#### Sample records for chilled water system

1. An entransy dissipation-based optimization principle for building central chilled water systems

The recently developed entransy theory is introduced in this paper to tackle the heat transfer processes in building central chilled water systems so as to improve their energy efficiency. We first divide the irreversible heat transfer processes into four categories: (1) air mixing processes; (2) heat transfer processes between chilled water and air; (3) chilled water mixing processes; and (4) heat transfer processes between chilled water and refrigerant. The formulas of entransy dissipation rates for each irreversible process are derived, and then the total entransy dissipation rate in the whole chilled water systems is obtained, which connects the geometrical structures of each heat exchanger and the operating parameters of each fluid directly to the demands of users and the supply of refrigerating unit. Based on the formula of entransy dissipation rate together with the conditional extremum method in mathematics, two optimization equation groups are deduced theoretically. Simultaneously solving such equation groups will easily find the optimal central chilled water system with the highest energy efficiency. Finally, a simple building central chilled water system with two users is taken as an example to illustrate the applications of the newly proposed optimization principle. -- Highlights: ► A general principle for the optimization of building central chilled water systems is developed based on the entransy theory. ► The total entransy dissipation connects the structural and operating parameters of chilled water systems directly to the users’ demands. ► Two optimization equation groups are derived theoretically for designing the optimal chilled water system with the highest energy efficiency. ► A practical building central chilled water system is optimized to illustrate the applications of the newly proposed optimization principle.

2. Self-optimizing Control of Cooling Tower for Efficient Operation of Chilled Water Systems

Li, Xiao; Li, Yaoyu; Seem, John E.; Li, Pengfei

2012-01-01

The chilled-water systems, mainly consisting of electric chillers and cooling towers, are crucial for the ventilating and air conditioning systems in commercial buildings. Energy efficient operation of such systems is thus important for the energy saving of commercial buildings. This paper presents an extremum seeking control (ESC) scheme for energy efficient operation of the chilled-water system, and presents a Modelica based dynamic simulation model for demonstrating the effectiveness of th...

3. Thermoeconomic evaluation of air conditioning system with chilled water storage

Highlights: • A new thermoeconomic evaluation methodology has been presented. • The relationship between thermodynamic and economic performances has been revealed. • A key point for thermal storage technology further application is discovered. • A system has been analyzed via the new method and EUD method. - Abstract: As a good load shifting technology for power grid, chilled energy storage has been paid more and more attention, but it always consumes more energy than traditional air conditioning system, and the performance analysis is mostly from the viewpoint of peak-valley power price to get cost saving. The paper presents a thermoeconomic evaluation methodology for the system with chilled energy storage, by which thermodynamic performance influence on cost saving has been revealed. And a system with chilled storage has been analyzed, which can save more than 15% of power cost with no energy consumption increment, and just certain difference between peak and valley power prices can make the technology for good economic application. The results show that difference between peak and valley power prices is not the only factor on economic performance, thermodynamic performance of the storage system is the more important factor, and too big price difference is a barrier for its application, instead of for more cost saving. All of these give a new direction for thermal storage technology application

4. Performance evaluation of solar-assisted air-conditioning system with chilled water storage (CIESOL building)

Highlights: ► We present a new solar-assisted air-conditioning system’s operation sequence. ► This mode considers the chilled water tanks action with variable-speed pump. ► It permits to save about 20% and 30% of energy and water consumption, respectively. ► It allows storing the excess cooling capacity of the absorption chiller. ► It prevents the sudden start/stop (on/off cycles) of the absorption chiller. - Abstract: This study presents the performance of solar-assisted air-conditioning system with two chilled water storage tanks installed in the Solar Energy Research Center building. The system consists mainly of solar collectors’ array, a hot-water driven absorption chiller, a cooling tower, two hot storage tanks, an auxiliary heater as well as two chilled storage tanks. The chilled water storage tank circuit was further investigated in order to find the optimum solar system’s operation sequence while providing the best energy performance. Firstly, we carried out a study about the dynamics of building’s cooling load and the necessity of the integration of chilled water storage tanks to solar system. Subsequently, the new system’s operation mode was proposed to reduce the energy consumption. The results demonstrate that we can save about 20% of the total energy consumption and about 30% of water consumption applying the new operation sequence, which takes into account the chilled water tanks action. Moreover, it was demonstrated that the integration of chilled water storage tanks allows to reduce the sudden absorption chiller on/off cycles, thereby improving the efficiency of the solar-assisted system.

