WorldWideScience

Sample records for chlor-alkali industry

  1. ANTITRUST REGULATION IN TERMS OF ENTERPRISE DEVELOPMENT CHLOR-ALKALI INDUSTRY

    Directory of Open Access Journals (Sweden)

    N. N. Grinyov

    2014-01-01

    Full Text Available The article reveals the problems of antitrust regulation activities of processing enterprises. The necessity of improving the activity of enforcement to prevent the emergence of monopolistic market structures chlor-alkali industry.

  2. CHARACTERIZATION OF MERCURY EMISSIONS AT A CHLOR-ALKALI PLANT, VOLUME II. APPENDICES F-J

    Science.gov (United States)

    The report gives results of a characterization of mercury (Hg) emissions at a chlor-alkali plant. Up to 160 short tons (146 Mg) of Hg is consumed by the chlor-alkali industry each year. Very little quantitative information is currently available however, on the actual Hg losses f...

  3. Energy conservation in the primary aluminum and chlor-alkali industries

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    The primary aluminum and chlor-alkali industries together use nearly 13% of the electrical energy consumed by US industry. As part of its mission to promote energy conservation in basic US industries, the DOE surveys the present technological status of the major electrochemical industries and evaluates promising technological innovations that may lead to reduced energy requirements. This study provides technical and economic analyses in support of a government program of research and development in advanced electrolytic technology. This program is intended to supplement the development efforts directed toward energy savings by private industry. Sections II and III of this report cover aluminum and chlorine production processes only, since these two industries represent over 90% of the electrical energy requirements of all electrolytic industries in the United States. Section IV examines barriers to accelerated research and development by the electrolytic industries, and makes suggestions for government actions to overcome these barriers.

  4. CHARACTERIZATION OF MERCURY EMISSIONS AT A CHLOR-ALKALI PLANT, VOLUME I. REPORT AND APPENDICES A-E

    Science.gov (United States)

    The report gives results of a characterization of mercury (Hg) emissions at a chlor-alkali plant. Up to 160 short tons (146 Mg) of Hg is consumed by the chlor-alkali industry each year. Very little quantitative information is currently available however, on the actual Hg losses f...

  5. An investigation of the possibility of mercury phytoremediation from Bandar ImamChlor-alkali plants' wastewater using Phragmites australis

    International Nuclear Information System (INIS)

    Tayebi, L.; Hamidian, A.H.; Danehkar, A.; Poorbagher, H.

    2016-01-01

    The Petrochemical industry is the most important and most widely active industries in the country. Due to the variety and complexity of industrial products, it also produces a wild range of pollutants. Mercury waste disposal from Chlor-alkali units is one of the fundamental problems of this industry. Various studies have shown that Phytoremediation system for removal of mercury from aqueous solutions is very efficient and, in some cases up to 95% of mercury has been removed from the solution. The purpose of this study was to evaluate the ability of common reed (Phragmites australis) in the removal of mercury from the Chlor-alkali effluent in Bandar Imam Petrochemical. Plant samples Harvested from Shadegan wetland were cultured hydroponically in plastic aquariums. Effluent samples which were taken from Chlor-alkali plants were added to the culture medium. An aquarium containing wastewater, water and nutrients was considered as control. Mercury concentrations in water and plant at 1, 3, 5 and 7 days were measured by Varian Spectra 220 Atomic Absorption Spectroscopy. The results showed that Time has a direct effect on mercury up taking by common reed. The common Reed absorption average was 2657.25 ppm within 7 days, that shows a high capacity of mercury absorption from Chlor-alkali plant effluents. Also In the study period, 96.25% of mercury were removed from common reed aquarium effulgent water.

  6. Groundwater Modeling Of Mercury Pollution At A Former Mercury Cell Chlor Alkali Facility In Pavoldar, Kazakhstan

    Science.gov (United States)

    In Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severly contaminated with mercury and mercury compounds as a result of the industrial activity of this chemical pla...

  7. Groundwater Modeling of Mercury Pollution at a Former Mercury Cell Chlor Alkali Facility in Pavlodar City, Kazakhstan

    Science.gov (United States)

    In northern Kazakhstan, there is a serious case of mercury pollution near the city of Pavlodar from an old mercury cell chlor-alkali plant. The soil, sediment, and water is severely contaminated with mercury and mercury compounds as a result of the industrial activity of this ch...

  8. The ChlorOut concept. A method to reduce alkali-related problems during combustion

    Energy Technology Data Exchange (ETDEWEB)

    Kassman, Haakan [ChlorOut AB c/o Vattenfall AB, Nykoeping (Sweden); Wollner, Lothar [Boehringer Ingelheim Pharma GmbH und Co. KG, Ingelheim am Rhein (Germany); Berg, Magnus [ChlorOut AB c/o Vattenfall AB, Stockholm (Sweden)

    2013-06-01

    Combustion of biomass with a high content of alkali and chlorine (Cl) can result in operational problems including deposit formation and superheater corrosion. The strategies applied to reduce such problems include co-combustion and the use of additives. Ammonium sulphate is a part of the ChlorOut concept which is applied in a range of commercial boilers. This concept is based on dosing of sulphate-containing additives to the flue gases and a unique measurement device for on-line measurement of gaseous alkali chlorides called IACM (in-situ alkali chloride monitor). The focus of the present paper is on evaluation of long-term experiences from two full-scale boilers. The operational problems with deposit formation and superheater corrosion decreased in these boilers after installing the ChlorOut concept. (orig.)

  9. Characterization of the extent of Mercury Contamination in the Androscoggin River from a former Chlor-alkali Facility, Berlin, New Hampshire

    Science.gov (United States)

    Chalmers, A.; Marvin-Dipasquale, M. C.; Rosiu, C.; Luce, D.; Coles, J.; Zimmerman, M.; Smith, T.

    2010-12-01

    From the late 1800s to the 1960s a chlor-alkali plant was used to produce chlorine gas for the papermaking industry in Berlin, New Hampshire. During operation of the chlor-alkali facility, elemental mercury (Hg) was released to the environment, contaminating soils and the underlying fractured rock. Investigations have revealed that elemental Hg continues to seep through bedrock fractures into the adjacent Androscoggin River. This study evaluates the extent and transformation of Hg contamination in the Androscoggin River by comparing a reference site 17 kilometers above the former chlor-alkali facility to 5 sites ranging from 1 to 16 km downstream from the facility. Total and methyl Hg (THg and MeHg, respectively), among other analytes, were characterized in surface water, pore water, sediment and biological tissue samples at each site. Bed sediment was also assessed for bio-available (tin-reducible) inorganic Hg (II) and microbial MeHg production potential rates. Acid extractable ferrous iron, crystalline and amorphous (poorly crystalline) ferric iron, total reduced sulfur, particle size, and organic content in bed sediment was analyzed to help explain spatial differences in MeHg production rates and bio-available Hg (II) among sites. The information provided by this study will help evaluate the extent of Hg contamination in the Androscoggin River, will improve our understanding of the controls on MeHg production in the Androscoggin River system, and will be used by the U.S. Environmental Protection Agency to support remediation of the chlor-alkali facility site.

  10. Mercury Pollution Near A Chlor-Alkali Plant In Northern Kazakhstan

    Science.gov (United States)

    In northern Kazakhstan, there is a serious case of mercury pollution near Pavlodar City from an old mercury cell chlor-alkali plant. The soil, sediment, and water is contaminated with more than a thousand tons of mercury and mercury compounds as a result of the operation of the ...

  11. Mercury levels in lichens from different host trees around a chlor-alkali plant in New Brunswick, Canada.

    Science.gov (United States)

    Sensen, Marion; Richardson, David H S

    2002-07-03

    Mercury concentrations were determined in the epiphytic lichen Hypogymnia physodes along five transects starting from a chlor-alkali plant located at Dalhousie, New Brunswick, a landfill site and a nearby electricity generating station. Lichen samples were collected from white birch (Betula papyrifera) and spruce (Picea sp.) or balsam fir (Abies balsamea). Average lichen background mercury values were 0.088+/-0.005 microg/g from white birch and 0.148+/-0.046 microg/g from spruce trees, with a detection limit of 0.05 microg/g. The chlor-alkali plant and a power plant were identified, respectively, as a major source and a minor source of elevated mercury levels in lichens. At 125 m north-west of the New Brunswick Power plant, 0.28 microg/g Hg were found in Hypogymnia physodes from spruce trees, while at 250 m west (downwind) of the chlor-alkali plant, 3.66 microg/g of mercury were determined. High values, 0.98 microg/g in lichens from spruce trees and 0.79 microg/g in lichen samples from white birch were also measured at 125 m south of the chlor-alkali plant and decreased exponentially with distance. The sphere of influence of the chlor-alkali plant with respect to mercury deposition was estimated to extend 2.4-3.4 km from the plant. The mercury concentrations in Hypogymnia physodes collected from white birch were significantly lower than the concentrations in the same lichen from spruce trees in areas with elevated levels of mercury, but not in areas with low mercury levels. The magnitude of this difference dropped with distance from the source.

  12. Life cycle assessment of solid waste management strategies in a chlor-alkali production facility.

    Science.gov (United States)

    Muñoz, Edmundo; Navia, Rodrigo

    2011-06-01

    The waste management of a chlor-alkali and calcium chloride industrial facility from southern Chile was the object of this study. The main solid waste materials generated in these processes are brine sediments and calcium chloride sediments, respectively. Both residues are mixed in the liquid phase and filtered in a press filter, obtaining a final low humidity solid waste, called 'mixed sediments', which is disposed of in an industrial landfill as non-hazardous waste. The aim of the present study was to compare by means of LCA, the current waste management option of the studied chlor-alkali facility, namely landfill disposal, with two new possible options: the reuse of the mixed sediments as mineral additive in compost and the use of brine sediments as an unconventional sorbent for the removal of heavy metals from wastewater. The functional unit was defined as 1 tonne of waste being managed. To perform this evaluation, software SimaPro 7.0 was used, selecting the Ecoindicator 99 and CML 2000 methodologies for impact evaluation. The obtained results indicate that the use of brine sediments as a novel material for the removal of heavy metals from wastewater (scenario 3) presented environmental benefits when compared with the waste management option of sediments landfilling (scenario 1). The avoided environmental loads, generated by the substitution of activated granular carbon and the removal of Cu and Zn from wastewater in the treatment process generated positive environmental impacts, enhancing the environmental performance of scenario 3.

  13. Evaluation Of Demercurization Efficiency Of Chlor-Alkali Production In Pavlodar City, Kazakhstan

    Science.gov (United States)

    Mercury pollution in Pavlodar, a city in northeastern Kazakhstan, is the result of chlor-alkali chemical plant operations in 1975-1993, where chlorine production capacity was approximately 100,000 tons per year. The total quantity of metallic mercury released into the environmen...

  14. Environmental quality assessment of reservoirs impacted by Hg from chlor-alkali technologies: case study of a recovery.

    Science.gov (United States)

    Le Faucheur, Séverine; Vasiliu, Dan; Catianis, Irina; Zazu, Mariana; Dranguet, Perrine; Beauvais-Flück, Rebecca; Loizeau, Jean-Luc; Cosio, Claudia; Ungureanu, Costin; Ungureanu, Viorel Gheorghe; Slaveykova, Vera I

    2016-11-01

    Mercury (Hg) pollution legacy of chlor-alkali plants will be an important issue in the next decades with the planned phase out of Hg-based electrodes by 2025 within the Minamata convention. In such a context, the present study aimed to examine the extent of Hg contamination in the reservoirs surrounding the Oltchim plant and to evaluate the possible improvement of the environmental quality since the closure of its chlor-alkali unit. This plant is the largest chlor-alkali plant in Romania, which partly switched to Hg-free technology in 1999 and definitely stopped the use of Hg electrolysis in May 2012. Total Hg (THg) and methylmercury (CH 3 Hg) concentrations were found to decrease in the surface waters and sediments of the reservoirs receiving the effluents of the chlor-alkali platform since the closure of Hg units. Hence, calculated risk quotients (RQ) indicated no adverse effect of Hg for aquatic organisms from the ambient water exposure. RQ of Hg in sediments were mostly all higher than 1, showing important risks for benthic organisms. However, ecotoxicity testing of water and sediments suggest possible impact of other contaminants and their mixtures. Hg hotspots were found in soils around the platform with RQ values much higher than 1. Finally, THg and CH 3 Hg concentrations in fish were below the food safety limit set by the WHO, which contrasts with previous measurements made in 2007 revealing that 92 % of the studied fish were of high risk of consumption. Discontinuing the use of Hg electrodes greatly improved the surrounding environment of chlor-alkali plants within the following years and led to the decrease environmental exposure to Hg through fish consumption. However, sediment and soil still remained highly contaminated and problematic for the river reservoir management. The results of this ecological risk assessment study have important implications for the evaluation of the benefits as well as limits of the Minamata Convention implementation.

  15. CHARACTERIZATION OF MERCURY EMISSIONS AT A CHLOR-ALKALI PLANT: STUDY ORGANIZATION AND IMPLEMENTATION

    Science.gov (United States)

    The paper describes the organization and implementation of a detailed emissions measurement campaign conducted over a 2-week period at the Olin Corporation's mercury chlor-alkali plant in Augusta, GA. (NOTE: Since data analysis is continuing, study results will be provided later...

  16. CHARACTERIZATION OF THE FUGITIVE MERCURY EMISSIONS AT A CHLOR-ALKALI PLANT. OVERALL STUDY DESIGN

    Science.gov (United States)

    The paper discusses a detailed emissions measurement campaign that was conducted over a 9-day period within a mercury (Hg) cell chlor-alkali plant in the southeastern United States (U.S.). The principal focus of this study was to measure fugitive (non-ducted) airborne Hg emission...

  17. Biofilm composition in the Olt River (Romania) reservoirs impacted by a chlor-alkali production plant.

    Science.gov (United States)

    Dranguet, P; Cosio, C; Le Faucheur, S; Hug Peter, D; Loizeau, J-L; Ungureanu, V-Gh; Slaveykova, V I

    2017-05-24

    Freshwater biofilms can be useful indicators of water quality and offer the possibility to assess contaminant effects at the community level. The present field study examines the effects of chlor-alkali plant effluents on the community composition of biofilms grown in the Olt River (Romania) reservoirs. The relationship between ambient water quality variables and community composition alterations was explored. Amplicon sequencing revealed a significant modification of the composition of microalgal, bacterial and fungal communities in the biofilms collected in the impacted reservoirs in comparison with those living in the uncontaminated control reservoir. The abundance corrected Simpson index showed lower richness and diversity in biofilms collected in the impacted reservoirs than in the control reservoir. The biofilm bacterial communities of the impacted reservoirs were characterized by the contaminant-tolerant Cyanobacteria and Bacteroidetes, whereas microalgal communities were predominantly composed of Bacillariophyta and fungal communities of Lecanoromycetes and Paraglomycetes. A principal component analysis revealed that major contaminants present in the waste water of the chlor-alkali production plant, i.e. Na + , Ca 2+ , Cl - and Hg, were correlated with the alteration of biofilm community composition in the impacted reservoirs. However, the biofilm composition was also influenced by water quality variables such as NO 3 - , SO 4 2- , DOC and Zn from unknown sources. The results of the present study imply that, even when below the environmental quality standards, typical contaminants of chlor-alkali plant releases may affect biofilm composition and that their impacts on the microbial biodiversity might be currently overlooked.

  18. Chlor-alkali industrial contamination and riverine transport of mercury: Distribution and partitioning of mercury between water, suspended matter, and bottom sediment of the Thur River, France

    International Nuclear Information System (INIS)

    Hissler, Christophe; Probst, Jean-Luc

    2006-01-01

    Total dissolved and total particulate Hg mass balances were estimated during one hydrological period (July 2001-June 2002) in the Thur River basin, which is heavily polluted by chlor-alkali industrial activity. The seasonal variations of the Hg dynamics in the aquatic environment were assessed using total Hg concentrations in bottom sediment and suspended matter, and total and reactive dissolved Hg concentrations in the water. The impact of the chlor-alkali plant (CAP) remains the largest concern for Hg contamination of this river system. Upstream from the CAP, the Hg partitioning between dissolved and particulate phases was principally controlled by the dissolved fraction due to snow melting during spring high flow, while during low flow, Hg was primarily adsorbed onto particulates. Downstream from the CAP, the Hg partitioning is controlled by the concentration of dissolved organic and inorganic ligands and by the total suspended sediment (TSS) concentrations. Nevertheless, the particulate fluxes were five times higher than the dissolved ones. Most of the total annual flux of Hg supplied by the CAP to the river is transported to the outlet of the catchment (total Hg flux: 70 μg m -2 a -1 ). Downstream from the CAP, the bottom sediment, mainly composed of coarse sediment (>63 μm) and depleted in organic matter, has a weak capacity to trap Hg in the river channel and the stock of Hg is low (4 mg m -2 ) showing that the residence time of Hg in this river is short

  19. Prediction of the fate of Hg and other contaminants in soil around a former chlor-alkali plant using Fuzzy Hierarchical Cross-Clustering approach.

    Science.gov (United States)

    Frenţiu, Tiberiu; Ponta, Michaela; Sârbu, Costel

    2015-11-01

    An associative simultaneous fuzzy divisive hierarchical algorithm was used to predict the fate of Hg and other contaminants in soil around a former chlor-alkali plant. The algorithm was applied on several natural and anthropogenic characteristics of soil including water leachable, mobile, semi-mobile, non-mobile fractions and total Hg, Al, Ba, Ca, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Sr, Zn, water leachable fraction of Cl(-), NO3(-) and SO4(2)(-), pH and total organic carbon. The cross-classification algorithm provided a divisive fuzzy partition of the soil samples and associated characteristics. Soils outside the perimeter of the former chlor-alkali plant were clustered based on the natural characteristics and total Hg. In contaminated zones Hg speciation becomes relevant and the assessment of species distribution is necessary. The descending order of concentration of Hg species in the test site was semi-mobile>mobile>non-mobile>water-leachable. Physico-chemical features responsible for similarities or differences between uncontaminated soil samples or contaminated with Hg, Cu, Zn, Ba and NO3(-) were also highlighted. Other characteristics of the contaminated soil were found to be Ca, sulfate, Na and chloride, some of which with influence on Hg fate. The presence of Ca and sulfate in soil induced a higher water leachability of Hg, while Cu had an opposite effect by forming amalgam. The used algorithm provided an in-deep understanding of processes involving Hg species and allowed to make prediction of the fate of Hg and contaminants linked to chlor-alkali-industry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. CHARACTERIZATION OF FUGITIVE MERCURY EMISSIONS FROM THE CELL BUILDING AT A U.S. CHLOR-ALKALI PLANT

    Science.gov (United States)

    The paper discusses an extensive measurement campaign that was conducted of the fugitive (non-ducted) airborne elemental mercury [Hg(0)] emissions from the cell building of a chlor-alkali plant (CAP) located in the southeastern United States. The objectives of this study were to ...

  1. MEASUREMENT OF TOTAL SITE MERCURY EMISSIONS FROM A CHLOR-ALKALI PLANT USING OPEN-PATH UV-DOAS

    Science.gov (United States)

    In December 2003, the EPA promulgated the National Emission Standard for Hazardous Air Pollutants for mercury cell chlor-alkali plants. In February 2004, the Natural Resources Defense Council filed petitions on the final rule in U.S. district court citing, among other issues, th...

  2. Post depositional memory record of mercury in sediment near effluent disposal site of a chlor-alkali plant in Thane Creek-Mumbai Harbour, India

    Digital Repository Service at National Institute of Oceanography (India)

    Ram, A.; Rokade, M.A.; Zingde, M.D.; Borole, D.V.

    in landfills, mine tailings, contaminated industrial sites, soils and sediments. Estuaries and coastal marine regions form an essential link in the global biogeochemical cycling of Hg between the terrestrial environment - the major repository for atmospheric... by close relationship with organic matter, and Fe and Al oxides or sorbed onto the mineral particles [8]. Hence, sediments adjacent to the outfalls of chlor-alkali plants frequently contain high levels of Hg [7,10-15]. Some natural processes (water, soil...

  3. Measurement of Total Site Mercury Emissions from Chlor-Alkali Plant Using Ultraviolet Differential Optical Absorption Spectroscopy and Cell Room Roof-Vent Monitoring

    Science.gov (United States)

    This technical note describes a United States Environmental Protection Agency (U.S. EPA) measurement project to determine elemental mercury (Hg0) emissions from a mercury cell chlor-alkali (MCCA) facility in the southeastern U.S. during a 53-day monitoring campaign in the fall of...

  4. Measurement of Total Site Mercury Emissions from a Chlor-Alkali Plant Using Ultraviolet Differential Optical Absorption Spectroscopy and Cell Room Roof-Vent Monitoring

    Science.gov (United States)

    Mercury-cell chlor-alkali plants can emit significant quantities of fugitive elemental mercury vapor to the air as part of production operations and maintenance activities. In the fall of 2006, the U.S. Environmental Protection Agency (EPA) conducted a measurement project at a ch...

  5. Identification of water soluble and particle bound compounds causing sublethal toxic effects. A field study on sediments affected by a chlor-alkali industry

    International Nuclear Information System (INIS)

    Bosch, Carme; Olivares, Alba; Faria, Melissa; Navas, Jose M.; Olmo, Ivan del; Grimalt, Joan O.; Pina, Benjamin; Barata, Carlos

    2009-01-01

    A combination of cost effective sublethal Daphnia magna feeding tests, yeast- and cell culture-based bioassays and Toxicity Identification Evaluation (TIE) procedures was used to characterize toxic compounds within sediments collected in a river area under the influence of the effluents from a chlor-alkali industry (Ebro River, NE Spain). Tests were designed to measure and identify toxic compounds in the particulate and filtered water fractions of sediment elutriates. The combined use of bioassays responding to elutriates and dioxin-like compounds evidenced the existence of three major groups of hazardous contaminants in the most contaminated site: (A) metals such as cadmium and mercury bound to sediment fine particles that could be easily resuspended and moved downstream, (B) soluble compounds (presumably, lye) able to alkalinize water to toxic levels, and (C) organochlorine compounds with high dioxin-like activity. These results provided evidence that elutriate D. magna feeding responses can be used as surrogate assays for more tedious chronic whole sediment tests, and that the incorporation of such tests in sediment TIE procedures may improve the ability to identify the toxicity of particle-bound and water-soluble contaminants in sediments.

  6. Atmospheric mercury pollution around a chlor-alkali plant in Flix (NE Spain): an integrated analysis.

    Science.gov (United States)

    Esbrí, José M; López-Berdonces, Miguel Angel; Fernández-Calderón, Sergio; Higueras, Pablo; Díez, Sergi

    2015-04-01

    An integrated analysis approach has been applied to a mercury (Hg) case study on a chlor-alkali plant located in the Ebro River basin, close to the town of Flix (NE Spain). The study focused on atmospheric Hg and its incorporation in soils and lichens close to a mercury cell chlor-alkali plant (CAP), which has been operating since the end of the 19th century. Atmospheric Hg present in the area was characterized by means of seven total gaseous mercury (TGM) surveys carried out from 2007 to 2012. Surveys were carried out by car, walking, and at fixed locations, and covered an area of some 12 km(2) (including the CAP area, the village in which workers live, Flix town, and the Sebes Wildlife Reserve). Finally, an atmospheric Hg dispersion model was developed with ISC-AERMOD software validated by a lichen survey of the area. The results for the atmospheric compartment seem to indicate that the Flix area currently has the highest levels of Hg pollution in Spain on the basis of the extremely high average concentrations in the vicinity of the CAP (229 ng m(-3)). Moreover, the Hg(0) plume affects Flix town center to some extent, with values well above the international thresholds for residential areas. Wet and dry Hg deposition reached its highest values on the banks of the Ebro River, and this contributes to increased soil contamination (range 44-12,900 ng g(-1), average 775 ng g(-1)). A good fit was obtained between anomalous areas indicated by lichens and the dispersion model for 1 year.

  7. Emissions, dispersion and human exposure of mercury from a Swedish chlor-alkali plant

    Science.gov (United States)

    Wängberg, I.; Barregard, L.; Sällsten, G.; Haeger-Eugensson, M.; Munthe, J.; Sommar, J.

    Mercury in air near a mercury cell chlor-alkali plant in Sweden has been measured within the EU-project EMECAP. Based on the measurements and modelling the annual distributions of GEM and RGM have been calculated for the local area around the plant. The average concentration of GEM in residential areas near the plant was found to be 1-3.5 ng m -3 higher in comparison to the background concentration in this part of Sweden. The emission of RGM (0.55 kg year -1) results in elevated RGM concentrations close to the plant. The greatest impact on the local area is due to wet deposition of RGM. However, only a small fraction (0.4%) of all mercury being emitted was found to be deposited in the local area. No impact on urinary mercury could be demonstrated in the population living close to the plant.

  8. Persistent Hg contamination and occurrence of Hg-methylating transcript (hgcA) downstream of a chlor-alkali plant in the Olt River (Romania).

    Science.gov (United States)

    Bravo, Andrea G; Loizeau, Jean-Luc; Dranguet, Perrine; Makri, Stamatina; Björn, Erik; Ungureanu, Viorel Gh; Slaveykova, Vera I; Cosio, Claudia

    2016-06-01

    Chlor-alkali plants using mercury (Hg) cell technology are acute point sources of Hg pollution in the aquatic environment. While there have been recent efforts to reduce the use of Hg cells, some of the emitted Hg can be transformed to neurotoxic methylmercury (MeHg). Here, we aimed (i) to study the dispersion of Hg in four reservoirs located downstream of a chlor-alkali plant along the Olt River (Romania) and (ii) to track the activity of bacterial functional genes involved in Hg methylation. Total Hg (THg) concentrations in water and sediments decreased successively from the initial reservoir to downstream reservoirs. Suspended fine size particles and seston appeared to be responsible for the transport of THg into downstream reservoirs, while macrophytes reflected the local bioavailability of Hg. The concentration and proportion of MeHg were correlated with THg, but were not correlated with bacterial activity in sediments, while the abundance of hgcA transcript correlated with organic matter and Cl(-) concentration, indicating the importance of Hg bioavailability in sediments for Hg methylation. Our data clearly highlights the importance of considering Hg contamination as a legacy pollutant since there is a high risk of continued Hg accumulation in food webs long after Hg-cell phase out.

  9. Mercury accumulation in transplanted Hypogymnia physodes lichens downwind of Wisconsin chlor-alkali plant

    Science.gov (United States)

    Makholm, M.M.; Bennett, J.P.

    1998-01-01

    Emissions of mercury from a chlor-alkali plant in central Wisconsin have raised concern about possible effects on biota in the area. Samples of the lichen Hypogymnia physodes, which no longer grows in the area, were transplanted from a site in northeastern Wisconsin and positioned on plastic stands at varying distances up to 1250 m from the plant and sampled for Hg quarterly for one year to test the hypothesis that Hg would be taken up by the lichens and would decline with distance. Average tissue concentrations were elevated when first sampled at three months and continued to increase at the nearest sites until the study ended after one year. Average concentrations after a year of exposure ranged from 4418 ppb at 250 m from the plant to 403 ppb at 1250 m from the plant. The decrease over distance followed a negative exponential pattern. Background concentrations at a control site in northern Wisconsin averaged 155 ppb.

  10. Phytochelatin synthesis in response to Hg uptake in aquatic plants near a chlor-alkali factory.

    Science.gov (United States)

    Turull, Marta; Grmanova, Gabriela; Dago, Àngela; Ariño, Cristina; Díez, Sergi; Díaz-Cruz, José Manuel; Esteban, Miquel

    2017-06-01

    The effects of mercury (Hg) released from a chlor-alkali factory in aquatic plants along the Ebro River basin (NE Spain) were analysed considering the phytochelatins (PC n ) and their isoforms content in these plants. These compounds were analyzed using HPLC with amperometric detection, and the macrophytes species Ceratophyllum demersum and Myriopyllum spicatum were collected in two sampling campaigns, autumn and spring, respectively. To correlate the PC n content in macrophytes with the Hg contamination, analysis of total Hg (THg) content in plants and suspended particulate matter, as well as the dissolved-bioavailable fraction of Hg in water measured by the diffusive gradient in thin film (DGT) technique were done. The results confirm the presence of PC 2 -Ala in extracts of C. demersum and PC 2 -desGly in M. spicatum, and the concentration of these thiol compounds depends clearly on the distance between the hot spot and the downstream sites: the higher the levels are, the closer the hot spot is. Since most of the Hg is hypothesized to be associated with SPM and transported downstream, our results of the DGT suggest that trace amounts of Hg in water can be released as free metal ions yielding a certain accumulation in plants (reaching the ppb level) that are enough for activation of induction of PCs. A few PCs species have been determined, at different seasons, indicating that they can be used as good indicators of the presence of bioavailable Hg in aquatic media throughout the year. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Phytoscreening as an efficient tool to delineate chlorinated solvent sources at a chlor-alkali facility.

    Science.gov (United States)

    Yung, Loïc; Lagron, Jérôme; Cazaux, David; Limmer, Matt; Chalot, Michel

    2017-05-01

    Chlorinated ethenes (CE) are among the most common volatile organic compounds (VOC) that contaminate groundwater, currently representing a major source of pollution worldwide. Phytoscreening has been developed and employed through different applications at numerous sites, where it was generally useful for detection of subsurface chlorinated solvents. We aimed at delineating subsurface CE contamination at a chlor-alkali facility using tree core data that we compared with soil data. For this investigation a total of 170 trees from experimental zones was sampled and analyzed for perchloroethene (PCE) and trichloroethene (TCE) concentrations, measured by solid phase microextraction gas chromatography coupled to mass spectrometry. Within the panel of tree genera sampled, Quercus and Ulmus appeared to be efficient biomonitors of subjacent TCE and PCE contamination, in addition to the well known and widely used Populus and Salix genera. Among the 28 trees located above the dense non-aqueous phase liquid (DNAPL) phase zone, 19 tree cores contained detectable amounts of CE, with concentrations ranging from 3 to 3000 μg L -1 . Our tree core dataset was found to be well related to soil gas sampling results, although the tree coring data were more informative. Our data further emphasized the need for choosing the relevant tree species and sampling periods, as well as taking into consideration the nature of the soil and its heterogeneity. Overall, this low-invasive screening method appeared useful to delineate contaminants at a small-scale site impacted by multiple sources of chlorinated solvents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Monitoring the Effectiveness of Measures to Contain the Primary Sources of Mercury Pollution on the Site of a Former Chlor-Akali Plant in Kazakhstan

    Science.gov (United States)

    An extensive sampling campaign was conducted in 2005-2007 to monitor the effectiveness of remedial measures to contain mercury pollution at the site of a former mercury cell chlor-alkali plant in Pavlodar, Kazakhstan. Containment measures consisted of cutoff walls and capping of ...

  13. Chlor-alkali plant contamination of Aussa River sediments induced a large Hg-resistant bacterial community

    Science.gov (United States)

    Baldi, Franco; Marchetto, Davide; Gallo, Michele; Fani, Renato; Maida, Isabel; Covelli, Stefano; Fajon, Vesna; Zizek, Suzana; Hines, Mark; Horvat, Milena

    2012-11-01

    A closed chlor-alkali plant (CAP) discharged Hg for decades into the Aussa River, which flows into Marano Lagoon, resulting in the large-scale pollution of the lagoon. In order to get information on the role of bacteria as mercury detoxifying agents, analyses of anions in the superficial part (0-1 cm) of sediments were conducted at four stations in the Aussa River. In addition, measurements of biopolymeric carbon (BPC) as a sum of the carbon equivalent of proteins (PRT), lipids (LIP), and carbohydrates (CHO) were performed to correlate with bacterial biomass such as the number of aerobic heterotrophic cultivable bacteria and their percentage of Hg-resistant bacteria. All these parameters were used to assess the bioavailable Hg fraction in sediments and the potential detoxification activity of bacteria. In addition, fifteen isolates were characterized by a combination of molecular techniques, which permitted their assignment into six different genera. Four out of fifteen were Gram negative with two strains of Stenotrophomonas maltophilia, one Enterobacter sp., and one strain of Brevibacterium frigoritolerans. The remaining strains (11) were Gram positive belonging to the genera Bacillus and Staphylococcus. We found merA genes in only a few isolates. Mercury volatilization from added HgCl2 and the presence of plasmids with the merA gene were also used to confirm Hg reductase activity. We found the highest number of aerobic heterotrophic Hg-resistant bacteria (one order magnitude higher) and the highest number of Hg-resistant species (11 species out of 15) at the confluence of the River Aussa and Banduzzi's channel, which transport Hg from the CAP, suggesting that Hg is strongly detoxified [reduced to Hg(0)] at this location.

  14. Geophysical bed sediment characterization of the Androscoggin River from the former Chlor-Alkali Facility Superfund Site, Berlin, New Hampshire, to the state border with Maine, August 2009

    Science.gov (United States)

    Degnan, James R.; Teeple, Andrew; Johnston, Craig M.; Marvin-DiPasquale, Mark C.; Luce, Darryl

    2011-01-01

    The former Chlor-Alkali Facility in Berlin, New Hampshire, was listed on the U.S. Environmental Protection Agency National Priorities List in 2005 as a Superfund site. The Chlor-Alkali Facility lies on the east bank of the Androscoggin River. Elemental mercury currently discharges from that bank into the Androscoggin River. The nature, extent, and the speciation of mercury and the production of methyl mercury contamination in the adjacent Androscoggin River is the subject of continuing investigations. The U.S. Geological Survey, in cooperation with Region I of the U.S. Environmental Protection Agency, used geophysical methods to determine the distribution, thickness, and physical properties of sediments in the Androscoggin River channel at a small area of an upstream reference reach and downstream from the site to the New Hampshire–Maine State border. Separate reaches of the Androscoggin River in the study area were surveyed with surface geophysical methods including ground-penetrating radar and step-frequency electromagnetics. Results were processed to assess sediment characteristics including grain size, electrical conductivity, and pore-water specific conductance. Specific conductance measured during surface- and pore-water sampling was used to help interpret the results of the geophysical surveys. The electrical resistivity of sediment samples was measured in the laboratory with intact pore water for comparison with survey results. In some instances, anthropogenic features and land uses, such as roads and power lines affected the detection of riverbed properties using geophysical methods; when this occurred, the data were removed. Through combining results, detailed riverbed sediment characterizations were made. Results from ground-penetrating radar surveys were used to image and measure the depth to the riverbed, depth to buried riverbeds, riverbed thickness and to interpret material-type variations in terms of relative grain size. Fifty two percent of the

  15. Influence of a chlor-alkali superfund site on mercury bioaccumulation in periphyton and low-trophic level fauna

    Science.gov (United States)

    Buckman, Kate L.; Marvin-DiPasquale, Mark C.; Taylor, Vivien F.; Chalmers, Ann T.; Broadley, Hannah J.; Agee, Jennifer L.; Jackson, Brian P.; Chen, Celia Y.

    2015-01-01

    In Berlin, New Hampshire, USA, the Androscoggin River flows adjacent to a former chlor-alkali facility that is a US Environmental Protection Agency Superfund site and source of mercury (Hg) to the river. The present study was conducted to determine the fate and bioaccumulation of methylmercury (MeHg) to lower trophic-level taxa in the river. Surface sediment directly adjacent to the source showed significantly elevated MeHg (10–40× increase, mean ± standard deviation [SD]: 20.1 ± 24.8 ng g–1 dry wt) and total mercury (THg; 10–30× increase, mean ± SD: 2045 ± 2669 ng g–1 dry wt) compared with all other reaches, with sediment THg and MeHg from downstream reaches elevated (3–7× on average) relative to the reference (THg mean ± SD: 33.5 ± 9.33 ng g–1 dry wt; MeHg mean ± SD: 0.52 ± 0.21 ng g–1 dry wt). Water column THg concentrations adjacent to the point source for both particulate (0.23 ng L–1) and dissolved (0.76 ng L–1) fractions were 5-fold higher than at the reference sites, and 2-fold to 5-fold higher than downstream. Methylmercury production potential of periphyton material was highest (2–9 ng g–1 d–1 dry wt) adjacent to the Superfund site; other reaches were close to or below reporting limits (0. 1 ng g–1 d–1 dry wt). Total Hg and MeHg bioaccumulation in fauna was variable across sites and taxa, with no clear spatial patterns downstream of the contamination source. Crayfish, mayflies, and shiners showed a weak positive relationship with porewater MeHg concentration.

  16. Energy intensive industry for Alaska. Volume I: Alaskan cost factors; market factors; survey of energy-intensive industries

    Energy Technology Data Exchange (ETDEWEB)

    Swift, W.H.; Clement, M.; Baker, E.G.; Elliot, D.C.; Jacobsen, J.J.; Powers, T.B.; Rohrmann, C.A.; Schiefelbein, G.L.

    1978-09-01

    The Alaskan and product market factors influencing industry locations in the state are discussed and a survey of the most energy intensive industries was made. Factors external to Alaska that would influence development and the cost of energy and labor in Alaska are analyzed. Industries that are likely to be drawn to Alaska because of its energy resources are analyzed in terms of: the cost of using Alaska energy resources in Alaska as opposed to the Lower 48; skill-adjusted wage and salary differentials between relevant Alaskan areas and the Lower 48; and basic plant and equipment and other operating cost differentials between relevant Alaskan areas and the Lower 48. Screening and evaluation of the aluminum metal industry, cement industry, chlor-alkali industry, lime industry, production of methanol from coal, petroleum refining, and production of petrochemicals and agrichemicals from North Slope natural gas for development are made.

  17. Process engineering and economic evaluations of diaphragm and membrane chlorine cell technologies. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The chlor-alkali manufacturing technologies of (1), diaphragm cells (2), current technology membrane cells (3), catalytic cathode membrane cells (4), oxygen-cathode membrane cells and to a lesser extent several other related emerging processes are studied. Comparisons have been made on the two bases of (1) conventional industrial economics, and (2) energy consumption. The current diaphragm cell may have a small economic advantage over the other technologies at the plant size of 544 metric T/D (600 T/D). The three membrane cells all consume less energy, with the oxygen-cathode cell being the lowest. The oxygen-cathode cell appears promising as a low energy chlor-alkali cell where there is no chemical market for hydrogen. Federal funding of the oxygen-cathode cell has been beneficial to the development of the technology, to electrochemical cell research, and may help maintain the US's position in the international chlor-alkali technology marketplace. Tax law changes inducing the installation of additional cells in existing plants would produce the quickest reduction in power consumption by the chlor-alkali industry. Alternative technologies such as the solid polymer electrolyte cell, the coupling of diaphragm cells with fuel cells and the dynamic gel diaphragm have a strong potential for reducing chloralkali industry power consumption. Adding up all the recent and expected improvements that have become cost-effective, the electrical energy required to produce a unit of chlorine by 1990 should be only 50% to 60% of that used in 1970. In the United States the majority of the market does not demand salt-free caustic. About 75% of the electrolytic caustic is produced in diaphragm cells and only a small part of that is purified. This study indicates that unless membrane cell costs are greatly reduced or a stronger demand develops for salt-free caustic, the diaphragm cells will remain competitive. (WHK)

  18. THE RELATION BETWEEN RESUDUE CHLOR QUANTITY AND WATER RELATED DISEASES IN AYDIN

    Directory of Open Access Journals (Sweden)

    Emine Didem EVCI

    2006-02-01

    Full Text Available Objectives: The correlation between the residue chlor quantity in water sampled in different points of Aydin province in 2004 and the incidence of infections via water (diarrhea, thyphoid fever, amoebic and bacillary dysentery is studied. Materials and Methods: A retrospective definitive study is performed during June-July 2005. Results: 924 physical and chemical analysis are performed in 2004. In winter season, the mean residue chlor was 0,57±0,10 mg/lt; there were 310 diarrhea cases and a bacillary dysentery case. In summer season, the mean residue chlor was 0,46±0,13 mg/lt; there were 529 diarrhea cases and an amoebic dysentery. Both seasons determined that there was a negative correlation between diarrhea and the residue chlor quantity and there was a poor connection between them and it was statistically unsignificant (for winter r= -0,242, p=0,224; for summer r= -0,148, p=0,480 Conclusion: However there is no determined, expressive connection between diarrhea cases and residue chlor quantity it was seen that as the residue chlor quantity evaluated, the diarrhea cases were reduced. [TAF Prev Med Bull 2006; 5(1.000: 1-7

  19. Historical variations in the stable isotope composition of mercury in a sediment core from a riverine lake: Effects of dams, pulp and paper mill wastes, and mercury from a chlor-alkali plant

    International Nuclear Information System (INIS)

    Jackson, Togwell A.

    2016-01-01

    The Wabigoon River (Ontario, Canada) was affected by dams starting in 1898 and was polluted with pulp and paper mill wastes starting in 1913 and mercury from a chlor-alkali plant from 1962 to 1975. A dated sediment core from a riverine lake was analysed to investigate resultant changes in the biogeochemistry of mercury as revealed by variations in mercury isotope ratios and sediment chemistry. A total mercury maximum formed by the mercury pollution coincided with minimums in the δ-values of the 198 Hg/ 202 Hg, 199 Hg/ 202 Hg, 200 Hg/ 202 Hg, and 201 Hg/ 202 Hg ratios, and the δ-values decreased in the order δ 201 Hg > δ 200 Hg > δ 199 Hg > δ 198 Hg. Thus, mass-dependent fractionation caused depletion in lighter isotopes, implying evaporation of Hg(0) and pollution of the atmosphere as well as the river-lake system. Concurrently, mass-independent fractionation caused 199 Hg enrichment, possibly reflecting an independently documented upsurge in methylmercury production, and 201 Hg depletion, suggesting removal of methylmercury with anomalously high 201 Hg/ 199 Hg ratios by aquatic organisms and accumulation of 201 Hg-depleted inorganic Hg(II) in sediments. The δ 201 Hg/δ 199 Hg ratio rose abruptly when mercury pollution began, reflecting the resultant increase in methylmercury production, and remained high but gradually declined as the pollution abated, paralleling trends shown by methylmercury in aquatic organisms. The δ 201 Hg/δ 199 Hg ratio of pre-1962 background mercury increased ca. 1898 and ca. 1913–1929, suggesting accelerated methylmercury production due to stimulation of microbial activities by the damming of the river and the input of pulp and paper mill wastes, respectively. Other variations were linked to economic and technological factors that affected pulp and paper manufacture. - Highlights: • A core from a lake polluted by Hg and organic wastes was analysed for Hg isotopes. • Hg from a chlor-alkali plant was depleted in lighter

  20. 40 CFR 61.51 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... processes municipal or industrial waste waters. (m) Sludge dryer means a device used to reduce the moisture... container which is part of a mercury chlor-alkali cell and in which water and alkali metal amalgam are... pump sumps, and their water collection systems. (k) Cell room means a structure(s) housing one or more...

  1. Blood biomarkers and contaminant levels in feathers and eggs to assess environmental hazards in heron nestlings from impacted sites in Ebro basin (NE Spain).

    Science.gov (United States)

    Barata, C; Fabregat, M C; Cotín, J; Huertas, D; Solé, M; Quirós, L; Sanpera, C; Jover, L; Ruiz, X; Grimalt, J O; Piña, B

    2010-03-01

    Blood biomarkers and levels of major pollutants in eggs and feathers were used to determine pollution effects in nestlings of the Purple Heron Ardea purpurea and the Little Egret Egretta garzetta, sampled on three Ebro River (NE Spain) areas: a reference site, a site affected by the effluents of a chlor-alkali industry and the river Delta. The two impacted heron populations showed mutually different pollutant and response patterns, suggesting different sources of contamination. In the population nesting near the chlor-alkali plant, elevated levels of hexachlorobenzene (HCB) and polychlorobiphenyls (PCBs) in eggs, and mercury in feathers in A. purpurea chicks were related with reduced blood antioxidant defenses and increased levels of micronuclei. In Ebro Delta, high levels of plasmatic lactate dehydrogenase in A. purpurea chicks and high frequency of micronuclei in blood of both species were tentatively associated with intensive agricultural activities taking place in the area. These results provide the first evidence of a biological response in heron chicks to the release of pollutants at a chlor-alkali plant. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  2. Euro Chlor risk assessment for the marine environment Osparcom region, North Sea

    International Nuclear Information System (INIS)

    Garny, V.; Lecloux, A.; Boutonnet, J.C.; Papp, R.; De Rooij, C.; Thompson, R.S.; Wijk, D. van

    1999-01-01

    Euro Chlor has voluntarily agreed to carry out environmental risk assessments of 25 chemicals, related to the chlorine industry. The assessments were carried out specifically for the marine environment, according to the methodology laid down in the EU risk assessment Regulation (1488/94) and the Guidance Document of the EU New and Existing Substances Regulation (TGD, 1997). The study consists of the collection and evaluation of data on effects and environmental concentrations

  3. Mercury in sediments of Ulhas estuary

    Digital Repository Service at National Institute of Oceanography (India)

    Ram, A.; Rokade, M.A.; Borole, D.V.; Zingde, M.D.

    Hg levels in water, suspended particulate matter and sediment of the Ulhas estuary are under considerable environmental stress due to the indiscriminate release of effluents from a variety of industries including chlor-alkali plants. Concentration...

  4. Fundamental studies on the electrocatalytic properties of metal macrocyclics and other complexes for the electroreduction of O2

    CSIR Research Space (South Africa)

    Masa, J

    2013-01-01

    Full Text Available The high prospects of exploiting the oxygen reduction reaction (ORR) for lucrative technologies, for example, in the fuel cells industry, chlor-alkali electrolysis, and metal-air batteries, to name but a few, have prompted enormous research interest...

  5. Blood biomarkers and contaminant levels in feathers and eggs to assess environmental hazards in heron nestlings from impacted sites in Ebro basin (NE Spain)

    International Nuclear Information System (INIS)

    Barata, C.; Fabregat, M.C.; Cotin, J.; Huertas, D.; Sole, M.; Quiros, L.; Sanpera, C.; Jover, L.; Ruiz, X.; Grimalt, J.O.; Pina, B.

    2010-01-01

    Blood biomarkers and levels of major pollutants in eggs and feathers were used to determine pollution effects in nestlings of the Purple Heron Ardea purpurea and the Little Egret Egretta garzetta, sampled on three Ebro River (NE Spain) areas: a reference site, a site affected by the effluents of a chlor-alkali industry and the river Delta. The two impacted heron populations showed mutually different pollutant and response patterns, suggesting different sources of contamination. In the population nesting near the chlor-alkali plant, elevated levels of hexachlorobenzene (HCB) and polychlorobiphenyls (PCBs) in eggs, and mercury in feathers in A. purpurea chicks were related with reduced blood antioxidant defenses and increased levels of micronuclei. In Ebro Delta, high levels of plasmatic lactate dehydrogenase in A. purpurea chicks and high frequency of micronuclei in blood of both species were tentatively associated with intensive agricultural activities taking place in the area. These results provide the first evidence of a biological response in heron chicks to the release of pollutants at a chlor-alkali plant. - High levels of organochlorine and mercury levels in eggs and feathers were related with altered blood biomarkers of heron nesting chicks.

  6. 76 FR 13851 - National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell...

    Science.gov (United States)

    2011-03-14

    ... National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali...-5] RIN 2060-AN99 National Emission Standards for Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants AGENCY: Environmental Protection Agency (EPA). ACTION: Supplemental...

  7. BACTERIA USED TO PRECIPITATE MERCURY IN CONTAMINATED GROUNDWATER OF PAVLODAR, KAZAKHSTAN

    Science.gov (United States)

    Abstract for poster presentation: A number of regions in Kazakhstan are contaminated with soluble mercury originating from industrial sources. A chlor-alkali plant that operated from 1970-1990 caused contamination of ground water near a northern suburb of Pavlodar city. The plume...

  8. The transport behaviour of elemental mercury DNAPL in saturated porous media: Analysis of field observations and two-phase flow modelling

    NARCIS (Netherlands)

    Sweijen, T.; Hartog, Niels; Marsman, A.; Keijzer, T.J.S.

    2014-01-01

    Mercury is a contaminant of global concern. The use of elemental mercury in various (former) industrial processes, such as chlorine production at chlor-alkali plants, is known to have resulted in soil and groundwater contaminations worldwide. However, the subsurface transport behaviour of elemental

  9. Infiltration and Distribution of Elemental Mercury DNAPL in Water-Saturated Porous Media : Experimental and Numerical Investigation

    NARCIS (Netherlands)

    D'Aniello, Andrea; Hartog, Niels; Sweijen, Thomas; Pianese, Domenico

    Liquid elemental mercury occurrence in the subsurface as dense non-aqueous phase liquid (DNAPL) is reported worldwide in proximity of several industrial facilities, such as chlor-alkali plants. Insight into Hg0 DNAPL infiltration behavior is lacking and, to date, there are no experimental

  10. Sulfation of corrosive alkali chlorides by ammonium sulfate in a biomass fired CFB boiler

    Energy Technology Data Exchange (ETDEWEB)

    Brostroem, Markus; Backman, Rainer; Nordin, Anders [Energy Technology and Thermal Process Chemistry, Umeaa University, SE-901 87 Umeaa (Sweden); Kassman, Haakan [Vattenfall Power Consultant AB, Box 1046, SE-611 29 Nykoeping (Sweden); Helgesson, Anna; Berg, Magnus; Andersson, Christer [Vattenfall Research and Development AB, SE-814 26 Aelvkarleby (Sweden)

    2007-12-15

    Biomass and waste derived fuels contain relatively high amounts of alkali and chlorine, but contain very little sulfur. Combustion of such fuels can result in increased deposit formation and superheater corrosion. These problems can be reduced by using a sulfur containing additive, such as ammonium sulfate, which reacts with the alkali chlorides and forms less corrosive sulfates. Ammonium sulfate injection together with a so-called in situ alkali chloride monitor (IACM) is patented and known as ''ChlorOut''. IACM measures the concentrations of alkali chlorides (mainly KCl in biomass combustion) at superheater temperatures. Tests with and without spraying ammonium sulfate into the flue gases have been performed in a 96MW{sub th}/25MW{sub e} circulating fluidized bed (CFB) boiler. The boiler was fired mainly with bark and a chlorine containing waste. KCl concentration was reduced from more than 15 ppm to approximately 2 ppm during injection of ammonium sulfate. Corrosion probe measurements indicated that both deposit formation and material loss due to corrosion were decreased using the additive. Analysis of the deposits showed significantly higher concentration of sulfur and almost no chlorine in the case with ammonium sulfate. Results from impactor measurements supported that KCl was sulfated to potassium sulfate by the additive. (author)

  11. Landfill mining from a deposit of the chlorine/organochlorine industry as source of dioxin contamination of animal feed and assessment of the responsible processes.

    Science.gov (United States)

    Torres, João Paulo Machado; Leite, Claudio; Krauss, Thomas; Weber, Roland

    2013-04-01

    In 1997, the Polychlorinated dibenzo-para-dioxin (PCDD)/Polychlorinated dibenzofuran (PCDF) concentrations in dairy products in Germany and other European countries increased. The PCDD/PCDF source was contaminated lime used in Brazilian citrus pulp pellets. The contaminated lime was mined from an industrial dump site. However, the detailed origin of the PCDD/PCDFs in the lime was not revealed. This paper investigates the contamination origin and describes the link between lime milk from the dumpsite of a chlorine/organochlorine industry and the contaminated lime. The contaminated lime stem from mining at the corporate landfill of Solvay Indupa in Sao Paulo. The landfill was used for 40 years for deposition of production residues and closed in 1996. The factory operated/operates at least two processes with potentially high PCDD/PCDFs releases namely the oxychlorination process for production of ethylene dichloride (EDC) and the chlor-alkali process. The main landfilled waste was lime milk (1.4 million tons) from the vinyl chloride monomer production (via the acetylene process) along with residues from other processes. The PCDD/PCDF fingerprint revealed that most samples from the chemical landfill showed an EDC PCDD/PCDF pattern with a characteristic octachlorodibenzofuran dominance. The PCDD/PCDF pattern of a Rio Grande sediment samples downstream the facility showed a chlor-alkali pattern with a minor impact of the EDC pattern. The case highlights that PCDD/PCDF- and persistent organic pollutants-contaminated sites need to be identified in a comprehensive manner as required by the Stockholm Convention (article 6) and controlled for their impact on the environment and human health. Landfill mining and reuse of materials from contaminated deposits should be prohibited.

  12. Identification and molecular analysis of mercury resistant bacteria in ...

    African Journals Online (AJOL)

    Mercury (Hg) is one of the most important toxic pollutants widespread in the environment. It is being extensively used in industrial applications (chlor-alkali electrolysis, fungicides, disinfectants, dental products, etc), resulting in local hot spots of pollution and serious effects on biota and humans. The aim of this study was to ...

  13. Energy-saving chlorine production. Chlor-alkali electrolysis using innovative cathode technology; Energiesparende Chlorpoduktion. Chlor-Alkali-Elektrolyse mit innovativer Kathoden-Technologie

    Energy Technology Data Exchange (ETDEWEB)

    Woltering, Peter; Hofmann, Philipp; Funck, Frank; Kiefer, Randolf; Baeumer, Ulf-Steffen; Donst, Dmitri; Schmitt, Carsten [Thyssen Krupp Uhde GmbH, Dortmund (Germany)

    2013-11-01

    Chlorine is used in the synthesis of almost two thirds of all chemical products. Producing chlorine from salt by electrolysis is a very energy-intensive process. Through their joint venture UHDENORA S.p.A., ThyssenKrupp Uhde and Industrie De Nora S.p.A. have played a major part in the development of a globally available technology that can produce chlorine using up to 30 percent less energy than conventional processes. It uses oxygen depolarized cathode technology with an innovative new cathode chamber design in an Uhde single-cell element. In Germany alone, converting all existing plants to the new technology would save enough electricity to power a city the size of Cologne. (orig.)

  14. Hydrogen production coupled to nuclear waste treatment: the safe treatment of alkali metals through a well-demonstrated process

    International Nuclear Information System (INIS)

    Rahier, A.; Mesrobian, G.

    2006-01-01

    In 1992, the United Nations emphasised the urgent need to act against the perpetuation of disparities between and within nations, the worsening of poverty, hunger, ill health and illiteracy and the continuing deterioration of ecosystems on which we depend for our well-being. In this framework, taking into account the preservation of both worldwide energy resources and ecosystems, the use of nuclear energy to produce clean energy carriers, such as hydrogen, is undoubtedly advisable. However, coping fully with the Agenda 21 statements requires defining adequate treatment processes for nuclear wastes. This paper discusses the possible use of a well-demonstrated process to convert radioactively contaminated alkali metals into sodium hydroxide while producing hydrogen. We conclude that a synergy between Chlor-Alkali specialists and nuclear specialists may help find an acceptable solution for radioactively contaminated sodium waste. (author)

  15. 40 CFR 61.50 - Applicability.

    Science.gov (United States)

    2010-07-01

    ... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Mercury § 61.50 Applicability. The provisions of this subpart are applicable to those stationary sources which process mercury ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal...

  16. 77 FR 47631 - Agency Information Collection Activities: Request for Comments on Twenty-Four Proposed...

    Science.gov (United States)

    2012-08-09

    ... recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal hydroxide, and...: NESHAP for Metal Furniture Surface Coating (40 CFR Part 63, Subpart RRRR). ICR Numbers: EPA ICR Number... Metals Foundries (40 CFR Part 63, Subpart ZZZZZZ). ICR Numbers: EPA ICR Number 2332.03, OMB Control...

  17. Alkali slagging problems with biomass fuels

    Energy Technology Data Exchange (ETDEWEB)

    Miles, T.R.; Miles, T.R. Jr.; Baxter, L.L.; Jenkins, B.M.; Oden, L.L.

    1993-12-31

    Biomass fueled power boilers are unable to burn more than minor percentages of annually generated agricultural fuels. Determining the mechanisms of deposit formation, and developing means of increasing the proportion of these annual biofuels to be fired are the aims of the ongoing Alkali Deposit Investigation sponsored by DOE/NREL with matching funds from industry sponsors, combining Science, Engineering and Industry.

  18. The use of computational method to assess the safety and quality of ventilation in industrial buildings

    International Nuclear Information System (INIS)

    Broyd, T.W.; Oldfield, S.G.; Moult, A.

    1983-01-01

    Industrial buildings, particularly those containing nuclear and process plant, often require high standards of ventilation in order to cope with unusual features of the operations or process which take place within the buildings. Four examples of recent studies carried out by the present authors are given in this paper: storage of coal in a covered stockyard, a chlor-alkali plant, a clean room, and the turbine hall of a nuclear power station. In each of these examples, quite detailed information was required about air flows, temperatures and gas concentrations, and it was decided to use the two-equation k,epsilon model of turbulence to help predict these variables. This is solved with equations for momentum and continuity by finite differences. It is concluded that complex computer programs of this kind can provide valuable assistance in support of the more traditional hand calculations using BS codes and CIBS guides. However, careful engineering judgement must be exercised in the use of the programs and in the interpretation of the results. (author)

  19. Monitoring persistent organic pollutants in an industrial area of Tarragona (Catalonia, Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Nadal, M.; Schuhmacher, M.; Domingo, J.L. [Rovira i Virgili University, Reus (Spain)

    2004-09-15

    It is well known that combustion of different materials is one of the most important sources of environmental contamination by persistent organic pollutants (POPs). Therefore, environments affected by this kind of processes should be strictly controlled. In relation to it, the 2001 Stockholm Convention for the regulation of POPs was undertaken in order to establish agreements and mechanisms to erase the release of 12 POPs on a global scale. While polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and polychlorinated biphenyls (PCBs) were included in this list, other pollutants such as polychlorinated naphthalenes (PCNs) and polycyclic aromatic hydrocarbons (PAHs) can be added in a near future. Since more than 30 years ago, one of the largest chemical and petrochemical industrial complexes in Southern Europe is located in Tarragona County (Catalonia, Spain). Several chemical industries (such as a PVC production facility and a chlor-alkali plant) and a big oil refinery are located in this residential area (up to 300,000 inhabitants), together with a municipal solid waste incinerator (MSWI) and a hazardous waste incinerator (HWI). Moreover, the presence of a highway and several roads with an important traffic density influences also the environment of the zone. The current study is a preliminary investigation to assess the levels of several POPs (PCDD/Fs, PCBs, PCNs and PAHs) in soil and vegetation samples collected in Tarragona's industrial and residential areas and to compare them with data obtained in unpolluted sites as well as in other industrial and residential zones.

  20. Metal analyses of ash derived alkalis from banana and plantain ...

    African Journals Online (AJOL)

    The objective of this work was to determine the metal content of plantain and banana peels ash derived alkali and the possibility of using it as alternate and cheap source of alkali in soap industry. This was done by ashing the peels and dissolving it in de-ionised water to achieve the corresponding hydroxides with pH above ...

  1. Historical record of mercury contamination in sediments from the Babeni Reservoir in the Olt River, Romania.

    Science.gov (United States)

    Bravo, Andrea Garcia; Loizeau, Jean-Luc; Ancey, Lydie; Ungureanu, Viorel Gheorghe; Dominik, Janusz

    2009-08-01

    industry. Two strong peaks could be distinguished in older sediments. The mean rate of sedimentation (5.9 cm/year) was calculated from the depth of the (137)Cs Chernobyl peak. This was in good agreement with the sedimentation rate estimated at this site from a bathymetric study. Assuming a constant sedimentation rate, the two Hg peaks would reflect two contamination events in 1987 and 1991, respectively. However, it is also possible that the two peaks belong to the same contamination event in 1987 but were separated by a sediment layer richer in sand and silt. This layer had a low Hg concentration, which can be interpreted as a mass deposition event related to a major flood bringing Hg-free sediments. Whilst the chlor-alkali plant partly switched to a cleaner technology in 1999, no obvious decrease of Hg concentrations was observed in recent decade. Results from the sediment core reflected the historical trend of Hg release from the chlor-alkali plant, revealed important contamination episodes and confirmed a legacy of contamination of Hg in recent sediments even if the concentrations of Hg decreased toward the surface due to a more efficient emission control. Although the Hg concentrations in Babeni Reservoir sediments were extremely high in the late eighties and they remain one order of magnitude higher in the surface sediments than in sediments from the upstream reservoir, little is known about the transfer of Hg to the biota and human population. Our initial measurements indicate the presence of monomethyl-Hg (MMHg) in pore water, but further studies are necessary to evaluate fluxes of MMHg at the sediment-water interface. Samples of fish and hair from various groups of the local population were recently collected to evaluate the potential hazard of Hg contamination to human health in the Rm Valcea region.

  2. Plasma assisted measurements of alkali metal concentrations in pressurised combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R; Haeyrinen, V [Tampere Univ. of Technology (Finland)

    1997-10-01

    In this project the continuous alkali measurement method plasma excited alkali resonance line spectroscopy (PEARLS) was developed, tested and demonstrated in pressurised combustion facilities. The PEARLS method has been developed at Tampere University of Technology (TUT). During 1994-1996 the PEARLS method was developed from the laboratory level to an industrial prototype. The alkali measuring instrument has been tested and used for regular measurements in four different pressurised combustion installations ranging up to industrial pilot scale. The installations are: (1) a pressurised entrained flow reactor (PEFR) at VTT Energy in Jyvaeskylae, Finland (2) a pressurised fluidised bed combustion facility, called FRED, at DMT in Essen, Germany. (3) a 10 MW pressurised circulating fluidised bed combustion pilot plant at Foster Wheeler Energia Oy in Karhula, Finland (4) PFBC Research Facility at ABB Carbon in Finspaang, Sweden

  3. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    Science.gov (United States)

    Joshi, Ashok V [Salt Lake City, UT; Balagopal, Shekar [Sandy, UT; Pendelton, Justin [Salt Lake City, UT

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  4. Maternal exposure to alkali, alkali earth, transition and other metals: Concentrations and predictors of exposure

    International Nuclear Information System (INIS)

    Hinwood, A.L.; Stasinska, A.; Callan, A.C.; Heyworth, J.; Ramalingam, M.; Boyce, M.; McCafferty, P.; Odland, J.Ø.

