, George E

    2017-12-15

    The prevalence of obesity is increasing at an alarming rate in the United States with 36.5% of adults being classified as obese. Compared to normal individuals, obese individuals have noted pathophysiological alterations which may alter the toxicokinetics of xenobiotics and therefore alter their toxicities. However, the effects of obesity on the toxicity of many widely utilized pesticides has not been established. Therefore, the present study was designed to determine if the obese phenotype altered the toxicity of the most widely used organophosphate (OP) insecticide, chlorpyrifos (CPS). Male C57BL/6J mice were fed normal or high-fat diet for 4weeks and administered a single dose of vehicle or CPS (2.0mg/kg; oral gavage) to assess cholinergic (acetylcholinesterase activities) and non-cholinergic (carboxylesterase and endocannabinoid hydrolysis) endpoints. Exposure to CPS significantly decreased red blood cell acetylcholinesterase (AChE) activity, but not brain AChE activity, in both diet groups. Further, CPS exposure decreased hepatic carboxylesterase activity and hepatic hydrolysis of a major endocannabinoid, anandamide, in a diet-dependent manner with high-fat diet fed animals being more sensitive to CPS-mediated inhibition. These in vivo studies were corroborated by in vitro studies using rat primary hepatocytes, which demonstrated that fatty acid amide hydrolase and CES activities were more sensitive to CPS-mediated inhibition than 2-arachidonoylglycerol hydrolase activity. These data demonstrate hepatic CES and FAAH activities in high-fat diet fed mice were more potently inhibited than those in normal diet fed mice following CPS exposure, which suggests that the obese phenotype may exacerbate some of the non-cholinergic effects of CPS exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Cypermethrin Poisoning and Anti-cholinergic Medication- A Case Report

    Directory of Open Access Journals (Sweden)

    Dr Sudip Parajuli

    2006-07-01

    Full Text Available A 30 years old male was brought to emergency department of Manipal Teaching Hospital, Pokhara, Nepal with alleged history of consumption of pyrethroid compound ‘cypermethrin’. It was found to be newer insecticide poisoning reported in Nepal. We reported this case to show effectiveness of anti-cholinergic like hyosciane and chlorpheniramine maleate in the treatment of cypermethrin poisoning.

  10. Brain cholinergic involvement during the rapid development of tolerance to morphine

    Science.gov (United States)

    Wahba, Z. Z.; Oriaku, E. T.; Soliman, S. F. A.

    1987-01-01

    The effect of repeated administration of morphine on the activities of the cholinergic enzymes, choline acetyltransferase (ChAT) and acetylcholinesterase (AChE), in specific brain regions were studied in rats treated with 10 mg/kg morphine for one or two days. Repeated administration of morphine was associated with a decline in the degree of analgesia produced and with a significant increase of AChE activity of the medulla oblongata. A single injection of morphine resulted in a significant decline in ChAT activity in the hypothalamus, cerebellum, and medulla oblongata regions. After two consecutive injections, no decline in ChAT was observed in these regions, while in the cerebral cortex the second administration elicited a significant decline. The results suggest that the development of tolerance to morphine may be mediated through changes in ChAT activity and lend support to the involvement of the central cholinergic system in narcotic tolerance.

  11. Neuropharmacology of memory consolidation and reconsolidation: Insights on central cholinergic mechanisms.

    Science.gov (United States)

    Blake, M G; Krawczyk, M C; Baratti, C M; Boccia, M M

    2014-01-01

    Central cholinergic system is critically involved in all known memory processes. Endogenous acetylcholine release by cholinergic neurons is necessary for modulation of acquisition, encoding, consolidation, reconsolidation, extinction, retrieval and expression. Experiments from our laboratory are mainly focused on elucidating the mechanisms by which acetylcholine modulates memory processes. Blockade of hippocampal alpha-7-nicotinic receptors (α7-nAChRs) with the antagonist methyllycaconitine impairs memory reconsolidation. However, the administration of a α7-nAChR agonist (choline) produce a paradoxical modulation, causing memory enhancement in mice trained with a weak footshock, but memory impairment in animals trained with a strong footshock. All these effects are long-lasting, and depend on the age of the memory trace. This review summarizes and discusses some of our recent findings, particularly regarding the involvement of α7-nAChRs on memory reconsolidation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Regulatory changes in presynaptic cholinergic function assessed in rapid autopsy material from patients with Alzheimer disease: Implications for etiology and therapy

    International Nuclear Information System (INIS)

    Slotkin, T.A.; Seidler, F.J.; Crain, B.J.; Bell, J.M.; Bissette, G.; Nemeroff, C.B.

    1990-01-01

    Brain regions from patients with or without Alzheimer disease (AD) were obtained within 2 hr of death and examined for indices of presynaptic cholinergic function. Consistent with loss of cholinergic projections, cerebral cortical areas involved in AD exhibited decreased choline acetyltransferase activity. However, remaining nerve terminals in these regions displayed marked up-regulation of synaptosomal high affinity [ 3 H]choline uptake, a result indicative of relative cholinergic hyperactivity. As choline uptake is also rate-limiting in acetylcholine biosynthesis, these findings have implications for both therapy and identification of causes contributing to neuronal death in AD

  13. Loss of MeCP2 in cholinergic neurons causes part of RTT-like phenotypes via α7 receptor in hippocampus.

    Science.gov (United States)

    Zhang, Ying; Cao, Shu-Xia; Sun, Peng; He, Hai-Yang; Yang, Ci-Hang; Chen, Xiao-Juan; Shen, Chen-Jie; Wang, Xiao-Dong; Chen, Zhong; Berg, Darwin K; Duan, Shumin; Li, Xiao-Ming

    2016-06-01

    Mutations in the X-linked MECP2 gene cause Rett syndrome (RTT), an autism spectrum disorder characterized by impaired social interactions, motor abnormalities, cognitive defects and a high risk of epilepsy. Here, we showed that conditional deletion of Mecp2 in cholinergic neurons caused part of RTT-like phenotypes, which could be rescued by re-expressing Mecp2 in the basal forebrain (BF) cholinergic neurons rather than in the caudate putamen of conditional knockout (Chat-Mecp2(-/y)) mice. We found that choline acetyltransferase expression was decreased in the BF and that α7 nicotine acetylcholine receptor signaling was strongly impaired in the hippocampus of Chat-Mecp2(-/y) mice, which is sufficient to produce neuronal hyperexcitation and increase seizure susceptibility. Application of PNU282987 or nicotine in the hippocampus rescued these phenotypes in Chat-Mecp2(-/y) mice. Taken together, our findings suggest that MeCP2 is critical for normal function of cholinergic neurons and dysfunction of cholinergic neurons can contribute to numerous neuropsychiatric phenotypes.

  14. Neurostimulation of the cholinergic anti-inflammatory pathway ameliorates disease in rat collagen-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Yaakov A Levine

    Full Text Available The inflammatory reflex is a physiological mechanism through which the nervous system maintains immunologic homeostasis by modulating innate and adaptive immunity. We postulated that the reflex might be harnessed therapeutically to reduce pathological levels of inflammation in rheumatoid arthritis by activating its prototypical efferent arm, termed the cholinergic anti-inflammatory pathway. To explore this, we determined whether electrical neurostimulation of the cholinergic anti-inflammatory pathway reduced disease severity in the collagen-induced arthritis model.Rats implanted with vagus nerve cuff electrodes had collagen-induced arthritis induced and were followed for 15 days. Animals underwent active or sham electrical stimulation once daily from day 9 through the conclusion of the study. Joint swelling, histology, and levels of cytokines and bone metabolism mediators were assessed.Compared with sham treatment, active neurostimulation of the cholinergic anti-inflammatory pathway resulted in a 52% reduction in ankle diameter (p = 0.02, a 57% reduction in ankle diameter (area under curve; p = 0.02 and 46% reduction overall histological arthritis score (p = 0.01 with significant improvements in inflammation, pannus formation, cartilage destruction, and bone erosion (p = 0.02, accompanied by numerical reductions in systemic cytokine levels, not reaching statistical significance. Bone erosion improvement was associated with a decrease in serum levels of receptor activator of NF-κB ligand (RANKL from 132±13 to 6±2 pg/mL (mean±SEM, p = 0.01.The severity of collagen-induced arthritis is reduced by neurostimulation of the cholinergic anti-inflammatory pathway delivered using an implanted electrical vagus nerve stimulation cuff electrode, and supports the rationale for testing this approach in human inflammatory disorders.

  15. Cholinergic modulation of epithelial integrity in the proximal colon of pigs.

    Science.gov (United States)

    Lesko, Szilvia; Wessler, Ignaz; Gäbel, Gotthold; Petto, Carola; Pfannkuche, Helga

    2013-01-01

    Within the gut, acetylcholine (ACh) is synthesised by enteric neurons, as well as by 'non-neuronal' epithelial cells. In studies of non-intestinal epithelia, ACh was involved in the generation of an intact epithelial barrier. In the present study, primary cultured porcine colonocytes were used to determine whether treatment with exogenous ACh or expression of endogenous epithelium-derived ACh may modulate epithelial tightness in the gastrointestinal tract. Piglet colonocytes were cultured on filter membranes for 8 days. The tightness of the growing epithelial cell layer was evaluated by measuring transepithelial electrical resistance (TEER). To determine whether ACh modulates the tightness of the cell layer, cells were treated with cholinergic, muscarinic and/or nicotinic agonists and antagonists. Choline acetyltransferase (ChAT), cholinergic receptors and ACh were determined by immunohistochemistry, RT-PCR and HPLC, respectively. Application of the cholinergic agonist carbachol (10 µm) and the muscarinic agonist oxotremorine (10 µM) resulted in significantly higher TEER values compared to controls. The effect was completely inhibited by the muscarinic antagonist atropine. Application of atropine alone (without any agonist) led to significantly lower TEER values compared to controls. Synthesis of ACh by epithelial cells was proven by detection of muscarinic and nicotinic receptor mRNAs, immunohistochemical detection of ChAT and detection of ACh by HPLC. ACh is strongly involved in the regulation of epithelial tightness in the proximal colon of pigs via muscarinic pathways. Non-neuronal ACh seems to be of particular importance for epithelial cells forming a tight barrier. Copyright © 2013 S. Karger AG, Basel.

  16. Chronic Blockade of Brain Endothelin Receptor Type-A (ETA Reduces Blood Pressure and Prevents Catecholaminergic Overactivity in the Right Olfactory Bulb of DOCA-Salt Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Luis R. Cassinotti

    2018-02-01

    Full Text Available Overactivity of the sympathetic nervous system and central endothelins (ETs are involved in the development of hypertension. Besides the well-known brain structures involved in the regulation of blood pressure like the hypothalamus or locus coeruleus, evidence suggests that the olfactory bulb (OB also modulates cardiovascular function. In the present study, we evaluated the interaction between the endothelinergic and catecholaminergic systems in the OB of deoxycorticosterone acetate (DOCA-salt hypertensive rats. Following brain ET receptor type A (ETA blockade by BQ610 (selective antagonist, transcriptional, traductional, and post-traductional changes in tyrosine hydroxylase (TH were assessed in the OB of normotensive and DOCA-salt hypertensive rats. Time course variations in systolic blood pressure and heart rate were also registered. Results showed that ETA blockade dose dependently reduced blood pressure in hypertensive rats, but it did not change heart rate. It also prevented the increase in TH activity and expression (mRNA and protein in the right OB of hypertensive animals. However, ETA blockade did not affect hemodynamics or TH in normotensive animals. Present results support that brain ETA are not involved in blood pressure regulation in normal rats, but they significantly contribute to chronic blood pressure elevation in hypertensive animals. Changes in TH activity and expression were observed in the right but not in the left OB, supporting functional asymmetry, in line with previous studies regarding cardiovascular regulation. Present findings provide further evidence on the role of ETs in the regulation of catecholaminergic activity and the contribution of the right OB to DOCA-salt hypertension.

  17. Chronic Blockade of Brain Endothelin Receptor Type-A (ETA) Reduces Blood Pressure and Prevents Catecholaminergic Overactivity in the Right Olfactory Bulb of DOCA-Salt Hypertensive Rats.

    Science.gov (United States)

    Cassinotti, Luis R; Guil, María J; Schöller, Mercedes I; Navarro, Mónica P; Bianciotti, Liliana G; Vatta, Marcelo S

    2018-02-27

    Overactivity of the sympathetic nervous system and central endothelins (ETs) are involved in the development of hypertension. Besides the well-known brain structures involved in the regulation of blood pressure like the hypothalamus or locus coeruleus, evidence suggests that the olfactory bulb (OB) also modulates cardiovascular function. In the present study, we evaluated the interaction between the endothelinergic and catecholaminergic systems in the OB of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Following brain ET receptor type A (ET A ) blockade by BQ610 (selective antagonist), transcriptional, traductional, and post-traductional changes in tyrosine hydroxylase (TH) were assessed in the OB of normotensive and DOCA-salt hypertensive rats. Time course variations in systolic blood pressure and heart rate were also registered. Results showed that ET A blockade dose dependently reduced blood pressure in hypertensive rats, but it did not change heart rate. It also prevented the increase in TH activity and expression (mRNA and protein) in the right OB of hypertensive animals. However, ET A blockade did not affect hemodynamics or TH in normotensive animals. Present results support that brain ET A are not involved in blood pressure regulation in normal rats, but they significantly contribute to chronic blood pressure elevation in hypertensive animals. Changes in TH activity and expression were observed in the right but not in the left OB, supporting functional asymmetry, in line with previous studies regarding cardiovascular regulation. Present findings provide further evidence on the role of ETs in the regulation of catecholaminergic activity and the contribution of the right OB to DOCA-salt hypertension.

  18. Effects of Pyridostigmine in Flinders Line Rats Differing in Cholinergic Sensitivity (AIBS GWI 0055)

    National Research Council Canada - National Science Library

    Overstreet, David

    1999-01-01

    .... The second aim was to determine whether pyridostigmine had prophylactic effects against the organophosphates chlorpyrifos and diisopropylfluorophosphate regardless of innate cholinergic sensitivity...

  19. Cholinergic anti-inflammatory pathway in the non-obese diabetic mouse model

    NARCIS (Netherlands)

    Koopman, F. A.; Vosters, J. L.; Roescher, N.; Broekstra, N.; Tak, P. P.; Vervoordeldonk, M. J.

    2015-01-01

    Activation of the cholinergic anti-inflammatory pathway (CAP) has been shown to reduce inflammation in animal models, while abrogation of the pathway increases inflammation. We investigated whether modulation of CAP influences inflammation in the non-obese diabetic (NOD) mouse model for Sjögren's

  20. [3H]cytisine binding to nicotinic cholinergic receptors in brain

    International Nuclear Information System (INIS)

    Pabreza, L.A.; Dhawan, S.; Kellar, K.J.

    1991-01-01

    Cytisine, a ganglionic agonist, competes with high affinity for brain nicotinic cholinergic receptors labeled by any of several nicotinic 3 H-agonist ligands. Here we have examined the binding of [ 3 H]cytisine in rat brain homogenates. [ 3 H]Cytisine binds with high affinity (Kd less than 1 nM), and specific binding represented 60-90% of total binding at all concentrations examined up to 15 nM. The nicotinic cholinergic agonists nicotine, acetylcholine, and carbachol compete with high affinity for [ 3 H]cytisine binding sites, whereas among nicotinic receptor antagonists only dihydro-beta-erythroidine competes with high affinity (in the nanomolar range). Comparison of binding in several brain regions showed that [ 3 H]cytisine binding is higher in the thalamus, striatum, and cortex than in the hippocampus, cerebellum, or hypothalamus. The pharmacology and brain regional distribution of [ 3 H]cytisine binding sites are those predicted for neuronal nicotinic receptor agonist recognition sites. The high affinity and low nonspecific binding of [ 3 H]cytisine should make it a very useful ligand for studying neuronal nicotinic receptors

  1. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer’s Disease

    Science.gov (United States)

    Kwakowsky, Andrea; Milne, Michael R.; Waldvogel, Henry J.; Faull, Richard L.

    2016-01-01

    The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer’s disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer’s disease. PMID:27999310

  2. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Andrea Kwakowsky

    2016-12-01

    Full Text Available The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer’s disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2 on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer’s disease.

  3. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Pranay [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Yadav, Rajesh S. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Department of Crimnology and Forensic Science, Harisingh Gour University, Sagar 470 003 (India); Chandravanshi, Lalit P.; Shukla, Rajendra K.; Dhuriya, Yogesh K.; Chauhan, Lalit K.S. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Dwivedi, Hari N. [Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 227 015 (India); Pant, Aditiya B. [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India); Khanna, Vinay K., E-mail: vkkhanna1@gmail.com [CSIR-Indian Institute of Toxicology Research, Post Box 80, MG Marg, Lucknow 226 001 (India)

    2014-09-15

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected

  4. Unraveling the mechanism of neuroprotection of curcumin in arsenic induced cholinergic dysfunctions in rats

    International Nuclear Information System (INIS)

    Srivastava, Pranay; Yadav, Rajesh S.; Chandravanshi, Lalit P.; Shukla, Rajendra K.; Dhuriya, Yogesh K.; Chauhan, Lalit K.S.; Dwivedi, Hari N.; Pant, Aditiya B.; Khanna, Vinay K.

    2014-01-01

    Earlier, we found that arsenic induced cholinergic deficits in rat brain could be protected by curcumin. In continuation to this, the present study is focused to unravel the molecular mechanisms associated with the protective efficacy of curcumin in arsenic induced cholinergic deficits. Exposure to arsenic (20 mg/kg body weight, p.o) for 28 days in rats resulted to decrease the expression of CHRM2 receptor gene associated with mitochondrial dysfunctions as evident by decrease in the mitochondrial membrane potential, activity of mitochondrial complexes and enhanced apoptosis both in the frontal cortex and hippocampus in comparison to controls. The ultrastructural images of arsenic exposed rats, assessed by transmission electron microscope, exhibited loss of myelin sheath and distorted cristae in the mitochondria both in the frontal cortex and hippocampus as compared to controls. Simultaneous treatment with arsenic (20 mg/kg body weight, p.o) and curcumin (100 mg/kg body weight, p.o) for 28 days in rats was found to protect arsenic induced changes in the mitochondrial membrane potential and activity of mitochondrial complexes both in frontal cortex and hippocampus. Alterations in the expression of pro- and anti-apoptotic proteins and ultrastructural damage in the frontal cortex and hippocampus following arsenic exposure were also protected in rats simultaneously treated with arsenic and curcumin. The data of the present study reveal that curcumin could protect arsenic induced cholinergic deficits by modulating the expression of pro- and anti-apoptotic proteins in the brain. More interestingly, arsenic induced functional and ultrastructural changes in the brain mitochondria were also protected by curcumin. - Highlights: • Neuroprotective mechanism of curcumin in arsenic induced cholinergic deficits studied • Curcumin protected arsenic induced enhanced expression of stress markers in rat brain • Arsenic compromised mitochondrial electron transport chain protected

  5. Methyl-CpG binding-protein 2 function in cholinergic neurons mediates cardiac arrhythmogenesis.

    Science.gov (United States)

    Herrera, José A; Ward, Christopher S; Wehrens, Xander H T; Neul, Jeffrey L

    2016-11-15

    Sudden unexpected death occurs in one quarter of deaths in Rett Syndrome (RTT), a neurodevelopmental disorder caused by mutations in Methyl-CpG-binding protein 2 (MECP2). People with RTT show a variety of autonomic nervous system (ANS) abnormalities and mouse models show similar problems including QTc interval prolongation and hypothermia. To explore the role of cardiac problems in sudden death in RTT, we characterized cardiac rhythm in mice lacking Mecp2 function. Male and female mutant mice exhibited spontaneous cardiac rhythm abnormalities including bradycardic events, sinus pauses, atrioventricular block, premature ventricular contractions, non-sustained ventricular arrhythmias, and increased heart rate variability. Death was associated with spontaneous cardiac arrhythmias and complete conduction block. Atropine treatment reduced cardiac arrhythmias in mutant mice, implicating overactive parasympathetic tone. To explore the role of MeCP2 within the parasympathetic neurons, we selectively removed MeCP2 function from cholinergic neurons (MeCP2 ChAT KO), which recapitulated the cardiac rhythm abnormalities, hypothermia, and early death seen in RTT male mice. Conversely, restoring MeCP2 only in cholinergic neurons rescued these phenotypes. Thus, MeCP2 in cholinergic neurons is necessary and sufficient for autonomic cardiac control, thermoregulation, and survival, and targeting the overactive parasympathetic system may be a useful therapeutic strategy to prevent sudden unexpected death in RTT.

  6. Neuroprotective efficacy of curcumin in arsenic induced cholinergic dysfunctions in rats.

    Science.gov (United States)

    Yadav, Rajesh S; Chandravanshi, Lalit P; Shukla, Rajendra K; Sankhwar, Madhu L; Ansari, Reyaz W; Shukla, Pradeep K; Pant, Aditya B; Khanna, Vinay K

    2011-12-01

    Our recent studies have shown that curcumin protects arsenic induced neurotoxicity by modulating oxidative stress, neurotransmitter levels and dopaminergic system in rats. As chronic exposure to arsenic has been associated with cognitive deficits in humans, the present study has been carried out to implore the neuroprotective potential of curcumin in arsenic induced cholinergic dysfunctions in rats. Rats treated with arsenic (sodium arsenite, 20mg/kg body weight, p.o., 28 days) exhibited a significant decrease in the learning activity, assessed by passive avoidance response associated with decreased binding of (3)H-QNB, known to label muscarinic-cholinergic receptors in hippocampus (54%) and frontal cortex (27%) as compared to controls. Decrease in the activity of acetylcholinesterase in hippocampus (46%) and frontal cortex (33%), staining of Nissl body, immunoreactivity of choline acetyltransferase (ChAT) and expression of ChAT protein in hippocampal region was also observed in arsenic treated rats as compared to controls. Simultaneous treatment with arsenic and curcumin (100mg/kg body weight, p.o., 28 days) increased learning and memory performance associated with increased binding of (3)H-QNB in hippocampus (54%), frontal cortex (25%) and activity of acetylcholinesterase in hippocampus (41%) and frontal cortex (29%) as compared to arsenic treated rats. Increase in the expression of ChAT protein, immunoreactivity of ChAT and staining of Nissl body in hippocampal region was also observed in rats simultaneously treated with arsenic and curcumin as compared to those treated with arsenic alone. The results of the present study suggest that curcumin significantly modulates arsenic induced cholinergic dysfunctions in brain and also exhibits neuroprotective efficacy of curcumin. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Change of cholinergic transmission and memory deficiency induced by injection of b-amyloid protein into NBM of rats

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The change of cholinergic transmission of b-amyloid protein (b-AP) treated rats was studied by intracerebral microdialysis sampling combined with HPLC analysis. b-AP1-40 was injected into nucleus basalis magnocellularis (NBM). Passive avoidance response test (step-down test) and delayed alternation task were used for memory testing. The impairment of memory after injection of b-AP1-40 into NBM exhibited mainly the deficiency of short-term working memory. One week after injection of b-AP1-40 the release of acetylcholine (ACh) from frontal cortex of freely-moving rats decreased significantly, and the response of cholinergic nerve ending to the action of high [K+] solution was rather weak. In control animals the percentage of increase of ACh- release during behavioral performance was 57%, while in b-AP1-40 - treated rats it was 34%. The temporary in-crease of the ACh-release of the rat put into a new place was also significantly diminished in b-AP1-40 -treated rats. The results show that the injection of b-AP1-40 into NBM impairs the cholinergic transmission in frontal cortex, and the impairment of cholinergic transmission may be the main cause of the deficit of working memory.

  8. Urotensin II modulates rapid eye movement sleep through activation of brainstem cholinergic neurons

    DEFF Research Database (Denmark)

    Huitron-Resendiz, Salvador; Kristensen, Morten Pilgaard; Sánchez-Alavez, Manuel

    2005-01-01

    administration of UII into the PPT nucleus increases REM sleep without inducing changes in the cortical blood flow. Intracerebroventricular injection of UII enhances both REM sleep and wakefulness and reduces slow-wave sleep 2. Intracerebroventricular, but not local, administration of UII increases cortical...... dorsal tegmental nuclei. This distribution suggests that the UII system is involved in functions regulated by acetylcholine, such as the sleep-wake cycle. Here, we tested the hypothesis that UII influences cholinergic PPT neuron activity and alters rapid eye movement (REM) sleep patterns in rats. Local...... synaptic transmission because it persisted in the presence of TTX and antagonists of ionotropic glutamate, GABA, and glycine receptors. Collectively, these results suggest that UII plays a role in the regulation of REM sleep independently of its cerebrovascular actions by directly activating cholinergic...

  9. Cognitive impairment as a central cholinergic deficit in patients with Myasthenia Gravis

    Directory of Open Access Journals (Sweden)

    Antonia Kaltsatou

    2015-06-01

    Conclusions: VCmax and ACmax are governed mainly by the action of the Parasympathetic Nervous System, through acetylcholine. The results of this study demonstrate that the CNS may be affected in MG and support the hypothesis that MG has central cholinergic effects manifested by cognitive dysfunction.

  10. Cholinergic Septo-Hippocampal Innervation Is Required for Trace Eyeblink Classical Conditioning

    Science.gov (United States)

    Fontan-Lozano, Angela; Troncoso, Julieta; Munera, Alejandro; Carrion, Angel Manuel; Delgado-Garcia, Jose Maria

    2005-01-01

    We studied the effects of a selective lesion in rats, with 192-IgG-saporin, of the cholinergic neurons located in the medial septum/diagonal band (MSDB) complex on the acquisition of classical and instrumental conditioning paradigms. The MSDB lesion induced a marked deficit in the acquisition, but not in the retrieval, of eyeblink classical…

  11. Satureja bachtiarica ameliorate beta-amyloid induced memory impairment, oxidative stress and cholinergic deficit in animal model of Alzheimer's disease.

    Science.gov (United States)

    Soodi, Maliheh; Saeidnia, Soodabeh; Sharifzadeh, Mohammad; Hajimehdipoor, Homa; Dashti, Abolfazl; Sepand, Mohammad Reza; Moradi, Shahla

    2016-04-01

    Extracellular deposition of Beta-amyloid peptide (Aβ) is the main finding in the pathophysiology of Alzheimer's disease (AD), which damages cholinergic neurons through oxidative stress and reduces the cholinergic neurotransmission. Satureja bachtiarica is a medicinal plant from the Lamiaceae family which was widely used in Iranian traditional medicine. The aim of the present study was to investigate possible protective effects of S. bachtiarica methanolic extract on Aβ induced spatial memory impairment in Morris Water Maze (MWM), oxidative stress and cholinergic neuron degeneration. Pre- aggregated Aβ was injected into the hippocampus of each rat bilaterally (10 μg/rat) and MWM task was performed 14 days later to evaluate learning and memory function. Methanolic extract of S.bachtiarica (10, 50 and 100 mg/Kg) was injected intraperitoneally for 19 consecutive days, after Aβ injection. After the probe test the brain tissue were collected and lipid peroxidation, Acetylcholinesterase (AChE) activity and Cholin Acetyl Transferees (ChAT) immunorectivity were measured in the hippocampus. Intrahipocampal injection of Aβ impaired learning and memory in MWM in training days and probe trail. Methanolic extract of S. bachtiarica (50 and 100 mg/Kg) could attenuate Aβ-induced memory deficit. ChAT immunostaining revealed that cholinergic neurons were loss in Aβ- injected group and S. bachtiarica (100 mg/Kg) could ameliorate Aβ- induced ChAT reduction in the hippocampus. Also S. bachtiarica could ameliorate Aβ-induced lipid peroxidation and AChE activity increase in the hippocampus. In conclusion our study represent that S.bachtiarica methanolic extract can improve Aβ-induced memory impairment and cholinergic loss then we recommended this extract as a candidate for further investigation in treatment of AD.

  12. Striatal cholinergic interneurons and D2 receptor-expressing GABAergic medium spiny neurons regulate tardive dyskinesia.

    Science.gov (United States)

    Bordia, Tanuja; Zhang, Danhui; Perez, Xiomara A; Quik, Maryka

    2016-12-01

    Tardive dyskinesia (TD) is a drug-induced movement disorder that arises with antipsychotics. These drugs are the mainstay of treatment for schizophrenia and bipolar disorder, and are also prescribed for major depression, autism, attention deficit hyperactivity, obsessive compulsive and post-traumatic stress disorder. There is thus a need for therapies to reduce TD. The present studies and our previous work show that nicotine administration decreases haloperidol-induced vacuous chewing movements (VCMs) in rodent TD models, suggesting a role for the nicotinic cholinergic system. Extensive studies also show that D2 dopamine receptors are critical to TD. However, the precise involvement of striatal cholinergic interneurons and D2 medium spiny neurons (MSNs) in TD is uncertain. To elucidate their role, we used optogenetics with a focus on the striatum because of its close links to TD. Optical stimulation of striatal cholinergic interneurons using cholineacetyltransferase (ChAT)-Cre mice expressing channelrhodopsin2-eYFP decreased haloperidol-induced VCMs (~50%), with no effect in control-eYFP mice. Activation of striatal D2 MSNs using Adora2a-Cre mice expressing channelrhodopsin2-eYFP also diminished antipsychotic-induced VCMs, with no change in control-eYFP mice. In both ChAT-Cre and Adora2a-Cre mice, stimulation or mecamylamine alone similarly decreased VCMs with no further decline with combined treatment, suggesting nAChRs are involved. Striatal D2 MSN activation in haloperidol-treated Adora2a-Cre mice increased c-Fos + D2 MSNs and decreased c-Fos + non-D2 MSNs, suggesting a role for c-Fos. These studies provide the first evidence that optogenetic stimulation of striatal cholinergic interneurons and GABAergic MSNs modulates VCMs, and thus possibly TD. Moreover, they suggest nicotinic receptor drugs may reduce antipsychotic-induced TD. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Cholinergic PET imaging in infections and inflammation using "1"1C-donepezil and "1"8F-FEOBV

    International Nuclear Information System (INIS)

    Joergensen, Nis Pedersen; Hoegsberg Schleimann, Mariane; Alstrup, Aage K.O.; Knudsen, Karoline; Jakobsen, Steen; Bender, Dirk; Gormsen, Lars C.; Borghammer, Per; Mortensen, Frank V.; Madsen, Line Bille; Breining, Peter; Petersen, Mikkel Steen; Dagnaes-Hansen, Frederik

    2017-01-01

    Immune cells utilize acetylcholine as a paracrine-signaling molecule. Many white blood cells express components of the cholinergic signaling pathway, and these are up-regulated when immune cells are activated. However, in vivo molecular imaging of cholinergic signaling in the context of inflammation has not previously been investigated. We performed positron emission tomography (PET) using the glucose analogue 18F-FDG, and 11C-donepezil and 18F-FEOBV, markers of acetylcholinesterase and the vesicular acetylcholine transporter, respectively. Mice were inoculated subcutaneously with Staphylococcus aureus, and PET scanned at 24, 72, 120, and 144 h post-inoculation. Four pigs with post-operative abscesses were also imaged. Finally, we present initial data from human patients with infections, inflammation, and renal and lung cancer. In mice, the FDG uptake in abscesses peaked at 24 h and remained stable. The 11C-donepezil and 18F-FEOBV uptake displayed progressive increase, and at 120-144 h was nearly at the FDG level. Moderate 11C-donepezil and slightly lower 18F-FEOBV uptake were seen in pig abscesses. PCR analyses suggested that the 11C-donepezil signal in inflammatory cells is derived from both acetylcholinesterase and sigma-1 receptors. In humans, very high 11C-donepezil uptake was seen in a lobar pneumonia and in peri-tumoral inflammation surrounding a non-small cell lung carcinoma, markedly superseding the 18F-FDG uptake in the inflammation. In a renal clear cell carcinoma no 11C-donepezil uptake was seen. The time course of cholinergic tracer accumulation in murine abscesses was considerably different from 18F-FDG, demonstrating in the 11C-donepezil and 18F-FEOBV image distinct aspects of immune modulation. Preliminary data in humans strongly suggest that 11C-donepezil can exhibit more intense accumulation than 18F-FDG at sites of chronic inflammation. Cholinergic PET imaging may therefore have potential applications for basic research into cholinergic

  14. Cholinergic PET imaging in infections and inflammation using {sup 11}C-donepezil and {sup 18}F-FEOBV

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Nis Pedersen; Hoegsberg Schleimann, Mariane [Aarhus University Hospital, Department of Infectious Diseases, Aarhus (Denmark); Alstrup, Aage K.O.; Knudsen, Karoline; Jakobsen, Steen; Bender, Dirk; Gormsen, Lars C.; Borghammer, Per [Aarhus University Hospital, Department of Nuclear Medicine and PET Centre, Aarhus C (Denmark); Mortensen, Frank V. [Aarhus University Hospital, Department of Gastroenterology, Aarhus (Denmark); Madsen, Line Bille [Aarhus University Hospital, Department of Histopathology, Aarhus (Denmark); Breining, Peter [Aarhus University Hospital, Department of Endocrinology and Metabolism, Aarhus (Denmark); Petersen, Mikkel Steen [Aarhus University Hospital, Department of Clinical Immunology, Aarhus (Denmark); Dagnaes-Hansen, Frederik [Aarhus University, Department of Biomedicine, Aarhus (Denmark)

    2017-03-15

    Immune cells utilize acetylcholine as a paracrine-signaling molecule. Many white blood cells express components of the cholinergic signaling pathway, and these are up-regulated when immune cells are activated. However, in vivo molecular imaging of cholinergic signaling in the context of inflammation has not previously been investigated. We performed positron emission tomography (PET) using the glucose analogue 18F-FDG, and 11C-donepezil and 18F-FEOBV, markers of acetylcholinesterase and the vesicular acetylcholine transporter, respectively. Mice were inoculated subcutaneously with Staphylococcus aureus, and PET scanned at 24, 72, 120, and 144 h post-inoculation. Four pigs with post-operative abscesses were also imaged. Finally, we present initial data from human patients with infections, inflammation, and renal and lung cancer. In mice, the FDG uptake in abscesses peaked at 24 h and remained stable. The 11C-donepezil and 18F-FEOBV uptake displayed progressive increase, and at 120-144 h was nearly at the FDG level. Moderate 11C-donepezil and slightly lower 18F-FEOBV uptake were seen in pig abscesses. PCR analyses suggested that the 11C-donepezil signal in inflammatory cells is derived from both acetylcholinesterase and sigma-1 receptors. In humans, very high 11C-donepezil uptake was seen in a lobar pneumonia and in peri-tumoral inflammation surrounding a non-small cell lung carcinoma, markedly superseding the 18F-FDG uptake in the inflammation. In a renal clear cell carcinoma no 11C-donepezil uptake was seen. The time course of cholinergic tracer accumulation in murine abscesses was considerably different from 18F-FDG, demonstrating in the 11C-donepezil and 18F-FEOBV image distinct aspects of immune modulation. Preliminary data in humans strongly suggest that 11C-donepezil can exhibit more intense accumulation than 18F-FDG at sites of chronic inflammation. Cholinergic PET imaging may therefore have potential applications for basic research into cholinergic

  15. Activation of the mouse primary visual cortex by medial prefrontal subregion stimulation is not mediated by cholinergic basalo-cortical projections

    Directory of Open Access Journals (Sweden)

    Hoang Nam eNguyen

    2015-02-01

    Full Text Available The medial prefrontal cortex (mPFC exerts top-down control of primary visual cortex (V1 activity. As there is no direct neuronal projection from mPFC to V1, this functional connection may use an indirect route, i.e., via basalo-cortical cholinergic projections. The cholinergic projections to V1 originate from neurons in the horizontal limb of the diagonal band of Broca (HDB, which receive neuronal projections from the ventral part of the mPFC, composed of prelimbic (PrL and infralimbic cortices (IL. Therefore, the objective of this study was to determine whether electrical stimulation of mice mPFC subregions activate 1 V1 neurons and 2 HDB cholinergic neurons, suggesting that the HDB serves as a relay point in the mPFC-V1 interaction. Neuronal activation was quantified using c-Fos immunocytochemistry or thallium autometallography for each V1 layer using automated particle analysis tools and optical density measurement. Stimulation of IL and PrL induced significantly higher c-Fos expression or thallium labelling in layers II/III and V of V1 in the stimulated hemisphere only. A HDB cholinergic neuron-specific lesion by saporin administration reduced IL-induced c-Fos expression in layers II/III of V1 but not in layer V. However, there was no c-Fos expression or thallium labelling in the HDB neurons, suggesting that this area was not activated by IL stimulation. Stimulation of another mPFC subarea, the anterior cingulate cortex (AC, which is involved in attention and receives input from V1, activated neither V1 nor HDB. The present results indicate that IL and PrL, but not AC, stimulation activates V1 with the minor involvement of the HDB cholinergic projections. These results suggest a functional link between the ventral mPFC and V1, but this function is only marginally supported by HDB cholinergic neurons and may involve other brain regions.

  16. ESC-Derived Basal Forebrain Cholinergic Neurons Ameliorate the Cognitive Symptoms Associated with Alzheimer’s Disease in Mouse Models

    Directory of Open Access Journals (Sweden)

    Wei Yue

    2015-11-01

    Full Text Available Degeneration of basal forebrain cholinergic neurons (BFCNs is associated with cognitive impairments of Alzheimer’s disease (AD, implying that BFCNs hold potentials in exploring stem cell-based replacement therapy for AD. However, studies on derivation of BFCNs from embryonic stem cells (ESCs are limited, and the application of ESC-derived BFCNs remains to be determined. Here, we report on differentiation approaches for directing both mouse and human ESCs into mature BFCNs. These ESC-derived BFCNs exhibit features similar to those of their in vivo counterparts and acquire appropriate functional properties. After transplantation into the basal forebrain of AD model mice, ESC-derived BFCN progenitors predominantly differentiate into mature cholinergic neurons that functionally integrate into the endogenous basal forebrain cholinergic projection system. The AD mice grafted with mouse or human BFCNs exhibit improvements in learning and memory performances. Our findings suggest a promising perspective of ESC-derived BFCNs in the development of stem cell-based therapies for treatment of AD.

  17. Nicotinic and muscarinic cholinergic receptors are recruited by acetylcholine-mediated neurotransmission within the locus coeruleus during the organisation of post-ictal antinociception.

    Science.gov (United States)

    de Oliveira, Rithiele Cristina; de Oliveira, Ricardo; Biagioni, Audrey Franceschi; Falconi-Sobrinho, Luiz Luciano; Dos Anjos-Garcia, Tayllon; Coimbra, Norberto Cysne

    2016-10-01

    Post-ictal antinociception is characterised by an increase in the nociceptive threshold that accompanies tonic and tonic-clonic seizures (TCS). The locus coeruleus (LC) receives profuse cholinergic inputs from the pedunculopontine tegmental nucleus. Different concentrations (1μg, 3μg and 5μg/0.2μL) of the muscarinic cholinergic receptor antagonist atropine and the nicotinic cholinergic receptor antagonist mecamylamine were microinjected into the LC of Wistar rats to investigate the role of cholinergic mechanisms in the severity of TCS and the post-ictal antinociceptive response. Five minutes later, TCS were induced by systemic administration of pentylenetetrazole (PTZ) (64mg/kg). Seizures were recorded inside the open field apparatus for an average of 10min. Immediately after seizures, the nociceptive threshold was recorded for 130min using the tail-flick test. Pre-treatment of the LC with 1μg, 3μg and 5μg/0.2μL concentrations of both atropine and mecamylamine did not cause a significant effect on seizure severity. However, the same treatments decreased the post-ictal antinociceptive phenomenon. In addition, mecamylamine caused an earlier decrease in the post-ictal antinociception compared to atropine. These results suggest that muscarinic and mainly nicotinic cholinergic receptors of the LC are recruited to organise tonic-clonic seizure-induced antinociception. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Urtica dioica leaves modulates muscarinic cholinergic system in the hippocampus of streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Patel, Sita Sharan; Parashar, Arun; Udayabanu, Malairaman

    2015-06-01

    Diabetes mellitus is a chronic metabolic disorder and has been associated with cognitive dysfunction. In our earlier study, chronic Urtica dioica (UD) treatment significantly ameliorated diabetes induced associative and spatial memory deficit in mice. The present study was designed to explore the effect of UD leaves extract on muscarinic cholinergic system, which has long been known to be involved in cognition. Streptozotocin (STZ) (50 mg/kg, i.p., consecutively for 5 days) was used to induce diabetes followed by treatment with UD extract (50 mg/kg, oral) or rosiglitazone (5 mg/kg, oral) for 8 weeks. STZ-induced diabetic mice showed significant reduction in hippocampal muscarinic acetylcholine receptor-1 and choline acetyltransferase expressions. Chronic diabetes significantly up-regulated the protein expression of acetylcholinesterase associated with oxidative stress in hippocampus. Besides, STZ-induced diabetic mice showed hypolocomotion with up-regulation of muscarinic acetylcholine receptor-4 expression in striatum. Chronic UD treatment significantly attenuated the cholinergic dysfunction and oxidative stress in the hippocampus of diabetic mice. UD had no effect on locomotor activity and muscarinic acetylcholine receptor-4 expression in striatum. In conclusion, UD leaves extract has potential to reverse diabetes mediated alteration in muscarinic cholinergic system in hippocampus and thereby improve memory functions.

  19. Differentiated NSC-34 motoneuron-like cells as experimental model for cholinergic neurodegeneration.

    Science.gov (United States)

    Maier, Oliver; Böhm, Julia; Dahm, Michael; Brück, Stefan; Beyer, Cordian; Johann, Sonja

    2013-06-01

    Alpha-motoneurons appear to be exceedingly affected in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Morphological and physiological degeneration of this neuronal phenotype is typically characterized by a marked decrease of neuronal markers and by alterations of cholinergic metabolism such as reduced choline acetyltransferase (ChAT) expression. The motoneuron-like cell line NSC-34 is a hybrid cell line produced by fusion of neuroblastoma with mouse motoneuron-enriched primary spinal cord cells. In order to further establish this cell line as a valid model system to investigate cholinergic neurodegeneration, NSC-34 cells were differentiated by serum deprivation and additional treatment with all-trans retinoic acid (atRA). Cell maturation was characterized by neurite outgrowth and increased expression of neuronal and cholinergic markers, including MAP2, GAP-43 and ChAT. Subsequently, we used differentiated NSC-34 cells to study early degenerative responses following exposure to various neurotoxins (H2O2, TNF-α, and glutamate). Susceptibility to toxin-induced cell death was determined by means of morphological changes, expression of neuronal marker proteins, and the ratio of pro-(Bax) to anti-(Bcl-2) apoptotic proteins. NSC-34 cells respond to low doses of neurotoxins with increased cell death of remaining undifferentiated cells with no obvious adverse effects on differentiated cells. Thus, the different vulnerability of differentiated and undifferentiated NSC-34 cells to neurotoxins is a key characteristic of NSC-34 cells and has to be considered in neurotoxic studies. Nonetheless, application of atRA induced differentiation of NSC-34 cells and provides a suitable model to investigate molecular events linked to neurodegeneration of differentiated neurons. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Cholinergic and serotonergic modulation of visual information processing in monkey V1.

    Science.gov (United States)

    Shimegi, Satoshi; Kimura, Akihiro; Sato, Akinori; Aoyama, Chisa; Mizuyama, Ryo; Tsunoda, Keisuke; Ueda, Fuyuki; Araki, Sera; Goya, Ryoma; Sato, Hiromichi

    2016-09-01

    The brain dynamically changes its input-output relationship depending on the behavioral state and context in order to optimize information processing. At the molecular level, cholinergic/monoaminergic transmitters have been extensively studied as key players for the state/context-dependent modulation of brain function. In this paper, we review how cortical visual information processing in the primary visual cortex (V1) of macaque monkey, which has a highly differentiated laminar structure, is optimized by serotonergic and cholinergic systems by examining anatomical and in vivo electrophysiological aspects to highlight their similarities and distinctions. We show that these two systems have a similar layer bias for axonal fiber innervation and receptor distribution. The common target sites are the geniculorecipient layers and geniculocortical fibers, where the appropriate gain control is established through a geniculocortical signal transformation. Both systems exert activity-dependent response gain control across layers, but in a manner consistent with the receptor subtype. The serotonergic receptors 5-HT1B and 5HT2A modulate the contrast-response curve in a manner consistent with bi-directional response gain control, where the sign (facilitation/suppression) is switched according to the firing rate and is complementary to the other. On the other hand, cholinergic nicotinic/muscarinic receptors exert mono-directional response gain control without a sign reversal. Nicotinic receptors increase the response magnitude in a multiplicative manner, while muscarinic receptors exert both suppressive and facilitative effects. We discuss the implications of the two neuromodulator systems in hierarchical visual signal processing in V1 on the basis of the developed laminar structure. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Cholinergic Receptor Binding in Alzheimer Disease and Healthy Aging: Assessment In Vivo with Positron Emission Tomography Imaging.

    Science.gov (United States)

    Sultzer, David L; Melrose, Rebecca J; Riskin-Jones, Hannah; Narvaez, Theresa A; Veliz, Joseph; Ando, Timothy K; Juarez, Kevin O; Harwood, Dylan G; Brody, Arthur L; Mandelkern, Mark A

    2017-04-01

    To compare regional nicotinic cholinergic receptor binding in older adults with Alzheimer disease (AD) and healthy older adults in vivo and to assess relationships between receptor binding and clinical symptoms. Using cross-sectional positron emission tomography (PET) neuroimaging and structured clinical assessment, outpatients with mild to moderate AD (N = 24) and healthy older adults without cognitive complaints (C group; N = 22) were studied. PET imaging of α4β2* nicotinic cholinergic receptor binding using 2-[ 18 F]fluoro-3-(2(S)azetidinylmethoxy)pyridine (2FA) and clinical measures of global cognition, attention/processing speed, verbal memory, visuospatial memory, and neuropsychiatric symptoms were used. 2FA binding was lower in the AD group compared with the C group in the medial thalamus, medial temporal cortex, anterior cingulate, insula/opercula, inferior caudate, and brainstem (p healthy older adults, lower receptor binding may be associated with slower processing speed. Cholinergic receptor binding in vivo may reveal links to other key brain changes associated with aging and AD and may provide a potential molecular treatment target. Published by Elsevier Inc.

  2. Is There a Canonical Cortical Circuit for the Cholinergic System? Anatomical Differences Across Common Model Systems.

    Science.gov (United States)

    Coppola, Jennifer J; Disney, Anita A

    2018-01-01

    Acetylcholine (ACh) is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function-a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health.

  3. Is There a Canonical Cortical Circuit for the Cholinergic System? Anatomical Differences Across Common Model Systems

    Directory of Open Access Journals (Sweden)

    Jennifer J. Coppola

    2018-01-01

    Full Text Available Acetylcholine (ACh is believed to act as a neuromodulator in cortical circuits that support cognition, specifically in processes including learning, memory consolidation, vigilance, arousal and attention. The cholinergic modulation of cortical processes is studied in many model systems including rodents, cats and primates. Further, these studies are performed in cortical areas ranging from the primary visual cortex to the prefrontal cortex and using diverse methodologies. The results of these studies have been combined into singular models of function—a practice based on an implicit assumption that the various model systems are equivalent and interchangeable. However, comparative anatomy both within and across species reveals important differences in the structure of the cholinergic system. Here, we will review anatomical data including innervation patterns, receptor expression, synthesis and release compared across species and cortical area with a focus on rodents and primates. We argue that these data suggest no canonical cortical model system exists for the cholinergic system. Further, we will argue that as a result, care must be taken both in combining data from studies across cortical areas and species, and in choosing the best model systems to improve our understanding and support of human health.

  4. Muscarinic cholinergic receptor binding sites differentiated by their affinity for pirenzepine do not interconvert

    International Nuclear Information System (INIS)

    Gil, D.W.; Wolfe, B.B.

    1986-01-01

    Although it has been suggested by many investigators that subtypes of muscarinic cholinergic receptors exist, physical studies of solubilized receptors have indicated that only a single molecular species may exist. To test the hypothesis that the putative muscarinic receptor subtypes in rat forebrain are interconvertible states of the same receptor, the selective antagonist pirenzepine (PZ) was used to protect muscarinic receptors from blockade by the irreversible muscarinic receptor antagonist propylbenzilylcholine mustard (PBCM). If interconversion of high (M1) and low (M2) affinity binding sites for PZ occurs, incubation of cerebral cortical membranes with PBCM in the presence of PZ should not alter the proportions of M1 and M2 binding sites that are unalkylated (i.e., protected). If, on the other hand, the binding sites are not interconvertible, PZ should be able to selectively protect M1 sites and alter the proportions of unalkylated M1 and M2 binding sites. In the absence of PZ, treatment of cerebral cortical membranes with 20 nM PBCM at 4 degrees C for 50 min resulted in a 69% reduction in the density of M1 binding sites and a 55% reduction in the density of M2 binding sites with no change in the equilibrium dissociation constants of the radioligands [ 3 H]quinuclidinyl benzilate or [ 3 H]PZ. The reasons for this somewhat selective effect of PBCM are not apparent. In radioligand binding experiments using cerebral cortical membranes, PZ inhibited the binding of [ 3 H]quinuclidinyl benzilate in a biphasic manner

  5. Fundamental study on nuclear medicine imaging of cholinergic innervation in the brain; Changes of neurotransmitter and receptor in animal model of Alzheimer's disease

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Hiroshi; Kinuya, Keiko; Sumiya, Hisashi; Hisada, Kinichi [Kanazawa Univ. (Japan). School of Medicine; Tsuji, Shiro; Terada, Hitoshi; Shiba, Kazuhiro; Mori, Hirofumi

    1990-10-01

    A fundamental study was performed on the nuclear medicine imaging of cholinergic innervation in the brain. In a cholinergic denervation model prepared by producing an unilateral basal forebrain lesion in the rat, which is reported to be one of animal models of Alzheimer' disease, quantitative determination of acetylcholine in parietal cortices revealed statistically significant 31% decrease on an average in the ipsilateral side relative to the contralateral side to the lesion. In vitro receptor autoradiography showed no significant differences in total, M{sub 1}, and M{sub 2} muscarinic acetylcholine receptors between the ipsilateral and contralateral cortices to the lesion. Simultaneous mapping of presynaptic cholinergic innervation using {sup 3}H-2-(4-phenylpiperidino) cyclohexanol (AH5183) demonstrated significant 14% decrease of AH5183 binding on an average in the ipsilateral relative to the contralateral fronto-parieto-temporal cortices to the lesion. These results suggest that AH5183 is a promising ligand for mapping cholinergic innervation in nuclear medicine imaging. (author).

  6. Transplantation of NSC-derived cholinergic neuron-like cells improves cognitive function in APP/PS1 transgenic mice.

    Science.gov (United States)

    Gu, G; Zhang, W; Li, M; Ni, J; Wang, P

    2015-04-16

    The ability to selectively control the differentiation of neural stem cells (NSCs) into cholinergic neurons in vivo would be an important step toward cell replacement therapy. First, green fluorescent protein (GFP)-NSCs were induced to differentiate into cholinergic neuron-like cells (CNLs) with retinoic acid (RA) pre-induction followed by nerve growth factor (NGF) induction. Then, these CNLs were transplanted into bilateral hippocampus of APP/PS1 transgenic mice. Behavioral parameters showed by Morris water maze (MWM) tests and the percentages of GFP-labeled cholinergic neurons of CNL transplanted mice were compared with those of controls. Brain levels of choline acetyltransferase (ChAT) mRNA and proteins were analyzed by quantitative real-time PCR and Western blotting, ChAT activity and acetylcholine (ACh) concentration were also evaluated by ChAT activity and ACh concentration assay kits. Immunofluorescence analysis showed that 80.3±1.5% NSCs differentiated into CNLs after RA pre-induction followed by NGF induction in vitro. Three months after transplantation, 82.4±6.3% CNLs differentiated into cholinergic neurons in vivo. APP/PS1 mice transplanted with CNLs showed a significant improvement in learning and memory ability compared with control groups at different time points. Furthermore, CNLs transplantation dramatically increased in the expressions of ChAT mRNA and protein, as well ChAT activity and ACh concentration in APP/PS1 mice. Our findings support the prospect of using NSC-derived CNLs in developing therapies for Alzheimer's disease (AD). Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. The effects of the alpha2-adrenergic receptor agonists clonidine and rilmenidine, and antagonists yohimbine and efaroxan, on the spinal cholinergic receptor system in the rat

    DEFF Research Database (Denmark)

    Abelson, Klas S P; Höglund, A Urban

    2004-01-01

    Cholinergic agonists produce spinal antinociception via mechanisms involving an increased release of intraspinal acetylcholine. The cholinergic receptor system interacts with several other receptor types, such as alpha2-adrenergic receptors. To fully understand these interactions, the effects...... of various receptor ligands on the cholinergic system must be investigated in detail. This study was initiated to investigate the effects of the alpha2-adrenergic receptor agonists clonidine and rilmenidine and the alpha2-adrenergic receptor antagonists yohimbine and efaroxan on spinal cholinergic receptors......, all ligands possessed affinity for nicotinic receptors. Clonidine and yohimbine binding was best fit to a one site binding curve and rilmenidine and efaroxan to a two site binding curve. The present study demonstrates that the tested alpha2-adrenergic receptor ligands affect intraspinal acetylcholine...