5. Cold Vacuum Drying (CVD) Facility Vacuum Purge System Chilled Water System Design Description (SYS 47-4)

IRWIN, J.J.

2000-06-13

This system design description (SDD) addresses the Vacuum Purge System Chilled Water (VPSCHW) system. The discussion that follows is limited to the VPSCHW system and its interfaces with associated systems. The reader's attention is directed to Drawings H-1-82162, Cold Vacuum Drying Facility Process Equipment Skid P&ID Vacuum System, and H-1-82224, Cold Vacuum Drying Facility Mechanical Utilities Process Chilled Water P&ID. Figure 1-1 shows the location and equipment arrangement for the VPSCHW system. The VPSCHW system provides chilled water to the Vacuum Purge System (VPS). The chilled water provides the ability to condense water from the multi-canister overpack (MCO) outlet gases during the MCO vacuum and purge cycles. By condensing water from the MCO purge gas, the VPS can assist in drying the contents of the MCO.

6. Targeting and design of chilled water network

Highlights: • Minimum flowrate targeting for chilled water network. • Mixed series/parallel configuration of chilled water-using units. • Integrated cooling and chilled water networks. - Abstract: Chilled water is a common cooling agent used in various industrial, commercial and institutional facilities. In conventional practice, chilled water is distributed via chilled water networks (CHWNs) in parallel configuration to provide required air conditioning and/or equipment cooling in the heating, ventilating and air conditioning (HVAC) system. In this paper, process integration approach based on pinch analysis technique is used to address energy efficiency issues in the CHWN system for grassroots design problem. Graphical and algebraic targeting techniques are developed to identify the minimum chilled water flowrate needed to remove a given amount of heat load from the CHWN. Doing this leads to higher chilled water return temperature and enhanced energy efficiency of the HVAC system. A recent proposed network design technique is extended to synthesize the CHWN in a mixed series/parallel configuration. A novel concept of integrated cooling and chilled water networks (IWN) is also proposed in this work, with its targeting and design techniques presented. Hypothetical examples and an industrial case study are solved to elucidate the proposed approaches

7. Improving Gas Turbine efficiency by chilled water system

2013-04-01

Full Text Available The process in a gas turbine plant involves certain losses which can be divided into internal and external losses. In term of internal losses, the main factor is changing the state of working fluid. Since the temperature of atmospheric air may vary within a wide range, its variations can influence strongly the efficiency of gas turbine plants. With growing ambient air temperature, the specific volume of air increases, which can result in a larger work spent for air compression in the compressor. One of the most effective method for increasing the efficiency of gas turbine plants is to raise the gas temperature before the turbine. Since this temperature is the highest temperature in the cycle, this method is applicable for gas turbine plants of any scheme and type. However, there are some limitations on increasing gas temperature. The allowable temperature for reliable operation is between 1000 and 1400 k. However, decreasing ambient air temperature to increase the efficiency of gas turbine plants is easier and at low costs compared to rising gas temperature. As a decrease of 1°C temperature of inlet air increases the power output by 1%. In this paper our objective is improving the efficiency of gas turbine plants by decreasing ambient air temperature. To reach this we use a heat exchanger with different strip fins. The temperature of chilled water is constant on 7C°, but the ambient air temperature is variable between 20 and 36 C°. After designing process some graphs are presented, which give required mass flow rate to reach slightly ambient air temperature.