    2015-01-01

    Most studies of metals exposure focus on the heavy metals. There are many other metals (the transition, alkali and alkaline earth metals in particular) in common use in electronics, defense industries, emitted via combustion and which are naturally present in the environment, that have received limited attention in terms of human exposure. We analysed samples of whole blood (172), urine (173) and drinking water (172) for antimony, beryllium, bismuth, cesium, gallium, rubidium, silver, strontium, thallium, thorium and vanadium using ICPMS. In general most metals concentrations were low and below the analytical limit of detection with some high concentrations observed. Few factors examined in regression models were shown to influence biological metals concentrations and explained little of the variation. Further study is required to establish the source of metals exposures at the high end of the ranges of concentrations measured and the potential for any adverse health impacts in children. - This study has demonstrated exposure to alkali, alkali earth and transition metals in pregnant women with factors such as breastfeeding, fish oil use and diet affecting exposures

  5. Chlorinated polycyclic aromatic hydrocarbons in sediments from industrial areas in Japan and the United States.

    Science.gov (United States)

    Horii, Yuichi; Ohura, Takeshi; Yamashita, Nobuyoshi; Kannan, Kurunthachalam

    2009-11-01

    Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) are widespread environmental pollutants in the urban environment. Nevertheless, there is little information available regarding the occurrence and profiles of ClPAHs in environmental matrices. In this study, residual concentrations and profiles of 20 individual ClPAHs and 16 US EPA-priority PAHs were determined using high- resolution gas chromatography-high-resolution mass spectrometry in sediments from water bodies near industrialized areas: Tokyo Bay, Japan; the Saginaw River watershed, Michigan, USA; a former chlor-alkali plant, Georgia, USA; and the New Bedford Harbor Superfund site, Massachusetts, USA. A sediment core from Tokyo Bay showed temporal patterns in the distribution of ClPAHs from the 1950s through 2004. The fluxes of ClPAHs and 16 priority PAHs in Tokyo Bay sediment core were 0.029-0.57 ng/cm(2)/year and 85-609 ng/cm(2)/year, respectively; fluxes were lowest in the 1950s and highest in 1989-1990. In the United States, a high mean concentration of ClPAHs was found in sediment collected near a former chlor-alkali plant [8820 pg/g dry weight (dry wt)], and lower mean concentrations were found for New Bedford Harbor (1880 pg/g dry wt) and the Saginaw River watershed (1140 pg/g dry wt). Among individual ClPAHs, 6-ClBaP and 1-ClPyr were the dominant compounds in sediments; this pattern is similar to the pattern reported in the literature for waste incineration and ambient urban air samples. Significant correlation between SigmaClPAH concentrations and Sigmaparent-PAH concentrations in Tokyo Bay sediment implies that the sources and distribution of ClPAHs are directly related to those of parent PAHs. We also analyzed ClPAHs and parent PAHs in blue mussels from New Bedford Harbor. The mean concentration of ClPAHs in mussels from New Bedford Harbor was 21 ng/g lipid weight, a concentration three orders of magnitude lower than the mean concentration of parent PAHs. Low-molecular-weight ClPAHs predominated

  6. Characterisation and properties of alkali activated pozzolanic materials

    Science.gov (United States)

    Bordeian, Georgeta Simona

    Many of the waste materials produced from modem heavy industries are pozzalans, which develop cementitious properties when finely divided in the presence of free lime. This property allows a potential industrial use for this waste as a cement replacement material in concrete. An example of such a waste material is blast furnace slag from the smelting of iron and steel. The US produces 26 million tons of blast furnace slag annually. Most of the slag is slowly cooled in air and it makes a poor pozzolan. Only 1.6 million tons of the slag is available in the granulated form, which is suitable as a cementitious and pozzolanic admixture. Most European countries are well endowed with coal-fired power stations and this produces fly and bottom ash, flue gas desulphurisation (FGD) gypsum. However, less than 25% of the total ash from power stations has found an industrial use mainly in cement and concrete industry. This creates a massive waste-disposal problem. Disposal of unused fly ash in open tips and ponds, for example, creates pollution problems since the drainage of effluents from the ash in the deposit ponds threaten water supplies by polluting the ground water with traces of toxic chemicals.Recent research has concentrated on the alkali activation of waste pozzolanic materials, especially ground blast furnace slag. This thesis has investigated the alkali activation of low calcium fly ashes. These form very poor pozzolans and the alkali activation of the fly ash offers the opportunity for the large scale use of fly ash. Water glass was selected as a suitable activator for the fly ash. A comprehensive series of tests have been carried out to gain information on the effect of different parameters, such as proportion and composition of the constituent materials, curing conditions and casting methods, in developing high performance construction materials. Laboratory investigations were carried out to determine the following characteristics of alkali activated materials

  7. Statistical optimization of thermo-alkali stable xylanase production from Bacillus tequilensis strain ARMATI

    Directory of Open Access Journals (Sweden)

    Ameer Khusro

    2016-07-01

    Conclusions: The cellulase-free xylanase showed an alkali-tolerant and thermo-stable property with potentially applicable nature at industrial scale. This statistical approach established a major contribution in enzyme production from the isolate by optimizing independent factors and represents a first reference on the enhanced production of thermo-alkali stable cellulase-free xylanase from B. tequilensis.

  8. Alkali silica reaction (ASR) in cement free alkali activated sustainable concrete.

    Science.gov (United States)

    2016-12-19

    This report summarizes the findings of an experimental evaluation into alkali silica : reaction (ASR) in cement free alkali-activated slag and fly ash binder concrete. The : susceptibility of alkali-activated fly ash and slag concrete binders to dele...

  9. Process to separate alkali metal salts from alkali metal reacted hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John Howard; Alvare, Javier; Larsen, Dennis; Killpack, Jeff

    2017-06-27

    A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phase may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.

  10. The effect of alkali treatment of bamboo on the physical and mechanical properties of particleboard made from bamboo - industrial wood particles

    Directory of Open Access Journals (Sweden)

    vahid vaziri

    2018-02-01

    Full Text Available In this study, physical and mechanical properties of single layer particleboard made from bamboo powder (with and without alkali treatment and wood particles were investigated. Bamboo powder (30 mesh particles was treated with 5% hydroxide sodium for 120 minutes. Industrial wood chips from Sanate Choube Shomal Company were used.The variable in this research were the ratio of bamboo powder (with and without alkali treatment to wood chips (at four levels; 0:100, 10:90, 20:80, 30:70. Urea formaldehyde resin used at 10 percent level of dry weight of raw material as well as ammonium chloride was used as a catalyst at 2 percent level of the dry weight of adhesive. Physical and mechanical properties of panels measured according to EN Standard. Mechanical properties of the particleboards made from treated bamboo was superior to the relevant untreated bamboo. Water absorption and thickness swelling after 2 and 24 hours immersion in water decreased with alkali treatment. Mercerization, or treating cellulose fibers in alkaline solution, because of fibrillation, the removal of lignin and hemicellulose enhances the mechanical properties and dimension stability of the particleboard by promoting resin-fiber mechanical interlocking at the interface. Results showed, there was usability of the treated bamboo up to 30 percent for general purpose boards for use in dry conditions.

  11. 40 CFR 415.60 - Applicability; description of the chlorine and sodium or potassium hydroxide production subcategory.

    Science.gov (United States)

    2010-07-01

    ... chlorine and sodium or potassium hydroxide production subcategory. 415.60 Section 415.60 Protection of... MANUFACTURING POINT SOURCE CATEGORY Chlor-alkali Subcategory (Chlorine and Sodium or Potassium Hydroxide Production) § 415.60 Applicability; description of the chlorine and sodium or potassium hydroxide production...

  12. ACTIVITIES TO CONTAIN MERCURY POLLUTION FROM ENTERING THE RIVER IRTYSH IN PAVLODAR, KAZAKHSTAN

    Science.gov (United States)

    This paper describes a research and implementation program to cost effectively contain mercury pollution from a former chlor-alkali plant at Pavlodar, Kazakhstan. It has been estimated that about 1300 tons of mercury were lost into the environment. The primary source of pollutio...

  13. Enhanced Monitored Natural Recovery (EMNR) Case Studies Review

    Science.gov (United States)

    2009-05-01

    trends in sediment toxicity in thin layer capped and natural recovery areas. • Evaluation of temporal trends in macroinvertebrate benthic community...Pacific biotreatment lagoon . The WW Area is contaminated with mercury originating from a chlor- alkali facility operated by Georgia-Pacific, phenolic

  14. Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli Industrial region, India.

    Science.gov (United States)

    Rai, Prabhat Kumar; Tripathi, B D

    2009-01-01

    The aim of the present work was to monitor the Hg pollution in water and sediments of G.B. Pant Sagar located in Singrauli Industrial Region, India and to suggest the efficient aquatic plants for its phytoremediation. The study assessed the comparative potential of a free floating water fern Azolla pinnata and submerged aquatic macrophyte Vallisneria spiralis to purify waters polluted by Hg. Six days laboratory experiments have been conducted to mark the percentage removal of Hg at initial concentration of 0.1, 0.5, 1.0 and 3.0 mg L(-1). The percentage removal of Hg was higher for A. pinnata (80-94%) than V. spiralis (70-84%). Likewise, the Hg accumulated in dry mass was much higher for A. pinnata and a high correlation (R(2) = 0.91 for A. pinnata and 0.99 for V. spiralis) was obtained between applied Hg doses and accumulated amounts in biomass. A concentration dependent decrease in chlorophyll a, protein, RNA, DNA and nutrients (NO(3-) and PO(4)(3-)) uptake was detected in A. pinnata and V. spiralis due to Hg toxicity. The decrease was more prominent in Azolla than Vallisneria. The results recommended the use of A. pinnata and V. spiralis to ameliorate the industrial effluents (thermal power, chlor-alkali and coal mine effluent) contaminated with Hg.

  15. Mercury assessment and evaluation of its impact on fish in the Cecina river basin (Tuscany, Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Scerbo, R. [CNR Istituto di Biofisica, Area della Ricerca Pisa-S. Cataldo, Via G. Moruzzi 1, 56124 Pisa (Italy); Ristori, T. [CNR Istituto di Biofisica, Area della Ricerca Pisa-S. Cataldo, Via G. Moruzzi 1, 56124 Pisa (Italy); Stefanini, B. [CNR Istituto di Biofisica, Area della Ricerca Pisa-S. Cataldo, Via G. Moruzzi 1, 56124 Pisa (Italy); De Ranieri, S. [Dipartimento Scienze Uomo e Ambiente, Universita di Pisa, Via Volta 6, 56100 Pisa (Italy); Barghigiani, C. [CNR Istituto di Biofisica, Area della Ricerca Pisa-S. Cataldo, Via G. Moruzzi 1, 56124 Pisa (Italy)]. E-mail: barghigiani@cibm.it

    2005-05-01

    This paper reports the results of mercury contamination monitoring in the Cecina river basin (Tuscany, Italy). Mercury was measured in the waters, sediments and fish species of the river and its most important tributaries. In fish specimens the organic form was also determined. The results showed high mercury levels in most of the samples analysed. Particularly high concentrations were found in the sediments of the S. Marta canal flowing into the Cecina, where a chlor-alkali plant discharges its wastes, and high levels were still detectable 31 km downstream from the confluence. Near the S. Marta confluence many fish specimens were very contaminated and a study on Leuciscus cephalus cabeda growth suggested that at this site mercury accumulation occurs in these organisms since they are very young. - Mercury entering water from a chlor-alkali plant near Tuscany has led to contamination of river food webs.

  16. Interactions of Various types between Rock and Alkali-Activated Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Mec Pavel

    2017-03-01

    Full Text Available Alkali-activated binders (AAB are very intensively studied materials nowadays. Because of possible usage as secondary raw materials, they can be environmentally efficient. Intensive research is focused especially on binder matrix, composition and its structure. For industrial usage, it is necessary to work with some aggregate for the preparation of mortars and concretes. Due to different structures of alkali-activated binders, the interaction with the aggregate will be different in comparison to an ordinary Portland cement binder. This paper deals with the study of interactions between several types of rocks used as aggregate and alkali-activated blast furnace slag. The research was focused especially on mechanical properties of prepared mortars.

  17. Development and testing of on-line analytical instrumentation for alkali and heavy metal release in pressurised conversion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R; Haeyrinen, V; Oikari, R [Tampere Univ. of Technology (Finland)

    1997-10-01

    The purpose of the project is to demonstrate in industrial conditions and further develop the continuous alkali measurement method plasma excited alkali resonance line spectroscopy (PEARLS) developed at Tampere University of Technology (TUT). The demonstration takes place in joint measuring campaigns, where two other continuous alkali measurement methods, ELIF and surface ionisation, are being simultaneously demonstrated. A modification of PEARLS will also be developed for the continuous measurement of heavy metal concentrations. A market study of continuous measuring techniques for alkali and heavy metals is further part of the project. The method will be demonstrated in two pressurised fluidised bed combustion facilities. One of these is the 10 MW PCFB of Foster Wheeler Energia Oy in Karhula. The second one is yet to be decided. The first measuring campaign is scheduled for the spring of 1997 in Karhula. In 1996 the group at TUT participated in the performance of a market study regarding continuous measuring techniques for alkali and heavy metal concentrations. A draft report was submitted to and approved by the EC. Development work on PEARLS in 1996 has centered around the construction of a calibration device for alkali measurements. The device can be used by all three measuring techniques in the project to check readings against a known alkali concentration at controlled and known conditions. In 1996 PEARLS was applied for alkali measurement at several pressurised combustion installations of laboratory and industrial pilot scale

  18. Structural Investigation of Alkali Activated Clay Minerals for Application in Water Treatment Systems

    Science.gov (United States)

    Bumanis, G.; Bajare, D.; Dembovska, L.

    2015-11-01

    Alkali activation technology can be applied for a wide range of alumo-silicates to produce innovative materials with various areas of application. Most researches focuse on the application of alumo-silicate materials in building industry as cement binder replacement to produce mortar and concrete [1]. However, alkali activation technology offers high potential also in biotechnologies [2]. In the processes where certain pH level, especially alkaline environment, must be ensured, alkali activated materials can be applied. One of such fields is water treatment systems where high level pH (up to pH 10.5) ensures efficient removal of water pollutants such as manganese [3]. Previous investigations had shown that alkali activation technology can be applied to calcined clay powder and aluminium scrap recycling waste as a foam forming agent to create porous alkali activated materials. This investigation focuses on the structural investigation of calcined kaolin and illite clay alkali activation processes. Chemical and mineralogical composition of both clays were determined and structural investigation of alkali activated materials was made by using XRD, DTA, FTIR analysis; the microstructure of hardened specimens was observed by SEM. Physical properties of the obtained material were determined. Investigation indicates the essential role of chemical composition of the clay used in the alkali activation process, and potential use of the obtained material in water treatment systems.

  19. Microstructure and Engineering Properties of Alkali Activated Fly Ash -as an environment friendly alternative to Portland cement

    NARCIS (Netherlands)

    Ma, Y.

    2013-01-01

    Alkali activated fly ash (AAFA), also named “geopolymer”, has emerged as a novel engineering material in the construction industry. This material is normally formed by the reaction between fly ash and aqueous hydroxide or alkali silicate solution. With proper mix design, AAFA can present comparable

  20. ASSESSMENT OF MERCURY POLLUTION TO THE IRTYSH RIVER IN PAVLODAR, KAZAKHSTAN

    Science.gov (United States)

    The threat of polluting the river Irtysh by mercury was caused by high losses of Hg during 1975-1993 during chlor-alkali production at the former PO "Khimprom", Pavlodar, North-East Kazakhstan (at present JSC "Pavlodar Chemical Plant"). These losses were the highest among simila...

  1. Industry-Cost-Curve Approach for Modeling the Environmental Impact of Introducing New Technologies in Life Cycle Assessment.

    Science.gov (United States)

    Kätelhön, Arne; von der Assen, Niklas; Suh, Sangwon; Jung, Johannes; Bardow, André

    2015-07-07

    The environmental costs and benefits of introducing a new technology depend not only on the technology itself, but also on the responses of the market where substitution or displacement of competing technologies may occur. An internationally accepted method taking both technological and market-mediated effects into account, however, is still lacking in life cycle assessment (LCA). For the introduction of a new technology, we here present a new approach for modeling the environmental impacts within the framework of LCA. Our approach is motivated by consequential life cycle assessment (CLCA) and aims to contribute to the discussion on how to operationalize consequential thinking in LCA practice. In our approach, we focus on new technologies producing homogeneous products such as chemicals or raw materials. We employ the industry cost-curve (ICC) for modeling market-mediated effects. Thereby, we can determine substitution effects at a level of granularity sufficient to distinguish between competing technologies. In our approach, a new technology alters the ICC potentially replacing the highest-cost producer(s). The technologies that remain competitive after the new technology's introduction determine the new environmental impact profile of the product. We apply our approach in a case study on a new technology for chlor-alkali electrolysis to be introduced in Germany.

  2. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.D.; Teats, F.G.; Swift, W.M. (Argonne National Lab., IL (United States)); Banerjee, D.D. (Illinois Clean Coal Inst., Carterville, IL (United States))

    1993-01-01

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950[degree]C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  3. Measurement of alkali-vapor emission from pressurized fluidized-bed combustion of Illinois coals

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.H.D.; Teats, F.G.; Swift, W.M. [Argonne National Lab., IL (United States); Banerjee, D.D. [Illinois Clean Coal Inst., Carterville, IL (United States)

    1993-04-01

    Two Illinois Herrin No. 6 coals and one Illinois Springfield No. 5 coal were separately combusted in a laboratory-scale (15-cm dia) pressurized fluidized-bed combustor (PFBC) combined with an alkali sorber. These coals were combusted in a fluidized bed of Tymochtee dolomite at temperatures ranging from 910 to 950{degree}C and a system pressure of 9.2 atm absolute. Alkali-vapor emission (Na and K) in the PFBC flue gas was determined by the analytical activated-bauxite sorber bed technique developed at Argonne National Laboratory. The test results showed that sodium is the major alkali-vapor species present in the PFBC flue gas, and that the level of sodium-vapor emission increases linearly with both Na and Cl contents in the coals. This suggests that the sodium-vapor emission results from direct vaporization of NaCl present in the coals. The measured alkali-vapor concentration (Na + K), 67 to 190 ppbW, is more than 2.5 times greater than the allowable alkali limit of 24 ppb for an industrial gas turbine. Combusting these coals in a PFBC for power generation may require developing a method to control alkali vapors.

  4. Alkali metal and alkali earth metal gadolinium halide scintillators

    Science.gov (United States)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Parms, Shameka; Porter-Chapman, Yetta D.; Wiggins, Latoria K.

    2016-08-02

    The present invention provides for a composition comprising an inorganic scintillator comprising a gadolinium halide, optionally cerium-doped, having the formula A.sub.nGdX.sub.m:Ce; wherein A is nothing, an alkali metal, such as Li or Na, or an alkali earth metal, such as Ba; X is F, Br, Cl, or I; n is an integer from 1 to 2; m is an integer from 4 to 7; and the molar percent of cerium is 0% to 100%. The gadolinium halides or alkali earth metal gadolinium halides are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  5. Electrical properties of alkali-activated slag composite with combined graphite/CNT filler

    Science.gov (United States)

    Rovnaník, P.; Míková, M.; Kusák, I.

    2017-10-01

    Alkali-activated industrial by-products such as blast furnace slag are known to possess properties which are comparable to or even better than those observed for ordinary Portland cement. The combination of alkali-activated slag matrix with conductive filler introduces new functionalities which are commonly known for self-sensing or self-heating concrete. The present paper discusses the effect of the mixture of two different conductive fillers, graphite powder and carbon nanotubes (CNTs), on the electrical properties of alkali-activated slag mortars. Prepared samples were also tested for their mechanical properties and microstructure was investigated by means of mercury intrusion porosimetry and scanning electron microscopy. The percolation threshold for the resistance was reached for the mixture containing 0.1% CNTs and 8% graphite powder.

  6. Milk-alkali syndrome

    Science.gov (United States)

    Calcium-alkali syndrome; Cope syndrome; Burnett syndrome; Hypercalcemia; Calcium metabolism disorder ... Milk-alkali syndrome is almost always caused by taking too many calcium supplements, usually in the form of calcium carbonate. Calcium ...

  7. Infiltration behaviour of elemental mercury DNAPL in fully and partially water saturated porous media

    NARCIS (Netherlands)

    D'Aniello, Andrea; Hartog, Niels; Sweijen, Thomas; Pianese, Domenico

    Mercury is a contaminant of global concern due to its harmful effects on human health and for the detrimental consequences of its release in the environment. Sources of liquid elemental mercury are usually anthropogenic, such as chlor-alkali plants. To date insight into the infiltration behaviour of

  8. Mercury sedimentation in lakes in western Whatcom County, Washington, USA and its relation to local industrial and municipal atmospheric sources

    Science.gov (United States)

    Paulson, A.J.; Norton, D.

    2008-01-01

    Concentrations of mercury (Hg) were measured in six dated cores from four lakes in western Whatcom County, Washington, USA, that were at various bearings from a chlor-alkali plant, two municipal waste incinerators and a municipal sewage sludge incinerator. The importance of atmospheric emissions of Hg from these local municipal and industrial sources was evaluating by comparing the temporal trends in sedimentation of the lake cores with the emission history of each Hg species and by examining the geographical distribution of Hg sedimentation in relation to the region's primary wind pattern. Local municipal and industrial sources of atmospheric Hg were not responsible for the majority of the Hg in the upper layer of sediments of Whatcom County lakes because of (1) the significant enrichment of Hg in lake sediments prior to emissions of local industrial and municipal sources in 1964, (2) smaller increases in Hg concentrations occurred after 1964, (3) the similarity of maximum enrichments found in Whatcom County lakes to those in rural lakes around the world, (4) the inconsistency of the temporal trends in Hg sedimentation with the local emission history, and (5) the inconsistency of the geographic trends in Hg sedimentation with estimated deposition. Maximum enrichment ratios of Hg in lake sediments between 2 and 3 that are similar to rural areas in Alaska, Minnesota, and New England suggest that global sources of Hg were primarily responsible for increases of Hg in Whatcom County lakes beginning about 1900. ?? 2007 GovernmentEmployee: U.S. Government, Department of Interior, U.S. Geological Survey.

  9. Liquid alkali metals and alkali-based alloys as electron-ion plasmas

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1981-06-01

    The article reviews the theory of thermodynamic and structural properties of liquid alkali metals and alkali-based alloys, within the framework of linear screening theory for the electron-ion interactions. (author)

  10. Radiological control for 203Hg radiotracer determinations of mercury inventories at chlor-alkali plants.

    Science.gov (United States)

    Martin, J E; Lee, C

    2001-11-01

    20Hg has been used safely to determine mercury inventories in large electrochemical process cells in the chlorine industry by a process of isotopic dilution. Laboratory conversion and processing of irradiated HgO can be done in closed systems with non-detectable releases to work areas or the environment and with exposure to whole body <0.25 mSv (25 mrem) and <3 mSv (300 mrem) to extremities. Personnel exposures during plant operations are controlled to non-detectable levels for whole body exposure and <0.3 mSv (30 mrem) to extremities for the operator; exposures for other plant personnel are non-detectable.

  11. Methods of recovering alkali metals

    Science.gov (United States)

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  12. Alkali-vapor laser-excimer pumped alkali laser

    International Nuclear Information System (INIS)

    Yue Desheng; Li Wenyu; Wang Hongyan; Yang Zining; Xu Xiaojun

    2012-01-01

    Based on the research internal and overseas, the principle of the excimer pumped alkali laser (XPAL) is explained, and the advantages and disadvantages of the XPAL are analyzed. Taking into consideration the difficulties that the diode pumped alkali laser (DPAL) meets on its development, the ability to solve or avoid these difficulties of XPAL is also analyzed. By summing up the achievements of the XPAL, the possible further prospect is proposed. The XPAL is of possibility to improve the performance of the DPAL. (authors)

  13. Alkali metal ion battery with bimetallic electrode

    Science.gov (United States)

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  14. CASE STUDY. MERCURY POLLUTION NEAR A CHEMICAL PLANT IN NORTHERN KAZAKHSTAN

    Science.gov (United States)

    In northern Kazakhstan, there is a serious case of mercury pollution near Pavlodar City from an old mercury cell chlor-alkali plant. The soil, sediment, and water are contaminated with more than a thousand tons of mercury and mercury compounds as a result of the operation of the ...

  15. 40 CFR 63.11494 - What are the applicability requirements and compliance dates?

    Science.gov (United States)

    2010-07-01

    ... of Paint and Allied Products, subject to subpart CCCCCCC of this part. (ii) Mercury Emissions from Mercury Cell Chlor-Alkali Plants, subject to subpart IIIII of this part. (iii) Polyvinyl Chloride and.../quality control laboratories. (5) Ancillary activities, as defined in § 63.11502(b). (6) Metal HAP in...

  16. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    Science.gov (United States)

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  17. Alkali metal and alkali metal hydroxide intercalates of the layered transition metal disulfides

    International Nuclear Information System (INIS)

    Kanzaki, Y.; Konuma, M.; Matsumoto, O.

    1981-01-01

    The intercalation reaction of some layered transition metal disulfides with alkali metals, alkali metal hydroxides, and tetraalkylammonium hydroxides were investigated. The alkali metal intercalates were prepared in the respective metal-hexamethylphosphoric triamide solutions in vaccuo, and the hydroxide intercalates in aqueous hydroxide solutions. According to the intercalation reaction, the c-lattice parameter was increased, and the increase indicated the expansion of the interlayer distance. In the case of alkali metal intercalates, the expansion of the interlayer distance increased continuously, corresponding to the atomic radius of the alkali metal. On the other hand, the hydroxide intercalates showed discrete expansion corresponding to the effective ionic radius of the intercalated cation. All intercalates of TaS 2 amd NbS 2 were superconductors. The expansion of the interlayer distance tended to increase the superconducting transition temperature in the intercalates of TaS 2 and vice versa in those of NbS 2 . (orig.)

  18. Alteration of alkali reactive aggregates autoclaved in different alkali solutions and application to alkali-aggregate reaction in concrete (II) expansion and microstructure of concrete microbar

    International Nuclear Information System (INIS)

    Lu Duyou; Mei Laibao; Xu Zhongzi; Tang Mingshu; Mo Xiangyin; Fournier, Benoit

    2006-01-01

    The effect of the type of alkalis on the expansion behavior of concrete microbars containing typical aggregate with alkali-silica reactivity and alkali-carbonate reactivity was studied. The results verified that: (1) at the same molar concentration, sodium has the strongest contribution to expansion due to both ASR and ACR, followed by potassium and lithium; (2) sufficient LiOH can completely suppress expansion due to ASR whereas it can induce expansion due to ACR. It is possible to use the duplex effect of LiOH on ASR and ACR to clarify the ACR contribution when ASR and ACR may coexist. It has been shown that a small amount of dolomite in the fine-grained siliceous Spratt limestone, which has always been used as a reference aggregate for high alkali-silica reactivity, might dedolomitize in alkaline environment and contribute to the expansion. That is to say, Spratt limestone may exhibit both alkali-silica and alkali-carbonate reactivity, although alkali-silica reactivity is predominant. Microstructural study suggested that the mechanism in which lithium controls ASR expansion is mainly due to the favorable formation of lithium-containing less-expansive product around aggregate particles and the protection of the reactive aggregate from further attack by alkalis by the lithium-containing product layer

  19. ALKALI FUSION OF ROSETTA ZIRCON

    International Nuclear Information System (INIS)

    DAHER, A.

    2008-01-01

    The decomposition of Rosetta zircon by fusion with different types of alkalis has been investigated. These alkalis include sodium hydroxide, potassium hydroxide and eutectic mixture of both. The influences of the reaction temperature, zircon to alkalis ratio, fusion time and the stirring of the reactant on the fusion reaction have been evaluated. The obtained results favour the decomposition of zircon with the eutectic alkalis mixture by a decomposition efficiency of 96% obtained at 500 0 C after one hour

  20. 40 CFR Table 4 to Subpart IIIii of... - Work Practice Standards-Requirements for Mercury Liquid Collection

    Science.gov (United States)

    2010-07-01

    ... for Mercury Liquid Collection 4 Table 4 to Subpart IIIII of Part 63 Protection of Environment... Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII, Table 4 Table 4 to Subpart IIIII of Part 63—Work Practice Standards—Requirements for Mercury Liquid Collection As stated in...

  1. Multicomponent ion transport in a mono and bilayer cation-exchange membrane at high current density

    NARCIS (Netherlands)

    Moshtari Khah, S.; Oppers, N.A.W.; de Groot, M.T.; Keurentjes, J.T.F.; Schouten, J.C.; van der Schaaf, J.

    2017-01-01

    This work describes a model for bilayer cation-exchange membranes used in the chlor-alkali process. The ion transport inside the membrane is modeled with the Nernst–Planck equation. A logistic function is used at the boundary between the two layers of the bilayer membrane to describe the change in

  2. 40 CFR Table 6 to Subpart IIIii of... - Examples of Techniques for Equipment Problem Identification, Leak Detection and Mercury Vapor

    Science.gov (United States)

    2010-07-01

    ... Problem Identification, Leak Detection and Mercury Vapor 6 Table 6 to Subpart IIIII of Part 63 Protection... Hazardous Air Pollutants: Mercury Emissions From Mercury Cell Chlor-Alkali Plants Pt. 63, Subpt. IIIII..., Leak Detection and Mercury Vapor As stated in Tables 1 and 2 of Subpart IIIII, examples of techniques...

  3. Alkali metal for ultraviolet band-pass filter

    Science.gov (United States)

    Mardesich, Nick (Inventor); Fraschetti, George A. (Inventor); Mccann, Timothy A. (Inventor); Mayall, Sherwood D. (Inventor); Dunn, Donald E. (Inventor); Trauger, John T. (Inventor)

    1993-01-01

    An alkali metal filter having a layer of metallic bismuth deposited onto the alkali metal is provided. The metallic bismuth acts to stabilize the surface of the alkali metal to prevent substantial surface migration from occurring on the alkali metal, which may degrade optical characteristics of the filter. To this end, a layer of metallic bismuth is deposited by vapor deposition over the alkali metal to a depth of approximately 5 to 10 A. A complete alkali metal filter is described along with a method for fabricating the alkali metal filter.

  4. Mechanisms and kinetics of electrodeposition of alkali metals on solid and liquid mercury electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wenzhe.

    1993-01-01

    Electroreduction of alkali metal ions at mercury is an important area in electrochemistry related to the battery industry. In this work, four major topics were considered: alkali metal/mercury interactions; electrosorption of alkali metal ions on solid mercury; electroreduction of alkali metal/crown ether complexes; and ammonium amalgam formation. The formation of alkali metal-mercury intermetallic compounds was studied on liquid and frozen thin layer mercury electrodes. The stoichiometry of the compounds produced under these conditions was determined using cyclic voltammetry. As expected, formation of a new phase was preceded by nucleation phenomena, which were particularly easy to monitor at solid Hg electrodes. The nucleation kinetics were studied using the chronoamperometric method. At very low temperatures, when the mobility of mercury atoms was restricted, the electrosorption of alkali metal ions on solid mercury electrodes was noted. Subsequent study allowed determination of the electrosorption parameters. The free energy of electrosorption is discussed in terms of interactions between alkali metals and mercury. The effect of crown ethers on the kinetics of alkali metal ion reduction was studied at both standard size and ultramicro-mercury electrodes in nonaqueous solutions using ultrafast cyclic voltammetry and ac voltammetry. The usefulness of ultrafast cyclic voltammetry with ultramicroelectrodes in measurements of the kinetics of amalgam formation was verified in a brief study of cadmium ion reduction. The mechanism of the complex reduction at mercury was analyzed based on the free energy changes before and after the activation state. In addition, the stoichiometry and formation constants of the crown ether/alkali metal complexes were determined using cyclic voltammetry. The mechanism of electroreduction of ammonium ions at mercury electrodes in non-aqueous media was analyzed.

  5. New insight into atmospheric alteration of alkali-lime silicate glasses

    International Nuclear Information System (INIS)

    Alloteau, Fanny; Lehuédé, Patrice; Majérus, Odile; Biron, Isabelle; Dervanian, Anaïs; Charpentier, Thibault; Caurant, Daniel

    2017-01-01

    Highlights: •Glass silicate network hydrolysis is by far the predominant reaction at 80 °C. •Atmospheric conditions yield different altered layer structure than in immersion. •The altered layer bears about 10 wt% of water mainly as H-bonded SiOH groups. •Alkali ions stay embedded into the altered layer closed to SiOH and H 2 O species. -- Abstract: A mixed alkali lime silicate glass altered in atmospheric conditions (80 °C/85%RH, Relative Humidity) for various lengths of time was characterized at all scales. The altered glass forms a hydrated solid phase bearing about 10 wt% of H 2 O in the form of Si-OH groups and molecular water. No alkali depletion was observed after ageing tests. Structural results from 1 H, 23 Na and 29 Si MAS NMR point out the close proximity of Si-OH, H 2 O and Na + species. This study gives new insight into the mechanisms of the atmospheric alteration, essential to conservation strategies in industry and cultural heritage.

  6. Alkali metal hydride formation

    International Nuclear Information System (INIS)

    1976-01-01

    The present invention relates to a method of producing alkali metal hydrides by absorbing hydrogen gas under pressure into a mixture of lower alkyl mono amines and alkali metal alkyl amides selected from sodium and potassium amides formed from said amines. The present invention also includes purification of a mixture of the amines and amides which contain impurities, such as is used as a catalytic exchange liquid in the enrichment of deuterium, involving the formation of the alkali metal hydride

  7. Process for the disposal of alkali metals

    International Nuclear Information System (INIS)

    Lewis, L.C.

    1979-01-01

    The invention describes a method of disposing of alkali metals by forming a solid waste for storage. The method comprises preparing an aqueous disposal solution of at least 55 weight percent alkali metal hydroxide, heating the alkali metal to melting temperature to form a feed solution, and spraying the molten feed solution into the disposal solution. The alkali metal reacts with the water in the disposal solution in a controlled reaction which produces alkali metal hydroxide, hydrogen and heat and thereby forms a solution of alkali metal hydroxides. Water is added to the solution in amounts sufficient to maintain the concentration of alkali metal hydroxides in the solution at 70 to 90 weight percent, and to maintain the temperature of the solution at about the boiling point. Removing and cooling the alkali metal hydroxide solution thereby forms a solid waste for storage. The method is particularly applicable to radioactive alkali metal reactor coolant. (auth)

  8. On-line alkali monitoring - Part 1

    International Nuclear Information System (INIS)

    Andersson, Christer; Ljung, P.; Woxlin, H.

    1997-02-01

    As a consequence of the increased knowledge of the environmental impact of combustion based heat and power generation, the use of renewable biofuels will be increased. An obstacle associated to biofuel combustion compared to other fuels is the large release of alkali. Alkali compounds in flue gases are known to cause severe operational problems. Three of the major problems are; fouling of superheating tubes (causing reduced heat transfer and possibly corrosion), agglomeration of the bed material in fluidized beds, and poisoning of SCR catalysts. Yet another alkali related problem arises when, in order to increase the electric efficiency of combustion power plants, combined-cycle technology is used. Alkali vapour present in the fuel gas for the gas turbine is condensed to particles which increase corrosion and erosion of the turbine blades. The research on ash related operational problems has to be extended in order to ensure future use of biofuels in heat and power generation. In all successful research, adequate tools are necessary. To investigate ash related problems the key issue is to be able to perform continuous alkali measurements. This pilot study has investigated the need of continuous alkali measurements, which alkali species are harmful in the different applications and also available instrumentation capable of measuring the specific alkali species. The report gives a short summary presenting alkali related operational problems. In addition a schematic overview is given, showing the alkali species that possibly can exist in various parts of the power plant. 48 refs, 13 figs, 4 tabs

  9. Effect of alkali lignins with different molecular weights from alkali pretreated rice straw hydrolyzate on enzymatic hydrolysis.

    Science.gov (United States)

    Li, Yun; Qi, Benkun; Luo, Jianquan; Wan, Yinhua

    2016-01-01

    This study investigated the effect of alkali lignins with different molecular weights on enzymatic hydrolysis of lignocellulose. Different alkali lignins fractions, which were obtained from cascade ultrafiltration, were added into the dilute acid pretreated (DAP) and alkali pretreated (AP) rice straws respectively during enzymatic hydrolysis. The results showed that the addition of alkali lignins enhanced the hydrolysis and the enhancement for hydrolysis increased with increasing molecular weights of alkali lignins, with maximum enhancement being 28.69% for DAP and 20.05% for AP, respectively. The enhancement was partly attributed to the improved cellulase activity, and filter paper activity increased by 18.03% when adding lignin with highest molecular weight. It was found that the enhancement of enzymatic hydrolysis was correlated with the adsorption affinity of cellulase on alkali lignins, and the difference in surface charge and hydrophobicity of alkali lignins were responsible for the difference in affinity between cellulase and lignins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. On-chip fabrication of alkali-metal vapor cells utilizing an alkali-metal source tablet

    International Nuclear Information System (INIS)

    Tsujimoto, K; Hirai, Y; Sugano, K; Tsuchiya, T; Tabata, O; Ban, K; Mizutani, N

    2013-01-01

    We describe a novel on-chip microfabrication technique for the alkali-metal vapor cell of an optically pumped atomic magnetometer (OPAM), utilizing an alkali-metal source tablet (AMST). The newly proposed AMST is a millimeter-sized piece of porous alumina whose considerable surface area holds deposited alkali-metal chloride (KCl) and barium azide (BaN 6 ), source materials that effectively produce alkali-metal vapor at less than 400 °C. Our experiments indicated that the most effective pore size of the AMST is between 60 and 170 µm. The thickness of an insulating glass spacer holding the AMST was designed to confine generated alkali metal to the interior of the vapor cell during its production, and an integrated silicon heater was designed to seal the device using a glass frit, melted at an optimum temperature range of 460–490 °C that was determined by finite element method thermal simulation. The proposed design and AMST were used to successfully fabricate a K cell that was then operated as an OPAM with a measured sensitivity of 50 pT. These results demonstrate that the proposed concept for on-chip microfabrication of alkali-metal vapor cells may lead to effective replacement of conventional glassworking approaches. (paper)

  11. Porous alkali activated materials with slow alkali release dynamic. Role of composition

    International Nuclear Information System (INIS)

    Bumanis, G.; Bajare, D.

    2018-01-01

    Alkali activated materials (AAM) based on calcined metakaolin or illite clay together with waste by-products, such as waste glass or aluminium scrap recycling waste, were tested as value-added materials for pH stabilization in biogas technology where decrease of pH should be avoided. Porous materials with ability to slowly leach alkalis in the water media thus providing continuous control of the pH level were obtained. XRD, FTIR, SEM and titration methods were used to characterize AAM and their leaching properties. It is clear that composition of the material has an important effect on the diffusion of alkali from structure. Namely, higher Si/Al and Na/Al molar ratios may increase pore solution transfer to the leachate. The leaching rate of alkalis from the structure of AAM is high for the first few days, decreasing over time. It was possible to calculate the buffer capacity from the mixture design of AAM. [es

  12. Durability of PEM Fuel Cell Membranes

    Science.gov (United States)

    Huang, Xinyu; Reifsnider, Ken

    Durability is still a critical limiting factor for the commercialization of polymer electrolyte membrane (PEM) fuel cells, a leading energy conversion technology for powering future hydrogen fueled automobiles, backup power systems (e.g., for base transceiver station of cellular networks), portable electronic devices, etc. Ionic conducting polymer (ionomer) electrolyte membranes are the critical enabling materials for the PEM fuel cells. They are also widely used as the central functional elements in hydrogen generation (e.g., electrolyzers), membrane cell for chlor-alkali production, etc. A perfluorosulfonic acid (PFSA) polymer with the trade name Nafion® developed by DuPont™ is the most widely used PEM in chlor-alkali cells and PEM fuel cells. Similar PFSA membranes have been developed by Dow Chemical, Asahi Glass, and lately Solvay Solexis. Frequently, such membranes serve the dual function of reactant separation and selective ionic conduction between two otherwise separate compartments. For some applications, the compromise of the "separation" function via the degradation and mechanical failure of the electrolyte membrane can be the life-limiting factor; this is particularly the case for PEM in hydrogen/oxygen fuel cells.

  13. Dendrochemical assessment of mercury releases from a pond and dredged-sediment landfill impacted by a chlor-alkali plant.

    Science.gov (United States)

    Maillard, François; Girardclos, Olivier; Assad, Mohamad; Zappelini, Cyril; Pérez Mena, Julia Maria; Yung, Loïc; Guyeux, Christophe; Chrétien, Stéphane; Bigham, Gary; Cosio, Claudia; Chalot, Michel

    2016-07-01

    Although current Hg emissions from industrial activities may be accurately monitored, evidence of past releases to the atmosphere must rely on one or more environmental proxies. We used Hg concentrations in tree cores collected from poplars and willows to investigate the historical changes of Hg emissions from a dredged sediment landfill and compared them to a nearby control location. Our results demonstrated the potential value of using dendrochemistry to record historical Hg emissions from past industrial activities. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Purification of alkali metal nitrates

    Science.gov (United States)

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  15. The chemistry of the liquid alkali metals

    International Nuclear Information System (INIS)

    Addison, C.C.

    1984-01-01

    A study of liquid alkali metals. It encourages comparison with molecular solvents in chapter covering the nature and reactivity of dissolved species, solvation, solubility and electrical conductivity of solutions. It demonstrates lab techniques unique to liquid alkali metals. It discusses large-scale applications from storage batteries to sodium-cooled reactors and future fusion reactors, and associated technological problems. Contents: Some Basic Physical and Chemical Properties; Manipulation of the Liquids; The Chemistry of Purification Methods; Species Formed by Dissolved Elements; Solubilities and Analytical Methods; Alkali Metal Mixtures; Solvation in Liquid Metal; Reactions Between Liquid Alkali Metals and Water; Reactions of Nitrogen with Lithium and the Group II Metals in Liquid Sodium; The Formation, Dissociation and Stability of Heteronuclear Polyatomic Anions; Reactions of the Liquid Alkali Metals and Their Alloys with Simple Alipatic Hydrocarbons; Reactions of the Liquid Alkali Metals with Some Halogen Compounds; Hydrogen, Oxygen and Carbon Meters; Surface Chemistry and Wetting; Corrosion of Transition Metals by the Liquid Alkali Metals; Modern Applications of the Liquid Alkali Metals

  16. Energy loss in electrochemical diaphragm process of chlorine and alkali industry - A collateral effect of the undesirable generation of chlorate

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Phabyanno Rodrigues; Mirapalheta, Almir; e Silva Zanta, Carmem Lucia de Paiva; Tonholo, Josealdo [Instituto de Quimica e Biotecnologia, Universidade Federal de Alagoas, 57072970 Maceio, AL (Brazil); Henrique dos Santos Andrade, Marcio [Instituto de Quimica e Biotecnologia, Universidade Federal de Alagoas, 57072970 Maceio, AL (Brazil); Braskem S/A, Maceio, AL (Brazil); Vilar, Eudesio Oliveira [Departamento de Engenharia Quimica, Universidade Federal de Campina, Grande, Campina Grande, PB (Brazil)

    2010-05-15

    Contamination of NaOH with chlorate constitutes a major problem for the chlorine-alkali industry, particularly when electrolytic cells based on the diaphragm process are employed. In this paper, pilot and laboratory cell experiments revealed that chlorate contamination in diaphragm cells also inhibits hydrogen evolution and gives rise to a significant increase in electrical energy consumption. Electrolysis carried out under conditions that simulated the industrial process (current density 240 mA cm{sup -2}; temperature 90 C; brine flux 23 L cm{sup -2} h{sup -1}) revealed that chlorate formation depends on brine flux and NaOH production. The inhibitory effect of chlorate on the main cathodic reaction was demonstrated in bench cell experiments, with cathodic displacement of the hydrogen evolution reaction by more than 100 mV in the presence of 0.4% chlorate compared with ideal conditions in which chlorate formation was absent. This hydrogen generation overpotential can charge the total electric energy balance in more than 5% of the total value, consisting of a critical loss for this process. (author)

  17. Alkali metal hafnium oxide scintillators

    Science.gov (United States)

    Bourret-Courchesne, Edith; Derenzo, Stephen E.; Taylor, Scott Edward

    2018-05-08

    The present invention provides for a composition comprising an inorganic scintillator comprising an alkali metal hafnate, optionally cerium-doped, having the formula A2HfO3:Ce; wherein A is an alkali metal having a valence of 1, such as Li or Na; and the molar percent of cerium is 0% to 100%. The alkali metal hafnate are scintillators and produce a bright luminescence upon irradiation by a suitable radiation.

  18. Chemical effects of alkali atoms on critical temperature in superconducting alkali-doped fullerides

    Science.gov (United States)

    Hetfleisch, F.; Gunnarsson, O.; Srama, R.; Han, J. E.; Stepper, M.; Roeser, H.-P.; Bohr, A.; Lopez, J. S.; Mashmool, M.; Roth, S.

    2018-03-01

    Alkali metal doped fullerides (A3C60) are superconductors with critical temperatures, Tc, extending up to 38 K. Tc is known to depend strongly on the lattice parameter a, which can be adjusted by physical or chemical pressure. In the latter case an alkali atom is replaced by a different sized one, which changes a. We have collected an extensive data base of experimental data for Tc from very early up to recent measurements. We disentangle alkali atom chemical effects on Tc, beyond the well-known consequences of changing a. It is found that Tc, for a fixed a, is typically increased as smaller alkali atoms are replaced by larger ones, except for very large a. Possible reasons for these results are discussed. Although smaller in size than the lattice parameter contribution, the chemical effect is not negligible and should be considered in future physical model developments.

  19. Ultraviolet optical absorption of alkali cyanides and alkali halide cyanides

    International Nuclear Information System (INIS)

    Souza Camargo Junior, S.A. de.

    1982-09-01

    The ultraviolet absorption spectra of alkali cyanide and mixed alkali halide cyanide crystals were measured at temperatures ranging from 300K down to 4.2K. A set of small absorption peaks was observed at energies near 6 eV and assigned to parity forbidden X 1 Σ + →a' 3 Σ + transitions of the CN - molecular ions. It was observed that the peak position depends on the alkali atom while the absorption cross section strongly depends on the halogen and on the CN - concentration of the mixed crystals. These effects are explained in terms of an interaction between the triplet molecular excitons and charge transfer excitons. The experimental data were fit with a coupling energy of a few meV. The coupling mechanism is discussed and it is found to be due to the overlap between the wave functions of the two excitations. (Author) [pt

  20. Pyrolysis characteristic of kenaf studied with separated tissues, alkali pulp, and alkali li

    Directory of Open Access Journals (Sweden)

    Yasuo Kojima

    2015-12-01

    Full Text Available To estimate the potential of kenaf as a new biomass source, analytical pyrolysis was performed using various kenaf tissues, i.e., alkali lignin and alkali pulp. The distribution of the pyrolysis products from the whole kenaf was similar to that obtained from hardwood, with syringol, 4-vinylsyringol, guaiacol, and 4-vinylguaiacol as the major products. The phenols content in the pyrolysate from the kenaf core was higher than that from the kenaf cuticle, reflecting the higher lignin content of the kenaf core. The ratios of the syringyl and guaiacyl compounds in the pyrolysates from the core and cuticle samples were 2.79 and 6.83, respectively. Levoglucosan was the major pyrolysis product obtained from the kenaf alkali pulp, although glycol aldehyde and acetol were also produced in high yields, as previously observed for other cellulosic materials. Moreover, the pathways for the formation of the major pyrolysis products from alkali lignin and alkali pulp were also described, and new pyrolysis pathways for carbohydrates have been proposed herein. The end groups of carbohydrates bearing hemiacetal groups were subjected to ring opening and then they underwent further reactions, including further thermal degradation or ring reclosing. Variation of the ring-closing position resulted in the production of different compounds, such as furans, furanones, and cyclopentenones.

  1. Structure peculiarities of mixed alkali silicate glasses

    International Nuclear Information System (INIS)

    Bershtein, V.A.; Gorbachev, V.V.; Egorov, V.

    1980-01-01

    The thermal porperties and structure of alkali and mixed alkali (Li, Na, K) silicate glasses by means of differential scanning calorimetry (DSC), the positron annihilation method, X-ray fluorescence and infrared (300-30 cm -1 ) spectroscopy were studied. Introduction of different alkali cations in glass results in nonadditive change in their electron structure (bond covalence degree growth) and the thermal behaviour. The different manifestations of mixed alkali effect can be explained by the lessening of long distance Coulomb interactions and strengthening the short-range forces in the mixed alkali glasses. (orig.)

  2. Density of mixed alkali borate glasses: A structural analysis

    International Nuclear Information System (INIS)

    Doweidar, H.; El-Damrawi, G.M.; Moustafa, Y.M.; Ramadan, R.M.

    2005-01-01

    Density of mixed alkali borate glasses has been correlated with the glass structure. It is assumed that in such glasses each alkali oxide associates with a proportional quantity of B 2 O 3 . The number of BO 3 and BO 4 units related to each type of alkali oxide depends on the total concentration of alkali oxide. It is concluded that in mixed alkali borate glasses the volumes of structural units related to an alkali ion are the same as in the corresponding binary alkali borate glass. This reveals that each type of alkali oxide forms its own borate matrix and behaves as if not affected with the presence of the other alkali oxide. Similar conclusions are valid for borate glasses with three types of alkali oxide

  3. Coordination chemistry insights into the role of alkali metal promoters in dinitrogen reduction.

    Science.gov (United States)

    Connor, Gannon P; Holland, Patrick L

    2017-05-15

    The Haber-Bosch process is a major contributor to fixed nitrogen that supports the world's nutritional needs and is one of the largest-scale industrial processes known. It has also served as a testing ground for chemists' understanding of surface chemistry. Thus, it is significant that the most thoroughly developed catalysts for N 2 reduction use potassium as an electronic promoter. In this review, we discuss the literature on alkali metal cations as promoters for N 2 reduction, in the context of the growing knowledge about cooperative interactions between N 2 , transition metals, and alkali metals in coordination compounds. Because the structures and properties are easier to characterize in these compounds, they give useful information on alkali metal interactions with N 2 . Here, we review a variety of interactions, with emphasis on recent work on iron complexes by the authors. Finally, we draw conclusions about the nature of these interactions and areas for future research.

  4. (e, 2e) triple differential cross sections of alkali and alkali earth atoms: Na, K and Mg, Ca

    International Nuclear Information System (INIS)

    Hitawala, U; Purohit, G; Sud, K K

    2008-01-01

    Recently low-energy measurements have been reported for alkali targets Na and K and alkali earth targets Mg and Ca in coplanar symmetric geometry. We report the results of our calculation of triple differential cross section (TDCS) for electron impact single ionization (i.e. (e, 2e) processes) of alkali atoms Na, K and alkali earth atoms Mg, Ca in coplanar symmetric geometry. We have performed the present calculations using the distorted-wave Born approximation (DWBA) formalism at intermediate incident electron energies used in the recently performed experiments. Ionization takes place from the valence shell for all the targets investigated and the outgoing electrons share the excess energy equally. We have also considered the effect of target polarization in our DWBA calculations which may be an important quantity at incident electron energies used in the present investigation. We find that the DWBA formalism is able to reproduce most of the trend of experimental data and may provide a future direction for further investigation of ionization process on alkali and alkali earth metals. It is also observed that the second-order effects are more important to understand the collision dynamics of (e, 2e) processes on alkali earth targets

  5. Construction of thermionic alkali-ion sources

    International Nuclear Information System (INIS)

    Ul Haq, F.

    1986-01-01

    A simple technique is described by which singly charged alkali ions of K, Na, Li, Rb and Cs are produced by heating ultra-pure chemical salts of different alkali metals on tungsten filaments without employing a temperature measuring device. The character of alkali-ion currents at different heating powers and the remarkably constant ion emission current for prolonged periods are discussed. (author)

  6. Local structure of alkalis in mixed-alkali borate glass to elucidate the origin of mixed-alkali effect

    Directory of Open Access Journals (Sweden)

    Yomei Tokuda

    2015-12-01

    Full Text Available We report the structural analysis of Na+ and Cs+ in sodium cesium borate crystals and glasses using 23Na and 133Cs magic-angle spinning nuclear magnetic resonance (MAS NMR spectroscopy. The composition dependence of NMR spectra of the borate was similar to that of the silicate: (1 the peak position of cesium borate crystals shifted to upfield for structures with larger Cs+ coordination numbers, (2 the MAS NMR spectra of xNa2O-yCs2O-3B2O3 (x = 0, 0.25, 0.5, 0.75, 1.0, x + y = 1 glass showed that the average coordination number (CN of both the alkali cations decreases with increasing Cs+/(Na+ + Cs+ ratio. However, the degree of decrement in borates is much smaller than that in silicates. We have considered that the small difference in CN is due to 4-coordinated B, because it is electrically compensated by the alkali metal ions resulting in the restriction of having various coordinations of O to alkali metal.

  7. Coprecipitation of alkali metal ions with calcium carbonate

    International Nuclear Information System (INIS)

    Okumura, Minoru; Kitano, Yasushi

    1986-01-01

    The coprecipitation of alkali metal ions Li + , Na + , K + and Rb + with calcium carbonate has been studied experimentally and the following results have been obtained: (1) Alkali metal ions are more easily coprecipitated with aragonite than with calcite. (2) The relationship between the amounts of alkali metal ions coprecipitated with aragonite and their ionic radii shows a parabolic curve with a peak located at Na + which has approximately the same ionic radius as Ca 2+ . (3) However, the amounts of alkali metal ions coprecipitated with calcite decrease with increasing ionic radius of alkali metals. (4) Our results support the hypothesis that (a) alkali metals are in interstitial positions in the crystal structure of calcite and do not substitute for Ca 2+ in the lattice, but (b) in aragonite, alkali metals substitute for Ca 2+ in the crystal structure. (5) Magnesium ions in the parent solution increase the amounts of alkali metal ions (Li + , Na + , K + and Rb + ) coprecipitated with calcite but decrease those with aragonite. (6) Sodium-bearing aragonite decreases the incorporation of other alkali metal ions (Li + , K + and Rb + ) into the aragonite. (author)

  8. Studies on the alkali-silica reaction rim in a simplified calcium-alkali-silicate system

    NARCIS (Netherlands)

    Zheng, Kunpeng; Adriaensens, Peter; De Schutter, Geert; Ye, G.; Taerwe, Luc

    2016-01-01

    This work is intended to provide a better understanding about the properties and roles of the reaction rim in an alkali-silica reaction. A simplified calcium-alkali-silicate system was created to simulate the multiple interactions among reactive silica, alkaline solution and portlandite near the

  9. Effects of the preparation process on the quality of refuse-derived fuels: The example of chlorine; Einfluss der Aufbereitung auf die Qualitaet der Ersatzbrennstoffe am Beispiel von Chlor

    Energy Technology Data Exchange (ETDEWEB)

    Kost, T.; Roetter, S.; Bilitewski, B. [Technische Univ. Dresden (Germany)

    2000-07-01

    The different interest groups (environmental authorities, licensing authorities, producers and users of refuse-derived fuels) have different guidelines, proposals and product specifications for quality assurance. While the limiting values for heavy metals reflect the controversial positions of the parties concerned, limiting values for chlorine are generally set at less than 1 percent by weight. This is not an ecological consideration but derives from the technical aspects of safe operation in the industries concerned. [German] Fuer die Guetesicherung von Ersatzbrennstoffen liegen von den beteiligten Interessengruppen (Umweltaemter, Genehmigungsbehoerden, Hersteller und Anwender von Ersatzbrennstoffen) verschiedene Grenzwerte als Richtlinien, Vorschlaege und Produktspezifikationen vor. Waehrend die Werte fuer Schwermetalle die teilweise kontraere Positionen der Beteiligten widerspiegeln, besteht fuer den Parameter Chlor dagegen eine einheitliche Spezifikation von <1 Gew.-% (wf). Dieser Wert ergibt sich nicht in erster Linie aus oekologischen Anforderungen, sondern ist vielmehr an technischen Aspekten der Betriebssicherheit beim Einsatz in den Anwenderindustrien orientiert. (orig.)

  10. Method of handling radioactive alkali metal waste

    Science.gov (United States)

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  11. Method of handling radioactive alkali metal waste

    International Nuclear Information System (INIS)

    Mcpheeters, C.C.; Wolson, R.D.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1

  12. Alkali Influence on Synthesis of Solid Electrolyte Based on Alkali Nitrate-Alumina

    International Nuclear Information System (INIS)

    Yustinus Purwamargapratala; Purnama, S.; Purwanto, P.

    2008-01-01

    Research of solid electrolyte based on alumina with addition of alkali materials of barium nitrate, calcium nitrate, sodium nitrate and lithium nitrate has been done. Aluminium hydroxide and alkali nitrate were mixed in mole ratio of 1 : 1 in water media and pyrolyzed at 300 o C for 1 hour Pyrolysis result were then mixed with alumina in mole ratio of 1 : 1, compacted and heated at 600 o C for 3 hours. To characterize the sample, XRD (X-Ray Diffractometers) and LCR meter (impedance, capacitance, and resistance) were used for analysis the phase and conductivity properties. The result showed formation of alkali-aluminate in which Li-base have the highest room temperature conductivity of 3.1290 x 10 -5 S.cm -1 , while Ba-base have the lowest conductivity of 5.7266 x 10 -8 S.cm -1 . (author)

  13. Thermodynamic properties of alkali borosilicate gasses and metaborates

    International Nuclear Information System (INIS)

    Asano, Mitsuru

    1992-01-01

    Borosilicate glasses are the proposed solidifying material for storing high level radioactive wastes in deep underground strata. Those have low melting point, and can contain relatively large amount of high level radioactive wastes. When borosilicate glasses are used for this purpose, they must be sufficiently stable and highly reliable in the vitrification process, engineered storage and the disposal in deep underground strata. The main vaporizing components from borosilicate glasses are alkali elements and boron. In this report, as for the vaporizing behavior of alkali borosilicate glasses, the research on thermodynamic standpoint carried out by the authors is explained, and the thermodynamic properties of alkali metaborates of monomer and dimer which are the main evaporation gases are reported. The evaporation and the activity of alkali borosilicate glasses, the thermodynamic properties of alkali borosilicate glasses, gaseous alkali metaborates and alkali metaborate system solid solution and so on are described. (K.I.)

  14. Physical and optical studies in mixed alkali borate glasses with three types of alkali ions

    International Nuclear Information System (INIS)

    Samee, M.A.; Awasthi, A.M.; Shripathi, T.; Bale, Shashidhar; Srinivasu, Ch.; Rahman, Syed

    2011-01-01

    Research highlights: → We report, for the first time, the mixed alkali effect in the (40-x)Li 2 O-xNa 2 O-10K 2 O-50B 2 O 3 glasses through optical properties, density and modulated DSC studies. → Optical band gap (E opt ) and Urbach energy (ΔE) have been evaluated. → The values of E opt and ΔE show non-linear behavior with compositional parameter showing the mixed alkali effect. → The glass stability S is observed to be less which may be important for the present glasses as promising material for non-optical applications. - Abstract: So far only a handful of publications have been concerned with the study of the mixed alkali effect in borate glasses containing three types of alkali ions. In the present work, the mixed alkali effect (MAE) has been investigated in the glass system (40-x)Li 2 O-xNa 2 O-10K 2 O-50B 2 O 3 . (0 ≤ x ≤ 40 mol%) through density and modulated DSC studies. The density and glass transition temperature of the present glasses varies non-linearly exhibiting mixed alkali effect. The glass stability is observed to be less which may be important for the present glasses as promising material for non-optical applications. We report, for the first time, the mixed alkali effect in the present glasses through optical properties. From the absorption edge studies, the values of indirect optical band gap (E opt ), direct optical band gap and Urbach energy (ΔE) have been evaluated. The values of E opt and ΔE show non-linear behavior with compositional parameter showing the mixed alkali effect. The average electronic polarizability of oxide ions α O 2- , optical basicity Λ, and Yamashita-Kurosawa's interaction parameter A have been examined to check the correlations among them and bonding character. Based on good correlation among electronic polarizability of oxide ions, optical basicity and interaction parameter, the present Li 2 O-Na 2 O-K 2 O-B 2 O 3 glasses are classified as normal ionic (basic) oxides.

  15. ALKALI RESISTANT CATALYST

    DEFF Research Database (Denmark)

    2008-01-01

    The present invention concerns the selective removal of nitrogen oxides (NOx) from gasses. In particular, the invention concerns a process, a catalyst and the use of a catalyst for the selective removal of nitrogen oxides in the presence of ammonia from gases containing a significant amount...... of alkali metal and/or alkali-earth compounds which process comprises using a catalyst combined of (i) a formed porous superacidic support, said superacidic support having an Hammett acidity stronger than Ho=-12, and (ii) a metal oxide catalytic component deposited on said superacidic support selected from...

  16. The removal of alkali metals from hot gas

    Energy Technology Data Exchange (ETDEWEB)

    Orjala, M.; Haukka, P. (Valtion Teknillinen Tutkimuskeskus, Jyvaeskylae (Finland). Polttoaine- ja Polttotekniikan Lab.)

    1990-01-01

    In investigations in progress at the Fuel and Combustion Laboratory of the Technical Research Centre of Finland, we have been studying in co-operation with A. Ahlstrom Boiler Works, the removal of alkali metals from flue gases of ash-rich fuel with a dense suspension particle cooler. The applications of the particle cooler can be found in combined cycles and in industrial gas cleaning and heat recovery. We have also developed a general mathematical model of heat and mass transfer as well as chemical and physical reactions in multiphase systems.

  17. Relation between the electroforming voltage in alkali halide-polymer diodes and the bandgap of the alkali halide

    International Nuclear Information System (INIS)

    Bory, Benjamin F.; Wang, Jingxin; Janssen, René A. J.; Meskers, Stefan C. J.; Gomes, Henrique L.; De Leeuw, Dago M.

    2014-01-01

    Electroforming of indium-tin-oxide/alkali halide/poly(spirofluorene)/Ba/Al diodes has been investigated by bias dependent reflectivity measurements. The threshold voltages for electrocoloration and electroforming are independent of layer thickness and correlate with the bandgap of the alkali halide. We argue that the origin is voltage induced defect formation. Frenkel defect pairs are formed by electron–hole recombination in the alkali halide. This self-accelerating process mitigates injection barriers. The dynamic junction formation is compared to that of a light emitting electrochemical cell. A critical defect density for electroforming is 10 25 /m 3 . The electroformed alkali halide layer can be considered as a highly doped semiconductor with metallic transport characteristics

  18. 40 CFR 721.4740 - Alkali metal nitrites.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal nitrites. 721.4740... Substances § 721.4740 Alkali metal nitrites. (a) Chemical substances and significant new use subject to reporting. (1) The category of chemical substances which are nitrites of the alkali metals (Group IA in the...