  8. Cholinergic degeneration is associated with increased plaque deposition and cognitive impairment in APPswe/PS1dE9 mice

    DEFF Research Database (Denmark)

    Laursen, Bettina; Mørk, Arne; Plath, Niels

    2013-01-01

    mice was not due to a more extensive cholinergic degeneration since the reduction in choline acetyltransferase activity was similar following SAP treatment in APP/PS1 mice and Wt. Interestingly, plaque load was significantly increased in SAP treated APP/PS1 mice relative to sham lesioned APP/PS1 mice....... Additionally, APP/PS1 mice treated with SAP showed a tendency towards an increased level of soluble and insoluble Aß1-40 and Aß1-42 measured in brain tissue homogenate. Our results suggest that the combination of cholinergic degeneration and Aß overexpression in the APP/PS1 mouse model results in cognitive...... decline and accelerated plaque burden. SAP treated APP/PS1 mice might thus constitute an improved model of Alzheimer's disease-like neuropathology and cognitive deficits compared to the conventional APP/PS1 model without selective removal of basal forebrain cholinergic neurons....

  9. The cholinergic-inducing effect of BMP4 on rat's cerebral neural stem cells

    International Nuclear Information System (INIS)

    Chang Yan; Xue Yilong; Luo Yun; Tian Lei; Pan Jingkun; Cui Xin

    2004-01-01

    The cholinergic-inducing effect of BMP4 on isolated and cultivated rat's cerebral neural stem cells (NSC) was examined. NSC isolated from two months old rat's brain region like hippocampus and striatum was cultivated in a DMEM/F12 medium containing EGF and bFGF, and was identified with morphological character and nestin immunocytochemistry test. After 24 hours, cultivating the NSC with the BMP4-added medium for 7-8 days, then the microscopical change were observed, ChAT and nestin double-labelling immunocytochemistry test was done. Results showed that about 34% NSC of neuron-like character was observed by microscope in the paper. That ChAT-positive cells coexist with nestin-positive cells was found by immunocytochemistry test. There were 28% ChAT-positive cells and 38% nestin-positive cells in the study. Cholinergic neurons differentiated from NSC could be induced by adding BMP4 to the medium

  10. Low-level microwave irradiation and central cholinergic systems

    International Nuclear Information System (INIS)

    Lai, H.; Carino, M.A.; Horita, A.; Guy, A.W.

    1989-01-01

    Our previous research showed that 45 min of exposure to low-level, pulsed microwaves (2450-MHz, 2-microseconds pulses, 500 pps, whole-body average specific absorption rate 0.6 W/kg) decreased sodium-dependent high-affinity choline uptake in the frontal cortex and hippocampus of the rat. The effects of microwaves on central cholinergic systems were further investigated in this study. Increases in choline uptake activity in the frontal cortex, hippocampus, and hypothalamus were observed after 20 min of acute microwave exposure, and tolerance to the effect of microwaves developed in the hypothalamus, but not in the frontal cortex and hippocampus, of rats subjected to ten daily 20-min exposure sessions. Furthermore, the effects of acute microwave irradiation on central choline uptake could be blocked by pretreating the animals before exposure with the narcotic antagonist naltrexone. In another series of experiments, rats were exposed to microwaves in ten daily sessions of either 20 or 45 min, and muscarinic cholinergic receptors in different regions of the brain were studied by 3H-QNB binding assay. Decreases in concentration of receptors occurred in the frontal cortex and hippocampus of rats subjected to ten 20-min microwave exposure sessions, whereas increase in receptor concentration occurred in the hippocampus of animals exposed to ten 45-min sessions. This study also investigated the effects of microwave exposure on learning in the radial-arm maze. Rats were trained in the maze to obtain food reinforcements immediately after 20 or 45 min of microwave exposure

  11. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway

    Science.gov (United States)

    Pavlov, Valentin A.; Parrish, William R.; Rosas-Ballina, Mauricio; Ochani, Mahendar; Puerta, Margot; Ochani, Kanta; Chavan, Sangeeta; Al-Abed, Yousef; Tracey, Kevin J.

    2015-01-01

    The excessive release of cytokines by the immune system contributes importantly to the pathogenesis of inflammatory diseases. Recent advances in understanding the biology of cytokine toxicity led to the discovery of the “cholinergic anti-inflammatory pathway,” defined as neural signals transmitted via the vagus nerve that inhibit cytokine release through a mechanism that requires the alpha7 subunit-containing nicotinic acetylcholine receptor (α7nAChR). Vagus nerve regulation of peripheral functions is controlled by brain nuclei and neural networks, but despite considerable importance, little is known about the molecular basis for central regulation of the vagus nerve-based cholinergic anti-inflammatory pathway. Here we report that brain acetylcholinesterase activity controls systemic and organ specific TNF production during endotoxemia. Peripheral administration of the acetylcholinesterase inhibitor galantamine significantly reduced serum TNF levels through vagus nerve signaling, and protected against lethality during murine endotoxemia. Administration of a centrally-acting muscarinic receptor antagonist abolished the suppression of TNF by galantamine, indicating that suppressing acetylcholinesterase activity, coupled with central muscarinic receptors, controls peripheral cytokine responses. Administration of galantamine to α7nAChR knockout mice failed to suppress TNF levels, indicating that the α7nAChR-mediated cholinergic anti-inflammatory pathway is required for the anti-inflammatory effect of galantamine. These findings show that inhibition of brain acetylcholinesterase suppresses systemic inflammation through a central muscarinic receptor-mediated and vagal- and α7nAChR-dependent mechanism. Our data also indicate that a clinically used centrally-acting acetylcholinesterase inhibitor can be utilized to suppress abnormal inflammation to therapeutic advantage. PMID:18639629

  12. Bovine pancreatic polypeptide as an antagonist of muscarinic cholinergic receptors

    International Nuclear Information System (INIS)

    Pan, G.Z.; Lu, L.; Qian, J.; Xue, B.G.

    1987-01-01

    In dispersed acini from rat pancreas, it was found that bovine pancreatic polypeptide (BPP) and its C-fragment hexapeptide amide (PP-6), at concentrations of 0.1 and 30 μM, respectively, could significantly inhibit amylase secretion stimulated by carbachol, and this inhibition by BPP was dose dependent. 45 Ca outflux induced by carbachol was also inhibited by BPP or PP-6, but they had no effect on cholecystokinin octapeptide- (CCK-8) or A23187-stimulated 45 Ca outflux. BPP was also capable of displacing the specific binding of [ 3 H]-quinuclidinyl benzilate to its receptors, and it possessed a higher affinity (K/sub i/35nM) than carbachol (K/sub i/ 1.8 μM) in binding with M-receptors. It is concluded from this study that BPP acts as an antagonist of muscarinic cholinergic receptors in rat pancreatic acini. In addition, BPP inhibited the potentiation of amylase secretion caused by the combination of carbachol plus secretin or vasoactive intestinal peptide. This may be a possible explanation of the inhibitory effect of BPP on secretin-induced pancreatic enzyme secretion shown in vivo, since pancreatic enzyme secretion stimulated by secretin under experimental conditions may be the result of potentiation of enzyme release produced by the peptide in combination with a cholinergic stimulant

  13. Subtle learning and memory impairment in an idiopathic rat model of Alzheimer's disease utilizing cholinergic depletions and β-amyloid.

    Science.gov (United States)

    Deibel, S H; Weishaupt, N; Regis, A M; Hong, N S; Keeley, R J; Balog, R J; Bye, C M; Himmler, S M; Whitehead, S N; McDonald, R J

    2016-09-01

    Alzheimer's disease (AD) is a disease of complex etiology, involving multiple risk factors. When these risk factors are presented concomitantly, cognition and brain pathology are more severely compromised than if those risk factors were presented in isolation. Reduced cholinergic tone and elevated amyloid-beta (Aβ) load are pathological hallmarks of AD. The present study sought to investigate brain pathology and alterations in learning and memory when these two factors were presented together in rats. Rats received either sham surgeries, cholinergic depletions of the medial septum, intracerebroventricular Aβ25-35 injections, or both cholinergic depletion and Aβ25-35 injections (Aβ+ACh group). The Aβ+ACh rats were unimpaired in a striatal dependent visual discrimination task, but had impaired acquisition in the standard version of the Morris water task. However, these rats displayed normal Morris water task retention and no impairment in acquisition of a novel platform location during a single massed training session. Aβ+ACh rats did not have exacerbated brain pathology as indicated by activated astroglia, activated microglia, or accumulation of Aβ. These data suggest that cholinergic depletions and Aβ injections elicit subtle cognitive deficits when behavioural testing is conducted shortly after the presentation of these factors. These factors might have altered hippocampal synaptic plasticity and thus resemble early AD pathology. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Antidepressant-like properties of sildenafil in a genetic rat model of depression: Role of cholinergic cGMP-interactions

    DEFF Research Database (Denmark)

    Liebenberg, Nico; Brink, Christiaan; Brand, Linda

    2008-01-01

    Background: The N-methyl-D-aspartate (NMDA)/nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway has been implicated in the neurobiology of depression. Recently we suggested a possible complex interaction between the cholinergic and NO-cGMP pathways in the antidepressant-like response....... Conclusions: Using a genetic animal model of depression, we have confirmed the antidepressant-like property of sildenafil following “unmasking” by concomitant block of muscarinic receptors. These findings hint at a novel interaction between the cGMP and cholinergic systems in depression, and suggest...

  15. Modulation of cholinergic airway reactivity and nitric oxide production by endogenous arginase activity

    NARCIS (Netherlands)

    Meurs, Herman; Hamer, M.A M; Pethe, S; Vadon-Le Goff, S; Boucher, J.-L; Zaagsma, Hans

    1 Cholinergic airway constriction is functionally antagonized by agonist-induced constitutive nitric oxide synthase (cNOS)-derived nitric oxide (NO). Since cNOS and arginase, which hydrolyzes L-arginine to L-ornithine and urea, use L-arginine as a common substrate, competition between both enzymes

  16. Cholinergic mechanisms in spinal cord and muscle

    International Nuclear Information System (INIS)

    Aquilonius, S.M.; Askmark, H.; Gilberg, P.G.

    1986-01-01

    Current knowledge regarding the distribution of acetylcholinesterase (ACHE) cholineacetyltranferase (ChAT) and cholinergic receptors in the spinal cord is presented as well as changes in these markers coupled to the degenerations in amyotrophic lateral sclerosis (ALS). The principal changes in ChAT and nicotonic receptors in rat hindleg muscles during denervation and reinnervation is discussed as a background for quantitative studies in human muscle biopsies. It is noted that thefirst published autoradiograph on spinal cord muscarinic receptors was from the rat, depicting an intense binding of radiolabeled quinuclikiny benzilate (tritium-QNB) in the ventral horn, and expecially in an apical part of the dorsal horn claimed to correspond to correspond to sustantia gelatinosa

  17. Catecholaminergic and serotoninergic fibres innervate the ventricular system of the hedgehog CNS.

    Science.gov (United States)

    Michaloudi, H C; Papadopoulos, G C

    1996-01-01

    Immunocytochemistry with antisera against serotonin (5-HT), dopamine (DA) and noradrenaline (NA) was used to detect monoaminergic (MA) fibres in the ventricular system of the hedgehog Erinaceus europaeus. Light microscopic examination of immunocytochemically stained sections revealed that the ventricular system of the hedgehog is unique among mammals in that the choroid plexuses receive CA axons and that the supraependyma and subependyma of the cerebral ventricles and the spinal central canal are innervated both by serotoninergic and catecholaminergic (CA) fibres. Supraependymal 5-HT axons were generally more abundant and created at places a large number of interconnected basket-like structures, whereas CA fibres were usually directed towards the ventricular lumen. In the lateral ventricles, CA fibres were more numerous in the ependyma lining grey matter, whereas a higher 5-HT innervation density was observed in the area between the corpus callosum and the caudate nucleus or the septum. In the 3rd ventricle, the ependyma of its dorsal part exhibited a higher 5-HT and NA innervation density, whereas DA fibres were preferentially distributed in the ventral half of the basal region. The ependyma lining the cerebral aqueduct displayed a higher MA innervation density in its ventral part. The ependymal wall of the 4th ventricle exhibited an extremely dense 5-HT innervation, mainly in the floor of the ventricle, relatively fewer NA fibres and only sparse DA ones. Few NA and relatively more 5-HT fibres were detected in the ependyma of the central canal. Finally, the circumventricular organs were unevenly innervated by the 3 types of MA fibres. The extensive monoaminergic innervation of the hedgehog ventricular system described here probably reflects a transitory evolutionary stage in the phylogeny of the MA systems with presently unknown functional implications. Images Fig. 1 Fig. 2 Figs 3-8 Figs 9-14 Figs 15-20 PMID:8886949

  18. Cholinergic neuromodulation changes phase response curve shape and type in cortical pyramidal neurons.

    Directory of Open Access Journals (Sweden)

    Klaus M Stiefel

    Full Text Available Spike generation in cortical neurons depends on the interplay between diverse intrinsic conductances. The phase response curve (PRC is a measure of the spike time shift caused by perturbations of the membrane potential as a function of the phase of the spike cycle of a neuron. Near the rheobase, purely positive (type I phase-response curves are associated with an onset of repetitive firing through a saddle-node bifurcation, whereas biphasic (type II phase-response curves point towards a transition based on a Hopf-Andronov bifurcation. In recordings from layer 2/3 pyramidal neurons in cortical slices, cholinergic action, consistent with down-regulation of slow voltage-dependent potassium currents such as the M-current, switched the PRC from type II to type I. This is the first report showing that cholinergic neuromodulation may cause a qualitative switch in the PRCs type implying a change in the fundamental dynamical mechanism of spike generation.

  19. New pharmacological approaches to the cholinergic system: an overview on muscarinic receptor ligands and cholinesterase inhibitors.

    Science.gov (United States)

    Greig, Nigel H; Reale, Marcella; Tata, Ada M

    2013-08-01

    The cholinergic system is expressed in neuronal and in non-neuronal tissues. Acetylcholine (ACh), synthesized in and out of the nervous system can locally contribute to modulation of various cell functions (e.g. survival, proliferation). Considering that the cholinergic system and its functions are impaired in a number of disorders, the identification of new pharmacological approaches to regulate cholinergic system components appears of great relevance. The present review focuses on recent pharmacological drugs able to modulate the activity of cholinergic receptors and thereby, cholinergic function, with an emphasis on the muscarinic receptor subtype, and additionally covers the cholinesterases, the main enzymes involved in ACh hydrolysis. The presence and function of muscarinic receptor subtypes both in neuronal and non-neuronal cells has been demonstrated using extensive pharmacological data emerging from studies on transgenic mice. The possible involvement of ACh in different pathologies has been proposed in recent years and is becoming an important area of study. Although the lack of selective muscarinic receptor ligands has for a long time limited the definition of therapeutic treatment based on muscarinic receptors as targets, some muscarinic ligands such as cevimeline (patents US4855290; US5571918) or xanomeline (patent, US5980933) have been developed and used in pre-clinical or in clinical studies for the treatment of nervous system diseases (Alzheimer' and Sjogren's diseases). The present review focuses on the potential implications of muscarinic receptors in different pathologies, including tumors. Moreover, the future use of muscarinic ligands in therapeutic protocols in cancer therapy will be discussed, considering that some muscarinic antagonists currently used in the treatment of genitourinary disease (e.g. darifenacin, patent, US5096890; US6106864) have also been demonstrated to arrest tumor progression in nude mice. The involvement of muscarinic

  20. Cholinergic-opioidergic interaction in the central amygdala induces antinociception in the guinea pig

    Directory of Open Access Journals (Sweden)

    Leite-Panissi C.R.A.

    2004-01-01

    Full Text Available Several studies have demonstrated the involvement of the central nucleus of the amygdala (CEA in the modulation of defensive behavior and in antinociceptive regulation. In a previous study, we demonstrated the existence of a cholinergic-opioidergic interaction in the CEA, modulating the defensive response of tonic immobility in guinea pigs. In the present study, we investigated a similar interaction in the CEA, but now involved in the regulation of the nociceptive response. Microinjection of carbachol (2.7 nmol and morphine (2.2 nmol into the CEA promoted antinociception up to 45 min after microinjection in guinea pigs as determined by a decrease in the vocalization index in the vocalization test. This test consists of the application of a peripheral noxious stimulus (electric shock into the subcutaneous region of the thigh that provokes the emission of a vocalization response by the animal. Furthermore, the present results demonstrated that the antinociceptive effect of carbachol (2.7 nmol; N = 10 was blocked by previous administration of atropine (0.7 nmol; N = 7 or naloxone (1.3 nmol; N = 7 into the same site. In addition, the decrease in the vocalization index induced by the microinjection of morphine (2.2 nmol; N = 9 into the CEA was prevented by pretreatment with naloxone (1.3 nmol; N = 11. All sites of injection were confirmed by histology. These results indicate the involvement of the cholinergic and opioidergic systems of the CEA in the modulation of antinociception in guinea pigs. In addition, the present study suggests that cholinergic transmission may activate the release of endorphins/enkephalins from interneurons of the CEA, resulting in antinociception.

  1. Delirium Accompanied by Cholinergic Deficiency and Organ Failure in a 73-Year-Old Critically Ill Patient: Physostigmine as a Therapeutic Option

    Directory of Open Access Journals (Sweden)

    Benedikt Zujalovic

    2015-01-01

    Full Text Available Delirium is a common problem in ICU patients, resulting in prolonged ICU stay and increased mortality. A cholinergic deficiency in the central nervous system is supposed to be a relevant pathophysiologic process in delirium. Acetylcholine is a major transmitter of the parasympathetic nervous system influencing several organs (e.g., heart and kidneys and the inflammatory response too. This perception might explain that delirium is not an individual symptom, but rather a part of a symptom complex with various disorders of the whole organism. The cholinergic deficiency could not be quantified up to now. Using the possibility of bedside determination of the acetylcholinesterase activity (AChE activity, we assumed to objectify the cholinergic homeostasis within minutes. As reported here, the postoperative delirium was accompanied by a massive hemodynamic and renal deterioration of unclear genesis. We identified the altered AChE activity as a plausible pathophysiological mechanism. The pharmacological intervention with the indirect parasympathomimetic physostigmine led to a quick and lasting improvement of the patient’s cognitive, hemodynamic, and renal status. In summary, severe delirium is not always an attendant phenomenon of critical illness. It might be causal for multiple organ deterioration if it is based on cholinergic deficiency and has to be treated at his pathophysiological roots whenever possible.

  2. Mangifera indica Fruit Extract Improves Memory Impairment, Cholinergic Dysfunction, and Oxidative Stress Damage in Animal Model of Mild Cognitive Impairment

    Science.gov (United States)

    Wattanathorn, Jintanaporn; Muchimapura, Supaporn; Thukham-Mee, Wipawee; Ingkaninan, Kornkanok; Wittaya-Areekul, Sakchai

    2014-01-01

    To date, the effective preventive paradigm against mild cognitive impairment (MCI) is required. Therefore, we aimed to determine whether Mangifera indica fruit extract, a substance possessing antioxidant and cognitive enhancing effects, could improve memory impairment, cholinergic dysfunction, and oxidative stress damage in animal model of mild cognitive impairment. Male Wistar rats, weighing 180–200 g, were orally given the extract at doses of 12.5, 50, and 200 mg·kg−1 BW for 2 weeks before and 1 week after the bilateral injection of AF64A (icv). At the end of study, spatial memory, cholinergic neurons density, MDA level, and the activities of SOD, CAT, and GSH-Px enzymes in hippocampus were determined. The results showed that all doses of extract could improve memory together with the decreased MDA level and the increased SOD and GSH-Px enzymes activities. The increased cholinergic neurons density in CA1 and CA3 of hippocampus was also observed in rats treated with the extract at doses of 50 and 200 mg·kg−1 BW. Therefore, our results suggested that M. indica, the potential protective agent against MCI, increased cholinergic function and the decreased oxidative stress which in turn enhanced memory. However, further researches are essential to elucidate the possible active ingredients and detail mechanism. PMID:24672632

  3. Mangifera indica Fruit Extract Improves Memory Impairment, Cholinergic Dysfunction, and Oxidative Stress Damage in Animal Model of Mild Cognitive Impairment

    Directory of Open Access Journals (Sweden)

    Jintanaporn Wattanathorn

    2014-01-01

    Full Text Available To date, the effective preventive paradigm against mild cognitive impairment (MCI is required. Therefore, we aimed to determine whether Mangifera indica fruit extract, a substance possessing antioxidant and cognitive enhancing effects, could improve memory impairment, cholinergic dysfunction, and oxidative stress damage in animal model of mild cognitive impairment. Male Wistar rats, weighing 180–200 g, were orally given the extract at doses of 12.5, 50, and 200 mg·kg−1 BW for 2 weeks before and 1 week after the bilateral injection of AF64A (icv. At the end of study, spatial memory, cholinergic neurons density, MDA level, and the activities of SOD, CAT, and GSH-Px enzymes in hippocampus were determined. The results showed that all doses of extract could improve memory together with the decreased MDA level and the increased SOD and GSH-Px enzymes activities. The increased cholinergic neurons density in CA1 and CA3 of hippocampus was also observed in rats treated with the extract at doses of 50 and 200 mg·kg−1 BW. Therefore, our results suggested that M. indica, the potential protective agent against MCI, increased cholinergic function and the decreased oxidative stress which in turn enhanced memory. However, further researches are essential to elucidate the possible active ingredients and detail mechanism.

  4. Nicotine protects kidney from renal ischemia/reperfusion injury through the cholinergic anti-inflammatory pathway.

    Directory of Open Access Journals (Sweden)

    Claude Sadis

    Full Text Available Kidney ischemia/reperfusion injury (I/R is characterized by renal dysfunction and tubular damages resulting from an early activation of innate immunity. Recently, nicotine administration has been shown to be a powerful inhibitor of a variety of innate immune responses, including LPS-induced toxaemia. This cholinergic anti-inflammatory pathway acts via the alpha7 nicotinic acetylcholine receptor (alpha7nAChR. Herein, we tested the potential protective effect of nicotine administration in a mouse model of renal I/R injury induced by bilateral clamping of kidney arteries. Renal function, tubular damages and inflammatory response were compared between control animals and mice receiving nicotine at the time of ischemia. Nicotine pretreatment protected mice from renal dysfunction in a dose-dependent manner and through the alpha7nAChR, as attested by the absence of protection in alpha7nAChR-deficient mice. Additionally, nicotine significantly reduced tubular damages, prevented neutrophil infiltration and decreased productions of the CXC-chemokine KC, TNF-alpha and the proinflammatory high-mobility group box 1 protein. Reduced tubular damage in nicotine pre-treated mice was associated with a decrease in tubular cell apoptosis and proliferative response as attested by the reduction of caspase-3 and Ki67 positive cells, respectively. All together, these data highlight that nicotine exerts a protective anti-inflammatory effect during kidney I/R through the cholinergic alpha7nAChR pathway. In addition, this could provide an opportunity to overcome the effect of surgical cholinergic denervation during kidney transplantation.

  5. Extensive Lesions of Cholinergic Basal Forebrain Neurons Do Not Impair Spatial Working Memory

    Science.gov (United States)

    Vuckovich, Joseph A.; Semel, Mara E.; Baxter, Mark G.

    2004-01-01

    A recent study suggests that lesions to all major areas of the cholinergic basal forebrain in the rat (medial septum, horizontal limb of the diagonal band of Broca, and nucleus basalis magnocellularis) impair a spatial working memory task. However, this experiment used a surgical technique that may have damaged cerebellar Purkinje cells. The…

  6. Evaluation of Cholinergic Deficiency in Preclinical Alzheimer’s Disease Using Pupillometry

    Directory of Open Access Journals (Sweden)

    Shaun Frost

    2017-01-01

    Full Text Available Cortical cholinergic deficiency is prominent in Alzheimer’s disease (AD, and published findings of diminished pupil flash response in AD suggest that this deficiency may extend to the visual cortical areas and anterior eye. Pupillometry is a low-cost, noninvasive technique that may be useful for monitoring cholinergic deficits which generally lead to memory and cognitive disorders. The aim of the study was to evaluate pupillometry for early detection of AD by comparing the pupil flash response (PFR in AD (N=14 and cognitively normal healthy control (HC, N=115 participants, with the HC group stratified according to high (N=38 and low (N=77 neocortical amyloid burden (NAB. Constriction phase PFR parameters were significantly reduced in AD compared to HC (maximum acceleration p<0.05, maximum velocity p<0.0005, average velocity p<0.005, and constriction amplitude p<0.00005. The high-NAB HC subgroup had reduced PFR response cross-sectionally, and also a greater decline longitudinally, compared to the low-NAB subgroup, suggesting changes to pupil response in preclinical AD. The results suggest that PFR changes may occur in the preclinical phase of AD. Hence, pupillometry has a potential as an adjunct for noninvasive, cost-effective screening for preclinical AD.

  7. Differential effects of lipopolysaccharide on energy metabolism in murine microglial N9 and cholinergic SN56 neuronal cells.

    Science.gov (United States)

    Klimaszewska-Łata, Joanna; Gul-Hinc, Sylwia; Bielarczyk, Hanna; Ronowska, Anna; Zyśk, Marlena; Grużewska, Katarzyna; Pawełczyk, Tadeusz; Szutowicz, Andrzej

    2015-04-01

    There are significant differences between acetyl-CoA and ATP levels, enzymes of acetyl-CoA metabolism, and toll-like receptor 4 contents in non-activated microglial N9 and non-differentiated cholinergic SN56 neuroblastoma cells. Exposition of N9 cells to lipopolysaccharide caused concentration-dependent several-fold increases of nitrogen oxide synthesis, accompanied by inhibition of pyruvate dehydrogenase complex, aconitase, and α-ketoglutarate dehydrogenase complex activities, and by nearly proportional depletion of acetyl-CoA, but by relatively smaller losses in ATP content and cell viability (about 5%). On the contrary, SN56 cells appeared to be insensitive to direct exposition to high concentration of lipopolysaccharide. However, exogenous nitric oxide resulted in marked inhibition pyruvate dehydrogenase and aconitase activities, depletion of acetyl-CoA, along with respective loss of SN56 cells viability. These data indicate that these two common neurodegenerative signals may differentially affect energy-acetyl-CoA metabolism in microglial and cholinergic neuronal cell compartments in the brain. Moreover, microglial cells appeared to be more resistant than neuronal cells to acetyl-CoA and ATP depletion evoked by these neurodegenerative conditions. Together, these data indicate that differential susceptibility of microglia and cholinergic neuronal cells to neurotoxic signals may result from differences in densities of toll-like receptors and degree of disequilibrium between acetyl-CoA provision in mitochondria and its utilization for energy production and acetylation reactions in each particular group of cells. There are significant differences between acetyl-CoA and ATP levels and enzymes of acetyl-CoA metabolism in non-activated microglial N9 and non-differentiated cholinergic SN56 neuroblastoma cells. Pathological stimulation of microglial toll-like receptors (TLRs) triggered excessive synthesis of microglia-derived nitric oxide (NO)/NOO radicals that

  8. Effects of dietary amino acids, carbohydrates, and choline on neurotransmitter synthesis

    Science.gov (United States)

    Wurtman, Richard J.

    1988-01-01

    The ability of a meal to increase or decrease brain neurotransmitter synthesis has been studied. It is concluded that brain serotonin synthesis is directly controlled by the proportions of carbohydrate to protein in meals and snacks that increase or decrease brain tryptophan levels, thereby changing the substrate saturation of tryptophan hydroxylase and the rate of serotonin synthesis. The ability of serotoninergic neurons to have their output coupled to dietary macronutrients enables them to function as sensors of peripheral metabolism, and to subserve an important role in the control of appetite. The robust and selective responses of catecholaminergic and cholinergic neurons to supplemental tyrosine and choline suggest that these compounds may become useful as a new type of drug for treating deseases or conditions in which adequate quantities of the transmitter would otherwise be unavailable.

  9. Potentiation by cholinesterase inhibitors of cholinergic activity in rat isolated stomach and colon.

    Science.gov (United States)

    Jarvie, Emma M; Cellek, Selim; Sanger, Gareth J

    2008-01-01

    Acetylcholinesterase (AChE) inhibitors stimulate gastrointestinal (GI) motility and are potential treatments of conditions associated with inadequate GI motility. The ability of itopride to facilitate neuronally (predominantly cholinergic) mediated contractions of rat isolated stomach, evoked by electrical field stimulation (EFS), has been compared with other cholinesterase inhibitors and with tegaserod, a clinically effective prokinetic and non-selective 5-HT(4) receptor agonist which also facilitates GI cholinergic function. Neostigmine greatly increased EFS-evoked contractions over a narrow concentration range (0.01-1 microM; 754+/-337% facilitation at 1 microM); higher concentrations (1, 3 microM) also increased muscle tension. Donepezil increased EFS-evoked contractions gradually over the full range of concentrations (0.01-10 microM; maximum increase 516+/-20% at 10 microM). Itopride increased the contractions even more gradually, rising to 188+/-84% at 10 microM. The butyrylcholinesterase inhibitor iso-OMPA 0.01-10 microM also increased EFS-evoked contractions, to a maximum of 36+/-5.0% at 10 microM, similar to that caused by tegaserod (35+/-5.2% increase at 1 microM). The effects of tegaserod, but not itopride were inhibited by the 5-HT(4) receptor antagonist SB-204070A 0.3 microM. In rat isolated colon, neostigmine was again the most efficacious, causing a defined maximum increase in EFS-evoked contractions (343+/-82% at 10 microM), without changing muscle tension. Maximum increases caused by donepezil and itopride were, respectively, 57.6+/-20 and 43+/-15% at 10 microM. These data indicate that the abilities of different AChE inhibitors to increase GI cholinergic activity differ markedly. Understanding the reasons is essential if AChE inhibitors are to be optimally developed as GI prokinetics.

  10. Uranium chronic contamination effects on the cholinergic system: in vivo and in vitro approaches

    International Nuclear Information System (INIS)

    Bensoussan, H.

    2009-01-01

    Uranium (U) is a heavy metal which occurs naturally in the environment. It is both a chemical and a radiological toxicant. The aim of this work was: (i) to assess the effects of U chronic exposure on the cholinergic system (biosynthesis and breakdown enzymes, receptors and on behaviour of adult, young or predisposed to neuro-degenerative illness (ApoE KO) rodents; (ii) to grasp the neurotoxic effects of U on human neuronal cells. In vivo, this work shows a structure- (cortex more sensitive than hippocampus), rodent model- (young more sensitive than adults), time- (sub-chronic exposure more harmful than chronic exposure), exposure level- and isotope-dependent effect of U. In vitro, the study underlined the neuro-cytotoxic U potential and the presence of uranium precipitates in cells. These results show the deleterious impact of U on neuronal cells, and demonstrate that U induces impairments on the cholinergic system and the behaviour of rodents. (author)

  11. Cholinergic, serotoninergic and peptidergic components of the nervous system of Discocotyle sagittata (Monogenea:Polyopisthocotylea).

    Science.gov (United States)

    Cable, J; Marks, N J; Halton, D W; Shaw, C; Johnston, C F; Tinsley, R C; Gannicott, A M

    1996-12-01

    Cholinergic, serotoninergic (5-HT) and peptidergic neuronal pathways have been demonstrated in both central and peripheral nervous systems of adult Discocotyle sagittata, using enzyme histochemistry and indirect immunocytochemistry in conjunction with confocal scanning laser microscopy. Antisera to 2 native flatworm neuropeptides, neuropeptide F and the FMRFamide-related peptide (FaRP), GNFFRFamide, were employed to detect peptide immunoreactivity. The CNS is composed of paired cerebral ganglia and connecting dorsal commissure, together with several paired longitudinal nerve cords. The main longitudinal nerve cords (lateral, ventral and dorsal) are interconnected at intervals by a series of annular cross-connectives, producing a ladder-like arrangement typical of the platyhelminth nervous system. At the level of the haptor, the ventral cords provide nerve roots which innervate each of the 9 clamps. Cholinergic and peptidergic neuronal organisation was similar, but distinct from that of the serotoninergic components. The PNS and reproductive system are predominantly innervated by peptidergic neurones.

  12. Where attention falls: Increased risk of falls from the converging impact of cortical cholinergic and midbrain dopamine loss on striatal function

    Science.gov (United States)

    Sarter, Martin; Albin, Roger L.; Kucinski, Aaron; Lustig, Cindy

    2015-01-01

    Falls are a major source of hospitalization, long-term institutionalization, and death in older adults and patients with Parkinson’s disease (PD). Limited attentional resources are a major risk factor for falls. In this review, we specify cognitive–behavioral mechanisms that produce falls and map these mechanisms onto a model of multi-system degeneration. Results from PET studies in PD fallers and findings from a recently developed animal model support the hypothesis that falls result from interactions between loss of basal forebrain cholinergic projections to the cortex and striatal dopamine loss. Striatal dopamine loss produces inefficient, low-vigor gait, posture control, and movement. Cortical cholinergic deafferentation impairs a wide range of attentional processes, including monitoring of gait, posture and complex movements. Cholinergic cell loss reveals the full impact of striatal dopamine loss on motor performance, reflecting loss of compensatory attentional supervision of movement. Dysregulation of dorsomedial striatal circuitry is an essential, albeit not exclusive, mediator of falls in this dual-system model. Because cholinergic neuromodulatory activity influences cortical circuitry primarily via stimulation of α4β2* nicotinic acetylcholine receptors, and because agonists at these receptors are known to benefit attentional processes in animals and humans, treating PD fallers with such agonists, as an adjunct to dopaminergic treatment, is predicted to reduce falls. Falls are an informative behavioral endpoint to study attentional–motor integration by striatal circuitry. PMID:24805070

  13. Cholinergic Potentiation of Restoration of Visual Function after Optic Nerve Damage in Rats

    Directory of Open Access Journals (Sweden)

    Mira Chamoun

    2017-01-01

    Full Text Available Enhancing cortical plasticity and brain connectivity may improve residual vision following a visual impairment. Since acetylcholine plays an important role in attention and neuronal plasticity, we explored whether potentiation of the cholinergic transmission has an effect on the visual function restoration. To this end, we evaluated for 4 weeks the effect of the acetylcholinesterase inhibitor donepezil on brightness discrimination, visually evoked potentials, and visual cortex reactivity after a bilateral and partial optic nerve crush in adult rats. Donepezil administration enhanced brightness discrimination capacity after optic nerve crush compared to nontreated animals. The visually evoked activation of the primary visual cortex was not restored, as measured by evoked potentials, but the cortical neuronal activity measured by thallium autometallography was not significantly affected four weeks after the optic nerve crush. Altogether, the results suggest a role of the cholinergic system in postlesion cortical plasticity. This finding agrees with the view that restoration of visual function may involve mechanisms beyond the area of primary damage and opens a new perspective for improving visual rehabilitation in humans.

  14. GABAergic actions on cholinergic laterodorsal tegmental neurons

    DEFF Research Database (Denmark)

    Kohlmeier, K A; Kristiansen, Uffe

    2010-01-01

    Cholinergic neurons of the pontine laterodorsal tegmentum (LDT) play a critical role in regulation of behavioral state. Therefore, elucidation of mechanisms that control their activity is vital for understanding of how switching between wakefulness, sleep and anesthetic states is effectuated....... In vivo studies suggest that GABAergic mechanisms within the pons play a critical role in behavioral state switching. However, the postsynaptic, electrophysiological actions of GABA on LDT neurons, as well as the identity of GABA receptors present in the LDT mediating these actions is virtually unexplored...... neurons. Post-synaptic location of GABA(A) receptors was demonstrated by persistence of muscimol-induced inward currents in TTX and low Ca(2+) solutions. THIP, a selective GABA(A) receptor agonist with a preference for d-subunit containing GABA(A) receptors, induced inward currents, suggesting...

  15. Endosulfan and cholinergic (muscarinic) transmission: effect on electroencephalograms and [3H]quinuclidinyl benzilate in pigeon brain

    International Nuclear Information System (INIS)

    Anand, M.; Agrawal, A.K.; Gopal, K.; Sur, R.N.; Seth, P.K.

    1986-01-01

    Single exposure of endosulfan (5 mg/kg) to pigeons (Columbia livia) caused neuronal hyperexcitability as evidence by spike discharges of 200-500 μV in the electroencephalograms (EEG) from the telencephalon and hyperstriatum, but there was not effect on the ectostriatal area. Cholinergic (muscarinic) receptor binding study using [ 3 H]quinuclidinyl benzilate ([ 3 H]QNB) as a specific ligand indicated that a single exposure to 5 mg/kg of endosulfan caused a significant increase in [ 3 H]QNB binding to the striatal membrane. Behavior study further indicated that a single dose of 200 μg/kg of oxotremorine produced a significant induction in the tremor in endosulfan-pretreated pigeons. The results of this behavioral and biochemical study indicate the involvement of a cholinergic (muscarinic) transmitter system in endosulfan-induced neurotoxicity

  16. Outcome of Patients with Cholinergic Insecticide Poisoning Treated with Gastric Lavage: A Prospective Observational Cohort Study

    Directory of Open Access Journals (Sweden)

    Mekkattukunnel Andrews

    2014-12-01

    Conclusion: Number or timing of GL does not show any association with mortality while multiple GL had protective effect against development of late RF and IMS. Hence, GL might be beneficial in cholinergic insecticide poisoning.

  17. Myotropic Effects of Cholinergic Muscarinic Agonists and Antagonists in the Beetle Tenebrio molitor L.

    Science.gov (United States)

    Chowanski, Szymon; Rosinski, Grzegorz

    2017-01-01

    In mammals, the cholinergic nervous system plays a crucial role in neuronal regulation of physiological processes. It acts on cells by two types of receptors - nicotinic and muscarinic receptors. Both signal transmission pathways also operate in the central and peripheral cholinergic nervous system of insects. In our pharmacological experiments, we studied the effects of two muscarinic agonists (carbachol, pilocarpine) and two muscarinic antagonists (atropine, scopolamine) on the muscle contractile activity of visceral organs in the beetle, Tenebrio molitor. Both antagonists, when injected to haemolymph at concentration 10-5 M, caused delayed and prolonged cardioinhibitory effects on heart contractility in ortho- and antidromic phases of heart activity in T. molitor pupa what was observed as negative chrono- and inotropic effects. Agonist of muscarinic receptors - carbachol evoked opposite effect and increased contraction rate but only in antidromic phase. Pilocarpine, the second agonist induced weak negative chronotropic effects in the antiand orthodromic phases of heart activity. However, neither agonists had an effect on semi-isolated beetle heart in vitro. Only atropine at the highest tested concentrations slightly decreased the frequency of myocardial contractions. These suggest the regulation of heart activity by muscarinic system indirectly. The tested compounds also affected the contractility of the oviduct and hindgut, but the responses of these organs were varied and depended on the concentration of the applied compounds. These pharmacological experiments suggest the possible modulation of insect visceral muscle contractility by the cholinergic nervous system and indirectly indicate the presence of muscarinic receptor(s) in the visceral organs of the beetle T. molitor. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. The motilin receptor agonist erythromycin stimulates hunger and food intake through a cholinergic pathway.

    Science.gov (United States)

    Deloose, Eveline; Vos, Rita; Janssen, Pieter; Van den Bergh, Omer; Van Oudenhove, Lukas; Depoortere, Inge; Tack, Jan

    2016-03-01

    Motilin-induced phase III contractions have been identified as a hunger signal. These phase III contractions occur as part of the migrating motor complex (MMC), a contractility pattern of the gastrointestinal tract during fasting. The mechanism involved in this association between subjective hunger feelings and gastrointestinal motility during the MMC is largely unknown, however, as is its ability to stimulate food intake. We sought to 1) investigate the occurrence of hunger peaks and their relation to phase III contractions, 2) evaluate whether this relation was cholinergically driven, and 3) assess the ability of the motilin receptor agonist erythromycin to induce food intake. An algorithm was developed to detect hunger peaks. The association with phase III contractions was studied in 14 healthy volunteers [50% men; mean ± SEM age: 25 ± 2 y; mean ± SEM body mass index (BMI; in kg/m(2)): 23 ± 1]. The impact of pharmacologically induced phase III contractions on the occurrence of hunger peaks and the involvement of a cholinergic pathway were assessed in 14 healthy volunteers (43% men; age: 29 ± 3 y; BMI: 23 ± 1). Last, the effect of erythromycin administration on food intake was examined in 15 healthy volunteers (40% men; age: 28 ± 3 y; BMI: 22 ± 1). The occurrence of hunger peaks and their significant association with phase III contractions was confirmed (P hunger peaks (P hunger feelings through a cholinergic pathway. Moreover, erythromycin stimulated food intake, suggesting a physiologic role of motilin as an orexigenic signal from the gastrointestinal tract. This trial was registered at www.clinicaltrials.gov as NCT02633579. © 2016 American Society for Nutrition.

  19. Nicotinic cholinergic antagonists: a novel approach for the treatment of autism.

    Science.gov (United States)

    Lippiello, P M

    2006-01-01

    Evidence supports the hypothesis that normalization of cholinergic tone by selective antagonism of neuronal nicotinic acetylcholine receptors (NNRs) may ameliorate the core symptoms of autism. As often is the case, epidemiology has provided the first important clues. It is well recognized that psychiatric patients are significantly more often smokers than the general population. The only known exceptions are obsessive-compulsive disorder (OCD), catatonic schizophrenia and interestingly, autism. In this regard, clinical studies with nicotine have demonstrated amelioration of symptoms of a number of diseases and disorders, including Alzheimer's disease, Parkinson's disease, ADHD and Tourette's syndrome. Nicotine's agonist properties at CNS NNRs have been implicated in these effects and support the concept of self-medication as a strong motivation for smoking in cognitively compromised individuals. On the other hand, the inverse correlation between autism and smoking suggests that smoking does not provide symptomatic relief and may actually be indicative of an active avoidance of nicotine's agonist effects in this disorder. Neuroanatomical evidence is consistent with this idea based on the presence of hypercholinergic architecture in the autistic brain, particularly during the first few years of development, making the avoidance of further stimulation of an already hyperactive cholinergic system plausible. This may also explain why stimulants (known to increase dopamine levels as do NNR agonists) appear to aggravate autistic symptoms and why studies with cholinesterase inhibitors that increase acetylcholine levels in the brain have yielded variable effects in autism. Taken together, the evidence suggests the possibility that nicotinic cholinergic antagonism may in fact be palliative. Pharmacological evidence supports this hypothesis. For example, antidepressants, many of which are now known to be non-competitive NNR antagonists, have been used successfully to treat a

  20. Identification of cholinergic synaptic transmission in the insect nervous system.

    Science.gov (United States)

    Thany, Steeve Hervé; Tricoire-Leignel, Hélène; Lapied, Bruno

    2010-01-01

    A major criteria initially used to localize cholinergic neuronal elements in nervous systems tissues that involve acetylcholine (ACh) as neurotransmitter is mainly based on immunochemical studies using choline acetyltransferase (ChAT), an enzyme which catalyzes ACh biosynthesis and the ACh degradative enzyme named acetylcholinesterase (AChE). Immunochemical studies using anti-ChAT monoclonal antibody have allowed the identification of neuronal processes and few types of cell somata that contain ChAT protein. In situ hybridization using cRNA probes to ChAT or AChE messenger RNA have brought new approaches to further identify cell bodies transcribing the ChAT or AChE genes. Combined application of all these techniques reveals a widespread expression of ChAT and AChE activities in the insect central nervous system and peripheral sensory neurons which implicates ACh as a key neurotransmitter. The discovery of the snake toxin alpha-bungatoxin has helped to identify nicotinic acetylcholine receptors (nAChRs). In fact, nicotine when applied to insect neurons, resulted in the generation of an inward current through the activation of nicotinic receptors which were blocked by alpha-bungarotoxin. Thus, insect nAChRs have been divided into two categories, sensitive and insensitive to this snake toxin. Up to now, the recent characterization and distribution pattern of insect nAChR subunits and the biochemical evidence that the insect central nervous system contains different classes of cholinergic receptors indicated that ACh is involved in several sensory pathways.

  1. Cholinergic cells in the nucleus basalis of mice express the N-methyl-D-aspartate-receptor subunit NR2C and its replacement by the NR2B subunit enhances frontal and amygdaloid acetylcholine levels

    NARCIS (Netherlands)

    De Souza Silva, M. A.; Dolga, Amalia; Pieri, I.; Marchetti, L.; Eisel, U. L. M.; Huston, J. P.; Dere, E.

    2006-01-01

    It is known that glutamatergic and cholinergic systems interact functionally at the level of the cholinergic basal forebrain. The N-methyl-D-aspartate receptor (NMDA-R) is a multiprotein complex composed of NR1, NR2 and/or NR3 subunits. The subunit composition of NMDA-R of cholinergic cells in the

  2. Transcriptional Profiling of Cholinergic Neurons From Basal Forebrain Identifies Changes in Expression of Genes Between Sleep and Wake.

    Science.gov (United States)

    Nikonova, Elena V; Gilliland, Jason DA; Tanis, Keith Q; Podtelezhnikov, Alexei A; Rigby, Alison M; Galante, Raymond J; Finney, Eva M; Stone, David J; Renger, John J; Pack, Allan I; Winrow, Christopher J

    2017-06-01

    To assess differences in gene expression in cholinergic basal forebrain cells between sleeping and sleep-deprived mice sacrificed at the same time of day. Tg(ChAT-eGFP)86Gsat mice expressing enhanced green fluorescent protein (eGFP) under control of the choline acetyltransferase (Chat) promoter were utilized to guide laser capture of cholinergic cells in basal forebrain. Messenger RNA expression levels in these cells were profiled using microarrays. Gene expression in eGFP(+) neurons was compared (1) to that in eGFP(-) neurons and to adjacent white matter, (2) between 7:00 am (lights on) and 7:00 pm (lights off), (3) between sleep-deprived and sleeping animals at 0, 3, 6, and 9 hours from lights on. There was a marked enrichment of ChAT and other markers of cholinergic neurons in eGFP(+) cells. Comparison of gene expression in these eGFP(+) neurons between 7:00 am and 7:00 pm revealed expected differences in the expression of clock genes (Arntl2, Per1, Per2, Dbp, Nr1d1) as well as mGluR3. Comparison of expression between spontaneous sleep and sleep-deprived groups sacrificed at the same time of day revealed a number of transcripts (n = 55) that had higher expression in sleep deprivation compared to sleep. Genes upregulated in sleep deprivation predominantly were from the protein folding pathway (25 transcripts, including chaperones). Among 42 transcripts upregulated in sleep was the cold-inducible RNA-binding protein. Cholinergic cell signatures were characterized. Whether the identified genes are changing as a consequence of differences in behavioral state or as part of the molecular regulatory mechanism remains to be determined. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  3. Quantitative Imaging of Cholinergic Interneurons Reveals a Distinctive Spatial Organization and a Functional Gradient across the Mouse Striatum.

    Directory of Open Access Journals (Sweden)

    Miriam Matamales

    Full Text Available Information processing in the striatum requires the postsynaptic integration of glutamatergic and dopaminergic signals, which are then relayed to the output nuclei of the basal ganglia to influence behavior. Although cellularly homogeneous in appearance, the striatum contains several rare interneuron populations which tightly modulate striatal function. Of these, cholinergic interneurons (CINs have been recently shown to play a critical role in the control of reward-related learning; however how the striatal cholinergic network is functionally organized at the mesoscopic level and the way this organization influences striatal function remains poorly understood. Here, we systematically mapped and digitally reconstructed the entire ensemble of CINs in the mouse striatum and quantitatively assessed differences in densities, spatial arrangement and neuropil content across striatal functional territories. This approach demonstrated that the rostral portion of the striatum contained a higher concentration of CINs than the caudal striatum and that the cholinergic content in the core of the ventral striatum was significantly lower than in the rest of the regions. Additionally, statistical comparison of spatial point patterns in the striatal cholinergic ensemble revealed that only a minor portion of CINs (17% aggregated into cluster and that they were predominantly organized in a random fashion. Furthermore, we used a fluorescence reporter to estimate the activity of over two thousand CINs in naïve mice and found that there was a decreasing gradient of CIN overall function along the dorsomedial-to-ventrolateral axis, which appeared to be independent of their propensity to aggregate within the striatum. Altogether this work suggests that the regulation of striatal function by acetylcholine across the striatum is highly heterogeneous, and that signals originating in external afferent systems may be principally determining the function of CINs in the

  4. Effects of chronic alcohol consumption, withdrawal and nerve growth factor on neuropeptide Y expression and cholinergic innervation of the rat dentate hilus.

    Science.gov (United States)

    Pereira, Pedro A; Rocha, João P; Cardoso, Armando; Vilela, Manuel; Sousa, Sérgio; Madeira, M Dulce

    2016-05-01

    Several studies have demonstrated the vulnerability of the hippocampal formation (HF) to chronic alcohol consumption and withdrawal. Among the brain systems that appear to be particularly vulnerable to the effects of these conditions are the neuropeptide Y (NPY)-ergic and the cholinergic systems. Because these two systems seem to closely interact in the HF, we sought to study the effects of chronic alcohol consumption (6months) and subsequent withdrawal (2months) on the expression of NPY and on the cholinergic innervation of the rat dentate hilus. As such, we have estimated the areal density and the somatic volume of NPY-immunoreactive neurons, and the density of the cholinergic varicosities. In addition, because alcohol consumption and withdrawal are associated with impaired nerve growth factor (NGF) trophic support and the administration of exogenous NGF alters the effects of those conditions on various cholinergic markers, we have also estimated the same morphological parameters in withdrawn rats infused intracerebroventricularly with NGF. NPY expression increased after withdrawal and returned to control values after NGF treatment. Conversely, the somatic volume of these neurons did not differ among all groups. On other hand, the expression of vesicular acetylcholine transporter (VAChT) was reduced by 24% in ethanol-treated rats and by 46% in withdrawn rats. The administration of NGF to withdrawn rats increased the VAChT expression to values above control levels. These results show that the effects of prolonged alcohol intake and protracted withdrawal on the hilar NPY expression differ from those induced by shorter exposures to ethanol and by abrupt withdrawal. They also suggest that the normalizing effect of NGF on NPY expression might rely on the NGF-induced improvement of cholinergic neurotransmission in the dentate hilus. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Cholinergic activation of neurons in the medulla oblongata changes urinary bladder activity by plasma vasopressin release in female rats.

    Science.gov (United States)

    Cafarchio, Eduardo M; da Silva, Luiz A; Auresco, Luciana C; Ogihara, Cristiana A; Almeida, Roberto L; Giannocco, Gisele; Luz, Maria C B; Fonseca, Fernando L A; Sato, Monica A

    2016-04-05

    The central control of the micturition is dependent on cortical areas and other ascending and descending pathways in the brain stem. The descendent pathways from the pons to the urinary bladder (UB) can be direct or indirect through medullary neurons (MN). Chemical stimulation with l-glutamate of MN known for their involvement in cardiovascular regulation evokes changes in pelvic nerves activities, which innervate the urinary bladder. Different neurotransmitters have been found in medullary areas; nevertheless, their involvement in UB control is few understood. We focused to investigate if cholinergic activation of neurons in the medulla oblongata changes the urinary bladder activity. Carbachol (cholinergic agonist) or atropine (cholinergic antagonist) was injected into the 4thV in anesthetized female Wistar rats and the intravesical pressure (IP), mean arterial pressure (MAP), heart rate (HR) and renal conductance (RC) were recorded for 30 min. Carbachol injection into the 4thV increased IP with peak response at 30 min after carbachol and yielded no changes in MAP, HR and RC. Atropine injection into the 4thV decreased IP and elicited no changes in MAP, HR and RC. Plasma vasopressin levels evaluated by ELISA kit assay increased after carbachol into the 4th V. Intravenous blockade of V1 receptors prior to carbachol into the 4thV abolished the increase in IP evoked by carbachol. Therefore, our findings suggest that cholinergic activation of neurons in the medulla oblongata by carbachol injections into the 4thV increases IP due to plasma vasopressin release, which acts in V1 receptors in the UB. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Acetylcholine content and viability of cholinergic neurons are influenced by the activity of protein histidine phosphatase

    Science.gov (United States)

    2012-01-01

    Background The first mammalian protein histidine phosphatase (PHP) was discovered in the late 90s of the last century. One of the known substrates of PHP is ATP-citrate lyase (ACL), which is responsible - amongst other functions - for providing acetyl-CoA for acetylcholine synthesis in neuronal tissues. It has been shown in previous studies that PHP downregulates the activity of ACL by dephosphorylation. According to this our present work focused on the influence of PHP activity on the acetylcholine level in cholinergic neurons. Results The amount of PHP in SN56 cholinergic neuroblastoma cells was increased after overexpression of PHP by using pIRES2-AcGFP1-PHP as a vector. We demonstrated that PHP overexpression reduced the acetylcholine level and induced cell death. The acetylcholine content of SN56 cells was measured by fast liquid chromatography-tandem mass spectrometry method. Overexpression of the inactive H53A-PHP mutant also induced cell damage, but in a significantly reduced manner. However, this overexpression of the inactive PHP mutant did not change the acetylcholine content of SN56 cells significantly. In contrast, PHP downregulation, performed by RNAi-technique, did not induce cell death, but significantly increased the acetylcholine content in SN56 cells. Conclusions We could show for the first time that PHP downregulation increased the acetylcholine level in SN56 cells. This might be a potential therapeutic strategy for diseases involving cholinergic deficits like Alzheimer's disease. PMID:22436051

  7. Topographic Organization of Cholinergic Innervation From the Basal Forebrain to the Visual Cortex in the Rat

    Directory of Open Access Journals (Sweden)

    Frédéric Huppé-Gourgues

    2018-03-01

    Full Text Available Acetylcholine is an important neurotransmitter for the regulation of visual attention, plasticity, and perceptual learning. It is released in the visual cortex predominantly by cholinergic projections from the basal forebrain, where stimulation may produce potentiation of visual processes. However, little is known about the fine organization of these corticopetal projections, such as whether basal forebrain neurons projecting to the primary and secondary visual cortical areas (V1 and V2, respectively are organized retinotopically. The aim of this study was to map these basal forebrain-V1/V2 projections. Microinjections of the fluorescent retrograde tracer cholera toxin b fragment in different sites within V1 and V2 in Long–Evans rats were performed. Retrogradely labeled cell bodies in the horizontal and vertical limbs of the diagonal band of Broca (HDB and VDB, respectively, nucleus basalis magnocellularis, and substantia innominata (SI, were mapped ex vivo with a computer-assisted microscope stage controlled by stereological software. Choline acetyltranferase immunohistochemistry was used to identify cholinergic cells. Our results showed a predominance of cholinergic projections coming from the HDB. These projections were not retinotopically organized but projections to V1 arised from neurons located in the anterior HDB/SI whereas projections to V2 arised from neurons located throughout the whole extent of HDB/SI. The absence of a clear topography of these projections suggests that BF activation can stimulate visual cortices broadly.

