WorldWideScience

Sample records for chiral effective field

  1. Chiral near-fields around chiral dolmen nanostructure

    International Nuclear Information System (INIS)

    Fu, Tong; Wang, Tiankun; Chen, Yuyan; Wang, Yongkai; Qu, Yu; Zhang, Zhongyue

    2017-01-01

    Discriminating the handedness of the chiral molecule is of great importance in the field of pharmacology and biomedicine. Enhancing the chiral near-field is one way to increase the chiral signal of chiral molecules. In this paper, the chiral dolmen nanostructure (CDN) is proposed to enhance the chiral near-field. Numerical results show that the CDN can increase the optical chirality of the near-field by almost two orders of magnitude compared to that of a circularly polarized incident wave. In addition, the optical chirality of the near-field of the bonding mode is enhanced more than that of the antibonding mode. These results provide an effective method for tailoring the chiral near-field for biophotonics sensors. (paper)

  2. Scattering of decuplet baryons in chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Haidenbauer, J. [Institut fuer Kernphysik, Institute for Advanced Simulation and Juelich Center for Hadron Physics, Juelich (Germany); Petschauer, S.; Kaiser, N.; Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Institute for Advanced Simulation and Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany)

    2017-11-15

    A formalism for treating the scattering of decuplet baryons in chiral effective field theory is developed. The minimal Lagrangian and potentials in leading-order SU(3) chiral effective field theory for the interactions of octet baryons (B) and decuplet baryons (D) for the transitions BB → BB, BB <-> DB, DB → DB, BB <-> DD, DB <-> DD, and DD → DD are provided. As an application of the formalism we compare with results from lattice QCD simulations for ΩΩ and NΩ scattering. Implications of our results pertinent to the quest for dibaryons are discussed. (orig.)

  3. Chiral spiral induced by a strong magnetic field

    Directory of Open Access Journals (Sweden)

    Abuki Hiroaki

    2016-01-01

    Full Text Available We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a “continent” of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.

  4. Nuclear Lattice Simulations with Chiral Effective Field Theory

    OpenAIRE

    Lee, Dean

    2008-01-01

    We present recent results on lattice simulations using chiral effective field theory. In particular we discuss lattice simulations for dilute neutron matter at next-to-leading order and three-body forces in light nuclei at next-to-next-to-leading order.

  5. Chirality invariance and 'chiral' fields

    International Nuclear Information System (INIS)

    Ziino, G.

    1978-01-01

    The new field model derived in the present paper actually gives a definite answer to three fundamental questions concerning elementary-particle physics: 1) The phenomenological dualism between parity and chirality invariance: it would be only an apparent display of a general 'duality' principle underlying the intrinsic nature itself of (spin 1/2) fermions and expressed by the anticommutativity property between scalar and pseudoscalar charges. 2) The real physical meaning of V - A current structure: it would exclusively be connected to the one (just pointed out) of chiral fields themselves. 3) The unjustified apparent oddness shown by Nature in weak interactions, for the fact of picking out only one of the two (left- and right-handed) fermion 'chiral' projections: the key to such a 'mystery' would just be provided by the consequences of the dual and partial character of the two fermion-antifermion field bases. (Auth.)

  6. Hyperon-nucleon interactions - a chiral effective field theory approach

    NARCIS (Netherlands)

    Polinder, H.; Haidenbauer, J.; Meissner, U.G.

    2006-01-01

    We construct the leading order hyperon–nucleon potential in chiral effective field theory. We show that a good description of the available data is possible and discuss briefly further improvements of this scheme

  7. Non-uniform chiral phase in effective chiral quark models

    International Nuclear Information System (INIS)

    Sadzikowski, M.; Broniowski, W.

    2000-01-01

    We analyze the phase diagram in effective chiral quark models (the Nambu-Jona-Lasinio model, the σ-model with quarks) and show that at the mean-field level a phase with a periodically-modulated chiral fields separates the usual phases with broken and restored chiral symmetry. A possible signal of such a phase is the production of multipion jets travelling in opposite directions, with individual pions having momenta of the order of several hundred MeV. This signal can be interpreted in terms of disoriented chiral condensates. (author)

  8. Hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, S.; Kaiser, N. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Haidenbauer, J. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Villa Tambosi, ECT, Villazzano (Trento) (Italy)

    2016-01-15

    Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. (orig.)

  9. Chiral properties of baryon interpolating fields

    International Nuclear Information System (INIS)

    Nagata, Keitaro; Hosaka, Atsushi; Dmitrasinovic, V.

    2008-01-01

    We study the chiral transformation properties of all possible local (non-derivative) interpolating field operators for baryons consisting of three quarks with two flavors, assuming good isospin symmetry. We derive and use the relations/identities among the baryon operators with identical quantum numbers that follow from the combined color, Dirac and isospin Fierz transformations. These relations reduce the number of independent baryon operators with any given spin and isospin. The Fierz identities also effectively restrict the allowed baryon chiral multiplets. It turns out that the non-derivative baryons' chiral multiplets have the same dimensionality as their Lorentz representations. For the two independent nucleon operators the only permissible chiral multiplet is the fundamental one, ((1)/(2),0)+(0,(1)/(2)). For the Δ, admissible Lorentz representations are (1,(1)/(2))+((1)/(2),1) and ((3)/(2),0)+(0,(3)/(2)). In the case of the (1,(1)/(2))+((1)/(2),1) chiral multiplet, the I(J)=(3)/(2)((3)/(2)) Δ field has one I(J)=(1)/(2)((3)/(2)) chiral partner; otherwise it has none. We also consider the Abelian (U A (1)) chiral transformation properties of the fields and show that each baryon comes in two varieties: (1) with Abelian axial charge +3; and (2) with Abelian axial charge -1. In case of the nucleon these are the two Ioffe fields; in case of the Δ, the (1,(1)/(2))+((1)/(2),1) multiplet has an Abelian axial charge -1 and the ((3)/(2),0)+(0,(3)/(2)) multiplet has an Abelian axial charge +3. (orig.)

  10. Chiral magnetic effect of light

    Science.gov (United States)

    Hayata, Tomoya

    2018-05-01

    We study a photonic analog of the chiral magnetic (vortical) effect. We discuss that the vector component of magnetoelectric tensors plays a role of "vector potential," and its rotation is understood as "magnetic field" of a light. Using the geometrical optics approximation, we show that "magnetic fields" cause an anomalous shift of a wave packet of a light through an interplay with the Berry curvature of photons. The mechanism is the same as that of the chiral magnetic (vortical) effect of a chiral fermion, so that we term the anomalous shift "chiral magnetic effect of a light." We further study the chiral magnetic effect of a light beyond geometric optics by directly solving the transmission problem of a wave packet at a surface of a magnetoelectric material. We show that the experimental signal of the chiral magnetic effect of a light is the nonvanishing of transverse displacements for the beam normally incident to a magnetoelectric material.

  11. Quantum Monte Carlo calculations with chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Ingo

    2015-10-12

    The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By

  12. Spin Chirality of Cu3 and V3 Nanomagnets. 1. Rotation Behavior of Vector Chirality, Scalar Chirality, and Magnetization in the Rotating Magnetic Field, Magnetochiral Correlations.

    Science.gov (United States)

    Belinsky, Moisey I

    2016-05-02

    The rotation behavior of the vector chirality κ, scalar chirality χ, and magnetization M in the rotating magnetic field H1 is considered for the V3 and Cu3 nanomagnets, in which the Dzialoshinsky-Moriya coupling is active. The polar rotation of the field H1 of the given strength H1 results in the energy spectrum characterized by different vector and scalar chiralities in the ground and excited states. The magnetochiral correlations between the vector and scalar chiralities, energy, and magnetization in the rotating field were considered. Under the uniform polar rotation of the field H1, the ground-state chirality vector κI performs sawtooth oscillations and the magnetization vector MI performs the sawtooth oscillating rotation that is accompanied by the correlated transformation of the scalar chirality χI. This demonstrates the magnetochiral effect of the joint rotation behavior and simultaneous frustrations of the spin chiralities and magnetization in the rotating field, which are governed by the correlation between the chiralities and magnetization.

  13. Magnetic fields and chiral asymmetry in the early hot universe

    Energy Technology Data Exchange (ETDEWEB)

    Sydorenko, Maksym; Shtanov, Yuri [Bogolyubov Institute for Theoretical Physics, 03680 Kiev (Ukraine); Tomalak, Oleksandr, E-mail: maxsydorenko@gmail.com, E-mail: tomalak@uni-mainz.de, E-mail: shtanov@bitp.kiev.ua [Institut für Kernphysik, Johannes Gutenberg Universität, 55128 Mainz (Germany)

    2016-10-01

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of 'inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.

  14. Magnetic fields and chiral asymmetry in the early hot universe

    International Nuclear Information System (INIS)

    Sydorenko, Maksym; Shtanov, Yuri; Tomalak, Oleksandr

    2016-01-01

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of 'inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.

  15. Baryonic forces and hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan Karl

    2016-02-12

    In this work the baryon-baryon interaction is studied at next-to-leading order in SU(3) chiral effective field theory and applied to hyperon-nucleon scattering. The properties of hyperons in isospin-symmetric as well as asymmetric nuclear matter are calculated within the Bruecker-Hartree-Fock formalism. Moreover, the leading three-baryon interaction is derived and its low-energy constants are estimated from decuplet intermediate states. We conclude, that chiral effective field theory is a well-suited tool to describe the baryonic forces.

  16. Hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan; Kaiser, Norbert [Technische Universitaet Muenchen (Germany); Haidenbauer, Johann [Forschungszentrum Juelich (Germany); Meissner, Ulf G. [Forschungszentrum Juelich (Germany); Universitaet Bonn (Germany); Weise, Wolfram [Technische Universitaet Muenchen (Germany); ECT, Trento (Italy)

    2016-07-01

    Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. The splittings among the Σ{sup +}, Σ{sup 0} and Σ{sup -} potentials have a non-linear dependence on the isospin asymmetry which goes beyond the usual parametrization in terms of an isovector Lane potential.

  17. Spin-polarized neutron matter at different orders of chiral effective field theory

    OpenAIRE

    Sammarruca, F.; Machleidt, R.; Kaiser, N.

    2015-01-01

    Spin-polarized neutron matter is studied using chiral two- and three-body forces. We focus, in particular, on predictions of the energy per particle in ferromagnetic neutron matter at different orders of chiral effective field theory and for different choices of the resolution scale. We discuss the convergence pattern of the predictions and their cutoff dependence. We explore to which extent fully polarized neutron matter behaves (nearly) like a free Fermi gas. We also consider the more gener...

  18. Nuclear matter from chiral effective field theory

    International Nuclear Information System (INIS)

    Drischler, Christian

    2017-01-01

    Nuclear matter is an ideal theoretical system that provides key insights into the physics of different length scales. While recent ab initio calculations of medium-mass to heavy nuclei have demonstrated that realistic saturation properties in infinite matter are crucial for reproducing experimental binding energies and charge radii, the nuclear-matter equation of state allows tight constraints on key quantities of neutron stars. In the present thesis we take advantage of both aspects. Chiral effective field theory (EFT) with pion and nucleon degrees of freedom has become the modern low-energy approach to nuclear forces based on the symmetries of quantum chromodynamics, the fundamental theory of strong interactions. The systematic chiral expansion enables improvable calculations associated with theoretical uncertainty estimates. In recent years, chiral many-body forces were derived up to high orders, allowing consistent calculations including all many-body contributions at next-to-next-to-next-to-leading order (N 3 LO). Many further advances have driven the construction of novel chiral potentials with different regularization schemes. Here, we develop advanced methods for microscopic calculations of the equation of state of homogeneous nuclear matter with arbitrary proton-to-neutron ratio at zero temperature. Specifically, we push the limits of many-body perturbation theory (MBPT) considerations to high orders in the chiral and in the many-body expansion. To address the challenging inclusion of three-body forces, we introduce a new partial-wave method for normal ordering that generalizes the treatment of these contributions. We show improved predictions for the neutron-matter equation of state with consistent N 3 LO nucleon-nucleon (NN) plus three-nucleon (3N) potentials using MBPT up to third order and self-consistent Green's function theory. The latter also provides nonperturbative benchmarks for the many-body convergence. In addition, we extend the normal

  19. Nuclear matter from chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Drischler, Christian

    2017-11-15

    Nuclear matter is an ideal theoretical system that provides key insights into the physics of different length scales. While recent ab initio calculations of medium-mass to heavy nuclei have demonstrated that realistic saturation properties in infinite matter are crucial for reproducing experimental binding energies and charge radii, the nuclear-matter equation of state allows tight constraints on key quantities of neutron stars. In the present thesis we take advantage of both aspects. Chiral effective field theory (EFT) with pion and nucleon degrees of freedom has become the modern low-energy approach to nuclear forces based on the symmetries of quantum chromodynamics, the fundamental theory of strong interactions. The systematic chiral expansion enables improvable calculations associated with theoretical uncertainty estimates. In recent years, chiral many-body forces were derived up to high orders, allowing consistent calculations including all many-body contributions at next-to-next-to-next-to-leading order (N{sup 3}LO). Many further advances have driven the construction of novel chiral potentials with different regularization schemes. Here, we develop advanced methods for microscopic calculations of the equation of state of homogeneous nuclear matter with arbitrary proton-to-neutron ratio at zero temperature. Specifically, we push the limits of many-body perturbation theory (MBPT) considerations to high orders in the chiral and in the many-body expansion. To address the challenging inclusion of three-body forces, we introduce a new partial-wave method for normal ordering that generalizes the treatment of these contributions. We show improved predictions for the neutron-matter equation of state with consistent N{sup 3}LO nucleon-nucleon (NN) plus three-nucleon (3N) potentials using MBPT up to third order and self-consistent Green's function theory. The latter also provides nonperturbative benchmarks for the many-body convergence. In addition, we extend the

  20. The gamma N ---> Delta transition in chiral effective-field theory.

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir Pascalutsa; Marc Vanderhaeghen

    2006-04-27

    We describe the pion electroproduction processes in the {Delta}(1232)-resonance region within the framework of chiral effective-field theory. By studying the observables of pion electroproduction in a next-to-leading order calculation we are able to make predictions and draw conclusions on the properties of the N {yields} {Delta} electromagnetic form factors.

  1. Nuclear electric dipole moments in chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bsaisou, J.; Vries, J. de [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Hanhart, C. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - Forces and Matter Experiments,Forschungszentrum Jülich, D-52425 Jülich (Germany); Liebig, S. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Meißner, Ulf-G. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - Forces and Matter Experiments,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - High Performance Computing,Forschungszentrum Jülich, D-52425 Jülich (Germany); Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics,Universität Bonn,D-53115 Bonn (Germany); Minossi, D. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Nogga, A.; Wirzba, A. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - Forces and Matter Experiments,Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2015-03-19

    We provide a consistent and complete calculation of the electric dipole moments of the deuteron, helion, and triton in the framework of chiral effective field theory. The CP-conserving and CP-violating interactions are treated on equal footing and we consider CP-violating one-, two-, and three-nucleon operators up to next-to-leading-order in the chiral power counting. In particular, we calculate for the first time EDM contributions induced by the CP-violating three-pion operator. We find that effects of CP-violating nucleon-nucleon contact interactions are larger than those found in previous studies based on phenomenological models for the CP-conserving nucleon-nucleon interactions. Our results which apply to any model of CP violation in the hadronic sector can be used to test various scenarios of CP violation. As examples, we study the implications of our results on the QCD θ-term and the minimal left-right symmetric model.

  2. Strangeness S = -2 baryon-baryon interactions using chiral effective field theory

    NARCIS (Netherlands)

    Polinder, H.; Haidenbauer, J.; Meissner, U.G.

    2007-01-01

    We derive the leading order strangeness S =−2 baryon–baryon interactions in chiral effective field theory. The potential consists of contact terms without derivatives and of one-pseudoscalar-meson exchanges. The contact terms and the couplings of the pseudoscalar mesons to the baryons are related

  3. Chirality effect in disordered graphene ribbon junctions

    International Nuclear Information System (INIS)

    Long Wen

    2012-01-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon. (paper)

  4. The $\\gamma N\\to \\De$ transition in chiral effective-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir Pascalutsa; Marc Vanderhaeghen

    2006-04-27

    We describe the pion electroproduction processes in the {Delta}(1232)-resonance region within the framework of chiral effective-field theory. By studying the observables of pion electroproduction in a next-to-leading order calculation we are able to make predictions and draw conclusions on the properties of the N {yields} {Delta} electromagnetic form factors.

  5. Chiral anomaly, Berry phase, and chiral kinetic theory from worldlines in quantum field theory

    Science.gov (United States)

    Mueller, Niklas; Venugopalan, Raju

    2018-03-01

    In previous work, we outlined a worldline framework that can be used for systematic computations of the chiral magnetic effect (CME) in ultrarelativistic heavy-ion collisions. Towards this end, we first expressed the real part of the fermion determinant in the QCD effective action as a supersymmetric worldline action of spinning, colored, Grassmanian point particles in background gauge fields, with equations of motion that are covariant generalizations of the Bargmann-Michel-Telegdi and Wong equations. The chiral anomaly, in contrast, arises from the phase of the fermion determinant. Remarkably, the latter too can be expressed as a point particle worldline path integral, which can be employed to derive the anomalous axial vector current. We will show here how Berry's phase can be obtained in a consistent nonrelativistic adiabatic limit of the real part of the fermion determinant. Our work provides a general first principles demonstration that the topology of Berry's phase is distinct from that of the chiral anomaly confirming prior arguments by Fujikawa in specific contexts. This suggests that chiral kinetic treatments of the CME in heavy-ion collisions that include Berry's phase alone are incomplete. We outline the elements of a worldline covariant relativistic chiral kinetic theory that captures the physics of how the chiral current is modified by many-body scattering and topological fluctuations.

  6. Field theoretic perspectives of the Wigner function formulation of the chiral magnetic effect

    Science.gov (United States)

    Wu, Yan; Hou, De-fu; Ren, Hai-cang

    2017-11-01

    We assess the applicability of the Wigner function formulation in its present form to the chiral magnetic effect and note some issues regarding the conservation and the consistency of the electric current in the presence of an inhomogeneous and time-dependent axial chemical potential. The problems are rooted in the ultraviolet divergence of the underlying field theory associated with the axial anomaly and can be fixed with the Pauli-Villars regularization of the Wigner function. The chiral magnetic current with a nonconstant axial chemical potential is calculated with the regularized Wigner function and the phenomenological implications are discussed.

  7. Analytic Optimization of Near-Field Optical Chirality Enhancement

    Science.gov (United States)

    2017-01-01

    We present an analytic derivation for the enhancement of local optical chirality in the near field of plasmonic nanostructures by tuning the far-field polarization of external light. We illustrate the results by means of simulations with an achiral and a chiral nanostructure assembly and demonstrate that local optical chirality is significantly enhanced with respect to circular polarization in free space. The optimal external far-field polarizations are different from both circular and linear. Symmetry properties of the nanostructure can be exploited to determine whether the optimal far-field polarization is circular. Furthermore, the optimal far-field polarization depends on the frequency, which results in complex-shaped laser pulses for broadband optimization. PMID:28239617

  8. Mechanical separation of chiral dipoles by chiral light

    International Nuclear Information System (INIS)

    Canaguier-Durand, Antoine; Hutchison, James A; Genet, Cyriaque; Ebbesen, Thomas W

    2013-01-01

    We calculate optical forces and torques exerted on a chiral dipole by chiral light fields and reveal genuine chiral forces in combining the chiral contents of both light field and dipolar matter. Here, the optical chirality is characterized in a general way through the definition of optical chirality density and chirality flow. We show, in particular, that both terms have mechanical effects associated, respectively, with reactive and dissipative components of the chiral forces. Remarkably, these chiral force components are directly related to standard observables: optical rotation for the reactive component and circular dichroism for the dissipative one. As a consequence, the resulting forces and torques are dependent on the enantiomeric form of the chiral dipole. This suggests promising strategies for using chiral light forces to mechanically separate chiral objects according to their enantiomeric form. (paper)

  9. Hadronic interactions from effective chiral Lagrangians of quarks and gluons

    International Nuclear Information System (INIS)

    Krein, G.

    1996-06-01

    We discuss the combined used of the techniques of effective chiral field theory and the field theoretic method known as Fock-Tani representation to derive effective hadron interactions. The Fock-Tani method is based on a change of representation by means of a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation on the microscopic quark-quark interaction derived from a chiral effective Lagrangian leads to chiral effective interactions describing all possible processes involving hadrons and their constituents. The formalism is illustrated by deriving the one-pion-exchange potential between the nucleons using the quark-gluon effective chiral Lagrangian of Manohar and Georgi. We also present the results of a study of the saturation properties of the nuclear matter using this formalism. (author). 9 refs., 2 figs

  10. Chiral symmetry and quark-antiquark pair creation in a strong color-electromagnetic field

    International Nuclear Information System (INIS)

    Suganuma, Hideo; Tatsumi, Toshitaka.

    1993-01-01

    We study the manifestation of chiral symmetry and q-q-bar pair creation in the presence of the external color-electromagnetic field, using the Nambu-Jona-Lasinio model. We derive the compact formulae of the effective potential, the Dyson equation for the dynamical quark mass and the q-q-bar pair creation rate in the covariantly constant color-electromagnetic field. Our results are compared with those in other approaches. The chiral-symmetry restoration takes place by a strong color-electric field, and the rapid reduction of the dynamical quark mass is found around the critical field strength, ε cr ≅4GeV/fm. Natural extension to the three-flavor case including s-quarks is also done. Around quarks or antiquarks, chiral symmetry would be restored by the sufficiently strong color-electric field, which may lead to the chiral bag picture of hadrons. For the early stage for ultrarelativistic heavy-ion collisions, the possibility of the chiral-symmetry restoration is indicated in the central region just after the collisions. (author)

  11. Photonic chiral current and its anomaly in a gravitational field

    International Nuclear Information System (INIS)

    Dolgov, A.D.; Khriplovich, I.B.; Vajnshtejn, A.I.; Zakharov, V.I.

    1988-01-01

    The notion of chirality for electromagnetic field which is conserved in interactions with gravitons is formulated. The correponding chiral current is the one-particle-state analogue of the Pauli-Lubansky vector. The anomaly of this current in an external gravitational field is found. The results obtained are used for the calculation of the electromagnetic radiative correction to the fermionic chiral anomaly in a gravitational field

  12. Observation of asymmetric electromagnetic field profiles in chiral metamaterials

    Science.gov (United States)

    Hisamoto, Nobuyuki; Ueda, Tetsuya; Sawada, Kei; Tomita, Satoshi

    2018-02-01

    We experimentally observe asymmetric electromagnetic field profiles along two-dimensional chiral metamaterials. The asymmetric field profiles depending on the chirality and the operation frequency have been reproduced well by the numerical simulation. Around a chiral meta-atom, distribution of a Poynting vector is found to be shifted asymmetrically. These results are explained in terms of an analogy with the side-jump mechanism in the electronic anomalous Hall systems.

  13. Chiral battery, scaling laws and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Sampurn; Bhatt, Jitesh R.; Pandey, Arun Kumar, E-mail: sampurn@prl.res.in, E-mail: jeet@prl.res.in, E-mail: arunp@prl.res.in [Physical Research Laboratory, Ahmedabad, 380009 (India)

    2017-07-01

    We study the generation and evolution of magnetic field in the presence of chiral imbalance and gravitational anomaly which gives an additional contribution to the vortical current. The contribution due to gravitational anomaly is proportional to T {sup 2} which can generate seed magnetic field irrespective of plasma being chirally charged or neutral. We estimate the order of magnitude of the magnetic field to be 10{sup 30} G at T ∼ 10{sup 9} GeV, with a typical length scale of the order of 10{sup −18} cm, which is much smaller than the Hubble radius at that temperature (10{sup −8} cm). Moreover, such a system possess scaling symmetry. We show that the T {sup 2} term in the vorticity current along with scaling symmetry leads to more power transfer from lower to higher length scale as compared to only chiral anomaly without scaling symmetry.

  14. An N = 2 worldsheet approach to D-branes in bihermitian geometries: I. Chiral and twisted chiral fields

    International Nuclear Information System (INIS)

    Sevrin, Alexander; Staessens, Wieland; Wijns, Alexander

    2008-01-01

    We investigate N = (2, 2) supersymmetric nonlinear σ-models in the presence of a boundary. We restrict our attention to the case where the bulk geometry is described by chiral and twisted chiral superfields corresponding to a bihermitian bulk geometry with two commuting complex structures. The D-brane configurations preserving an N = 2 worldsheet supersymmetry are identified. Duality transformations interchanging chiral for twisted chiral fields and vice versa while preserving all supersymmetries are explicitly constructed. We illustrate our results with various explicit examples such as the WZW-model on the Hopf surface S 3 x S 1 . The duality transformations provide e.g new examples of coisotropic A-branes on Kaehler manifolds (which are not necessarily hyper-Kaehler). Finally, by dualizing a chiral and a twisted chiral field to a semi-chiral multiplet, we initiate the study of D-branes in bihermitian geometries where the cokernel of the commutator of the complex structures is non-empty.

  15. Chiral Anomaly from Strain-Induced Gauge Fields in Dirac and Weyl Semimetals

    Science.gov (United States)

    Pikulin, D. I.; Chen, Anffany; Franz, M.

    2016-10-01

    Dirac and Weyl semimetals form an ideal platform for testing ideas developed in high-energy physics to describe massless relativistic particles. One such quintessentially field-theoretic idea of the chiral anomaly already resulted in the prediction and subsequent observation of the pronounced negative magnetoresistance in these novel materials for parallel electric and magnetic fields. Here, we predict that the chiral anomaly occurs—and has experimentally observable consequences—when real electromagnetic fields E and B are replaced by strain-induced pseudo-electromagnetic fields e and b . For example, a uniform pseudomagnetic field b is generated when a Weyl semimetal nanowire is put under torsion. In accordance with the chiral anomaly equation, we predict a negative contribution to the wire resistance proportional to the square of the torsion strength. Remarkably, left- and right-moving chiral modes are then spatially segregated to the bulk and surface of the wire forming a "topological coaxial cable." This produces hydrodynamic flow with potentially very long relaxation time. Another effect we predict is the ultrasonic attenuation and electromagnetic emission due to a time-periodic mechanical deformation causing pseudoelectric field e . These novel manifestations of the chiral anomaly are most striking in the semimetals with a single pair of Weyl nodes but also occur in Dirac semimetals such as Cd3 As2 and Na3Bi and Weyl semimetals with unbroken time-reversal symmetry.

  16. Chiral symmetry breaking and nonperturbative scale anomaly in gauge field theories

    International Nuclear Information System (INIS)

    Miranskij, V.A.; Gusynin, V.P.

    1987-01-01

    The nonperturbative dynamics of chiral and scale symmetry breaking in asymtotically free and non-asymptotically free (with an ultraviolet stable fixed point) vector-like gauge theories is investigated. In the two-loop approximation analytical expressions for the chiral and gluon condensates are obtained. The hypothesis about a soft behaviour at small distances of composite operators in non-asymptotically free gauge theories with a fixed point is put forward and substantiated. It is shown that in these theories the form of the scale anomaly depends on the type of the phase in coupling constant to which it relates. A new dilaton effective lagrangian for glueball and chiral fields is suggested. The mass relation for the single scalar fermion-antifermion bound state is obtained. The important ingredient of this approach is a large (d≅ 2) dynamical dimension of composite chiral fields. The application of this approach to QCD and technicolour models is discussed

  17. On integration over Fermi fields in chiral and supersymmetric theories

    International Nuclear Information System (INIS)

    Vainshtein, A.I.; Zakharov, V.I.

    1982-01-01

    Chiral and supersymmetric theories are considered which cannot be formulated directly in Euclidean space or regularized by means of massive fields in a manifestly gauge invariant fashion. In case of so called real representations a simple recipe is proposed which allows for unambiguous evaluation of the fermionic determinant circumventing the difficulties mentioned. As application of the general technique the effective fermionic interactions induced by instantons of small size within simplest chiral and supesymmetric theories are calculated (SU(2) as the gauge group and one doublet of Weyl spinors or a triplet of Majorana spinors, respectively). In the latter case the effective Lagrangian violates explicitly invariance under supersymmetric transformations on the fermionic and vector fields defined in standard way [ru

  18. Numerical evidence of chiral magnetic effect in lattice gauge theory

    International Nuclear Information System (INIS)

    Buividovich, P. V.; Chernodub, M. N.; Luschevskaya, E. V.; Polikarpov, M. I.

    2009-01-01

    The chiral magnetic effect is the generation of electric current of quarks along an external magnetic field in the background of topologically nontrivial gluon fields. There is recent evidence that this effect is observed by the STAR Collaboration in heavy-ion collisions at the Relativistic Heavy Ion Collider. In our paper we study qualitative signatures of the chiral magnetic effect using quenched lattice simulations. We find indications that the electric current is indeed enhanced in the direction of the magnetic field both in equilibrium configurations of the quantum gluon fields and in a smooth gluon background with nonzero topological charge. In the confinement phase the magnetic field enhances the local fluctuations of both the electric charge and chiral charge densities. In the deconfinement phase the effects of the magnetic field become smaller, possibly due to thermal screening. Using a simple model of a fireball we obtain a good agreement between our data and experimental results of STAR Collaboration.

  19. Chiral Anomaly from Strain-Induced Gauge Fields in Dirac and Weyl Semimetals

    Directory of Open Access Journals (Sweden)

    D. I. Pikulin

    2016-10-01

    Full Text Available Dirac and Weyl semimetals form an ideal platform for testing ideas developed in high-energy physics to describe massless relativistic particles. One such quintessentially field-theoretic idea of the chiral anomaly already resulted in the prediction and subsequent observation of the pronounced negative magnetoresistance in these novel materials for parallel electric and magnetic fields. Here, we predict that the chiral anomaly occurs—and has experimentally observable consequences—when real electromagnetic fields E and B are replaced by strain-induced pseudo-electromagnetic fields e and b. For example, a uniform pseudomagnetic field b is generated when a Weyl semimetal nanowire is put under torsion. In accordance with the chiral anomaly equation, we predict a negative contribution to the wire resistance proportional to the square of the torsion strength. Remarkably, left- and right-moving chiral modes are then spatially segregated to the bulk and surface of the wire forming a “topological coaxial cable.” This produces hydrodynamic flow with potentially very long relaxation time. Another effect we predict is the ultrasonic attenuation and electromagnetic emission due to a time-periodic mechanical deformation causing pseudoelectric field e. These novel manifestations of the chiral anomaly are most striking in the semimetals with a single pair of Weyl nodes but also occur in Dirac semimetals such as Cd_{3}As_{2} and Na_{3}Bi and Weyl semimetals with unbroken time-reversal symmetry.

  20. Chiral soliton lattice and charged pion condensation in strong magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, Tomáš [Faculty of Science and Technology, University of Stavanger,N-4036 Stavanger (Norway); Yamamoto, Naoki [Department of Physics, Keio University,Yokohama 223-8522 (Japan)

    2017-04-21

    The Chiral Soliton Lattice (CSL) is a state with a periodic array of topological solitons that spontaneously breaks parity and translational symmetries. Such a state is known to appear in chiral magnets. We show that CSL also appears as a ground state of quantum chromodynamics at nonzero chemical potential in a magnetic field. By analyzing the fluctuations of the CSL, we furthermore demonstrate that in strong but achievable magnetic fields, charged pions undergo Bose-Einstein condensation. Our results, based on a systematic low-energy effective theory, are model-independent and fully analytic.

  1. Field-dependent spin chirality and frustration in V3 and Cu3 nanomagnets in transverse magnetic field. 2. Spin configurations, chirality and intermediate spin magnetization in distorted trimers

    International Nuclear Information System (INIS)

    Belinsky, Moisey I.

    2014-01-01

    Highlights: • Distorted spin configurations determine field behavior of the variable chiralities. • Distortions change spin chiralities, intermediate M 12 ± and staggered magnetization. • Magnetizations, distorted vector and scalar chiralities are strongly correlated. • Distorted V 3 , Cu 3 nanomagnets possess large vector chirality in the ground state in B ⊥ . • Chiralities and distortions in EPR, INS and NMR spectra were considered. - Abstract: Correlated spin configurations, magnetizations, frustration, vector κ ¯ z and scalar χ ¯ chiralities are considered for distorted V ‾ 3 , /Cu 3 / anisotropic DM nanomagnets in transverse B x ‖X and longitudinal B‖Z fields. Different planar configurations in the ground and excited states of distorted nanomagnets in B x determine different field behavior of the vector chiralities and the degenerate frustration in these states correlated with the M ~ 12 ± (B x ) intermediate spin (IS) magnetization which describes the S 12 characteristics, χ=0. Distortion results in the reduced κ ¯ z <1 chirality in the ground distorted configuration and in the maximum κ z =±1 in the excited states with the planar 120° configurations at avoided level crossing. In B‖Z, distorted longitudinal spin-collinear configurations are characterized by the reduced degenerate frustration, out-of-plane staggered and IS M ~ 12 ± (B z ) magnetizations, and in-plane toroidal moments, correlated with the κ ¯ z , χ ¯ chiralities, χ ¯ =±|κ ¯ z |. The chiralities and IS magnetization in EPR, INS and NMR spectra are considered. The quantitative correlations describe variable spin chirality, frustration and field manipulation of chiralities in nanomagnets

  2. Chiral symmetry breaking in a semilocalized magnetic field

    Science.gov (United States)

    Cao, Gaoqing

    2018-03-01

    In this work, we explore the pattern of chiral symmetry breaking and restoration in a solvable magnetic field configuration within the Nambu-Jona-Lasinio model. The special semilocalized static magnetic field can roughly mimic the realistic situation in peripheral heavy ion collisions; thus, the study is important for the dynamical evolution of quark matter. We find that the magnetic-field-dependent contribution from discrete spectra usually dominates over the contribution from continuum spectra and chiral symmetry breaking is locally catalyzed by both the magnitude and scale of the magnetic field. The study is finally extended to the case with finite temperature or chemical potential.

  3. Stochastic Field evolution of disoriented chiral condensates

    International Nuclear Information System (INIS)

    Bettencourt, Luis M.A.

    2003-01-01

    I present a summary of recent work [1] where we describe the time-evolution of a region of disoriented chiral condensate via Langevin field equations for the linear σ model. We analyze the model in equilibrium, paying attention to subtracting ultraviolet divergent classical terms and replacing them by their finite quantum counter-parts. We use results from lattice gauge theory and chiral perturbation theory to fix nonuniversal constants. The result is a ultraviolet cutoff independent theory that reproduces quantitatively the expected equilibrium behavior of pion and σ quantum fields. We also estimate the viscosity η(T), which controls the dynamical timescale in the Langevin equation, so that the near equilibrium dynamical response agrees with theoretical expectations

  4. Chiral symmetry in the strong color-electric field in terms of Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    Suganuma, Hideo

    1990-01-01

    We examine the behavior of chiral symmetry in an external gluon field using Nambu-Jona-Lasinio model, which is an effective theory of QCD. The Dyson equation for the dynamical quark mass in the presence of the external color-electric field is obtained. By solving it in the color flux tube inside mesons, chiral symmetry would be restored in the flux tube of mesons and this result supports Chiral Bag picture for mesons. Next we consider the flux tubes formed in the central region for ultra-relativistic heavy-ion collisions, and find the chiral restoration occurs there, so that the current quark mass seems to be suitable in calculating the q-q-bar pair creation rate by the Schwinger formula in the flux-tube picture. (author)

  5. Two-nucleon electromagnetic current in chiral effective field theory: One-pion exchange and short-range contributions

    International Nuclear Information System (INIS)

    Koelling, S.; Epelbaum, E.; Krebs, H.; Meissner, U.-G.

    2011-01-01

    We derive the leading one-loop contribution to the one-pion exchange and short-range two-nucleon electromagnetic current operator in the framework of chiral effective field theory. The derivation is carried out using the method of unitary transformation. Explicit results for the current and charge densities are given in momentum and coordinate space.

  6. Local conservation laws for principle chiral fields (d=1)

    International Nuclear Information System (INIS)

    Cherednik, I.V.

    1979-01-01

    The Beklund transformation for chiral fields in the two-dimensional Minkovski space is found. As a result an infinite series of conservation laws for principle chiral Osub(n) fields (d=1) has been built. It is shown that these laws are local, the infinite series of global invariants which do not depend on xi, eta, and which is rather rapidly decrease along xi (or along eta) solutions being connected with these laws (xi, eta - coordinates of the light cone). It is noted that with the help of the construction proposed it is possible to obtain conservation laws of principle chiral G fields, including G in the suitable ortogonal groups. Symmetry permits to exchange xi and eta. The construction of conservation laws may be carried out without supposition that lambda has a multiplicity equal to 1, however the proof of the locality applied does not transfer on the laws obtained

  7. Chiral and parity symmetry breaking for planar fermions: Effects of a heat bath and uniform external magnetic field

    International Nuclear Information System (INIS)

    Ayala, Alejandro; Bashir, Adnan; Gutierrez, Enif; Raya, Alfredo; Sanchez, Angel

    2010-01-01

    We study chiral symmetry breaking for relativistic fermions, described by a parity-violating Lagrangian in 2+1-dimensions, in the presence of a heat bath and a uniform external magnetic field. Working within their four-component formalism allows for the inclusion of both parity-even and -odd mass terms. Therefore, we can define two types of fermion antifermion condensates. For a given value of the magnetic field, there exist two different critical temperatures which would render one of these condensates identically zero, while the other would survive. Our analysis is completely general: it requires no particular simplifying hierarchy among the energy scales involved, namely, bare masses, field strength, and temperature. However, we do reproduce some earlier results, obtained or anticipated in literature, corresponding to special kinematical regimes for the parity conserving case. Relating the chiral condensate to the one-loop effective Lagrangian, we also obtain the magnetization and the pair production rate for different fermion species in a uniform electric field through the replacement B→-iE.

  8. Hamiltonian lattice studies of chiral meson field theories

    International Nuclear Information System (INIS)

    Chin, S.A.

    1998-01-01

    The latticization of the non-linear sigma model reduces a chiral meson field theory to an O(4) spin lattice system with quantum fluctuations. The result is an interesting marriage between quantum many-body theory and classical spin systems. By solving the resulting lattice Hamiltonian by Monte Carlo methods, the dynamics and thermodynamics of pions can be determined non-perturbatively. In a variational 16 3 lattice study, the ground state chiral phase transition is shown to be first order. Moreover, as the chiral phase transition is approached, the mass gap of pionic collective modes with quantum number of the ω vector meson drops toward zero. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  9. Chiral effective field theory on the lattice at next-to-leading order

    International Nuclear Information System (INIS)

    Borasoy, B.; Epelbaum, E.; Krebs, H.; Meissner, U.G.; Lee, D.

    2008-01-01

    We study nucleon-nucleon scattering on the lattice at next-to-leading order in chiral effective field theory. We determine phase shifts and mixing angles from the properties of two-nucleon standing waves induced by a hard spherical wall in the center-of-mass frame. At fixed lattice spacing we test model independence of the low-energy effective theory by computing next-to-leading-order corrections for two different leading-order lattice actions. The first leading-order action includes instantaneous one-pion exchange and same-site contact interactions. The second leading-order action includes instantaneous one-pion exchange and Gaussian-smeared interactions. We find that in each case the results at next-to-leading order are accurate up to corrections expected at higher order. (orig.)

  10. Active chiral fluids.

    Science.gov (United States)

    Fürthauer, S; Strempel, M; Grill, S W; Jülicher, F

    2012-09-01

    Active processes in biological systems often exhibit chiral asymmetries. Examples are the chirality of cytoskeletal filaments which interact with motor proteins, the chirality of the beat of cilia and flagella as well as the helical trajectories of many biological microswimmers. Here, we derive constitutive material equations for active fluids which account for the effects of active chiral processes. We identify active contributions to the antisymmetric part of the stress as well as active angular momentum fluxes. We discuss four types of elementary chiral motors and their effects on a surrounding fluid. We show that large-scale chiral flows can result from the collective behavior of such motors even in cases where isolated motors do not create a hydrodynamic far field.

  11. Chiral phase transition of three flavor QCD with nonzero magnetic field using standard staggered fermions

    Science.gov (United States)

    Tomiya, Akio; Ding, Heng-Tong; Mukherjee, Swagato; Schmidt, Christian; Wang, Xiao-Dan

    2018-03-01

    Lattice simulations for (2+1)-flavor QCD with external magnetic field demon-strated that the quark mass is one of the important parameters responsible for the (inverse) magnetic catalysis. We discuss the dependences of chiral condensates and susceptibilities, the Polyakov loop on the magnetic field and quark mass in three degenerate flavor QCD. The lattice simulations are performed using standard staggered fermions and the plaquette action with spatial sizes Nσ = 16 and 24 and a fixed temporal size Nτ = 4. The value of the quark masses are chosen such that the system undergoes a first order chiral phase transition and crossover with zero magnetic field. We find that in light mass regime, the quark chiral condensate undergoes magnetic catalysis in the whole temperature region and the phase transition tend to become stronger as the magnetic field increases. In crossover regime, deconfinement transition temperature is shifted by the magnetic field when quark mass ma is less than 0:4. The lattice cutoff effects are also discussed.

  12. Chiral Magnetic Effect and Anomalous Transport from Real-Time Lattice Simulations

    International Nuclear Information System (INIS)

    Müller, Niklas; Schlichting, Sören; Sharma, Sayantan

    2016-01-01

    Here, we present a first-principles study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian S U (N _c) and Abelian U (1) gauge fields. By investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the chiral magnetic and chiral separation effect leads to the formation of a propagating wave. Furthermore, we analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on the amount of explicit chiral symmetry breaking due to finite quark masses.

  13. Effects of chirality and surface stresses on the bending and buckling of chiral nanowires

    International Nuclear Information System (INIS)

    Wang, Jian-Shan; Shimada, Takahiro; Kitamura, Takayuki; Wang, Gang-Feng

    2014-01-01

    Due to their superior optical, elastic and electrical properties, chiral nanowires have many applications as sensors, probes, and building blocks of nanoelectromechanical systems. In this paper, we develop a refined Euler–Bernoulli beam model for chiral nanowires with surface effects and material chirality incorporated. This refined model is employed to investigate the bending and buckling of chiral nanowires. It is found that surface effects and material chirality significantly affect the elastic behaviour of chiral nanowires. This study is helpful not only for understanding the size-dependent behaviour of chiral nanowires, but also for characterizing their mechanical properties. (paper)

  14. Chiral nanophotonics chiral optical properties of plasmonic systems

    CERN Document Server

    Schäferling, Martin

    2017-01-01

    This book describes the physics behind the optical properties of plasmonic nanostructures focusing on chiral aspects. It explains in detail how the geometry determines chiral near-fields and how to tailor their shape and strength. Electromagnetic fields with strong optical chirality interact strongly with chiral molecules and, therefore, can be used for enhancing the sensitivity of chiroptical spectroscopy techniques. Besides a short review of the latest results in the field of plasmonically enhanced enantiomer discrimination, this book introduces the concept of chiral plasmonic near-field sources for enhanced chiroptical spectroscopy. The discussion of the fundamental properties of these light sources provides the theoretical basis for further optimizations and is of interest for researchers at the intersection of nano-optics, plasmonics and stereochemistry. .

  15. Two-nucleon S10 amplitude zero in chiral effective field theory

    Science.gov (United States)

    Sánchez, M. Sánchez; Yang, C.-J.; Long, Bingwei; van Kolck, U.

    2018-02-01

    We present a new rearrangement of short-range interactions in the S10 nucleon-nucleon channel within chiral effective field theory. This is intended to address the slow convergence of Weinberg's scheme, which we attribute to its failure to reproduce the amplitude zero (scattering momentum ≃340 MeV) at leading order. After the power counting scheme is modified to accommodate the zero at leading order, it includes subleading corrections perturbatively in a way that is consistent with renormalization-group invariance. Systematic improvement is shown at next-to-leading order, and we obtain results that fit empirical phase shifts remarkably well all the way up to the pion-production threshold. An approach in which pions have been integrated out is included, which allows us to derive analytic results that also fit phenomenology surprisingly well.

  16. Effect of channel-width and chirality on graphene field-effect transistor based real-time biomolecule sensing

    Science.gov (United States)

    Lyu, Letian; Jaswal, Perveshwer; Xu, Guangyu

    2018-03-01

    Graphene field-effect transistors (GFET) hold promise in biomolecule sensing due to the outstanding properties of graphene materials. Charges in biomolecules are transduced into a change in the GFET current, which allows real-time monitoring of the biomolecule concentrations. Here we theoretically evaluate the performance of GFET based real-time biomolecule sensing, aiming to better understand the width-scaling limit in GFET based biosensors. In particular, we study the effect of the channel-width and the chirality on FET sensitivity by taking the percentage change of the FET current per unit charge density as the sensing signal. Firstly, GFETs made of graphene nanoribbons (GNR) and graphene sheets (GS) show comparable sensing signals to each other when gated at 1011 - 1012 cm-2 carrier densities. Sensing signals in GNRs are enhanced when gated near the sub-band thresholds, and increase their values in wider GNRs due to the change in device conductance and quantum capacitance. Secondly, the GNR chirality is found to fine tune the sensing signals. Armchair GNRs with smaller energy bandgaps appear to have an enhanced sensing signal close to 1011 cm-2 carrier densities. These results may help understand the scaling limit in GFET based biosensors along the width direction, and shed light on forming all-electrical bio-arrays.

  17. Effect of channel-width and chirality on graphene field-effect transistor based real-time biomolecule sensing

    Directory of Open Access Journals (Sweden)

    Letian Lyu

    2018-03-01

    Full Text Available Graphene field-effect transistors (GFET hold promise in biomolecule sensing due to the outstanding properties of graphene materials. Charges in biomolecules are transduced into a change in the GFET current, which allows real-time monitoring of the biomolecule concentrations. Here we theoretically evaluate the performance of GFET based real-time biomolecule sensing, aiming to better understand the width-scaling limit in GFET based biosensors. In particular, we study the effect of the channel-width and the chirality on FET sensitivity by taking the percentage change of the FET current per unit charge density as the sensing signal. Firstly, GFETs made of graphene nanoribbons (GNR and graphene sheets (GS show comparable sensing signals to each other when gated at 1011 – 1012 cm-2 carrier densities. Sensing signals in GNRs are enhanced when gated near the sub-band thresholds, and increase their values in wider GNRs due to the change in device conductance and quantum capacitance. Secondly, the GNR chirality is found to fine tune the sensing signals. Armchair GNRs with smaller energy bandgaps appear to have an enhanced sensing signal close to 1011 cm-2 carrier densities. These results may help understand the scaling limit in GFET based biosensors along the width direction, and shed light on forming all-electrical bio-arrays.

  18. Chirality-induced magnon transport in AA-stacked bilayer honeycomb chiral magnets.

    Science.gov (United States)

    Owerre, S A

    2016-11-30

    In this Letter, we study the magnetic transport in AA-stacked bilayer honeycomb chiral magnets coupled either ferromagnetically or antiferromagnetically. For both couplings, we observe chirality-induced gaps, chiral protected edge states, magnon Hall and magnon spin Nernst effects of magnetic spin excitations. For ferromagnetically coupled layers, thermal Hall and spin Nernst conductivities do not change sign as function of magnetic field or temperature similar to single-layer honeycomb ferromagnetic insulator. In contrast, for antiferromagnetically coupled layers, we observe a sign change in the thermal Hall and spin Nernst conductivities as the magnetic field is reversed. We discuss possible experimental accessible honeycomb bilayer quantum materials in which these effects can be observed.

  19. arXiv Chiral Effective Theory of Dark Matter Direct Detection

    CERN Document Server

    Bishara, Fady

    2017-02-03

    We present the effective field theory for dark matter interactions with the visible sector that is valid at scales of O(1 GeV). Starting with an effective theory describing the interactions of fermionic and scalar dark matter with quarks, gluons and photons via higher dimension operators that would arise from dimension-five and dimension-six operators above electroweak scale, we perform a nonperturbative matching onto a heavy baryon chiral perturbation theory that describes dark matter interactions with light mesons and nucleons. This is then used to obtain the coefficients of the nuclear response functions using a chiral effective theory description of nuclear forces. Our results consistently keep the leading contributions in chiral counting for each of the initial Wilson coefficients.

  20. Effect of vacancy defect on electrical properties of chiral single-walled carbon nanotube under external electrical field

    International Nuclear Information System (INIS)

    Luo Yu-Pin; Tien Li-Gan; Tsai Chuen-Horng; Lee Ming-Hsien; Li Feng-Yin

    2011-01-01

    Ab initio calculations demonstrated that the energy gap modulation of a chiral carbon nanotube with mono-vacancy defect can be achieved by applying a transverse electric field. The bandstructure of this defective carbon nanotube varying due to the external electric field is distinctly different from those of the perfect nanotube and defective zigzag nanotube. This variation in bandstructure strongly depends on not only the chirality of the nanotube and also the applied direction of the transverse electric field. A mechanism is proposed to explain the response of the local energy gap between the valence band maximum state and the local gap state under external electric field. Several potential applications of these phenomena are discussed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  1. The effective action for chiral fermions

    International Nuclear Information System (INIS)

    Alvarez-Gaume, L.

    1985-01-01

    This paper reports on recent work which given an exact characterization of the imaginary part of the effective action for chiral fermions in 2n dimensions in terms of the spectral asymmetry of a suitable (2n+1)-dimensional operator. In order to keep the discussion as simple as possible, the author concentrates on four dimensional fermions with arbitrary external gauge fields. This approach can be extended without difficulty to higher dimensions and also to include external gravitational fields

  2. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory

    Energy Technology Data Exchange (ETDEWEB)

    Rogachevskii, Igor; Kleeorin, Nathan [Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Ruchayskiy, Oleg [Discovery Center, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Boyarsky, Alexey [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Fröhlich, Jürg [Institute of Theoretical Physics, ETH Hönggerberg, CH-8093 Zurich (Switzerland); Brandenburg, Axel; Schober, Jennifer, E-mail: gary@bgu.ac.il [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2017-09-10

    The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.

  3. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory

    International Nuclear Information System (INIS)

    Rogachevskii, Igor; Kleeorin, Nathan; Ruchayskiy, Oleg; Boyarsky, Alexey; Fröhlich, Jürg; Brandenburg, Axel; Schober, Jennifer

    2017-01-01

    The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.

  4. Towards Measurements of Chiral Effects Using Identified Particles from STAR

    Czech Academy of Sciences Publication Activity Database

    Wen, Lw.; Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Federič, Pavol; Rusňák, Jan; Rusňáková, O.; Šimko, Miroslav; Šumbera, Michal; Vértési, Robert

    2017-01-01

    Roč. 967, č. 11 (2017), s. 756-759 ISSN 0375-9474 R&D Projects: GA MŠk LG15001; GA MŠk LM2015054 Institutional support: RVO:61389005 Keywords : STAR collaboration * chiral magnetic effect * chiral magnetic wave * gamma correlation * k(K) parameter Subject RIV: BF - Elementary Particles and High Energy Physics OBOR OECD: Particles and field physics Impact factor: 1.916, year: 2016

  5. Structure of neutron star crusts from new Skyrme effective interactions constrained by chiral effective field theory

    Science.gov (United States)

    Lim, Yeunhwan; Holt, Jeremy W.

    2017-06-01

    We investigate the structure of neutron star crusts, including the crust-core boundary, based on new Skyrme mean field models constrained by the bulk-matter equation of state from chiral effective field theory and the ground-state energies of doubly-magic nuclei. Nuclear pasta phases are studied using both the liquid drop model as well as the Thomas-Fermi approximation. We compare the energy per nucleon for each geometry (spherical nuclei, cylindrical nuclei, nuclear slabs, cylindrical holes, and spherical holes) to obtain the ground state phase as a function of density. We find that the size of the Wigner-Seitz cell depends strongly on the model parameters, especially the coefficients of the density gradient interaction terms. We employ also the thermodynamic instability method to check the validity of the numerical solutions based on energy comparisons.

  6. Chiral Magnetic Spirals

    International Nuclear Information System (INIS)

    Basar, Goekce; Dunne, Gerald V.; Kharzeev, Dmitri E.

    2010-01-01

    We argue that the presence of a very strong magnetic field in the chirally broken phase induces inhomogeneous expectation values, of a spiral nature along the magnetic field axis, for the currents of charge and chirality, when there is finite baryon density or an imbalance between left and right chiralities. This 'chiral magnetic spiral' is a gapless excitation transporting the currents of (i) charge (at finite chirality), and (ii) chirality (at finite baryon density) along the direction of the magnetic field. In both cases it also induces in the transverse directions oscillating currents of charge and chirality. In heavy ion collisions, the chiral magnetic spiral possibly provides contributions both to the out-of-plane and the in-plane dynamical charge fluctuations recently observed at BNL RHIC.

  7. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. II. Simulations

    Science.gov (United States)

    Schober, Jennifer; Rogachevskii, Igor; Brandenburg, Axel; Boyarsky, Alexey; Fröhlich, Jürg; Ruchayskiy, Oleg; Kleeorin, Nathan

    2018-05-01

    Using direct numerical simulations (DNS), we study laminar and turbulent dynamos in chiral magnetohydrodynamics with an extended set of equations that accounts for an additional contribution to the electric current due to the chiral magnetic effect (CME). This quantum phenomenon originates from an asymmetry between left- and right-handed relativistic fermions in the presence of a magnetic field and gives rise to a chiral dynamo. We show that the magnetic field evolution proceeds in three stages: (1) a small-scale chiral dynamo instability, (2) production of chiral magnetically driven turbulence and excitation of a large-scale dynamo instability due to a new chiral effect (α μ effect), and (3) saturation of magnetic helicity and magnetic field growth controlled by a conservation law for the total chirality. The α μ effect becomes dominant at large fluid and magnetic Reynolds numbers and is not related to kinetic helicity. The growth rate of the large-scale magnetic field and its characteristic scale measured in the numerical simulations agree well with theoretical predictions based on mean-field theory. The previously discussed two-stage chiral magnetic scenario did not include stage (2), during which the characteristic scale of magnetic field variations can increase by many orders of magnitude. Based on the findings from numerical simulations, the relevance of the CME and the chiral effects revealed in the relativistic plasma of the early universe and of proto-neutron stars are discussed.

  8. Chiral superconductors.

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  9. Electroclinic effect in the chiral lamellar α phase of a lyotropic liquid crystal

    Science.gov (United States)

    Harjung, Marc D.; Giesselmann, Frank

    2018-03-01

    In thermotropic chiral Sm -A* phases, an electric field along the smectic layers breaks the D∞ symmetry of the Sm -A* phase and induces a tilt of the liquid crystal director. This so-called electroclinic effect (ECE) was first reported by Garoff and Meyer in 1977 and attracted substantial scientific and technological interest due to its linear and submicrosecond electro-optic response [S. Garoff and R. B. Meyer, Phys. Rev. A 19, 338 (1979), 10.1103/PhysRevA.19.338]. We now report the observation of an ECE in the pretransitional regime from a lyotropic chiral lamellar Lα* phase into a lyo-Sm -C* phase, the lyotropic analog to the thermotropic Sm -C* phase which was recently discovered by Bruckner et al. [Angew. Chem. Int. Ed. 52, 8934 (2013), 10.1002/anie.201303344]. We further show that the observed ECE has all signatures of its thermotropic counterpart, namely (i) the effect is chiral in nature and vanishes in the racemic Lα phase, (ii) the effect is essentially linear in the sign and magnitude of the electric field, and (iii) the magnitude of the effect diverges hyperbolically as the temperature approaches the critical temperature of the second order tilting transition. Specific deviations between the ECEs in chiral lamellar and chiral smectic phases are related to the internal field screening effect of electric double layers formed by inevitable ionic impurities in lyotropic phases.