  19. Method for the safe disposal of alkali metal

    International Nuclear Information System (INIS)

    Johnson, T.R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam--CO 2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps. 5 claims, 1 figure

  20. Elastic modulus of the alkali-silica reaction rim in a simplified calcium-alkali-silicate system determined by nano-indentation

    NARCIS (Netherlands)

    Zheng, Kunpeng; Lukovic, M.; De Schutter, Geert; Ye, G.; Taerwe, Luc

    2016-01-01

    This work aims at providing a better understanding of the mechanical properties of the reaction rim in the alkali-silica reaction. The elastic modulus of the calcium alkali silicate constituting the reaction rim, which is formed at the interface between alkali silicate and Ca(OH)2 in a

  1. Alkali binding in hydrated Portland cement paste

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, Jos

    2010-01-01

    The alkali-binding capacity of C–S–H in hydrated Portland cement pastes is addressed in this study. The amount of bound alkalis in C–S–H is computed based on the alkali partition theories firstly proposed by Taylor (1987) and later further developed by Brouwers and Van Eijk (2003). Experimental data

  2. Alkali-aggregate reactivity (AAR) facts book.

    Science.gov (United States)

    2013-03-01

    This document provides detailed information on alkali-aggregate reactivity (AAR). It primarily discusses alkali-silica reaction (ASR), covering the chemistry, symptoms, test methods, prevention, specifications, diagnosis and prognosis, and mitigation...

  3. Alkali depletion and ion-beam mixing in glasses

    International Nuclear Information System (INIS)

    Arnold, G.W.

    1983-01-01

    Ion-implantation-induced alkali depletion in simple alkali-silicate glasses (12M 2 O.88SiO 2 ) has been studied for implantations at room temperature and near 77K. Results are consistent with a mechanism for alkali removal, by heavy ion bombardment, based on radiation-enhanced migration and preferential removal of alkali from the outermost layers. Similar results were obtained for mixed-alkali glasses ((12-x)Cs 2 .O.xM 2 O.88SiO 2 ) where, in addition, a mixed-alkali effect may also be operative. Some preliminary experiments with ion implantation through thin Al films on SiO 2 glass and on a phosphate glass show that inter-diffusion takes place and suggest that this ion-mixing technique may be a useful method for altering the physical properties of glass surfaces

  4. Ionic interactions in alkali-aluminium tetrafluoride clusters

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Cicek, Z.; Karaman, A.; Pastore, G.; Tosi, M.P.

    1999-08-01

    Complex anion structures ((AlF 4 ) - , (AlF 5 ) 2- and (AlF 6 ) 3- ) coexist in liquid mixtures of aluminium trifluoride and alkali fluorides in composition-dependent relative concentrations and are known to interact with the alkali counterions. We present a comparative study of the static and vibrational structures of MAlF 4 molecules (with M = any alkali), with the aim of developing and testing a refined model of the ionic interactions for applications to the Al-M fluoride mixtures. We find that, whereas an edge-bridged coordination is strongly favoured for Li in LiAIF 4 , edge-bridging and face-bridging of the alkali ion become energetically equivalent as one moves from Na to the heavier alkalis. This result is sensitive to the inclusion of alkali polarizability and may be interpreted as implying (for M = K, Rb or Cs) almost free relative rotations of the M + and (AlF 4 ) - partners at temperatures of relevance to experiment. The consistency of such a viewpoint with electron diffraction data on vapours and with Raman spectra on melts is discussed. (author)

  5. PREPARATION AND PROPERTIES OF ALKALI-ACTIVATED CEMENT CONTAINING PHOSPHOROUS SLAG AND FLY ASH

    Directory of Open Access Journals (Sweden)

    Duo You

    2016-03-01

    Full Text Available Phosphorous slag is an industrial waste which potentially pollutes environments. The aim of the present work is to use phosphorous slag as a raw material to produce alkali-activated cement. The influence of mix proportion of phosphorous slag and fly ash, alkali content and modulus of water glass on the properties of alkali-activated phosphorous slag and fly ash cement (AA-PS-FA-C was studied. The results show that AA-PS-FA-C with normal setting performance and desirable mechanical properties can be prepared using water glass as the activator. Changing the fly ash content in the range of 0-40 wt% has only a small influence on the setting time of AA-PS-FA-C. The strengths significantly decrease when the fly ash content exceeds 30 wt%. The carbonation resistance of AA-PS-FA-C is similar to that of ordinary Portland cement (OPC, while the frost resistance is much better. The hardened paste of AA-PS-FA-C is much more compact than OPC paste.

  6. Millennial mercury records derived from ornithogenic sediment on Dongdao Island, South China Sea.

    Science.gov (United States)

    Yan, Hong; Wang, Yuhong; Cheng, Wenhan; Sun, Liguang

    2011-01-01

    Two ornithogenic sediment cores, which have a time span of 1000 years and are influenced by red-footed booby (Sula sula), were collected from Dongdao Islands, South China Sea. The determined mercury concentrations of the two cores show similar and substantial fluctuations during the past millennium, and the fluctuations are most likely caused by the changes in mercury level of the ocean environment and in anthropogenic Hg emission. For the past 500 years, the mercury concentration in the red-footed booby excrement has a striking association with global anthropogenic mercury emission. The mercury concentration increased rapidly after AD 1600 in corresponding to beginning of the unparalleled gold and silver mining in South Central America that left a large volume of anthropogenic mercury pollution. Since the Industrial Revolution, the mercury level has increased at a fast pace, very likely caused by modern coal combustion, chlor-alkali and oil refining industries. The comparison of mercury profiles from different places on earth suggested that anthropogenic mercury pollution after the Industrial Revolution is more severe in Northern Hemisphere than in Antarctica.

  7. (abstract) Experimental and Modeling Studies of the Exchange Current at the Alkali Beta'-Alumina/Porous Electrode/Alkali Metal Vapor Three Phase Boundary

    Science.gov (United States)

    Williams, R. M.; Jeffries-Nakamura, B.; Ryan, M. A.; Underwood, M. L.; O'Connor, D.; Kikkert, S.

    1993-01-01

    The microscopic mechanism of the alkali ion-electron recombination reaction at the three phase boundary zone formed by a porous metal electrode in the alkali vapor on the surface of an alkali beta'-alumina solid electrolyte (BASE) ceramic has been studied by comparison of the expected rates for the three simplest reaction mechanisms with known temperature dependent rate data; and the physical parameters of typical porous metal electrode/BASE/alkali metal vapor reaction zones. The three simplest reactions are tunneling of electrons from the alkali coated electrode to a surface bound alkali metal ion; emission of an electron from the electrode with subsequent capture by a surface bound alkali metal ion; and thermal emission of an alkali cation from the BASE and its capture on the porous metal electrode surface where it may recombine with an electron. Only the first reaction adequately accounts for both the high observed rate and its temperature dependence. New results include crude modeling of simple, one step, three phase, solid/solid/gas electrochemical reaction.

  8. Controlled in-situ dissolution of an alkali metal

    Science.gov (United States)

    Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald

    2012-09-11

    A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.

  9. The transport behaviour of elemental mercury DNAPL in saturated porous media: analysis of field observations and two-phase flow modelling.

    Science.gov (United States)

    Sweijen, Thomas; Hartog, Niels; Marsman, Annemieke; Keijzer, Thomas J S

    2014-06-01

    Mercury is a contaminant of global concern. The use of elemental mercury in various (former) industrial processes, such as chlorine production at chlor-alkali plants, is known to have resulted in soil and groundwater contaminations worldwide. However, the subsurface transport behaviour of elemental mercury as an immiscible dense non-aqueous phase liquid (DNAPL) in porous media has received minimal attention to date. Even though, such insight would aid in the remediation effort of mercury contaminated sites. Therefore, in this study a detailed field characterization of elemental mercury DNAPL distribution with depth was performed together with two-phase flow modelling, using STOMP. This is to evaluate the dynamics of mercury DNAPL migration and the controls on its distribution in saturated porous media. Using a CPT-probe mounted with a digital camera, in-situ mercury DNAPL depth distribution was obtained at a former chlor-alkali-plant, down to 9 m below ground surface. Images revealing the presence of silvery mercury DNAPL droplets were used to quantify its distribution, characteristics and saturation, using an image analysis method. These field-observations with depth were compared with results from a one-dimensional two-phase flow model simulation for the same transect. Considering the limitations of this approach, simulations reasonably reflected the variability and range of the mercury DNAPL distribution. To further explore the impact of mercury's physical properties in comparison with more common DNAPLs, the migration of mercury and PCE DNAPL in several typical hydrological scenarios was simulated. Comparison of the simulations suggest that mercury's higher density is the overall controlling factor in controlling its penetration in saturated porous media, despite its higher resistance to flow due to its higher viscosity. Based on these results the hazard of spilled mercury DNAPL to cause deep contamination of groundwater systems seems larger than for any other

  10. Mechanical properties of alkali-activated materials based on blast furnace slag and calcium sulphate dihdyrate

    OpenAIRE

    Gijbels, Katrijn; Pontikes, Yiannis; Ion Iacobescu, Remus; Schreurs, Sonja; Schroeyers, Wouter

    2017-01-01

    Alkali-activated materials (AAMs) are currently under research for providing opportunities for re-use of industrial residue streams in the construction sector. The valorisation of industrial residues into sustainable building materials has become an important feature for reducing the need of disposal and avoid the scarcity of primary resources. The use of ordinary Portland cement (OPC) as primary construction material has also been questioned extensively due to its environmental impact, i.e. ...

  11. Alternative alkali resistant deNO{sub x} technologies

    Energy Technology Data Exchange (ETDEWEB)

    Buus Kristensen, S.; Due-Hansen, J.; Putluru, S.S.R.; Kunov-Kruse, A.; Fehrmann, R.; Degn Jensen, A.

    2011-04-15

    The aim of the project is to identify, make and test possible alkali resistant deNO{sub x} catalysts for use in biomass, waste or fossil fuelled power plants, where the flue gas typically has a high level of potassium compounds, which rapidly de-activate the traditional V{sub 2}O{sub 5}/TiO{sub 2} catalyst. Furthermore, new technologies are investigated based on a protective coating of the catalyst elements and selective reversible absorption of NO{sub x} with ionic liquids. Several promising alternative deNO{sub x} catalyst types have been made during the project: 1) V, Fe, CU based nano-TiO{sub 2} and nano-TiO{sub 2}-SO{sub 4}{sup 2-} catalysts; 2) V/ZrO{sub 2}-SO{sub 2}- and V/ZrO{sub 2}-CeO{sub 2} catalysts; V, Fe, Cu based Zeolite catalysts; 4) V, Fe, Cu based Heteropoly acid catalysts. Several of these are promising alternatives to the state-of the art industrial reference catalyst. All catalysts prepared in the present project exhibit higher to much higher alkali resistance compared to the commercial reference. Furthermore, two catalysts, i.e. 20 wt% V{sub 2}O-3-TiO{sub 2} nano-catalyst and the 4 wt% CuO-Mordenite zeolite based catalyst have also a higher initial SCR activity compared to the commercial one before alkali poisoning. Thus, those two catalysts might be attractive for SCR deNO{sub x} purposes even under ''normal'' fuel conditions in power plants and elsewhere making them strong candidates for further development. These efforts regarding all the promising catalysts will be pursued after this project has expired through a one year Proof of Concept project granted by the Danish Agency for Science, Technology and Innovation. Also the severe rate of deactivation due to alkali poisons can be avoided by coating the vanadium catalyst with Mg. Overall, the protective coating of SCR catalysts developed in the project seems promising and a patent application has been filed for this technology. Finally, a completely different approach to

  12. Effect of alkali ion on relaxation properties of binary alkali-borate glasses

    International Nuclear Information System (INIS)

    Lomovskoj, V.A.; Bartenev, G.M.

    1992-01-01

    Method of relaxation spectrometry were used to analyze the data on internal friction spectra of lithium, sodium, potassium and rubidium alkali-borate glasses in wide range of temperatures and frequencies. The nature of two relaxation processes was clarified: β m -process, related with mobility of alkaline metal cations, and α-process (vitrification), conditioned by system transformation from viscous-flow to vitreous state. It is shown that atomic-molecular mechanism of vitrification process changes when passing from vitreous B 2 O 3 to alkali-borate glasses

  13. Charge transfer in gold--alkali-metal systems

    International Nuclear Information System (INIS)

    Watson, R.E.; Weinert, M.

    1994-01-01

    Based on conventional electronegativity arguments, gold--alkali-metal compounds are expected to be among the most ''ionic'' of metallic compounds. The concepts of ionicity and charge transfer are difficult to quantify. However, the changes in bonding in the 50/50 Au--alkali-metal systems between the elemental metals and the compounds are so severe that observations can readily be made concerning their character. The results, as obtained from self-consistent electronic-structure calculations, lead to the apparently odd observation that the electron density at the alkali-metal sites in the compound increases significantly and this involves high l componennts in the charge density. This increase, however, can be attributed to Au-like orbitals spatially overlapping the alkali-metal sites. In a chemical sense, it is reasonable to consider the alkali-metal transferring charge to these Au orbitals. While normally the difference in heats of formation between muffin-tin and full-potential calculations for transition-metal--transition-metal and transition-metal--main-group (e.g., Al) compounds having high site symmetry are small, for the gold--alkali-metal systems, the changes in bonding in the compounds cause differences of ∼0.5 eV/atom between the two classes of potential. Any serious estimate of the electronic structure in these systems must account for these aspherical bonding charges. The origin of the semiconducting behavior of the heavy-alkali-metal Au compounds is shown to arise from a combination of the Au-Au separations and the ionic character of the compounds; the light-alkali-metal Au compounds, with their smaller Au-Au separations, do not have a semiconducting gap. Core-level shifts and isomer shifts are also briefly discussed

  14. Active-alkali metal promoted reductive desulfurization of dibenzothiophene and its hindered analogues

    OpenAIRE

    Pittalis, Mario; Azzena, Ugo Gavino; Carraro, Massimo; Pisano, Luisa

    2013-01-01

    Reductive desulfurisation of organic compounds is of importance both in organic synthesis and in industry. Benzo- and dibenzothiophenes are between the most abundant sulphur containing impurities in crude oils, and their desulfurization is a mandatory issue in the production of non polluting fuels. Following our interest in the development of efficient alkali metal-mediated synthetic procedures and alternative protocols for the chemical transformation of widespread environmental contaminants ...

  15. Formation of lysinoalanine in egg white under alkali treatment.

    Science.gov (United States)

    Zhao, Yan; Luo, Xuying; Li, Jianke; Xu, Mingsheng; Tu, Yonggang

    2016-03-01

    To investigate the formation mechanism of lysinoalanine (LAL) in eggs during the alkali treatment process, NaOH was used for the direct alkali treatment of egg white, ovalbumin, and amino acids; in addition, the amount of LAL formed during the alkali treatment process was measured. The results showed that the alkali treatment resulted in the formation of LAL in the egg white. The LAL content increased with increasing pH and temperature, with the LAL content first increasing and then leveling off with increasing time. The amount of LAL formed in the ovalbumin under the alkali treatment condition accounted for approximately 50.51% to 58.68% of the amount of LAL formed in the egg white. Thus, the LAL formed in the ovalbumin was the main source for the LAL in the egg white during the alkali treatment process. Under the alkali treatment condition, free L-serine, L-cysteine, and L-cystine reacted with L-lysine to form LAL; therefore, they are the precursor amino acids of LAL formed in eggs during the alkali treatment process. © 2016 Poultry Science Association Inc.

  16. Method of making alkali metal hydrides

    Science.gov (United States)

    Pecharsky, Vitalij K.; Gupta, Shalabh; Pruski, Marek; Hlova, Ihor; Castle, Andra

    2017-05-30

    A method is provided for making alkali metal hydrides by mechanochemically reacting alkali metal and hydrogen gas under mild temperature (e.g room temperature) and hydrogen pressure conditions without the need for catalyst, solvent, and intentional heating or cooling.

  17. Influence of fillers on the alkali activated chamotte

    Science.gov (United States)

    Dembovska, L.; Bumanis, G.; Vitola, L.; Bajare, D.

    2017-10-01

    Alkali-activated materials (AAM) exhibit remarkable high-temperature resistance which makes them perspective materials for high-temperature applications, for instance as fire protecting and insulating materials in industrial furnaces. Series of experiments were carried out to develop optimum mix proportions of AAM based on chamotte with quartz sand (Q), olivine sand (OL) and firebrick sawing residues (K26) as fillers. Aluminium scrap recycling waste was considered as a pore forming agent and 6M NaOH alkali activation solution has been used. Lightweight porous AAM have been obtained with density in range from 600 to 880 kg/m3 and compressive strength from 0.8 to 2.7 MPa. The XRD and high temperature optical microscopy was used to characterize the performance of AAM. The mechanical, physical and structural properties of the AAM were determined after the exposure to elevated temperatures at 800 and 1000°C. The results indicate that most promising results for AAM were with K26 filler where strength increase was observed while Q and OL filler reduced mechanical properties due to structure deterioration caused by expansive nature of selected filler.

  18. Energy analysis of 108 industrial processes. Phase 1, industrial applications study

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, B. B.; Brown, H. L.

    1979-06-01

    Extensive data are compiled for energy balances in 108 industrial processes. Specific information on unit operation, material, temperature, unrecoverable losses, along with the process flow diagram is given for each of the industries. The following industries are included: meak packing; milk; canned fruits and vegetables; baked goods; sugar refining; soybean; textiles; wood products; building materials; alkalies and chlorine; inorganic gases; pigments, chemicals; plastic materials and resins; synthetic rubbers; organic fibers; pharmaceutical preparations; organic chemicals; petroleum products; fertilizers; rubber products; glass; blast furnaces and steel mills; metals; farm machinery; motor vehicles; and photographic materials. The SIC's for each industry are identified.

  19. Combined strategies for improving production of a thermo-alkali stable laccase in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Jiayi Wang

    2017-07-01

    Conclusions: The productivity of the thermo-alkali stable laccase from B. licheniformis expressed in P. pastoris was significantly improved through the combination of site-directed mutagenesis and optimization of the cultivation process. The mutant enzyme retains good stability under high temperature and alkaline conditions, and is a good candidate for industrial application in dye decolorization.

  20. Calcium silicate hydrate: Crystallisation and alkali sorption

    International Nuclear Information System (INIS)

    Hong, S.

    2000-01-01

    Homogeneous single C-S-H gels has been prepared for the investigation of alkali binding potential and crystallisation. A distribution coefficient, R d , was introduced to express the partition of alkali between solid and aqueous phases at 25 deg. C. R d is independent of alkali hydroxide concentration and depends only on Ca:Si ratio over wide ranges of alkali concentration. The trend of numerical values of R d indicates that alkali bonding into the solid improves as its Ca:Si ratio decreases. Reversibility is demonstrated, indicating a possibility of constant R d value of the material. Al has been introduced to form C-A-S-H gels and their alkali sorption properties also determined. Al substituted into C-S-H markedly increases R d , indicating enhancement of alkali binding. However, the dependence of R d on alkali concentration is non-ideal with composition. A two-site model for bonding is presented. Crystallisation both under saturated steam and 1 bar vapour pressure has been investigated. It has been shown that heat treatment by saturated steam causes crystallisation of gels. The principal minerals obtained were (i) C-S-H gel and Ca(OH) 2 at -55 deg. C, (ii) 1.1 nm tobermorite, jennite and afwillite at 85 -130 deg. C, and (iii) xonotlite, foshagite and hillebrandite at 150-180 deg. C. Properties of crystalline C-S-H were also reported for reversible phase transformation, pH conditioning ability, seeding effect and solubility. At 1 bar pressure, crystallisation is slower than in saturated steam due to lower water activity. Tobermorite-like nanodomains develop during reaction at low Ca/Si ratios. In some Ca-rich compositions, Ca(OH) 2 is exsolved and occurs as nano-sized crystallites. (author)

  1. Relaxation of quadrupole orientation in an optically pumped alkali vapour

    Energy Technology Data Exchange (ETDEWEB)

    Bernabeu, E; Tornos, J

    1985-04-01

    The relaxation of quadrupole orientation (alignment) in an optically pumped alkali vapour is theoretically studied by taking into account the relaxation processes by alkali-buffer gas, alkali-alkali with spin exchange and alkali-cell wall (diffusion process) collisions. The relaxation transients of the quadrupole orientation are obtained by introducing a first-order weak-pumping approximation (intermediate pumping) less restrictive than the usually considered (zeroth order) one.

  2. Use of Slag/Sugar Cane Bagasse Ash (SCBA) Blends in the Production of Alkali-Activated Materials.

    Science.gov (United States)

    Castaldelli, Vinícius N; Akasaki, Jorge L; Melges, José L P; Tashima, Mauro M; Soriano, Lourdes; Borrachero, María V; Monzó, José; Payá, Jordi

    2013-07-25

    Blast furnace slag (BFS)/sugar cane bagasse ash (SCBA) blends were assessed for the production of alkali-activated pastes and mortars. SCBA was collected from a lagoon in which wastes from a sugar cane industry were poured. After previous dry and grinding processes, SCBA was chemically characterized: it had a large percentage of organic matter ( ca. 25%). Solutions of sodium hydroxide and sodium silicate were used as activating reagents. Different BFS/SCBA mixtures were studied, replacing part of the BFS by SCBA from 0 to 40% by weight. The mechanical strength of mortar was measured, obtaining values about 60 MPa of compressive strength for BFS/SCBA systems after 270 days of curing at 20 °C. Also, microstructural properties were assessed by means of SEM, TGA, XRD, pH, electrical conductivity, FTIR spectroscopy and MIP. Results showed a good stability of matrices developed by means of alkali-activation. It was demonstrated that sugar cane bagasse ash is an interesting source for preparing alkali-activated binders.

  3. Milk Alkali and Hydrochlorothiazide: A Case Report

    Directory of Open Access Journals (Sweden)

    Babar Parvez

    2011-01-01

    Full Text Available Hypercalcemia is a relatively common clinical problem in both outpatient and inpatient settings. Primary pathophysiology is the entry of calcium that exceeds its excretion into urine or deposition in bone into circulation. Among a wide array of causes of hypercalcemia, hyperparathyroidism and malignancy are the most common, accounting for greater than 90 percent of cases. Concordantly, there has been a resurgence of milk-alkali syndrome associated with the ingestion of large amounts of calcium and absorbable alkali, making it the third leading cause of hypercalcemia (Beall and Scofield, 1995 and Picolos et al., 2005. This paper centers on a case of over-the-counter calcium and alkali ingestion for acid reflux leading to milk alkali with concordant use of thiazide diuretic for hypertension.

  4. Phototransformation of iodate by UV irradiation: Kinetics and iodinated trihalomethane formation during subsequent chlor(am)ination

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Fu-Xiang [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Hu, Xiao-Jun, E-mail: hu-xj@mail.tsinghua.edu.cn [School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418 (China); Xu, Bin; Zhang, Tian-Yang; Gao, Yu-Qiong [State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2017-03-15

    Highlights: • IO{sub 3}{sup −} can be photodegraded by UV irradiation with pseudo-first order kinetics. • Solution pH has no remarkable influence on the photodegradation rate of IO{sub 3}{sup −}. • The I{sup −} and HOI derived from the photoreduction of IO{sub 3}{sup −} were determined. • The presence of NOM greatly enhanced the photolysis rate of IO{sub 3}{sup −}. • NOM sources can affect the formation of I-THMs in UV-chlor(am)ination of IO{sub 3}{sup −}. - Abstract: The photodegradation of IO{sub 3}{sup −} at 254 nm and the formation of iodinated trihalomethanes (I-THMs) during subsequent chlorination or chloramination in the presence of natural organic matter (NOM) were investigated in this study. The thermodynamically stable IO{sub 3}{sup −} can be degraded by UV irradiation with pseudo-first order kinetics and the quantum yield was calculated as 0.0591 mol einstein{sup −1}. Solution pH posed no remarkable influence on the photolysis rate of IO{sub 3}{sup −}. The UV phototransformation of IO{sub 3}{sup −} was evidenced by the determination of iodide (I{sup −}) and hypoiodous acid (HOI) in solution. NOM sources not only enhanced the photodegradation rate of IO{sub 3}{sup −} by photoejecting solvated electrons, but also greatly influenced the production I-THMs in subsequent chlor(am)ination processes. In UV irradiation and sequential oxidation processes by chlorine or chloramine, the I-THMs formation was susceptible to NOM sources, especially the two major fractions of aqueous humic substances (humic acid and fulvic acid). The toxicity of disinfected waters greatly increased in chloramination over chlorination of the UV photodecomposed IO{sub 3}{sup −}, as far more I-THMs especially CHI{sub 3}, were formed. As “the fourth iodine source” of iodinated disinfection by-products, the occurrence, transportation and fate of IO{sub 3}{sup −} in aquatic environment should be of concern instead of being considered a desired

  5. Vibrations of alkali metal overlayers on metal surfaces

    International Nuclear Information System (INIS)

    Rusina, G G; Eremeev, S V; Borisova, S D; Echenique, P M; Chulkov, E V; Benedek, G

    2008-01-01

    We review the current progress in the understanding of vibrations of alkalis adsorbed on metal surfaces. The analysis of alkali vibrations was made on the basis of available theoretical and experimental results. We also include in this discussion our recent calculations of vibrations in K/Pt(111) and Li(Na)/Cu(001) systems. The dependence of alkali adlayer localized modes on atomic mass, adsorption position and coverage as well as the dependence of vertical vibration frequency on the substrate orientation is discussed. The square root of atomic mass dependence of the vertical vibration energy has been confirmed by using computational data for alkalis on the Al(111) and Cu(001) substrates. We have confirmed that in a wide range of submonolayer coverages the stretch mode energy remains nearly constant while the energy of in-plane polarized modes increases with the increase of alkali coverage. It was shown that the spectrum of both stretch and in-plane vibrations can be very sensitive to the adsorption position of alkali atoms and substrate orientation

  6. Alkali aggregate reactivity in concrete structures in western Canada

    International Nuclear Information System (INIS)

    Morgan, D.R.; Empey, D.

    1989-01-01

    In several regions of Canada, particularly parts of Ontario, Quebec and the Maritime Provinces, research, testing and evaluation of aged concrete structures in the field has shown that alkali aggregate reactivity can give rise to pronounced concrete deterioration, particularly in hydraulic structures subjected to saturation or alternate wetting and drying such as locks, dams, canals, etc. Concrete deterioration is mainly caused by alkali-silica reactions and alkali-carbonate reactions, but a third type of deterioration involves slow/late expanding alkali-silicate/silica reactivity. The alkalies NaOH and KOH in the concrete pore solutions are mainly responsible for attack on expansive rocks and minerals in concrete. Methods for evaluating alkali-aggregate reaction potential in aggregates, and field and laboratory methods for detecting deterioration are discussed. Examples of alkali-aggregate reactions in structures is western Canada are detailed, including a water reservoir at Canadian Forces Base Chilliwack in British Columbia, the Oldman River diversion and flume, the Lundbreck Falls Bridge, and the St Mary's Reservoir spillway, all in southern Alberta. Mitigative measures include avoidance of use of suspect aggregates, but if this cannot be avoided it is recommended to keep the total alkalies in the concrete as low as possible and minimize opportunities for saturation of concrete by moisture. 16 refs., 19 figs., 1 tab

  7. In Situ Measurement of Alkali Metals in an MSW Incinerator Using a Spontaneous Emission Spectrum

    Directory of Open Access Journals (Sweden)

    Weijie Yan

    2017-03-01

    Full Text Available This paper presents experimental investigations of the in situ diagnosis of the alkali metals in the municipal solid waste (MSW flame of an industrial grade incinerator using flame emission spectroscopy. The spectral radiation intensities of the MSW flame were obtained using a spectrometer. A linear polynomial fitting method is proposed to uncouple the continuous spectrum and the characteristic line. Based on spectra processing and a non-gray emissivity model, the flame temperature, emissivity, and intensities of the emission of alkali metals were calculated by means of measuring the spectral radiation intensities of the MSW flame. Experimental results indicate that the MSW flame contains alkali metals, including Na, K, and even Rb, and it demonstrates non-gray characteristics in a wavelength range from 500 nm to 900 nm. Peak intensities of the emission of the alkali metals were found to increase when the primary air was high, and the measured temperature varied in the same way as the primary air. The temperature and peak intensities of the lines of emission of the alkali metals may be used to adjust the primary airflow and to manage the feeding of the MSW to control the alkali metals in the MSW flame. It was found that the peak intensity of the K emission line had a linear relationship with the peak intensity of the Na emission line; this correlation may be attributed to their similar physicochemical characteristics in the MSW. The variation trend of the emissivity of the MSW flame and the oxygen content in the flue gas were almost opposite because the increased oxygen content suppressed soot formation and decreased soot emissivity. These results prove that the flame emission spectroscopy technique is feasible for monitoring combustion in the MSW incinerator in situ.

  8. 40 CFR 721.5278 - Substituted naphthalenesulfonic acid, alkali salt.

    Science.gov (United States)

    2010-07-01

    ..., alkali salt. 721.5278 Section 721.5278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.5278 Substituted naphthalenesulfonic acid, alkali salt. (a) Chemical... as a substituted naphthalenesulfonic acid, alkali salt (PMN P-95-85) is subject to reporting under...

  9. 40 CFR 721.8900 - Substituted halogenated pyridinol, alkali salt.

    Science.gov (United States)

    2010-07-01

    ..., alkali salt. 721.8900 Section 721.8900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.8900 Substituted halogenated pyridinol, alkali salt. (a) Chemical... as substituted halogenated pyridinols, alkali salts (PMNs P-88-1271 and P-88-1272) are subject to...

  10. Alkali-activated blast furnace slag-zeolite cements and concretes

    International Nuclear Information System (INIS)

    Rakhimov, R.; Rakhimova, N.

    2012-01-01

    The aim of this work has been the study of alkali-activated slag-zeolite cements and concretes based on them. Various compositions have been tested and some characteristics such as the compressive strength have been measured versus zeolite additions. A table lists the specific surface area and particle size distributions of different cements. The conclusions of the study are the following. First, alkali-activated slag cements and concretes based on them are effective for immobilization of radioactive wastes and the production of building structures, designed for high radiation load. Secondly, zeolite-containing mineral additions are able to increase the immobilization capacity and radiation resistance of alkali-activated blast furnace slag cements and concretes. Thirdly, the efficiency of different zeolite-containing additions - 10% to increase alkali-activated blast furnace slag-zeolite cement strength was established. It is with alkaline components of water-glass, sodium carbonate, sodium sulphate. Fourth, the effective way of introducing zeolite additions in alkali-activated blast furnace slag-zeolite cement is inter-grinding of the slag and addition. Increase in strength of alkali-activated blast furnace slag-zeolite cement stone is 40% higher than that of the stone of a mixture of separately milled components. Fifth, Alkali-activated blast furnace slag-zeolite cements with zeolite-containing additions with a compressive strength of 10.1 to 140 MPa; alkali-activated blast furnace slag-zeolite cements mortars with compressive strength from 35.2 to 97.7 MPa; alkali-activated blast furnace slag-zeolite cements concretes with compressive strength up to 84.5 MPa and frost resistant up to 800 cycles were obtained

  11. Alkali elemental and potassium isotopic compositions of Semarkona chondrules

    Science.gov (United States)

    Alexander, C.M. O'D.; Grossman, J.N.

    2005-01-01

    We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.

  12. Alkali-Resistant Mechanism of a Hollandite DeNOx Catalyst.

    Science.gov (United States)

    Hu, Pingping; Huang, Zhiwei; Gu, Xiao; Xu, Fei; Gao, Jiayi; Wang, Yue; Chen, Yaxin; Tang, Xingfu

    2015-06-02

    A thorough understanding of the deactivation mechanism by alkalis is of great importance for rationally designing improved alkali-resistant deNOx catalysts, but a traditional ion-exchange mechanism cannot often accurately describe the nature of the deactivation, thus hampering the development of superior catalysts. Here, we establish a new exchange-coordination mechanism on the basis of the exhaustive study on the strong alkali resistance of a hollandite manganese oxide (HMO) catalyst. A combination of isothermal adsorption measurements of ammonia with X-ray absorption near-edge structure spectra and X-ray photoelectron spectra reveals that alkali metal ions first react with protons from Brønsted acid sites of HMO via the ion exchange. Synchrotron X-ray diffraction patterns and extended X-ray absorption fine structure spectra coupled with theoretical calculations demonstrate that the exchanged alkali metal ions are subsequently stabilized at size-suitable cavities in the HMO pores via a coordination model with an energy savings. This exchange-coordination mechanism not only gives a wholly convincing explanation for the intrinsic nature of the deactivation of the reported catalysts by alkalis but also provides a strategy for rationally designing improved alkali-resistant deNOx catalysts in general.

  13. [Enhancement of anaerobic digestion of excess sludge by acid-alkali pretreatment].

    Science.gov (United States)

    Yuan, Guang-Huan; Zhou, Xing-Qiu; Wu, Jian-Dong

    2012-06-01

    In order to enhance the efficiency of anaerobic digestion of excess sludge, acid-alkali pretreatment method was studied. Three different pretreatment methods (alkali alone,acid-alkali, alkali-acid) were compared to investigate their impacts on hydrolysis and acidification of activated sludge. In addition, their influences on methane-producing in subsequent anaerobic digestion process were also studied. The results showed that the soluble chemical oxygen demand (SCOD) of alkaline treatment alone was about 16% higher than the combining of acid and alkali treatment, SCOD concentration increased to 5406.1 mg x L(-1) after 8 d pretreatment. After treated by acid (pH 4.0, 4 d) and alkali (pH 10.0, 4 d), the acetic acid production and its content in short-chain fatty acids (SCFAs) were higher than other pretreatment methods. And the acetic acid production (as COD/VSS) could reach 74.4 mg x g(-1), accounting for 60.5% of SCFAs. After acid-alkali pretreatment, the C: N ratio of the sludge mixed liquor was about 25, and the C: P ratio was between 35-40, which was more favorable than C: N and C: P ratio of alkali alone and alkali-acid to subsequent anaerobic digestion. The control experiments showed that, after acid-alkali pretreatment, anaerobic digestion cumulative methane yield (CH4/VSS(in)) reached to 136.1 mL x g(-1) at 15 d, which was about 2.5-, 1.6-, and 1.7-fold of the blank (unpretreated), alkali alone pretreatment and alkali-acid pretreatment, respectively. After acid-alkali pretreatment for 8 d and anaerobic digestion for 15 d, the removal efficiency of VSS was about 60.9%, and the sludge reduction effect was better than other pretreatments. It is obvious that the acid-alkali pretreatment method was more favorable to anaerobic digestion and sludge reduction.

  14. Influence of the gypsum dehydration temperature and alkali additives on the properties of anhydrite cement

    Directory of Open Access Journals (Sweden)

    Leskeviciene V.

    2010-01-01

    Full Text Available While dehydrating gypsum with additives at the temperatures of 800°C and 900°C the influence of alkali additives on both the crystalline structure of anhydrite and properties of anhydrite binder was investigated. The industrial and household wastes including other lowcost materials were used as additives. Having heated them with gypsum the anhydrite with alkali activation properties was obtained. The properties of such substances were evaluated using the methods of chemical, diffractive X-ray scanning and scanning electron microscopy (SEM analyses. Some additives, e.g. 5 % ground glass waste, were found to increase crystal agglomerate formation of anhydrite binder, accelerate the hydration process of anhydrite and double the compressive strength of hydrated samples compared to samples without additives.

  15. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...

  16. Concrete alkali-silica reaction and nuclear radiation damage

    International Nuclear Information System (INIS)

    Ichikawa, Tsuneki

    2008-01-01

    The deterioration of concrete by alkali-silica reaction of aggregates (ASR) and the effect of nuclear radiations on the ASR have been reviewed based on our studies on the mechanism of ASR and the effect of nuclear radiations on the resistivity of minerals to alkaline solution. It has been found that the ASR is initiated by the attack of alkaline solution in concrete to silicious aggregates to convert them into hydrated alkali silicate. The consumption of alkali hydroxide by the aggregates induces the dissolution of Ca 2+ ions into the solution. The alkali silicate surrounding the aggregates then reacts with Ca 2+ ions to convert to insoluble tight and rigid reaction rims. The reaction rim allows the penetration of alkaline solution but prevents the leakage of viscous alkali silicate, so that alkali silicate generated afterward is accumulated in the aggregate to give an expansive pressure enough for cracking the aggregate and the surrounding concrete. The effect of nuclear radiation on the reactivity of quartz and plagioclase, a part of major minerals composing volcanic rocks as popular aggregates, to alkaline solution has been examined for clarifying whether nuclear radiations accelerates the ASR. It has been found that the irradiation of these minerals converts them into alkali-reactive amorphous ones. The radiation dose for plagioclase is as low as 10 8 Gy, which suggests that the ASR of concrete surrounding nuclear reactors is possible to be accelerated by nuclear radiation. (author)

  17. Surface water quality in a water run-off canal system: A case study in Jubail Industrial City, Kingdom of Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Zia Mahmood Siddiqi

    2016-06-01

    Full Text Available Water quality in a run-off canal system in an industrial area was evaluated for a range of physical and chemical properties comprising trace metals (including mercury (Hg, chromium (Cr, iron (Fe, manganese (Mn, salinity, pH, turbidity, total dissolved solids, total suspended solids, chemical oxygen demand (COD, and dissolved oxygen. High concentrations of potassium (K (1.260–2.345 mg/l and calcium (Ca (19.170–35510 mg/l demonstrated that the salinity in the water was high, which indicates that industrial effluents from fertilizer manufacturing and Chlor-alkali units are being discharged into the canal system. Almost all the metal concentrations in water and sediment were within the thresholds established by the local regulatory body. Concentrations of Cr (0.0154–0.0184 mg/l, Mn (0.0608–0.199 mg/l, Fe (0.023–0.035 mg/l, COD (807–916 mg/l, and turbidity (633 ± 15–783 ± 22 NTU were high where the canal discharges into the Persian Gulf; these discharges may compromise the health of the aquatic ecosystem. There is concern about the levels of Hg in water (0.00135–0.0084 mg/l, suspended sediment (0.00308–0.0096 mg/l, and bed sediment (0.00172–0.00442 mg/l because of the bio-accumulative nature of Hg. We also compared the total Hg concentrations in fish from Jubail, and two nearby cities. Hg contents were highest in fish tissues from Jubail. This is the first time that heavy metal pollution has been assessed in this water run-off canal system; information about Hg is of particular interest and will form the basis of an Hg database for the area that will be useful for future investigations.

  18. The utilization of alkali-treated melon husk by broilers.

    Science.gov (United States)

    Abiola, S S; Amalime, A C; Akadiri, K C

    2002-09-01

    The effects of alkali treatment on chemical constituents of melon husk (MH) and performance characteristics of broilers fed alkali-treated MH (ATMH) diets were investigated. The chemical analysis showed that alkali treatment increased the ash content of MH (from 15.70% to 16.86%) and reduced the crude fibre content (from 29.00% to 14.00%). Result of feed intake was superior on 30% alkali diet with a value of 100.14 g/bird/day. Body weight gain decreased with increase in the level of ATMH in the diet. Highest dressing percentage of 66.33% and best meat/bone ratio of 2.57 were obtained on 10% and 20% alkali diets, respectively. Dietary treatments had significant effect (P poultry carcases and chicken meat with favourable shelf life.

  19. [Raman spectra of endospores of Bacillus subtilis by alkali stress].

    Science.gov (United States)

    Dong, Rong; Lu, Ming-qian; Li, Feng; Shi, Gui-yu; Huang, Shu-shi

    2013-09-01

    To research the lethal mechanism of spores stressed by alkali, laser tweezers Raman spectroscopy (LTRS) combined with principal components analysis (PCA) was used to study the physiological process of single spore with alkali stress. The results showed that both spores and germinated spores had tolerance with alkali in a certain range, but the ability of spores was obviously lower than that of spores due to the release of their Ca2+ -DPA which plays a key role in spores resistance as well as spores resistance to many stresses; A small amount of Ca2+ -DPA of spores was observed to release after alkali stress, however, the behavior of release was different with the normal Ca2+ -DPA release behavior induced by L-alanine; The data before and after alkali stress of the spores and g. spores with PCA reflected that alkali mainly injured the membrane of spores, and alkali could be easily enter into the inner structure of spores to damage the structure of protein backbone and injure the nucleic acid of spores. We show that the alkali could result in the small amount of Ca2+ -DPA released by destroying the member channel of spores.

  20. A coupled channel study on a binding mechanism of positronic alkali atoms

    International Nuclear Information System (INIS)

    Kubota, Yoshihiro; Kino, Yasushi

    2008-01-01

    In order to investigate the binding mechanism of weakly bound states of positronic alkali atoms, we calculate the energies and wavefunctions using the Gaussian expansion method (GEM) where a positronium (Ps)-alkali ion channel and a positron-alkali atom channel are explicitly introduced. The energies of the bound states are updated using a model potential that reproduces well the observed energy levels of alkali atoms. The binding mechanism of the positronic alkali atom is analyzed by the wavefunctions obtained. The structure of the positronic alkali atom has been regarded as a Ps cluster orbiting the alkali ion, which is described by the Ps-alkali ion channel. We point out that the fraction having the positron-alkali atom configuration is small but plays an indispensable role for the weakly bound system

  1. IRMPD Action Spectroscopy of Alkali Metal Cation-Cytosine Complexes: Effects of Alkali Metal Cation Size on Gas Phase Conformation

    NARCIS (Netherlands)

    Yang, B.; Wu, R.R.; Polfer, N.C.; Berden, G.; Oomens, J.; Rodgers, M.T.

    2013-01-01

    The gas-phase structures of alkali metal cation-cytosine complexes generated by electrospray ionization are probed via infrared multiple photon dissociation (IRMPD) action spectroscopy and theoretical calculations. IRMPD action spectra of five alkali metal cation-cytosine complexes exhibit both

  2. Alkali absorption and citrate excretion in calcium nephrolithiasis

    Science.gov (United States)

    Sakhaee, K.; Williams, R. H.; Oh, M. S.; Padalino, P.; Adams-Huet, B.; Whitson, P.; Pak, C. Y.

    1993-01-01

    The role of net gastrointestinal (GI) alkali absorption in the development of hypocitraturia was investigated. The net GI absorption of alkali was estimated from the difference between simple urinary cations (Ca, Mg, Na, and K) and anions (Cl and P). In 131 normal subjects, the 24 h urinary citrate was positively correlated with the net GI absorption of alkali (r = 0.49, p origin of hypocitraturia. However, the normal dependence was maintained in CDS and in idiopathic hypocitraturia, suggesting that reduced citrate excretion was largely dietary in origin as a result of low net alkali absorption (from a probable relative deficiency of vegetables and fruits or a relative excess of animal proteins).

  3. The 4843 Alkali Metal Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-06-01

    The 4843 AMSF has been used primarily to provide a centralized building to receive and store dangerous and mixed alkali metal waste, including sodium and lithium, which has been generated at the Fast Flux Test Facility and at various other Hanford Site operations that used alkali metals. Most of the dangerous and mixed alkali metal waste received consists of retired equipment from liquid sodium processes. The unit continues to store material. In general, only solid alkali metal waste that is water reactive is stored at the 4843 AMSF. The 4843 AMSF will be closed in a manner consistent with Ecology guidelines and regulations (WAC 173-303-610). The general closure procedure is detailed as follows

  4. On-line alkali monitoring - Part 1; Kontinuerlig alkalimaetning - Etapp 1

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Christer; Ljung, P; Woxlin, H

    1997-02-01

    As a consequence of the increased knowledge of the environmental impact of combustion based heat and power generation, the use of renewable biofuels will be increased. An obstacle associated to biofuel combustion compared to other fuels is the large release of alkali. Alkali compounds in flue gases are known to cause severe operational problems. Three of the major problems are; fouling of superheating tubes (causing reduced heat transfer and possibly corrosion), agglomeration of the bed material in fluidized beds, and poisoning of SCR catalysts. Yet another alkali related problem arises when, in order to increase the electric efficiency of combustion power plants, combined-cycle technology is used. Alkali vapour present in the fuel gas for the gas turbine is condensed to particles which increase corrosion and erosion of the turbine blades. The research on ash related operational problems has to be extended in order to ensure future use of biofuels in heat and power generation. In all successful research, adequate tools are necessary. To investigate ash related problems the key issue is to be able to perform continuous alkali measurements. This pilot study has investigated the need of continuous alkali measurements, which alkali species are harmful in the different applications and also available instrumentation capable of measuring the specific alkali species. The report gives a short summary presenting alkali related operational problems. In addition a schematic overview is given, showing the alkali species that possibly can exist in various parts of the power plant. 48 refs, 13 figs, 4 tabs

  5. Salts of alkali metal anions and process of preparing same

    Science.gov (United States)

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  6. Two-phase alkali-metal experiments in reduced gravity

    International Nuclear Information System (INIS)

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity

  7. High alkali-resistant basalt fiber for reinforcing concrete

    International Nuclear Information System (INIS)

    Lipatov, Ya.V.; Gutnikov, S.I.; Manylov, M.S.; Zhukovskaya, E.S.; Lazoryak, B.I.

    2015-01-01

    Highlights: • Doping of basalt fiber with ZrSiO 4 increased its alkali resistance. • Alkali treatment results in formation of protective surface layer on fibers. • Morphology and chemical composition of surface layer were investigated. • Mechanical properties of fibers were analyzed by a Weibull distribution. • Zirconia doped basalt fibers demonstrate high performance in concrete. - Abstract: Basalt glasses and fibers with zirconia content in the range from 0 to 7 wt% were obtained using ZrSiO 4 as a zirconium source. Weight loss and tensile strength loss of fibers after refluxing in alkali solution were determined. Basalt fiber with 5.7 wt% ZrO 2 had the best alkali resistance properties. Alkali treatment results in formation of protective surface layer on fibers. Morphology and chemical composition of surface layer were investigated. It was shown that alkali resistance of zirconia doped basalt fibers is caused by insoluble compounds of Zr 4+ , Fe 3+ and Mg 2+ in corrosion layer. Mechanical properties of initial and leached fibers were evaluated by a Weibull distribution. The properties of basalt fibers with ZrSiO 4 were compared with AR-glass fibers. The performance of concrete with obtained fibers was investigated

  8. Muonium centers in the alkali halides

    International Nuclear Information System (INIS)

    Baumeler, H.; Kiefl, R.F.; Keller, H.; Kuendig, W.; Odermatt, W.; Patterson, B.D.; Schneider, J.W.; Savic, I.M.

    1986-01-01

    Muonium centers (Mu) in single crystals and powdered alkali halides have been studied using the high-timing-resolution transverse field μSR technique. Mu has been observed and its hyperfine parameter (HF) determined in every alkali halide. For the rocksalt alkali halides, the HF parameter A μ shows a systematic dependence on the host lattice constant. A comparison of the Mu HF parameter with hydrogen ESR data suggests that the Mu center is the muonic analogue of the interstitial hydrogen H i 0 -center. The rate of Mu diffusion can be deduced from the motional narrowing of the nuclear hyperfine interaction. KBr shows two different Mu states, a low-temperature Mu I -state and a high-temperature Mu II -state. (orig.)

  9. Upgrading platform using alkali metals

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  10. Alkali-slag cements for the immobilization of radioactive wastes

    International Nuclear Information System (INIS)

    Shi, C.; Day, R.L.

    1996-01-01

    Alkali-slag cements consist of glassy slag and an alkaline activator and can show both higher early and later strengths than Type III Portland cement, if a proper alkaline activator is used. An examination of microstructure of hardened alkali-slag cement pastes with the help of XRD and SEM with EDAX shows that the main hydration product is C-S-H (B) with low C/S ratio and no crystalline substances exist such as Ca(OH) 2 , Al (OH) 3 and sulphoaluminates. Mercury intrusion tests indicate that hardened alkali-slag cement pastes have a lower porosity than ordinary Portland cement, and contain mainly gel pores. The fine pore structure of hardened alkali-slag cement pastes will restrict the ingress of deleterious substances and the leaching of harmful species such as radionuclides. The leachability of Cs + from hardened alkali-slag cement pastes is only half of that from hardened Portland cement. From all these aspects, it is concluded that alkali-slag cements are a better solidification matrix than Portland cement for radioactive wastes

  11. Saccharification of gamma-ray and alkali pretreated lignocellulosics

    International Nuclear Information System (INIS)

    Begum, A.; Choudhury, N.

    1988-01-01

    Enzymic saccharification of gamma ray and alkali pretreated sawdust, rice straw, and sugar cane bagasse showed higher release of reducing sugar from pretreated substrates. By gamma ray treatment alone (500 kGy) reducing sugar release of 2.8, 9.2, and 10 g/l was obtained from 7.5% (w/v) sawdust, rice straw, and bagasse and the same substrates showed reducing sugar release of 4.2, 30, and 20 g/l respectively when treated with alkali (0.1 g/g). Combination of gamma ray with alkali treatment further increased the reducing sugar release to 10.2, 33, and 36 g/l from sawdust, rice straw, and bagasse respectively. The effects of gamma ray and alkali treatment on saccharification varied with the nature of the substrate

  12. The alkali halide disk technique in infra-red spectrometry : Anomalous behaviour of some samples dispersed in alkali halide disks

    NARCIS (Netherlands)

    Tolk, A.

    1961-01-01

    Some difficulties encountered in the application of the alkali halide disk technique in infra-red spectrometry are discussed. Complications due to interaction of the sample with the alkali halide have been studied experimentally. It was found that the anomalous behaviour of benzoic acid, succinic

  13. Silicate species of water glass and insights for alkali-activated green cement

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Helén, E-mail: helen.jansson@chalmers.se [Department of Civil and Environmental Engineering, Chalmers University of Technology, SE-41296 Gothenburg (Sweden); Bernin, Diana, E-mail: diana.bernin@nmr.gu.se [Swedish NMR Centre, Gothenburg University, Gothenburg, 41390 Sweden (Sweden); Ramser, Kerstin, E-mail: kerstin.ramser@ltu.se [Department of Engineering Sciences and Mathematics, Luleå University of Technology, 971 87 Luleå (Sweden)

    2015-06-15

    Despite that sodium silicate solutions of high pH are commonly used in industrial applications, most investigations are focused on low to medium values of pH. Therefore we have investigated such solutions in a broad modulus range and up to high pH values (∼14) by use of infrared (IR) spectroscopy and silicon nuclear magnetic resonance ({sup 29}Si-NMR). The results show that the modulus dependent pH value leads to more or less charged species, which affects the configurations of the silicate units. This in turn, influences the alkali-activation process of low CO{sub 2} footprint cements, i.e. materials based on industrial waste or by-products.

  14. Complexes in polyvalent metal - Alkali halide melts

    International Nuclear Information System (INIS)

    Akdeniz, Z.; Tosi, M.P.

    1991-03-01

    Experimental evidence is available in the literature on the local coordination of divalent and trivalent metal ions by halogens in some 140 liquid mixtures of their halides with alkali halides. After brief reference to classification criteria for main types of local coordination, we focus on statistical mechanical models that we are developing for Al-alkali halide mixtures. Specifically, we discuss theoretically the equilibrium between (AlF 6 ) 3- and (AlF 4 ) - complexes in mixtures of AlF 3 and NaF as a function of composition in the NaF-rich region, the effect of the alkali counterion on this equilibrium, the possible role of (AlF 5 ) 2- as an intermediate species in molten cryolite, and the origin of the different complexing behaviours of Al-alkali fluorides and chlorides. We also present a theoretical scenario for processes of structure breaking and electron localization in molten cryolite under addition of sodium metal. (author). 26 refs, 2 tabs

  15. Long term mechanical properties of alkali activated slag

    Science.gov (United States)

    Zhu, J.; Zheng, W. Z.; Xu, Z. Z.; Leng, Y. F.; Qin, C. Z.

    2018-01-01

    This article reports a study on the microstructural and long-term mechanical properties of the alkali activated slag up to 180 days, and cement paste is studied as the comparison. The mechanical properties including compressive strength, flexural strength, axis tensile strength and splitting tensile strength are analyzed. The results showed that the alkali activated slag had higher compressive and tensile strength, Slag is activated by potassium silicate (K2SiO3) and sodium hydroxide (NaOH) solutions for attaining silicate modulus of 1 using 12 potassium silicate and 5.35% sodium hydroxide. The volume dosage of water is 35% and 42%. The results indicate that alkali activated slag is a kind of rapid hardening and early strength cementitious material with excellent long-term mechanical properties. Single row of holes block compressive strength, single-hole block compressive strength and standard solid brick compressive strength basically meet engineering requirements. The microstructures of alkali activated slag are studied by X-ray diffraction (XRD). The hydration products of alkali-activated slag are assured as hydrated calcium silicate and hydrated calcium aluminate.

  16. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    Science.gov (United States)

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  17. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    2015-01-01

    Volatile fatty acids (VFA) are organic compounds of great importance for various industries and environmental processes. Fermentation and anaerobic digestion of organic wastes are promising alternative technologies for VFA production. However, one of the major challenges is development...... of sustainable downstream technologies for VFA recovery. In this study, an innovative microbial bipolar electrodialysis cell (MBEDC) was developed to meet the challenge of waste-derived VFA recovery, produce hydrogen and alkali, and potentially treat wastewater. The MBEDC was operated in fed-batch mode....... At an applied voltage of 1.2 V, a VFA recovery efficiency of 98.3%, H2 of 18.4 mL and alkali production presented as pH of 12.64 were obtained using synthetic fermentation broth. The applied voltage, initial VFA concentrations and composition were affecting the VFA recovery. The energy balance revealed that net...

  18. Alkali metals and group IIA metals

    International Nuclear Information System (INIS)

    Fenton, D.E.

    1987-01-01

    This chapter on the coordination complexes of the alkali metals of group IIA starts with a historical perspective of their chemistry, from simple monodentate ligands, metal-β-diketonates to the macrocyclic polyethers which act as ligands to the alkali and akaline earth metals. Other macrocyclic ligands include quarterenes, calixarenes, porphyrins, phthalocyanines and chlorophylls. A section on the naturally occurring ionophores and carboxylic ionophores is included. (UK)

  19. Mechanical filter for alkali atoms

    CERN Document Server

    Toporkov, D K

    2000-01-01

    A device for separating gases of different mass is discussed. Such a device could be used in a laser-driven spin exchange source of polarized hydrogen atoms to reduce the contamination of alkali atoms. A Monte Carlo simulation has shown that the suggested apparatus based on a commercial turbo pump could reduce by a factor of 10-15 the concentration of the alkali-metal atoms in the hydrogen flow from a laser driven polarized source. This would greatly enhance the effective polarization in hydrogen targets.

  20. The influence of alkali promoters on coadsorbed molecules

    International Nuclear Information System (INIS)

    Umbach, E.

    1986-01-01

    A model has been suggested recently based on the results of an extensive study of the coadsorbate system CO + K on Ru(001). It is introduced and discussed in this article based on previous results and on results obtained very recently for a similar coadsorbate system, CO + K/Ni(111). This model is in competition with a variety of differing or similar ideas and interpretations which are mostly based on similar experimental results. Some of these other models postulate a lying-down, or strongly tilted, molecule in the presence of alkali atoms, at least at low coverages. The CO molecule is usually considered to be attached to the substrate and to be closely coadsorbed to the alkali neighbor(s) but sometimes even a vertical or horizontal adsorption on top of the alkali layer has been suggested. The interaction between alkali and CO has been described as indirect via the substrate or direct by forming a ''π''-bond between adjacent alkalis and CO molecules or even by forming an ionic K/sub x/-CO/sub y/ complex. Some authors prefer a model in which the main (or exclusive) interaction comes from a charge transfer from the donating alkali into the 2π orbital of the coadsorbed CO, thus, enhancing the C- metal and reducing the C-O bond strength

  1. Alkali-heat treatment of a low modulus biomedical Ti-27Nb alloy

    International Nuclear Information System (INIS)

    Zhou, Y; Wang, Y B; Zhang, E W; Cheng, Y; Xiong, X L; Zheng, Y F; Wei, S C

    2009-01-01

    This study focuses on the surface modification of a near β-type Ti-27 wt.% Nb alloy by alkali-heat treatment. The influence of alkali concentration, alkali-treated time and alkali-treated temperature on the microstructure and constitutional phases of the modified surface is investigated by SEM, XRD and ICP. Immersion experiments in a simulated body fluid (SBF) were carried out to examine the Ca-P phase forming ability of the modified surfaces. The SEM observation and XRD analysis revealed that a sodium titanate layer is formed after alkali-heat treatment. The morphology and Ca-P phase forming of the layer are greatly affected by the surface roughness of the samples, the alkali concentration, the alkali-treated time and alkali-treated temperature. The results of SBF immersion, which are obtained by ICP analysis, indicate that the activated sodium titanate layer prepared by alkali-heat treatment is beneficial to further improving the biocompatibility of the Ti-27 wt.% Nb alloy.

  2. Process for the disposal of alkali metals

    International Nuclear Information System (INIS)

    Lewis, L.C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level. 6 claims

  3. Thermodynamic modelling of alkali-activated slag cements

    International Nuclear Information System (INIS)

    Myers, Rupert J.; Lothenbach, Barbara; Bernal, Susan A.; Provis, John L.

    2015-01-01

    Highlights: • A thermodynamic modelling analysis of alkali-activated slag cements is presented. • Thermodynamic database describes zeolites, alkali carbonates, C–(N–)A–S–H gel. • Updated thermodynamic model for Mg–Al layered double hydroxides. • Description of phase assemblages in Na 2 SiO 3 - and Na 2 CO 3 -activated slag cements. • Phase diagrams for NaOH-activated and Na 2 SiO 3 -activated slag cements are simulated. - Abstract: This paper presents a thermodynamic modelling analysis of alkali-activated slag-based cements, which are high performance and potentially low-CO 2 binders relative to Portland cement. The thermodynamic database used here contains a calcium (alkali) aluminosilicate hydrate ideal solid solution model (CNASH-ss), alkali carbonate and zeolite phases, and an ideal solid solution model for a hydrotalcite-like Mg–Al layered double hydroxide phase. Simulated phase diagrams for NaOH- and Na 2 SiO 3 -activated slag-based cements demonstrate the high stability of zeolites and other solid phases in these materials. Thermodynamic modelling provides a good description of the chemical compositions and types of phases formed in Na 2 SiO 3 -activated slag cements over the most relevant bulk chemical composition range for these cements, and the simulated volumetric properties of the cement paste are consistent with previously measured and estimated values. Experimentally determined and simulated solid phase assemblages for Na 2 CO 3 -activated slag cements were also found to be in good agreement. These results can be used to design the chemistry of alkali-activated slag-based cements, to further promote the uptake of this technology and valorisation of metallurgical slags

  4. Mineralization dynamics of metakaolin-based alkali-activated cements

    International Nuclear Information System (INIS)

    Gevaudan, Juan Pablo; Campbell, Kate M.; Kane, Tyler J.; Shoemaker, Richard K.; Srubar, Wil V.

    2017-01-01

    This paper investigates the early-age dynamics of mineral formation in metakaolin-based alkali-activated cements. The effects of silica availability and alkali content on mineral formation were investigated via X-ray diffraction and solid-state 29 Si magic-angle spinning nuclear magnetic resonance spectroscopy at 2, 7, 14, and 28 days. Silica availability was controlled by using either liquid- (immediate) or solid-based (gradual) sodium silicate supplements. Mineral (zeolitic) and amorphous microstructural characteristics were correlated with observed changes in bulk physical properties, namely shrinkage, density, and porosity. Results demonstrate that, while alkali content controls the mineralization in immediately available silica systems, alkali content controls the silica availability in gradually available silica systems. Immediate silica availability generally leads to a more favorable mineral formation as demonstrated by correlated improvements in bulk physical properties.

  5. The solvent extraction of alkali metal ions with β-diketones

    International Nuclear Information System (INIS)

    Munakata, Megumu; Niina, Syozo; Shimoji, Noboru

    1974-01-01

    This work was undertaken to investigate effects of solvent and chelating-agent on the solvent extraction of alkali metal ions by seven β-diketones, acetylacetone (Acac), benzoylacetone (BzA), dipivaloylmethane (DPM), dibenzoylmethane (DBM), thenoyltrifluoloacetone (TTA), benzoyltrifluoroacetone (BFA) and hexafluoroacetylacetone (HFA), and to separate lithium from alkali metals. The extraction of alkali metals increase with increasing donor power of the solvent: i.e., benzene Na>K>Rb>Cs, which is also the order in which the adduct formation of these β-diketone chelates with donor solvents increase. The adduct formations between β-diketone chelates of alkali metals and donor solvents markedly enhance the solubilities of the chelates in solvents and, consequently, the extractabilities of alkali metals with β-diketones. Lithium was extracted with TTA in ether at such a low base concentration that sodium, potassium, rubidium and cesium were hardly extracted, and this enabled to separate lithium from other metals by the use of rubidium hydroxide (0.02 M). An attempt has been made to isolate alkali metal β-diketone chelates and some chelates have been obtained as crystals. The infrared absorption bands arising from C=O and C.=C of TTA shift to lower frequencies in the alkali metal chelates with TTA, and consequently, β-diketones is suggested to coordinate to alkali metal as a bidentate ligand. (JPN)

  6. Survey on industrial applications of radioactive tracers

    International Nuclear Information System (INIS)

    Kim, Jae Rok; Yoo, Young Soo; Lee, Jong Doo; Awh, Ok Doo; Kim, Jun Hyung

    1986-12-01

    Current status and future feasibilities of industrial tracer applications in the Republic of Korea have been surveyed. Microleak detection using Krypton-85 in eight electronics industrial companies, and efficiency tests of steam generators in four nuclear power plants using Sodium-24 are the principal applications in Korea. Future applications are expected for mercury inventory in one soda industrial company, and alkali movement studies in two cement industrial companies. Korean industries expressed deep interest in leak detection in underground pipelines, abrasion/corrosion studies, mixing rate and residence time measurements. (Author)

  7. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Science.gov (United States)

    2010-07-01

    ... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali...

  8. Structure and electrical resistivity of alkali-alkali and lithium-based liquid binary alloys

    International Nuclear Information System (INIS)

    Mishra, A.K.; Mukherjee, K.K.

    1990-01-01

    Harmonic model potential, developed and used for simple metals is applied here to evaluate hardsphere diameters, which ensure minimum interionic pair potential for alkali-alkali (Na-K, Na-Rb, Na-Cs, K-Rb, K-Cs) and lithium-based (Li-Na, Li-Mg, Li-In, Li-Tl) liquid binary alloys as a function of composition for use in the determination of their partial structure factors. These structure factors are then used to calculate electrical resistivities of alloys considered. The computed values of electrical resistivity as a function of composition agree both, in magnitude and gradient reasonably well with experimental values in all cases except in Cs systems, where the disagreement is appreciable. (author)

  9. Mineralization dynamics of metakaolin-based alkali-activated cements

    Science.gov (United States)

    Gevaudan, Juan Pablo; Campbell, Kate M.; Kane, Tyler; Shoemaker, Richard K.; Srubar, Wil V.