8. Georgia Institute of Technology chilled water system evaluation and master plan

NONE

1996-05-15

As the host of the Olympic Village for the 1996 Atlanta Olympics, Georgia Tech has experienced a surge in construction activities over the last three years. Over 1.3 million square feet of new buildings have been constructed on the Georgia Tech campus. This growth has placed a strain on the Georgia Tech community and challenged the facilities support staff charged with planning and organizing utility services. In concert with Olympic construction, utility planners have worked to ensure long term benefits for Georgia Tech facilities while meeting the short term requirements of the Olympic Games. The concentration of building construction in the northwest quadrant of the campus allowed planners to construct a satellite chilled water plant to serve the needs of this area and provide the opportunity to integrate this section of the campus with the main campus chilled water system. This assessment and master plan, funded in part by the US Department of Energy, has evaluated the chilled water infrastructure at Georgia Tech, identified ongoing problems and made recommendations for long term chilled water infrastructure development and efficiency improvements. The Georgia Tech office of Facilities and RDA Engineering, Inc. have worked together to assemble relevant information and prepare the recommendations contained in this document.

9. Microbiological evaluation of chicken carcasses in an immersion chilling system with water renewal at 8 and 16 hours.

Souza, L C T; Pereira, J G; Spina, T L B; Izidoro, T B; Oliveira, A C; Pinto, J P A N

2012-05-01

Since 2004, Brazil has been the leading exporter of chicken. Because of the importance of this sector in the Brazilian economy, food safety must be ensured by control and monitoring of the production stages susceptible to contamination, such as the chilling process. The goal of this study was to evaluate changes in microbial levels on chicken carcasses and in chilling water after immersion in a chilling system for 8 and 16 h during commercial processing. An objective of the study was to encourage discussion regarding the Brazilian Ministry of Agriculture Livestock and Food Supply regulation that requires chicken processors to completely empty, clean, and disinfect each tank of the chilling system after every 8-h shift. Before and after immersion chilling, carcasses were collected and analyzed for mesophilic bacteria, Enterobacteriaceae, coliforms, and Escherichia coli. Samples of water from the chilling system were also analyzed for residual free chlorine. The results do not support required emptying of the chiller tank after 8 h; these tanks could be emptied after 16 h. The results for all carcasses tested at the 8- and 16-h time points indicated no significant differences in the microbiological indicators evaluated. These data provide both technical and scientific support for discussing changes in federal law regarding the management of immersion chilling water systems used as part of the poultry processing line. PMID:22564950

10. A thermodynamic evaluation of chilled water central air conditioning systems using artificial intelligence tools

Juan Carlos Armas

2011-05-01

Full Text Available  An analysis of a chilled water central air conditioning system is presented. The object was to calculate main cycle component irreversibility, as well as evaluating this indicator’s sensitivity to operational variations. Artificial neural networks (ANN, genetic algorithms (GA and Matlab tools were used to calculate refrigerant thermodynamic properties during each cycle stage. These tools interacted with equations describing the system’s thermodynamic behaviour. Refrigerant temperature, when released from the compressor, was determined by a hybrid model combining the neural model with a simple genetic algorithm used as optimisation tool; the cycle’s components which were most sensitive to changes in working conditions were identified. It was concluded that the compressor, evaporator and expansion mechanism (in that order represented significant exergy losses reaching 85.62% of total system irreversibility. A very useful tool was thus developed for evaluating these systems

11. An operational experience with cooling tower water system in chilling plant

Cooling towers are popular in industries as a very effective evaporative cooling technology for air conditioning. Supply of chilled water to air conditioning equipments of various plant buildings and cooling tower water to important equipments for heat removal is the purpose of chilling plant at PRPD. The cooling medium used is raw water available at site. Water chemistry is maintained by make-up and blowdown. In this paper, various observations made during plant operation and equipment maintenance are discussed. The issues observed was scaling and algal growth affecting the heat transfer and availability of the equipment. Corrosion related issues were observed to be less significant. Scaling indices were calculated to predict the behavior. (author)

12. Thermal characteristics of non-edible oils as phase change materials candidate to application of air conditioning chilled water system

Irsyad, M.; Indartono, Y. S.; Suwono, A.; Pasek, A. D.