  10. Recent developments in chiral gauge theories: approach of infinitely many fermi fields

    International Nuclear Information System (INIS)

    Narayanan, R.

    1994-01-01

    I present the recent developments in a specific sub-field of chiral gauge theories on the lattice. This subfield pertains to the use of infinitely many fermi fields to describe a single chiral field. In this approach, both anomalous and anomaly free theories can be discussed in equal footing. It produces the correct anomaly in the continuum limit. It has the potential to describe fermion number violating processes in the presence of a gauge field background with non-trivial topological charge on a finite lattice. (orig.)

  11. Selection of Amino Acid Chirality via Neutrino Interactions with 14N in Crossed Electric and Magnetic Fields

    Science.gov (United States)

    Boyd, Richard N.; Kajino, Toshitaka; Onaka, Takashi

    2018-01-01

    Abstract Previous work has suggested that the chirality of the amino acids could be established in the magnetic field of a nascent neutron star from a core-collapse supernova or massive collapsar. The magnetic field would orient the 14N nuclei, and the alignment of its nuclear spin with respect to those of the electron antineutrinos emitted from the collapsing star would determine the probability of destruction of the 14N nuclei by interactions with the antineutrinos. Subsequent work estimated the bulk polarization of the 14N nuclei in large rotating meteoroids in such an environment. The present work adds a crucial piece of this model by describing the details by which the selective 14N nuclear destruction would produce molecular chiral selectivity. The effects of the neutrino-induced interactions on the 14N nuclei bound in amino acids polarized in strong magnetic fields are studied. It is shown that electric fields in the reference frame of the nuclei modify the magnetic field at the nucleus, creating nuclear magnetizations that are asymmetric in chirality. The antineutrino cross sections depend on this magnetization, creating a selective destructive effect. The environmental conditions and sites in which such a selection mechanism could occur are discussed. Selective destruction of D-enantiomers results in enantiomeric excesses which may be sufficient to drive subsequent autocatalysis necessary to produce the few-percent enantiomeric excesses found in meteorites and subsequent homochirality. Molecular quantum chemical calculations were performed for alanine, and the chirality-dependent effects studied were included. A preference for left-handed molecules was found, and enantiomeric excesses as high as 0.02% were estimated for molecules in the electromagnetic conditions expected from a core-collapse supernova. Key Words: Amino acids—Supernovae—Antineutrinos—Enantiomeric excess—Chirality. Astrobiology 18, 190–206. PMID:29160728

  12. Chiral Induction with Chiral Conformational Switches in the Limit of Low "Sergeants to Soldiers" Ratio

    DEFF Research Database (Denmark)

    Nuermaimaiti, Ajiguli; Bombis, Christian; Knudsen, Martin Markvard

    2014-01-01

    Molecular-level insights into chiral adsorption phenomena are highly relevant within the fields of asymmetric heterogeneous catalysis or chiral separation and may contribute to understand the origins of homochirality in nature. Here, we investigate chiral induction by the "sergeants and soldiers......" mechanism for an oligo(phenylene ethynylene) based chiral conformational switch by coadsorbing it with an intrinsically chiral seed on Au(111). Through statistical analysis of scanning tunneling microscopy (STM) data we demonstrate successful chiral induction with a very low concentration of seeding...... molecules down to 3%. The microscopic mechanism for the observed chiral induction is suggested to involve nucleation of the intrinsically chiral seeds, allowing for effective transfer and amplification of chirality to large numbers of soldier target molecules....

  13. The chiral bosonization in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Andrianov, A.A.; Novozhilov, Y.

    1985-01-01

    The chiral bosonization in non-Abelian gauge theories is described starting directly from the QCD functional. For a given mass scale Λ, the QCD may be equivalently represented by colour chiral fields, gauge fields and high energy fermions. The effective action for colour chiral fields may admit the existence of a colour Skyrmion-boson with the baryon number 2/3. (author)

  14. Quark mass correction to chiral separation effect and pseudoscalar condensate

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Er-dong [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); Kavli Institute of Theoretical Physics China, Chinese Academy of Sciences,Beijing 100190 (China); Lin, Shu [School of Physics and Astronomy, Sun Yat-Sen University,No 2 University Road, Zhuhai 519082 (China)

    2017-01-25

    We derived an analytic structure of the quark mass correction to chiral separation effect (CSE) in small mass regime. We confirmed this structure by a D3/D7 holographic model study in a finite density, finite magnetic field background. The quark mass correction to CSE can be related to correlators of pseudo-scalar condensate, quark number density and quark condensate in static limit. We found scaling relations of these correlators with spatial momentum in the small momentum regime. They characterize medium responses to electric field, inhomogeneous quark mass and chiral shift. Beyond the small momentum regime, we found existence of normalizable mode, which possibly leads to formation of spiral phase. The normalizable mode exists beyond a critical magnetic field, whose magnitude decreases with quark chemical potential.

  15. Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields

    OpenAIRE

    Gitman, D. M.; Odintsov, S. D.; Shil'nov, Yu. I.

    1996-01-01

    The phase structure of $d=3$ Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the $1/N$-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the ...

  16. Near-field circular polarization probed by chiral polyfluorene

    NARCIS (Netherlands)

    Savoini, M.; Biagioni, P.; Lakhwani, G.; Meskers, S.C.J.; Duò, L.; Finazzi, M.

    2009-01-01

    We demonstrate that a high degree of circular polarization can be delivered to the near field (NF) of an aperture at the apex of hollow-pyramid probes for scanning optical microscopy. This result is achieved by analyzing the dichroic properties of an annealed thin polymer film containing a chiral

  17. Neutron matter at next-to-next-to-next-to-leading order in chiral effective field theory.

    Science.gov (United States)

    Tews, I; Krüger, T; Hebeler, K; Schwenk, A

    2013-01-18

    Neutron matter presents a unique system for chiral effective field theory because all many-body forces among neutrons are predicted to next-to-next-to-next-to-leading order (N(3)LO). We present the first complete N(3)LO calculation of the neutron matter energy. This includes the subleading three-nucleon forces for the first time and all leading four-nucleon forces. We find relatively large contributions from N(3)LO three-nucleon forces. Our results provide constraints for neutron-rich matter in astrophysics with controlled theoretical uncertainties.

  18. Two-dimensional field theory description of a disoriented chiral condensate

    International Nuclear Information System (INIS)

    Kogan, I.I.

    1993-01-01

    We consider the effective (1+1)-dimensional chiral theory describing fluctuations of the order parameter of the disoriented chiral condensate (DCC) which can be formed in the central rapidity region in relativistic nucleus-nucleus or nucleon-nucleon collisions at high energy. Using (1+1)-dimensional reduction of QCD at high energies and assuming spin polarization of the DDC one can find the Wess-Zumino-Novikov-Witten model at the level k=3 as the effective chiral theory for the one-dimensional DDC. Some possible phenomenological consequences are briefly discussed

  19. Chiral perturbation theory

    International Nuclear Information System (INIS)

    Ecker, G.

    1996-06-01

    After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)

  20. Microscopically-constrained Fock energy density functionals from chiral effective field theory. I. Two-nucleon interactions

    International Nuclear Information System (INIS)

    Gebremariam, B.; Bogner, S.K.; Duguet, T.

    2011-01-01

    The density matrix expansion (DME) of Negele and Vautherin is a convenient tool to map finite-range physics associated with vacuum two- and three-nucleon interactions into the form of a Skyrme-like energy density functional (EDF) with density-dependent couplings. In this work, we apply the improved formulation of the DME proposed recently in (arXiv:0910.4979) by Gebremariam et al. to the non-local Fock energy obtained from chiral effective field theory (EFT) two-nucleon (NN) interactions at next-to-next-to-leading-order (N 2 LO). The structure of the chiral interactions is such that each coupling in the DME Fock functional can be decomposed into a coupling constant arising from zero-range contact interactions and a coupling function of the density arising from the universal long-range pion exchanges. This motivates a new microscopically-guided Skyrme phenomenology where the density-dependent couplings associated with the underlying pion-exchange interactions are added to standard empirical Skyrme functionals, and the density-independent Skyrme parameters subsequently refit to data. A link to a downloadable Mathematica notebook containing the novel density-dependent couplings is provided.

  1. Strain-induced chiral magnetic effect in Weyl semimetals

    International Nuclear Information System (INIS)

    Cortijo, Alberto; Kharzeev, Dmitri; Vozmediano, Maria A. H.

    2016-01-01

    Here, we argue that strain applied to a time-reversal and inversion breaking Weyl semimetal in a magnetic field can induce an electric current via the chiral magnetic effect. A tight-binding model is used to show that strain generically changes the locations in the Brillouin zone but also the energies of the band touching points (tips of the Weyl cones). Since axial charge in a Weyl semimetal can relax via intervalley scattering processes, the induced current will decay with a time scale given by the lifetime of a chiral quasiparticle. Lastly, we estimate the strength and lifetime of the current for typical material parameters and find that it should be experimentally observable.

  2. Continuous spins in 2D gravity: Chiral vertex operators and local fields

    International Nuclear Information System (INIS)

    Gervais, Jean-Loup; Schnittger, Jens

    1994-01-01

    We construct the exponentials of the Liouville field with continuous powers within the operator approach. Their chiral decomposition is realized using the explicit Coulomb-gas operators we introduced earlier. From the quantum group viewpoint, they are related to semi-infinite highest- or lowest-weight representations with continuous spins. The Liouville field itself is defined, and the canonical commutation relations are verified, as well as the validity of the quantum Liouville field equations. In a second part, both screening charges are considered. The braiding of the chiral components is derived and shown to agree with an ansatz of a parallel paper of Gervais and Roussel. ((orig.))

  3. Chiral symmetry and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed

  4. Spontaneous Hall effect in a chiral p-wave superconductor

    Science.gov (United States)

    Furusaki, Akira; Matsumoto, Masashige; Sigrist, Manfred

    2001-08-01

    In a chiral superconductor with broken time-reversal symmetry a ``spontaneous Hall effect'' may be observed. We analyze this phenomenon by taking into account the surface properties of a chiral superconductor. We identify two main contributions to the spontaneous Hall effect. One contribution originates from the Bernoulli (or Lorentz) force due to spontaneous currents running along the surfaces of the superconductor. The other contribution has a topological origin and is related to the intrinsic angular momentum of Cooper pairs. The latter can be described in terms of a Chern-Simons-like term in the low-energy field theory of the superconductor and has some similarities with the quantum Hall effect. The spontaneous Hall effect in a chiral superconductor is, however, nonuniversal. Our analysis is based on three approaches to the problem: a self-consistent solution of the Bogoliubov-de Gennes equation, a generalized Ginzburg-Landau theory, and a hydrodynamic formulation. All three methods consistently lead to the same conclusion that the spontaneous Hall resistance of a two-dimensional superconducting Hall bar is of order h/(ekFλ)2, where kF is the Fermi wave vector and λ is the London penetration depth; the Hall resistance is substantially suppressed from a quantum unit of resistance. Experimental issues in measuring this effect are briefly discussed.

  5. Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran, E-mail: tigran@caltech.edu [Department of Physics, University of Illinois, 845 W Taylor Street, Chicago, IL 60607 (United States); Jet Propulsion Laboratory, 4800 Oak Grove Dr, M/S 298, Pasadena, CA 91109 (United States); Murchikova, Elena [TAPIR, California Institute of Technology, MC 350-17, Pasadena, CA 91125 (United States)

    2017-06-15

    In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium {sup 3}He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves) and transverse velocity (chiral Alfvén wave). We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.

  6. Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids

    International Nuclear Information System (INIS)

    Kalaydzhyan, Tigran; Murchikova, Elena

    2017-01-01

    In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium "3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves) and transverse velocity (chiral Alfvén wave). We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.

  7. Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids

    Directory of Open Access Journals (Sweden)

    Tigran Kalaydzhyan

    2017-06-01

    Full Text Available In certain circumstances, chiral (parity-violating medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium 3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves and transverse velocity (chiral Alfvén wave. We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.

  8. Effect of Quark Spins to the Hadron Distributions for Chiral Magnetic Wave in Ultrarelativistic Heavy-Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Byungsik [Korea University, Seoul (Korea, Republic of)

    2017-07-15

    Topological fluctuation of the gluon field in quantum chromodynamics modifies the vacuum structure, and causes various chiral anomalies. In the strong magnetic field generated by semi-central heavy-ion collisions, the axial and vector density fluctuations propagate along the external magnetic field, called the chiral magnetic wave. Up to now the investigation of the various chiral anomalies in heavy ion collisions has been focussed on the charge distribution in the transverse plane. However, this paper points out that the information on the charge distribution is not enough and the spin effect should also be taken into account. Considering the charge and spin distributions together, π{sup ±} with spin 0 are not proper particle species to study the chiral anomalies, as the signal may be significantly suppressed as one of the constituent (anti)quarks should come from background to form the pseudoscalar states. It is, therefore, necessary to analyze explicitly the vector mesons with spin 1 (K⋆{sup ±} (892)) and baryons with spin 3/2 (Δ{sup ++}(1232), Σ{sup −} (1385) and Ω{sup −} ). If the chiral anomaly effects exist, the elliptic flow parameter is expected to be larger for negative particles for each particle species.

  9. Static and dynamical anomalies caused by chiral soliton lattice in molecular-based chiral magnets

    International Nuclear Information System (INIS)

    Kishine, Jun-ichiro; Inoue, Katsuya; Kikuchi, Koichi

    2007-01-01

    Interplay of crystallographic chirality and magnetic chirality has been of great interest in both chemist's and physicist's viewpoints. Crystals belonging to chiral space groups are eligible to stabilize macroscopic chiral magnetic order. This class of magnetic order is described by the chiral XY model, where the transverse magnetic field perpendicular to the chiral axis causes the chiral soliton lattice (CSL) formation. As a clear evidence of the chiral magnetic order, the temperature dependence of the transverse magnetization exhibits sharp cusp just below the mean field ferrimagnetic transition temperature, indicating the formation of the CSL. In addition to the static anomaly, we expect the CSL formation also causes dynamical anomalies such as induction of the spin supercurrent

  10. Control of Chiral Magnetism Through Electric Fields in Multiferroic Compounds above the Long-Range Multiferroic Transition.

    Science.gov (United States)

    Stein, J; Baum, M; Holbein, S; Finger, T; Cronert, T; Tölzer, C; Fröhlich, T; Biesenkamp, S; Schmalzl, K; Steffens, P; Lee, C H; Braden, M

    2017-10-27

    Polarized neutron scattering experiments reveal that type-II multiferroics allow for controlling the spin chirality by external electric fields even in the absence of long-range multiferroic order. In the two prototype compounds TbMnO_{3} and MnWO_{4}, chiral magnetism associated with soft overdamped electromagnons can be observed above the long-range multiferroic transition temperature T_{MF}, and it is possible to control it through an electric field. While MnWO_{4} exhibits chiral correlations only in a tiny temperature interval above T_{MF}, in TbMnO_{3} chiral magnetism can be observed over several kelvin up to the lock-in transition, which is well separated from T_{MF}.

  11. Complexity growth in massive gravity theories, the effects of chirality, and more

    Science.gov (United States)

    Ghodrati, Mahdis

    2017-11-01

    To study the effect of parity violation on the rate of complexity growth, by using "complexity=action " conjecture, we find the complexity growth rates in different solutions of the chiral theory of topologically massive gravity (TMG) and parity-preserving theory of new massive gravity (NMG). Using the results, one can see that decreasing the parameter μ , which increases the effect of the Chern-Simons term and increases chirality, would increase the rate of growth of complexity. Also one can observe a stronger correlation between complexity growth and temperature rather than complexity growth and entropy. At the end we comment on the possible meaning of the deforming term of chiral Liouville action for the rate of complexity growth of warped conformal field theories in the tensor network renormalization picture.

  12. Chiral damping of magnetic domain walls

    KAUST Repository

    Jué, Emilie

    2015-12-21

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).

  13. Chiral damping of magnetic domain walls

    KAUST Repository

    Jué , Emilie; Safeer, C.  K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles

    2015-01-01

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).

  14. Chiral superfluidity of the quark-gluon plasma

    International Nuclear Information System (INIS)

    Kalaydzhyan, Tigran

    2012-08-01

    In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (T c c ) using lattice (overlap) fermions and observe a gap between near-zero modes and the bulk of the spectrum. Second, we use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Third, we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the ''superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  15. Nonlocal homogenization theory in metamaterials: Effective electromagnetic spatial dispersion and artificial chirality

    Science.gov (United States)

    Ciattoni, Alessandro; Rizza, Carlo

    2015-05-01

    We develop, from first principles, a general and compact formalism for predicting the electromagnetic response of a metamaterial with nonmagnetic inclusions in the long-wavelength limit, including spatial dispersion up to the second order. Specifically, by resorting to a suitable multiscale technique, we show that the effective medium permittivity tensor and the first- and second-order tensors describing spatial dispersion can be evaluated by averaging suitable spatially rapidly varying fields, each satisfying electrostatic-like equations within the metamaterial unit cell. For metamaterials with negligible second-order spatial dispersion, we exploit the equivalence of first-order spatial dispersion and reciprocal bianisotropic electromagnetic response to deduce a simple expression for the metamaterial chirality tensor. Such an expression allows us to systematically analyze the effect of the composite spatial symmetry properties on electromagnetic chirality. We find that even if a metamaterial is geometrically achiral, i.e., it is indistinguishable from its mirror image, it shows pseudo-chiral-omega electromagnetic chirality if the rotation needed to restore the dielectric profile after the reflection is either a 0∘ or 90∘ rotation around an axis orthogonal to the reflection plane. These two symmetric situations encompass two-dimensional and one-dimensional metamaterials with chiral response. As an example admitting full analytical description, we discuss one-dimensional metamaterials whose single chirality parameter is shown to be directly related to the metamaterial dielectric profile by quadratures.

  16. Photo- and pion electroproduction in chiral effective field theory; Photo- und Elektropionproduktion in chiraler effektiver Feldtheorie

    Energy Technology Data Exchange (ETDEWEB)

    Hilt, Marius

    2011-12-13

    This thesis is concerned with pion photoproduction (PPP) and pion electroproduction (PEP) in the framework of manifestly Lorentz-invariant baryon chiral perturbation theory. For that purpose two different approaches are used. Firstly, a one-loop-order calculation up to chiral order O(q{sup 4}) including pions and nucleons as degrees of freedom, is performed to describe the energy dependence of the reactions over a large range. To improve the dependence on the virtuality of the photon in PEP, in a second approach vector mesons are included as explicit degrees of freedom. The latter calculation includes one-loop contributions up to chiral order O(q{sup 3}). Only three of the four physical processes of PPP and PEP can be accessed experimentally. These reactions are measured at several different facilities, e.g. Mainz, Bonn, or Saskatoon. The data obtained there are used to explore the limits of chiral perturbation theory. This thesis is the first complete manifestly Lorentz-invariant calculation up to order O(q{sup 4}) for PPP and PEP, and the first calculation ever for these processes including vector mesons explicitly. Beside the calculation of physical observables, a partial wave decomposition is performed and the most important multipoles are analyzed. They may be extracted from the calculated amplitudes and allow one to examine the nucleon and {delta} resonances. The number of diagrams one has to calculate is very large. In order to handle these expressions, several routines were developed for the computer algebra system Mathematica. For the multipole decomposition, two different programs are used. On the one hand, a modified version of the so-called {chi}MAID has been employed. On the other hand, similar routines were developed for Mathematica. In the end, the different calculations are compared with respect to their applicability to PPP and PEP.

  17. Chiral magnetic effect in the presence of electroweak interactions as a quasiclassical phenomenon

    Science.gov (United States)

    Dvornikov, Maxim; Semikoz, Victor B.

    2018-03-01

    We elaborate the quasiclassical approach to obtain the modified chiral magnetic effect (CME) in the case when the massless charged fermions interact with electromagnetic fields and the background matter by the electroweak forces. The derivation of the anomalous current along the external magnetic field involves the study of the energy density evolution of chiral particles in parallel electric and magnetic fields. We consider both the particle acceleration by the external electric field and the contribution of the Adler anomaly. The condition of the validity of this method for the derivation of the CME is formulated. We obtain the expression for the electric current along the external magnetic field, which appears to coincide with our previous results based on the purely quantum approach. Our results are compared with the findings of other authors.

  18. SU(3) chiral symmetry for baryons

    International Nuclear Information System (INIS)

    Dmitrasinovic, V.

    2011-01-01

    Three-quark nucleon interpolating fields in QCD have well-defined SU L (3)xSU R (3) and U A (1) chiral transformation properties, viz. [(6,3)+(3,6)], [(3,3-bar)+(3-bar,3)], [(8,1)+(1,8)] and their 'mirror' images. It has been shown (phenomenologically) in Ref. [2] that mixing of the [(6,3)+(3,6)] chiral multiplet with one ordinary ('naive') and one 'mirror' field belonging to the [(3,3-bar)+(3-bar,3)], [(8,1)+(1,8)] multiplets can be used to fit the values of the isovector (g A (3) ) and the flavor-singlet (isoscalar) axial coupling (g A (0) ) of the nucleon and then predict the axial F and D coefficients, or vice versa, in reasonable agreement with experiment. In an attempt to derive such mixing from an effective Lagrangian, we construct all SU L (3)xSU R (3) chirally invariant non-derivative one-meson-baryon interactions and then calculate the mixing angles in terms of baryons' masses. It turns out that there are (strong) selection rules: for example, there is only one non-derivative chirally symmetric interaction between J 1/2 fields belonging to the [(6,3)+(3,6)] and the [(3,3-bar)+(3-bar,3)] chiral multiplets, that is also U A (1) symmetric. We also study the chiral interactions of the [(3,3-bar)+(3-bar,3)] and [(8,1)+(1,8)] nucleon fields. Again, there are selection rules that allow only one off-diagonal non-derivative chiral SU L (3)xSU R (3) interaction of this type, that also explicitly breaks the U A (1) symmetry. We use this interaction to calculate the corresponding mixing angles in terms of baryon masses and fit two lowest lying observed nucleon (resonance) masses, thus predicting the third (J = 1/2, I = 3/2)Δ resonance, as well as one or two flavor-singlet Λ hyperon(s), depending on the type of mixing. The effective chiral Lagrangians derived here may be applied to high density matter calculations.

  19. Chirality conservation in the lattice gauge theory

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1978-01-01

    The derivation of conservation laws corresponding to chiral invariance in quantum field theories of interacting quarks and gluons are studied. In particular there is interest in observing how these conservation laws are constrained by the requirement that the field theory be locally gauge invariant. To examine this question, a manifestly gauge-invariant definition of local operators in a quantum field theory is introduced, a definition which relies in an essential way on the use of the formulation of gauge fields on a lattice due to Wilson and Polyakov to regulate ultraviolet divergences. The conceptual basis of the formalism is set out and applied to a long-standing puzzle in the phenomenology of quark-gluon theories: the fact that elementary particle interactions reflect the conservation of isospin-carrying chiral currents but not of the isospin-singlet chiral current. It is well known that the equation for the isospin-singlet current contains an extra term, the operator F/sub mu neu/F/sup mu neu/, not present in the other chirality conservation laws; however, this term conventionally has the form of a total divergence and so still allows the definition of a conserved chiral current. It is found that, when the effects of maintaining gauge invariance are properly taken into account, the structure of this operator is altered by renormalization effects, so that it provides an explicit breaking of the unwanted chiral invariance. The relation between this argument, based on renormaliztion, is traced to a set of more heuristic arguments based on gauge field topology given by 't Hooft; it is shown that the discussion provides a validation, through short-distance analysis, of the picture 'Hooft has proposed. The formal derivation of conservation laws for chiral currents are set out in detail

  20. Chiral fermions on the lattice

    International Nuclear Information System (INIS)

    Randjbar Daemi, S.; Strathdee, J.

    1995-01-01

    The overlap approach to chiral gauge theories on arbitrary D-dimensional lattices is studied. The doubling problem and its relation to chiral anomalies for D = 2 and 4 is examined. In each case it is shown that the doublers can be eliminated and the well known perturbative results for chiral anomalies can be recovered. We also consider the multi-flavour case and give the general criteria for the construction of anomaly free chiral gauge theories on arbitrary lattices. We calculate the second order terms in a continuum approximation to the overlap formula in D dimensions and show that they coincide with the bilinear part of the effective action of D-dimensional Weyl fermions coupled to a background gauge field. Finally, using the same formalism we reproduce the correct Lorentz, diffeomorphism and gauge anomalies in the coupling of a Weyl fermion to 2-dimensional gravitation and Maxwell fields. (author). 15 refs

  1. Chiral Dynamics 2006

    Science.gov (United States)

    Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry

    2007-10-01

    pt. A. Plenary session. Opening remarks: experimental tests of chiral symmetry breaking / A. M. Bernstein. [Double pie symbols] scattering / H. Leutwyler. Chiral effective field theory in a [Triangle]-resonance region / V. Pascalutsa. Some recent developments in chiral perturbation theory / Ulf-G. Mei ner. Chiral extrapolation and nucleon structure from the lattice / R.D. Young. Recent results from HAPPEX / R. Michaels. Chiral symmetries and low energy searches for new physics / M.J. Ramsey-Musolf. Kaon physics: recent experimental progress / M. Moulson. Status of the Cabibbo angle / V. Cirigliano. Lattice QCD and nucleon spin structure / J.W. Negele. Spin sum rules and polarizabilities: results from Jefferson lab / J-P Chen. Compton scattering and nucleon polarisabilities / Judith A. McGovern. Virtual compton scattering at MIT-bates / R. Miskimen. Physics results from the BLAST detector at the BATES accelerator / R.P. Redwine. The [Pie sympbol]NN system, recent progress / C. Hanhart. Application of chiral nuclear forces to light nuclei / A. Nogga. New results on few-body experiments at low energy / Y. Nagai. Few-body lattice calculations / M.J. Savage. Research opportunities at the upgraded HI?S facility / H.R. Weller -- pt. B. Goldstone boson dynamics. Working group summary: Goldstone Boson dynamics / G. Colangelo and S. Giovannella. Recent results on radiative Kaon decays from NA48 and NA48/2 / S.G. López. Cusps in K-->3 [Pie symbol] decays / B. Kubis. Recent KTeV results on radiative Kaon decays / M.C. Ronquest. The [Double pie symbols] scattering amplitude / J.R. Peláez. Determination of the Regge parameters in the [Double pie symbols] scattering amplitude / I. Caprini. e+e- Hadronic cross section measurement at DA[symbol]NE with the KLOE detector / P. Beltrame. Measurement of the form factors of e+e- -->2([Pie symbol]+[Pie symbol]-), pp and the resonant parameters of the heavy charmonia at BES / H. Hu. Measurement of e+e- multihadronic cross section below 4

  2. Nucleon form factors in dispersively improved chiral effective field theory. II. Electromagnetic form factors

    Science.gov (United States)

    Alarcón, J. M.; Weiss, C.

    2018-05-01

    We study the nucleon electromagnetic form factors (EM FFs) using a recently developed method combining chiral effective field theory (χ EFT ) and dispersion analysis. The spectral functions on the two-pion cut at t >4 Mπ2 are constructed using the elastic unitarity relation and an N /D representation. χ EFT is used to calculate the real functions J±1(t ) =f±1(t ) /Fπ(t ) (ratios of the complex π π →N N ¯ partial-wave amplitudes and the timelike pion FF), which are free of π π rescattering. Rescattering effects are included through the empirical timelike pion FF | Fπ(t) | 2 . The method allows us to compute the isovector EM spectral functions up to t ˜1 GeV2 with controlled accuracy (leading order, next-to-leading order, and partial next-to-next-to-leading order). With the spectral functions we calculate the isovector nucleon EM FFs and their derivatives at t =0 (EM radii, moments) using subtracted dispersion relations. We predict the values of higher FF derivatives, which are not affected by higher-order chiral corrections and are obtained almost parameter-free in our approach, and explain their collective behavior. We estimate the individual proton and neutron FFs by adding an empirical parametrization of the isoscalar sector. Excellent agreement with the present low-Q2 FF data is achieved up to ˜0.5 GeV2 for GE, and up to ˜0.2 GeV2 for GM. Our results can be used to guide the analysis of low-Q2 elastic scattering data and the extraction of the proton charge radius.

  3. Neutron matter, neutron pairing, and neutron drops based on chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Thomas

    2016-10-19

    The physics of neutron-rich systems is of great interest in nuclear and astrophysics. Precise knowledge of the properties of neutron-rich nuclei is crucial for understanding the synthesis of heavy elements. Infinite neutron matter determines properties of neutron stars, a final stage of heavy stars after a core-collapse supernova. It also provides a unique theoretical laboratory for nuclear forces. Strong interactions are determined by quantum chromodynamics (QCD). However, QCD is non-perturbative at low energies and one presently cannot directly calculate nuclear forces from it. Chiral effective field theory circumvents these problems and connects the symmetries of QCD to nuclear interactions. It naturally and systematically includes many-nucleon forces and gives access to uncertainty estimates. We use chiral interactions throughout all calculation in this thesis. Neutron stars are very extreme objects. The densities in their interior greatly exceed those in nuclei. The exact composition and properties of neutron stars is still unclear but they consist mainly of neutrons. One can explore neutron stars theoretically with calculations of neutron matter. In the inner core of neutron stars exist very high densities and thus maybe exotic phases of matter. To investigate whether there exists a phase transition to such phases even at moderate densities we study the chiral condensate in neutron matter, the order parameter of chiral symmetry breaking, and find no evidence for a phase transition at nuclear densities. We also calculate the more extreme system of spin-polarised neutron matter. With this we address the question whether there exists such a polarised phase in neutron stars and also provide a benchmark system for lattice QCD. We find spin-polarised neutron matter to be an almost non-interacting Fermi gas. To understand the cooling of neutron stars neutron pairing is of great importance. Due to the high densities especially triplet pairing is of interest. We

  4. Chiral Plasmonic Nanostructures Fabricated by Circularly Polarized Light.

    Science.gov (United States)

    Saito, Koichiro; Tatsuma, Tetsu

    2018-05-09

    The chirality of materials results in a wide variety of advanced technologies including image display, data storage, light management including negative refraction, and enantioselective catalysis and sensing. Here, we introduce chirality to plasmonic nanostructures by using circularly polarized light as the sole chiral source for the first time. Gold nanocuboids as precursors on a semiconductor were irradiated with circularly polarized light to localize electric fields at specific corners of the cuboids depending on the handedness of light and deposited dielectric moieties as electron oscillation boosters by the localized electric field. Thus, plasmonic nanostructures with high chirality were developed. The present bottom-up method would allow the large-scale and cost-effective fabrication of chiral materials and further applications to functional materials and devices.

  5. Field-driven sense elements for chirality-dependent domain wall detection and storage

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, S. R. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Maryland Nanocenter, University of Maryland, College Park, Maryland 20742 (United States); Unguris, J. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2013-12-14

    A method for locally sensing and storing data of transverse domain wall chirality in planar nanowire logic and memory systems is presented. Patterned elements, in close proximity to the nanowires, respond to the asymmetry in the stray field from the domain wall to produce a chirality-dependent response. When a bias field is applied, a stray field-assisted reversal of the element magnetization results in a reversed remanent state, measurable by scanning electron microscopy with polarization analysis (SEMPA). The elements are designed as triangles with tips pointing toward the nanowire, allowing the shape anisotropy to be dominated by the base but having a portion with lower volume and lower energy barrier closest to the domain wall. Micromagnetic modeling assists in the design of the nanowire-triangle systems and experiments using SEMPA confirm the importance of aspect ratio and spacing given a constant bias field magnitude.

  6. Chiral superfluidity of the quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2012-08-15

    In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (T{sub c}field out of the chiral fermionic modes. Third, we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the ''superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  7. Electromagnetic couplings of the chiral perturbation theory Lagrangian from the perturbative chiral quark model

    International Nuclear Information System (INIS)

    Lyubovitskij, V.E.; Gutsche, Th.; Faessler, Amand; Mau, R. Vinh

    2002-01-01

    We apply the perturbative chiral quark model to the study of the low-energy πN interaction. Using an effective chiral Lagrangian we reproduce the Weinberg-Tomozawa result for the S-wave πN scattering lengths. After inclusion of the photon field we give predictions for the electromagnetic O(p 2 ) low-energy couplings of the chiral perturbation theory effective Lagrangian that define the electromagnetic mass shifts of nucleons and first-order (e 2 ) radiative corrections to the πN scattering amplitude. Finally, we estimate the leading isospin-breaking correction to the strong energy shift of the π - p atom in the 1s state, which is relevant for the experiment 'pionic hydrogen' at PSI

  8. Chiral ligand-protected gold nanoclusters: Considering the optical activity from a viewpoint of ligand dissymmetric field

    Directory of Open Access Journals (Sweden)

    Hiroshi Yao

    2016-10-01

    Full Text Available Chirality is a geometric property of a physical, chemical, or biological object, which is not superimposable on its mirror image. Its significant presence has led to a strong demand in the development of chiral drugs, sensors, catalysts, and photofunctional materials. In recent years, chirality of nanoscale organic/inorganic hybrids has received tremendous attention owing to potential applications in chiral nanotechnology. In particular, with the recent progress in the syntheses and characterizations of atomically precise gold nanoclusters protected by achiral thiolates, atomic level origins of their chirality have been unveiled. On the other hand, chirality or optical activity in metal nanoclusters can also be introduced via the surface chiral ligands, which should be universal for the nanosystems. This tutorial review presents some optically-active metal (gold nanoclusters protected by chiral thiolates or phosphines, and their chiroptical (or circular dichroism; CD properties are discussed mostly from a viewpoint of the ligand dissymmetric field scheme. The examples are the gold nanoclusters protected by (R-/(S-2-phenylpropane-1-thiol, (R-/(S-mercaptosuccinic acid, phenylboronate-D/L-fructose complexes, phosphine sulfonate-ephedrinium ion pairs, or glutathione. Some methodologies for versatile asymmetric transformation and chiroptical controls of the nanocluster compounds are also described. In the dissymmetric field model as the origin of optical activity, the chiroptical responses of the gold nanoclusters are strongly associated with coupled oscillator and/or CD stealing mechanisms based on the concept of induced CD (ICD derived from a perturbation theory, so on this basis, some characteristic features of the observed CD responses of chiral ligand-protected gold nanoclusters are presented in detail. We believe that various kinds of origins of chirality found in ligand-protected gold nanoclusters may provide models for understanding those of

  9. The role of resonances in chiral perturbation theory

    International Nuclear Information System (INIS)

    Ecker, G.; Rafael, E. de

    1988-09-01

    The strong interactions of low-lying meson resonances (spin ≤ 1) with the octet of pseudoscalar mesons (π,Κ,η) are considered to lowest order in the derivative expansion of chiral SU(3). The resonance contributions to the coupling constants of the O(p 4 ) effective chiral lagrangian involving pseudoscalar fields only are determined. These low-energy coupling constants are found to be dominated by the resonance contributions. Although we do not treat the vector and axial-vector mesons as gauge bosons of local chiral symmetry, vector meson dominance emerges as a prominent result of our analysis. As a further application of chiral resonance couplings, we calculate the electromagnetic pion mass difference to lowest order in chiral perturbation theory with explicit resonance fields. 29 refs., 2 figs., 5 tabs. (Author)

  10. Magnetic flux distributions in chiral helimagnet/superconductor bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Masaru, E-mail: kato@ms.osakafu-u.ac.jp [Department of Mathematical Sciences, Osaka Prefecture University, 1-1, Gakuencho, Nakaku, Sakai, Osaka 599-8531 (Japan); Fukui, Saoto [Department of Mathematical Sciences, Osaka Prefecture University, 1-1, Gakuencho, Nakaku, Sakai, Osaka 599-8531 (Japan); Sato, Osamu [Osaka Prefecture University College of Technology, 26-12, Saiwaicho, Neyagawa, Osaka 572-8572 (Japan); Togawa, Yoshihiko [Department of Physics and Electronics, Osaka Prefecture University, 1-1, Gakuencho, Nakaku, Sakai, Osaka 599-8531 (Japan)

    2017-02-15

    Highlights: • Vortex states in a chiral helimagnet/superconductor bilayer are investigated. • Vortex and anti-vortex appears depending on strength of helimagnet. • Vortex is elongated under a gradient field. • Vortices form a undulated triangular lattice. - Abstarct: Vortex states in a chiral helimagnet/superconductor bilayer are investigated numerically, using the Ginzburg–Landau equations with the finite element method. In this bilayer, effect of the chiral helimagnet on the superconductor is taken as an external field. Magnetic field distribution can be controlled by an applied field to the bilayer. It is shown that a single vortex in a gradient field is elongated along the field gradient. In zero applied field, there are up- and down vortices which are parallel or antiparallel to the z-axis, respectively. But increasing the applied field, down-vortices disappear and up-vortices form undulated triangular lattices.

  11. Chiral filtration-induced spin/valley polarization in silicene line defects

    Science.gov (United States)

    Ren, Chongdan; Zhou, Benhu; Sun, Minglei; Wang, Sake; Li, Yunfang; Tian, Hongyu; Lu, Weitao

    2018-06-01

    The spin/valley polarization in silicene with extended line defects is investigated according to the chiral filtration mechanism. It is shown that the inner-built quantum Hall pseudo-edge states with identical chirality can serve as a chiral filter with a weak magnetic field and that the transmission process is restrained/strengthened for chiral states with reversed/identical chirality. With two parallel line defects, which act as natural chiral filtration, the filter effect is greatly enhanced, and 100% spin/valley polarization can be achieved.

  12. Some aspects of chirality: Fermion masses and chiral p-forms

    Energy Technology Data Exchange (ETDEWEB)

    Kleppe, A

    1997-05-01

    The properties of fermion mass matrices are investigated from different points of view, both within the minimal Standard Model and in extensions of the model. It is shown how mass matrix invariants are used to define the measurables of the quark mixing matrix as invariant functions of the mass matrices. One model is presented where the family pattern is suggested to originate from a kind of mass scaling. A Lagrangian density is defined for an entire charge sector, such that the existence of a Dirac field with mass m{sub 0} implies the existence of other Dirac fields where the corresponding quanta have masses Rm{sub 0}, R{sup 2}m{sub 0}, .. which are obtained by a discrete scale transformation. This suggests a certain type of democratic fermion mass matrices. Also extensions of the minimal Standard Model are investigated, obtained by including right-handed neutrinos in the model. The Standard Model extended by two right-handed neutrinos gives rise to a mass spectrum with two massive and three massless neutrinos. The phenomenological consequences of this model are discussed. The neutrino mass matrix in such a scheme has what is defined as a democratic texture. They are studied for the cases with two and three right-handed neutrinos, resp. The chiral fields that we find in the Standard Model have certain similarities with self-dual fields. Among other things, both chiral and self-dual fields suffer species doubling on the lattice. Chiral p-forms are self-dual fields that appear in twice odd dimensions. Chiral p-forms violate manifest covariance, in the same sense as manifest covariance is violated by non-covariant gauges in electrodynamics. It is shown that a covariant action can nevertheless be formulated for chiral p-forms, by introducing an infinite set of gauge fields in a carefully controlled way.

  13. Some aspects of chirality: Fermion masses and chiral p-forms

    International Nuclear Information System (INIS)

    Kleppe, A.

    1997-05-01

    The properties of fermion mass matrices are investigated from different points of view, both within the minimal Standard Model and in extensions of the model. It is shown how mass matrix invariants are used to define the measurables of the quark mixing matrix as invariant functions of the mass matrices. One model is presented where the family pattern is suggested to originate from a kind of mass scaling. A Lagrangian density is defined for an entire charge sector, such that the existence of a Dirac field with mass m 0 implies the existence of other Dirac fields where the corresponding quanta have masses Rm 0 , R 2 m 0 , .. which are obtained by a discrete scale transformation. This suggests a certain type of democratic fermion mass matrices. Also extensions of the minimal Standard Model are investigated, obtained by including right-handed neutrinos in the model. The Standard Model extended by two right-handed neutrinos gives rise to a mass spectrum with two massive and three massless neutrinos. The phenomenological consequences of this model are discussed. The neutrino mass matrix in such a scheme has what is defined as a democratic texture. They are studied for the cases with two and three right-handed neutrinos, resp. The chiral fields that we find in the Standard Model have certain similarities with self-dual fields. Among other things, both chiral and self-dual fields suffer species doubling on the lattice. Chiral p-forms are self-dual fields that appear in twice odd dimensions. Chiral p-forms violate manifest covariance, in the same sense as manifest covariance is violated by non-covariant gauges in electrodynamics. It is shown that a covariant action can nevertheless be formulated for chiral p-forms, by introducing an infinite set of gauge fields in a carefully controlled way

  14. Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field.

    Science.gov (United States)

    Liu, Zheng-Xin; Normand, B

    2018-05-04

    Motivated by recent experimental observations in α-RuCl_{3}, we study the K-Γ model on the honeycomb lattice in an external magnetic field. By a slave-particle representation and variational Monte Carlo calculations, we reproduce the phase transition from zigzag magnetic order to a field-induced disordered phase. The nature of this state depends crucially on the field orientation. For particular field directions in the honeycomb plane, we find a gapless Dirac spin liquid, in agreement with recent experiments on α-RuCl_{3}. For a range of out-of-plane fields, we predict the existence of a Kalmeyer-Laughlin-type chiral spin liquid, which would show an integer-quantized thermal Hall effect.

  15. Dirac and Chiral Quantum Spin Liquids on the Honeycomb Lattice in a Magnetic Field

    Science.gov (United States)

    Liu, Zheng-Xin; Normand, B.

    2018-05-01

    Motivated by recent experimental observations in α -RuCl3 , we study the K -Γ model on the honeycomb lattice in an external magnetic field. By a slave-particle representation and variational Monte Carlo calculations, we reproduce the phase transition from zigzag magnetic order to a field-induced disordered phase. The nature of this state depends crucially on the field orientation. For particular field directions in the honeycomb plane, we find a gapless Dirac spin liquid, in agreement with recent experiments on α -RuCl3 . For a range of out-of-plane fields, we predict the existence of a Kalmeyer-Laughlin-type chiral spin liquid, which would show an integer-quantized thermal Hall effect.

  16. Ksub(lsub(4)) decay in the chiral quantum field theory

    International Nuclear Information System (INIS)

    Ebert, D.; Kreopalov, D.V.; Volkov, M.K.

    1978-01-01

    Form factors of Ksub(lsub(4))-decay are described in the framework of chiral quantum field theory. The axial form factors are calculated in the tree approximation which defines their main contribution. The vector form factor is calculated in the one-loop approximation. The results are in satisfactory agreement with the available experimental data

  17. Chiral algebras of class S

    CERN Document Server

    Beem, Christopher; Rastelli, Leonardo; van Rees, Balt C.

    2015-01-01

    Four-dimensional N=2 superconformal field theories have families of protected correlation functions that possess the structure of two-dimensional chiral algebras. In this paper, we explore the chiral algebras that arise in this manner in the context of theories of class S. The class S duality web implies nontrivial associativity properties for the corresponding chiral algebras, the structure of which is best summarized in the language of generalized topological quantum field theory. We make a number of conjectures regarding the chiral algebras associated to various strongly coupled fixed points.

  18. Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission

    International Nuclear Information System (INIS)

    Li, Zhaofeng; Mutlu, Mehmet; Ozbay, Ekmel

    2013-01-01

    We summarize the progress in the development and application of chiral metamaterials. After a brief review of the salient features of chiral metamaterials, such as giant optical activity, circular dichroism, and negative refractive index, the common method for the retrieval of effective parameters for chiral metamaterials is surveyed. Then, we introduce some typical chiral structures, e.g., chiral metamaterial consisting of split ring resonators, complementary chiral metamaterial, and composite chiral metamaterial, on the basis of the studies of the authors’ group. The coupling effect during the construction of bulk chiral metamaterials is mentioned and discussed. We introduce the application of bianisotropic chiral structures in the field of asymmetric transmission. Finally, we mention a few directions for future research on chiral metamaterials. (review article)

  19. Magnetic test of chiral dynamics in QCD

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    2014-01-01

    Strong magnetic fields in the range eB≫m π 2 effectively probe internal quark structure of chiral mesons and test basic parameters of the chiral theory, such as 〈q-barq〉,f π . We argue on general grounds that 〈q-barq〉 should grow linearly with eB when charged quark degrees of freedom come into play. To make explicit estimates we extend the previously formulated chiral theory, including quark degrees of freedom, to the case of strong magnetic fields and show that the quark condensate |〈q-barq〉| u,d grows quadratically with eB for eB<0.2 GeV 2 and linearly for higher field values. These results agree quantitatively with recent lattice data and differ from χPT predictions

  20. Laser Writing of Multiscale Chiral Polymer Metamaterials

    Directory of Open Access Journals (Sweden)

    E. P. Furlani

    2012-01-01

    Full Text Available A new approach to metamaterials is presented that involves laser-based patterning of novel chiral polymer media, wherein chirality is realized at two distinct length scales, intrinsically at the molecular level and geometrically at a length scale on the order of the wavelength of the incident field. In this approach, femtosecond-pulsed laser-induced two-photon lithography (TPL is used to pattern a photoresist-chiral polymer mixture into planar chiral shapes. Enhanced bulk chirality can be realized by tuning the wavelength-dependent chiral response at both the molecular and geometric level to ensure an overlap of their respective spectra. The approach is demonstrated via the fabrication of a metamaterial consisting of a two-dimensional array of chiral polymer-based L-structures. The fabrication process is described and modeling is performed to demonstrate the distinction between molecular and planar geometric-based chirality and the effects of the enhanced multiscale chirality on the optical response of such media. This new approach to metamaterials holds promise for the development of tunable, polymer-based optical metamaterials with low loss.

  1. On the equivalence of four-dimensional self-duality equations to the continual analogue of the principal chiral field problem

    International Nuclear Information System (INIS)

    Leznov, A.N.

    1987-01-01

    A connection is found between the self-dual equations of 4-dimensional space and the principal chiral field problem in n-dimensional space. It is shown that any solution of the principal chiral field equations in n-dimensional space with arbitrary 2-dimensional functions of definite linear combinations of 4 variables y, y-bar, z, z-bar as independent arguments satisfies the system of self-dual equations of 4-dimensional space. General solution of self-dual equations depending on the suitable number of functions of three independent variables coincides with the general solution of the principal chiral field problem when the dimensionality of the space tends to the infinity

  2. Supramolecular Chirality: Solvent Chirality Transfer in Molecular Chemistry and Polymer Chemistry

    Directory of Open Access Journals (Sweden)

    Michiya Fujiki

    2014-08-01

    Full Text Available Controlled mirror symmetry breaking arising from chemical and physical origin is currently one of the hottest issues in the field of supramolecular chirality. The dynamic twisting abilities of solvent molecules are often ignored and unknown, although the targeted molecules and polymers in a fluid solution are surrounded by solvent molecules. We should pay more attention to the facts that mostly all of the chemical and physical properties of these molecules and polymers in the ground and photoexcited states are significantly influenced by the surrounding solvent molecules with much conformational freedom through non-covalent supramolecular interactions between these substances and solvent molecules. This review highlights a series of studies that include: (i historical background, covering chiral NaClO3 crystallization in the presence of d-sugars in the late 19th century; (ii early solvent chirality effects for optically inactive chromophores/fluorophores in the 1960s–1980s; and (iii the recent development of mirror symmetry breaking from the corresponding achiral or optically inactive molecules and polymers with the help of molecular chirality as the solvent use quantity.

  3. Magnetoelectronic properties of chiral carbon nanotubes and tori

    International Nuclear Information System (INIS)

    Shyu, F L; Tsai, C C; Lee, C H; Lin, M F

    2006-01-01

    Magnetoelectronic properties of chiral carbon nanotubes and toroids are studied for any magnetic field. They are sensitive to the changes in the magnitude and the direction of the magnetic field, as well as the chirality. The important differences between chiral and achiral carbon nanotubes include band symmetry, band curvature, band crossing, band-edge state, state degeneracy, band spacing, energy gap, and semiconductor-metal transition. Carbon tori also exhibit the strong chirality dependence on the field modulation of discrete states. Chiral carbon tori might differ from chiral carbon nanotubes in energy-gap modulation, density of states, and state degeneracy

  4. Effects of molecular chirality on self-assembly and switching in liquid crystals at the cross-over between rod-like and bent shapes.

    Science.gov (United States)

    Ocak, Hale; Poppe, Marco; Bilgin-Eran, Belkız; Karanlık, Gürkan; Prehm, Marko; Tschierske, Carsten

    2016-09-21

    A bent-core compound derived from a 4-cyanoresorcinol core unit with two terephthalate based rod-like wings and carrying chiral 3,7-dimethyloctyloxy side chains has been synthesized in racemic and enantiomerically pure form and characterized by polarizing microscopy, differential scanning calorimetry, X-ray diffraction and electro-optical investigations to study the influence of molecular chirality on the superstructural chirality and polar order in lamellar liquid crystalline phases. Herein we demonstrate that the coupling of molecular chirality with superstructural layer chirality in SmCsPF domain phases (forming energetically distinct diastereomeric pairs) can fix the tilt direction and thus stabilize synpolar order, leading to bistable ferroelectric switching in the SmC* phases of the (S)-enantiomer, whereas tristable modes determine the switching of the racemate. Moreover, the mechanism of electric field induced molecular reorganization changes from a rotation around the molecular long axis in the racemate to a rotation on the tilt-cone for the (S)-enantiomer. At high temperature the enantiomer behaves like a rod-like molecule with a chirality induced ferroelectric SmC* phase and an electroclinic effect in the SmA'* phase. At reduced temperature sterically induced polarization, due to the bent molecular shape, becomes dominating, leading to much higher polarization values, thus providing access to high polarization ferroelectric materials with weakly bent compounds having only "weakly chiral" stereogenic units. Moreover, the field induced alignment of the SmCsPF(()*()) domains gives rise to a special kind of electroclinic effect appearing even in the absence of molecular chirality. Comparison with related compounds indicates that the strongest effects of chirality appear for weakly bent molecules with a relatively short coherence length of polar order, whereas for smectic phases with long range polar order the effects of the interlayer interfaces can override

  5. Proposed Spontaneous Generation of Magnetic Fields by Curved Layers of a Chiral Superconductor

    Science.gov (United States)

    Kvorning, T.; Hansson, T. H.; Quelle, A.; Smith, C. Morais

    2018-05-01

    We demonstrate that two-dimensional chiral superconductors on curved surfaces spontaneously develop magnetic flux. This geometric Meissner effect provides an unequivocal signature of chiral superconductivity, which could be observed in layered materials under stress. We also employ the effect to explain some puzzling questions related to the location of zero-energy Majorana modes.

  6. A METRIC FOR A CHIRAL POTENTIAL FIELD UNA MÉTRICA PARA UN CAMPO POTENCIAL QUIRAL

    Directory of Open Access Journals (Sweden)

    Héctor Torres-Silva

    2008-11-01

    Full Text Available In this paper we present an example of a specific metric which geometrizes explicitly a light-like four-vector potential (chiral field. The geometrization shows that such a vector has the same geometrical structure as a gravitational Kerr field. We discuss a theoretical proposition that a rotating body generates, besides a special gravitational field, a magnetic-type gauge field which might be identified with a chiral geometrized field. This chiral field represents a novel type of field because we cannot identify it with any of the known electromagnetic fields. As an application of this theory we discuss the morphology of the planets around the sun.En este trabajo se presenta un ejemplo de una métrica especifica que geometriza explícitamente un potencial cuadrivector tipo luz (campo quiral. La geometrización muestra que tal vector tiene la misma estructura geométrica que un campo gravitacional Kerr. Se discute una proposición teórica que un cuerpo rotante genera, su gravitación y el calibre de campo tipo magnético que puede ser identificado con un campo quiral geometrizado. Este campo quiral representa un tipo novedoso de campo que no puede ser identificado con alguno de los campos electromagnéticos conocidos. Como aplicación de esta teoría se discute la morfología de los planetas alrededor del sol.

  7. Chiral heat wave and mixing of magnetic, vortical and heat waves in chiral media

    International Nuclear Information System (INIS)

    Chernodub, M.N.

    2016-01-01

    We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective mode associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This mode, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. The coupling of the Chiral Magnetic and Chiral Vortical Waves is also demonstrated. We find that the coupled waves — which are coherent fluctuations of the vector, axial and energy currents — have generally different velocities compared to the velocities of the individual waves.

  8. Chiral symmetry and finite temperature effects in quantum theories

    International Nuclear Information System (INIS)

    Larsen, Aa.

    1987-01-01

    A computer simulation of the harmonic oscillator at finite temperature has been carried out, using the Monte Carlo Metropolis algorithm. Accurate results for the energy and fluctuations have been obtained, with special attention to the manifestation of the temperature effects. Varying the degree of symmetry breaking, the finite temperature behaviour of the asymmetric linear model in a linearized mean field approximation has been studied. In a study of the effects of chiral symmetry on baryon mass splittings, reasonable agreement with experiment has been obtained in a non-relativistic harmonic oscillator model

  9. Effective field theory and the quark model

    International Nuclear Information System (INIS)

    Durand, Loyal; Ha, Phuoc; Jaczko, Gregory

    2001-01-01

    We analyze the connections between the quark model (QM) and the description of hadrons in the low-momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation for the effective baryon fields, we show that the 'nonrelativistic' constituent QM for baryon masses and moments is completely equivalent through O(m s ) to a parametrization of the relativistic field theory in a general spin-flavor basis. The flavor and spin variables can be identified with those of effective valence quarks. Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expansion in effective field theory, and provides a direct connection between the field theory and the semirelativistic models for hadrons used in successful dynamical calculations. This allows dynamical information to be incorporated directly into the chiral expansion. We find, for example, that the striking success of the additive QM for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent corrections

  10. Physics of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1991-01-01

    This subsection of the 'Modeling QCD' Workshop has included five talks. E. Shuryak spoke on 'Recent Progress in Understanding Chiral Symmetry Breaking'; below it is split into two parts: (i) a mini-review of the field and (ii) a brief presentation of the status of the theory of interacting instantons. The next sections correspond to the following talks: (iii) K. Goeke et al., 'Chiral Restoration and Medium Corrections to Nucleon in the NJL Model'; (iv) M. Takizawa and K. Kubodera, 'Study of Meson Properties and Quark Condensates in the NJL Model with Instanton Effects'; (v) G. Klein and A. G. Williams, 'Dynamical Chiral Symmetry Breaking in Dual QCD'; and (vi) R. D. Ball, 'Skyrmions and Baryons.' (orig.)

  11. Antinucleon-nucleon interaction at next-to-next-to-next-to-leading order in chiral effective field theory

    Science.gov (United States)

    Dai, Ling-Yun; Haidenbauer, Johann; Meißner, Ulf-G.

    2017-07-01

    Results for the antinucleon-nucleon (\\overline{N}N) interaction obtained at next-to-next-to-next-to-leading order in chiral effective field theory (EFT) are reported. A new local regularization scheme is used for the pion-exchange contributions that has been recently suggested and applied in a pertinent study of the N N force within chiral EFT. Furthermore, an alternative strategy for estimating the uncertainty is utilized that no longer depends on a variation of the cutoffs. The low-energy constants associated with the arising contact terms are fixed by a fit to the phase shifts and inelasticities provided by a phase-shift analysis of \\overline{p}p scattering data. An excellent description of the \\overline{N}N amplitudes is achieved at the highest order considered. Moreover, because of the quantitative reproduction of partial waves up to J = 3, there is also a nice agreement on the level of \\overline{p}p observables. Specifically, total and integrated elastic and charge-exchange cross sections agree well with the results from the partial-wave analysis up to laboratory energies of 300 MeV, while differential cross sections and analyzing powers are described quantitatively up to 200-250 MeV. The low-energy structure of the \\overline{N}N amplitudes is also considered and compared to data from antiprotonic hydrogen.