    2017-01-01

    This paper investigates the early-age dynamics of mineral formation in metakaolin-based alkali-activated cements. The effects of silica availability and alkali content on mineral formation were investigated via X-ray diffraction and solid-state 29Si magic-angle spinning nuclear magnetic resonance spectroscopy at 2, 7, 14, and 28 days. Silica availability was controlled by using either liquid- (immediate) or solid-based (gradual) sodium silicate supplements. Mineral (zeolitic) and amorphous microstructural characteristics were correlated with observed changes in bulk physical properties, namely shrinkage, density, and porosity. Results demonstrate that, while alkali content controls the mineralization in immediately available silica systems, alkali content controls the silica availability in gradually available silica systems. Immediate silica availability generally leads to a more favorable mineral formation as demonstrated by correlated improvements in bulk physical properties.

  10. In situ alkali-silica reaction observed by x-ray microscopy

    International Nuclear Information System (INIS)

    Kurtis, K.E.; Monteiro, P.J.M.; Brown, J.T.; Meyer-Ilse, W.

    1997-01-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction

  11. In situ alkali-silica reaction observed by x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kurtis, K.E.; Monteiro, P.J.M. [Univ. of California, Berkeley, CA (United States); Brown, J.T.; Meyer-Ilse, W. [Ernest Orlando Lawrence Berkeley National Lab., CA (United States)

    1997-04-01

    In concrete, alkali metal ions and hydroxyl ions contributed by the cement and reactive silicates present in aggregate can participate in a destructive alkali-silica reaction (ASR). This reaction of the alkalis with the silicates produces a gel that tends to imbibe water found in the concrete pores, leading to swelling of the gel and eventual cracking of the affected concrete member. Over 104 cases of alkali-aggregate reaction in dams and spillways have been reported around the world. At present, no method exists to arrest the expansive chemical reaction which generates significant distress in the affected structures. Most existing techniques available for the examination of concrete microstructure, including ASR products, demand that samples be dried and exposed to high pressure during the observation period. These sample preparation requirements present a major disadvantage for the study of alkali-silica reaction. Given the nature of the reaction and the affect of water on its products, it is likely that the removal of water will affect the morphology, creating artifacts in the sample. The purpose of this research is to observe and characterize the alkali-silica reaction, including each of the specific reactions identified previously, in situ without introducing sample artifacts. For observation of unconditioned samples, x-ray microscopy offers an opportunity for such an examination of the alkali-silica reaction. Currently, this investigation is focusing on the effect of calcium ions on the alkali-silica reaction.

  12. Alkali adsorption on Ni(1 1 1) and their coadsorption with CO and O

    International Nuclear Information System (INIS)

    Politano, A.; Formoso, V.; Chiarello, G.

    2008-01-01

    The adsorption of alkalis (Na, K) on Ni(1 1 1) and their coadsorption with CO and O were studied by high-resolution electron energy loss spectroscopy. Loss measurements of clean alkali adlayers provided the expected behaviour of the alkali-substrate vibration energy as a function of the alkali coverage. This result was achieved by eliminating any trace of CO contamination from the alkali adlayer. As a matter of fact, a significant softening of the alkali-Ni vibration energy was revealed in the alkali + CO coadsorbed phase. Moreover, alkali coadsorption with oxygen caused a weakening of the O-Ni bond and a strengthening of the alkali-Ni bond

  13. Alkali (Li, K and Na) and alkali-earth (Be, Ca and Mg) adatoms on SiC single layer

    Science.gov (United States)

    Baierle, Rogério J.; Rupp, Caroline J.; Anversa, Jonas

    2018-03-01

    First-principles calculations within the density functional theory (DFT) have been addressed to study the energetic stability, and electronic properties of alkali and alkali-earth atoms adsorbed on a silicon carbide (SiC) single layer. We observe that all atoms are most stable (higher binding energy) on the top of a Si atom, which moves out of the plane (in the opposite direction to the adsorbed atom). Alkali atoms adsorbed give raise to two spin unpaired electronic levels inside the band gap leading the SiC single layer to exhibit n-type semiconductor properties. For alkaline atoms adsorbed there is a deep occupied spin paired electronic level inside the band gap. These finding suggest that the adsorption of alkaline and alkali-earth atoms on SiC layer is a powerful feature to functionalize two dimensional SiC structures, which can be used to produce new electronic, magnetic and optical devices as well for hydrogen and oxygen evolution reaction (HER and OER, respectively). Furthermore, we observe that the adsorption of H2 is ruled by dispersive forces (van der Waals interactions) while the O2 molecule is strongly adsorbed on the functionalized system.

  14. [Identification and function test of an alkali-tolerant denitrifying bacterium].

    Science.gov (United States)

    Wang, Ru; Zheng, Ping; Li, Wei; Chen, Hui; Chen, Tingting; Ghulam, Abbas

    2013-04-04

    We obtained an alkali-tolerant denitrifying bacterium, and determined its denitrifying activity and alkali-tolerance. An alkali-tolerant denitrifying bacterial strain was obtained by isolation and purification. We identified the bacterial strain by morphological observation, physiological test and 16S rRNA analysis. We determined the denitrifying activity and alkali-tolerance by effects of initial nitrate concentration and initial pH on denitrification. An alkali-tolerant denitrifier strain R9 was isolated from the lab-scale high-rate denitrifying reactor, and it was identified as Diaphorobater nitroreducens. The strain R9 grew heterotrophically with methanol as the electron donor and nitrate as the electron acceptor. The nitrate conversion was 93.25% when strain R9 was cultivated for 288 h with initial nitrate concentration 50 mg/L and initial pH 9.0. The denitrification activity could be inhibited at high nitrate concentration with a half inhibition constant of 202.73 mg N/L. Strain R9 showed a good alkali tolerance with the nitrate removal rate at pH 11.0 remained 86% of that at pH 9.0. Strain R9 was identified as Diaphorobater nitroreducens, and it was an alkali-tolerant denitrifying bacterium with optimum pH value of 9.0.

  15. Toxicity of sediments and pore water from Brunswick Estuary, Georgia

    Science.gov (United States)

    Winger, Parley V.; Lasier, Peter J.; Geitner, Harvey

    1993-01-01

    A chlor-alkali plant in Brunswick, Georgia, USA, discharged >2 kg mercury/d into a tributary of the Turtle River-Brunswick Estuary from 1966 to 1971. Mercury concentrations in sediments collected in 1989 along the tributary near the chlor-alkali plant ranged from 1 to 27 μg/g (dry weight), with the highest concentrations found in surface (0–8 cm) sediments of subtidal zones in the vicinity of the discharge site. Toxicity screening in 1990 using Microtox® bioassays on pore water extracted on site from sediments collected at six stations distributed along the tributary indicated that pore water was highly toxic near the plant discharge. Ten-day toxicity tests on pore water from subsequent sediment samples collected near the plant discharge confirmed high toxicity to Hyalella azteca, and feeding activity was significantly reduced in whole-sediment tests. In addition to mercury in the sediments, other metals (chromium, lead, and zinc) exceeded 50 μg/g, and polychlorobiphenyl (PCB) concentrations ranged from 67 to 95 μg/g. On a molar basis, acid-volatile sulfide concentrations (20–45 μmol/g) in the sediments exceeded the metal concentrations. Because acid-volatile sulfides bind with cationic metals and form metal sulfides, which are generally not bioavailable, toxicities shown by these sediments were attributed to the high concentrations of PCBs and possibly methylmercury.

  16. Penurunan Kromium (Cr dalam Limbah Cair Proses Penyamakan Kulit Menggunakan Senyawa Alkali Ca(OH2, NaOH, dan NaHCO3 (Studi Kasus di Pt Trimulyo Kencana Mas Semarang

    Directory of Open Access Journals (Sweden)

    Tri Joko

    2015-12-01

    Full Text Available ABTRACT Background : One of the industrial type which use hazardous materials in its production process is leather tanning industry, by using chromium compound (Cr. Chromium is a heavy metal compound which recognized has a high poison energy. Result of analysis of sampel industrial liquid waste of leather tanning of PT Trimulyo Kencana Mas (TKM Semarang showed that total chromium concervation was 49,575 m/l. This total Chromium rate was still above the standard quality of which enabled maximal 2,0 mg/l, according to Kep51/MENLH/110/1995. Alkali compound of Ca(OH2, NaOH and NaHC03 is chemicals able to be used for the processing of industrial liquid waste of pregnant leather tanning of chromium, functioning to boost up condensation pH andprecipitated chromium so that obtained chrome in theform of hydroxide chromium (Cr(OH3. Methods : which used in this research is (quasi experimental, with experiment variable repeated or referred as one group pretest ‑ posttest design. Results : of this research showed that optimum pH for the compound of each alkali at condition of pH 8, with the efficiency dissociation of chromium was equal to 99,28 % by using alkali compound of Ca(OH2 and of NaOH, while usage of NaHC03 equal to 98,50 %. Conclusions: Alkali compound of Ca(OH2, NaOH and NaHCO3 can degrade chromium concentration (Cr in liquid waste with high efficiency, that is reaching under standard quality. The most effective Compound of Alkali, evaluated from the technical aspect for the degradation of chromium concentration in liquid waste is NaOH, because with only small dose can dissociate chromium in liquid waste with high efficiency (99,28 %, For economic reason and recommendation for application in the field is Ca(OH2. Keyword : Efficiency Ca(OH2,, hydroxide chromium, NaHCO3, NaOH, pH, Chromium Compound

  17. Alkali content of fly ash : measuring and testing strategies for compliance.

    Science.gov (United States)

    2015-04-01

    Sodium and potassium are the common alkalis present in fly ash. Excessive amounts of fly ash alkalis can cause efflorescence : problems in concrete products and raise concern about the effectiveness of the fly ash to mitigate alkali-silica reaction (...

  18. Interaction of alkali metal nitrates with calcium carbonate and kyanite

    International Nuclear Information System (INIS)

    Protsyuk, A.P.; Malakhov, A.I.; Karabanov, V.P.; Lebedeva, L.P.

    1978-01-01

    Thermographic, thermodynamic and X-ray phase studies have been made into the interaction of alkali metal nitrates with calcium carbonate and kyanite. Examined among other things was the effect of water vapor and carbon dioxide on the interaction between alkali metal nitrates and kyanite. The chemical mechanism of the occurring processes has been established. The interaction with calcium carbonates results in the formation of alkali metal carbonates and calcium oxide with liberation of nitrogen oxide and oxygen. The products of the interaction with kyanite are shown to be identical with the compounds forming when alkali metal carbonates are used

  19. Electronic and atomic structures of liquid tellurium containing alkali elements

    International Nuclear Information System (INIS)

    Kawakita, Yukinobu; Yao, Makoto; Endo, Hirohisa.

    1997-01-01

    The measurements of electrical conductivity σ, density, EXAFS and neutron scattering were carried out for liquid K-Te and Rb-Te mixtures. The conductivity σ decreases rapidly with alkali concentration and a metal-semiconductor transition occurs at about 10 at.% alkali. It is found that the compositional variation of σ is nearly independent of the alkali species. The Te-Te bond length deduced from EXAFS and neutron scattering measurements is 2.8 A and changes little with alkali concentrations. The average distances from K and Rb atom to Te atoms are 3.6 A and 3.8 A, respectively. Two kinds of relaxation processes are observed in quasielastic neutron scattering for K 20 Te 80 . Upon the addition of alkali the interaction between the neighbouring Te chains, which is responsible for the metallic conduction, weaken considerably. (author)

  20. Survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces

    International Nuclear Information System (INIS)

    Neskovic, N.; Ciric, D.; Perovic, B.

    1982-01-01

    The survival probability in small angle scattering of low energy alkali ions from alkali covered metal surfaces is considered. The model is based on the momentum approximation. The projectiles are K + ions and the target is the (001)Ni+K surface. The incident energy is 100 eV and the incident angle 5 0 . The interaction potential of the projectile and the target consists of the Born-Mayer, the dipole and the image charge potentials. The transition probability function corresponds to the resonant electron transition to the 4s projectile energy level. (orig.)

  1. Reaction of alkali nitrates with PuO2

    International Nuclear Information System (INIS)

    Yamashita, T.; Ohuchi, K.; Takahashi, K.; Fujino, T.

    1990-01-01

    Improvement of solubility of plutonium dioxide (PuO 2 ) in acid solution is important to establish the nuclear fuel reprocessing technique for uranium-plutonium mixed oxide fuels. If insoluble PuO 2 can be converted into any soluble plutonium compounds, problems arising from the fuel dissolution process will be reduced to a great extent. Alkali metal plutonates and alkaline-earth plutonates are known to have enhanced solubility in mineral acids. However, the reaction conditions to form such plutonates and characterization thereof are not well elucidated. Then the reactivity and reaction conditions to form lithium and sodium plutonates from their nitrates and PuO 2 were studied at temperatures between 500 and 900 degree C and alkali metal to plutonium atom ratios between 0.5 and 6 by means of thermogravimetry as well as X-ray diffraction technique. The reaction behavior of alkali plutonates will be discussed in comparison with corresponding alkali uranates

  2. Transcriptome alteration in a rice introgression line with enhanced alkali tolerance.

    Science.gov (United States)

    Zhang, Yunhong; Lin, Xiuyun; Ou, Xiufang; Hu, Lanjuan; Wang, Jinming; Yang, Chunwu; Wang, Shucai; Liu, Bao

    2013-07-01

    Alkali stress inhibits plant growth and development and thus limits crop productivity. To investigate the possible genetic basis of alkali tolerance in rice, we generated an introgressed rice line (K83) with significantly enhanced tolerance to alkali stress compared to its recipient parental cultivar (Jijing88). By using microarray analysis, we examined the global gene expression profiles of K83 and Jijing88, and found that more than 1200 genes were constitutively and differentially expressed in K83 in comparison to Jijing88 with 572 genes up- and 654 down-regulated. Upon alkali treatment, a total of 347 genes were found up- and 156 down-regulated in K83 compared to 591 and 187, respectively, in Jijing88. Among the up-regulated genes in both K83 and Jijing88, only 34 were constitutively up-regulated in K83, suggesting that both the constitutive differentially expressed genes in K83 and those induced by alkali treatment are most likely responsible for enhanced alkali tolerance. A gene ontology analysis based on all annotated, differentially expressed genes revealed that genes with expression alterations were enriched in pathways involved in metabolic processes, catalytic activity, and transport and transcription factor activities, suggesting that these pathways are associated with alkali stress tolerance in rice. Our results illuminated the novel genetic aspects of alkali tolerance in rice and established a repertory of potential target genes for biotechnological manipulations that can be used to generate alkali-tolerant rice cultivars. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. The alkali-aggregate reaction - concrete microstructure evolution

    International Nuclear Information System (INIS)

    Regourd, M.; Hornain, H.; Poitevin, P.

    1981-01-01

    The alkali-aggregate reaction has been studied by scanning electron microscopy and energy dispersive X-ray analysis, electron probe microanalysis, and X-ray diffraction in concretes containing glass aggregates or hornfels and greywacke aggregates. The surface reaction of the natural aggregates in alkaline solutions has been analysed by X-ray photo-electron spectrometry. The study of concretes with glass aggregates stored at 20 degrees Celcius and 100 percent relative humidity has revealed, irrespective of alkali content and type of cement, the formation of a gel containing SiO 2 , Na 2 O, CaO, MgO and Al 2 O 3 . Under heat and pressure (210 degrees Celcius at MPa for 48 hours), the gel crystallizes and yields silicates not very different from tobermorite found in autoclaved normal concretes but cotaining Na and K in solid solutions. The alkali reaction in two natural aggregate concretes, is also shown by the formation of gels and silicate crystals. The progressive structuring of the gels in silicate crystals is promoted by an increase in temperature. Ettringite and Ca(OH) 2 reinforce the alkali-aggregate reaction which may be looked upon as a hydration reaction, partially of the pozzolanic type

  4. Alkali control of high-grade metamorphism and granitization

    Directory of Open Access Journals (Sweden)

    Oleg G. Safonov

    2014-09-01

    Full Text Available We review petrologic observations of reaction textures from high-grade rocks that suggest the passage of fluids with variable alkali activities. Development of these reaction textures is accompanied by regular compositional variations in plagioclase, pyroxenes, biotite, amphibole and garnet. The textures are interpreted in terms of exchange and net-transfer reactions controlled by the K and Na activities in the fluids. On the regional scale, these reactions operate in granitized, charnockitized, syenitized etc. shear zones within high-grade complexes. Thermodynamic calculations in simple chemical systems show that changes in mineral assemblages, including the transition from the hydrous to the anhydrous ones, may occur at constant pressure and temperature due only to variations in the H2O and the alkali activities. A simple procedure for estimating the activity of the two major alkali oxides, K2O and Na2O, is implemented in the TWQ software. Examples of calculations are presented for well-documented dehydration zones from South Africa, southern India, and Sri Lanka. The calculations have revealed two end-member regimes of alkalis during specific metamorphic processes: rock buffered, which is characteristic for the precursor rocks containing two feldspars, and fluid-buffered for the precursor rocks without K-feldspar. The observed reaction textures and the results of thermodynamic modeling are compared with the results of available experimental studies on the interaction of the alkali chloride and carbonate-bearing fluids with metamorphic rocks at mid-crustal conditions. The experiments show the complex effect of alkali activities in the fluid phase on the mineral assemblages. Both thermodynamic calculations and experiments closely reproduce paragenetic relations theoretically predicted by D.S. Korzhinskii in the 1940s.

  5. Comparative study of diode-pumped alkali vapor laser and exciplex-pumped alkali laser systems and selection principal of parameters

    Science.gov (United States)

    Huang, Wei; Tan, Rongqing; Li, Zhiyong; Han, Gaoce; Li, Hui

    2017-03-01

    A theoretical model based on common pump structure is proposed to analyze the output characteristics of a diode-pumped alkali vapor laser (DPAL) and XPAL (exciplex-pumped alkali laser). Cs-DPAL and Cs-Ar XPAL systems are used as examples. The model predicts that an optical-to-optical efficiency approaching 80% can be achieved for continuous-wave four- and five-level XPAL systems with broadband pumping, which is several times the pumped linewidth for DPAL. Operation parameters including pumped intensity, temperature, cell's length, mixed gas concentration, pumped linewidth, and output coupler are analyzed for DPAL and XPAL systems based on the kinetic model. In addition, the predictions of selection principal of temperature and cell's length are also presented. The concept of the equivalent "alkali areal density" is proposed. The result shows that the output characteristics with the same alkali areal density but different temperatures turn out to be equal for either the DPAL or the XPAL system. It is the areal density that reflects the potential of DPAL or XPAL systems directly. A more detailed analysis of similar influences of cavity parameters with the same areal density is also presented.

  6. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Science.gov (United States)

    2010-07-01

    ... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject to... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted benzoic acid, alkali...

  7. Alkali solution extraction of rice residue protein isolates: Influence of alkali concentration on protein functional, structural properties and lysinoalanine formation.

    Science.gov (United States)

    Hou, Furong; Ding, Wenhui; Qu, Wenjuan; Oladejo, Ayobami Olayemi; Xiong, Feng; Zhang, Weiwei; He, Ronghai; Ma, Haile

    2017-03-01

    This study evaluated the nutrient property and safety of the rice residue protein isolates (RRPI) product (extracted by different alkali concentrations) by exploring the protein functional, structural properties and lysinoalanine (LAL) formation. The results showed that with the rising of alkali concentration from 0.03M to 0.15M, the solubility, emulsifying and foaming properties of RRPI increased at first and then descended. When the alkali concentration was greater than 0.03M, the RRPI surface hydrophobicity decreased and the content of thiol and disulfide bond, Lys and Cys significantly reduced. By the analysis of HPLC, the content of LAL rose up from 276.08 to 15,198.07mg/kg and decreased to 1340.98mg/kg crude protein when the alkali concentration increased from 0.03 to 0.09M and until to 0.15M. These results indicated that RRPI alkaline extraction concentration above 0.03M may cause severe nutrient or safety problems of protein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Alkali-Activated Natural Pozzolan/Slag Binder for Sustainable Concrete

    Science.gov (United States)

    Najimi, Meysam

    This study aimed to fully replace Portland cement (PC) with environmentally friendly binders capable of improving longevity of concrete. The new binders consisted of different proportions of natural Pozzolan and slag which were alkaline-activated with various combinations of sodium hydroxide and sodium silicate. A step-by-step research program was designed to (1) develop alkali-activated natural Pozzolan/slag pastes with adequate fresh and strength properties, (2) produce alkali-activated natural Pozzolan/slag mortars to assess the effects of dominant variables on their plastic and hardened properties, and (3) finally produce and assess fresh, mechanical, dimensional, transport and durability properties of alkali-activated natural Pozzolan/slag concretes. The major variables included in this study were binder combination (natural Pozzolan/slag combinations of 70/30, 50/50 and 30/70), activator combination (sodium silicate/sodium hydroxide combinations of 20/80, 25/75 and 30/70), and sodium hydroxide concentration (1, 1.75 and 2.5M). The experimental program assessed performance of alkali-activated natural Pozzolan/slag mixtures including fresh properties (flow and setting times), unit weights (fresh, demolded and oven-dry), mechanical properties (compressive and tensile strengths, and modulus of elasticity), transport properties (absorption, rapid chloride penetration, and rapid chloride migration), durability (frost resistance, chloride induced corrosion, and resistance to sulfuric acid attack), and dimensional stability (drying shrinkage). This study also compared the performance of alkali-activated natural Pozzolan/slag concretes with that of an equivalent reference Portland cement concrete having a similar flow and strength characteristics. The results of this study revealed that it was doable to find optimum binder proportions, activator combinations and sodium hydroxide concentrations to achieve adequate plastic and hardened properties. Nearly for all studied

  9. Determination of the common and rare alkalies in mineral analysis

    Science.gov (United States)

    Wells, R.C.; Stevens, R.E.

    1934-01-01

    Methods are described which afford a determination of each member of the alkali group and are successful in dealing with the quantities of the rare alkalies found in rocks and minerals. The procedures are relatively rapid and based chiefly on the use of chloroplatinic acid, absolute alcohol and ether, and ammonium sulfate. The percentages of all the alkalies found in a number of minerals are given.

  10. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...

  11. Physiological Evaluation of Alkali-Salt Tolerance of Thirty Switchgrass (Panicum virgatum Lines.

    Directory of Open Access Journals (Sweden)

    Guofu Hu

    Full Text Available Soil salt-alkalization is a major limiting factor for crop production in many regions. Switchgrass (Panicum virgatum L. is a warm-season C4 perennial rhizomatous bunchgrass and a target lignocellulosic biofuel species. The objective of this study was to evaluate relative alkali-salt tolerance among 30 switchgrass lines. Tillers of each switchgrass line were transplanted into pots filled with fine sand. Two months after transplanting, plants at E5 developmental stage were grown in either half strength Hoagland's nutrient solution with 0 mM Na+ (control or half strength Hoagland's nutrient solution with 150 mM Na+ and pH of 9.5 (alkali-salt stress treatment for 20 d. Alkali-salt stress damaged cell membranes [higher electrolyte leakage (EL], reduced leaf relative water content (RWC, net photosynthetic rate (Pn, stomatal conductance (gs, and transpiration rate (Tr. An alkali-salt stress tolerance trait index (ASTTI for each parameter was calculated based on the ratio of the value under alkali-salt stress and the value under non-stress conditions for each parameter of each line. Relative alkali-salt tolerance was determined based on principal components analysis and cluster analysis of the physiological parameters and their ASTTI values. Significant differences in alkali-salt stress tolerance were found among the 30 lines. Lowland lines TEM-SEC, Alamo, TEM-SLC and Kanlow were classified as alkali-salt tolerant. In contrast, three lowland lines (AM-314/MS-155, BN-13645-64 and two upland lines (Caddo and Blackwell-1 were classified as alkali-salt sensitive. The results suggest wide variations exist in alkali-salt stress tolerance among the 30 switchgrass lines. The approach of using a combination of principal components and cluster analysis of the physiological parameters and related ASTTI is feasible for evaluating alkali-salt tolerance in switchgrass.

  12. Physiological Evaluation of Alkali-Salt Tolerance of Thirty Switchgrass (Panicum virgatum) Lines.

    Science.gov (United States)

    Hu, Guofu; Liu, Yiming; Zhang, Xunzhong; Yao, Fengjiao; Huang, Yan; Ervin, Erik H; Zhao, Bingyu

    2015-01-01

    Soil salt-alkalization is a major limiting factor for crop production in many regions. Switchgrass (Panicum virgatum L.) is a warm-season C4 perennial rhizomatous bunchgrass and a target lignocellulosic biofuel species. The objective of this study was to evaluate relative alkali-salt tolerance among 30 switchgrass lines. Tillers of each switchgrass line were transplanted into pots filled with fine sand. Two months after transplanting, plants at E5 developmental stage were grown in either half strength Hoagland's nutrient solution with 0 mM Na+ (control) or half strength Hoagland's nutrient solution with 150 mM Na+ and pH of 9.5 (alkali-salt stress treatment) for 20 d. Alkali-salt stress damaged cell membranes [higher electrolyte leakage (EL)], reduced leaf relative water content (RWC), net photosynthetic rate (Pn), stomatal conductance (gs), and transpiration rate (Tr). An alkali-salt stress tolerance trait index (ASTTI) for each parameter was calculated based on the ratio of the value under alkali-salt stress and the value under non-stress conditions for each parameter of each line. Relative alkali-salt tolerance was determined based on principal components analysis and cluster analysis of the physiological parameters and their ASTTI values. Significant differences in alkali-salt stress tolerance were found among the 30 lines. Lowland lines TEM-SEC, Alamo, TEM-SLC and Kanlow were classified as alkali-salt tolerant. In contrast, three lowland lines (AM-314/MS-155, BN-13645-64) and two upland lines (Caddo and Blackwell-1) were classified as alkali-salt sensitive. The results suggest wide variations exist in alkali-salt stress tolerance among the 30 switchgrass lines. The approach of using a combination of principal components and cluster analysis of the physiological parameters and related ASTTI is feasible for evaluating alkali-salt tolerance in switchgrass.

  13. Salt splitting of sodium-dominated radioactive waste using ceramic membranes

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Carlson, C.D.; Virkar, A.; Joshi, A.

    1994-08-01

    The potential for salt splitting of sodium dominated radioactive wastes by use of a ceramic membrane is reviewed. The technical basis for considering this processing technology is derived from the technology developed for battery and chlor-alkali chemical industry. Specific comparisons are made with the commercial organic membranes which are the standard in nonradioactive salt splitting. Two features of ceramic membranes are expected to be especially attractive: high tolerance to gamma irradiation and high selectivity between sodium and other ions. The objective of the salt splitting process is to separate nonradioactive sodium from contaminated sodium salts prior to other pretreatment processes in order to: (1) concentrate the waste in order to reduce the volume of subsequent additives and capacity of equipment, (2) decrease the pH of the waste in preparation for further processing, and (3) provide sodium with very low radioactivity levels for caustic washing of sludge or low level and mixed waste vitrification

  14. Current sources of carbon tetrachloride (CCl4) in our atmosphere

    Science.gov (United States)

    Sherry, David; McCulloch, Archie; Liang, Qing; Reimann, Stefan; Newman, Paul A.

    2018-02-01

    Carbon tetrachloride (CCl4 or CTC) is an ozone-depleting substance whose emissive uses are controlled and practically banned by the Montreal Protocol (MP). Nevertheless, previous work estimated ongoing emissions of 35 Gg year-1 of CCl4 into the atmosphere from observation-based methods, in stark contrast to emissions estimates of 3 (0-8) Gg year-1 from reported numbers to UNEP under the MP. Here we combine information on sources from industrial production processes and legacy emissions from contaminated sites to provide an updated bottom-up estimate on current CTC global emissions of 15-25 Gg year-1. We now propose 13 Gg year-1 of global emissions from unreported non-feedstock emissions from chloromethane and perchloroethylene plants as the most significant CCl4 source. Additionally, 2 Gg year-1 are estimated as fugitive emissions from the usage of CTC as feedstock and possibly up to 10 Gg year-1 from legacy emissions and chlor-alkali plants.

  15. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...

  16. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660 Section 721.4660 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4660 Alcohol, alkali metal sal...

  17. Utilization of Mineral Wools as Alkali-Activated Material Precursor

    Directory of Open Access Journals (Sweden)

    Juho Yliniemi

    2016-04-01

    Full Text Available Mineral wools are the most common insulation materials in buildings worldwide. However, mineral wool waste is often considered unrecyclable because of its fibrous nature and low density. In this paper, rock wool (RW and glass wool (GW were studied as alkali-activated material precursors without any additional co-binders. Both mineral wools were pulverized by a vibratory disc mill in order to remove the fibrous nature of the material. The pulverized mineral wools were then alkali-activated with a sodium aluminate solution. Compressive strengths of up to 30.0 MPa and 48.7 MPa were measured for RW and GW, respectively, with high flexural strengths measured for both (20.1 MPa for RW and 13.2 MPa for GW. The resulting alkali-activated matrix was a composite-type in which partly-dissolved fibers were dispersed. In addition to the amorphous material, sodium aluminate silicate hydroxide hydrate and magnesium aluminum hydroxide carbonate phases were identified in the alkali-activated RW samples. The only crystalline phase in the GW samples was sodium aluminum silicate. The results of this study show that mineral wool is a very promising raw material for alkali activation.

  18. Thorium valency in molten alkali halides in equilibrium with metallic thorium

    International Nuclear Information System (INIS)

    Smirnov, M.V.; Kudyakov, V.Ya.

    1983-01-01

    Metallic thorium is shown to corrode in molten alkali halides even in the absence of external oxidizing agents, alkali cations acting as oxidizing agents. Its corrosion rate grows in the series of alkali chlorides from LiCl to CsCl at constant temperature. Substituting halide anions for one another exerts a smaller influence, the rate rising slightly in going from chlorides to bromides and iodides, having the same alkali cations. Thorium valency is determined coulometrically, the metal being dissolved anodically in molten alkali halides and their mixtures. In fluoride melts it is equal to 4 but in chloride, bromide and iodide ones, as a rule, it has non-integral values between 4 and 2 which diminish as the temperature is raised, as the thorium concentration is lowered, as the radii of alkali cations decrease and those of halide anions increase. The emf of cells Th/N ThHlsub(n) + (1-N) MHl/MHl/C, Hlsub(2(g)) where Hl is Cl, Br or I, M is Li, Na, K, Cs or Na + K, and N < 0.05, is measured as a function of concentration at several temperatures. Expressions are obtained for its concentration dependence. The emf grows in the series of alkali chlorides from LiCl to CsCl, other conditions being equal. (author)

  19. Autoclave-hardening slag-alkali binder with high water content

    International Nuclear Information System (INIS)

    Korenevskij, V.V.; Kozyrin, N.A.; Melikhova, N.I.; Narkevich, N.K.; Ryabov, G.G.

    1987-01-01

    The results of investigations into properties of slag-alkali binder, that may be used for concretes of reactor radiation and thermal shieldings, are presented. These concretes have increased chemical stability and mechanical strength, high content of chemically bound water (approximately 14%), that is not lost under heating up to 550 deg C. Dumping and granulated slags of blast-furnace process, sodium-bicarbonate-alkali fusion cake formed at burning of adipic acid residues, technical sodium hydroxide and sodium liquid glass are used as raw material for slag-alkali binder

  20. ALKALI-ACTIVATION KINETICS OF PHOSPHORUS SLAG CEMENT USING COMPRESSIVE STRENGTH DATA

    Directory of Open Access Journals (Sweden)

    Hojjatollah Maghsoodloorad

    2015-09-01

    Full Text Available In this research, through compressive strength data, the order and kinetics of alkali-activation of phosphorus slag activated with two compound activators of NaOH + Na2CO3 and Na2CO3 + Ca(OH2, has been evaluated. The kinetics and order of alkali activation is a key factor to forecasting the mechanical behavior of alkali activated cement at different curing time and temperatures without carrying out experimental tests. The apparent activation energy was obtained as 35.6 kJ.mol-1 and 60.7 kJ.mol-1 for the two activators, respectively. Investigations proved that the alkali-activation kinetics of phosphorus slag resembles chemical reactions of second order. Moreover, the order of alkali-activation of phosphorus slag does not depend on the type of activator.

  1. Effects of Alkali and Counter Ions in Sn-Beta Catalyzed Carbohydrate Conversion

    DEFF Research Database (Denmark)

    Elliot, Samuel G.; Tolborg, Søren; Madsen, Robert

    2018-01-01

    Alkali ions have been shown to strongly influence the catalytic behavior of stannosilicates in the conversion of carbohydrates. An effect of having alkali ions present is a pronounced increase in selectivity towards methyl lactate. Mechanistic details of this effect have remained obscure and are ......Alkali ions have been shown to strongly influence the catalytic behavior of stannosilicates in the conversion of carbohydrates. An effect of having alkali ions present is a pronounced increase in selectivity towards methyl lactate. Mechanistic details of this effect have remained obscure...... and are herein addressed experimentally through kinetic experiments and isotope tracking. Alkali ions have a differential effect in competing reaction pathways: they promote the rate of carbon-carbon bond breakage of carbohydrate substrates, but decrease the rates of competing dehydration pathways. Further...... addition of alkali inhibits activity of Sn-Beta in all major reaction pathways. The alkali effects on product distributions and on rates of product formation are similar, thus pointing to a kinetic reaction control and to irreversible reaction steps in the main pathways. Additionally, an effect...

  2. [Diversity of uncultured actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor].

    Science.gov (United States)

    Li, Hai-yun; Niu, Shi-quan; Kong, Wei-bao; Yan, Wei-ru; Geng, Hui; Han, Cai-hong; Da, Wen-yan; Zhang, Ai-mei; Zhu, Xue-tai

    2015-09-01

    In order to more accurately understand community structure and diversity of actinomycetes in saline-alkali soil from Jiuquan area of Hexi Corridor, the community structure and diversity from three kinds of soil samples (primary, secondary saline alkali soil and farmland soil) were analyzed using uncultured methods. The results showed that the 16S rDNA clone library of actinomycetales from the primary saline-alkali soil belonged to 19 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S r DNA clone library of actinomycetales from the secondary saline-alkali soil belonged to 14 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; the 16S rDNA clone library of farmland soil belonged to 7 OTUs, Micrococcineae, Propionibacterineae, Corynebacterineae, Frankineae, Pseudonocardineae and unknown groups of Actinomycetales; Micrococcineae was the common population in the three soils, and also was the dominant population in primary saline alkali soil and farmland soil. The diversity index and rarefaction curves analysis showed that actinomycetes species richness was in order of primary saline-alkali soil > secondary saline-alkali soil > farmland soil. The dilution curves of primary saline-alkali soil and secondary saline-alkali soil were not leveled off, which indicated the actinomycetes diversity in saline-alkali soil was more enriched than the actual. The rich and diverse actinomycetes resources in saline-alkali soil from Jiuquan area of Hexi Corridor provide important data on the actinomycetes ecology distribution research, exploitation and utilization in saline-alkali soil.

  3. Magnetic properties of free alkali and transition metal clusters

    International Nuclear Information System (INIS)

    Heer, W. de; Milani, P.; Chatelain, A.

    1991-01-01

    The Stern-Gerlach deflections of small alkali clusters (N<6) and iron clusters (10< N<500) show that the paramagnetic alkali clusters always have a nondeflecting component, while the iron clusters always deflect in the high field direction. Both of these effects appear to be related to spin relaxation however in the case of alkali clusters it is shown that they are in fact caused by avoided level crossing in the Zeeman diagram. For alkali clusters the relatively weak couplings cause reduced magnetic moments where levels cross. For iron clusters however the total spin is strongly coupled to the molecular framework. Consequently this coupling is responsible for avoided level crossing which ultimately cause the total energy of the cluster to decrease with increasing magnetic field so that the iron clusters will deflect in one direction when introduced in an inhomogeneous magnetic field. Experiment and theory are discussed for both cases. (orig.)

  4. Mechanisms of Retinal Damage after Ocular Alkali Burns.

    Science.gov (United States)

    Paschalis, Eleftherios I; Zhou, Chengxin; Lei, Fengyang; Scott, Nathan; Kapoulea, Vassiliki; Robert, Marie-Claude; Vavvas, Demetrios; Dana, Reza; Chodosh, James; Dohlman, Claes H

    2017-06-01

    Alkali burns to the eye constitute a leading cause of worldwide blindness. In recent case series, corneal transplantation revealed unexpected damage to the retina and optic nerve in chemically burned eyes. We investigated the physical, biochemical, and immunological components of retinal injury after alkali burn and explored a novel neuroprotective regimen suitable for prompt administration in emergency departments. Thus, in vivo pH, oxygen, and oxidation reduction measurements were performed in the anterior and posterior segment of mouse and rabbit eyes using implantable microsensors. Tissue inflammation was assessed by immunohistochemistry and flow cytometry. The experiments confirmed that the retinal damage is not mediated by direct effect of the alkali, which is effectively buffered by the anterior segment. Rather, pH, oxygen, and oxidation reduction changes were restricted to the cornea and the anterior chamber, where they caused profound uveal inflammation and release of proinflammatory cytokines. The latter rapidly diffuse to the posterior segment, triggering retinal damage. Tumor necrosis factor-α was identified as a key proinflammatory mediator of retinal ganglion cell death. Blockade, by either monoclonal antibody or tumor necrosis factor receptor gene knockout, reduced inflammation and retinal ganglion cell loss. Intraocular pressure elevation was not observed in experimental alkali burns. These findings illuminate the mechanism by which alkali burns cause retinal damage and may have importance in designing therapies for retinal protection. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  5. Spectroscopic and Kinetic Measurements of Alkali Atom-Rare Gas Excimers

    Science.gov (United States)

    2009-11-04

    vapors – Exciplex molecules absorb over much greater bandwidth • Control of inherent high optical gain to minimize ASE and optimize laser oscillation... Exciplex assisted diode Pumped Alkali Laser (XPAL) • Education of a future generation of laser scientists VG09-227-2 Physical Sciences Inc. Novel Approach...This new laser exploits the optical properties of weakly-bound alkali/rare-gas exciplexes for pumping the 2P1/2, 3/2 alkali atomic excited states 4

  6. Conduction bands and invariant energy gaps in alkali bromides

    NARCIS (Netherlands)

    Boer, P.K. de; Groot, R.A. de

    1998-01-01

    Electronic structure calculations of the alkali bromides LiBr, NaBr, KBr, RbBr and CsBr are reported. It is shown that the conduction band has primarily bromine character. The size of the band gaps of bromides and alkali halides in general is reinterpreted.

  7. Alkali cyanides; destructive distillation

    Energy Technology Data Exchange (ETDEWEB)

    Clancy, J C

    1925-12-02

    The destructive distillation of carbonaceous substances can be accomplished by heating them in a bath of molten alkali and cyanide. Liquid hydrocarbons are produced. The separation of the cyanide from the coke or carbonaceous residues by filtration leaves a substantial quantity of cyanide absorbed by the carbon. A feasible method for removal has been developed by mixing the mixture of cyanide and coke with sodium carbonate or other alkali in the molten state, then treating this substance with nitrogen with or without ammonia to convert most of the carbon to cyanide. The carbonaceous material may be mixed with a liquid hydrocarbon such as petroleum, shale oil, or heavy tar oil, heated, and introduced below the surface of the liquid cyanide which partially decomposes and hydrogenates the coal to increase the yield of hydrocarbons. Dry ammonia may be bubbled through the reaction mixture to effect agitation and to form more cyanide.

  8. Binding of chloride and alkalis in Portland cement systems

    International Nuclear Information System (INIS)

    Nielsen, Erik P.; Herfort, Duncan; Geiker, Mette R.

    2005-01-01

    A thermodynamic model for describing the binding of chloride and alkalis in hydrated Portland cement pastes has been developed. The model is based on the phase rule, which for cement pastes in aggressive marine environment predicts multivariant conditions, even at constant temperature and pressure. The effect of the chloride and alkalis has been quantified by experiments on cement pastes prepared from white Portland cements containing 4% and 12% C 3 A, and a grey Portland cement containing 7% C 3 A. One weight percent calcite was added to all cements. The pastes prepared at w/s ratio of 0.70 were stored in solutions of different Cl (CaCl 2 ) and Na (NaOH) concentrations. When equilibrium was reached, the mineralogy of the pastes was investigated by EDS analysis on the SEM. A well-defined distribution of chloride was found between the pore solution, the C-S-H phase, and an AFm solid solution phase consisting of Friedel's salt and monocarbonate. Partition coefficients varied as a function of iron and alkali contents. The lower content of alkalis in WPC results in higher chloride contents in the C-S-H phase. High alkali contents result in higher chloride concentrations in the pore solution

  9. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Science.gov (United States)

    2010-07-01

    ..., alkali and amine salts. 721.2565 Section 721.2565 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  10. Thermochemical properties of the alkali hydroxides: A review

    International Nuclear Information System (INIS)

    Konings, R.J.M.; Cordfunke, E.H.P.

    1989-01-01

    The formation of volatile alkali hydroxides as a result of high-temperature steam corrosion plays an important role in nuclear technology. For the modeling of the volatilization processes, reliable thermodynamic data are required. In the present paper recent physico-chemical experiments by the authors will be discussed and the thermochemical properties of the alkali hydroxide series will be evaluated. (orig.)

  11. Possible applications of alkali-activated systems in construction

    OpenAIRE

    Boháčová, J.; Staněk, S.; Vavro, M. (Martin)

    2013-01-01

    This paper deals with the possibilities of using alkali-activated systems in construction. This article summarizes the advantages and disadvantages of geopolymer in comparison to Portland cement, summarizes research and practical applications of alkali-activated materials in our country and abroad, and provides an overview of directions where these alternative inorganic binders can be in the future very well applied.

  12. Advances in the chemical utilization of alkali lignin

    International Nuclear Information System (INIS)

    Van der Klashorst, G.H.

    1985-06-01

    Large quantities of alkali lignin are produced as by-products by the South African pulping industry. The potential utilization of industrial soda/anthraquinone (soda/AQ) eucalyptus, kraft pine and soda bagasse lignin was subsequently investigated. The molecular mass distributions of the three lignins were similar when determined by high pressure gel permeation chromatography (HP-GPC). The quantitative and quanlitative occurrence of various low molecular mass lignin fragments in the different spent liquors, on the other hand, indicated that the three lignins have substantial chemical differences. Analysis of the purified degraded lignins by NMR, methoxyl content determinations, elemental analysis, carbohydrate content determinations etc., quantified various of the chemical properties of the lignin. The properties of the three lignins were ultimately used to make recommendations regarding the potential use of each lignin. One such application was investigated and it was shown that soda bagasse lignin can be used successfully in phenol formaldehyde resin applications. The reaction of formaldehyde with lignin model compounds in acidic medium was also investigated. This reaction was shown to give fast crosslinking of alkyl substituted phenolic and etherified phenolic lignin model compounds at positions meta to the aromatic hydroxy groups

  13. Continuing studies of alkali-aggregate reactions in concrete

    International Nuclear Information System (INIS)

    Gilliot, J.E.; Beddoes, R.J.

    1981-01-01

    Studies are continuing into the nature of the different forms of the alkali-aggregate reaction. No general agreement exists as to the detailed nature of the expansive mechanisms. Alkali is known to react internally with opaline silica because of its microporous nature whereas reaction at the external surface is thought to be relatively more important in the case of quartz. A combination of Fourier shape and surface texture analysis, microscopy and osmotic studies is being used to obtain information on the relative importance of these two forms of alkaline attack on silica. Analytical methods are much more rapid than dimensional change tests and it is hoped that a better understanding of the expansion mechanism will lead to more certain recognition of potentially alkali expansive aggregates

  14. The effects of potassium and rubidium hydroxide on the alkali-silica reaction

    International Nuclear Information System (INIS)

    Shomglin, K.; Turanli, L.; Wenk, H.-R.; Monteiro, P.J.M.; Sposito, G.

    2003-01-01

    Expansion of mortar specimens prepared with an aggregate of mylonite from the Santa Rosa mylonite zone in southern California was studied to investigate the effect of different alkali ions on the alkali-silica reaction in concrete. The expansion tests indicate that mortar has a greater expansion when subjected to a sodium hydroxide bath than in a sodium-potassium-rubidium hydroxide bath. Electron probe microanalysis (EPMA) of mortar bars at early ages show that rubidium ions, used as tracer, were present throughout the sample by the third day of exposure. The analysis also shows a high concentration of rubidium in silica gel from mortar bars exposed to bath solutions containing rubidium. The results suggest that expansion of mortar bars using ASTM C 1260 does not depend on the diffusion of alkali ions. The results indicate that the expansion of alkali-silica gel depends on the type of alkali ions present. Alkali-silica gel containing rubidium shows a lower concentration of calcium, suggesting competition for the same sites

  15. Properties of Hooked Steel Fibers Reinforced Alkali Activated Material Concrete

    OpenAIRE

    Faris M. A.; Abdullah Mohd Mustafa Al Bakri; Ismail Khairul Nizar; Muniandy Ratnasamy; Mahmad Nor Aiman; Putra Jaya Ramadhansyah; Waried Wazien A. Z.

    2016-01-01

    In this study, alkali activated material was produced by using Class F fly ash from Manjung power station, Lumut, Perak, Malaysia. Fly ash then was activated by alkaline activator which is consisting of sodium silicate (Na2SiO3) and sodium hydroxide (NaOH). Hooked end steel fibers were added into the alkali activated material system with percentage vary from 0 % – 5 %. Chemical compositions of fly ash were first analyzed by using x-ray fluorescence (XRF). All hardened alkali activated materia...

  16. Behaviour of gaseous alkali compounds in coal gasification; Kaasumaisten alkaliyhdisteiden kaeyttaeytyminen kivihiilien kaasutuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Nykaenen, J [Imatran Voima Oy, Vantaa (Finland)

    1997-10-01

    In this project the behaviour of alkali compounds emitting from CO{sub 2}/O{sub 2}- and airblown gasification are studied. This research project is closely connected to an EU-project coordinated by the Delft University of Technology (DUT). In that project alkali emissions from a 1.6 MW pilot plant will be measured. The results from those measurements will be compared with the calculations performed in this LIEKKI 2 project. The equilibrium calculations show that the major gaseous alkali compounds emitting from combustion and gasification are chlorides and hydroxides. This applies both to air- and CO{sub 2}/O{sub 2}-blown processes. In all the cases studied the concentration of gaseous alkali compounds is determined mainly by the amount of chlorides. The key parameters, with respect to alkali behaviour, are the temperature of the process and chlorine content of the coal. By cooling the gases down to 600 deg C prior to a ceramic filter the alkali concentration can be kept about at 100 ppbv. In combustion, the addition of calcium carbonate increases the amount of gaseous alkali compounds by decreasing the amount of alkali sulphates. In the case of gasification the importance of limestone is negligible. The difference between air- and CO{sub 2}/O{sub 2}-blown processes, in terms of gaseous alkali emissions, is small. This is because CO{sub 2} concentration of the gas does not have a strong impact on alkali chlorides. Furthermore, the effect of CO{sub 2}/O{sub 2}-ratio of the recirculation process is negligible. (orig.)

  17. Determination of total mercury and methylmercury in human head hair by radiochemical methods of analysis

    International Nuclear Information System (INIS)

    Vasconcellos, M.B.A.; Saiki, M.; Paletti, G.; Pinheiro, R.M.M.; Baruzzi, R.G.; Spindel, R.

    1992-01-01

    Efforts were carried out in order to detect population groups in Brazil that could be at risk with respect to mercury contamination, mainly by ingestion of contaminated fish. Two regions were identified. The first was near Billings Dam which is located in one of the most heavily industrialized parts of the country. It is suspected that the water is polluted by chlor-alkali and other industrial pollutants. People living near this dam frequently consume fish caught around or near the dam. The second region is Xingu Park, located in the Amazonic region where several Indian tribes live and where the gold exploration activities have caused much concern due to the use of mercury in the ore processing. Tons of mercury are thrown in the rivers of the region annually. Both of these groups and a control group were used in this study. It was concluded that the population near Billings Dam had normal levels of mercury. However, the Indians from Xingu Park had very high levels of mercury in their Hair. It was determined that this group deserved further study. 7 refs, 2 tabs

  18. Defluidization in fluidized bed gasifiers using high-alkali content fuels

    DEFF Research Database (Denmark)

    Narayan, Vikas; Jensen, Peter Arendt; Henriksen, Ulrik Birk

    2016-01-01

    samples,agglomeration could be attributed to viscous silicate melts formed from reaction of inorganic alkalineand alkali earth species with silica from the bed particles. A mathematical model that addresses the defluidization behavior of alkali-rich samples was developed based on the experiments performed...... and calcium, which may form viscous melts that adhere on the surface of the colliding bed particles and bind them to form agglomerates. In this paper, studies were made to understand the behavior of inorganic elements (mainly K, Si and Ca) on agglomeration and de-fluidization of alkali rich bed...... in the bench-scale fluidized bed reactor as well as on results from literature. The model was then used topredict the de-fluidization behavior of alkali-rich bed material in a large-scale LTCFB gasifier....

  19. Significance of Alkali-Silica reaction in nuclear safety-related concrete structures

    International Nuclear Information System (INIS)

    Le Pape, Y.; Field, K.G.; Mattus, C.H.; Naus, D.J.; Busby, J.T.; Saouma, V.; Ma, Z.J.; Cabage, J.V.; Guimaraes, M.

    2015-01-01

    Nuclear Power Plant license renewal up to 60 years and possible life extension beyond has established a renewed focus on long-term aging of nuclear generating stations materials, and particularly, on concrete. Large irreplaceable sections of most nuclear generating stations include concrete components. The Expanded Materials Degradation Analysis, jointly performed by the Department of Energy, the U.S. Nuclear Regulatory Commission, the Academia and the Power Generation Industry, identified the need to develop a consistent knowledge base of alkali-silica reaction (ASR) within concrete as an urgent priority (Graves et al., 2014). ASR results in an expansion of Concrete produced by the reaction between alkali (generally from cement), reactive aggregate (like amorphous silica) and water absorption. ASR causes expansion, cracking and loss of mechanical properties. Considering that US commercial reactors in operation enter the age when ASR distress can be potentially observed and that numerous non-nuclear infrastructures (transportation, energy production) in a majority of the States have already experienced ASR-related concrete degradation, the susceptibility and significance of ASR for nuclear concrete structures must be addressed. This paper outlines an on-going research program including the investigation of the possibility of ASR in nuclear power plants, and the assessment of the residual shear bearing capacity of ASR-subjected nuclear structures. (authors)

  20. A proposed aging management program for alkali silica reactions in a nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Saouma, Victor E., E-mail: saouma@colorado.edu; Hariri-Ardebili, Mohammad A.

    2014-10-01

    Drawing from publicly available information, this paper addresses the alkali silica reaction management of Seabrook nuclear power plant. The essence of the reaction is first examined, followed by a summary of findings, current and planned work. Then, the authors draw on their experience in ASR to first comment on the current work, and then complete the paper with what they would recommend. An important observation is that ASR constitutes a major challenge to the nuclear industry, and a thorough understanding of the State of the Art is essential before a holistic approach is undertaken. It is neither a simple nor an inexpensive challenge, yet a most critical one that industry and regulators must confront. This paper is only a breach into such an effort.

  1. A proposed aging management program for alkali silica reactions in a nuclear power plant

    International Nuclear Information System (INIS)

    Saouma, Victor E.; Hariri-Ardebili, Mohammad A.

    2014-01-01

    Drawing from publicly available information, this paper addresses the alkali silica reaction management of Seabrook nuclear power plant. The essence of the reaction is first examined, followed by a summary of findings, current and planned work. Then, the authors draw on their experience in ASR to first comment on the current work, and then complete the paper with what they would recommend. An important observation is that ASR constitutes a major challenge to the nuclear industry, and a thorough understanding of the State of the Art is essential before a holistic approach is undertaken. It is neither a simple nor an inexpensive challenge, yet a most critical one that industry and regulators must confront. This paper is only a breach into such an effort

  2. Performance of a biogas upgrading process based on alkali absorption with regeneration using air pollution control residues.

    Science.gov (United States)

    Baciocchi, Renato; Carnevale, Ennio; Costa, Giulia; Gavasci, Renato; Lombardi, Lidia; Olivieri, Tommaso; Zanchi, Laura; Zingaretti, Daniela

    2013-12-01

    This work analyzes the performance of an innovative biogas upgrading method, Alkali absorption with Regeneration (AwR) that employs industrial residues and allows to permanently store the separated CO2. This process consists in a first stage in which CO2 is removed from the biogas by means of chemical absorption with KOH or NaOH solutions followed by a second stage in which the spent absorption solution is contacted with waste incineration Air Pollution Control (APC) residues. The latter reaction leads to the regeneration of the alkali reagent in the solution and to the precipitation of calcium carbonate and hence allows to reuse the regenerated solution in the absorption process and to permanently store the separated CO2 in solid form. In addition, the final solid product is characterized by an improved environmental behavior compared to the untreated residues. In this paper the results obtained by AwR tests carried out in purposely designed demonstrative units installed in a landfill site are presented and discussed with the aim of verifying the feasibility of this process at pilot-scale and of identifying the conditions that allow to achieve all of the goals targeted by the proposed treatment. Specifically, the CO2 removal efficiency achieved in the absorption stage, the yield of alkali regeneration and CO2 uptake resulting for the regeneration stage, as well as the leaching behavior of the solid product are analyzed as a function of the type and concentration of the alkali reagent employed for the absorption reaction. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Spectra of alkali atoms

    International Nuclear Information System (INIS)

    Santoso, Budi; Arumbinang, Haryono.

    1981-01-01

    Emission spectra of alkali atoms has been determined by using spectrometer at the ultraviolet to infra red waves range. The spectra emission can be obtained by absorption spectrophotometric analysis. Comparative evaluations between experimental data and data handbook obtained by spark method were also presented. (author tr.)

  4. Control of alkali species in gasification systems: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Turn, S.; Kinoshita, C.; Ishimura, D. Zhou, J.; Hiraki, T.; Masutani, S.

    2000-07-13

    Gas-phase alkali metal compounds contribute to fouling, slagging, corrosion, and agglomeration problems in energy conversion facilities. One mitigation strategy applicable at high temperature is to pass the gas stream through a fixed bed sorbent or getter material, which preferentially absorbs alkali via physical adsorption or chemisorption. This report presents results of an experimental investigation of high-temperature alkali removal from a hot filtered gasifier product gas stream using a packed bed of sorbent material. Two getter materials, activated bauxite and emathlite, were tested at two levels of space time by using two interchangeable reactors of different internal diameters. The effect of getter particle size was also investigated.

  5. Sputtering/redeposition analysis of alkali-based tungsten composites for limiter/divertor applications

    International Nuclear Information System (INIS)

    DeWald, A.B.; Krauss, A.R.; Gruen, D.M.; Valentine, M.G.

    1986-07-01

    Composites of porous tungsten infiltrated with alkali metal-bearing alloys have been projected as a means of reducing plasma impurities and sputter erosion in magnetic fusion devices. Self-sustaining alkali metal overlayers have been observed to inhibit erosion of the underlying structural substrate by 2X to 10X. The alkali metal itself, insofar as it sputters as a secondary ion, is trapped at the surface by sheath potential and tangential magnetic fields. Self-regeneration of the alkali metal coating is obtained by thermal and radiation-induced segregation from the bulk

  6. Ultrafast electron dynamics at alkali/ice structures adsorbed on a metal surface

    International Nuclear Information System (INIS)

    Meyer, Michael

    2011-01-01

    The goal of this work is to study the interaction between excess electrons in water ice structures adsorbed on metal surfaces and other charged or neutral species, like alkali ions, or chemically reactive molecules, like chlorofluorocarbons (CFC), respectively. The excess electrons in the ice can interact with the ions directly or indirectly via the hydrogen bonded water molecules. In both cases the presence of the alkali influences the population, localization, and lifetime of electronic states of excess electrons in the ice adlayer. These properties are of great relevance when considering the highly reactive character of the excess electrons, which can mediate chemical reactions by dissociative electron attachment (DEA). The influence of alkali adsorption on electron solvation and transfer dynamics in ice structures is investigated for two types of adsorption configurations using femtosecond time-resolved two-photon photoelectron spectroscopy. In the first system alkali atoms are coadsorbed on top of a wetting amorphous ice film adsorbed on Cu(111). At temperatures between 60 and 100 K alkali adsorption leads to the formation of positively charged alkali ions at the ice/vacuum interface. The interaction between the alkali ions at the surface and the dipole moments of the surrounding water molecules results in a reorientation of the water molecules. As a consequence new electron trapping sites, i.e. at local potential minima, are formed. Photoinjection of excess electrons into these alkali-ion covered amorphous ice layers, results in the trapping of a solvated electron at an alkali-ion/water complex. In contrast to solvation in pure amorphous ice films, where the electrons are located in the bulk of the ice layer, solvated electrons at alkali-ion/water complexes are located at the ice/vacuum interface. They exhibit lifetimes of several picoseconds and show a fast energetic stabilization. With ongoing solvation, i.e. pump-probe time delay, the electron transfer is

  7. Influence of Alkali Treatment on the Surface Area of Aluminium Dross

    Directory of Open Access Journals (Sweden)

    N. S. Ahmad Zauzi

    2016-01-01

    Full Text Available Aluminium dross is an industrial waste from aluminium refining industry and classified as toxic substances. However, the disposal of dross as a waste is a burden to aluminium manufacturer industries due to its negative effects to the ecosystem, surface, and ground water. Therefore the purpose of this study is to evaluate the influence of sodium hydroxide (NaOH on the surface area and pore size of aluminium dross. There were 3 stages in the treatment activities, which were leaching, precipitation, and calcination process. The optimum result from this study was the surface area of aluminium dross increases from 10.1 m2/g up to 80.0 m2/g at 40°C, 1% NaOH, and 15-minute reaction time. Thus, aluminium dross has a potential to be converted into other useful material such as catalyst and absorbent. The benefit of this research is that the hazardous industrial waste can be turned into wealth to be used in other applications such as in catalytic activities and absorber in waste water treatment. Further investigation on the physicochemical of aluminium dross with different acid or alkali should be conducted to get deeper understanding on the aluminium dross as a catalyst-type material.

  8. Citrate, malate and alkali content in commonly consumed diet sodas: implications for nephrolithiasis treatment.

    Science.gov (United States)

    Eisner, Brian H; Asplin, John R; Goldfarb, David S; Ahmad, Ardalanejaz; Stoller, Marshall L

    2010-06-01

    Citrate is a known inhibitor of calcium stone formation. Dietary citrate and alkali intake may have an effect on citraturia. Increasing alkali intake also increases urine pH, which can help prevent uric acid stones. We determined citrate, malate and total alkali concentrations in commonly consumed diet sodas to help direct dietary recommendations in patients with hypocitraturic calcium or uric acid nephrolithiasis. Citrate and malate were measured in a lemonade beverage commonly used to treat hypocitraturic calcium nephrolithiasis and in 15 diet sodas. Anions were measured by ion chromatography. The pH of each beverage was measured to allow calculation of the unprotonated anion concentration using the known pK of citric and malic acid. Total alkali equivalents were calculated for each beverage. Statistical analysis was done using Pearson's correlation coefficient. Several sodas contained an amount of citrate equal to or greater than that of alkali and total alkali as a lemonade beverage commonly used to treat hypocitraturic calcium nephrolithiasis (6.30 mEq/l citrate as alkali and 6.30 as total alkali). These sodas were Diet Sunkist Orange, Diet 7Up, Sprite Zero, Diet Canada Dry Ginger Ale, Sierra Mist Free, Diet Orange Crush, Fresca and Diet Mountain Dew. Colas, including Caffeine Free Diet Coke, Coke Zero, Caffeine Free Diet Pepsi and Diet Coke with Lime, had the lowest total alkali (less than 1.0 mEq/l). There was no significant correlation between beverage pH and total alkali content. Several commonly consumed diet sodas contain moderate amounts of citrate as alkali and total alkali. This information is helpful for dietary recommendations in patients with calcium nephrolithiasis, specifically those with hypocitraturia. It may also be useful in patients with low urine pH and uric acid stones. Beverage malate content is also important since malate ingestion increases the total alkali delivered, which in turn augments citraturia and increases urine pH. Copyright

  9. Alternative alkali resistant deNOx catalysts

    DEFF Research Database (Denmark)

    Putluru, Siva Sankar Reddy; Kristensen, Steffen Buus; Due-Hansen, Johannes

    2012-01-01

    by onepot sol–gel method. All catalysts were characterized by BET, XRPD and NH3-TPD. Initial SCR activities of 8 out of 9 catalysts showed higher NO conversion at least at one temperature in the temperature range 300–500 ◦C compared to the conventional V2O5-WO3/TiO2 catalyst. After potassium poisoning (100......Alternative alkali resistant deNOx catalysts were prepared using three different supports ZrO2, TiO2 and Mordenite zeolite. The majority of the catalysts were prepared by incipient wetness impregnation of a commercial support, with vanadium, copper or iron precursor, one catalyst was prepared......–130 µmol of K/g of catalyst) the relative drop in SCR activity and acidity was lower for all the alternative catalysts compared to the industrial V2O5-WO3/TiO2 catalyst. Furthermore, Cu/MOR and Nano-V2O5/Sul-TiO2 catalysts showed 8–16 times higher SCR activities than the conventional even after high...

  10. Language and Style in Zaynab Alkali's The Stillborn | Azuike ...

    African Journals Online (AJOL)

    This paper examines the language and style of Zaynab Alkali's The Stillborn. Alkali's style in The Stillborn lies in her effective deployment of linguo-literary resources to tell the story. The study scrutinizes the nexus of figures of speech and linguistic artifacts, which link the events and characters that populate her novel and ...

  11. A procedure for preparing alkali metal hydrides

    International Nuclear Information System (INIS)

    Lemieux, R.U.; Sanford, C.E.; Prescott, J.F.

    1976-01-01

    A plain low cost, procedure for the continuous, low temperature preparation of sodium or potassium hydrides using cheap reagents is presented. Said invention is especially concerned with a process of purifying of a catalytic exchange liquid used for deuterium enrichment, in which an alkali metal hydride is produced as intermediate product. The procedure for producing the sodium and potassium hydrides consists in causing high pressure hydrogen to be absorbed by a mixture of at least a lower monoalkylamine and an alkylamide of an alkali metal from at least one of said amines [fr

  12. Density functional study of ferromagnetism in alkali metal thin films

    Indian Academy of Sciences (India)

    thickness uniform jellium model (UJM), and it is argued that within LSDA or GGA, alkali metal thin films cannot be claimed to have an FM ground state. Relevance of these results to the experiments on transition metal-doped alkali metal thin films ...