2015-09-01

The addition of phase change material in the secondary refrigerant has been able to reduce the energy consumption of air conditioning systems in chilled water system. This material has a high thermal density because its energy is stored as latent heat. Based on material melting and freezing point, there are several non-edible oils that can be studied as a phase change material candidate for the application of chilled water systems. Forests and plantations in Indonesia have great potential to produce non-edible oil derived from the seeds of the plant, such as; Calophyllum inophyllum, Jatropha curcas L, and Hevea braziliensis. Based on the melting temperature, these oils can further studied to be used as material mixing in the secondary refrigerant. Thermal characteristics are obtained from the testing of T-history, Differential Scanning Calorimetric (DSC) and thermal conductivity materials. Test results showed an increase in the value of the latent heat when mixed with water with the addition of surfactant. Thermal characteristics of each material of the test results are shown completely in discussion section of this article.

13. Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems

Daling, P.M.; Marler, J.E.; Vo, T.V.; Phan, H.; Friley, J.R. [Pacific Northwest Lab., Richland, WA (United States)

1993-11-01

This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ``Availability of HVAC and Chilled Water Systems.`` The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the \$1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ``generic`` insights on potential design-related and configuration-related vulnerabilities and potential high-frequency ({approximately}1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations.

14. Value impact analysis of Generic Issue 143, Availability of Heating, Ventilation, Air Conditioning (HVAC) and Chilled Water Systems

This study evaluates the values (benefits) and impacts (costs) associated with potential resolutions to Generic Issue 143, ''Availability of HVAC and Chilled Water Systems.'' The study identifies vulnerabilities related to failures of HVAC, chilled water, and room cooling systems; develops estimates of room heatup rates and safety-related equipment vulnerabilities following losses of HVAC/room cooler systems; develops estimates of the core damage frequencies and public risks associated with failures of these systems; develops three proposed resolution strategies to this generic issue; and performs a value/impact analysis of the proposed resolutions. Existing probabilistic risk assessments for four representative plants, including one plant from each vendor, form the basis for the core damage frequency and public risk calculations. Both internal and external events were considered. It was concluded that all three proposed resolution strategies exceed the \$1,000/person-rem cost-effectiveness ratio. Additional evaluations were performed to develop ''generic'' insights on potential design-related and configuration-related vulnerabilities and potential high-frequency (∼1E-04/RY) accident sequences that involve failures of HVAC/room cooling functions. It was concluded that, although high-frequency accident sequences may exist at some plants, these high-frequency sequences are plant-specific in nature or have been resolved through hardware and/or operational changes. The plant-specific Individual Plant Examinations are an effective vehicle for identification and resolution of these plant-specific anomalies and hardware configurations

15. Performance of a chill ATES system

Midkiff, K.C.; Song, Y.K.; Schaetzle, W.J. [Univ. of Alabama, Tuscaloosa, AL (United States)] [and others

1989-03-01

An aquifer air-conditioning system has been installed to cool the Student Recreation Center on the University of Alabama Campus. This research program encompasses the monitoring of the operation of the aquifer system and provision of emplacements to the system. The monitoring includes establishing the instrumentation, acquiring data, and analyzing the results. The instrumentation allows the measurement of water flow rates and corresponding temperatures, electrical energy input, aquifer temperatures at nineteen monitoring wells, and aquifer levels at six monitoring wells. Recent acquifer performance data indicate that 76% of the chill energy stored was recovered for the period Oct/86 - Sep/87 and 70% for the period Oct/87 - Sep/88. This is a substantial improvement over recoveries of 38% for the 1985 season and 55% for 1986. The overall coefficient of performance was 5.4 for Oct/86 - Sep/87 and 4.6 for Oct/87 - Sep/88. THe system has supplied 100% of the cooling with only about one-half of the energy input required by a conventional system. Some of the increased recovery of chilled water is a result of modifying the production well operation to reduce the regional flow of water toward the northwest. All warm water is withdrawn form the southeast wells, chilled, and injected in northwest wells. The cold water then withdrawn from the cold wells is used for air-conditioning but not reinjected into the aquifer. Additional flow control is provided by pumping (and discarding) water out of a southeast well, although the complete results of this new strategy are as yet unclear.