  12. Chiral gauged Wess-Zumino-Witten theories and coset models in conformal field theory

    International Nuclear Information System (INIS)

    Chung, S.; Tye, S.H.

    1993-01-01

    The Wess-Zumino-Witten (WZW) theory has a global symmetry denoted by G L direct-product G R . In the standard gauged WZW theory, vector gauge fields (i.e., with vector gauge couplings) are in the adjoint representation of the subgroup H contained-in G. In this paper, we show that, in the conformal limit in two dimensions, there is a gauged WZW theory where the gauge fields are chiral and belong to the subgroups H L and H R where H L and H R can be different groups. In the special case where H L =H R , the theory is equivalent to vector gauged WZW theory. For general groups H L and H R , an examination of the correlation functions (or more precisely, conformal blocks) shows that the chiral gauged WZW theory is equivalent to (G/H L ) L direct-product(G/H R ) R coset models in conformal field theory

  13. Playing with QCD I: effective field theories. Third lecture

    International Nuclear Information System (INIS)

    Fraga, Eduardo S.

    2009-01-01

    One can construct useful effective models to describe the deconfining transition using the Polyakov loop as the building block. This procedure was generalized to a matrix model approach, including fermions as a background field (not discussed here). The chiral transition can be described using the chiral condensate as the order parameter. Nonzero (even if small) quark masses bring non-trivial consequences to the phase structure of QCD. Are deconfinement and chiral transition closely related? Do they happen at the same T? Several effective approaches available, but physics still unclear. (author)

  14. On integrability conditions of the equations of nonsymmetrical chiral field on SO(4)

    International Nuclear Information System (INIS)

    Tskhakaya, D.D.

    1990-01-01

    Possibility of integrating the equations of nonsymmetrical chiral field on SO(4) by means of the inverse scattering method is investigated. Maximal number of the motion integrals is found for the corresponding system of ordinary differential equations

  15. Uncertainty quantification for proton–proton fusion in chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, B. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Carlsson, B.D. [Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Ekström, A. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Forssén, C. [Department of Physics, Chalmers University of Technology, SE-412 96 Göteborg (Sweden); Platter, L., E-mail: lplatter@utk.edu [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2016-09-10

    We compute the S-factor of the proton–proton (pp) fusion reaction using chiral effective field theory (χEFT) up to next-to-next-to-leading order (NNLO) and perform a rigorous uncertainty analysis of the results. We quantify the uncertainties due to (i) the computational method used to compute the pp cross section in momentum space, (ii) the statistical uncertainties in the low-energy coupling constants of χEFT, (iii) the systematic uncertainty due to the χEFT cutoff, and (iv) systematic variations in the database used to calibrate the nucleon–nucleon interaction. We also examine the robustness of the polynomial extrapolation procedure, which is commonly used to extract the threshold S-factor and its energy-derivatives. By performing a statistical analysis of the polynomial fit of the energy-dependent S-factor at several different energy intervals, we eliminate a systematic uncertainty that can arise from the choice of the fit interval in our calculations. In addition, we explore the statistical correlations between the S-factor and few-nucleon observables such as the binding energies and point-proton radii of {sup 2,3}H and {sup 3}He as well as the D-state probability and quadrupole moment of {sup 2}H, and the β-decay of {sup 3}H. We find that, with the state-of-the-art optimization of the nuclear Hamiltonian, the statistical uncertainty in the threshold S-factor cannot be reduced beyond 0.7%.

  16. An Effective Chiral Meson Lagrangian at O(p6) from the NJL Model

    International Nuclear Information System (INIS)

    Bel'kov, A.A.; Lanev, A.V.; Schaale, A.; Scherer, S.; Mainz Univ.

    1994-01-01

    In this work we present a strong chiral meson Lagrangian up to and including O(p 6 ) in the momentum expansion. It is derived from the Nambu-Jona-Lasinio (NJL) model using the heat-kernel method. Identities related to the properties of covariant derivatives of the chiral matrix U as well as field transformations have been used to predict the chiral coefficients of a minimal set of linearly independent terms. 16 refs

  17. Quaternion analysis of generalized electromagnetic fields in chiral media

    International Nuclear Information System (INIS)

    Bisht, P. S. . Email. ps_bisht123@rediffmail.com

    2007-01-01

    The time dependent Maxwell's equations in presence of electric and magnetic charges has been developed in chiral media and the solutions for the classical problem are obtained in unique, simple and consistent manner. The quaternionic reformulation of generalized electromagnetic fields in chiral media has also been developed in compact and consistent way. Simulation of neutron backscattering process applied to organic material detection. Forero Martinez, Nancy Carolina; Cristancho, Fernando (Nuclear Physics Group, Universidad Nacional de Colombia, Bogota D.C. (Colombia)) Abstract Atomic and nuclear physics based sensors might offer new possibilities in de-mining. There is a particular interest in the possibility of using neutrons for the non-intrusive detection of hidden contraband, explosives or illicit drugs. The Neutron Backscattering Technique, based on the detection of the produced thermal neutrons, is known to be a useful tool to detect hidden explosives which present an elevated concentration of light elements (H, C, N, O). In this way we present the simulated results using the program package Geant4. Different variables were modified including the soil composition and the studied materials. (Author)

  18. The Search for QCD Sphalerons and the Chiral Magnetic Effect in Heavy-Ion Collisions with ALICE

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    In non-central heavy-ion collisions unprecedented strong magnetic fields, of the order of 10^14 T, are expected to be produced by the incoming protons contained in the nuclei. These fields can be used to detect possible non-conservation of chirality in the QCD sector, a signature of sphaleron transitions. In particular, the interplay of chiral imbalance and magnetic fields results in the separation of positive and negative charges along the direction of the field, a phenomenon called “Chiral Magnetic Effect” (CME). In this seminar, the challenges and the opportunities in the search for the CME and the detection of magnetic fields in heavy-ion collisions will be discussed, with an emphasis on recent ALICE results.

  19. Quark matter in a chiral chromodielectric model

    International Nuclear Information System (INIS)

    Broniowski, W.; Kutschera, M.; Cibej, M.; Rosina, M.

    1989-03-01

    Zero and finite temperature quark matter is studied in a chiral chromodielectric model with quark, meson and chromodielectric degrees of freedom. Mean field approximation is used. Two cases are considered: two-flavor and three-flavor quark matter. It is found that at sufficiently low densities and temperatures the system is in a chirally broken phase, with quarks acquiring effective masses of the order of 100 MeV. At higher densities and temperatures a chiral phase transition occurs and the quarks become massless. A comparison to traditional nuclear physics suggests that the chirally broken phase with massive quark gas may be the ground state of matter at densities of the order of a few nuclear saturation densities. 24 refs., 5 figs. (author)

  20. Phase diagram and Chiral Magnetic Effect in Dirac Semimetals from Lattice Simulation

    Directory of Open Access Journals (Sweden)

    Boyda D.L.

    2018-01-01

    Full Text Available Dirac Semimetals Na3Bi and Cd3As2 are recently discovered materials, which low energy electronic spectrum is described by two flavours of massless 3+1D fermions. In order to study electronic properties of these materials we formulated lattice field theory with rooted staggered fermions on anisotropic lattice. It is shown that in the limit of zero temporal lattice spacing this theory reproduces effective theory of Dirac semimetals. Using the lattice field theory we study the phase diagram of Dirac semimetals in the plane effective coupling constant - Fermi velocity anisotropy. We also measure conductivity of Dirac Semimetals within lattice field theory in external magnetic field. Our results confirm the existence of Chiral Magnetic Effect in Dirac Semimetals.

  1. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP.

    Science.gov (United States)

    Arnold, Frank; Shekhar, Chandra; Wu, Shu-Chun; Sun, Yan; Dos Reis, Ricardo Donizeth; Kumar, Nitesh; Naumann, Marcel; Ajeesh, Mukkattu O; Schmidt, Marcus; Grushin, Adolfo G; Bardarson, Jens H; Baenitz, Michael; Sokolov, Dmitry; Borrmann, Horst; Nicklas, Michael; Felser, Claudia; Hassinger, Elena; Yan, Binghai

    2016-05-17

    Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands disperse linearly around pairs of nodes with fixed chirality, the Weyl points. In WSMs, nonorthogonal electric and magnetic fields induce an exotic phenomenon known as the chiral anomaly, resulting in an unconventional negative longitudinal magnetoresistance, the chiral-magnetic effect. However, it remains an open question to which extent this effect survives when chirality is not well-defined. Here, we establish the detailed Fermi-surface topology of the recently identified WSM TaP via combined angle-resolved quantum-oscillation spectra and band-structure calculations. The Fermi surface forms banana-shaped electron and hole pockets surrounding pairs of Weyl points. Although this means that chirality is ill-defined in TaP, we observe a large negative longitudinal magnetoresistance. We show that the magnetoresistance can be affected by a magnetic field-induced inhomogeneous current distribution inside the sample.

  2. Chiral discrimination in nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Lazzeretti, Paolo

    2017-11-01

    Chirality is a fundamental property of molecules whose spatial symmetry is characterized by the absence of improper rotations, making them not superimposable to their mirror image. Chiral molecules constitute the elementary building blocks of living species and one enantiomer is favoured in general (e.g. L-aminoacids and D-sugars pervade terrestrial homochiral biochemistry) because most chemical reactions producing natural substances are enantioselective. Since the effect of chiral chemicals and drugs on living beings can be markedly different between enantiomers, the quest for practical spectroscopical methods to scrutinize chirality is an issue of great importance and interest. Nuclear magnetic resonance (NMR) is a topmost analytical technique, but spectrometers currently used are ‘blind’ to chirality, i.e. unable to discriminate the two mirror-image forms of a chiral molecule, because, in the absence of a chiral solvent, the spectral parameters, chemical shifts and spin-spin coupling constants are identical for enantiomers. Therefore, the development of new procedures for routine chiral recognition would offer basic support to scientists. However, in the presence of magnetic fields, a distinction between true and false chirality is mandatory. The former epitomizes natural optical activity, which is rationalized by a time-even pseudoscalar, i.e. the trace of a second-rank tensor, the mixed electric dipole/magnetic dipole polarizability. The Faraday effect, magnetic circular dichroism and magnetic optical activity are instead related to a time-odd axial vector. The present review summarizes recent theoretical and experimental efforts to discriminate enantiomers via NMR spectroscopy, with the focus on the deep connection between chirality and symmetry properties under the combined set of fundamental discrete operations, namely charge conjugation, parity (space inversion) and time (motion) reversal.

  3. An introduction to effective field theory

    International Nuclear Information System (INIS)

    Donoghue, John F.

    1999-01-01

    In these lectures I describe the main ideas of effective field theory. These are first illustrated using QED and the linear sigma model as examples. Calculational techniques using both Feynman diagrams and dispersion relations are introduced. Within QCD, chiral perturbation theory is a complete effective field theory, and I give a guide to some calculations in the literature which illustrates key ideas. (author)

  4. Chiral perturbation theory approach to hadronic weak amplitudes

    International Nuclear Information System (INIS)

    Rafael, E. de

    1989-01-01

    We are concerned with applications to the non-leptonic weak interactions in the sector of light quark flavors: u, d and s. Both strangeness changing ΔS=1 and ΔS=2 non-leptonic transitions can be described as weak perturbations to the strong effective chiral Lagrangian; the chiral structure of the weak effective Lagrangian being dictated by the transformation properties of the weak non-leptonic Hamiltonian of the Standard Model under global SU(3) Left xSU(3) Right rotations of the quark-fields. These lectures are organized as follows. Section 2 gives a review of the basic properties of chiral symmetry. Section 3 explains the effective chiral realization of the non-leptonic weak Hamiltonian of the Standard Model to lowest order in derivatives and masses. Section 4 deals with non-leptonic weak transitions in the presence of electromagnetism. Some recent applications to radiative kaon decays are reviewed and the effect of the so called electromagnetic penguin like diagrams is also discussed. Section 5 explains the basic ideas of the QCD-hadronic duality approach to the evaluation of coupling constants of the non-leptonic chiral weak Lagrangian. (orig./HSI)

  5. Single-particle potential of the Λ hyperon in nuclear matter with chiral effective field theory NLO interactions including effects of Y N N three-baryon interactions

    Science.gov (United States)

    Kohno, M.

    2018-03-01

    Adopting hyperon-nucleon and hyperon-nucleon-nucleon interactions parametrized in chiral effective field theory, single-particle potentials of the Λ and Σ hyperons are evaluated in symmetric nuclear matter and in pure neutron matter within the framework of lowest-order Bruckner theory. The chiral NLO interaction bears strong Λ N -Σ N coupling. Although the Λ potential is repulsive if the coupling is switched off, the Λ N -Σ N correlation brings about the attraction consistent with empirical data. The Σ potential is repulsive, which is also consistent with empirical information. The interesting result is that the Λ potential becomes shallower beyond normal density. This provides the possibility of solving the hyperon puzzle without introducing ad hoc assumptions. The effects of the Λ N N -Λ N N and Λ N N -Σ N N three-baryon forces are considered. These three-baryon forces are first reduced to normal-ordered effective two-baryon interactions in nuclear matter and then incorporated in the G -matrix equation. The repulsion from the Λ N N -Λ N N interaction is of the order of 5 MeV at normal density and becomes larger with increasing density. The effects of the Λ N N -Σ N N coupling compensate the repulsion at normal density. The net effect of the three-baryon interactions on the Λ single-particle potential is repulsive at higher densities.

  6. Influence of Chirality in Ordered Block Copolymer Phases

    Science.gov (United States)

    Prasad, Ishan; Grason, Gregory

    2015-03-01

    Block copolymers are known to assemble into rich spectrum of ordered phases, with many complex phases driven by asymmetry in copolymer architecture. Despite decades of study, the influence of intrinsic chirality on equilibrium mesophase assembly of block copolymers is not well understood and largely unexplored. Self-consistent field theory has played a major role in prediction of physical properties of polymeric systems. Only recently, a polar orientational self-consistent field (oSCF) approach was adopted to model chiral BCP having a thermodynamic preference for cholesteric ordering in chiral segments. We implement oSCF theory for chiral nematic copolymers, where segment orientations are characterized by quadrupolar chiral interactions, and focus our study on the thermodynamic stability of bi-continuous network morphologies, and the transfer of molecular chirality to mesoscale chirality of networks. Unique photonic properties observed in butterfly wings have been attributed to presence of chiral single-gyroid networks, this has made it an attractive target for chiral metamaterial design.

  7. Equation of state of neutron-rich nuclear matter from chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Norbert; Strohmeier, Susanne [Technische Universitaet Muenchen (Germany)

    2016-07-01

    Based on chiral effective field theory, the equation of state of neutron-rich nuclear matter is investigated systematically. The contributing diagrams include one- and two-pion exchange together with three-body terms arising from virtual Δ(1232)-isobar excitations. The proper expansion of the energy per particle, anti E(k{sub f},δ) = anti E{sub n}(k{sub f}) + δB{sub 1}(k{sub f}) + δ{sup 5/3}B{sub 5/3}(k{sub f}) + δ{sup 2}B{sub 2}(k{sub f}) +.., for the system with neutron density ρ{sub n} = k{sub f}{sup 3}(1-δ)/3π{sup 2} and proton density ρ{sub p} = k{sub f}{sup 3}δ/3π{sup 2} is performed analytically for the various interaction contributions. One observes essential structural differences to the commonly used quadratic approximation. The density dependent coefficient B{sub 1}(k{sub f}) turns out to be unrelated to the isospin-asymmetry of nuclear matter. The coefficient B{sub 5/3}(k{sub f}) of the non-analytical δ{sup 5/3}-term receives contributions from the proton kinetic energy and from the one- and two-pion exchange interactions. The physical consequences for neutron star matter are studied.

  8. Chiral symmetry and strangeness at SIS energies

    International Nuclear Information System (INIS)

    Lutz, M.F.M.

    2003-11-01

    In this talk we review the consequences of the chiral SU(3) symmetry for strangeness propagation in nuclear matter. Objects of crucial importance are the meson-baryon scattering amplitudes obtained within the chiral coupled-channel effective field theory. Results for antikaon and hyperon-resonance spectral functions in cold nuclear matter are presented and discussed. The importance of the Σ(1385) resonance for the subthreshold antikaon production in heavy-ion reaction at SIS is pointed out. The in-medium properties of the latter together with an antikaon spectral function based on chiral SU(3) dynamics suggest a significant enhancement of the π Λ → anti Κ N reaction in nuclear matter. (orig.)

  9. Chiral Drug Analysis in Forensic Chemistry: An Overview

    Directory of Open Access Journals (Sweden)

    Cláudia Ribeiro

    2018-01-01

    Full Text Available Many substances of forensic interest are chiral and available either as racemates or pure enantiomers. Application of chiral analysis in biological samples can be useful for the determination of legal or illicit drugs consumption or interpretation of unexpected toxicological effects. Chiral substances can also be found in environmental samples and revealed to be useful for determination of community drug usage (sewage epidemiology, identification of illicit drug manufacturing locations, illegal discharge of sewage and in environmental risk assessment. Thus, the purpose of this paper is to provide an overview of the application of chiral analysis in biological and environmental samples and their relevance in the forensic field. Most frequently analytical methods used to quantify the enantiomers are liquid and gas chromatography using both indirect, with enantiomerically pure derivatizing reagents, and direct methods recurring to chiral stationary phases.

  10. Conformal scalar fields and chiral splitting on super Riemann surfaces

    International Nuclear Information System (INIS)

    D'Hoker, E.; Phong, D.H.

    1989-01-01

    We provide a complete description of correlation functions of scalar superfields on a super Riemann surface, taking into account zero modes and non-trivial topology. They are built out of chirally split correlation functions, or conformal blocks at fixed internal momenta. We formulate effective rules which determine these completely in terms of geometric invariants of the super Riemann surface. The chirally split correlation functions have non-trivial monodromy and produce single-valued amplitudes only upon integration over loop momenta. Our discussion covers the even spin structure as well as the odd spin structure case which had been the source of many difficulties in the past. Super analogues of Green's functions, holomorphic spinors, and prime forms emerge which should pave the way to function theory on super Riemann surfaces. In superstring theories, chirally split amplitudes for scalar superfields are crucial in enforcing the GSO projection required for consistency. However one really knew how to carry this out only in the operator formalism to one-loop order. Our results provide a way of enforcing the GSO projection to any loop. (orig.)

  11. Chiral current generation in QED by longitudinal photons

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Avalo, J.L., E-mail: jlacosta@instec.cu [Instituto Superior de Tecnologías y Ciencias Aplicadas (INSTEC), Ave Salvador Allende, No. 1110, Vedado, La Habana 10400 (Cuba); Pérez Rojas, H., E-mail: hugo@icimaf.cu [Instituto de Cibernética, Matemática y Física (ICIMAF), Calle E esq 15, No. 309, Vedado, La Habana 10400 (Cuba)

    2016-08-15

    We report the generation of a pseudovector electric current having imbalanced chirality in an electron–positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even when it vanishes. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler–Bell–Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone) contribute to the chiral current, as well as the to pair creation due to longitudinal photons (out of light cone). In the static limit, an electric pseudovector current is obtained in the lowest Landau level.

  12. Chiral current generation in QED by longitudinal photons

    Directory of Open Access Journals (Sweden)

    J.L. Acosta Avalo

    2016-08-01

    Full Text Available We report the generation of a pseudovector electric current having imbalanced chirality in an electron–positron strongly magnetized gas in QED. It propagates along the external applied magnetic field B as a chiral magnetic effect in QED. It is triggered by a perturbative electric field parallel to B, associated to a pseudovector longitudinal mode propagating along B. An electromagnetic chemical potential was introduced, but our results remain valid even when it vanishes. A nonzero fermion mass was assumed, which is usually considered vanishing in the literature. In the quantum field theory formalism at finite temperature and density, an anomaly relation for the axial current was found for a medium of massive fermions. It bears some analogy to the Adler–Bell–Jackiw anomaly. From the expression for the chiral current in terms of the photon self-energy tensor in a medium, it is obtained that electrons and positrons scattered by longitudinal photons (inside the light cone contribute to the chiral current, as well as the to pair creation due to longitudinal photons (out of light cone. In the static limit, an electric pseudovector current is obtained in the lowest Landau level.

  13. Some remarks on chiral symmetry in dense matter

    International Nuclear Information System (INIS)

    Kaellman, C.G.; Montonen, C.

    1982-01-01

    The restoration of chiral symmetry in quantum chromodynamics as the temperature T and the chemical potential vertical stroke μ vertical stroke are increased is discussed qualitatively and using effective field theories. The latter are shown not to give reliable quantitative estimates. It is argued that a dilute gas of instantons cannot be the main dynamical agent responsible for the breakdown of chiral symmetry. (orig.)

  14. Chiral bag model

    International Nuclear Information System (INIS)

    Musakhanov, M.M.

    1980-01-01

    The chiral bag model is considered. It is suggested that pions interact only with the surface of a quark ''bag'' and do not penetrate inside. In the case of a large bag the pion field is rather weak and goes to the linearized chiral bag model. Within that model the baryon mass spectrum, β decay axial constant, magnetic moments of baryons, pion-baryon coupling constants and their form factors are calculated. It is shown that pion corrections to the calculations according to the chiral bag model is essential. The obtained results are found to be in a reasonable agreement with the experimental data

  15. A primer for chiral perturbation theory

    CERN Document Server

    Scherer, Stefan

    2012-01-01

    Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques.

  16. Hadronic Lorentz violation in chiral perturbation theory including the coupling to external fields

    Science.gov (United States)

    Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.

    2018-05-01

    If any violation of Lorentz symmetry exists in the hadron sector, its ultimate origins must lie at the quark level. We continue the analysis of how the theories at these two levels are connected, using chiral perturbation theory. Considering a 2-flavor quark theory, with dimension-4 operators that break Lorentz symmetry, we derive a low-energy theory of pions and nucleons that is invariant under local chiral transformations and includes the coupling to external fields. The pure meson and baryon sectors, as well as the couplings between them and the couplings to external electromagnetic and weak gauge fields, contain forms of Lorentz violation which depend on linear combinations of quark-level coefficients. In particular, at leading order the electromagnetic couplings depend on the very same combinations as appear in the free particle propagators. This means that observations of electromagnetic processes involving hadrons—such as vacuum Cerenkov radiation, which may be allowed in Lorentz-violating theories—can only reliably constrain certain particular combinations of quark coefficients.

  17. Chirality: from QCD to condensed matter

    International Nuclear Information System (INIS)

    Kharzeev, D.

    2015-01-01

    This lecture is about chirality and consists of 4 parts. In the first part a general introduction of chirality is given and its implementation in nuclear and particle physics, in particular the chiral magnetic effect, as well as Chirality in quantum materials (CME, optoelectronics, photonics) are discussed. The 2nd lecture is about the chiral magnetic effect. The 3rd lecture deals with the chiral magnetic effect and hydrodynamics and the last part with chirality and light. (nowak)

  18. Neutron-skin thickness of finite nuclei in relativistic mean-field models with chiral limits

    International Nuclear Information System (INIS)

    Jiang Weizhou; Li Baoan; Chen Liewen

    2007-01-01

    We study several structure properties of finite nuclei using relativistic mean-field Lagrangians constructed according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities. The models are consistent with current experimental constraints for the equations of state of symmetric matter at both normal and supranormal densities and of asymmetric matter at subsaturation densities. It is shown that these models can successfully describe the binding energies and charge radii of finite nuclei. Compared to calculations with usual relativistic mean-field models, these models give a reduced thickness of neutron skin in 208 Pb between 0.17 fm and 0.21 fm. The reduction of the predicted neutron skin thickness is found to be due to not only the softening of the symmetry energy but also the scaling property of ρ meson required by the partial restoration of chiral symmetry

  19. Pions and the chiral bag

    International Nuclear Information System (INIS)

    Rho, M.

    1982-01-01

    As an aid to discussing the structure of nucleons and nuclei conceptual framework, heuristic arguments are presented which indicate that a hadron can be considered as a bag consisting of two different phases. The chiral structure of the phase outside the bag is discussed in terms of effective field theories and it is shown to what extent experiments in nuclei can constrain the structure of such theories. Results thus obtained are then combined to set up a set of equations for the bag structure of u and d hadrons, incorporating asymptotic freedom in the phase inside of the bag confinement of quarks and gluons by boundary conditions and spontaneously broken chiral symmetry in the outside. This set of equations which represent a chirally invariant generalization of the M.I.T. bag model is then solved. (U.K.)

  20. Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC.

    Science.gov (United States)

    Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang

    2008-11-15

    In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.

  1. Power counting regime of chiral extrapolation and beyond

    International Nuclear Information System (INIS)

    Derek Leinweber; Anthony Thomas; Ross Young

    2005-01-01

    Finite-range regularized chiral effective field theory is presented in the context of approximation schemes ubiquitous in modern lattice QCD calculations. Using FRR techniques, the power-counting regime (PCR) of chiral perturbation theory can be estimated. To fourth-order in the expansion at the 1% tolerance level, we find 0 (le) m π (le) 180 MeV for the PCR, extending only a small distance beyond the physical pion mass

  2. Probing molecular chirality by coherent optical absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Jia, W. Z. [Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Wei, L. F. [Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China); State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2011-11-15

    We propose an approach to sensitively probe the chirality of molecules by measuring their coherent optical-absorption spectra. It is shown that quantum dynamics of the cyclic three-level chiral molecules driven by appropriately designed external fields is total-phase dependent. This will result in chirality-dependent absorption spectra for the probe field. As a consequence, the charality-dependent information in the spectra (such as the locations and relative heights of the characteristic absorption peaks) can be utilized to identify molecular chirality and determinate enantiomer excess (i.e., the percentages of different enantiomers). The feasibility of the proposal with chiral molecules confined in hollow-core photonic crystal fiber is also discussed.

  3. The covariant chiral ring

    Energy Technology Data Exchange (ETDEWEB)

    Bourget, Antoine; Troost, Jan [Laboratoire de Physique Théorique, École Normale Supérieure, 24 rue Lhomond, 75005 Paris (France)

    2016-03-23

    We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N=(4,4) supersymmetry in two dimensions. For seed target spaces K3 and T{sup 4}, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.

  4. Connecting anomaly and tunneling methods for the Hawking effect through chirality

    International Nuclear Information System (INIS)

    Banerjee, Rabin; Majhi, Bibhas Ranjan

    2009-01-01

    The role of chirality is discussed in unifying the anomaly and the tunneling formalisms for deriving the Hawking effect. Using the chirality condition and starting from the familiar form of the trace anomaly, the chiral (gravitational) anomaly, manifested as a nonconservation of the stress tensor, near the horizon of a black hole, is derived. Solution of this equation yields the stress tensor whose asymptotic infinity limit gives the Hawking flux. Finally, use of the same chirality condition in the tunneling formalism gives the Hawking temperature that is compatible with the flux obtained by anomaly method.

  5. Relativistic Chiral Mean Field Model for Finite Nuclei

    Science.gov (United States)

    Ogawa, Y.; Toki, H.; Tamenaga, S.; Haga, A.

    2009-08-01

    We present a relativistic chiral mean field (RCMF) model, which is a method for the proper treatment of pion-exchange interaction in the nuclear many-body problem. There the dominant term of the pionic correlation is expressed in two-particle two-hole (2p-2h) states with particle-holes having pionic quantum number, J^{π}. The charge-and-parity-projected relativistic mean field (CPPRMF) model developed so far treats surface properties of pionic correlation in 2p-2h states with J^{π} = 0^{-} (spherical ansatz). We extend the CPPRMF model by taking 2p-2h states with higher spin quantum numbers, J^{π} = 1^{+}, 2^{-}, 3^{+}, ... to describe the full strength of the pionic correlation in the intermediate range (r > 0.5 fm). We apply the RCMF model to the ^{4}He nucleus as a pilot calculation for the study of medium and heavy nuclei. We study the behavior of energy convergence with the pionic quantum number, J^{π}, and find convergence around J^{π}_{max} = 6^{-}. We include further the effect of the short-range repulsion in terms of the unitary correlation operator method (UCOM) for the central part of the pion-exchange interaction. The energy contribution of about 50% of the net two-body interaction comes from the tensor part and 20% comes from the spin-spin central part of the pion-exchange interaction.}

  6. Halbach Effect at the Nanoscale from Chiral Spin Textures.

    Science.gov (United States)

    Marioni, Miguel A; Penedo, Marcos; Baćani, Mirko; Schwenk, Johannes; Hug, Hans J

    2018-04-11

    Mallinson's idea that some spin textures in planar magnetic structures could produce an enhancement of the magnetic flux on one side of the plane at the expense of the other gave rise to permanent magnet configurations known as Halbach magnet arrays. Applications range from wiggler magnets in particle accelerators and free electron lasers to motors and magnetic levitation trains, but exploiting Halbach arrays in micro- or nanoscale spintronics devices requires solving the problem of fabrication and field metrology below a 100 μm size. In this work, we show that a Halbach configuration of moments can be obtained over areas as small as 1 μm × 1 μm in sputtered thin films with Néel-type domain walls of unique domain wall chirality, and we measure their stray field at a controlled probe-sample distance of 12.0 ± 0.5 nm. Because here chirality is determined by the interfacial Dyzaloshinkii-Moriya interaction, the field attenuation and amplification is an intrinsic property of this film, allowing for flexibility of design based on an appropriate definition of magnetic domains. Skyrmions (magnetic fields and mapping of the spin structure shows they funnel the field toward one specific side of the film given by the sign of the Dyzaloshinkii-Moriya interaction parameter D.

  7. Symmetry, structure, and dynamics of monoaxial chiral magnets

    International Nuclear Information System (INIS)

    Togawa, Yoshihiko; Kousaka, Yusuke; Inoue, Katsuya; Kishine, Jun-ichiro

    2016-01-01

    Nontrivial spin orders with magnetic chirality emerge in a particular class of magnetic materials with structural chirality, which are frequently referred to as chiral magnets. Various interesting physical properties are expected to be induced in chiral magnets through the coupling of chiral magnetic orders with conduction electrons and electromagnetic fields. One promising candidate for achieving these couplings is a chiral spin soliton lattice. Here, we review recent experimental observations mainly carried out on the monoaxial chiral magnetic crystal CrNb_3S_6 via magnetic imaging using electron, neutron, and X-ray beams and magnetoresistance measurements, together with the strategy for synthesizing chiral magnetic materials and underlying theoretical backgrounds. The chiral soliton lattice appears under a magnetic field perpendicular to the chiral helical axis and is very robust and stable with phase coherence on a macroscopic length scale. The tunable and topological nature of the chiral soliton lattice gives rise to nontrivial physical properties. Indeed, it is demonstrated that the interlayer magnetoresistance scales to the soliton density, which plays an essential role as an order parameter in chiral soliton lattice formation, and becomes quantized with the reduction of the system size. These interesting features arising from macroscopic phase coherence unique to the chiral soliton lattice will lead to the exploration of routes to a new paradigm for applications in spin electronics using spin phase coherence. (author)

  8. Vortex in the chiral quark model

    Science.gov (United States)

    Hadasz, Leszek

    1995-02-01

    We construct the classical vortex solution in the model of chiral field interacting with the non-Abelian SU(2) gauge field. This solution is topologically nontrivial and well localized. We discuss its relevance for effective hadron models based on the flux-tube picture and the possibility of its extension to the higher symmetry gauge groups SU(N).

  9. Nanoscale chirality in metal and semiconductor nanoparticles.

    Science.gov (United States)

    Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M

    2016-10-18

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.

  10. Novel topological effects in dense QCD in a magnetic field

    Science.gov (United States)

    Ferrer, E. J.; de la Incera, V.

    2018-06-01

    We study the electromagnetic properties of dense QCD in the so-called Magnetic Dual Chiral Density Wave phase. This inhomogeneous phase exhibits a nontrivial topology that comes from the fermion sector due to the asymmetry of the lowest Landau level modes. The nontrivial topology manifests in the electromagnetic effective action via a chiral anomaly term θFμνF˜μν, with a dynamic axion field θ given by the phase of the Dual Chiral Density Wave condensate. The coupling of the axion with the electromagnetic field leads to several macroscopic effects that include, among others, an anomalous, nondissipative Hall current, an anomalous electric charge, magnetoelectricity, and the formation of a hybridized propagating mode known as an axion polariton. Connection to topological insulators and Weyls semimetals, as well as possible implications for heavy-ion collisions and neutron stars are all highlighted.

  11. Large time asymptotics of solutions of the equations of principal chiral field

    International Nuclear Information System (INIS)

    Sukhanov, V.V.

    1990-01-01

    Asymptotic behaviour of solutions of the equations of principal chiral field when one of the arguments tends to infinity is investigated. Asymptotics of solutions of the corresponding spectral problem is investigated as well. explicit formulas are constructed which connect the coefficients of the asymptotic decomposition of the potential with the data of the corresponding inverse problem by means of a birational transformation

  12. QCD and the chiral critical point

    International Nuclear Information System (INIS)

    Gavin, S.; Gocksch, A.; Pisarski, R.D.

    1994-01-01

    As an extension of QCD, consider a theory with ''2+1'' flavors, where the current quark masses are held in a fixed ratio as the overall scale of the quark masses is varied. At nonzero temperature and baryon density it is expected that in the chiral limit the chiral phase transition is of first order. Increasing the quark mass from zero, the chiral transition becomes more weakly first order, and can end in a chiral critical point. We show that the only massless field at the chiral critical point is a σ meson, with the universality class that of the Ising model. Present day lattice simulations indicate that QCD is (relatively) near to the chiral critical point

  13. Preface to the Special Issue: Chiral Symmetry in Hadrons and Nuclei

    International Nuclear Information System (INIS)

    Geng, Lisheng; Meng, Jie; Zhao, Qiang; Zou, Bingsong

    2014-01-01

    The recent past years have seen a remarkable progress towards a unified description of nonperturbative strong interaction phenomena based on the fundamental theory of the strong interaction, quantum chromodynamics, and effective field theories. The papers collected in this special issue focus on the recent progress in hadron and nuclear physics related to the chiral symmetry. They are written based on presentations at the Seventh International Symposium on Chiral Symmetry in Hadron and Nuclei which took place at Beihang University, Beijing, 27-30 October 2013. The sub-topics discussed in these papers include chiral and heavy-quark spin symmetry; chiral dynamics of few-body hadron systems; chiral symmetry and hadrons in a nuclear medium; chiral dynamics in nucleon-nucleon interaction and atomic nuclei; chiral symmetry in rotating nuclei; hadron structure and interactions; exotic hadrons, heavy flavor hadrons and nuclei; mesonic atoms and nuclei

  14. A primer for Chiral Perturbative Theory

    International Nuclear Information System (INIS)

    Scherer, Stefan; Schindler, Matthias R.; George Washington Univ., Washington, DC

    2012-01-01

    Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques. (orig.)

  15. Leading order relativistic chiral nucleon-nucleon interaction

    Science.gov (United States)

    Ren, Xiu-Lei; Li, Kai-Wen; Geng, Li-Sheng; Long, Bingwei; Ring, Peter; Meng, Jie

    2018-01-01

    Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the {}1S0 and {}3P0 phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥slant 1, the relativistic results are almost the same as their leading order non-relativistic counterparts. )

  16. Chiral effective-field theory of the nucleon spin structure

    Science.gov (United States)

    Pascalutsa, Vladimir

    2017-01-01

    I will review the recent chiral EFT calculations of the nucleon (spin) structure functions at low Q2, confronted with the Jefferson Lab measurements. The moments of the structure functions correspond with various polarizabilities, and I will explain why one of them - δLT - is especially interesting. I will also discuss how the spin structure functions at low Q enter in the atomic calculations of the hyperfine splittings and how they are impacting the ongoing experimental program at PSI (Switzerland) to measure the ground-state hyperfine splitting of muonic hydrogen. Partially supported by the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center SFB 1044 [The Low-Energy Frontier of the Standard Model].

  17. Nucleon Polarisabilities and Effective Field Theories

    Science.gov (United States)

    Griesshammer, Harald W.

    2017-09-01

    Low-energy Compton scattering probes the nucleon's two-photon response to electric and magnetic fields at fixed photon frequency and multipolarity. It tests the symmetries and strengths of the interactions between constituents, and with photons. For convenience, this energy-dependent information is often compressed into the two scalar dipole polarisabilities αE 1 and βM 1 at zero photon energy. These are fundamental quantities, and important for the proton charge radius puzzle and the Lamb shift of muonic hydrogen. Combined with emerging lattice QCD computations, they provide stringent tests for our understanding of hadron structure. Extractions of the proton and neutron polarisabilities from all published elastic data below 300 MeV in Chiral Effective Field Theory with explicit Δ (1232) are now available. This talk emphasises χEFT as natural bridge between lattice QCD and ongoing or approved efforts at HI γS, MAMI and MAX-lab. Chiral lattice extrapolations from mπ > 200 MeV to the physical point compare well to lattice computations. Combining χEFT with high-intensity experiments with polarised targets and polarised beams will extract not only scalar polarisabilities, but in particular the four so-far poorly explored spin-polarisabilities. These parametrise the stiffness of the spin in external electro-magnetic fields (nucleonic bi-refringence/Faraday effect). New chiral predictions for proton, deuteron and 3He observables show intriguing sensitivities on spin and neutron polarisabilities. Data consistency and a model-independent quantification of residual theory uncertainties by Bayesian analysis are also discussed. Proton-neutron differences explore the interplay between chiral symmetry breaking and short-distance Physics. Finally, I address their impact on the neutron-proton mass difference, big-bang nucleosynthesis, and their relevance for anthropic arguments. Supported in part by DOE DE-SC0015393 and George Washington University.

  18. Unusual dileptions at RHIC a field theoretic approach based on a non-equilibrium chiral phase transition

    International Nuclear Information System (INIS)

    Cooper, F.

    1997-01-01

    This paper contains viewgraphs on unusual dileptons at Brookhaven RHIC. A field theory approach is used based on a non-equilibrium chiral phase transformation utilizing the schroedinger and Heisenberg picture

  19. Unusual dileptions at RHIC a field theoretic approach based on a non-equilibrium chiral phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, F. [Los Alamos National Labs., NM (United States)

    1997-09-22

    This paper contains viewgraphs on unusual dileptons at Brookhaven RHIC. A field theory approach is used based on a non-equilibrium chiral phase transformation utilizing the schroedinger and Heisenberg picture.

  20. Spin and chirality effects in antler-topology processes at high energy e{sup +}e{sup -} colliders

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S. Y. [Department of Physics, Chonbuk National University, 561-756, Jeonbuk (Korea, Republic of); Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, University of Pittsburgh, 15260, Pittsburgh, PA (United States); Christensen, N. D. [Department of Physics, Illinois State University, 61790, Normal, IL (United States); Salmon, D.; Wang, X., E-mail: xiw77@pitt.edu [Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, University of Pittsburgh, 15260, Pittsburgh, PA (United States)

    2015-10-06

    We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e{sup +}e{sup -}→P{sup +}P{sup -}→(ℓ{sup +}D{sup 0})(ℓ{sup -}D{sup -bar0}) at high-energy e{sup +}e{sup -} colliders with polarized beams. Generally the production process e{sup +}e{sup -}→P{sup +}P{sup -} can occur not only through the s-channel exchange of vector bosons, V{sup 0}, including the neutral Standard Model (SM) gauge bosons, γ and Z, but also through the s- and t-channel exchanges of new neutral states, S{sup 0} and T{sup 0}, and the u-channel exchange of new doubly charged states, U{sup --}. The general set of (non-chiral) three-point couplings of the new particles and leptons allowed in a renormalizable quantum field theory is considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P{sup +}P{sup -} pair production in e{sup +}e{sup -} collisions with longitudinal- and transverse-polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high-energy e{sup +}e{sup -} collider.

  1. Chiral symmetry breaking and cooling in lattice QCD

    International Nuclear Information System (INIS)

    Woloshyn, R.M.; Lee, F.X.

    1995-08-01

    Chiral symmetry breaking is calculated as a function of cooling in quenched lattice QCD. A non-zero signal is found for the chiral condensate beyond one hundred cooling steps, suggesting that there is chiral symmetry breaking associated with instantons. Quantitatively, the chiral condensate in cooled gauge field configurations is small compared to the value without cooling. (author) 7 refs., 1 tab., 3 figs

  2. Chiral interaction and biomolecular evolution

    International Nuclear Information System (INIS)

    Gilat, G.

    1992-01-01

    Recent developments in the concept of chiral interaction open now new options and dynamical possibilities for biomolecules which have so far been overlooked. A few of these possibilities are mentioned, such as the control mechanism of enzymatic activity and the role played by non-ergodicity in evolutionary processes. It is shown that chiral interaction, being a surface phenomenon, does not obey Barron's symmetry constraints, which are suitable for force fields present in bulk interactions. In particular, the situation at the ocean-air surface in the prebiotic era is described, as well as the possible role played by chiral interaction in conjunction with the terrestrial magnetic field normal to the ocean surface, which could have lead to a process of deracernization at the ocean-air interface. (author)

  3. Quark spin-flavor layered structure with condensed π/sup 0/ field in Chiral bag model

    International Nuclear Information System (INIS)

    Tamagaki, R.; Tatsumi, T.

    1984-01-01

    In order to understand predispositions of high density matter, a new phase possibly arising from the neutron matter under π/sup 0/ condensation is studied in chiral bag model, as a facet in which both quark and pion degrees of freedom are incorporated in a well-developed situation of π/sup 0/ condensation. The aspects of this phase are characterized by the periodic layered structure of the two-dimensional quark matter with a specific spin-flavor order the π/sup 0/ field existent as the Nambu-Goldstone mode between the adjacent layers. Such quark configuration is caused due to the pion-quark coupling at the layer (bag) surface which drastically lowers quark energy. Energy properties of the system are examined, and it is shown that the one-gluon-exchange contribution provides the repulsive effect to prevent the layered structure from collapsing. This model provides an example which can be solved nonperturbatively in the chiral bag model and suggests the possibility of an intermediate stage which may appear prior to the phase transition to uniform quark matter

  4. Relaxation of the chiral imbalance and the generation of magnetic fields in magnetars

    Energy Technology Data Exchange (ETDEWEB)

    Dvornikov, M. S., E-mail: maxdvo@izmiran.ru [Ionosphere and Radiowave Propagation (IZMIRAN), Pushkov Institute of Terrestrial Magnetism (Russian Federation)

    2016-12-15

    The model for the generation of magnetic fields in a neutron star, based on the magnetic field instability caused by the electroweak interaction between electrons and nucleons, is developed. Using the methods of the quantum field theory, the helicity flip rate of electrons in their scattering off protons in dense matter of a neutron star is calculated. The influence of the electroweak interaction between electrons and background nucleons on the process of the helicity flip is studied. The kinetic equation for the evolution of the chiral imbalance is derived. The obtained results are applied for the description of the magnetic fields evolution in magnetars.

  5. Spin dynamics under local gauge fields in chiral spin-orbit coupling systems

    International Nuclear Information System (INIS)

    Tan, S.G.; Jalil, M.B.A.; Fujita, T.; Liu, X.J.

    2011-01-01

    Research highlights: → We derive a modified LLG equation in magnetic systems with spin-orbit coupling (SOC). → Our results are applied to magnetic multilayers, and DMS and magnetic Rashba systems. → SOC mediated magnetization switching is predicted in rare earth metals (large SOC). → The magnetization trajectory and frequency can be modulated by applied voltage. → This facilitates potential application as tunable microwave oscillators. - Abstract: We present a theoretical description of local spin dynamics in magnetic systems with a chiral spin texture and finite spin-orbit coupling (SOC). Spin precession about the relativistic effective magnetic field in a SOC system gives rise to a non-Abelian SU(2) gauge field reminiscent of the Yang-Mills field. In addition, the adiabatic relaxation of electron spin along the local spin yields an U(1) x U(1) topological gauge (Berry) field. We derive the corresponding equation of motion i.e. modified Landau-Lifshitz-Gilbert (LLG) equation, for the local spin under the influence of these effects. Focusing on the SU(2) gauge, we obtain the spin torque magnitude, and the amplitude and frequency of spin oscillations in this system. Our theoretical estimates indicate significant spin torque and oscillations in systems with large spin-orbit coupling, which may be utilized in technological applications such as current-induced magnetization-switching and tunable microwave oscillators.

  6. Topological responses from chiral anomaly in multi-Weyl semimetals

    Science.gov (United States)

    Huang, Ze-Min; Zhou, Jianhui; Shen, Shun-Qing

    2017-08-01

    Multi-Weyl semimetals are a kind of topological phase of matter with discrete Weyl nodes characterized by multiple monopole charges, in which the chiral anomaly, the anomalous nonconservation of an axial current, occurs in the presence of electric and magnetic fields. Electronic transport properties related to the chiral anomaly in the presence of both electromagnetic fields and axial electromagnetic fields in multi-Weyl semimetals are systematically studied. It has been found that the anomalous Hall conductivity has a modification linear in the axial vector potential from inhomogeneous strains. The axial electric field leads to an axial Hall current that is proportional to the distance of Weyl nodes in momentum space. This axial current may generate chirality accumulation of Weyl fermions through delicately engineering the axial electromagnetic fields even in the absence of external electromagnetic fields. Therefore this work provides a nonmagnetic mechanism of generation of chirality accumulation in Weyl semimetals and might shed new light on the application of Weyl semimetals in the emerging field of valleytronics.

  7. Dynamical chiral symmetry breaking and confinement : its interrelation and effects on the hadron mass spectrum

    International Nuclear Information System (INIS)

    Schröck, M.

    2013-01-01

    Within the framework of this thesis, the interrelation between the two characteristic phenomena of quantum chromodynamics (QCD), i.e., dynamical chiral symmetry breaking and confinement, is investigated. To this end, we apply lattice gauge field theory techniques and adopt a method to artificially restore the dynamically broken chiral symmetry. The low-mode part of the Dirac eigenspectrum is tied to the dynamical breaking of the chiral symmetry according to the Banks--Casher relation. Utilizing two-flavor dynamical lattice gauge field configurations, we construct valence quark propagators that exclude a variable sized part of the low-mode Dirac spectrum, with the aim of using these as an input for meson and baryon interpolating fields. Subsequently, we explore the behavior of ground and excited states of the low-mode truncated hadrons using the variational analysis method. We look for the existence of confined hadron states and extract effective masses where applicable. Moreover, we explore the evolution of the quark wavefunction renormalization function and the renormalization point invariant mass function of the quark propagator under Dirac low-mode truncation in a gauge fixed setting. Motivated by the necessity of fixing the gauge in the aforementioned study of the quark propagator, we also developed a flexible high performance code for lattice gauge fixing, accelerated by graphic processing units (GPUs) using NVIDIA CUDA (Compute Unified Device Architecture). Lastly, more related but unpublished work on the topic is presented. This includes a study of the locality violation of low-mode truncated Dirac operators, a discussion of the possible extension of the low-mode truncation method to the sea quark sector based on a reweighting scheme, as well as the presentation of an alternative way to restore the dynamically broken chiral symmetry. (author) [de

  8. Nuclear chiral dynamics and thermodynamics

    Science.gov (United States)

    Holt, Jeremy W.; Kaiser, Norbert; Weise, Wolfram

    2013-11-01

    This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic description of both isospin-symmetric nuclear matter and neutron matter, with emphasis on the isospin-dependence determined by the underlying chiral NN interaction. The importance of three-body forces is emphasized, and the role of explicit Δ(1232)-isobar degrees of freedom is investigated in detail. Nuclear chiral thermodynamics is developed and a calculation of the nuclear phase diagram is performed. This includes a successful description of the first-order phase transition from a nuclear Fermi liquid to an interacting Fermi gas and the coexistence of these phases below a critical temperature Tc. Density functional methods for finite nuclei based on this approach are also discussed. Effective interactions, their density dependence and connections to Landau Fermi liquid theory are outlined. Finally, the density and temperature dependences of the chiral (quark) condensate are investigated.

  9. Quasiparticle Green's function theory of the Josephson effect in chiral p-wave superconductor/diffusive normal metal/chiral p-wave superconductor junctions

    NARCIS (Netherlands)

    Sawa, Y.; Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch

    2007-01-01

    We study the Josephson effect in chiral p-wave superconductor/diffusive normal metal (DN)/chiral p-wave superconductor (CP/DN/CP) junctions using quasiclassical Green's function formalism with proper boundary conditions. The px+ipy-wave symmetry of superconducting order parameter is chosen which is

  10. Neutrinoless double beta decay in chiral effective field theory: lepton number violation at dimension seven

    Science.gov (United States)

    Cirigliano, V.; Dekens, W.; de Vries, J.; Graesser, M. L.; Mereghetti, E.

    2017-12-01

    We analyze neutrinoless double beta decay (0 νββ) within the framework of the Standard Model Effective Field Theory. Apart from the dimension-five Weinberg operator, the first contributions appear at dimension seven. We classify the operators and evolve them to the electroweak scale, where we match them to effective dimension-six, -seven, and -nine operators. In the next step, after renormalization group evolution to the QCD scale, we construct the chiral Lagrangian arising from these operators. We develop a power-counting scheme and derive the two-nucleon 0 νββ currents up to leading order in the power counting for each lepton-number-violating operator. We argue that the leading-order contribution to the decay rate depends on a relatively small number of nuclear matrix elements. We test our power counting by comparing nuclear matrix elements obtained by various methods and by different groups. We find that the power counting works well for nuclear matrix elements calculated from a specific method, while, as in the case of light Majorana neutrino exchange, the overall magnitude of the matrix elements can differ by factors of two to three between methods. We calculate the constraints that can be set on dimension-seven lepton-number-violating operators from 0 νββ experiments and study the interplay between dimension-five and -seven operators, discussing how dimension-seven contributions affect the interpretation of 0 νββ in terms of the effective Majorana mass m ββ .

  11. Bolometric-Effect-Based Wavelength-Selective Photodetectors Using Sorted Single Chirality Carbon Nanotubes

    Science.gov (United States)

    Zhang, Suoming; Cai, Le; Wang, Tongyu; Shi, Rongmei; Miao, Jinshui; Wei, Li; Chen, Yuan; Sepúlveda, Nelson; Wang, Chuan

    2015-01-01

    This paper exploits the chirality-dependent optical properties of single-wall carbon nanotubes for applications in wavelength-selective photodetectors. We demonstrate that thin-film transistors made with networks of carbon nanotubes work effectively as light sensors under laser illumination. Such photoresponse was attributed to photothermal effect instead of photogenerated carriers and the conclusion is further supported by temperature measurements. Additionally, by using different types of carbon nanotubes, including a single chirality (9,8) nanotube, the devices exhibit wavelength-selective response, which coincides well with the absorption spectra of the corresponding carbon nanotubes. This is one of the first reports of controllable and wavelength-selective bolometric photoresponse in macroscale assemblies of chirality-sorted carbon nanotubes. The results presented here provide a viable route for achieving bolometric-effect-based photodetectors with programmable response spanning from visible to near-infrared by using carbon nanotubes with pre-selected chiralities. PMID:26643777

  12. Baeklund transformations, conservation laws and linearization of the self-dual Yang-Mills and chiral fields

    International Nuclear Information System (INIS)

    Wang, L.C.

    1980-01-01

    Baecklund Transformations (BT) and the derivation of local conservation laws are first reviewed in the classic case of the Sine-Gordon equation. The BT, conservation laws (local and nonlocal), and the inverse-scattering formulation are discussed for the chiral and the self-dual Yang-Mills fields. Their possible applications to the loop formulation for the Yang-Mills fields are mentioned. 55 references, 1 figure

  13. Hall viscosity of a chiral two-orbital superconductor at finite temperatures

    Science.gov (United States)

    Yazdani-Hamid, Meghdad; Shahzamanian, Mohammad Ali

    2018-06-01

    The Hall viscosity known as the anti-symmetric part of the viscosity fourth-rank tensor. Such dissipationless response which appears for systems with broken time reversal symmetry. We calculate this non-dissipative quantity for a chiral two-orbital superconductor placed in a viscoelastic magnetic field using the linear response theory and apply our calculations to the putative multiband chiral superconductor Sr2RuO4. The chirality origin of a multiband superconductor arises from the interorbital coupling of the superconducting state. This feature leads to the robustness of the Hall viscosity against temperature and impurity effects. We study the temperature effect on the Hall viscosity at the one-loop approximation.

  14. Unified chiral analysis of the vector meson spectrum from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Wes Armour; Chris Allton; Derek Leinweber; Anthony Thomas; Ross Young

    2005-10-13

    The chiral extrapolation of the vector meson mass calculated in partially-quenched lattice simulations is investigated. The leading one-loop corrections to the vector meson mass are derived for partially-quenched QCD. A large sample of lattice results from the CP-PACS Collaboration is analysed, with explicit corrections for finite lattice spacing artifacts. To incorporate the effect of the opening decay channel as the chiral limit is approached, the extrapolation is studied using a necessary phenomenological extension of chiral effective field theory. This chiral analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite-volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value of $M_\\rho$ in excellent agreement with experiment. This procedure is also compared with extrapolations based on polynomial forms, where the results are much less enlightening.

  15. Matching Pion-Nucleon Roy-Steiner Equations to Chiral Perturbation Theory

    Science.gov (United States)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.

    2015-11-01

    We match the results for the subthreshold parameters of pion-nucleon scattering obtained from a solution of Roy-Steiner equations to chiral perturbation theory up to next-to-next-to-next-to-leading order, to extract the pertinent low-energy constants including a comprehensive analysis of systematic uncertainties and correlations. We study the convergence of the chiral series by investigating the chiral expansion of threshold parameters up to the same order and discuss the role of the Δ (1232 ) resonance in this context. Results for the low-energy constants are also presented in the counting scheme usually applied in chiral nuclear effective field theory, where they serve as crucial input to determine the long-range part of the nucleon-nucleon potential as well as three-nucleon forces.

  16. Spin and chirality effects in antler-topology processes at high energy e{sup +}e{sup -} colliders

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S.Y. [Chonbuk National University, Department of Physics, Jeonbuk (Korea, Republic of); University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, Pittsburgh, PA (United States); Christensen, N.D. [Illinois State University, Department of Physics, Normal, IL (United States); Salmon, D.; Wang, X. [University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, Pittsburgh, PA (United States)

    2015-10-15

    We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e{sup +}e{sup -} → P{sup +}P{sup -} → (l{sup +}D{sup 0})(l{sup +} anti D{sup 0}) at highenergy e{sup +}e{sup -} colliders with polarized beams. Generally the production process e{sup +}e{sup -} → P{sup +}P{sup -} can occur not only through the s-channel exchange of vector bosons, V{sup 0}, including the neutral Standard Model (SM) gauge bosons, γ and Z, but also through the s- and t-channel exchanges of new neutral states, S{sup 0} and T{sup 0}, and the u-channel exchange of new doubly charged states, U{sup --}. The general set of (nonchiral) three-point couplings of the new particles and leptons allowed in a renormalizable quantum field theory is considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P{sup +}P{sup -} pair production in e{sup +}e{sup -} collisions with longitudinal- and transverse-polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high-energy e{sup +}e{sup -} collider. (orig.)

  17. Measuring the electromagnetic chirality of 2D arrays under normal illumination.

    Science.gov (United States)

    Garcia-Santiago, X; Burger, S; Rockstuhl, C; Fernandez-Corbaton, I

    2017-10-15

    We present an electromagnetic chirality measure for 2D arrays of subwavelength periodicities under normal illumination. The calculation of the measure uses only the complex reflection and transmission coefficients from the array. The measure allows the ordering of arrays according to their electromagnetic chirality, which further allows a quantitative comparison of different design strategies. The measure is upper bounded, and the extreme properties of objects with high values of electromagnetic chirality make them useful in both near- and far-field applications. We analyze the consequences that different possible symmetries of the array have on its electromagnetic chirality. We use the measure to study four different arrays. The results indicate the suitability of helices for building arrays of high electromagnetic chirality, and the low effectiveness of a substrate for breaking the transverse mirror symmetry.