  13. Neuropsychiatric manifestations of alkali metal deficiency and excess

    Energy Technology Data Exchange (ETDEWEB)

    Yung, C.Y.

    1984-01-01

    The alkali metals from the Group IA of the periodic table (lithium, sodium, potassium, rubidium, cesium and francium) are reviewed. The neuropsychiatric aspects of alkali metal deficiencies and excesses (intoxications) are described. Emphasis was placed on lithium due to its clinical uses. The signs and symptoms of these conditions are characterized by features of an organic brain syndrome with delirium and encephalopathy prevailing. There are no clinically distinctive features that could be reliably used for diagnoses. Sodium and potassium are two essential alkali metals in man. Lithium is used as therapeutic agent in bipolar affective disorders. Rubidium has been investigated for its antidepressant effect in a group of psychiatric disorders. Cesium is under laboratory investigation for its role in carcinogenesis and in depressive illness. Very little is known of francium due to its great instability for experimental study.

  14. Structural, elastic, electronic and optical properties of bi-alkali ...

    Indian Academy of Sciences (India)

    The structural parameters, elastic constants, electronic and optical properties of the bi-alkali ... and efficient method for the calculation of the ground-state ... Figure 2. Optimization curve (E–V) of the bi-alkali antimonides: (a) Na2KSb, (b) Na2RbSb, (c) Na2CsSb, .... ical shape of the charge distributions in the contour plots.

  15. Photoemission spectroscopy study of a multi-alkali photocathode

    CERN Document Server

    Ettema, A R H

    2000-01-01

    In this paper a photoemission study of the highest core levels of the elements and the electron escape barrier (work function) in a multi-alkali photocathode are presented. The core levels indicate that the alkali atoms are in an oxidized state and therefore the compound Na sub 2 KSb can be regarded as an ionic semiconductor. The measured escape barrier of the Cs sub 2 O surface layer is determined as 2.3 eV.

  16. Effects of alkali and steaming on mechanical properties of snake fruit (Salacca) fiber

    Science.gov (United States)

    Darmanto, Seno; Rochardjo, Heru S. B.; Jamasri, Widyorini, Ragil

    2017-01-01

    The aim of this research is to investigate the effect of alkali treatment and steaming on mechanical properties of Snake Fruit frond fiber. The presence of surface impurities and a lot of hydroxyl groups makes natural fiber less compatible for composite materials reinforcement. Efforts to remove the impurities can be done by physical, chemical and mechanical treatments. This paper reports the treatment of Snake Fruit frond single fiber by subjecting it to alkali treatments with 2%- 8% NaOH for 2 - 6 hours at room temperature. The treatment is then followed by steaming at a pressure of 2 bars in 1 hour. Results show that the treatment of alkali and the alkali-steaming combination can increase cellulose percentage. The tensile tests show that this type of treatment in combination resulted in the higher tensile strength compared to untreated fiber. There is a significant increase in tensile strength with increasing alkali percentage. However, the further increase in the percentage of alkali solution will result in decreasing tensile strength. The highest value of tensile strength after treatment was 275 MPa with 6 hours treatment at alkali percentage of 2 %.

  17. Structure of xanthan gum and cell ultrastructure at different times of alkali stress.

    Science.gov (United States)

    Luvielmo, Márcia de Mello; Borges, Caroline Dellinghausen; Toyama, Daniela de Oliveira; Vendruscolo, Claire Tondo; Scamparini, Adilma Regina Pippa

    2016-01-01

    The effect of alkali stress on the yield, viscosity, gum structure, and cell ultrastructure of xanthan gum was evaluated at the end of fermentation process of xanthan production by Xanthomonas campestris pv. manihotis 280-95. Although greater xanthan production was observed after a 24h-alkali stress process, a lower viscosity was observed when compared to the alkali stress-free gum, regardless of the alkali stress time. However, this outcome is not conclusive as further studies on gum purification are required to remove excess sodium, verify the efficiency loss and the consequent increase in the polymer viscosity. Alkali stress altered the structure of xanthan gum from a polygon-like shape to a star-like form. At the end of the fermentation, early structural changes in the bacterium were observed. After alkali stress, marked structural differences were observed in the cells. A more vacuolated cytoplasm and discontinuities in the membrane cells evidenced the cell lysis. Xanthan was observed in the form of concentric circles instead of agglomerates as observed prior to the alkali stress. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  18. The influence of polycarboxylate-type super-plasticizers on alkali-free liquid concrete accelerators performance

    Science.gov (United States)

    Guo, Wenkang; Yin, Haibo; Wang, Shuyin; He, Zhifeng

    2017-04-01

    Through studying on the setting times, cement mortar compressive strength and cement mortar compressive strength ratio, the influence of alkali-free liquid accelerators polycarboxylate-type super-plasticizers on the performance of alkali-free liquid accelerators in cement-based material was investigated. The results showed that the compatibility of super-plasticizers and alkali-free liquid accelerators was excellent. However, the dosage of super-plasticizers had a certain impact on the performance of alkali-free liquid accelerators as follows: 1) the setting times of alkali-free liquid accelerators was in the inverse proportional relationship to the dosage of super-plasticizers; 2)the influence of super-plasticizers dosage on the cement mortar compressive strength of alkali-free liquid accelerators was related to the types of accelerators, where exist an optimum super-plasticizers dosage for cement mortar compressive strength at 28d; 3)the later cement mortar compressive strength with alkali-free liquid accelerators were decreasing with the increment of the super-plasticizers dosage. In the practical application of alkali-free liquid accelerators and super-plasticizer, the dosage of super-plasticizer must be determined by dosage optimization test results.

  19. Decalcification resistance of alkali-activated slag

    Energy Technology Data Exchange (ETDEWEB)

    Komljenovic, Miroslav M., E-mail: miroslav.komljenovic@imsi.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia); Bascarevic, Zvezdana, E-mail: zvezdana@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia); Marjanovic, Natasa, E-mail: natasa@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia); Nikolic, Violeta, E-mail: violeta@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer The effects of decalcification on properties of alkali-activated slag were studied. Black-Right-Pointing-Pointer Decalcification was performed by concentrated NH{sub 4}NO{sub 3} solution (accelerated test). Black-Right-Pointing-Pointer Portland-slag cement (CEM II/A-S 42.5 N) was used as a benchmark material. Black-Right-Pointing-Pointer Decalcification led to strength decrease and noticeable structural changes. Black-Right-Pointing-Pointer Alkali-activated slag showed significantly higher resistance to decalcification. - Abstract: This paper analyses the effects of decalcification in concentrated 6 M NH{sub 4}NO{sub 3} solution on mechanical and microstructural properties of alkali-activated slag (AAS). Portland-slag cement (CEM II/A-S 42.5 N) was used as a benchmark material. Decalcification process led to a decrease in strength, both in AAS and in CEM II, and this effect was more pronounced in CEM II. The decrease in strength was explicitly related to the decrease in Ca/Si atomic ratio of C-S-H gel. A very low ratio of Ca/Si {approx}0.3 in AAS was the consequence of coexistence of C-S-H(I) gel and silica gel. During decalcification of AAS almost complete leaching of sodium and tetrahedral aluminum from C-S-H(I) gel also took place. AAS showed significantly higher resistance to decalcification in relation to the benchmark CEM II due to the absence of portlandite, high level of polymerization of silicate chains, low level of aluminum for silicon substitution in the structure of C-S-H(I), and the formation of protective layer of polymerized silica gel during decalcification process. In stabilization/solidification processes alkali-activated slag represents a more promising solution than Portland-slag cement due to significantly higher resistance to decalcification.

  20. [Using a modified remote sensing imagery for interpreting changes in cultivated saline-alkali land].

    Science.gov (United States)

    Gao, Hui; Liu, Hui-tao; Liu, Hong-juan; Liu, Jin-tong

    2015-04-01

    This paper developed a new interpretation symbol system for grading and classifying saline-alkali land, using Huanghua, a cosatal city in Hebei Province as a case. The system was developed by inverting remote sensing images from 1992 to 2011 based on site investigation, plant cover characteristics and features of remote sensing images. Combining this interpretation symbol system with supervising classification method, the information on arable land was obtained for the coastal saline-alkali ecosystem of Huanghua City, and the saline-alkali land area, changes in intensity of salinity-alkalinity and spatial distribution from 1992 to 2011 were analyzed. The results showed that salinization of arable land in Huanghua City alleviated from 1992 to 2011. The severely and moderately saline-alkali land area decreased in 2011 compared with 1992, while the non/slightly saline land area increased. The moderately saline-alkali land in southeast transformed to non/slightly saline-alkaline, while the severely saline-alkali land in west of the city far from the coastal zone became moderately saline-alkaline. The center of gravity (CG) of severely and non/slightly saline-alkali land moved closer the coastline, while that of the moderately saline-alkali land moved from southwest coastal line to northwest. Factors influencing changes in arable land within the saline-alkali ecosystem of Huanghua City were climate, hydrology and human activities.

  1. Influence of alkali metal cations/type of activator on the structure of alkali-activated fly ash - ATR-FTIR studies

    Science.gov (United States)

    Król, M.; Rożek, P.; Chlebda, D.; Mozgawa, W.

    2018-06-01

    Coal fly ash as a secondary aluminosiliceous raw material that is commonly used in the so-called geopolymerization process has been activated with different alkali hydroxides solutions: LiOH, NaOH and KOH. Changes in the aluminosilicate structure of the material during alkali-activation have been analyzed in detail on the basis of ATR/FT-IR spectra. These changes mainly affect both the integral intensity and FWHM of bands in the range of 1200-950 cm-1, however dehydration and carbonation process can be also analyzed based on obtaining results.

  2. Alkali content of fly ash : measuring and testing strategies for compliance : [tech transfer summary].

    Science.gov (United States)

    2015-04-01

    This study investigated the test methods used to determine the : alkali content of fly ash. It also evaluated if high-alkali fly ash : exacerbates alkali-silica reaction in laboratory tests and field : concrete.

  3. Influence of alkali metal hydroxides on corrosion of Zr-base alloys

    International Nuclear Information System (INIS)

    Jeong, Yong Hwan

    1996-01-01

    The influence of group-1 alkali hydroxides on different Zr-based alloys have been carried out in static autoclaves at 350 deg C in pressurized water, conditioned in low(0.32 mmol), medium(4.3 mmol) and high(31.5 mmol) equimolar concentration of Li-, Na-, K-, Rb- and Cs-hydroxide. Two types of alloys have been investigated: Zr-Sn-(TRM, Transition metal) and Zr-Sn-Nb-(TRM, Transition metal). From the experiments the cation could be identified as the responsible species for corrosion of Zr alloy in alkalized water. The radius of the cation governs the accelerated corrosion in the pre-transition region of Zr alloy. Incorporation of alkali cation into the zirconium oxide lattice is probably the mechanism which allows the corrosion enhancement for Li and Na and the significant lower effect for the other bases. Nb containing alloys showed lower corrosion resistance than Zr-Sn-TRM alloys in all alkali solutions. Both types of alloys were corroded significantly more in LiOH and NaOH than in the other alkali environments. Lowest corrosive aggressiveness has been found for CsOH followed by KOH. Concluding from the corrosion behavior in the different alkali environments and taking into account the tendency to accelerate the corrosion of Zr alloys, CsOH and KOH are possible alternate alkali for PWR (Pressurized Water Reactor) application. (author)

  4. Solubility of 1:1 Alkali Nitrates and Chlorides in Near-Critical and Supercritical Water : 1 Alkali Nitrates and Chlorides in Near-Critical and Supercritical Water

    NARCIS (Netherlands)

    Leusbrock, Ingo; Metz, Sybrand J.; Rexwinkel, Glenn; Versteeg, Geert F.

    2009-01-01

    To increase the available data oil systems containing supercritical water and inorganic compounds, all experimental setup was designed to investigate the solubilities of inorganic compounds Ill supercritical water, In this work, three alkali chloride salts (LiCl, NaCl, KCl) and three alkali nitrate

  5. Alkali Release from Typical Danish Aggregates to Potential ASR Reactive Concrete

    DEFF Research Database (Denmark)

    Thomsen, Hans Christian Brolin; Grelk, Bent; Barbosa, Ricardo Antonio

    Alkali-silica reaction (ASR) in concrete is a well-known deterioration mechanism affecting the long term durability of Danish concrete structures. Deleterious ASR cracking can be significantly reduced or prevented by limiting the total alkali content of concrete under a certain threshold limit......, which in Denmark is recommended to 3 kg/m3 Na2Oeq.. However, this threshold limit does not account for the possible internal contribution of alkali to the concrete pore solution by release from aggregates or external contributions from varies sources. This study indicates that certain Danish aggregates...... are capable of releasing more than 0.46 kg/m3 Na2Oeq. at 13 weeks of exposure in laboratory test which may increase the risk for deleterious cracking due to an increase in alkali content in the concrete....

  6. An alkali ion source based on graphite intercalation compounds for ion mobility spectrometry

    International Nuclear Information System (INIS)

    Tabrizchi, Mahmoud; Hosseini, Zahra S

    2008-01-01

    A variety of alkali cation emitters were developed as the ion source for ion mobility spectrometry. The cation emitters were constructed based on alkali ion graphite intercalation compounds (GICs). The compounds were prepared by fusing alkali salts with ground graphite. In order to produce alkali ions, the compounds were loaded on a filament and heated to red. Reactant ions of the form alk + ions were observed for the alkali salts NaCl, KCl.LiCl, CsCl and SrCl. In addition to Na + ions, K + ions were observed at the beginning of thermionic emission from Na-GIC. This is due to the low ionization potential of potassium that exists in trace amounts in sodium salts. In addition to the potassium ion, Na + was observed in the case of LiCl salt. The Na + and K + peaks originating from impurities totally disappeared after about 40 min. However, the thermionic emission of the main ion of the corresponding salt lasted for several days. No negative ions were observed upon reversing the drift field. Selected organic compounds (methyl isobutyl ketone, dimethyl sulfoxide, acetone and tetrahydrofuran) were also ionized via alkali cation attachment reaction. Distinct ion mobility patterns were observed for different substances using one type of alkali reactant ion. However, the ion mobility pattern for a given substance changed when a different alkali reactant ion was used. Ammonia and amines were not ionized when this source was used

  7. The Effects of Biochar on Germination and Growth of Wheat in Different Saline-alkali Soil

    Institute of Scientific and Technical Information of China (English)

    Guijun; WANG; Zhenwen; XU

    2013-01-01

    Saline alkali soil can cause physiological drought on crops,so only some salinity tolerant crops can grow in saline alkali soil.Biochar can increase the utilize efficiency of nutrient and the water retention of the soil,and affect the growth of the plant.In this research,four different proportion of biochar was added in five different levels of saline-alkali soil for pot culture experiment.The pH of the soil increases as the proportion of biochar increase in same saline-alkali level soil,while the EC decrease as the proportion of biochar increase.The germination rate of wheat seeds varies as the different of soil’s saline-alkali level.Notable among these results is the germination of wheat seeds in the serious saline-alkali soil without biochar added is 0,while in 45%biochar added in serious saline-alkali soil,the germination rate get to as high as 48.9%.Also,biochar improve the growth of wheat seedling,while for mild saline alkali soil and normal soil.Biochar had no obvious effect on the growth of wheat seedling.

  8. Alkali-Resistant Quasi-Solid-State Electrolyte for Stretchable Supercapacitors.

    Science.gov (United States)

    Tang, Qianqiu; Wang, Wenqiang; Wang, Gengchao

    2016-10-05

    Research on stretchable energy-storage devices has been motivated by elastic electronics, and considerable research efforts have been devoted to the development of stretchable electrodes. However, stretchable electrolytes, another critical component in stretchable devices, have earned quite little attention, especially the alkali-resistant ones. Here, we reported a novel stretchable alkali-resistant electrolyte made of a polyolefin elastomer porous membrane supported potassium hydroxide-potassium polyacrylate (POE@KOH-PAAK). The as-prepared electrolyte shows a negligible plastic deformation even after 1000 stretching cycles at a strain of 150% as well as a high conductivity of 0.14 S cm -1 . It also exhibits excellent alkali resistance, which shows no obvious degradation of the mechanical performance after immersion in 2 M KOH for up to 2 weeks. To demonstrate its good properties, a high-performance stretchable supercapacitor is assembled using a carbon-nanotube-film-supported NiCo 2 O 4 (CNT@NiCo 2 O 4 ) as the cathode and Fe 2 O 3 (CNT@Fe 2 O 3 ) as the anode, proving great application promise of the stretchable alkali-resistant electrolyte in stretchable energy-storage devices.

  9. Mechanical Behaviour of Soil Improved by Alkali Activated Binders

    Directory of Open Access Journals (Sweden)

    Enza Vitale

    2017-11-01

    Full Text Available The use of alkali activated binders to improve engineering properties of clayey soils is a novel solution, and an alternative to the widely diffused improvement based on the use of traditional binders such as lime and cement. In the paper the alkaline activation of two fly ashes, by-products of coal combustion thermoelectric power plants, has been presented. These alkali activated binders have been mixed with a clayey soil for evaluating the improvement of its mechanical behaviour. One-dimensional compression tests on raw and treated samples have been performed with reference to the effects induced by type of binder, binder contents and curing time. The experimental evidences at volume scale of the treated samples have been directly linked to the chemo-physical evolution of the binders, investigated over curing time by means of X Ray Diffraction. Test results showed a high reactivity of the alkali activated binders promoting the formation of new mineralogical phases responsible for the mechanical improvement of treated soil. The efficiency of alkali activated binders soil treatment has been highlighted by comparison with mechanical performance induced by Portland cement.

  10. Alkali-explosion pretreatment of straw and bagasse for enzymic hydrolysis.

    Science.gov (United States)

    Puri, V P; Pearce, G R

    1986-04-01

    Sugarcane bagasse and wheat straw were subjected to alkali treatment at 200 degrees C for 5 min and at 3.45 MPa gas pressure (steam and nitrogen), followed by an explosive discharge through a defibrating nozzle, in an attempt to improve the rate and extent of digestibility. The treatment resulted in the solubilization of 40-45% of the components and in the production of a pulp that gave saccharification yields of 80 and 65% in 8 h for bagasse and wheat straw, respectively. By comparison, alkali steaming at 200 degrees C (1.72 MPa) for 5 min gave saccharification yields of only 58 and 52% in 48 h. The increase in temperature from 140 to 200 degrees C resulted in a gradual increase in in vitro organic matter digestibility (IVOMD) for both the substrates. Also, the extent of alkalinity during pretreatment appears to effect the reactivity of the final product towards enzymes. Pretreatment times ranging from 5 to 60 caused a progressive decline in the IVOMD of bagasse and wheat straw by the alkali explosion method and this was accompanied by a progressive decrease in pH values after explosion. In the alkali-steaming method, pretreatment time had no apparent effect with either substrate. An analysis of the alkali-exploded products showed that substantial amounts of hemicellulose and a small proportion of the lignin were solubilized. The percentage crystallinity of the cellulose did not alter in either substrate but there was a substantial reduction in the degree of polymerization. The superiority of the alkali-explosion pretreatment is attributed to the efficacy of fiber separation and disintegration; this increases the surface area and reduces the degree of polymerization.

  11. Using Modified Remote Sensing Imagery to Interpret Changes in Cultivated Land under Saline-Alkali Conditions

    Directory of Open Access Journals (Sweden)

    Hui Gao

    2016-07-01

    Full Text Available Managing the rapidly changing saline-alkali land under cultivation in the coastal areas of China is important not only for mitigating the negative impacts of such land on the environment, but also for ensuring long-term sustainability of agriculture. In this light, setting up rapid monitoring systems to assist decision-making in developing sustainable management plans is therefore an absolute necessity. In this study, we developed a new interpretation system where symbols are used to grade and classify saline-alkali lands in space and time, based on the characteristics of plant cover and features of remote sensing images. The system was used in combination with the maximum likelihood supervised classification to analyze the changes in cultivated lands under saline-alkali conditions in Huanghua City. The analysis revealed changes in the area and spatial distribution of cultivated under saline-alkali conditions in the region. The total area of saline-alkali land was 139,588.8 ha in 1992 and 134,477.5 ha in 2011. Compared with 1992, severely and moderately saline-alkali land areas decreased in 2011. However, non/slightly saline land areas increased over that in 1992. The results showed that the salinization rate of arable lands in Huanghua City decreased from 1992 to 2011. The moderately saline-alkali land southeast of the city transformed into non/slightly saline-alkaline. Then, severely saline-alkali land far from the coastal zone west of the city became moderately saline-alkaline. Spatial changes in cultivated saline-alkali lands in Huanghua City were such that the centers of gravity (CG of severely and non/slightly saline-alkali land moved closer the coastline, while that of the moderately saline-alkali land moved from southwest coastal line to northwest. Factors influencing changes in cultivated lands in the saline-alkali ecosystem included climate, hydrology and human activity. Thus, studies are required to further explore these factors in

  12. Alkali roasting of bomar ilmenite: rare earths recovery and physico-chemical changes

    Directory of Open Access Journals (Sweden)

    Sanchez-Segado Sergio

    2014-11-01

    (FeTiO3 is presented as a process route for integrated beneficiation of the mineral for rutile-rich phase and rare earth oxides; the latter is released as a consequence of physical changes in the ilmenite matrix, during the water leaching after roasting. The oxidative alkali roasting transforms ilmenite mineral into water-insoluble alkali titanate and water-soluble ferrite. After roasting the insoluble alkali titanate is separated from rare-earth oxide mixture in colloidal form and water-soluble ferrite. Further leaching of alkali titanate is carried out with oxalic (0.3M and ascorbic (0.01M acid solution which removes the remaining Fe2+ ions into the leachate and allows precipitation of high-purity synthetic rutile containing more than 95% TiO2. Iron is removed as iron oxalate. The physico-chemical changes occurred during the roasting and leaching processes are reported by comparing the role of alkali on the roasting process and product morphologies formed.

  13. Influence of alkali metal hydroxides on corrosion of Zr-based alloys

    International Nuclear Information System (INIS)

    Jeong, Y.H.; Ruhmann, H.; Garzarolli, F.

    1997-01-01

    In this study the influence of group-1 alkali hydroxides on different zirconium based alloys has been evaluated. The experiments have been carried out in small stainless steel autoclaves at 350 deg. C in pressurized 17 MPa water, with in low (0.32 mmol), medium (4.3 mmol) and high (31.5 mmol) equimolar concentrations of Li-, Na-, K-, Rb- and Cs-Hydroxides. Two types of alloys have been investigated: Zr-Sn-(Transition metal) and Zr-Sn-Nb-(Transition metal). The corrosion behaviour was evaluated from weight gain measurements. From the experiments the cation could be identified as the responsible species for zirconium alloy corrosion in alkalized water. The radius of the cation governs the corrosion behaviour in the pre accelerated region of zircaloy corrosion. Incorporating of alkali cations into the zirconium oxide lattice is probably the mechanism which allows the corrosion enhancement for Li and Na and the significantly lower effect for the other bases. Nb containing alloys show lower corrosion resistance than alloys from the Zr-Sn-TRM system in all alkali solutions. Both types of alloys corrode significantly more in LiOH and NaOH than in the other alkali environments. Lowest corrosive aggressiveness has been found for CsOH followed by KOH. Concluding from the corrosion behaviour in the different alkali environments and taking into account the tendency to promote accelerate corrosion, CsOH and KOH are possible alternate alkalis for PWR application. (author). 17 refs, 15 figs, 5 tabs

  14. Influence of alkali metal hydroxides on corrosion of Zr-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Y H [Korea Atomic Energy Research Inst., Dae Jun (Korea, Republic of); Ruhmann, H; Garzarolli, F [Siemens-KWU, Power Generation Group, Erlangen (Germany)

    1997-02-01

    In this study the influence of group-1 alkali hydroxides on different zirconium based alloys has been evaluated. The experiments have been carried out in small stainless steel autoclaves at 350 deg. C in pressurized 17 MPa water, with in low (0.32 mmol), medium (4.3 mmol) and high (31.5 mmol) equimolar concentrations of Li-, Na-, K-, Rb- and Cs-Hydroxides. Two types of alloys have been investigated: Zr-Sn-(Transition metal) and Zr-Sn-Nb-(Transition metal). The corrosion behaviour was evaluated from weight gain measurements. From the experiments the cation could be identified as the responsible species for zirconium alloy corrosion in alkalized water. The radius of the cation governs the corrosion behaviour in the pre accelerated region of zircaloy corrosion. Incorporating of alkali cations into the zirconium oxide lattice is probably the mechanism which allows the corrosion enhancement for Li and Na and the significantly lower effect for the other bases. Nb containing alloys show lower corrosion resistance than alloys from the Zr-Sn-TRM system in all alkali solutions. Both types of alloys corrode significantly more in LiOH and NaOH than in the other alkali environments. Lowest corrosive aggressiveness has been found for CsOH followed by KOH. Concluding from the corrosion behaviour in the different alkali environments and taking into account the tendency to promote accelerate corrosion, CsOH and KOH are possible alternate alkalis for PWR application. (author). 17 refs, 15 figs, 5 tabs.

  15. Mechanism of the alkali degradation of (6-4) photoproduct-containing DNA.

    Science.gov (United States)

    Arichi, Norihito; Inase, Aki; Eto, Sachise; Mizukoshi, Toshimi; Yamamoto, Junpei; Iwai, Shigenori

    2012-03-21

    The (6-4) photoproduct is one of the major damaged bases produced by ultraviolet light in DNA. This lesion is known to be alkali-labile, and strand breaks occur at its sites when UV-irradiated DNA is treated with hot alkali. We have analyzed the product obtained by the alkali treatment of a dinucleoside monophosphate containing the (6-4) photoproduct, by HPLC, NMR spectroscopy, and mass spectrometry. We previously found that the N3-C4 bond of the 5' component was hydrolyzed by a mild alkali treatment, and the present study revealed that the following reaction was the hydrolysis of the glycosidic bond at the 3' component. The sugar moiety of this component was lost, even when a 3'-flanking nucleotide was not present. Glycosidic bond hydrolysis was also observed for a dimer and a trimer containing 5-methyl-2-pyrimidinone, which was used as an analog of the 3' component of the (6-4) photoproduct, and its mechanism was elucidated. Finally, the alkali treatment of a tetramer, d(GT(6-4)TC), yielded 2'-deoxycytidine 5'-monophosphate, while 2'-deoxyguanosine 3'-monophosphate was not detected. This result demonstrated the hydrolysis of the glycosidic bond at the 3' component of the (6-4) photoproduct and the subsequent strand break by β-elimination. It was also shown that the glycosidic bond at the 3' component of the Dewar valence isomer was more alkali-labile than that of the (6-4) photoproduct.

  16. Molybdenum/alkali metal/ethylene glycol complexes useful as epoxidation catalysts

    International Nuclear Information System (INIS)

    Marquis, E.T.; Sanderson, J.R.; Keating, K.P.

    1987-01-01

    This patent describes a clear, storage stable solution of a molybdenum/alkali metal/ethylene glycol complex in ethylene glycol made by the process comprising: reacting at an elevated temperature between about 25 0 and 150 0 C a solid ammonium molybdate or a hydrate thereof and a solid alkali metal molybdate or a hydrate thereof with ethylene glycol, such that the ratio of moles of ethylene glycol to total gram atoms of molybdenum in the molybdates ranges from about 7:10 to 10:1, and the ratio of gram atoms of molybdenum in the ammonium molybdate or hydrate thereof to gram atoms of molybdenum in the alkali metal molybdate is from about 1:1 to about 20:1 to thereby provide a reaction product composed of a solution of an alkali metal-containing complex of molybdenum, alkali metal and ethylene glycol and by-products, including water, in the ethylene glycol and subsequently stripping the solution at a reduced pressure to remove from about 5 to about 25% of the reaction product, as distillate, to thereby provide a storage stable solution of the complex in the ethylene glycol having a molybdenum content of about 6 wt. % to about 20 wt. %, a water concentration of about 0.1 wt. % to about 6 wt. % and an acid number of more than about 60

  17. Behaviour of gaseous alkali compounds from coal gasification

    International Nuclear Information System (INIS)

    Nykaenen, J.

    1996-01-01

    In this project the behaviour of alkali compounds has been studied with a chemical equilibrium model. The goal is to evaluate the possibilities to remove the sodium and potassium compounds together with the fly ash particles by using a ceramic honeycomb filter. The studied processes include both CO 2 /O 2 - and air-blown gasification and combustion. The results show that the difference between the processes with flue gas recirculation and air-blown processes is small. This is due to that the equilibrium concentration of the dominant gaseous alkali compound, chloride, is more or less the same in both processes. This research project is closely connected to the EU-project coordinated by the Delft University of Technology (DUT). In that project alkali concentration of the fuel gas from a 1.6 MW pilot plant will be measured. During the next phase of this research the results from DUT will be compared with the results of this presentation. (author)

  18. Alkali and heavy metal emissions of the PCFB-process; Alkali- ja raskasmetallipaeaestoet PCFB-prosessista

    Energy Technology Data Exchange (ETDEWEB)

    Kuivalainen, R; Eriksson, T; Lehtonen, P [Foster Wheeler Energia Oy, Karhula (Finland)

    1997-10-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed in Karhula R and D Center since 1986. As part of the development, 10 MW PCFB test facility was built in 1989. The test facility has been used for performance testing with different coal types through the years 1990-1995 in order to gain data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The main object of the project was to measure vapor phase Na and K concentrations in the PCFB flue gas after hot gas filter and investigate the effects of process conditions and sorbents on alkali release. The measurements were performed using plasma assisted method of TUT Laboratory of Plasma Technology and wet absorption method of VTT Energy. The measurements were carried out during three test campaigns at PCFB Test Facility in Karhula. In autumn 1995 both VTT and TUT methods were used. The measurements of the following test period in spring 1996 were performed by VTT, and during the last test segment in autumn 1996 TUT method was in use. During the last test period, the TUT instrument was used as semi-continuous (3 values/minute) alkali analyzer for part of the time. The measured Na concentrations were below 30 ppb(w) in all measured data points. The results of K were below 10 ppb(w). The accuracies of the both methods are about +50 % at this concentration range. The scatter of the data covers the effects of different process variables on the alkali emission. The measured emissions are at the same order of magnitude as the guideline emission limits estimated by gas turbine manufacturers

  19. Influence of curing conditions on durability of alkali-resistant glass ...

    Indian Academy of Sciences (India)

    Glass fibres in concrete material often increase the flexural strength. However, these fibres when in contact with cement are altered by alkali reactions due to the presence of portlandite. This study presents the results of investigation to show the effect of curing conditions on the durability of alkali-resistant glass fibres in ...

  20. Alkali replacement raises urinary citrate excretion in patients with topiramate-induced hypocitraturia.

    Science.gov (United States)

    Jhagroo, R Allan; Wertheim, Margaret L; Penniston, Kristina L

    2016-01-01

    The aims of this study were to assess (1) the magnitude and temporality of decreased urinary citrate excretion in patients just starting topiramate and (2) the effect of alkali replacement on topiramate-induced hypocitraturia. Study 1 was a prospective, non-intervention study in which patients starting topiramate for headache remediation provided pre- and post-topiramate 24 h urine collections for measurement of urine citrate. Study 2 was a clinical comparative effectiveness study in which patients reporting to our stone clinic for kidney stones and who were treated with topiramate were prescribed alkali therapy. Pre- and post-alkali 24 h urinary citrate excretion was compared. Data for 12 and 22 patients (studies 1 and 2 respectively) were evaluated. After starting topiramate, urinary citrate excretion dropped significantly by 30 days (P = 0.016) and 62% of patients had hypocitraturia (citrate alkali, urine citrate increased in stone-forming patients on topiramate (198 ± 120 to 408 ± 274 mg day(-1) ; P = 0.042 for difference). 85% of patients were hypocitraturic on topiramate alone vs. 40% after adding alkali. The increase in urinary citrate was greater in patients provided ≥ 90 mEq potassium citrate. Our study is the first to provide clinical evidence that alkali therapy can raise urinary citrate excretion in patients who form kidney stones while being treated with topiramate. Clinicians should consider alkali therapy for reducing the kidney stone risk of patients benefitting from topiramate treatment for migraine headaches or other conditions. © 2015 The British Pharmacological Society.

  1. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Science.gov (United States)

    2010-07-01

    ... chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN P... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted benzenesulfonic acid, alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL...

  2. Anion exchange membrane based on alkali doped poly(2,5-benzimidazole) for fuel cell

    CSIR Research Space (South Africa)

    Luo, H

    2012-02-01

    Full Text Available The properties of alkali doped poly(2,5-benzimidazole) membrane with different alkali doping level for fuel cell application is reported in this work. The alkali doping level played an important role for the ion conductivity of the membrane. The ion...

  3. Powder X-ray diffraction study af alkali alanates

    DEFF Research Database (Denmark)

    Cao, Thao; Mosegaard Arnbjerg, Lene; Jensen, Torben René

    Powder X-ray diffraction study of alkali alanates Thao Cao, Lene Arnbjerg, Torben R. Jensen. Center for Materials Crystallography (CMC), Center for Energy Materials (CEM), iNANO and Department of Chemistry, Aarhus University, DK-8000, Denmark. Abstract: To meet the energy demand in the future...... for mobile applications, new materials with high gravimetric and volumetric storage capacity of hydrogen have to be developed. Alkali alanates are promising for hydrogen storage materials. Sodium alanate stores hydrogen reversibly at moderate conditions when catalysed with, e.g. titanium, whereas potassium...

  4. Enzymatic regulation of organic acid metabolism in an alkali-tolerant ...

    African Journals Online (AJOL)

    Chloris virgata, an alkali-tolerant halophyte, was chosen as the test material for our research. The seedlings of C. virgata were treated with varying salt and alkali stress. First, the composition and content of organic acids in shoots were analyzed and the results indicated that there was not only a significant increase in total ...

  5. Assesment of Alkali Resistance of Basalt Used as Concrete Aggregates

    Directory of Open Access Journals (Sweden)

    al-Swaidani Aref M.

    2015-11-01

    Full Text Available The objective of this paper is to report a part of an ongoing research on the influence of using crushed basalt as aggregates on one of durability-related properties of concrete (i.e. alkali-silica reaction which is the most common form of Alkali-Aggregate Reaction. Alkali resistance has been assessed through several methods specified in the American Standards. Results of petrographic examination, chemical test (ASTM C289 and accelerated mortar bar test (ASTM C1260 have particularly been reported. In addition, the weight change and compressive strength of 28 days cured concrete containing basaltic aggregates were also reported after 90 days of exposure to 10% NaOH solution. Dolomite aggregate were used in the latter test for comparison. The experimental results revealed that basaltic rocks quarried from As-Swaida’a region were suitable for production of aggregates for concrete. According to the test results, the studied basalt aggregates can be classified as innocuous with regard to alkali-silica reaction. Further, the 10% sodium hydroxide attack did not affect the compressive strength of concrete.

  6. Charge-charge liquid structure factor and the freezing of alkali halides

    International Nuclear Information System (INIS)

    March, N.H.; Tosi, M.P.

    1980-10-01

    The peak height of the charge-charge liquid structure factor Ssub(QQ) in molten alkali halides is proposed as a criterion for freezing. Available data on molten alkali chlorides, when extrapolated to the freezing point suggests Ssub(QQ)sup(max) approximately 5. (author)

  7. Investigation on lithium migration for treating alkali-silica reaction affected concrete

    NARCIS (Netherlands)

    Silva De Souza, L.M.; Polder, R.B.; Copuroglu, O.

    2014-01-01

    Alkali-silica reaction (ASR) is one of the major deterioration mechanisms that affect numerous concrete structures worldwide. During the reaction, hydroxyl and alkali (sodium and potassium ) ions react with certain siliceous compounds in the aggregate, forming a hygroscopic gel. The gel absorbs

  8. Gradient heating protocol for a diode-pumped alkali laser

    Science.gov (United States)

    Cai, He; Wang, You; Han, Juhong; Yu, Hang; Rong, Kepeng; Wang, Shunyan; An, Guofei; Wang, Hongyuan; Zhang, Wei; Wu, Peng; Yu, Qiang

    2018-06-01

    A diode-pumped alkali laser (DPAL) has gained rapid development in the recent years. Until now, the structure with single heater has been widely utilized to adjust the temperature of an alkali vapor cell in most of the literatures about DPALs. However, for an end-pumped DPAL using single heater, most pump energy is absorbed by the gain media near the entrance cell window because of the large absorption cross section of atomic alkali. As a result, the temperature in the pumping area around the entrance window will go up rapidly, especially in a case of high pumping density. The temperature rise would bring about some negative influences such as thermal effects and variations in population density. In addition, light scattering and window contamination aroused by the chemical reaction between the alkali vapor and the buffer gas will also affect the output performance of a DPAL system. To find a solution to these problems, we propose a gradient heating approach in which several heaters are tandem-set along the optical axis to anneal an alkali vapor cell. The temperature at the entrance window is adjusted to be lower than that of the other side. By using this novel scheme, one can not only achieve a homogeneous absorption of the pump energy along the cell axis, but also decrease the possibility of the window damage in a DPAL configuration. The theoretical simulation of the laser output features has been carried out for a configuration of multiple heaters. Additionally, the DPAL output performance under different gradient temperatures is also discussed in this paper. The conclusions might be helpful for development of a high-powered and high-beam-quality DPAL.

  9. Alkali and heavy metals emissions of the PCFB-process

    International Nuclear Information System (INIS)

    Kuivalainen, R.; Eriksson, T.; Koskinen, J.; Lehtonen, P.

    1995-01-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed by A. Ahlstrom Corporation since 1986. As a part of the development, a 10 MV PCFB Test Facility was constructed at Hans Ahlstrom Laboratory in Karhula, Finland in 1989. The Test Facility has been used for performance testing with different coal types through the years 1990-1994 for obtaining data for design and commercialization of the high-efficiency low-emission PCFB combustion technology. The project Y44 'Alkali and heavy metal emissions of the PCFB-process' is part of national LIEKKI 2 research program and it continues the work started under alkali measurement project Y33 in 1994. The objective of the project is to measure vapor phase alkali and heavy metal concentrations in the PCFB flue gas after high-temperature high-pressure particulate filter and to investigate the effects of process conditions and sorbents on alkali release. The measured Na concentrations were between 0,03 and 0,21 ppm(w). The results of K were between 0,01 and 0,08 ppm(w). The accuracy of the results is about +-50 percent at this concentration range. The scatter of the data covers the effects of different process variables on the alkali emission. The measured emissions at 800-850 deg C are at the same order of magnitude as the guideline emission limits given by gas turbine manufacturers for flue gas at 1000-1200 deg C. The measurements and development of the analyses methods are planned to be continued during PCFB test runs in autumn 1995 in cooperation with laboratories of VTT Energy and Tampere University of Technology. (author)

  10. The direct observation of alkali vapor species in biomass combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    French, R J; Dayton, D C; Milne, T A

    1994-01-01

    This report summarizes new data from screening various feedstocks for alkali vapor release under combustion conditions. The successful development of a laboratory flow reactor and molecular beam, mass spectrometer interface is detailed. Its application to several herbaceous and woody feedstocks, as well as a fast-pyrolysis oil, under 800 and 1,100{degrees}C batch combustion, is documented. Chlorine seems to play a large role in the facile mobilization of potassium. Included in the report is a discussion of relevant literature on the alkali problem in combustors and turbines. Highlighted are the phenomena identified in studies on coal and methods that have been applied to alkali speciation. The nature of binding of alkali in coal versus biomass is discussed, together with the implications for the ease of release. Herbaceous species and many agricultural residues appear to pose significant problems in release of alkali species to the vapor at typical combustor temperatures. These problems could be especially acute in direct combustion fired turbines, but may be ameliorated in integrated gasification combined cycles.

  11. Effect of alkali and heat treatments for bioactivity of TiO{sub 2} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seo young, E-mail: mast6269@nate.com [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Kim, Yu kyoung, E-mail: yk0830@naver.com [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Park, Il song, E-mail: ilsong@jbnu.ac.kr [Division of Advanced Materials Engineering, Research Center for Advanced Materials Development and Institute of Biodegradable Materials, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Jin, Guang chun, E-mail: jingc88@126.com [Oral Medical College, Beihua University, Jilin City 132013 (China); Bae, Tae sung, E-mail: bts@jbnu.ac.kr [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of); Lee, Min ho, E-mail: mh@jbnu.ac.kr [Dept. of Dental Biomaterials and Institute of Bio degradable material, Institute of Oral Bioscience and BK21 plus project, School of Dentistry, Chonbuk National University, Jeonju, 561-756 (Korea, Republic of)

    2014-12-01

    Highlights: • TiO{sub 2} nanotubes formed via anodization were treated by alkali and heat. • The surface roughness was increased after alkali treatment (p < 0.05). • After alkali and heat treatment, the wettability was better than before treatment. • Alkali treated TiO{sub 2} nanotubes were shown higher HAp formation in SBF. • Heat treatment affected on the attachment of cells for alkali treated nanotubes. - Abstract: In this study, for improving the bioactivity of titanium used as an implant material, alkali and heat treatments were carried out after formation of the nanotubes via anodization. Nanotubes with uniform length, diameter, and thickness were formed by anodization. The alkali and heat-treated TiO{sub 2} nanotubes were covered with the complex network structure, and the Na compound was generated on the surface of the specimens. In addition, after 5 and 10 days of immersion in the SBF, the crystallized OCP and HAp phase was significantly increased on the surface of the alkali-treated TiO{sub 2} nanotubes (PNA) and alkali and heat-treated TiO{sub 2} nanotubes (PNAH) groups. Cell proliferation was decreased due to the formation of amorphous sodium titanate (Na{sub 2}TiO{sub 3}) layer on the surface of the PNA group. However, anatase and crystalline sodium titanate were formed on the surface of the PNAH group after heat treatment at 550 °C, and cell proliferation was improved. Thus, PNA group had higher HAp forming ability in the simulated body fluid. Additional heat treatment affected on enhancement of the bioactivity and the attachment of osteoblasts for PNA group.

  12. Transport and inventory of mercury from point sources in Haifa Bay. Final report for the period 15 April 1995 - 15 April 1996

    International Nuclear Information System (INIS)

    Herut, B.

    1996-09-01

    The purpose of this study was to examine the main sinks and transport mechanisms of anthropogenic mercury in the Northern part of Haifa Bay. Haifa Bay is located at the Northern Mediterranean coast of Israel. Mercury has been constantly introduced into the Northern part of the Bay since the opening of a chlor-alkali plant in 1956. Between 1975-79 the flux was drastically reduced after installation of pollution abatements and in 1981 it was reduced further to its present level of 30 kg yr- 1 . The total calculated amount of mercury introduced to the Bay during the last 38 years is about 19,300 kg. Mercury inventory in sediments of the inner Northern part of Haifa bay was calculated by backwards extrapolation of the total amount of mercury which could have been present in the top 50 cm sediments if only accumulation processes occurred. The amount trapped in the sediments accounted for only approximately 10% of the total estimated amount of anthropogenic mercury. Part of the missing mercury settled in the sediments of the outer Bay and a significant part was transported seaward by mercury-laden particles and as resuspended near shore sediments. Indeed, relatively high concentrations of suspended particulate matter (1-3 mg 1- 1 ) with mercury concentrations (1-10 ug g- 1 ) of one order of magnitude higher than in the surface sediments were sampled in the area opposite the chlor-alkali plant. The total amount of mercury in the samples was measured by cold vapor atomic absorption spectrometry on a Coleman Mercury Analyser MAS-50A. 2 figs

  13. Long-range interactions among three alkali-metal atoms

    International Nuclear Information System (INIS)

    Marinescu, M.; Starace, A.F.

    1996-01-01

    The long-range asymptotic form of the interaction potential surface for three neutral alkali-metal atoms in their ground states may be expressed as an expansion in inverse powers of inter-nuclear distances. The first leading powers are proportional to the dispersion coefficients for pairwise atomic interactions. They are followed by a term responsible for a three body dipole interaction. The authors results consist in evaluation of the three body dipole interaction coefficient between three alkali-metal atoms. The generalization to long-range n atom interaction terms will be discussed qualitatively

  14. Kinetics and physico-chemical properties of alkali activated blast-furnace slag/basalt pastes

    Directory of Open Access Journals (Sweden)

    H. El Didamony

    2012-12-01

    Full Text Available Granulated blast-furnace slag (GBFS is a by-product of the metallurgical industry and consists mainly of lime and calcium–magnesium aluminosilicates that defined as the glassy granular material formed by rapid cooling of molten slag with excess water resulting in an amorphous structure. Alkali-activated slag (AAS binders have taken a great interest from researchers due to its manufacturing process which has important benefits from the point of view of the lower energy requirements and lower emission of greenhouse gases with respect to the manufacturing of Portland cement. In this study, GBFS was replaced by 20, 40 and 60 wt.% of basalt activated by 6 wt.% of alkali mixture composed of 1:1 sodium hydroxide (SH and liquid sodium silicate (LSS mixed with sea water and cured in 100% relative humidity up to 90 days. The physic-chemical parameters were studied by determination of setting time, combined water content, bulk density and compressive strength. As the amount of basalt increases the setting time as well as compressive strength decreases while the bulk density increases. The compressive strength values of dried pastes are greater than those of saturated pastes. The hydrated products are identified by TGA/DTG analysis, IR spectroscopy and scanning electron microscopy (SEM.

  15. Exciton emissions in alkali cyanides

    International Nuclear Information System (INIS)

    Weid, J.P. von der.

    1979-10-01

    The emissions of Alkali Cyanides X irradiated at low temperature were measured. In addition to the molecular (Frenkel Type) exciton emissions, another emitting centre was found and tentatively assigned to a charge transfer self trapped exciton. The nature of the molecular exciton emitting state is discussed. (Author) [pt

  16. Assessment of the Alteration of Granitic Rocks and its Influence on Alkalis Release

    Science.gov (United States)

    Ferraz, Ana Rita; Fernandes, Isabel; Soares, Dora; Santos Silva, António; Quinta-Ferreira, Mário

    2017-12-01

    Several concrete structures had shown signs of degradation some years after construction due to internal expansive reactions. Among these reactions there are the alkali-aggregate reactions (AAR) that occur between the aggregates and the concrete interstitial fluids which can be divided in two types: the alkali-silica reaction (ASR) and alkali-carbonate reaction (ACR). The more common is the ASR which occurs when certain types of reactive silica are present in the aggregates. In consequence, an expansive alkali-silica gel is formed leading to the concrete cracking and degradation. Granites are rocks composed essentially of quartz, micas and feldspars, the latter being the minerals which contain more alkalis in their structure and thus, able to release them in conditions of high alkalinity. Although these aggregates are of slow reaction, some structures where they were applied show evidence of deterioration due to ASR some years or decades after the construction. In the present work, the possible contribution of granitic aggregates to the interstitial fluids of concrete by alkalis release was studied by performing chemical attack with NaOH and KOH solutions. Due to the heterogeneity of the quarries in what concerns the degree of alteration and/or fracturing, rock samples with different alteration were analysed. The alteration degree was characterized both under optical microscope and image analysis and compared with the results obtained from the chemical tests. It was concluded that natural alteration reduces dramatically the releasable alkalis available in the rocks.

  17. Disinfection by-product formation during chlor(am)ination of algal organic matters (AOM) extracted from Microcystis aeruginosa: effect of growth phases, AOM and bromide concentration.

    Science.gov (United States)

    Chen, Juxiang; Gao, Naiyun; Li, Lei; Zhu, Mingqiu; Yang, Jing; Lu, Xian; Zhang, Yansen

    2017-03-01

    Algae organic matter (AOM), including extracellular organic matter (EOM) and intracellular organic matter (IOM), has caused a series of problems to the water quality, among which formation of disinfection by-products (DBPs) during subsequent chlor(am)ination process was especially serious and concerned. This study characterized physicochemical properties of the EOM and IOM solution extracted from different growth phases of Microcystis aeruginosa and investigated the corresponding formation potential of DBPs during chlor(am)ination process. Besides, the effects of initial concentration of xEOM, IOM, and Br - on the yields of disinfection by-product formation potential were studied. The results indicated that the specific UV absorbance (SUVA 254 ) values of IOM and EOM (1.09 and 2.66 L/mg m) were considerably lower than that of natural organic matter (NOM) (4.79 L/mg m). Fluorescence dates showed the soluble microbial by-product was dominant in both EOM and IOM, and the tryptophan was the main component of AOM. From the excitation-emission matrix figure of EOM and IOM, we found that the content of the high molecular weight protein substance in IOM was higher than EOM. During chlorination of EOM and IOM, the yields of four kinds of DBPs followed the order trichloroethene (TCM) > 1,1-DCP > dichloride acetonitrile (DCAN) > trichloronitromethane (TCNM), while the order was TCM > DCAN > TCNM > 1,1-DCP during chloramination process. The bromine substitution factor (BSF) value increased with the increasing of the concentration of Br - . When the concentration of Br - was 500 μg/L, the BSF values of chlorination EOM and IOM were 51.1 and 68.4%, respectively. As the concentration of Br - increased, the formation of Cl-DBPs was inhibited and the formation of Br-DBPs was promoted. Graphical abstract ᅟ.

  18. Plasma assisted measurements of alkali metal concentrations in pressurized combustion processes

    Energy Technology Data Exchange (ETDEWEB)

    Hernberg, R.; Haeyrinen, V. [Tampere Univ. of Technology (Finland). Dept. of Physics

    1996-12-01

    The plasma assisted method for continuous measurement of alkali concentrations in product gas flows of pressurized energy processes will be tested and applied at the 1.6 MW PFBC/G facility at Delft University of Technology in the Netherlands. During the reporting period the alkali measuring device has been tested under pressurized conditions at VTT Energy, DMT, Foster-Wheeler Energia and ABB Carbon. Measurements in Delft will be performed during 1996 after installation of the hot gas filter. The original plan for measurements in Delft has been postponed due to schedule delays in Delft. The results are expected to give information about the influence of different process conditions on the generation of alkali vapours, the comparison of different methods for alkali measurement and the specific performance of our system. This will be the first test of the plasma assisted measurement method in a gasification process. The project belongs to the Joule II extension program under contract JOU2-CT93-0431. (author)

  19. The Impact of the Source of Alkali on Sludge Batch 3 Melt Rate

    International Nuclear Information System (INIS)

    Smith, M

    2005-01-01

    Previous Savannah River National Laboratory (SRNL) melt rate tests in support of the Defense Waste Processing Facility (DWPF) have indicated that improvements in melt rate can be achieved through an increase in the total alkali of the melter feed. Higher alkali can be attained by the use of an ''underwashed'' sludge, a high alkali frit, or a combination of the two. Although the general trend between melt rate and total alkali (in particular Na 2 O content) has been demonstrated, the question of ''does the source of alkali (SOA) matter?'' still exists. Therefore the purpose of this set of tests was to determine if the source of alkali (frit versus sludge) can impact melt rate. The general test concept was to transition from a Na 2 O-rich frit to a Na 2 O-deficient frit while compensating the Na 2 O content in the sludge to maintain the same overall Na 2 O content in the melter feed. Specifically, the strategy was to vary the amount of alkali in frits and in the sludge batch 3 (SB3) sludge simulant (midpoint or baseline feed was SB3/Frit 418 at 35% waste loading) so that the resultant feeds had the same final glass composition when vitrified. A set of SOA feeds using frits ranging from 0 to 16 weight % Na 2 O (in 4% increments) was first tested in the Melt Rate Furnace (MRF) to determine if indeed there was an impact. The dry-fed MRF tests indicated that if the alkali is too depleted from either the sludge (16% Na 2 O feed) or the frit (the 0% Na 2 O feed), then melt rate was negatively impacted when compared to the baseline SB3/Frit 418 feed currently being processed at DWPF. The MRF melt rates for the 4 and 12% SOA feeds were similar to the baseline SB3/Frit 418 (8% SOA) feed. Due to this finding, a smaller subset of SOA feeds that could be processed in the DWPF (4 and 12% SOA feeds) was then tested in the Slurry-fed Melt Rate Furnace (SMRF). The results from a previous SMRF test with SB3/Frit 418 (Smith et al. 2004) were used as the SMRF melt rate of the baseline

  20. Self-trapped holes in alkali silver halide crystals

    International Nuclear Information System (INIS)

    Awano, T.; Ikezawa, M.; Matsuyama, T.

    1995-01-01

    γ-Ray irradiation at 77 K induces defects in M 2 AgX 3 (M=Rb, K and NH 4 ; X=Br and I) crystals. The irradiation induces self-trapped holes of the form of I 0 in the case of alkali silver iodides, and (halogen) 2 - and (halogen) 0 in the case of ammonium silver halides. The (halogen) 0 is weakly coupled with the nearest alkali metal ion or ammonium ion. It is able to be denoted as RbI + , KI + , NH 4 I + or NH 4 Br + . The directions of hole distribution of (halogen) 2 - and (halogen) 0 were different in each case of the alkali silver iodides, ammonium silver halides and mixed crystal of them. The (halogen) 0 decayed at 160 K in annealing process. The (halogen) 2 - was converted into another form of (halogen) 2 - at 250 K and this decayed at 310 K. A formation of metallic layers was observed on the crystal surface parallel with the c-plane of (NH 4 ) 2 AgI 3 irradiated at room temperature. (author)

  1. Paleodosimetrical properties of sodium alkali feldspars and problems of luminescence dating of sediments

    International Nuclear Information System (INIS)

    Huett, Galina; Jaek, Ivar

    1996-01-01

    Emission spectra of natural alkali feldspars extracted from sediments are studied using a CCD-camera based high sensitivity spectrometer. Applying a semiconductor laser (860± 1 nm), two dominant emission bands, blue (410 nm) and orange (570 nm), are revealed in infrared optically stimulated luminescence (IROSL) spectra for the most of the sediments from Scandinavian sections. Luminescence and dosimetric al properties of the hole traps, the induced orange emission band typical of sodium alkali feldspars are studied. As a result, high light bleach ability but low stability of the dosimetric al information lit sodium alkali feldspars are established. Problems of luminescence dating of sediments based on the mixture of potassium-sodium alkali feldspars are discussed. (author)

  2. Measures for simultaneous minimisation of alkali related operating problems; Aatgaerder foer samtidig minimering av alkalirelaterade driftproblem. Ramprogram

    Energy Technology Data Exchange (ETDEWEB)

    Davidsson, Kent; Eskilsson, David; Gyllenhammar, Marianne; Herstad Svaerd, Solvie; Kassman, Haakan; Steenari, Britt-Marie; Aamand, Lars-Erik

    2006-12-15

    Combustion of biofuel and waste wood is often accompanied by chlorine and alkali related operating problems such as slagging, deposit formation and corrosion on heat exchanger surfaces and bed agglomeration in fluidised bed boilers. In order to gain a greater insight into possible measures to overcome alkali related operating problems studies were carried out during 2005-2006. The results of the studies are presented in this report which includes work performed in the two following projects: 1 A5-509 Frame work - measures for simultaneous minimisation of alkali related operating problems 2 A5-505 Bed agglomeration risk related to combustion of cultivated fuels (wheat straw, red canary grass, industrial hemp) in commercial bed materials Full-scale experiments were carried out at Chalmers 12 MW{sub th} CFB boiler within the project A5-509. The purpose was to study the effect of various measures on bed agglomeration and deposit formation in connection with co-combustion of wood and straw pellets. The various measures included changing the bed material (blast furnace sand and olivine sand), adding various additives (kaolin, ammonium sulphate, elemental sulphur) and also co-combustion with sewage sludge. Furthermore results from kaolin experiments at the 26 MWth CFB boiler owned by Naessjoe Affaersverk were made available during the project and are also presented in this report. The results from the experiments at Chalmers revealed that, already at the lowest dosage of kaolin, approx. 2 kg/MWh, the bed material agglomeration temperatures increased significantly. The dosage of kaolin can presumably be reduced somewhat further while still maintaining the high agglomeration temperature. Experiments with a higher dosage of kaolin, 7 kg/MWh, proved that kaolin could also reduce the risk of deposit problems. The experiments at Naessjoe showed also that addition of kaolin increased the agglomeration temperature of the bed material. Addition of sulphur in any form resulted in a

  3. Compression-Driven Enhancement of Electronic Correlations in Simple Alkali Metals

    Science.gov (United States)

    Fabbris, Gilberto; Lim, Jinhyuk; Veiga, Larissa; Haskel, Daniel; Schilling, James

    2015-03-01

    Alkali metals are the best realization of the nearly free electron model. This scenario appears to change dramatically as the alkalis are subjected to extreme pressure, leading to unexpected properties such as the departure from metallic behavior in Li and Na, and the occurrence of remarkable low-symmetry crystal structures in all alkalis. Although the mechanism behind these phase transitions is currently under debate, these are believed to be electronically driven. In this study the high-pressure electronic and structural ground state of Rb and Cs was investigated through low temperature XANES and XRD measurements combined with ab initio calculations. The results indicate that the pressure-induced localization of the conduction band triggers a Peierls-like mechanism, inducing the low symmetry phases. This localization process is evident by the pressure-driven increase in the number of d electrons, which takes place through strong spd hybridization. These experimental results indicate that compression turns the heavy alkali metals into strongly correlated electron systems. Work at Argonne was supported by DOE No. DE-AC02-06CH11357. Research at Washington University was supported by NSF DMR-1104742 and CDAC/DOE/NNSA DE-FC52-08NA28554.

  4. Long-range interactions between excited helium and alkali-metal atoms

    KAUST Repository

    Zhang, J.-Y.

    2012-12-03

    The dispersion coefficients for the long-range interaction of the first four excited states of He, i.e., He(2 1,3S) and He(2 1,3P), with the low-lying states of the alkali-metal atoms Li, Na, K, and Rb are calculated by summing over the reduced matrix elements of the multipole transition operators. For the interaction between He and Li the uncertainty of the calculations is 0.1–0.5%. For interactions with other alkali-metal atoms the uncertainty is 1–3% in the coefficient C5, 1–5% in the coefficient C6, and 1–10% in the coefficients C8 and C10. The dispersion coefficients Cn for the interaction of He(2 1,3S) and He(2 1,3P) with the ground-state alkali-metal atoms and for the interaction of He(2 1,3S) with the alkali-metal atoms in their first 2P states are presented in this Brief Report. The coefficients for other pairs of atomic states are listed in the Supplemental Material.

  5. Structural and Magnetic Diversity in Alkali-Metal Manganate Chemistry: Evaluating Donor and Alkali-Metal Effects in Co-complexation Processes.

    Science.gov (United States)

    Uzelac, Marina; Borilovic, Ivana; Amores, Marco; Cadenbach, Thomas; Kennedy, Alan R; Aromí, Guillem; Hevia, Eva

    2016-03-24

    By exploring co-complexation reactions between the manganese alkyl Mn(CH2SiMe3)2 and the heavier alkali-metal alkyls M(CH2SiMe3) (M=Na, K) in a benzene/hexane solvent mixture and in some cases adding Lewis donors (bidentate TMEDA, 1,4-dioxane, and 1,4-diazabicyclo[2,2,2] octane (DABCO)) has produced a new family of alkali-metal tris(alkyl) manganates. The influences that the alkali metal and the donor solvent impose on the structures and magnetic properties of these ates have been assessed by a combination of X-ray, SQUID magnetization measurements, and EPR spectroscopy. These studies uncover a diverse structural chemistry ranging from discrete monomers [(TMEDA)2 MMn(CH2SiMe3)3] (M=Na, 3; M=K, 4) to dimers [{KMn(CH2SiMe3)3 ⋅C6 H6}2] (2) and [{NaMn(CH2SiMe3)3}2 (dioxane)7] (5); and to more complex supramolecular networks [{NaMn(CH2SiMe3)3}∞] (1) and [{Na2Mn2 (CH2SiMe3)6 (DABCO)2}∞] (7)). Interestingly, the identity of the alkali metal exerts a significant effect in the reactions of 1 and 2 with 1,4-dioxane, as 1 produces coordination adduct 5, while 2 forms heteroleptic [{(dioxane)6K2Mn2 (CH2SiMe3)4(O(CH2)2OCH=CH2)2}∞] (6) containing two alkoxide-vinyl anions resulting from α-metalation and ring opening of dioxane. Compounds 6 and 7, containing two spin carriers, exhibit antiferromagnetic coupling of their S=5/2 moments with varying intensity depending on the nature of the exchange pathways. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Alkali production in the mouth and its relationship with certain patient's characteristics

    Directory of Open Access Journals (Sweden)

    Valeria Veiga GORDAN

    2014-12-01

    Full Text Available Objectives To assess the relationships among alkali production, diet, oral health behaviors, and oral hygiene. Methods Data from 52 subjects including demographics, diet, and oral hygiene scores were analyzed against the level of arginine and urea enzymes in plaque and saliva samples. An oral habit survey was completed that included: use of tobacco (TB, alcohol (AH, sugary drinks (SD, and diet. Alkali production through arginine deiminase (ADS and urease activities were measured in smooth-surface supragingival dental plaque and un stimulated saliva samples from all subjects. ADS and urease activities were measured by quantification of the ammonia generated from the incubation of plaque or saliva samples. Spearman correlations were used to compute all associations. Results Participants in the lowest SES (Socio-economic status group had the habit of consuming sugary drinks the most and had the highest rate of tobacco use. Males consumed significantly more alcohol than females. No significant relationship was found between age or gender and alkali production. Higher rates of sugary drink consumption and tobacco use were significantly related to lower alkali production. Conclusion The study showed a relationship between alkali production and oral hygiene, diet, and certain oral health behaviors. Poor oral hygiene was significantly associated with age, lower SES, tobacco use, and alcohol, and sugary drinks consumption. Clinical relevance Certain oral health behaviors have an impact on oral hygiene and on alkali production; it is important to address these factors with patients as a strategy for caries control.