  8. Analysis of Hydraulic Flood Control Structure at Putat Boro River

    OpenAIRE

    Ruzziyatno, Ruhban

    2015-01-01

    Putat Boro River is one of the main drainage systems of Surakarta city which drains into Bengawan Solo river. The primary problem when flood occur is the higher water level of Bengawan Solo than Boro River and then backwater occur and inundates Putat Boro River. The objective of the study is to obtain operational method of Putat Boro River floodgate to control both inflows and outflows not only during flood but also normal condition. It also aims to know the Putat Boro rivers floodgate op...

  9. Where attention falls: Increased risk of falls from the converging impact of cortical cholinergic and midbrain dopamine loss on striatal function.

    Science.gov (United States)

    Sarter, Martin; Albin, Roger L; Kucinski, Aaron; Lustig, Cindy

    2014-07-01

    Falls are a major source of hospitalization, long-term institutionalization, and death in older adults and patients with Parkinson's disease (PD). Limited attentional resources are a major risk factor for falls. In this review, we specify cognitive-behavioral mechanisms that produce falls and map these mechanisms onto a model of multi-system degeneration. Results from PET studies in PD fallers and findings from a recently developed animal model support the hypothesis that falls result from interactions between loss of basal forebrain cholinergic projections to the cortex and striatal dopamine loss. Striatal dopamine loss produces inefficient, low-vigor gait, posture control, and movement. Cortical cholinergic deafferentation impairs a wide range of attentional processes, including monitoring of gait, posture and complex movements. Cholinergic cell loss reveals the full impact of striatal dopamine loss on motor performance, reflecting loss of compensatory attentional supervision of movement. Dysregulation of dorsomedial striatal circuitry is an essential, albeit not exclusive, mediator of falls in this dual-system model. Because cholinergic neuromodulatory activity influences cortical circuitry primarily via stimulation of α4β2* nicotinic acetylcholine receptors, and because agonists at these receptors are known to benefit attentional processes in animals and humans, treating PD fallers with such agonists, as an adjunct to dopaminergic treatment, is predicted to reduce falls. Falls are an informative behavioral endpoint to study attentional-motor integration by striatal circuitry. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Cholinergic blockade under working memory demands encountered by increased rehearsal strategies: evidence from fMRI in healthy subjects.

    Science.gov (United States)

    Voss, Bianca; Thienel, Renate; Reske, Martina; Kellermann, Thilo; Sheldrick, Abigail J; Halfter, Sarah; Radenbach, Katrin; Shah, Nadim J; Habel, Ute; Kircher, Tilo T J

    2012-06-01

    The connection between cholinergic transmission and cognitive performance has been established in behavioural studies. The specific contribution of the muscarinic receptor system on cognitive performance and brain activation, however, has not been evaluated satisfyingly. To investigate the specific contribution of the muscarinic transmission on neural correlates of working memory, we examined the effects of scopolamine, an antagonist of the muscarinic receptors, using functional magnetic resonance imaging (fMRI). Fifteen healthy male, non-smoking subjects performed a fMRI scanning session following the application of scopolamine (0.4 mg, i.v.) or saline in a placebo-controlled, repeated measure, pseudo-randomized, single-blind design. Working memory was probed using an n-back task. Compared to placebo, challenging the cholinergic transmission with scopolamine resulted in hypoactivations in parietal, occipital and cerebellar areas and hyperactivations in frontal and prefrontal areas. These alterations are interpreted as compensatory strategies used to account for downregulation due to muscarinic acetylcholine blockade in parietal and cerebral storage systems by increased activation in frontal and prefrontal areas related to working memory rehearsal. Our results further underline the importance of cholinergic transmission to working memory performance and determine the specific contribution of muscarinic transmission on cerebral activation associated with executive functioning.

  11. New advances in pharmacological approaches to the cholinergic system: an overview on muscarinic receptor ligands and cholinesterase inhibitors

    Science.gov (United States)

    Greig, Nigel H.; Reale, Marcella; Tata, Ada Maria

    2016-01-01

    The cholinergic system is expressed in neuronal and in non-neuronal tissues. Acetylcholine (ACh), synthesized in and out of the nervous system can locally contribute to modulation of various cell functions (e.g. survival, proliferation). Considering that the cholinergic system and its functions are impaired in a number of disorders, the identification of new pharmacological approaches to regulate cholinergic system components appears of great relevance. The present review focuses on recent pharmacological drugs able to modulate the activity of cholinergic receptors and thereby, cholinergic function, with an emphasis on the muscarinic receptor subtype, and additionally covers the cholinesterases, the main enzymes involved in ACh hydrolysis. The presence and function of muscarinic receptor subtypes both in neuronal and non-neuronal cells has been demonstrated using extensive pharmacological data emerging from studies on transgenic mice. The possible involvement of ACh in different pathologies has been proposed in recent years and is becoming an important area of study. Although the lack of selective muscarinic receptor ligands has for a long time limited the definition of therapeutic treatment based on muscarinic receptors as targets, some muscarinic ligands such as cevimeline (patents US4855290; US5571918) or xanomeline (patent, US5980933) have been developed and used in pre-clinical or in clinical studies for the treatment of nervous system diseases (Alzheimer’ and Sjogren’s diseases). The present review focuses on the potential implications of muscarinic receptors in different pathologies, including tumors. Moreover, the future use of muscarinic ligands in therapeutic protocols in cancer therapy will be discussed, considering that some muscarinic antagonists currently used in the treatment of genitourinary disease (e.g. darifenacin, patent, US5096890; US6106864) have also been demonstrated to arrest tumor progression in nude mice. The involvement of muscarinic

  12. Twenty putative palmitoyl-acyl transferase genes with distinct ...

    African Journals Online (AJOL)

    There are 20 genes containing DHHC domain predicted to encode putative palmitoyltransferase in Arabidopsis thaliana genome. However, little is known about their characteristics such as genetic relationship and expression profile. Here, we present an overview of the putative PAT genes in A. thaliana focusing on their ...

  13. Cholinergic Modulation during Acquisition of Olfactory Fear Conditioning Alters Learning and Stimulus Generalization in Mice

    Science.gov (United States)

    Pavesi, Eloisa; Gooch, Allison; Lee, Elizabeth; Fletcher, Max L.

    2013-01-01

    We investigated the role of cholinergic neurotransmission in olfactory fear learning. Mice receiving pairings of odor and foot shock displayed fear to the trained odor the following day. Pretraining injections of the nicotinic antagonist mecamylamine had no effect on subsequent freezing, while the muscarinic antagonist scopolamine significantly…

  14. Neural stem cells was induced to differentiate into cholinergic neurons in vitro

    International Nuclear Information System (INIS)

    Chang Yan; Xu Yilong; Pan Jingkun; Tian Lei; Gao Yuhong; Guo Shuilong

    2004-01-01

    The cholinergic-inducing effect of BMP4 on isolated and cultivated rat's cerebral neural stem cells (NSCs) was examined. NSCs which were isolated from two month's old rat's brain region like hippocampus and striatum were cultivated in a medium containing EGF and bFGF, and were identified with morphological character by microscope and nestin immunocytochemistry test. After 24 hours, half NSCs were cultivated with a BMP4-added medium as a experimental group instead of the primary medium, while the an other half NSCs being cultivated with the primary medium as a control group. After 8 days the expression of choline acetyltransferase (ChAT) of the cultivated cells was observated by indirect immunofluorescence test. Results showed that more positive cells were found in the experimental group, and the fluorescence intensity were stronger; while less positive cells were found in the control group, and the fluorescence intensity was weaker. The differentiational efficiency of the NSCs was examined by FITC-labelled Flow Cytometry. The results showed that about 16% cells of the experimental group appeared ChAT-positive, while that of control group only 7%. So BMP4 may have the function of inducing NSCs to differentiate into neurons with cholinergic characteristic. (authors)

  15. Selective immunotoxic lesions of basal forebrain cholinergic cells: effects on learning and memory in rats.

    Science.gov (United States)

    Baxter, Mark G; Bucci, David J; Gorman, Linda K; Wiley, Ronald G; Gallagher, Michela

    2013-10-01

    Male Long-Evans rats were given injections of either 192 IgG-saporin, an apparently selective toxin for basal forebrain cholinergic neurons (LES), or vehicle (CON) into either the medial septum and vertical limb of the diagonal band (MS/VDB) or bilaterally into the nucleus basalis magnocellularis and substantia innominata (nBM/SI). Place discrimination in the Morris water maze assessed spatial learning, and a trial-unique matching-to-place task in the water maze assessed memory for place information over varying delays. MS/VDB-LES and nBM/SI-LES rats were not impaired relative to CON rats in acquisition of the place discrimination, but were mildly impaired relative to CON rats in performance of the memory task even at the shortest delay, suggesting a nonmnemonic deficit. These results contrast with effects of less selective lesions, which have been taken to support a role for basal forebrain cholinergic neurons in learning and memory. 2013 APA, all rights reserved

  16. Effect of bite-raised condition on the hippocampal cholinergic system of aged SAMP8 mice.

    Science.gov (United States)

    Katayama, Tasuku; Mori, Daisuke; Miyake, Hidekazu; Fujiwara, Shuu; Ono, Yumie; Takahashi, Toru; Onozuka, Minoru; Kubo, Kin-Ya

    2012-06-27

    Occlusal disharmony induces chronic stress, which results in learning deficits in association with the morphologic changes in the hippocampus, e.g., neuronal degeneration and increased hypertrophied glial fibrillary acidic protein-positive cells. To investigate the mechanisms underlying impaired hippocampal function resulting from occlusal disharmony, we examined the effects of the bite-raised condition on the septohippocampal cholinergic system by assessing acetylcholine release in the hippocampus and choline acetyltransferase immunoreactivity in the medial septal nucleus in aged SAMP8 mice that underwent the bite raising procedure. Aged bite-raised mice showed decreased acetylcholine release in the hippocampus and a reduced number of choline acetyltransferase-immunopositive neurons in the medial septal nucleus compared to age-matched control mice. These findings suggest that the bite-raised condition in aged SAMP8 mice enhances the age-related decline in the septohippocampal cholinergic system, leading to impaired learning. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. The effect of the augmentation of cholinergic neurotransmission by nicotine on EEG indices of visuospatial attention

    NARCIS (Netherlands)

    Logemann, H.N.A.; Bocker, K.B.E.; Deschamps, P.K.H.; Kemner, C.; Kenemans, J.L.

    2014-01-01

    The cholinergic system has been implicated in visuospatial attention but the exact role remains unclear. In visuospatial attention, bias refers to neuronal signals that modulate the sensitivity of sensory cortex, while disengagement refers to the decoupling of attention making reorienting possible.

  18. Identification of neural transcription factors required for the differentiation of three neuronal subtypes in the sea urchin embryo.

    Science.gov (United States)

    Slota, Leslie A; McClay, David R

    2018-03-15

    Correct patterning of the nervous system is essential for an organism's survival and complex behavior. Embryologists have used the sea urchin as a model for decades, but our understanding of sea urchin nervous system patterning is incomplete. Previous histochemical studies identified multiple neurotransmitters in the pluteus larvae of several sea urchin species. However, little is known about how, where and when neural subtypes are differentially specified during development. Here, we examine the molecular mechanisms of neuronal subtype specification in 3 distinct neural subtypes in the Lytechinus variegatus larva. We show that these subtypes are specified through Delta/Notch signaling and identify a different transcription factor required for the development of each neural subtype. Our results show achaete-scute and neurogenin are proneural for the serotonergic neurons of the apical organ and cholinergic neurons of the ciliary band, respectively. We also show that orthopedia is not proneural but is necessary for the differentiation of the cholinergic/catecholaminergic postoral neurons. Interestingly, these transcription factors are used similarly during vertebrate neurogenesis. We believe this study is a starting point for building a neural gene regulatory network in the sea urchin and for finding conserved deuterostome neurogenic mechanisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Facilitation and inhibition by capsaicin of cholinergic neurotransmission in the guinea-pig small intestine.

    Science.gov (United States)

    Geber, Christian; Mang, Christian F; Kilbinger, Heinz

    2006-01-01

    The effects of capsaicin on [3H]acetylcholine release and muscle contraction were studied on the myenteric plexus-longitudinal muscle preparation of the guinea-pig ileum preincubated with [3H]choline. Capsaicin concentration-dependently increased both basal [3H]acetylcholine release (pEC50 7.0) and muscle tone (pEC50 6.1). The facilitatory effects of capsaicin were antagonized by 1 microM capsazepine (pK (B) 7.0 and 7.6), and by the combined blockade of NK1 and NK3 tachykinin receptors with the antagonists CP99994 plus SR142801 (each 0.1 microM). This suggests that stimulation by capsaicin of TRPV1 receptors on primary afferent fibres causes a release of tachykinins which, in turn, mediate via NK1 and NK3 receptors an increase in acetylcholine release. The capsaicin-induced acetylcholine release was significantly enhanced by the NO synthase inhibitor L-NG-nitroarginine (100 microM). This indicates that tachykinins released from sensory neurons also stimulate nitrergic neurons and thus lead, via NO release, to inhibition of acetylcholine release. Capsaicin concentration-dependently reduced the electrically-evoked [3H]acetylcholine release (pEC50 6.4) and twitch contractions (pEC50 5.9). The inhibitory effects were not affected by either capsazepine, NK1 and NK3 receptor antagonists, the cannabinoid CB1 antagonist SR141716A or by L-NG-nitroarginine. Desensitization of TRPV1 receptors by a short exposure to 3 microM capsaicin abolished the facilitatory responses to a subsequent administration, but did not modify the inhibitory effects. In summary, capsaicin has a dual effect on cholinergic neurotransmission. The facilitatory effect is indirect and involves tachykinin release and excitation of NK1 and NK3 receptors on cholinergic neurons. The inhibition of acetylcholine release may be due to a decrease of Ca2+ influx into cholinergic neurons.

  20. Cholinergic Nociceptive Mechanisms in Rat Meninges and Trigeminal Ganglia: Potential Implications for Migraine Pain.

    Science.gov (United States)

    Shelukhina, Irina; Mikhailov, Nikita; Abushik, Polina; Nurullin, Leniz; Nikolsky, Evgeny E; Giniatullin, Rashid

    2017-01-01

    Parasympathetic innervation of meninges and ability of carbachol, acetylcholine (ACh) receptor (AChR) agonist, to induce headaches suggests contribution of cholinergic mechanisms to primary headaches. However, neurochemical mechanisms of cholinergic regulation of peripheral nociception in meninges, origin place for headache, are almost unknown. Using electrophysiology, calcium imaging, immunohistochemistry, and staining of meningeal mast cells, we studied effects of cholinergic agents on peripheral nociception in rat hemiskulls and isolated trigeminal neurons. Both ACh and carbachol significantly increased nociceptive firing in peripheral terminals of meningeal trigeminal nerves recorded by local suction electrode. Strong nociceptive firing was also induced by nicotine, implying essential role of nicotinic AChRs in control of excitability of trigeminal nerve endings. Nociceptive firing induced by carbachol was reduced by muscarinic antagonist atropine, whereas the action of nicotine was prevented by the nicotinic blocker d-tubocurarine but was insensitive to the TRPA1 antagonist HC-300033. Carbachol but not nicotine induced massive degranulation of meningeal mast cells known to release multiple pro-nociceptive mediators. Enzymes terminating ACh action, acetylcholinesterase (AChE) and butyrylcholinesterase, were revealed in perivascular meningeal nerves. The inhibitor of AChE neostigmine did not change the firing per se but induced nociceptive activity, sensitive to d-tubocurarine, after pretreatment of meninges with the migraine mediator CGRP. This observation suggested the pro-nociceptive action of endogenous ACh in meninges. Both nicotine and carbachol induced intracellular Ca 2+ transients in trigeminal neurons partially overlapping with expression of capsaicin-sensitive TRPV1 receptors. Trigeminal nerve terminals in meninges, as well as dural mast cells and trigeminal ganglion neurons express a repertoire of pro-nociceptive nicotinic and muscarinic AChRs, which

  1. Catalpol Induces Neuroprotection and Prevents Memory Dysfunction through the Cholinergic System and BDNF

    Directory of Open Access Journals (Sweden)

    Dong Wan

    2013-01-01

    Full Text Available To investigate the role and mechanism of catalpol on neuroprotective effects and memory enhancing effects simultaneously, neuroprotective effects of catalpol were assessed by neurological deficits score, TTC staining, and cerebral blood flow detecting. Morris water maze was employed to investigate its effects on learning and memory and then clarify its possible mechanisms relating the central cholinergic system and BDNF. Edaravone and oxiracetam were used for positive control drugs based on its different action. Results showed that catalpol and edaravone significantly facilitated neurological function recovery, reduced infarction volume, and increased cerebral blood flow in stroke mice. Catalpol and oxiracetam decreased the escape latency significantly and increased the numbers of crossing platform obviously. The levels of ACh, ChAT, and BDNF in catalpol group were increased in a dose-dependent manner, and AChE declined with a U-shaped dose-response curve. Moreover, the levels of muscarinic AChR subtypes M1 and M2 in hippocampus were considerably raised by catalpol. These results demonstrated that catalpol may be useful for neuroprotection and memory enhancement, and the mechanism may be related to the central cholinergic system.

  2. Effect of morphine-induced antinociception is altered by AF64A-induced lesions on cholinergic neurons in rat nucleus raphe magnus.

    Science.gov (United States)

    Abe, Kenji; Ishida, Kota; Kato, Masatoshi; Shigenaga, Toshiro; Taguchi, Kyoji; Miyatake, Tadashi

    2002-11-01

    To examine the role of cholinergic neurons in the nucleus raphe magnus (NRM) in noxious heat stimulation and in the effects of morphine-induced antinociception by rats. After the cholinergic neuron selective toxin, AF64A, was microinjected into the NRM, we examined changes in the antinociceptive threshold and effects of morphine (5 mg/kg, ip) using the hot-plate (HP) and tail-flick (TF) tests. Systemic administration of morphine inhibited HP and TF responses in control rats. Microinjection of AF64A (2 nmol/site) into the NRM significantly decreased the threshold of HP response after 14 d, whereas the TF response was not affected. Morphine-induced antinociception was significantly attenuated in rats administered AF64A. Extracellular acetylcholine was attenuated after 14 d to below detectable levels in rats given AF64A. Naloxone (1 microg/site) microinjected into control rat NRM also antagonized the antinociceptive effect of systemic morphine. These findings suggest that cholinergic neuron activation in the NRM modulates the antinociceptive effect of morphine simultaneously with the opiate system.

  3. Radioiodinated 2-hydroxy-3-(4-iodophenyl)-1-(4-phenylpiperidinyl)propane: potential radiotracer for mapping central cholinergic innervation in vivo

    International Nuclear Information System (INIS)

    Efange, S.M.N.; Dutta, A.K.; Michelson, R.H.; Thomas, J.R.; Boudreau, R.J.; Kung, H.F.; Billings, J.

    1992-01-01

    Radioiodinated 2-hydroxy-3-(4-iodophenyl)-1-(4-phenylpiperidinyl)propane, (4-HIPP), was synthesized and evaluated as a simple vesamicol-like radiotracer for mapping cholinergic pathways in the brain. Both enantiomers of 4-HIPP exhibit significant accumulation (approx. 2% of injected dose) and prolonged retention (t 1/2 > 3h) within the rat brain. The accumulation of radioiodinated 4-HIPP in the rat brain was reduced by up to 70% in the presence of vesamicol and its analogs. The levorotary isomer (-)-4-[ 123 I]HIPP exhibits significant accumulation in the monkey brain, with a half-life of about 9 h. Radioiodinated 4-HIPP may therefore be a useful tool for studying cholinergic pathways in the brain. (author)

  4. beta-Adrenergic and cholinergic receptors in hypertension-induced hypertrophy

    International Nuclear Information System (INIS)

    Vatner, D.E.; Kirby, D.A.; Homcy, C.J.; Vatner, S.F.

    1985-01-01

    Perinephritic hypertension was produced in dogs by wrapping one kidney with silk and removing the contralateral kidney 1 week later. Mean arterial pressure rose from 104 +/- 3 to 156 +/- 11 mm Hg, while left ventricular free wall weight, normalized for body weight, was increased by 49%. Muscarinic, cholinergic receptor density measured with [ 3 H]-quinuclidinyl benzilate, fell in hypertensive left ventricles (181 +/- 19 fmol/mg, n = 6; p less than 0.01) as compared with that found in normal left ventricles (272 +/- 16 fmol/mg, n = 8), while receptor affinity was not changed. The beta-adrenergic receptor density, measured by binding studies with [ 3 H]-dihydroalprenolol, rose in the hypertensive left ventricles (108 +/- 10 fmol/mg, n = 7; p less than 0.01) as compared with that found in normal left ventricles (68.6 +/- 5.2 fmol/mg, n = 15), while beta-adrenergic receptor affinity decreased in the hypertensive left ventricles (10.4 +/- 1.2 nM) compared with that found in the normal left ventricles (5.0 +/- 0.7 nM). Plasma norepinephrine levels were similar in the two groups, but myocardial norepinephrine levels were depressed (p less than 0.05) in dogs with hypertension. Moderate left ventricular hypertrophy induced by long-term aortic banding in dogs resulted in elevations in beta-adrenergic receptor density (115 +/- 14 fmol/mg) and decreases in affinity (10.4 +/- 2.2 nM) similar to those observed in the dogs with left ventricular hypertrophy induced by hypertension. Thus, these results suggest that perinephritic hypertension in the dog induces divergent effects on cholinergic and beta-adrenergic receptor density. The increased beta-adrenergic receptor density and decreased affinity may be a characteristic of left ventricular hypertrophy rather than hypertension

  5. Cellular and Axonal Diversity in Molecular Layer Heterotopia of the Rat Cerebellar Vermis

    Directory of Open Access Journals (Sweden)

    Sarah E. Van Dine

    2013-01-01

    Full Text Available Molecular layer heterotopia of the cerebellar primary fissure are a characteristic of many rat strains and are hypothesized to result from defect of granule cells exiting the external granule cell layer during cerebellar development. However, the cellular and axonal constituents of these malformations remain poorly understood. In the present report, we use histochemistry and immunocytochemistry to identify neuronal, glial, and axonal classes in molecular layer heterotopia. In particular, we identify parvalbumin-expressing molecular layer interneurons in heterotopia as well as three glial cell types including Bergmann glia, Olig2-expressing oligodendrocytes, and Iba1-expressing microglia. In addition, we document the presence of myelinated, serotonergic, catecholaminergic, and cholinergic axons in heterotopia indicating possible spinal and brainstem afferent projections to heterotopic cells. These findings are relevant toward understanding the mechanisms of normal and abnormal cerebellar development.

  6. Involvement of cholinergic and adenosinergic systems on the branchial immune response of experimentally infected silver catfish with Streptococcus agalactiae.

    Science.gov (United States)

    Baldissera, M D; Souza, C F; Doleski, P H; Moreira, K L S; da Veiga, M L; da Rocha, M I U M; Santos, R C V; Baldisserotto, B

    2018-01-01

    It has been recognized that the cholinergic and adenosinergic systems have an essential role in immune and inflammatory responses during bacterial fish pathogens, such as the enzymes acetylcholinesterase (AChE) and adenosine deaminase (ADA), which are responsible for catalysis of the anti-inflammatory molecules acetylcholine (ACh) and adenosine (Ado) respectively. Thus, the aim of this study was to investigate the involvement of the cholinergic and adenosinergic systems on the immune response and inflammatory process in gills of experimentally infected Rhamdia quelen with Streptococcus agalactiae. Acetylcholinesterase activity decreased, while ACh levels increased in gills of infected animals compared to uninfected animals. On the other hand, a significant increase in ADA activity with a concomitant decrease in Ado levels was observed in infected animals compared to uninfected animals. Based on this evidence, we concluded that infection by S. agalactiae in silver catfish alters the cholinergic and adenosinergic systems, suggesting the involvement of AChE and ADA activities on immune and inflammatory responses, regulating the ACh and Ado levels. In summary, the downregulation of AChE activity exerts an anti-inflammatory profile in an attempt to reduce or prevent the tissue damage, while the upregulation of ADA activity exerts a pro-inflammatory profile, contributing to disease pathophysiology. © 2017 John Wiley & Sons Ltd.

  7. Risk of catecholaminergic crisis following glucocorticoid administration in patients with an adrenal mass: a literature review.

    Science.gov (United States)

    Barrett, Catherine; van Uum, Stan H M; Lenders, Jacques W M

    2015-11-01

    Glucocorticoids as diagnostic or therapeutic agents have been reported to carry an increased risk of catecholaminergic crisis (CC) in patients with pheochromocytoma or paraganglioma (PPGL). We searched literature databases using the following terms: pheochromocytoma, paraganglioma, adrenal incidentaloma, steroids, glucocorticoids, dexamethasone suppression test (DST), hypertensive crisis, cosyntropin and CRH. From all published case reports (1962-2013), we reviewed medical history, presenting symptoms, dose and route of steroid administration, location and size of adrenal mass, biochemical phenotype and outcome. Twenty-five case reports describing a CC were identified. Three patients with an adrenal incidentaloma suffered a CC following high-dose DST, and in one case, this was fatal. In two of these patients, biochemical testing missed the diagnosis, and in the third, a DST was done despite elevated urinary metanephrines. No CC has been reported for patients undergoing a low-dose DST. Three of 16 patients who received therapeutic glucocorticoids and four of six patients following cosyntropin testing died. No specific biochemical phenotype was related to adverse events. Although a causal relationship cannot be established from this review, it seems prudent to exclude a PPGL in patients with a large incidentaloma or when high-dose DST is considered in a patient with an incidentaloma of any size. Our literature review does not support the need for biochemical testing for PPGL prior to a low-dose (1 mg) DST. Finally, before starting therapeutic glucocorticoids, any clinical signs or symptoms of a potential PPGL should prompt reliable biochemical testing to rule out a PPGL. © 2015 John Wiley & Sons Ltd.

  8. Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, H.S.; Hains, J.M.; Laramee, G.R.; Rosenthal, A.; Winslow, J.W. (Genentech, San Francisco, CA (USA))

    1990-10-12

    Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) are homologs of the well-known neurotrophic factor nerve growth factor. The three members of this family display distinct patterns of target specificity. To examine the distribution in brain of messenger RNA for these molecules, in situ hybridization was performed. Cells hybridizing intensely to antisense BDNF probe were located throughout the major targets of the rat basal forebrain cholinergic system, that is, the hippocampus, amygdala, and neocortex. Strongly hybridizing cells were also observed in structures associated with the olfactory system. The distribution of NT3 mRNA in forebrain was much more limited. Within the hippocampus, labeled cells were restricted to CA2, the most medial portion of CA1, and the dentate gyrus. In human hippocampus, cells expressing BDNF and mRNA are distributed in a fashion similar to that observed in the rat. These findings point to both basal forebrain cholinergic cells and olfactory pathways as potential central targets for BDNF.

  9. Widespread expression of BDNF but not NT3 by target areas of basal forebrain cholinergic neurons

    International Nuclear Information System (INIS)

    Phillips, H.S.; Hains, J.M.; Laramee, G.R.; Rosenthal, A.; Winslow, J.W.

    1990-01-01

    Brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) are homologs of the well-known neurotrophic factor nerve growth factor. The three members of this family display distinct patterns of target specificity. To examine the distribution in brain of messenger RNA for these molecules, in situ hybridization was performed. Cells hybridizing intensely to antisense BDNF probe were located throughout the major targets of the rat basal forebrain cholinergic system, that is, the hippocampus, amygdala, and neocortex. Strongly hybridizing cells were also observed in structures associated with the olfactory system. The distribution of NT3 mRNA in forebrain was much more limited. Within the hippocampus, labeled cells were restricted to CA2, the most medial portion of CA1, and the dentate gyrus. In human hippocampus, cells expressing BDNF and mRNA are distributed in a fashion similar to that observed in the rat. These findings point to both basal forebrain cholinergic cells and olfactory pathways as potential central targets for BDNF

  10. Dual nitrergic/cholinergic control of short-term plasticity of corticostriatal inputs to striatal projection neurons

    Directory of Open Access Journals (Sweden)

    Craig Peter Blomeley

    2015-11-01

    Full Text Available The ability of nitric oxide and acetylcholine to modulate the short-term plasticity of corticostriatal inputs was investigated using current-clamp recordings in BAC mouse brain slices. Glutamatergic responses were evoked by stimulation of corpus callosum in D1 and D2 dopamine receptor-expressing medium spiny neurons (D1-MSNs and D2-MSN, respectively. Paired-pulse stimulation (50 ms intervals evoked depressing or facilitating responses in subgroups of both D1-MSNs and D2 MSNs. In both neuronal types, glutamatergic responses of cells that displayed paired-pulse depression were not significantly affected by the nitric oxide donor S-nitroso-N-acetylpenicillamine (SNAP; 100 µM. Conversely, in D1-MSNs and D2-MSNs that displayed paired-pulse facilitation, SNAP did not affect the first evoked response, but significantly reduced the amplitude of the second evoked EPSP, converting paired-pulse facilitation into paired-pulse depression. SNAP also strongly excited cholinergic interneurons and increased their cortical glutamatergic responses acting through a presynaptic mechanism. The effects of SNAP on glutamatergic response of D1-MSNs and D2-MSN were mediated by acetylcholine. The broad-spectrum muscarinic receptor antagonist atropine (25 µM did not affect paired-pulse ratios and did not prevent the effects of SNAP. Conversely, the broad-spectrum nicotinic receptor antagonist tubocurarine (10 µM fully mimicked and occluded the effects of SNAP. We concluded that phasic acetylcholine release mediates feedforward facilitation in MSNs through activation of nicotinic receptors on glutamatergic terminals and that nitric oxide, while increasing cholinergic interneurons’ firing, functionally impairs their ability to modulate glutamatergic inputs of MSNs. These results show that nitrergic and cholinergic transmission control the short-term plasticity of glutamatergic inputs in the striatum and reveal a novel cellular mechanism underlying paired

  11. Adaptive processes of the central and autonomic cholinergic neurotransmitter system: Age-related differences

    International Nuclear Information System (INIS)

    Fortuna, S.; Pintor, A.; Michalek, H.

    1991-01-01

    Potential age-related differences in the response of the ileum strip longitudinal and circular muscle to repeated treatment with diisopropyl fluorophosphate (DFP) were evaluated in Sprague-Dawley rats. The response was measured in terms of both biochemical parameters (acetylcholinesterase-AChE inhibition, muscarinic acetylcholine receptor binding sites-mAChRs, choline acetyltransferase-ChAT) and functional responsiveness (contractility of the isolated ileum stimulated by cholinergic agonists). The biochemical data were compared with those obtained for the cerebral cortex. In the ileum strip of control rats there was a significant age-related decline of AChE, maximal density of 3 H-QNB binding sites (Bmax) and ChAT. During the first week of DFP treatment the cholinergic syndrome was more pronounced in aged than in young rats, resulting in 35% and 10% mortality, respectively; subsequently the syndrome attenuated. At the end of DFP treatment ileal AChE were inhibited by about 30%; the down-regulation of mAChRs was about 50% in young and 35% in aged rats. No significant differences in the recovery rate of AChE were noted between young and aged rats. On the contrary, mAChRs normalized within 5 weeks in young and 3 weeks in aged rats

  12. Positron emission tomography (PET) studies of dopaminergic/cholinergic interactions in the baboon brain

    International Nuclear Information System (INIS)

    Dewey, S.L.; Brodie, J.D.; Fowler, J.S.; MacGregor, R.R.; Schlyer, D.J.; King, P.T.; Alexoff, D.L.; Volkow, N.D.; Shiue, C.Y.; Wolf, A.P.

    1990-01-01

    Interactions between the dopaminergic D2 receptor system and the muscarinic cholinergic system in the corpus striatum of adult female baboons (Papio anubis) were examined using positron emission tomography (PET) combined with [18F]N-methylspiroperidol [( 18F]NMSP) (to probe D2 receptor availability) and [N-11C-methyl]benztropine (to probe muscarinic cholinergic receptor availability). Pretreatment with benztropine, a long-lasting anticholinergic drug, bilaterally reduced the incorporation of radioactivity in the corpus striatum but did not alter that observed in the cerebellum or the rate of metabolism of [18F]NMSP in plasma. Pretreatment with unlabelled NMSP, a potent dopaminergic antagonist, reduced the incorporation of [N-11C-methyl]benztropine in all brain regions, with the greatest effect being in the corpus striatum greater than cortex greater than thalamus greater than cerebellum, but did not alter the rate of metabolism of the labelled benztropine in the plasma. These reductions in the incorporation of either [18F]NMSP or [N-11C-methyl]benztropine exceeded the normal variation in tracer incorporation in repeated studies in the same animal. This study demonstrates that PET can be used as a tool for investigating interactions between neurochemically different yet functionally linked neurotransmitters systems in vivo and provides insight into the consequences of multiple pharmacologic administration

  13. Adaptive processes of the central and autonomic cholinergic neurotransmitter system: Age-related differences

    Energy Technology Data Exchange (ETDEWEB)

    Fortuna, S.; Pintor, A.; Michalek, H. (Istituto Superiore di Sanita, Rome (Italy))

    1991-01-01

    Potential age-related differences in the response of the ileum strip longitudinal and circular muscle to repeated treatment with diisopropyl fluorophosphate (DFP) were evaluated in Sprague-Dawley rats. The response was measured in terms of both biochemical parameters (acetylcholinesterase-AChE inhibition, muscarinic acetylcholine receptor binding sites-mAChRs, choline acetyltransferase-ChAT) and functional responsiveness (contractility of the isolated ileum stimulated by cholinergic agonists). The biochemical data were compared with those obtained for the cerebral cortex. In the ileum strip of control rats there was a significant age-related decline of AChE, maximal density of {sup 3}H-QNB binding sites (Bmax) and ChAT. During the first week of DFP treatment the cholinergic syndrome was more pronounced in aged than in young rats, resulting in 35% and 10% mortality, respectively; subsequently the syndrome attenuated. At the end of DFP treatment ileal AChE were inhibited by about 30%; the down-regulation of mAChRs was about 50% in young and 35% in aged rats. No significant differences in the recovery rate of AChE were noted between young and aged rats. On the contrary, mAChRs normalized within 5 weeks in young and 3 weeks in aged rats.

  14. Memory and learning seems to be related to cholinergic dysfunction in the JE rat model.

    Science.gov (United States)

    Chauhan, Prashant Singh; Misra, Usha Kant; Kalita, Jayantee; Chandravanshi, Lalit Pratap; Khanna, Vinay Kumar

    2016-03-15

    Cognitive changes have been known in encephalitis but in Japanese encephalitis (JE) such studies are limited. This study aims at evaluating the spatial memory and learning and correlate with markers of cholinergic activity in the brain.12day old Wistar rats were inoculated with dose of 3×10(6)pfu/ml of JE virus. On 10, 33 and 48days post-inoculation (dpi), spatial memory and learning was assessed by Y maze. Brain biopsies from frontal cortex, corpus striatum, hippocampus and cerebellum were taken. Muscarinic cholinergic receptor was assayed by Quinuclidinyl benzylate (H3-QNB) binding, CHRM2 gene expression by real time PCR and choline acetyl transferase (ChAT) by Western blot. Spatial learning and memory showed significant decline in rats inoculated with JEV on 10 and 33dpi (47.5%, pmemory were found at different dpi. There was transient spatial learning and memory impairment which was associated with reduction of total muscarinic receptor binding, CHRM2 gene and ChAT expression in different brain region of rat infected with JE Virus. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Yokukansan and Yokukansankachimpihange Ameliorate Aggressive Behaviors in Rats with Cholinergic Degeneration in the Nucleus Basalis of Meynert

    Directory of Open Access Journals (Sweden)

    Masahiro Tabuchi

    2017-04-01

    Full Text Available Yokukansan (YKS and yokukansankachimpihange (YKSCH are traditional Japanese Kampo medicines. The latter comprises YKS along with the medicinal herbs Citrus unshiu peel and Pinellia tuber. Both of these Kampo medicines are indicated for the treatment of night crying and irritability in children and for neurosis and insomnia in adults. In recent clinical trials, YKS exhibited ameliorative effects on the behavioral and psychological symptoms of dementia, such as aggressiveness, excitement, and irritability. In the present study, we aimed to clarify the involvement of cholinergic degeneration in the nucleus basalis of Meynert (NBM in the development of aggressiveness in rats. Subsequently, using this animal model, the effects of YKS and YKSCH on aggressiveness were compared and the mechanisms underlying these effects were investigated. L-Glutamic acid (Glu was injected into the right NBM of rats to induce deterioration of cholinergic neurons. On day 8 after Glu injection, aggressive behaviors were evaluated using resident–intruder tests. After the evaluation, YKS or YKSCH was administered to rats with aggressive behaviors daily for 7 days. In some groups, the 5-HT1A receptor antagonist WAY-100635 was coadministered with YKS or YKSCH over the same period. In other groups, locomotor activity was measured on days 12–14 after Glu injection. On day 15, immunohistochemistry was then performed to examine choline acetyltransferase (ChAT activities in the NBM. Aggressive behaviors had developed on day 8 after Glu injection and were maintained until day 15. YKS and YKSCH significantly ameliorated the aggressive behaviors. These suppressive effects were entirely abolished following coadministration of WAY-100635. Finally, the number of ChAT-positive cells in the right NBM was significantly reduced on day 15 after Glu injection, and treatment with YKS or YKSCH did not ameliorate these reduced cell numbers. Our results show that unilateral Glu injections

  16. Tritium-labelled hemicholinium-3 ([3H]HC-3): membrane binding properties and potential uses for a novel presynaptic marker in cholinergically-innervated tissues

    International Nuclear Information System (INIS)

    Vickroy, T.W.; Watson, M.; Roeske, W.R.; Yamamura, H.I.

    1986-01-01

    Sodium-dependent high-affintiy choline uptake (SDHACU) is the primary regulatory step in acetylcholine biosynthesis and subserves an essential function in cholinergically-mediated neurotransmission. Recent studies with [ 3 H]hemicholinium-3 ([ 3 H]HC-3), a potent competitive inhibitor of SDHACU, reveal that closely associated membrane sites mediate high-affinity [ 3 H]HC-3 binding and SDHACU. In this report, supportive evidences for this association are presented and potential uses of [ 3 H]HC-3 are outlined for studies of disorders that involve cholinergic nervous system dysfunction. 40 refs.; 1 figure

  17. Reciprocal cholinergic and GABAergic modulation of the small ventrolateral pacemaker neurons of Drosophila's circadian clock neuron network.

    Science.gov (United States)

    Lelito, Katherine R; Shafer, Orie T

    2012-04-01

    The relatively simple clock neuron network of Drosophila is a valuable model system for the neuronal basis of circadian timekeeping. Unfortunately, many key neuronal classes of this network are inaccessible to electrophysiological analysis. We have therefore adopted the use of genetically encoded sensors to address the physiology of the fly's circadian clock network. Using genetically encoded Ca(2+) and cAMP sensors, we have investigated the physiological responses of two specific classes of clock neuron, the large and small ventrolateral neurons (l- and s-LN(v)s), to two neurotransmitters implicated in their modulation: acetylcholine (ACh) and γ-aminobutyric acid (GABA). Live imaging of l-LN(v) cAMP and Ca(2+) dynamics in response to cholinergic agonist and GABA application were well aligned with published electrophysiological data, indicating that our sensors were capable of faithfully reporting acute physiological responses to these transmitters within single adult clock neuron soma. We extended these live imaging methods to s-LN(v)s, critical neuronal pacemakers whose physiological properties in the adult brain are largely unknown. Our s-LN(v) experiments revealed the predicted excitatory responses to bath-applied cholinergic agonists and the predicted inhibitory effects of GABA and established that the antagonism of ACh and GABA extends to their effects on cAMP signaling. These data support recently published but physiologically untested models of s-LN(v) modulation and lead to the prediction that cholinergic and GABAergic inputs to s-LN(v)s will have opposing effects on the phase and/or period of the molecular clock within these critical pacemaker neurons.

  18. PET imaging with [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) following selective lesion of cholinergic pedunculopontine tegmental neurons in rat

    International Nuclear Information System (INIS)

    Cyr, Marilyn; Parent, Maxime J.; Mechawar, Naguib; Rosa-Neto, Pedro; Soucy, Jean-Paul; Aliaga, Antonio; Kostikov, Alexey; Maclaren, Duncan A.A.; Clark, Stewart D.; Bedard, Marc-Andre

    2014-01-01

    Introduction: [ 18 F]fluoroethoxybenzovesamicol ([ 18 F]FEOBV) is a PET radiotracer with high selectivity and specificity to the vesicular acetylcholine transporter (VAChT). It has been shown to be a sensitive in vivo measurement of changes of cholinergic innervation densities following lesion of the nucleus basalis of Meynert (NBM) in rat. The current study used [ 18 F]FEOBV with PET imaging to detect the effect of a highly selective lesion of the pedunculopontine (PPTg) nucleus in rat. Methods: After bilateral and selective lesions of the PPTg cholinergic neurons, rats were scanned using [ 18 F]FEOBV, then sacrificed, and their brain tissues collected for immunostaining and quantification of the VAChT. Results: Comparisons with control rats revealed that cholinergic losses can be detected in the brainstem, lateral thalamus, and pallidum by using both in vivo imaging methods with [ 18 F]FEOBV, and ex vivo measurements. In the brainstem PPTg area, significant correlations were observed between in vivo and ex vivo measurements, while this was not the case in the thalamic and pallidal projection sites. Conclusions: These findings support PET imaging with [ 18 F]FEOBV as a reliable in vivo method for the detection of neuronal terminal losses resulting from lesion of the PPTg. Useful applications can be found in the study of neurodegenerative diseases in human, such as Parkinson’s disease, multiple system atrophy, progressive supranuclear palsy, or dementia with Lewy bodies

  19. Opposing Cholinergic and Serotonergic Modulation of Layer 6 in Prefrontal Cortex

    Directory of Open Access Journals (Sweden)

    Daniel W. Sparks

    2018-01-01

    Full Text Available Prefrontal cortex is a hub for attention processing and receives abundant innervation from cholinergic and serotonergic afferents. A growing body of evidence suggests that acetylcholine (ACh and serotonin (5-HT have opposing influences on tasks requiring attention, but the underlying neurophysiology of their opposition is unclear. One candidate target population is medial prefrontal layer 6 pyramidal neurons, which provide feedback modulation of the thalamus, as well as feed-forward excitation of cortical interneurons. Here, we assess the response of these neurons to ACh and 5-HT using whole cell recordings in acute brain slices from mouse cortex. With application of exogenous agonists, we show that individual layer 6 pyramidal neurons are bidirectionally-modulated, with ACh and 5-HT exerting opposite effects on excitability across a number of concentrations. Next, we tested the responses of layer 6 pyramidal neurons to optogenetic release of endogenous ACh or 5-HT. These experiments were performed in brain slices from transgenic mice expressing channelrhodopsin in either ChAT-expressing cholinergic neurons or Pet1-expressing serotonergic neurons. Light-evoked endogenous neuromodulation recapitulated the effects of exogenous neurotransmitters, showing opposing modulation of layer 6 pyramidal neurons by ACh and 5-HT. Lastly, the addition of 5-HT to either endogenous or exogenous ACh significantly suppressed the excitation of pyramidal neurons in prefrontal layer 6. Taken together, this work suggests that the major corticothalamic layer of prefrontal cortex is a substrate for opposing modulatory influences on neuronal activity that could have implications for regulation of attention.

  20. Opposing Cholinergic and Serotonergic Modulation of Layer 6 in Prefrontal Cortex.

    Science.gov (United States)

    Sparks, Daniel W; Tian, Michael K; Sargin, Derya; Venkatesan, Sridevi; Intson, Katheron; Lambe, Evelyn K

    2017-01-01

    Prefrontal cortex is a hub for attention processing and receives abundant innervation from cholinergic and serotonergic afferents. A growing body of evidence suggests that acetylcholine (ACh) and serotonin (5-HT) have opposing influences on tasks requiring attention, but the underlying neurophysiology of their opposition is unclear. One candidate target population is medial prefrontal layer 6 pyramidal neurons, which provide feedback modulation of the thalamus, as well as feed-forward excitation of cortical interneurons. Here, we assess the response of these neurons to ACh and 5-HT using whole cell recordings in acute brain slices from mouse cortex. With application of exogenous agonists, we show that individual layer 6 pyramidal neurons are bidirectionally-modulated, with ACh and 5-HT exerting opposite effects on excitability across a number of concentrations. Next, we tested the responses of layer 6 pyramidal neurons to optogenetic release of endogenous ACh or 5-HT. These experiments were performed in brain slices from transgenic mice expressing channelrhodopsin in either ChAT-expressing cholinergic neurons or Pet1-expressing serotonergic neurons. Light-evoked endogenous neuromodulation recapitulated the effects of exogenous neurotransmitters, showing opposing modulation of layer 6 pyramidal neurons by ACh and 5-HT. Lastly, the addition of 5-HT to either endogenous or exogenous ACh significantly suppressed the excitation of pyramidal neurons in prefrontal layer 6. Taken together, this work suggests that the major corticothalamic layer of prefrontal cortex is a substrate for opposing modulatory influences on neuronal activity that could have implications for regulation of attention.

  1. Long-term effects of cholinergic basal forebrain lesions on neuropeptide Y and somatostatin immunoreactivity in rat neocortex

    NARCIS (Netherlands)

    Gaykema, R.P.A.; Compaan, J.C.; Nyakas, C.; Horvath, E.; Luiten, P.G.M.

    1989-01-01

    The effect of cholinergic basal forebrain lesions on immunoreactivity to somatostatin (SOM-i) and neuropeptide-Y (NPY-i) was investigated in the rat parietal cortex, 16-18 months after multiple bilateral ibotenic acid injections in the nucleus basalis complex. As a result of the lesion, the

  2. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory

    OpenAIRE

    Kana Okada; Kayo Nishizawa; Tomoko Kobayashi; Shogo Sakata; Kazuto Kobayashi

    2015-01-01

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer?s disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remai...

  3. Effects of acute administration of nicotinic and muscarinic cholinergic agonists and antagonists on performance in different cost-benefit decision making tasks in rats.

    Science.gov (United States)

    Mendez, Ian A; Gilbert, Ryan J; Bizon, Jennifer L; Setlow, Barry

    2012-12-01

    Alterations in cost-benefit decision making accompany numerous neuropsychiatric conditions, including schizophrenia, attention deficit hyperactivity disorder, and addiction. Central cholinergic systems have been linked to the etiology and/or treatment of many of these conditions, but little is known about the role of cholinergic signaling in cost-benefit decision making. The goal of these experiments was to determine how cholinergic signaling is involved in cost-benefit decision making, using a behavioral pharmacological approach. Male Long-Evans rats were trained in either "probability discounting" or "delay discounting" tasks, in which rats made discrete-trial choices between a small food reward and a large food reward associated with either varying probabilities of omission or varying delays to delivery, respectively. The effects of acute administration of different doses of nicotinic and muscarinic acetylcholine receptor agonists and antagonists were assessed in each task. In the probability discounting task, acute nicotine administration (1.0 mg/kg) significantly increased choice of the large risky reward, and control experiments suggested that this was due to robust nicotine-induced impairments in behavioral flexibility. In the delay discounting task, the muscarinic antagonists scopolamine (0.03, 0.1, and 0.3 mg/kg) and atropine (0.3 mg/kg) both significantly increased choice of the small immediate reward. Neither mecamylamine nor oxotremorine produced reliable effects on either of the decision making tasks. These data suggest that cholinergic receptors play multiple roles in decision making contexts which include consideration of reward delay or probability. These roles should be considered when targeting these receptors for therapeutic purposes.

  4. Cholinergic modulation of visual and attentional brain responses in Alzheimer's disease and in health

    OpenAIRE

    Bentley, P.; Driver, J.; Dolan, R.J.

    2007-01-01

    Visuo-attentional deficits occur early in Alzheimer's disease (AD) and are considered more responsive to pro-cholinergic therapy than characteristic memory disturbances. We hypothesised that neural responses in AD during visual attentional processing would be impaired relative to controls, yet partially susceptible to improvement with cholinesterase inhibition. We studied 16 mild AD patients and 17 age-matched healthy controls, using fMRI-scanning to enable within-subject placebo-controlled c...

  5. Neurons of the A5 region are required for the tachycardia evoked by electrical stimulation of the hypothalamic defence area in anaesthetized rats.

    Science.gov (United States)

    López-González, M V; Díaz-Casares, A; Peinado-Aragonés, C A; Lara, J P; Barbancho, M A; Dawid-Milner, M S

    2013-08-01

    In order to assess the possible interactions between the pontine A5 region and the hypothalamic defence area (HDA), we have examined the pattern of double staining for c-Fos protein immunoreactivity (c-Fos-ir) and tyrosine hydroxylase, throughout the rostrocaudal extent of the A5 region in spontaneously breathing anaesthetized male Sprague-Dawley rats during electrical stimulation of the HDA. Activation of the HDA elicited a selective increase in c-Fos-ir with an ipsilateral predominance in catecholaminergic and non-catecholaminergic A5 somata (P HDA. Cardiorespiratory changes were analysed in response to electrical stimulation of the HDA before and after ipsilateral microinjection of muscimol within the A5 region. Stimulation of the HDA evoked an inspiratory facilitatory response, consisting of an increase in respiratory rate (P HDA stimulation were reduced (P HDA and the A5 region, extracellular recordings of putative A5 neurones were obtained during HDA stimulation. Seventy-five A5 cells were recorded, 35 of which were affected by the HDA (47%). These results indicate that neurones of the A5 region participate in the cardiovascular response evoked from the HDA. The possible mechanisms involved in these interactions are discussed.

  6. Sleep and dreaming: induction and mediation of REM sleep by cholinergic mechanisms.

    Science.gov (United States)

    Hobson, J A

    1992-12-01

    The most important recent work on the neurobiology of sleep has focused on the precise cellular and biochemical mechanisms of rapid eye movement sleep mediation. Direct and indirect evidence implicates acetylcholine-containing neurons in the peribrachial pons as critical in the triggering and maintenance of rapid eye movement sleep. Other new studies provide support for the hypothesis that the cholinergic generator system is gated during waking by serotonergic and noradrenergic influences. A growing consensus regarding the basic neurobiology has stimulated new thinking about the brain basis of consciousness during waking and dreaming.

  7. Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment

    Directory of Open Access Journals (Sweden)

    Saswati ePaul

    2015-04-01

    Full Text Available A substantial number of studies on basal forebrain cholinergic neurons (BFCN have provided compelling evidence for their role in the etiology of stress, cognitive aging, Alzheimer’s disease (AD, and other neurodegenerative diseases. BFCN project to a broad range of cortical sites and limbic structures, including the hippocampus, and are involved in stress and cognition. In particular, the hippocampus, the primary target tissue of the glucocorticoid stress hormones, is associated with cognitive function in tandem with hypothalamic-pituitary-adrenal (HPA axis modulation. The present review summarizes glucocorticoid and HPA axis research to date in an effort to establish the manner in which stress affects the release of acetylcholine, glucocorticoids, and their receptor in the context of cognitive processes. We attempt to provide the molecular interactive link between the glucocorticoids and cholinergic system that contributes to BFCN degeneration in stress-induced acceleration of cognitive decline in aging and AD. We also discuss the importance of animal models in facilitating such studies for pharmacological use, which could help decipher disease states and propose leads for pharmacological intervention.

  8. A putative hybrid swarm within Oonopsis foliosa (Asteraceae: Astereae)

    Science.gov (United States)

    Hughes, J.F.; Brown, G.K.

    2004-01-01

    Oo??nopsis foliosa var. foliosa and var. monocephala are endemic to short-grass steppe of southeastern Colorado and until recently were considered geographically disjunct. The only known qualitative feature separating these 2 varieties is floral head type; var. foliosa has radiate heads, whereas var. monocephala heads are discoid. Sympatry between these varieties is restricted to a small area in which a range of parental types and intermediate head morphologies is observed. We used distribution mapping, morphometric analyses, chromosome cytology, and pollen stainability to characterize the sympatric zone. Morphometrics confirms that the only discrete difference between var. foliosa and var. monocephala is radiate versus discoid heads, respectively. The outer florets of putative hybrid individuals ranged from conspicuously elongated yet radially symmetric disc-floret corollas, to elongated radially asymmetric bilabiate- or deeply cleft corollas, to stunted ray florets with appendages remnant of corolla lobes. Chromosome cytology of pollen mother cells from both putative parental varieties and a series of intermediate morphological types collected at the sympatric zone reveal evidence of translocation heterozygosity. Pollen stainability shows no significant differences in viability between the parental varieties and putative hybrids. The restricted distribution of putative hybrids to a narrow zone of sympatry between the parental types and the presence of meiotic chromosome-pairing anomalies in these intermediate plants are consistent with a hybrid origin. The high stainability of putative-hybrid pollen adds to a growing body of evidence that hybrids are not universally unfit.