  18. New remarks on chiral bosonization

    International Nuclear Information System (INIS)

    Souza Dutra, A. de

    1992-01-01

    We discuss a certain duality between the constraints appearing in ordinary Lagrangian density and its first order counterpart for the gauged Siegel chiral boson. It is demonstrated the equivalence, at the classical level, of the two versions of the gauged Siegel chiral boson to its corresponding gauged Floreanini-Jackiw chiral bosons. It is also argued that the most general constrained Lagrangian density, that leads to a bosonic field obeying a first order differential equation of motion and preserve simultaneously Lorentz invariance, is just the Floreanini-Jackiw one. (author)

  19. Dynamics of chiral oscillations: a comparative analysis with spin flipping

    International Nuclear Information System (INIS)

    Bernardini, A E

    2006-01-01

    Chiral oscillation as well as spin flipping effects correspond to quantum phenomena of fundamental importance in the context of particle physics and, in particular, of neutrino physics. From the point of view of first quantized theories, we are specifically interested in pointing out the differences between chirality and helicity by obtaining their dynamic equations for a fermionic Dirac-type particle (neutrino). We also identify both effects when the non-minimal coupling with an external (electro)magnetic field in the neutrino interacting Lagrangian is taken into account. We demonstrate that, however, there is no constraint between chiral oscillations, when it takes place in vacuum, and the process of spin flipping related to the helicity quantum number, which does not take place in vacuum. To conclude, we show that the origin of chiral oscillations (in vacuum) can be interpreted as projections of very rapid oscillations of position onto the longitudinal direction of momentum

  20. Chiral perturbation theory with nucleons

    International Nuclear Information System (INIS)

    Meissner, U.G.

    1991-09-01

    I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, πN scattering and the σ-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon

  1. Field transformations and the classical equation of motion in chiral perturbation theory

    International Nuclear Information System (INIS)

    Scherer, S.; Fearing, H.W.

    1995-01-01

    The construction of effective Lagrangians commonly involves the application of the ''classical equation of motion'' to eliminate redundant structures and thus generate the minimal number of independent terms. We investigate this procedure in the framework of chiral perturbation theory with particular emphasis on the new features which appear at O(p 6 ). The use of the ''classical equation of motion'' is interpreted in terms of field transformations. Such an interpretation is crucial if one wants to bring a given Lagrangian into a canonical form with a minimal number of terms. We emphasize that the application of field transformations leads to a modification of the coefficients of higher-order terms as well as eliminating structures, or what is equivalent, expressing certain structures in terms of already known different structures. This will become relevant once one considers the problem of expressing in canonical form a model effective interaction containing terms beyond next-to-leading order, i.e., beyond O(p 4 ). In such circumstances the naive application of the clasical equation of motion to simply drop terms, as is commonly done at lowest order, leads to subtle errors, which we discuss

  2. Comment on 'Calculated chiral and magneto-electric dichroic signals for copper metaborate (CuB2O4) in an applied magnetic field'

    International Nuclear Information System (INIS)

    Arima, T; Saito, M

    2009-01-01

    Contrary to a claim by Lovesey and Staub (2009 J. Phys.: Condens. Matter 21 142201), a careful treatment of symmetry shows that the application of a magnetic field along a twofold axis can induce the crystallographic chirality in a tetragonal system with the point group 4-bar2m like CuB 2 O 4 . The chirality is reversed by a 90 deg. rotation of the magnetic field around the c axis. (comment)

  3. Photoexcitation circular dichroism in chiral molecules

    Science.gov (United States)

    Beaulieu, S.; Comby, A.; Descamps, D.; Fabre, B.; Garcia, G. A.; Géneaux, R.; Harvey, A. G.; Légaré, F.; Mašín, Z.; Nahon, L.; Ordonez, A. F.; Petit, S.; Pons, B.; Mairesse, Y.; Smirnova, O.; Blanchet, V.

    2018-05-01

    Chiral effects appear in a wide variety of natural phenomena and are of fundamental importance in science, from particle physics to metamaterials. The standard technique of chiral discrimination—photoabsorption circular dichroism—relies on the magnetic properties of a chiral medium and yields an extremely weak chiral response. Here, we propose and demonstrate an orders of magnitude more sensitive type of circular dichroism in neutral molecules: photoexcitation circular dichroism. This technique does not rely on weak magnetic effects, but takes advantage of the coherent helical motion of bound electrons excited by ultrashort circularly polarized light. It results in an ultrafast chiral response and the efficient excitation of a macroscopic chiral density in an initially isotropic ensemble of randomly oriented chiral molecules. We probe this excitation using linearly polarized laser pulses, without the aid of further chiral interactions. Our time-resolved study of vibronic chiral dynamics opens a way to the efficient initiation, control and monitoring of chiral chemical change in neutral molecules at the level of electrons.

  4. Chiral charge erasure via thermal fluctuations of magnetic helicity

    International Nuclear Information System (INIS)

    Long, Andrew J.; Sabancilar, Eray

    2016-01-01

    We consider a relativistic plasma of fermions coupled to an Abelian gauge field and carrying a chiral charge asymmetry, which might arise in the early Universe through baryogenesis. It is known that on large length scales, λ≳1/(αμ_5), the chiral anomaly opens an instability toward the erasure of chiral charge and growth of magnetic helicity. Here the chemical potential μ_5 parametrizes the chiral asymmetry and α is the fine-structure constant. We study the process of chiral charge erasure through the thermal fluctuations of magnetic helicity and contrast with the well-studied phenomenon of Chern-Simons number diffusion. Through the fluctuation-dissipation theorem we estimate the amplitude and time scale of helicity fluctuations on the length scale λ, finding δ H∼λT and τ∼αλ"3T"2 for a relativistic plasma at temperature T. We argue that the presence of a chiral asymmetry allows the helicity to grow diffusively for a time t∼T"3/(α"5μ_5"4) until it reaches an equilibrium value H∼μ_5T"2/α, and the chiral asymmetry is partially erased. If the chiral asymmetry is small, μ_5< T/α, this avenue for chiral charge erasure is found to be slower than the chiral magnetic effect for which t∼T/(α"3μ_5"2). This mechanism for chiral charge erasure can be important for the hypercharge sector of the Standard Model as well as extensions including U(1) gauge interactions, such as asymmetric dark matter models.

  5. No chiral truncation of quantum log gravity?

    Science.gov (United States)

    Andrade, Tomás; Marolf, Donald

    2010-03-01

    At the classical level, chiral gravity may be constructed as a consistent truncation of a larger theory called log gravity by requiring that left-moving charges vanish. In turn, log gravity is the limit of topologically massive gravity (TMG) at a special value of the coupling (the chiral point). We study the situation at the level of linearized quantum fields, focussing on a unitary quantization. While the TMG Hilbert space is continuous at the chiral point, the left-moving Virasoro generators become ill-defined and cannot be used to define a chiral truncation. In a sense, the left-moving asymptotic symmetries are spontaneously broken at the chiral point. In contrast, in a non-unitary quantization of TMG, both the Hilbert space and charges are continuous at the chiral point and define a unitary theory of chiral gravity at the linearized level.

  6. Competitive chiral induction in a 2D molecular assembly: Intrinsic chirality versus coadsorber-induced chirality.

    Science.gov (United States)

    Chen, Ting; Li, Shu-Ying; Wang, Dong; Wan, Li-Jun

    2017-11-01

    Noncovalently introducing stereogenic information is a promising approach to embed chirality in achiral molecular systems. However, the interplay of the noncovalently introduced chirality with the intrinsic chirality of molecules or molecular aggregations has rarely been addressed. We report a competitive chiral expression of the noncovalent interaction-mediated chirality induction and the intrinsic stereogenic center-controlled chirality induction in a two-dimensional (2D) molecular assembly at the liquid/solid interface. Two enantiomorphous honeycomb networks are formed by the coassembly of an achiral 5-(benzyloxy)isophthalic acid (BIC) derivative and 1-octanol at the liquid/solid interface. The preferential formation of the globally homochiral assembly can be achieved either by using the chiral analog of 1-octanol, ( S )-6-methyl-1-octanol, as a chiral coadsorber to induce chirality to the BIC assembly via noncovalent hydrogen bonding or by covalently linking a chiral center in the side chain of BIC. Both the chiral coadsorber and the intrinsically chiral BIC derivative can act as a chiral seeds to induce a preferred handedness in the assembly of the achiral BIC derivatives. Furthermore, the noncovalent interaction-mediated chirality induction can restrain or even overrule the manifestation of the intrinsic chirality of the BIC molecule and dominate the handedness of the 2D molecular coassembly. This study provides insight into the interplay of intrinsically chiral centers and external chiral coadsorbers in the chiral induction, transfer, and amplification processes of 2D molecular assembly.

  7. Transport properties of chiral fermions

    Energy Technology Data Exchange (ETDEWEB)

    Puhr, Matthias

    2017-04-26

    Anomalous transport phenomena have their origin in the chiral anomaly, the anomalous non-conservation of the axial charge, and can arise in systems with chiral fermions. The anomalous transport properties of free fermions are well understood, but little is known about possible corrections to the anomalous transport coefficients that can occur if the fermions are strongly interacting. The main goal of this thesis is to study anomalous transport effects in media with strongly interacting fermions. In particular, we investigate the Chiral Magnetic Effect (CME) in a Weyl Semimetal (WSM) and the Chiral Separation Effect (CSE) in finite-density Quantum Chromodynamics (QCD). The recently discovered WSMs are solid state crystals with low-energy excitations that behave like Weyl fermions. The inter-electron interaction in WSMs is typically very strong and non-perturbative calculations are needed to connect theory and experiment. To realistically model an interacting, parity-breaking WSM we use a tight-binding lattice Hamiltonian with Wilson-Dirac fermions. This model features a non-trivial phase diagram and has a phase (Aoki phase/axionic insulator phase) with spontaneously broken CP symmetry, corresponding to the phase with spontaneously broken chiral symmetry for interacting continuum Dirac fermions. We use a mean-field ansatz to study the CME in spatially modulated magnetic fields and find that it vanishes in the Aoki phase. Moreover, our calculations show that outside of the Aoki phase the electron interaction has only a minor influence on the CME. We observe no enhancement of the magnitude of the CME current. For our non-perturbative study of the CSE in QCD we use the framework of lattice QCD with overlap fermions. We work in the quenched approximation to avoid the sign problem that comes with introducing a finite chemical potential on the lattice. The overlap operator calls for the evaluation of the sign function of a matrix with a dimension proportional to the volume

  8. Interwoven Patterns of Chirality Among Solar Structures: a Review

    Science.gov (United States)

    Martin, Sara F.

    2009-05-01

    Chirality is the handedness of solar magnetic structures as recognized in two dimensional solar images or in other solar data revealing distinct magnetic patterns. This review covers the historical succession of discoveries of the chirality of solar magnetic structures, beginning with left and right-handed helical magnetic clouds detected in many interplanetary coronal mass ejections. This led to the recognition of corresponding chiralities in coronal loop systems. Separately, chiral patterns in filaments, filament channels, sunspots, sigmoidal structures, and flare loop systems were established, interrelated, and linked to the chirality of coronal loop systems. The result was the finding that all solar chiral patterns fall into two and only two larger chiral systems with one system more prevalent in the northern hemisphere and the other in the southern hemisphere. From chiral characteristics, along with knowledge or assumptions about the magnetic field topology, we have the ability to better deduce the helicities characteristic of many solar structures. Traditionally, helicity is a property of magnetic fields with strict mathematical definitions in two well-known forms: twist and writhe. Application of the principle of the conservation of helicity to chiral systems now leads to more mature interpretations of the helicity of whole solar magnetic field systems as well as their components, which together must contain equivalent amounts of both left and right-handed helicity. From this broadened perspective, comes a better understanding of why right-handed coronal loops necessarily exist above filaments with left-handed barbs that always overly left-handed filament channels and vice versa. Along with this greater understanding, we are collectively at the point of learning to better recognize and predict the senses of roll, twist, and writhe in the axial fields of erupting prominences. These, in turn, confirm the signs of helicity in associated CMEs and magnetic clouds

  9. Dynamic Chiral Magnetic Effect and Faraday Rotation in Macroscopically Disordered Helical Metals.

    Science.gov (United States)

    Ma, J; Pesin, D A

    2017-03-10

    We develop an effective medium theory for electromagnetic wave propagation through gapless nonuniform systems with a dynamic chiral magnetic effect. The theory allows us to calculate macroscopic-disorder-induced corrections to the values of optical, as well as chiral magnetic conductivities. In particular, we show that spatial fluctuations of the optical conductivity induce corrections to the effective value of the chiral magnetic conductivity. The absolute value of the effect varies strongly depending on the system parameters, but yields the leading frequency dependence of the polarization rotation and circular dichroism signals. Experimentally, these corrections can be observed as features in the Faraday rotation angle near frequencies that correspond to the bulk plasmon resonances of a material. Such features are not expected to be present in single-crystal samples.

  10. Chiral Gold Nanoclusters: Atomic Level Origins of Chirality.

    Science.gov (United States)

    Zeng, Chenjie; Jin, Rongchao

    2017-08-04

    Chiral nanomaterials have received wide interest in many areas, but the exact origin of chirality at the atomic level remains elusive in many cases. With recent significant progress in atomically precise gold nanoclusters (e.g., thiolate-protected Au n (SR) m ), several origins of chirality have been unveiled based upon atomic structures determined by using single-crystal X-ray crystallography. The reported chiral Au n (SR) m structures explicitly reveal a predominant origin of chirality that arises from the Au-S chiral patterns at the metal-ligand interface, as opposed to the chiral arrangement of metal atoms in the inner core (i.e. kernel). In addition, chirality can also be introduced by a chiral ligand, manifested in the circular dichroism response from metal-based electronic transitions other than the ligand's own transition(s). Lastly, the chiral arrangement of carbon tails of the ligands has also been discovered in a very recent work on chiral Au 133 (SR) 52 and Au 246 (SR) 80 nanoclusters. Overall, the origins of chirality discovered in Au n (SR) m nanoclusters may provide models for the understanding of chirality origins in other types of nanomaterials and also constitute the basis for the development of various applications of chiral nanoparticles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Orientation-Dependent Handedness and Chiral Design

    Directory of Open Access Journals (Sweden)

    Efi Efrati

    2014-01-01

    Full Text Available Chirality occupies a central role in fields ranging from biological self-assembly to the design of optical metamaterials. The definition of chirality, as given by Lord Kelvin, associates chirality with the lack of mirror symmetry: the inability to superpose an object on its mirror image. While this definition has guided the classification of chiral objects for over a century, the quantification of handed phenomena based on this definition has proven elusive, if not impossible, as manifest in the paradox of chiral connectedness. In this work, we put forward a quantification scheme in which the handedness of an object depends on the direction in which it is viewed. While consistent with familiar chiral notions, such as the right-hand rule, this framework allows objects to be simultaneously right and left handed. We demonstrate this orientation dependence in three different systems—a biomimetic elastic bilayer, a chiral propeller, and optical metamaterial—and find quantitative agreement with chirality pseudotensors whose form we explicitly compute. The use of this approach resolves the existing paradoxes and naturally enables the design of handed metamaterials from symmetry principles.

  12. Realization of chiral symmetry in the ERG

    International Nuclear Information System (INIS)

    Echigo, Yoshio; Igarashi, Yuji

    2011-01-01

    We discuss within the framework of the ERG how chiral symmetry is realized in a linear σ model. A generalized Ginsparg-Wilson relation is obtained from the Ward-Takahashi identities for the Wilson action assumed to be bilinear in the Dirac fields. We construct a family of its non-perturbative solutions. The family generates the most general solutions to the Ward-Takahashi identities. Some special solutions are discussed. For each solution in this family, chiral symmetry is realized in such a way that a change in the Wilson action under non-linear symmetry transformation is canceled with a change in the functional measure. We discuss that the family of solutions reduces via a field redefinition to a family of the Wilson actions with some composite object of the scalar fields which has a simple transformation property. For this family, chiral symmetry is linearly realized with a continuum analog of the operator extension of γ 5 used on the lattice. We also show that there exist some appropriate Dirac fields which obey the standard chiral transformations with γ 5 in contrast to the lattice case. Their Yukawa interaction with scalars, however, becomes non-linear. (author)

  13. Holographic Chiral Magnetic Spiral

    International Nuclear Information System (INIS)

    Kim, Keun-Young; Sahoo, Bindusar; Yee, Ho-Ung

    2010-06-01

    We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential. (author)

  14. Cell Chirality Drives Left-Right Asymmetric Morphogenesis.

    Science.gov (United States)

    Inaki, Mikiko; Sasamura, Takeshi; Matsuno, Kenji

    2018-01-01

    Most macromolecules found in cells are chiral, meaning that they cannot be superimposed onto their mirror image. However, cells themselves can also be chiral, a subject that has received little attention until very recently. In our studies on the mechanisms of left-right (LR) asymmetric development in Drosophila , we discovered that cells can have an intrinsic chirality to their structure, and that this "cell chirality" is generally responsible for the LR asymmetric development of certain organs in this species. The actin cytoskeleton plays important roles in the formation of cell chirality. In addition, Myosin31DF ( Myo31DF ), which encodes Drosophila Myosin ID, was identified as a molecular switch for cell chirality. In other invertebrate species, including snails and Caenorhabditis elegans , chirality of the blastomeres, another type of cell chirality, determines the LR asymmetry of structures in the body. Thus, chirality at the cellular level may broadly contribute to LR asymmetric development in various invertebrate species. Recently, cell chirality was also reported for various vertebrate cultured cells, and studies suggested that cell chirality is evolutionarily conserved, including the essential role of the actin cytoskeleton. Although the biological roles of cell chirality in vertebrates remain unknown, it may control LR asymmetric development or other morphogenetic events. The investigation of cell chirality has just begun, and this new field should provide valuable new insights in biology and medicine.

  15. Hydrodynamics with chiral anomaly and charge separation in relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Yi, E-mail: yyin@bnl.gov [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Liao, Jinfeng, E-mail: liaoji@indiana.edu [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-05-10

    Matter with chiral fermions is microscopically described by theory with quantum anomaly and macroscopically described (at low energy) by anomalous hydrodynamics. For such systems in the presence of external magnetic field and chirality imbalance, a charge current is generated along the magnetic field direction — a phenomenon known as the Chiral Magnetic Effect (CME). The quark–gluon plasma created in relativistic heavy ion collisions provides an (approximate) example, for which the CME predicts a charge separation perpendicular to the collisional reaction plane. Charge correlation measurements designed for the search of such signal have been done at RHIC and the LHC for which the interpretations, however, remain unclear due to contamination by background effects that are collective flow driven, theoretically poorly constrained, and experimentally hard to separate. Using anomalous (and viscous) hydrodynamic simulations, we make a first attempt at quantifying contributions to observed charge correlations from both CME and background effects in one and same framework. The implications for the search of CME are discussed.

  16. The superfield method for the calculation of effective potentials applied to chiral superfields: Wess-Zumino and O'Raifeartaigh models

    International Nuclear Information System (INIS)

    Santos, R.P. dos.

    1986-12-01

    The superfield method is applied to the effective potential calculation in supersymmetric models. The Weinberg and Jackiw methods are discussed in the context of supersymmetric field theories, highlighting the greater simplicity obtained when the Feynman super diagrams are used. The chiral superfield propagators are derived and their relations with components field are commented. (L.C.J.A.)

  17. Chiral phase transition in the soft-wall model of AdS/QCD

    International Nuclear Information System (INIS)

    Chelabi, Kaddour; Fang, Zhen; Huang, Mei; Li, Danning; Wu, Yue-Liang

    2016-01-01

    We investigate the chiral phase transition in the soft-wall model of AdS/QCD at zero chemical potential for two-flavor and three-flavor cases, respectively. We show that there is no spontaneous chiral symmetry breaking in the original soft-wall model. After detailed analysis, we find that in order to realize chiral symmetry breaking and restoration, both profiles for the scalar potential and the dilaton field are essential. The scalar potential determines the possible solution structure of the chiral condensate, except the mass term, it takes another quartic term for the two-flavor case, and for the three-flavor case, one has to take into account an extra cubic term due to the t’Hooft determinant interaction. The profile of the dilaton field reflects the gluodynamics, which is negative at a certain ultraviolet scale and approaches positive quadratic behavior at far infrared region. With this set-up, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature can be realized perfectly. In the two-flavor case, it gives a second order chiral phase transition in the chiral limit, while the transition turns to be a crossover for any finite quark mass. In the case of three-flavor, the phase transition becomes a first order one in the chiral limit, while above sufficient large quark mass it turns to be a crossover again. This scenario agrees exactly with the current understanding on chiral phase transition from lattice QCD and other effective model studies.

  18. Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts

    Directory of Open Access Journals (Sweden)

    Hironori Izawa

    2010-07-01

    Full Text Available Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.

  19. On the covariantization of the Chiral constraints

    International Nuclear Information System (INIS)

    Wotzasek, Clovis; Abreu, E.M.C. de; Neves, C.

    1994-01-01

    We show that a complete covariantization of the chiral constraint in the Floreanini-Jackiw necessitates an infinite number of auxiliary Wess-Zumino fields otherwise the covariantization is only partial and unable to remove the nonlocality in the chiral boson operator. We comment on recent works that claim to obtain covariantization through the use of Batalin-Fradklin-Tyutin method, that uses just one Wess-Zumino field. (author)

  20. Introduction to Chiral Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-05-09

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. We will also discuss some effective chiral models such as the linear and nonlinear sigma model as well as the essential ideas of chiral perturbation theory. We will present some applications to the physics of ultrarelativistic heavy ion collisionsd.

  1. Introduction to chiral symmetry

    International Nuclear Information System (INIS)

    Koch, V.

    1996-01-01

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented

  2. Chiral and continuum extrapolation of partially-quenched hadron masses

    International Nuclear Information System (INIS)

    Chris Allton; Wes Armour; Derek Leinweber; Anthony Thomas; Ross Young

    2005-01-01

    Using the finite-range regularization (FRR) of chiral effective field theory, the chiral extrapolation formula for the vector meson mass is derived for the case of partially-quenched QCD. We re-analyze the dynamical fermion QCD data for the vector meson mass from the CP-PACS collaboration. A global fit, including finite lattice spacing effects, of all 16 of their ensembles is performed. We study the FRR method together with a naive polynomial approach and find excellent agreement (∼1%) with the experimental value of M ρ from the former approach. These results are extended to the case of the nucleon mass

  3. Chiral and continuum extrapolation of partially-quenched hadron masses

    Energy Technology Data Exchange (ETDEWEB)

    Chris Allton; Wes Armour; Derek Leinweber; Anthony Thomas; Ross Young

    2005-09-29

    Using the finite-range regularization (FRR) of chiral effective field theory, the chiral extrapolation formula for the vector meson mass is derived for the case of partially-quenched QCD. We re-analyze the dynamical fermion QCD data for the vector meson mass from the CP-PACS collaboration. A global fit, including finite lattice spacing effects, of all 16 of their ensembles is performed. We study the FRR method together with a naive polynomial approach and find excellent agreement ({approx}1%) with the experimental value of M{sub {rho}} from the former approach. These results are extended to the case of the nucleon mass.

  4. Chirality dependence of dipole matrix element of carbon nanotubes in axial magnetic field: A third neighbor tight binding approach

    Science.gov (United States)

    Chegel, Raad; Behzad, Somayeh

    2014-02-01

    We have studied the electronic structure and dipole matrix element, D, of carbon nanotubes (CNTs) under magnetic field, using the third nearest neighbor tight binding model. It is shown that the 1NN and 3NN-TB band structures show differences such as the spacing and mixing of neighbor subbands. Applying the magnetic field leads to breaking the degeneracy behavior in the D transitions and creates new allowed transitions corresponding to the band modifications. It is found that |D| is proportional to the inverse tube radius and chiral angle. Our numerical results show that amount of filed induced splitting for the first optical peak is proportional to the magnetic field by the splitting rate ν11. It is shown that ν11 changes linearly and parabolicly with the chiral angle and radius, respectively.

  5. Communication: Permanent dipoles contribute to electric polarization in chiral NMR spectra

    International Nuclear Information System (INIS)

    Buckingham, A. David

    2014-01-01

    Nuclear magnetic resonance spectroscopy is blind to chirality because the spectra of a molecule and its mirror image are identical unless the environment is chiral. However, precessing nuclear magnetic moments in chiral molecules in a strong magnetic field induce an electric polarization through the nuclear magnetic shielding polarizability. This effect is equal and opposite for a molecule and its mirror image but is small and has not yet been observed. It is shown that the permanent electric dipole moment of a chiral molecule is partially oriented through the antisymmetric part of the nuclear magnetic shielding tensor, causing the electric dipole to precess with the nuclear magnetic moment and producing a much larger temperature-dependent electric polarization with better prospects of detection

  6. Macroscopic chirality of a liquid crystal from nonchiral molecules

    International Nuclear Information System (INIS)

    Jakli, A.; Nair, G. G.; Lee, C. K.; Sun, R.; Chien, L. C.

    2001-01-01

    The transfer of chirality from nonchiral polymer networks to the racemic B2 phase of nonchiral banana-shaped molecules is demonstrated. This corresponds to the transfer of chirality from an achiral material to another achiral material. There are two levels of chirality transfers. (a) On a microscopic level the presence of a polymer network (chiral or nonchiral) favors a chiral state over a thermodynamically stable racemic state due to the inversion symmetry breaking at the polymer-liquid crystal interfaces. (b) A macroscopically chiral (enantimerically enriched) sample can be produced if the polymer network has a helical structure, and/or contains chemically chiral groups. The chirality transfer can be locally suppressed by exposing the liquid crystal to a strong electric field treatment

  7. Gelation induced supramolecular chirality: chirality transfer, amplification and application.

    Science.gov (United States)

    Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua

    2014-08-14

    Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.

  8. Chirality and angular momentum in optical radiation

    Science.gov (United States)

    Coles, Matt M.; Andrews, David L.

    2012-06-01

    This paper develops, in precise quantum electrodynamic terms, photonic attributes of the “optical chirality density,” one of several measures long known to be conserved quantities for a vacuum electromagnetic field. The analysis lends insights into some recent interpretations of chiroptical experiments, in which this measure, and an associated chirality flux, have been treated as representing physically distinctive “superchiral” phenomena. In the fully quantized formalism the chirality density is promoted to operator status, whose exploration with reference to an arbitrary polarization basis reveals relationships to optical angular momentum and helicity operators. Analyzing multimode beams with complex wave-front structures, notably Laguerre-Gaussian modes, affords a deeper understanding of the interplay between optical chirality and optical angular momentum. By developing theory with due cognizance of the photonic character of light, it emerges that only the spin-angular momentum of light is engaged in such observations. Furthermore, it is shown that these prominent measures of the helicity of chiral electromagnetic radiation have a common basis in differences between the populations of optical modes associated with angular momenta of opposite sign. Using a calculation of the rate of circular dichroism as an example, with coherent states to model the electromagnetic field, it is discovered that two terms contribute to the differential effect. The primary contribution relates to the difference in left- and right-handed photon populations; the only other contribution, which displays a sinusoidal distance dependence corresponding to the claim of nodal enhancements, is connected with the quantum photon number-phase uncertainty relation. From the full analysis, it appears that the term “superchiral” can be considered redundant.

  9. Chiral dynamics and peripheral transverse densities

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos G. [Uppsala University (Sweden); Weiss, Christian [JLAB, Newport News, VA (United States)

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  10. Helical Polyacetylenes Induced via Noncovalent Chiral Interactions and Their Applications as Chiral Materials.

    Science.gov (United States)

    Maeda, Katsuhiro; Yashima, Eiji

    2017-08-01

    Construction of predominantly one-handed helical polyacetylenes with a desired helix sense utilizing noncovalent chiral interactions with nonracemic chiral guest compounds based on a supramolecular approach is described. As with the conventional dynamic helical polymers possessing optically active pendant groups covalently bonded to the polymer chains, this noncovalent helicity induction system can show significant chiral amplification phenomena, in which the chiral information of the nonracemic guests can transfer with high cooperativity through noncovalent bonding interactions to induce an almost single-handed helical conformation in the polymer backbone. An intriguing "memory effect" of the induced macromolecular helicity is observed for some polyacetylenes, which means that the helical conformations induced in dynamic helical polyacetylene can be transformed into metastable static ones by tuning their helix-inversion barriers. Potential applications of helical polyacetylenes with controlled helix sense constructed by the "noncovalent helicity induction and/or memory effect" as chiral materials are also described.

  11. Effects of second neighbor interactions on skyrmion lattices in chiral magnets

    International Nuclear Information System (INIS)

    Oliveira, E A S; Silva, R L; Silva, R C; Pereira, A R

    2017-01-01

    In this paper we investigate the influences of the second neighbor interactions on a skyrmion lattice in two-dimensional chiral magnets. Such a system contains the exchange and the Dzyaloshinskii–Moriya for the spin interactions and therefore, we analyse three situations: firstly, the second neighbor interaction is present only in the exchange coupling; secondly, it is present only in the Dzyaloshinskii–Moriya coupling. Finally, the second neighbor interactions are present in both exchange and Dzyaloshinskii–Moriya couplings. We show that such effects cause important modifications to the helical and skyrmion phases when an external magnetic field is applied. (paper)

  12. Dynamics of vortex domain walls in ferromagnetic nanowires - A possible method for chirality manipulation

    Science.gov (United States)

    Li, Y.; Lu, Z.; Chen, C.; Cheng, M.; Yin, H.; Wang, W.; Li, C.; Liu, Y.; Xiong, R.; Shi, J.

    2018-06-01

    The dynamic behaviors of vortex domain walls (VDWs) in ferromagnetic nanowires driven by a magnetic field above Walker breakdown field (Hw) were investigated using micromagnetic simulation. It was found when nanowire has proper geometrical dimensions, the VDW may oscillate in a chirality invariant mode or a chirality switching mode depending on applied field and damping constant. At fixed damping constant, the oscillation mode can be controlled by applied field - with the increase of applied field, the oscillation of VDW change from a chirality invariant mode to a variant one. As the oscillation of VDW changes from chirality invariant regime to chirality switching regime, the oscillation frequency and amplification will undergo an abnormal change, which may offer a fingerprint for the switch of oscillation mode. Our finding proposes a simple way to control the chirality of a VDW by properly manipulating nanowire geometry and applied field, which may have important applications in VDW-based devices.

  13. Chiral symmetry breaking is permitted in supersymmetric QED

    International Nuclear Information System (INIS)

    Walker, M.

    2000-01-01

    Full text: A chirally symmetric theory will generally have a chirally symmetric and a chirally asymmetric solution for the dressed fermionic propagator. It has been claimed that no chirally asymmetric solution for the fermionic propagator exists in supersymmetric QED. This result in the superfield formalism uses a gauge dependent argument whose validity has since been questioned. We present an analogous analysis using the component formalism which demonstrates that chiral symmetry breaking is permitted in this theory. We open the presentation with a brief introduction to supersymmetry, supersymmetric QED, and the superfield formalism. We describe chiral symmetry breaking and the Dyson-Schwinger equation used to analyse it. The derivation of the erroneous theorem claiming the lack of an a chiral propagator is outlined and its flaws discussed. We finish with the equivalent derivation in component fields and our contradictory result

  14. Tensor Fermi liquid parameters in nuclear matter from chiral effective field theory

    Science.gov (United States)

    Holt, J. W.; Kaiser, N.; Whitehead, T. R.

    2018-05-01

    We compute from chiral two- and three-body forces the complete quasiparticle interaction in symmetric nuclear matter up to twice nuclear matter saturation density. Second-order perturbative contributions that account for Pauli blocking and medium polarization are included, allowing for an exploration of the full set of central and noncentral operator structures permitted by symmetries and the long-wavelength limit. At the Hartree-Fock level, the next-to-next-to-leading order three-nucleon force contributes to all noncentral interactions, and their strengths grow approximately linearly with the nucleon density up to that of saturated nuclear matter. Three-body forces are shown to enhance the already strong proton-neutron effective tensor interaction, while the corresponding like-particle tensor force remains small. We also find a large isovector cross-vector interaction but small center-of-mass tensor interactions in the isoscalar and isovector channels. The convergence of the expansion of the noncentral quasiparticle interaction in Landau parameters and Legendre polynomials is studied in detail.

  15. A note on the algebraic evaluation of correlators in local chiral conformal field theory

    International Nuclear Information System (INIS)

    Honecker, A.

    1992-09-01

    We comment on a program designed for the study of local chiral algebras and their representations in 2D conformal field theory. Based on the algebraic approach described by W. Nahm, this program efficiently calculates arbitrary n-point functions of these algebras. The program is designed such that calculations involving e.g. current algebras, W-algebras and N-Superconformal algebras can be performed. As a non-trivial application we construct an extension of the Virasoro algebra by two fields with spin four and six using the N=1-Super-Virasoro algebra. (orig.)

  16. Chiral magnetic effect in the anisotropic quark-gluon plasma

    International Nuclear Information System (INIS)

    Ali-Akbari, Mohammad; Taghavi, Seyed Farid

    2015-01-01

    An anisotropic thermal plasma phase of a strongly coupled gauge theory can be holographically modelled by an anisotropic AdS black hole. The temperature and anisotropy parameter of the AdS black hole background of interest http://dx.doi.org/10.1007/JHEP07(2011)054 is specified by the location of the horizon and the value of the Dilaton field at the horizon. Interestingly, for the first time, we obtain two functions for the values of the horizon and Dilaton field in terms of the temperature and anisotropy parameter. Then by introducing a number of spinning probe D7-branes in the anisotropic background, we compute the value of the chiral magnetic effect (CME). We observe that in the isotropic and anisotropic plasma the value of the CME is equal for the massless quarks. However, at fixed temperature, raising the anisotropy in the system will increase the value of the CME for the massive quarks.

  17. Chirality in molecular collision dynamics

    Science.gov (United States)

    Lombardi, Andrea; Palazzetti, Federico

    2018-02-01

    Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.

  18. On chiral and non chiral 1D supermultiplets

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica

    2011-07-01

    In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)

  19. On chiral and non chiral 1D supermultiplets

    International Nuclear Information System (INIS)

    Toppan, Francesco

    2011-01-01

    In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)

  20. Chiral Rayleigh particles discrimination in dynamic dual optical traps

    International Nuclear Information System (INIS)

    Carretero, Luis; Acebal, Pablo; Blaya, Salvador

    2017-01-01

    Highlights: • A chiral optical conveyor belt for enantiomeric separation of nanopar-ticles is numerically demonstrated. • Chiral resolution has been theoretically analyzed for chiral spheres immersed in water. • Electromagnetic fields have been designed for obtaining Chiral selective optical tweezers to separate enantiomers in different spatial regions. - Abstract: A chiral optical conveyor belt for enantiomeric separation of nanoparticles is numerically demonstrated by using different types of counter propagating elliptical Laguerre Gaussian beams with different beam waist and topological charge. The analysis of chiral resolution has been made for particles immersed in water demonstrating that in the analyzed conditions one type of enantiomer is trapped in a deep potential and the others are transported by the chiral conveyor toward another trap located in a different geometrical region.

  1. The anomalous chiral Lagrangian of order p6

    International Nuclear Information System (INIS)

    Bijnens, J.; Talavera, P.

    2002-01-01

    We construct the effective chiral Lagrangian for chiral perturbation theory in the mesonic odd-intrinsic-parity sector at order p 6 . The Lagrangian contains 24 in principle measurable terms and no contact terms for the general case of N f light flavors, 23 terms for three and 5 for two flavors. In the two flavor case we need a total of 13 terms if an external singlet vector field is included. We discuss and implement the methods used to reduce to a minimal set. The infinite parts needed for renormalization are calculated and presented as well. (orig.)

  2. Study of open-charm 0{sup +} states in unitarized chiral effective theory with one-loop potentials

    Energy Technology Data Exchange (ETDEWEB)

    Du, Meng-Lin [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Guo, Feng-Kun [Chinese Academy of Sciences, CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences, School of Physical Sciences, Beijing (China); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik and Juelich Center for Hadron Physics (Germany); Yao, De-Liang [Forschungszentrum Juelich, Institute for Advanced Simulation, Institut fuer Kernphysik and Juelich Center for Hadron Physics (Germany); Instituto de Fisica Corpuscular (Centro mixto CSIC-UV), Institutos de Investigacion de Paterna, Valencia (Spain)

    2017-11-15

    Chiral potentials are derived for the interactions between Goldstone bosons and pseudo-scalar charmed mesons up to next-to-next-to-leading order in a covariant chiral effective field theory with explicit vector charmed-meson degrees of freedom. Using the extended-on-mass-shell scheme, we demonstrate that the ultraviolet divergences and the so-called power counting breaking terms can be properly absorbed by the low-energy constants of the chiral Lagrangians. We calculate the scattering lengths by unitarizing the one-loop potentials and fit them to the data extracted from lattice QCD. The obtained results are compared to the ones without an explicit contribution of vector charmed mesons given previously. It is found that the difference is negligible for S-wave scattering in the threshold region. This validates the use of D*-less one-loop potentials in the study of the pertinent scattering lengths. We search for dynamically generated open-charm states with J{sup P} = 0{sup +} as poles of the S-matrix on various Riemann sheets. The trajectories of those poles for varying pion masses are presented as well. (orig.)

  3. Observation of chiral phonons

    KAUST Repository

    Zhu, Hanyu; Yi, Jun; Li, Ming-yang; Xiao, Jun; Zhang, Lifa; Yang, Chih-Wen; Kaindl, Robert A.; Li, Lain-Jong; Wang, Yuan; Zhang, Xiang

    2018-01-01

    Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.

  4. Observation of chiral phonons

    KAUST Repository

    Zhu, Hanyu

    2018-02-01

    Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.

  5. Lock-in of a Chiral Soliton Lattice by Itinerant Electrons

    Science.gov (United States)

    Okumura, Shun; Kato, Yasuyuki; Motome, Yukitoshi

    2018-03-01

    Chiral magnets often show intriguing magnetic and transport properties associated with their peculiar spin textures. A typical example is a chiral soliton lattice, which is found in monoaxial chiral magnets, such as CrNb3S6 and Yb(Ni1-xCux)3Al9 in an external magnetic field perpendicular to the chiral axis. Here, we theoretically investigate the electronic and magnetic properties in the chiral soliton lattice by a minimal itinerant electron model. Using variational calculations, we find that the period of the chiral soliton lattice can be locked at particular values dictated by the Fermi wave number, in stark contrast to spin-only models. We discuss this behavior caused by the spin-charge coupling as a possible mechanism for the lock-in discovered in Yb(Ni1-xCux)3Al9 [T. Matsumura et al., https://doi.org/10.7566/JPSJ.86.124702" xlink:type="simple">J. Phys. Soc. Jpn. 86, 124702 (2017)]. We also show that the same mechanism leads to the spontaneous formation of the chiral soliton lattice even in the absence of the magnetic field.

  6. An alternative prescription for Gauging Floreanini-Jackiw chiral bosons

    International Nuclear Information System (INIS)

    Dias, S.A.; Souza Dutra, A. de.

    1991-01-01

    We seek new couplings of chiral bosons to U (1) gauge fields. Lorentz covariance of the resulting constrained Lagrangian is checked with the help of a procedure based in the first-order formalism of Faddeev and Jackiw. We find Harada's constraint and another local one not previously considered, besides infinite non-local couplings.We analyze the constraint structure and part of the spectrum of this second solution and show that it is equivalent to an explicitly covariant coupling of Siegel's chiral boson to gauge fields, which preserves chirality under gauge transformations. (author)

  7. Chiral W-gravities for general extended conformal algebras

    International Nuclear Information System (INIS)

    Hull, C.M.

    1991-01-01

    The gauging of any chiral extended conformal symmetry of any two-dimensional field theory is achieved by coupling to the appropriate chiral W-gravity. Only a linear coupling to the W-gravity gauge fields is needed. The gauging of algebras with central charges requires the introduction of spin-zero gauge fields corresponding to the central charges. The example of Liouville theory is discussed in detail and a new way of coupling it to gravity is obtained. (orig.)

  8. Quark matter inside neutron stars in an effective chiral model

    International Nuclear Information System (INIS)

    Kotlorz, A.; Kutschera, M.

    1994-02-01

    An effective chiral model which describes properties of a single baryon predicts that the quark matter relevant to neutron stars, close to the deconfinement density, is in a chirally broken phase. We find the SU(2) model that pion-condensed up and down quark matter is preferred energetically at neutron star densities. It exhibits spin ordering and can posses a permanent magnetization. The equation of state of quark matter with chiral condensate is very well approximated by bag model equation of the state with suitably chosen parameters. We study quark cores inside neutron stars in this model using realistic nucleon equations of state. The biggest quark core corresponds to the second order phase transition to quark matter. Magnetic moment of the pion-condensed quark core is calculated. (author). 19 refs, 10 refs, 1 tab

  9. Finite size effects and chiral symmetry breaking in quenched three-dimensional QED

    International Nuclear Information System (INIS)

    Hands, S.; Kogut, J.B.

    1990-01-01

    Finite size effects and the chiral condensate are studied in three-dimensional QED by the Lanczos and the conjugate-gradient algorithms. Very substantial finite size effects are observed, but studies on L 3 lattices with L ranging from 8 to 80 indicate the development of a non-vanishing chiral condensate in the continuum limit of the theory. The systematics of the finite size effects and the fermion mass dependence in the conjugate-gradient algorithm are clarified in this extensive study. (orig.)

  10. Light-front realization of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Itakura, Kazunori; Maedan, Shinji

    2001-01-01

    We discuss a description of chiral symmetry breaking in the light-front (LF) formalism. Based on careful analyses of several modes, we give clear answers to the following three fundamental questions: (i) What is the difference between the LF chiral transformation and the ordinary chiral transformation? (ii) How does a gap equation for the chiral condensate emerge? (iii) What is the consequence of the coexistence of a nonzero chiral condensate and the trivial Fock vacuum? The answer to Question (i) is given through a classical analysis of each model. Question (ii) is answered based on our recognition of the importance of characteristic constraints, such as the zero-mode and fermionic constraints. Question (iii) is intimately related to another important problem, reconciliation of the nonzero chiral condensate ≠ 0 and the invariance of the vacuum under the LF chiral transformation Q 5 LF | 0> = 0. This and Question (iii) are understood in terms of the modified chiral transformation laws of the dependent variables. The characteristic ways in which the chiral symmetry breaking is realized are that the chiral charge Q 5 LF is no longer conserved and that the transformation of the scalar and pseudoscalar fields is modified. We also discuss other outcomes, such as the light-cone wave function of the pseudoscalar meson in the Nambu-Jona-Lasinio model. (author)

  11. Chiral retrieval method based on right circularly polarized and left circularly polarized waves

    International Nuclear Information System (INIS)

    Martín, Ernesto; Muñoz, Juan; Margineda, José; Molina-Cuberos, Gregorio J; García-Collado, Ángel J

    2014-01-01

    The free-wave characterization of metamaterials is usually carried out by illuminating a sample with a linearly polarized plane electromagnetic wave. At points before and after the sample, sensors are introduced to measure the transverse components of the field, in order to compute the reflection and transmission coefficients related with the co- and cross-polar field components. Based on this information, retrieval algorithms allow parameters like rotation angle, effective chirality and refraction index to be calculated. Here we propose to use the transmission signals under illumination with plane circularly polarized waves, without sensing the reflection signal, to calculate the chirality parameter and the rotation angle due to the electromagnetic activity of the material. This new method, which allows a simpler characterization of a chiral slab, is applied to the study of metamaterials composed of both periodic and random distributions of metallic structures with chiral symmetry. The experimental results are contrasted with simulations and alternative measurements obtained using linearly polarized waves. (paper)

  12. Chiral anomaly and anomalous finite-size conductivity in graphene

    Science.gov (United States)

    Shen, Shun-Qing; Li, Chang-An; Niu, Qian

    2017-09-01

    Graphene is a monolayer of carbon atoms packed into a hexagon lattice to host two spin degenerate pairs of massless two-dimensional Dirac fermions with different chirality. It is known that the existence of non-zero electric polarization in reduced momentum space which is associated with a hidden chiral symmetry will lead to the zero-energy flat band of a zigzag nanoribbon and some anomalous transport properties. Here it is proposed that the Adler-Bell-Jackiw chiral anomaly or non-conservation of chiral charges of Dirac fermions at different valleys can be realized in a confined ribbon of finite width, even in the absence of a magnetic field. In the laterally diffusive regime, the finite-size correction to conductivity is always positive and is inversely proportional to the square of the lateral dimension W, which is different from the finite-size correction inversely proportional to W from the boundary modes. This anomalous finite-size conductivity reveals the signature of the chiral anomaly in graphene, and it is measurable experimentally. This finding provides an alternative platform to explore the purely quantum mechanical effect in graphene.

  13. Characteristics of chiral anomaly in view of various applications

    Science.gov (United States)

    Fujikawa, Kazuo

    2018-01-01

    In view of the recent applications of chiral anomaly to various fields beyond particle physics, we discuss some basic aspects of chiral anomaly which may help deepen our understanding of chiral anomaly in particle physics also. It is first shown that Berry's phase (and its generalization) for the Weyl model H =vFσ →.p →(t ) assumes a monopole form at the exact adiabatic limit but deviates from it off the adiabatic limit and vanishes in the high frequency limit of the Fourier transform of p →(t ) for bounded |p →(t )|. An effective action, which is consistent with the nonadiabatic limit of Berry's phase, combined with the Bjorken-Johnson-Low prescription, gives normal equal-time space-time commutators and no chiral anomaly. In contrast, an effective action with a monopole at the origin of the momentum space, which describes Berry's phase in the precise adiabatic limit but fails off the adiabatic limit, gives anomalous space-time commutators and a covariant anomaly to the gauge current. We regard this anomaly as an artifact of the postulated monopole and not a consequence of Berry's phase. As for the recent application of the chiral anomaly to the description of effective Weyl fermions in condensed matter and nuclear physics, which is closely related to the formulation of lattice chiral fermions, we point out that the chiral anomaly for each species doubler separately vanishes for a finite lattice spacing, contrary to the common assumption. Instead, a general form of pair creation associated with the spectral flow for the Dirac sea with finite depth takes place. This view is supported by the Ginsparg-Wilson fermion, which defines a single Weyl fermion without doublers on the lattice and gives a well-defined index (anomaly) even for a finite lattice spacing. A different use of anomaly in analogy to the partially conserved axial-vector current is also mentioned and could lead to an effect without fermion number nonconservation.

  14. Chiral perturbation theory

    International Nuclear Information System (INIS)

    Harada, Masayasu

    2009-01-01

    Chiral perturbation theory has been used for great number of phenomenological analyses in low energy QCD as well as the lattice QCD analyses since the creation of the theory by Weinberg in 1979 followed by its consolidation by Gasser and Leutwyler in 1984 and 85. The theory is now the highly established one as the approach based on the effective field theory to search for Green function including quantum correlations in the frame of the systematic expansion technique using Lagrangian which includes all of the terms allowed by the symmetry. This review has been intended to describe how systematically physical quantities are calculated in the framework of the chiral symmetry. Consequently many of the various phenomenological analyses are not taken up here for which other reports are to be referred. Further views are foreseen to be developed based on the theory in addition to numbers of results reported up to the present. Finally π-π scattering is taken up to discuss to what energy scale the theory is available. (S. Funahashi)

  15. Disorder effect on chiral edge modes and anomalous Hall conductance in Weyl semimetals

    International Nuclear Information System (INIS)

    Takane, Yositake

    2016-01-01

    Typical Weyl semimetals host chiral surface states and hence show an anomalous Hall response. Although a Weyl semimetal phase is known to be robust against weak disorder, the effect of disorder on chiral states has not been fully clarified so far. We study the behavior of such chiral states in the presence of disorder and its consequences on an anomalous Hall response, focusing on a thin slab of Weyl semimetal with chiral surface states along its edge. It is shown that weak disorder does not disrupt chiral edge states but crucially affects them owing to the renormalization of a mass parameter: the number of chiral edge states changes depending on the strength of disorder. It is also shown that the Hall conductance is quantized when the Fermi level is located near Weyl nodes within a finite-size gap. This quantization of the Hall conductance collapses once the strength of disorder exceeds a critical value, suggesting that it serves as a probe to distinguish a Weyl semimetal phase from a diffusive anomalous Hall metal phase. (author)

  16. Chiral symmetry, scalar field and confinement: from nucleon structure to nuclear matter

    International Nuclear Information System (INIS)

    Chanfray, Guy; Ericson, Magda

    2010-01-01

    We discuss the relevance of the scalar modes appearing in chiral theories with spontaneous symmetry breaking such as the NJL model for nuclear matter studies. We show that it depends on the relative role of chiral symmetry breaking and confinement in the nucleon mass origin. It is only in the case of a mixed origin that nuclear matter can be stable and reach saturation. We describe models of nucleon structure where this balance is achieved. We show how chiral constarints and confinement modify the QCD sum rules for the mass evolution in nuclear matter.

  17. Hadron properties in chiral sigma model

    International Nuclear Information System (INIS)

    Shen Hong

    2005-01-01

    The modification of hadron masses in nuclear medium is studied by using the chiral sigma model, which is extended to generate the omega meson mass by the sigma condensation in the vacuum in the same way as the nucleon mass. The chiral sigma model provides proper equilibrium properties of nuclear matter. It is shown that the effective masses of both nucleons and omega mesons decrease in nuclear medium, while the effective mass of sigma mesons increases oat finite density in the chiral sigma model. The results obtained in the chiral sigma model are compared with those obtained in the Walecka model, which includes sigma and omega mesons in a non-chiral fashion. (author)

  18. Effect of critical process parameters on the synthesis of chiral amines

    DEFF Research Database (Denmark)

    Pirrung, Silvia; Lima Afonso Neto, Watson; Schwarze, Daniel

    equilibrium, the inhibition profiles for substrates and products but also on the possibilities for in-situ product removal (ISPR) and technologies for shifting the equilibrium. In a challenging process such as the synthesis of optically pure chiral amines using ω-transaminase, these decisions will have...... process parameters involved in the production of two chiral amines (S-methylbenzylamine and 3-amino-1-phenylbutane) (Figure 1) to demonstrate the effects of such decisions....

  19. Siegel's chiral boson and the chiral Schwinger model

    International Nuclear Information System (INIS)

    Berger, T.

    1992-01-01

    In this paper Siegel's proposal for a Lagrangian formulation of a chiral boson is analyzed by applying recent results on 2d chiral quantum gravity. A model is derived whose solution consists of a massive scalar and two massless chiral scalars. Therefore it is a minimally bosonized two-fermion chiral Schwinger model

  20. Evanescent-wave and ambient chiral sensing by signal-reversing cavity ringdown polarimetry.

    Science.gov (United States)

    Sofikitis, Dimitris; Bougas, Lykourgos; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Loppinet, Benoit; Rakitzis, T Peter

    2014-10-02

    Detecting and quantifying chirality is important in fields ranging from analytical and biological chemistry to pharmacology and fundamental physics: it can aid drug design and synthesis, contribute to protein structure determination, and help detect parity violation of the weak force. Recent developments employ microwaves, femtosecond pulses, superchiral light or photoionization to determine chirality, yet the most widely used methods remain the traditional methods of measuring circular dichroism and optical rotation. However, these signals are typically very weak against larger time-dependent backgrounds. Cavity-enhanced optical methods can be used to amplify weak signals by passing them repeatedly through an optical cavity, and two-mirror cavities achieving up to 10(5) cavity passes have enabled absorption and birefringence measurements with record sensitivities. But chiral signals cancel when passing back and forth through a cavity, while the ubiquitous spurious linear birefringence background is enhanced. Even when intracavity optics overcome these problems, absolute chirality measurements remain difficult and sometimes impossible. Here we use a pulsed-laser bowtie cavity ringdown polarimeter with counter-propagating beams to enhance chiral signals by a factor equal to the number of cavity passes (typically >10(3)); to suppress the effects of linear birefringence by means of a large induced intracavity Faraday rotation; and to effect rapid signal reversals by reversing the Faraday rotation and subtracting signals from the counter-propagating beams. These features allow absolute chiral signal measurements in environments where background subtraction is not feasible: we determine optical rotation from α-pinene vapour in open air, and from maltodextrin and fructose solutions in the evanescent wave produced by total internal reflection at a prism surface. The limits of the present polarimeter, when using a continuous-wave laser locked to a stable, high

  1. Two-chiral component microemulsion EKC - chiral surfactant and chiral oil. Part 2: diethyl tartrate.

    Science.gov (United States)

    Kahle, Kimberly A; Foley, Joe P

    2007-08-01

    In this second study on dual-chirality microemulsions containing a chiral surfactant and a chiral oil, a less hydrophobic and lower interfacial tension chiral oil, diethyl tartrate, is employed (Part 1, Foley, J. P. et al.., Electrophoresis, DOI: 10.1002/elps.200600551). Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and diethyl tartrate (D, L, or racemic, 0.88% v/v) were examined as pseudostationary phases (PSPs) for the enantioseparation of six chiral pharmaceutical compounds: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Average efficiencies increased with the addition of a chiral oil to R-DDCV PSP formulations. Modest improvements in resolution and enantioselectivity (alpha(enant)) were achieved with two-chiral-component systems over the one-chiral-component microemulsion. Slight enantioselective synergies were confirmed using a thermodynamic model. Results obtained in this study are compared to those obtained in Part 1 as well as those obtained with chiral MEEKC using an achiral, low-interfacial-tension oil (ethyl acetate). Dual-chirality microemulsions with the more hydrophobic oil dibutyl tartrate yielded, relative to diethyl tartrate, higher efficiencies (100,000-134,000 vs. 80,800-94,300), but lower resolution (1.64-1.91 vs. 2.08-2.21) due to lower enantioselectivities (1.060-1.067 vs. 1.078-1.081). Atenolol enantiomers could not be separated with the dibutyl tartrate-based microemulsions but were partially resolved using diethyl tartrate microemulsions. A comparable single-chirality microemulsion based on the achiral oil ethyl acetate yielded, relative to diethyl tartrate, lower efficiency (78 300 vs. 91 600), higher resolution (1.99 vs. 1.83), and similar enantioselectivities.

  2. Fusion rules of chiral algebras

    International Nuclear Information System (INIS)

    Gaberdiel, M.

    1994-01-01

    Recently we showed that for the case of the WZW and the minimal models fusion can be understood as a certain ring-like tensor product of the symmetry algebra. In this paper we generalize this analysis to arbitrary chiral algebras. We define the tensor product of conformal field theory in the general case and prove that it is associative and symmetric up to equivalence. We also determine explicitly the action of the chiral algebra on this tensor product. In the second part of the paper we demonstrate that this framework provides a powerful tool for calculating restrictions for the fusion rules of chiral algebras. We exhibit this for the case of the W 3 algebra and the N=1 and N=2 NS superconformal algebras. (orig.)

  3. Spin-Dependent Transport through Chiral Molecules Studied by Spin-Dependent Electrochemistry

    Science.gov (United States)

    2016-01-01

    dark” measurements, we also describe photoelectrochemical measurements in which light is used to affect the spin selective electron transport through the chiral molecules. We describe how the excitation of a chromophore (such as CdSe nanoparticles), which is attached to a chiral working electrode, can flip the preferred spin orientation of the photocurrent, when measured under the identical conditions. Thus, chirality-induced spin polarization, when combined with light and magnetic field effects, opens new avenues for the study of the spin transport properties of chiral molecules and biomolecules and for creating new types of spintronic devices in which light and molecular chirality provide new functions and properties. PMID:27797176

  4. Bootstrapping N=2 chiral correlators

    Science.gov (United States)

    Lemos, Madalena; Liendo, Pedro

    2016-01-01

    We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.