  7. Alkali production in the mouth and its relationship with certain patient's characteristics.

    Science.gov (United States)

    Gordan, Valeria Veiga; McEdward, Deborah Landry; Ottenga, Marc Edward; Garvan, Cynthia Wilson; Harris, Pearl Ann

    2014-01-01

    To assess the relationships among alkali production, diet, oral health behaviors, and oral hygiene. Data from 52 subjects including demographics, diet, and oral hygiene scores were analyzed against the level of arginine and urea enzymes in plaque and saliva samples. An oral habit survey was completed that included: use of tobacco (TB), alcohol (AH), sugary drinks (SD), and diet. Alkali production through arginine deiminase (ADS) and urease activities were measured in smooth-surface supragingival dental plaque and un stimulated saliva samples from all subjects. ADS and urease activities were measured by quantification of the ammonia generated from the incubation of plaque or saliva samples. Spearman correlations were used to compute all associations. Participants in the lowest SES (Socio-economic status) group had the habit of consuming sugary drinks the most and had the highest rate of tobacco use. Males consumed significantly more alcohol than females. No significant relationship was found between age or gender and alkali production. Higher rates of sugary drink consumption and tobacco use were significantly related to lower alkali production. The study showed a relationship between alkali production and oral hygiene, diet, and certain oral health behaviors. Poor oral hygiene was significantly associated with age, lower SES, tobacco use, and alcohol, and sugary drinks consumption. Clinical relevance Certain oral health behaviors have an impact on oral hygiene and on alkali production; it is important to address these factors with patients as a strategy for caries control.

  8. Plasma assisted measurements of alkali metal concentrations in pressurized combustion processes

    International Nuclear Information System (INIS)

    Hernberg, R.; Haeyrinen, V.

    1995-01-01

    The plasma assisted method for continuous measurement of alkali metal concentrations in product gas flows of pressurized energy processes will be tested and applied at the 1.6 MW PFBC/G facility at Delft University of Technology in the Netherlands. Measurements will be performed during 1995 and 1996 at different stages of the research programme. The results are expected to give information about the influence of different process conditions on the generation of alkali metal vapours, the comparison of different methods for alkali measurement and the specific performance of our system. The project belongs to the Joule II extension program under contract JOU2-CT93-0431. (author)

  9. Alkali-treated titanium selectively regulating biological behaviors of bacteria, cancer cells and mesenchymal stem cells.

    Science.gov (United States)

    Li, Jinhua; Wang, Guifang; Wang, Donghui; Wu, Qianju; Jiang, Xinquan; Liu, Xuanyong

    2014-12-15

    Many attentions have been paid to the beneficial effect of alkali-treated titanium to bioactivity and osteogenic activity, but few to the other biological effect. In this work, hierarchical micro/nanopore films were prepared on titanium surface by acid etching and alkali treatment and their biological effects on bacteria, cancer cells and mesenchymal stem cells were investigated. Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and human cholangiocarcinoma cell line RBE were used to investigate whether alkali-treated titanium can influence behaviors of bacteria and cancer cells. Responses of bone marrow mesenchymal stem cells (BMMSCs) to alkali-treated titanium were also subsequently investigated. The alkali-treated titanium can potently reduce bacterial adhesion, inhibit RBE and BMMSCs proliferation, while can better promote BMMSCs osteogenesis and angiogenesis than acid-etched titanium. The bacteriostatic ability of the alkali-treated titanium is proposed to result from the joint effect of micro/nanotopography and local pH increase at bacterium/material interface due to the hydrolysis of alkali (earth) metal titanate salts. The inhibitory action of cell proliferation is thought to be the effect of local pH increase at cell/material interface which causes the alkalosis of cells. This alkalosis model reported in this work will help to understand the biologic behaviors of various cells on alkali-treated titanium surface and design the intended biomedical applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Is Electronegativity a Useful Descriptor for the 'Pseudo-Alkali-Metal' NH4?

    International Nuclear Information System (INIS)

    Whiteside, Alexander; Xantheas, Sotiris S.; Gutowski, Maciej S.

    2011-01-01

    Molecular ions in the form of 'pseudo-atoms' are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined the electronegativity of the 'pseudo-alkali metal' ammonium (NH4) and evaluated its reliability as a descriptor in comparison to the electronegativities of the alkali metals. The computed properties of its binary complexes with astatine and of selected borohydrides confirm the similarity of NH4 to the alkali metal atoms, although the electronegativity of NH4 is relatively large in comparison to its cationic radius. We paid particular attention to the molecular properties of ammonium (angular anisotropy, geometric relaxation, and reactivity), which can cause deviations from the behaviour expected of a conceptual 'true alkali metal' with this electronegativity. These deviations allow for the discrimination of effects associated with the polyatomic nature of NH4.

  11. Optically stimulated luminescence characteristics of natural and doped quartz and alkali feldspars

    Energy Technology Data Exchange (ETDEWEB)

    Huett, G.; Jaek, I.; Brodski, L. [Institute of Geology at Tallinn Technical University, Tallinn (Estonia); Vasilchenko, V. [Institute of Experimental Physics and Technology of Tartu University, Tartu (Estonia)

    1999-05-01

    Natural alkali feldspars and quartz were doped by Tl and Cu by thermodiffusion and electrodiffusion technology. As a result of doping, intensive UV emission bands were created. The OSL stimulation spectra of irradiated natural and doped quartz and alkali feldspars were measured in the span of 400-1300 nm using UV emission of Tl at 280 nm and of Cu at 380 nm. One-trap centre conception was confirmed for high-temperature palaeodosimetrical TL peaks and OSL stimulation spectrum bands: for alkali feldspars at 880 and 420 nm and visible region of the spectrum for quartz. A thermooptical mechanism of the optical depopulation of the corresponding trap is confirmed in alkali feldspars, but there is no evidence for processes of this kind in quartz. An analogy between the physical background of OSL properties of both minerals is discussed.

  12. Optically stimulated luminescence characteristics of natural and doped quartz and alkali feldspars

    International Nuclear Information System (INIS)

    Huett, G.; Jaek, I.; Brodski, L.; Vasilchenko, V.

    1999-01-01

    Natural alkali feldspars and quartz were doped by Tl and Cu by thermodiffusion and electrodiffusion technology. As a result of doping, intensive UV emission bands were created. The OSL stimulation spectra of irradiated natural and doped quartz and alkali feldspars were measured in the span of 400-1300 nm using UV emission of Tl at 280 nm and of Cu at 380 nm. One-trap centre conception was confirmed for high-temperature palaeodosimetrical TL peaks and OSL stimulation spectrum bands: for alkali feldspars at 880 and 420 nm and visible region of the spectrum for quartz. A thermooptical mechanism of the optical depopulation of the corresponding trap is confirmed in alkali feldspars, but there is no evidence for processes of this kind in quartz. An analogy between the physical background of OSL properties of both minerals is discussed

  13. Method and composition for testing for the presence of an alkali metal

    International Nuclear Information System (INIS)

    Guon, J.

    1981-01-01

    A method and composition for detecting the presence of an alkali metal on the surface of a body such as a metal plate, tank, pipe or the like is provided. The method comprises contacting the surface with a thin film of a liquid composition comprising a light-colored pigment, an acid-base indicator, and a nonionic wetting agent dispersed in a liquid carrier comprising a minor amount of water and a major amount of an organic solvent selected from the group consisting of the lower aliphatic alcohols, ketones and ethers. Any alkali metal present on the surface in elemental form or as an alkali metal hydroxide or alkali metal carbonate will react with the acid-base indicator to produce a contrasting color change in the thin film, which is readily discernible by visual observation or automatic techniques

  14. The alkali and alkaline earth metal doped ZnO nanotubes: DFT studies

    International Nuclear Information System (INIS)

    Peyghan, Ali Ahmadi; Noei, Maziar

    2014-01-01

    Doping of several alkali and alkaline earth metals into sidewall of an armchair ZnO nanotube has been investigated by employing the density functional theory in terms of energetic, geometric, and electronic properties. It has been found that doping processes of the alkali and alkaline metals are endothermic and exothermic, respectively. Based on the results, contrary to the alkaline metal doping, the electronic properties of the tube are much more sensitive to alkali metal doping so that it is transformed from intrinsic semiconductor with HOMO–LUMO energy gap of 3.77 eV to an extrinsic semiconductor with the energy gap of ∼1.11–1.95 eV. The doping of alkali and alkaline metals increases and decreases the work function of the tube, respectively, which may influence the electron emission from the tube surface

  15. Graphite-based detectors of alkali metals for nuclear power plants

    International Nuclear Information System (INIS)

    Kalandarishvili, A.G.; Kuchukhidze, V.A.; Sordiya, T.D.; Shartava, Sh.Sh.; Stepennov, B.S.

    1993-01-01

    The coolants most commonly used in today's fast reactors are alkali metals or their alloys. A major problem in nuclear plant design is leakproofing of the liquid-metal cooling system, and many leak detection methods and safety specifications have been developed as a result. Whatever the safety standards adopted for nuclear plants in different countries, they all rely on the basic fact that control of the contamination and radiation hazards involved requires reliable monitoring equipment. Results are presented of trials with some leak detectors for the alkali-metal circuits of nuclear reactors. The principal component affecting the detector performance is the sensing element. In the detectors graphite was employed, whose laminar structure enables it to absorb efficiently alkali-metal vapors at high temperatures (320--500 K). This produces a continuous series of alkali-metal-graphite solid solutions with distinct electrical, thermal, and other physical properties. The principle of operation of the detectors resides in the characteristic reactions of the metal-graphite system. One detector type uses the change of electrical conductivity of the graphite-film sensor when it is exposed to alkali-metal vapor. In order to minimize the effect of temperature on the resistance the authors prepared composite layers of graphite intercalated with a donor impurity (cesium or barium), and a graphite-nickel material. The addition of a small percentage of cesium, barium, or nickel produces a material whose temperature coefficient of resistance is nearly zero. Used as a sensing element, such a material can eliminate the need for thermostatic control of the detector

  16. Mass Spectrometric Analyses of Phosphatidylcholines in Alkali-Exposed Corneal Tissue

    Science.gov (United States)

    Crane, Ashley M.; Hua, Hong-Uyen; Coggin, Andrew D.; Gugiu, Bogdan G.; Lam, Byron L.; Bhattacharya, Sanjoy K.

    2012-01-01

    Purpose. The aims were to determine whether exposure to sodium hydroxide results in predictable changes in phosphatidylcholine (PC) in corneal tissue and if PC profile changes correlate to exposure duration. PCs are major components of the cell membrane lipid bilayer and are often involved in biological processes such as signaling. Methods. Enucleated porcine (n = 140) and cadaver human eyes (n = 20) were exposed to water (control) and 11 M NaOH. The corneas were excised and lipids were extracted using the Bligh and Dyer method with suitable modifications. Class-specific lipid identification was carried out using a ratiometric lipid standard on a TSQ Quantum Access Max mass spectrometer. Protein amounts were determined using Bradford assays. Results. Control and alkali-treated corneas showed reproducible PC spectra for both porcine and human corneas. Over 200 PCs were identified for human and porcine control and each experimental time point. Several PC species (m/z values) consequent upon alkali exposure could not be ascribed to a recorded PC species. Control and treated groups showed 41 and 29 common species among them for porcine and human corneas, respectively. The unique PC species peaked at 12 minutes and at 30 minutes for human and porcine corneas followed by a decline consistent with an interplay of alkali penetration and hydrolyses at various time points. Conclusions. Alkali exposure dramatically changes the PC profile of cornea. Our data are consistent with penetration and hydrolysis as stochastic contributors to changes in PCs due to exposure to alkali for a finite duration and amount. PMID:22956606

  17. Long-range interactions between excited helium and alkali-metal atoms

    KAUST Repository

    Zhang, J.-Y.; Schwingenschlö gl, Udo; Shi, T.-Y.; Tang, L.-Y.; Yan, Z.-C.

    2012-01-01

    –5% in the coefficient C6, and 1–10% in the coefficients C8 and C10. The dispersion coefficients Cn for the interaction of He(2 1,3S) and He(2 1,3P) with the ground-state alkali-metal atoms and for the interaction of He(2 1,3S) with the alkali-metal atoms in their first

  18. Mercury(II) removal from aqueous solutions and wastewaters using a novel cation exchanger derived from coconut coir pith and its recovery

    International Nuclear Information System (INIS)

    Anirudhan, T.S.; Divya, L.; Ramachandran, M.

    2008-01-01

    A new adsorbent (PGCP-COOH) having carboxylate functional group at the chain end was synthesized by grafting poly(hydroxyethylmethacrylate) onto coconut coir pith, CP (a coir industry-based lignocellulosic residue), using potassium peroxydisulphate as an initiator and in the presence of N,N'-methylenebisacrylamide as a cross-linking agent. The adsorbent was characterized with the help of infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and potentiometric titrations. The ability of PGCP-COOH to remove Hg(II) from aqueous solutions was assessed using batch adsorption technique under kinetic and equilibrium conditions. Adsorbent exhibits very high adsorption potential for Hg(II) and more than 99.0% removal was achieved in the pH range 5.5-8.0. Adsorption process was found to follow first-order-reversible kinetics. An increase of ionic strength of the medium caused a decrease in metal removal, indicating the occurrence of outer-sphere surface complex mechanism. The equilibrium data were fitted well by the Freundlich isotherm model (R 2 = 0.99; χ 2 1.81). The removal efficiency was tested using chlor-alkali industry wastewater. Adsorption isotherm experiments were also conducted for comparison using a commercial carboxylate-functionalized ion exchanger, Ceralite IRC-50. Regeneration experiments were tried for four cycles and results indicate a capacity loss of <9.0%

  19. Mercury(II) removal from aqueous solutions and wastewaters using a novel cation exchanger derived from coconut coir pith and its recovery.

    Science.gov (United States)

    Anirudhan, T S; Divya, L; Ramachandran, M

    2008-09-15

    A new adsorbent (PGCP-COOH) having carboxylate functional group at the chain end was synthesized by grafting poly(hydroxyethylmethacrylate) onto coconut coir pith, CP (a coir industry-based lignocellulosic residue), using potassium peroxydisulphate as an initiator and in the presence of N,N'-methylenebisacrylamide as a cross-linking agent. The adsorbent was characterized with the help of infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and potentiometric titrations. The ability of PGCP-COOH to remove Hg(II) from aqueous solutions was assessed using batch adsorption technique under kinetic and equilibrium conditions. Adsorbent exhibits very high adsorption potential for Hg(II) and more than 99.0% removal was achieved in the pH range 5.5-8.0. Adsorption process was found to follow first-order-reversible kinetics. An increase of ionic strength of the medium caused a decrease in metal removal, indicating the occurrence of outer-sphere surface complex mechanism. The equilibrium data were fitted well by the Freundlich isotherm model (R(2)=0.99; chi(2)=1.81). The removal efficiency was tested using chlor-alkali industry wastewater. Adsorption isotherm experiments were also conducted for comparison using a commercial carboxylate-functionalized ion exchanger, Ceralite IRC-50. Regeneration experiments were tried for four cycles and results indicate a capacity loss of <9.0%.

  20. Modeling of Thermochemical Behavior in an Industrial-Scale Rotary Hearth Furnace for Metallurgical Dust Recycling

    Science.gov (United States)

    Wu, Yu-Liang; Jiang, Ze-Yi; Zhang, Xin-Xin; Xue, Qing-Guo; Yu, Ai-Bing; Shen, Yan-Song

    2017-10-01

    Metallurgical dusts can be recycled through direct reduction in rotary hearth furnaces (RHFs) via addition into carbon-based composite pellets. While iron in the dust is recycled, several heavy and alkali metal elements harmful for blast furnace operation, including Zn, Pb, K, and Na, can also be separated and then recycled. However, there is a lack of understanding on thermochemical behavior related to direct reduction in an industrial-scale RHF, especially removal behavior of Zn, Pb, K, and Na, leading to technical issues in industrial practice. In this work, an integrated model of the direct reduction process in an industrial-scale RHF is described. The integrated model includes three mathematical submodels and one physical model, specifically, a three-dimensional (3-D) CFD model of gas flow and heat transfer in an RHF chamber, a one-dimensional (1-D) CFD model of direct reduction inside a pellet, an energy/mass equilibrium model, and a reduction physical experiment using a Si-Mo furnace. The model is validated by comparing the simulation results with measurements in terms of furnace temperature, furnace pressure, and pellet indexes. The model is then used for describing in-furnace phenomena and pellet behavior in terms of heat transfer, direct reduction, and removal of a range of heavy and alkali metal elements under industrial-scale RHF conditions. The results show that the furnace temperature in the preheating section should be kept at a higher level in an industrial-scale RHF compared with that in a pilot-scale RHF. The removal rates of heavy and alkali metal elements inside the composite pellet are all faster than iron metallization, specifically in the order of Pb, Zn, K, and Na.

  1. Alkali-Activated Mortars for Sustainable Building Solutions: Effect of Binder Composition on Technical Performance

    Directory of Open Access Journals (Sweden)

    Agnese Attanasio

    2018-02-01

    Full Text Available There is a growing interest in the construction sector in the use of sustainable binders as an alternative to ordinary Portland cement, the production of which is highly impacting on the environment, due to high carbon dioxide emissions and energy consumption. Alkali-activated binders, especially those resulting from low-cost industrial by-products, such as coal fly ash or metallurgical slag, represent a sustainable option for cement replacement, though their use is more challenging, due to some technological issues related to workability or curing conditions. This paper presents sustainable alkali-activated mortars cured in room conditions and based on metakaolin, fly ash, and furnace slag (both by-products resulting from local sources and relevant blends, aiming at their real scale application in the building sector. The effect of binder composition—gradually adjusted taking into consideration technical and environmental aspects (use of industrial by-products in place of natural materials in the view of resources saving—on the performance (workability, compressive strength of different mortar formulations, is discussed in detail. Some guidelines for the design of cement-free binders are given, taking into consideration the effect of each investigated alumino-silicate component. The technical feasibility to produce the mortars with standard procedures and equipment, the curing in room conditions, the promising results achieved in terms of workability and mechanical performance (from 20.0 MPa up to 52.0 MPa, confirm the potential of such materials for practical applications (masonry mortars of class M20 and Md. The cement-free binders resulting from this study can be used as reference for the development of mortars and concrete formulations for sustainable building materials production.

  2. Alkali and chlorine in biomass - a problem in connection with power generation. Alkali och klor i biomassa - ett problem vid elgenerering

    Energy Technology Data Exchange (ETDEWEB)

    Gaerdenaes, S

    1991-06-04

    The literature survey gives a summary of the macronutrients and the variations in different biomass. Especially alkali is discussed. The work gives an account of difficult biomass fuels which will rather be used in hot water boilers than in gas turbines of power generation. The amount of alkali and chlorine increases from hardwood < softwood < salix < straw from Phalaris arundineral (harvested during summer). The range of variation was 10-25 between the assortments. The fraction division is the most important factor for the variation. Alkaline content also depend on age, soil fertility and storage methods. Seasonal aspects and local depositions are less important. However, great care should be taken with fuel from coastal areas because of chlorine depositions. Gasification of biomass to produce gas for combined cycle operation poses special problems. The alkali content of logging residues have to be cleaned up to approximately 99 % in the example. When the process gas is originated from straw or salix the separation have to be even more efficient. The method used for the separation could be based on wet or dry technic hotgas cleanup has not yet been tested in large scale but seems to be a promising method to attain high degree of separation and power efficiency. Difficulties of power generation make straw fuels less interesting. The content of alkali and chlorine can be considerably decreased by changing the way of fertilization and cultivation period. If everything turns out well, this would give a complementary for gasification or steam generation. To the greates part this fuels will however be used in pure heat production. (author).

  3. Alkali-labile sites and post-irradiation effects in single-stranded DNA induced by H radicals

    International Nuclear Information System (INIS)

    Lafleur, M.V.M.; Heuvel, N. van; Woldhuis, J.; Loman, H.

    1978-01-01

    Single-stranded phiX174 DNA in aqueous solutions has been irradiated in the absence of oxygen, under conditions in which H radicals react with the DNA. It was shown that H radical reactions result in breaks, which contribute approximately 10 per cent inactivation. Further, two types of alkali-labile sites were formed. One was lethal and gave rise to single-strand breaks by alkali and was most probably identical with post-irradiation heat damage and contributed about 33 per cent to the inactivation mentioned above. The other consisted of non-lethal damage, partly dihydropyrimidine derivatives, and was converted to lethal damage by alkali. This followed from experiments in which the DNA was treated with osmium-tetroxide, which oxidized thymine to 5,6-dihydroxydihydrothymine. Treatment with alkali of this DNA gave the same temperature dependence as found for the non-lethal alkali-labile sites in irradiated DNA. A similar temperature dependence was found for dihydrothymine and irradiated pyrimidines with alkali. (author)

  4. Alkali promotion of N-2 dissociation over Ru(0001)

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Hammer, Bjørk; Nørskov, Jens Kehlet

    1998-01-01

    Using self-consistent density functional calculations, we show that adsorbed Na and Cs lower the barrier for dissociation of N2 on Ru(0001). Since N2 dissociation is a crucial step in the ammonia synthesis reaction, we explain in this way the experimental observation that alkali metals promote th...... the ammonia synthesis reaction over Ru catalysts. We also show that the origin of this effect is predominantly a direct electrostatic attraction between the adsorbed alkali atoms and the dissociating molecule....

  5. High effective silica fume alkali activator

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Growing demands on the engineering properties of cement based materials and the urgency to decrease unsuitable ecologic impact of Portland cement manufacturing represent significant motivation for the development of new cement corresponding to these aspects. One category represents prospective alkali.

  6. luminescence in coloured alkali halide crystals

    Indian Academy of Sciences (India)

    have studied the effect of annealing in chlorine gas on the ML of X-rayed KCl crystals. ..... high temperature because of the thermal bleaching of the coloration in alkali halide ..... [31] J Hawkins, Ph.D. Thesis (University of Reading, 1976).

  7. Negative ion formation in collisions involving excited alkali atoms

    International Nuclear Information System (INIS)

    Cheret, M.

    1988-01-01

    Ion-pair production is considered as the prototype of the crossing problem between potential energy curves. In general an alkali atom is one of the reactants the other being an halogen, hydrogen atom or molecule. Experimental results are generally analyzed in the framework of the Landau-Zener-Stuekelberg theory, ionization potential and electron affinity, being the most important parameters. In order to vary these parameters over a wide range two experimental works have been devoted to systems of excited alkali atoms colliding with ground state alkali atoms. In the first study Rb atoms are excited to various ns or nd states from Rb(5d) to Rb(9s) in a cell. The second study is devoted to the Na(3p)-Na(3s) system, in this study also the possibility of creating excited negative ions (Na - (3s3p)) has been investigated. These results are presented and analyzed. Finally further developments of the subject are suggested. 17 refs.; 8 figs.; 1 table

  8. Theoretical study on the thermal and optical features of a diode side-pumped alkali laser

    Science.gov (United States)

    Han, Juhong; Liu, Xiaoxu; Wang, Hongyuan; Cai, He; An, Guofei; Zhang, Wei; Wang, You

    2018-03-01

    As one of the most hopeful candidates to achieve high power performances, a diode-pumped alkali laser (DPAL) has attracted a lot of attention in the last decade. Comparing with a diode end-pumped alkali laser (DEPAL), a diode side-pumped alkali laser (DSPAL) has great potentiality to realize an even-higher output of alkali lasers. However, there are few related researching studies concern DSPAL. In this paper, we introduce a theoretical model to investigate the physical features of a double-directions side-pumped alkali laser. The distributions of the population density, temperature, and absorption power at the cross section of a vapor cell are systematically studied. The analyses should be valuable for design of a steady high-powered DPAL.

  9. Comparative metabolic responses and adaptive strategies of wheat (Triticum aestivum) to salt and alkali stress.

    Science.gov (United States)

    Guo, Rui; Yang, Zongze; Li, Feng; Yan, Changrong; Zhong, Xiuli; Liu, Qi; Xia, Xu; Li, Haoru; Zhao, Long

    2015-07-07

    It is well known that salinization (high-pH) has been considered as a major environmental threat to agricultural systems. The aim of this study was to investigate the differences between salt stress and alkali stress in metabolic profiles and nutrient accumulation of wheat; these parameters were also evaluated to determine the physiological adaptive mechanisms by which wheat tolerates alkali stress. The harmful effect of alkali stress on the growth and photosynthesis of wheat were stronger than those of salt stress. High-pH of alkali stress induced the most of phosphate and metal ions to precipitate; as a result, the availability of nutrients significantly declined. Under alkali stress, Ca sharply increased in roots, however, it decreased under salt stress. In addition, we detected the 75 metabolites that were different among the treatments according to GC-MS analysis, including organic acids, amino acids, sugars/polyols and others. The metabolic data showed salt stress and alkali stress caused different metabolic shifts; alkali stress has a stronger injurious effect on the distribution and accumulation of metabolites than salt stress. These outcomes correspond to specific detrimental effects of a highly pH environment. Ca had a significant positive correlation with alkali tolerates, and increasing Ca concentration can immediately trigger SOS Na exclusion system and reduce the Na injury. Salt stress caused metabolic shifts toward gluconeogenesis with increased sugars to avoid osmotic stress; energy in roots and active synthesis in leaves were needed by wheat to develop salt tolerance. Alkali stress (at high pH) significantly inhibited photosynthetic rate; thus, sugar production was reduced, N metabolism was limited, amino acid production was reduced, and glycolysis was inhibited.

  10. Hydrothermal calcification of alkali treated titanium in CaHPO_4 solution

    International Nuclear Information System (INIS)

    Fu, T.; Fan, J.T.; Shen, Y.G.; Sun, J.M.

    2017-01-01

    The alkali treated titanium was hydrothermally treated in water and 10 mM CaHPO_4 solution (nominal concentration) at 80–180 °C to crystallize the titanate hydrogel layer and calcify the alkali treated titanium. Surface structure and elemental composition of the samples were analyzed by scanning electron microscopy, energy dispersive x-ray analysis, x-ray photoelectron spectroscopy, x-ray diffraction and Raman spectroscopy. Porous titanate hydrogel layer is formed on titanium after the alkali treatment. For the hydrothermal treatment in water, the hydrogel layer is crystallized as anatase TiO_2 with nanoporous or nanofibrous structure at 100 and 120 °C, and the layer is converted to anatase nanoparticles at 150 and 180 °C. For the hydrothermal treatment in the CaHPO_4 solution, hydroxyapatite nanocrystallites are deposited at the samples surface at 80–120 °C, but only anatase nanoparticles are formed at 150 and 180 °C. The growth of hydroxyapatite nanocrystallites is influenced by pH and temperature variations of the solution. The present alkali-hydrothermal treatment can avoid higher temperatures involved in the traditional alkali-heat treatments, which is applicable for bioactive surface modification of the thermally sensitive titanium alloys. The results also show that Raman spectroscopy is a useful technique to analyze the microstructure of TiO_2 and apatite films. - Highlights: • The alkali treated titanium is hydrothermally calcified in a CaHPO_4 solution. • HA nanocrystallites are formed at 80–120 °C, but TiO_2 nanoparticles at 150–180 °C. • The growth mechanism of HA nanocrystallites is discussed. • This low-temperature method is fit for some special titanium alloys.

  11. Electrochemical lithium migration to mitigate alkali-silica reaction in existing concrete structures

    NARCIS (Netherlands)

    Silva De Souza, L.M.

    2016-01-01

    Alkali-silica reaction (ASR) is a deterioration process that affects the durability of concrete structures worldwide. During the reaction, hydroxyl and alkali ions present in the pore solution react with reactive silica from the aggregate, forming a hygroscopic ASR gel. Alternatively, the silica

  12. Structural and functional properties of alkali-treated high-amylose rice starch.

    Science.gov (United States)

    Cai, Jinwen; Yang, Yang; Man, Jianmin; Huang, Jun; Wang, Zhifeng; Zhang, Changquan; Gu, Minghong; Liu, Qiaoquan; Wei, Cunxu

    2014-02-15

    Native starches were isolated from mature grains of high-amylose transgenic rice TRS and its wild-type rice TQ and treated with 0.1% and 0.4% NaOH for 7 and 14 days at 35 °C. Alkali-treated starches were characterised for structural and functional properties using various physical methods. The 0.1% NaOH treatment had no significant effect on structural and functional properties of starches except that it markedly increased the hydrolysis of starch by amylolytic enzymes. The 0.4% NaOH treatment resulted in some changes in structural and functional properties of starches. The alkali treatment affected granule morphology and decreased the electron density between crystalline and amorphous lamellae of starch. The effect of alkali on the crystalline structure including long- and short-range ordered structure was not pronounced. Compared with control starch, alkali-treated TRS starches had lower amylose content, higher onset and peak gelatinisation temperatures, and faster hydrolysis of starch by HCl and amylolytic enzymes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Synergistic capture mechanisms for alkali and sulfur species from combustion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, T.W.; Shadman, F.; Wendt, J.O.L.; Mwabe, P.O.

    1994-02-01

    Experimental work was carried out on a 17 kW, 600 cm long, gas laboratory combustor, to investigate the post flame reactive capture of alkali species by kaolinite. Emphasis was on alkali/sorbent interactions occurring in flue gas at temperatures above the alkali dewpoint and on the formation of water insoluble reaction products. Time-temperature studies were carried out by injecting kaolinite at different axial points along the combustor. The effect of chlorine and sulfur on alkali capture was investigated by doping the flame with SO{sub 2} and Cl{sub 2} gases to simulate coal flame environments. Particle time and temperature history was kept as close as possible to that which would ordinarily be found in a practical boiler. Experiments designed to extract apparent initial reaction rates were carried using a narrow range, 1-2 {mu}m modal size sorbent, while, a coarse, multi size sorbent was used to investigate the governing transport mechanisms. The capture reaction has been proposed to be between alkali hydroxide and activated kaolinite, and remains so in the presence of sulfur and chlorine. The presence of sulfur reduces sodium capture by under 10% at 1300{degree}C. Larger reductions at lower temperatures are attributed to the elevated dewpoint of sodium ({approximately}850{degree}C) with subsequent reduction in sorbent residence time in the alkali gas phase domain. Chlorine reduces sodium capture by 30% across the temperature range covered by the present experiments. This result has been linked to thermodynamic equilibria between sodium hydroxide, sodium chloride and water.

  14. Therapeutic effects of zerumbone in an alkali-burned corneal wound healing model.

    Science.gov (United States)

    Kim, Jong Won; Jeong, Hyuneui; Yang, Myeon-Sik; Lim, Chae Woong; Kim, Bumseok

    2017-07-01

    Cornea is an avascular transparent tissue. Ocular trauma caused by a corneal alkali burn induces corneal neovascularization (CNV), inflammation, and fibrosis, leading to vision loss. The purpose of this study was to examine the effects of Zerumbone (ZER) on corneal wound healing caused by alkali burns in mice. CNV was induced by alkali-burn injury in BALB/C female mice. Topical ZER (three times per day, 3μl each time, at concentrations of 5, 15, and 30μM) was applied to treat alkali-burned mouse corneas for 14 consecutive days. Histopathologically, ZER treatment suppressed alkali burn-induced CNV and decreased corneal epithelial defects induced by alkali burns. Corneal tissue treated with ZER showed reduced mRNA levels of pro-angiogenic genes, including vascular endothelial growth factor, matrix metalloproteinase-2 and 9, and pro-fibrotic factors such as alpha smooth muscle actin and transforming growth factor-1 and 2. Immunohistochemical analysis demonstrated that the infiltration of F4/80 and/or CCR2 positive cells was significantly decreased in ZER-treated corneas. ZER markedly inhibited the mRNA and protein levels of monocyte chemoattractant protein-1 (MCP-1) in human corneal fibroblasts and murine peritoneal macrophages. Immunoblot analysis revealed that ZER decreased the activation of signal transducer and activator of transcription 3 (STAT3), with consequent reduction of MCP-1 production by these cells. In conclusion, topical administration of ZER accelerated corneal wound healing by inhibition of STAT3 and MCP-1 production. Copyright © 2017. Published by Elsevier B.V.

  15. Pembuatan Sabun Cair Menggunakan Alkali Dari Kulit Coklat (Theobroma cacao L.) dengan Minyak Kelapa

    OpenAIRE

    Paduana, Aulia Bismar

    2017-01-01

    120405037 Penelitian ini bertujuan untuk mengetahui potensi kulit coklat sebagai alkali pada proses pembuatan sabun natural dan mengetahui sifat-sifat sabun natural yang dihasilkan dari minyak kelapa sebagai sumber asam lemak. Bahan ? bahan yang digunakan, antara lain minyak kelapa, alkali dari kulit coklat dan aquadest. Variabel ? variabel yang diamati, antara lain temperatur reaksi pembuatan sabun, waktu pengadukan dan waktu reaski penyabunan. Penelitian diawali dengan pembuatan alkali d...

  16. Device for removing alkali metal residues from heat exchanger

    International Nuclear Information System (INIS)

    Matal, O.

    1987-01-01

    The main parts of the facility consists of a condensing vessel and a vacuum pump unit interconnected via a vacuum pipe. The heat exchanger is heated to a temperature at which the alkali metal residues evaporate. Metal vapors are collected in the condensing vessel where they condense. The removal of the alkali metal residues from the heat exchanger pipes allows thorough inspection of the pipe inside during scheduled nuclear power plant shutdowns. The facility can be used especially with reverse steam generators. (E.S.). 1 fig

  17. Deliberate and Accidental Gas-Phase Alkali Doping of Chalcogenide Semiconductors: Cu(In,Ga)Se2.

    Science.gov (United States)

    Colombara, Diego; Berner, Ulrich; Ciccioli, Andrea; Malaquias, João C; Bertram, Tobias; Crossay, Alexandre; Schöneich, Michael; Meadows, Helene J; Regesch, David; Delsante, Simona; Gigli, Guido; Valle, Nathalie; Guillot, Jérome; El Adib, Brahime; Grysan, Patrick; Dale, Phillip J

    2017-02-24

    Alkali metal doping is essential to achieve highly efficient energy conversion in Cu(In,Ga)Se 2 (CIGSe) solar cells. Doping is normally achieved through solid state reactions, but recent observations of gas-phase alkali transport in the kesterite sulfide (Cu 2 ZnSnS 4 ) system (re)open the way to a novel gas-phase doping strategy. However, the current understanding of gas-phase alkali transport is very limited. This work (i) shows that CIGSe device efficiency can be improved from 2% to 8% by gas-phase sodium incorporation alone, (ii) identifies the most likely routes for gas-phase alkali transport based on mass spectrometric studies, (iii) provides thermochemical computations to rationalize the observations and (iv) critically discusses the subject literature with the aim to better understand the chemical basis of the phenomenon. These results suggest that accidental alkali metal doping occurs all the time, that a controlled vapor pressure of alkali metal could be applied during growth to dope the semiconductor, and that it may have to be accounted for during the currently used solid state doping routes. It is concluded that alkali gas-phase transport occurs through a plurality of routes and cannot be attributed to one single source.

  18. Tuning the electronic structure of graphene through alkali metal and halogen atom intercalation

    Science.gov (United States)

    Ahmad, Sohail; Miró, Pere; Audiffred, Martha; Heine, Thomas

    2018-04-01

    The deposition, intercalation and co-intercalation of heavy alkali metals and light halogens atoms in graphene mono- and bilayers have been studied using first principles density-functional calculations. Both the deposition and the intercalation of alkali metals gives rise to n-type doping due to the formation of M+-C- pairs. The co-intercalation of a 1:1 ratio of alkali metals and halogens derives into the formation of ionic pairs among the intercalated species, unaltering the electronic structure of the layered material.

  19. Alkali emissions of the PCFB-process

    International Nuclear Information System (INIS)

    Kuivalainen, R.; Eriksson, T.; Koskinen, J.; Lehtonen, P.

    1995-01-01

    Pressurized Circulating Fluidized Bed (PCFB) combustion technology has been developed by A. Ahlstrom Corporation since 1986. As a part of the development, a 10 MW PCFB Test Facility was constructed at Hans Ahlstrom Laboratory in Karhula, Finland in 1989. The Test Facility has been used for performance testing with different coal types through the years 1990-1994 in order to gain data for design and commercialization of the high-efficiency low- emission PCFB combustion technology. The project Y33 'Alkali emissions of the PCFB-process' was part of national LIEKKI 2 research program. The object of the project was to measure vapor phase Na and K concentrations in the PCFB flue gas after hot gas filter and investigate the effects of process conditions and sorbents on alkali release. The measured Na concentrations were between 0,03 and 0,21 ppm(w). The results of K were between 0,01 and 0,08 ppm(w). The accuracy of the results is about +-50 percent at this concentration range. The scatter of the data covers the effects of different process variables on the alkali emission . The measured emissions at 800-850 deg C are at the same order of magnitude as the guideline emission limits given by gas turbine manufacturers for flue gas at 1000-1200 deg C. The measurements and development of the analyses methods are planned to be continued during PcFB test runs in autumn 1995 in cooperation with laboratories of VTT Energy and Tampere University of Technology. (author)

  20. Electron detachment energies in high-symmetry alkali halide solvated-electron anions

    Science.gov (United States)

    Anusiewicz, Iwona; Berdys, Joanna; Simons, Jack; Skurski, Piotr

    2003-07-01

    We decompose the vertical electron detachment energies (VDEs) in solvated-electron clusters of alkali halides in terms of (i) an electrostatic contribution that correlates with the dipole moment (μ) of the individual alkali halide molecule and (ii) a relaxation component that is related to the polarizability (α) of the alkali halide molecule. Detailed numerical ab initio results for twelve species (MX)n- (M=Li,Na; X=F,Cl,Br; n=2,3) are used to construct an interpolation model that relates the clusters' VDEs to their μ and α values as well as a cluster size parameter r that we show is closely related to the alkali cation's ionic radius. The interpolation formula is then tested by applying it to predict the VDEs of four systems [i.e., (KF)2-, (KF)3-, (KCl)2-, and (KCl)3-] that were not used in determining the parameters of the model. The average difference between the model's predicted VDEs and the ab initio calculated electron binding energies is less than 4% (for the twelve species studied). It is concluded that one can easily estimate the VDE of a given high-symmetry solvated electron system by employing the model put forth here if the α, μ and cation ionic radii are known. Alternatively, if VDEs are measured for an alkali halide cluster and the α and μ values are known, one can estimate the r parameter, which, in turn, determines the "size" of the cluster anion.

  1. Conductivity in alkali doped CoO-B2O3 glasses

    International Nuclear Information System (INIS)

    Nagaraja, N; Sankarappa, T; Santoshkumar; Sadashivaiah, P J; Yenkayya

    2009-01-01

    Two series of cobalt-borate glasses doped with Li 2 O and K 2 O in single and mixed proportions have been synthesized by melt quenching method and investigated for ac conductivity in the frequency range of 50Hz to 5MHz and temperature range of 310K to 610K. From the measured total conductivity, the pure ac component and its frequency exponent, s were determined. In the single alkali doped glasses, for all the frequencies, the conductivity increased with increase of Li 2 O up to 0.4 mole fractions and decreased for further increase of Li 2 O. The temperature dependence of conductivity has been analyzed using Mott's small polaron hopping model and activation energy for ac conduction has been determined. Based on conductivity and activation behaviors, in single alkali glasses, a change over of conduction mechanism predominantly from ionic to electronic has been predicted. In mixed alkali doped glasses, the conductivity passed through minimum and activation energy passed through maximum for second alkali (K 2 O) content of 0.2 mole fractions. This result revealed the mixed alkali effect to be occurring at 0.2 mole fractions of K 2 O. The frequency exponent, s, was compared with theoretical models such as Quantum Mechanical Tunneling and Correlated Barrier Hopping models and found them to be inadequate to explain the experimental observations. Time-temperature superposition principle has been verified in both the sets of glasses.

  2. Life Cycle Greenhouse Gas Emissions of By-product Hydrogen from Chlor-Alkali Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong-Yeon [Argonne National Lab. (ANL), Argonne, IL (United States). Systems Assessment Group, Energy Systems Division; Elgowainy, Amgad A. [Argonne National Lab. (ANL), Argonne, IL (United States). Systems Assessment Group, Energy Systems Division; Dai, Qiang [Argonne National Lab. (ANL), Argonne, IL (United States). Systems Assessment Group, Energy Systems Division

    2017-12-01

    Current hydrogen production capacity in the U.S. is about 15.8 million tonne (or metric ton) per year (Brown 2016). Some of the hydrogen (2 million tonne) is combusted for its heating energy value, which makes total annual net production 13.8 million tonne (Table 1). If captive by-product hydrogen (3.3 million tonne) from catalytic reforming at oil refineries is excluded (Brown 2016; EIA 2008), approximately 11 million tonne is available from the conventional captive and merchant hydrogen market (DOE 2013). Captive hydrogen (owned by the refiner) is produced and consumed on site (e.g., process input at refineries), whereas merchant hydrogen is produced and sold as a commodity to external consumers. Whether it is merchant or captive, most hydrogen produced in the U.S. is on-purpose (not by-product)— around 10 million tonne/year.

  3. Alkali Metal Coolants. Proceedings of the Symposium on Alkali Metal Coolants - Corrosion Studies and System Operating Experience

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-06-15

    Proceedings of a Symposium organized by the IAEA and held in Vienna, 28 November - 2 December 1966. The meeting was attended by 107 participants from 16 countries and two international organizations. Contents: Review papers (2 papers); Corrosion of steels and metal alloys (6 papers); Mass transfer in alkali metal systems, behaviour of carbon (5 papers); Effects of sodium environment on mechanical properties of materials (3 papers); Effect of water leakage into sodium systems (2 papers); Design-and operation of testing apparatus (6 papers); Control, measurements and removal of impurities (13 papers); Corrosion by other alkali metals: NaK, K, Li, Cs (6 papers); Behaviour of fission products (3 papers). Each paper is in its original language (32 English, 6 French and 8 Russian) and is preceded by an abstract in English and one in the original language if this is not English. Discussions are in English. (author)

  4. Alkali Metal Coolants. Proceedings of the Symposium on Alkali Metal Coolants - Corrosion Studies and System Operating Experience

    International Nuclear Information System (INIS)

    1967-01-01

    Proceedings of a Symposium organized by the IAEA and held in Vienna, 28 November - 2 December 1966. The meeting was attended by 107 participants from 16 countries and two international organizations. Contents: Review papers (2 papers); Corrosion of steels and metal alloys (6 papers); Mass transfer in alkali metal systems, behaviour of carbon (5 papers); Effects of sodium environment on mechanical properties of materials (3 papers); Effect of water leakage into sodium systems (2 papers); Design-and operation of testing apparatus (6 papers); Control, measurements and removal of impurities (13 papers); Corrosion by other alkali metals: NaK, K, Li, Cs (6 papers); Behaviour of fission products (3 papers). Each paper is in its original language (32 English, 6 French and 8 Russian) and is preceded by an abstract in English and one in the original language if this is not English. Discussions are in English. (author)

  5. Recent materials compatibility studies in refractory metal-alkali metal systems for space power applications.

    Science.gov (United States)

    Harrison, R. W.; Hoffman, E. E.; Davies, R. L.

    1972-01-01

    Advanced Rankine and other proposed space power systems utilize refractory metals in contact with both single-phase and two-phase alkali metals at elevated temperatures. A number of recent compatibility experiments are described which emphasize the excellent compatibility of refractory metals with the alkali metals, lithium, sodium, and potassium, under a variety of environmental conditions. The alkali metal compatibilities of tantalum-, columbium-, molybdenum-, and tungsten-base alloys are discussed.

  6. Assessment of concrete bridge decks with alkali silica reactions

    DEFF Research Database (Denmark)

    Eriksen, Kirsten; Jansson, Jacob; Geiker, Mette Rica

    2008-01-01

    Based on investigations of concrete from an approximately 40 years old bridge a procedure to support the management of maintenance and repair of alkali silica damaged bridges is proposed. Combined petrography and accelerated expansion testing were undertaken on cores from the Bridge at Skovdiget......, Bagsværd, Denmark to provide information on the damage condition as well as the residual reactivity of the concrete. The Danish Road Directory’s guidelines for inspection and assessment of alkali silica damaged bridges will be briefly presented, and proposed modifications will be describe...

  7. Exploration of the catalytic use of alkali metal bases

    OpenAIRE

    Bao, Wei

    2017-01-01

    This PhD thesis project was concerned with the use of alkali metal amide Brønsted bases and alkali metal alkoxide Lewis bases in (asymmetric) catalysis. The first chapter deals with formal allylic C(sp3)–H bond activation of aromatic and functionalized alkenes for subsequent C–C and C–H bond formations. The second chapter is focused on C(sp3)–Si bond activation of fluorinated pro-nucleophiles in view of C–C bond formations. In the first chapter, a screening of various metal amides...

  8. Metasomatic alkali-feldspar syenites (episyenites) of the Proterozoic Suomenniemi rapakivi granite complex, southeastern Finland

    Science.gov (United States)

    Suikkanen, E.; Rämö, O. T.

    2017-12-01

    Peralkaline to marginally metaluminous alkali-feldspar syenites and quartz alkali-feldspar syenites are hosted by subalkaline, ferroan rapakivi granites in the 1644 Ma Suomenniemi complex of southeastern Finland. These alkali syenites form NW-oriented dikes and small (fingerprints are, within error, identical to those of the subalkaline granites of the complex. We propose that the Suomenniemi alkali-feldspar syenites are episyenites, formed as the result of pervasive local metasomatism of the subalkaline granites caused by high-temperature oxidizing peralkaline fluids. The process led to major geochemical changes, e.g., addition of Na, Al and Fe3 +, depletion of Si and Fe2 +, and partial to complete recrystallization of the granites along fluid pathways.

  9. Structural Diversity in Alkali Metal and Alkali Metal Magnesiate Chemistry of the Bulky 2,6-Diisopropyl-N-(trimethylsilyl)anilino Ligand.

    Science.gov (United States)

    Fuentes, M Ángeles; Zabala, Andoni; Kennedy, Alan R; Mulvey, Robert E

    2016-10-10

    Bulky amido ligands are precious in s-block chemistry, since they can implant complementary strong basic and weak nucleophilic properties within compounds. Recent work has shown the pivotal importance of the base structure with enhancement of basicity and extraordinary regioselectivities possible for cyclic alkali metal magnesiates containing mixed n-butyl/amido ligand sets. This work advances alkali metal and alkali metal magnesiate chemistry of the bulky arylsilyl amido ligand [N(SiMe 3 )(Dipp)] - (Dipp=2,6-iPr 2 -C 6 H 3 ). Infinite chain structures of the parent sodium and potassium amides are disclosed, adding to the few known crystallographically characterised unsolvated s-block metal amides. Solvation by N,N,N',N'',N''-pentamethyldiethylenetriamine (PMDETA) or N,N,N',N'-tetramethylethylenediamine (TMEDA) gives molecular variants of the lithium and sodium amides; whereas for potassium, PMDETA gives a molecular structure, TMEDA affords a novel, hemi-solvated infinite chain. Crystal structures of the first magnesiate examples of this amide in [MMg{N(SiMe 3 )(Dipp)} 2 (μ-nBu)] ∞ (M=Na or K) are also revealed, though these breakdown to their homometallic components in donor solvents as revealed through NMR and DOSY studies. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  10. Micelle formation during extraction of alkali elements from strongly alkaline mediums

    International Nuclear Information System (INIS)

    Apanasenko, V.V.; Reznik, A.M.; Bukin, V.I.; Brodskaya, A.V.

    1988-01-01

    Extraction of potassium, rubidium and cesium by phenol reagents in hydrocarbon solvents from strongly alkakine solutions was considered. Tendency of prepared alkali metal phenolates to form micelles in aqueous and organic phases was revealed. Phenolates tendency to form micelles is dictated mainly by the size and position of hydrocarbon substituent in molecule. It is shown that when micelles form in organic phase, alkali elements can be extracted both according to cation-exchange mechanism and according to micellar one. It is noted that alkai element extraction from strongly alkaline media requires the correct choice of extractant: alkali metal phenolate shouldn't form micelles in aqueous solution. n-Alkyl- and arylphenoldisulfides and polysulfides are most preferable for solvent extraction among considered phenol derivatives

  11. Highly reproducible alkali metal doping system for organic crystals through enhanced diffusion of alkali metal by secondary thermal activation.

    Science.gov (United States)

    Lee, Jinho; Park, Chibeom; Song, Intek; Koo, Jin Young; Yoon, Taekyung; Kim, Jun Sung; Choi, Hee Cheul

    2018-05-16

    In this paper, we report an efficient alkali metal doping system for organic single crystals. Our system employs an enhanced diffusion method for the introduction of alkali metal into organic single crystals by controlling the sample temperature to induce secondary thermal activation. Using this system, we achieved intercalation of potassium into picene single crystals with closed packed crystal structures. Using optical microscopy and Raman spectroscopy, we confirmed that the resulting samples were uniformly doped and became K 2 picene single crystal, while only parts of the crystal are doped and transformed into K 2 picene without secondary thermal activation. Moreover, using a customized electrical measurement system, the insulator-to-semiconductor transition of picene single crystals upon doping was confirmed by in situ electrical conductivity and ex situ temperature-dependent resistivity measurements. X-ray diffraction studies showed that potassium atoms were intercalated between molecular layers of picene, and doped samples did not show any KH- nor KOH-related peaks, indicating that picene molecules are retained without structural decomposition. During recent decades, tremendous efforts have been exerted to develop high-performance organic semiconductors and superconductors, whereas as little attention has been devoted to doped organic crystals. Our method will enable efficient alkali metal doping of organic crystals and will be a resource for future systematic studies on the electrical property changes of these organic crystals upon doping.

  12. Alkali-bonded ceramics with hierarchical tailored porosity

    Czech Academy of Sciences Publication Activity Database

    Landi, E.; Medri, V.; Papa, E.; Dědeček, Jiří; Klein, Petr; Benito, P.; Vaccari, A.

    2013-01-01

    Roč. 73, SI (2013), s. 56-64 ISSN 0169-1317 Institutional support: RVO:61388955 Keywords : alkali-bonded ceramics * metalcaolin * geopolymerization parameters Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.703, year: 2013

  13. DFT study of the interaction between DOTA chelator and competitive alkali metal ions.

    Science.gov (United States)

    Frimpong, E; Skelton, A A; Honarparvar, B

    2017-09-01

    1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetracetic acid (DOTA) is an important chelator for radiolabeling of pharmaceuticals. The ability of alkali metals found in the body to complex with DOTA and compete with radio metal ions can alter the radiolabeling process. Non-covalent interactions between DOTA complexed with alkali metals Li + , Na + , K + and Rb + , are investigated with density functional theory using B3LYP and ωB97XD functionals. Conformational possibilities of DOTA were explored with a varying number of carboxylic pendant arms of DOTA in close proximity to the ions. It is found that the case in which four arms of DOTA are interacting with ions is more stable than other conformations. The objective of this study is to explore the electronic structure properties upon complexation of alkali metals Li + Na + , K + and Rb + with a DOTA chelator. Interaction energies, relaxation energies, entropies, Gibbs free energies and enthalpies show that the stability of DOTA, complexed with alkali metals decreases down the group of the periodic table. Implicit water solvation affects the complexation of DOTA-ions leading to decreases in the stability of the complexes. NBO analysis through the natural population charges and the second order perturbation theory, revealed a charge transfer between DOTA and alkali metals. Conceptual DFT-based properties such as HOMO/LUMO energies, ΔE HOMO-LUMO and chemical hardness and softness indicated a decrease in the chemical stability of DOTA-alkali metal complexes down the alkali metal series. This study serves as a guide to researchers in the field of organometallic chelators, particularly, radiopharmaceuticals in finding the efficient optimal match between chelators and various metal ions. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Alkali production in the mouth and its relationship with certain patient’s characteristics

    Science.gov (United States)

    GORDAN, Valeria Veiga; McEDWARD, Deborah Landry; OTTENGA, Marc Edward; GARVAN, Cynthia Wilson; HARRIS, Pearl Ann

    2014-01-01

    Objectives To assess the relationships among alkali production, diet, oral health behaviors, and oral hygiene. Methods Data from 52 subjects including demographics, diet, and oral hygiene scores were analyzed against the level of arginine and urea enzymes in plaque and saliva samples. An oral habit survey was completed that included: use of tobacco (TB), alcohol (AH), sugary drinks (SD), and diet. Alkali production through arginine deiminase (ADS) and urease activities were measured in smooth-surface supragingival dental plaque and un stimulated saliva samples from all subjects. ADS and urease activities were measured by quantification of the ammonia generated from the incubation of plaque or saliva samples. Spearman correlations were used to compute all associations. Results Participants in the lowest SES (Socio-economic status) group had the habit of consuming sugary drinks the most and had the highest rate of tobacco use. Males consumed significantly more alcohol than females. No significant relationship was found between age or gender and alkali production. Higher rates of sugary drink consumption and tobacco use were significantly related to lower alkali production. Conclusion The study showed a relationship between alkali production and oral hygiene, diet, and certain oral health behaviors. Poor oral hygiene was significantly associated with age, lower SES, tobacco use, and alcohol, and sugary drinks consumption. Clinical relevance Certain oral health behaviors have an impact on oral hygiene and on alkali production; it is important to address these factors with patients as a strategy for caries control. PMID:25591024

  15. A light water excess heat reaction suggests that cold fusion may be alkali-hydrogen fusion

    International Nuclear Information System (INIS)

    Bush, R.T.

    1992-01-01

    This paper reports that Mills and Kneizys presented data in support of a light water excess heat reaction obtained with an electrolytic cell highly reminiscent of the Fleischmann-Pons cold fusion cell. The claim of Mills and Kneizys that their excess heat reaction can be explained on the basis of a novel chemistry, which supposedly also explains cold fusion, is rejected in favor of their reaction being, instead, a light water cold fusion reaction. It is the first known light water cold fusion reaction to exhibit excess heat, it may serve as a prototype to expand our understanding of cold fusion. From this new reactions are deduced, including those common to past cold fusion studies. This broader pattern of nuclear reactions is typically seen to involve a fusion of the nuclides of the alkali atoms with the simplest of the alkali-type nuclides, namely, protons, deuterons, and tritons. Thus, the term alkali-hydrogen fusion seems appropriate for this new type of reaction with three subclasses: alkali-hydrogen fusion, alkali-deuterium fusion, and alkali-tritium fusion. A new three-dimensional transmission resonance model (TRM) is sketched. Finally, preliminary experimental evidence in support of the hypothesis of a light water nuclear reaction and alkali-hydrogen fusion is reported. Evidence is presented that appears to strongly implicate the transmission resonance phenomenon of the new TRM

  16. Effects of alkali on protein polymerization and textural characteristics of textured wheat protein.

    Science.gov (United States)

    Li, Ting; Guo, Xiao-Na; Zhu, Ke-Xue; Zhou, Hui-Ming

    2018-01-15

    The impact of alkali addition on the degree of gluten polymerization and textural characteristics of textured wheat protein was investigated. Results showed that the extrusion process increased the average molecular weight of gluten as evidenced by SDS-PAGE and SDS extractable protein. The addition of alkali not only promoted the degree of gluten polymerization, but also induced dehydroalanine-derived cross-linking. Alkali addition decreased the content of cystine and increased the contents of dehydroalanine and lanthionine. The obvious decrease of free SH showed that dehydroalanine-derived cross-linking was quantitatively less crucial than disulfide cross-linking. Furthermore, the protein cross-linking induced by alkali improved the texture properties of gluten extrudates. SEM analysis showed extrusion under alkaline condition conferred a more fibrous microstructure as a consequence of a compact gluten network. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Pengaruh Perlakukan Alkali terhadap Sifat Fisik, dan Mekanik Serat Kulit Buah Pinang

    Directory of Open Access Journals (Sweden)

    Cokorda Putri Kusuma Kencanawati

    2018-04-01

    Full Text Available Makalah ini menganalisis pengaruh perlakukan alkali dan tanpa perlakukan alkali terhadap karakateristik fisik, morfologi dan sifat mekanik serat kulit buah pinang (areca Catechu L.. Selama ini pemanfaatan limbah pertanian belum dilakukan secara maksimal, sehingga dapat menimbulkan pencemaran terhadap lingkungan. Serat kulit buah pinang (Areca Husk Fiber/AHF selama ini hanya dipergunakan sebagai bahan bakar biomassa dan media tanam sedangkan untuk pemanfaatan lain belum ada sama sekali. AHF diberi perlakukan NaOH 2,5%, 5%, 7,5% dan 10% dengan waktu perendaman 2 jam pada temperatur kamar, untuk mengetahui karakteristik fisik AHF maka dilakukan pengukuran panjang dan diameter serat, pengujian densitas, pengujian kadar air dan moisture sedangkan untuk mengetahui karakteristik mekanik dilakukan pengujian tarik serat tunggal sesuai dengan ASTM D 3379. Dari penelitian ini diketahui bahwa diameter AHF mengalami pengurangan diameter akibat perlakukan alkali, hal ini terkait dengan hilangnya kandungan lignin, pektin dan wax. Densitas AHF menurun dengan meningkatan prosentase NaOH bila dibandingkan dengan AHF tanpa perlakukan NaOH. Kekuatan tarik bervariasi dengan adanya perlakuan alkali.  Kekuatan tarik AHF tertinggi pada serat yang mengalami perlakukan NaOH 5% yaitu sebesar 165 Mpa dan kekuatan tarik terendah pada AHF dengan perlakuan Alkali 10% yaitu sebesar 137 MPa . This paper analyzes the effect of alkali and non-alkali treatments on the physical characteristics, morphology and mechanical properties of betel nut huks fiber (areca Catechu L.. the used of agricultural waste has not been done optimally, causing environmental pollution. Areca Husk Fiber (AHF only used as biomass fuel and planting medium, while for the other uses it has not existed. AHF was given 2.5%, 5%, 7.5% and 10% NaOH treatment with 2 hours immersion at room temperature, to known the physical characteristics of AHF then measured the length and diameter of fiber, density test, water

  18. Temperature dependent mobility measurements of alkali earth ions in superfluid helium

    Science.gov (United States)

    Putlitz, Gisbert Zu; Baumann, I.; Foerste, M.; Jungmann, K.; Riediger, O.; Tabbert, B.; Wiebe, J.; Zühlke, C.

    1998-05-01

    Mobility measurements of impurity ions in superfluid helium are reported. Alkali earth ions were produced with a laser sputtering technique and were drawn inside the liquid by an electric field. The experiments were carried out in the temperature region from 1.27 up to 1.66 K. The temperature dependence of the mobility of Be^+-ions (measured here for the first time) differs from that of the other alkali earth ions Mg^+, Ca^+, Sr^+ and Ba^+, but behaves similar to that of He^+ (M. Foerste, H. Günther, O. Riediger, J. Wiebe, G. zu Putlitz, Z. Phys. B) 104, 317 (1997). Theories of Atkins (A. Atkins, Phys. Rev.) 116, 1339 (1959) and Cole (M.W. Cole, R.A. Bachmann Phys. Rev. B) 15, 1388 (1977) predict a different defect structure for He^+ and the alkali earth ions: the helium ion is assumed to form a snowball like structure whereas for the alkali earth ions a bubble structure is assumed. If the temperature dependence is a characteristic feature for the different structures, then it seems likely that the Be^+ ion builds a snowball like structure.

  19. Multi-quantum excitation in optically pumped alkali atom: rare gas mixtures

    Science.gov (United States)

    Galbally-Kinney, K. L.; Rawlins, W. T.; Davis, S. J.

    2014-03-01

    Diode-pumped alkali laser (DPAL) technology offers a means of achieving high-energy gas laser output through optical pumping of the D-lines of Cs, Rb, and K. The exciplex effect, based on weak attractive forces between alkali atoms and polarizable rare gas atoms (Ar, Kr, Xe), provides an alternative approach via broadband excitation of exciplex precursors (XPAL). In XPAL configurations, we have observed multi-quantum excitation within the alkali manifolds which result in infrared emission lines between 1 and 4 μm. The observed excited states include the 42FJ states of both Cs and Rb, which are well above the two-photon energy of the excitation laser in each case. We have observed fluorescence from multi-quantum states for excitation wavelengths throughout the exciplex absorption bands of Cs-Ar, Cs-Kr, and Cs-Xe. The intensity scaling is roughly first-order or less in both pump power and alkali concentration, suggesting a collisional energy pooling excitation mechanism. Collisional up-pumping appears to present a parasitic loss term for optically pumped atomic systems at high intensities, however there may also be excitation of other lasing transitions at infrared wavelengths.

  20. Properties of Hooked Steel Fibers Reinforced Alkali Activated Material Concrete

    Directory of Open Access Journals (Sweden)

    Faris M. A.

    2016-01-01

    Full Text Available In this study, alkali activated material was produced by using Class F fly ash from Manjung power station, Lumut, Perak, Malaysia. Fly ash then was activated by alkaline activator which is consisting of sodium silicate (Na2SiO3 and sodium hydroxide (NaOH. Hooked end steel fibers were added into the alkali activated material system with percentage vary from 0 % – 5 %. Chemical compositions of fly ash were first analyzed by using x-ray fluorescence (XRF. All hardened alkali activated material samples were tested for density, workability, and compression after 28 days. Results show a slight increase of density with the addition of steel fibers. However, the workability was reduced with the addition of steel fibers content. Meanwhile, the addition of steel fibers shows the improvement of compressive strength which is about 19 % obtained at 3 % of steel fibers addition.

  1. Corrosion resistance of metals and alloys in molten alkalies

    International Nuclear Information System (INIS)

    Zarubitskij, O.G.; Dmitruk, B.F.; Minets, L.A.

    1979-01-01

    Literature data on the corrosion of non-ferrous and noble metals, iron and steels in the molten alkalis and mixtures of their base are presented. It is shown that zirconium, niobium and tantalum are characterized by high corrosion stability in the molten NaOH. Additions of NaOH and KOH to the alkali chloride melts result in a 1000 time decrease of zirconium corrosion rate at 850 deg. The data testify to the characteristic passivating properties of OH - ions; Mo and W do not possess an ability to selfpassivation in hydroxide melts. Corrosion resistance of carbon and chromium-nickel steels in hydroxide melts depends considerably on the temperature, electrolyte composition and atmosphere over them. At the temperatures up to 600 deg C chromium-nickel steel is corrosion resistant in the molten alkali only in the inert atmosphere. Corrosion rate of chromium-nickel alloy is the lower the less chromium and the more nickel it contains. For the small installations the 4Kh18N25S2 and Kh23N28M3D3T steels can be recommended

  2. Monitoring of mercury concentration in atmosphere in Usti nad Labem

    International Nuclear Information System (INIS)

    Synek, V.; Baloch, T.; Otcenasek, J.; Kremlova, S.; Subrt, P.