  9. A point mutation in the hair cell nicotinic cholinergic receptor prolongs cochlear inhibition and enhances noise protection.

    Directory of Open Access Journals (Sweden)

    Julian Taranda

    2009-01-01

    Full Text Available The transduction of sound in the auditory periphery, the cochlea, is inhibited by efferent cholinergic neurons projecting from the brainstem and synapsing directly on mechanosensory hair cells. One fundamental question in auditory neuroscience is what role(s this feedback plays in our ability to hear. In the present study, we have engineered a genetically modified mouse model in which the magnitude and duration of efferent cholinergic effects are increased, and we assess the consequences of this manipulation on cochlear function. We generated the Chrna9L9'T line of knockin mice with a threonine for leucine change (L9'T at position 9' of the second transmembrane domain of the alpha9 nicotinic cholinergic subunit, rendering alpha9-containing receptors that were hypersensitive to acetylcholine and had slower desensitization kinetics. The Chrna9L9'T allele produced a 3-fold prolongation of efferent synaptic currents in vitro. In vivo, Chrna9L9'T mice had baseline elevation of cochlear thresholds and efferent-mediated inhibition of cochlear responses was dramatically enhanced and lengthened: both effects were reversed by strychnine blockade of the alpha9alpha10 hair cell nicotinic receptor. Importantly, relative to their wild-type littermates, Chrna9(L9'T/L9'T mice showed less permanent hearing loss following exposure to intense noise. Thus, a point mutation designed to alter alpha9alpha10 receptor gating has provided an animal model in which not only is efferent inhibition more powerful, but also one in which sound-induced hearing loss can be restrained, indicating the ability of efferent feedback to ameliorate sound trauma.

  10. Effects of local anesthetics on cholinergic agonist binding affinity of central nervous system. cap alpha. -bungarotoxin receptors

    Energy Technology Data Exchange (ETDEWEB)

    Lukas, R.L.; Bennett, E.L.

    1979-12-01

    In general, pharmacological effects of local anesthetics may be attributed to their ability to reversibly block the propagation of nerve and muscle action potentials. At physiologically potent concentrations, local anesthetics (LA) also act as noncompetitive antagonists of the physiological response of post-synaptic nicotinic acetylcholine receptors (nAChR) to cholinergic agonists, and increase agonist binding affinities of nAChR from electric organ. It is postulated that the primary site of LA action on nAChR function is at the receptor-coupled ionophore. Furthermore, LA-nAChR ionophore interactions are thought to accelerate physiological desensitization of nAChR, manifest biochemically as increased affinity of nAChR for agonist. Specific receptors for ..cap alpha..-bungarotoxin (..cap alpha..-Bgt), a potent competitive antagonist at nAChR sites in the periphery, have been detected in rat central nervous system membrane preparations. The affinity of these central ..cap alpha..-Bgt receptors (..cap alpha..-BgtR) for cholinergic agonists is found to increase on exposure to agonist. Nevertheless, on the basis of inconsistent pharmacological and physiological results, uncertainty remains regarding the relationship between ..cap alpha..-BgtR and authentic nAChR in the CNS, despite a wide body of biochemical and histological evidence consistent with their identity. Reasoning that if CNS ..cap alpha..-BgtR are true in nAChR, coupled to functional ion channels, LA might be expected to cause biochemically measurable increases in ..cap alpha..-BgtR affinity for cholinergic agonists, we have undertaken a study of the effects of LA on the ability of acetylcholine (ACh) to inhibit interaction of ..cap alpha..-BgtR with /sup 3/H-labeled ..cap alpha..-Bgt.

  11. Outcomes from two forms of training for first-responder competency in cholinergic crisis management.

    Science.gov (United States)

    Andreatta, Pamela; Klotz, Jessica J; Madsen, James M; Hurst, Charles G; Talbot, Thomas B

    2015-04-01

    Military and civilian first responders must be able to recognize and effectively manage mass disaster casualties. Clinical management of injuries resulting from nerve agents provides different challenges for first responders than those of conventional weapons. We evaluated the impact of a mixed-methods training program on competency acquisition in cholinergic crisis clinical management using multimedia with either live animal or patient actor examples, and hands-on practice using SimMan3G mannequin simulators. A purposively selected sample of 204 civilian and military first responders who had not previously completed nerve agent training were assessed pre- and post-training for knowledge, performance, self-efficacy, and affective state. We conducted analysis of variance with repeated measures; statistical significance p 20%, performance > 50%, self-efficacy > 34%, and affective state > 15%. There were no significant differences between the live animal and patient actor groups. These findings could aid in the specification of training for first-responder personnel in military and civilian service. Although less comprehensive than U.S. Army Medical Research Institute of Chemical Defense courses, the training outcomes associated with this easily distributed program demonstrate its value in increasing the competency of first responders in recognizing and managing a mass casualty cholinergic event. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  12. Increased cholinergic contractions of jejunal smooth muscle caused by a high cholesterol diet are prevented by the 5-HT4 agonist – tegaserod

    Directory of Open Access Journals (Sweden)

    Shaffer Eldon

    2006-02-01

    Full Text Available Abstract Background Excess cholesterol in bile and in blood is a major risk factor for the respective development of gallbladder disease and atherosclerosis. This lipid in excess negatively impacts the functioning of other smooth muscles, including the intestine. Serotonin is an important mediator of the contractile responses of the small intestine. Drugs targeting the serotonin receptor are used as prokinetic agents to manage intestinal motor disorders, in particular irritable bowel syndrome. Thus, tegaserod, acting on 5-HT4 receptor, ideally should obviate detrimental effects of excessive cholesterol on gastrointestinal smooth muscle. In this study we examined the effect of tegaserod on cholesterol-induced changes in the contractile responses of intestinal smooth muscle. Methods The effects of a high cholesterol (1% diet on the in vitro contractile responses of jejunal longitudinal smooth muscle from Richardson ground squirrels to the cholinergic agonist carbachol were examined in the presence or absence of tetrodrodotoxin (TTX. Two groups of animals, fed either low (0.03% or high cholesterol rat chow diet, were further divided into two subgroups and treated for 28 days with either vehicle or tegaserod. Results The high cholesterol diet increased, by nearly 2-fold, contractions of the jejunal longitudinal smooth muscle elicited by carbachol. These cholinergic contractions were mediated by muscarinic receptors since they were blocked by scopolamine, a muscarinic receptor antagonist, but not by the nicotinic receptor antagonist, hexamethonium. Tegaserod treatment, which did not affect cholinergic contractions of tissues from low cholesterol fed animals, abrogated the increase caused by the high cholesterol diet. With low cholesterol diet TTX enhanced carbachol-evoked contractions, whereas this action potential blocker did not affect the augmented cholinergic contractions seen with tissues from animals on the high cholesterol diet. Tegaserod

  13. Effects of acute administration of nicotinic and muscarinic cholinergic agonists and antagonists on performance in different cost–benefit decision making tasks in rats

    Science.gov (United States)

    Mendez, Ian A.; Gilbert, Ryan J.; Bizon, Jennifer L.

    2012-01-01

    Rationale Alterations in cost–benefit decision making accompany numerous neuropsychiatric conditions, including schizophrenia, attention deficit hyperactivity disorder, and addiction. Central cholinergic systems have been linked to the etiology and/or treatment of many of these conditions, but little is known about the role of cholinergic signaling in cost–benefit decision making. Objectives The goal of these experiments was to determine how cholinergic signaling is involved in cost–benefit decision making, using a behavioral pharmacological approach. Methods Male Long-Evans rats were trained in either “probability discounting” or “delay discounting” tasks, in which rats made discrete-trial choices between a small food reward and a large food reward associated with either varying probabilities of omission or varying delays to delivery, respectively. The effects of acute administration of different doses of nicotinic and muscarinic acetylcholine receptor agonists and antagonists were assessed in each task. Results In the probability discounting task, acute nicotine administration (1.0 mg/kg) significantly increased choice of the large risky reward, and control experiments suggested that this was due to robust nicotine-induced impairments in behavioral flexibility. In the delay discounting task, the muscarinic antagonists scopolamine (0.03, 0.1, and 0.3 mg/kg) and atropine (0.3 mg/kg) both significantly increased choice of the small immediate reward. Neither mecamylamine nor oxotremorine produced reliable effects on either of the decision making tasks. Conclusions These data suggest that cholinergic receptors play multiple roles in decision making contexts which include consideration of reward delay or probability. These roles should be considered when targeting these receptors for therapeutic purposes. PMID:22760484

  14. Muscarinic M4 Receptors on Cholinergic and Dopamine D1 Receptor-Expressing Neurons Have Opposing Functionality for Positive Reinforcement and Influence Impulsivity

    Directory of Open Access Journals (Sweden)

    Anna M. Klawonn

    2018-04-01

    Full Text Available The neurotransmitter acetylcholine has been implicated in reward learning and drug addiction. However, the roles of the various cholinergic receptor subtypes on different neuron populations remain elusive. Here we study the function of muscarinic M4 receptors (M4Rs in dopamine D1 receptor (D1R expressing neurons and cholinergic neurons (expressing choline acetyltransferase; ChAT, during various reward-enforced behaviors and in a “waiting”-impulsivity test. We applied cell-type-specific gene deletions targeting M4Rs in D1RCre or ChATCre mice. Mice lacking M4Rs in D1R-neurons displayed greater cocaine seeking and drug-primed reinstatement than their littermate controls in a Pavlovian conditioned place preference (CPP paradigm. Furthermore, the M4R-D1RCre mice initiated significantly more premature responses (PRs in the 5-choice-serial-reaction-time-task (5CSRTT than their littermate controls, indicating impaired waiting impulse control. In contrast, mice lacking M4Rs in cholinergic neurons did not acquire cocaine Pavlovian conditioning. The M4R-ChATCre mice were also unable to learn positive reinforcement to either natural reward or cocaine in an operant runway paradigm. Immediate early gene (IEG expression (cFos and FosB induced by repeated cocaine injections was significantly increased in the forebrain of M4R-D1RCre mice, whereas it remained normal in the M4R-ChATCre mice. Our study illustrates that muscarinic M4Rs on specific neural populations, either cholinergic or D1R-expressing, are pivotal for learning processes related to both natural reward and drugs of abuse, with opposing functionality. Furthermore, we found that neurons expressing both M4Rs and D1Rs are important for signaling impulse control.

  15. Muscarinic M4 Receptors on Cholinergic and Dopamine D1 Receptor-Expressing Neurons Have Opposing Functionality for Positive Reinforcement and Influence Impulsivity.

    Science.gov (United States)

    Klawonn, Anna M; Wilhelms, Daniel B; Lindström, Sarah H; Singh, Anand Kumar; Jaarola, Maarit; Wess, Jürgen; Fritz, Michael; Engblom, David

    2018-01-01

    The neurotransmitter acetylcholine has been implicated in reward learning and drug addiction. However, the roles of the various cholinergic receptor subtypes on different neuron populations remain elusive. Here we study the function of muscarinic M4 receptors (M4Rs) in dopamine D1 receptor (D1R) expressing neurons and cholinergic neurons (expressing choline acetyltransferase; ChAT), during various reward-enforced behaviors and in a "waiting"-impulsivity test. We applied cell-type-specific gene deletions targeting M4Rs in D1RCre or ChATCre mice. Mice lacking M4Rs in D1R-neurons displayed greater cocaine seeking and drug-primed reinstatement than their littermate controls in a Pavlovian conditioned place preference (CPP) paradigm. Furthermore, the M4R-D1RCre mice initiated significantly more premature responses (PRs) in the 5-choice-serial-reaction-time-task (5CSRTT) than their littermate controls, indicating impaired waiting impulse control. In contrast, mice lacking M4Rs in cholinergic neurons did not acquire cocaine Pavlovian conditioning. The M4R-ChATCre mice were also unable to learn positive reinforcement to either natural reward or cocaine in an operant runway paradigm. Immediate early gene (IEG) expression ( cFos and FosB ) induced by repeated cocaine injections was significantly increased in the forebrain of M4R-D1RCre mice, whereas it remained normal in the M4R-ChATCre mice. Our study illustrates that muscarinic M4Rs on specific neural populations, either cholinergic or D1R-expressing, are pivotal for learning processes related to both natural reward and drugs of abuse, with opposing functionality. Furthermore, we found that neurons expressing both M4Rs and D1Rs are important for signaling impulse control.

  16. CHOLINERGIC AND NORADRENERGIC MODULATION OF LONG-TERM EXPLICIT MEMORY ARE ALTERED BY CHRONIC LOW-LEVEL LEAD EXPOSURE. (U915393)

    Science.gov (United States)

    Recent evidence suggests that septohippocampal cholinergic activity is suppressed in rats exposed to low levels of lead (Pb). As a result, noradrenergic activity may be elevated due to compensatory sympathetic sprouting. Therefore, the goals of this study were to (a) determine...

  17. Learning to Ignore: A Modeling Study of a Decremental Cholinergic Pathway and Its Influence on Attention and Learning

    Science.gov (United States)

    Oros, Nicolas; Chiba, Andrea A.; Nitz, Douglas A.; Krichmar, Jeffrey L.

    2014-01-01

    Learning to ignore irrelevant stimuli is essential to achieving efficient and fluid attention, and serves as the complement to increasing attention to relevant stimuli. The different cholinergic (ACh) subsystems within the basal forebrain regulate attention in distinct but complementary ways. ACh projections from the substantia innominata/nucleus…

  18. Putative periodontopathic bacteria and herpesviruses in pregnant women: a case-control study

    OpenAIRE

    Lu, Haixia; Zhu, Ce; Li, Fei; Xu, Wei; Tao, Danying; Feng, Xiping

    2016-01-01

    Little is known about herpesvirus and putative periodontopathic bacteria in maternal chronic periodontitis. The present case-control study aimed to explore the potential relationship between putative periodontopathic bacteria and herpesviruses in maternal chronic periodontitis.Saliva samples were collected from 36 pregnant women with chronic periodontitis (cases) and 36 pregnant women with healthy periodontal status (controls). Six putative periodontopathic bacteria (Porphyromonas gingivalis ...

  19. Specific multi-nutrient enriched diet enhances hippocampal cholinergic transmission in aged rats.

    Science.gov (United States)

    Cansev, Mehmet; van Wijk, Nick; Turkyilmaz, Mesut; Orhan, Fulya; Sijben, John W C; Broersen, Laus M

    2015-01-01

    Fortasyn Connect (FC) is a specific nutrient combination designed to target synaptic dysfunction in Alzheimer's disease by providing neuronal membrane precursors and other supportive nutrients. The aim of the present study was to investigate the effects of FC on hippocampal cholinergic neurotransmission in association with its effects on synaptic membrane formation in aged rats. Eighteen-month-old male Wistar rats were randomized to receive a control diet for 4 weeks or an FC-enriched diet for 4 or 6 weeks. At the end of the dietary treatments, acetylcholine (ACh) release was investigated by in vivo microdialysis in the right hippocampi. On completion of microdialysis studies, the rats were sacrificed, and the left hippocampi were obtained to determine the levels of choline, ACh, membrane phospholipids, synaptic proteins, and choline acetyltransferase. Our results revealed that supplementation with FC diet for 4 or 6 weeks, significantly enhanced basal and stimulated hippocampal ACh release and ACh tissue levels, along with levels of phospholipids. Feeding rats the FC diet for 6 weeks significantly increased the levels of choline acetyltransferase, the presynaptic marker Synapsin-1, and the postsynaptic marker PSD-95, but decreased levels of Nogo-A, a neurite outgrowth inhibitor. These data show that the FC diet enhances hippocampal cholinergic neurotransmission in aged rats and suggest that this effect is mediated by enhanced synaptic membrane formation. These data provide further insight into cellular and molecular mechanisms by which FC may support memory processes in Alzheimer's disease. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Evidence for inhibitory nicotinic and facilitatory muscarinic receptors in cholinergic nerve terminals of the rat urinary bladder.

    Science.gov (United States)

    Somogyi, G T; de Groat, W C

    1992-02-01

    Cholinergic prejunctional modulatory receptors on parasympathetic nerves in the rat urinary bladder were studied by measuring 3H-acetylcholine (ACh) release in muscle strips from the bladder body. Electrical field stimulation markedly increased 3H-ACh overflow in strips preloaded with 3H-choline. Oxotremorine (1 microM), an M2 receptor agonist and DMPP (10 microM) a nicotinic (N) receptor agonist decreased the release of ACh (50% and 55% respectively); whereas McN-A 343 (50 microM) an M1 receptor agonist increased the release (33%), indicating the presence of three types of modulatory receptors. The anticholinesterase agent, physostigmine in concentrations of 1, 5 and 25 microM and neostigmine (5 microM) increased ACh release (44-710%). However a low concentration of physostigmine (0.05 microM) decreased release. Pirenzepine, an M1 muscarinic antagonist or atropine blocked the increased ACh release in physostigmine-treated strips, but in normal strips pirenzepine did not change release and atropine increased release. McN-A 343 or prolonged application (15 min) of DMPP increased ACh release (376% and 391% respectively) in physostigmine-treated strips. The response to McN-A 343 was blocked by pirenzepine. d-Tubocurarine (DTC), a nicotinic receptor blocker, enhanced ACh release in the presence of physostigmine but proved to be ineffective in normal preparations. These findings suggest that all three cholinergic receptors (M1 facilitatory, N inhibitory and M2 inhibitory) are activated by endogenous ACh in physostigmine treated preparations whereas only M2-inhibitory receptors are activated in normal preparations. It will be important in future studies to determine whether M1 and M2 mechanisms can also be activated under more physiological conditions in the bladder and whether they are present at other cholinergic synapses.

  1. Impaired hippocampal acetylcholine release parallels spatial memory deficits in Tg2576 mice subjected to basal forebrain cholinergic degeneration

    DEFF Research Database (Denmark)

    Laursen, Bettina; Mørk, Arne; Plath, Niels

    2013-01-01

    (BFCD) in 3 months old male Tg2576 mice to co-express cholinergic degeneration with Aβ overexpression as these characteristics constitutes key hallmarks of AD. At 9 months, SAP lesioned Tg2576 mice were cognitively impaired in two spatial paradigms addressing working memory and mid to long-term memory...

  2. Change of central cholinergic receptors following lesions of nucleus basalis magnocellularis in rats: search for an imaging index suitable for the early detection of Alzheimer's disease

    International Nuclear Information System (INIS)

    Ogawa, Mikako; Iida, Yasuhiko; Nakagawa, Masaki; Kuge, Yugi; Kawashima, Hidekazu; Tominaga, Akiko; Ueda, Masashi; Magata, Yasuhiro; Saji, Hideo

    2006-01-01

    Cholinergic system in the central nervous system is involved in the memory function. Thus, because the dysfunction of cholinergic system that project to the cerebral cortex from nucleus basalis of Meynert (nbM) would be implicated in the memory function deficits in Alzheimer's disease (AD), evaluating cholinergic function may be useful for the early detection of AD. In this study, because the nucleus basalis magnocellularis (NBM) in rats is equivalent to nbM in human, we investigated the change in cholinergic receptors in the frontal cortex of rats with unilateral lesion to the NBM to find an appropriate index for the early detection of AD using techniques of nuclear medicine. The right NBM was injected with ibotenic acid. [ 18 F]FDG-PET images were obtained 3 days later. Some rats were sacrificed at 1 week, whereas others were subjected to a second [ 18 F]FDG-PET at 4 weeks then sacrificed for membrane preparation. The prepared membranes were subjected to radioreceptor assays to measure the density of nicotinic and muscarinic acetylcholine receptors. Glucose metabolism had decreased on the damaged side compared to the control side at 3 days, but at 4 weeks, there was no difference between the sides. Nicotinic acetylcholine receptors had significantly decreased in density compared to the control side at both 1 and 4 weeks. However, muscarinic receptors were not affected. These results suggested that neuronal dysfunction in AD could be diagnosed at an early stage by imaging nicotinic acetylcholine receptors

  3. Cholinergic nicotinic and muscarinic receptors in dementia of Alzheimer, Parkinson and Lewy body types.

    Science.gov (United States)

    Perry, E K; Smith, C J; Court, J A; Perry, R H

    1990-01-01

    Cholinergic nicotinic and muscarinic receptor binding were measured in post mortem human brain tissue, using low (nM) concentrations of (3H)-nicotine to detect predominately the high affinity nicotinic site and (3H)-N-methylscopolamine in the presence and absence of 3 x 10(-4) M carbachol to measure both the low and high affinity agonist subtypes of the muscarinic receptor group. Consistent with most previous reports, the nicotinic but not muscarinic binding was reduced in the different forms of dementia associated with cortical cholinergic deficits, including Alzheimer's and Parkinson's disease, senile dementia of Lewy body type (SDLT) and Down's syndrome (over 50 years). Analysis of (3H)-nicotine binding displaced by a range of carbachol concentrations (10(-9)-10(-3) M) indicated 2 binding sites for nicotine and that the high affinity rather than low affinity site was reduced in Alzheimer's disease. In all 3 cortical areas investigated (temporal, parietal and occipital) there were increases in the low affinity muscarinic site in Parkinson's disease and SDLT but not Alzheimer's disease or middle-aged Down's syndrome. This observation raised the question of whether the presence of neurofibrillary tangles (evident in the latter but not former 2 disorders) is incompatible with denervation-induced muscarinic supersensitivity in cholinoceptive neurons which include cortical pyramids generally affeted by tangle formation.

  4. Cholinergic enhancement reduces orientation-specific surround suppression but not visual crowding

    Directory of Open Access Journals (Sweden)

    Anna A. Kosovicheva

    2012-09-01

    Full Text Available Acetylcholine (ACh reduces the spatial spread of excitatory fMRI responses in early visual cortex and the receptive field sizes of V1 neurons. We investigated the perceptual consequences of these physiological effects of ACh with surround suppression and crowding, two tasks that involve spatial interactions between visual field locations. Surround suppression refers to the reduction in perceived stimulus contrast by a high-contrast surround stimulus. For grating stimuli, surround suppression is selective for the relative orientations of the center and surround, suggesting that it results from inhibitory interactions in early visual cortex. Crowding refers to impaired identification of a peripheral stimulus in the presence of flankers and is thought to result from excessive integration of visual features. We increased synaptic ACh levels by administering the cholinesterase inhibitor donepezil to healthy human subjects in a placebo-controlled, double-blind design. In Exp. 1, we measured surround suppression of a central grating using a contrast discrimination task with three conditions: 1 surround grating with the same orientation as the center (parallel, 2 surround orthogonal to the center, or 3 no surround. Contrast discrimination thresholds were higher in the parallel than in the orthogonal condition, demonstrating orientation-specific surround suppression (OSSS. Cholinergic enhancement reduced thresholds only in the parallel condition, thereby reducing OSSS. In Exp. 2, subjects performed a crowding task in which they reported the identity of a peripheral letter flanked by letters on either side. We measured the critical spacing between the target and flanking letters that allowed reliable identification. Cholinergic enhancement had no effect on critical spacing. Our findings suggest that ACh reduces spatial interactions in tasks involving segmentation of visual field locations but that these effects may be limited to early visual cortical

  5. Sympathetic ingrowth: A result of cholinergic nerve injury in the adult mammalian brain

    International Nuclear Information System (INIS)

    Davis, J.N.

    1986-01-01

    This paper describes sympathetic ingrowth, its regulation and function. The study leads to a better understanding of the molecular mechanisms that probably underlie the regulation of other neuronal rearrangements. The authors examine tritium-2-deoxyglucose uptake in the hippocampal formation after septal leasions. Preliminary experiments suggest that the septo-hippocampal fibers do influence tritium-2-deoxyglucose uptake throughout the hippocampal formation in normal animals. If sympathetic ingrowth also can influence this uptake, this could provide further evidence for an adaptive role of this noradrenergic replacement of cholinergic neurons

  6. Inhaled ammonium persulphate inhibits non-adrenergic, non-cholinergic relaxations in the guinea pig isolated trachea.

    Science.gov (United States)

    Dellabianca, A; Faniglione, M; De Angelis, S; Colucci, M; Cervio, M; Balestra, B; Tonini, S; Candura, S M

    2010-01-01

    Persulphates can act both as irritants and sensitizers in inducing occupational asthma. A dysfunction of nervous control regulating the airway tone has been hypothesized as a mechanism underlying bronchoconstriction in asthma. It was the aim of this study to investigate whether inhaled ammonium persulphate affects the non-adrenergic, non-cholinergic (NANC) inhibitory innervation, the cholinergic nerve-mediated contraction or the muscular response to the spasmogens, carbachol or histamine, in the guinea pig epithelium-free, isolated trachea. Male guinea pigs inhaled aerosols containing ammonium persulphate (10 mg/m(3) for 30 min for 5 days during 3 weeks). Control animals inhaled saline aerosol. NANC relaxations to electrical field stimulation at 3 Hz were evaluated in whole tracheal segments as intraluminal pressure changes. Drugs inactivating peptide transmission, nitric oxide synthase, carbon monoxide production by haem oxygenase-2 and soluble guanylyl cyclase were used to assess the involvement of various inhibitory neurotransmitters. Carbachol and histamine cumulative concentration-response curves were obtained. In both groups, nitric oxide and carbon monoxide participated to the same extent as inhibitory neurotransmitters. In exposed animals, the tracheal NANC relaxations were reduced to 45.9 +/- 12.1% (p guinea pig airways. This may represent a novel mechanism contributing to persulphate-induced asthma. Copyright 2009 S. Karger AG, Basel.

  7. Hypocretinergic and cholinergic contributions to sleep-wake disturbances in a mouse model of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hannah E. Thomasy

    2017-01-01

    Full Text Available Disorders of sleep and wakefulness occur in the majority of individuals who have experienced traumatic brain injury (TBI, with increased sleep need and excessive daytime sleepiness often reported. Behavioral and pharmacological therapies have limited efficacy, in part, because the etiology of post-TBI sleep disturbances is not well understood. Severity of injuries resulting from head trauma in humans is highly variable, and as a consequence so are their sequelae. Here, we use a controlled laboratory model to investigate the effects of TBI on sleep-wake behavior and on candidate neurotransmitter systems as potential mediators. We focus on hypocretin and melanin-concentrating hormone (MCH, hypothalamic neuropeptides important for regulating sleep and wakefulness, and two potential downstream effectors of hypocretin actions, histamine and acetylcholine. Adult male C57BL/6 mice (n=6–10/group were implanted with EEG recording electrodes and baseline recordings were obtained. After baseline recordings, controlled cortical impact was used to induce mild or moderate TBI. EEG recordings were obtained from the same animals at 7 and 15 days post-surgery. Separate groups of animals (n=6–8/group were used to determine effects of TBI on the numbers of hypocretin and MCH-producing neurons in the hypothalamus, histaminergic neurons in the tuberomammillary nucleus, and cholinergic neurons in the basal forebrain. At 15 days post-TBI, wakefulness was decreased and NREM sleep was increased during the dark period in moderately injured animals. There were no differences between groups in REM sleep time, nor were there differences between groups in sleep during the light period. TBI effects on hypocretin and cholinergic neurons were such that more severe injury resulted in fewer cells. Numbers of MCH neurons and histaminergic neurons were not altered under the conditions of this study. Thus, we conclude that moderate TBI in mice reduces wakefulness and increases

  8. Hook-up of GluA2, GRIP and liprin-α for cholinergic muscarinic receptor-dependent LTD in the hippocampus

    Directory of Open Access Journals (Sweden)

    Wu Long-Jun

    2009-06-01

    Full Text Available Abstract The molecular mechanism underlying muscarinic acetylcholine receptor-dependent LTD (mAChR-LTD in the hippocampus is less studied. In a recent study, a novel mechanism is described. The induction of mAChR-LTD required the activation of protein tyrosine phosphatase (PTP, and the expression was mediated by AMPA receptor endocytosis via interactions between GluA2, GRIP and liprin-α. The hook-up of these proteins may result in the recruitment of leukocyte common antigen-related receptor (LAR, a PTP that is known to be involved in AMPA receptor trafficking. Interestingly, the similar molecular interaction cannot be applied to mGluR-LTD, despite the fact that the same G-protein involved in LTD is activated by both mAChR and mGluR. This discovery provides key molecular insights for cholinergic dependent cognitive function, and mAChR-LTD can serve as a useful cellular model for studying the roles of cholinergic mechanism in learning and memory.

  9. [Genetic and neuroendocrine aspects in autism spectrum disorder].

    Science.gov (United States)

    Oviedo, Norma; Manuel-Apolinar, Leticia; de la Chesnaye, Elsa; Guerra-Araiza, Christian

    The autism spectrum disorder (ASD) was described in 1943 and is defined as a developmental disorder that affects social interaction and communication. It is usually identified in early stages of development from 18 months of age. Currently, autism is considered a neurological disorder with a spectrum covering cases of different degrees, which is associated with genetic factors, not genetic and environmental. Among the genetic factors, various syndromes have been described that are associated with this disorder. Also, the neurobiology of autism has been studied at the genetic, neurophysiological, neurochemical and neuropathological levels. Neuroimaging techniques have shown multiple structural abnormalities in these patients. There have also been changes in the serotonergic, GABAergic, catecholaminergic and cholinergic systems related to this disorder. This paper presents an update of the information presented in the genetic and neuroendocrine aspects of autism spectrum disorder. Copyright © 2014 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  10. Chemical and radiological effects of chronic ingestion of uranium in the rat brain: biochemical impairment of dopaminergic, serotonergic and cholinergic neuro-transmissions

    International Nuclear Information System (INIS)

    Bussy, C.

    2005-09-01

    Uranium is an environmental ubiquitous metal-trace element. It has both chemical and radiological toxicity. After chronic ingestion, uranium can distribute in any part of the body and accumulate in the brain. The aims of this study was 1) to determine and estimate the effects of uranium on dopaminergic, serotoninergic and cholinergic systems and 2) to measure the uranium amount in the brain, after chronic exposure by ingestion of depleted (D.U.) or enriched (E.U.) uranium during 1.5 to 18 months at 40 mg.L -1 (40 ppm) in different rat brain areas. At any time of exposure, the results show that both the neurotransmission alterations and the uranium brain accumulation were moderate, area specific, time-evolutive and depended on uranium specific activity. After D.U. exposure, monoamine perturbations are chronic and progressive. On the contrary, monoamine alterations occurred only after long term of E.U. exposure. These mono-aminergic modifications are not always dependent on uranium accumulation in brain areas. Moreover, although the cholinergic system was not affected at both 1.5 and 9 months of D.U. exposure, the alteration of ChE activity after E.U. exposure are both dependent on uranium accumulation in brain areas and on uranium specific activity. After E.U. exposure, cholinergic modification and uranium accumulation in hippocampus could partially explain the short-term memory disturbances which have been previously reported. (author)

  11. TITERS OF ANTIBODIES TO Β1-ADRENOCEPTOR AND M2 CHOLINERGIC RECEPTORS IN PATIENTS WITH VENTRICULAR ARRHYTHMIAS WITHOUT AN ORGANIC CARDIOVASCULAR DISEASE AND THEIR POSSIBLE CLINICAL SIGNIFICANCE

    Directory of Open Access Journals (Sweden)

    M. M. Rogova

    2012-01-01

    Full Text Available Aim. To identify the most promising epitopes that simulate various sites β1-adrenergic and M2-cholinergic receptors, and to evaluate their possible contribution to the development and maintenance of cardiac arrhythmias, particularly idiopathic ventricular arrhythmia. Material and methods. Patients with ventricular arrhythmias without organic cardiovascular disease (the study group; n=70 were included in the study. The control group consisted of 20 healthy volunteers. Evaluation of levels of antibodies to antigenic determinants, modeling various sites β1-adrenergic and M2-cholinergic performed in all patients. Causal treatment with clarithromycin and valacyclovir performed in part of patients. Results. Antibodies to different peptide sequences of β1-adrenergic and M2-cholinergic receptors have been identified in 25% of main group patients. A direct correlation between the frequency of episodes of ventricular tachycardia and IgG levels to MRI-MRIV (p=0.02 revealed. Increase in titre of antibodies to β1-adrenoceptors, to a peptide sequence β8 (p=0.02, and lower titers of antibodies to the M2 acetylcholine receptor — chimera MRI-MRIV IgM (p=0.06 and ARI-MRIV IgM (p=0.07 were observed when assessing the efficacy of the therapy in the causal dynamics in the group of "untreated" patients. IgG titer reduction of ARI-MRIV (p=0.02, which is 4 times out of 10 with reduction of ventricular ectopic activity , recorded after valacyclovir therapy. Clarithromycin therapy on the level of antibodies exerted no significant effect. Conclusion. Possible involvement of antibodies to β1-adrenoceptor and M2-cholinergic receptors in the development of idiopathic ventricular arrhythmias demonstrated. The relationship between the frequency of episodes of ventricular tachycardia and levels of antibody titers to M2-cholinergic receptors found. Attempt of causal treatment, depending on the possible mechanisms of the autoimmune process is executed. Further studies to

  12. Evidence for cholinergic participation in the control of bird song; acetylcholinesterase distribution and muscarinic receptor autoradiography in the zebra finch brain

    International Nuclear Information System (INIS)

    Ryan, S.M.; Arnold, A.P.

    1981-01-01

    Brain regions thought to be involved in the control of song in the zebra finch (Poephila guttata), were examined histochemically using the Karnovsky and Roots direct-coloring method for the detection of acetylcholinesterase (AChE) and the autoradiographic method for the localization of muscarinic cholinergic receptors following injection of tritiated quinuclidinyl benzilate (3H QNB). All presently identified vocal control nuclei in both males and females contain AChE. These nuclei include Area X, magnocellular nucleus of the anterior neostriatum (MAN), nucleus interface (NIF), caudal nucleus of the hyperstriatum ventrale (HVc), intercollicular nucleus (ICo), nucleus uva, robust nucleus of the archistriatum (RA), and tracheosyringeal portion of the hypoglossal nerve nucleus (nXIIts). All nuclei except Area X contain mostly AChE-synthesizing cell bodies. All of these nuclei contain some AChE in the neuropil, with particularly intense staining in Area X, the surrounding LPO, and the dorsomedial portion of ICo. In agreement with this description are very high concentrations of 3H QNB in both Area X and the dorsomedial ICo. HVc also appears specifically labeled. Evidence from these two histological technique suggests that efferent projections of most vocal control area may utilize acetylcholine, and that several of the vocal control nuclei may themselves receive muscarinic cholinergic projection. In Area X, there are sex differences of AChE neuropil staining. This evidence suggesting that sexually dimorphic projections to or within Area X are cholinergic or cholinoceptive

  13. Memory-Relevant Mushroom Body Output Synapses Are Cholinergic.

    Science.gov (United States)

    Barnstedt, Oliver; Owald, David; Felsenberg, Johannes; Brain, Ruth; Moszynski, John-Paul; Talbot, Clifford B; Perrat, Paola N; Waddell, Scott

    2016-03-16

    Memories are stored in the fan-out fan-in neural architectures of the mammalian cerebellum and hippocampus and the insect mushroom bodies. However, whereas key plasticity occurs at glutamatergic synapses in mammals, the neurochemistry of the memory-storing mushroom body Kenyon cell output synapses is unknown. Here we demonstrate a role for acetylcholine (ACh) in Drosophila. Kenyon cells express the ACh-processing proteins ChAT and VAChT, and reducing their expression impairs learned olfactory-driven behavior. Local ACh application, or direct Kenyon cell activation, evokes activity in mushroom body output neurons (MBONs). MBON activation depends on VAChT expression in Kenyon cells and is blocked by ACh receptor antagonism. Furthermore, reducing nicotinic ACh receptor subunit expression in MBONs compromises odor-evoked activation and redirects odor-driven behavior. Lastly, peptidergic corelease enhances ACh-evoked responses in MBONs, suggesting an interaction between the fast- and slow-acting transmitters. Therefore, olfactory memories in Drosophila are likely stored as plasticity of cholinergic synapses. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Involvement of Striatal Cholinergic Interneurons and M1 and M4 Muscarinic Receptors in Motor Symptoms of Parkinson's Disease.

    Science.gov (United States)

    Ztaou, Samira; Maurice, Nicolas; Camon, Jeremy; Guiraudie-Capraz, Gaëlle; Kerkerian-Le Goff, Lydia; Beurrier, Corinne; Liberge, Martine; Amalric, Marianne

    2016-08-31

    Over the last decade, striatal cholinergic interneurons (ChIs) have reemerged as key actors in the pathophysiology of basal-ganglia-related movement disorders. However, the mechanisms involved are still unclear. In this study, we address the role of ChI activity in the expression of parkinsonian-like motor deficits in a unilateral nigrostriatal 6-hydroxydopamine (6-OHDA) lesion model using optogenetic and pharmacological approaches. Dorsal striatal photoinhibition of ChIs in lesioned ChAT(cre/cre) mice expressing halorhodopsin in ChIs reduces akinesia, bradykinesia, and sensorimotor neglect. Muscarinic acetylcholine receptor (mAChR) blockade by scopolamine produces similar anti-parkinsonian effects. To decipher which of the mAChR subtypes provides these beneficial effects, systemic and intrastriatal administration of the selective M1 and M4 mAChR antagonists telenzepine and tropicamide, respectively, were tested in the same model of Parkinson's disease. The two compounds alleviate 6-OHDA lesion-induced motor deficits. Telenzepine produces its beneficial effects by blocking postsynaptic M1 mAChRs expressed on medium spiny neurons (MSNs) at the origin of the indirect striatopallidal and direct striatonigral pathways. The anti-parkinsonian effects of tropicamide were almost completely abolished in mutant lesioned mice that lack M4 mAChRs specifically in dopamine D1-receptor-expressing neurons, suggesting that postsynaptic M4 mAChRs expressed on direct MSNs mediate the antiakinetic action of tropicamide. The present results show that altered cholinergic transmission via M1 and M4 mAChRs of the dorsal striatum plays a pivotal role in the occurrence of motor symptoms in Parkinson's disease. The striatum, where dopaminergic and cholinergic systems interact, is the pivotal structure of basal ganglia involved in pathophysiological changes underlying Parkinson's disease. Here, using optogenetic and pharmacological approaches, we investigated the involvement of striatal

  15. Spinal cholinergic involvement after treatment with aspirin and paracetamol in rats

    DEFF Research Database (Denmark)

    Abelson, Klas S P; Kommalage, Mahinda; Höglund, A Urban

    2004-01-01

    Aspirin and paracetamol have been shown to suppress non-inflammatory pain conditions like thermal, visceral and mechanical pain in mice and rats. The non-inflammatory antinociception appears to be mediated by central receptor mechanisms, such as the cholinergic system. In this study, we tested...... the hypothesis that the non-inflammatory antinociception of aspirin and paracetamol could be mediated by an increase of intraspinal acetylcholine release. Microdialysis probes were placed intraspinally in anesthetized rats for acetylcholine sampling. Subcutaneously administered aspirin 100 and 300 mg....../kg increased, while paracetamol 300 mg/kg decreased intraspinal acetylcholine release. Intraspinal drug administration did not affect acetylcholine release. Our results suggest that an increased intraspinal acetylcholine release could be involved in part of the non-inflammatory pain suppression by aspirin...

  16. The vestibulo- and preposito-cerebellar cholinergic neurons of a ChAT-tdTomato transgenic rat exhibit heterogeneous firing properties and the expression of various neurotransmitter receptors.

    Science.gov (United States)

    Zhang, Yue; Kaneko, Ryosuke; Yanagawa, Yuchio; Saito, Yasuhiko

    2014-04-01

    Cerebellar function is regulated by cholinergic mossy fiber inputs that are primarily derived from the medial vestibular nucleus (MVN) and prepositus hypoglossi nucleus (PHN). In contrast to the growing evidence surrounding cholinergic transmission and its functional significance in the cerebellum, the intrinsic and synaptic properties of cholinergic projection neurons (ChPNs) have not been clarified. In this study, we generated choline acetyltransferase (ChAT)-tdTomato transgenic rats, which specifically express the fluorescent protein tdTomato in cholinergic neurons, and used them to investigate the response properties of ChPNs identified via retrograde labeling using whole-cell recordings in brainstem slices. In response to current pulses, ChPNs exhibited two afterhyperpolarisation (AHP) profiles and three firing patterns; the predominant AHP and firing properties differed between the MVN and PHN. Morphologically, the ChPNs were separated into two types based on their soma size and dendritic extensions. Analyses of the firing responses to time-varying sinusoidal current stimuli revealed that ChPNs exhibited different firing modes depending on the input frequencies. The maximum frequencies in which each firing mode was observed were different between the neurons that exhibited distinct firing patterns. Analyses of the current responses to the application of neurotransmitter receptor agonists revealed that the ChPNs expressed (i) AMPA- and NMDA-type glutamate receptors, (ii) GABAA and glycine receptors, and (iii) muscarinic and nicotinic acetylcholine receptors. The current responses mediated by these receptors of MVN ChPNs were not different from those of PHN ChPNs. These findings suggest that ChPNs receive various synaptic inputs and encode those inputs appropriately across different frequencies. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. The LIM and POU homeobox genes ttx-3 and unc-86 act as terminal selectors in distinct cholinergic and serotonergic neuron types.

    Science.gov (United States)

    Zhang, Feifan; Bhattacharya, Abhishek; Nelson, Jessica C; Abe, Namiko; Gordon, Patricia; Lloret-Fernandez, Carla; Maicas, Miren; Flames, Nuria; Mann, Richard S; Colón-Ramos, Daniel A; Hobert, Oliver

    2014-01-01

    Transcription factors that drive neuron type-specific terminal differentiation programs in the developing nervous system are often expressed in several distinct neuronal cell types, but to what extent they have similar or distinct activities in individual neuronal cell types is generally not well explored. We investigate this problem using, as a starting point, the C. elegans LIM homeodomain transcription factor ttx-3, which acts as a terminal selector to drive the terminal differentiation program of the cholinergic AIY interneuron class. Using a panel of different terminal differentiation markers, including neurotransmitter synthesizing enzymes, neurotransmitter receptors and neuropeptides, we show that ttx-3 also controls the terminal differentiation program of two additional, distinct neuron types, namely the cholinergic AIA interneurons and the serotonergic NSM neurons. We show that the type of differentiation program that is controlled by ttx-3 in different neuron types is specified by a distinct set of collaborating transcription factors. One of the collaborating transcription factors is the POU homeobox gene unc-86, which collaborates with ttx-3 to determine the identity of the serotonergic NSM neurons. unc-86 in turn operates independently of ttx-3 in the anterior ganglion where it collaborates with the ARID-type transcription factor cfi-1 to determine the cholinergic identity of the IL2 sensory and URA motor neurons. In conclusion, transcription factors operate as terminal selectors in distinct combinations in different neuron types, defining neuron type-specific identity features.

  18. Age- and Sex-Dependent Laterality of Rat Hippocampal Cholinergic System in Relation to Animal Models of Neurodevelopmental and Neurodegenerative Disorders

    Czech Academy of Sciences Publication Activity Database

    Krištofíková, Z.; Šťastný, F.; Bubeníková, V.; Druga, R.; Klaschka, Jan; Španiel, F.

    2004-01-01

    Roč. 29, č. 4 (2004), s. 671-680 ISSN 0364-3190 R&D Projects: GA MZd NF6031 Institutional research plan: CEZ:AV0Z1030915 Keywords : laterality * cholinergic * excitotoxic * rat model * schizophrenia * Alzheimer disease Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.218, year: 2004

  19. Resonant Cholinergic Dynamics in Cognitive and Motor Decision-Making: Attention, Category Learning, and Choice in Neocortex, Superior Colliculus, and Optic Tectum.

    Science.gov (United States)

    Grossberg, Stephen; Palma, Jesse; Versace, Massimiliano

    2015-01-01

    Freely behaving organisms need to rapidly calibrate their perceptual, cognitive, and motor decisions based on continuously changing environmental conditions. These plastic changes include sharpening or broadening of cognitive and motor attention and learning to match the behavioral demands that are imposed by changing environmental statistics. This article proposes that a shared circuit design for such flexible decision-making is used in specific cognitive and motor circuits, and that both types of circuits use acetylcholine to modulate choice selectivity. Such task-sensitive control is proposed to control thalamocortical choice of the critical features that are cognitively attended and that are incorporated through learning into prototypes of visual recognition categories. A cholinergically-modulated process of vigilance control determines if a recognition category and its attended features are abstract (low vigilance) or concrete (high vigilance). Homologous neural mechanisms of cholinergic modulation are proposed to focus attention and learn a multimodal map within the deeper layers of superior colliculus. This map enables visual, auditory, and planned movement commands to compete for attention, leading to selection of a winning position that controls where the next saccadic eye movement will go. Such map learning may be viewed as a kind of attentive motor category learning. The article hereby explicates a link between attention, learning, and cholinergic modulation during decision making within both cognitive and motor systems. Homologs between the mammalian superior colliculus and the avian optic tectum lead to predictions about how multimodal map learning may occur in the mammalian and avian brain and how such learning may be modulated by acetycholine.

  20. Resonant cholinergic dynamics in cognitive and motor decision-making:Attention, category learning, and choice in neocortex, superior colliculus, and optic tectum

    Directory of Open Access Journals (Sweden)

    Stephen eGrossberg

    2016-01-01

    Full Text Available Freely behaving organisms need to rapidly calibrate their perceptual, cognitive, and motor decisions based on continuously changing environmental conditions. These plastic changes include sharpening or broadening of cognitive and motor attention and learning to match the behavioral demands that are imposed by changing environmental statistics. This article proposes that a shared circuit design for such flexible decision-making is used in specific cognitive and motor circuits, and that both types of circuits use acetylcholine to modulate choice selectivity. Such task-sensitive control is proposed to control thalamocortical choice of the critical features that are cognitively attended and that are incorporated through learning into prototypes of visual recognition categories. A cholinergically-modulated process of vigilance control determines if a recognition category and its attended features are abstract (low vigilance or concrete (high vigilance. Homologous neural mechanisms of cholinergic modulation are proposed to focus attention and learn a multimodal map within the deeper layers of superior colliculus. This map enables visual, auditory, and planned movement commands to compete for attention, leading to selection of a winning position that controls where the next saccadic eye movement will go. Such map learning may be viewed as a kind of attentive motor category learning. The article hereby explicates a link between attention, learning, and cholinergic modulation during decision making within both cognitive and motor systems. Homologs between the mammalian superior colliculus and the avian optic tectum lead to predictions about how multimodal map learning may occur in the avian brain and how such learning may be modulated by acetycholine.

  1. Neurotrophin-3 promotes proliferation and cholinergic neuronal differentiation of bone marrow- derived neural stem cells via notch signaling pathway.

    Science.gov (United States)

    Yan, Yu-Hui; Li, Shao-Heng; Gao, Zhong; Zou, Sa-Feng; Li, Hong-Yan; Tao, Zhen-Yu; Song, Jie; Yang, Jing-Xian

    2016-12-01

    Recently, the potential for neural stem cells (NSCs) to be used in the treatment of Alzheimer's disease (AD) has been reported; however, the therapeutic effects are modest by virtue of the low neural differentiation rate. In our study, we transfected bone marrow-derived NSCs (BM-NSCs) with Neurotrophin-3 (NT-3), a superactive neurotrophic factor that promotes neuronal survival, differentiation, and migration of neuronal cells, to investigate the effects of NT-3 gene overexpression on the proliferation and differentiation into cholinergic neuron of BM-NSCs in vitro and its possible molecular mechanism. BM-NSCs were generated from BM mesenchymal cells of adult C57BL/6 mice and cultured in vitro. After transfected with NT-3 gene, immunofluorescence and RT-PCR method were used to determine the ability of BM-NSCs on proliferation and differentiation into cholinergic neuron; Acetylcholine Assay Kit was used for acetylcholine (Ach). RT-PCR and WB analysis were used to characterize mRNA and protein level related to the Notch signaling pathway. We found that NT-3 can promote the proliferation and differentiation of BM-NSCs into cholinergic neurons and elevate the levels of acetylcholine (ACh) in the supernatant. Furthermore, NT-3 gene overexpression increase the expression of Hes1, decreased the expression of Mash1 and Ngn1 during proliferation of BM-NSCs. Whereas, the expression of Hes1 was down-regulated, and Mash1 and Ngn1 expression were up-regulated during differentiation of BM-NSCs. Our findings support the prospect of using NT-3-transduced BM-NSCs in developing therapies for AD due to their equivalent therapeutic potential as subventricular zone-derived NSCs (SVZ-NSCs), greater accessibility, and autogenous attributes. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. [Involvement of cross interaction between central cholinergic and histaminergic systems in the nucleus tractus solitarius in regulating carotid sinus baroreceptor reflex].

    Science.gov (United States)

    Hu, Li-Xun; Zhang, Guo-Xing; Zhang, Yu-Ying; Zhao, Hong-Fen; Yu, Kang-Ying; Wang, Guo-Qing

    2013-12-25

    The carotid sinus baroreceptor reflex (CSR) is an important approach for regulating arterial blood pressure homeostasis instantaneously and physiologically. Activation of the central histaminergic or cholinergic systems results in CSR functional inhibitory resetting. However, it is unclear whether two systems at the nucleus tractus solitarius (NTS) level display cross interaction to regulate the CSR or not. In the present study, the left or right carotid sinus region was isolated from the systemic circulation in Sprague-Dawley rats (sinus nerve was reserved) anesthetized with pentobarbital sodium. Respective intubation was conducted into one side isolated carotid sinus and into the femoral artery for recording the intracarotid sinus pressure (ISP) and mean arterial pressure (MAP) simultaneously with pressure transducers connection in vivo. ISP was set at the level of 0 mmHg to eliminate the effect of initial internal pressure of the carotid sinus on the CSR function. To trigger CSR, the ISP was quickly elevated from 0 mmHg to 280 mmHg in a stepwise manner (40 mmHg) which was added at every step for over 4 s, and then ISP returned to 0 mmHg in similar steps. The original data of ISP and corresponding MAP were fitted to a modified logistic equation with five parameters to obtain the ISP-MAP, ISP-Gain relationship curves and the CSR characteristic parameters, which were statistically compared and analyzed separately. Under the precondition of no influence on the basic levels of the artery blood pressure, the effects and potential regulatory mechanism of preceding microinjection with different cholinoceptor antagonists, the selective cholinergic M1 receptor antagonist, i.e., pirenzepine (PRZ), the M2 receptor antagonist, i.e., methoctramine (MTR) or the N1 receptor antagonist, i.e., hexamethonium (HEX) into the NTS on the changes in function of CSR induced by intracerebroventricular injection (i.c.v.) of histamine (HA) in rats were observed. Meanwhile, the actions and

  3. Organic cation transporter 2 (SLC22A2), a low-affinity and high-capacity choline transporter, is preferentially enriched on synaptic vesicles in cholinergic neurons.

    Science.gov (United States)

    Nakata, T; Matsui, T; Kobayashi, K; Kobayashi, Y; Anzai, N

    2013-11-12

    Organic cation transporters (OCTs) are expressed mainly in the kidney and liver. OCTs transport intrinsic organic cations, including monoamine, dopamine, serotonine and choline, across the plasma membrane. Here, we demonstrate that OCT2 (SLC22A2) is expressed in cholinergic neurons, motoneurons in the anterior horn of the spinal cord, and is implicated in acetylcholine (Ach) recycling in presynaptic terminals. Application of rabbit anti-peptide antibody revealed that OCT2 was expressed in the anterior horn of the spinal cord. Double immunostaining of muscle sections with anti-OCT2 and alpha-bungarotoxin (BTX) revealed that OCT2 was localized in the neuromuscular junctions (NMJs). Immunoelectron microscopy revealed that OCT2 was localized both in synaptic vesicles (SVs) in presynaptic terminals around the motoneurons (C-terminals) and in SVs in nerve terminals in NMJs. The similarity in the distribution of OCT2 in cholinergic neurons and that of vesicular acetyl choline transporter (VAchT), and the fact that OCT2 can transport choline suggest that OCT2 could work as a low-affinity and high-capacity choline transporter at presynaptic terminals in cholinergic neurons in a firing-dependent manner. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Neurochemistry of neurons in the ventrolateral medulla activated by hypotension: Are the same neurons activated by glucoprivation?