  5. Bootstrapping N=2 chiral correlators

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Madalena [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Liendo, Pedro [Humboldt-Univ. Berlin (Germany). IMIP

    2015-12-15

    We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.

  6. Bootstrapping N=2 chiral correlators

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Madalena [DESY Hamburg, Theory Group,Notkestrasse 85, D-22607 Hamburg (Germany); Liendo, Pedro [IMIP, Humboldt-Universität zu Berlin, IRIS Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany)

    2016-01-07

    We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.

  7. Probing chiral superconductivity in Sr_2RuO_4 underneath the surface by point contact measurements

    International Nuclear Information System (INIS)

    Wang, He; Luo, Jiawei; Lou, Weijian

    2017-01-01

    Sr2RuO4 (SRO) is the prime candidate for a chiral p-wave superconductor with critical temperature T_c(SRO)∼1.5 K. Chiral domains with opposite chiralities p_x±ip_y have been proposed, but are yet to be confirmed. We measure the field dependence of the point contact (PC) resistance between a tungsten tip and an SRO–Ru eutectic crystal, where micrometer-sized Ru inclusions are embedded in SRO with an atomically sharp interface. Ruthenium is an s-wave superconductor with T_c(Ru)∼0.5 K; flux pinned near the Ru inclusions can suppress its superconductivity, as reflected in the PC resistance and spectra. This flux pinning effect originates from SRO underneath the surface and is very strong once flux is introduced. To fully remove flux pinning, one needs to thermally cycle the sample above T_c(SRO) or apply alternating fields with decreasing amplitude. With alternating fields, the observed hysteresis in magnetoresistance can be explained by domain dynamics, providing support for the existence of chiral domains. The origin of the strong pinning could be the chiral domains themselves.

  8. Chiral and continuum extrapolation of partially quenched lattice results

    Energy Technology Data Exchange (ETDEWEB)

    C.R. Allton; W. Armour; D.B. Leinweber; A.W. Thomas; R.D. Young

    2005-04-01

    The vector meson mass is extracted from a large sample of partially quenched, two-flavor lattice QCD simulations. For the first time, discretization, finite-volume and partial quenching artifacts are treated in a unified chiral effective field theory analysis of the lattice simulation results.

  9. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes.

    Science.gov (United States)

    Liu, Bilu; Wu, Fanqi; Gui, Hui; Zheng, Ming; Zhou, Chongwu

    2017-01-24

    Preparation of chirality-defined single-wall carbon nanotubes (SWCNTs) is the top challenge in the nanotube field. In recent years, great progress has been made toward preparing single-chirality SWCNTs through both direct controlled synthesis and postsynthesis separation approaches. Accordingly, the uses of single-chirality-dominated SWCNTs for various applications have emerged as a new front in nanotube research. In this Review, we review recent progress made in the chirality-controlled synthesis of SWCNTs, including metal-catalyst-free SWCNT cloning by vapor-phase epitaxy elongation of purified single-chirality nanotube seeds, chirality-specific growth of SWCNTs on bimetallic solid alloy catalysts, chirality-controlled synthesis of SWCNTs using bottom-up synthetic strategy from carbonaceous molecular end-cap precursors, etc. Recent major progresses in postsynthesis separation of single-chirality SWCNT species, as well as methods for chirality characterization of SWCNTs, are also highlighted. Moreover, we discuss some examples where single-chirality SWCNTs have shown clear advantages over SWCNTs with broad chirality distributions. We hope this review could inspire more research on the chirality-controlled preparation of SWCNTs and equally important inspire the use of single-chirality SWCNT samples for more fundamental studies and practical applications.

  10. The paradigm of Pseudodual Chiral Models

    International Nuclear Information System (INIS)

    Zachos, C.K.; Curtright, T.L.

    1994-01-01

    This is a synopsis and extension of Phys. Rev. D49 5408 (1994). The Pseudodual Chiral Model illustrates 2-dimensional field theories which possess an infinite number of conservation laws but also allow particle production, at variance with naive expectations-a folk theorem of integrable models. We monitor the symmetries of the pseudodual model, both local and nonlocal, as transmutations of the symmetries of the (very different) usual Chiral Model. We refine the conventional algorithm to more efficiently produce the nonlocal symmetries of the model. We further find the canonical transformation which connects the usual chiral model to its fully equivalent dual model, thus contradistinguishing the pseudodual theory

  11. Two-chiral-component microemulsion electrokinetic chromatography-chiral surfactant and chiral oil: part 1. dibutyl tartrate.

    Science.gov (United States)

    Kahle, Kimberly A; Foley, Joe P

    2007-06-01

    The first simultaneous use of a chiral surfactant and a chiral oil for microemulsion EKC (MEEKC) is reported. Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and dibutyl tartrate (D, L, or racemic, 1.23% v/v) were examined as chiral pseudostationary phases (PSPs) for the separation of six pairs of pharmaceutical enantiomers: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Subtle differences were observed for three chromatographic figures of merit (alpha(enant), alpha(meth), k) among the chiral microemulsions; a moderate difference was observed for efficiency (N) and elution range. Dual-chirality microemulsions provided both the largest and smallest enantioselectivities, due to small positive and negative synergies between the chiral microemulsion components. For the ephedrine family of compounds, dual-chiral microemulsions with surfactant and oil in opposite stereochemical configurations provided higher enantioselectivities than the single-chiral component microemulsion (RXX), whereas dual-chiral microemulsions with surfactant and oil in the same stereochemical configurations provided lower enantioselectivities than RXX. Slight to moderate enantioselective synergies were confirmed using a thermodynamic model. Efficiencies observed with microemulsions comprised of racemic dibutyl tartrate or dibutyl-D-tartrate were significantly higher than those obtained with dibutyl-L-tartrate, with an average difference in plate count of about 25 000. Finally, one two-chiral-component microemulsion (RXS) provided significantly better resolution than the remaining one- and two-chiral-component microemulsions for the ephedrine-based compounds, but only slightly better or equivalent resolution for non-ephedrine compounds.

  12. Chiral dynamics of baryons in the perturbative chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Pumsa-ard, K.

    2006-07-01

    In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints

  13. Two-dimensional chiral asymmetry in unidirectional magnetic anisotropy structures

    Energy Technology Data Exchange (ETDEWEB)

    Perna, P., E-mail: paolo.perna@imdea.org; Guerrero, R.; Niño, M. A. [IMDEA-Nanoscience, c/ Faraday, 9 Campus de Cantoblanco, 28049 Madrid (Spain); Ajejas, F.; Maccariello, D.; Cuñado, J. L. [IMDEA-Nanoscience, c/ Faraday, 9 Campus de Cantoblanco, 28049 Madrid (Spain); DFMC and Instituto “Nicolás Cabrera”, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Muñoz, M. [IMM-CSIC, Isaac Newton 8, PTM, 28760 Tres Cantos, Madrid (Spain); ISOM, Universidad Politécnica de Madrid, 28040 Madrid (Spain); Prieto, J. L. [ISOM, Universidad Politécnica de Madrid, 28040 Madrid (Spain); Miranda, R.; Camarero, J. [IMDEA-Nanoscience, c/ Faraday, 9 Campus de Cantoblanco, 28049 Madrid (Spain); DFMC and Instituto “Nicolás Cabrera”, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid (Spain)

    2016-05-15

    We investigate the symmetry-breaking effects of magnetic nanostructures that present unidirectional (one-fold) magnetic anisotropy. Angular and field dependent transport and magnetic properties have been studied in two different exchange-biased systems, i.e. ferromagnetic (FM)/ antiferromagnetic (AFM) bilayer and spin-valve structures. We experimentally show the direct relationships between the magnetoresistance (MR) response and the magnetization reversal pathways for any field value and direction. We demonstrate that even though the MR signals are related to different transport phenomena, namely anisotropic magnetoresistance (AMR) and giant magnetoresistance (GMR), chiral asymmetries are found around the magnetization hard-axis direction, in both cases originated from the one-fold symmetry of the interfacial exchange coupling. Our results indicate that the chiral asymmetry of transport and magnetic behaviors are intrinsic of systems with an unidirectional contribution.

  14. Two-dimensional chiral asymmetry in unidirectional magnetic anisotropy structures

    Directory of Open Access Journals (Sweden)

    P. Perna

    2016-05-01

    Full Text Available We investigate the symmetry-breaking effects of magnetic nanostructures that present unidirectional (one-fold magnetic anisotropy. Angular and field dependent transport and magnetic properties have been studied in two different exchange-biased systems, i.e. ferromagnetic (FM/ antiferromagnetic (AFM bilayer and spin-valve structures. We experimentally show the direct relationships between the magnetoresistance (MR response and the magnetization reversal pathways for any field value and direction. We demonstrate that even though the MR signals are related to different transport phenomena, namely anisotropic magnetoresistance (AMR and giant magnetoresistance (GMR, chiral asymmetries are found around the magnetization hard-axis direction, in both cases originated from the one-fold symmetry of the interfacial exchange coupling. Our results indicate that the chiral asymmetry of transport and magnetic behaviors are intrinsic of systems with an unidirectional contribution.

  15. Extreme chirality in Swiss roll metamaterials

    International Nuclear Information System (INIS)

    Demetriadou, A; Pendry, J B

    2009-01-01

    The chiral Swiss roll metamaterial is a resonant, magnetic medium that exhibits a negative refractive band for one-wave polarization. Its unique structure facilitates huge chiral effects: a plane polarized wave propagating through this system can change its polarization by 90 deg. in less than a wavelength. Such chirality is at least 100 times greater than previous structures have achieved. In this paper, we discuss this extreme chiral behaviour with both numerical and analytical results.

  16. Geometrical protection of topological magnetic solitons in microprocessed chiral magnets

    Science.gov (United States)

    Mito, Masaki; Ohsumi, Hiroyuki; Tsuruta, Kazuki; Kotani, Yoshinori; Nakamura, Tetsuya; Togawa, Yoshihiko; Shinozaki, Misako; Kato, Yusuke; Kishine, Jun-ichiro; Ohe, Jun-ichiro; Kousaka, Yusuke; Akimitsu, Jun; Inoue, Katsuya

    2018-01-01

    A chiral soliton lattice stabilized in a monoaxial chiral magnet CrNb3S6 is a magnetic superlattice consisting of magnetic kinks with a ferromagnetic background. The magnetic kinks are considered to be topological magnetic solitons (TMSs). Changes in the TMS number yield discretized responses in magnetization and electrical conductivity, and this effect is more prominent in smaller crystals. We demonstrate that, in microprocessed CrNb3S6 crystals, TMSs are geometrically protected through element-selected micromagnetometry using soft x-ray magnetic circular dichroism (MCD). A series of x-ray MCD data is supported by mean-field and micromagnetic analyses. By designing the microcrystal geometry, TMS numbers can be successfully changed and fixed over a wide range of magnetic fields.

  17. WIMP-nucleus scattering in chiral effective theory

    Science.gov (United States)

    Cirigliano, Vincenzo; Graesser, Michael L.; Ovanesyan, Grigory

    2012-10-01

    We discuss long-distance QCD corrections to the WIMP-nucleon(s) interactions in the framework of chiral effective theory. For scalar-mediated WIMP-quark interactions, we calculate all the next-to-leading-order corrections to the WIMP-nucleus elastic cross-section, including two-nucleon amplitudes and recoil-energy dependent shifts to the single-nucleon scalar form factors. As a consequence, the scalar-mediated WIMP-nucleus cross-section cannot be parameterized in terms of just two quantities, namely the neutron and proton scalar form factors at zero momentum transfer, but additional parameters appear, depending on the short-distance WIMP-quark interaction. Moreover, multiplicative factorization of the cross-section into particle, nuclear and astro-particle parts is violated. In practice, while the new effects are of the natural size expected by chiral power counting, they become very important in those regions of parameter space where the leading order WIMP-nucleus amplitude is suppressed, including the so-called "isospin-violating dark matter" regime. In these regions of parameter space we find order-of-magnitude corrections to the total scattering rates and qualitative changes to the shape of recoil spectra.

  18. Coherence properties of holes subject to a fluctuating spin chirality

    International Nuclear Information System (INIS)

    Wheatley, J.M.; Hong, T.M.

    1991-01-01

    The coherence properties of holes coupled to short-ranged chiral spin fluctuations with a characteristic chiral spin fluctuation time τ ch =ω ch -1 are investigated in two dimensions. At temperatures kT much-lt 4π 2 left-angle φ 2 right-angle -1 ℎω ch hole quasiparticles exist and propagate with a renormalized mass m * /m=1+left-angle φ 2 right-angle ℎ/16πma 0 2 ω ch . $langle phi sup 2 rangle--- is the amplitude of the local fictitious flux fluctuation and a 0 is a lattice cutoff. At temperatures kT much-gt 4π 2 left-angle φ 2 right-angle -1 ℎω ch an effective-mass approximation is invalid and we find that the hole diffuses according to a logarithmic diffusion law in the quasistatic chiral field. The unusual diffusion law is a consequence of the long-ranged nature of the gauge field. The result shows that the holes do not form a coherent quantum fluid in the quasistatic regime

  19. Quark pair creation in color electric fields and effects of magnetic fields

    International Nuclear Information System (INIS)

    Tanji, Noato

    2010-01-01

    The time evolution of a system where a uniform and classical SU(3) color electric field and quantum fields of quarks interact with each other is studied focusing on non-perturbative pair creation and its back reaction. We characterize a color direction of an electric field in a gauge invariant way, and investigate its dependence. Momentum distributions of created quarks show plasma oscillation as well as quantum effects such as the Pauli blocking and interference. Pressure of the system is also calculated, and we show that pair creation moderates degree of anisotropy of pressure. Furthermore, enhancement of pair creation and induction of chiral charge under a color magnetic field which is parallel to an electric field are discussed.

  20. Ballistic rectification of vortex domain wall chirality at nanowire corners

    Energy Technology Data Exchange (ETDEWEB)

    Omari, K.; Bradley, R. C.; Broomhall, T. J.; Hodges, M. P. P.; Hayward, T. J. [Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD (United Kingdom); Rosamond, M. C.; Linfield, E. H. [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Im, M.-Y. [Center for X-Ray Optics, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873 (Korea, Republic of); Fischer, P. [Materials Sciences Division, Lawrence Berkley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Santa Cruz, California 94056 (United States)

    2015-11-30

    The interactions of vortex domain walls with corners in planar magnetic nanowires are probed using magnetic soft X-ray transmission microscopy. We show that when the domain walls are propagated into sharp corners using applied magnetic fields above a critical value, their chiralities are rectified to either clockwise or anticlockwise circulation depending on whether the corners turn left or right. Single-shot focused magneto-optic Kerr effect measurements are then used to demonstrate how, when combined with modes of domain propagation that conserve vortex chirality, this allows us to dramatically reduce the stochasticity of domain pinning at artificial defect sites. Our results provide a tool for controlling domain wall chirality and pinning behavior both in further experimental studies and in future domain wall-based memory, logic and sensor technologies.

  1. Negative magnetoresistance in Weyl semimetals NbAs and NbP: Intrinsic chiral anomaly and extrinsic effects

    Science.gov (United States)

    Li, Yupeng; Wang, Zhen; Li, Pengshan; Yang, Xiaojun; Shen, Zhixuan; Sheng, Feng; Li, Xiaodong; Lu, Yunhao; Zheng, Yi; Xu, Zhu-An

    2017-06-01

    Chiral anomaly-induced negative magnetoresistance (NMR) has been widely used as critical transport evidence for the existence of Weyl fermions in topological semimetals. In this mini-review, we discuss the general observation of NMR phenomena in non-centrosymmetric NbP and NbAs. We show that NMR can arise from the intrinsic chiral anomaly of Weyl fermions and/or extrinsic effects, such as the superimposition of Hall signals; field-dependent inhomogeneous current flow in the bulk, i.e., current jetting; and weak localization (WL) of coexistent trivial carriers. The WL-controlled NMR is heavily dependent on sample quality and is characterized by a pronounced crossover from positive to negative MR growth at elevated temperatures, resulting from the competition between the phase coherence time and the spin-orbital scattering constant of the bulk trivial pockets. Thus, the correlation between the NMR and the chiral anomaly need to be scrutinized without the support of complimentary techniques. Because of the lifting of spin degeneracy, the spin orientations of Weyl fermions are either parallel or antiparallel to the momentum, which is a unique physical property known as helicity. The conservation of helicity provides strong protection for the transport of Weyl fermions, which can only be effectively scattered by magnetic impurities. Chemical doping with magnetic and non-magnetic impurities is thus more convincing than the NMR method for detecting the existence of Weyl fermions.

  2. Chiral gravity, log gravity, and extremal CFT

    International Nuclear Information System (INIS)

    Maloney, Alexander; Song Wei; Strominger, Andrew

    2010-01-01

    We show that the linearization of all exact solutions of classical chiral gravity around the AdS 3 vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.

  3. Chirality in adsorption on solid surfaces.

    Science.gov (United States)

    Zaera, Francisco

    2017-12-07

    In the present review we survey the main advances made in recent years on the understanding of chemical chirality at solid surfaces. Chirality is an important topic, made particularly relevant by the homochiral nature of the biochemistry of life on Earth, and many chiral chemical reactions involve solid surfaces. Here we start our discussion with a description of surface chirality and of the different ways that chirality can be bestowed on solid surfaces. We then expand on the studies carried out to date to understand the adsorption of chiral compounds at a molecular level. We summarize the work published on the adsorption of pure enantiomers, of enantiomeric mixtures, and of prochiral molecules on chiral and achiral model surfaces, especially on well-defined metal single crystals but also on other flat substrates such as highly ordered pyrolytic graphite. Several phenomena are identified, including surface reconstruction and chiral imprinting upon adsorption of chiral agents, and the enhancement or suppression of enantioselectivity seen in some cases upon adsorption of enantiomixtures of chiral compounds. The possibility of enhancing the enantiopurity of adsorbed layers upon the addition of chiral seeds and the so-called "sergeants and soldiers" phenomenon are presented. Examples are provided where the chiral behavior has been associated with either thermodynamic or kinetic driving forces. Two main approaches to the creation of enantioselective surface sites are discussed, namely, via the formation of supramolecular chiral ensembles made out of small chiral adsorbates, and by adsorption of more complex chiral molecules capable of providing suitable chiral environments for reactants by themselves, via the formation of individual adsorbate:modifier adducts on the surface. Finally, a discussion is offered on the additional effects generated by the presence of the liquid phase often required in practical applications such as enantioselective crystallization, chiral

  4. Direct construction of the effective action of chiral gauge fermions in the anomalous sector

    International Nuclear Information System (INIS)

    Salcedo, L.L.

    2009-01-01

    The anomaly implies an obstruction to a fully chiral covariant calculation of the effective action in the abnormal-parity sector of chiral theories. The standard approach then is to reconstruct the anomalous effective action from its covariant current. In this work, we use a recently introduced formulation which allows one to directly construct the non-trivial chiral invariant part of the effective action within a fully covariant formalism. To this end we develop an appropriate version of Chan's approach to carry out the calculation within the derivative expansion. The result to four derivatives, i.e., to leading order in two and four dimensions and next-to-leading order in two dimensions, is explicitly worked out. Fairly compact expressions are found for these terms. (orig.)

  5. Chiral Recognition and Separation by Chirality-Enriched Metal-Organic Frameworks.

    Science.gov (United States)

    Das, Saikat; Xu, Shixian; Ben, Teng; Qiu, Shilun

    2018-05-16

    Endowed with chiral channels and pores, chiral metal-organic frameworks (MOFs) are highly useful; however, their synthesis remains a challenge given that most chiral building blocks are expensive. Although MOFs with induced chirality have been reported to avoid this shortcoming, no study providing evidence for the ee value of such MOFs has yet been reported. We herein describe the first study on the efficiency of chiral induction in MOFs using inexpensive achiral building blocks and fully recoverable chiral dopants to control the handedness of racemic MOFs. This method yielded chirality-enriched MOFs with accessible pores. The ability of the materials to form host-guest complexes was probed with enantiomers of varying size and coordination and in solvents with varying polarity. Furthermore, mixed-matrix membranes (MMMs) composed of chirality-enriched MOF particles dispersed in a polymer matrix demonstrated a new route for chiral separation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effective chiral restoration in the ρ' meson in lattice QCD

    International Nuclear Information System (INIS)

    Glozman, L. Ya.; Lang, C. B.; Limmer, Markus

    2010-01-01

    In simulations with dynamical quarks it has been established that the ground state ρ in the infrared is a strong mixture of the two chiral representations (0,1)+(1,0) and (1/2,1/2) b . Its angular momentum content is approximately the 3 S 1 partial wave. Effective chiral restoration in an excited ρ-meson would require that in the infrared this meson couples predominantly to one of the two representations. The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the nonperturbatively determined excited state at different resolution scales. We present results for the first excited state of the ρ-meson using simulations with n f =2 dynamical quarks. We point out, that in the infrared a leading contribution to ρ ' =ρ(1450) comes from (1/2,1/2) b , in contrast to the ρ. The ρ ' wave function contains a significant contribution of the 3 D 1 wave which is not consistent with the quark model prediction.

  7. Effective chiral restoration in the ρ' meson in lattice QCD

    Science.gov (United States)

    Glozman, L. Ya.; Lang, C. B.; Limmer, Markus

    2010-11-01

    In simulations with dynamical quarks it has been established that the ground state ρ in the infrared is a strong mixture of the two chiral representations (0,1)+(1,0) and (1/2,1/2)b. Its angular momentum content is approximately the S13 partial wave. Effective chiral restoration in an excited ρ-meson would require that in the infrared this meson couples predominantly to one of the two representations. The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the nonperturbatively determined excited state at different resolution scales. We present results for the first excited state of the ρ-meson using simulations with nf=2 dynamical quarks. We point out, that in the infrared a leading contribution to ρ'=ρ(1450) comes from (1/2,1/2)b, in contrast to the ρ. The ρ' wave function contains a significant contribution of the D13 wave which is not consistent with the quark model prediction.

  8. On superconductivity of matter at hight density and the effects of inducing nuclear chirality in molecular structures

    DEFF Research Database (Denmark)

    da Providëncia, J.; Jalkanen, Karl J.; Bohr, Henrik

    2013-01-01

    relativistic fluid of elementary particles is studied. We find that the magnetic field of spin polarized matter with densities of 2 to 30, where 0 is the equilibrium density of nuclear matter, is rather huge, of the order of 1017 Gauss. Finally we look at the chiral nature of nuclear forces and interactions...... as they possibly relate to chirality of nuclei (atoms) in molecules as a source of chirality in amino acids and hence in life. Previous works have not investigated the nuclear forces as a possible bias which initiated the bias towards L-amino acids as the building blocks on proteins, and later life....

  9. Features of electron-phonon interactions in nanotubes with chiral symmetry in magnetic field

    CERN Document Server

    Kibis, O V

    2001-01-01

    Interaction of the electrons with acoustic phonons in the nanotube with chiral symmetry by availability of the magnetic field, parallel to the nanotube axis, is considered. It is shown that the electron energy spectrum is asymmetric relative to the electron wave vector inversion and for that reason the electron-phonon interaction appears to be different for similar phonons with mutually contrary directions of the wave vector. This phenomenon leads to origination of the electromotive force by the spatially uniform electron gas heating and to appearance of the quadrupole component in the nanotube volt-ampere characteristics

  10. The problem of principal chiral field with the parameters depending on free arguments and its integration

    International Nuclear Information System (INIS)

    Aliev, B.N.; Leznov, A.N.

    1989-01-01

    A method to determine the solutions for principal chiral field (PCP) equation with the parameters depending on independent arguments for arbitrary semisimple algebra is worked out. Each solution depends on N(G)-r/2 arbitrary functions of independent arguments. Moreover, the number of derivatives of the arbitrary functions appearing in the solution distinguishes them, gathering them into series. 6 refs

  11. Chiral discrimination in NMR spectroscopy: computation of the relevant molecular pseudoscalars

    Science.gov (United States)

    Buckingham, A. David; Lazzeretti, Paolo; Pelloni, Stefano

    2015-07-01

    Nuclear magnetic resonance (NMR) is normally blind to chirality but it has been predicted that precessing nuclear spins in a strong magnetic field induce a rotating electric polarisation that is of opposite sign for enantiomers. The polarisation is determined by two pseudoscalars, ? and ?. The former arises from the distortion of the electronic structure by the nuclear magnetic moment in the presence of the strong magnetic field and is equivalent to the linear effect of an electric field on the nuclear shielding tensor. ? determines the temperature-dependent partial orientation of the permanent electric dipole moment of the molecule by the antisymmetric part of the nuclear shielding tensor. Computations of these two contributions are reported for the nuclei in the chiral molecules N-methyloxaziridine, 2-methyloxirane, 1,3-dimethylallene, 1-fluoroethanol, 2-fluoroazirine, 1,2-M-dioxin, 1,2-M-dithiin, 1,2-M-diselenin and 1,2-M-ditellurin. For strongly dipolar molecules, ? is typically two to three orders of magnitude greater than ?, raising hopes for the detection of chirality in NMR spectroscopy. This paper is dedicated to the memory of Prof. Nicholas Handy, F.R.S.

  12. Nuclear forces and chiral theories

    International Nuclear Information System (INIS)

    Friar, J.L.; Washington Univ., Seattle, WA

    1995-01-01

    Recent successes in ab initio calculations of light nuclei (A=2-6) will be reviewed and correlated with the dynamical consequences of chiral symmetry. The tractability of nuclear physics evinced by these results is evidence for that symmetry. The relative importance of three-nucleon forces, four-nucleon forces, multi-pion exchanges, and relativistic corrections will be discussed in the context of effective field theories and dimensional power counting. Isospin violation in the nuclear force will also be discussed in this context

  13. Heisenberg spin glass experiments and the chiral ordering scenario

    International Nuclear Information System (INIS)

    Campbell, Ian A.; Petit, Dorothee C.M.C.

    2010-01-01

    An overview is given of experimental data on Heisenberg spin glass materials so as to make detailed comparisons with numerical results on model Heisenberg spin glasses, with particular reference to the chiral driven ordering transition scenario due to Kawamura and collaborators. On weak anisotropy systems, experiments show critical exponents which are very similar to those estimated numerically for the model Heisenberg chiral ordering transition but which are quite different from those at Ising spin glass transitions. Again on weak anisotropy Heisenberg spin glasses, experimental torque data show well defined in-field transverse ordering transitions up to strong applied fields, in contrast to Ising spin glasses where fields destroy ordering. When samples with stronger anisotropies are studied, critical and in-field behavior tend progressively towards the Ising limit. It can be concluded that the essential physics of laboratory Heisenberg spin glasses mirrors that of model Heisenberg spin glasses, where chiral ordering has been demonstrated numerically. (author)

  14. Analysis of General Power Counting Rules in Effective Field Theory

    CERN Document Server

    Gavela, B M; Manohar, A V; Merlo, L

    2016-01-01

    We derive the general counting rules for a quantum effective field theory (EFT) in $\\mathsf{d}$ dimensions. The rules are valid for strongly and weakly coupled theories, and predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. The size of cross sections is controlled by the $\\Lambda$ power counting of EFT, not by chiral counting, even for chiral perturbation theory ($\\chi$PT). The relation between $\\Lambda$ and $f$ is generalized to $\\mathsf{d}$ dimensions. We show that the naive dimensional analysis $4\\pi$ counting is related to $\\hbar$ counting. The EFT counting rules are applied to $\\chi$PT, to Standard Model EFT and to the non-trivial case of Higgs EFT, which combines the $\\Lambda$ and chiral counting rules within a single theory.

  15. Chiral Spirals from Discontinuous Chiral Symmetry

    Science.gov (United States)

    Kojo, Toru

    2014-09-01

    Recently phases of the inhomongeneous chiral condensates (IChC) attract renewed attentions in quark matter context. A number of theoretical studies have suggested that in some domain of moderate quark density the IChC phases are energetically more favored than the normal, chiral symmetric phase. In particular, the NJL-type model studies indicate that the phase of IChCs may mask the usual 1st order chiral phase transition line and its critical end point, and might change the conventional wisdom. In this talk, I will discuss characteristic features of the IChC phases and their potential impacts on the compact star physics. In particular, some of the IChC phases open gaps near the quark Fermi surface, suppressing back-reaction from the quark to gluon sectors. This mechanism delays the chiral restoration in the strange quark sector, forbids the emergence of the large bag constant, and as a consequence, makes the quark matter EOS very stiff. Recently phases of the inhomongeneous chiral condensates (IChC) attract renewed attentions in quark matter context. A number of theoretical studies have suggested that in some domain of moderate quark density the IChC phases are energetically more favored than the normal, chiral symmetric phase. In particular, the NJL-type model studies indicate that the phase of IChCs may mask the usual 1st order chiral phase transition line and its critical end point, and might change the conventional wisdom. In this talk, I will discuss characteristic features of the IChC phases and their potential impacts on the compact star physics. In particular, some of the IChC phases open gaps near the quark Fermi surface, suppressing back-reaction from the quark to gluon sectors. This mechanism delays the chiral restoration in the strange quark sector, forbids the emergence of the large bag constant, and as a consequence, makes the quark matter EOS very stiff. NSF Grants PHY09-69790, PHY13-05891.

  16. Chiral relay: a novel strategy for the control and amplification of enantioselectivity in chiral Lewis acid promoted reactions.

    Science.gov (United States)

    Corminboeuf, Olivier; Quaranta, Laura; Renaud, Philippe; Liu, Mei; Jasperse, Craig P; Sibi, Mukund P

    2003-01-03

    Chiral Lewis acid catalysis has emerged as one of the premiere method to control stereochemistry. Much effort has gone into the design of superior ligands with increasing steric extension to shield distant reactive sites. We report here an alternative and complementary approach based on a "chiral relay". This strategy focuses on the improved design of achiral templates which may relay and amplify the stereochemistry from ligands. The essence of this strategy is that the chiral Lewis acid would effectively convert an achiral template into a chiral non-racemic template. This approach combines the advantages of enantioselective catalysis (substoichiometric amount of the chiral inducer) with the ones of chiral auxiliary control (efficient and predictable stereocontrol).

  17. Regular Scanning Tunneling Microscope Tips can be Intrinsically Chiral

    International Nuclear Information System (INIS)

    Tierney, Heather L.; Murphy, Colin J.; Sykes, E. Charles H.

    2011-01-01

    We report our discovery that regular scanning tunneling microscope tips can themselves be chiral. This chirality leads to differences in electron tunneling efficiencies through left- and right-handed molecules, and, when using the tip to electrically excite molecular rotation, large differences in rotation rate were observed which correlated with molecular chirality. As scanning tunneling microscopy is a widely used technique, this result may have unforeseen consequences for the measurement of asymmetric surface phenomena in a variety of important fields.

  18. Regular scanning tunneling microscope tips can be intrinsically chiral.

    Science.gov (United States)

    Tierney, Heather L; Murphy, Colin J; Sykes, E Charles H

    2011-01-07

    We report our discovery that regular scanning tunneling microscope tips can themselves be chiral. This chirality leads to differences in electron tunneling efficiencies through left- and right-handed molecules, and, when using the tip to electrically excite molecular rotation, large differences in rotation rate were observed which correlated with molecular chirality. As scanning tunneling microscopy is a widely used technique, this result may have unforeseen consequences for the measurement of asymmetric surface phenomena in a variety of important fields.

  19. Geometrical approach to central molecular chirality: a chirality selection rule

    OpenAIRE

    Capozziello, S.; Lattanzi, A.

    2004-01-01

    Chirality is of primary importance in many areas of chemistry and has been extensively investigated since its discovery. We introduce here the description of central chirality for tetrahedral molecules using a geometrical approach based on complex numbers. According to this representation, for a molecule having n chiral centres, it is possible to define an index of chirality. Consequently a chirality selection rule has been derived which allows the characterization of a molecule as achiral, e...

  20. Increments to chiral recognition facilitating enantiomer separations of chiral acids, bases, and ampholytes using Cinchona-based zwitterion exchanger chiral stationary phases.

    Science.gov (United States)

    Wernisch, Stefanie; Pell, Reinhard; Lindner, Wolfgang

    2012-07-01

    The intramolecular distances of anion and cation exchanger sites of zwitterionic chiral stationary phases represent potential tuning sites for enantiomer selectivity. In this contribution, we investigate the influence of alkanesulfonic acid chain length and flexibility on enantiomer separations of chiral acids, bases, and amphoteric molecules for six Cinchona alkaloid-based chiral stationary phases in comparison with structurally related anion and cation exchangers. Employing polar-organic elution conditions, we observed an intramolecular counterion effect for acidic analytes which led to reduced retention times but did not impair enantiomer selectivities. Retention of amphoteric analytes is based on simultaneous double ion pairing of their charged functional groups with the acidic and basic sites of the zwitterionic selectors. A chiral center in the vicinity of the strong cation exchanger site is vital for chiral separations of bases. Sterically demanding side chains are beneficial for separations of free amino acids. Enantioseparations of free (un-derivatized) peptides were particularly successful in stationary phases with straight-chain alkanesulfonic acid sites, pointing to a beneficial influence of more flexible moieties. In addition, we observed pseudo-enantiomeric behavior of quinine and quinidine-derived chiral stationary phases facilitating reversal of elution orders for all analytes. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. One-loop perturbative coupling of A and A? through the chiral overlap operator

    Science.gov (United States)

    Makino, Hiroki; Morikawa, Okuto; Suzuki, Hiroshi

    2018-03-01

    Recently, Grabowska and Kaplan constructed a four-dimensional lattice formulation of chiral gauge theories on the basis of the chiral overlap operator. At least in the tree-level approximation, the left-handed fermion is coupled only to the original gauge field A, while the right-handed one is coupled only to the gauge field A*, a deformation of A by the gradient flow with infinite flow time. In this paper, we study the fermion one-loop effective action in their formulation. We show that the continuum limit of this effective action contains local interaction terms between A and A*, even if the anomaly cancellation condition is met. These non-vanishing terms would lead an undesired perturbative spectrum in the formulation.

  2. Nuclear axial current operators to fourth order in chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Krebs, H., E-mail: hermann.krebs@rub.de [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Epelbaum, E., E-mail: evgeny.epelbaum@rub.de [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93016 (United States); Meißner, U.-G., E-mail: meissner@hiskp.uni-bonn.de [Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Institut für Kernphysik, Institute for Advanced Simulation, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - High Performance Computing, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2017-03-15

    We present the complete derivation of the nuclear axial charge and current operators as well as the pseudoscalar operators to fourth order in the chiral expansion relative to the dominant one-body contribution using the method of unitary transformation. We demonstrate that the unitary ambiguity in the resulting operators can be eliminated by the requirement of renormalizability and by matching of the pion-pole contributions to the nuclear forces. We give expressions for the renormalized single-, two- and three-nucleon contributions to the charge and current operators and pseudoscalar operators including the relevant relativistic corrections. We also verify explicitly the validity of the continuity equation.

  3. Chiral dynamics and heavy quark symmetry in a solvable toy field-theoretic model

    International Nuclear Information System (INIS)

    Bardeen, W.A.; Hill, C.T.

    1994-01-01

    We study a solvable QCD-like toy theory, a generalization of the Nambu--Jona-Lasinio model, which implements chiral symmetries of light quarks and heavy quark symmetry. The chiral symmetric and chiral broken phases can be dynamically tuned. This implies a parity-doubled heavy-light meson system, corresponding to a (0 - ,1 - ) multiplet and a (0 + ,1 + ) heavy spin multiplet. Consequently the mass difference of the two multiplets is given by a Goldberger-Treiman relation and g A is found to be small. The Isgur-Wise function ξ(w), the decay constant f B , and other observables are studied

  4. Finite nuclei in relativistic models with a light chiral scalar meson

    International Nuclear Information System (INIS)

    Serot, B.D.; Furnstahl, R.J.

    1993-01-01

    Relativistic chiral models with a light scalar, meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. In these models, the scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. There deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario for chiral hadronic models, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed

  5. Chirality and grain boundary effects on indentation mechanical properties of graphene coated on nickel foil

    Science.gov (United States)

    Yan, Yuping; Lv, Jiajiang; Liu, Sheng

    2018-04-01

    We investigate chirality and grain boundary (GB) effects on indentation mechanical properties of graphene coated on nickel foil using molecular dynamics simulations. The models of graphene with different chirality angles, different numbers of layers and tilt GBs were established. It was found that the chirality angle of few-layer graphene had a significant effect on the load bearing capacity of graphene/nickel systems, and this turns out to be more significant when the number of layers is greater than one. The enhancement to the contact stiffness, elastic capacity and the load bearing capacity of graphene with tilt GBs was lower than that of pristine graphene.

  6. Molecular dynamics studies and quantification of the effect of chirality on the formation of liquid crystal mesophases

    International Nuclear Information System (INIS)

    Solymosi, Miklos

    2002-01-01

    Results are presented from theoretical studies and from a series of molecular dynamics simulations undertaken to quantify the effect of chirality on the formation of liquid crystal mesophases. In the theoretical studies we have proposed a scaled chiral index with a formulation which allows comparison to be made between molecules comprising different numbers of atoms. We have undertaken chirality calculations utilizing the proposed scaled chiral index, G 0S , for one optimized static molecular geometry for a range of liquid crystal chiral dopants and ferroelectric liquid crystal molecules. The scaled chiral index, G 0S , allows a rapid calculation to be made of a pseudoscalar quantity which shows a good correlation with the helical twisting power of liquid crystal chiral dopants in a nematic liquid crystal solvent. This could prove a powerful aid in the design of novel dopant molecules where the dopant is rigid and the helical twisting is predominantly a steric effect. The same scaled chirality index, G 0S , calculation for ferroelectric liquid crystal molecules hints at an inverse correlation with spontaneous polarization agreeing with some experimental results. The scaled chiral index is a chemically useful index that can also be decomposed into atomic or functional group contributions, thereby creating a new measure of the asymmetric potential of functional groups and their different possible substitution positions. In the molecular dynamics simulation studies we have investigated two three-site Gay-Berne models, one chiral and the other achiral, each with a rotated central site forming a zigzag shape. In the chiral model one of the end site was additionally rotated out of the plane of the other two sites by a chiral angle θ c . Results from the achiral phase simulations support the theory that steric molecular shape can be associated with a driving force that leads to the smectic A - smectic C phase transition since such a transition was observed in the achiral

  7. Effects of Composite Pions on the Chiral Condensate within the PNJL Model at Finite Temperature

    Science.gov (United States)

    Blaschke, D.; Dubinin, A.; Ebert, D.; Friesen, A. V.

    2018-05-01

    We investigate the effect of composite pions on the behaviour of the chiral condensate at finite temperature within the Polyakov-loop improved NJL model. To this end we treat quark-antiquark correlations in the pion channel (bound states and scattering continuum) within a Beth-Uhlenbeck approach that uses medium-dependent phase shifts. A striking medium effect is the Mott transition which occurs when the binding energy vanishes and the discrete pion bound state merges the continuum. This transition is triggered by the lowering of the continuum edge due to the chiral restoration transition. This in turn also entails a modification of the Polyakov-loop so that the SU(3) center symmetry gets broken at finite temperature and dynamical quarks (and gluons) appear in the system, taking over the role of the dominant degrees of freedom from the pions. At low temperatures our model reproduces the chiral perturbation theory result for the chiral condensate while at high temperatures the PNJL model result is recovered. The new aspect of the current work is a consistent treatment of the chiral restoration transition region within the Beth-Uhlenbeck approach on the basis of mesonic phase shifts for the treatment of the correlations.

  8. Vector mesons and chiral symmetry

    International Nuclear Information System (INIS)

    Ecker, G.

    1989-01-01

    The ambiguities in the off-shell behaviour of spin-1 exchange can be resolved to O(p 4 ) in the chiral low-energy expansion if the asymptotic behaviour of QCD is properly incorporated. As a consequence, the chiral version of vector (and axial-vector) meson dominance is model independent. Additional high-energy constraints motivated by QCD determine the V,A resonance couplings uniquely. In particular, QCD in its effective chiral realization sucessfully predicts Γ(ρ→2π). 10 refs. (Author)

  9. Chirality as a tool in nucleic acid recognition: principles and relevance in biotechnology and in medicinal chemistry.

    Science.gov (United States)

    Corradini, Roberto; Sforza, Stefano; Tedeschi, Tullia; Marchelli, Rosangela

    2007-05-05

    The understanding of the interaction of chiral species with DNA or RNA is very important for the development of new tools in biology and of new drugs. Several cases in which chirality is a crucial point in determining the DNA binding mode are reviewed and discussed, with the aim of illustrating how chirality can be considered as a tool for improving the understanding of mechanisms and the effectiveness of nucleic acid recognition. The review is divided into two parts: the former describes examples of chiral species interacting with DNA: intercalators, metal complexes, and groove binders; the latter part is dedicated to chirality in DNA analogs, with discussion of phosphate stereochemistry and chirality of ribose substitutes, in particular of peptide nucleic acids (PNAs) for which a number of works have been published recently dealing with the effect of chirality in DNA recognition. The discussion is intended to show how enantiomeric recognition originates at the molecular level, by exploiting the enormous progresses recently achieved in the field of structural characterization of complexes formed by nucleic acid with their ligands by crystallographic and spectroscopic methods. Examples of application of the DNA binding molecules described and the role of chirality in DNA recognition relevant for biotechnology or medicinal chemistry are reported. (c) 2007 Wiley-Liss, Inc.

  10. 8th International Workshop on Chiral Dynamics

    CERN Document Server

    2016-01-01

    The International Workshop on Chiral Dynamics 2015, the eighth in a series which started in 1994 at MIT, and was later held in Mainz (1997), Jefferson Lab (2000 and 2012), Bonn (2003), Duke (2006) and Bern (2009), will take place in Pisa, from June 29 to July 3 2015, and will be jointly hosted by the Department of Physics of the University of Pisa and the Pisa branch of the Istituto Nazionale di Fisica Nucleare. The purpose of this workshop series is to bring physicists together who are active in this field, as well as those who are interested, to discuss and debate the most recent achievements and future developments. The workshop will have a near equal contribution from theorists and experimentalists and, as in the latest editions, a strong synergy with the lattice community will be present. Topics: Hadron structure Isospin breaking in hadronic systems Meson-meson and meson-baryon interaction Effective field theory and chiral perturbation theory Few-body physics Compton scattering and the polarizabilities o...

  11. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    Science.gov (United States)

    Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.

    2016-05-01

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10-100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

  12. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    International Nuclear Information System (INIS)

    Tartan, Chloe C.; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J.

    2016-01-01

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10–100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

  13. Localised polymer networks in chiral nematic liquid crystals for high speed photonic switching

    Energy Technology Data Exchange (ETDEWEB)

    Tartan, Chloe C., E-mail: chloe.tartan@eng.ox.ac.uk, E-mail: steve.elston@eng.ox.ac.uk; Salter, Patrick S.; Booth, Martin J.; Morris, Stephen M.; Elston, Steve J., E-mail: chloe.tartan@eng.ox.ac.uk, E-mail: steve.elston@eng.ox.ac.uk [Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ (United Kingdom)

    2016-05-14

    Self-assembled periodic structures based upon chiral liquid crystalline materials have significant potential in the field of photonics ranging from fast-switching optoelectronic devices to low-threshold lasers. The flexoelectro-optic effect, which is observed in chiral nematic liquid crystals (LCs) when an electric field is applied perpendicular to the helical axis, has significant potential as it exhibits analogue switching in 10–100 μs. However, the major technological barrier that prohibits the commercial realisation of this electro-optic effect is the requirement of a uniform, in-plane alignment of the helix axis between glass substrates. Here, it is shown that periodic polymer structures engineered in the nematic phase of a chiral nematic LC device using direct laser writing can result in the spontaneous formation of the necessary uniform lying helix (ULH) state. Specifically, two-photon polymerization is used in conjunction with a spatial light modulator so as to correct for aberrations introduced by the bounding glass substrates enabling the polymer structures to be fabricated directly into the device. The ULH state appears to be stable in the absence of an externally applied electric field, and the optimum contrast between the bright and dark states is obtained using polymer structures that have periodicities of the order of the device thickness.

  14. Search for the Chiral Magnetic Effect in Heavy-Ion Collisions and Quantification of the Background with the AMPT Model

    Science.gov (United States)

    Bryon, Jacob

    2017-09-01

    The chiral magnetic effect (CME) arises from the chirality imbalance of quarks and its interaction to the strong magnetic field generated in non-central heavy-ion collisions. Possible formation of domains of quarks with chirality imbalances is an intrinsic property of the Quantum ChromoDynamics (QCD), which describes the fundamental strong interactions among quarks and gluons. Azimuthal-angle correlations have been used to measure the magnitude of charge- separation across the reaction plane, which was predicted to arise from the CME. However, backgrounds from collective motion (flow) of the collision system can also contribute to the correlation observable. In this poster, we investigate the magnitude of the background utilizing the AMPT model, which contains no CME signals. We demonstrate, for Au +Au collisions at 200 and 39 GeV, a scheme to remove the flow background via the event-shape engineering with the vanishing magnitude of the flow vector. We also calculate the ensemble average of the charge-separation observable, and provide a background baseline for the experimental data.

  15. Chiral Nuclear Dynamics II

    CERN Document Server

    Rho, Mannque

    2008-01-01

    This is the sequel to the first volume to treat in one effective field theory framework the physics of strongly interacting matter under extreme conditions. This is vital for understanding the high temperature phenomena taking place in relativistic heavy ion collisions and in the early Universe, as well as the high-density matter predicted to be present in compact stars. The underlying thesis is that what governs hadronic properties in a heat bath and/or a dense medium is hidden local symmetry which emerges from chiral dynamics of light quark systems and from the duality between QCD in 4D and

  16. Investigations of chiral symmetry breaking and topological aspects of lattice QCD

    International Nuclear Information System (INIS)

    Garcia Ramos, Elena

    2013-01-01

    The spontaneous breaking of chiral symmetry is a fascinating phenomenon of QCD whose mechanism is still not well understood and it has fundamental phenomenological implications. It is, for instance, responsible for the low mass of the pions which are effectively Goldstone bosons of the spontaneously broken symmetry. Since these phenomena belong to the low energy regime of QCD, non-perturbative techniques have to be applied in order to study them. In this work we use the twisted mass lattice QCD regularization to compute the chiral condensate, the order parameter of spontaneous chiral symmetry breaking. To this end we apply the recently introduced method of spectral projectors which allows us to perform calculations in large volumes due to its inherently low computational cost. This approach, moreover, enables a direct calculation of the chiral condensate based on a theoretically clean definition of the observable via density chains. We thus present a continuum limit determination of the chirally extrapolated condensate for N f =2 and N f =2+1+1 flavours of twisted mass fermions at maximal twist. In addition we study the chiral behavior of the topological susceptibility, a measure of the topological fluctuations of the gauge fields. We again apply the spectral projector method for this calculation. We comment on the difficulties which appear in the calculation of this observable due to the large autocorrelations involved. Finally we present the continuum limit result of the topological susceptibility in the pure gluonic theory which allows us to perform a test of the Witten-Veneziano relation. We found that this relation is well satisfied. Our results support the validity of the Witten-Veneziano formula which relates the topological fluctuations of the gauge fields with the unexpectedly large value of the η' mass.

  17. Chiral effective potential in N = {1/2} non-commutative Wess-Zumino model

    International Nuclear Information System (INIS)

    Banin, A.T.; Buchbinder, I.L.; Pletnev, N.G.

    2004-01-01

    We study a structure of holomorphic quantum contributions to the effective action for N = {1/2} noncommutative Wess-Zumino model. Using the symbol operator techniques we present the one-loop chiral effective potential in a form of integral over proper time of the appropriate heat kernel. We prove that this kernel can be exactly found. As a result we obtain the exact integral representation of the one-loop effective potential. Also we study the expansion of the effective potential in a series in powers of the chiral superfield φ and derivative D 2 φ and construct a procedure for systematic calculation of the coefficients in the series. We show that all terms in the series without derivatives can be summed up in an explicit form. (author)

  18. Controlling vortex chirality and polarity by geometry in magnetic nanodots

    OpenAIRE

    Agramunt Puig, Sebastià

    2014-01-01

    The independent control of both vortex chirality and polarity is a significant challenge in magnetic devices based on nano-sized magnetic vortex structures. By micromagnetic simulations here, we show that in soft ferromagnetic nanodots with an adequate modulated thickness, the desired combination of chirality and polarity can be achieved just by changing the direction of the in-plane applied magnetic field. Despite the complex behavior, the vortex chirality and polarity control can be summari...

  19. Design of planar chiral metamaterials for near-infrared regime

    Science.gov (United States)

    Kaya, Sabri; Turkmen, Mustafa; Topaktas, Omer

    2017-01-01

    Planar chiral metamaterials (PCMs) comprising double-layer dielectric-metal-dielectric resonant structures in the shape of a windmill are presented for near-infrared regime. The circular dichroism is retrieved from transmission spectra. Effects of used materials on circular dichroism characteristics of PCM arrays are investigated for the first time. The dependence of spectral characteristics on the geometrical parameters of the PCMs is analyzed by the finite-difference time-domain method. The observations indicated that the circular dichroism characteristics of the proposed PCM arrays are strongly dependent on the type of metal and dielectric materials. Due to the enhanced chiroptical near-field response and tunable spectral behavior, proposed PCM arrays may have potential for biosensing applications of chiral biomolecules.

  20. Higgs effective field theories. Systematics and applications

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Claudius G.

    2016-07-28

    Researchers of the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) announced on July 4th, 2012, the observation of a new particle. The properties of the particle agree, within the relatively large experimental uncertainties, with the properties of the long-sought Higgs boson. Particle physicists around the globe are now wondering, ''Is it the Standard Model Higgs that we observe; or is it another particle with similar properties?'' We employ effective field theories (EFTs) for a general, model-independent description of the particle. We use a few, minimal assumptions - Standard Model (SM) particle content and a separation of scales to the new physics - which are supported by current experimental results. By construction, effective field theories describe a physical system only at a certain energy scale, in our case at the electroweak-scale v. Effects of new physics from a higher energy-scale, Λ, are described by modified interactions of the light particles. In this thesis, ''Higgs Effective Field Theories - Systematics and Applications'', we discuss effective field theories for the Higgs particle, which is not necessarily the Higgs of the Standard Model. In particular, we focus on a systematic and consistent expansion of the EFT. The systematics depends on the dynamics of the new physics. We distinguish two different consistent expansions. EFTs that describe decoupling new-physics effects and EFTs that describe non-decoupling new-physics effects. We briefly discuss the first case, the SM-EFT. The focus of this thesis, however, is on the non-decoupling EFTs. We argue that the loop expansion is the consistent expansion in the second case. We introduce the concept of chiral dimensions, equivalent to the loop expansion. Using the chiral dimensions, we expand the electroweak chiral Lagrangian up to next-to-leading order, O(f{sup 2}/Λ{sup 2})=O(1/16π{sup 2}). Further, we discuss how different

  1. Field theoretic consistency of QCD operator product expansion contributions from chiral non-invariant condensates

    International Nuclear Information System (INIS)

    Elias, V.; Steele, T.G.

    1987-01-01

    Several field theoretic aspects of the operator product expansion (OPE) augmentation of QCD have been examined. Gauge independence of quark self-energies at the mass shell corresponding to the mass m (characterizing the OPE expansion parameter m/p) has been verified to all orders of the OPE for dimension 3 and 5 chiral symmetry breaking condensates. Similarly, the necessary transversality of the quark condensate contribution to the gluon self-energy has been verified, provided that propagator masses appearing in the self-energy are equilibrated with the OPE mass parameter m

  2. Chiral memory via chiral amplification and selective depolymerization of porphyrin aggregates

    NARCIS (Netherlands)

    Helmich, F.A.; Lee, C.C.; Schenning, A.P.H.J.; Meijer, E.W.

    2010-01-01

    Chiral memory at the supramolecular level is obtained via a new approach using chiral Zn porphrins and achiral Cu porphyrins. In a "sergeant-and-soldiers" experiment, the Zn "sergeant" transfers its own chirality to Cu "soldiers" and, after chiral amplification, the "sergeant" is removed from the

  3. Convective instability of RCP modes for a magnetized chiral plasma

    International Nuclear Information System (INIS)

    Torres-Silva, Hector; Sakanaka, P.H.; Reggiani, N.

    1998-01-01

    Using the Maxwell's equations and the proposed constitutive relations for a chiral plasma medium, the dispersion relations for right circularly polarized waves, (RCP), depending on the characteristics of the distribution, a new mode conversion and instabilities are found due to the chiral effect. From the dispersion relations and considering that the chirowave magnetic field may be important when the condition of velocity isotropy is dropped, we find that growing modes (instabilities) can occur at resonance and for frequencies below the electron gyrofrequency. We study, in this paper, the convective instability of RCP waves in a two-component bi-Lorentzian chiroplasma which can model the solar wind particle distributions. (author)

  4. Chiral Cliffs: Investigating the Influence of Chirality on Binding Affinity.

    Science.gov (United States)

    Schneider, Nadine; Lewis, Richard A; Fechner, Nikolas; Ertl, Peter

    2018-05-11

    Chirality is understood by many as a binary concept: a molecule is either chiral or it is not. In terms of the action of a structure on polarized light, this is indeed true. When examined through the prism of molecular recognition, the answer becomes more nuanced. In this work, we investigated chiral behavior on protein-ligand binding: when does chirality make a difference in binding activity? Chirality is a property of the 3D structure, so recognition also requires an appreciation of the conformation. In many situations, the bioactive conformation is undefined. We set out to address this by defining and using several novel 2D descriptors to capture general characteristic features of the chiral center. Using machine-learning methods, we built different predictive models to estimate if a chiral pair (a set of two enantiomers) might exhibit a chiral cliff in a binding assay. A set of about 3800 chiral pairs extracted from the ChEMBL23 database was used to train and test our models. By achieving an accuracy of up to 75 %, our models provide good performance in discriminating chiral cliffs from non-cliffs. More importantly, we were able to derive some simple guidelines for when one can reasonably use a racemate and when an enantiopure compound is needed in an assay. We critically discuss our results and show detailed examples of using our guidelines. Along with this publication we provide our dataset, our novel descriptors, and the Python code to rebuild the predictive models. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Perturbative renormalizability of chiral two-pion exchange in nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    Pavon Valderrama, M.

    2011-01-01

    We study the perturbative renormalizability of chiral two-pion exchange for singlet and triplet channels within effective field theory, provided that the one-pion exchange piece of the interaction has been fully iterated. We determine the number of counterterms/subtractions needed to obtain finite results when the cutoff is removed, resulting in three counterterms for the singlet channel and six for the triplet. The results show that perturbative chiral two-pion exchange reproduce the data up to a center-of-mass momentum of k∼200-300 MeV in the singlet channel and k∼300-400 MeV in the triplet.