    2007-01-01

    This study elaborates the observation of mercury pollution of the atmosphere in the city of Usti nad Labem. The biggest source of the polluting mercury in Usti nad Labem is the chlor-alkali production in the factory of Spolchemie Inc. The method of mercury determination applied is based on capturing the mercury contented in a volume of the air on an amalgamator and measuring the mercury by an atomic absorption spectrometer (Perkin -Elmer 4100ZL) equipped with a special adapter after a thermal release of the mercury from the amalgamator. The basic characteristics of this method were evaluated; e.g. the limit of detection and limit of determination are, respectively, 0.43 and 1.4 ng/m 3 , the relative expanded uncertainty is 28 %. The work gives results of long-term (1998-2006) observations in a few localities in Usti nad Labem situated in various distances from the mercury source (e.g. means of 28.6 and 14.1 ng/m3 were obtained, respectively, in places 350 and 700 m far from the electrolysis plant) and also in a different city (Duchcov). The cases with a higher mercury concentration are very frequent so the sets of the obtained results have lognormal distributions. This study statistically compares the total level and variability of the mercury concentrations in the time series. It also investigates their trends, correlations between them and meteorological influences upon the levels of mercury concentration in the air. The effect of the mercury emission from the chlor-alkali plant is dominant. It as the only factor determines when the cases with a high mercury concentration in the atmosphere occur. (author)

  3. Effect of Rice Straw Extract and Alkali Lignin on the Corrosion Inhibition of Carbon Steel

    International Nuclear Information System (INIS)

    Rabiahtul Zulkafli; Norinsan Kamil Othman; Irman Abdul Rahman; Azman Jalar

    2014-01-01

    A paddy residue based corrosion inhibitor was prepared by treating finely powdered rice straw with aqueous ethanol under acid catalyst (0.01 M H 2 SO 4 ). Commercial alkali lignin was obtained from Sigma-Aldrich. Prior to the corrosion test, the extraction yield and alkali lignin was characterized via FTIR to determine the functional group. The effect of paddy residue extract and commercial alkali lignin on the corrosion inhibition of carbon steel in 1 M HCl was investigated through the weight loss method, potentiodynamic polarization technique and scanning electron microscopy (SEM). The corrosion inhibition efficiency of the extract and alkali lignin at different immersion times (3 h, 24 h and 42 h) was evaluated. The results show that the paddy waste extract exhibited lesser weight loss of carbon steel in the acidic medium in comparison to the commercial alkali lignin, suggesting that the paddy residue extract is more effective than the commercial alkali lignin in terms of its corrosion inhibition properties. The results obtained proves that the extract from paddy residue could serve as an effective inhibitor for carbon steel in acidic mediums. (author)

  4. Heidelberg polarized alkali source

    International Nuclear Information System (INIS)

    Kraemer, D.; Steffens, E.; Jaensch, H.; Philipps Universitaet, Marburg, Germany)

    1984-01-01

    A new atomic beam type polarized alkali ion source has been installed at Heidelberg. In order to improve the beam polarization considerably optical pumping is applied in combination with an adiabatic medium field transition which results in beams in single hyperfine sublevels. The m state population is determined by laser-induced fluorescence spectroscopy. Highly polarized beams (P/sub s/ > 0.9, s = z, zz) with intensities of 30 to 130 μA can be extracted for Li + and Na + , respectively

  5. Spin-rotation interaction of alkali-metal endash He-atom pairs

    International Nuclear Information System (INIS)

    Walker, T.G.; Thywissen, J.H.; Happer, W.

    1997-01-01

    A treatment of the spin-rotation coupling between alkali-metal atoms and He atoms is presented. Rotational distortions are accounted for in the wave function using a Coriolis interaction in the rotating frame. The expectation value of the spin-orbit interaction gives values of the spin-rotation coupling that explain previous experimental results. For spin-exchange optical pumping, the results suggest that lighter alkali-metal atoms would be preferred spin-exchange partners, other factors being equal. copyright 1997 The American Physical Society

  6. Direct observation of the release of alkali vapor species in biofuel combustion and gasification

    Energy Technology Data Exchange (ETDEWEB)

    French, R.J.; Milne, T.A. [National Renewable Energy Lab., Golden, CO (United States)

    1993-12-31

    The largest present use of biomass for energy is in combustion for steam and electrical power. Biofuels have an acknowledged advantage over coal as a solid fuel because of their low sulfur and ash content. However, some forms of biomass have substantial quantities of alkali metals and chlorine. In addition, evidence indicates that the alkali in biomass is largely atomically dispersed, resulting in its facile mobilization into the gas-phase. Gaseous alkali compounds aggravate problems of slagging, fouling, and corrosion on heat transfer surfaces in present-day boilers. These problems can be particularly severe when mixed and variable agricultural residues are burned. Furthermore, the next generation of biomass-to-power systems will likely involve combined cycle gas turbines, where alkali tolerances are especially restrictive. In this paper, we report on laboratory studies in which biofuels are combusted under simulated turbine or boiler-firing conditions. Gaseous alkali, sulfur, nitrogen, and halogen-containing species are measured by direct extraction from the hot gases through molecular-beam mass spectrometry (MBMS). The experimental apparatus will be described and its capability illustrated with results of time-resolved evolution of species like K, KCl, KOH, SO{sub 2} and NO{sub x} from small samples of biomass in combustion environments. The nature and release of such species will be explicated by referring to thermodynamic equilibrium predictions and the form of alkali in solid, gaseous, and liquid biofuels.

  7. Hydrothermal calcification of alkali treated titanium in CaHPO{sub 4} solution

    Energy Technology Data Exchange (ETDEWEB)

    Fu, T., E-mail: taofu@xjtu.edu.cn [Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Shaanxi, 710049 (China); Fan, J.T., E-mail: jitang_fan@hotmail.com [State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing, 100081 (China); Shen, Y.G. [Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong (China); Sun, J.M. [Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Shaanxi, 710049 (China)

    2017-03-01

    The alkali treated titanium was hydrothermally treated in water and 10 mM CaHPO{sub 4} solution (nominal concentration) at 80–180 °C to crystallize the titanate hydrogel layer and calcify the alkali treated titanium. Surface structure and elemental composition of the samples were analyzed by scanning electron microscopy, energy dispersive x-ray analysis, x-ray photoelectron spectroscopy, x-ray diffraction and Raman spectroscopy. Porous titanate hydrogel layer is formed on titanium after the alkali treatment. For the hydrothermal treatment in water, the hydrogel layer is crystallized as anatase TiO{sub 2} with nanoporous or nanofibrous structure at 100 and 120 °C, and the layer is converted to anatase nanoparticles at 150 and 180 °C. For the hydrothermal treatment in the CaHPO{sub 4} solution, hydroxyapatite nanocrystallites are deposited at the samples surface at 80–120 °C, but only anatase nanoparticles are formed at 150 and 180 °C. The growth of hydroxyapatite nanocrystallites is influenced by pH and temperature variations of the solution. The present alkali-hydrothermal treatment can avoid higher temperatures involved in the traditional alkali-heat treatments, which is applicable for bioactive surface modification of the thermally sensitive titanium alloys. The results also show that Raman spectroscopy is a useful technique to analyze the microstructure of TiO{sub 2} and apatite films. - Highlights: • The alkali treated titanium is hydrothermally calcified in a CaHPO{sub 4} solution. • HA nanocrystallites are formed at 80–120 °C, but TiO{sub 2} nanoparticles at 150–180 °C. • The growth mechanism of HA nanocrystallites is discussed. • This low-temperature method is fit for some special titanium alloys.

  8. Modifier constraint in alkali borophosphate glasses using topological constraint theory

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiang [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zeng, Huidan, E-mail: hdzeng@ecust.edu.cn [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Jiang, Qi [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Zhao, Donghui [Unifrax Corporation, Niagara Falls, NY 14305 (United States); Chen, Guorong [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China); Wang, Zhaofeng; Sun, Luyi [Department of Chemical & Biomolecular Engineering and Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Chen, Jianding [Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-12-01

    In recent years, composition-dependent properties of glasses have been successfully predicted using the topological constraint theory. The constraints of the glass network are derived from two main parts: network formers and network modifiers. The constraints of the network formers can be calculated on the basis of the topological structure of the glass. However, the latter cannot be accurately calculated in this way, because of the existing of ionic bonds. In this paper, the constraints of the modifier ions in phosphate glasses were thoroughly investigated using the topological constraint theory. The results show that the constraints of the modifier ions are gradually increased with the addition of alkali oxides. Furthermore, an improved topological constraint theory for borophosphate glasses is proposed by taking the composition-dependent constraints of the network modifiers into consideration. The proposed theory is subsequently evaluated by analyzing the composition dependence of the glass transition temperature in alkali borophosphate glasses. This method is supposed to be extended to other similar glass systems containing alkali ions.

  9. Comparison of ion balance and nitrogen metabolism in old and young leaves of alkali-stressed rice plants.

    Science.gov (United States)

    Wang, Huan; Wu, Zhihai; Han, Jiayu; Zheng, Wei; Yang, Chunwu

    2012-01-01

    Alkali stress is an important agricultural contaminant and has complex effects on plant metabolism. The aim of this study was to investigate whether the alkali stress has different effects on the growth, ion balance, and nitrogen metabolism in old and young leaves of rice plants, and to compare functions of both organs in alkali tolerance. The results showed that alkali stress only produced a small effect on the growth of young leaves, whereas strongly damaged old leaves. Rice protected young leaves from ion harm via the large accumulation of Na(+) and Cl(-) in old leaves. The up-regulation of OsHKT1;1, OsAKT1, OsHAK1, OsHAK7, OsHAK10 and OsHAK16 may contribute to the larger accumulation of Na(+) in old leaves under alkali stress. Alkali stress mightily reduced the NO(3)(-) contents in both organs. As old leaf cells have larger vacuole, under alkali stress these scarce NO(3)(-) was principally stored in old leaves. Accordingly, the expression of OsNRT1;1 and OsNRT1;2 in old leaves was up-regulated by alkali stress, revealing that the two genes might contribute to the accumulation of NO(3)(-) in old leaves. NO(3)(-) deficiency in young leaves under alkali stress might induce the reduction in OsNR1 expression and the subsequent lacking of NH(4)(+), which might be main reason for the larger down-regulation of OsFd-GOGAT and OsGS2 in young leaves. Our results strongly indicated that, during adaptation of rice to alkali stress, young and old leaves have distinct mechanisms of ion balance and nitrogen metabolism regulation. We propose that the comparative studies of young and old tissues may be important for abiotic stress tolerance research.

  10. Oral and dental affections in mercury-exposed workers

    Energy Technology Data Exchange (ETDEWEB)

    Fahmy, M.S.

    1978-07-01

    A total of 222 mercury-exposed workers in the Chlor-Alkali plant in Kuwait were investigated for oral and dental affections. The levels of mercury-vapor ranged from 566.6 microgram/m3 to 0.3 microgram/m3 in different parts of the factory. The periods of exposure varied from 1 to 11 years. Although the level of mercury vapor in the air and the period of exposure proved to be the main factors as regards the oral signs and symptoms, the oral hygiene condition and the individual sensitivity played substantial roles. Oral affections were found not to be due to allergy to mercury.

  11. The African novel and the city: a reading of Zaynab Alkali's The ...

    African Journals Online (AJOL)

    This paper has explored the African novel in the light of the influence of city life to it. Zaynab Alkali's The Initiates was examined with a close look at how the city has influenced characters and happenings in the novel. The paper revealed that the city as presented by Alkali in The Initiates is corrupt and morally bankrupt.

  12. Behaviour of zirconium oxidation and is oxide films in alkali halide solutions as studied by electrochemical techniques

    International Nuclear Information System (INIS)

    Saleh, H.E.M.

    1996-01-01

    Study of the properties of Zr electrode and the oxide films that cover the metal surface is of extreme importance due to their wide applications in chemical and nuclear industry. In this thesis the electrochemical behaviour of Zr electrode in alkali halide solutions and with various surface conditions was studied, Also the galvanostatic oxidation of the metal in addition to the open circuit and impedance measurements were employed. Chapter I is a literature survey of the electrochemistry of Zr metal with particular emphasis on the stability and growth process of Zr in different media. Chapter II contains the experimental part, including details of the electrochemical techniques used in the measurements. The electrode impedance was always balanced as a series capacitance Cs and resistance Rs.Chapter III includes the experimental results and discussion. It is divide into sections, A and B. Section A includes the results of some experimental parameters which affect the reactivity of the oxide growth process on the zirconium surface, such as surface pre - treatment, electrolyte composition, the effect of different alkali halide anions, as well as the triiodide ion. 9 tabs.,26 figs.,67 refs

  13. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production

    KAUST Repository

    Zhu, Xiuping

    2013-06-01

    A new type of bioelectrochemical system, called a microbial reverse-electrodialysis chemical-production cell (MRCC), was developed to produce acid and alkali using energy derived from organic matter (acetate) and salinity gradients (NaCl solutions representative of seawater and river water). A bipolar membrane (BPM) was placed next to the anode to prevent Cl- contamination and acidification of the anolyte, and to produce protons for HCl recovery. A 5-cell paired reverse-electrodialysis (RED) stack provided the electrical energy required to overcome the BPM over-potential (0.3-0.6 V), making the overall process spontaneous. The MRCC reactor produced electricity (908 mW/m2) as well as concentrated acidic and alkaline solutions, and therefore did not require an external power supply. After a fed-batch cycle, the pHs of the chemical product solutions were 1.65 ± 0.04 and 11.98 ± 0.10, due to the production of 1.35 ± 0.13 mmol of acid, and 0.59 ± 0.14 mmol of alkali. The acid- and alkali-production efficiencies based on generated current were 58 ± 3% and 25 ± 3%. These results demonstrated proof-of-concept acid and alkali production using only renewable energy sources. © 2013 Elsevier B.V.

  14. Neutron scattering investigation of layer-bending modes in alkali-metal--graphite intercalation compounds

    International Nuclear Information System (INIS)

    Zabel, H.; Kamitakahara, W.A.; Nicklow, R.M.

    1982-01-01

    Phonon dispersion curves for low-frequency transverse modes propagating in the basal plane have been measured in the alkali-metal--graphite intercalation compounds KC 8 , CsC 8 , KC 24 , and RbC 24 by means of neutron spectroscopy. The acoustic branches show an almost quadratic dispersion relation at small q, characteristic of strongly layered materials. The optical branches of stage-1 compounds can be classified as either graphitelike branches showing dispersion, or as almost dispersionless alkali-metal-like modes. Macroscopic shear constants C 44 and layer-bending moduli have been obtained for the intercalation compounds by analyzing the data in terms of a simple semicontinuum model. In stage-2 compounds, a dramatic softening of the shear constant by about a factor of 8 compared with pure graphite has been observed. Low-temperature results on KC 24 indicate the opening of a frequency gap near the alkali-metal Brillouin-zone boundary, possibly due to the formation of the alkali-metal superstructure

  15. Removal of oxides from alkali metal melts by reductive titration to electrical resistance-change end points

    Science.gov (United States)

    Tsang, Floris Y.

    1980-01-01

    Alkali metal oxides dissolved in alkali metal melts are reduced with soluble metals which are converted to insoluble oxides. The end points of the reduction is detected as an increase in electrical resistance across an alkali metal ion-conductive membrane interposed between the oxide-containing melt and a material capable of accepting the alkali metal ions from the membrane when a difference in electrical potential, of the appropriate polarity, is established across it. The resistance increase results from blocking of the membrane face by ions of the excess reductant metal, to which the membrane is essentially non-conductive.

  16. Cloning, expression, and characterization of a novel alkali-tolerant xylanase from alkaliphilic Bacillus sp. SN5.

    Science.gov (United States)

    Bai, Wenqin; Xue, Yanfen; Zhou, Cheng; Ma, Yanhe

    2015-01-01

    A xylanase gene (xyn11A) was cloned from the genomic library of alkalophilic Bacillus sp. SN5. It encoded a polypeptide of 366 amino acids, consisting of a family 11 glycoside hydrolase, a short linker region, and a family 36 carbohydrate-binding module (CBM). The intact xylanase Xyn11A and the CBM-linker-truncated Xyn11A-LC were expressed in Escherichia coli BL21 (DE3). Both purified recombinant proteins exhibited the highest activity at 55 °C. The optimal pH for Xyn11A activity was 7.5, whereas Xyn11A-LC showed a broad pH profile (>80% activity at pH 5.5-8.5) with optimal activity at pH 5.5 and 7.5-8.0. They had high alkali tolerance, retaining over 80% residual activity after preincubation at pH 8.5-11.0 at 37 °C for 1 H. Xyn11A-LC showed better thermal stability, lower affinity, and lower catalytic activity to insoluble xylan than Xyn11A, whereas its specific activity for soluble beechwood xylan (4,511.9 U/mg) was greater than that of Xyn11A (3,136.4 U/mg). These results implied that the CBM of Xyn11A could change the enzymatic properties and play a role in degrading insoluble xylan. Xyn11A-LC is a family 11 alkali-tolerant cellulase-free xylanase with high specific activity, which qualifies it as a potential candidate for industrial applications, especially in the paper industry. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  17. Laser-Induced Photofragmentation Fluorescence Imaging of Alkali Compounds in Flames.

    Science.gov (United States)

    Leffler, Tomas; Brackmann, Christian; Aldén, Marcus; Li, Zhongshan

    2017-06-01

    Laser-induced photofragmentation fluorescence has been investigated for the imaging of alkali compounds in premixed laminar methane-air flames. An ArF excimer laser, providing pulses of wavelength 193 nm, was used to photodissociate KCl, KOH, and NaCl molecules in the post-flame region and fluorescence from the excited atomic alkali fragment was detected. Fluorescence emission spectra showed distinct lines of the alkali atoms allowing for efficient background filtering. Temperature data from Rayleigh scattering measurements together with simulations of potassium chemistry presented in literature allowed for conclusions on the relative contributions of potassium species KOH and KCl to the detected signal. Experimental approaches for separate measurements of these components are discussed. Signal power dependence and calculated fractions of dissociated molecules indicate the saturation of the photolysis process, independent on absorption cross-section, under the experimental conditions. Quantitative KCl concentrations up to 30 parts per million (ppm) were evaluated from the fluorescence data and showed good agreement with results from ultraviolet absorption measurements. Detection limits for KCl photofragmentation fluorescence imaging of 0.5 and 1.0 ppm were determined for averaged and single-shot data, respectively. Moreover, simultaneous imaging of KCl and NaCl was demonstrated using a stereoscope with filters. The results indicate that the photofragmentation method can be employed for detailed studies of alkali chemistry in laboratory flames for validation of chemical kinetic mechanisms crucial for efficient biomass fuel utilization.

  18. 50 years of superbases made from organolithium compounds and heavier alkali metal alkoxides

    Czech Academy of Sciences Publication Activity Database

    Lochmann, Lubomír; Janata, Miroslav

    2014-01-01

    Roč. 12, č. 5 (2014), s. 537-548 ISSN 1895-1066 R&D Projects: GA ČR GAP106/12/0844 Institutional support: RVO:61389013 Keywords : superbases * heavier alkali metal compounds * lithium -heavier alkali metal interchange Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.329, year: 2013

  19. Effect of alkali treatment on surface morphology of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Tan, K. J., E-mail: gd130056@siswa.uthm.edu.my; Wahab, M. A. A., E-mail: cd110006@siswa.uthm.edu.my; Mahmod, S., E-mail: cd110201@siswa.uthm.edu.my; Idris, M. I., E-mail: izwana@uthm.edu.my; Abdullah, H. Z., E-mail: hasan@uthm.edu.my [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor (Malaysia)

    2015-07-22

    Alkali and heat treatments were first introduced by Kim et al. to prepare a bioactive surface on titanium. This method has been proven very effective and widely used in other studies to promote titanium osteointegration. This study aims to investigate further the effect of alkali treatment on surface morphology of high purity titanium. High purity titanium foils were immersed in NaOH aqueous solutions of 0.5 M, 5 M and 15 M at 60°C and 80 °C for 1, 3 and 7 days. The surface morphology was examined using Field Emission Scanning Electron Microscope (FESEM). The obtained phases were analysed using Fourier Transform Infrared Spectroscopy (FTIR) in the spectra range of 4000-600 cm{sup −1} at 4 cm{sup −1} resolution and 50 scans. At the same soaking temperature and soaking time, a thicker porous network was observed with increasing concentration of NaOH. At the same soaking temperature, a much porous structure was observed with increasing soaking time. At constant alkali concentration, more homogenously distributed porous surface structure was observed with increasing soaking temperature.

  20. Effects of Alkali Concentration and Conching Temperature on Flavour, Hardness and Colour of Chocolate

    Directory of Open Access Journals (Sweden)

    Misnawi Jati

    2006-05-01

    Full Text Available Alkalization is an addition of alkali into cocoa mass to improve product quality in terms of flavour and colour appearance. Sodium bicarbonate and potassium bicarbonate are usual to be added into cocoa cotyledon prior to roasting. A study has been carried out to evaluate the effects of alkalization proceeded upon conching on chocolate sensory properties, hardness and colour. Re sponse Surface Methodology design at alkali concentrations of 1—15 g kg -1 and conching temperature of 40—80 oC have been used in the study. Parameters evaluated were sensory properties, particle size, hardness and colour. Results of the study showed that alkali concentration significantly influenced aroma, overall preference, particle size and hardness; meanwhile, conching temperature showed significant influence on aroma, taste, appearance, overall preference and texture of chocolate. Alkali concentration and conching temperature showed interactively influence on aroma and overall preference. A good quality of chocolate could be found at the alkali concentration of 8—15 g kg -1 and conching temperature of 74—80 oC. Key words: cocoa bean, chocolate, flavour, conching, alkalization, colour, particle size, texture.

  1. Metal induced gap states at alkali halide/metal interface

    International Nuclear Information System (INIS)

    Kiguchi, Manabu; Yoshikawa, Genki; Ikeda, Susumu; Saiki, Koichiro

    2004-01-01

    The electronic state of a KCl/Cu(0 0 1) interface was investigated using the Cl K-edge near-edge X-ray absorption fine structure (NEXAFS). A pre-peak observed on the bulk edge onset of thin KCl films has a similar feature to the peak at a LiCl/Cu(0 0 1) interface, which originates from the metal induced gap state (MIGS). The present result indicates that the MIGS is formed universally at alkali halide/metal interfaces. The decay length of MIGS to an insulator differs from each other, mainly due to the difference in the band gap energy of alkali halide

  2. The behaviour of gaseous alkali compounds in coal gasification

    International Nuclear Information System (INIS)

    Nykaenen, J.

    1995-01-01

    In this project the behaviour of alkali compounds emitting from CO 2 /O 2 -and air gasification will be studied by using an equilibrium model developed at the Aabo Akademi. This research project is closely connected to the EU-project coordinated by the Delft University of Technology (DUT). In that project alkali emissions from a 1.6 MW pilot plant are measured. The results from those measurements will be compared with the calculations performed in this LIEKKI 2 -project. Furthermore, in the project carried out at DUT the behaviour of a honeycomb-structured filter under CO 2 /O 2 -gasification environment is going to be studied. (author)

  3. Thermochemistry of uranium(VI), arsenic, and alkali metal triple oxides

    International Nuclear Information System (INIS)

    Karyakin, N.V.; Chernorukov, G.N.

    1994-01-01

    The standard enthalpies of reactions of stoichiometric mixtures of potassium dyhydrogen orthoarsenate, uranium(VI) oxide, alkali metal nitrates, and of mixtures of triple oxides with the general formula M I AsUO 6 (M I =Li, Na, K, Rb, and Cs) and potassium nitrate with aqueous solution of hydrofluoric acid were determined an an adiabatic calorimeter at 298.15 K. The standard enthalpies of formation of uranium(VI), arsenic, and alkali metal triple oxides at 298.15 K were calculated form the data obtained. 8 refs., 1 tab

  4. Positronium-alkali atom scattering at medium energies

    International Nuclear Information System (INIS)

    Chakraborty, Ajoy; Basu, Arindam; Sarkar, Nirmal K; Sinha, Prabal K

    2004-01-01

    We investigate the scattering of orthopositronium (o-Ps) atom off different atomic alkali targets (Na to Cs) at low and medium energies (up to 120 eV). Projectile-elastic and target-elastic close-coupling models have been employed to investigate the systems in addition to the static-exchange model. Elastic, excitation and total cross sections have been reported for all four systems. The magnitude of the alkali excitation cross section increases with increasing atomic number of the target atom while the position of the peak value shifts towards lower incident energies. The magnitudes of the Ps excitation and ionization cross sections increase steadily with atomic number with no change in the peak position. The reported results show regular behaviour with increasing atomic number of the target atom. Scattering parameters for the Ps-Rb and Ps-Cs systems are being reported for the first time

  5. The industrial types of uranium deposits of Ukraine and their resources

    International Nuclear Information System (INIS)

    Bakarjiev, A. Ch.; Makhivchuk, O.F.; Popov, N.I.

    1997-01-01

    Industrial uranium deposits of Ukraine are represented by two types. Their origin is related to the processes of alkali metasomatism in areas of proto-activization that took place at the late orogenic stage of the formation of the Ukrainian shield. Deposits are located in large cataclatic zones that are formed at the intersection of deep fractures. (author). 5 figs

  6. Effects of alkali stress on growth, free amino acids and carbohydrates metabolism in Kentucky bluegrass (Poa pratensis).

    Science.gov (United States)

    Zhang, Pingping; Fu, Jinmin; Hu, Longxing

    2012-10-01

    Soil alkalization is one of the most prominent adverse environmental factors limiting plant growth, while alkali stress affects amino acids and carbohydrates metabolism. The objective of this study was conducted to investigate the effects of alkali stress on growth, amino acids and carbohydrates metabolism in Kentucky bluegrass (Poa pratensis). Seventy-day-old plants were subjected to four pH levels: 6.0 (control), 8.0 (low), 9.4 (moderate) and 10.3 (severe) for 7 days. Moderate to severe alkali stress (pH >9.4) caused a significant decline in turf quality and growth rate in Kentucky bluegrass. Soluble protein was unchanged in shoots, but decreased in roots as pH increased. The levels of amino acids was kept at the same level as control level at 4 days after treatment (DAT) in shoots, but greater at 7 DAT, when plants were subjected to severe (pH 10.3) alkali stress. The alkali stressed plants had a greater level of starch, water soluble carbohydrate and sucrose content, but lower level of fructose and glucose. Fructan and total non-structural carbohydrate (TNC) increased at 4 DAT and decreased at 7 DAT for alkali stressed plants. These results suggested that the decrease in fructose and glucose contributed to the growth reduction under alkali stress, while the increase in amino acids, sucrose and storage form of carbohydrate (fructan, starch) could be an adaptative mechanism in Kentucky bluegrass under alkali stress.

  7. Microbialproperty improvement of saline-alkali soil for vegetable cultivation in Shanghai coastal area and its evaluation

    Directory of Open Access Journals (Sweden)

    KOU Yiming

    2015-10-01

    Full Text Available In order to improve the fertility of saline-alkali soil in Shanghai coastal area,and make it suitable for vegetable cultiration,in the study,the saline-alkali soil was mixed with organic fertilizer,and then sprayed with composite microbes,which have the ability of the synergistically degrading organic substrate.The results showed that the saline-alkali soil added with 5∶1 organic fertilizer can rapidly increase the utilization ability soil organic matter.The soil microbial populations and microbial diversity index were significantly improved when applied with the 0.5% composite microbial liquid which containeds 1∶3∶3∶1 of Bacillus licheniformis,Pseudomonas sp., Flavobacterium sp.and Sphingomonas sp..At the same time,the enzymology indicators of soil urease,phosphatase,cellulase and catalase increased significantly.The vegetable cultivation experiments showed that:the biomass of Brassica chinensis nearly doubled in the original saline-alkali soil,while the yield of organic fertilizer increased 30.2% after 50 days.The research result on of the biological improvement for saline-alkali soil will have good application value in vegetable planting in coastal saline-alkali soil.

  8. Selective release of phosphorus and nitrogen from waste activated sludge with combined thermal and alkali treatment.

    Science.gov (United States)

    Kim, Minwook; Han, Dong-Woo; Kim, Dong-Jin

    2015-08-01

    Selective release characteristics of phosphorus and nitrogen from waste activated sludge (WAS) were investigated during combined thermal and alkali treatment. Alkali (0.001-1.0N NaOH) treatment and combined thermal-alkali treatment were applied to WAS for releasing total P(T-P) and total nitrogen(T-N). Combined thermal-alkali treatment released 94%, 76%, and 49% of T-P, T-N, and COD, respectively. Release rate was positively associated with NaOH concentration, while temperature gave insignificant effect. The ratio of T-N and COD to T-P that released with alkali treatment ranged 0.74-0.80 and 0.39-0.50, respectively, while combined thermal-alkali treatment gave 0.60-0.90 and 0.20-0.60, respectively. Selective release of T-P and T-N was negatively associated with NaOH. High NaOH concentration created cavities on the surface of WAS, and these cavities accelerated the release rate, but reduced selectivity. Selective release of P and N from sludge has a beneficial effect on nutrient recovery with crystallization processes and it can also enhance methane production. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    Science.gov (United States)

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  10. Energy loss spectroscopy study of Si(111)--alkali metal interfaces at low temperatures

    International Nuclear Information System (INIS)

    Avci, R.

    1986-01-01

    Studies are made at approx.150 K under ultrahigh vacuum conditions on a wide range of alkali metal coverages on Si(111)-7 x 7. Negative second-derivative backscattered electron energy loss spectroscopy is used with 100 eV primary electrons. The interaction of the alkali metals with the silicon substrate goes through two stages as a function of alkali coverage: In the initial coverages, for less than approx.0.3 monolayer of alkali atoms, the basic reaction is that of charge transfer from the alkali atoms to the Si surface with a loss peak at approx.3.3 eV associated with the charge transfer states. The second stage of reaction: starting after the depletion of all the Si surface states: falls in a coverage range between approx.0.3 and approx.1 monolayer, in which the formation of a metallic layer with a coverage-dependent loss feature at about 2 eV is observed. At still higher coverages, multiple surface and bulk plasmon excitations and their combinations are dominant. In the overall scattering processes most of the parallel momentum (approx.3 A -1 ) is transferred to the sample during the elastic backscattering from the surface, and all the losses are essentially attributed to the forward inelastic scattering before and/or after the elastic process takes place near the metal/Si interface

  11. The materials flow of mercury in the economies of the United States and the world

    Science.gov (United States)

    Sznopek, John L.; Goonan, Thomas G.

    2000-01-01

    Although natural sources of mercury exist in the environment, measured data and modeling results indicate that the amount of mercury released into the biosphere has increased since the beginning of the industrial age. Mercury is naturally distributed in the air, water, and soil in minute amounts, and can be mobile within and between these media. Because of these properties and the subsequent impacts on human health, mercury was selected for an initial materials flow study, focusing on the United States in 1990. This study was initiated to provide a current domestic and international analysis. As part of an increased emphasis on materials flow, this report researched changes and identified the associated trends in mercury flows; it also updates statistics through 1996. In addition to domestic flows, the report includes an international section, because all primary mercury-producing mines are currently foreign, 86 percent of the mercury cell sector of the worldwide chlor-alkali industry is outside the United States, there is a large international mercury trade (1,395 t 1 in 1996), and environmental regulations are not uniform or similarly enforced from country to country. Environmental concerns have brought about numerous regulations that have dramatically decreased both the use and the production of mercury since the late 1980?s. Our study indicates that this trend is likely to continue into the future, as the world eliminates the large mercury inventories that have been stockpiled to support prior industrial processes and products.

  12. Terahertz radiation in alkali vapor plasmas

    International Nuclear Information System (INIS)

    Sun, Xuan; Zhang, X.-C.

    2014-01-01

    By taking advantage of low ionization potentials of alkali atoms, we demonstrate terahertz wave generation from cesium and rubidium vapor plasmas with an amplitude nearly one order of magnitude larger than that from nitrogen gas at low pressure (0.02–0.5 Torr). The observed phenomena are explained by the numerical modeling based upon electron tunneling ionization

  13. The influence of alkali treatment on banana fibre’s mechanical properties

    Directory of Open Access Journals (Sweden)

    Julio César Mejía Osorio

    2012-01-01

    Full Text Available This work analyses the effect of alkali treatment on the mechanical properties of banana fibre (Musa Paradisiaca. Fibres were extracted from the pseudostem by a defibring machine; they were mercerised and modified by 5% NaOH (w/v alkali treatment. Morphological characterisation showed that treated fibres’ surface was rougher than that of untreated fibres. Mechanical characterisation indicated that Young’s modulus, ultimate tensile strength and strain became decreased by increasing both treated and untreated fibres’ diameter.

  14. Heterogeneous studies in pulping of wood: Modelling mass transfer of alkali

    OpenAIRE

    Simão, João P. F.; Egas, Ana P. V.; Carvalho, M. Graça; Baptista, Cristina M. S. G.; Castro, José Almiro A. M.

    2008-01-01

    In this paper a heterogeneous lumped parameter model is proposed to describe the mass transfer of effective alkali during the kraft pulping of wood. This model, based on the spatial mean of the concentration profile of effective alkali along the chip thickness, enables the estimation of the effective diffusion coefficient that characterizes the internal resistance to mass transfer and the contribution of the external resistance to mass transfer which has often been neglected. http://www.sc...

  15. Alkali Metal Variation and Twisting of the FeNNFe Core in Bridging Diiron Dinitrogen Complexes.

    Science.gov (United States)

    McWilliams, Sean F; Rodgers, Kenton R; Lukat-Rodgers, Gudrun; Mercado, Brandon Q; Grubel, Katarzyna; Holland, Patrick L

    2016-03-21

    Alkali metal cations can interact with Fe-N2 complexes, potentially enhancing back-bonding or influencing the geometry of the iron atom. These influences are relevant to large-scale N2 reduction by iron, such as in the FeMoco of nitrogenase and the alkali-promoted Haber-Bosch process. However, to our knowledge there have been no systematic studies of a large range of alkali metals regarding their influence on transition metal-dinitrogen complexes. In this work, we varied the alkali metal in [alkali cation]2[LFeNNFeL] complexes (L = bulky β-diketiminate ligand) through the size range from Na(+) to K(+), Rb(+), and Cs(+). The FeNNFe cores have similar Fe-N and N-N distances and N-N stretching frequencies despite the drastic change in alkali metal cation size. The two diketiminates twist relative to one another, with larger dihedral angles accommodating the larger cations. In order to explain why the twisting has so little influence on the core, we performed density functional theory calculations on a simplified LFeNNFeL model, which show that the two metals surprisingly do not compete for back-bonding to the same π* orbital of N2, even when the ligand planes are parallel. This diiron system can tolerate distortion of the ligand planes through compensating orbital energy changes, and thus, a range of ligand orientations can give very similar energies.

  16. Theoretical investigation on the alkali-metal doped BN fullerene as a material for hydrogen storage

    International Nuclear Information System (INIS)

    Venkataramanan, Natarajan Sathiyamoorthy; Belosludov, Rodion Vladimirovich; Note, Ryunosuke; Sahara, Ryoji; Mizuseki, Hiroshi; Kawazoe, Yoshiyuki

    2010-01-01

    Graphical abstract: First-principles calculations have been used to investigate hydrogen adsorption on alkali atom doped B 36 N 36 clusters. Adsorption of alkali atoms involves a charge transfer process, creating positively-charged alkali atoms and this polarizes the H 2 molecules and increases their binding energy. The maximum hydrogen storage capacity of Li doped BN fullerene is 8.9 wt.% in which 60 hydrogen atoms were chemisorbed and 12 H 2 were adsorbed in molecular form. - Abstract: First-principles calculations have been used to investigate hydrogen adsorption on alkali atom doped B 36 N 36 clusters. The alkali atom adsorption takes place near the six tetragonal bridge sites available on the cage, thereby avoiding the notorious clustering problem. Adsorption of alkali atoms involves a charge transfer process, creating positively charged alkali atoms and this polarizes the H 2 molecules thereby, increasing their binding energy. Li atom has been found to adsorb up to three hydrogen molecules with an average binding energy of 0.189 eV. The fully doped Li 6 B 36 N 36 cluster has been found to hold up to 18 hydrogen molecules with the average binding energy of 0.146 eV. This corresponds to a gravimetric density of hydrogen storage of 3.7 wt.%. Chemisorption on the Li 6 B 36 N 36 has been found to be an exothermic reaction, in which 60 hydrogen atoms chemisorbed with an average chemisorption energy of -2.13 eV. Thus, the maximum hydrogen storage capacity of Li doped BN fullerene is 8.9 wt.% in which 60 hydrogen atoms were chemisorbed and 12 hydrogen molecules were adsorbed in molecular form.

  17. Crystallization and preliminary X-ray study of a family 10 alkali-thermostable xylanase from alkalophilic Bacillus sp. strain NG-27

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, K. [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India); Bhardwaj, Amit [International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067 (India); Ghosh, Amit [Institute of Microbial Technology, Sector 39-A, Chandigarh 160 036 (India); Reddy, V. S. [International Centre for Genetic Engineering and Biotechnology, New Delhi 110 067 (India); Ramakumar, S., E-mail: ramak@physics.iisc.ernet.in [Department of Physics, Indian Institute of Science, Bangalore 560 012 (India); Bioinformatics Centre, Indian Institute of Science, Bangalore 560 012 (India)

    2005-08-01

    A family 10 alkali-thermostable xylanase from Bacillus sp. NG-27 has been crystallized. A diffraction data set has been collected to 2.2 Å resolution. Xylanases (EC 3.2.1.8) catalyze the hydrolysis of β-1,4-glycosidic linkages within xylan, a major hemicellulose component in the biosphere. The extracellular endoxylanase (XylnA) from the alkalophilic Bacillus sp. strain NG-27 belongs to family 10 of the glycoside hydrolases. It is active at 343 K and pH 8.4. Moreover, it has attractive features from the point of view of utilization in the paper pulp, animal feed and baking industries since it is an alkali-thermostable protein. In this study, XylnA was purified from the native host source and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 174.5, b = 54.7, c = 131.5 Å, β = 131.2°, and diffract to better than 2.2 Å resolution.

  18. Crystallization and preliminary X-ray study of a family 10 alkali-thermostable xylanase from alkalophilic Bacillus sp. strain NG-27

    International Nuclear Information System (INIS)

    Manikandan, K.; Bhardwaj, Amit; Ghosh, Amit; Reddy, V. S.; Ramakumar, S.

    2005-01-01

    A family 10 alkali-thermostable xylanase from Bacillus sp. NG-27 has been crystallized. A diffraction data set has been collected to 2.2 Å resolution. Xylanases (EC 3.2.1.8) catalyze the hydrolysis of β-1,4-glycosidic linkages within xylan, a major hemicellulose component in the biosphere. The extracellular endoxylanase (XylnA) from the alkalophilic Bacillus sp. strain NG-27 belongs to family 10 of the glycoside hydrolases. It is active at 343 K and pH 8.4. Moreover, it has attractive features from the point of view of utilization in the paper pulp, animal feed and baking industries since it is an alkali-thermostable protein. In this study, XylnA was purified from the native host source and crystallized by the hanging-drop vapour-diffusion method. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 174.5, b = 54.7, c = 131.5 Å, β = 131.2°, and diffract to better than 2.2 Å resolution

  19. Corrosion and compatibility in liquid alkali metals

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The literature dealing with liquid alkali metal corrosion of vanadium and its alloys is reviewed in the following subsections. Attention is given to both lithium and sodium data. Preceding this review, a brief outline of the current state of understanding of liquid metal corrosion mechanisms is provided

  20. Impact of the spatial distribution of morphological pattern on the efficiency of electrocatalytic gas evolving reactions

    Directory of Open Access Journals (Sweden)

    Žerađanin Aleksandar R.

    2014-01-01

    Full Text Available The efficiency of electrocatalytic gas evolving reactions (hydrogen, chlorine and oxygen evolution is a key challenge for the important industrial processes, such as chlor-alkali electrolysis or water electrolysis. Central issue for the aforementioned electrocatalytic processes is huge power consumption. Experimental results accumulated in the past, as well as some predictive models ("volcano" plots indicate that altering the nature of the electrode material cannot significantly increase the activity of mentioned reactions. Consequently, it is necessary to find a qualitatively different strategy for improving the energy efficiency of electrocatalytic gas evolving reactions. Usually disregarded fact is that the gas evolution is an oscillatory phenomenon. Given the oscillatory behavior, a key parameter of macrokinetics of gas electrode is the frequency of gas-bubble detachment. Bearing in mind that the gas evolution greatly depends on the surface morphology, a methodology is proposed that establishes a rational link between the morphological pattern of electrode with electrode activity and stability. Characterization was performed using advanced analytical tools. Frequency of gas-bubble detachment is obtained in the configuration of scanning electrochemical microscopy (SECM while the corrosion stability is analyzed using miniaturized scanning flow electrochemical cell connected to the mass spectrometer (SFC-ICPMS.

  1. A 130 year record of pollution in the Suances estuary (southern Bay of Biscay): Implications for environmental management

    Energy Technology Data Exchange (ETDEWEB)

    Irabien, M.J. [Departamento de Mineralogia y Petrologia, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/EHU, Apartado 644, 48080 Bilbao (Spain)], E-mail: mariajesus.irabien@ehu.es; Cearreta, A. [Departamento de Estratigrafia y Paleontologia, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/EHU, Apartado 644, 48080 Bilbao (Spain); Leorri, E. [Departamento de Estratigrafia y Paleontologia, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/EHU, Apartado 644, 48080 Bilbao (Spain); Sociedad de Ciencias Aranzadi, Zorroagagaina kalea 11, 20014 Donostia-San Sebastian (Spain); Gomez, J. [Departamento de Ciencias Medicas y Quirurgicas, Facultad de Medicina, Universidad de Cantabria, Avda Herrera Oria s/n, 39011 Santander (Spain); Viguri, J. [Departamento de Ingenieria Quimica y Quimica Inorganica, ETSIIT, Universidad de Cantabria, Avda Los Castros s/n, 39005 Santander (Spain)

    2008-10-15

    Geochemical composition (Al, Zn, Pb, Cd, Cu, Ni, Cr and As) and foraminiferal assemblages in surface and core sediments were determined to assess the current situation and the recent environmental transformation of the Suances estuary (southern Bay of Biscay, Spain). Dating of the historical record has been achieved using isotopic analysis ({sup 210}Pb, {sup 137}Cs) and two benchmark events such as the beginning of the mineral exploitation in the Reocin Pb-Zn deposits and the evolution of the chlor-alkali industry (inputs of Hg). Concentrations of Zn, Pb and Cd in both surface and core samples are remarkably higher than background values, reflecting the existence of significant amounts of polluted materials. The dramatic environmental impact of this pollution is clearly recorded by the change of the foraminiferal assemblages that even reach an afaunal stage during recent decades. Application of two different sets of Sediment Quality Guidelines confirm that they exert potential risk to the environment, and therefore if dredged they should need specific management measures. The results provide a reference database to monitor future environmental changes in the Suances estuary, particularly as regards the contaminated sediment storage and the re-colonization by autochtonous meiofauna.

  2. A 130 year record of pollution in the Suances estuary (southern Bay of Biscay): Implications for environmental management

    International Nuclear Information System (INIS)

    Irabien, M.J.; Cearreta, A.; Leorri, E.; Gomez, J.; Viguri, J.

    2008-01-01

    Geochemical composition (Al, Zn, Pb, Cd, Cu, Ni, Cr and As) and foraminiferal assemblages in surface and core sediments were determined to assess the current situation and the recent environmental transformation of the Suances estuary (southern Bay of Biscay, Spain). Dating of the historical record has been achieved using isotopic analysis ( 210 Pb, 137 Cs) and two benchmark events such as the beginning of the mineral exploitation in the Reocin Pb-Zn deposits and the evolution of the chlor-alkali industry (inputs of Hg). Concentrations of Zn, Pb and Cd in both surface and core samples are remarkably higher than background values, reflecting the existence of significant amounts of polluted materials. The dramatic environmental impact of this pollution is clearly recorded by the change of the foraminiferal assemblages that even reach an afaunal stage during recent decades. Application of two different sets of Sediment Quality Guidelines confirm that they exert potential risk to the environment, and therefore if dredged they should need specific management measures. The results provide a reference database to monitor future environmental changes in the Suances estuary, particularly as regards the contaminated sediment storage and the re-colonization by autochtonous meiofauna

  3. Ab Initio Modeling of Structure and Properties of Single and Mixed Alkali Silicate Glasses.

    Science.gov (United States)

    Baral, Khagendra; Li, Aize; Ching, Wai-Yim

    2017-10-12

    A density functional theory (DFT)-based ab initio molecular dynamics (AIMD) has been applied to simulate models of single and mixed alkali silicate glasses with two different molar concentrations of alkali oxides. The structural environments and spatial distributions of alkali ions in the 10 simulated models with 20% and 30% of Li, Na, K and equal proportions of Li-Na and Na-K are studied in detail for subtle variations among the models. Quantum mechanical calculations of electronic structures, interatomic bonding, and mechanical and optical properties are carried out for each of the models, and the results are compared with available experimental observation and other simulations. The calculated results are in good agreement with the experimental data. We have used the novel concept of using the total bond order density (TBOD), a quantum mechanical metric, to characterize internal cohesion in these glass models. The mixed alkali effect (MAE) is visible in the bulk mechanical properties but not obvious in other physical properties studied in this paper. We show that Li doping deviates from expected trend due to the much stronger Li-O bonding than those of Na and K doping. The approach used in this study is in contrast with current studies in alkali-doped silicate glasses based only on geometric characterizations.

  4. Dissolution kinetics of lead telluride in alkali solutions of hydrogen peroxide

    International Nuclear Information System (INIS)

    Danilova, M.G.; Sveshnikova, L.L.; Stavitskaya, T.A.; Repinskij, S.M.

    1991-01-01

    Dissolution kinetics of lead telluride in alkali solutions of hydrogen peroxide was investigated. Dependences of change of PbTe dissolution rate on concentration of hydrogen peroxide and alkali in the solution were obtained. It is shown that dissolution rate of lead telluride is affected by dissolution rate of lead oxide, representing the product of ReTe dissolution. The obtained regularities can be explained by change of solution structure with increase of KOH concentration and by the state of hydrogen peroxide in the solution

  5. Alkali Halide Microstructured Optical Fiber for X-Ray Detection

    Science.gov (United States)

    DeHaven, S. L.; Wincheski, R. A.; Albin, S.

    2014-01-01

    Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.

  6. Mercury(II) removal from aqueous solutions and wastewaters using a novel cation exchanger derived from coconut coir pith and its recovery

    Energy Technology Data Exchange (ETDEWEB)

    Anirudhan, T.S. [Department of Chemistry, University of Kerala, Kariavattom, Trivandrum 695581 (India)], E-mail: tsani@rediffmail.com; Divya, L.; Ramachandran, M. [Department of Chemistry, University of Kerala, Kariavattom, Trivandrum 695581 (India)

    2008-09-15

    A new adsorbent (PGCP-COOH) having carboxylate functional group at the chain end was synthesized by grafting poly(hydroxyethylmethacrylate) onto coconut coir pith, CP (a coir industry-based lignocellulosic residue), using potassium peroxydisulphate as an initiator and in the presence of N,N'-methylenebisacrylamide as a cross-linking agent. The adsorbent was characterized with the help of infrared spectroscopy, powder X-ray diffraction, scanning electron microscopy, and potentiometric titrations. The ability of PGCP-COOH to remove Hg(II) from aqueous solutions was assessed using batch adsorption technique under kinetic and equilibrium conditions. Adsorbent exhibits very high adsorption potential for Hg(II) and more than 99.0% removal was achieved in the pH range 5.5-8.0. Adsorption process was found to follow first-order-reversible kinetics. An increase of ionic strength of the medium caused a decrease in metal removal, indicating the occurrence of outer-sphere surface complex mechanism. The equilibrium data were fitted well by the Freundlich isotherm model (R{sup 2} = 0.99; {chi}{sup 2} 1.81). The removal efficiency was tested using chlor-alkali industry wastewater. Adsorption isotherm experiments were also conducted for comparison using a commercial carboxylate-functionalized ion exchanger, Ceralite IRC-50. Regeneration experiments were tried for four cycles and results indicate a capacity loss of <9.0%.

  7. Volume dependence of the melting temperature for alkali metals with Debye's model

    International Nuclear Information System (INIS)

    Soma, T.; Kagaya, H.M.; Nishigaki, M.

    1983-01-01

    Using the volume dependence of the Grueneisen constant at higher temperatures, the volume effect on the melting temperature of alkali metals is studied by Lindeman's melting law and Debye's model. The obtained melting curve increases as a function of the compressed volume and shows the maximum of the melting point at the characteristic volume. The resultant data are qualitatively in agreement with the observed tendency for alkali metals. (author)

  8. Process for the recovery of alkali metal salts from aqueous solutions thereof

    International Nuclear Information System (INIS)

    Vitner, J.

    1984-01-01

    In an integrated process for the recovery of alkakli metal phenates and carboxylates from aqueous solutions thereof, the aqueous solution is spray dried and the drying gas stream is contacted with an aqueous alkali metal salt solution which dissolves the particles of the alkali metal salt that were entrained in the drying gas stream. The salt-free inert gas stream is then dried, heated, and returned to the spray dryer

  9. Properties of solvated electrons, alkali anions and other species in metal solutions and kinetics of cation and electron exchange reactions. Final report

    International Nuclear Information System (INIS)

    Dye, J.L.

    1979-01-01

    The properties of solutions of alkali metals in amine solvents were studied by optical, ETR, NMR and electrochemical methods. Complexation of the alkali cations by crown ethers and cryptands permitted the preparation of concentrated solutions of alkali metals in amine and ether solvents. Extensive alkali metal NMR studies of the exchange of M + with crown-ethers and cryptands and of the alkali metal anion, M - , were made. The first crystalline salt of an alkali metal anion, Na + Cryptand [2.2.2]Na - was synthesized and characterized and led to the preparation of other alkali metal anion salts. This research provided the foundation for continuing studies of crystalline alkalide salts

  10. Heat transfer characteristics of alkali metals flowing across tube banks

    International Nuclear Information System (INIS)

    Sugiyama, K.; Ishiguro, R.; Kojima, Y.; Kanaoka, H.

    2004-01-01

    For the purpose of getting heat transfer coefficients of alkali metals flowing across tube banks at an acceptable level, we propose to use an inviscid-irrotational flow model, which is based on our flow visualization experiment. We show that the heat transfer coefficients obtained for the condition where only the test rod is heated in tube banks considerably differ from those obtained for the condition where all the rods are heated, because of interference between thick thermal boundary layers of alkali metals. We also confirm that the analytical values obtained by this flow model are in a reasonable agreement with experimental values. (author)

  11. Study of absorption spectra for alkali and alkaline earth metal salts in flameless atomic absorption spectrometry using a carbon tube atomizer

    International Nuclear Information System (INIS)

    Yasuda, Seiji; Kakiyama, Hitoo

    1975-01-01

    Absorption spectra of various salts such as alkali metal salts, alkaline earth dichlorides, and ammonium halides were investigated and absorptions of some molecular species produced in the carbon tube were identified. The aqueous solution (20 μl) containing 1.0 mg/ml of each salt was placed in the carbon tube atomizer and heated in a similar manner to usual flameless atomic absorption method. D 2 -lamp was used as a continuous light source and argon gas was employed as an inert sheath gas. The spectra were obtained over the range of wavelength 200 to 350 nm. When alkali halides were feeded, the absorption spectra agreed with those of alkali halide vapors. Therefore, in such cases vapors of the alkali halides were probably produced by the sublimation or vaporization in the atomizer. The spectra of alkali perchlorates were considered to be those of alkali chlorides produced by the pyrolysis of the perchlorates in the atomizer. The absorptions of alkaline earth chlorides below 250 nm were probably due to their gaseous states. Sulfur dioxide was found to be produced by the pyrolysis of alkali sulfates, bisulfates and sulfites in the atomizer, Alkali phosphates and pyrophosphates gave almost identical spectra below 300 nm. Gamma band spectrum of nitrogen monoxide was observed from 200 to 240 nm during ashing at bout 330 0 C for alkali nitrates and nitrites. Ammonia vapor was produced from ammonium halides during drying at about 170 0 C. Although the absorptions of alkali carbonates and hydroxides were almost undetectable, the same spectra as those of alkali halides were observed by the addition of ammonium halides to the solutions of alkali compounds. This shows that alkali halides are produced in the atomizer by the addition of halide ions. (auth.)

  12. Investigation of structural properties associated with alkali-silica reaction by means of macro- and micro-structural analysis

    International Nuclear Information System (INIS)

    Mo Xiangyin; Fournier, Benoit

    2007-01-01

    Structural properties associated with alkali-silica reaction were systematically investigated by means of macro-structural accelerated mortar prism expansion levels testing, combined with micro-structural analysis. One part of this study is to determine the reactivity of the aggregate by means of accelerated mortar bar tests, and also to evaluate perlite aggregate constituents, especially the presence of deleterious components and find main causes of the alkali-silica reaction, which was based on the petrographic studies by optical microscope and the implication of X-ray diffraction on the aggregate. Results implied that the aggregate was highly alkali-silica reactive and the main micro-crystalline quartz-intermediate character and matrix that is mainly composed of chalcedony are potentially suitable for alkali-silica reaction. The other part is to study the long-term effect of lithium salts against alkali-silica reaction by testing accelerated mortar prism expansion levels. The macro-structural results were also consistent with the micro-structural mechanisms of alkali-silica reaction of mortar prisms containing this aggregate and the effect of chemical admixtures by means of the methods of scanning electron microscope-X-ray energy-dispersive spectroscopy and X-ray diffraction. It was indicated by these techniques that lithium salts, which were introduced into concrete containing reactive aggregate at the mixing stage, suppressed the alkali-silica reaction by producing non-expansive crystalline materials

  13. Reactive scattering of electronically excited alkali atoms with molecules

    International Nuclear Information System (INIS)

    Mestdagh, J.M.; Balko, B.A.; Covinsky, M.H.; Weiss, P.S.; Vernon, M.F.; Schmidt, H.; Lee, Y.T.

    1987-06-01

    Representative families of excited alkali atom reactions have been studied using a crossed beam apparatus. For those alkali-molecule systems in which reactions are also known for ground state alkali and involve an early electron transfer step, no large differences are observed in the reactivity as Na is excited. More interesting are the reactions with hydrogen halides (HCl): it was found that adding electronic energy into Na changes the reaction mechanism. Early electron transfer is responsible of Na(5S, 4D) reactions, but not of Na(3P) reactions. Moreover, the NaCl product scattering is dominated by the HCl - repulsion in Na(5S, 4D) reactions, and by the NaCl-H repulsion in the case of Na(3P). The reaction of Na with O 2 is of particular interest since it was found to be state specific. Only Na(4D) reacts, and the reaction requires restrictive constraints on the impact parameter and the reactants' relative orientation. The reaction with NO 2 is even more complex since Na(4D) leads to the formation of NaO by two different pathways. It must be mentioned however, that the identification of NaO as product in these reactions has yet to be confirmed

  14. Alkali metals in fungi of forest soil

    International Nuclear Information System (INIS)

    Vinichuk, M.; Taylor, A.; Rosen, K.; Nikolova, I.; Johanson, K.J.

    2009-01-01

    The high affinity of forest soil fungi for alkali metals such as potassium, rubidium, caesium as well as radiocaesium is shown and discussed. Good positive correlation was found between K: Rb concentration ratios in soil and in fungi, when correlation between K: Cs concentration ratios was less pronounced. (LN)

  15. Cement Type Influence on Alkali-Silica Reaction in Concrete with Crushed Gravel Aggregate

    Science.gov (United States)

    Rutkauskas, A.; Nagrockienė, D.; Skripkiūnas, G.

    2017-10-01

    Alkali-silica reaction is one of the chemical reactions which have a significant influence for durability of concrete. During alkali and silica reaction, silicon located in aggregates of the concrete, reacts with high alkali content. This way in the micropores of concrete is forming hygroscopic gel, which at wet environment, expanding and slowly but strongly destroying concrete structures. The goal of this paper- to determine the influence of cement type on alkali-silica reaction of mortars with crushed gravel. In the study crushed gravel with fraction 4/16 mm was used and four types of cements tested: CEM I 42.5 R; CEM I 42.5 SR; CEM II/A-S 42.5; CEM II/A-V 52.5. This study showed that crushed gravel is low contaminated on reactive particles containing of amorphous silica dioxide. The expansion after 14 days exceed 0.054 %, by RILEM AAR-2 research methodology (testing specimen dimension 40×40×160 mm). Continuing the investigation to 56 days for all specimens occurred alkaline corrosion features: microcracking and the surface plaque of gel. The results showed that the best resistance to alkaline corrosion after 14 days was obtained with cement CEM I 42.5 SR containing ash additive, and after 56 days with cement CEM II/A-V 52.5 containing low alkali content. The highest expansion after 14 and 56 days was obtained with cement CEM I 42.5 R without active mineral additives.

  16. The immobilisation of nuclear waste materials containing different alkali elements into single-phase NZP based ceramics

    International Nuclear Information System (INIS)

    Pet'kov, V.I.; Orlova, A.I.; Trubach, I.G.; Demarin, T.; Kurazhkovskaya, V.S.

    2002-01-01

    The NZP matrix, which is based on NaZr 2 (PO 4 ) 3 , is a viable candidate for nuclear waste immobilisation. We examined the possibilities of incorporating of alkali elements into the NZP host structure, investigated the conditions of the crystalline solution formation, and determined the regions of the NZP structure compositional stability for a series of complex orthophosphates of titanium or zirconium and alkali elements A m-x A' x M 2-(m-1)/4 (PO 4 ) 3 with m = 1, 3, or 5 and 0 ≤ x ≤ m, where A and A' are mutually different alkali elements and M is Ti or Zr. The phosphates containing Li-Na, Li-K, Li-Rb, Li-Cs, Na-K, Na-Rb, Na-Cs, K-Rb, K-Cs and Rb-Cs pairs were prepared and studied by X-ray powder analysis, IR spectroscopy, simultaneous DTA-TG measurements and electron microprobe analyses. In the systems studied, wide ranges of crystalline phosphate solutions with tailored alkali metal substitutions were formed owing to the large number of sites available for substitution and high degree of flexibility in the NZP structure. It was found that introduction of the less expensive and lighter Ti in the host phase in place of the commonly used Zr permits cheaper ceramics, having in some cases larger alkali element contents, to be obtained. The phases containing alkali metals can be formed, for instance, during phosphate solidification of molten alkali chlorides with radioactive nuclides from the pyroelectrochemical technologies of nuclear fuel recycling

  17. Mechanical Properties and Eco-Efficiency of Steel Fiber Reinforced Alkali-Activated Slag Concrete

    Directory of Open Access Journals (Sweden)

    Sun-Woo Kim

    2015-10-01

    Full Text Available Conventional concrete production that uses ordinary Portland cement (OPC as a binder seems unsustainable due to its high energy consumption, natural resource exhaustion and huge carbon dioxide (CO2 emissions. To transform the conventional process of concrete production to a more sustainable process, the replacement of high energy-consumptive PC with new binders such as fly ash and alkali-activated slag (AAS from available industrial by-products has been recognized as an alternative. This paper investigates the effect of curing conditions and steel fiber inclusion on the compressive and flexural performance of AAS concrete with a specified compressive strength of 40 MPa to evaluate the feasibility of AAS concrete as an alternative to normal concrete for CO2 emission reduction in the concrete industry. Their performances are compared with reference concrete produced using OPC. The eco-efficiency of AAS use for concrete production was also evaluated by binder intensity and CO2 intensity based on the test results and literature data. Test results show that it is possible to produce AAS concrete with compressive and flexural performances comparable to conventional concrete. Wet-curing and steel fiber inclusion improve the mechanical performance of AAS concrete. Also, the utilization of AAS as a sustainable binder can lead to significant CO2 emissions reduction and resources and energy conservation in the concrete industry.

  18. Mechanical Properties and Eco-Efficiency of Steel Fiber Reinforced Alkali-Activated Slag Concrete.

    Science.gov (United States)

    Kim, Sun-Woo; Jang, Seok-Joon; Kang, Dae-Hyun; Ahn, Kyung-Lim; Yun, Hyun-Do

    2015-10-30

    Conventional concrete production that uses ordinary Portland cement (OPC) as a binder seems unsustainable due to its high energy consumption, natural resource exhaustion and huge carbon dioxide (CO₂) emissions. To transform the conventional process of concrete production to a more sustainable process, the replacement of high energy-consumptive PC with new binders such as fly ash and alkali-activated slag (AAS) from available industrial by-products has been recognized as an alternative. This paper investigates the effect of curing conditions and steel fiber inclusion on the compressive and flexural performance of AAS concrete with a specified compressive strength of 40 MPa to evaluate the feasibility of AAS concrete as an alternative to normal concrete for CO₂ emission reduction in the concrete industry. Their performances are compared with reference concrete produced using OPC. The eco-efficiency of AAS use for concrete production was also evaluated by binder intensity and CO₂ intensity based on the test results and literature data. Test results show that it is possible to produce AAS concrete with compressive and flexural performances comparable to conventional concrete. Wet-curing and steel fiber inclusion improve the mechanical performance of AAS concrete. Also, the utilization of AAS as a sustainable binder can lead to significant CO₂ emissions reduction and resources and energy conservation in the concrete industry.

  19. An Alkali Activated Binder for High Chemical Resistant Self-Leveling Mortar

    OpenAIRE

    Funke, Henrik L.; Gelbrich, Sandra; Kroll, Lothar

    2016-01-01

    This paper reports the development of an Alkali Activated Binder (AAB) with an emphasis on the performance and the durability of the AAB-matrix. For the development of the matrix, the reactive components granulated slag and coal fly ash were used, which were alkali activated with a mixture of sodium hydroxide (2 - 10 mol/l) and aqueous sodium silicate solution (SiO2/Na2O molar ratio: 2.1) at ambient temperature. A sodium hydroxide concentration of 5.5 mol/l revealed the best compromise betwee...

  20. Energy distributions of atoms sputtered from alkali halides by 540 eV electrons, Ch.1

    International Nuclear Information System (INIS)

    Overeijnder, H.; Szymonski, M.; Haring, A.; Vries, A.E. de

    1978-01-01

    The emission of halogen and alkali atoms, occurring under bombardment of alkali halides with electrons has been investigated. The electron energy was 540 eV and the temperature of the target was varied between room temperature and 400 0 C. The energy distribution of the emitted neutral particles was measured with a time of flight method. It was found that either diffusing interstitial halogen atoms or moving holes dominate the sputtering process above 200 0 C. Below 150 0 C alkali halides with lattice parameters s/d >= 0.33 show emission of non-thermal halogen atoms. s is the interionic space between two halogen ions in a direction and d is the diameter of a halogen atom. In general the energy distribution of the alkali and halogen atoms is thermal above 200 0 C, but not Maxwellian. (Auth.)