    Science.gov (United States)

    Parker, Lindsay M; Le, Sheng; Wearne, Travis A; Hardwick, Kate; Kumar, Natasha N; Robinson, Katherine J; McMullan, Simon; Goodchild, Ann K

    2017-06-15

    Previous studies have demonstrated that a range of stimuli activate neurons, including catecholaminergic neurons, in the ventrolateral medulla. Not all catecholaminergic neurons are activated and other neurochemical content is largely unknown hence whether stimulus specific populations exist is unclear. Here we determine the neurochemistry (using in situ hybridization) of catecholaminergic and noncatecholaminergic neurons which express c-Fos immunoreactivity throughout the rostrocaudal extent of the ventrolateral medulla, in Sprague Dawley rats treated with hydralazine or saline. Distinct neuronal populations containing PPCART, PPPACAP, and PPNPY mRNAs, which were largely catecholaminergic, were activated by hydralazine but not saline. Both catecholaminergic and noncatecholaminergic neurons containing preprotachykinin and prepro-enkephalin (PPE) mRNAs were also activated, with the noncatecholaminergic population located in the rostral C1 region. Few GlyT2 neurons were activated. A subset of these data was then used to compare the neuronal populations activated by 2-deoxyglucose evoked glucoprivation (Brain Structure and Function (2015) 220:117). Hydralazine activated more neurons than 2-deoxyglucose but similar numbers of catecholaminergic neurons. Commonly activated populations expressing PPNPY and PPE mRNAs were defined. These likely include PPNPY expressing catecholaminergic neurons projecting to vasopressinergic and corticotrophin releasing factor neurons in the paraventricular nucleus, which when activated result in elevated plasma vasopressin and corticosterone. Stimulus specific neurons included noncatecholaminergic neurons and a few PPE positive catecholaminergic neuron but neurochemical codes were largely unidentified. Reasons for the lack of identification of stimulus specific neurons, readily detectable using electrophysiology in anaesthetized preparations and for which neural circuits can be defined, are discussed. © 2017 Wiley Periodicals, Inc.

  5. A review study on medicinal plants affecting amnesia through cholinergic system

    Directory of Open Access Journals (Sweden)

    Baradaran Azar

    2012-01-01

    Full Text Available Neurotransmitter modification is an important method for the treatment of memory loss or amnesia. Cholinomimetic drugs, particularly, acetylcholine esterase inhibitors are the mainstream in pharmacotherapy of amnesia. Donepezil, tacrine, galantamine, and rivastigmine are cholinesterase inhibitors which are widely used in the treatment of amnesia, however, their therapeutic effects are not significant. Therefore, other possibilities including herbal medicine sources have been considered for memory loss therapy. There are some Medicinal plants with cholinomimetic property which mostly possess antioxidant activity, too. These plants may not only ameliorate amnesia but also can be a good source for drug discovery. In this paper other than introducing the medicinal plants and their components affective on cholinergic system and effective on memory loss, their probable advantages over synthetic drugs are discussed.

  6. Pauses in Striatal Cholinergic Interneurons: What is Revealed by Their Common Themes and Variations?

    Directory of Open Access Journals (Sweden)

    Yan-Feng Zhang

    2017-10-01

    Full Text Available Striatal cholinergic interneurons, the so-called tonically active neurons (TANs, pause their firing in response to sensory cues and rewards during classical conditioning and instrumental tasks. The respective pause responses observed can demonstrate many commonalities, such as constant latency and duration, synchronous occurrence in a population of cells, and coincidence with phasic activities of midbrain dopamine neurons (DANs that signal reward predictions and errors. Pauses can however also show divergent properties. Pause latencies and durations can differ in a given TAN between appetitive vs. aversive outcomes in classical conditioning, initial excitation can be present or absent, and a second pause can variably follow a rebound. Despite more than 20 years of study, the functions of these pause responses are still elusive. Our understanding of pause function is hindered by an incomplete understanding of how pauses are generated. In this mini-review article, we compare pause types, as well as current key hypotheses for inputs underlying pauses that include dopamine-induced inhibition through D2-receptors, a GABA input from ventral tegmental area, and a prolonged afterhyperpolarization induced by excitatory input from the cortex or from the thalamus. We review how each of these mechanisms alone explains some but not all aspects of pause responses. These mechanisms might need to operate in specific but variable sets of sequences to generate a full range of pause responses. Alternatively, these mechanisms might operate in conjunction with an underlying control mechanism within cholinergic interneurons which could potentially provide a framework to generate the common themes and variations seen amongst pause responses.

  7. Diverse Roads to Relapse: A Discriminative Cue Signaling Cocaine Availability Is More Effective in Renewing Cocaine Seeking in Goal Trackers Than Sign Trackers and Depends on Basal Forebrain Cholinergic Activity.

    Science.gov (United States)

    Pitchers, Kyle K; Phillips, Kyra B; Jones, Jonte L; Robinson, Terry E; Sarter, Martin

    2017-07-26

    Stimuli associated with taking drugs are notorious instigators of relapse. There is, however, considerable variation in the motivational properties of such stimuli, both as a function of the individual and the nature of the stimulus. The behavior of some individuals (sign trackers, STs) is especially influenced by cues paired with reward delivery, perhaps because they are prone to process information via dopamine-dependent, cue-driven, incentive salience systems. Other individuals (goal trackers, GTs) are better able to incorporate higher-order contextual information, perhaps because of better executive/attentional control over behavior, which requires frontal cortical cholinergic activity. We hypothesized, therefore, that a cue that "sets the occasion" for drug taking (a discriminative stimulus, DS) would reinstate cocaine seeking more readily in GTs than STs and that this would require intact cholinergic neurotransmission. To test this, male STs and GTs were trained to self-administer cocaine using an intermittent access schedule with periods of cocaine availability and unavailability signaled by a DS + and a DS - , respectively. Thereafter, half of the rats received an immunotoxic lesion that destroyed 40-50% of basal forebrain cholinergic neurons and later, after extinction training, were tested for the ability of noncontingent presentations of the DS + to reinstate cocaine seeking behavior. The DS + was much more effective in reinstating cocaine seeking in GTs than STs and this effect was abolished by cholinergic losses despite the fact that all rats continued to orient to the DS + We conclude that vulnerability to relapse involves interactions between individual cognitive-motivational biases and the form of the drug cue encountered. SIGNIFICANCE STATEMENT The most predictable outcome of a diagnosis of addiction is a high chance for relapse. When addicts encounter cues previously associated with drug, their attention may be unduly attracted to such cues and

  8. Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status.

    Science.gov (United States)

    Wang, Naitao; Dong, Bai-Jun; Quan, Yizhou; Chen, Qianqian; Chu, Mingliang; Xu, Jin; Xue, Wei; Huang, Yi-Ran; Yang, Ru; Gao, Wei-Qiang

    2016-05-10

    Regulation of prostate epithelial progenitor cells is important in prostate development and prostate diseases. Our previous study demonstrated a function of autocrine cholinergic signaling (ACS) in promoting prostate cancer growth and castration resistance. However, whether or not such ACS also plays a role in prostate development is unknown. Here, we report that ACS promoted the proliferation and inhibited the differentiation of prostate epithelial progenitor cells in organotypic cultures. These results were confirmed by ex vivo lineage tracing assays and in vivo renal capsule recombination assays. Moreover, we found that M3 cholinergic receptor (CHRM3) was upregulated in a large subset of benign prostatic hyperplasia (BPH) tissues compared with normal tissues. Activation of CHRM3 also promoted the proliferation of BPH cells. Together, our findings identify a role of ACS in maintaining prostate epithelial progenitor cells in the proliferating state, and blockade of ACS may have clinical implications for the management of BPH. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Regulation of Prostate Development and Benign Prostatic Hyperplasia by Autocrine Cholinergic Signaling via Maintaining the Epithelial Progenitor Cells in Proliferating Status

    Directory of Open Access Journals (Sweden)

    Naitao Wang

    2016-05-01

    Full Text Available Regulation of prostate epithelial progenitor cells is important in prostate development and prostate diseases. Our previous study demonstrated a function of autocrine cholinergic signaling (ACS in promoting prostate cancer growth and castration resistance. However, whether or not such ACS also plays a role in prostate development is unknown. Here, we report that ACS promoted the proliferation and inhibited the differentiation of prostate epithelial progenitor cells in organotypic cultures. These results were confirmed by ex vivo lineage tracing assays and in vivo renal capsule recombination assays. Moreover, we found that M3 cholinergic receptor (CHRM3 was upregulated in a large subset of benign prostatic hyperplasia (BPH tissues compared with normal tissues. Activation of CHRM3 also promoted the proliferation of BPH cells. Together, our findings identify a role of ACS in maintaining prostate epithelial progenitor cells in the proliferating state, and blockade of ACS may have clinical implications for the management of BPH.

  10. The effect of the augmentation of cholinergic neurotransmission by nicotine on EEG indices of visuospatial attention.

    Science.gov (United States)

    Logemann, H N A; Böcker, K B E; Deschamps, P K H; Kemner, C; Kenemans, J L

    2014-03-01

    The cholinergic system has been implicated in visuospatial attention but the exact role remains unclear. In visuospatial attention, bias refers to neuronal signals that modulate the sensitivity of sensory cortex, while disengagement refers to the decoupling of attention making reorienting possible. In the current study we investigated the effect of facilitating cholinergic neurotransmission by nicotine (Nicorette Freshmint 2mg, polacrilex chewing gum) on behavioral and electrophysiological indices of bias and disengagement. Sixteen non-smoking participants performed in a Visual Spatial Cueing (VSC) task while EEG was recorded. A randomized, single-blind, crossover design was implemented. Based on the scarce literature, it was expected that nicotine would specifically augment disengagement related processing, especially manifest as an increase of the modulation of the Late Positive Deflection (LPD) by validity of cueing. No effect was expected on bias related components (cue-locked: EDAN, LDAP; target-locked: P1 and N1 modulations). Results show weak indications for a reduction of the reaction time validity effect by nicotine, but only for half of the sample in which the validity effect on the pretest was largest. Nicotine reduced the result of bias as indexed by a reduced P1 modulation by validity, especially in subjects with strong peripheral responses to nicotine. Nicotine did not affect ERP manifestations of the directing of bias (EDAN, LDAP) or disengagement (LPD). Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Cognitive disorder and changes in cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury

    Institute of Scientific and Technical Information of China (English)

    Weiliang Zhao; Dezhi Kang; Yuanxiang Lin

    2008-01-01

    BACKGROUND: Learning and memory damage is one of the most permanent and the severest symptoms of traumatic brain injury; it can seriously influence the normal life and work of patients. Some research has demonstrated that cognitive disorder is closely related to nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor. OBJECTIVE: To summarize the cognitive disorder and changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury. RETRIEVAL STRATEGY: A computer-based online search was conducted in PUBMED for English language publications containing the key words "brain injured, cognitive handicap, acetylcholine, N-methyl-D aspartate receptors, neural cell adhesion molecule, brain-derived neurotrophic factor" from January 2000 to December 2007. There were 44 papers in total. Inclusion criteria: ① articles about changes in nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor following brain injury; ② articles in the same researching circle published in authoritative journals or recently published. Exclusion criteria: duplicated articles.LITERATURE EVALUATION: References were mainly derived from research on changes in these four factors following brain injury. The 20 included papers were clinical or basic experimental studies. DATA SYNTHESIS: After craniocerebral injury, changes in these four factors in brain were similar to those during recovery from cognitive disorder, to a certain degree. Some data have indicated that activation of nicotine cholinergic receptors, N-methyl-D aspartate receptors, neural cell adhesion molecule, and brain-derived neurotrophic factor could greatly improve cognitive disorder following brain injury. However, there are still a lot of questions remaining; for example, how do these

  12. Age-dependent loss of cholinergic neurons in learning and memory-related brain regions and impaired learning in SAMP8 mice with trigeminal nerve damage

    Institute of Scientific and Technical Information of China (English)

    Yifan He; Jihong Zhu; Fang Huang; Liu Qin; Wenguo Fan; Hongwen He

    2014-01-01

    The tooth belongs to the trigeminal sensory pathway. Dental damage has been associated with impairments in the central nervous system that may be mediated by injury to the trigeminal nerve. In the present study, we investigated the effects of damage to the inferior alveolar nerve, an important peripheral nerve in the trigeminal sensory pathway, on learning and memory be-haviors and structural changes in related brain regions, in a mouse model of Alzheimer’s disease. Inferior alveolar nerve transection or sham surgery was performed in middle-aged (4-month-old) or elderly (7-month-old) senescence-accelerated mouse prone 8 (SAMP8) mice. When the middle-aged mice reached 8 months (middle-aged group 1) or 11 months (middle-aged group 2), and the elderly group reached 11 months, step-down passive avoidance and Y-maze tests of learn-ing and memory were performed, and the cholinergic system was examined in the hippocampus (Nissl staining and acetylcholinesterase histochemistry) and basal forebrain (choline acetyltrans-ferase immunohistochemistry). In the elderly group, animals that underwent nerve transection had fewer pyramidal neurons in the hippocampal CA1 and CA3 regions, fewer cholinergic ifbers in the CA1 and dentate gyrus, and fewer cholinergic neurons in the medial septal nucleus and vertical limb of the diagonal band, compared with sham-operated animals, as well as showing impairments in learning and memory. Conversely, no signiifcant differences in histology or be-havior were observed between middle-aged group 1 or group 2 transected mice and age-matched sham-operated mice. The present ifndings suggest that trigeminal nerve damage in old age, but not middle age, can induce degeneration of the septal-hippocampal cholinergic system and loss of hippocampal pyramidal neurons, and ultimately impair learning ability. Our results highlight the importance of active treatment of trigeminal nerve damage in elderly patients and those with Alzheimer’s disease, and

  13. Hippocampal long term memory: effect of the cholinergic system on local protein synthesis.

    Science.gov (United States)

    Lana, Daniele; Cerbai, Francesca; Di Russo, Jacopo; Boscaro, Francesca; Giannetti, Ambra; Petkova-Kirova, Polina; Pugliese, Anna Maria; Giovannini, Maria Grazia

    2013-11-01

    The present study was aimed at establishing a link between the cholinergic system and the pathway of mTOR and its downstream effector p70S6K, likely actors in long term memory encoding. We performed in vivo behavioral experiments using the step down inhibitory avoidance test (IA) in adult Wistar rats to evaluate memory formation under different conditions, and immunohistochemistry on hippocampal slices to evaluate the level and the time-course of mTOR and p70S6K activation. We also examined the effect of RAPA, inhibitor of mTORC1 formation, and of the acetylcholine (ACh) muscarinic receptor antagonist scopolamine (SCOP) or ACh nicotinic receptor antagonist mecamylamine (MECA) on short and long term memory formation and on the functionality of the mTOR pathway. Acquisition test was performed 30 min after i.c.v. injection of RAPA, a time sufficient for the drug to diffuse to CA1 pyramidal neurons, as demonstrated by MALDI-TOF-TOF imaging. Recall test was performed 1 h, 4 h or 24 h after acquisition. To confirm our results we performed in vitro experiments on live hippocampal slices: we evaluated whether stimulation of the cholinergic system with the cholinergic receptor agonist carbachol (CCh) activated the mTOR pathway and whether the administration of the above-mentioned antagonists together with CCh could revert this activation. We found that (1) mTOR and p70S6K activation in the hippocampus were involved in long term memory formation; (2) RAPA administration caused inhibition of mTOR activation at 1 h and 4 h and of p70S6K activation at 4 h, and long term memory impairment at 24 h after acquisition; (3) scopolamine treatment caused short but not long term memory impairment with an early increase of mTOR/p70S6K activation at 1 h followed by stabilization at longer times; (4) mecamylamine plus scopolamine treatment caused short term memory impairment at 1 h and 4 h and reduced the scopolamine-induced increase of mTOR/p70S6K activation at 1 h and 4 h; (5

  14. Effects of pre-experience of social exclusion on hypothalamus-pituitary-adrenal axis and catecholaminergic responsiveness to public speaking stress.

    Science.gov (United States)

    Weik, Ulrike; Kuepper, Yvonne; Hennig, Juergen; Deinzer, Renate

    2013-01-01

    Being socially excluded is associated with a variety of psychological changes and with an increased risk of disease. Today, the immediate physiological consequences of being socially excluded are not well understood. In two recent studies employing a standardized exclusion paradigm (Cyberball) we found social exclusion in this virtual game did not alter cortisol secretion directly. However, exclusion pre-experience suppresses the normal cortisol response to public speaking stress in women. The present study aims to replicate our previous finding and further elucidate it by analyzing for the first time whether this alteration of cortisol-responsiveness is associated to ACTH and whether the catecholaminergic system is affected as well. Women were randomly assigned to Cyberball-induced exclusion (SE, n = 22) or inclusion (SI, n = 21), respectively. Immediately afterwards they were subjected to public speaking stress. Salivary cortisol, plasma ACTH, catecholamines and estradiol were assessed as were psychological distress and mood. Cyberball exclusion led to a highly significant immediate increase in negative affect in excluded women. After public speaking negative affect in included women increased as well and groups no longer differed. We replicate our previous finding of cortisol non-responsiveness to public speaking stress after exclusion pre-experience and find this effect to be significantly correlated with ACTH alterations. No such effects are observed for catecholamines. We replicated our previous study result of a suppressed cortisol stress response after a short exclusion experience via Cyberball, thereby underlining the profound effects of social exclusion on a subsequent cortisol stress response. This further demonstrates that these alterations are associated with ACTH. Lack of effects on catecholamines is discussed in view of the tend-and-befriend hypothesis but also from a methodological perspective.

  15. Perinatal exposure to methadone affects central cholinergic activity in the weanling rat.

    Science.gov (United States)

    Robinson, S E; Mo, Q; Maher, J R; Wallace, M J; Kunko, P M

    1996-06-01

    Pregnant rats were implanted with osmotic minipumps containing either methadone hydrochloride (initial dose, 9 mg/kg/day) or sterile water. Their offspring were cross-fostered so that they were exposed to methadone prenatally and/or postnatally. Perinatal methadone exposure disrupted cholinergic activity on postnatal day 21 as measured by the turnover rate of acetylcholine (TRACh) in both female and male rats, although there were some sexually-dimorphic responses. The most profoundly affected brain region was the striatum, where prenatal exposure to methadone increased ACh turnover, whether or not the rats continued to be exposed to methadone postnatally. It appears unlikely that neonatal withdrawal contributes to brain regional changes in ACh turnover, as continued postnatal exposure to methadone did not prevent the prenatal methadone induced changes.

  16. Modulation of social deficits and repetitive behaviors in a mouse model of autism: the role of the nicotinic cholinergic system.

    Science.gov (United States)

    Wang, Li; Almeida, Luis E F; Spornick, Nicholas A; Kenyon, Nicholas; Kamimura, Sayuri; Khaibullina, Alfia; Nouraie, Mehdi; Quezado, Zenaide M N

    2015-12-01

    Accumulating evidence implicates the nicotinic cholinergic system in autism spectrum disorder (ASD) pathobiology. Neuropathologic studies suggest that nicotinic acetylcholine (ACh) receptor (nAChR) subtypes are altered in brain of autistic individuals. In addition, strategies that increase ACh, the neurotransmitter for nicotinic and muscarinic receptors, appear to improve cognitive deficits in neuropsychiatric disorders and ASD. The aim of this study is to examine the role of the nicotinic cholinergic system on social and repetitive behavior abnormalities and exploratory physical activity in a well-studied model of autism, the BTBR T(+) Itpr3 (tf) /J (BTBR) mouse. Using a protocol known to up-regulate expression of brain nAChR subtypes, we measured behavior outcomes before and after BTBR and C57BL/6J (B6) mice were treated (4 weeks) with vehicle or nicotine (50, 100, 200, or 400 μg/ml). Increasing nicotine doses were associated with decreases in water intake, increases in plasma cotinine levels, and at the higher dose (400 μg/ml) with weight loss in BTBR mice. At lower (50, 100 μg/ml) but not higher (200, 400 μg/ml) doses, nicotine increased social interactions in BTBR and B6 mice and at higher, but not lower doses, it decreased repetitive behavior in BTBR. In the open-field test, nicotine at 200 and 400 μg/ml, but not 100 μg/ml compared with vehicle, decreased overall physical activity in BTBR mice. These findings support the hypotheses that the nicotinic cholinergic system modulates social and repetitive behaviors and may be a therapeutic target to treat behavior deficits in ASD. Further, the BTBR mouse may be valuable for investigations of the role of nAChRs in social deficits and repetitive behavior.

  17. CLONING, SEQUENCE ANALYSIS, AND CHARACTERIZATION OF PUTATIVE BETA-LACTAMASE OF STENOTROPHOMONAS MALTOPHILIA

    Directory of Open Access Journals (Sweden)

    Chong Seng Shueh

    2012-10-01

    Full Text Available The main objective of current study was to explore the function of chromosomal putative beta-lactamase gene (smlt 0115 in clinical Stenotrophomonas maltophilia. Antibiotic susceptibility test (AST screening for current antimicrobial drugs was done and Minimum Inhibitory Concentration (MIC level towards beta-lactams was determined by E-test. Putative beta-lactamase gene of S. maltophilia was amplified via PCR, with specific primers, then cloned into pET-15 expression plasmid and transformed into Escherichia coli BL21. The gene was sequenced and analyzed. The expressed protein was purified by affinity chromatography and the kinetic assay was performed. S. maltophilia ATCC 13637 was included in this experiment. Besides, a hospital strain which exhibited resistant to a series of beta-lactams including cefepime was identified via AST and MIC, hence it was named as S2 strain and was considered in this study. Sequencing result showed that putative beta-lactamase gene obtained from ATCC 13637 and S2 strains were predicted to have cephalosporinase activity by National Center for Biotechnology Information (NCBI blast program. Differences in the sequences of both ATCC 13637 and S2 strains were found via ClustalW alignment software. Kinetic assay proved a cephalosporinase characteristic produced by E. coli BL21 clone that overexpressed the putative beta-lactamase gene cloned under the control of an external promoter. Yet, expressed protein purified from S2 strain had high catalytic activity against beta-lactam antibiotics which was 14-fold higher than expressed protein purified from ATCC 13637 strain. This study represents the characterization analysis of putative beta-lactamase gene (smlt 0115 of S. maltophilia. The presence of the respective gene in the chromosome of S. maltophilia suggested that putative beta-lactamase gene (smlt 0115 of S. maltophilia plays a role in beta-lactamase resistance.

  18. Long-term effects of immunotoxic cholinergic lesions in the septum on acquisition of the cone-field task and noncognitive measures in rats

    NARCIS (Netherlands)

    Staay, van der F.J.; Bouger, P.; Lehmann, O.; Lazarus, C.; Cosquer, B.; Koenig, J.; Stump, V.; Cassel, J.C.

    2006-01-01

    In rats, nonspecific mechanical or neurotoxic lesions of the septum impair spatial memory in, e.g., Morris water- and radial-maze tasks. Unfortunately, the lack of specificity of such lesions limits inferences about the role of the cholinergic hippocampal projections in spatial cognition. We

  19. Dopaminergic and Cholinergic Modulations of Visual-Spatial Attention and Working Memory: Insights from Molecular Genetic Research and Implications for Adult Cognitive Development

    Science.gov (United States)

    Stormer, Viola S.; Passow, Susanne; Biesenack, Julia; Li, Shu-Chen

    2012-01-01

    Attention and working memory are fundamental for selecting and maintaining behaviorally relevant information. Not only do both processes closely intertwine at the cognitive level, but they implicate similar functional brain circuitries, namely the frontoparietal and the frontostriatal networks, which are innervated by cholinergic and dopaminergic…

  20. Gut Microbiome and Putative Resistome of Inca and Italian Nobility Mummies.

    Science.gov (United States)

    Santiago-Rodriguez, Tasha M; Fornaciari, Gino; Luciani, Stefania; Toranzos, Gary A; Marota, Isolina; Giuffra, Valentina; Cano, Raul J

    2017-11-07

    Little is still known about the microbiome resulting from the process of mummification of the human gut. In the present study, the gut microbiota, genes associated with metabolism, and putative resistome of Inca and Italian nobility mummies were characterized by using high-throughput sequencing. The Italian nobility mummies exhibited a higher bacterial diversity as compared to the Inca mummies when using 16S ribosomal (rRNA) gene amplicon sequencing, but both groups showed bacterial and fungal taxa when using shotgun metagenomic sequencing that may resemble both the thanatomicrobiome and extant human gut microbiomes. Identification of sequences associated with plants, animals, and carbohydrate-active enzymes (CAZymes) may provide further insights into the dietary habits of Inca and Italian nobility mummies. Putative antibiotic-resistance genes in the Inca and Italian nobility mummies support a human gut resistome prior to the antibiotic therapy era. The higher proportion of putative antibiotic-resistance genes in the Inca compared to Italian nobility mummies may support the hypotheses that a greater exposure to the environment may result in a greater acquisition of antibiotic-resistance genes. The present study adds knowledge of the microbiome resulting from the process of mummification of the human gut, insights of ancient dietary habits, and the preserved putative human gut resistome prior the antibiotic therapy era.

  1. A Functional Assay for Putative Mouse and Human Definitive Endoderm using Chick Whole-Embryo Cultures

    DEFF Research Database (Denmark)

    Johannesson, Martina; Semb, Tor Henrik; Serup, Palle

    2012-01-01

    . Thus, the purpose of this study is to describe a method whereby the in vivo functionality of DE derived from ESCs can be assessed. Methods: By directed differentiation, putative DE was derived from human and mouse ESCs. This putative DE was subsequently transplanted into the endoderm of chick embryos...... to determine any occurrence of integration. Putative DE was analyzed by gene and protein expression prior to transplantation and 48 h post transplantation. Results: Putative DE, derived from mouse and human ESCs, was successfully integrated within the chick endoderm. Endoderm-specific genes were expressed...... result show that putative DE integrates with the chick endoderm and participate in the development of the chicken gut, indicating the generation of functional DE from ESCs. This functional assay can be used to assess the generation of functional DE derived from both human and mouse ESCs and provides...

  2. Characterization of cholinergic muscarinic receptor-stimulated phosphoinositide metabolism in brain from immature rats

    International Nuclear Information System (INIS)

    Balduini, W.; Murphy, S.D.; Costa, L.G.

    1990-01-01

    Hydrolysis of phosphoinositides elicited by stimulation of cholinergic muscarinic receptors has been studied in brain from neonatal (7-day-old) rats in order to determine: (1) whether the neonatal rat could provide a good model system to study this signal-transduction pathway; and (2) whether potential differences with adult nerve tissue would explain the differential, age-related effects of cholinergic agonists. Accumulation of [3H] inositol phosphates in [3H]inositol prelabeled slices from neonatal and adult rats was measured as an index of phosphoinositide metabolism. Full (acetylcholine, methacholine, carbachol) and partial (oxotremorine, bethanechol) agonists had qualitatively similar, albeit quantitatively different, effects in neonatal and adult rats. Atropine and pirenzepine effectively blocked the carbachol-induced response with inhibition constants of 1.2 and 20.7 nM, respectively. In all brain areas, response to all agonists was higher in neonatal than adult rats, and in hippocampus and cerebral cortex the response was higher than in cerebellum or brainstem. The relative intrinsic activity of partial agonists was higher in the latter two areas (0.6-0.7) than in the former two (0.3-0.4). Carbachol-stimulated phosphoinositide metabolism in brain areas correlated well with the binding of [3H]QNB (r2 = 0.627) and, particularly, with [3H]pirenzepine (r2 = 0.911). In cerebral cortex the effect of carbachol was additive to that of norepinephrine and glutamate. The presence of calcium (250-500 microM) was necessary for maximal response to carbachol to be elicited; the EC50 value for Ca2+ was 65.4 microM. Addition of EDTA completely abolished the response. Removal of sodium ions from the incubation medium reduced the response to carbachol by 50%

  3. Adolescent Intermittent Alcohol Exposure: Deficits in Object Recognition Memory and Forebrain Cholinergic Markers.

    Directory of Open Access Journals (Sweden)

    H Scott Swartzwelder

    Full Text Available The long-term effects of intermittent ethanol exposure during adolescence (AIE are of intensive interest and investigation. The effects of AIE on learning and memory and the neural functions that drive them are of particular interest as clinical findings suggest enduring deficits in those cognitive domains in humans after ethanol abuse during adolescence. Although studies of such deficits after AIE hold much promise for identifying mechanisms and therapeutic interventions, the findings are sparse and inconclusive. The present results identify a specific deficit in memory function after AIE and establish a possible neural mechanism of that deficit that may be of translational significance. Male rats (starting at PND-30 received exposure to AIE (5g/kg, i.g. or vehicle and were allowed to mature into adulthood. At PND-71, one group of animals was assessed using the spatial-temporal object recognition (stOR test to evaluate memory function. A separate group of animals was used to assess the density of cholinergic neurons in forebrain areas Ch1-4 using immunohistochemistry. AIE exposed animals manifested deficits in the temporal component of the stOR task relative to controls, and a significant decrease in the number of ChAT labeled neurons in forebrain areas Ch1-4. These findings add to the growing literature indicating long-lasting neural and behavioral effects of AIE that persist into adulthood and indicate that memory-related deficits after AIE depend upon the tasks employed, and possibly their degree of complexity. Finally, the parallel finding of diminished cholinergic neuron density suggests a possible mechanism underlying the effects of AIE on memory and hippocampal function as well as possible therapeutic or preventive strategies for AIE.

  4. Whole-Brain Monosynaptic Afferent Inputs to Basal Forebrain Cholinergic System

    Directory of Open Access Journals (Sweden)

    Rongfeng Hu

    2016-10-01

    Full Text Available The basal forebrain cholinergic system (BFCS robustly modulates many important behaviors, such as arousal, attention, learning and memory, through heavy projections to cortex and hippocampus. However, the presynaptic partners governing BFCS activity still remain poorly understood. Here, we utilized a recently developed rabies virus-based cell-type-specific retrograde tracing system to map the whole-brain afferent inputs of the BFCS. We found that the BFCS receives inputs from multiple cortical areas, such as orbital frontal cortex, motor cortex, and insular cortex, and that the BFCS also receives dense inputs from several subcortical nuclei related to motivation and stress, including lateral septum (LS, central amygdala (CeA, paraventricular nucleus of hypothalamus (PVH, dorsal raphe (DRN and parabrachial nucleus (PBN. Interestingly, we found that the BFCS receives inputs from the olfactory areas and the entorhinal-hippocampal system. These results greatly expand our knowledge about the connectivity of the mouse BFCS and provided important preliminary indications for future exploration of circuit function.

  5. Involvement of dopaminergic and cholinergic pathways in the induction of yawning and genital grooming by the aqueous extract of Saccharum officinarum L. (sugarcane) in rats.

    Science.gov (United States)

    Gamberini, Maria T; Gamberini, Maria C; Nasello, Antonia G

    2015-01-01

    Yawning, associated with genital grooming, is a physiological response that may be used for elucidating the mechanism of action of drugs. Preliminary analysis showed that aqueous extract (AE) of Saccharum induced yawns in rats. So, we aimed to quantify these behavioral responses and investigate the pharmacological mechanisms involved in these actions. During 120 min, after AE administration, the yawns and the genital grooming were quantified at 10 min intervals. Since dopaminergic and cholinergic pathways are implied in these responses, AE were evaluated in the presence of haloperidol 0.5 mg/kg and atropine 2 mg/kg. AE 0.5 g/kg increased the yawns, effect that was blocked both by haloperidol and atropine. Genital grooming could only be stimulated by AE 0.5 g/kg when dopaminergic receptors were blocked by haloperidol. However, it was inhibited when atropine was previously administered. So, we demonstrated a central action of Saccharum and it was postulated that neural circuits with the participation of dopaminergic and cholinergic pathways are involved. The fact that AE is comprised of innumerous compounds could justify the extract's distinct responses. Also, we cannot disregard the presence of different neural circuits that count on the participation of dopaminergic and cholinergic pathways and could be activated by the same induction agent. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Basal forebrain motivational salience signal enhances cortical processing and decision speed

    Directory of Open Access Journals (Sweden)

    Sylvina M Raver

    2015-10-01

    Full Text Available The basal forebrain (BF contains major projections to the cerebral cortex, and plays a well-documented role in arousal, attention, decision-making, and in modulating cortical activity. BF neuronal degeneration is an early event in Alzheimer’s disease and dementias, and occurs in normal cognitive aging. While the BF is best known for its population of cortically projecting cholinergic neurons, the region is anatomically and neurochemically diverse, and also contains prominent populations of non-cholinergic projection neurons. In recent years, increasing attention has been dedicated to these non-cholinergic BF neurons in order to better understand how non-cholinergic BF circuits control cortical processing and behavioral performance. In this review, we focus on a unique population of putative non-cholinergic BF neurons that encodes the motivational salience of stimuli with a robust ensemble bursting response. We review recent studies that describe the specific physiological and functional characteristics of these BF salience-encoding neurons in behaving animals. These studies support the unifying hypothesis whereby BF salience-encoding neurons act as a gain modulation mechanism of the decision-making process to enhance cortical processing of behaviorally relevant stimuli, and thereby facilitate faster and more precise behavioral responses. This function of BF salience-encoding neurons represents a critical component in determining which incoming stimuli warrant an animal’s attention, and is therefore a fundamental and early requirement of behavioral flexibility.

  7. Toddlers' Duration of Attention toward Putative Threat

    Science.gov (United States)

    Kiel, Elizabeth J.; Buss, Kristin A.

    2011-01-01

    Although individual differences in reactions to novelty in the toddler years have been consistently linked to risk of developing anxious behavior, toddlers' attention toward a novel, putatively threatening stimulus while in the presence of other enjoyable activities has rarely been examined as a precursor to such risk. The current study examined…

  8. The development of the cholinergic system in rat hippocampus following postnatal X-irradiation

    International Nuclear Information System (INIS)

    Ben-Barak, J.

    1981-01-01

    Postnatal X-irradiation of the rat hippocampus results in a marked reduction in the number of the postnatally developing granular neurons in the dentate gyrus and also caused a marked increase in the specific activity of acetylcholinesterase (AChE) and choline acetyltransferase (CAT) and a slight but consistent increase in the activity per whole hippocampus of AChE. The effect of irradiation on the granular neurons and on the cholinergic enzymes was found to be dose and age dependent. Drastic increase in specific enzymatic activities is also observed in the irradiated cerebellum whose granular neurons differentiate postnatally and to a lesser extent in the cerebral cortex in which cell formation is accomplished prior to birth. (Auth.)

  9. Cholinesterases: structure of the active site and mechanism of the effect of cholinergic receptor blockers on the rate of interaction with ligands

    Energy Technology Data Exchange (ETDEWEB)

    Antokhin, A M; Gainullina, E T; Taranchenko, V F [Federal State Agency ' 27 Scientific Centre of Ministry of Defence of the Russian Federation' (Russian Federation); Ryzhikov, S B; Yavaeva, D K [Department of Physics, M.V.Lomonosov Moscow State University (Russian Federation)

    2010-10-19

    Modern views on the structure of cholinesterase active sites and the mechanism of their interaction with organophosphorus inhibitors are considered. The attention is focused on the mechanism of the effect of cholinergic receptor blockers, acetylcholine antagonists, on the rate of interaction of acetylcholine esterase with organophosphorus inhibitors.

  10. Cholinesterases: structure of the active site and mechanism of the effect of cholinergic receptor blockers on the rate of interaction with ligands

    International Nuclear Information System (INIS)

    Antokhin, A M; Gainullina, E T; Taranchenko, V F; Ryzhikov, S B; Yavaeva, D K

    2010-01-01

    Modern views on the structure of cholinesterase active sites and the mechanism of their interaction with organophosphorus inhibitors are considered. The attention is focused on the mechanism of the effect of cholinergic receptor blockers, acetylcholine antagonists, on the rate of interaction of acetylcholine esterase with organophosphorus inhibitors.

  11. INTRAHIPPOCAMPAL ADMINISTRATION OF IBOTENIC ACID INDUCED CHOLINERGIC DYSFUNCTION via NR2A/NR2B EXPRESSION: IMPLICATIONS OF RESVERATROL AGAINST ALZHEIMER DISEASE PATHOPHYSIOLOGY

    Directory of Open Access Journals (Sweden)

    Chennakesavan eKarthick

    2016-04-01

    Full Text Available Although several drugs revealed moderate amelioration of symptoms, none of them have sufficient potency to prevent or reverse the progression towards Alzheimer’s disease (AD pathology. Resveratrol (RSV, a polyphenolic compound has shown an outstanding therapeutic effect on a broad spectrum of diseases like age-associated neurodegeneration, inflammation etc. The present study was thus conducted to assess the therapeutic efficacy of RSV in ameliorating the deleterious effects of Ibotenic acid (IBO in male Wistar rats. Stereotactic intrahippocampal administration of IBO (5µg/µl lesioned rats impairs cholinergic transmission, learning and memory performance that is rather related to AD and thus chosen as a suitable model to understand the drug efficacy in preventing AD pathophysiology. Since IBO is an agonist of glutamate, it is expected to exhibit an excitotoxic effect by altering glutamatergic receptors like NMDA receptor. The current study displayed significant alterations in the mRNA expression of NR2A and NR2B subunits of NMDA receptors, and further it is surprising to note that cholinergic receptors decreased in expression particularly α7-nAChR with increased m1AChR. RSV administration (20mg/kg body weight, i.p significantly reduced these changes in IBO induced rats. Glutamatergic and cholinergic receptor alterations were associated with significant changes in the behavioral parameters of rats induced by IBO. While RSV improved spatial learning performance, attenuated immobility and improvised open field activity in IBO induced rats. NR2B activation in the present study might mediate cell death through oxidative stress that form the basis of abnormal behavioral pattern in IBO induced rats. Interestingly, RSV that could efficiently encounter oxidative stress have significantly decreased stress markers viz., nitrite, PCO, and MDA levels by enhancing antioxidant status. Histopathological analysis displayed significant reduction in the

  12. Azadirachtin blocks the calcium channel and modulates the cholinergic miniature synaptic current in the central nervous system of Drosophila.

    Science.gov (United States)

    Qiao, Jingda; Zou, Xiaolu; Lai, Duo; Yan, Ying; Wang, Qi; Li, Weicong; Deng, Shengwen; Xu, Hanhong; Gu, Huaiyu

    2014-07-01

    Azadirachtin is a botanical pesticide, which possesses conspicuous biological actions such as insecticidal, anthelmintic, antifeedancy, antimalarial effects as well as insect growth regulation. Deterrent for chemoreceptor functions appears to be the main mechanism involved in the potent biological actions of Azadirachtin, although the cytotoxicity and subtle changes to skeletal muscle physiology may also contribute to its insecticide responses. In order to discover the effects of Azadirachtin on the central nervous system (CNS), patch-clamp recording was applied to Drosophila melanogaster, which has been widely used in neurological research. Here, we describe the electrophysiological properties of a local neuron located in the suboesophageal ganglion region of D. melanogaster using the whole brain. The patch-clamp recordings suggested that Azadirachtin modulates the properties of cholinergic miniature excitatory postsynaptic current (mEPSC) and calcium currents, which play important roles in neural activity of the CNS. The frequency of mEPSC and the peak amplitude of the calcium currents significantly decreased after application of Azadirachtin. Our study indicates that Azadirachtin can interfere with the insect's CNS via inhibition of excitatory cholinergic transmission and partly blocking the calcium channel. © 2013 Society of Chemical Industry.

  13. Identification and characterization of putative conserved IAM ...

    African Journals Online (AJOL)

    Available putative AMI sequences from a wide array of monocot and dicot plants were identified and the phylogenetic tree was constructed and analyzed. We identified in this tree, a clade that contained sequences from species across the plant kingdom suggesting that AMI is conserved and may have a primary role in plant ...

  14. Increased dopamine D1 receptor binding in the human mesocortical system following central cholinergic activation

    International Nuclear Information System (INIS)

    Fedi, M.; Berkovic, S.F.; Tochon-Danguy, H.J.; Reutens, D.C.

    2002-01-01

    Full text: The interaction between the cholinergic and dopaminergic system has been implicated in many pathological processes including, Alzheimer's disease, schizophrenia and drug addiction. Little is known about the control of dopamine (DA) release following central cholinergic activation in humans, but experimental studies suggest that endogenously released Acetylcholine (ACh) achieved by the administration of cholinesterase inhibitors, can increase dopamine efflux in different regions of the brain. This leads to the activation of different types of post-synaptic dopaminergic receptors which belong to the family of G-protein coupled receptors (GPCRs). A common paradigm of the GPCRs desensitization is that agonist-induced receptor signaling is rapidly attenuated by receptor internalisation. Several experiments have shown that the activation of Dl receptors in acute conditions leads, within minutes, to translocation of the receptor from the surface of the neurons to the endosomal compartment in the cytoplasm and increased receptor turnover. To assess changes in Dl receptor density following an intravenous infusion of the selective cholinesterase inhibitor physostigmine salicylate (PHY), we studied eleven normal subjects (10 male and 1 female, mean age 36.1 and 61617; 9.9) using [11C]-SCH23390 and PET The binding potential (BP) for SCH23390 was significantly (p 0.05). There was no statistically significant difference between baseline and physostigmine Kl ratio (p>0.05) suggesting that BP changes observed were not secondary to regional blood flow changes or to an order effect of the scans. Copyright (2002) The Australian and New Zealand Society of Nuclear Medicine Inc

  15. Gut Microbiome and Putative Resistome of Inca and Italian Nobility Mummies

    Directory of Open Access Journals (Sweden)

    Tasha M. Santiago-Rodriguez

    2017-11-01

    Full Text Available Little is still known about the microbiome resulting from the process of mummification of the human gut. In the present study, the gut microbiota, genes associated with metabolism, and putative resistome of Inca and Italian nobility mummies were characterized by using high-throughput sequencing. The Italian nobility mummies exhibited a higher bacterial diversity as compared to the Inca mummies when using 16S ribosomal (rRNA gene amplicon sequencing, but both groups showed bacterial and fungal taxa when using shotgun metagenomic sequencing that may resemble both the thanatomicrobiome and extant human gut microbiomes. Identification of sequences associated with plants, animals, and carbohydrate-active enzymes (CAZymes may provide further insights into the dietary habits of Inca and Italian nobility mummies. Putative antibiotic-resistance genes in the Inca and Italian nobility mummies support a human gut resistome prior to the antibiotic therapy era. The higher proportion of putative antibiotic-resistance genes in the Inca compared to Italian nobility mummies may support the hypotheses that a greater exposure to the environment may result in a greater acquisition of antibiotic-resistance genes. The present study adds knowledge of the microbiome resulting from the process of mummification of the human gut, insights of ancient dietary habits, and the preserved putative human gut resistome prior the antibiotic therapy era.

  16. Brain Region–Specific Alterations in the Gene Expression of Cytokines, Immune Cell Markers and Cholinergic System Components during Peripheral Endotoxin–Induced Inflammation

    Science.gov (United States)

    Silverman, Harold A; Dancho, Meghan; Regnier-Golanov, Angelique; Nasim, Mansoor; Ochani, Mahendar; Olofsson, Peder S; Ahmed, Mohamed; Miller, Edmund J; Chavan, Sangeeta S; Golanov, Eugene; Metz, Christine N; Tracey, Kevin J; Pavlov, Valentin A

    2014-01-01

    Inflammatory conditions characterized by excessive peripheral immune responses are associated with diverse alterations in brain function, and brain-derived neural pathways regulate peripheral inflammation. Important aspects of this bidirectional peripheral immune–brain communication, including the impact of peripheral inflammation on brain region–specific cytokine responses, and brain cholinergic signaling (which plays a role in controlling peripheral cytokine levels), remain unclear. To provide insight, we studied gene expression of cytokines, immune cell markers and brain cholinergic system components in the cortex, cerebellum, brainstem, hippocampus, hypothalamus, striatum and thalamus in mice after an intraperitoneal lipopolysaccharide injection. Endotoxemia was accompanied by elevated serum levels of interleukin (IL)-1β, IL-6 and other cytokines and brain region–specific increases in Il1b (the highest increase, relative to basal level, was in cortex; the lowest increase was in cerebellum) and Il6 (highest increase in cerebellum; lowest increase in striatum) mRNA expression. Gene expression of brain Gfap (astrocyte marker) was also differentially increased. However, Iba1 (microglia marker) mRNA expression was decreased in the cortex, hippocampus and other brain regions in parallel with morphological changes, indicating microglia activation. Brain choline acetyltransferase (Chat ) mRNA expression was decreased in the striatum, acetylcholinesterase (Ache) mRNA expression was decreased in the cortex and increased in the hippocampus, and M1 muscarinic acetylcholine receptor (Chrm1) mRNA expression was decreased in the cortex and the brainstem. These results reveal a previously unrecognized regional specificity in brain immunoregulatory and cholinergic system gene expression in the context of peripheral inflammation and are of interest for designing future antiinflammatory approaches. PMID:25299421

  17. Ten Putative Contributors to the Obesity Epidemic

    Science.gov (United States)

    McAllister, Emily J.; Dhurandhar, Nikhil V.; Keith, Scott W.; Aronne, Louis J.; Barger, Jamie; Baskin, Monica; Benca, Ruth M.; Biggio, Joseph; Boggiano, Mary M.; Eisenmann, Joe C.; Elobeid, Mai; Fontaine, Kevin R.; Gluckman, Peter; Hanlon, Erin C.; Katzmarzyk, Peter; Pietrobelli, Angelo; Redden, David T.; Ruden, Douglas M.; Wang, Chenxi; Waterland, Robert A.; Wright, Suzanne M.; Allison, David B.

    2010-01-01

    The obesity epidemic is a global issue and shows no signs of abating, while the cause of this epidemic remains unclear. Marketing practices of energy-dense foods and institutionally-driven declines in physical activity are the alleged perpetrators for the epidemic, despite a lack of solid evidence to demonstrate their causal role. While both may contribute to obesity, we call attention to their unquestioned dominance in program funding and public efforts to reduce obesity, and propose several alternative putative contributors that would benefit from equal consideration and attention. Evidence for microorganisms, epigenetics, increasing maternal age, greater fecundity among people with higher adiposity, assortative mating, sleep debt, endocrine disruptors, pharmaceutical iatrogenesis, reduction in variability of ambient temperatures, and intrauterine and intergenerational effects, as contributing factors to the obesity epidemic are reviewed herein. While the evidence is strong for some contributors such as pharmaceutical-induced weight gain, it is still emerging for other reviewed factors. Considering the role of such putative etiological factors of obesity may lead to comprehensive, cause specific, and effective strategies for prevention and treatment of this global epidemic. PMID:19960394

  18. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice.

    Science.gov (United States)

    Chaves-Coira, Irene; Barros-Zulaica, Natali; Rodrigo-Angulo, Margarita; Núñez, Ángel

    2016-01-01

    Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated

  19. Cerebrolysin modulates pronerve growth factor/nerve growth factor ratio and ameliorates the cholinergic deficit in a transgenic model of Alzheimer's disease.

    Science.gov (United States)

    Ubhi, Kiren; Rockenstein, Edward; Vazquez-Roque, Ruben; Mante, Michael; Inglis, Chandra; Patrick, Christina; Adame, Anthony; Fahnestock, Margaret; Doppler, Edith; Novak, Philip; Moessler, Herbert; Masliah, Eliezer

    2013-02-01

    Alzheimer's disease (AD) is characterized by degeneration of neocortex, limbic system, and basal forebrain, accompanied by accumulation of amyloid-β and tangle formation. Cerebrolysin (CBL), a peptide mixture with neurotrophic-like effects, is reported to improve cognition and activities of daily living in patients with AD. Likewise, CBL reduces synaptic and behavioral deficits in transgenic (tg) mice overexpressing the human amyloid precursor protein (hAPP). The neuroprotective effects of CBL may involve multiple mechanisms, including signaling regulation, control of APP metabolism, and expression of neurotrophic factors. We investigate the effects of CBL in the hAPP tg model of AD on levels of neurotrophic factors, including pro-nerve growth factor (NGF), NGF, brain-derived neurotrophic factor (BDNF), neurotropin (NT)-3, NT4, and ciliary neurotrophic factor (CNTF). Immunoblot analysis demonstrated that levels of pro-NGF were increased in saline-treated hAPP tg mice. In contrast, CBL-treated hAPP tg mice showed levels of pro-NGF comparable to control and increased levels of mature NGF. Consistently with these results, immunohistochemical analysis demonstrated increased NGF immunoreactivity in the hippocampus of CBL-treated hAPP tg mice. Protein levels of other neurotrophic factors, including BDNF, NT3, NT4, and CNTF, were unchanged. mRNA levels of NGF and other neurotrophins were also unchanged. Analysis of neurotrophin receptors showed preservation of the levels of TrKA and p75(NTR) immunoreactivity per cell in the nucleus basalis. Cholinergic cells in the nucleus basalis were reduced in the saline-treated hAPP tg mice, and treatment with CBL reduced these cholinergic deficits. These results suggest that the neurotrophic effects of CBL might involve modulation of the pro-NGF/NGF balance and a concomitant protection of cholinergic neurons. Copyright © 2012 Wiley Periodicals, Inc.

  20. Putative Risk Factors in Developmental Dyslexia: A Case-Control Study of Italian Children

    Science.gov (United States)

    Mascheretti, Sara; Marino, Cecilia; Simone, Daniela; Quadrelli, Ermanno; Riva, Valentina; Cellino, Maria Rosaria; Maziade, Michel; Brombin, Chiara; Battaglia, Marco

    2015-01-01

    Although dyslexia runs in families, several putative risk factors that cannot be immediately identified as genetic predict reading disability. Published studies analyzed one or a few risk factors at a time, with relatively inconsistent results. To assess the contribution of several putative risk factors to the development of dyslexia, we conducted…

  1. Antiarrhythmic Effects of Dantrolene in Patients with Catecholaminergic Polymorphic Ventricular Tachycardia and Replication of the Responses Using iPSC Models.

    Directory of Open Access Journals (Sweden)

    Kirsi Penttinen

    Full Text Available Catecholaminergic polymorphic ventricular tachycardia (CPVT is a highly malignant inherited arrhythmogenic disorder. Type 1 CPVT (CPVT1 is caused by cardiac ryanodine receptor (RyR2 gene mutations resulting in abnormal calcium release from sarcoplasmic reticulum. Dantrolene, an inhibitor of sarcoplasmic Ca(2+ release, has been shown to rescue this abnormal Ca(2+ release in vitro. We assessed the antiarrhythmic efficacy of dantrolene in six patients carrying various RyR2 mutations causing CPVT. The patients underwent exercise stress test before and after dantrolene infusion. Dantrolene reduced the number of premature ventricular complexes (PVCs on average by 74% (range 33-97 in four patients with N-terminal or central mutations in the cytosolic region of the RyR2 protein, while dantrolene had no effect in two patients with mutations in or near the transmembrane domain. Induced pluripotent stem cells (iPSCs were generated from all the patients and differentiated into spontaneously beating cardiomyocytes (CMs. The antiarrhythmic effect of dantrolene was studied in CMs after adrenaline stimulation by Ca(2+ imaging. In iPSC derived CMs with RyR2 mutations in the N-terminal or central region, dantrolene suppressed the Ca(2+ cycling abnormalities in 80% (range 65-97 of cells while with mutations in or near the transmembrane domain only in 23 or 32% of cells. In conclusion, we demonstrate that dantrolene given intravenously shows antiarrhythmic effects in a portion of CPVT1 patients and that iPSC derived CM models replicate these individual drug responses. These findings illustrate the potential of iPSC models to individualize drug therapy of inherited diseases.Trial Registration: EudraCT Clinical Trial Registry 2012-005292-14.

  2. Effects of pre-experience of social exclusion on hypothalamus-pituitary-adrenal axis and catecholaminergic responsiveness to public speaking stress.