  6. The microscopic NMR probe in chiral magnets. Zero field-, field-modulated- and Skyrmion- states in FeGe and MnSi

    Energy Technology Data Exchange (ETDEWEB)

    Baenitz, Michael; Yasuoka, Hiroshi; Majumder, Mayukh; Khuntia, Panchanan; Schmidt, Marcus [MPI for the Chemical Physics of Solids, Dresden (Germany); Witt, Sebastian; Krellner, Cornelius [Goethe University, Frankfurt am Main (Germany)

    2016-07-01

    Cubic FeGe is a prototype B20 chiral magnet (T{sub c} = 280 K) which allows to study chiral correlations directly ''on-site'' via the{sup 57}Fe nucleus because of its S=1/2 nuclear spin interacting only with the electron spin moment. NMR provides the static and dynamic staggered local magnetization M{sub Q} through the hyperfine field (H{sub hf}) and the spin lattice relaxation rate (SLRR = 1/T{sub 1}). Measurements were performed on randomly oriented {sup 57}Fe enriched FeGe single crystals between 2-300 K. Helical-, conical- and field-polarized-states could be clearly identified and spin dynamics of each phase was investigated. MnSi single crystals and {sup 29}Si enriched MnSi polycrystals were studied by {sup 29}Si-NMR (S=1/2) in the ordered state (T{sub c} = 29 K) and above. The T- and H- dependence of H{sub hf} and SLRR was investigated in great detail for both FeGe and MnSi.The {sup 29}Si-NMR lines in MnSi are narrow and H{sub hf}-values obtained are smaller than in FeGe. Our results are in general accordance with the extended SCR theory for itinerant helical magnets, although the theory does not include the symmetry breaking in the B20 structure and the multi-band nature. For FeGe correlations are complex due to its more localized magnetism.

  7. On the overlap prescription for lattice regularization of chiral fermions

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1995-12-01

    Feynman rules for the vacuum amplitude of fermions coupled to external gauge and Higgs fields in a domain wall lattice model are derived using time-dependent perturbation theory. They have a clear and simple structure corresponding to 1-loop vacuum graphs. Their continuum approximations are extracted by isolating the infrared singularities and it is shown that, in each order, they reduce to vacuum contributions for chiral fermions. In this sense the lattice model is seen to constitute a valid regularization of the continuum theory of chiral fermions coupled to weak and slowly varying gauge and Higgs fields. The overlap amplitude, while not gauge invariant, exhibits a well defined (module phase conventions) response to gauge transformations of the background fields. This response reduces in the continuum limit to the expected chiral anomaly, independently of the phase convention. (author). 20 refs

  8. On the overlap prescription for lattice regularization of chiral fermions

    Energy Technology Data Exchange (ETDEWEB)

    Randjbar-Daemi, S; Strathdee, J

    1995-12-01

    Feynman rules for the vacuum amplitude of fermions coupled to external gauge and Higgs fields in a domain wall lattice model are derived using time-dependent perturbation theory. They have a clear and simple structure corresponding to 1-loop vacuum graphs. Their continuum approximations are extracted by isolating the infrared singularities and it is shown that, in each order, they reduce to vacuum contributions for chiral fermions. In this sense the lattice model is seen to constitute a valid regularization of the continuum theory of chiral fermions coupled to weak and slowly varying gauge and Higgs fields. The overlap amplitude, while not gauge invariant, exhibits a well defined (module phase conventions) response to gauge transformations of the background fields. This response reduces in the continuum limit to the expected chiral anomaly, independently of the phase convention. (author). 20 refs.

  9. Instantons, monopoles and chiral symmetry breaking

    International Nuclear Information System (INIS)

    Feurstein, M.; Markum, H.; Thurner, S.

    1996-01-01

    We analyze the interplay of topological objects in four dimensional QCD. The distributions of color magnetic monopoles obtained in the maximum abelian gauge are computed around instantons in both pure and full QCD. We find an enhanced probability of encountering monopoles inside the core of an instanton. We show this by means of local correlation functions of the topological variables. For specific gauge field configurations we visualize the situation graphically. Motivated by the fact that a fermion in the field of a static monopole has an energy zero mode we investigate how monopole loops and instantons are locally correlated with the chiral condensate. The observed correlations suggest that monopoles are involved in the mechanism of breaking of chiral symmetry. (orig.)

  10. Solvent polarity effects on supramolecular chirality of a polyfluorene-thiophene copolymer.

    Science.gov (United States)

    Hirahara, Takashi; Yoshizawa-Fujita, Masahiro; Takeoka, Yuko; Rikukawa, Masahiro

    2018-06-01

    This study demonstrates the supramolecular chirality control of a conjugated polymer via solvent polarity. We designed and synthesized a chiral polyfluorene-thiophene copolymer having two different chiral side chains at the 9-position of the fluorene unit. Chiral cyclic and alkyl ethers with different polarities were selected as the chiral side chains. The sign of the circular dichroism spectra in the visible wavelength region was affected by the solvent system, resulting from the change of supramolecular structure. The estimation of the solubility parameter revealed that the solubility difference of the side chains contributed to the change of the circular dichroism sign, which was also observed in spin-coated films prepared from good solvents having different polarities. © 2018 Wiley Periodicals, Inc.

  11. Chiral quarks and proton decay

    International Nuclear Information System (INIS)

    Chadha, S.; Daniel, M.; Gounaris, G.J.; Murphy, A.J.

    1984-04-01

    The authors calculate the hadronic matrix elements of baryon decay operators using a chiral effective Lagrangian with quarks, gluons and Goldstone boson fields. The cases where the ΔB=1 operators arise from supersymmetric SU(5) GUT as well as the minimal SU(5) GUT model are studied. In each model the results depend on two parameters. In particular there is a range of values for the two parameters, where the dominant decay modes in the minimal SU(5) GUT are: p→etae + and n→π - e + . (author)

  12. 1/N perturbation theory and quantum conservation laws for supersymmetrical chiral field. 2

    International Nuclear Information System (INIS)

    Aref'eva, I.Ya.; Krivoshchekov, V.K.; Medvedev, P.B.; Gosudarstvennyj Komitet Standartov Soveta Ministrov SSSR, Moscow; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Teoreticheskoj i Ehksperimental'noj Fiziki)

    1980-01-01

    The renormalizability of the supersymmetric chiral model (supersymmetric nonlinear σ-model) is proved in the framework of the 1/N perturbation theory expansion proposed in the previous paper. The renormalizability proof is essentially based on the quantum supersymmetric chirality condition. The supersymmetric formulation of equations of motion is given. The first non-trivial quantum conservation laws are derived

  13. Effective field theory for magnetic compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Buchmuller, Wilfried; Dierigl, Markus [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany); Dudas, Emilian [Centre de Physique Théorique, École Polytechnique, CNRS, Université Paris-Saclay,F-91128 Palaiseau (France); Schweizer, Julian [Deutsches Elektronen-Synchrotron DESY,22607 Hamburg (Germany)

    2017-04-10

    Magnetic flux plays an important role in compactifications of field and string theories in two ways, it generates a multiplicity of chiral fermion zero modes and it can break supersymmetry. We derive the complete four-dimensional effective action for N=1 supersymmetric Abelian and non-Abelian gauge theories in six dimensions compactified on a torus with flux. The effective action contains the tower of charged states and it accounts for the mass spectrum of bosonic and fermionic fields as well as their level-dependent interactions. This allows us to compute quantum corrections to the mass and couplings of Wilson lines. We find that the one-loop corrections vanish, contrary to the case without flux. This can be traced back to the spontaneous breaking of symmetries of the six-dimensional theory by the background gauge field, with the Wilson lines as Goldstone bosons.

  14. The effect of the Polyakov loop on the chiral phase transition

    Directory of Open Access Journals (Sweden)

    Szép Zs.

    2011-04-01

    Full Text Available The Polyakov loop is included in the S U(2L × S U(2R chiral quark-meson model by considering the propagation of the constituent quarks, coupled to the (σ, π meson multiplet, on the homogeneous background of a temporal gauge field, diagonal in color space. The model is solved at finite temperature and quark baryon chemical potential both in the chiral limit and for the physical value of the pion mass by using an expansion in the number of flavors Nf. Keeping the fermion propagator at its tree-level, a resummation on the pion propagator is constructed which resums infinitely many orders in 1/Nf, where O(1/Nf represents the order at which the fermions start to contribute in the pion propagator. The influence of the Polyakov loop on the tricritical or the critical point in the µq – T phase diagram is studied for various forms of the Polyakov loop potential.

  15. Tailoring the chirality of light emission with spherical Si-based antennas.

    Science.gov (United States)

    Zambrana-Puyalto, Xavier; Bonod, Nicolas

    2016-05-21

    Chirality of light is of fundamental importance in several enabling technologies with growing applications in life sciences, chemistry and photodetection. Recently, some attention has been focused on chiral quantum emitters. Consequently, optical antennas which are able to tailor the chirality of light emission are needed. Spherical nanoresonators such as colloids are of particular interest to design optical antennas since they can be synthesized at a large scale and they exhibit good optical properties. Here, we show that these colloids can be used to tailor the chirality of a chiral emitter. To this purpose, we derive an analytic formalism to model the interaction between a chiral emitter and a spherical resonator. We then compare the performances of metallic and dielectric spherical antennas to tailor the chirality of light emission. It is seen that, due to their strong electric dipolar response, metallic spherical nanoparticles spoil the chirality of light emission by yielding achiral fields. In contrast, thanks to the combined excitation of electric and magnetic modes, dielectric Si-based particles feature the ability to inhibit or to boost the chirality of light emission. Finally, it is shown that dual modes in dielectric antennas preserve the chirality of light emission.

  16. Dynamics of ultra-short electromagnetic pulses in the system of chiral carbon nanotube waveguides in the presence of external alternating electric field

    Energy Technology Data Exchange (ETDEWEB)

    Konobeeva, N.N., E-mail: yana_nn@inbox.ru [Volgograd State University, University Avenue 100, Volgograd 400062 (Russian Federation); Belonenko, M.B. [Volgograd Institute of Business, Uzhno-ukrainskaya str., Volgograd 400048 (Russian Federation)

    2014-04-01

    The paper addresses the propagation of ultra-short optical pulses in chiral carbon nanotubes in the presence of external alternating electric field. Following the assumption that the considered optical pulses are represented in the form of discrete solitons, we analyze the wave equation for the electromagnetic field and consider the dynamics of pulses in external field, their initial amplitudes and frequencies.

  17. FDTD chiral brain tissue model for specific absorption rate determination under radiation from mobile phones at 900 and 1800 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Zamorano, M; Torres-Silva, H [Departamento de Electronica, Universidad de Tarapaca, 18 de Septiembre 2222, Arica (Chile)

    2006-04-07

    A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source.

  18. Anisotropy and Strong-Coupling Effects on the Collective Mode Spectrum of Chiral Superconductors: Application to Sr2RuO4

    Directory of Open Access Journals (Sweden)

    James Avery Sauls

    2015-06-01

    Full Text Available Recent theories of Sr2RuO4 based on the interplay of strong interactions, spin-orbit coupling and multi-band anisotropy predict chiral or helical ground states with strong anisotropy of the pairing states, with deep minima in the excitation gap, as well as strong phase anisotropy for the chiral ground state. We develop time-dependent mean field theory to calculate the Bosonic spectrum for the class of 2D chiral superconductors spanning 3He-A to chiral superconductors with strong anisotropy. Chiral superconductors support a pair of massive Bosonic excitations of the time-reversed pairs labeled by their parity under charge conjugation. These modes are degenerate for 2D 3He-A. Crystal field anisotropy lifts the degeneracy. Strong anisotropy also leads to low-lying Fermions, and thus to channels for the decay of the Bosonic modes. Selection rules and phase space considerations lead to large asymmetries in the lifetimes and hybridization of the Bosonic modes with the continuum of un-bound Fermion pairs. We also highlight results for the excitation of the Bosonic modes by microwave radiation that provide clear signatures of the Bosonic modes of an anisotropic chiral ground state.

  19. Optical activity in planar chiral metamaterials: Theoretical study

    International Nuclear Information System (INIS)

    Bai, Benfeng; Svirko, Yuri; Turunen, Jari; Vallius, Tuomas

    2007-01-01

    A thorough theoretical study of the optical activity in planar chiral metamaterial (PCM) structures, made of both dielectric and metallic media, is conducted by the analysis of gammadion-shaped nanoparticle arrays. The general polarization properties are first analyzed from an effective-medium perspective, by analogy with natural optical activity, and then verified by rigorous numerical simulation, some of which are corroborated by previous experimental results. The numerical analysis suggests that giant polarization rotation (tens of degrees) may be achieved in the PCM structures with a thickness of only hundreds of nanometers. The artificial optical activity arises from circular birefringence induced by the structural chirality and is enhanced by the guided-mode or surface-plasmon resonances taking place in the structures. There are two polarization conversion types in the dielectric PCMs, whereas only one type in the metallic ones. Many intriguing features of the polarization property of PCMs are also revealed and explained: the polarization effect is reciprocal and vanishes in the symmetrically layered structures; the effect occurs only in the transmitted field, but not in the reflected field; and the polarization spectra of two enantiomeric PCM structures are mirror symmetric to each other. These remarkable properties pave the way for the PCMs to be used as polarization elements in new-generation integrated optical systems

  20. Insight into the chiral induction in supramolecular stacks through preferential chiral salvation

    NARCIS (Netherlands)

    George, S.J.; Tomovic, Z.; Schenning, A.P.H.J.; Meijer, E.W.

    2011-01-01

    Preferred handedness in the supramolecular chirality of self-assembled achiral oligo(p-phenylenevinylene) (OPV) derivatives is induced by chiral solvents and spectroscopic probing provides insight into the mechanistic aspects of this chiral induction through chiral solvation

  1. A spectral route to determining chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We show how one-dimensional structured media can be used to measure chirality, via the spectral shift of the photonic band gap edges. Analytically, we show that a chiral contrast can, in some cases, be mapped unto an index contrast, thereby greatly simplifying the analysis of such structures. Using...... this mapping, we derive a first-order shift of the band gap edges with chirality. Potentially, this effect could be used for measuring enantiomeric excess....

  2. Surface-anchored poly(acryloyl-L(D)-valine) with enhanced chirality-selective effect on cellular uptake of gold nanoparticles

    Science.gov (United States)

    Deng, Jun; Wu, Sai; Yao, Mengyun; Gao, Changyou

    2016-01-01

    Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers. PMID:27531648

  3. Evolved chiral Hamiltonians at the three-body level and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Calci, Angelo

    2014-07-14

    Based on the fundamental symmetries of QCD, chiral effective field theory (EFT) provides two- (NN), three- (3N), four- (4N), and many-nucleon interactions in a consistent and systematic scheme. Recent developments to construct chiral NN+3N interactions at different chiral orders and regularizations enable exciting nuclear structure investigations as well as a quantification of the fundamental uncertainties resulting from the chiral expansion and regularization. We present the complete toolchain to employ the present and future chiral NN, 3N, and 4N interactions in nuclear structure calculations and emphasize technical developments in the three- and four-body space, such as the similarity renormalization group (SRG), the frequency conversion, and the transformation to the JT-coupled scheme. We study the predictions of the chiral NN+3N interactions in ab initio nuclear structure calculations with the importance-truncated no-core shell model and coupled-cluster approach. We demonstrate that the inclusion of chiral 3N forces improves the overall agreement with experiment for excitation energies of p-shell nuclei and it qualitatively reproduces the systematics of nuclear binding energies throughout the nuclear chart up to heavy tin isotopes. In this context it is necessary to introduce truncations in the three-body model space and we carefully analyze their impact and confirm the reliability of the reported results. The SRG evolution induces many-nucleon forces that generally cannot be included in the calculations and constitute a major limitation for the applicability of SRG-evolved chiral forces. We study the origin and effect of the induced many-nucleon forces and propose a modification of the interaction, which suppresses the induced beyond-3N forces. This enables applications of the chiral interactions far beyond the mid-p shell. Furthermore, we test alternative formulations of SRG generators aiming to prevent the induced many-body forces from the outset. The

  4. Massive states in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Saha Inst. of Nuclear Physics, Calcutta (India)

    1995-08-01

    It is shown that the chiral nonanalytic terms generated by {Delta}{sub 33} resonance in the nucleon self-energy is reproduced in chiral perturbation theory by perturbing appropriate local operators contained in the pion-nucleon effective Lagrangian itself. (orig.)

  5. Autoamplification of molecular chirality through the induction of supramolecular chirality

    NARCIS (Netherlands)

    van Dijken, Derk Jan; Beierle, John M.; Stuart, Marc C. A.; Szymanski, Wiktor; Browne, Wesley R.; Feringa, Ben L.

    2014-01-01

    The novel concept for the autoamplification of molecular chirality, wherein the amplification proceeds through the induction of supramolecular chirality, is presented. A solution of prochiral, ring-open diarylethenes is doped with a small amount of their chiral, ring-closed counterpart. The

  6. Globally and locally supersymmetric effective theories for light fields

    International Nuclear Information System (INIS)

    Brizi, Leonardo; Gomez-Reino, Marta; Scrucca, Claudio A.

    2009-01-01

    We reconsider the general question of how to characterize most efficiently the low-energy effective theory obtained by integrating out heavy modes in globally and locally supersymmetric theories. We consider theories with chiral and vector multiplets and identify the conditions under which an approximately supersymmetric low-energy effective theory can exist. These conditions translate into the requirements that all the derivatives, fermions and auxiliary fields should be small in units of the heavy mass scale. They apply not only to the matter sector, but also to the gravitational one if present, and imply in that case that the gravitino mass should be small. We then show how to determine the unique exactly supersymmetric theory that approximates this effective theory at the lowest order in the counting of derivatives, fermions and auxiliary fields, by working both at the superfield level and with component fields. As a result we give a simple prescription for integrating out heavy superfields in an algebraic and manifestly supersymmetric way, which turns out to hold in the same form both for globally and locally supersymmetric theories, meaning that the process of integrating out heavy modes commutes with the process of switching on gravity. More precisely, for heavy chiral and vector multiplets one has to impose respectively stationarity of the superpotential and the Kaehler potential.

  7. Saddle-splay screening and chiral symmetry breaking in toroidal nematics

    OpenAIRE

    Koning, Vinzenz; van Zuiden, Benjamin C.; Kamien, Randall D.; Vitelli, Vincenzo

    2013-01-01

    We present a theoretical study of director fields in toroidal geometries with degenerate planar boundary conditions. We find spontaneous chirality: despite the achiral nature of nematics the director configuration show a handedness if the toroid is thick enough. In the chiral state the director field displays a double twist, whereas in the achiral state there is only bend deformation. The critical thickness increases as the difference between the twist and saddle-splay moduli grows. A positiv...

  8. Chiral soliton models for baryons

    International Nuclear Information System (INIS)

    Weigel, H.

    2008-01-01

    This concise research monograph introduces and reviews the concept of chiral soliton models for baryons. In these models, baryons emerge as (topological) defects of the chiral field. The many applications shed light on a number of baryon properties, ranging from static properties via nucleon resonances and deep inelastic scattering to even heavy ion collisions. As far as possible, the theoretical investigations are confronted with experiment. Conceived to bridge the gap between advanced graduate textbooks and the research literature, this volume also features a number of appendices to help nonspecialist readers to follow in more detail some of the calculations in the main text. (orig.)

  9. Speciation and gene flow between snails of opposite chirality.

    Directory of Open Access Journals (Sweden)

    Angus Davison

    2005-09-01

    Full Text Available Left-right asymmetry in snails is intriguing because individuals of opposite chirality are either unable to mate or can only mate with difficulty, so could be reproductively isolated from each other. We have therefore investigated chiral evolution in the Japanese land snail genus Euhadra to understand whether changes in chirality have promoted speciation. In particular, we aimed to understand the effect of the maternal inheritance of chirality on reproductive isolation and gene flow. We found that the mitochondrial DNA phylogeny of Euhadra is consistent with a single, relatively ancient evolution of sinistral species and suggests either recent "single-gene speciation" or gene flow between chiral morphs that are unable to mate. To clarify the conditions under which new chiral morphs might evolve and whether single-gene speciation can occur, we developed a mathematical model that is relevant to any maternal-effect gene. The model shows that reproductive character displacement can promote the evolution of new chiral morphs, tending to counteract the positive frequency-dependent selection that would otherwise drive the more common chiral morph to fixation. This therefore suggests a general mechanism as to how chiral variation arises in snails. In populations that contain both chiral morphs, two different situations are then possible. In the first, gene flow is substantial between morphs even without interchiral mating, because of the maternal inheritance of chirality. In the second, reproductive isolation is possible but unstable, and will also lead to gene flow if intrachiral matings occasionally produce offspring with the opposite chirality. Together, the results imply that speciation by chiral reversal is only meaningful in the context of a complex biogeographical process, and so must usually involve other factors. In order to understand the roles of reproductive character displacement and gene flow in the chiral evolution of Euhadra, it will be

  10. Analyzing intrinsic plasmonic chirality by tracking the interplay of electric and magnetic dipole modes.

    Science.gov (United States)

    Hu, Li; Huang, Yingzhou; Pan, Lujun; Fang, Yurui

    2017-09-11

    Plasmonic chirality represents significant potential for novel nanooptical devices due to its association with strong chiroptical responses. Previous reports on plasmonic chirality mechanism mainly focus on phase retardation and coupling. In this paper, we propose a model similar to the chiral molecules for explaining the intrinsic plasmonic chirality mechanism of varies 3D chiral structures quantitatively based on the interplay and mixing of electric and magnetic dipole modes (directly from electromagnetic field numerical simulations), which forms mixed electric and magnetic polarizability.

  11. Chirality of magneto-electrodeposited metal film electrodes

    International Nuclear Information System (INIS)

    Mogi, Iwao; Watanabe, Kazuo

    2008-01-01

    The chiral electrode behaviors of magneto-electrodeposited (MED) Ag and Cu films were examined for the electrochemical reactions of D-glucose, L-glucose and L-cysteine. The Ag and Cu films were electrodeposited under a magnetic field of 2 T parallel (+2 T) or antiparallel (-2 T) to the faradaic current. For MED films of both Ag and Cu, the oxidation current of L-glucose was larger than that of D-glucose on the +2 T-film electrodes, and the results were opposite on the - 2 T-film electrodes. These facts demonstrate that the MED metal films possess the ability of chiral recognition for D- and L-glucoses. The MED Ag film electrodes also exhibited chiral behavior for the oxidation of L-cysteine

  12. Degenerate and chiral states in the extended Heisenberg model on the kagome lattice

    Science.gov (United States)

    Gómez Albarracín, F. A.; Pujol, P.

    2018-03-01

    We present a study of the low-temperature phases of the antiferromagnetic extended classical Heisenberg model on the kagome lattice, up to third-nearest neighbors. First, we focus on the degenerate lines in the boundaries of the well-known staggered chiral phases. These boundaries have either semiextensive or extensive degeneracy, and we discuss the partial selection of states by thermal fluctuations. Then, we study the model under an external magnetic field on these lines and in the staggered chiral phases. We pay particular attention to the highly frustrated point, where the three exchange couplings are equal. We show that this point can be mapped to a model with spin-liquid behavior and nonzero chirality. Finally, we explore the effect of Dzyaloshinskii-Moriya (DM) interactions in two ways: a homogeneous and a staggered DM interaction. In both cases, there is a rich low-temperature phase diagram, with different spontaneously broken symmetries and nontrivial chiral phases.

  13. Recent Progress in Asymmetric Catalysis and Chromatographic Separation by Chiral Metal–Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Suchandra Bhattacharjee

    2018-03-01

    Full Text Available Metal–organic frameworks (MOFs, as a new class of porous solid materials, have emerged and their study has established itself very quickly into a productive research field. This short review recaps the recent advancement of chiral MOFs. Here, we present simple, well-ordered instances to classify the mode of synthesis of chiral MOFs, and later demonstrate the potential applications of chiral MOFs in heterogeneous asymmetric catalysis and enantioselective separation. The asymmetric catalysis sections are subdivided based on the types of reactions that have been successfully carried out recently by chiral MOFs. In the part on enantioselective separation, we present the potentiality of chiral MOFs as a stationary phase for high-performance liquid chromatography (HPLC and high-resolution gas chromatography (GC by considering fruitful examples from current research work. We anticipate that this review will provide interest to researchers to design new homochiral MOFs with even greater complexity and effort to execute their potential functions in several fields, such as asymmetric catalysis, enantiomer separation, and chiral recognition.

  14. Acylation of Chiral Alcohols: A Simple Procedure for Chiral GC Analysis

    Directory of Open Access Journals (Sweden)

    Mireia Oromí-Farrús

    2012-01-01

    Full Text Available The use of iodine as a catalyst and either acetic or trifluoroacetic acid as a derivatizing reagent for determining the enantiomeric composition of acyclic and cyclic aliphatic chiral alcohols was investigated. Optimal conditions were selected according to the molar ratio of alcohol to acid, the reaction time, and the reaction temperature. Afterwards, chiral stability of chiral carbons was studied. Although no isomerization was observed when acetic acid was used, partial isomerization was detected with the trifluoroacetic acid. A series of chiral alcohols of a widely varying structural type were then derivatized with acetic acid using the optimal conditions. The resolution of the enantiomeric esters and the free chiral alcohols was measured using a capillary gas chromatograph equipped with a CP Chirasil-DEX CB column. The best resolutions were obtained with 2-pentyl acetates (α=3.00 and 2-hexyl acetates (α=1.95. This method provides a very simple and efficient experimental workup procedure for analyzing chiral alcohols by chiral-phase GC.

  15. Acylation of Chiral Alcohols: A Simple Procedure for Chiral GC Analysis.

    Science.gov (United States)

    Oromí-Farrús, Mireia; Torres, Mercè; Canela, Ramon

    2012-01-01

    The use of iodine as a catalyst and either acetic or trifluoroacetic acid as a derivatizing reagent for determining the enantiomeric composition of acyclic and cyclic aliphatic chiral alcohols was investigated. Optimal conditions were selected according to the molar ratio of alcohol to acid, the reaction time, and the reaction temperature. Afterwards, chiral stability of chiral carbons was studied. Although no isomerization was observed when acetic acid was used, partial isomerization was detected with the trifluoroacetic acid. A series of chiral alcohols of a widely varying structural type were then derivatized with acetic acid using the optimal conditions. The resolution of the enantiomeric esters and the free chiral alcohols was measured using a capillary gas chromatograph equipped with a CP Chirasil-DEX CB column. The best resolutions were obtained with 2-pentyl acetates (α = 3.00) and 2-hexyl acetates (α = 1.95). This method provides a very simple and efficient experimental workup procedure for analyzing chiral alcohols by chiral-phase GC.

  16. Breaking of chiral symmetry in vortex domain wall propagation in ferromagnetic nanotubes

    International Nuclear Information System (INIS)

    Otálora, J.A.; López-López, J.A.; Landeros, P.; Vargas, P.; Núñez, A.S.

    2013-01-01

    This paper is focused to the field-induced dynamics of vortex-like domain walls (VDWs) in magnetic nanotubes (MNTs). Based on a dissipative Lagrangian formalism that fully includes damping as well as exchange and dipole–dipole coupling, it is shown that VDW motion is very sensitive to the chirality, giving rise to a chiral asymmetry in the vortex wall propagation. As a consequence, the dynamics of the wall is fundamentally different to that of nanostripes and solid nanowires. Besides the well-known Walker breakdown that stands at the onset of the precessional wall motion, it is found an additional breakdown field (called here the chiral breakdown) that modifies the steady regime of VDWs. We also show outstanding VDWs dynamical properties at low applied fields, as low-field mobilities (∼10km/(sT)) and very short relaxation times (∼1ns), offering a reliable fast control of VDWs velocities (∼1000m/s at applied fields of 0.7 mT). - Highlights: • We model analytically the dynamics of vortex domain walls in magnetic nanotubes. • We fully include damping, exchange and dipole–dipole coupling. • The wall dynamics is fundamentally different to that of nanostripes. • We report and describe an extra dynamical instability, the Chiral Breakdown field. • We report outstanding dynamical properties at weak magnetic fields

  17. Breaking of chiral symmetry in vortex domain wall propagation in ferromagnetic nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Otálora, J.A., E-mail: jorge.otalora@usm.cl [Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso (Chile); López-López, J.A.; Landeros, P.; Vargas, P. [Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso (Chile); Núñez, A.S. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Blanco Encalada 2008, Santiago (Chile)

    2013-09-15

    This paper is focused to the field-induced dynamics of vortex-like domain walls (VDWs) in magnetic nanotubes (MNTs). Based on a dissipative Lagrangian formalism that fully includes damping as well as exchange and dipole–dipole coupling, it is shown that VDW motion is very sensitive to the chirality, giving rise to a chiral asymmetry in the vortex wall propagation. As a consequence, the dynamics of the wall is fundamentally different to that of nanostripes and solid nanowires. Besides the well-known Walker breakdown that stands at the onset of the precessional wall motion, it is found an additional breakdown field (called here the chiral breakdown) that modifies the steady regime of VDWs. We also show outstanding VDWs dynamical properties at low applied fields, as low-field mobilities (∼10km/(sT)) and very short relaxation times (∼1ns), offering a reliable fast control of VDWs velocities (∼1000m/s at applied fields of 0.7 mT). - Highlights: • We model analytically the dynamics of vortex domain walls in magnetic nanotubes. • We fully include damping, exchange and dipole–dipole coupling. • The wall dynamics is fundamentally different to that of nanostripes. • We report and describe an extra dynamical instability, the Chiral Breakdown field. • We report outstanding dynamical properties at weak magnetic fields.

  18. Faraday rotation dispersion microscopy imaging of diamagnetic and chiral liquids with pulsed magnetic field.

    Science.gov (United States)

    Suwa, Masayori; Nakano, Yusuke; Tsukahara, Satoshi; Watarai, Hitoshi

    2013-05-21

    We have constructed an experimental setup for Faraday rotation dispersion imaging and demonstrated the performance of a novel imaging principle. By using a pulsed magnetic field and a polarized light synchronized to the magnetic field, quantitative Faraday rotation images of diamagnetic organic liquids in glass capillaries were observed. Nonaromatic hydrocarbons, benzene derivatives, and naphthalene derivatives were clearly distinguished by the Faraday rotation images due to the difference in Verdet constants. From the wavelength dispersion of the Faraday rotation images in the visible region, it was found that the resonance wavelength in the UV region, which was estimated based on the Faraday B-term, could be used as characteristic parameters for the imaging of the liquids. Furthermore, simultaneous acquisition of Faraday rotation image and natural optical rotation image was demonstrated for chiral organic liquids.

  19. Effects of chiral three-nucleon forces on 4He-nucleus scattering in a wide range of incident energies

    Science.gov (United States)

    Toyokawa, Masakazu; Yahiro, Masanobu; Matsumoto, Takuma; Kohno, Michio

    2018-02-01

    An important current subject is to clarify the properties of chiral three-nucleon forces (3NFs) not only in nuclear matter but also in scattering between finite-size nuclei. Particularly for elastic scattering, this study has just started and the properties are not understood for a wide range of incident energies (E_in). We investigate basic properties of chiral 3NFs in nuclear matter with positive energies by using the Brueckner-Hartree-Fock method with chiral two-nucleon forces at N3LO and 3NFs at NNLO, and analyze the effects of chiral 3NFs on 4He elastic scattering from targets ^{208}Pb, ^{58}Ni, and ^{40}Ca over a wide range of 30 ≲ E_in/A_P ≲ 200 MeV by using the g-matrix folding model, where A_P is the mass number of the projectile. In symmetric nuclear matter with positive energies, chiral 3NFs make the single-particle potential less attractive and more absorptive. The effects mainly come from the Fujita-Miyazawa 2π-exchange 3NF and become slightly larger as E_in increases. These effects persist in the optical potentials of 4He scattering. As for the differential cross sections of 4He scattering, chiral-3NF effects are large for E_in/A_P ≳ 60 MeV and improve the agreement of the theoretical results with the measured ones. Particularly for E_in/A_P ≳ 100 MeV, the folding model reproduces measured differential cross sections pretty well. Cutoff (Λ) dependence is investigated for both nuclear matter and 4He scattering by considering two cases of Λ=450 and 550 MeV. The uncertainty coming from the dependence is smaller than chiral-3NF effects even at E_in/A_P=175 MeV.

  20. Circularly polarized near-field optical mapping of spin-resolved quantum Hall chiral edge states.

    Science.gov (United States)

    Mamyouda, Syuhei; Ito, Hironori; Shibata, Yusuke; Kashiwaya, Satoshi; Yamaguchi, Masumi; Akazaki, Tatsushi; Tamura, Hiroyuki; Ootuka, Youiti; Nomura, Shintaro

    2015-04-08

    We have successfully developed a circularly polarized near-field scanning optical microscope (NSOM) that enables us to irradiate circularly polarized light with spatial resolution below the diffraction limit. As a demonstration, we perform real-space mapping of the quantum Hall chiral edge states near the edge of a Hall-bar structure by injecting spin polarized electrons optically at low temperature. The obtained real-space mappings show that spin-polarized electrons are injected optically to the two-dimensional electron layer. Our general method to locally inject spins using a circularly polarized NSOM should be broadly applicable to characterize a variety of nanomaterials and nanostructures.

  1. Partition function of a chiral boson on a 2-torus from the Floreanini–Jackiw Lagrangian

    International Nuclear Information System (INIS)

    Chen, Wei-Ming; Ho, Pei-Ming; Kao, Hsien-chung; Khoo, Fech Scen; Matsuo, Yutaka

    2014-01-01

    We revisit the problem of quantizing a chiral boson on a torus. The conventional approach is to extract the partition function of a chiral boson from the path integral of a non-chiral boson. Instead we compute it directly from the chiral boson Lagrangian of Floreanini and Jackiw modified by topological terms involving an auxiliary field. A careful analysis of the gauge-fixing condition for the extra gauge symmetry reproduces the correct results for the free chiral boson, and has the advantage of being applicable to a wider class of interacting chiral boson theories

  2. Quantum Hall bilayers and the chiral sine-Gordon equation

    International Nuclear Information System (INIS)

    Naud, J.D.; Pryadko, Leonid P.; Sondhi, S.L.

    2000-01-01

    The edge state theory of a class of symmetric double-layer quantum Hall systems with interlayer electron tunneling reduces to the sum of a free field theory and a field theory of a chiral Bose field with a self-interaction of the sine-Gordon form. We argue that the perturbative renormalization group flow of this chiral sine-Gordon theory is distinct from the standard (non-chiral) sine-Gordon theory, contrary to a previous assertion by Renn, and that the theory is manifestly sensible only at a discrete set of values of the inverse period of the cosine interaction (β-circumflex). We obtain exact solutions for the spectra and correlation functions of the chiral sine-Gordon theory at the two values of β-circumflex at which electron tunneling in bilayers is not irrelevant. Of these, the marginal case (β-circumflex 2 =4) is of greatest interest: the spectrum of the interacting theory is that of two Majorana fermions with different, dynamically generated, velocities. For the experimentally observed bilayer 331 state at filling factor 1/2, this implies the trifurcation of electrons added to the edge. We also present a method for fermionizing the theory at the discrete points (β-circumflex 2 is an element of Z + ) by the introduction of auxiliary degrees of freedom that could prove useful in other problems involving quantum Hall multi-layers

  3. Enantiomeric Separation of 1-(Benzofuran-2-yl)alkylamines on Chiral Stationary Phases Based on Chiral Crown Ethers

    International Nuclear Information System (INIS)

    Park, Soohyun; Kim, Sang Jun; Hyun, Myung Ho

    2012-01-01

    Optically active chiral amines are important as building blocks for pharmaceuticals and as scaffolds for chiral ligands and, consequently, many efforts have been devoted to the development of efficient methods for their preparation. For example, reduction of amine precursors with chiral catalysts, enzymatic kinetic resolution or dynamic kinetic resolution of racemic amines and the direct amination of ketones with transaminases have been developed as the efficient methods for the preparation of optically active chiral amines. During the process of developing or utilizing optically active chiral amines, the methods for the determination of their enantiomeric composition are essential. Among various methods, liquid chromatographic resolution of enantiomers on chiral stationary phases (CSPs) have been known to be one of the most accurate and economic means for the determination of the enantiomeric composition of optically active chiral compounds. Especially, CSPs based on chiral crown ethers have been successfully used for the resolution of racemic primary amines. For example, CSPs based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (CSP 1, Figure 1) or (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 (CSP 2 and CSP 3, Figure 1) have been known to be quite effective for the resolution of cyclic and non-cyclic amines, various fluoroquinolone antibacterials containing a primary amino group, tocainide (antiarrhythmic agent) and its analogues, aryl-a-amino ketones and 3-amino-1,4-benzodiazepin-2-ones

  4. Spin-frustrated V3 and Cu3 nanomagnets with Dzialoshinsky-Moriya exchange. 2. Spin structure, spin chirality and tunneling gaps

    International Nuclear Information System (INIS)

    Belinsky, Moisey I.

    2009-01-01

    The spin chirality and spin structure of the Cu 3 and V 3 nanomagnets with the Dzialoshinsky-Moriya (DM) exchange interaction are analyzed. The correlations between the vector κ and the scalar χ chirality are obtained. The DM interaction forms the spin chirality which is equal to zero in the Heisenberg clusters. The dependences of the spin chirality on magnetic field and deformations are calculated. The cluster distortions reduce the spin chirality. The vector chirality is reduced partially and the scalar chirality vanishes in the transverse magnetic field. In the isosceles clusters, the DM exchange and distortions determine the sign and degree of the spin chirality κ. The correlations between the chirality parameters κ n and the intensities of the EPR and INS transitions are obtained. The vector chirality κ n describes the spin chirality of the Cu 3 and V 3 nanomagnets, the scalar chirality describes the pseudoorbital moment of the DM cluster. It is shown that in the consideration of the DM exchange, the spin states DM mixing and tunneling gaps at level crossing fields depend on the coordinate system of the DM model. The calculations in the DM exchange models in the right-handed and left-handed frame show opposite magnetic behavior at the level crossing field and allow to explain the opposite schemes of the tunneling gaps and levels crossing, which have been obtained in different treatments. The results of the DM model in the right-handed frame are consistent with the results of the group-theoretical analysis, whereas the results in the left-handed frame are inconsistent with that. The correlations between the spin chirality of the ground state and tunneling gaps at the level crossing field are obtained for the equilateral and isosceles nanoclusters.

  5. Effects of renormalizing the chiral SU(2) quark-meson model

    Science.gov (United States)

    Zacchi, Andreas; Schaffner-Bielich, Jürgen

    2018-04-01

    We investigate the restoration of chiral symmetry at finite temperature in the SU(2) quark-meson model, where the mean field approximation is compared to the renormalized version for quarks and mesons. In a combined approach at finite temperature, all the renormalized versions show a crossover transition. The inclusion of different renormalization scales leave the order parameter and the mass spectra nearly untouched but strongly influence the thermodynamics at low temperatures and around the phase transition. We find unphysical results for the renormalized version of mesons and the combined one.

  6. Spin-Selective Transmission and Devisable Chirality in Two-Layer Metasurfaces.

    Science.gov (United States)

    Li, Zhancheng; Liu, Wenwei; Cheng, Hua; Chen, Shuqi; Tian, Jianguo

    2017-08-15

    Chirality is a nearly ubiquitous natural phenomenon. Its minute presence in most naturally occurring materials makes it incredibly difficult to detect. Recent advances in metasurfaces indicate that they exhibit devisable chirality in novel forms; this finding offers an effective opening for studying chirality and its features in such nanostructures. These metasurfaces display vast possibilities for highly sensitive chirality discrimination in biological and chemical systems. Here, we show that two-layer metasurfaces based on twisted nanorods can generate giant spin-selective transmission and support engineered chirality in the near-infrared region. Two designed metasurfaces with opposite spin-selective transmission are proposed for treatment as enantiomers and can be used widely for spin selection and enhanced chiral sensing. Specifically, we demonstrate that the chirality in these proposed metasurfaces can be adjusted effectively by simply changing the orientation angle between the twisted nanorods. Our results offer simple and straightforward rules for chirality engineering in metasurfaces and suggest intriguing possibilities for the applications of such metasurfaces in spin optics and chiral sensing.

  7. Effect of microemulsion component purity on the chromatographic figures of merit in chiral microemulsion electrokinetic chromatography.

    Science.gov (United States)

    Kojtari, Adeline B; Foley, Joe P

    2009-04-17

    Numerous combinations of one-, two-, and three-chiral-component microemulsions have been previously prepared in our group, using N-dodecoxycarbonylvaline (DDCV), 2-hexanol, and ethyl acetate, dibutyl tartrate, or diethyl tartrate. A few results of the various formulations investigated suggested the possible presence of minor impurities in one or more components of the microemulsion. In this study, the purity of the current lots of R- and S-surfactant were measured, as was the subsequent effect of minor impurities on the relevant chromatographic figures of merit (CFOMs) that describe a chiral separation, i.e., efficiency, enantioselectivity, retention, migration window (elution range), and resolution. Two related methods are proposed for correcting enantioselectivities measured in the presence of chiral impurities in the chiral microemulsion.

  8. Chiral symmetry and dispersion relations: from $\\pi \\pi$ scattering to hadronic light-by-light.

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    Chiral symmetry provides strong constraints on hadronic matrix elements at low energy, which are most efficiently derived with chiral perturbation theory. As an effective quantum field theory the latter also accounts for rescattering or unitarity effects, albeit only perturbatively, via the loop expansion. In cases where rescattering effects are important it becomes necessary to go beyond the perturbative expansion, e.g. by using dispersion relations. A matching between the chiral and the dispersive representation provides in several cases results of high precision. I will discuss this approach with the help of a few examples, like $\\pi \\pi$ scattering (which has been tested successfully by CERN experiments like NA48/2 and DIRAC), $\\eta \\to 3 \\pi$ and the hadronic light-by-light contribution to $(g-2)_\\mu$. For the latter quantity the implementation of the dispersive approach has opened up the way to a model-independent calculation and the concrete possibility to significantly reduce the theoretical uncertain...

  9. Chiral magnetic effect search in p+Au, d+Au and Au+Au collisions at RHIC

    Science.gov (United States)

    Zhao, Jie

    2018-01-01

    Metastable domains of fluctuating topological charges can change the chirality of quarks and induce local parity violation in quantum chromodynamics. This can lead to observable charge separation along the direction of the strong magnetic field produced by spectator protons in relativistic heavy-ion collisions, a phenomenon called the chiral magnetic effect (CME). A major background source for CME measurements using the charge-dependent azimuthal correlator (Δϒ) is the intrinsic particle correlations (such as resonance decays) coupled with the azimuthal elliptical anisotropy (v2). In heavy-ion collisions, the magnetic field direction and event plane angle are correlated, thus the CME and the v2-induced background are entangled. In this report, we present two studies from STAR to shed further lights on the background issue. (1) The Δϒ should be all background in small system p+Au and d+Au collisions, because the event plane angles are dominated by geometry fluctuations uncorrelated to the magnetic field direction. However, significant Δϒ is observed, comparable to the peripheral Au+Au data, suggesting a background dominance in the latter, and likely also in the mid-central Au+Au collisions where the multiplicity and v2 scaled correlator is similar. (2) A new approach is devised to study Δϒ as a function of the particle pair invariant mass (minv) to identify the resonance backgrounds and hence to extract the possible CME signal. Signal is consistent with zero within uncertainties at high minv. Signal at low minv, extracted from a two-component model assuming smooth mass dependence, is consistent with zero within uncertainties.

  10. Torsion axial vector and Yvon-Takabayashi angle: zitterbewegung, chirality and all that

    Science.gov (United States)

    Fabbri, Luca; da Rocha, Roldão

    2018-03-01

    We consider propagating torsion as a completion of gravitation in order to describe the dynamics of curved-twisted space-times filled with Dirac spinorial fields; we discuss interesting relationships of the torsion axial vector and the curvature tensor with the Yvon-Takabayashi angle and the module of the spinor field, that is the two degrees of freedom of the spinor field itself: in particular, we shall discuss in what way the torsion axial vector could be seen as the potential of a specific interaction of the Yvon-Takabayashi angle, and therefore as a force between the two chiral projections of the spinor field itself. Chiral interactions of the components of a spinor may render effects of zitterbewegung, as well as effective mass terms and other related features: we shall briefly sketch some of the analogies and differences with the similar but not identical situation given by the Yukawa interaction occurring in the Higgs sector of the standard model. We will provide some overall considerations about general consequences for contemporary physics, consequences that have never been discussed before, so far as we are aware, in the present physics literature.

  11. Hydrodynamic and Thermophoretic Effects on the Supramolecular Chirality of Pyrene-Derived Nanosheets.

    Science.gov (United States)

    Micali, Norberto; Vybornyi, Mykhailo; Mineo, Placido; Khorev, Oleg; Häner, Robert; Villari, Valentina

    2015-06-22

    Chiroptical properties of two-dimensional (2D) supramolecular assemblies (nanosheets) of achiral, charged pyrene trimers (Py3 ) are rendered chiral by asymmetric physical perturbations. Chiral stimuli in a cuvette can originate either from controlled temperature gradients or by very gentle stirring. The chiroptical activity strongly depends on the degree of supramolecular order of the nanosheets, which is easily controlled by the method of preparation. The high degree of structural order ensures strong cooperative effects within the aggregates, rendering them more susceptible to external stimuli. The samples prepared by using slow thermal annealing protocols are both CD and LD active (in stagnant and stirred solutions), whereas for isothermally aged samples chiroptical activity was in all cases undetectable. In the case of temperature gradients, the optical activity of 2D assemblies could be recorded for a stagnant solution due to migration of the aggregates from the hottest to the coldest regions of the system. However, a considerably stronger exciton coupling, coinciding with the J-band of the interacting pyrenes, is developed upon subtle vortexing (0.5 Hz, 30 rpm) of the aqueous solution of the nanosheets. The sign of the exciton coupling is inverted upon switching between clockwise and counter-clockwise rotation. The supramolecular chirality is evidenced by the appearance of CD activity. To exclude artefacts from proper CD spectra, the contribution from LD to the observed CD was determined. The data suggest that the aggregates experience asymmetrical deformation and alignment effects because of the presence of chiral flows. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Spontaneous chiral symmetry breaking and effective quark masses in quantum chromodynamics

    International Nuclear Information System (INIS)

    Miransky, V.A.

    1982-01-01

    The ultraviolet asymptotics of the dynamical effective quark mass is determined directly from the equation for the fermion mass function. The indications about the character of the dynamics of the spontaneous chiral symmetry breaking in QCD are obtained

  13. Disoriented Chiral Condensates in High-Energy Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Randrup, Jorgen

    2000-10-18

    This brief lecture series discusses how our current understanding of chiral symmetry may be tested more globally in high-energy nuclear collisions by suitable extraction of pionic observables. After briefly recalling the general features of chiral symmetry, we focus on the SU(2) linear sigma model and show how a semi-classical mean-field treatment makes it possible to calculate its statistical properties, including the chiral phase diagram. Subsequently, we consider scenarios of relevance to high-energy collisions and discuss the features of the ensuing non-equilibrium dynamics and the associated characteristic signals. Finally, we illustrate how the presence of vacuum fluctuations or the inclusion of strangeness may affect the results quantitatively.

  14. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Du Yu, E-mail: du_yu@jlu.edu.cn, E-mail: yhyang@ntu.edu.sg [College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2010-04-23

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  15. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    International Nuclear Information System (INIS)

    Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui; Du Yu

    2010-01-01

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  16. Chiral discotics; expression and amplification of chirality

    NARCIS (Netherlands)

    Brunsveld, L.; Meijer, E.W.; Rowan, A.E.; Nolte, R.J.M.; Denmark, S.E.; Nolte, R.J.M.; Meijer, E.W.

    2003-01-01

    In this contribution, chirality and discotic liquid crystals are discussed as a tool for studying the self-assembly of these molecules, both in solution and in the solid state. Therefore, the objective of this chapter is to summarize and elucidate how molecular chirality can be expressed in discotic

  17. Moduli stabilisation for chiral global models

    International Nuclear Information System (INIS)

    Cicoli, Michele; Mayrhofer, Christoph; Valandro, Roberto

    2011-10-01

    We combine moduli stabilisation and (chiral) model building in a fully consistent global set-up in Type IIB/F-theory. We consider compactifications on Calabi-Yau orientifolds which admit an explicit description in terms of toric geometry. We build globally consistent compactifications with tadpole and Freed-Witten anomaly cancellation by choosing appropriate brane set-ups and world-volume fluxes which also give rise to SU(5)- or MSSM-like chiral models. We fix all the Kaehler moduli within the Kaehler cone and the regime of validity of the 4D effective field theory. This is achieved in a way compatible with the local presence of chirality. The hidden sector generating the non-perturbative effects is placed on a del Pezzo divisor that does not have any chiral intersections with any other brane. In general, the vanishing D-term condition implies the shrinking of the rigid divisor supporting the visible sector. However, we avoid this problem by generating r< n D-term conditions on a set of n intersecting divisors. The remaining (n-r) flat directions are fixed by perturbative corrections to the Kaehler potential. We illustrate our general claims in an explicit example. We consider a K3-fibred Calabi-Yau with four Kaehler moduli, that is an hypersurface in a toric ambient space and admits a simple F-theory up-lift. We present explicit choices of brane set-ups and fluxes which lead to three different phenomenological scenarios: the first with GUT-scale strings and TeV-scale SUSY by fine-tuning the background fluxes; the second with an exponentially large value of the volume and TeV-scale SUSY without fine-tuning the background fluxes; and the third with a very anisotropic configuration that leads to TeV-scale strings and two micron-sized extra dimensions. The K3 fibration structure of the Calabi-Yau three-fold is also particularly suitable for cosmological purposes. (orig.)

  18. Moduli stabilisation for chiral global models

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Mayrhofer, Christoph [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Valandro, Roberto [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2011-10-15

    We combine moduli stabilisation and (chiral) model building in a fully consistent global set-up in Type IIB/F-theory. We consider compactifications on Calabi-Yau orientifolds which admit an explicit description in terms of toric geometry. We build globally consistent compactifications with tadpole and Freed-Witten anomaly cancellation by choosing appropriate brane set-ups and world-volume fluxes which also give rise to SU(5)- or MSSM-like chiral models. We fix all the Kaehler moduli within the Kaehler cone and the regime of validity of the 4D effective field theory. This is achieved in a way compatible with the local presence of chirality. The hidden sector generating the non-perturbative effects is placed on a del Pezzo divisor that does not have any chiral intersections with any other brane. In general, the vanishing D-term condition implies the shrinking of the rigid divisor supporting the visible sector. However, we avoid this problem by generating r

  19. Chiral supramolecular organization from a sheet-like achiral gel: a study of chiral photoinduction.

    Science.gov (United States)

    Royes, Jorge; Polo, Víctor; Uriel, Santiago; Oriol, Luis; Piñol, Milagros; Tejedor, Rosa M

    2017-05-31

    Chiral photoinduction in a photoresponsive gel based on an achiral 2D architecture with high geometric anisotropy and low roughness has been investigated. Circularly polarized light (CPL) was used as a chiral source and an azobenzene chromophore was employed as a chiral trigger. The chiral photoinduction was studied by evaluating the preferential excitation of enantiomeric conformers of the azobenzene units. Crystallographic data and density functional theory (DFT) calculations show how chirality is transferred to the achiral azomaterials as a result of the combination of chiral photochemistry and supramolecular interactions. This procedure could be applied to predict and estimate chirality transfer from a chiral physical source to a supramolecular organization using different light-responsive units.

  20. Effective Chiral Lagrangians and Lattice QCD

    CERN Document Server

    Heitger, J; Wittig, H; Heitger, Jochen; Sommer, Rainer; Wittig, Hartmut

    2000-01-01

    We propose a general method to obtain accurate estimates for some of the "low-energy constants" in the one-loop effective chiral Lagrangian by means of simulating lattice QCD. In particular, the method is sensitive to those constants whose values are required to test the hypothesis of a massless up-quark. Initial tests performed in the quenched approximation confirm that good statistical precision can be achieved. As a byproduct we obtain an accurate estimate for the ratio of pseudoscalar decay constants, F_K/F_pi, in the quenched approximation, which lies 10% below the experimental result. The quantities that serve to extract the low-energy constants also allow a test of the scaling behaviour of different discretizations of QCD and a search for the effects of dynamical quarks.

  1. Chirality detection of enantiomers using twisted optical metamaterials

    Science.gov (United States)

    Zhao, Yang; Askarpour, Amir N.; Sun, Liuyang; Shi, Jinwei; Li, Xiaoqin; Alù, Andrea

    2017-01-01

    Many naturally occurring biomolecules, such as amino acids, sugars and nucleotides, are inherently chiral. Enantiomers, a pair of chiral isomers with opposite handedness, often exhibit similar physical and chemical properties due to their identical functional groups and composition, yet show different toxicity to cells. Detecting enantiomers in small quantities has an essential role in drug development to eliminate their unwanted side effects. Here we exploit strong chiral interactions with plasmonic metamaterials with specifically designed optical response to sense chiral molecules down to zeptomole levels, several orders of magnitude smaller than what is typically detectable with conventional circular dichroism spectroscopy. In particular, the measured spectra reveal opposite signs in the spectral regime directly associated with different chiral responses, providing a way to univocally assess molecular chirality. Our work introduces an ultrathin, planarized nanophotonic interface to sense chiral molecules with inherently weak circular dichroism at visible and near-infrared frequencies. PMID:28120825

  2. Chiral symmetry restoration and quasi-elastic electron-nucleus scattering

    International Nuclear Information System (INIS)

    Henley, E.M.; Krein, G.

    1989-01-01

    Chiral symmetry is known to be an important concept in hadronic interactions. It holds in QCD, but is known to be broken at low energies. It is therefore useful to study chiral symmetry and its breaking together with its consequences in nuclear physics. It is the latter phenomena we consider here. It is difficult to study nonperturbative QCD at low energies and models are needed. The Nambu-Jona-Lasinio (NJL) model fits this category; it incorporates chiral symmetry and its breaking, and allows one to study its effects in nucleons and nuclei. In particular, the constituent quark mass varies with density (ρ) and temperature (T). At high ρ and T chiral symmetry is restored. It is the ρ dependence which yields important effects in electron scattering due to partial restoration of chiral symmetry in nuclei. We begin with the NJL model with a small chiral symmetry breaking

  3. Equation of state of isospin-asymmetric nuclear matter in relativistic mean-field models with chiral limits

    International Nuclear Information System (INIS)

    Jiang Weizhou; Li Baozn; Chen Liewen

    2007-01-01

    Using in-medium hadron properties according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities and considering naturalness of the coupling constants, we have newly constructed several relativistic mean-field Lagrangians with chiral limits. The model parameters are adjusted such that the symmetric part of the resulting equation of state at supra-normal densities is consistent with that required by the collective flow data from high energy heavy-ion reactions, while the resulting density dependence of the symmetry energy at sub-saturation densities agrees with that extracted from the recent isospin diffusion data from intermediate energy heavy-ion reactions. The resulting equations of state have the special feature of being soft at intermediate densities but stiff at high densities naturally. With these constrained equations of state, it is found that the radius of a 1.4M o canonical neutron star is in the range of 11.9 km≤R≤13.1 km, and the maximum neutron star mass is around 2.0M o close to the recent observations

  4. Chirality, Metallicity, and Transition Dependent Asymmetries in Resonance Raman Excitation Profiles of Chirality-Enriched Carbon Nanotubes

    Science.gov (United States)

    Doorn, Stephen; Duque, Juan; Telg, Hagen; Haroz, Erik; Tu, Xiaomin; Zheng, Ming

    2014-03-01

    Access to carbon nanotube samples enriched in single chiralities allows the observation of new photophysical behaviors obscured or difficult to demonstrate in mixed-chirality ensembles. Recent examples include the observation of strongly asymmetric G-band excitation profiles resulting from non-Condon effects1 and the unambiguous demonstration of Raman interference effects.2 We present here our most recent results demonstrating the generality of the non-Condon behavior to include metallic species (specifically several armchair chiralities). Additionally, the Eii dependence in non-Condon behavior with excitations from E11 thru E44 for both RBM and G modes will be discussed. 1. J.G. Duque, et. al., ACS Nano, 5, 5233 (2011). 2. J.G. Duque, et. al., Phys. Rev. Lett. 108, 117404 (2012).

  5. Chiral measurements with the Fixed-Point Dirac operator and construction of chiral currents

    International Nuclear Information System (INIS)

    Hasenfratz, P.; Hauswirth, S.; Holland, K.; Joerg, T.; Niedermayer, F.