  1. Polarizabilities and hyperpolarizabilities of the alkali metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Fuentealba, P. (Chile Univ., Santiago (Chile). Departamento de Fisica and Centro de Mecanica Cuantica Aplicada (CMCA)); Reyes, O. (Chile Univ., Santiago (Chile). Dept. de Fisica)

    1993-08-14

    The electric static dipole polarizability [alpha], quadrupole polarizability C, dipole-quadrupole polarizability B, and the second dipole hyperpolarizability [gamma] have been calculated for the alkali metal atoms in the ground state. The results are based on a pseudopotential which is able to incorporate the very important core-valence correlation effect through a core polarization potential, and, in an empirical way, the main relativistic effects. The calculated properties compare very well with more elaborated calculations for the Li atom, excepting the second hyperpolarizability [gamma]. For the other atoms, there is neither theoretical nor experimental information about most of the higher polarizabilities. Hence, the results of this paper should be seen as a first attempt to give a complete account of the series expansion of the interaction energy of an alkali metal atom and a static electric field. (author).

  2. Crystallochemical characteristics of alkali calcium silicates from charoitites

    International Nuclear Information System (INIS)

    Rozhdestvenskaya, I.V.; Nikishova, L.V.

    2002-01-01

    The characteristic features of the crystal structures of alkali calcium silicates from various deposits are considered. The structures of these minerals, which were established by single-crystal X-ray diffraction methods, are described as the combinations of large construction modules, including the alternating layers of alkali cations and tubular silicate radicals (in canasite, frankamenite, miserite, and agrellite) and bent ribbons linked through hydrogen bonds in the layers (in tinaksite and tokkoite). The incorporation of impurities and the different ways of ordering them have different effects on the structures of these minerals and give rise to the formation of superstructures accompanied by a change of the space group (frankamenite-canasite), leading, in turn, to different mutual arrangements of the layers of silicate tubes and the formation of pseudopolytypes (agrellites), structure deformation, and changes in the unit-cell parameters (tinaksite-tokkoite)

  3. Polarizabilities and hyperpolarizabilities of the alkali metal atoms

    International Nuclear Information System (INIS)

    Fuentealba, P.; Reyes, O.

    1993-01-01

    The electric static dipole polarizability α, quadrupole polarizability C, dipole-quadrupole polarizability B, and the second dipole hyperpolarizability γ have been calculated for the alkali metal atoms in the ground state. The results are based on a pseudopotential which is able to incorporate the very important core-valence correlation effect through a core polarization potential, and, in an empirical way, the main relativistic effects. The calculated properties compare very well with more elaborated calculations for the Li atom, excepting the second hyperpolarizability γ. For the other atoms, there is neither theoretical nor experimental information about most of the higher polarizabilities. Hence, the results of this paper should be seen as a first attempt to give a complete account of the series expansion of the interaction energy of an alkali metal atom and a static electric field. (author)

  4. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance.

    Science.gov (United States)

    Zhu, Dan; Cai, Hua; Luo, Xiao; Bai, Xi; Deyholos, Michael K; Chen, Qin; Chen, Chao; Ji, Wei; Zhu, Yanming

    2012-09-21

    Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  5. Alkali-activated binders: a review : part 2. about materials and binders manufacture

    OpenAIRE

    Torgal, Fernando Pacheco; Gomes, J. P. Castro; Jalali, Said

    2008-01-01

    This paper summarizes current knowledge about alkali-activated binders, by reviewing previously published work. As it is shown in Part 1, alkali-activated binders have emerged as an alternative to (ordinary Portland cement) OPC binders, which seem to have superior durability and environmental impact. The subjects of Part 2 of this paper are prime materials, alkaline activators, additives, curing type and constituents mixing order. Practical problems and theoretical questions are discussed. To...

  6. Bioelectrochemical recovery of waste-derived volatile fatty acids and production of hydrogen and alkali.

    Science.gov (United States)

    Zhang, Yifeng; Angelidaki, Irini

    2015-09-15

    Volatile fatty acids (VFA) are organic compounds of great importance for various industries and environmental processes. Fermentation and anaerobic digestion of organic wastes are promising alternative technologies for VFA production. However, one of the major challenges is development of sustainable downstream technologies for VFA recovery. In this study, an innovative microbial bipolar electrodialysis cell (MBEDC) was developed to meet the challenge of waste-derived VFA recovery, produce hydrogen and alkali, and potentially treat wastewater. The MBEDC was operated in fed-batch mode. At an applied voltage of 1.2 V, a VFA recovery efficiency of 98.3%, H2 of 18.4 mL and alkali production presented as pH of 12.64 were obtained using synthetic fermentation broth. The applied voltage, initial VFA concentrations and composition were affecting the VFA recovery. The energy balance revealed that net energy (5.20-6.86 kWh/kg-VFA recovered) was produced at all the applied voltages (0.8-1.4 V). The coexistence of other anionic species had no negative effect on VFA transportation. The VFA concentration was increased 2.96 times after three consecutive batches. Furthermore, the applicability of MBEDC was successfully verified with digestate. These results demonstrate for the first time the possibility of a new method for waste-derived VFA recovery and valuable products production that uses wastewater as fuel and bacteria as catalyst. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Remote Sensing of CO2 Absorption by Saline-Alkali Soils: Potentials and Constraints

    Directory of Open Access Journals (Sweden)

    Wenfeng Wang

    2014-01-01

    Full Text Available CO2 absorption by saline-alkali soils was recently demonstrated in the measurements of soil respiration fluxes in arid and semiarid ecosystems and hypothetically contributed to the long-thought “missing carbon sink.” This paper is aimed to develop the preliminary theory and methodology for the quantitative analysis of CO2 absorption by saline-alkali soils on regional and global scales. Both the technological progress of multispectral remote sensing over the past decades and the conjectures of mechanisms and controls of CO2 absorption by saline-alkali soils are advantageous for remote sensing of such absorption. At the end of this paper, the scheme for remote sensing is presented and some unresolved issues related to the scheme are also proposed for further investigations.

  8. Impact of Alkali Source on Vitrification of SRS High Level Waste

    International Nuclear Information System (INIS)

    LAMBERT, D. P.; MILLER, D. H.; PEELER, D. K.; SMITH, M. E.; STONE, M. E.

    2005-01-01

    The Defense Waste Processing Facility (DWPF) Savannah River Site is currently immobilizing high level nuclear waste sludge by vitrification in borosilicate glass. The processing strategy involves blending a large batch of sludge into a feed tank, washing the sludge to reduce the amount of soluble species, then processing the large ''sludge batch'' through the DWPF. Each sludge batch is tested by the Savannah River National Laboratory (SRNL) using simulants and tests with samples of the radioactive waste to ''qualify'' the batch prior to processing in the DWPF. The DWPF pretreats the sludge by first acidifying the sludge with nitric and formic acid. The ratio of nitric to formic acid is adjusted as required to target a final glass composition that is slightly reducing (the target is for ∼20% of the iron to have a valence of two in the glass). The formic acid reduces the mercury in the feed to elemental mercury which is steam stripped from the feed. After a concentration step, the glass former (glass frit) is added as a 50 wt% slurry and the batch is concentrated to approximately 50 wt% solids. The feed slurry is then fed to a joule heated melter maintained at 1150 C. The glass must meet both processing (e.g., viscosity and liquidus temperature) and product performance (e.g., durability) constraints The alkali content of the final waste glass is a critical parameter that affects key glass properties (such as durability) as well as the processing characteristics of the waste sludge during the pretreatment and vitrification processes. Increasing the alkali content of the glass has been shown to improve the production rate of the DWPF, but the total alkali in the final glass is limited by constraints on glass durability and viscosity. Two sources of alkali contribute to the final alkali content of the glass: sodium salts in the waste supernate and sodium and lithium oxides in the glass frit added during pretreatment processes. Sodium salts in the waste supernate can

  9. A simple alkali-metal and noble gas ion source for SIMS equipments with mass separation of the primary ions

    International Nuclear Information System (INIS)

    Duesterhoeft, H.; Pippig, R.

    1986-01-01

    An alkali-metal ion source working without a store of alkali-metals is described. The alkali-metal ions are produced by evaporation of alkali salts and ionization in a low-voltage arc discharge stabilized with a noble gas plasma or in the case of small alkali-metal ion currents on the base of the well known thermic ionization at a hot tungsten wire. The source is very simple in construction and produces a stable ion current of 0.3 μA for more than 100 h. It is possible to change the ion species in a short time. This source is applicable to all SIMS equipments using mass separation for primary ions. (author)

  10. Comparative study of reversible hydrogen storage in alkali-doped fulleranes

    Energy Technology Data Exchange (ETDEWEB)

    Teprovich, Joseph A.; Knight, Douglas A.; Peters, Brent [Clean Energy Directorate – Savannah River National Laboratory, Aiken, SC 29801 (United States); Zidan, Ragaiy, E-mail: ragaiy.zidan@srnl.doe.gov [Clean Energy Directorate – Savannah River National Laboratory, Aiken, SC 29801 (United States)

    2013-12-15

    Highlights: ► Catalytic effect of alkali metals of fullerane formation. ► Hydrogen storage properties of alkali metal hydrides and fullerene composites. ► Novel intercalation of Na and Li in the fullerene lattice. ► Reversible phase transformation of C{sub 60} from fcc to bcc upon de/rehydrogenation. ► Potential to enable to the formation of other carbon based hydrogen storage systems. -- Abstract: In this report we describe and compare the hydrogen storage properties of lithium and sodium doped fullerenes prepared via a solvent-assisted mixing process. For the preparation of these samples either NaH or LiH was utilized as the alkali metal source to make material based on either a Na{sub 6}C{sub 60} or Li{sub 6}C{sub 60}. Both of the alkali-doped materials can reversibly absorb and desorb hydrogen at much milder conditions than the starting materials used to make them (decomposition temperatures of NaH > 420 °C, LiH > 670 °C, and fullerane > 500 °C). The hydrogen storage properties of the materials were compared by TGA, isothermal desorption, and XRD analysis. It was determined that the sodium-doped material can reversibly store 4.0 wt.% H{sub 2} while the lithium doped material can reversibly store 5.0 wt.% H{sub 2} through a chemisorption mechanism indicated by the formation and measurement of C–H bonds. XRD analysis of the material demonstrated that a reversible phase transition between fcc and bcc occurs depending on the temperature at which the hydrogenation is performed. In either system the active hydrogen storage material resembles a hydrogenated fullerene (fullerane)

  11. Comparative study of reversible hydrogen storage in alkali-doped fulleranes

    International Nuclear Information System (INIS)

    Teprovich, Joseph A.; Knight, Douglas A.; Peters, Brent; Zidan, Ragaiy

    2013-01-01

    Highlights: ► Catalytic effect of alkali metals of fullerane formation. ► Hydrogen storage properties of alkali metal hydrides and fullerene composites. ► Novel intercalation of Na and Li in the fullerene lattice. ► Reversible phase transformation of C 60 from fcc to bcc upon de/rehydrogenation. ► Potential to enable to the formation of other carbon based hydrogen storage systems. -- Abstract: In this report we describe and compare the hydrogen storage properties of lithium and sodium doped fullerenes prepared via a solvent-assisted mixing process. For the preparation of these samples either NaH or LiH was utilized as the alkali metal source to make material based on either a Na 6 C 60 or Li 6 C 60 . Both of the alkali-doped materials can reversibly absorb and desorb hydrogen at much milder conditions than the starting materials used to make them (decomposition temperatures of NaH > 420 °C, LiH > 670 °C, and fullerane > 500 °C). The hydrogen storage properties of the materials were compared by TGA, isothermal desorption, and XRD analysis. It was determined that the sodium-doped material can reversibly store 4.0 wt.% H 2 while the lithium doped material can reversibly store 5.0 wt.% H 2 through a chemisorption mechanism indicated by the formation and measurement of C–H bonds. XRD analysis of the material demonstrated that a reversible phase transition between fcc and bcc occurs depending on the temperature at which the hydrogenation is performed. In either system the active hydrogen storage material resembles a hydrogenated fullerene (fullerane)

  12. The Durability and Performance of Short Fibers for a Newly Developed Alkali-Activated Binder

    Directory of Open Access Journals (Sweden)

    Henrik Funke

    2016-03-01

    Full Text Available This study reports the development of a fiber-reinforced alkali-activated binder (FRAAB with an emphasis on the performance and the durability of the fibers in the alkaline alkali-activated binder (AAB-matrix. For the development of the matrix, the reactive components granulated slag and coal fly ash were used, which were alkali-activated with a mixture of sodium hydroxide (2–10 mol/L and an aqueous sodium silicate solution (SiO2/Na2O molar ratio: 2.1 at ambient temperature. For the reinforcement of the matrix integral fibers of alkali-resistant glass (AR-glass, E-glass, basalt, and carbon with a fiber volume content of 0.5% were used. By the integration of these short fibers, the three-point bending tensile strength of the AAB increased strikingly from 4.6 MPa (no fibers up to 5.7 MPa (carbon after one day. As a result of the investigations of the alkali resistance, the AR-glass and the carbon fibers showed the highest durability of all fibers in the FRAAB-matrix. In contrast to that, the weight loss of E-glass and basalt fibers was significant under the alkaline condition. According to these results, only the AR-glass and the carbon fibers reveal sufficient durability in the alkaline AAB-matrix.

  13. Analysis and modeling of alkali halide aqueous solutions

    DEFF Research Database (Denmark)

    Kim, Sun Hyung; Anantpinijwatna, Amata; Kang, Jeong Won

    2016-01-01

    on calculations for various electrolyte properties of alkali halide aqueous solutions such as mean ionic activity coefficients, osmotic coefficients, and salt solubilities. The model covers highly nonideal electrolyte systems such as lithium chloride, lithium bromide and lithium iodide, that is, systems...

  14. Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance

    International Nuclear Information System (INIS)

    Zhu, Dan; Cai, Hua; Luo, Xiao; Bai, Xi; Deyholos, Michael K.; Chen, Qin; Chen, Chao; Ji, Wei; Zhu, Yanming

    2012-01-01

    Highlights: ► We isolated and characterized a novel JAZ family gene, GsJAZ2, from Glycine soja. ► Overexpression of GsJAZ2 enhanced plant tolerance to salt and alkali stress. ► The transcriptions of stress marker genes were higher in GsJAZ2 overexpression lines. ► GsJAZ2 was localized to nucleus. -- Abstract: Salt and alkali stress are two of the main environmental factors limiting crop production. Recent discoveries show that the JAZ family encodes plant-specific genes involved in jasmonate signaling. However, there is only limited information about this gene family in abiotic stress response, and in wild soybean (Glycine soja), which is a species noted for its tolerance to alkali and salinity. Here, we isolated and characterized a novel JAZ family gene, GsJAZ2, from G. soja. Transcript abundance of GsJAZ2 increased following exposure to salt, alkali, cold and drought. Over-expression of GsJAZ2 in Arabidopsis resulted in enhanced plant tolerance to salt and alkali stress. The expression levels of some alkali stress response and stress-inducible marker genes were significantly higher in the GsJAZ2 overexpression lines as compared to wild-type plants. Subcellular localization studies using a GFP fusion protein showed that GsJAZ2 was localized to the nucleus. These results suggest that the newly isolated wild soybean GsJAZ2 is a positive regulator of plant salt and alkali stress tolerance.

  15. The structure and amphipathy characteristics of modified γ-zeins by SDS or alkali in conjunction with heating treatment.

    Science.gov (United States)

    Dong, Shi-Rong; Xu, Hong-Hua; Tan, Jun-Yan; Xie, Ming-Ming; Yu, Guo-Ping

    2017-10-15

    γ-Zein was modified by SDS or alkali combined with heating treatments in water and in 70% ethanol to change its amphipathic properties and explore the relationship between amphipathic characteristic and structure. γ-Zein water-dispersibility was dramatically increased via alkali or SDS combined with heating treatments, but their ethanol-dispersibilities were significantly different during ethanol evaporation. High both water-dispersibility and ethanol-dispersibility were found from alkali modified γ-zein while high water-dispersibility but low ethanol-dispersibility were obtained from SDS modified γ-zein, indicating that alkali modified γ-zein had better amphipathic characteristic compared with SDS modified γ-zein. Alkali modified γ-zein with higher amphipathic characteristic possessed higher structural inversion ability since it was easy to recover its native state as solvent changing from water to ethanol, contrary to SDS modified γ-zeins whose amphipathic characteristic was not improved. Moreover, the higher structural inversion ability of alkali modified γ-zein depended on the recovery capability of α-helix structure as solvent altering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Resistance of Alkali-Activated Slag Concrete to Chloride-Induced Corrosion

    Directory of Open Access Journals (Sweden)

    Joon Woo Park

    2015-01-01

    Full Text Available The corrosion resistance of steel in alkali-activated slag (AAS mortar was evaluated by a monitoring of the galvanic current and half-cell potential with time against a chloride-contaminated environment. For chloride transport, rapid chloride penetration test was performed, and chloride binding capacity of AAS was evaluated at a given chloride. The mortar/paste specimens were manufactured with ground granulated blast-furnace slag, instead of Portland cement, and alkali activators were added in mixing water, including Ca(OH2, KOH and NaOH, to activate hydration process. As a result, it was found that the corrosion behavior was strongly dependent on the type of alkali activator: the AAS containing the Ca(OH2 activator was the most passive in monitoring of the galvanic corrosion and half-cell potential, while KOH, and NaOH activators indicated a similar level of corrosion to Portland cement mortar (control. Despite a lower binding of chloride ions in the paste, the AAS had quite a higher resistance to chloride transport in rapid chloride penetration, presumably due to the lower level of capillary pores, which was ensured by the pore distribution of AAS mortar in mercury intrusion porosimetry.

  17. Propiedades y aplicaciones de los cementos alcalinos Properties and uses of alkali cements

    Directory of Open Access Journals (Sweden)

    Ana Fernández-Jiménez

    2009-12-01

    Full Text Available En este trabajo se presentan algunas de las propiedades tecnológicas de los materiales cementantes elaborados por activación alcalina de aluminosilicatos. Más específicamente sobre las propiedades de morteros y hormigones elaborados con cenizas volantes activadas alcalinamente (sin cemento Portland. Así en función del tipo de activador alcalino empleado y tras un curado térmico previo, el material resultante presentará una interesante lista de propiedades y características que incluyen: elevadas resistencias mecánicas iniciales (a flexión y a compresión, baja retracción al secado, y una muy buena adherencia matriz-acero, así como una excelente resistencia al ataque ácido y un excelente comportamiento frente al fuego. Es por ello que estos nuevos cementos debido a sus magnificas características tecnológicas y durables, así como a la facilidad de adecuarlos a las instalaciones existentes en la industria de los prefabricados, pueden ser fácilmente utilizados en diversas aplicaciones como por ejemplo: elaboración de durmientes para el ferrocarril, bloques para edificación o pavimentación, etc.In this paper are presented some of the technologic properties of cementitious material elaborated by alkali activation of aluminosilicates are presented. More specifically it is about the properties of alkali activated fly ash concrete and mortar (without Portland cement. So depending on the type of alkali activator that is used and after a previous thermal curing, the resulting material will show an interesting list of properties and features that includes: high initial mechanical strengths (under flexure and compression, low drying shrinkage, and a very good matrix-steel bonding, as well as an excellent strength to acid attack and an excellent behaviour when is exposed to fire. That is the reason why these new cements, due to their magnificent and durable technologic features as well as its easy adaptability to the existing

  18. Tin-containing silicates: Alkali salts improve methyl lactate yield from sugars

    DEFF Research Database (Denmark)

    Tolborg, Søren; Sádaba, Irantzu; Osmundsen, Christian Mårup

    2015-01-01

    This study focuses on increasing the selectivity to methyl lactate from sugars using stannosilicates as heterogeneous catalyst. All group I ions are found to have a promoting effect on the resulting methyl lactate yield. Besides, the alkali ions can be added both during the preparation of the cat......This study focuses on increasing the selectivity to methyl lactate from sugars using stannosilicates as heterogeneous catalyst. All group I ions are found to have a promoting effect on the resulting methyl lactate yield. Besides, the alkali ions can be added both during the preparation...

  19. STUDIES ON THE FORMATION AND IONIZATION OF THE COMPOUNDS OF CASEIN WITH ALKALI

    Science.gov (United States)

    Greenberg, David M.; Schmidt, Carl L. A.

    1924-01-01

    1. The deposition of casein on a platinum anode which takes place on the passage of a direct current through solutions of alkali caseinates was quantitatively studied, and it was found that: (a) the amount of casein which is deposited is directly proportional to the current, i.e. it obeys Faraday's law; (b) the amount of casein deposited is inversely proportional (within the limits studied) to the amount of alkali which is combined with the casein. 2. A method of determining the transport numbers of proteins insoluble at their isoelectric point has been developed. 3. A titration method for determining the amount of alkali in a casein solution is given. 4. Data from the results of transference experiments on sodium caseinate, potassium caseinate, cesium caseinate, and rubidium caseinate solutions are given. It is shown that the data are best explained on the assumption that in these solutions the carriers of the current are alkali metal cations and casein anions. 5. On the basis of our transference results an explanation is given of the results which were obtained by Robertson and by Haas in their migration experiments. PMID:19872135

  20. Use of a radio-frequency resonance circuit in studies of alkali ionization in flames

    International Nuclear Information System (INIS)

    Borgers, A.J.

    1978-01-01

    The construction of a radio-frequency resonance system and its use in the study of alkali metal ionization in flames is described. The author re-determines the values of the alkali ionization rate constants for a CO flame with N 2 as diluent gas of known temperature using the RF resonance method. (Auth.)

  1. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    Science.gov (United States)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  2. Biomagnification and bioaccumulation of mercury in two fish species from different trophic levels in the Bahia de Cartagena and the Cienaga Grande de Santa Marta, Colombian Caribbean

    International Nuclear Information System (INIS)

    Alonso, D.; Campos, N.

    1999-01-01

    During the decade of the 70's a chlor-alkali plant dumped between 11 and 15 tons of mercury indiscriminately into the Bahia de Cartagena (BC), elevating the levels of this metal in the biotic and abiotic components of the ecosystem. Although two decades have passed since the plant was closed, the sediments of the bay seem to be an important source of mercury to the marine environment. The present work measured the contents of mercury in the sediment and determined the processes of bioaccumulation and biomagnification in two species of fishes of commercial importance: the parassi mullet (Mugil incilis) and the striped mojarra (Eugerres plumieri), a detritivore and an omnivore, respectively

  3. Impact of saline-alkali stress on the accumulation of solids in tomato fruits

    International Nuclear Information System (INIS)

    Jan, N.E.; Din, J.U.; Kawabata, S

    2014-01-01

    Growing of tomato plants in saline conditions, having high rhizospheric EC, is often reported with high solid content in fruits. However, saline-alkali stress conditions, having high rhizospheric pH as well as high EC, have never been studied to evaluate its impact on the solid content of tomato fruits. In this study, we investigated the impact of saline-alkali stress (0, 30, 60, 90, and 120 mM NaHCO/sub 3/) on the accumulation of solids in tomato fruits. Addition of sodium bicarbonate (NaHCO/sub 3/) to plants highly increased pH as well as EC of the soil leachate in 90 and 120 mM NaHCO/sub 3/ treatments in comparison to control treatment. Saline-alkali stress treatments did not influence the fruit dry weight, nonetheless, the content of fruit dry matter was increased significantly from 6.5% at control to 8.5% at 90 and 120 mM treatments. The content of soluble sugar was increased to 3% in 90 mM treatment in comparison to control (2%), owing to significant accumulation of hexose as well as sucrose in ripe fruits. In addition to carbohydrates, saline-alkali stress influenced the accumulation of organic acids in fruits, as well. Citric acid, being the major acid, showed positive correlation with the salt concentration, and was significantly high at stress treatments of higher than 30 mM. These results suggested that saline-alkali stress conditions, in spite of high pH, can increase the contents of fruit solids in tomato, as is usually observed in saline stress conditions. (author)

  4. A novel cellulase free alkaliphilic xylanase from alkali tolerant Penicillium citrinum: production, purification and characterization.

    Science.gov (United States)

    Dutta, T; Sengupta, R; Sahoo, R; Sinha Ray, S; Bhattacharjee, A; Ghosh, S

    2007-02-01

    The enzymatic hydrolysis of xylan has potential economic and environment-friendly applications. Therefore, attention is focused here on the discovery of new extremophilic xylanase in order to meet the requirements of industry. An extracellular xylanase was purified from the culture filtrate of P. citrinum grown on wheat bran bed in solid substrate fermentation. Single step purification was achieved using hydrophobic interaction chromatography. The purified enzyme showed a single band on SDS-PAGE with an apparent molecular weight of c. 25 kDa and pI of 3.6. Stimulation of the activity by beta mercaptoethanol, dithiotheritol (DTT) and cysteine was observed. Moderately thermostable xylanase showed optimum activity at 50 degrees C at pH 8.5. Xylanase purified from P. citrinum was alkaliphilic and moderately thermostable in nature. The present work reports for the first time the purification and characterization of a novel endoglucanase free alkaliphilic xylanase from the alkali tolerant fungus Penicillium citrinum. The alkaliphilicity and moderate thermostability of this xylanase may have potential implications in paper and pulp industries.

  5. Effect of basic alkali-pickling conditions on the production of lysinoalanine in preserved eggs.

    Science.gov (United States)

    Zhao, Yan; Luo, Xuying; Li, Jianke; Xu, Mingsheng; Tu, Yonggang

    2015-09-01

    During the pickling process, strong alkali causes significant lysinoalanine (LAL) formation in preserved eggs, which may reduce the nutritional value of the proteins and result in a potential hazard to human health. In this study, the impacts of the alkali treatment conditions on the production of LAL in preserved eggs were investigated. Preserved eggs were prepared using different times and temperatures, and alkali-pickling solutions with different types and concentrations of alkali and metal salts, and the corresponding LAL contents were measured. The results showed the following: during the pickling period of the preserved egg, the content of LAL in the egg white first rapidly increased and then slowly increased; the content of LAL in the egg yolk continued to increase significantly. During the aging period, the levels of LAL in both egg white and egg yolk slowly increased. The amounts of LAL in the preserved eggs were not significantly different at temperatures between 20 and 25ºC. At higher pickling temperatures, the LAL content in the preserved eggs increased. With the increase of alkali concentration in the alkali-pickling solution, the LAL content in the egg white and egg yolk showed an overall trend of an initial increase followed by a slight decrease. The content of LAL produced in preserved eggs treated with KOH was lower than in those treated with NaOH. NaCl and KCl produced no significant effects on the production of LAL in the preserved eggs. With increasing amounts of heavy metal salts, the LAL content in the preserved eggs first decreased and then increased. The LAL content generated in the CuSO4 group was lower than that in either the ZnSO4 or PbO groups. © 2015 Poultry Science Association Inc.

  6. Synthesis and structural characterization of alkali metal arsinoamides.

    Science.gov (United States)

    Chen, Xiao; Gamer, Michael T; Roesky, Peter W

    2017-12-20

    The aminoarsane Mes 2 AsN(H)Ph was prepared from Mes 2 AsCl and aniline in good yields. Deprotonation of Mes 2 AsN(H)Ph with suitable alkali metal bases resulted in the corresponding alkali metal derivatives. Thus, reaction of Mes 2 AsN(H)Ph with nBuLi, NaN(SiMe 3 ) 2 , or KH gave the metal complexes [(Mes 2 AsNPh){Li(OEt 2 ) 2 }], [(Mes 2 AsNPh){Na(OEt 2 )}] 2 , and [(Mes 2 AsNPh){K(THF)}] 2 . These are the first metal complexes ligated by an arsinoamide. All solid-state structures were established by single crystal X-ray diffraction. The lithium compounds form a monomer in the solid-state, whereas the sodium and the potassium derivatives are dimers. In the dimeric compounds intra- and intermolecular π-interaction of the aromatic rings with the metal atoms is observed.

  7. Alkali ion migration between stacked glass plates by corona discharge treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kawaguchi, Keiga [Research Institute for Electronic Science, Hokkaido University, N20 W10, Kita-ku, Sapporo, Hokkaido 001-0020 (Japan); Suzuki, Toshio [Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755 (Japan); Ikeda, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Sakai, Daisuke [Department of Electrical and Electronic Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Funatsu, Shiro; Uraji, Keiichiro [Production Technology Center, Asahi Glass Co., Ltd., 1-1 Suehiro-cyo, Tsurumiku, Yokohama, Kanagawa 230-0045 (Japan); Yamamoto, Kiyoshi [Research Center, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama, Kanagawa 221-8755 (Japan); Harada, Kenji [Department of Computer Science, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 090-8507 (Japan); Nishii, Junji, E-mail: nishii@es.hokudai.ac.jp [Research Institute for Electronic Science, Hokkaido University, N20 W10, Kita-ku, Sapporo, Hokkaido 001-0020 (Japan)

    2015-05-30

    Highlights: • Two stacked glass plates with a 1 mm gap were treated by corona discharge. • Spatial migration of alkali ion over the gap was demonstrated. • Hydrogen gas was necessary for uniform migration. • Surface modification was done with this process without high temperature or vacuum. - Abstract: Corona discharge reflects the spatial migration of alkali ions over a gap between two glass plates. This study examined stacked glass plates containing different alkali ions treated with the corona discharge plasma generated by applied voltage of 4.5 kV at 200 °C. Protons generated at the anode electrode penetrate into the potassium-ion-containing upper glass plate, which is located 5 mm below the anode electrode. Potassium ions intruded into the lower glass plate containing sodium ions placed on the cathode electrode, even over a 1 mm gap separating the plates. Finally, the sodium ion discharged on the cathode electrode. The hydrogen atmosphere was effective at inhibiting the potassium ion reaction with ambient gases during the spatial migration between the two glass plates.

  8. Dipole-dipole van der Waals interaction in alkali halides

    International Nuclear Information System (INIS)

    Thakur, B.N.; Thakur, K.P.

    1978-01-01

    Values of van der Waals dipole-dipole constants and interaction energetics of alkali halides are reported using the recent data. The values obtained are somewhat larger than those of earlier workers. (orig.) [de

  9. Minocycline inhibits alkali burn-induced corneal neovascularization in mice.

    Directory of Open Access Journals (Sweden)

    Ou Xiao

    Full Text Available The purpose of this study was to investigate the effects of minocycline on alkali burn-induced corneal neovascularization (CNV. A total of 105 mice treated with alkali burns were randomly divided into three groups to receive intraperitoneal injections of either phosphate buffered saline (PBS or minocycline twice a day (60 mg/kg or 30 mg/kg for 14 consecutive days. The area of CNV and corneal epithelial defects was measured on day 4, 7, 10, and14 after alkali burns. On day 14, a histopathological examination was performed to assess morphological change and the infiltration of polymorphonuclear neutrophils (PMNs. The mRNA expression levels of vascular endothelial growth factor (VEGF and its receptors (VEGFRs, basic fibroblast growth factor (bFGF, matrix metalloproteinases (MMPs, interleukin-1α, 1β, 6 (IL-1α, IL-1β, IL-6 were analyzed using real-time quantitative polymerase chain reaction. The expression of MMP-2 and MMP-9 proteins was determined by gelatin zymography. In addition, enzyme-linked immunosorbent assay was used to analyze the protein levels of VEGFR1, VEGFR2, IL-1β and IL-6. Minocycline at a dose of 60 mg/kg or 30 mg/kg significantly enhanced the recovery of the corneal epithelial defects more than PBS did. There were significant decreases of corneal neovascularization in the group of high-dosage minocycline compared with the control group at all checkpoints. On day 14, the infiltrated PMNs was reduced, and the mRNA expression of VEGFR1, VEGFR2, bFGF, IL-1β, IL-6, MMP-2, MMP-9, -13 as well as the protein expression of VEGFR2, MMP-2, -9, IL-1β, IL-6 in the corneas were down-regulated with the use of 60 mg/kg minocycline twice a day. Our results showed that the intraperitoneal injection of minocycline (60 mg/kg b.i.d. can significantly inhibit alkali burn-induced corneal neovascularization in mice, possibly by accelerating corneal wound healing and by reducing the production of angiogenic factors, inflammatory cytokines and MMPs.

  10. Enhancement of struvite pellets crystallization in a full-scale plant using an industrial grade magnesium product.

    Science.gov (United States)

    Crutchik, D; Morales, N; Vázquez-Padín, J R; Garrido, J M

    2017-02-01

    A full-scale struvite crystallization system was operated for the treatment of the centrate obtained from the sludge anaerobic digester in a municipal wastewater treatment plant. Additionally, the feasibility of an industrial grade Mg(OH) 2 as a cheap magnesium and alkali source was also investigated. The struvite crystallization plant was operated for two different periods: period I, in which an influent with low phosphate concentration (34.0 mg P·L -1 ) was fed to the crystallization plant; and period II, in which an influent with higher phosphate concentration (68.0 mg P·L -1 ) was used. A high efficiency of phosphorus recovery by struvite crystallization was obtained, even when the effluent treated had a high level of alkalinity. Phosphorus recovery percentage was around 77%, with a phosphate concentration in the effluent between 10.0 and 30.0 mg P·L -1 . The experiments gained struvite pellets of 0.5-5.0 mm size. Moreover, the consumption of Mg(OH) 2 was estimated at 1.5 mol Mg added·mol P recovered -1 . Thus, industrial grade Mg(OH) 2 can be an economical alternative as magnesium and alkali sources for struvite crystallization at industrial scale.

  11. ALKALI AGGREGATE REACTIONS IN CONCRETE: A REVIEW OF ...

    African Journals Online (AJOL)

    coarse aggregate, water and chemical admixtures to improve its various .... slowly from certai~ alkali-bearing rock components within the ... retaining walls. ... expand in pores and microcracks of the cementious matrix. ... allY'a' pressure on the surrounding concrete ... effect is reduced structural integrity and shortened.

  12. Profiling application potential for alkali treated sisal fiber ...

    African Journals Online (AJOL)

    The effect of alkali treatment on sisal fiber from the plant agave sisalana in appropriation for composite material application is presented. Effectiveness of the fiber's reinforcement potential within polypropylene (PP) matrix is evaluated through morphological analysis, crystallinity levels, and tensile, where ultimate tensile ...

  13. Method for intercalating alkali metal ions into carbon electrodes

    Science.gov (United States)

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  14. K-Ca Dating of Alkali-Rich Fragments in the Y-74442 and Bhola LL-Chondritic Breccias

    Science.gov (United States)

    Yokoyama, T; Misawa, K.; Okano, O; Shih, C. -Y.; Nyquist, L. E.; Simon, J. I.; Tappa, M. J.; Yoneda, S.

    2013-01-01

    Alkali-rich igneous fragments in the brecciated LL-chondrites, Krahenberg (LL5) [1], Bhola (LL3-6) [2], Siena (LL5) [3] and Yamato (Y)-74442 (LL4) [4-6], show characteristic fractionation patterns of alkali and alkaline elements [7]. The alkali-rich fragments in Krahenberg, Bhola and Y-74442 are very similar in mineralogy and petrography, suggesting that they could have come from related precursor materials [6]. Recently we reported Rb-Sr isotopic systematics of alkali-rich igneous rock fragments in Y-74442: nine fragments from Y-74442 yield the Rb-Sr age of 4429 plus or minus 54 Ma (2 sigma) for lambda(Rb-87) = 0.01402 Ga(exp -1) [8] with the initial ratio of Sr-87/Sr-86 = 0.7144 plus or minus 0.0094 (2 sigma) [9]. The Rb-Sr age of the alkali-rich fragments of Y-74442 is younger than the primary Rb-Sr age of 4541 plus or minus 14 Ma for LL-chondrite whole-rock samples [10], implying that they formed after accumulation of LL-chondrite parental bodies, although enrichment may have happened earlier. Marshall and DePaolo [11,12] demonstrated that the K-40 - Ca-40 decay system could be an important chronometer as well as a useful radiogenic tracer for studies of terrestrial rocks. Shih et al. [13,14] and more recently Simon et al. [15] determined K-Ca ages of lunar granitic rocks, and showed the application of the K-Ca chronometer for K-rich planetary materials. Since alkali-rich fragments in the LL-chondritic breccias are highly enriched in K, we can expect enhancements of radiogenic Ca-40. Here, we report preliminary results of K-Ca isotopic systematics of alkali-rich fragments in the LL-chondritic breccias, Y-74442 and Bhola.

  15. Theoretical model and simulations for a cw exciplex pumped alkali laser.

    Science.gov (United States)

    Huang, Wei; Tan, Rongqing; Li, Zhiyong; Lu, Xiaochuan

    2015-12-14

    The Exciplex Pumped Alkali Laser (XPAL) system, which is similar to DPAL (Diode Pumped Alkali vapor Laser), has been demonstrated in mixtures of Cs vapor, Ar, with and without ethane. Unlike DPAL, it uses the broadband absorption blue satellite of the alkali D2 line, created by naturally occuring collision pairs. For example, Cs-Ar collision pairs have an absorption width which is as wide as the one of commercial semiconductor diode lasers. A continuous wave XPAL four-level theoretical model is presented in this paper. More factors are considered, such as the spectral dependence of pumped laser absorption for broadband pumping and the longitudinal population variation. Some intra-cavity details, such as longitudinal distributions of pumped laser and alkali laser, can also be solved well. The predictions of optical-to-optical efficiency as a function of temperature and pumped laser intensity are presented. The model predicts that there is an optimum value of temperature or pumped laser intensity. The analysis of the influence of cell length on optical-to-optical efficiency shows that a better performance can be achieved when using longer cell. The prediction of influence of Ar concentration and reflectivity of output coupler shows that higher optical-to-optical efficiency could be achieved if lower reflectivity of output coupler and higher Ar concentration are used. The optical-to-optical efficiency as high as 84% achieved by optimizing configuration with the pumped intensity of 5 × 10⁷ W/cm² presented shows that broadband pumped four-level XPAL system has a potential of high optical-to-optical efficiency.

  16. Comparison of Air Sampling Methods for Organophosphate Flame Retardants in Small Environmental Chambers

    Science.gov (United States)

    Organophosphorus flame retardants (OPFRs), such as tris(2-chloroethyl) phosphate (TCEP), tris(1-chlor-2-propyl) phosphate (TCPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCPP), used as additives in industrial and consumer products are being detected in indoor air, house dust,...

  17. Electrochemical impedance spectroscopic characterization of titanium during alkali treatment and apatite growth in simulated body fluid

    International Nuclear Information System (INIS)

    Raman, V.; Tamilselvi, S.; Rajendran, N.

    2007-01-01

    Alkali treatment of titanium with subsequent heat treatment has been adapted as an important pre-treatment procedure for hydroxyapatite formation in orthopaedic applications. The electrochemical study during the alkali treatment process has not been explored yet. In the present work, electrochemical impedance spectroscopic (EIS) studies have been employed to analyse the electrochemical behaviour of titanium during the alkali treatment. The open circuit potential and potentiodynamic polarisation measurements were carried out in simulated body fluid (SBF) solution. Scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the surface morphology and to correlate the results obtained from the electrochemical studies. An optimum growth of the passive film was found to occur at the end of 17th hour of treatment by alkali treatment. The alkali treated titanium immersed in SBF solution for various durations exhibited the formation of a duplex layer structure due to an inner barrier layer and an outer gel layer during the initial periods of immersion. However, with increase in immersion time to 10 days, a stable apatite layer was formed over the barrier layer and this was confirmed from the equivalent circuit fitted for the impedance data

  18. Electrochemical impedance spectroscopic characterization of titanium during alkali treatment and apatite growth in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Raman, V.; Tamilselvi, S. [Department of Chemistry, MIT Campus, Anna University, Chennai 600 044 (India); Rajendran, N. [Department of Chemistry, MIT Campus, Anna University, Chennai 600 044 (India)], E-mail: nrajendran@annauniv.edu

    2007-09-30

    Alkali treatment of titanium with subsequent heat treatment has been adapted as an important pre-treatment procedure for hydroxyapatite formation in orthopaedic applications. The electrochemical study during the alkali treatment process has not been explored yet. In the present work, electrochemical impedance spectroscopic (EIS) studies have been employed to analyse the electrochemical behaviour of titanium during the alkali treatment. The open circuit potential and potentiodynamic polarisation measurements were carried out in simulated body fluid (SBF) solution. Scanning electron microscopy and energy dispersive X-ray analysis were used to characterize the surface morphology and to correlate the results obtained from the electrochemical studies. An optimum growth of the passive film was found to occur at the end of 17th hour of treatment by alkali treatment. The alkali treated titanium immersed in SBF solution for various durations exhibited the formation of a duplex layer structure due to an inner barrier layer and an outer gel layer during the initial periods of immersion. However, with increase in immersion time to 10 days, a stable apatite layer was formed over the barrier layer and this was confirmed from the equivalent circuit fitted for the impedance data.

  19. A brief history of residual alkali metal destruction development in the UK

    International Nuclear Information System (INIS)

    Fletcher, Brian

    2014-01-01

    The reactors at Dounreay are being decommissioned and there is a need to remove all the residual alkali metal before they can be dismantled. When the Prototype Fast Reactor was shut down work was started to remove the bulk sodium and development of the Water Vapour Nitrogen (WVN) process for the destruction of the residual alkali metal commenced. This development has been ongoing to the present day. Trials began with small amounts of sodium and NaK before moving to larger scale experiments. The development raised a number of issues. As knowledge was built up, the development was expanded to deal with NaK pools in the DFR. Differences in the behaviour of NaK and sodium led to various different processes being developed. This paper presents a brief history of the alkali metal destruction process development within the UK and highlights some of the lessons learnt for future application during reactor decommissioning (authors)

  20. Electronic and structural ground state of heavy alkali metals at high pressure

    Science.gov (United States)

    Fabbris, G.; Lim, J.; Veiga, L. S. I.; Haskel, D.; Schilling, J. S.

    2015-02-01

    Alkali metals display unexpected properties at high pressure, including emergence of low-symmetry crystal structures, which appear to occur due to enhanced electronic correlations among the otherwise nearly free conduction electrons. We investigate the high-pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with a b i n i t i o theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the o C 84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of the valence electrons characterized by pseudogap formation near the Fermi level and strong s p d hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.

  1. Facile Precursor for Synthesis of Silver Nanoparticles Using Alkali Treated Maize Starch

    Science.gov (United States)

    El-Rafie, M. H.; Ahmed, Hanan B.; Zahran, M. K.

    2014-01-01

    Silver nanoparticles were prepared by using alkali treated maize starch which plays a dual role as reducer for AgNO3 and stabilizer for the produced AgNPs. The redox reaction which takes a place between AgNO3 and alkali treated starch was followed up and controlled in order to obtain spherical shaped silver nanoparticles with mean size 4–6 nm. The redox potentials confirmed the principle role of alkali treatment in increasing the reducibility of starch macromolecules. The measurements of reducing sugars at the end of reaction using dinitrosalicylic acid reagent (DNS) were carried out in order to control the chemical reduction reaction. The UV/Vis spectra show that an absorption peak, occurring due to surface plasmon resonance (SPR), exists at 410 nm, which is characteristic to yellow color of silver nanoparticles solution. The samples have been characterized by transmission electron microscopy (TEM), which reveal the nanonature of the particles. PMID:27433508

  2. Glass laser discs with annular alkali lead borate coatings and use thereof

    International Nuclear Information System (INIS)

    Cooley, R.F.

    1975-01-01

    A laser assembly that includes a novel glass laser disc having an annular alkali lead borate glass coating for use in the assembly is disclosed. The annular coating has an index of refraction that is about 3 to 12 percent greater than the index of refraction of the laser disc, the thermal properties also being sufficiently matched with the glass laser disc so as to prevent the development of undesirable strains therein, the glass coating comprising a mixture of alkali metal oxides in which at least two different alkali metal oxides are present, and any K 2 O that is present is limited to an amount of not substantially more than about 1 percent by weight and an effective energy absorbing amount of heavy metal oxide that absorbs energy at a wavelength of about 1.06 microns to prevent parasitic oscillations. The heavy metal oxides include oxides of transition metals of the 3d, 4d, 4f, 5d and 5f orbital series. (auth)

  3. Accelerating repaired basement membrane after bevacizumab treatment on alkali-burned mouse cornea

    Science.gov (United States)

    Lee, Koon-Ja; Lee, Ji-Young; Lee, Sung Ho; Choi, Tae Hoon

    2013-01-01

    To understand the corneal regeneration induced by bevacizumab, we investigated the structure changes of stroma and basement membrane regeneration. A Stick soaked in 0.5 N NaOH onto the mouse cornea and 2.5 mg/ml of bevacizumab was delivered into an alkali-burned cornea (2 μl) by subconjunctival injections at 1 hour and 4 days after injury. At 7 days after injury, basement membrane regeneration was observed by transmission electron microscope. Uneven and thin epithelial basement membrane, light density of hemidesmosomes, and edematous collagen fibril bundles are shown in the alkali-burned cornea. Injured epithelial basement membrane and hemidesmosomes and edematous collagen fibril bundles resulting from alkali-burned mouse cornea was repaired by bevacizumab treatment. This study demonstrates that bevacizumab can play an important role in wound healing in the cornea by accelerating the reestablishment of basement membrane integrity that leads to barriers for scar formation. [BMB Reports 2013; 46(4): 195-200] PMID:23615260

  4. Progress toward understanding the contribution of alkali generation in dental biofilms to inhibition of dental caries

    Science.gov (United States)

    Liu, Ya-Ling; Nascimento, Marcelle; Burne, Robert A

    2012-01-01

    Alkali production by oral bacteria is believed to have a major impact on oral microbial ecology and to be inibitory to the initiation and progression of dental caries. A substantial body of evidence is beginning to accumulate that indicates the modulation of the alkalinogenic potential of dental biofilms may be a promising strategy for caries control. This brief review highlights recent progress toward understanding molecular genetic and physiologic aspects of important alkali-generating pathways in oral bacteria, and the role of alkali production in the ecology of dental biofilms in health and disease. PMID:22996271

  5. Photoionization of subvalence p-subshell in alkali and alkaline-earth atoms

    International Nuclear Information System (INIS)

    Yagishita, A.; Hayaishi, T.; Itoh, Y.

    1986-11-01

    Photoionization of alkali and alkaline-earth atoms has been investigated by means of a time-of-flight mass spectrometer combined with monochromatised synchrotron radiation and an atomic beam, in the wavelength region of 350 - 750 A. For alkaline-earth atoms, it has been made clear that a two-step autoionization following an innershell excitation plays an important role for doubly charged ions. For alkali atoms, relative photoionization cross sections have been measured for the first time. Moreover, a tentative assignment of spectral lines for Rb and Cs in the complex spectral region has been attemped based on the photoionization data. (author)

  6. Ion conducting polymers and polymer blends for alkali metal ion batteries

    Science.gov (United States)

    DeSimone, Joseph M.; Pandya, Ashish; Wong, Dominica; Vitale, Alessandra

    2017-08-29

    Electrolyte compositions for batteries such as lithium ion and lithium air batteries are described. In some embodiments the compositions are liquid compositions comprising (a) a homogeneous solvent system, said solvent system comprising a perfluropolyether (PFPE) and polyethylene oxide (PEO); and (b) an alkali metal salt dissolved in said solvent system. In other embodiments the compositions are solid electrolyte compositions comprising: (a) a solid polymer, said polymer comprising a crosslinked product of a crosslinkable perfluropolyether (PFPE) and a crosslinkable polyethylene oxide (PEO); and (b) an alkali metal ion salt dissolved in said polymer. Batteries containing such compositions as electrolytes are also described.

  7. Development of alkali halide-optics for high power-IR laser

    International Nuclear Information System (INIS)

    Pohl, L.

    1989-01-01

    In this work 'Development of Alkali Halide-Optics for High Power-IR Laser' we investigated the purification of sodiumchloride-, potassiumchloride- and potassiumbromide-raw materials. We succeeded to reduce the content of impurities like Cu, Pb, V, Cr, Mn, Fe, Co and Ni in these raw materials to the lower of ppb's by a Complex-Adsorption-Method (CAM). Crystals were grown from purified substances by 'Kyropoulos' method'. Windows were cur thereof, polished and measured by FTIR-spectroscopy. Analytical data showed, that the resulting crystals were of lower quality than the raw materials. Because of this fact crystal-growing-conditions have to undergo a special improvement. Alkali halide windows from other sources on the market had been tested. (orig.) [de

  8. Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2.

    Science.gov (United States)

    Maitra, Urmimala; House, Robert A; Somerville, James W; Tapia-Ruiz, Nuria; Lozano, Juan G; Guerrini, Niccoló; Hao, Rong; Luo, Kun; Jin, Liyu; Pérez-Osorio, Miguel A; Massel, Felix; Pickup, David M; Ramos, Silvia; Lu, Xingye; McNally, Daniel E; Chadwick, Alan V; Giustino, Feliciano; Schmitt, Thorsten; Duda, Laurent C; Roberts, Matthew R; Bruce, Peter G

    2018-03-01

    The search for improved energy-storage materials has revealed Li- and Na-rich intercalation compounds as promising high-capacity cathodes. They exhibit capacities in excess of what would be expected from alkali-ion removal/reinsertion and charge compensation by transition-metal (TM) ions. The additional capacity is provided through charge compensation by oxygen redox chemistry and some oxygen loss. It has been reported previously that oxygen redox occurs in O 2p orbitals that interact with alkali ions in the TM and alkali-ion layers (that is, oxygen redox occurs in compounds containing Li + -O(2p)-Li + interactions). Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 exhibits an excess capacity and here we show that this is caused by oxygen redox, even though Mg 2+ resides in the TM layers rather than alkali-metal (AM) ions, which demonstrates that excess AM ions are not required to activate oxygen redox. We also show that, unlike the alkali-rich compounds, Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 does not lose oxygen. The extraction of alkali ions from the alkali and TM layers in the alkali-rich compounds results in severely underbonded oxygen, which promotes oxygen loss, whereas Mg 2+ remains in Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 , which stabilizes oxygen.

  9. Preparation and Performance of a New-Type Alkali-Free Liquid Accelerator for Shotcrete

    Directory of Open Access Journals (Sweden)

    Yanping Sheng

    2017-01-01

    Full Text Available A new type of alkali-free liquid accelerator for shotcrete was prepared. Specifically, the setting time and strength and shrinkage performance of two kinds of Portland cement with the accelerator were fully investigated. Moreover, the accelerating mechanism of alkali-free liquid accelerator and the hydration process of the shotcrete with accelerator were explored. Results show that alkali-free liquid accelerator significantly shortened the setting time of cement paste, where the initial setting time of cement paste with 8 wt% of the accelerator was about 3 min and the final setting time was about 7 min. Compressive strength at 1 day of cement mortar with the accelerator could reach 23.4 MPa, which increased by 36.2% compared to the strength of cement mortar without the accelerator, and the retention rate of 28-day compressive strength reached 110%. In addition, the accelerator still shows a good accelerating effect under low temperature conditions. However, the shrinkage rate of the concrete increased with the amount of the accelerator. 5~8% content of accelerator is recommended for shotcrete in practice. XRD and SEM test results showed that the alkali-free liquid accelerator promoted the formation of ettringite crystals due to the increase of Al3+ and SO42- concentration.

  10. Evaluation of Ce3+ and alkali metal ions Co-doped LiSrAlF6 crystalline scintillators

    International Nuclear Information System (INIS)

    Wakahara, Shingo; Yanagida, Takayuki; Fujimoto, Yutaka; Yokota, Yuui; Pejchal, Jan; Kurosawa, Shunsuke; Suzuki, Shotaro; Kawaguchi, Noriaki; Fukuda, Kentaro; Yoshikawa, Akira

    2013-01-01

    High scintillation efficiency of Eu-doped LiSrAlF 6 (LiSAF) and LiCaAlF 6 (LiCAF) codoped with alkali metal ions has been reported in our recent studies. Thus in this paper, we demonstrated the scintillation properties of 1% Ce-doped LiSAF crystals with 1% alkali metal ions co-doping to increase the light yield and understand the scintillation mechanism. The crystals showed intense emission band corresponding to the 5d-4f transition of Ce 3+ , and their light yields under thermal neutron excitation were higher than that of the Ce only doped crystal. Especially, the light yield of Ce–Na co-doped crystal exceeded about two times that of Ce only doped one. -- Highlights: ► Ce-doped and alkali metal co-doped LiSAF crystals were grown by μ-PD method. ► Alkali metal co-doped crystals showed higher light yield than Ce only doped crystal. ► Decay time of alkali metal co-doped LiSAF were longer than that of Ce only doped one

  11. Dislocation unpinning model of acoustic emission from alkali halide ...

    Indian Academy of Sciences (India)

    The present paper reports the dislocation unpinning model of acoustic emis- sion (AE) from ... Acoustic emission; dislocation; alkali halide crystals; plastic deformation. ..... [5] T Nishimura, A Tahara and T Kolama, Jpn. Metal Inst. 64, 339 (2000).

  12. Dedolomitization and Alkali Reactions in Ohio-sourced Dolstone Aggregates

    Science.gov (United States)

    2017-11-01

    Concrete samples produced using NW-Ohio sourced aggregates were evaluated for susceptibility to degradation and premature failure due to cracks formed by the volume expansion during hydration of silica gels produced by alkali-silica reactions between...

  13. The effect of alkali-aggregate reaction on concrete bridge structures

    Directory of Open Access Journals (Sweden)

    Grković Slobodan

    2016-01-01

    Full Text Available This paper shows contemporary issues related to unfavorable effects of concrete alkali-aggregate reaction (AAR on concrete bridge structures (CBS. Although AAR unfavorable effects on CBS were identified in 1930s, it was much later that AAR was acknowledged as one of the most pronounced deterioration processes in concrete that results in damages to concrete structures. There are two basic forms of AAR: alkali-silica reaction (ASR and alkali-carbonate reaction (ACR. Compared to ACR, ASR is more prominent, especially in certain geographic parts of the world. Damages to concrete caused by the ASR have negative effect primarily on usability and durability of CBS, what is followed by the decrease in load bearing capacity of structural components and reliability of the whole structure, shortening of service life (SL and costly repairs. For CBS, simultaneous occurrence of ASR and other degradation processes in concrete, such as those caused by the presence of moisture, water, temperature variations and use of deicing salt during winter, are especially damaging. Based on review of the most relevant literature, this paper is focused on mechanisms and mechanisms factors of the ASR, related contemporary research and reliability design guidelines for CBS that are based on prevention of the initiation and development of ASR.

  14. Experimental solubility measurements of lanthanides in liquid alkalis

    Science.gov (United States)

    Isler, Jeremy; Zhang, Jinsuo; Mariani, Robert; Unal, Cetin

    2017-11-01

    In metallic nuclear fuel, lanthanide fission products play a crucial role in the fuel burnup-limiting phenomena of fuel cladding-chemical interaction (FCCI). The lanthanides have been hypothesized to transport by a 'liquid-like' mechanism out of the metallic fuel to the fuel peripheral to cause FCCI. By liquid fission product cesium and liquid bond sodium, the lanthanides are transported to the peripheral of the fuel through the porosity of the fuel. This work investigates the interaction between the lanthanides and the alkali metals by experimentally measuring the solubility of lanthanides within liquid sodium, and neodymium in liquid cesium and mixtures of cesium and sodium. The temperature dependence of the solubility is experimentally determined within an inert environment. In addition, the dependence of the solubility on the alkali metal concentration in liquid mixtures of cesium and sodium was examined. In quantifying the solubility, the fundamental understanding of this transport mechanism can be better determined.

  15. Alkali Metal Heat Pipe Life Issues

    International Nuclear Information System (INIS)

    Reid, Robert S.

    2004-01-01

    One approach to fission power system design uses alkali metal heat pipes for the core primary heat-transfer system. Heat pipes may also be used as radiator elements or auxiliary thermal control elements. This synopsis characterizes long-life core heat pipes. References are included where information that is more detailed can be found. Specifics shown here are for demonstration purposes and do not necessarily reflect current Nasa Project Prometheus point designs. (author)

  16. In situ formation of coal gasification catalysts from low cost alkali metal salts

    Science.gov (United States)

    Wood, Bernard J.; Brittain, Robert D.; Sancier, Kenneth M.

    1985-01-01

    A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.

  17. Structural evolution of fluorinated graphene upon molten-alkali treatment probed by X-ray absorption near-edge structure spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Xianqing, E-mail: lxq@gxu.edu.cn [Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China); Pan, Deyou; Lao, Ming; Liang, Shuiying [Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Huang, Dan; Zhou, Wenzheng; Guo, Jin [Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, College of Physics Science and Technology, Guangxi University, Nanning 530004 (China); Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, School of Material Science and Engineering, Guilin University of Electronic Technology, Guilin 541004 (China)

    2017-05-15

    Highlights: • Structural evolution of FG during the molten-alkali treatment was studied. • XANES results reveal the transformation of surface functional groups of HFG. • The local and electronic structure of HFG can be tuned by varying the alkali-FG ratio. - Abstract: The structural evolution of fluorinated graphene (FG) nanosheets upon molten-alkali treatment has been systematically investigated utilizing X-ray absorption near-edge structure (XANES) spectroscopy. It is found that the hydroxyl groups can progressively displace fluorine atoms to form covalent bonds to the graphene sheets under designed molten-alkali condition. The XANES spectra also reveal the formation of epoxide groups through intramolecular dehydration of neighbouring hydroxyl groups after substitution reaction. At high alkali-FG weight ratio, the restoration of the π-conjugated structure in graphene sheets can be observed due to the gradual decomposition of epoxide groups. Our experimental results indicate that the surface chemistry and electronic structure of hydroxyl-functionalized FG (HFG) can be readily tuned by varying the ratio of reactants.

  18. Coprecipitation of rare earths in systems of three heterovalent ions with sulfates of alkali and alkaline-earth metals

    International Nuclear Information System (INIS)

    Bobrik, V.M.

    1977-01-01

    Co-precipitation of rare earth elements (REE) in milligram amounts (3x10 -3 -3x10 -1 M) with alkali earth (AEE) sulfates in presence of alkali metal ions has been studied, the AEE:REE ratios between the co-precipitator and a REE (up to 50:1) the latter can be co-precipitated quantitatively in presence of corresponding alkali metals linked with the AEE in the Periodic table by a diagonal, i.e. in presence of sodium in co-precipitation with calcium sulfate, potassium with strontium sulfate and rubidium with barium sulfate. Co-precipitation with sulfates of sodium and calcium occurs at temperatures above 85 deg C and presumably involves calcium semihydrate. In presence of an alkali metal REE co-precipitation with AEE becomes isomorphic, i.e. at different AEE:REE ratios the co-precipitation coefficient remains constant. In presence of corresponding alkali metals the decrease in effectiveness of co-precipitation with AEE in the La-Lu series is more pronounced

  19. Carbon nitride nanotube as a sensor for alkali and alkaline earth cations

    Energy Technology Data Exchange (ETDEWEB)

    Beheshtian, Javad [Department of Chemistry, Shahid Rajaee Teacher Training University, P.O. Box: 16875-163, Tehran (Iran, Islamic Republic of); Baei, Mohammad T. [Department of Chemistry, Azadshahr Branch, Islamic Azad University, Azadshahr, Golestan (Iran, Islamic Republic of); Bagheri, Zargham [Physics Group, Science Department, Islamic Azad University, Islamshahr Branch, P.O. Box: 33135-369, Islamshahr, Tehran (Iran, Islamic Republic of); Peyghan, Ali Ahmadi, E-mail: ahmadi.iau@gmail.com [Young Researchers Club, Islamic Azad University, Islamshahr Branch, Tehran (Iran, Islamic Republic of)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Adsorption of alkali and alkaline earth cations on a CN nanotube studied by DFT. Black-Right-Pointing-Pointer The alkaline cation adsorption may raise potential barrier of the electron emission. Black-Right-Pointing-Pointer The tube may act as a sensor in the presence of alkali and alkaline cations. - Abstract: Adsorption of several alkali (Li{sup +}, Na{sup +}, and K{sup +}) and alkaline earth (Be{sup 2+}, Mg{sup 2+}, and Ca{sup 2+}) cations on the surface of a zigzag (9, 0) carbon nitride nanotube has been investigated using density functional theory. It has been found that almost all of the cations prefer to be strongly chemisorbed at the center of porous site of the tube surface. The adsorption of alkaline cations much more influences the electronic properties of the tube, in comparison with the alkali ones, so that it is transformed from an intrinsic semiconductor with HOMO/LUMO energy gap of 4.02 eV to extrinsic p-type one with the gap of 0.54-1.94 eV. The alkaline cation adsorption may significantly raise potential barrier of the electron emission from the tube surface, hence impeding the field emission. It has been also concluded that the electrical sensitivity of the tube toward the cations may be in the order: Be{sup 2+} Much-Greater-Than Mg{sup 2+} Much-Greater-Than Ca{sup 2+} Much-Greater-Than Li{sup +} {approx} Na{sup +} {approx} K{sup +}.

  20. [Pretreatment of oil palm residues by dilute alkali for cellulosic ethanol production].

    Science.gov (United States)

    Zhang, Haiyan; Zhou, Yujie; Li, Jinping; Dai, Lingmei; Liu, Dehua; Zhang, Jian'an; Choo, Yuen May; Loh, Soh Kheang

    2013-04-01

    In the study, we used oil palm residues (empty fruit bunch, EFB) as raw material to produce cellulosic ethanol by pretreatment, enzymatic hydrolysis and fermentation. Firstly, the pretreatment of EFB with alkali, alkali/hydrogen peroxide and the effects on the components and enzymatic hydrolysis of cellulose were studied. The results show that dilute alkali was the suitable pretreatment method and the conditions were first to soak the substrate with 1% sodium hydroxide with a solid-liquid ratio of 1:10 at 40 degrees C for 24 h, and then subjected to 121 degrees C for 30 min. Under the conditions, EFB solid recovery was 74.09%, and glucan, xylan and lignin content were 44.08%, 25.74% and 13.89%, respectively. After separated with alkali solution, the pretreated EFB was washed and hydrolyzed for 72 h with 5% substrate concentration and 30 FPU/g dry mass (DM) enzyme loading, and the conversion of glucan and xylan reached 84.44% and 89.28%, respectively. We further investigated the effects of substrate concentration and enzyme loading on enzymatic hydrolysis and ethanol batch simultaneous saccharification and fermentation (SSF). The results show that when enzyme loading was 30 FPU/g DM and substrate concentration was increased from 5% to 25%, ethanol concentration were 9.76 g/L and 35.25 g/L after 72 h fermentation with Saccharomyces cerevisiae (inoculum size 5%, V/V), which was 79.09% and 56.96% of ethanol theory yield.