    Directory of Open Access Journals (Sweden)

    Ulrike Weik

    Full Text Available BACKGROUND: Being socially excluded is associated with a variety of psychological changes and with an increased risk of disease. Today, the immediate physiological consequences of being socially excluded are not well understood. In two recent studies employing a standardized exclusion paradigm (Cyberball we found social exclusion in this virtual game did not alter cortisol secretion directly. However, exclusion pre-experience suppresses the normal cortisol response to public speaking stress in women. The present study aims to replicate our previous finding and further elucidate it by analyzing for the first time whether this alteration of cortisol-responsiveness is associated to ACTH and whether the catecholaminergic system is affected as well. METHODS: Women were randomly assigned to Cyberball-induced exclusion (SE, n = 22 or inclusion (SI, n = 21, respectively. Immediately afterwards they were subjected to public speaking stress. Salivary cortisol, plasma ACTH, catecholamines and estradiol were assessed as were psychological distress and mood. RESULTS: Cyberball exclusion led to a highly significant immediate increase in negative affect in excluded women. After public speaking negative affect in included women increased as well and groups no longer differed. We replicate our previous finding of cortisol non-responsiveness to public speaking stress after exclusion pre-experience and find this effect to be significantly correlated with ACTH alterations. No such effects are observed for catecholamines. CONCLUSIONS: We replicated our previous study result of a suppressed cortisol stress response after a short exclusion experience via Cyberball, thereby underlining the profound effects of social exclusion on a subsequent cortisol stress response. This further demonstrates that these alterations are associated with ACTH. Lack of effects on catecholamines is discussed in view of the tend-and-befriend hypothesis but also from a methodological

  3. Maternal exposure to hexachlorophene targets intermediate-stage progenitor cells of the hippocampal neurogenesis in rat offspring via dysfunction of cholinergic inputs by myelin vacuolation

    International Nuclear Information System (INIS)

    Itahashi, Megu; Abe, Hajime; Tanaka, Takeshi; Mizukami, Sayaka; Kimura, Masayuki; Yoshida, Toshinori; Shibutani, Makoto

    2015-01-01

    Highlights: • The effect of maternal exposure to HCP on rat hippocampal neurogenesis was examined. • HCP induces myelin vacuolation of nerve tracts in the septal–hippocampal pathway. • Myelin changes suppress Chrnb2-mediated cholinergic inputs to the dentate gyrus. • SGZ apoptosis occurs via the mitochondrial pathway and targets type-2b cells. • Dysfunction of cholinergic inputs is related to type-2b SGZ cell apoptosis. - Abstract: Hexachlorophene (HCP) is known to induce myelin vacuolation corresponding to intramyelinic edema of nerve fibers in the central and peripheral nervous system in animals. This study investigated the effect of maternal exposure to HCP on hippocampal neurogenesis in rat offspring using pregnant rats supplemented with 0 (controls), 100, or 300 ppm HCP in the diet from gestational day 6 to day 21 after delivery. On postnatal day (PND) 21, the numbers of T box brain 2 + progenitor cells and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling + apoptotic cells in the hippocampal subgranular zone (SGZ) decreased in female offspring at 300 ppm, which was accompanied by myelin vacuolation and punctate tubulin beta-3 chain staining of nerve fibers in the hippocampal fimbria. In addition, transcript levels of the cholinergic receptor, nicotinic beta 2 (Chrnb2) and B-cell CLL/lymphoma 2 (Bcl2) decreased in the dentate gyrus. HCP-exposure did not alter the numbers of SGZ proliferating cells and reelin- or calcium-binding protein-expressing γ-aminobutyric acid (GABA)-ergic interneuron subpopulations in the dentate hilus on PND 21 and PND 77. Although some myelin vacuolation remained, all other changes observed in HCP-exposed offspring on PND 21 disappeared on PND 77. These results suggest that maternal HCP exposure reversibly decreases type-2b intermediate-stage progenitor cells via the mitochondrial apoptotic pathway in offspring hippocampal neurogenesis at 300 ppm HCP. Neurogenesis may be affected by dysfunction

  4. Genetically-directed, cell type-specific sparse labeling for the analysis of neuronal morphology.

    Directory of Open Access Journals (Sweden)

    Thomas Rotolo

    Full Text Available In mammals, genetically-directed cell labeling technologies have not yet been applied to the morphologic analysis of neurons with very large and complex arbors, an application that requires extremely sparse labeling and that is only rendered practical by limiting the labeled population to one or a few predetermined neuronal subtypes.In the present study we have addressed this application by using CreER technology to non-invasively label very small numbers of neurons so that their morphologies can be fully visualized. Four lines of IRES-CreER knock-in mice were constructed to permit labeling selectively in cholinergic or catecholaminergic neurons [choline acetyltransferase (ChAT-IRES-CreER or tyrosine hydroxylase (TH-IRES-CreER], predominantly in projection neurons [neurofilament light chain (NFL-IRES-CreER], or broadly in neurons and some glia [vesicle-associated membrane protein2 (VAMP2-IRES-CreER]. When crossed to the Z/AP reporter and exposed to 4-hydroxytamoxifen in the early postnatal period, the number of neurons expressing the human placental alkaline phosphatase reporter can be reproducibly lowered to fewer than 50 per brain. Sparse Cre-mediated recombination in ChAT-IRES-CreER;Z/AP mice shows the full axonal and dendritic arbors of individual forebrain cholinergic neurons, the first time that the complete morphologies of these very large neurons have been revealed in any species.Sparse genetically-directed, cell type-specific neuronal labeling with IRES-creER lines should prove useful for studying a wide variety of questions in neuronal development and disease.

  5. Cataplexy and monoamine oxidase deficiency in Norrie disease.

    Science.gov (United States)

    Vossler, D G; Wyler, A R; Wilkus, R J; Gardner-Walker, G; Vlcek, B W

    1996-05-01

    Norrie disease (ND) is an X-linked recessive disorder causing ocular atrophy, mental retardation, deafness, and dysmorphic features. Virtually absent monoamine oxidase (MAO) type-A and -B activity has been found in some boys with chromosome deletions. We report the coexistence of cataplexy and abnormal REM sleep organization with ND. Three related boys, referred for treatment of medically refractory atonic spells and apneas, underwent extended EEG-video-polysomnographic monitoring. They demonstrated attacks of cataplexy and inappropriate periods of REM sleep during which they were unarousable. One boy also had generalized tonic-clonic seizures. Previous testing revealed that all three have complete ND gene deletions. In all subjects, platelet MAO-B activity was absent, serum serotonin levels were markedly increased, and plasma catecholamine levels were normal. Data from the canine narcolepsy syndrome model implicate abnormal catecholaminergic and cholinergic activities in the pathogenesis of cataplexy. Our findings suggest that abnormal MAO activity or an imbalance between serotonin and other neurotransmitter levels may be involved in the pathogenesis of human cataplexy.

  6. [Neuroendocrine effect of sex hormones].

    Science.gov (United States)

    Babichev, V N

    2005-01-01

    The paper provides a generalization of data and the results of own experiments on influence ovarian steroids on the hypothalamus and other brain areas related to reproduction. Ovarian hormones have widespread effects throughout the brain: on catecholaminergic neurons and serotonergic pathways and the basal forebrain cholinergic system, as well as the hipocampus, spinal cord, nigrostriatal and mesolimbic system, in addition to glial cells and blood-brain barrier. The widespread influences of these various neuronal systems ovarian steroids have measurable effects on mood and affect as well as on cognition, with implications for dementia. There are developmentally programmed sex differenced in hippocampal structure that may help to explain differences in the strategies which male and female rats use to solve spatial navigation problems. The multiple sites and mechanisms of estrogen action in brain underlie a variety of importants effects on cognitive and other brain functions--coordination of movement, pain, affective state, as well as possible protection in Alzheimer's disease. Estrogen withdrawal after natural or surgical menopause can lead to a host of changes in brain function and behavior.

  7. Angiotensin II inhibits cortical cholinergic function: Implications for cognition

    International Nuclear Information System (INIS)

    Barnes, J.M.; Barnes, N.M.; Costall, B.; Horovitz, Z.P.; Ironside, J.W.; Naylor, R.J.; Williams, T.J.

    1990-01-01

    In the present studies we have shown that angiotensin II (AT II), in a concentration-dependent manner in rat tissue (10(-9)-10(-5) M) or at a single concentration in human tissue (10(-6) M), can inhibit potassium-stimulated release of [3H]acetylcholine ( [3H]Ach) from slices of rat entorhinal cortex and human temporal cortex preloaded with [3H]choline for the biochemical analyses. The inhibitory effects of AT II (10(-6) M) were antagonised by the specific AT II receptor antagonist [1-sarcosine, 8-threonine]AT II in a concentration-dependent manner in rat tissue (10(-11)-10(-8) M) and at the single concentration employed in the human studies (10(-7) M). Also demonstrated were other components of the angiotensin system in the human temporal cortex; ACE activity was present (1.03 nmol min-1 mg-1 protein), as were AT II recognition sites (Bmax = 8.6 fmol mg-1 protein). It is hypothesised that the potential cognitive enhancing properties of ACE inhibitors may reflect their action to prevent the formation of AT II and so remove an inhibitory modulator of cholinergic function

  8. Anti-allergic role of cholinergic neuronal pathway via α7 nicotinic ACh receptors on mucosal mast cells in a murine food allergy model.

    Directory of Open Access Journals (Sweden)

    Takeshi Yamamoto

    Full Text Available The prevalence of food allergy (FA has increased in developed countries over the past few decades. However, no effective drug therapies are currently available. Therefore, we investigated cholinergic anti-inflammatory pathway as a regulatory system to ameliorate disrupted mucosal immune homeostasis in the gut based on the pathophysiological elucidation of mucosal mast cells (MMCs in a murine FA model. BALB/c mice sensitized with ovalbumin received repeated oral ovalbumin for the development of FA. FA mice developed severe allergic diarrhea and exhibited enhanced type 2 helper T (Th2 cell immune responses in both systemic immunity and mucosal immunity, along with MMCs hyperplasia in the colon. MMCs were localized primarily in the strategic position of the mucosal epithelium. Furthermore, the allergic symptoms did not develop in p85α disrupted phosphoinositide-3 kinase-deficient mice that lacked mast cells in the gut. Vagal stimulation by 2-deoxy-D-glucose and drug treatment with nicotinic ACh receptor (nAChR agonists (nicotine and α7 nAChR agonist GTS-21 alleviated the allergic symptoms in the FA mice. Nicotine treatment suppressed MMCs hyperplasia, enhanced MPO and upregulated mRNA expression of Th1 and Th2 cytokines in the FA mice colon. MMCs, which are negatively regulated by α7 nAChRs, were often located in close proximity to cholinergic CGRP-immunoreactive nerve fibers in the FA mice colon. The present results reveal that the cholinergic neuroimmune interaction via α7 nAChRs on MMCs is largely involved in maintaining intestinal immune homeostasis and can be a target for a new therapy against mucosal immune diseases with homeostatic disturbances such as FA.

  9. Synthesis of dibenzodioxazocines and their effects on cholinesterases and muscarinic cholinergic receptors.

    Science.gov (United States)

    Gaál, J; Batke, J; Borsodi, A; Rózsa, L; Somogyi, G

    1989-01-01

    A new family of tricyclic compounds, the dibenzodioxazocines were synthesized. These compounds were the following: 2-chloro-12-(2-piperidino-ethyl)-dibenzo d,g 1,3,6 dioxazocine hydrochloride: EGYT-2347, 2-chloro-12-(3-dimethylamino-2-methyl-propyl)-dibenzo [d,g] [1,3,6]-dibenzodioxazocine hydrochloride: EGYT-2509, 2-chloro-12-(3-dimethylamino-propyl)-dibenzo [d,g] [1,3,6] dioxazocine-maleate: EGYT-2474 and 2-chloro-12-2-(4-methyl-piperazino)-ethyl-dibenzo [d,g] [1,3,6]-dioxazocine-dihydrochloride: EGYT-2541. These compounds are inhibitors of both butyryl- and acetylcholinesterase to and they exhibited relatively good anticholinergic properties in receptor binding experiments. The most selective inhibitor of butyrylcholinesterase is the compound EGYT-2347 (Ki = 1.5 x 10(-7) M) which strongly binds to rat brain muscarinic cholinergic receptor (KD = 4.1 x 10(-8) M).

  10. [Effects and mechanisms of the inflammatory reaction related to NASH and induced by activation of the cholinergic anti-inflammatory pathway].

    Science.gov (United States)

    Zhou, Zhou; Chen, Xiaomei; Li, Fuqiang; Tang, Cuilan

    2015-01-01

    To investigate the effects and mechanisms of the inflammatory reaction related to nonalcoholic steatohepatitis (NASH) and induced by activation of the cholinergic anti-inflammatory pathway. A mouse model of NASH was established by feeding a high-fat and high-sugar diet.Activation of the cholinergic anti-inflammatory pathway was achieved by nicotine administration to the NASH modeled mice and normal controls. Liver biopsies were taken and the concentrations of cytokines were measured. Isolated liver primary Kupffer cells and RAw264.7 cells were cultured, pre-treated or not with lipopolysaccharide (LPS) and exposed to nicotine, after which the supernatant concentrations of IL-6 and TNFa were determined by ELISA. The protein expression levels of phosphorylated (p)-NF-kB and I k B were detected in primary cultured Kupffer cells by western blotting. The mouse model of NASH was successfully established, as evidenced by findings from liver biopsy and serum liver function tests. The degree of liver inflammation in the NASH mice decreased after nicotine administration, and the level of serum TNFa also significantly decreased. The levels of serum TNFa were 21.95+/-0.8 pg/mL in nicotine-treated mice and 38.07+/-1.7 pg/mL in the non-nicotine-treated NASH mice (P less than 0.05). The nicotine treatment also significantly reduced the concentration of TNFa in the culture supernatants of Kupffer cells after LPS stimulation; moreover, the supernatant level of TNFa decreased significantly after the nicotine treatment (Pless than 0.05). LPS stimulation of the RAw264.7 cells led to an increased level ofp-NF-kB and a reduced level ofI-kB, suggesting that the NF-kB pathway had been activated; different doses of nicotine pre-treatment led to down-regulation of the p-NF-kB level and up-regulation of the I-kB level, both in dose-dependent manners. Activating the cholinergic anti-inflammatory pathway inhibits the NASH-related inflammatory reaction, and the mechanism for this inhibition

  11. Laminar pattern of cholinergic and adrenergic receptors in rat visual cortex using quantitative receptor autoradiography

    International Nuclear Information System (INIS)

    Schliebs, R.; Walch, C.

    1989-01-01

    The laminar distribution of muscarinic acetylcholine receptors, including the M1-receptor subtype, of beta-adrenergic receptors, and noradrenaline uptake sites, was studied in the adult rat visual, frontal, somatosensory and motor cortex, using quantitative receptor autoradiography. In the visual cortex, the highest density of muscarinic acetylcholine receptors was found in layer I. From layer II/III to layer V binding decreases continueously reaching a constant binding level in layers V and VI. This laminar pattern of muscarinic receptor density differs somewhat from that observed in the non-visual cortical regions examined: layer II/III contained the highest receptor density followed by layer I and IV: lowest density was found in layer V and VI. The binding profile of the muscarinic cholinergic M1-subtype through the visual cortex shows a peak in cortical layer II and in the upper part of layer VI, whereas in the non-visual cortical regions cited the binding level was high in layer II/III, moderate in layer I and IV, and low in layer VI. Layers I to IV of the visual cortex contained the highest beta-adrenergic receptor densities, whereas only low binding levels were observed in the deeper layers. A similar laminar distribution was found also in the frontal, somatosensory and motor cortex. The density of noradrenaline uptake sites was high in all layers of the cortical regions studied, but with noradrenaline uptake sites somewhat more concentrated in the superficial layers than in deeper ones. The distinct laminar pattern of cholinergic and noradrenergic receptor sites indicates a different role for acetylcholine and noradrenaline in the functional anatomy of the cerebral cortex, and in particular, the visual cortex. (author)

  12. Laminar pattern of cholinergic and adrenergic receptors in rat visual cortex using quantitative receptor autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Schliebs, R; Walch, C [Leipzig Univ. (German Democratic Republic). Bereich Medizin; Stewart, M G [Open Univ., Milton Keynes (UK)

    1989-01-01

    The laminar distribution of muscarinic acetylcholine receptors, including the M1-receptor subtype, of beta-adrenergic receptors, and noradrenaline uptake sites, was studied in the adult rat visual, frontal, somatosensory and motor cortex, using quantitative receptor autoradiography. In the visual cortex, the highest density of muscarinic acetylcholine receptors was found in layer I. From layer II/III to layer V binding decreases continueously reaching a constant binding level in layers V and VI. This laminar pattern of muscarinic receptor density differs somewhat from that observed in the non-visual cortical regions examined: layer II/III contained the highest receptor density followed by layer I and IV: lowest density was found in layer V and VI. The binding profile of the muscarinic cholinergic M1-subtype through the visual cortex shows a peak in cortical layer II and in the upper part of layer VI, whereas in the non-visual cortical regions cited the binding level was high in layer II/III, moderate in layer I and IV, and low in layer VI. Layers I to IV of the visual cortex contained the highest beta-adrenergic receptor densities, whereas only low binding levels were observed in the deeper layers. A similar laminar distribution was found also in the frontal, somatosensory and motor cortex. The density of noradrenaline uptake sites was high in all layers of the cortical regions studied, but with noradrenaline uptake sites somewhat more concentrated in the superficial layers than in deeper ones. The distinct laminar pattern of cholinergic and noradrenergic receptor sites indicates a different role for acetylcholine and noradrenaline in the functional anatomy of the cerebral cortex, and in particular, the visual cortex. (author).

  13. Altitude acclimatization improves submaximal cognitive performance in mice and involves an imbalance of the cholinergic system.

    Science.gov (United States)

    Guerra-Narbona, R; Delgado-García, J M; López-Ramos, J C

    2013-06-15

    The aim of this work was to reveal a hypothetical improvement of cognitive abilities in animals acclimatized to altitude and performing under ground level conditions, when looking at submaximal performance, once seen that it was not possible when looking at maximal scores. We modified contrasted cognitive tasks (object recognition, operant conditioning, eight-arm radial maze, and classical conditioning of the eyeblink reflex), increasing their complexity in an attempt to find performance differences in acclimatized animals vs. untrained controls. In addition, we studied, through immunohistochemical quantification, the expression of choline acetyltransferase and acetyl cholinesterase, enzymes involved in the synthesis and degradation of acetylcholine, in the septal area, piriform and visual cortexes, and the hippocampal CA1 area of animals submitted to acute hypobaric hypoxia, or acclimatized to this simulated altitude, to find a relationship between the cholinergic system and a cognitive improvement due to altitude acclimatization. Results showed subtle improvements of the cognitive capabilities of acclimatized animals in all of the tasks when performed under ground-level conditions (although not before 24 h), in the three tasks used to test explicit memory (object recognition, operant conditioning in the Skinner box, and eight-arm radial maze) and (from the first conditioning session) in the classical conditioning task used to evaluate implicit memory. An imbalance of choline acetyltransferase/acetyl cholinesterase expression was found in acclimatized animals, mainly 24 h after the acclimatization period. In conclusion, altitude acclimatization improves cognitive capabilities, in a process parallel to an imbalance of the cholinergic system.

  14. Putative Lineage of Novel African Usutu Virus, Central Europe

    Centers for Disease Control (CDC) Podcasts

    2015-10-15

    Sarah Gregory reads an abridged version of "Putative Lineage of Novel African Usutu Virus, Central Europe.".  Created: 10/15/2015 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 10/15/2015.

  15. Molecular cloning and characterization of a putative OGG_N domain ...

    African Journals Online (AJOL)

    Molecular cloning and characterization of a putative OGG_N domain from the camel, Camelus dromedarius. Farid Shokry Ataya, Mohammad Saud Alanazi, Dalia Fouad, Hehsam Mahmoud Saeed, Mohammad Bazzi ...

  16. Selective lesion of septal cholinergic neurons in rats impairs acquisition of a delayed matching to position T-maze task by delaying the shift from a response to a place strategy.

    Science.gov (United States)

    Fitz, Nicholas F; Gibbs, Robert B; Johnson, David A

    2008-12-16

    This study tested the hypothesis that septal cholinergic lesions impair acquisition of a delayed matching to position (DMP) T-maze task in male rats by affecting learning strategy. Rats received either the selective cholinergic immunotoxin, 192 IgG-saporin (SAP) or artificial cerebrospinal fluid directly into the medial septum. Two weeks later, animals were trained to acquire the DMP task. SAP-treated rats took significantly longer to acquire the task than corresponding controls. Both SAP-treated and control rats adopted a persistent turn and utilized a response strategy during early periods of training. By the time rats reached criterion the persistent turn was no longer evident, and all rats had shifted to an allocentric strategy, i.e., were relying on extramaze cues to a significant degree. During the acquisition period, SAP-treated rats spent significantly more days showing a persistent turn and using a response strategy than corresponding controls. The added time spent using a response strategy accounted entirely for the added days required to reach criterion among the SAP-treated rats. This suggests that the principal mechanism by which septal cholinergic lesions impair DMP acquisition in male rats is by increasing the predisposition to use a response vs. a place strategy, thereby affecting the ability to switch from one strategy to another.

  17. Generation patterns of four groups of cholinergic neurons in rat cervical spinal cord: a combined tritiated thymidine autoradiographic and choline acetyltransferase immunocytochemical study

    International Nuclear Information System (INIS)

    Phelps, P.E.; Barber, R.P.; Vaughn, J.E.

    1988-01-01

    This report examines the generation of cholinergic neurons in the spinal cord in order to determine whether the transmitter phenotype of neurons is associated with specific patterns of neurogenesis. Previous immunocytochemical studies identified four groups of choline acetyltransferase (ChAT)-positive neurons in the cervical enlargement of the rat spinal cord. These cell groups vary in both somatic size and location along the previously described ventrodorsal neurogenic gradient of the spinal cord. Thus, large (and small) motoneurons are located in the ventral horn, medium-sized partition cells are found in the intermediate gray matter, small central canal cluster cells are situated within lamina X, and small dorsal horn neurons are scattered predominantly through laminae III-V. The relationships among the birthdays of these four subsets of cholinergic neurons have been examined by combining 3H-thymidine autoradiography and ChAT immunocytochemistry. Embryonic day 11 was the earliest time that neurons were generated within the cervical enlargement. Large and small ChAT-positive motoneurons were produced on E11 and 12, with 70% of both groups being born on E11. ChAT-positive partition cells were produced between E11 and 13, with their peak generation occurring on E12. Approximately 70% of the cholinergic central canal cluster and dorsal horn cells were born on E13, and the remainder of each of these groups was generated on E14. Other investigators have shown that all neurons within the rat cervical spinal cord are produced in a ventrodorsal sequence between E11 and E16. In contrast, ChAT-positive neurons are born only from E11 to E14 and are among the earliest cells generated in the ventral, intermediate, and dorsal subdivisions of the spinal cord

  18. The Putative Chemosignal Androstadienone Makes Women More Generous.

    Science.gov (United States)

    Perrotta, Valentina; Graffeo, Michele; Bonini, Nicolao; Gottfried, Jay A

    2016-06-01

    Putative human chemosignals have been shown to influence mood states and emotional processing, but the connection between these effects and higher-order cognitive processing is not well established. This study utilized an economic game (Dictator Game) to test whether androstadienone (AND), an odorous compound derived from testosterone, impacts on altruistic behavior. We predicted that the female participants would act more generously in the AND condition, exhibiting a significant interaction effect between gender and AND on Dictator Game contributions. We also expected that the presence of AND should increase the positive mood of the female participants, compared to a control odor condition and also compared to the mood of the male participants. The results confirm our hypotheses: for women the subliminal perception of AND led to larger monetary donations, compared to a control odor, and also increased positive mood. These effects were absent or significantly weaker in men. Our findings highlight the capacity of human putative chemosignals to influence emotions and higher cognitive processes - in particular the processes used in the context of economic decisions - in a gender-specific way.

  19. Characteristics of functional enrichment and gene expression level of human putative transcriptional target genes.

    Science.gov (United States)

    Osato, Naoki

    2018-01-19

    Transcriptional target genes show functional enrichment of genes. However, how many and how significantly transcriptional target genes include functional enrichments are still unclear. To address these issues, I predicted human transcriptional target genes using open chromatin regions, ChIP-seq data and DNA binding sequences of transcription factors in databases, and examined functional enrichment and gene expression level of putative transcriptional target genes. Gene Ontology annotations showed four times larger numbers of functional enrichments in putative transcriptional target genes than gene expression information alone, independent of transcriptional target genes. To compare the number of functional enrichments of putative transcriptional target genes between cells or search conditions, I normalized the number of functional enrichment by calculating its ratios in the total number of transcriptional target genes. With this analysis, native putative transcriptional target genes showed the largest normalized number of functional enrichments, compared with target genes including 5-60% of randomly selected genes. The normalized number of functional enrichments was changed according to the criteria of enhancer-promoter interactions such as distance from transcriptional start sites and orientation of CTCF-binding sites. Forward-reverse orientation of CTCF-binding sites showed significantly higher normalized number of functional enrichments than the other orientations. Journal papers showed that the top five frequent functional enrichments were related to the cellular functions in the three cell types. The median expression level of transcriptional target genes changed according to the criteria of enhancer-promoter assignments (i.e. interactions) and was correlated with the changes of the normalized number of functional enrichments of transcriptional target genes. Human putative transcriptional target genes showed significant functional enrichments. Functional

  20. VTA GABA neurons modulate specific learning behaviours through the control of dopamine and cholinergic systems

    Directory of Open Access Journals (Sweden)

    Meaghan C Creed

    2014-01-01

    Full Text Available The mesolimbic reward system is primarily comprised of the ventral tegmental area (VTA and the nucleus accumbens (NAc as well as their afferent and efferent connections. This circuitry is essential for learning about stimuli associated with motivationally-relevant outcomes. Moreover, addictive drugs affect and remodel this system, which may underlie their addictive properties. In addition to DA neurons, the VTA also contains approximately 30% ɣ-aminobutyric acid (GABA neurons. The task of signalling both rewarding and aversive events from the VTA to the NAc has mostly been ascribed to DA neurons and the role of GABA neurons has been largely neglected until recently. GABA neurons provide local inhibition of DA neurons and also long-range inhibition of projection regions, including the NAc. Here we review studies using a combination of in vivo and ex vivo electrophysiology, pharmacogenetic and optogenetic manipulations that have characterized the functional neuroanatomy of inhibitory circuits in the mesolimbic system, and describe how GABA neurons of the VTA regulate reward and aversion-related learning. We also discuss pharmacogenetic manipulation of this system with benzodiazepines (BDZs, a class of addictive drugs, which act directly on GABAA receptors located on GABA neurons of the VTA. The results gathered with each of these approaches suggest that VTA GABA neurons bi-directionally modulate activity of local DA neurons, underlying reward or aversion at the behavioural level. Conversely, long-range GABA projections from the VTA to the NAc selectively target cholinergic interneurons (CINs to pause their firing and temporarily reduce cholinergic tone in the NAc, which modulates associative learning. Further characterization of inhibitory circuit function within and beyond the VTA is needed in order to fully understand the function of the mesolimbic system under normal and pathological conditions.

  1. Adenosine: a putative mediator of bronchoconstriction in asthma

    Energy Technology Data Exchange (ETDEWEB)

    Mann, J.S.

    1987-01-01

    The protective effect of a muscarinic cholinergic antagonists, ipratropium bromide (IB) from inhaled adenosine- and methacholine-induced bronchoconstriction in asthma was studied. Inhaled IB protected from methacholine- but not adenosine-induced bronchoconstriction. Parasympathetically mediated bronchoconstriction is therefore unlikely to account for adenosine's airway effect in asthma. The capacity of theophylline, a bronchodilator and a competitive antagonist of adenosine at its cell surface receptors, to protect asthmatic subjects from adenosine- and histamine-induced bronchoconstriction was determined. Asthmatic airways are infiltrated with inflammatory cells. Human leucocytes prelabeled with (/sup 3/H)-adenine when activated with the calcium ionophore A23187 released labelled hypoxanthine, inosine and adenosine which was associated with a dose-related release of histamine. The chemotactic peptide f-MLP while inducing histamine release had an inconstant effect on release of label. In four of five experiments f-MLP produced a transient early increase in label release but in the remaining experiment no significant release was observed. Anti-human IgE failed to induce significant label release despite releasing histamine. Activated leucocytes are therefore a potential source of adenosine in asthma.

  2. Involvement of Cholinergic Dysfunction and Oxidative Damage in the Effects of Simulated Weightlessness on Learning and Memory in Rats

    Science.gov (United States)

    Wang, Qiong; Lv, Ke; Wang, Tingmei; Wang, Yanli; Ji, Guohua; Cao, Hongqing; Kan, Guanghan

    2018-01-01

    The present study aimed to determine how the learning and memory gradually change with the prolonged hindlimb unloading (HU) treatment in rats. Different HU durations (7 d, 14 d, 21 d, and 28 d) in Sprague-Dawley (SD) rats were implemented. Cognitive function was assessed using the Morris water maze (MWM) and the shuttle box test. Additionally, parameters about cholinergic activity and oxidative stress were tested. Results showed that longer-than-14 d HU led to the inferior performances in the behavioral tasks. Besides, acetylcholine esterase (AChE) activity, malondialdehyde (MDA) level in brain, reactive oxygen species (ROS), and 8-hydroxy-2-deoxyguanosine (8-OHdG) concentrations of HU rats were significantly increased. Furthermore, choline acetyltransferase (ChAT), superoxide dismutase (SOD), and catalase (CAT) activity in brain were notably attenuated. Most of these effects were more pronounced after longer exposure (21 d and 28 d) to HU, although some indicators had their own characteristics of change. These results indicate that cholinergic dysfunction and oxidative damage were involved in the learning and memory impairments induced by longer-than-14 d HU. Moreover, the negative effects of HU tend to be augmented as the HU duration becomes longer. The results may be helpful to present possible biochemical targets for countermeasures development regarding the memory deficits under extreme environmental conditions. PMID:29581965

  3. Involvement of Cholinergic Dysfunction and Oxidative Damage in the Effects of Simulated Weightlessness on Learning and Memory in Rats

    Directory of Open Access Journals (Sweden)

    Yongliang Zhang

    2018-01-01

    Full Text Available The present study aimed to determine how the learning and memory gradually change with the prolonged hindlimb unloading (HU treatment in rats. Different HU durations (7 d, 14 d, 21 d, and 28 d in Sprague-Dawley (SD rats were implemented. Cognitive function was assessed using the Morris water maze (MWM and the shuttle box test. Additionally, parameters about cholinergic activity and oxidative stress were tested. Results showed that longer-than-14 d HU led to the inferior performances in the behavioral tasks. Besides, acetylcholine esterase (AChE activity, malondialdehyde (MDA level in brain, reactive oxygen species (ROS, and 8-hydroxy-2-deoxyguanosine (8-OHdG concentrations of HU rats were significantly increased. Furthermore, choline acetyltransferase (ChAT, superoxide dismutase (SOD, and catalase (CAT activity in brain were notably attenuated. Most of these effects were more pronounced after longer exposure (21 d and 28 d to HU, although some indicators had their own characteristics of change. These results indicate that cholinergic dysfunction and oxidative damage were involved in the learning and memory impairments induced by longer-than-14 d HU. Moreover, the negative effects of HU tend to be augmented as the HU duration becomes longer. The results may be helpful to present possible biochemical targets for countermeasures development regarding the memory deficits under extreme environmental conditions.

  4. Differential Effects of Systemic Cholinergic Receptor Blockade on Pavlovian Incentive Motivation and Goal-Directed Action Selection

    Science.gov (United States)

    Ostlund, Sean B; Kosheleff, Alisa R; Maidment, Nigel T

    2014-01-01

    Reward-seeking actions can be guided by external cues that signal reward availability. For instance, when confronted with a stimulus that signals sugar, rats will prefer an action that produces sugar over a second action that produces grain pellets. Action selection is also sensitive to changes in the incentive value of potential rewards. Thus, rats that have been prefed a large meal of sucrose will prefer a grain-seeking action to a sucrose-seeking action. The current study investigated the dependence of these different aspects of action selection on cholinergic transmission. Hungry rats were given differential training with two unique stimulus-outcome (S1-O1 and S2-O2) and action-outcome (A1-O1 and A2-O2) contingencies during separate training phases. Rats were then given a series of Pavlovian-to-instrumental transfer tests, an assay of cue-triggered responding. Before each test, rats were injected with scopolamine (0, 0.03, or 0.1 mg/kg, intraperitoneally), a muscarinic receptor antagonist, or mecamylamine (0, 0.75, or 2.25 mg/kg, intraperitoneally), a nicotinic receptor antagonist. Although the reward-paired cues were capable of biasing action selection when rats were tested off-drug, both anticholinergic treatments were effective in disrupting this effect. During a subsequent round of outcome devaluation testing—used to assess the sensitivity of action selection to a change in reward value—we found no effect of either scopolamine or mecamylamine. These results reveal that cholinergic signaling at both muscarinic and nicotinic receptors mediates action selection based on Pavlovian reward expectations, but is not critical for flexibly selecting actions using current reward values. PMID:24370780

  5. Influence of putative exopolysaccharide genes on Pseudomonas putida KT2440 biofilm stability

    DEFF Research Database (Denmark)

    Nilsson, Martin; Chiang, Wen-Chi; Fazli, Mustafa

    2011-01-01

    We report a study of the role of putative exopolysaccharide gene clusters in the formation and stability of Pseudomonas putida KT2440 biofilm. Two novel putative exopolysaccharide gene clusters, pea and peb, were identified, and evidence is provided that they encode products that stabilize P....... putida KT2440 biofilm. The gene clusters alg and bcs, which code for proteins mediating alginate and cellulose biosynthesis, were found to play minor roles in P. putida KT2440 biofilm formation and stability under the conditions tested. A P. putida KT2440 derivative devoid of any identifiable...

  6. Activation of the cholinergic anti-inflammatory pathway by nicotine ameliorates lipopolysaccharide-induced preeclampsia-like symptoms in pregnant rats.

    Science.gov (United States)

    Liu, Yuanyuan; Yang, Jinying; Bao, Junjie; Li, Xiaolan; Ye, Aihua; Zhang, Guozheng; Liu, Huishu

    2017-01-01

    Preeclampsia (PE) exerts a more intense systemic inflammatory response than normal pregnancy. Recently, the role of the cholinergic anti-inflammatory pathway (CAP) in regulating inflammation has been extensively studied. The aim of this study was to investigate the effect of nicotine, a selective cholinergic agonist, on lipopolysaccharide (LPS)-induced preeclampsia-like symptoms in pregnant rats and to determine the molecular mechanism underlying it. Rats were administered LPS (1.0 μg/kg) via tail vein injection on gestational day 14 to induce preeclampsia-like symptoms. Nicotine (1.0 mg/kg/d) and α-bungarotoxin (1.0 μg/kg/d) were injected subcutaneously into the rats from gestational day 14-19. Clinical symptoms were recorded. Serum and placentas were collected to determine cytokine levels using Luminex. The mRNA and protein expression levels of α7 nicotinic acetylcholine receptor (α7nAChR) were determined using Real time-PCR and Western blot analysis. Immunohistochemistry was performed to determine the level of activation of nuclear factor-κB (NF-κB) in placentas. Nicotine significantly ameliorated LPS-induced preeclampsia-like symptoms in pregnant rats (P preeclampsia (P preeclampsia rats. Our findings suggest that the activation of α7nAChR by nicotine attenuates preeclampsia-like symptoms, and this protective effect is likely the result of the inhibition of inflammation via the NF-κB p65 pathway. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Beta-amyloid-induced cholinergic denervation correlates with enhanced nitric oxide synthase activity in rat cerebral cortex: Reversal by NMDA receptor blockade : Reversal by NMDA receptor blockade

    NARCIS (Netherlands)

    O’Mahony, S.; Harkany, T.; Ábrahám, I.; Jong, G.I. de; Varga, J.L.; Zarándi, M.; Penke, B.; Nyakas, C.; Luiten, P.G.M.; Leonard, B.E.

    1998-01-01

    Ample experimental evidence indicates that acute beta-amyloid infusion into the nucleus basalis of rats elicits abrupt degeneration of the magnocellular cholinergic neurons projecting to the cerebral cortex, In fact, involvement of a permanent Ca2+ overload, partially via N-methyl-D-aspartate (NMDA)

  8. Exploring universal partnerships and putative marriages as tools for ...

    African Journals Online (AJOL)

    Following upon the Supreme Court of Appeal's judgment in Butters v Mncora 2012 4 SA 1 (SCA), which broadened the criteria and consequences of universal partnerships in cohabitation relationships, this article investigates the potential of universal partnerships and putative marriages to allocate rights to share in ...

  9. A new putative deltapartitivirus recovered from Dianthus amurensis.

    Science.gov (United States)

    An, Hongliu; Tan, Guanlin; Xiong, Guihong; Li, Meirong; Fang, Shouguo; Islam, Saif Ul; Zhang, Songbai; Li, Fan

    2017-09-01

    Two double stranded RNAs (dsRNA), likely representing the genome of a novel deltapartitivirus, provisionally named carnation cryptic virus 3 (CCV3), were recovered from Dianthus amurensis. The two dsRNAs were 1,573 (dsRNA1) and 1,561 (dsRNA2) bp in size, each containing a single open reading frame (ORF) encoding a 475- and 411-aa protein, respectively. The 475-aa protein contains a conserved RNA dependent RNA polymerase (RdRp) domain which shows significant homology to RdRps of established or putative partitiviruses, particularly those belonging to the genus Deltapartitivirus. However, it shares an amino acid identity of 75% with its closest relative, the RdRp of the deltapartitivirus beet cryptic virus 2 (BCV2), and is <62% identical to the RdRps of other partitiviruses. In a phylogenetic tree constructed with RdRps of selected partitiviruses, CCV3 clustered with BCV2 and formed a well-supported monophyletic clade with known or putative deltapartitiviruses.

  10. Zinc and glutamate dehydrogenase in putative glutamatergic brain structures.

    Science.gov (United States)

    Wolf, G; Schmidt, W

    1983-01-01

    A certain topographic parallelism between the distribution of histochemically (TIMM staining) identified zinc and putative glutamatergic structures in the rat brain was demonstrated. Glutamate dehydrogenase as a zinc containing protein is in consideration to be an enzyme synthesizing transmitter glutamate. In a low concentration range externally added zinc ions (10(-9) to 10(-7) M) induced an increase in the activity of glutamate dehydrogenase (GDH) originating from rat hippocampal formation, neocortex, and cerebellum up to 142.4%. With rising molarity of Zn(II) in the incubation medium, the enzyme of hippocampal formation and cerebellum showed a biphasic course of activation. Zinc ions of a concentration higher than 10(-6) M caused a strong inhibition of GDH. The effect of Zn(II) on GDH originating from spinal ganglia and liver led only to a decrease of enzyme activity. These results are discussed in connection with a functional correlation between zinc and putatively glutamatergic system.

  11. Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors.

    Science.gov (United States)

    Lopez, David; Ribeiro, Sébastien; Label, Philippe; Fumanal, Boris; Venisse, Jean-Stéphane; Kohler, Annegret; de Oliveira, Ricardo R; Labutti, Kurt; Lipzen, Anna; Lail, Kathleen; Bauer, Diane; Ohm, Robin A; Barry, Kerrie W; Spatafora, Joseph; Grigoriev, Igor V; Martin, Francis M; Pujade-Renaud, Valérie

    2018-01-01

    Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated with rare cases of human infection. In the rubber tree, this fungus causes the Corynespora leaf fall (CLF) disease, which increasingly affects natural rubber production in Asia and Africa. It has also been found as an endophyte in South American rubber plantations where no CLF outbreak has yet occurred. The C. cassiicola species is genetically highly diverse, but no clear relationship has been evidenced between phylogenetic lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector, is thought to be involved in the necrotrophic interaction with the rubber tree but some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out to identify other putative effectors involved in CLF. The genome of a highly virulent C. cassiicola isolate from the rubber tree (CCP) was sequenced and assembled. In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases, peptidases, secreted proteins and enzymes associated with secondary metabolism. Comparison with the genomes of 44 other fungal species, focusing on effector content, revealed a striking proximity with phylogenetically unrelated species ( Colletotrichum acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca , and Botrosphaeria dothidea ) sharing life style plasticity and broad host range. Candidate effectors involved in the compatible interaction with the rubber tree were identified by transcriptomic analysis. Differentially expressed genes included 92 putative effectors, among which cassiicolin and two other secreted singleton proteins. Finally, the genomes of 35 C. cassiicola isolates representing the genetic diversity of the species were sequenced and assembled, and putative effectors identified. At the intraspecific level, effector

  12. Genome-Wide Analysis of Corynespora cassiicola Leaf Fall Disease Putative Effectors

    Directory of Open Access Journals (Sweden)

    David Lopez

    2018-03-01

    Full Text Available Corynespora cassiicola is an Ascomycetes fungus with a broad host range and diverse life styles. Mostly known as a necrotrophic plant pathogen, it has also been associated with rare cases of human infection. In the rubber tree, this fungus causes the Corynespora leaf fall (CLF disease, which increasingly affects natural rubber production in Asia and Africa. It has also been found as an endophyte in South American rubber plantations where no CLF outbreak has yet occurred. The C. cassiicola species is genetically highly diverse, but no clear relationship has been evidenced between phylogenetic lineage and pathogenicity. Cassiicolin, a small glycosylated secreted protein effector, is thought to be involved in the necrotrophic interaction with the rubber tree but some virulent C. cassiicola isolates do not have a cassiicolin gene. This study set out to identify other putative effectors involved in CLF. The genome of a highly virulent C. cassiicola isolate from the rubber tree (CCP was sequenced and assembled. In silico prediction revealed 2870 putative effectors, comprising CAZymes, lipases, peptidases, secreted proteins and enzymes associated with secondary metabolism. Comparison with the genomes of 44 other fungal species, focusing on effector content, revealed a striking proximity with phylogenetically unrelated species (Colletotrichum acutatum, Colletotrichum gloesporioides, Fusarium oxysporum, nectria hematococca, and Botrosphaeria dothidea sharing life style plasticity and broad host range. Candidate effectors involved in the compatible interaction with the rubber tree were identified by transcriptomic analysis. Differentially expressed genes included 92 putative effectors, among which cassiicolin and two other secreted singleton proteins. Finally, the genomes of 35 C. cassiicola isolates representing the genetic diversity of the species were sequenced and assembled, and putative effectors identified. At the intraspecific level, effector

  13. Crystal structure and putative substrate identification for the Entamoeba histolytica low molecular weight tyrosine phosphatase.

    Science.gov (United States)

    Linford, Alicia S; Jiang, Nona M; Edwards, Thomas E; Sherman, Nicholas E; Van Voorhis, Wesley C; Stewart, Lance J; Myler, Peter J; Staker, Bart L; Petri, William A

    2014-01-01

    Entamoeba histolytica is a eukaryotic intestinal parasite of humans, and is endemic in developing countries. We have characterized the E. histolytica putative low molecular weight protein tyrosine phosphatase (LMW-PTP). The structure for this amebic tyrosine phosphatase was solved, showing the ligand-induced conformational changes necessary for binding of substrate. In amebae, it was expressed at low but detectable levels as detected by immunoprecipitation followed by immunoblotting. A mutant LMW-PTP protein in which the catalytic cysteine in the active site was replaced with a serine lacked phosphatase activity, and was used to identify a number of trapped putative substrate proteins via mass spectrometry analysis. Seven of these putative substrate protein genes were cloned with an epitope tag and overexpressed in amebae. Five of these seven putative substrate proteins were demonstrated to interact specifically with the mutant LMW-PTP. This is the first biochemical study of a small tyrosine phosphatase in Entamoeba, and sets the stage for understanding its role in amebic biology and pathogenesis. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Hormonal Responses to Cholinergic Input Are Different in Humans with and without Type 2 Diabetes Mellitus.

    Directory of Open Access Journals (Sweden)

    Sara Chowdhury

    Full Text Available Peripheral muscarinic acetylcholine receptors regulate insulin and glucagon release in rodents but their importance for similar roles in humans is unclear. Bethanechol, an acetylcholine analogue that does not cross the blood-brain barrier, was used to examine the role of peripheral muscarinic signaling on glucose homeostasis in humans with normal glucose tolerance (NGT; n = 10, impaired glucose tolerance (IGT; n = 11, and type 2 diabetes mellitus (T2DM; n = 9. Subjects received four liquid meal tolerance tests, each with a different dose of oral bethanechol (0, 50, 100, or 150 mg given 60 min before a meal containing acetaminophen. Plasma pancreatic polypeptide (PP, glucose-dependent insulinotropic polypeptide (GIP, glucagon-like peptide-1 (GLP-1, glucose, glucagon, C-peptide, and acetaminophen concentrations were measured. Insulin secretion rates (ISRs were calculated from C-peptide levels. Acetaminophen and PP concentrations were surrogate markers for gastric emptying and cholinergic input to islets. The 150 mg dose of bethanechol increased the PP response 2-fold only in the IGT group, amplified GLP-1 release in the IGT and T2DM groups, and augmented the GIP response only in the NGT group. However, bethanechol did not alter ISRs or plasma glucose, glucagon, or acetaminophen concentrations in any group. Prior studies showed infusion of xenin-25, an intestinal peptide, delays gastric emptying and reduces GLP-1 release but not ISRs when normalized to plasma glucose levels. Analysis of archived plasma samples from this study showed xenin-25 amplified postprandial PP responses ~4-fold in subjects with NGT, IGT, and T2DM. Thus, increasing postprandial cholinergic input to islets augments insulin secretion in mice but not humans.ClinicalTrials.gov NCT01434901.

  15. Replicated Risk Nicotinic Cholinergic Receptor Genes for Nicotine Dependence

    Directory of Open Access Journals (Sweden)

    Lingjun Zuo

    2016-11-01

    Full Text Available It has been hypothesized that the nicotinic acetylcholine receptors (nAChRs play important roles in nicotine dependence (ND and influence the number of cigarettes smoked per day (CPD in smokers. We compiled the associations between nicotinic cholinergic receptor genes (CHRNs and ND/CPD that were replicated across different studies, reviewed the expression of these risk genes in human/mouse brains, and verified their expression using independent samples of both human and mouse brains. The potential functions of the replicated risk variants were examined using cis-eQTL analysis or predicted using a series of bioinformatics analyses. We found replicated and significant associations for ND/CPD at 19 SNPs in six genes in three genomic regions (CHRNB3-A6, CHRNA5-A3-B4 and CHRNA4. These six risk genes are expressed in at least 18 distinct areas of the human/mouse brain, with verification in our independent human and mouse brain samples. The risk variants might influence the transcription, expression and splicing of the risk genes, alter RNA secondary or protein structure. We conclude that the replicated associations between CHRNB3-A6, CHRNA5-A3-B4, CHRNA4 and ND/CPD are very robust. More research is needed to examine how these genetic variants contribute to the risk for ND/CPD.

  16. Human Lymphatic Mesenteric Vessels: Morphology and Possible Function of Aminergic and NPY-ergic Nerve Fibers.

    Science.gov (United States)

    D'Andrea, Vito; Panarese, Alessandra; Taurone, Samanta; Coppola, Luigi; Cavallotti, Carlo; Artico, Marco

    2015-09-01

    The lymphatic vessels have been studied in different organs from a morphological to a clinical point of view. Nevertheless, the knowledge of the catecholaminergic control of the lymphatic circulation is still incomplete. The aim of this work is to study the presence and distribution of the catecholaminergic and NPY-ergic nerve fibers in the whole wall of the human mesenteric lymphatic vessels in order to obtain knowledge about their morphology and functional significance. The following experimental procedures were performed: 1) drawing of tissue containing lymphatic vessels; 2) cutting of tissue; 3) staining of tissue; 4) staining of nerve fibers; 5) histofluorescence microscopy for the staining of catecholaminergic nerve fibers; 6) staining of neuropeptide Y like-immune reactivity; 7) biochemical assay of proteins; 8) measurement of noradrenaline; 9) quantitative analysis of images; 10) statistical analysis of data. Numerous nerve fibers run in the wall of lymphatic vessels. Many of them are catecholaminergic in nature. Some nerve fibers are NPY-positive. The biochemical results on noradrenaline amounts are in agreement with morphological results on catecholaminergic nerve fibers. Moreover, the morphometric results, obtained by the quantitative analysis of images and the subsequent statistical analysis of data, confirm all our morphological and biochemical data. The knowledge of the physiological or pathological mechanism regulating the functions of the lymphatic system is incomplete. Nevertheless the catecholaminergic nerve fibers of the human mesenteric lymphatic vessels come from the adrenergic periarterial plexuses of the mesenterial arterial bed. NPY-ergic nerve fibers may modulate the microcirculatory mesenterial bed in different pathological conditions.

  17. Comparison of properties of medial entorhinal cortex layer II neurons in two anatomical dimensions with and without cholinergic activation.

    Science.gov (United States)

    Yoshida, Motoharu; Jochems, Arthur; Hasselmo, Michael E

    2013-01-01

    Mechanisms underlying grid cell firing in the medial entorhinal cortex (MEC) still remain unknown. Computational modeling studies have suggested that cellular properties such as spike frequency adaptation and persistent firing might underlie the grid cell firing. Recent in vivo studies also suggest that cholinergic activation influences grid cell firing. Here we investigated the anatomical distribution of firing frequency adaptation, the medium spike after hyperpolarization potential (mAHP), subthreshold membrane potential oscillations, sag potential, input resistance and persistent firing, in MEC layer II principal cells using in vitro whole-cell patch clamp recordings in rats. Anatomical distributions of these properties were compared along both the dorso-ventral and medio-lateral axes, both with and without the cholinergic receptor agonist carbachol. We found that spike frequency adaptation is significantly stronger in ventral than in dorsal neurons both with and without carbachol. Spike frequency adaptation was significantly correlated with the duration of the mAHP, which also showed a gradient along the dorso-ventral axis. In carbachol, we found that about 50% of MEC layer II neurons show persistent firing which lasted more than 30 seconds. Persistent firing of MEC layer II neurons might contribute to grid cell firing by providing the excitatory drive. Dorso-ventral differences in spike frequency adaptation we report here are opposite from previous predictions by a computational model. We discuss an alternative mechanism as to how dorso-ventral differences in spike frequency adaptation could contribute to different scales of grid spacing.

  18. Cardiovascular effects of the intracerebroventricular injection of adrenomedullin: roles of the peripheral vasopressin and central cholinergic systems

    International Nuclear Information System (INIS)

    Cam-Etoz, B.; Isbil-Buyukcoskun, N.; Ozluk, K.

    2012-01-01

    Our objective was to investigate in conscious Sprague-Dawley (6-8 weeks, 250-300 g) female rats (N = 7 in each group) the effects of intracerebroventricularly (icv) injected adrenomedullin (ADM) on blood pressure and heart rate (HR), and to determine if ADM and calcitonin gene-related peptide (CGRP) receptors, peripheral V 1 receptors or the central cholinergic system play roles in these cardiovascular effects. Blood pressure and HR were observed before and for 30 min following drug injections. The following results were obtained: 1) icv ADM (750 ng/10 µL) caused an increase in both blood pressure and HR (ΔMAP = 11.8 ± 2.3 mmHg and ΔHR = 39.7 ± 4.8 bpm). 2) Pretreatment with a CGRP receptor antagonist (CGRP 8-37 ) and ADM receptor antagonist (ADM 22-52 ) blocked the effect of central ADM on blood pressure and HR. 3) The nicotinic receptor antagonist mecamylamine (25 µg/10 µL, icv) and the muscarinic receptor antagonist atropine (5 µg/10 µL, icv) prevented the stimulating effect of ADM on blood pressure. The effect of ADM on HR was blocked only by atropine (5 µg/10 µL, icv). 4) The V 1 receptor antagonist [β-mercapto-β-β-cyclopentamethylenepropionyl 1 , O-me-Tyr 2 ,Arg 8 ]-vasopressin (V2255; 10 µg/kg), that was applied intravenously, prevented the effect of ADM on blood pressure and HR. This is the first study reporting the role of specific ADM and CGRP receptors, especially the role of nicotinic and muscarinic central cholinergic receptors and the role of peripheral V 1 receptors in the increasing effects of icv ADM on blood pressure and HR

  19. Neuroprotective role of quercetin in locomotor activities and cholinergic neurotransmission in rats experimentally demyelinated with ethidium bromide.

    Science.gov (United States)

    Beckmann, Diego V; Carvalho, Fabiano B; Mazzanti, Cinthia M; Dos Santos, Rosmarini P; Andrades, Amanda O; Aiello, Graciane; Rippilinger, Angel; Graça, Dominguita L; Abdalla, Fátima H; Oliveira, Lizielle S; Gutierres, Jessié M; Schetinger, Maria Rosa C; Mazzanti, Alexandre

    2014-05-17

    The purpose of this study was to investigate whether the flavonoid quercetin can prevent alterations in the behavioral tests and of cholinergic neurotransmission in rats submitted to the ethidium bromide (EB) experimental demyelination model during events of demyelination and remyelination. Wistar rats were randomly distributed into four groups (20 animals per group): Control (pontine saline injection and treatment with ethanol), Querc (pontine saline injection and treatment with quercetin), EB (pontine 0.1% EB injection and treatment with ethanol), and EB+Querc (pontine 0.1% EB injection and treatment with quercetin). The groups Querc and Querc+EB were treated once daily with quercetin (50mg/kg) diluted in 25% ethanol solution (1ml/kg) and the animals of the control and EB groups were treated once daily with 25% ethanol solution (1ml/kg). Two stages were observed: phase of demyelination (peak on day 7) and phase of remyelination (peak on day 21 post-injection). Behavioral tests (beam walking, foot fault and inclined plane test), acetylcholinesterase (AChE) activity and lipid peroxidation in pons, cerebellum, hippocampus, hypothalamus, striatum and cerebral cortex were measured. The quercetin promoted earlier locomotor recovery, suggesting that there was demyelination prevention or further remyelination velocity as well as it was able to prevent the inhibition of AChE activity and the increase of lipidic peroxidation, suggesting that this compound can protect cholinergic neurotransmission. These results may contribute to a better understanding of the neuroprotective role of quercetin and the importance of an antioxidant diet in humans to provide benefits in neurodegenerative diseases such as MS. Copyright © 2014. Published by Elsevier Inc.

  20. Selective Inducible Nitric Oxide Synthase Inhibitor Reversed Zinc Chloride-Induced Spatial Memory Impairment via Increasing Cholinergic Marker Expression.

    Science.gov (United States)

    Tabrizian, Kaveh; Azami, Kian; Belaran, Maryam; Soodi, Maliheh; Abdi, Khosrou; Fanoudi, Sahar; Sanati, Mehdi; Mottaghi Dastjerdi, Negar; Soltany Rezaee-Rad, Mohammad; Sharifzadeh, Mohammad

    2016-10-01

    Zinc, an essential micronutrient and biochemical element of the human body, plays structural, catalytic, and regulatory roles in numerous physiological functions. In the current study, the effects of a pretraining oral administration of zinc chloride (10, 25, and 50 mg/kg) for 14 consecutive days and post-training bilateral intra-hippocampal infusion of 1400W as a selective inducible nitric oxide synthase (iNOS) inhibitor (10, 50, and 100 μM/side), alone and in combination, on the spatial memory retention in Morris water maze (MWM) were investigated. Animals were trained for 4 days and tested 48 h after completion of training. Also, the molecular effects of these compounds on the expression of choline acetyltransferase (ChAT), as a cholinergic marker in the CA1 region of the hippocampus and medial septal area (MSA), were evaluated. Behavioral and molecular findings of this study showed that a 2-week oral administration of zinc chloride (50 mg/kg) impaired spatial memory retention in MWM and decreased ChAT expression. Immunohistochemical analysis of post-training bilateral intra-hippocampal infusion of 1400W revealed a significant increase in ChAT immunoreactivity. Furthermore, post-training bilateral intra-hippocampal infusion of 1400W into the CA1 region of the hippocampus reversed zinc chloride-induced spatial memory impairment in MWM and significantly increased ChAT expression in comparison with zinc chloride-treated animals. Taken together, these results emphasize the role of selective iNOS inhibitors in reversing zinc chloride-induced spatial memory deficits via modulation of cholinergic marker expression.