16. Converting an ice storage facility to a chilled water system for energy efficiency on a deep level gold mine / Dirk Cornelius Uys

Uys, Dirk Cornelius

2015-01-01

The South African gold mining sector consumes 47% of the mining industry’s electricity. On a deep level gold mine, 20% of the energy is consumed by the refrigeration system. The refrigeration system cools 67 ˚C virgin rock temperatures underground. Underground cooling demand increases significantly with deeper mining activities. Various cooling systems are available for underground cooling. This study focuses on the electricity usage of an ice storage system versus a chilled water system for ...

17. Chills

Chills refers to feeling cold after being in a cold environment. The word can also refer to ... Chills (shivering) may occur at the beginning of an infection. They are most often associated with a ...

18. Humidification of chilled fruit and vegetables on retail display using an ultrasonic fogging system with water/air ozonation

Brown, T.; James, S.J. [University of Bristol (United Kingdom). Food Refrigeration and Process Engineering Research Centre; Corry, J.E.L. [University of Bristol (United Kingdom). Division of Farm Animal Science, Department of Clinical Veterinary Science

2004-12-01

The effects of an ultrasonic humidification system were assessed during retail display of unwrapped chilled fruit and vegetable produce. Produce and equipment factors were compared during two consecutive 7-day trials, one with fogging (termed 'wet') and one without (termed 'dry'). No appreciable differences in mean product temperatures were found (4.6 {sup o}C for wet, 4.3 {sup o}C for dry), but there were slight differences in cabinet performance in terms of air temperatures and refrigeration effect. Despite a considerable increase in drainage water from the cabinet (53 l per day for wet, 30 for dry), no change to the cabinet's defrost schedule was required. Humidification reduced weight loss with all products. After 7 days of display the highest reduction, almost 50%, was achieved with mushrooms. Humidification also reduced the rate of deterioration in the appearance of the produce on display. No adverse effects on the microbial quality of samples of produce were found. Slightly higher numbers of airborne microbes were sampled from the air circulating in the cabinet during the wet trial, but there was no significant increase in numbers of microbes landing on settle plates on the display shelves. Numbers of bacteria in the water sterilisation system were low and no Legionella species were isolated from either the wet or the dry trial water samples. (author)

19. The response of a complex Data Centre chilled water system to an unplanned site-wide power failure and the influence on the Data halls

Farsimadan, E.; Stec, W.; Howe, M.R. [Cundall LLP, Saffron House, 6-10 Kirby Street, London EC1N 8TS (United Kingdom)

2010-10-15

The paper describes the modelling and analysis of a 10 MW chilled water distribution system that is used for the cooling of parallel Data halls. During an unplanned site power failure, the Chillers may go offline for some minutes, affecting the temperature and delivery of chilled water to the Data hall cooling units. This may cause the air temperature within the Data halls to rise. The ultimate test of robustness is to ensure that the IT equipment is adequately cooled during this time. This work outlines the key findings from the thermal response of the cooling system to a site power failure. The entire chilled water network that comprised the primary and secondary plant was modelled, including components such as pumps, valves and Chillers. A transient analysis was conducted to predict the rise in water temperature at different locations in the system. Computational fluid dynamics was then adopted to predict the air temperature reaching the IT equipment, therefore confirming the capability of the design to steer clear of effects such as thermal runaway. The findings demonstrate that confidence in the omission of expensive buffer vessels and UPS backed plant could not have been achieved without the advanced transient analysis conducted here. (author)