    2002-01-01

    In this preliminary study, we examine the chiral properties of the parametrized Fixed-Point Dirac operator D FP , see how to improve its chirality via the Overlap construction, measure the renormalized quark condensate Σ-circumflex and the topological susceptibility χ t , and investigate local chirality of near zero modes of the Dirac operator. We also give a general construction of chiral currents and densities for chiral lattice actions

  6. Unusual magnetic behavior in a chiral-based magnetic memory device

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Dor, Oren; Yochelis, Shira [Department of Applied Physics, Center of Nanoscience and Nanotechnology, Hebrew University, Jerusalem 91904 (Israel); Felner, Israel, E-mail: Israel.felner@mail.huij.ac.il [“Racah” Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Paltiel, Yossi [Department of Applied Physics, Center of Nanoscience and Nanotechnology, Hebrew University, Jerusalem 91904 (Israel)

    2016-01-15

    In recent years chiral molecules were found to act as efficient spin filters. Using a multilayer structure with chiral molecules magnetic memory was realized. Observed rare magnetic phenomena in a chiral-based magnetic memory device was reported by O-Ben Dor et. al in Nature Commun, 4, 2256 (2013). This multi-layered device is built from α-helix L-polyalanine (AHPA-L) adsorbed on gold, Al{sub 2}O{sub 3} (7 nm) and Ni (30 nm) layers. It was shown that certain temperature range the FC branch crosses the magnetic peak (at 55 K) observed in the ZFC curve thus ZFC>FC. We show here that in another similar multi-layered material, at low applied field, the ZFC curve lies above the FC one up to 70 K. The two features have the same origin and the crucial necessary components to exhibit them are: AHPA-L and 30 nm Ni layered thick. Similar effects were also reported in sulfur doped amorphous carbon. A comparison between the two systems and the ingredients for these peculiar observations is discussed. - Highlights: • The highlights of the present manuscript is the peculiar magnetic behavior observed in a multilayer structure with chiral molecules, magnetic memory. • It is shown that certain temperature range the FC branch crosses the magnetic peak (at 55 K) observed in the ZFC curve thus ZFC>FC. • Similar effects were also reported in sulfur doped amorphous carbon.

  7. Chiral corrections to the Adler-Weisberger sum rule

    Science.gov (United States)

    Beane, Silas R.; Klco, Natalie

    2016-12-01

    The Adler-Weisberger sum rule for the nucleon axial-vector charge, gA , offers a unique signature of chiral symmetry and its breaking in QCD. Its derivation relies on both algebraic aspects of chiral symmetry, which guarantee the convergence of the sum rule, and dynamical aspects of chiral symmetry breaking—as exploited using chiral perturbation theory—which allow the rigorous inclusion of explicit chiral symmetry breaking effects due to light-quark masses. The original derivations obtained the sum rule in the chiral limit and, without the benefit of chiral perturbation theory, made various attempts at extrapolating to nonvanishing pion masses. In this paper, the leading, universal, chiral corrections to the chiral-limit sum rule are obtained. Using PDG data, a recent parametrization of the pion-nucleon total cross sections in the resonance region given by the SAID group, as well as recent Roy-Steiner equation determinations of subthreshold amplitudes, threshold parameters, and correlated low-energy constants, the Adler-Weisberger sum rule is confronted with experimental data. With uncertainty estimates associated with the cross-section parametrization, the Goldberger-Treimann discrepancy, and the truncation of the sum rule at O (Mπ4) in the chiral expansion, this work finds gA=1.248 ±0.010 ±0.007 ±0.013 .

  8. Nucleon parton distributions in chiral perturbation theory

    International Nuclear Information System (INIS)

    Moiseeva, Alena

    2013-01-01

    Properties of the chiral expansion of nucleon light-cone operators have been studied. In the framework of the chiral perturbation theory we have demonstrated that convergency of the chiral expansion of nucleon parton distributions strongly depends on the value of the variable x. Three regions in x with essentially different analytical properties of the resulting chiral expansion for parton distributions were found. For each of the regions we have elaborated special power counting rules corresponding to the partial resummation of the chiral series. The nonlocal effective operators for the vector and the axial nucleon parton distributions have been constructed at the zeroth and the first chiral order. Using the derived nonlocal operators and the derived power counting rules we have obtained the second order expressions for the nucleon GPDs H(x,ξ,Δ 2 ), H(x,ξ,Δ 2 ),E(x,ξ,Δ 2 ) valid in the region x>or similar a 2 χ .

  9. Influence of microemulsion chirality on chromatographic figures of merit in EKC: results with novel three-chiral-component microemulsions and comparison with one- and two-chiral-component microemulsions.

    Science.gov (United States)

    Kahle, Kimberly A; Foley, Joe P

    2007-08-01

    Novel microemulsion formulations containing all chiral components are described for the enantioseparation of six pairs of pharmaceutical enantiomers (atenolol, ephedrine, metoprolol, N-methyl ephedrine, pseudoephedrine, and synephrine). The chiral surfactant dodecoxycarbonylvaline (DDCV, R- and S-), the chiral cosurfactant S-2-hexanol, and the chiral oil diethyl tartrate (R- and S-) were combined to create four different chiral microemulsions, three of which were stable. Results obtained for enantioselectivity, efficiency, and resolution were compared for the triple-chirality systems and the single-chirality system that contained chiral surfactant only. Improvements in enantioselectivity and resolution were achieved by simultaneously incorporating three chiral components into the aggregate. The one-chiral-component microemulsion provided better efficiencies. Enantioselective synergies were identified for the three-chiral-component nanodroplets using a thermodynamic model. Additionally, two types of dual-chirality systems, chiral surfactant/chiral cosurfactant and chiral surfactant/chiral oil, were examined in terms of chromatographic figures of merit, with the former providing much better resolution. The two varieties of two-chiral-component microemulsions gave similar values for enantioselectivity and efficiency. Lastly, the microemulsion formulations were divided into categories based on the number of chiral microemulsion reagents and the average results for each pair of enantiomers were analyzed for trends. In general, enantioselectivity and resolution were enhanced while efficiency was decreased as more chiral components were used to create the pseudostationary phase (PSP).

  10. Zero field Quantum Hall Effect in QED3

    International Nuclear Information System (INIS)

    Raya, K; Sánchez-Madrigal, S; Raya, A

    2013-01-01

    We study analytic structure of the fermion propagator in the Quantum Electrodynamics in 2+1 dimensions (QED3) in the Landau gauge, both in perturbation theory and nonperturbatively, by solving the corresponding Schwinger-Dyson equation in rainbow approximation. In the chiral limit, we found many nodal solutions, which could be interpreted as vacuum excitations. Armed with these solutions, we use the Kubo formula and calculate the filling factor for the zero field Quantum Hall Effect

  11. Chiral vortical effect from the compactified D4-branes with smeared D0-brane charge

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Chao; Chen, Yidian [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); Huang, Mei [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); University of Chinese Academy of Sciences,Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,Beijing 100049 (China)

    2017-03-15

    By using the boundary derivative expansion formalism of fluid/gravity correspondence, we study the chiral vortical effect from the compactified D4-branes with smeared D0-brane charge. This background corresponds to a strongly coupled, nonconformal relativistic fluid with a conserved vector current. The presence of the chiral vortical effect is induced by the addition of a Chern-Simons term in the bulk action. Except that the non-dissipative anomalous viscous coefficient and the sound speed rely only on the chemical potential, most of the other thermal and hydrodynamical quantities of the first order depend both on the temperature and the chemical potential. According to our result, the way that the chiral vortical effect coefficient depends on the chemical potential seems irrelevant with whether the relativistic fluid is conformal or not. Stability analysis shows that this anomalous relativistic fluid is stable and the doping of the smeared D0-brane charge will slow down the sound speed.

  12. A path-integral approach for bosonic effective theories for Fermion fields in four and three dimensions

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.

    1998-02-01

    We study four dimensional Effective Bosonic Field Theories for massive fermion field in the infrared region and massive fermion in ultraviolet region by using an appropriate Fermion Path Integral Chiral variable change and the Polyakov's Fermi-Bose transmutation in the 3D-Abelian Thrirring model. (author)

  13. Field-driven chiral bubble dynamics analysed by a semi-analytical approach

    Science.gov (United States)

    Vandermeulen, J.; Leliaert, J.; Dupré, L.; Van Waeyenberge, B.

    2017-12-01

    Nowadays, field-driven chiral bubble dynamics in the presence of the Dzyaloshinskii-Moriya interaction are a topic of thorough investigation. In this paper, a semi-analytical approach is used to derive equations of motion that express the bubble wall (BW) velocity and the change in in-plane magnetization angle as function of the micromagnetic parameters of the involved interactions, thereby taking into account the two-dimensional nature of the bubble wall. It is demonstrated that the equations of motion enable an accurate description of the expanding and shrinking convex bubble dynamics and an expression for the transition field between shrinkage and expansion is derived. In addition, these equations of motion show that the BW velocity is not only dependent on the driving force, but also on the BW curvature. The absolute BW velocity increases for both a shrinking and an expanding bubble, but for different reasons: for expanding bubbles, it is due to the increasing importance of the driving force, while for shrinking bubbles, it is due to the increasing importance of contributions related to the BW curvature. Finally, using this approach we show how the recently proposed magnetic bubblecade memory can operate in the flow regime in the presence of a tilted sinusoidal magnetic field and at greatly reduced bubble sizes compared to the original device prototype.

  14. Interlayer Exchange Coupling: A General Scheme Turning Chiral Magnets into Magnetic Multilayers Carrying Atomic-Scale Skyrmions.

    Science.gov (United States)

    Nandy, Ashis Kumar; Kiselev, Nikolai S; Blügel, Stefan

    2016-04-29

    We report on a general principle using interlayer exchange coupling to extend the regime of chiral magnetic films in which stable or metastable magnetic Skyrmions can appear at a zero magnetic field. We verify this concept on the basis of a first-principles model for a Mn monolayer on a W(001) substrate, a prototype chiral magnet for which the atomic-scale magnetic texture is determined by the frustration of exchange interactions, impossible to unwind by laboratory magnetic fields. By means of ab initio calculations for the Mn/W_{m}/Co_{n}/Pt/W(001) multilayer system we show that for certain thicknesses m of the W spacer and n of the Co reference layer, the effective field of the reference layer fully substitutes the required magnetic field for Skyrmion formation.

  15. Chiral-nematic liquid crystals as one dimensional photonic materials in optical sensors

    NARCIS (Netherlands)

    Mulder, D.J.; Schenning, A.P.H.J.; Bastiaansen, C.W.M.

    2014-01-01

    Current developments in the field of thermotropic chiral-nematic liquid crystals as sensors are discussed. These one dimensional photonic materials are based on low molecular weight liquid crystals and chiral-nematic polymeric networks. For both low molecular weight LCs and polymer networks,

  16. Flatspace chiral supergravity

    Science.gov (United States)

    Bagchi, Arjun; Basu, Rudranil; Detournary, Stéphane; Parekh, Pulastya

    2018-05-01

    We propose a holographic duality between a 2 dimensional (2d) chiral superconformal field theory and a certain theory of supergravity in 3d with flatspace boundary conditions that is obtained as a double scaling limit of a parity breaking theory of supergravity. We show how the asymptotic symmetries of the bulk theory reduce from the "despotic" super Bondi-Metzner-Sachs algebra (or equivalently the inhomogeneous super Galilean conformal algebra) to a single copy of the super-Virasoro algebra in this limit and also reproduce the same reduction from a study of null vectors in the putative 2d dual field theory.

  17. Sensitive criterion for chirality; Chiral doublet bands in 104Rh59

    International Nuclear Information System (INIS)

    Koike, T.; Starosta, K.; Vaman, C.; Ahn, T.; Fossan, D.B.; Clark, R.M.; Cromaz, M.; Lee, I.Y.; Macchiavelli, A.O.

    2003-01-01

    A particle plus triaxial rotor model was applied to odd-odd nuclei in the A ∼ 130 region in order to study the unique parity πh11/2xνh11/2 rotational bands. With maximum triaxiality assumed and the intermediate axis chosen as the quantization axis for the model calculations, the two lowest energy eigenstates of a given spin have chiral properties. The independence of the quantity S(I) on spin can be used as a new criterion for chirality. In addition, a diminishing staggering amplitude of S(I) with increasing spin implies triaxiality in neighboring odd-A nuclei. Chiral quartet bases were constructed specifically to examine electromagnetic properties for chiral structures. A set of selection rules unique to chirality was derived. Doublet bands built on the πg9/2xνh11/2 configuration have been discovered in odd-odd 104Rh using the 96Zr(11B, 3n) reaction. Based on the discussed criteria for chirality, it is concluded that the doublet bands observed in 104Rh exhibit characteristic chiral properties suggesting a new region of chirality around A ∼110. In addition, magnetic moment measurements have been performed to test the πh11/2xνh11/2 configuration in 128Cs and the πg9/2xνh11/2 configuration in 104Rh

  18. The scalar and electromagnetic form factors of the nucleon in dispersively improved Chiral EFT

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Jose Manuel [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-04-01

    We present a method for calculating the nucleon form factors of G-parity-even operators. This method combines chiral effective field theory (χEFT) and dispersion theory. Through unitarity we factorize the imaginary part of the form factors into a perturbative part, calculable with χEFT, and a non-perturbative part, obtained through other methods. We consider the scalar and electromagnetic (EM) form factors of the nucleon. The results show an important improvement compared to standard chiral calculations, and can be used in analysis of the low-energy properties of the nucleon.

  19. Chiral surface waves for enhanced circular dichroism

    Science.gov (United States)

    Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo

    2017-06-01

    We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by more than two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.

  20. Chiral Dynamics in Pion-Photon Reactions Habilitation

    CERN Document Server

    Friedrich, Jan Michael

    As the lightest particle of the strong force, the pion plays a central role in the field of strong interactions, and understanding its properties is of prime relevance for understanding the strong interaction in general. The low-energy behaviour of pions is of particular interest. Although the quark-gluon substructure and their quantum chromodynamics is not apparent then, this specific inner structure causes the presence of approximate symmetries in pion-pion interactions and in pion decays, which gives rise to the systematic description of processes involving pions in terms of few low-energy constants. Specifically, the chiral symmetry and its spontaneous and explicit breaking, treated in chiral perturbation theory (ChPT), leads to firm predictions for low-energy properties of the pion. To those belong the electromagnetic polarisabilities of the pion, describing the leading-order structure effect in pion Compton scattering. The research presented in this work is concerned with the interaction of pions and ph...

  1. Chiral quantum optics.

    Science.gov (United States)

    Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter

    2017-01-25

    Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.

  2. Chiral solitons in spinor polariton rings

    Science.gov (United States)

    Zezyulin, D. A.; Gulevich, D. R.; Skryabin, D. V.; Shelykh, I. A.

    2018-04-01

    We consider theoretically one-dimensional polariton ring accounting for both longitudinal-transverse (TE-TM) and Zeeman splittings of spinor polariton states and spin-dependent polariton-polariton interactions. We present a class of solutions in the form of the localized defects rotating with constant angular velocity and analyze their properties for realistic values of the parameters of the system. We show that the effects of the geometric phase arising from the interplay between the external magnetic field and the TE-TM splitting introduce chirality in the system and make solitons propagating in clockwise and anticlockwise directions nonequivalent. This can be interpreted as a solitonic analog of the Aharonov-Bohm effect.

  3. Molecular dynamics simulation of a nanofluidic energy absorption system: effects of the chiral vector of carbon nanotubes.

    Science.gov (United States)

    Ganjiani, Sayed Hossein; Hossein Nezhad, Alireza

    2018-02-14

    A Nanofluidic Energy Absorption System (NEAS) is a novel nanofluidic system with a small volume and weight. In this system, the input mechanical energy is converted to surface tension energy during liquid infiltration in the nanotube. The NEAS is made of a mixture of nanoporous material particles in a functional liquid. In this work, the effects of the chiral vector of a carbon nanotube (CNT) on the performance characteristics of the NEAS are investigated by using molecular dynamics simulation. For this purpose, six CNTs with different diameters for each type of armchair, zigzag and chiral, and several chiral CNTs with different chiral vectors (different values of indices (m,n)) are selected and studied. The results show that in the chiral CNTs, the contact angle shows the hydrophobicity of the CNT, and infiltration pressure is reduced by increasing the values of m and n (increasing the CNT diameter). Contact angle and infiltration pressure are decreased by almost 1.4% and 9% at all diameters, as the type of CNT is changed from chiral to zigzag and then to armchair. Absorbed energy density and efficiency are also decreased by increasing m and n and by changing the type of CNT from chiral to zigzag and then to armchair.

  4. Chiral polarization scale of QCD vacuum and spontaneous chiral symmetry breaking

    International Nuclear Information System (INIS)

    Alexandru, Andrei; Horv, Ivan

    2013-01-01

    It has recently been found that dynamics of pure glue QCD supports the low energy band of Dirac modes with local chiral properties qualitatively different from that of a bulk: while bulk modes suppress chirality relative to statistical independence between left and right, the band modes enhance it. The width of such chirally polarized zone – chiral polarization scale bigwedge ch – has been shown to be finite in the continuum limit at fixed physical volume. Here we present evidence that bigwedge ch remains non-zero also in the infinite volume, and is therefore a dynamical scale in the theory. Our experiments in N f = 2+1 QCD support the proposition that the same holds in the massless limit, connecting bigwedge ch to spontaneous chiral symmetry breaking. In addition, our results suggest that thermal agitation in quenched QCD destroys both chiral polarization and condensation of Dirac modes at the same temperature T ch > T c .

  5. Constraining the Speed of Sound inside Neutron Stars with Chiral Effective Field Theory Interactions and Observations

    Science.gov (United States)

    Tews, I.; Carlson, J.; Gandolfi, S.; Reddy, S.

    2018-06-01

    The dense matter equation of state (EOS) determines neutron star (NS) structure but can be calculated reliably only up to one to two times the nuclear saturation density, using accurate many-body methods that employ nuclear interactions from chiral effective field theory constrained by scattering data. In this work, we use physically motivated ansatzes for the speed of sound c S at high density to extend microscopic calculations of neutron-rich matter to the highest densities encountered in stable NS cores. We show how existing and expected astrophysical constraints on NS masses and radii from X-ray observations can constrain the speed of sound in the NS core. We confirm earlier expectations that c S is likely to violate the conformal limit of {c}S2≤slant {c}2/3, possibly reaching values closer to the speed of light c at a few times the nuclear saturation density, independent of the nuclear Hamiltonian. If QCD obeys the conformal limit, we conclude that the rapid increase of c S required to accommodate a 2 M ⊙ NS suggests a form of strongly interacting matter where a description in terms of nucleons will be unwieldy, even between one and two times the nuclear saturation density. For typical NSs with masses in the range of 1.2–1.4 M ⊙, we find radii between 10 and 14 km, and the smallest possible radius of a 1.4 M ⊙ NS consistent with constraints from nuclear physics and observations is 8.4 km. We also discuss how future observations could constrain the EOS and guide theoretical developments in nuclear physics.

  6. Carbon nanotube as NEMS sensor - effect of chirality and stone-wales defect intend

    International Nuclear Information System (INIS)

    Gayathri, V; Geetha, R

    2006-01-01

    Having nanosize and unique electrical properties, carbon nanotubes (CNTs) attract lot of interest among scientific community all over the world. One of the recent observations is its role as nanosensors. Obviously the nanosize and high strength of CNT are most preferred parameter for technical and electromechanical field in the industrial point of view. The defects in CNT structure have a vital role in determining their electrical and mechanical properties. Our earlier study indicates an effective role played by the topological defects like pentagon and octagon on the electromechanical properties of these nanostructures. Here our aim is to look in to the effect of Stone-wales defect and chirality on this property of nanotubes deformed under applied pressure. Among the three kinds of tubes considered for this study, we observed that armchair (5, 5) tube is more suitable for sensor applications

  7. Chiroptical studies on supramolecular chirality of molecular aggregates.

    Science.gov (United States)

    Sato, Hisako; Yajima, Tomoko; Yamagishi, Akihiko

    2015-10-01

    The attempts of applying chiroptical spectroscopy to supramolecular chirality are reviewed with a focus on vibrational circular dichroism (VCD). Examples were taken from gels, solids, and monolayers formed by low-molecular mass weight chiral gelators. Particular attention was paid to a group of gelators with perfluoroalkyl chains. The effects of the helical conformation of the perfluoroalkyl chains on the formation of chiral architectures are reported. It is described how the conformation of a chiral gelator was determined by comparing the experimental and theoretical VCD spectra together with a model proposed for the molecular aggregation in fibrils. The results demonstrate the potential utility of the chiroptical method in analyzing organized chiral aggregates. © 2015 Wiley Periodicals, Inc.

  8. Conribution to the study of spontaneous breakdown of the chiral symmetry in gauge theories

    International Nuclear Information System (INIS)

    Gamonal, R.

    1984-01-01

    In the framework of quantum chromodynamics, we have been interested in the order parameters for the breakdown of the non-abelian chiral symmetry. Using the functional integral representation in the euclidean formalism, we have performed the fermionic integration after having inverted the chiral limit and the integration over gluonic fields. So, we were led to look for what gauge field configurations, the fermionic integrand has a non-vanishing chiral limit. We have been able to show, in a general manner, that the generating functional of all the order parameters vanishes in the chiral limit for the gauge field configurations which lead to a discrete spectrum for the Dirac operator around zero. For those leading to a continuous spectrum from the zero eigenvalue, the existence of a non-vanishing infra-red limit for the spectral density of the Dirac operator is crucial. We have exhibited gauge field configurations which give such a behaviour. Nevertheless, our analysis reveals the necessity to get a degeneracy for the zero modes belonging to the continuum of the Dirac operator. We have been able to demonstrate, for the class of gluonic fields, previously considered, an absence of degeneracy [fr

  9. Rediscovering Chirality - Role of S-Metoprolol in Cardiovascular Disease Management.

    Science.gov (United States)

    Mohan, Jagdish C; Shah, Siddharth N; Chinchansurkar, Sunny; Dey, Arindam; Jain, Rishi

    2017-06-01

    The process of drug discovery and development today encompass a myriad of paths for bringing a new therapeutic molecule that has minimal adverse effects and of optimal use to the patient. Chirality was proposed in the direction of providing a purer and safer form of drug [Ex- cetrizine and levocetrizine]. Decades have passed since the introduction of this concept and numerous chiral molecules are in existence in therapeutics, yet somehow this concept has been ignored. This review aims to rediscover the ignored facts about chirality, its benefits and clear some common myths considering the example of S-Metoprolol in the management of Hypertension and other cardiovascular diseases. Relevant articles from Pubmed, Embase, Medline and Google Scholar were searched using the terms "Chiral", "Chirality", "Enantiomers", "Isomers", "Isomerism", "Stereo-chemistry", and "S-Metoprolol". Out of 103 articles found 17 articles mentioning in general about the concept of chirality and articles on study of S-metoprolol in various cardiovascular diseases were then reviewed. Many articles mention about the importance of chirality yet the concept has not been highlighted much. Clear benefits with chiral molecules have been documented for various drug molecules few amongst them being anaesthetics, antihypertensives, antidepressants. Benefits of S-metoprolol over racemate are also clear in terms of responder rates, dose of administration and adverse effects profile in various cardiovascular diseases. Chirality is a good way forward in providing a new drug molecule which is safe with lesser pharmacokinetic and pharmacodynamics variability, lesser side effects and more potent action. S-metoprolol is chirally pure form of racemate metoprolol and has lesser side effects, is safer in patients of COPD and Diabetes who also have hypertension and comparable responder rates at half the doses when compared to racemate.

  10. Mirror Symmetry Breaking and Restoration: The Role of Noise and Chiral Bias

    International Nuclear Information System (INIS)

    Hochberg, David

    2009-01-01

    The nonequilibrium effective potential is computed for the Frank model of spontaneous mirror symmetry breaking (SMSB) in chemistry in which external noise is introduced to account for random environmental effects. When these fluctuations exceed a critical magnitude, mirror symmetry is restored. The competition between ambient noise and the chiral bias due to physical fields and polarized radiation can be explored with this potential.

  11. Quenched chiral logarithms

    International Nuclear Information System (INIS)

    Sharpe, S.R.

    1992-04-01

    I develop a diagrammatic method for calculating chiral logarithms in the quenched approximation. While not rigorous, the method is based on physically reasonable assumptions, which can be tested by numerical simulations. The main results are that, at leading order in the chiral expansion, (a) there are no chiral logarithms in quenched f π m u = m d ; (b) the chiral logarithms in B K and related kaon B-parameters are, for m d = m s the same in the quenched approximation as in the full theory (c) for m π and the condensate, there are extra chiral logarithms due to loops containing the η', which lead to a peculiar non-analytic dependence of these quantities on the bare quark mass. Following the work of Gasser and Leutwyler, I discuss how there is a predictable finite volume dependence associated with each chiral logarithm. I compare the resulting predictions with numerical results: for most quantities the expected volume dependence is smaller than the errors. but for B V and B A there is an observed dependence which is consistent with the predictions

  12. Anomalous Hall effect in semiconductor quantum wells in proximity to chiral p -wave superconductors

    Science.gov (United States)

    Yang, F.; Yu, T.; Wu, M. W.

    2018-05-01

    By using the gauge-invariant optical Bloch equation, we perform a microscopic kinetic investigation on the anomalous Hall effect in chiral p -wave superconducting states. Specifically, the intrinsic anomalous Hall conductivity in the absence of the magnetic field is zero as a consequence of Galilean invariance in our description. As for the extrinsic channel, a finite anomalous Hall current is obtained from the impurity scattering with the optically excited normal quasiparticle current even at zero temperature. From our kinetic description, it can be clearly seen that the excited normal quasiparticle current is due to an induced center-of-mass momentum of Cooper pairs through the acceleration driven by ac electric field. For the induced anomalous Hall current, we show that the conventional skew-scattering channel in the linear response makes the dominant contribution in the strong impurity interaction. In this case, our kinetic description as a supplementary viewpoint mostly confirms the results of Kubo formalism in the literature. Nevertheless, in the weak impurity interaction, this skew-scattering channel becomes marginal and we reveal that an induction channel from the Born contribution dominates the anomalous Hall current. This channel, which has long been overlooked in the literature, is due to the particle-hole asymmetry by nonlinear optical excitation. Finally, we study the case in the chiral p -wave superconducting state with a transverse conical magnetization, which breaks the Galilean invariance. In this situation, the intrinsic anomalous Hall conductivity is no longer zero. Comparison of this intrinsic channel with the extrinsic one from impurity scattering is addressed.

  13. Metal-Ion-Mediated Supramolecular Chirality of l-Phenylalanine Based Hydrogels.

    Science.gov (United States)

    Wang, Fang; Feng, Chuan-Liang

    2018-05-14

    For chiral hydrogels and related applications, one of the critical issues is how to control the chirality of supramolecular systems in an efficient way, including easy operation, efficient transfer of chirality, and so on. Herein, supramolecular chirality of l-phenylalanine based hydrogels can be effectively controlled by using a broad range of metal ions. The degree of twisting (twist pitch) and the diameter of the chiral nanostructures can also be efficiently regulated. These are ascribed to the synergic effect of hydrogen bonding and metal ion coordination. This study may develop a method to design a new class of electronically, optically, and biologically active materials. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Parity doublers in chiral potential quark models

    International Nuclear Information System (INIS)

    Kalashnikova, Yu. S.; Nefediev, A. V.; Ribeiro, J. E. F. T.

    2007-01-01

    The effect of spontaneous breaking of chiral symmetry over the spectrum of highly excited hadrons is addressed in the framework of a microscopic chiral potential quark model (Generalised Nambu-Jona-Lasinio model) with a vectorial instantaneous quark kernel of a generic form. A heavy-light quark-antiquark bound system is considered, as an example, and the Lorentz nature of the effective light-quark potential is identified to be a pure Lorentz-scalar, for low-lying states in the spectrum, and to become a pure spatial Lorentz vector, for highly excited states. Consequently, the splitting between the partners in chiral doublets is demonstrated to decrease fast in the upper part of the spectrum so that neighboring states of an opposite parity become almost degenerate. A detailed microscopic picture of such a 'chiral symmetry restoration' in the spectrum of highly excited hadrons is drawn and the corresponding scale of restoration is estimated

  15. Nonlinear spectroscopic studies of chiral media

    International Nuclear Information System (INIS)

    Belkin, Mikhail Alexandrovich

    2004-01-01

    Molecular chirality plays an important role in chemistry, biology, and medicine. Traditional optical techniques for probing chirality, such as circular dichroism and Raman optical activity rely on electric-dipole forbidden transitions. As a result, their intrinsic low sensitivity limits their use to probe bulk chirality rather than chiral surfaces, monolayers or thin films often important for chemical or biological systems. Contrary to the traditional chirality probes, chiral signal in sum-frequency generation (SFG) is electric-dipole allowed both on chiral surface and in chiral bulk making it a much more promising tool for probing molecular chirality. SFG from a chiral medium was first proposed in 1965, but had never been experimentally confirmed until this thesis work was performed. This thesis describes a set of experiments successfully demonstrating that chiral SFG responses from chiral monolayers and liquids are observable. It shows that, with tunable inputs, SFG can be used as a sensitive spectroscopic tool to probe chirality in both electronic and vibrational resonances of chiral molecules. The monolayer sensitivity is feasible in both cases. It also discusses the relevant theoretical models explaining the origin and the strength of the chiral signal in vibrational and electronic SFG spectroscopies

  16. Effective field theory approach to parton-hadron conversion in high energy QCD processes

    CERN Document Server

    Kinder-Geiger, Klaus

    1995-01-01

    A QCD based effective action is constructed to describe the dynamics of confinement and symmetry breaking in the process of parton-hadron conversion. The deconfined quark and gluon degrees of freedom of the perturbative QCD vacuum are coupled to color singlet collective fields representing the non-perturbative vacuum with broken scale and chiral symmetry. The effective action recovers QCD with its scale and chiral symmetry properties at short space-time distances, but yields at large distances (r > 1 fm) to the formation of symmetry breaking gluon and quark condensates. The approach is applied to the evolution of a fragmenting q\\bar q pair with its generated gluon distribution, starting from a large hard scale Q^2. The modification of the gluon distribution arising from the coupling to the non-perturbative collective field results eventually in a complete condensation of gluons. Color flux tube configurations of the gluons in between the q\\bar q pair are obtained as solutions of the equations of motion. With ...

  17. Deep-Subwavelength Resolving and Manipulating of Hidden Chirality in Achiral Nanostructures.

    Science.gov (United States)

    Zu, Shuai; Han, Tianyang; Jiang, Meiling; Lin, Feng; Zhu, Xing; Fang, Zheyu

    2018-04-24

    The chiral state of light plays a vital role in light-matter interactions and the consequent revolution of nanophotonic devices and advanced modern chiroptics. As the light-matter interaction goes into the nano- and quantum world, numerous chiroptical technologies and quantum devices require precise knowledge of chiral electromagnetic modes and chiral radiative local density of states (LDOS) distributions in detail, which directly determine the chiral light-matter interaction for applications such as chiral light detection and emission. With classical optical techniques failing to directly measure the chiral radiative LDOS, deep-subwavelength imaging and control of circular polarization (CP) light associated phenomena are introduced into the agenda. Here, we simultaneously reveal the hidden chiral electromagnetic mode and acquire its chiral radiative LDOS distribution of a single symmetric nanostructure at the deep-subwavelength scale by using CP-resolved cathodoluminescence (CL) microscopy. The chirality of the symmetric nanostructure under normally incident light excitation, resulting from the interference between the symmetric and antisymmetric modes of the V-shaped nanoantenna, is hidden in the near field with a giant chiral distribution (∼99%) at the arm-ends, which enables the circularly polarized CL emission from the radiative LDOS hot-spot and the following active helicity control at the deep-subwavelength scale. The proposed V-shaped nanostructure as a functional unit is further applied to the helicity-dependent binary encoding and the two-dimensional display applications. The proposed physical principle and experimental configuration can promote the future chiral characterization and manipulation at the deep-subwavelength scale and provide direct guidelines for the optimization of chiral light-matter interactions for future quantum studies.

  18. Mass generation and chiral symmetry breaking by pseudoparticles

    International Nuclear Information System (INIS)

    Hietarinta, J.; Palmer, W.F.; Pinsky, S.S.

    1978-01-01

    Massless QCD is studied with regard to mass generation and chiral SU(N/sub f/) symmetry breaking from pseudoparticle effects. While mass is generated when there is only one massless quark, and chiral U(1) is always broken, no rigorous indication of the breaking of chiral SU(N/sub f/) and mass generation is seen when there are more than one massless quarks in the original theory

  19. Emergent Chiral Spin State in the Mott Phase of a Bosonic Kane-Mele-Hubbard Model

    Science.gov (United States)

    Plekhanov, Kirill; Vasić, Ivana; Petrescu, Alexandru; Nirwan, Rajbir; Roux, Guillaume; Hofstetter, Walter; Le Hur, Karyn

    2018-04-01

    Recently, the frustrated X Y model for spins 1 /2 on the honeycomb lattice has attracted a lot of attention in relation with the possibility to realize a chiral spin liquid state. This model is relevant to the physics of some quantum magnets. Using the flexibility of ultracold atom setups, we propose an alternative way to realize this model through the Mott regime of the bosonic Kane-Mele-Hubbard model. The phase diagram of this model is derived using bosonic dynamical mean-field theory. Focusing on the Mott phase, we investigate its magnetic properties as a function of frustration. We do find an emergent chiral spin state in the intermediate frustration regime. Using exact diagonalization we study more closely the physics of the effective frustrated X Y model and the properties of the chiral spin state. This gapped phase displays a chiral order, breaking time-reversal and parity symmetry, but is not topologically ordered (the Chern number is zero).

  20. Kinetics of the chiral phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Hees, Hendrik van [Johann-Wolfgang-Goethe-Universitaet Frankfurt, Institut fuer Theoretische Physik, Frankfurt (Germany); Frankfurt Institute for Advanced Studies (FIAS), Frankfurt (Germany); Wesp, Christian; Meistrenko, Alex; Greiner, Carsten [Johann-Wolfgang-Goethe-Universitaet Frankfurt, Institut fuer Theoretische Physik, Frankfurt (Germany)

    2016-07-01

    We simulate the kinetics of the chiral phase transition in hot and dense strongly interacting matter within a novel kinetic-theory approach. Employing an effective linear σ model for quarks, σ mesons, and pions we treat the quarks within a test-particle ansatz for solving the Boltzmann transport equation and the mesons in terms of classical fields. The decay-recombination processes like σ <-> anti q+q are treated using a kind of wave-particle dualism using the exact conservation of energy and momentum. After demonstrating the correct thermodynamic limit for particles and fields in a ''box calculation'' we apply the simulation to the dynamics of an expanding fireball similar to the medium created in ultrarelativistic heavy-ion collisions.

  1. Non-perturbative chiral corrections for lattice QCD

    International Nuclear Information System (INIS)

    Thomas, A.W.; Leinweber, D.B.; Lu, D.H.

    2002-01-01

    We explore the chiral aspects of extrapolation of observables calculated within lattice QCD, using the nucleon magnetic moments as an example. Our analysis shows that the biggest effects of chiral dynamics occur for quark masses corresponding to a pion mass below 600 MeV. In this limited range chiral perturbation theory is not rapidly convergent, but we can develop some understanding of the behaviour through chiral quark models. This model dependent analysis leads us to a simple Pade approximant which builds in both the limits m π → 0 and m π → ∞ correctly and permits a consistent, model independent extrapolation to the physical pion mass which should be extremely reliable. (author)

  2. Silver Films with Hierarchical Chirality.

    Science.gov (United States)

    Ma, Liguo; Cao, Yuanyuan; Duan, Yingying; Han, Lu; Che, Shunai

    2017-07-17

    Physical fabrication of chiral metallic films usually results in singular or large-sized chirality, restricting the optical asymmetric responses to long electromagnetic wavelengths. The chiral molecule-induced formation of silver films prepared chemically on a copper substrate through a redox reaction is presented. Three levels of chirality were identified: primary twisted nanoflakes with atomic crystal lattices, secondary helical stacking of these nanoflakes to form nanoplates, and tertiary micrometer-sized circinates consisting of chiral arranged nanoplates. The chiral Ag films exhibited multiple plasmonic absorption- and scattering-based optical activities at UV/Vis wavelengths based on their hierarchical chirality. The Ag films showed chiral selectivity for amino acids in catalytic electrochemical reactions, which originated from their primary atomic crystal lattices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Chiral doublet bands in odd-A nuclei 103,105Rh

    International Nuclear Information System (INIS)

    Qi Bin; Wang Shouyu; Zhang Shuangquan; Meng Jie

    2010-01-01

    Spontaneous chiral symmetry breaking is a phenomenon of general interest in chemistry, biology and particle physics. Since the pioneering work of nuclear chirality in 1997 [1] , much effort has been devoted to further explore this interesting phenomenon. Following the observation of chiral doublet bands in N = 75 isotones [2] more candidates have been reported over more than 20 nuclei experimentally in A∼100, 130 and 190 mass regions including odd-odd, odd-A and even-even nuclei. However, the identification and the intrinsic mechanism of candidate chiral doublet bands are still under debate. Although various versions of particle rotor model (PRM) and titled axis cranking model (TAC) had been applied to study chiral bands, the essential starting point for understanding their properties is based on the ideal picture, i.e. one particle and one hole coupled with a γ = 30 rigid triaxial rotor. On the other hand, from the investigation of semiclassical TAC based on the mean field, it is shown that the chiral doublet bands in the real nuclei are not always consistent with the static chirality, but mixed with the character of dynamic chirality. Thus it is necessary to construct a fully quantal model for the description of chiral doublet bands in the real nuclei, which is aimed to understand the properties of chiral doublet bands in real nuclei, and to present clearly the picture and character of chiral motion [3] . Recently, we have developed the multi-particle multi-hole coupled with the triaxial rotor model, which is able to describe the nuclear rotation related to many valence nucleons. Adopting this model, chirality in odd-A nuclei 103,105 Rh with πg 9/2 -1 ⊗νh 11/2 2 configuration and in odd-A nucleus 135 Nd with πh 11/2 2 ⊗νh 11/2 1 configuration [4] are studied in a fully quantal approach. For the chiral doublet bands, the observed energies and the B(M1) and B(E2) values are reproduced very well. Root mean square values of the angular momentum components

  4. Chiral topological insulator on Nambu 3-algebraic geometry

    Directory of Open Access Journals (Sweden)

    Kazuki Hasebe

    2014-09-01

    Full Text Available Chiral topological insulator (AIII-class with Landau levels is constructed based on the Nambu 3-algebraic geometry. We clarify the geometric origin of the chiral symmetry of the AIII-class topological insulator in the context of non-commutative geometry of 4D quantum Hall effect. The many-body groundstate wavefunction is explicitly derived as a (l,l,l−1 Laughlin–Halperin type wavefunction with unique K-matrix structure. Fundamental excitation is identified with anyonic string-like object with fractional charge 1/(2(l−12+1. The Hall effect of the chiral topological insulators turns out be a color version of Hall effect, which exhibits a dual property of the Hall and spin-Hall effects.

  5. Broken chiral symmetry and the structure of hadrons

    International Nuclear Information System (INIS)

    Spence, W.L.

    1982-01-01

    The spontaneous breaking of chiral symmetry plays a decisive role in the structure of hadrons composed of light quarks. The formalism by which the dynamics of chiral symmetry breaking and its implications for hadronic structure can be explored in a simplified world in which fully relativistic zero-bare-mass quarks interact through a chirally symmetric instantaneous confining potential is presented. By thus modeling the essentials of the chiral limit-N/sub c/ infinity limit of QCD contact is made with the successes of existent semiphenomenological models of hadrons but post assumptions which explicitly violate chiral symetry are avoided. This revised approach then makes possible a unification of the dynamics of hadron structure with the mechanism of spontaneous chiral breaking and guarantees the appearance of the correct Goldstone excitations. The chiral breaking order parameter (absolute value anti psi psi), effective quark mass, and Goldstone boson wave function are obtainable by solving a single non-linear integral equation once a potential has been prescribed. The stability of the chiral asymmetric vacuum must then be established by studying the linear eigenvalue problem which determines the spectrum of states with vacuum quantum numbers. The nature of the instability of the chiral symmetric vacuum that leads to spontaneous symmetry breaking is explained and its apparent contingency on details of the dynamics is emphasized. It is argued that a single massless fermion in a chirally symmetric potential does form bound states for which a semi-classical description is given. Coupling to vacuum pairs of such bound states occasions the possibility of chiral symmetry breakdown

  6. Minimally doubled fermions and spontaneous chiral symmetry breaking

    Directory of Open Access Journals (Sweden)

    Osmanaj (Zeqirllari Rudina

    2018-01-01

    Full Text Available Chiral symmetry breaking in massless QCD is a very important feature in the current understanding of low energy physics. Low - lying Dirac modes are suitable to help us understand the spontaneous chiral symmetry breaking, since the formation of a non zero chiral condensate is an effect of their accumulation near zero. The Banks – Casher relation links the spectral density of the Dirac operator to the condensate with an identity that can be read in both directions. In this work we propose a spectral method to achieve a reliable determination of the density of eigenvalues of Dirac operator near zero using the Gauss – Lanczos quadrature. In order to understand better the dynamical chiral symmetry breaking and use the method we propose, we have chosen to work with minimally doubled fermions. These kind of fermions have been proposed as a strictly local discretization of the QCD fermions action, which preserves chiral symmetry at finite cut-off. Being chiral fermions, is easier to work with them and their low - lying Dirac modes and to understand the dynamical spontaneous chiral symmetry breaking.

  7. Minimally doubled fermions and spontaneous chiral symmetry breaking

    Science.gov (United States)

    Osmanaj (Zeqirllari), Rudina; Hyka (Xhako), Dafina

    2018-03-01

    Chiral symmetry breaking in massless QCD is a very important feature in the current understanding of low energy physics. Low - lying Dirac modes are suitable to help us understand the spontaneous chiral symmetry breaking, since the formation of a non zero chiral condensate is an effect of their accumulation near zero. The Banks - Casher relation links the spectral density of the Dirac operator to the condensate with an identity that can be read in both directions. In this work we propose a spectral method to achieve a reliable determination of the density of eigenvalues of Dirac operator near zero using the Gauss - Lanczos quadrature. In order to understand better the dynamical chiral symmetry breaking and use the method we propose, we have chosen to work with minimally doubled fermions. These kind of fermions have been proposed as a strictly local discretization of the QCD fermions action, which preserves chiral symmetry at finite cut-off. Being chiral fermions, is easier to work with them and their low - lying Dirac modes and to understand the dynamical spontaneous chiral symmetry breaking.

  8. Inversion of Supramolecular Chirality by Sonication-Induced Organogelation

    Science.gov (United States)

    Maity, Sibaprasad; Das, Priyadip; Reches, Meital

    2015-01-01

    Natural helical structures have inspired the formation of well-ordered peptide-based chiral nanostructures in vitro. These structures have drawn much attention owing to their diverse applications in the area of asymmetric catalysts, chiral photonic materials, and nanoplasmonics. The self-assembly of two enantiomeric fluorinated aromatic dipeptides into ordered chiral fibrillar nanostructures upon sonication is described. These fibrils form organogels. Our results clearly indicate that fluorine-fluorine interactions play an important role in self-assembly. Circular dichroism analysis revealed that both peptides (peptides 1 and 2), containing two fluorines, depicted opposite cotton effects in their monomeric form compared with their aggregated form. This shows that supramolecular chirality inversion took place during the stimuli-responsive self-aggregation process. Conversely, peptide 3, containing one fluorine, did not exhibit chirality inversion in sonication-induced organogelation. Therefore, our results clearly indicate that fluorination plays an important role in the organogelation process of these aromatic dipeptides. Our findings may have broad implications regarding the design of chiral nanostructures for possible applications such as chiroptical switches, asymmetric catalysis, and chiral recognitions. PMID:26553508

  9. Including the Δ(1232) resonance in baryon chiral perturbation theory

    International Nuclear Information System (INIS)

    Hacker, C.; Wies, N.; Scherer, S.; Gegelia, J.

    2005-01-01

    Baryon chiral perturbation theory with explicit Δ(1232) degrees of freedom is considered. The most general interactions of pions, nucleons, and Δ consistent with all underlying symmetries as well as with the constraint structure of higher-spin fields are constructed. By use of the extended on-mass-shell renormalization scheme, a manifestly Lorentz-invariant effective-field theory with a systematic power counting is obtained. As applications, we discuss the mass of the nucleon, the pion-nucleon σ term, and the pole of the Δ propagator

  10. Modification of the rate of β-decay by chiral molecular environment

    International Nuclear Information System (INIS)

    Garay, A.S.; Biological Research Center, Szeged

    2000-01-01

    The radioactive isotope 32 P in the form of phosphoric acid (H 3 32 PO 4 ) and 22 Na in the form of sodium chloride ( 22 NaCl), were dissolved in R and S mirror image chiral solvents of 2-phenylbutyric acid (PBA) and diethyltartrate (DET). Then their decay rates were determined and compared to each other, to their decay rates in water and to their decay rates in racemic mixtures. It was found that 32 P decayed significantly faster if dissolved in R-PBA than in S-PBA. Similarly, 22 Na decayed significantly faster if dissolved in R-DET than in S-DET. Evidently the decay rates are sensitive to the right- and left-handed potential fields of the solvent molecules. However, the decay rate of 32 P was insensitive to the chiral senses of the DET solvents. Similarly, the decay rate of 22 Na was insensitive to the chiral senses of the PBA solvents. This can be tentatively explained by the interactions between the solvents and the solutes. It was also observed that in the first ten percent of the half-life time the decay of 32 P and particularly the decay of 22 Na often showed some deviation from the exponential behavior. This effect is chirality-dependent. (author)

  11. Stimuli-Directed Helical Chirality Inversion and Bio-Applications

    Directory of Open Access Journals (Sweden)

    Ziyu Lv

    2016-08-01

    Full Text Available Helical structure is a sophisticated ubiquitous motif found in nature, in artificial polymers, and in supramolecular assemblies from microscopic to macroscopic points of view. Significant progress has been made in the synthesis and structural elucidation of helical polymers, nevertheless, a new direction for helical polymeric materials, is how to design smart systems with controllable helical chirality, and further use them to develop chiral functional materials and promote their applications in biology, biochemistry, medicine, and nanotechnology fields. This review summarizes the recent progress in the development of high-performance systems with tunable helical chirality on receiving external stimuli and discusses advances in their applications as drug delivery vesicles, sensors, molecular switches, and liquid crystals. Challenges and opportunities in this emerging area are also presented in the conclusion.

  12. Chiral Drug Analysis in Forensic Chemistry: An Overview

    OpenAIRE

    Cláudia Ribeiro; Cristiana Santos; Valter Gonçalves; Ana Ramos; Carlos Afonso; Maria Elizabeth Tiritan

    2018-01-01

    Many substances of forensic interest are chiral and available either as racemates or pure enantiomers. Application of chiral analysis in biological samples can be useful for the determination of legal or illicit drugs consumption or interpretation of unexpected toxicological effects. Chiral substances can also be found in environmental samples and revealed to be useful for determination of community drug usage (sewage epidemiology), identification of illicit drug manufacturing locations, ille...

  13. Nonequilibrium chiral fluid dynamics including dissipation and noise

    International Nuclear Information System (INIS)

    Nahrgang, Marlene; Herold, Christoph; Bleicher, Marcus; Leupold, Stefan

    2011-01-01

    We present a consistent theoretical approach for the study of nonequilibrium effects in chiral fluid dynamics within the framework of the linear σ model with constituent quarks. Treating the quarks as an equilibrated heat bath, we use the influence functional formalism to obtain a Langevin equation for the σ field. This allows us to calculate the explicit form of the damping coefficient and the noise correlators. For a self-consistent derivation of both the dynamics of the σ field and the quark fluid, we have to employ the 2PI (two-particle irreducible) effective action formalism. The energy dissipation from the field to the fluid is treated in the exact formalism of the 2PI effective action where a conserved energy-momentum tensor can be constructed. We derive its form and comment on approximations generating additional terms in the energy-momentum balance of the entire system.

  14. Dirac operator, chirality and random matrix theory

    International Nuclear Information System (INIS)

    Pullirsch, R.

    2001-05-01

    Quantum Chromodynamics (QCD) is considered to be the correct theory which describes quarks and gluons and, thus, all strong interaction phenomena from the fundamental forces of nature. However, important properties of QCD such as the physical mechanism of color confinement and the spontaneous breaking of chiral symmetry are still not completely understood and under extensive discussion. Analytical calculations are limited, because in the low-energy regime where quarks are confined, application of perturbation theory is restricted due to the large gluon coupling. A powerful tool to investigate numerically and analytically the non-perturbative region is provided by the lattice formulation of QCD. From Monte Carlo simulations of lattice QCD we know that chiral symmetry is restored above a critical temperature. As the chiral condensate is connected to the spectral density of the Dirac operator via the Banks-Casher relation, the QCD Dirac spectrum is an interesting object for detailed studies. In search for an analytical expression of the infrared limit of the Dirac spectrum it has been realized that chiral random-matrix theory (chRMT) is a suitable tool to compare with the distribution and the correlations of the small Dirac eigenvalues. Further, it has been shown that the correlations of eigenvalues on the scale of mean level spacings are universal for complex physical systems and are given by random-matrix theory (Rm). This has been formulated as the Baghouse-Giannoni-Schmit conjecture which states that spectral correlations of a classically chaotic system are given by RMT on the quantum level. The aim of this work is to analyze the relationship between chiral phase transitions and chaos to order transitions in quantum field theories. We study the eigenvalues of the Dirac operator for Quantum Electrodynamics (QED) with compact gauge group U(1) on the lattice. This theory shows chiral symmetry breaking and confinement in the strong coupling region. Although being

  15. Induction of Chirality in Two-Dimensional Nanomaterials: Chiral 2D MoS2 Nanostructures.

    Science.gov (United States)

    Purcell-Milton, Finn; McKenna, Robert; Brennan, Lorcan J; Cullen, Conor P; Guillemeney, Lilian; Tepliakov, Nikita V; Baimuratov, Anvar S; Rukhlenko, Ivan D; Perova, Tatiana S; Duesberg, Georg S; Baranov, Alexander V; Fedorov, Anatoly V; Gun'ko, Yurii K

    2018-02-27

    Two-dimensional (2D) nanomaterials have been intensively investigated due to their interesting properties and range of potential applications. Although most research has focused on graphene, atomic layered transition metal dichalcogenides (TMDs) and particularly MoS 2 have gathered much deserved attention recently. Here, we report the induction of chirality into 2D chiral nanomaterials by carrying out liquid exfoliation of MoS 2 in the presence of chiral ligands (cysteine and penicillamine) in water. This processing resulted in exfoliated chiral 2D MoS 2 nanosheets showing strong circular dichroism signals, which were far past the onset of the original chiral ligand signals. Using theoretical modeling, we demonstrated that the chiral nature of MoS 2 nanosheets is related to the presence of chiral ligands causing preferential folding of the MoS 2 sheets. There was an excellent match between the theoretically calculated and experimental spectra. We believe that, due to their high aspect ratio planar morphology, chiral 2D nanomaterials could offer great opportunities for the development of chiroptical sensors, materials, and devices for valleytronics and other potential applications. In addition, chirality plays a key role in many chemical and biological systems, with chiral molecules and materials critical for the further development of biopharmaceuticals and fine chemicals, and this research therefore should have a strong impact on relevant areas of science and technology such as nanobiotechnology, nanomedicine, and nanotoxicology.

  16. Enantioselective stable isotope analysis (ESIA) — A new concept to evaluate the environmental fate of chiral organic contaminants

    International Nuclear Information System (INIS)

    Badea, Silviu-Laurentiu; Danet, Andrei-Florin

    2015-01-01

    Since 2011, the enantiospecific stable carbon isotope analysis (ESIA) has emerged as an innovative technique to assess the environmental fate of chiral emerging compounds by combining in one experimental technique both compound specific isotope analysis (CSIA) and enantioselective analysis. To date, the ESIA was applied for four classes of compounds: α-hexachlorocyclohexane (α-HCH), polar herbicides (phenoxy acids), synthetic polycyclic musk galaxolide (HHCB), and phenoxyalkanoic methyl herbicides. From an analytical point of view there are factors that are hindering the application of ESIA methods for the field samples: (i.e. amounts of target analyte, matrix effects, GC resolution) and overcoming these factors is challenging. While ESIA was shown as a mature technique for the first three abovementioned class of compounds, no isotope analysis of individual enantiomers could be performed for phenoxyalkanoic methyl herbicides. With respect to field studies, one study showed that ESIA might be a promising tool to distinguish between biotic and abiotic transformation pathways of chiral organic contaminants and even to differentiate between their aerobic and anaerobic biotransformation pathways. The development of ESIA methods for new chiral emerging contaminants in combination with development of multi-element isotope analysis will contribute to a better characterization of transformation pathways of chiral organic contaminants. - Highlights: • ESIA is an innovative technique to assess the environmental fate of chiral pollutants • Overcoming the analytical limitations of ESIA is challenging • Development of ESIA methods for new chiral emerging contaminants is needed

  17. Enantioselective stable isotope analysis (ESIA) — A new concept to evaluate the environmental fate of chiral organic contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Badea, Silviu-Laurentiu, E-mail: badeasilviu@gmail.com [Department of Chemistry, Umeå University, SE-901 87 Umeå (Sweden); Danet, Andrei-Florin [Department of Analytical Chemistry, University of Bucharest, Faculty of Chemistry, 90-92 Panduri Str., Bucharest 050657 (Romania)

    2015-05-01

    Since 2011, the enantiospecific stable carbon isotope analysis (ESIA) has emerged as an innovative technique to assess the environmental fate of chiral emerging compounds by combining in one experimental technique both compound specific isotope analysis (CSIA) and enantioselective analysis. To date, the ESIA was applied for four classes of compounds: α-hexachlorocyclohexane (α-HCH), polar herbicides (phenoxy acids), synthetic polycyclic musk galaxolide (HHCB), and phenoxyalkanoic methyl herbicides. From an analytical point of view there are factors that are hindering the application of ESIA methods for the field samples: (i.e. amounts of target analyte, matrix effects, GC resolution) and overcoming these factors is challenging. While ESIA was shown as a mature technique for the first three abovementioned class of compounds, no isotope analysis of individual enantiomers could be performed for phenoxyalkanoic methyl herbicides. With respect to field studies, one study showed that ESIA might be a promising tool to distinguish between biotic and abiotic transformation pathways of chiral organic contaminants and even to differentiate between their aerobic and anaerobic biotransformation pathways. The development of ESIA methods for new chiral emerging contaminants in combination with development of multi-element isotope analysis will contribute to a better characterization of transformation pathways of chiral organic contaminants. - Highlights: • ESIA is an innovative technique to assess the environmental fate of chiral pollutants • Overcoming the analytical limitations of ESIA is challenging • Development of ESIA methods for new chiral emerging contaminants is needed.

  18. Chiral ward-Takahashi identities at finite temperature and chiral phase transition in (2+1) dimensional chiral Gross-Neveu model

    International Nuclear Information System (INIS)

    Shen Kun; Qiu Zhongping

    1993-01-01

    Chiral Ward-Takahashi identities at finite temperature are derived in (2+1) dimensional chiral Gross-Neveu model. In terms of these identities, fermion mass generation and the mass spectra of bound states are investigate at finite temperature. Taking the fermion mass as an order parameter, the authors discuss the phase structure and chiral phase transition and obtain the critical temperature

  19. Monopole percolation and the universality class of the chiral transition in four flavor noncompact lattice QED

    CERN Document Server

    Kocic, Aleksandar; Wang, K C

    1993-01-01

    We simulate four flavor noncompact lattice QED using the Hybrid Monte Carlo algorithm on $10^4$ and $16^4$ lattices. Measurements of the monopole susceptibility and the percolation order parameter indicate a transition at $\\beta = {1/e^2} = .205(5)$ with critical behavior in the universality class of four dimensional percolation. We present accurate chiral condensate measurements and monitor finite size effects carefully. The chiral condensate data supports the existence of a power-law transition at $\\beta = .205$ in the same universality class as the chiral transition in the two flavor model. The resulting equation of state predicts the mass ratio $m_\\pi^2/m_\\sigma^2$ in good agreement with spectrum calculations while the hypothesis of a logarithmically improved mean field theory fails qualitatively.