  1. Nicotine increases impulsivity and decreases willingness to exert cognitive effort despite improving attention in "slacker" rats: insights into cholinergic regulation of cost/benefit decision making.

    Science.gov (United States)

    Hosking, Jay G; Lam, Fred C W; Winstanley, Catharine A

    2014-01-01

    Successful decision making in our daily lives requires weighing an option's costs against its associated benefits. The neuromodulator acetylcholine underlies both the etiology and treatment of a number of illnesses in which decision making is perturbed, including Alzheimer's disease, attention-deficit/hyperactivity disorder, and schizophrenia. Nicotine acts on the cholinergic system and has been touted as a cognitive enhancer by both smokers and some researchers for its attention-boosting effects; however, it is unclear whether treatments that have a beneficial effect on attention would also have a beneficial effect on decision making. Here we utilize the rodent Cognitive Effort Task (rCET), wherein animals can choose to allocate greater visuospatial attention for a greater reward, to examine cholinergic contributions to both attentional performance and choice based on attentional demand. Following the establishment of baseline behavior, four drug challenges were administered: nicotine, mecamylamine, scopolamine, and oxotremorine (saline plus three doses for each). As per previous rCET studies, animals were divided by their baseline preferences, with "worker" rats choosing high-effort/high-reward options more than their "slacker" counterparts. Nicotine caused slackers to choose even fewer high-effort trials than at baseline, but had no effect on workers' choice. Despite slackers' decreased willingness to expend effort, nicotine improved their attentional performance on the task. Nicotine also increased measures of motor impulsivity in all animals. In contrast, scopolamine decreased animals' choice of high-effort trials, especially for workers, while oxotremorine decreased motor impulsivity for all animals. In sum, the cholinergic system appears to contribute to decision making, and in part these contributions can be understood as a function of individual differences. While nicotine has been considered as a cognitive enhancer, these data suggest that its modest

  2. Putative periodontopathic bacteria and herpesviruses in pregnant women: a case-control study.

    Science.gov (United States)

    Lu, Haixia; Zhu, Ce; Li, Fei; Xu, Wei; Tao, Danying; Feng, Xiping

    2016-06-15

    Little is known about herpesvirus and putative periodontopathic bacteria in maternal chronic periodontitis. The present case-control study aimed to explore the potential relationship between putative periodontopathic bacteria and herpesviruses in maternal chronic periodontitis.Saliva samples were collected from 36 pregnant women with chronic periodontitis (cases) and 36 pregnant women with healthy periodontal status (controls). Six putative periodontopathic bacteria (Porphyromonas gingivalis [Pg], Aggregatibacer actinomycetemcomitans [Aa], Fusobacterium nucleatum [Fn], Prevotella intermedia [Pi], Tannerella forsythia [Tf], and Treponema denticola [Td]) and three herpesviruses (Epstein-Barr virus [EBV], human cytomegalovirus [HCMV], and herpes simplex virus [HSV]) were detected. Socio-demographic data and oral health related behaviors, and salivary estradiol and progesterone levels were also collected. The results showed no significant differences in socio-demographic background, oral health related behaviors, and salivary estradiol and progesterone levels between the two groups (all P > 0.05). The detection rates of included periodontopathic microorganisms were not significantly different between the two groups (all P > 0.05), but the coinfection rate of EBV and Pg was significantly higher in the case group than in the control group (P = 0.028). EBV and Pg coinfection may promote the development of chronic periodontitis among pregnant women.

  3. Computational identification of putative cytochrome P450 genes in ...

    African Journals Online (AJOL)

    In this work, a computational study of expressed sequence tags (ESTs) of soybean was performed by data mining methods and bio-informatics tools and as a result 78 putative P450 genes were identified, including 57 new ones. These genes were classified into five clans and 20 families by sequence similarities and among ...

  4. Electrical Stimulation of Low-Threshold Proprioceptive Fibers in the Adult Rat Increases Density of Glutamatergic and Cholinergic Terminals on Ankle Extensor α-Motoneurons.

    Directory of Open Access Journals (Sweden)

    Olga Gajewska-Woźniak

    Full Text Available The effects of stimulation of low-threshold proprioceptive afferents in the tibial nerve on two types of excitatory inputs to α-motoneurons were tested. The first input is formed by glutamatergic Ia sensory afferents contacting monosynaptically α-motoneurons. The second one is the cholinergic input originating from V0c-interneurons, located in lamina X of the spinal cord, modulating activity of α-motoneurons via C-terminals. Our aim was to clarify whether enhancement of signaling to ankle extensor α-motoneurons, via direct electrical stimulation addressed predominantly to low-threshold proprioceptive fibers in the tibial nerve of awake rats, will affect Ia glutamatergic and cholinergic innervation of α-motoneurons of lateral gastrocnemius (LG. LG motoneurons were identified with True Blue tracer injected intramuscularly. Tibial nerve was stimulated for 7 days with continuous bursts of three pulses applied in four 20 min sessions daily. The Hoffmann reflex and motor responses recorded from the soleus muscle, LG synergist, allowed controlling stimulation. Ia terminals and C-terminals abutting on LG-labeled α-motoneurons were detected by immunofluorescence (IF using input-specific anti- VGLUT1 and anti-VAChT antibodies, respectively. Quantitative analysis of confocal images revealed that the number of VGLUT1 IF and VAChT IF terminals contacting the soma of LG α-motoneurons increased after stimulation by 35% and by 26%, respectively, comparing to the sham-stimulated side. The aggregate volume of VGLUT1 IF and VAChT IF terminals increased by 35% and by 30%, respectively. Labeling intensity of boutons was also increased, suggesting an increase of signaling to LG α-motoneurons after stimulation. To conclude, one week of continuous burst stimulation of proprioceptive input to LG α-motoneurons is effective in enrichment of their direct glutamatergic but also indirect cholinergic inputs. The effectiveness of such and longer stimulation in models

  5. Cholinergic modulation of cognitive processing: insights drawn from computational models

    Directory of Open Access Journals (Sweden)

    Ehren L Newman

    2012-06-01

    Full Text Available Acetylcholine plays an important role in cognitive function, as shown by pharmacological manipulations that impact working memory, attention, episodic memory and spatial memory function. Acetylcholine also shows striking modulatory influences on the cellular physiology of hippocampal and cortical neurons. Modeling of neural circuits provides a framework for understanding how the cognitive functions may arise from the influence of acetylcholine on neural and network dynamics. We review the influences of cholinergic manipulations on behavioral performance in working memory, attention, episodic memory and spatial memory tasks, the physiological effects of acetylcholine on neural and circuit dynamics, and the computational models that provide insight into the functional relationships between the physiology and behavior. Specifically, we discuss the important role of acetylcholine in governing mechanisms of active maintenance in working memory tasks and in regulating network dynamics important for effective processing of stimuli in attention and episodic memory tasks. We also propose that theta rhythm play a crucial role as an intermediary between the physiological influences of acetylcholine and behavior in episodic and spatial memory tasks. We conclude with a synthesis of the existing modeling work and highlight future directions that are likely to be rewarding given the existing state of the literature for both empiricists and modelers.

  6. Cholinergic regulation of protein phosphorylation in bovine adrenal chromaffin cells

    International Nuclear Information System (INIS)

    Haycock, J.W.; Browning, M.D.; Greengard, P.

    1988-01-01

    Chromaffin cells were isolated from bovine adrenal medullae and maintained in primary culture. After prelabeling with 32 PO 4 , exposure of the chromaffin cells to acetylcholine increased the phosphorylation of a M/sub r/ ≅ 100,000 protein and a M/sub r/ ≅ 60,000 protein (tyrosine hydroxylase), visualized after separation of total cellular proteins in NaDodSO 4 /polyacrylamide gels. Immunoprecipitation with antibodies to three known phosphoproteins (100-kDa, 87-kDa, and protein III) revealed an acetylcholine-dependent phosphorylation of these proteins. These three proteins were also shown to be present in bovine adrenal chromaffin cells by immunolabeling techniques. 100-kDa is a M/sub r/ ≅ 100,000 protein selectively phosphorylated by calcium/calmodulin-dependent protein kinase III, 87-kDa is a M/sub r/ ≅ 87,000 protein selectively phosphorylated by protein kinase C, and protein III is a phosphoprotein doublet of M/sub r/ ≅ 74,000 (IIIa) and M/sub r/ ≅ 55,000 (IIIb) phosphorylated by cAMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase I. The data demonstrate that cholinergic activation of chromaffin cells increases the phosphorylation of several proteins and that several protein kinase systems may be involved in these effects

  7. Putative golden proportions as predictors of facial esthetics in adolescents.

    NARCIS (Netherlands)

    Kiekens, R.M.A.; Kuijpers-Jagtman, A.M.; Hof, M.A. van 't; Hof, B.E. van 't; Maltha, J.C.

    2008-01-01

    INTRODUCTION: In orthodontics, facial esthetics is assumed to be related to golden proportions apparent in the ideal human face. The aim of the study was to analyze the putative relationship between facial esthetics and golden proportions in white adolescents. METHODS: Seventy-six adult laypeople

  8. Putative Dementia Cases Fluctuate as a Function of Mini-Mental State Examination Cut-Off Points.

    Science.gov (United States)

    Rosa, Ilka M; Henriques, Ana G; Wiltfang, Jens; da Cruz E Silva, Odete A B

    2018-01-01

    As the population ages, there is a growing need to quickly and accurately identify putative dementia cases. Many cognitive tests are available; among those commonly used are the Cognitive Dementia Rating (CDR) and the Mini-Mental Status Examination (MMSE). The aim of this work was to compare the validity and reliability of these cognitive tests in a primary care based cohort (pcb-Cohort). The MMSE and the CDR were applied to 568 volunteers in the pcb-Cohort. Distinct cut-off points for the MMSE were considered, namely MMSE 27, MMSE 24, and MMSE PT (adapted for the Portuguese population). The MMSE 27 identified the greatest number of putative dementia cases, and, as determined by the ROC curve, it was the most sensitive and specific of the MMSE cut-offs considered. Putative predictive or risk factors identified included age, literacy, depression, and diabetes mellitus (DM). DM has previously been indicated as a risk factor for dementia and Alzheimer's disease. Comparatively, the MMSE 27 cut-off has the greatest sensibility (94.9%) and specificity (66.3%) when compared to MMSE PT and MMSE 24. Upon comparing MMSE and CDR scores, the latter identified a further 146 putative dementia cases, thus permitting one to propose that in an ideal situation, both tests should be employed. This increases the likelihood of identifying putative dementia cases for subsequent follow up work, thus these cognitive tests represent important tools in patient care. Further, this is a significant study for Portuguese populations, where few of these studies have been carried out.

  9. Heterologous expression and characterization of a putative glycoside hydrolase family 43 arabinofuranosidase from Clostridium thermocellum B8

    NARCIS (Netherlands)

    Camargo, de Brenda R.; Claassens, Nico J.; Quirino, Betania Ferraz; Noronha, Eliane F.; Kengen, Servé W.M.

    2018-01-01

    An extensive list of putative cellulosomal enzymes from C. thermocellum is now available in the public databanks, however, most of these remain unvalidated with regard to their activity and expression control mechanisms. This is particularly true of those enzymes putatively involved in hemicellulose

  10. [Cholinergic anti-inflammatory pathway of some non-pharmacological therapies of complementary medicine: possible implications for treatment of rheumatic and autoimmune diseases].

    Science.gov (United States)

    Gamus, Dorit

    2011-08-01

    Rheumatologic and autoimmune diseases are among foremost diseases for which patients seek complementary and integrative medicine options. Therefore, physicians should be informed on the advances in research of these therapies, in order to be able to discuss possible indications and contraindications for these treatment modalities with their patients. This review summarizes several therapeutic modalities of complementary medicine that may be involved in the cholinergic anti-inflammatory pathway. The analysis of systematic reviews of acupuncture for rheumatic conditions has concluded that the evidence is sufficiently sound to warrant positive recommendations of this therapy for osteoarthritis, low back pain and lateral elbow pain. There is relatively strong evidence to support the use of hypnosis in pain treatment, such as in cases of fibromyalgia. A recent controlled study that evaLuated tai-chi in fibromyalgia has reported reductions in pain, improvements in mood, quality of Life, self efficacy and exercise capacity. There is also cumulative evidence that acupuncture, hypnosis and tai-chi may decrease the high frequency of heart rate variability, suggesting enhancement of vagus nerve activity. Hence, it has been hypothesized that these modalities might impact the cholinergic anti-inflammatory pathway to modulate inflammation. Further clinical and basic research to confirm this hypothesis should be performed in order to validate integration of these therapies in comprehensive treatment for some inflammatory and autoimmune diseases.

  11. Impairment of the nerve growth factor pathway driving amyloid accumulation in cholinergic neurons: the incipit of the Alzheimer′s disease story?

    Directory of Open Access Journals (Sweden)

    Viviana Triaca

    2016-01-01

    Full Text Available The current idea behind brain pathology is that disease is initiated by mild disturbances of common physiological processes. Overtime, the disruption of the neuronal homeostasis will determine irreversible degeneration and neuronal apoptosis. This could be also true in the case of nerve growth factor (NGF alterations in sporadic Alzheimer′s disease (AD, an age-related pathology characterized by cholinergic loss, amyloid plaques and neurofibrillary tangles. In fact, the pathway activated by NGF, a key neurotrophin for the metabolism of basal forebrain cholinergic neurons (BFCN, is one of the first homeostatic systems affected in prodromal AD. NGF signaling dysfunctions have been thought for decades to occur in AD late stages, as a mere consequence of amyloid-driven disruption of the retrograde axonal transport of neurotrophins to BFCN. Nowadays, a wealth of knowledge is potentially opening a new scenario: NGF signaling impairment occurs at the onset of AD and correlates better than amyloid load with cognitive decline. The recent acceleration in the characterization of anatomical, functional and molecular profiles of early AD is aimed at maximizing the efficacy of existing treatments and setting novel therapies. Accordingly, the elucidation of the molecular events underlying APP metabolism regulation by the NGF pathway in the septo-hippocampal system is crucial for the identification of new target molecules to slow and eventually halt mild cognitive impairment (MCI and its progression toward AD.

  12. Effect of partial volume correction on muscarinic cholinergic receptor imaging with single-photon emission tomography in patients with temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Weckesser, M.; Ziemons, K.; Griessmeier, M.; Sonnenberg, F.; Langen, K.J.; Mueller-Gaertner, H.W.; Hufnagel, A.; Elger, C.E.; Hacklaender, T.; Holschbach, M.

    1997-01-01

    Animal experiments and preliminary results in humans have indicated alterations of hippocampal muscarinic acetylcholine receptors (mAChR) in temporal lobe epilepsy. Patients with temporal lobe epilepsy often present with a reduction in hippocampal volume. The aim of this study was to investigate the influence of hippocampal atrophy on the quantification of mAChR with single photon emission tomography (SPET) in patients with temporal lobe epilepsy. Cerebral uptake of the muscarinic cholinergic antagonist [ 123 I]4-iododexetimide (IDex) was investigated by SPET in patients suffering from temporal lobe epilepsy of unilateral (n=6) or predominantly unilateral (n=1) onset. Regions of interest were drawn on co-registered magnetic resonance images. Hippocampal volume was determined in these regions and was used to correct the SPET results for partial volume effects. A ratio of hippocampal IDex binding on the affected side to that on the unaffected side was used to detect changes in muscarinic cholinergic receptor density. Before partial volume correction a decrease in hippocampal IDex binding on the focus side was found in each patient. After partial volume no convincing differences remained. Our results indicate that the reduction in hippocampal IDex binding in patients with epilepsy is due to a decrease in hippocampal volume rather than to a decrease in receptor concentration. (orig.). With 2 figs., 2 tabs

  13. The effect of the steroid sulfatase inhibitor (p-O-sulfamoyl)-tetradecanoyl tyramine (DU-14) on learning and memory in rats with selective lesion of septal-hippocampal cholinergic tract.

    Science.gov (United States)

    Babalola, P A; Fitz, N F; Gibbs, R B; Flaherty, P T; Li, P-K; Johnson, D A

    2012-10-01

    Dehydroepiandrosterone sulfate (DHEAS), is an excitatory neurosteroid synthesized within the CNS that modulates brain function. Effects associated with augmented DHEAS include learning and memory enhancement. Inhibitors of the steroid sulfatase enzyme increase brain DHEAS levels and can also facilitate learning and memory. This study investigated the effect of steroid sulfatase inhibition on learning and memory in rats with selective cholinergic lesion of the septo-hippocampal tract using passive avoidance and delayed matching to position T-maze (DMP) paradigms. The selective cholinergic immunotoxin 192 IgG-saporin (SAP) was infused into the medial septum of animals and then tested using a step-through passive avoidance paradigm or DMP paradigm. Peripheral administration of the steroid sulfatase inhibitor, DU-14, increased step-through latency following footshock in rats with SAP lesion compared to both vehicle treated control and lesioned animals (pmemory associated with contextual fear, but impairs acquisition of spatial memory tasks in rats with selective lesion of the septo-hippocampal tract. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Supplementary data: Variation in the PTEN-induced putative kinase ...

    Indian Academy of Sciences (India)

    Variation in the PTEN-induced putative kinase 1 gene associated with the increase risk of type 2 diabetes in northern Chinese. Yanchun Qu, Liang Sun, Ze Yang and Ruifa Han. J. Genet. 90, 125–128. Table 1. Clinical characteristics of cases and controls. Phenotype. T2DM. Controls. P value. Age (years). 49.5 ± 11.1. 50.4 ± ...

  15. Conference on Dynamics of Cholinergic Function: Acetylcholine in Health, Disease and Aging Held at Oglebay Park, West Virginia on 31 October-4 November 1983.

    Science.gov (United States)

    1984-04-01

    Effects of Lecithin Administration" Steven H. Zeisel, Boston University School of Medicine, Boston, Massachusetts, USA "Factors which Influence the...of Rats with Fluphenazine and Choline or Lecithin on the Striatal Cholinergic and Dopaminergic System" Israel Hanin, University of Pittsburgh School...elevated K appears to hydrolyze cytoplasmic ACh rather than stimulate its release. However, if the intraterminal form of AChE is sufficiently inhibited

  16. Amplification of tumor inducing putative cancer stem cells (CSCs) by vitamin A/retinol from mammary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rohit B. [Department of Microbiology and Molecular Genetics, University of Pittsburgh, PA 15261 (United States); Wang, Qingde [Department of Surgery, University of Pittsburgh, PA 15261 (United States); Khillan, Jaspal S., E-mail: khillan@pitt.edu [Department of Microbiology and Molecular Genetics, University of Pittsburgh, PA 15261 (United States)

    2013-07-12

    Highlights: •Vitamin A supports self renewal of putative CSCs from mammary tumors. •These cells exhibit impaired retinol metabolism into retinoic acid. •CSCs from mammary tumors differentiate into mammary specific cell lineages. •The cells express mammary stem cell specific CD29 and CD49f markers. •Putative CSCs form highly metastatic tumors in NOD SCID mouse. -- Abstract: Solid tumors contain a rare population of cancer stem cells (CSCs) that are responsible for relapse and metastasis. The existence of CSC however, remains highly controversial issue. Here we present the evidence for putative CSCs from mammary tumors amplified by vitamin A/retinol signaling. The cells exhibit mammary stem cell specific CD29{sup hi}/CD49f{sup hi}/CD24{sup hi} markers, resistance to radiation and chemo therapeutic agents and form highly metastatic tumors in NOD/SCID mice. The cells exhibit indefinite self renewal as cell lines. Furthermore, the cells exhibit impaired retinol metabolism and do not express enzymes that metabolize retinol into retinoic acid. Vitamin A/retinol also amplified putative CSCs from breast cancer cell lines that form highly aggressive tumors in NOD SCID mice. The studies suggest that high purity putative CSCs can be isolated from solid tumors to establish patient specific cell lines for personalized therapeutics for pre-clinical translational applications. Characterization of CSCs will allow understanding of basic cellular and molecular pathways that are deregulated, mechanisms of tumor metastasis and evasion of therapies that has direct clinical relevance.

  17. Cardiovascular effects of the intracerebroventricular injection of adrenomedullin: roles of the peripheral vasopressin and central cholinergic systems

    Directory of Open Access Journals (Sweden)

    B. Cam-Etoz

    2012-03-01

    Full Text Available Our objective was to investigate in conscious Sprague-Dawley (6-8 weeks, 250-300 g female rats (N = 7 in each group the effects of intracerebroventricularly (icv injected adrenomedullin (ADM on blood pressure and heart rate (HR, and to determine if ADM and calcitonin gene-related peptide (CGRP receptors, peripheral V1 receptors or the central cholinergic system play roles in these cardiovascular effects. Blood pressure and HR were observed before and for 30 min following drug injections. The following results were obtained: 1 icv ADM (750 ng/10 µL caused an increase in both blood pressure and HR (DMAP = 11.8 ± 2.3 mmHg and ΔHR = 39.7 ± 4.8 bpm. 2 Pretreatment with a CGRP receptor antagonist (CGRP8-37 and ADM receptor antagonist (ADM22-52 blocked the effect of central ADM on blood pressure and HR. 3 The nicotinic receptor antagonist mecamylamine (25 µg/10 µL, icv and the muscarinic receptor antagonist atropine (5 µg/10 µL, icv prevented the stimulating effect of ADM on blood pressure. The effect of ADM on HR was blocked only by atropine (5 µg/10 µL, icv. 4 The V1 receptor antagonist [β-mercapto-β-β-cyclopentamethylenepropionyl¹, O-me-Tyr²,Arg8]-vasopressin (V2255; 10 µg/kg, that was applied intravenously, prevented the effect of ADM on blood pressure and HR. This is the first study reporting the role of specific ADM and CGRP receptors, especially the role of nicotinic and muscarinic central cholinergic receptors and the role of peripheral V1 receptors in the increasing effects of icv ADM on blood pressure and HR.

  18. Cardiovascular effects of the intracerebroventricular injection of adrenomedullin: roles of the peripheral vasopressin and central cholinergic systems

    Energy Technology Data Exchange (ETDEWEB)

    Cam-Etoz, B.; Isbil-Buyukcoskun, N.; Ozluk, K. [Department of Physiology, Uludag University Medical Faculty, Gorukle/Bursa (Turkey)

    2012-03-02

    Our objective was to investigate in conscious Sprague-Dawley (6-8 weeks, 250-300 g) female rats (N = 7 in each group) the effects of intracerebroventricularly (icv) injected adrenomedullin (ADM) on blood pressure and heart rate (HR), and to determine if ADM and calcitonin gene-related peptide (CGRP) receptors, peripheral V{sub 1} receptors or the central cholinergic system play roles in these cardiovascular effects. Blood pressure and HR were observed before and for 30 min following drug injections. The following results were obtained: 1) icv ADM (750 ng/10 µL) caused an increase in both blood pressure and HR (ΔMAP = 11.8 ± 2.3 mmHg and ΔHR = 39.7 ± 4.8 bpm). 2) Pretreatment with a CGRP receptor antagonist (CGRP{sub 8-37}) and ADM receptor antagonist (ADM{sub 22-52}) blocked the effect of central ADM on blood pressure and HR. 3) The nicotinic receptor antagonist mecamylamine (25 µg/10 µL, icv) and the muscarinic receptor antagonist atropine (5 µg/10 µL, icv) prevented the stimulating effect of ADM on blood pressure. The effect of ADM on HR was blocked only by atropine (5 µg/10 µL, icv). 4) The V{sub 1} receptor antagonist [β-mercapto-β-β-cyclopentamethylenepropionyl{sup 1}, O-me-Tyr{sup 2},Arg{sup 8}]-vasopressin (V2255; 10 µg/kg), that was applied intravenously, prevented the effect of ADM on blood pressure and HR. This is the first study reporting the role of specific ADM and CGRP receptors, especially the role of nicotinic and muscarinic central cholinergic receptors and the role of peripheral V{sub 1} receptors in the increasing effects of icv ADM on blood pressure and HR.

  19. Two distinct populations of projection neurons in the rat lateral parafascicular thalamic nucleus and their cholinergic responsiveness.

    Science.gov (United States)

    Beatty, J A; Sylwestrak, E L; Cox, C L

    2009-08-04

    The lateral parafascicular nucleus (lPf) is a member of the intralaminar thalamic nuclei, a collection of nuclei that characteristically provides widespread projections to the neocortex and basal ganglia and is associated with arousal, sensory, and motor functions. Recently, lPf neurons have been shown to possess different characteristics than other cortical-projecting thalamic relay neurons. We performed whole cell recordings from lPf neurons using an in vitro rat slice preparation and found two distinct neuronal subtypes that were differentiated by distinct morphological and physiological characteristics: diffuse and bushy. Diffuse neurons, which had been previously described, were the predominant neuronal subtype (66%). These neurons had few, poorly-branching, extended dendrites, and rarely displayed burst-like action potential discharge, a ubiquitous feature of thalamocortical relay neurons. Interestingly, we discovered a smaller population of bushy neurons (34%) that shared similar morphological and physiological characteristics with thalamocortical relay neurons of primary sensory thalamic nuclei. In contrast to other thalamocortical relay neurons, activation of muscarinic cholinergic receptors produced a membrane hyperpolarization via activation of M(2) receptors in most lPf neurons (60%). In a minority of lPf neurons (33%), muscarinic agonists produced a membrane depolarization via activation of predominantly M(3) receptors. The muscarinic receptor-mediated actions were independent of lPf neuronal subtype (i.e. diffuse or bushy neurons); however the cholinergic actions were correlated with lPf neurons with different efferent targets. Retrogradely-labeled lPf neurons from frontal cortical fluorescent bead injections primarily consisted of bushy type lPf neurons (78%), but more importantly, all of these neurons were depolarized by muscarinic agonists. On the other hand, lPf neurons labeled by striatal injections were predominantly hyperpolarized by muscarinic

  20. Alkenenitrile Transmissive Olefination: Synthesis of the Putative Lignan "Morinol I"

    Science.gov (United States)

    Fleming, Fraser F.; Liu, Wang; Yao, Lihua; Pitta, Bhaskar; Purzycki, Matthew; Ravikumar, P. C.

    2012-01-01

    Grignard reagents trigger an addition-elimination with α'-hydroxy acrylonitriles to selectively generate Z-alkenenitriles. The modular assembly of Z-alkenenitriles from a Grignard reagent, acrylonitrile, and an aldehyde is ideal for stereoselectively synthesizing alkenes as illustrated in the synthesis of the putative lignan "morinol I." PMID:22545004

  1. Pharmacological Mechanisms of Cortical Enhancement Induced by the Repetitive Pairing of Visual/Cholinergic Stimulation.

    Directory of Open Access Journals (Sweden)

    Jun-Il Kang

    Full Text Available Repetitive visual training paired with electrical activation of cholinergic projections to the primary visual cortex (V1 induces long-term enhancement of cortical processing in response to the visual training stimulus. To better determine the receptor subtypes mediating this effect the selective pharmacological blockade of V1 nicotinic (nAChR, M1 and M2 muscarinic (mAChR or GABAergic A (GABAAR receptors was performed during the training session and visual evoked potentials (VEPs were recorded before and after training. The training session consisted of the exposure of awake, adult rats to an orientation-specific 0.12 CPD grating paired with an electrical stimulation of the basal forebrain for a duration of 1 week for 10 minutes per day. Pharmacological agents were infused intracortically during this period. The post-training VEP amplitude was significantly increased compared to the pre-training values for the trained spatial frequency and to adjacent spatial frequencies up to 0.3 CPD, suggesting a long-term increase of V1 sensitivity. This increase was totally blocked by the nAChR antagonist as well as by an M2 mAChR subtype and GABAAR antagonist. Moreover, administration of the M2 mAChR antagonist also significantly decreased the amplitude of the control VEPs, suggesting a suppressive effect on cortical responsiveness. However, the M1 mAChR antagonist blocked the increase of the VEP amplitude only for the high spatial frequency (0.3 CPD, suggesting that M1 role was limited to the spread of the enhancement effect to a higher spatial frequency. More generally, all the drugs used did block the VEP increase at 0.3 CPD. Further, use of each of the aforementioned receptor antagonists blocked training-induced changes in gamma and beta band oscillations. These findings demonstrate that visual training coupled with cholinergic stimulation improved perceptual sensitivity by enhancing cortical responsiveness in V1. This enhancement is mainly mediated by n

  2. Myocardial Infarction Causes Transient Cholinergic Transdifferentiation of Cardiac Sympathetic Nerves via gp130.

    Science.gov (United States)

    Olivas, Antoinette; Gardner, Ryan T; Wang, Lianguo; Ripplinger, Crystal M; Woodward, William R; Habecker, Beth A

    2016-01-13

    Sympathetic and parasympathetic control of the heart is a classic example of norepinephrine (NE) and acetylcholine (ACh) triggering opposing actions. Sympathetic NE increases heart rate and contractility through activation of β receptors, whereas parasympathetic ACh slows the heart through muscarinic receptors. Sympathetic neurons can undergo a developmental transition from production of NE to ACh and we provide evidence that mouse cardiac sympathetic nerves transiently produce ACh after myocardial infarction (MI). ACh levels increased in viable heart tissue 10-14 d after MI, returning to control levels at 21 d, whereas NE levels were stable. At the same time, the genes required for ACh synthesis increased in stellate ganglia, which contain most of the sympathetic neurons projecting to the heart. Immunohistochemistry 14 d after MI revealed choline acetyltransferase (ChAT) in stellate sympathetic neurons and vesicular ACh transporter immunoreactivity in tyrosine hydroxylase-positive cardiac sympathetic fibers. Finally, selective deletion of the ChAT gene from adult sympathetic neurons prevented the infarction-induced increase in cardiac ACh. Deletion of the gp130 cytokine receptor from sympathetic neurons prevented the induction of cholinergic genes after MI, suggesting that inflammatory cytokines induce the transient acquisition of a cholinergic phenotype in cardiac sympathetic neurons. Ex vivo experiments examining the effect of NE and ACh on rabbit cardiac action potential duration revealed that ACh blunted both the NE-stimulated decrease in cardiac action potential duration and increase in myocyte calcium transients. This raises the possibility that sympathetic co-release of ACh and NE may impair adaptation to high heart rates and increase arrhythmia susceptibility. Sympathetic neurons normally make norepinephrine (NE), which increases heart rate and the contractility of cardiac myocytes. We found that, after myocardial infarction, the sympathetic neurons

  3. Identification of a putative nuclear export signal motif in human NANOG homeobox domain

    International Nuclear Information System (INIS)

    Park, Sung-Won; Do, Hyun-Jin; Huh, Sun-Hyung; Sung, Boreum; Uhm, Sang-Jun; Song, Hyuk; Kim, Nam-Hyung; Kim, Jae-Hwan

    2012-01-01

    Highlights: ► We found the putative nuclear export signal motif within human NANOG homeodomain. ► Leucine-rich residues are important for human NANOG homeodomain nuclear export. ► CRM1-specific inhibitor LMB blocked the potent human NANOG NES-mediated nuclear export. -- Abstract: NANOG is a homeobox-containing transcription factor that plays an important role in pluripotent stem cells and tumorigenic cells. To understand how nuclear localization of human NANOG is regulated, the NANOG sequence was examined and a leucine-rich nuclear export signal (NES) motif ( 125 MQELSNILNL 134 ) was found in the homeodomain (HD). To functionally validate the putative NES motif, deletion and site-directed mutants were fused to an EGFP expression vector and transfected into COS-7 cells, and the localization of the proteins was examined. While hNANOG HD exclusively localized to the nucleus, a mutant with both NLSs deleted and only the putative NES motif contained (hNANOG HD-ΔNLSs) was predominantly cytoplasmic, as observed by nucleo/cytoplasmic fractionation and Western blot analysis as well as confocal microscopy. Furthermore, site-directed mutagenesis of the putative NES motif in a partial hNANOG HD only containing either one of the two NLS motifs led to localization in the nucleus, suggesting that the NES motif may play a functional role in nuclear export. Furthermore, CRM1-specific nuclear export inhibitor LMB blocked the hNANOG potent NES-mediated export, suggesting that the leucine-rich motif may function in CRM1-mediated nuclear export of hNANOG. Collectively, a NES motif is present in the hNANOG HD and may be functionally involved in CRM1-mediated nuclear export pathway.

  4. Search strings for the study of putative occupational determinants of disease

    NARCIS (Netherlands)

    Mattioli, Stefano; Zanardi, Francesca; Baldasseroni, Alberto; Schaafsma, Frederieke; Cooke, Robin M. T.; Mancini, Gianpiero; Fierro, Mauro; Santangelo, Chiara; Farioli, Andrea; Fucksia, Serenella; Curti, Stefania; Violante, Francesco S.; Verbeek, Jos

    2010-01-01

    To identify efficient PubMed search strategies to retrieve articles regarding putative occupational determinants of conditions not generally considered to be work related. Based on MeSH definitions and expert knowledge, we selected as candidate search terms the four MeSH terms describing

  5. Putative Biomarkers and Targets of Estrogen Receptor Negative Human Breast Cancer

    Directory of Open Access Journals (Sweden)

    Stephen W. Byers

    2011-07-01

    Full Text Available Breast cancer is a progressive and potentially fatal disease that affects women of all ages. Like all progressive diseases, early and reliable diagnosis is the key for successful treatment and annihilation. Biomarkers serve as indicators of pathological, physiological, or pharmacological processes. Her2/neu, CA15.3, estrogen receptor (ER, progesterone receptor (PR, and cytokeratins are biomarkers that have been approved by the Food and Drug Administration for disease diagnosis, prognosis, and therapy selection. The structural and functional complexity of protein biomarkers and the heterogeneity of the breast cancer pathology present challenges to the scientific community. Here we review estrogen receptor-related putative breast cancer biomarkers, including those of putative breast cancer stem cells, a minor population of estrogen receptor negative tumor cells that retain the stem cell property of self renewal. We also review a few promising cytoskeleton targets for ER alpha negative breast cancer.

  6. Sequence analysis of putative swrW gene required for surfactant ...

    African Journals Online (AJOL)

    owner

    2012-07-17

    Jul 17, 2012 ... These nucleotide and protein sequence analysis of the putative swrW gene provides vital information on the versatility .... chain reaction (PCR) products were stored at 4°C. Presence of ... identical to the same gene with an E-value of 0.0. .... The Prokaryotes-A Handbook on the Biol. of Bacteria:Ecophysiol.

  7. Nicotine increases impulsivity and decreases willingness to exert cognitive effort despite improving attention in "slacker" rats: insights into cholinergic regulation of cost/benefit decision making.

    Directory of Open Access Journals (Sweden)

    Jay G Hosking

    Full Text Available Successful decision making in our daily lives requires weighing an option's costs against its associated benefits. The neuromodulator acetylcholine underlies both the etiology and treatment of a number of illnesses in which decision making is perturbed, including Alzheimer's disease, attention-deficit/hyperactivity disorder, and schizophrenia. Nicotine acts on the cholinergic system and has been touted as a cognitive enhancer by both smokers and some researchers for its attention-boosting effects; however, it is unclear whether treatments that have a beneficial effect on attention would also have a beneficial effect on decision making. Here we utilize the rodent Cognitive Effort Task (rCET, wherein animals can choose to allocate greater visuospatial attention for a greater reward, to examine cholinergic contributions to both attentional performance and choice based on attentional demand. Following the establishment of baseline behavior, four drug challenges were administered: nicotine, mecamylamine, scopolamine, and oxotremorine (saline plus three doses for each. As per previous rCET studies, animals were divided by their baseline preferences, with "worker" rats choosing high-effort/high-reward options more than their "slacker" counterparts. Nicotine caused slackers to choose even fewer high-effort trials than at baseline, but had no effect on workers' choice. Despite slackers' decreased willingness to expend effort, nicotine improved their attentional performance on the task. Nicotine also increased measures of motor impulsivity in all animals. In contrast, scopolamine decreased animals' choice of high-effort trials, especially for workers, while oxotremorine decreased motor impulsivity for all animals. In sum, the cholinergic system appears to contribute to decision making, and in part these contributions can be understood as a function of individual differences. While nicotine has been considered as a cognitive enhancer, these data suggest

  8. A Proteomics Approach to Identify New Putative Cardiac Intercalated Disk Proteins.

    Directory of Open Access Journals (Sweden)

    Siddarth Soni

    Full Text Available Synchronous beating of the heart is dependent on the efficient functioning of the cardiac intercalated disk (ID. The ID is composed of a complex protein network enabling electrical continuity and chemical communication between individual cardiomyocytes. Recently, several different studies have shed light on increasingly prevalent cardiac diseases involving the ID. Insufficient knowledge of its composition makes it difficult to study these disease mechanisms in more detail and therefore here we aim expand the ID proteome. Here, using a combination of general membrane enrichment, in-depth quantitative proteomics and an intracellular location driven bioinformatics approach, we aim to discover new putative ID proteins in rat ventricular tissue.General membrane isolation, enriched amongst others also with ID proteins as based on presence of the established markers connexin-43 and n-cadherin, was performed using centrifugation. By mass spectrometry, we quantitatively evaluated the level of 3455 proteins in the enriched membrane fraction (EMF and its counterpart, the soluble cytoplasmic fraction. These data were stringently filtered to generate a final set of 97 enriched, putative ID proteins. These included Cx43 and n-cadherin, but also many interesting novel candidates. We selected 4 candidates (Flotillin-2 (FLOT2, Nexilin (NEXN, Popeye-domain-containg-protein 2 (POPDC2 and thioredoxin-related-transmembrane-protein 2 (TMX2 and confirmed their co-localization with n-cadherin in the ID of human and rat heart cryo-sections, and isolated dog cardiomyocytes.The presented proteomics dataset of putative new ID proteins is a valuable resource for future research into this important molecular intersection of the heart.

  9. Putative and unique gene sequence utilization for the design of species specific probes as modeled by Lactobacillus plantarum

    Science.gov (United States)

    The concept of utilizing putative and unique gene sequences for the design of species specific probes was tested. The abundance profile of assigned functions within the Lactobacillus plantarum genome was used for the identification of the putative and unique gene sequence, csh. The targeted gene (cs...

  10. Search strings for the study of putative occupational determinants of disease

    NARCIS (Netherlands)

    Mattioli, S.; Zanardi, F.; Baldasseroni, A.; Schaafsma, F.; Cooke, R.M.T.; Mancini, G.; Fierro, M.; Santangelo, C.; Farioli, A.; Fucksia, S.; Curti, S.; Violante, F.S.; Verbeek, J.

    2010-01-01

    Objective To identify efficient PubMed search strategies to retrieve articles regarding putative occupational determinants of conditions not generally considered to be work related. Methods Based on MeSH definitions and expert knowledge, we selected as candidate search terms the four MeSH terms

  11. Involvement of Cholinergic and Adrenergic Receptors in Pathogenesis and Inflammatory Response Induced by Alpha-Neurotoxin Bot III of Scorpion Venom.

    Science.gov (United States)

    Nakib, Imene; Martin-Eauclaire, Marie-France; Laraba-Djebari, Fatima

    2016-10-01

    Bot III neurotoxin is the most lethal α neurotoxin purified from Buthus occitanus tunetanus scorpion venom. This toxin binds to the voltage-gated sodium channel of excitable cells and blocks its inactivation, inducing an increased release of neurotransmitters (acetylcholine and catecholamines). This study aims to elucidate the involvement of cholinergic and adrenergic receptors in pathogenesis and inflammatory response triggered by this toxin. Injection of Bot III to animals induces an increase of peroxidase activities, an imbalance of oxidative status, tissue damages in lung parenchyma, and myocardium correlated with metabolic disorders. The pretreatment with nicotine (nicotinic receptor agonist) or atropine (muscarinic receptor antagonist) protected the animals from almost all disorders caused by Bot III toxin, especially the immunological alterations. Bisoprolol administration (selective β1 adrenergic receptor antagonist) was also efficient in the protection of animals, mainly on tissue damage. Propranolol (non-selective adrenergic receptor antagonist) showed less effect. These results suggest that both cholinergic and adrenergic receptors are activated in the cardiopulmonary manifestations induced by Bot III. Indeed, the muscarinic receptor appears to be more involved than the nicotinic one, and the β1 adrenergic receptor seems to dominate the β2 receptor. These results showed also that the activation of nicotinic receptor leads to a significant protection of animals against Bot III toxin effect. These findings supply a supplementary data leading to better understanding of the mechanism triggered by scorpionic neurotoxins and suggest the use of drugs targeting these receptors, especially the nicotinic one in order to counteract the inflammatory response observed in scorpion envenomation.

  12. Putative contact ketoconazole shampoo-triggered pemphigus foliaceus in a dog.

    Science.gov (United States)

    Sung, Hyun-Jeong; Yoon, In-Hwa; Kim, Jung-Hyun

    2017-09-01

    A 10-year-old spayed female cocker spaniel dog was referred for an evaluation of acute-onset generalized pustular cutaneous lesions following application of ketoconazole shampoo. Cytologic and histopathologic examinations of the lesions revealed intra-epidermal pustules with predominantly neutrophils and acantholytic cells. This is the first description of putative contact ketoconazole shampoo-triggered pemphigus foliaceus in a dog.

  13. Differential expressions of putative genes in various floral organs of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Full Length Research Paper. Differential expressions of putative genes in various floral organs of the Pigeon orchid (Dendrobium crumenatum) using GeneFishing. Faridah, Q. Z.1, 2, Ng, B. Z.3, Raha, A. R.4, Umi, K. A. B.5 and Khosravi, A. R.2*. 1Department of Biology, Faculty Science, University Putra ...

  14. Hippocampal P3-Like Auditory Event-Related Potentials are Disrupted in a Rat Model of Cholinergic Degeneration in Alzheimer's Disease: Reversal by Donepezil Treatment

    DEFF Research Database (Denmark)

    Laursen, Bettina; Mørk, Arne; Kristiansen, Uffe

    2014-01-01

    P300 (P3) event-related potentials (ERPs) have been suggested to be an endogenous marker of cognitive function and auditory oddball paradigms are frequently used to evaluate P3 ERPs in clinical settings. Deficits in P3 amplitude and latency reflect some of the neurological dysfunctions related...... cholinergic degeneration induced by SAP. SAP-lesioned rats may constitute a suitable model to test the efficacy of pro-cognitive substances in an applied experimental setup....

  15. Cholinergic Degeneration and Alterations in the TrkA and p75NTR Balance as a Result of Pro-NGF Injection into Aged Rats

    Directory of Open Access Journals (Sweden)

    Ashley M. Fortress

    2011-01-01

    Full Text Available Learning and memory impairments occurring with Alzheimer's disease (AD are associated with degeneration of the basal forebrain cholinergic neurons (BFCNs. BFCNs extend their axons to the hippocampus where they bind nerve growth factor (NGF which is retrogradely transported to the cell body. While NGF is necessary for BFCN survival and function via binding to the high-affinity receptor TrkA, its uncleaved precursor, pro-NGF has been proposed to induce neurodegeneration via binding to the p75NTR and its coreceptor sortilin. Basal forebrain TrkA and NGF are downregulated with aging while pro-NGF is increased. Given these data, the focus of this paper was to determine a mechanism for how pro-NGF accumulation may induce BFCN degeneration. Twenty-four hours after a single injection of pro-NGF into hippocampus, we found increased hippocampal p75NTR levels, decreased hippocampal TrkA levels, and cholinergic degeneration. The data suggest that the increase in p75NTR with AD may be mediated by elevated pro-NGF levels as a result of decreased cleavage, and that pro-NGF may be partially responsible for age-related degenerative changes observed in the basal forebrain. This paper is the first in vivo evidence that pro-NGF can affect BFCNs and may do so by regulating expression of p75NTR neurotrophin receptors.

  16. Inhibitory Synaptic Plasticity - Spike timing dependence and putative network function.

    Directory of Open Access Journals (Sweden)

    Tim P Vogels

    2013-07-01

    Full Text Available While the plasticity of excitatory synaptic connections in the brain has been widely studied, the plasticity of inhibitory connections is much less understood. Here, we present recent experimental and theoretical □ndings concerning the rules of spike timing-dependent inhibitory plasticity and their putative network function. This is a summary of a workshop at the COSYNE conference 2012.

  17. Cholinergic stimulation prevents the development of autoimmune diabetes: Evidence for the modulation of Th17 effector cells via an IFNgamma-dependent mechanism

    Directory of Open Access Journals (Sweden)

    Junu George

    2016-10-01

    Full Text Available Type I diabetes (T1D results from T cell-mediated damage of pancreatic β-cells and loss of insulin production. The cholinergic anti-inflammatory pathway represents a physiological link connecting the central nervous and immune systems via vagus nerve, and functions to control the release of proinflammatory cytokines. Using the multiple-low-dose streptozotocin (MLD-STZ model to induce experimental autoimmune diabetes, we investigated the potential of regulating the development of hyperglycemia through administration of paraoxon, a highly specific acetylcholinesterase inhibitor (AChEI. We demonstrate that pretreatment with paraoxon prevented hyperglycemia in STZ-treated C57BL/6 mice. This correlated with a reduction in T cell infiltration into pancreatic islets and preservation of the structure and functionality of β-cells. Gene expression analysis of pancreatic tissue revealed that increased peripheral cholinergic activity prevented STZ-mediated loss of insulin production, this being associated with a reduction in IL-1β, IL-6, and IL-17 proinflammatory cytokines. Intracellular cytokine analysis in splenic T cells demonstrated that inhibition of AChE led to a shift in STZ-induced immune response from a predominantly disease-causing IL-17-expressing Th17 cells to IFNγ-positive Th1 cells. Consistent with this conclusion, inhibition of AChE failed to prevent STZ-induced hyperglycemia in IFNγ-deficient mice. Our results provide mechanistic evidence for the prevention of murine T1D by inhibition of AChE and suggest a promising strategy for modulating disease severity.

  18. Cloning and sequence analysis of putative type II fatty acid synthase ...

    Indian Academy of Sciences (India)

    Prakash

    Cloning and sequence analysis of putative type II fatty acid synthase genes from Arachis hypogaea L. ... acyl carrier protein (ACP), malonyl-CoA:ACP transacylase, β-ketoacyl-ACP .... Helix II plays a dominant role in the interaction ... main distinguishing features of plant ACPs in plastids and ..... synthase component; J. Biol.

  19. Putative golden proportions as predictors of facial esthetics in adolescents.

    Science.gov (United States)

    Kiekens, Rosemie M A; Kuijpers-Jagtman, Anne Marie; van 't Hof, Martin A; van 't Hof, Bep E; Maltha, Jaap C

    2008-10-01

    In orthodontics, facial esthetics is assumed to be related to golden proportions apparent in the ideal human face. The aim of the study was to analyze the putative relationship between facial esthetics and golden proportions in white adolescents. Seventy-six adult laypeople evaluated sets of photographs of 64 adolescents on a visual analog scale (VAS) from 0 to 100. The facial esthetic value of each subject was calculated as a mean VAS score. Three observers recorded the position of 13 facial landmarks included in 19 putative golden proportions, based on the golden proportions as defined by Ricketts. The proportions and each proportion's deviation from the golden target (1.618) were calculated. This deviation was then related to the VAS scores. Only 4 of the 19 proportions had a significant negative correlation with the VAS scores, indicating that beautiful faces showed less deviation from the golden standard than less beautiful faces. Together, these variables explained only 16% of the variance. Few golden proportions have a significant relationship with facial esthetics in adolescents. The explained variance of these variables is too small to be of clinical importance.

  20. Identification and Expression of Acetylcholinesterase in Octopus vulgaris Arm Development and Regeneration: a Conserved Role for ACHE?

    Science.gov (United States)

    Fossati, Sara Maria; Candiani, Simona; Nödl, Marie-Therese; Maragliano, Luca; Pennuto, Maria; Domingues, Pedro; Benfenati, Fabio; Pestarino, Mario; Zullo, Letizia

    2015-08-01

    Acetylcholinesterase (ACHE) is a glycoprotein with a key role in terminating synaptic transmission in cholinergic neurons of both vertebrates and invertebrates. ACHE is also involved in the regulation of cell growth and morphogenesis during embryogenesis and regeneration acting through its non-cholinergic sites. The mollusk Octopus vulgaris provides a powerful model for investigating the mechanisms underlying tissue morphogenesis due to its high regenerative power. Here, we performed a comparative investigation of arm morphogenesis during adult arm regeneration and embryonic arm development which may provide insights on the conserved ACHE pathways. In this study, we cloned and characterized O. vulgaris ACHE, finding a single highly conserved ACHE hydrophobic variant, characterized by prototypical catalytic sites and a putative consensus region for a glycosylphosphatidylinositol (GPI)-anchor attachment at the COOH-terminus. We then show that its expression level is correlated to the stage of morphogenesis in both adult and embryonic arm. In particular, ACHE is localized in typical neuronal sites when adult-like arm morphology is established and in differentiating cell locations during the early stages of arm morphogenesis. This possibility is also supported by the presence in the ACHE sequence and model structure of both cholinergic and non-cholinergic sites. This study provides insights into ACHE conserved roles during processes of arm morphogenesis. In addition, our modeling study offers a solid basis for predicting the interaction of the ACHE domains with pharmacological blockers for in vivo investigations. We therefore suggest ACHE as a target for the regulation of tissue morphogenesis.

  1. A novel M1 PAM VU0486846 exerts efficacy in cognition models without displaying agonist activity or cholinergic toxicity.

    Science.gov (United States)

    Rook, Jerri M; Bertron, Jeanette L; Cho, Hyekyung P; Garcia-Barrantes, Pedro M; Moran, Sean P; Maksymetz, James T; Nance, Kellie D; Dickerson, Jonathan W; Remke, Daniel H; Chang, Sichen; Harp, Joel; Blobaum, Anna L; Niswender, Colleen M; Jones, Carrie K; Stauffer, Shaun R; Conn, P Jeffrey; Lindsley, Craig W

    2018-04-27

    Selective activation of the M1 subtype of muscarinic acetylcholine receptor, via positive allosteric modulation (PAM), is an exciting strategy to improve cognition in schizophrenia and Alzheimer's disease patients. However, highly potent M1 ago-PAMs, such as MK-7622, PF-06764427, and PF-06827443, can engender excessive activation of M1, leading to agonist actions in the prefrontal cortex (PFC) that impairs cognitive function, induces behavioral convulsions, and results in other classic cholinergic adverse events (AEs). Here, we report a fundamentally new and highly selective M1 PAM, VU0486846. VU0486846 possesses only weak agonist activity in M1-expressing cell lines with high receptor reserve and is devoid of agonist actions in the PFC, unlike previously reported ago-PAMs MK-7622, PF-06764427 and PF-06827443. Moreover, VU0486846 shows no interaction with antagonist binding at the orthosteric acetylcholine (ACh) site (e.g., neither bitopic nor displaying negative cooperativity with [3H]-NMS binding at theorthosteric site), no seizure liability at high brain exposures, and no cholinergic AEs. However, as opposed to ago-PAMs, VU0486846 produces robust efficacy in the novel object recognition model of cognitive function. Importantly, we show for the first time that an M1 PAM can reverse the cognitive deficits induced by atypical antipsychotics, such as risperidone. These findings further strengthen the argument that compounds with modest in vitro M1 PAM activity (EC50s > 100 nM) and pure-PAM activity in native tissues display robust pro-cognitive efficacy without AEs mediated by excessive activation of M1. Overall, the combination of compound assessment with recombinant in vitro assays (mindful of receptor reserve), native tissue systems (PFC), and phenotypic screens (behavioral convulsions) is essential to fully understand and evaluate lead compounds and enhance success in clinical development.

  2. A comparison of β-adrenoceptors and muscarinic cholinergic receptors in tissues of brown bullhead catfish (Ameiurus nebulosus) from the black river and old woman creek, Ohio

    Science.gov (United States)

    Steevens, Jeffery A.; Baumann, Paul C.; Jones, Susan B.

    1996-01-01

    β-Adrenoceptors (βARs) and muscarinic cholinergic receptors were measured in brain, gill, and heart tissues of brown bullhead catfish exposed to polycyclic aromatic hydrocarbons in the Black River, Ohio, USA, and were compared to values from Old Woman Creek, Ohio, a reference site. A decreased number of βARs were found in the gill from Black River fish, possibly indicating a compensatory response subsequent to chemical stress.

  3. Memory-guided sensory comparisons in the prefrontal cortex: contribution of putative pyramidal cells and interneurons.

    Science.gov (United States)

    Hussar, Cory R; Pasternak, Tatiana

    2012-02-22

    Comparing two stimuli that occur at different times demands the coordination of bottom-up and top-down processes. It has been hypothesized that the dorsolateral prefrontal (PFC) cortex, the likely source of top-down cortical influences, plays a key role in such tasks, contributing to both maintenance and sensory comparisons. We examined this hypothesis by recording from the PFC of monkeys comparing directions of two moving stimuli, S1 and S2, separated by a memory delay. We determined the contribution of the two principal cell types to these processes by classifying neurons into broad-spiking (BS) putative pyramidal cells and narrow-spiking (NS) putative local interneurons. During the delay, BS cells were more likely to exhibit anticipatory modulation and represent the remembered direction. While this representation was transient, appearing at different times in different neurons, it weakened when direction was not task relevant, suggesting its utility. During S2, both putative cell types showed comparison-related activity modulations. These modulations were of two types, each carried by different neurons, which either preferred trials with stimuli moving in the same direction or trials with stimuli of different directions. These comparison effects were strongly correlated with choice, suggesting their role in circuitry underlying decision making. These results provide the first demonstration of distinct contributions made by principal cell types to memory-guided perceptual decisions. During sensory stimulation both cell types represent behaviorally relevant stimulus features contributing to comparison and decision-related activity. However in the absence of sensory stimulation, putative pyramidal cells dominated, carrying information about the elapsed time and the preceding direction.