20. Two-Pipe Chilled Beam System for Both Cooling and Heating of Office Buildings

Afshari, Alireza; Gordnorouzi, Rouzbeh; Hultmark, Göran;

2013-01-01

Simulations were performed to compare a conventional 4-pipe chilled beam system and a 2-pipe chilled beam system. The objective was to establish requirements, possibilities and limitations for a well-functioning 2-pipe chilled beam system for both cooling and heating of office buildings. The...... consumption and hence energy savings in the 2-pipe chilled beam system in comparison with the 4-pipe system. The 2-pipe chilled beam system used high temperature cooling and low temperature heating with a water temperature of 20°C to 23°C, available for free most of the year. The system can thus take...... advantage of renewable energy. The results showed that the energy consumption was 3% less in the 2-pipe chilled beam system in comparison with the conventional 4-pipe system when moving cooled and heated water through the building, transferring the energy to where it is needed. Using free cooling (taking...

1. Study of a Two-Pipe Chilled Beam System for both Cooling and Heating of Office Buildings

Gordnorouzi, Rouzbeh; Hultmark, Göran; Afshari, Alireza;

Active chilled beam systems are used to provide heating and cooling in order to achieve comfortable thermal indoor climate. For heating and cooling applications, an active chilled beam has two water circuits comprising four pipes that supply warm and cold water respectively to the beam coil...... according to the space demand. Lindab Comfort A/S has introduced an active chilled beam system which has just one water circuit (two pipes) that is used for both heating and cooling. The concept is based on high temperature cooling and low temperature heating. In this study the energy saving potential of...... the new two-pipe active chilled beam system is investigated....

2. Chilled beam application guidebook

Butler, David; Gräslund, Jonas; Hogeling, Jaap; Lund Kristiansen, Erik; Reinikanen, Mika; Svensson, Gunnar

2007-01-01

Chilled beam systems are primarily used for cooling and ventilation in spaces, which appreciate good indoor environmental quality and individual space control. Active chilled beams are connected to the ventilation ductwork, high temperature cold water, and when desired, low temperature hot water system. Primary air supply induces room air to be recirculated through the heat exchanger of the chilled beam. In order to cool or heat the room either cold or warm water is cycled through the heat exchanger.

3. [Effects of chilling stress on antioxidant system and ultrastructure of walnut cultivars].

Tian, Jing-hua; Wang, Hong-xia; Zhang, Zhi-hua; Gao, Yi

2015-05-01

In order to reveal cold hardiness mechanisms and ascertain suitable cold hardiness biochemical indicators of walnut (Juglans regia) , three walnut cultivars ' Hartley' , 'Jinlong 1' and 'Jinlong 2' with strong to weak tolerance of chilling stress, were used to investigate variations of leaf antioxidant enzyme activity and superoxide anion (O2-·) content in one year-old branches under chilling stress at 1 °C in leaf-expansion period. The mesophyll cells ultrastructure of ' Hartley' and 'Jinlong 2' under chilling stress were also observed by transmission electron microscope. The results showed that the superoxide dismutase (SOD) and peroxidase (POD) enzyme activities were the strongest and O2-· content was the lowest in chilling-tolerant cultivar ' Hartley' under chilling stress among the three cultivars. The ultrastructure of the mesophyll cells was stable, and chilling injury symptoms of the leaves were not observed. In chilling-sensitive cultivar 'Jinlong 2' , the SOD, POD and catalase enzyme ( CAT) activities decreased sharply, and the O2-· content was kept at a high level under chilling stress. The ultrastructure of the mesophyll cells was injured obviously at 1 °C∟ for 72 hours. Most of chloroplasts were swollen, and grana lamella became thinner and fewer. A number of chloroplasts envelope and plasma membrane were damaged and became indistinct. At the same time, the edges of some of 'Jinlong 2' young leaves became water-soaked. It was concluded that the ultrastructure stability of mesophyll cells under chilling stress was closely related to walnut cold hardiness. SOD, POD enzyme activities and O2-· content in walnut leaves could be used as biochemical indicators of walnut cold hardiness in leaf-expansion period. There might be a correlation between the damage of cell membrane system and reactive oxygen accumulation under chilling stress. PMID:26571647