  20. QCD sum rules for D mesons. In-medium effects, chiral symmetry aspects and higher orders

    Energy Technology Data Exchange (ETDEWEB)

    Buchheim, Thomas

    2017-04-11

    Heavy open flavor mesons can serve as probes of hot and dense, strongly interacting matter in heavy-ion collisions suitable to mimic the extreme conditions shortly after the big-bang or in compact stars. Thus, the thorough theoretical investigation of medium modifications of D mesons is of utmost importance for the interpretation of the experimental data. Even at finite thermodynamic parameters, such as temperature and density, the non-perturbative framework of QCD sum rules allows for the determination of hadronic properties which are not accessible in perturbative quantum chromodynamics (QCD). By virtue of the separation of scales, long-range effects of hadrons are related to quark and gluon degrees of freedom, where features of the hadron spectrum are linked to condensates parameterizing the complex QCD ground state. This thesis furnishes the conception and calculus of QCD sum rules with emphasis on in-medium effects which are inevitable when addressing such effects in higher order contributions. In this regard, the notion and implications of medium-specific condensates are elucidated. Motivated by the significant numerical impact of four-quark condensates to the ρ meson sum rule we evaluate, for the first time, the corresponding in-medium mass-dimension 6 terms for D mesons tentatively employing the factorization hypothesis. Four-quark condensates containing heavy-quark operators may be included into the sum rule analysis utilizing the in-medium heavy-quark expansion made available here. Particular quark condensates are potential order parameters of chiral symmetry breaking, which is the mass generating mechanism of QCD giving the essential mass fraction to light hadrons. The interplay of altered spectral properties with changing in-medium QCD condensates, i. e. the chiral order parameters, can be studied with chiral partner sum rules. Although, introduced for light spin-1 mesons we foster their generalization to spin-0 open charm mesons demonstrating their

  1. QCD sum rules for D mesons. In-medium effects, chiral symmetry aspects and higher orders

    International Nuclear Information System (INIS)

    Buchheim, Thomas

    2017-01-01

    Heavy open flavor mesons can serve as probes of hot and dense, strongly interacting matter in heavy-ion collisions suitable to mimic the extreme conditions shortly after the big-bang or in compact stars. Thus, the thorough theoretical investigation of medium modifications of D mesons is of utmost importance for the interpretation of the experimental data. Even at finite thermodynamic parameters, such as temperature and density, the non-perturbative framework of QCD sum rules allows for the determination of hadronic properties which are not accessible in perturbative quantum chromodynamics (QCD). By virtue of the separation of scales, long-range effects of hadrons are related to quark and gluon degrees of freedom, where features of the hadron spectrum are linked to condensates parameterizing the complex QCD ground state. This thesis furnishes the conception and calculus of QCD sum rules with emphasis on in-medium effects which are inevitable when addressing such effects in higher order contributions. In this regard, the notion and implications of medium-specific condensates are elucidated. Motivated by the significant numerical impact of four-quark condensates to the ρ meson sum rule we evaluate, for the first time, the corresponding in-medium mass-dimension 6 terms for D mesons tentatively employing the factorization hypothesis. Four-quark condensates containing heavy-quark operators may be included into the sum rule analysis utilizing the in-medium heavy-quark expansion made available here. Particular quark condensates are potential order parameters of chiral symmetry breaking, which is the mass generating mechanism of QCD giving the essential mass fraction to light hadrons. The interplay of altered spectral properties with changing in-medium QCD condensates, i. e. the chiral order parameters, can be studied with chiral partner sum rules. Although, introduced for light spin-1 mesons we foster their generalization to spin-0 open charm mesons demonstrating their

  2. Giant Circular Dichroism in Individual Carbon Nanotubes Induced by Extrinsic Chirality

    Directory of Open Access Journals (Sweden)

    A. Yokoyama

    2014-01-01

    Full Text Available Circular dichroism is widely used for characterizing organic and biological materials, but measurements at a single-molecule level are challenging because differences in absorption for opposite helicities are small. Here, we show that extrinsic chirality can induce giant circular dichroism in individual carbon nanotubes, with the degree of polarization reaching 65%. The signal has a large dependence on the incidence angle, consistent with extrinsic-chirality-induced effects in which symmetry is broken by the optical wave vector. We propose that the field-induced charge distribution on the substrate results in an efficient polarization conversion, giving rise to the giant dichroism. Our results highlight the possibility of polarization manipulation at the nanoscale for applications in integrated photonics and novel metamaterial designs.

  3. Homochiral Evolution in Self-Assembled Chiral Polymers and Block Copolymers.

    Science.gov (United States)

    Wen, Tao; Wang, Hsiao-Fang; Li, Ming-Chia; Ho, Rong-Ming

    2017-04-18

    The significance of chirality transfer is not only involved in biological systems, such as the origin of homochiral structures in life but also in man-made chemicals and materials. How the chiral bias transfers from molecular level (molecular chirality) to helical chain (conformational chirality) and then to helical superstructure or phase (hierarchical chirality) from self-assembly is vital for the chemical and biological processes in nature, such as communication, replication, and enzyme catalysis. In this Account, we summarize the methodologies for the examination of homochiral evolution at different length scales based on our recent studies with respect to the self-assembly of chiral polymers and chiral block copolymers (BCPs*). A helical (H*) phase to distinguish its P622 symmetry from that of normal hexagonally packed cylinder phase was discovered in the self-assembly of BCPs* due to the chirality effect on BCP self-assembly. Enantiomeric polylactide-containing BCPs*, polystyrene-b-poly(l-lactide) (PS-PLLA) and polystyrene-b-poly(d-lactide) (PS-PDLA), were synthesized for the examination of homochiral evolution. The optical activity (molecular chirality) of constituted chiral repeating unit in the chiral polylactide is detected by electronic circular dichroism (ECD) whereas the conformational chirality of helical polylactide chain can be explicitly determined by vibrational circular dichroism (VCD). The H* phases of the self-assembled polylactide-containing BCPs* can be directly visualized by 3D transmission electron microscopy (3D TEM) technique at which the handedness (hierarchical chirality) of the helical nanostructure is thus determined. The results from the ECD, VCD, and 3D TEM for the investigated chirality at different length scales suggest the homochiral evolution in the self-assembly of the BCPs*. For chiral polylactides, twisted lamellae in crystalline banded spherulite can be formed by dense packing scheme and effective interactions upon helical

  4. Nuclear Forces from Effective Field Theory

    International Nuclear Information System (INIS)

    Krebs, H.

    2011-01-01

    Chiral effective field theory allows for a systematic and model-independent derivation of the forces between nucleons in harmony with the symmetries of the quantum chromodynamics. After a brief review on the current status in the development of the chiral nuclear forces I will focus on the role of the Δ-resonance contributions in the nuclear dynamics.We find improvement in the convergence of the chiral expansion of the nuclear forces if we explicitly take into account the Δ-resonance degrees of freedom. The overall results for two-nucleon forces with and without explicit Δ-resonance degrees of freedom are remarkably similar. We discussed the long- and shorter-range N 3 LO contributions to chiral three-nucleon forces. No additional free parameters appear at this order. There are five different topology classes which contribute to the forces. Three of them describe long-range contributions which constitute the first systematic corrections to the leading 2π exchange that appear at N 2 LO. Another two contributions are of a shorter range and include, additionally to an exchange of pions, also one short-range contact interaction and all corresponding 1/m corrections. The requirement of renormalizability leads to unique expressions for N 3 LO contributions to the three-nucleon force (except for 1/m-corrections). We presented the complete N 2 LO analysis of the nuclear forces with explicit Δ-isobar degrees of freedom. Although the overall results in the isospin-conserving case are very similar in the Δ-less and Δ-full theories, we found a much better convergence in all peripheral partial waves once Δ-resonance is explicitly taken into account. The leading CSB contributions to nuclear forces are proportional to nucleon- and Δ-mass splittings. There appear strong cancellations between the two contributions which at leading order yield weaker V III potentials. This effect is, however, entirely compensated at subleading order such that the results in the theories

  5. Chiral perturbation theory for nucleon generalized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics; Schaefer, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik

    2006-08-15

    We analyze the moments of the isosinglet generalized parton distributions H, E, H, E of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. We discuss in detail the construction of the operators in the effective theory that are required to obtain all corrections to a given order in the chiral power counting. The results will serve to improve the extrapolation of lattice results to the chiral limit. (orig.)

  6. Baryon Chiral Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Becher,

    2002-08-08

    After contrasting the low energy effective theory for the baryon sector with one for the Goldstone sector, I use the example of pion nucleon scattering to discuss some of the progress and open issues in baryon chiral perturbation theory.

  7. Chiral behavior of K →π l ν decay form factors in lattice QCD with exact chiral symmetry

    Science.gov (United States)

    Aoki, S.; Cossu, G.; Feng, X.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Noaki, J.; Onogi, T.; Jlqcd Collaboration

    2017-08-01

    We calculate the form factors of the K →π l ν semileptonic decays in three-flavor lattice QCD and study their chiral behavior as a function of the momentum transfer and the Nambu-Goldstone boson masses. Chiral symmetry is exactly preserved by using the overlap quark action, which enables us to directly compare the lattice data with chiral perturbation theory (ChPT). We generate gauge ensembles at a lattice spacing of 0.11 fm with four pion masses covering 290-540 MeV and a strange quark mass ms close to its physical value. By using the all-to-all quark propagator, we calculate the vector and scalar form factors with high precision. Their dependence on ms and the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields. We compare the results for the semileptonic form factors with ChPT at next-to-next-to-leading order in detail. While many low-energy constants appear at this order, we make use of our data of the light meson electromagnetic form factors in order to control the chiral extrapolation. We determine the normalization of the form factors as f+(0 )=0.9636 (36 )(-35+57) and observe reasonable agreement of their shape with experiment.

  8. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  9. N=4 supersymmetric mechanics with nonlinear chiral supermultiplet

    International Nuclear Information System (INIS)

    Bellucci, S.; Beylin, A.; Krivonos, S.; Nersessian, A.; Orazi, E.

    2005-01-01

    We construct N=4 supersymmetric mechanics using the N=4 nonlinear chiral supermultiplet. The two bosonic degrees of freedom of this supermultiplet parameterize the sphere S 2 and go into the bosonic components of the standard chiral multiplet when the radius of the sphere goes to infinity. We construct the most general action and demonstrate that the nonlinearity of the supermultiplet results in the deformation of the connection, which couples the fermionic degrees of freedom with the background, and of the bosonic potential. Also a non-zero magnetic field could appear in the system

  10. Lattice chiral gauge theories with finely-grained fermions

    International Nuclear Information System (INIS)

    Hernandez, P.; Sundrum, R.

    1996-01-01

    The importance of lattice gauge field interpolation for our recent non-perturbative formulation of chiral gauge theory is emphasized. We illustrate how the requisite properties are satisfied by our recent four-dimensional non-abelian interpolation scheme, by going through the simpler case of U(1) gauge fields in two dimensions. (orig.)

  11. Nonlinear responses of chiral fluids from kinetic theory

    Science.gov (United States)

    Hidaka, Yoshimasa; Pu, Shi; Yang, Di-Lun

    2018-01-01

    The second-order nonlinear responses of inviscid chiral fluids near local equilibrium are investigated by applying the chiral kinetic theory (CKT) incorporating side-jump effects. It is shown that the local equilibrium distribution function can be nontrivially introduced in a comoving frame with respect to the fluid velocity when the quantum corrections in collisions are involved. For the study of anomalous transport, contributions from both quantum corrections in anomalous hydrodynamic equations of motion and those from the CKT and Wigner functions are considered under the relaxation-time (RT) approximation, which result in anomalous charge Hall currents propagating along the cross product of the background electric field and the temperature (or chemical-potential) gradient and of the temperature and chemical-potential gradients. On the other hand, the nonlinear quantum correction on the charge density vanishes in the classical RT approximation, which in fact satisfies the matching condition given by the anomalous equation obtained from the CKT.

  12. Nuclear matter saturation in a U(1) circle-times chiral model

    International Nuclear Information System (INIS)

    Lin, Wei

    1989-01-01

    The mean-field approximation in the U(1) circle-times chiral model for nuclear matter maturation is reviewed. Results show that it cannot be the correct saturation mechanism. It is argued that in this chiral model, other than the fact the ω mass can depend on the density of nuclear matter, saturation is still quite like the Walecka picture. 16 refs., 3 figs

  13. Density-dependent effective baryon–baryon interaction from chiral three-baryon forces

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan, E-mail: stefan.petschauer@ph.tum.de [Physik Department, Technische Universität München, D-85747 Garching (Germany); Haidenbauer, Johann [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Kaiser, Norbert [Physik Department, Technische Universität München, D-85747 Garching (Germany); Meißner, Ulf-G. [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, D-53115 Bonn (Germany); Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Weise, Wolfram [Physik Department, Technische Universität München, D-85747 Garching (Germany)

    2017-01-15

    A density-dependent effective potential for the baryon–baryon interaction in the presence of the (hyper)nuclear medium is constructed, based on the leading (irreducible) three-baryon forces derived within SU(3) chiral effective field theory. We evaluate the contributions from three classes: contact terms, one-pion exchange and two-pion exchange. In the strangeness-zero sector we recover the known result for the in-medium nucleon–nucleon interaction. Explicit expressions for the ΛN in-medium potential in (asymmetric) nuclear matter are presented. Our results are suitable for implementation into calculations of (hyper)nuclear matter. In order to estimate the low-energy constants of the leading three-baryon forces we introduce the decuplet baryons as explicit degrees of freedom and construct the relevant terms in the minimal non-relativistic Lagrangian. With these, the constants are estimated through decuplet saturation. Utilizing this approximation we provide numerical results for the effect of the three-body force in symmetric nuclear matter and pure neutron matter on the ΛN interaction. A moderate repulsion that increases with density is found in comparison to the free ΛN interaction.

  14. Dynamical chiral bag model

    International Nuclear Information System (INIS)

    Colanero, K.; Chu, M.-C.

    2002-01-01

    We study a dynamical chiral bag model, in which massless fermions are confined within an impenetrable but movable bag coupled to meson fields. The self-consistent motion of the bag is obtained by solving the equations of motion exactly assuming spherical symmetry. When the bag interacts with an external meson wave we find three different kinds of resonances: fermionic, geometric, and σ resonances. We discuss the phenomenological implications of our results

  15. Higgs-Yukawa model in chirally-invariant lattice field theory

    CERN Document Server

    Bulava, John; Jansen, Karl; Kallarackal, Jim; Knippschild, Bastian; Lin, C.-J.David; Nagai, Kei-Ichi; Nagy, Attila; Ogawa, Kenji

    2013-01-01

    Non-perturbative numerical lattice studies of the Higgs-Yukawa sector of the standard model with exact chiral symmetry are reviewed. In particular, we discuss bounds on the Higgs boson mass at the standard model top quark mass, and in the presence of heavy fermions. We present a comprehensive study of the phase structure of the theory at weak and very strong values of the Yukawa coupling as well as at non-zero temperature.

  16. Higgs-Yukawa model in chirally-invariant lattice field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bulava, John [CERN, Geneva (Switzerland). Physics Department; Gerhold, Philipp; Kallarackal, Jim; Nagy, Attila [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [National Taiwan Univ., Taipei (China). Dept. of Physics; Lin, C.J. David [National Chiao-Tung Univ., Hsinchu (China). Inst. of Physics; National Centre for Theoretical Sciences, Hsinchu (China). Div. of Physics; Nagai, Kei-Ichi [Nagoya Univ., Nagoya, Aichi (Japan). Kobayashi-Maskawa Institute; Ogawa, Kenji [Chung-Yuan Christian Univ., Chung-Li (China). Dept. of Physics

    2012-10-15

    Non-perturbative numerical lattice studies of the Higgs-Yukawa sector of the standard model with exact chiral symmetry are reviewed. In particular, we discuss bounds on the Higgs boson mass at the standard model top quark mass, and in the presence of heavy fermions. We present a comprehensive study of the phase structure of the theory at weak and very strong values of the Yukawa coupling as well as at non-zero temperature.

  17. Chirality and gravitational parity violation.

    Science.gov (United States)

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. © 2015 Wiley Periodicals, Inc.

  18. Fluxionally chiral DMAP catalysts: kinetic resolution of axially chiral biaryl compounds.

    Science.gov (United States)

    Ma, Gaoyuan; Deng, Jun; Sibi, Mukund P

    2014-10-27

    Can organocatalysts that incorporate fluxional groups provide enhanced selectivity in asymmetric transformations? To address this issue, we have designed chiral 4-dimethylaminopyridine (DMAP) catalysts with fluxional chirality. These catalysts were found to be efficient in promoting the acylative kinetic resolution of secondary alcohols and axially chiral biaryl compounds with selectivity factors of up to 37 and 51, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Biaxiality of chiral liquid crystals

    International Nuclear Information System (INIS)

    Longa, L.; Trebin, H.R.; Fink, W.

    1993-10-01

    Using extended deGennes-Ginzburg-Landau free energy expansion in terms of the anisotropic part of the dielectric tensor field Q αβ (χ) a connection between the phase biaxiality and the stability of various chiral liquid crystalline phases is studied. In particular the cholesteric phase, the cubic Blue Phases and the phases characterized by an icosahedral space group symmetry are analysed in detail. Also a general question concerning the applicability of the mean-field approximation in describing the chiral phases is addressed. By an extensive study of the model over a wide range of the parameters a new class of phenomena, not present in the original deGennes-Ginzburg-Landau model, has been found. These include: a) re-entrant phase transitions between the cholesteric and the cubic blue phases and b) the existence of distinct phases of the same symmetry but of different biaxialities. The phase biaxiality serves here as an extra scalar order parameter. Furthermore, it has been shown that due to the presence of the competing bulk terms in the free energy, the stable phases may acquire a large degree of biaxiality, also in liquid crystalline materials composed of effectively uniaxial molecules. A study of icosahedral space group symmetries gives a partial answer to the question as to whether an icosahedral quasicrystalline liquid could be stabilized in liquid crystals. Although, in general, the stability of icosahedral structures could be enhanced by the extra terms in the free energy no absolutely stable icosahedral phase has been found. (author). 16 refs, 3 figs, 1 tab

  20. Chiral plaquette polaron theory of cuprate superconductivity

    Science.gov (United States)

    Tahir-Kheli, Jamil; Goddard, William A., III

    2007-07-01

    Ab initio density functional calculations on explicitly doped La2-xSrxCuO4 find that doping creates localized holes in out-of-plane orbitals. A model for cuprate superconductivity is developed based on the assumption that doping leads to the formation of holes on a four-site Cu plaquette composed of the out-of-plane A1 orbitals apical Opz , planar Cud3z2-r2 , and planar Opσ . This is in contrast to the assumption of hole doping into planar Cudx2-y2 and Opσ orbitals as in the t-J model. Allowing these holes to interact with the d9 spin background leads to chiral polarons with either a clockwise or anticlockwise charge current. When the polaron plaquettes percolate through the crystal at x≈0.05 for La2-xSrxCuO4 , a Cudx2-y2 and planar Opσ band is formed. The computed percolation doping of x≈0.05 equals the observed transition to the “metallic” and superconducting phase for La2-xSrxCuO4 . Spin exchange Coulomb repulsion with chiral polarons leads to d -wave superconducting pairing. The equivalent of the Debye energy in phonon superconductivity is the maximum energy separation between a chiral polaron and its time-reversed partner. This energy separation is on the order of the antiferromagnetic spin coupling energy, Jdd˜0.1eV , suggesting a higher critical temperature. An additive skew-scattering contribution to the Hall effect is induced by chiral polarons and leads to a temperature dependent Hall effect that fits the measured values for La2-xSrxCuO4 . The integrated imaginary susceptibility, observed by neutron spin scattering, satisfies ω/T scaling due to chirality and spin-flip scattering of polarons along with a uniform distribution of polaron energy splittings. The derived functional form is compatible with experiments. The static spin structure factor for chiral spin coupling of the polarons to the undoped antiferromagnetic Cud9 spins is computed for classical spins on large two-dimensional lattices and is found to be incommensurate with a

  1. Photon-Assisted Resonant Chiral Tunneling Through a Bilayer Graphene Barrier

    OpenAIRE

    Phillips A. H.; Mina A. N.

    2011-01-01

    The electronic transport property of a bilayer graphene is investigated under the effect of an electromagnetic field. We deduce an expression for the conductance by solving the Dirac equation. This conductance depends on the barrier height for graphene and the energy of the induced photons. A resonance oscillatory behavior of the conductance is observed. These oscillations are strongly depends on the barrier height for chiral tunneling through graphene. This oscillatory behavio...

  2. Bulk chirality effect for symmetric bistable switching of liquid crystals on topologically self-patterned degenerate anchoring surface.

    Science.gov (United States)

    Park, Min-Kyu; Joo, Kyung-Il; Kim, Hak-Rin

    2017-06-26

    We demonstrate a bistable switching liquid crystal (LC) mode utilizing a topologically self-structured dual-groove surface for degenerated easy axes of LC anchoring. In our study, the effect of the bulk elastic distortion of the LC directors on the bistable anchoring surface is theoretically analyzed for balanced bistable states based on a free energy diagram. By adjusting bulk LC chirality, we developed ideally symmetric and stable bistable anchoring and switching properties, which can be driven by a low in-plane pulsed field of about 0.7 V/µm. The fabricated device has a contrast ratio of 196:1.

  3. Gravitational F-terms through anomaly equations and deformed chiral rings

    International Nuclear Information System (INIS)

    Alday, Luis F.; Gava, Edi; Cirafici, Michele; David, Justin R.; Narain, K.S.

    2003-05-01

    We study effective gravitational F-terms, obtained by integrating an U(N) adjoint chiral superfield Φ coupled to the N = 1 gauge chiral superfield W α and supergravity, to arbitrary orders in the gravitational background. The latter includes in addition to the N = 1 Weyl superfield G αβγ , the self-dual graviphoton field strength F αβ of the parent, broken N = 2 theory. We first study the chiral ring relations resulting from the above non-standard gravitational background and find agreement, for gauge invariant operators, with those obtained from the dual closed string side via Bianchi identities for N = 2 supergravity coupled to vector multiplets. We then derive generalized anomaly equations for connected correlators on the gauge theory side, which allow us to solve for the basic one-point function 2 /(z - Φ)> to all orders in F 2 . By generalizing the matrix model loop equation to the generating functional of connected correlators of resolvents, we prove that the gauge theory result coincides with the genus expansion of the associated matrix model, after identifying the expansion parameters on the two sides. (author)

  4. Nuclear chiral axial currents and applications to few-nucleon systems

    Energy Technology Data Exchange (ETDEWEB)

    Baroni, Alessandro [Old Dominion Univ., Norfolk, VA (United States)

    2017-08-01

    This Thesis is divided into three main parts. The first part discusses basic aspects of chiral effective field theory and the formalism, based on time ordered perturbation theory, used to to derive the nuclear potentials and currents from the chiral Lagrangians. The second part deals with the actual derivation, up to one loop, of the two-nucleon potential and one- and two-nucleon weak axial charge and current. In both derivations ultraviolet divergences generated by loop corrections are isolated using dimensional regularization. The resulting axial current is finite and conserved in the chiral limit, while the axial charge requires renormalization. A complete set of contact terms for the axial charge up to the relevant order in the power counting is constructed. The third part of this Thesis discusses two applications: (i) the calculation of the Gamow-Teller matrix element of tritium, used to constrain the single low-energy constant entering the axial current; (ii) the calculation of neutrino-deuteron inclusive cross sections at low energies. These results have confirmed previous predictions obtained in phenomenological approaches. These latter studies have played an important role in the analysis and interpretation of experiments at the Sudbury Neutrino Observatory.

  5. The Fuzzy analogy of chiral diffeomorphisms in higher dimensional quantum field theories

    International Nuclear Information System (INIS)

    Fassarella, Lucio; Schroer, Bert

    2001-06-01

    Our observation that the chiral diffeomorphisms allow an interpretation as modular groups of local operator algebras in the sense of Tomita and takesaki allows us to conclude that the higher deimensional generalizations are certain infinite dimensional groups which act in a 'fuzzy' way on the operator algebras of local quantum physics. These actions do not require any spacetime noncommutativity and are in complete harmony with causality and localization principles. The use of an appropriately defined isomorphism reprocesses these fuzzy actions into partially geometric actions on the holographic image and in this way tightens the relation with chiral structures and makes recent attempts to explain the required universal structure of a would be quantum Bekenstein law in terms of Virasoro algebra structures more palatable. (author)

  6. High-performance liquid chromatographic separations of stereoisomers of chiral basic agrochemicals with polysaccharide-based chiral columns and polar organic mobile phases.

    Science.gov (United States)

    Matarashvili, Iza; Shvangiradze, Iamze; Chankvetadze, Lali; Sidamonidze, Shota; Takaishvili, Nino; Farkas, Tivadar; Chankvetadze, Bezhan

    2015-12-01

    The separation of the stereoisomers of 23 chiral basic agrochemicals was studied on six different polysaccharide-based chiral columns in high-performance liquid chromatography with various polar organic mobile phases. Along with the successful separation of analyte stereoisomers, emphasis was placed on the effect of the chiral selector and mobile phase composition on the elution order of stereoisomers. The interesting phenomenon of reversal of enantiomer/stereoisomer elution order function of the polysaccharide backbone (cellulose or amylose), type of derivative (carbamate or benzoate), nature, and position of the substituent(s) in the phenylcarbamate moiety (methyl or chloro) and the nature of the mobile phase was observed. For several of the analytes containing two chiral centers all four stereoisomers were resolved with at least one chiral selector/mobile phase combination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. The QCD Effective String

    International Nuclear Information System (INIS)

    Espriu, D.

    2003-01-01

    QCD can be described in a certain kinematical regime by an effective string theory. This string must couple to background chiral fields in a chirally invariant manner, thus taking into account the true chirally non-invariant QCD vacuum. By requiring conformal symmetry of the string and the unitarity constraint on chiral fields we reconstruct the equations of motion for the latter ones. These provide a consistent background for the propagation of the string. By further requiring locality of the effective action we recover the Lagrangian of non-linear sigma model of pion interactions. The prediction is unambiguous and parameter-free. The estimated chiral structural constants of Gasser and Leutwyler fit very well the phenomenological values. (author)

  8. Self-organized internal architectures of chiral micro-particles

    International Nuclear Information System (INIS)

    Provenzano, Clementina; Mazzulla, Alfredo; Desiderio, Giovanni; Pagliusi, Pasquale; De Santo, Maria P.; Cipparrone, Gabriella; Perrotta, Ida

    2014-01-01

    The internal architecture of polymeric self-assembled chiral micro-particles is studied by exploring the effect of the chirality, of the particle sizes, and of the interface/surface properties in the ordering of the helicoidal planes. The experimental investigations, performed by means of different microscopy techniques, show that the polymeric beads, resulting from light induced polymerization of cholesteric liquid crystal droplets, preserve both the spherical shape and the internal self-organized structures. The method used to create the micro-particles with controlled internal chiral architectures presents great flexibility providing several advantages connected to the acquired optical and photonics capabilities and allowing to envisage novel strategies for the development of chiral colloidal systems and materials

  9. Topology in the SU(Nf) chiral symmetry restored phase of unquenched QCD and axion cosmology

    Science.gov (United States)

    Azcoiti, Vicente

    2018-03-01

    The axion is one of the more interesting candidates to make the dark matter of the universe, and the axion potential plays a fundamental role in the determination of the dynamics of the axion field. Moreover, the way in which the U(1)A anomaly manifests itself in the chiral symmetry restored phase of QCD at high temperature could be tested when probing the QCD phase transition in relativistic heavy ion collisions. With these motivations, we investigate the physical consequences of the survival of the effects of the U(1)A anomaly in the chiral symmetric phase of QCD, and show that the free energy density is a singular function of the quark mass m, in the chiral limit, and that the σ and π susceptibilities diverge in this limit at any T ≥ Tc. We also show that the difference between the π and t;δ susceptibilities diverges in the chiral limit at any T ≥ Tc, a result that can be contrasted with the existing lattice calculations; and discuss on the generalization of these results to the Nf ≥ 3 model.

  10. Identifying chiral bands in real nuclei

    International Nuclear Information System (INIS)

    Shirinda, O.; Lawrie, E.A.

    2012-01-01

    The application of the presently used fingerprints of chiral bands (originally derived for strongly broken chirality) is investigated for real chiral systems. In particular the chiral fingerprints concerning the B(M1) staggering patterns and the energy staggering are studied. It is found that both fingerprints show considerable changes for real chiral systems, a behaviour that creates a significant risk for misinterpretation of the experimental data and can lead to a failure to identify real chiral systems. (orig.)

  11. Chirality-controlled crystallization via screw dislocations.

    Science.gov (United States)

    Sung, Baeckkyoung; de la Cotte, Alexis; Grelet, Eric

    2018-04-11

    Chirality plays an important role in science from enantiomeric separation in chemistry to chiral plasmonics in nanotechnology. However, the understanding of chirality amplification from chiral building blocks to ordered helical superstructures remains a challenge. Here, we demonstrate that topological defects, such as screw dislocations, can drive the chirality transfer from particle to supramolecular structure level during the crystallization process. By using a model system of chiral particles, which enables direct imaging of single particle incorporation into growing crystals, we show that the crystallization kinetic pathway is the key parameter for monitoring, via the defects, the chirality amplification of the crystalline structures from racemic to predominantly homohelical. We provide an explanation based on the interplay between geometrical frustration, racemization induced by thermal fluctuations, and particle chirality. Our results demonstrate that screw dislocations not only promote the growth, but also control the chiral morphology and therefore the functionality of crystalline states.

  12. Chiral rings and anomalies in supersymmetric gauge theory

    International Nuclear Information System (INIS)

    Cachazo, Freddy; Witten, Edward; Seiberg, Nathan; Douglas, Michael R.

    2002-01-01

    Motivated by recent work of Dijkgraaf and Vafa, we study anomalies and the chiral ring structure in a supersymmetric U(N) gauge theory with an adjoint chiral superfield and an arbitrary superpotential. A certain generalization of the Konishi anomaly leads to an equation which is identical to the loop equation of a bosonic matrix model. This allows us to solve for the expectation values of the chiral operators as functions of a finite number of 'integration constants'. From this, we can derive the Dijkgraaf-Vafa relation of the effective superpotential to a matrix model. Some of our results are applicable to more general theories. For example, we determine the classical relations and quantum deformations of the chiral ring of N=1 super Yang-Mills theory with SU(N) gauge group, showing, as one consequence, that all supersymmetric vacua of this theory have a nonzero chiral condensate. (author)

  13. Specific heat of the chiral-soliton-lattice phase in Yb(Ni0.94Cu0.06)3Al9

    Science.gov (United States)

    Ninomiya, Hiroki; Sato, Takaaki; Inoue, Katsuya; Ohara, Shigeo

    2018-05-01

    We have studied the monoaxial-chiral helimagnet YbNi3Al9 and its-substituted analogue Yb(Ni0.94Cu0.06)3Al9. These compounds belong to a chiral space group R32. In Yb(Ni0.94Cu0.06)3Al9 with the magnetic ordering temperature TM = 6.4 K , only when the magnetic field is applied perpendicular to the helical axis, the chiral soliton lattice is observed below Hc = 10 kOe . YbNi3Al9 with TM = 3.4 K exhibits a metamagnetic transition at Hc = 1 kOe in 2 K. To study the formation of chiral helimagnetic state and chiral soliton lattice, we have measured the specific heat in magnetic fields applied parallel and perpendicular to the helical axis. In zero field, with decreasing temperature, specific heat shows λ-type phase transition from paramagnetic state to chiral helimagnetic one. At the temperature where the chiral soliton lattice emerges, we have found that the specific heat shows a sharp peak. In addition, at around the crossover between paramagnetic state and forced-ferromagnetic one, a broad maximum has been observed. We have determined the magnetic phase diagrams of YbNi3Al9 and Yb(Ni0.94Cu0.06)3Al9.

  14. Chiral forces and molecular dissymmetry

    International Nuclear Information System (INIS)

    Mohan, R.

    1992-01-01

    Chiral molecules leading to helical macromolecules seem to preserve information and extend it better. In the biological world RNA is the very paradigm for self-replication, elongation and autocatalytic editing. The nucleic acid itself is not chiral. It acquires its chirality by association with D-sugars. Although the chiral information or selectivity put in by the unit monomer is no longer of much interest to the biologists - they tend to leave it to the Darwinian selection principle to take care of it as illustrated by Frank's model - it is vital to understand the origin of chirality. There are three different approaches for the chiral origin of life: (1) Phenomenological, (2) Electromagnetic molecular and Coriolis forces and (3) Atomic or nuclear force, the neutral weak current. The phenomenological approach involves spontaneous symmetry breaking fluctuations in far for equilibrium systems or nucleation and crystallization. Chance plays a major role in the chiral molecule selected

  15. Chirality Quantum Phase Transition in Noncommutative Dirac Oscillator

    International Nuclear Information System (INIS)

    Wang Shao-Hua; Hou Yu-Long; Jing Jian; Wang Qing; Long Zheng-Wen

    2014-01-01

    The charged Dirac oscillator on a noncommutative plane coupling to a uniform perpendicular magnetic held is studied in this paper. We map the noncommutative plane to a commutative one by means of Bopp shift and study this problem on the commutative plane. We find that this model can be mapped onto a quantum optics model which contains Anti—Jaynes—Cummings (AJC) or Jaynes—Cummings (JC) interactions when a dimensionless parameter ζ (which is the function of the intensity of the magnetic held) takes values in different regimes. Furthermore, this model behaves as experiencing a chirality quantum phase transition when the dimensionless parameter ζ approaches the critical point. Several evidences of the chirality quantum phase transition are presented. We also study the non-relativistic limit of this model and find that a similar chirality quantum phase transition takes place in its non-relativistic limit. (physics of elementary particles and fields)

  16. Hidden symmetries of the Principal Chiral Model unveiled

    International Nuclear Information System (INIS)

    Devchand, C.; Schiff, J.

    1996-12-01

    By relating the two-dimensional U(N) Principal Chiral Model to a Simple linear system we obtain a free-field parametrization of solutions. Obvious symmetry transformations on the free-field data give symmetries of the model. In this way all known 'hidden symmetries' and Baecklund transformations, as well as a host of new symmetries, arise. (author). 21 refs

  17. Thermal Conductivity of Nanotubes: Effects of Chirality and Isotope Impurity

    OpenAIRE

    Gang, Zhang; Li, Baowen

    2005-01-01

    We study the dependence of thermal conductivity of single walled nanotubes (SWNT) on chirality and isotope impurity by nonequilibrium molecular dynamics method with accurate potentials. It is found that, contrary to electronic conductivity, the thermal conductivity is insensitive to the chirality. The isotope impurity, however, can reduce the thermal conductivity up to 60% and change the temperature dependence behavior. We also study the dependence of thermal conductivity on tube length for t...

  18. Optical patterning and dynamics of torons and hopfions in a chiral nematic with photo-tunable equilibrium pitch

    Science.gov (United States)

    Sohn, Hayley; Ackerman, Paul; Smalyukh, Ivan

    Three-dimensional (3D) topological solitons arise in field theories ranging from particle physics to condensed matter and cosmology. They are the 3D counterparts of 2D skyrmions (often called ``baby skyrmions''), which attract a great deal of interest in studies of chiral ferromagnets and enable the emerging field of skyrmionics. In chiral nematic liquid crystals, the stability of such solitons is enhanced by the chiral medium's tendency to twist the director field describing the 3D spatial patterns of molecular alignment. However, their experimental realization, control and detailed studies remain limited. We combine experimental realization and numerical modeling of such light-responsive solitonic structures, including elementary torons and hopfions, in confined chiral nematic liquid crystals with photo-tunable cholesteric pitch. We show that the optical tunability of the pitch allows for using low-intensity light to control the soliton stability, dimensions, spatial patterning and dynamics.

  19. Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical-Chiral Sensors.

    Science.gov (United States)

    Ibanez, Jorge G; Rincón, Marina E; Gutierrez-Granados, Silvia; Chahma, M'hamed; Jaramillo-Quintero, Oscar A; Frontana-Uribe, Bernardo A

    2018-05-09

    Conducting polymers (CPs), thanks to their unique properties, structures made on-demand, new composite mixtures, and possibility of deposit on a surface by chemical, physical, or electrochemical methodologies, have shown in the last years a renaissance and have been widely used in important fields of chemistry and materials science. Due to the extent of the literature on CPs, this review, after a concise introduction about the interrelationship between electrochemistry and conducting polymers, is focused exclusively on the following applications: energy (energy storage devices and solar cells), use in environmental remediation (anion and cation trapping, electrocatalytic reduction/oxidation of pollutants on CP based electrodes, and adsorption of pollutants) and finally electroanalysis as chemical sensors in solution, gas phase, and chiral molecules. This review is expected to be comprehensive, authoritative, and useful to the chemical community interested in CPs and their applications.

  20. In search of chiral magnetic effect: separating flow-driven background effects and quantifying anomaly-induced charge separations

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Xu-Guang [Physics Department and Center for Particle Physics and Field Theory, Fudan University, Shanghai 200433 (China); Yin, Yi [Physics Department, Brookhaven National Laboratory, Upton, NY 11973 (United States); Liao, Jinfeng [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-12-15

    We report our recent progress on the search of Chiral Magnetic Effect (CME) by developing new measurements as well as by hydrodynamic simulations of CME and background effects, with both approaches addressing the pressing issue of separating flow-driven background contributions and possible CME signal in current heavy ion collision measurements.

  1. Optical Chirality in Nonlinear Optics: Application to High Harmonic Generation.

    Science.gov (United States)

    Neufeld, Ofer; Cohen, Oren

    2018-03-30

    Optical chirality (OC)-one of the fundamental quantities of electromagnetic fields-corresponds to the instantaneous chirality of light. It has been utilized for exploring chiral light-matter interactions in linear optics, but has not yet been applied to nonlinear processes. Motivated to explore the role of OC in the generation of helically polarized high-order harmonics and attosecond pulses, we first separate the OC of transversal and paraxial beams to polarization and orbital terms. We find that the polarization-associated OC of attosecond pulses corresponds approximately to that of the pump in the quasimonochromatic case, but not in the multichromatic pump cases. We associate this discrepancy with the fact that the polarization OC of multichromatic pumps vary rapidly in time along the optical cycle. Thus, we propose new quantities, noninstantaneous polarization-associated OC, and time-scale-weighted polarization-associated OC, and show that these quantities link the chirality of multichromatic pumps and their generated attosecond pulses. The presented extension to OC theory should be useful for exploring various nonlinear chiral light-matter interactions. For example, it stimulates us to propose a tricircular pump for generation of highly elliptical attosecond pulses with a tunable ellipticity.

  2. Anomalies in chiral W--gravity

    International Nuclear Information System (INIS)

    Carvalho, Marcelo; Vilar, Luiz Claudio Queiroz; Sorella, S.P.

    1994-01-01

    W-algebras are an extension of the Virasoro algebra. They describe the commutation relations between the components of the stress-energy tensor (T ++ ,T -- ) and the currents (W ++++... , W ----... ) of higher spin. Among the various W-algebras considered in the recent literature, the so-called W 3 -algebra plays a rather special role, due to the fact that it has a simple field theory realization. The corresponding field model, known as W 3 -gravity, yields a generalization of the usual bosonic string action. In this work, anomalies in chiral W--gravity are studied

  3. Chiral algebras for trinion theories

    International Nuclear Information System (INIS)

    Lemos, Madalena; Peelaers, Wolfger

    2015-01-01

    It was recently understood that one can identify a chiral algebra in any four-dimensional N=2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.

  4. Simplified chiral superfield propagators for chiral constant mass superfields

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1983-01-01

    Unconstrained superfield potentials are introduced to derive Feynman rules for chiral superfields following conventional procedure which is easy and instructive. Propagators for the case when the mass parameters are constant chiral superfields are derived. The propagators reported here are very simple compared to those available in literature and allow a manageable calculation of higher loops. (Author) [pt

  5. Role of Achiral Nucleobases in Multicomponent Chiral Self-Assembly: Purine-Triggered Helix and Chirality Transfer.

    Science.gov (United States)

    Deng, Ming; Zhang, Li; Jiang, Yuqian; Liu, Minghua

    2016-11-21

    Chiral self-assembly is a basic process in biological systems, where many chiral biomolecules such as amino acids and sugars play important roles. Achiral nucleobases usually covalently bond to saccharides and play a significant role in the formation of the double helix structure. However, it remains unclear how the achiral nucleobases can function in chiral self-assembly without the sugar modification. Herein, we have clarified that purine nucleobases could trigger N-(9-fluorenylmethox-ycarbonyl) (Fmoc)-protected glutamic acid to self-assemble into helical nanostructures. Moreover, the helical nanostructure could serve as a matrix and transfer the chirality to an achiral fluorescence probe, thioflavin T (ThT). Upon chirality transfer, the ThT showed not only supramolecular chirality but also circular polarized fluorescence (CPL). Without the nucleobase, the self-assembly processes cannot happen, thus providing an example where achiral molecules played an essential role in the expression and transfer of the chirality. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Timoshenko beam model for chiral materials

    Science.gov (United States)

    Ma, T. Y.; Wang, Y. N.; Yuan, L.; Wang, J. S.; Qin, Q. H.

    2018-06-01

    Natural and artificial chiral materials such as deoxyribonucleic acid (DNA), chromatin fibers, flagellar filaments, chiral nanotubes, and chiral lattice materials widely exist. Due to the chirality of intricately helical or twisted microstructures, such materials hold great promise for use in diverse applications in smart sensors and actuators, force probes in biomedical engineering, structural elements for absorption of microwaves and elastic waves, etc. In this paper, a Timoshenko beam model for chiral materials is developed based on noncentrosymmetric micropolar elasticity theory. The governing equations and boundary conditions for a chiral beam problem are derived using the variational method and Hamilton's principle. The static bending and free vibration problem of a chiral beam are investigated using the proposed model. It is found that chirality can significantly affect the mechanical behavior of beams, making materials more flexible compared with nonchiral counterparts, inducing coupled twisting deformation, relatively larger deflection, and lower natural frequency. This study is helpful not only for understanding the mechanical behavior of chiral materials such as DNA and chromatin fibers and characterizing their mechanical properties, but also for the design of hierarchically structured chiral materials.

  7. A three-flavor chiral effective model with four baryonic multiplets within the mirror assignment

    Energy Technology Data Exchange (ETDEWEB)

    Olbrich, Lisa; Zetenyi, Miklos; Giacosa, Francesco; Rischke, Dirk H. [Institute for Theoretical Physics, Goethe University Frankfurt am Main (Germany)

    2016-07-01

    Chiral symmetry requires the existence of chiral partners in the hadronic mass spectrum. In this talk, we address the question which is the chiral partner of the nucleon. We employ a chirally symmetric linear sigma model, where hadrons and their chiral partners are treated on the same footing. We construct four spin-1/2 baryon multiplets from left- and right-handed quarks as well as left- and right-handed diquarks. Two of these multiplets transform in a ''mirror'' way, which allows for chirally invariant mass terms. We then embed these baryonic multiplets into the Lagrangian of the extended Linear Sigma Model, which features (pseudo)scalar and (axial-)vector mesons, as well as glueballs. Reducing the Lagrangian to the two-flavor case, we obtain four doublets of nucleonic states. These mix to produce the positive-parity nucleon N(939) and the Roper resonance N(1440), as well as the negative-parity resonances N(1535) and N(1650). We determine the parameters of the nucleonic part of the Lagrangian from a fit to masses and decay properties of these states. Studying the limit of vanishing quark condensate, we conclude that N(939) and N(1535), as well as N(1440) and N(1650) form pairs of chiral partners.

  8. Enantiopure Ferrocene-Based Planar-Chiral Iridacycles: Stereospecific Control of Iridium-Centred Chirality.

    Science.gov (United States)

    Arthurs, Ross A; Ismail, Muhammad; Prior, Christopher C; Oganesyan, Vasily S; Horton, Peter N; Coles, Simon J; Richards, Christopher J

    2016-02-24

    Reaction of [IrCp*Cl2 ]2 with ferrocenylimines (Fc=NAr, Ar=Ph, p-MeOC6 H4 ) results in ferrocene C-H activation and the diastereoselective synthesis of half-sandwich iridacycles of relative configuration Sp *,RIr *. Extension to (S)-2-ferrocenyl-4-(1-methylethyl)oxazoline gave highly diastereoselective control over the new elements of planar chirality and metal-based pseudo-tetrahedral chirality, to give both neutral and cationic half-sandwich iridacycles of absolute configuration Sc ,Sp ,RIr . Substitution reactions proceed with retention of configuration, with the planar chirality controlling the metal-centred chirality through an iron-iridium interaction in the coordinatively unsaturated cationic intermediate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. On the Mechanical Properties of Chiral Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mahnaz Zakeri

    2013-12-01

    Full Text Available Carbon nanotubes (CNTs are specific structures with valuable characteristics. In general, the structure of each nanotube is defined by a unique chiral vector. In this paper, different structures of short single-walled CNTs are simulated and their mechanical properties are determined using finite element method. For this aim, a simple algorithm is presented which is able to model the geometry of single-walled CNTs with any desired structure based on nano-scale continuum mechanics approach. By changing the chiral angle from 0 to 30 degree for constant length to radius ratio, the effect of nanotube chirality on its mechanical properties is evaluated. It is observed that the tensile modulus of CNTs changes between 0.93-1.02 TPa for different structures, and it can be higher for chiral structures than zigzag and armchair ones. Also, for different chiral angles, the bending modulus changes between 0.76-0.82 TPa, while the torsional modulus varies in the range of 0.283-0.301TPa.

  10. Perturbative analysis for Kaplan's lattice chiral fermions

    International Nuclear Information System (INIS)

    Aoki, S.; Hirose, H.

    1994-01-01

    Perturbation theory for lattice fermions with domain wall mass terms is developed and is applied to investigate the chiral Schwinger model formulated on the lattice by Kaplan's method. We calculate the effective action for gauge fields to one loop, and find that it contains a longitudinal component even for anomaly-free cases. From the effective action we obtain gauge anomalies and Chern-Simons currents without ambiguity. We also show that the current corresponding to the fermion number has a nonzero divergence and it flows off the wall into the extra dimension. Similar results are obtained for a proposal by Shamir, who used a constant mass term with free boundaries instead of domain walls

  11. Analysis of a classical chiral bag model

    International Nuclear Information System (INIS)

    Nadeau, H.

    1985-01-01

    The author studies a classical chiral bag model with a Mexican hat-type potential for the self-coupling of the pion fields. He assumes a static spherical bag of radius R, the hedgehog ansatz for the chiral fields and that the quarks are all in the lowest lying s state. The author has considered three classes of models, the cloudy or pantopionic bags, the little or exopionic bags and the endopionic bags, where the pions are allowed all through space, only outside the bag and only inside the bag respectively. In all cases, the quarks are confined in the interior. He calculates the bag radius R, the bag constant B and the total ground state energy R for wide ranges of the two free parameters of the theory, namely the coupling constant λ and the quark frequency omega. The author focuses the study on the endopionic bags, the least known class, and compares the results with the familiar ones of other classes

  12. Chiral ring of strange metals. The multicolor limit

    International Nuclear Information System (INIS)

    Isachenkov, Mikhail; Kirsch, Ingo; Schomerus, Volker

    2014-10-01

    The low energy limit of a dense 2D adjoint QCD is described by a family of N=(2,2) supersymmetric coset conformal field theories. In previous work we constructed chiral primaries for a small number N 3 compactification.

  13. Bianchi-Baecklund transformations, conservation laws, and linearization of various field theories

    International Nuclear Information System (INIS)

    Chau Wang, L.L.

    1980-01-01

    The discussion includes: the Sine-Gordon equation, parametric Bianchi-Baecklund transformations and the derivation of local conservation laws; chiral fields, parametric Bianchi-Baecklund transformations, local and non-local conservation laws, and linearization; super chiral fields, a parallel development similar to the chiral field; and self-dual Yang-Mills fields in 4-dimensional Euclidean space; loop-cpace chiral equations, parallel development but with subtlety

  14. Assembling optically active and nonactive metamaterials with chiral units

    Directory of Open Access Journals (Sweden)

    Xiang Xiong

    2012-12-01

    Full Text Available Metamaterials constructed with chiral units can be either optically active or nonactive depending on the spatial configuration of the building blocks. For a class of chiral units, their effective induced electric and magnetic dipoles, which originate from the induced surface electric current upon illumination of incident light, can be collinear at the resonant frequency. This feature provides significant advantage in designing metamaterials. In this paper we concentrate on several examples. In one scenario, chiral units with opposite chiralities are used to construct the optically nonactive metamaterial structure. It turns out that with linearly polarized incident light, the pure electric or magnetic resonance (and accordingly negative permittivity or negative permeability can be selectively realized by tuning the polarization of incident light for 90°. Alternatively, units with the same chirality can be assembled as a chiral metamaterial by taking the advantage of the collinear induced electric and magnetic dipoles. It follows that for the circularly polarized incident light, negative refractive index can be realized. These examples demonstrate the unique approach to achieve certain optical properties by assembling chiral building blocks, which could be enlightening in designing metamaterials.

  15. Chiral Responsive Liquid Quantum Dots.

    Science.gov (United States)

    Zhang, Jin; Ma, Junkai; Shi, Fangdan; Tian, Demei; Li, Haibing

    2017-08-01

    How to convert the weak chiral-interaction into the macroscopic properties of materials remains a huge challenge. Here, this study develops highly fluorescent, selectively chiral-responsive liquid quantum dots (liquid QDs) based on the hydrophobic interaction between the chiral chains and the oleic acid-stabilized QDs, which have been designated as (S)-1810-QDs. The fluorescence spectrum and liquidity of thermal control demonstrate the fluorescence properties and the fluidic behavior of (S)-1810-QDs in the solvent-free state. Especially, (S)-1810-QDs exhibit a highly chiral-selective response toward (1R, 2S)-2-amino-1,2-diphenyl ethanol. It is anticipated that this study will facilitate the construction of smart chiral fluidic sensors. More importantly, (S)-1810-QDs can become an attractive material for chiral separation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Chiral Molecule-Enhanced Extinction Ratios of Quantum Dots Coupled to Random Plasmonic Structures.

    Science.gov (United States)

    Bezen, Lior; Yochelis, Shira; Jayarathna, Dilhara; Bhunia, Dinesh; Achim, Catalina; Paltiel, Yossi

    2018-03-06

    Devices based on self-assembled hybrid colloidal quantum dots (CQDs) coupled with specific organic linker molecules are a promising way to simply realize room-temperature, spectrally tunable light detectors. Nevertheless, this type of devices usually has low quantum efficiency. Plasmonics has been shown as an efficient tool in guiding and confining light at nanoscale dimensions. As plasmonic modes exhibit highly confined fields, they locally increase light-matter interactions and consequently enhance the performance of CQD-based photodetectors. Recent publications presented experimental results of large extinction enhancement from a monolayer of CQDs coupled to random gold nanoislands using a monolayer of organic alkyl linkers. We report here that a twofold larger extinction enhancement in the visible spectrum is observed when a monolayer of helical chiral molecules connects the CQDs to the gold structure instead of a monolayer of achiral linkers. We also show that this effect provides insight into the chirality of the molecules within the monolayer. In future work, we plan to evaluate the potential of these results to be used in the construction of a more efficient and sensitive photon detector based on surface QDs, as well as to supply a simple way to map the chirality of a single chiral monolayer.

  17. Chiral crossover transition in a finite volume

    Science.gov (United States)

    Shi, Chao; Jia, Wenbao; Sun, An; Zhang, Liping; Zong, Hongshi

    2018-02-01

    Finite volume effects on the chiral crossover transition of strong interactions at finite temperature are studied by solving the quark gap equation within a cubic volume of finite size L. With the anti-periodic boundary condition, our calculation shows the chiral quark condensate, which characterizes the strength of dynamical chiral symmetry breaking, decreases as L decreases below 2.5 fm. We further study the finite volume effects on the pseudo-transition temperature {T}{{c}} of the crossover, showing a significant decrease in {T}{{c}} as L decreases below 3 fm. Supported by National Natural Science Foundation of China (11475085, 11535005, 11690030, 51405027), the Fundamental Research Funds for the Central Universities (020414380074), China Postdoctoral Science Foundation (2016M591808) and Open Research Foundation of State Key Lab. of Digital Manufacturing Equipment & Technology in Huazhong University of Science & Technology (DMETKF2015015)

  18. Globally and locally supersymmetric effective theories for light fields

    CERN Document Server

    Brizi, Leonardo; Scrucca, Claudio A

    2009-01-01

    We reconsider the general question of how to characterize most efficiently the low-energy effective theory obtained by integrating out heavy modes in globally and locally supersymmetric theories. We consider theories with chiral and vector multiplets and identify the conditions under which an approximately supersymmetric low-energy effective theory can exist. These conditions translate into the requirements that all the derivatives, fermions and auxiliary fields should be small in units of the heavy mass scale. They apply not only to the matter sector, but also to the gravitational one if present, and imply in that case that the gravitino mass should be small. We then show how to determine the unique exactly supersymmetric theory that approximates this effective theory at the lowest order in the counting of derivatives, fermions and auxiliary fields, by working both at the superfield level and with component fields. As a result we give a simple prescription for integrating out heavy superfields in an algebrai...

  19. Approximating chiral quark models with linear σ-models

    International Nuclear Information System (INIS)

    Broniowski, Wojciech; Golli, Bojan

    2003-01-01

    We study the approximation of chiral quark models with simpler models, obtained via gradient expansion. The resulting Lagrangian of the type of the linear σ-model contains, at the lowest level of the gradient-expanded meson action, an additional term of the form ((1)/(2))A(σ∂ μ σ+π∂ μ π) 2 . We investigate the dynamical consequences of this term and its relevance to the phenomenology of the soliton models of the nucleon. It is found that the inclusion of the new term allows for a more efficient approximation of the underlying quark theory, especially in those cases where dynamics allows for a large deviation of the chiral fields from the chiral circle, such as in quark models with non-local regulators. This is of practical importance, since the σ-models with valence quarks only are technically much easier to treat and simpler to solve than the quark models with the full-fledged Dirac sea

  20. Alternative Experimental Evidence for Chiral Restoration in Excited Baryons

    International Nuclear Information System (INIS)

    Glozman, L. Ya.

    2007-01-01

    It has been suggested that chiral symmetry is approximately restored in excited hadrons at zero temperature and density (effective symmetry restoration). Using very general chiral symmetry arguments, it is shown that those excited nucleons that are assumed from the spectroscopic patterns to be in approximate chiral multiplets must only weakly decay into the Nπ channel (f N*Nπ /f NNπ ) 2 NNπ . It turns out that for all those well-established excited nucleons which can be classified into chiral doublets the ratio is (f N*Nπ /f NNπ ) 2 ∼0.1 or much smaller for the high-spin states. In contrast, the only well-established excited nucleon for which the chiral partner cannot be identified from the spectroscopic data, N(1520), has a decay constant into the Nπ channel that is comparable with f NNπ