  4. Direction-selective circuitry in rat retina develops independently of GABAergic, cholinergic and action potential activity.

    Directory of Open Access Journals (Sweden)

    Le Sun

    Full Text Available The ON-OFF direction selective ganglion cells (DSGCs in the mammalian retina code image motion by responding much more strongly to movement in one direction. They do so by receiving inhibitory inputs selectively from a particular sector of processes of the overlapping starburst amacrine cells, a type of retinal interneuron. The mechanisms of establishment and regulation of this selective connection are unknown. Here, we report that in the rat retina, the morphology, physiology of the ON-OFF DSGCs and the circuitry for coding motion directions develop normally with pharmacological blockade of GABAergic, cholinergic activity and/or action potentials for over two weeks from birth. With recent results demonstrating light independent formation of the retinal DS circuitry, our results strongly suggest the formation of the circuitry, i.e., the connections between the second and third order neurons in the visual system, can be genetically programmed, although emergence of direction selectivity in the visual cortex appears to require visual experience.

  5. Crystallization and preliminary crystallographic analysis of a putative glucokinase/hexokinase from Thermus thermophilus

    International Nuclear Information System (INIS)

    Nakamura, Tsutomu; Kashima, Yasuhiro; Mine, Shouhei; Oku, Takashi; Uegaki, Koichi

    2011-01-01

    In this study, a putative glucokinase/hexokinase from T. thermophilus was purified and crystallized. Diffraction data were collected and processed to 2.02 Å resolution. Glucokinase/hexokinase catalyzes the phosphorylation of glucose to glucose 6-phosphate, which is the first step of glycolysis. The open reading frame TTHA0299 of the extreme thermophile Thermus thermophilus encodes a putative glucokinase/hexokinase which contains the consensus sequence for proteins from the repressors, open reading frames and sugar kinases family. In this study, the glucokinase/hexokinase from T. thermophilus was purified and crystallized using polyethylene glycol 8000 as a precipitant. Diffraction data were collected and processed to 2.02 Å resolution. The crystal belonged to space group P2 1 , with unit-cell parameters a = 70.93, b = 138.14, c = 75.16 Å, β = 95.41°

  6. Evaluation of surveillance of dengue fever cases in the public health centre of Putat Jaya based on attribute surveillance

    Directory of Open Access Journals (Sweden)

    Zumaroh Zumaroh

    2015-01-01

    Full Text Available Dengue Hemorrhagic Fever (DHF is a public health problem in the village of Putat Jaya which is an endemic area. Surveilans activity in DHF control program is the most important activity in controlling and monitoring disease progression. The program is expected to achieve incidence rate 55/100.000 population. This study aimed to evaluate the implementation of case surveilans in health centre of putat jaya based on attribute surveillance. Attribute surveillance is an indicator that describes the characteristics of the surveillance system. This research was an evaluation research with descriptive study design. As informants were clinic staff who deal specifically with cases of dengue hemorrhagic fever and laboratory workers. The techniques of data collection by interviews and document study. The variables of this study were simplicity, flexibility, acceptability, sensitivity, positive predictive value, representativeness, timeliness, data quality and data stability. It could be seen from Incidence Rate in 2013 has reached 133/100.00 population. The activity of surveilance in the village of Putat Jaya reviewed from disease contol program management was not succeed into decrease incidence rate of DHF. Therefore, dengue control programs in health centers Putat Jaya need to do cross-sector cooperation and cross-program cooperation, strengthening the case reporting system by way increasing in the utilization of information and communication technology electromedia. Keywords: case surveillance, dengue hemorrhagic fever, evaluation, attribute surveillance, Putat Jaya

  7. Developmental exposure of aflatoxin B1 reversibly affects hippocampal neurogenesis targeting late-stage neural progenitor cells through suppression of cholinergic signaling in rats

    International Nuclear Information System (INIS)

    Tanaka, Takeshi; Mizukami, Sayaka; Hasegawa-Baba, Yasuko; Onda, Nobuhiko; Sugita-Konishi, Yoshiko; Yoshida, Toshinori; Shibutani, Makoto

    2015-01-01

    Highlights: • Maternal AFB 1 exposure effect on hippocampal neurogenesis was examined in rats. • AFB 1 reversibly reduced cell proliferation and type-3 progenitor cells in the SGZ. • Suppressed cholinergic signals to GABAergic interneurons may reduce type-3 cells. • Suppressed BDNF–TRKB signaling may contribute to aberration of neurogenesis. • The NOAEL for offspring was determined to be 0.1 ppm (7.1–13.6 μg/kg BW/day). - Abstract: To elucidate the maternal exposure effects of aflatoxin B 1 (AFB 1 ) and its metabolite aflatoxin M 1 , which is transferred into milk, on postnatal hippocampal neurogenesis, pregnant Sprague-Dawley rats were provided a diet containing AFB 1 at 0, 0.1, 0.3, or 1.0 ppm from gestational day 6 to day 21 after delivery on weaning. Offspring were maintained through postnatal day (PND) 77 without AFB 1 exposure. Following exposure to 1.0 ppm AFB 1 , offspring showed no apparent systemic toxicity at weaning, whereas dams showed increased liver weight and DNA repair gene upregulation in the liver. In the hippocampal dentate gyrus of male PND 21 offspring, the number of doublecortin + progenitor cells were decreased, which was associated with decreased proliferative cell population in the subgranular zone at ≥0.3 ppm, although T-box brain 2 + cells, tubulin beta III + cells, gamma-H2A histone family, member X + cells, and cyclin-dependent kinase inhibitor 1A + cells did not fluctuate in number. AFB 1 exposure examined at 1.0 ppm also resulted in transcript downregulation of the cholinergic receptor subunit Chrna7 and dopaminergic receptor Drd2 in the dentate gyrus, although there was no change in transcript levels of DNA repair genes. In the hippocampal dentate hilus, interneurons expressing CHRNA7 or phosphorylated tropomyosin receptor kinase B (TRKB) decreased at ≥0.3 ppm. On PND 77, there were no changes in neurogenesis-related parameters. These results suggested that maternal AFB 1 exposure reversibly affects hippocampal

  8. Synthesis of the 123I- and 125I-labeled cholinergic nerve marker (-)-5-iodobenzovesamicol

    International Nuclear Information System (INIS)

    Van Dort, M.E.; Jung, Y.-W.; Gildersleeve, D.L.; Hagen, C.A.; Kuhl, D.E.; Wieland, D.M.

    1993-01-01

    The highly toxic curaremimetic and cholinergic neuron marker (-)-5-iodobenzovesamicol (IBVM) has been labeled with iodine-125 and iodine-123. [ 125 I]IBVM, suitable for animal distribution and ex vivo autoradiographic studies, was synthesized by solid-state exchanger; isolated yields were 65-89% with specific activities in the range of 130-200 Ci/mmol. The synthesis of no-carrier-added (-)-5-[ 125 I]IBVM from the corresponding chiral (-)-5-(tri-n-butyltin) derivative using Na 125 I was evaluated using the oxidants H 2 O 2 , peracetic acid and chloramine-T. Both peracetic acid and chloramine-T gave good yields (70-95%). However, when Na 123 I was utilized, acceptable yields of [ 123 I]IBVM were obtained only with chloramine-T. Distribution analyses of [ 125 I]IBVM and [ 123 I]IBVM in mice 4 h following intravenous administration show essentially equivalent concentrations of the two tracers in the four brain regions sampled. The exceptionally high specific activity of [ 123 I]IBVM has made possible the evaluation of this radiotracer in humans. (Author)

  9. Patient-Specific Human Induced Pluripotent Stem Cell Model Assessed with Electrical Pacing Validates S107 as a Potential Therapeutic Agent for Catecholaminergic Polymorphic Ventricular Tachycardia.

    Directory of Open Access Journals (Sweden)

    Kenichi Sasaki

    Full Text Available Human induced pluripotent stem cells (hiPSCs offer a unique opportunity for disease modeling. However, it is not invariably successful to recapitulate the disease phenotype because of the immaturity of hiPSC-derived cardiomyocytes (hiPSC-CMs. The purpose of this study was to establish and analyze iPSC-based model of catecholaminergic polymorphic ventricular tachycardia (CPVT, which is characterized by adrenergically mediated lethal arrhythmias, more precisely using electrical pacing that could promote the development of new pharmacotherapies.We generated hiPSCs from a 37-year-old CPVT patient and differentiated them into cardiomyocytes. Under spontaneous beating conditions, no significant difference was found in the timing irregularity of spontaneous Ca2+ transients between control- and CPVT-hiPSC-CMs. Using Ca2+ imaging at 1 Hz electrical field stimulation, isoproterenol induced an abnormal diastolic Ca2+ increase more frequently in CPVT- than in control-hiPSC-CMs (control 12% vs. CPVT 43%, p<0.05. Action potential recordings of spontaneous beating hiPSC-CMs revealed no significant difference in the frequency of delayed afterdepolarizations (DADs between control and CPVT cells. After isoproterenol application with pacing at 1 Hz, 87.5% of CPVT-hiPSC-CMs developed DADs, compared to 30% of control-hiPSC-CMs (p<0.05. Pre-incubation with 10 μM S107, which stabilizes the closed state of the ryanodine receptor 2, significantly decreased the percentage of CPVT-hiPSC-CMs presenting DADs to 25% (p<0.05.We recapitulated the electrophysiological features of CPVT-derived hiPSC-CMs using electrical pacing. The development of DADs in the presence of isoproterenol was significantly suppressed by S107. Our model provides a promising platform to study disease mechanisms and screen drugs.

  10. Expression of putative expansin genes in phylloxera (Daktulosphaira vitifoliae Fitch) induced root galls of Vitis spp.

    Science.gov (United States)

    Lawo, N C; Griesser, M; Forneck, A

    Grape phylloxera ( Daktulosphaira vitifoliae Fitch) is a serious global pest in viticulture. The insects are sedentary feeders and require a gall to feed and reproduce. The insects induce their feeding site within the meristematic zone of the root tip, where they stay attached, feeding both intra- and intercellularly, and causing damage by reducing plant vigour. Several changes in cell structure and composition, including increased cell division and tissue swelling close to the feeding site, cause an organoid gall called a nodosity to develop. Because alpha expansin genes are involved in cell enlargement and cell wall loosening in many plant tissues it may be anticipated that they are also involved in nodosity formation. To identify expansin genes in Vitis vinifera cv. Pinot noir , we mined for orthologues genes in a comparative analysis. Eleven putative expansin genes were identified and shown to be present in the rootstock Teleki 5C ( V. berlandieri Planch. x V. riparia Michx.) using specific PCR followed by DNA sequencing. Expression analysis of young and mature nodosities and uninfested root tips were conducted via quantitative real time PCR (qRT-PCR). Up-regulation was measured for three putative expansin genes (VvEXPA15, -A17 and partly -A20) or down-regulation for three other putative genes (VvEXPA7, -A12, -A20) in nodosities. The present study clearly shows the involvement of putative expansin genes in the phylloxera-root interaction.

  11. Distribution of putative virulence genes and antimicrobial drug resistance in Vibrio harveyi

    Digital Repository Service at National Institute of Oceanography (India)

    Parvathi, A.; Mendez, D.; Anto, C.

    zonula occludens toxin (Zot) and a hemolysin-coregulated protein gene (hcp) by polymerase chain reaction (PCR). Of the four putative reversible toxin genes, vhh-1 was detected in 31% of the isolates, vhh-2 in 46%, vhh-3 in 23% and vhh-4 was detected in 27...

  12. Cloning and characterization of prunus serotina AGAMOUS, a putative flower homeotic gene

    Science.gov (United States)

    Xiaomei Liu; Joseph Anderson; Paula Pijut

    2010-01-01

    Members of the AGAMOUS subfamily of MADS-box transcription factors play an important role in regulating the development of reproductive organs in flowering plants. To help understand the mechanism of floral development in black cherry (Prunus serotina), PsAG (a putative flower homeotic identity gene) was isolated...

  13. Attentional control of associative learning--a possible role of the central cholinergic system.

    Science.gov (United States)

    Pauli, Wolfgang M; O'Reilly, Randall C

    2008-04-02

    How does attention interact with learning? Kruschke [Kruschke, J.K. (2001). Toward a unified Model of Attention in Associative Learning. J. Math. Psychol. 45, 812-863.] proposed a model (EXIT) that captures Mackintosh's [Mackintosh, N.J. (1975). A theory of attention: Variations in the associability of stimuli with reinforcement. Psychological Review, 82(4), 276-298.] framework for attentional modulation of associative learning. We developed a computational model that showed analogous interactions between selective attention and associative learning, but is significantly simplified and, in contrast to EXIT, is motivated by neurophysiological findings. Competition among input representations in the internal representation layer, which increases the contrast between stimuli, is critical for simulating these interactions in human behavior. Furthermore, this competition is modulated in a way that might be consistent with the phasic activation of the central cholinergic system, which modulates activity in sensory cortices. Specifically, phasic increases in acetylcholine can cause increased excitability of both pyramidal excitatory neurons in cortical layers II/III and cortical GABAergic inhibitory interneurons targeting the same pyramidal neurons. These effects result in increased attentional contrast in our model. This model thus represents an initial attempt to link human attentional learning data with underlying neural substrates.

  14. Alterations of cholinergic markers in transgenic APPSWE/PS1DE9 and APPSWE/PS1A246E mouse models of Alzheimer´s disease

    Czech Academy of Sciences Publication Activity Database

    Machová, Eva; Jakubík, Jan; Michal, Pavel; Oksman, M.; Iivonen, H.; Tanila, H.; Doležal, Vladimír

    2007-01-01

    Roč. 102, Suppl.1 (2007), s. 133-133 ISSN 0022-3042. [Biennial meeting of the International Society for Neurochemistry /21./ and Annual meeting of the American Society for Neurochemistry /38./. 19.08.2007-24.08.2007, Cancun] R&D Projects: GA MŠk(CZ) LC554; GA AV ČR IAA500110703 Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * cholinergic markers * transgenic mouse model * Alzheimer ´s disease Subject RIV: FH - Neurology

  15. CRYSTAL STRUCTURE ANALYSIS OF A PUTATIVE OXIDOREDUCTASE FROM KLEBSIELLA PNEUMONIAE

    Energy Technology Data Exchange (ETDEWEB)

    Baig, M.; Brown, A.; Eswaramoorthy, S.; Swaminathan, S.

    2009-01-01

    Klebsiella pneumoniae, a gram-negative enteric bacterium, is found in nosocomial infections which are acquired during hospital stays for about 10% of hospital patients in the United States. The crystal structure of a putative oxidoreductase from K. pneumoniae has been determined. The structural information of this K. pneumoniae protein was used to understand its function. Crystals of the putative oxidoreductase enzyme were obtained by the sitting drop vapor diffusion method using Polyethylene glycol (PEG) 3350, Bis-Tris buffer, pH 5.5 as precipitant. These crystals were used to collect X-ray data at beam line X12C of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory (BNL). The crystal structure was determined using the SHELX program and refi ned with CNS 1.1. This protein, which is involved in the catalysis of an oxidation-reduction (redox) reaction, has an alpha/beta structure. It utilizes nicotinamide adenine dinucleotide phosphate (NADP) or nicotine adenine dinucleotide (NAD) to perform its function. This structure could be used to determine the active and co-factor binding sites of the protein, information that could help pharmaceutical companies in drug design and in determining the protein’s relationship to disease treatment such as that for pneumonia and other related pathologies.

  16. Protective role of rosmarinic acid on amyloid beta 42-induced echoic memory decline: Implication of oxidative stress and cholinergic impairment.

    Science.gov (United States)

    Kantar Gok, Deniz; Hidisoglu, Enis; Ocak, Guzide Ayse; Er, Hakan; Acun, Alev Duygu; Yargıcoglu, Piraye

    2018-04-13

    In the present study, we examined whether rosmarinic acid (RA) reverses amyloid β (Aβ) induced reductions in antioxidant defense, lipid peroxidation, cholinergic damage as well as the central auditory deficits. For this purpose, Wistar rats were randomly divided into four groups; Sham(S), Sham + RA (SR), Aβ42 peptide (Aβ) and Aβ42 peptide + RA (AβR) groups. Rat model of Alzheimer was established by bilateral injection of Aβ42 peptide (2,2 nmol/10 μl) into the lateral ventricles. RA (50 mg/kg, daily) was administered orally by gavage for 14 days after intracerebroventricular injection. At the end of the experimental period, we recorded the auditory event related potentials (AERPs) and mismatch negativity (MMN) response to assess auditory functions followed by histological and biochemical analysis. Aβ42 injection led to a significant increase in the levels of thiobarbituric acid reactive substances (TBARS) and 4-Hydroxy-2-nonenal (4-HNE) but decreased the activity of antioxidant enzymes (SOD, CAT, GSH-Px) and glutathione levels. Moreover, Aβ42 injection resulted in a reduction in the acetylcholine content and acetylcholine esterase activity. RA treatment prevented the observed alterations in the AβR group. Furthermore, RA attenuated the increased Aβ staining and astrocyte activation. We also found that Aβ42 injection decreased the MMN response and theta power/coherence of AERPs, suggesting an impairing effect on auditory discrimination and echoic memory processes. RA treatment reversed the Aβ42 related alterations in AERP parameters. In conclusion, our study demonstrates that RA prevented Aβ-induced antioxidant-oxidant imbalance and cholinergic damage, which may contribute to the improvement of neural network dynamics of auditory processes in this rat model. Copyright © 2018. Published by Elsevier Ltd.

  17. Basal forebrain cholinergic systems in primate brain: Anatomical organization and role in the pathology of aging and dementia

    International Nuclear Information System (INIS)

    Price, D.L.; Cork, L.C.; Hedreen, J.C.; Kitt, C.A.; Struble, R.G.; Walker, L.C.; Whitehouse, P.J.

    1986-01-01

    This paper discusses the anatomical organization of the Chl-4 system: evidence implicating this system in the pathology of AD and related disorders; and hypothetical models by which dysfunction and, eventually, death of these cells may account for some of the neurochemical/neuropathological changes observed in the brains of individuals with AD and related dementias. The topography of Chl-4 projections has been analyzed by injecting tritium-amino acids in proximity to cell bodies of the Chl-4 cell group. It is suggested that reductions in cholinergic markers (activites of ChAT and AChE, high-affinity uptake of choline, and synthesis of acetylcholine from C 14-glucose) in the neocortex appear to be the most severe, consistent, and perhaps earliest transmitter specific abnormalities occurring in the amygdala, hippocampus, and neocortex

  18. Putative neuroprotective agents in neuropsychiatric disorders.

    Science.gov (United States)

    Dodd, Seetal; Maes, Michael; Anderson, George; Dean, Olivia M; Moylan, Steven; Berk, Michael

    2013-04-05

    In many individuals with major neuropsychiatric disorders including depression, bipolar disorder and schizophrenia, their disease characteristics are consistent with a neuroprogressive illness. This includes progressive structural brain changes, cognitive and functional decline, poorer treatment response and an increasing vulnerability to relapse with chronicity. The underlying molecular mechanisms of neuroprogression are thought to include neurotrophins and regulation of neurogenesis and apoptosis, neurotransmitters, inflammatory, oxidative and nitrosative stress, mitochondrial dysfunction, cortisol and the hypothalamic-pituitary-adrenal axis, and epigenetic influences. Knowledge of the involvement of each of these pathways implies that specific agents that act on some or multiple of these pathways may thus block this cascade and have neuroprotective properties. This paper reviews the potential of the most promising of these agents, including lithium and other known psychotropics, aspirin, minocycline, statins, N-acetylcysteine, leptin and melatonin. These agents are putative neuroprotective agents for schizophrenia and mood disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Draft genome sequence of Streptomyces coelicoflavus ZG0656 reveals the putative biosynthetic gene cluster of acarviostatin family α-amylase inhibitors.

    Science.gov (United States)

    Guo, X; Geng, P; Bai, F; Bai, G; Sun, T; Li, X; Shi, L; Zhong, Q

    2012-08-01

    The aims of this study are to obtain the draft genome sequence of Streptomyces coelicoflavus ZG0656, which produces novel acarviostatin family α-amylase inhibitors, and then to reveal the putative acarviostatin-related gene cluster and the biosynthetic pathway. The draft genome sequence of S. coelicoflavus ZG0656 was generated using a shotgun approach employing a combination of 454 and Solexa sequencing technologies. Genome analysis revealed a putative gene cluster for acarviostatin biosynthesis, termed sct-cluster. The cluster contains 13 acarviostatin synthetic genes, six transporter genes, four starch degrading or transglycosylation enzyme genes and two regulator genes. On the basis of bioinformatic analysis, we proposed a putative biosynthetic pathway of acarviostatins. The intracellular steps produce a structural core, acarviostatin I00-7-P, and the extracellular assemblies lead to diverse acarviostatin end products. The draft genome sequence of S. coelicoflavus ZG0656 revealed the putative biosynthetic gene cluster of acarviostatins and a putative pathway of acarviostatin production. To our knowledge, S. coelicoflavus ZG0656 is the first strain in this species for which a genome sequence has been reported. The analysis of sct-cluster provided important insights into the biosynthesis of acarviostatins. This work will be a platform for producing novel variants and yield improvement. © 2012 The Authors. Letters in Applied Microbiology © 2012 The Society for Applied Microbiology.

  20. In vivo biodistribution of two [18F]-labelled muscarinic cholinergic receptor ligands: 2-[18F]- and 4-[18F]-fluorodexetimide

    International Nuclear Information System (INIS)

    Wilson, A.A.; Scheffel, U.A.; Dannals, R.F.; Stathis, M.; Ravert, H.T.; Wagner, H.N. Jr.

    1991-01-01

    Two [ 18 F]-labelled analogues of the potent muscarinic cholinergic receptor (m-AChR) antagonist, dexetimide, were evaluated as potential ligands for imaging m-AChR by positron emission tomography (PET). Intravenous administration of both 2-[ 18 F]- or 4-[ 18 F]-fluorodexetimide resulted in high brain uptake of radioactivity in mice. High binding levels were observed in m-AChR rich areas, such as cortex and striatum, with low levels in the receptor-poor cerebellum. Uptake of radioactivity was saturable and could be blocked by pre-administration of dexetimide or atropine. Drugs with different sites of action were ineffective at blocking receptor binding. The results indicate that both radiotracers are promising candidates for use in PET studies

  1. Semi-automated literature mining to identify putative biomarkers of disease from multiple biofluids

    Science.gov (United States)

    2014-01-01

    Background Computational methods for mining of biomedical literature can be useful in augmenting manual searches of the literature using keywords for disease-specific biomarker discovery from biofluids. In this work, we develop and apply a semi-automated literature mining method to mine abstracts obtained from PubMed to discover putative biomarkers of breast and lung cancers in specific biofluids. Methodology A positive set of abstracts was defined by the terms ‘breast cancer’ and ‘lung cancer’ in conjunction with 14 separate ‘biofluids’ (bile, blood, breastmilk, cerebrospinal fluid, mucus, plasma, saliva, semen, serum, synovial fluid, stool, sweat, tears, and urine), while a negative set of abstracts was defined by the terms ‘(biofluid) NOT breast cancer’ or ‘(biofluid) NOT lung cancer.’ More than 5.3 million total abstracts were obtained from PubMed and examined for biomarker-disease-biofluid associations (34,296 positive and 2,653,396 negative for breast cancer; 28,355 positive and 2,595,034 negative for lung cancer). Biological entities such as genes and proteins were tagged using ABNER, and processed using Python scripts to produce a list of putative biomarkers. Z-scores were calculated, ranked, and used to determine significance of putative biomarkers found. Manual verification of relevant abstracts was performed to assess our method’s performance. Results Biofluid-specific markers were identified from the literature, assigned relevance scores based on frequency of occurrence, and validated using known biomarker lists and/or databases for lung and breast cancer [NCBI’s On-line Mendelian Inheritance in Man (OMIM), Cancer Gene annotation server for cancer genomics (CAGE), NCBI’s Genes & Disease, NCI’s Early Detection Research Network (EDRN), and others]. The specificity of each marker for a given biofluid was calculated, and the performance of our semi-automated literature mining method assessed for breast and lung cancer

  2. Cholinergic anti-inflammatory pathway in the non-obese diabetic mouse model.

    Science.gov (United States)

    Koopman, F A; Vosters, J L; Roescher, N; Broekstra, N; Tak, P P; Vervoordeldonk, M J

    2015-10-01

    Activation of the cholinergic anti-inflammatory pathway (CAP) has been shown to reduce inflammation in animal models, while abrogation of the pathway increases inflammation. We investigated whether modulation of CAP influences inflammation in the non-obese diabetic (NOD) mouse model for Sjögren's syndrome and type 1 diabetes. The alpha-7 nicotinic acetylcholine receptor (α7nAChR) was stimulated with AR-R17779 or nicotine in NOD mice. In a second study, unilateral cervical vagotomy was performed. α7nAChR expression, focus scores, and salivary flow were evaluated in salivary glands (SG) and insulitis score in the pancreas. Cytokines were measured in serum and SG. α7nAChR was expressed on myoepithelial cells in SG. Monocyte chemotactic protein-1 levels were reduced in SG after AR-R17779 treatment and tumor necrosis factor production was increased in the SG of the vagotomy group compared to controls. Focus score and salivary flow were unaffected. NOD mice developed diabetes more rapidly after vagotomy, but at completion of the study there were no statistically significant differences in number of mice that developed diabetes or in insulitis scores. Intervention of the CAP in NOD mice leads to minimal changes in inflammatory cytokines, but did not affect overall inflammation and function of SG or development of diabetes. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. DETERMINATION OF ROCURONIUM AND ITS PUTATIVE METABOLITES IN BODY-FLUIDS AND TISSUE-HOMOGENATES

    NARCIS (Netherlands)

    KLEEF, UW; PROOST, JH; ROGGEVELD, J

    1993-01-01

    A sensitive and selective HPLC method was developed for the quantification of the neuromuscular blocking agent rocuronium and its putative metabolites (the 17-desacetyl derivative and the N-desallyl derivative of rocuronium) in plasma, urine, bile, tissue homogenates and stoma fluid. Samples were

  4. Isolation and characterization of two mitoviruses and a putative alphapartitivirus from Fusarium spp.

    Science.gov (United States)

    Osaki, Hideki; Sasaki, Atsuko; Nomiyama, Koji; Sekiguchi, Hiroyuki; Tomioka, Keisuke; Takehara, Toshiaki

    2015-06-01

    The filamentous fungus Fusarium spp. includes several important plant pathogens. We attempted to reveal presence of double-stranded (ds) RNAs in the genus. Thirty-seven Fusarium spp. at the MAFF collection were analyzed. In the strains of Fusarium coeruleum, Fusarium globosum and Fusarium solani f. sp. pisi, single dsRNA bands were detected. The strains of F. coeruleum and F. solani f. sp. pisi cause potato dry rot and mulberry twig blight, respectively. Sequence analyses revealed that dsRNAs in F. coeruleum and F. globosum consisted of 2423 and 2414 bp, respectively. Using the fungal mitochondrial translation table, the positive strands of these cDNAs were found to contain single open reading frames with the potential to encode a protein of putative 757 and 717 amino acids (molecular mass 88.5 and 84.0 kDa, respectively), similar to RNA-dependent RNA polymerases of members of the genus Mitovirus. These dsRNAs in F. coeruleum and F. globosum were assigned to the genus Mitovirus (family Narnaviridae), and these two mitoviruses were designated as Fusarium coeruleum mitovirus 1 and Fusarium globosum mitovirus 1. On the other hand, a positive strand of cDNA (1950 bp) from dsRNA in F. solani f. sp. pisi contained an ORF potentially encoding a putative RdRp of 608 amino acids (72.0 kDa). The putative RdRp was shown to be related to those of members of the genus of Alphapartitivirus (family Partitiviridae). We coined the name Fusarium solani partitivirus 2 for dsRNA in F. solani f. sp. pisi.

  5. Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria

    Directory of Open Access Journals (Sweden)

    Cui Hongli

    2012-11-01

    Full Text Available Abstract Background Cyanobacteria are photoautotrophic prokaryotes with wide variations in genome sizes and ecological habitats. Peroxiredoxin (PRX is an important protein that plays essential roles in protecting own cells against reactive oxygen species (ROS. PRXs have been identified from mammals, fungi and higher plants. However, knowledge on cyanobacterial PRXs still remains obscure. With the availability of 37 sequenced cyanobacterial genomes, we performed a comprehensive comparative analysis of PRXs and explored their diversity, distribution, domain structure and evolution. Results Overall 244 putative prx genes were identified, which were abundant in filamentous diazotrophic cyanobacteria, Acaryochloris marina MBIC 11017, and unicellular cyanobacteria inhabiting freshwater and hot-springs, while poor in all Prochlorococcus and marine Synechococcus strains. Among these putative genes, 25 open reading frames (ORFs encoding hypothetical proteins were identified as prx gene family members and the others were already annotated as prx genes. All 244 putative PRXs were classified into five major subfamilies (1-Cys, 2-Cys, BCP, PRX5_like, and PRX-like according to their domain structures. The catalytic motifs of the cyanobacterial PRXs were similar to those of eukaryotic PRXs and highly conserved in all but the PRX-like subfamily. Classical motif (CXXC of thioredoxin was detected in protein sequences from the PRX-like subfamily. Phylogenetic tree constructed of catalytic domains coincided well with the domain structures of PRXs and the phylogenies based on 16s rRNA. Conclusions The distribution of genes encoding PRXs in different unicellular and filamentous cyanobacteria especially those sub-families like PRX-like or 1-Cys PRX correlate with the genome size, eco-physiology, and physiological properties of the organisms. Cyanobacterial and eukaryotic PRXs share similar conserved motifs, indicating that cyanobacteria adopt similar catalytic

  6. Genome-wide analysis of putative peroxiredoxin in unicellular and filamentous cyanobacteria.

    Science.gov (United States)

    Cui, Hongli; Wang, Yipeng; Wang, Yinchu; Qin, Song

    2012-11-16

    Cyanobacteria are photoautotrophic prokaryotes with wide variations in genome sizes and ecological habitats. Peroxiredoxin (PRX) is an important protein that plays essential roles in protecting own cells against reactive oxygen species (ROS). PRXs have been identified from mammals, fungi and higher plants. However, knowledge on cyanobacterial PRXs still remains obscure. With the availability of 37 sequenced cyanobacterial genomes, we performed a comprehensive comparative analysis of PRXs and explored their diversity, distribution, domain structure and evolution. Overall 244 putative prx genes were identified, which were abundant in filamentous diazotrophic cyanobacteria, Acaryochloris marina MBIC 11017, and unicellular cyanobacteria inhabiting freshwater and hot-springs, while poor in all Prochlorococcus and marine Synechococcus strains. Among these putative genes, 25 open reading frames (ORFs) encoding hypothetical proteins were identified as prx gene family members and the others were already annotated as prx genes. All 244 putative PRXs were classified into five major subfamilies (1-Cys, 2-Cys, BCP, PRX5_like, and PRX-like) according to their domain structures. The catalytic motifs of the cyanobacterial PRXs were similar to those of eukaryotic PRXs and highly conserved in all but the PRX-like subfamily. Classical motif (CXXC) of thioredoxin was detected in protein sequences from the PRX-like subfamily. Phylogenetic tree constructed of catalytic domains coincided well with the domain structures of PRXs and the phylogenies based on 16s rRNA. The distribution of genes encoding PRXs in different unicellular and filamentous cyanobacteria especially those sub-families like PRX-like or 1-Cys PRX correlate with the genome size, eco-physiology, and physiological properties of the organisms. Cyanobacterial and eukaryotic PRXs share similar conserved motifs, indicating that cyanobacteria adopt similar catalytic mechanisms as eukaryotes. All cyanobacterial PRX proteins

  7. Effects of trihexyphenidyl and L-dopa on brain muscarinic cholinergic receptor binding measured by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Shinotoh, H; Asahina, M; Hirayama, K [Dept. of Neurology, School of Medicine, Chiba Univ., Chiba (Japan); Inoue, O; Suhara, T; Tateno, Y [Division of Clinical Research, National Inst. of Radiological Sciences, Chiba (Japan)

    1994-01-01

    The effects of pharmacological intervention on brain muscarinic cholinergic receptor (mAChR) binding were assessed in seven patients with Parkinson's disease by positron emission tomography and carbon-11 labelled N-methyl-4-piperidyl benzilate ([[sup 11]C]NMPB). [[sup 11]C]NMPB was injected twice, approximately 2 hours apart, in each patient, to assess the effect of single doses of 4 mg of trihexyphenidyl (n=5) or 400 mg of L-dopa with 57 mg of benserazide (n=2) on the binding parameter of mAChRs (K[sub 3]). There was a mean 28% inhibition of K[sub 3] values in the brain in the presence of trihexyphenidyl, which was assumed to reflect mAChR occupancy. No significant change in K[sub 3] was observed in the presence of L-dopa. This study demonstrates the feasibility of measuring mAChR occupancy by an anticholinergic medication with PET.

  8. Anti-inflammatory, anti-cholinergic and cytotoxic effects of Sida rhombifolia.

    Science.gov (United States)

    Mah, Siau Hui; Teh, Soek Sin; Ee, Gwendoline Cheng Lian

    2017-12-01

    Sida (Malvaceae) has been used as a traditional remedy for the treatment of diarrhoea, malarial, gastrointestinal dysentery, fevers, asthma and inflammation. This study evaluates the anti-inflammatory, cytotoxic and anti-cholinergic activities of Sida rhombifolia Linn. whole plant for the first time. S. rhombifolia whole plant was extracted by n-hexane, ethyl acetate and methanol using Soxhlet apparatus. The plant extracts were evaluated for their antioxidant (DPPH, FIC and FRAP), anti-inflammatory (NO and protein denaturation inhibitions), cytotoxic (MTT) and anti-cholinesterase (AChE) properties in a range of concentrations to obtain IC 50 values. GC-MS analysis was carried out on the n-hexane extract. The ethyl acetate extract exhibited the most significant antioxidant activities by scavenging DPPH radicals and ferrous ions with EC 50 of 380.5 and 263.4 μg/mL, respectively. In contrast, the n-hexane extract showed the strongest anti-inflammatory activity with IC 50 of 52.16 and 146.03 μg/mL for NO and protein denaturation inhibition assays, respectively. The same extract also revealed the strongest effects in anti-cholinesterase and cytotoxic tests at the concentration of 100 μg/mL, AChE enzyme inhibition was 58.55% and human cancer cells, SNU-1 and Hep G2 inhibition was 68.52% and 47.82%, respectively. The phytochemicals present in the n-hexane extract are palmitic acid, linoleic acid and γ-sitosterol. The present study revealed that the n-hexane extract possessed relatively high pharmacological activities in anti-inflammation, cytotoxicity and anti-cholinesterase assays. Thus, further work on the detail mechanism of the bioactive phytochemicals which contribute to the biological properties are strongly recommended.

  9. Chlorpyrifos promotes colorectal adenocarcinoma H508 cell growth through the activation of EGFR/ERK1/2 signaling pathway but not cholinergic pathway.

    Science.gov (United States)

    Suriyo, Tawit; Tachachartvanich, Phum; Visitnonthachai, Daranee; Watcharasit, Piyajit; Satayavivad, Jutamaad

    2015-12-02

    Aside from the effects on neuronal cholinergic system, epidemiological studies suggest an association between chlorpyrifos (CPF) exposure and cancer risk. This in vitro study examined the effects of CPF and its toxic metabolite, chlorpyrifos oxon (CPF-O), on the growth of human colorectal adenocarcinoma H508, colorectal adenocarcinoma HT-29, normal colon epithelial CCD841, liver hepatocellular carcinoma HepG2, and normal liver hepatocyte THLE-3 cells. The results showed that CPF (5-100 μM) concentration-dependently increased viability of H508 and CCD841 cells in serum-free conditions. This increasing trend was not found in HT-29, HepG2 and THLE-3 cells. In contrast, CPF-O (50-100 μM) reduced the viability of all cell lines. Cell cycle analysis showed the induction of cells in the S phase, and EdU incorporation assay revealed the induction of DNA synthesis in CPF-treated H508 cells indicating that CPF promotes cell cycle progression. Despite the observation of acetylcholinesterase activity inhibition and reactive oxygen species (ROS) generation, atropine (a non-selective muscarinic acetylcholine receptor antagonist) and N-acetylcysteine (a potent antioxidant) failed to inhibit the growth-promoting effect of CPF. CPF increased the phosphorylation of epidermal growth factor receptor (EGFR) and its downstream effector, extracellular signal regulated kinase (ERK1/2), in H508 cells. AG-1478 (a specific EGFR tyrosine kinase inhibitor) and U0126 (a specific MEK inhibitor) completely mitigated the growth promoting effect of CPF. Altogether, these results suggest that EGFR/ERK1/2 signaling pathway but not cholinergic pathway involves in CPF-induced colorectal adenocarcinoma H508 cell growth. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Identification of EhTIF-IA: The putative E. histolytica orthologue of the ...

    Indian Academy of Sciences (India)

    2016-02-04

    Feb 4, 2016 ... We have identified the E. histolytica equivalent of TIF-1A (EhTIF-IA) by homology search within ..... a putative EhTIF-IA with e-value (3e−25). Comparison of .... some biogenesis is correlated with altered rates of rDNA transcription ..... ylation by CK2 facilitates rDNA transcription by promoting dissociation of ...

  11. Cholinergic and dopaminergic neuronal differentiation of human adipose tissue derived mesenchymal stem cells.

    Science.gov (United States)

    Marei, Hany El Sayed; El-Gamal, Aya; Althani, Asma; Afifi, Nahla; Abd-Elmaksoud, Ahmed; Farag, Amany; Cenciarelli, Carlo; Thomas, Caceci; Anwarul, Hasan

    2018-02-01

    Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various cell types such as cartilage, bone, and fat cells. Recent studies have shown that induction of MSCs in vitro by growth factors including epidermal growth factor (EGF) and fibroblast growth factor (FGF2) causes them to differentiate into neural like cells. These cultures also express ChAT, a cholinergic marker; and TH, a dopaminergic marker for neural cells. To establish a protocol with maximum differentiation potential, we examined MSCs under three experimental culture conditions using neural induction media containing FGF2, EGF, BMP-9, retinoic acid, and heparin. Adipose-derived MSCs were extracted and expanded in vitro for 3 passages after reaching >80% confluency, for a total duration of 9 days. Cells were then characterized by flow cytometry for CD markers as CD44 positive and CD45 negative. MSCs were then treated with neural induction media and were characterized by morphological changes and Q-PCR. Differentiated MSCs expressed markers for immature and mature neurons; β Tubulin III (TUBB3) and MAP2, respectively, showing the neural potential of these cells to differentiate into functional neurons. Improved protocols for MSCs induction will facilitate and ensure the reproducibility and standard production of MSCs for therapeutic applications in neurodegenerative diseases. © 2017 Wiley Periodicals, Inc.

  12. Cholinergic pairing with visual activation results in long-term enhancement of visual evoked potentials.

    Directory of Open Access Journals (Sweden)

    Jun Il Kang

    Full Text Available Acetylcholine (ACh contributes to learning processes by modulating cortical plasticity in terms of intensity of neuronal activity and selectivity properties of cortical neurons. However, it is not known if ACh induces long term effects within the primary visual cortex (V1 that could sustain visual learning mechanisms. In the present study we analyzed visual evoked potentials (VEPs in V1 of rats during a 4-8 h period after coupling visual stimulation to an intracortical injection of ACh analog carbachol or stimulation of basal forebrain. To clarify the action of ACh on VEP activity in V1, we individually pre-injected muscarinic (scopolamine, nicotinic (mecamylamine, alpha7 (methyllycaconitine, and NMDA (CPP receptor antagonists before carbachol infusion. Stimulation of the cholinergic system paired with visual stimulation significantly increased VEP amplitude (56% during a 6 h period. Pre-treatment with scopolamine, mecamylamine and CPP completely abolished this long-term enhancement, while alpha7 inhibition induced an instant increase of VEP amplitude. This suggests a role of ACh in facilitating visual stimuli responsiveness through mechanisms comparable to LTP which involve nicotinic and muscarinic receptors with an interaction of NMDA transmission in the visual cortex.

  13. Learning history and cholinergic modulation in the dorsal hippocampus are necessary for rats to infer the status of a hidden event.

    Science.gov (United States)

    Fast, Cynthia D; Flesher, M Melissa; Nocera, Nathanial A; Fanselow, Michael S; Blaisdell, Aaron P

    2016-06-01

    Identifying statistical patterns between environmental stimuli enables organisms to respond adaptively when cues are later observed. However, stimuli are often obscured from detection, necessitating behavior under conditions of ambiguity. Considerable evidence indicates decisions under ambiguity rely on inference processes that draw on past experiences to generate predictions under novel conditions. Despite the high demand for this process and the observation that it deteriorates disproportionately with age, the underlying mechanisms remain unknown. We developed a rodent model of decision-making during ambiguity to examine features of experience that contribute to inference. Rats learned either a simple (positive patterning) or complex (negative patterning) instrumental discrimination between the illumination of one or two lights. During test, only one light was lit while the other relevant light was blocked from physical detection (covered by an opaque shield, rendering its status ambiguous). We found experience with the complex negative patterning discrimination was necessary for rats to behave sensitively to the ambiguous test situation. These rats behaved as if they inferred the presence of the hidden light, responding differently than when the light was explicitly absent (uncovered and unlit). Differential expression profiles of the immediate early gene cFos indicated hippocampal involvement in the inference process while localized microinfusions of the muscarinic antagonist, scopolamine, into the dorsal hippocampus caused rats to behave as if only one light was present. That is, blocking cholinergic modulation prevented the rat from inferring the presence of the hidden light. Collectively, these results suggest cholinergic modulation mediates recruitment of hippocampal processes related to past experiences and transfer of these processes to make decisions during ambiguous situations. Our results correspond with correlations observed between human brain

  14. Putative midkine family protein up-regulation in Patella caerulea (Mollusca, Gastropoda) exposed to sublethal concentrations of cadmium

    International Nuclear Information System (INIS)

    Vanucci, Silvana; Minerdi, Daniela; Kadomatsu, Kenji; Mengoni, Alessio; Bazzicalupo, Marco

    2005-01-01

    A cDNA sequence of a putative midkine (MK) family protein was identified and characterised in the mollusc Patella caerulea. The midkine family consists of two members, midkine and pleiotrophin (PTN), and it is one of the recently discovered cytokines. Our results show that this putative midkine protein is up-regulated in specimens of P. caerulea exposed to sublethal cadmium concentrations (i.e. 0.5 and 1 mg l -1 Cd) over a 10-day exposure period. Semiquantitative RT-PCR and quantitative Real time RT-PCR estimations indicate elevated expression of midkine mRNA in exposed specimens compared to controls. Moreover, RT-PCR Real time values were higher in the viscera (here defined as the part of the soft tissue including digestive gland plus gills) than in the foot (i.e. foot plus head plus heart) of the limpets. At present, information on the functional signalling significance of the midkine family proteins suggests that the up-regulation of P. caerulea putative midkine family protein is a distress signal likely with informative value on health status of the organism and with potential prognostic capability

  15. Cell-Specific Cholinergic Modulation of Excitability of Layer 5B Principal Neurons in Mouse Auditory Cortex

    Science.gov (United States)

    Joshi, Ankur; Kalappa, Bopanna I.; Anderson, Charles T.

    2016-01-01

    The neuromodulator acetylcholine (ACh) is crucial for several cognitive functions, such as perception, attention, and learning and memory. Whereas, in most cases, the cellular circuits or the specific neurons via which ACh exerts its cognitive effects remain unknown, it is known that auditory cortex (AC) neurons projecting from layer 5B (L5B) to the inferior colliculus, corticocollicular neurons, are required for cholinergic-mediated relearning of sound localization after occlusion of one ear. Therefore, elucidation of the effects of ACh on the excitability of corticocollicular neurons will bridge the cell-specific and cognitive properties of ACh. Because AC L5B contains another class of neurons that project to the contralateral cortex, corticocallosal neurons, to identify the cell-specific mechanisms that enable corticocollicular neurons to participate in sound localization relearning, we investigated the effects of ACh release on both L5B corticocallosal and corticocollicular neurons. Using in vitro electrophysiology and optogenetics in mouse brain slices, we found that ACh generated nicotinic ACh receptor (nAChR)-mediated depolarizing potentials and muscarinic ACh receptor (mAChR)-mediated hyperpolarizing potentials in AC L5B corticocallosal neurons. In corticocollicular neurons, ACh release also generated nAChR-mediated depolarizing potentials. However, in contrast to the mAChR-mediated hyperpolarizing potentials in corticocallosal neurons, ACh generated prolonged mAChR-mediated depolarizing potentials in corticocollicular neurons. These prolonged depolarizing potentials generated persistent firing in corticocollicular neurons, whereas corticocallosal neurons lacking mAChR-mediated depolarizing potentials did not show persistent firing. We propose that ACh-mediated persistent firing in corticocollicular neurons may represent a critical mechanism required for learning-induced plasticity in AC. SIGNIFICANCE STATEMENT Acetylcholine (ACh) is crucial for cognitive

  16. Total synthesis of the putative structure of the novel triquinane natural product isocapnellenone

    OpenAIRE

    Mehta, Goverdhan; Murthy, Sai Krishna A; Umarye, Jayant D

    2002-01-01

    A total synthesis of the ‘putative structure’ 7, attributed to the novel triquinane sesquiterpene isolated recently from two Buddelia species has been accomplished. The spectral data for 7 is a complete mismatch with those reported for the natural product and warrants a revision of the assigned structure.

  17. Social isolation induces deficit of latent learning performance in mice: a putative animal model of attention deficit/hyperactivity disorder.

    Science.gov (United States)

    Ouchi, Hirofumi; Ono, Kazuya; Murakami, Yukihisa; Matsumoto, Kinzo

    2013-02-01

    Social isolation of rodents (SI) elicits a variety of stress responses such as increased aggressiveness, hyper-locomotion, and reduced susceptibility to pentobarbital. To obtain a better understanding of the relevance of SI-induced behavioral abnormalities to psychiatric disorders, we examined the effect of SI on latent learning as an index of spatial attention, and discussed the availability of SI as an epigenetic model of attention deficit hyperactivity disorder (ADHD). Except in specially stated cases, 4-week-old male mice were housed in a group or socially isolated for 3-70 days before experiments. The animals socially isolated for 1 week or more exhibited spatial attention deficit in the water-finding test. Re-socialized rearing for 5 weeks after 1-week SI failed to attenuate the spatial attention deficit. The effect of SI on spatial attention showed no gender difference or correlation with increased aggressive behavior. Moreover, SI had no effect on cognitive performance elucidated in a modified Y-maze or an object recognition test, but it significantly impaired contextual and conditional fear memory elucidated in the fear-conditioning test. Drugs used for ADHD therapy, methylphenidate (1-10 mg/kg, i.p.) and caffeine (0.5-1 mg/kg, i.p.), improved SI-induced latent learning deficit in a manner reversible with cholinergic but not dopaminergic antagonists. Considering the behavioral features of SI mice together with their susceptibility to ADHD drugs, the present findings suggest that SI provides an epigenetic animal model of ADHD and that central cholinergic systems play a role in the effect of methylphenidate on SI-induced spatial attention deficit. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Cholinergic signaling mediates the effects of xenin-25 on secretion of pancreatic polypeptide but not insulin or glucagon in humans with impaired glucose tolerance.

    Directory of Open Access Journals (Sweden)

    Songyan Wang

    Full Text Available We previously demonstrated that infusion of an intestinal peptide called xenin-25 (Xen amplifies the effects of glucose-dependent insulinotropic polypeptide (GIP on insulin secretion rates (ISRs and plasma glucagon levels in humans. However, these effects of Xen, but not GIP, were blunted in humans with type 2 diabetes. Thus, Xen rather than GIP signaling to islets fails early during development of type 2 diabetes. The current crossover study determines if cholinergic signaling relays the effects of Xen on insulin and glucagon release in humans as in mice. Fasted subjects with impaired glucose tolerance were studied. On eight separate occasions, each person underwent a single graded glucose infusion- two each with infusion of albumin, Xen, GIP, and GIP plus Xen. Each infusate was administered ± atropine. Heart rate and plasma glucose, insulin, C-peptide, glucagon, and pancreatic polypeptide (PP levels were measured. ISRs were calculated from C-peptide levels. All peptides profoundly increased PP responses. From 0 to 40 min, peptide(s infusions had little effect on plasma glucose concentrations. However, GIP, but not Xen, rapidly and transiently increased ISRs and glucagon levels. Both responses were further amplified when Xen was co-administered with GIP. From 40 to 240 min, glucose levels and ISRs continually increased while glucagon concentrations declined, regardless of infusate. Atropine increased resting heart rate and blocked all PP responses but did not affect ISRs or plasma glucagon levels during any of the peptide infusions. Thus, cholinergic signaling mediates the effects of Xen on insulin and glucagon release in mice but not humans.

  19. The influence of botulinum toxin type A (BTX) on the immunohistochemical characteristics of noradrenergic and cholinergic nerve fibers supplying the porcine urinary bladder wall.

    Science.gov (United States)

    Lepiarczyk, E; Bossowska, A; Kaleczyc, J; Majewski, M

    2011-01-01

    Botulinum toxin (BTX) belongs to a family of neurotoxins which strongly influence the function of autonomic neurons supplying the urinary bladder. Accordingly, BTX has been used as an effective drug in experimental therapies of a range of neurogenic bladder disorders. However, there is no detailed information dealing with the influence of BTX on the morphological and chemical properties of nerve fibres supplying the urinary bladder wall. Therefore, the present study investigated, using double-labeling immunohistochemistry, the distribution, relative frequency and chemical coding of cholinergic and noradrenergic nerve fibers supplying the wall of the urinary bladder in normal female pigs (n = 6) and in the pigs (n = 6) after intravesical BTX injections. In the pigs injected with BTX, the number of adrenergic (DbetaH-positive) nerve fibers distributed in the bladder wall (urothelium, submucosa and muscle coat) was distinctly higher while the number of cholinergic (VAChT-positive) nerve terminals was lower than that found in the control animals. Moreover, the injections of BTX resulted in some changes dealing with the chemical coding of the adrenergic nerve fibers. In contrast to the normal pigs, in BTX injected animals the number of DbetaH/NPY- or DbetaH/CGRP-positive axons was higher in the muscle coat, and some fibres distributed in the urothelium and submucosa expressed immunoreactivity to CGRP. The results obtained suggest that the therapeutic effects of BTX on the urinary bladder might be dependent on changes in the distribution and chemical coding of nerve fibers supplying this organ.

  20. KLONING GEN PUTATIVE CLEAVAGE PROTEIN 1 (PCP-1 PADA UDANG VANAME (Litopenaeus vannamei YANG TERSERANG INFECTIOUS MYONECROSIS VIRUS

    Directory of Open Access Journals (Sweden)

    Hessy Novita

    2016-12-01

    Full Text Available Penanggulangan penyakit ikan dapat dilakukan dengan cara meningkatkan kekebalan tubuh ikan melalui program vaksinasi. Namun vaksinasi tidak tepat untuk udang, karena udang tidak mempunyai immunological memory seperti ikan. Oleh karena itu, perlindungan udang terhadap serangan penyakit viral dengan menggunakan RNA interference (RNAi. Teknologi RNAi digunakan untuk menghalangi (interfere proses replikasi infectious myonecrosis virus (IMNV pada udang vaname dengan cara menon-aktifkan gen putative cleavage protein 1 (PCP-1, yang berfungsi dalam pembentukan capsid dan proses transkripsi RNA IMNV. Penelitian ini bertujuan untuk melakukan kloning gen putative cleavage protein 1 dalam rangka perakitan teknologi RNAi untuk pengendalian penyakit IMNV pada udang vaname. Tahapan penelitian meliputi koleksi sampel, isolasi RNA, sintesis cDNA, amplifikasi PCR, purifikasi DNA, transformasi, isolasi plasmid, serta sekuensing dan analisis data. Hasil isolasi plasmid cDNA PCP-1 memperlihatkan semua koloni bakteri terseleksi ternyata membawa plasmid hasil insersi DNA gen PCP–1, hasil sekuen dengan nilai homologinya mencapai 100% dan 99% yang dibandingkan dengan sekuen di Genebank. Hasil penelitian menunjukkan bahwa kloning gen putative cleavage protein 1 (PCP-1 dari udang vaname yang terserang Infectious Myonecrosis Virus berhasil dikloning yang nantinya digunakan untuk perakitan RNAi. The prevention of fish diseases can be done by increasing of the fish immune through vaccination programs. However, the vaccination can not be done for the shrimp,due to the absence of  immunological memory. Therefore, the protection of shrimp against viral diseases was done by using of RNA interference (RNAi. RNAi technology is used to interfere infectious myonecrosis virus (IMNV replication process on white shrimp by disabling of putative cleavage protein 1 (PCP-1gene, which functions in capsid formation and RNA transcription process. The study was conducted to perform putative