4. Design and Modelling of Water Chilling Production System by the Combined Effects of Evaporation and Night Sky Radiation

Ahmed Y. Taha Al-Zubaydi

2014-01-01

Full Text Available The design and mathematical modelling of thermal radiator panel to be used primarily to measure night sky radiation wet coated surface is presented in this paper. The panel consists of an upper dry surface coated aluminium sheet laminated to an ethylene vinyl acetate foam backing block as an insulation. Water is sprayed onto the surface of the panel so that an evaporative cooling effect is gained in addition to the radiation effect; the surface of a panel then is wetted in order to study and measure the night sky radiation from the panel wet surface. In this case, the measuring water is circulated over the upper face of this panel during night time. Initial TRNSYS simulations for the performance of the system are presented and it is planned to use the panel as calibrated instruments for discriminating between the cooling effects of night sky radiation and evaporation.

5. Reduction of Chilling Injury and Ultrastructural Damage in Cherry Tomato Fruits After Hot Water Treatment

YANG Jing; FU Mao-run; ZHAO Yu-ying; MAO Lin-chun

2009-01-01

The effects of hot water treatment in alleviating chilling injury and reducing ultrastructural damage of mature-green cherry tomatoes (Lycopersicun esculentum cv. cerasiform Alef) were investigated. Mature-green cherry tomato fruits were treated in water at 40℃ or 45℃ for 5 rain or 15 rain, and then stored at 5℃ for 19 days followed by ripening at 20℃. Water treatment at 40℃ for 15 rain increased tolerance of cherry tomato fruits to chilling stress, indicating as low outbreak of skin lesion, high color a* value, and low electrolyte leakage. Treated fi'uits showed typical climacteric respiration and developed normal red color with chlorophyll degradation and lyeopene accumulation during ripening, while fruits without treatment failed to develop red color and suffered skin lesion. After 19 days of chilling, heated fruits showed the conversion of chloroplast to ehromoplast with the disappearance of thylakoids. Mitochondria and other cell organelles were not adversely affected in treated fruits. However, ultrastruetures in periearp cells in control fruits severely damaged with extensive disorganization of cytoplasm, swelled chloroplasts, distorted and unstacked thylakoids. Chloroplast was the first and most severely impacted organelle by chilling stress. Hot water treatment (40℃ for 15 min) before storage alleviated chilling injury in cherry tomato fruits. The results suggest that chilling injury is related with the damage of cell structure under chilling stress.

6. 空调系统冷水泵并联变频优化运行%Optimal operation of parallel variable frequency chilled water pumps in air conditioning system

王亮; 卢军; 陈明; 胡磊

2011-01-01

分析了多台水泵定变组合、大小搭配以及同步变频时的安全性及节能性,计算了冷水泵不同搭配组合的能耗.从水泵效率最高、总能耗最低的角度,提出冷水泵应与机组相对应,且应同步变频调速.%Based on the analysis of the safety and energy efficiency of multiple pumps in the modes of fixed and variable frequency combinations, mixed size and synchronization frequency, calculates the energy consumption of chilled water pumps in the different combinations. From the aspects of the highest efficiency and the minimum energy consumption, proposes that the chilled water pump operation should be correspond with the water chiller units and the pumps should be operated by frequency synchonization.

7. Two-Pipe Chilled Beam System for Both Cooling and Heating of Office Buildings

Afshari, Alireza; Gordnorouzi, Rouzbeh; Hultmark, Göran; Bergsøe, Niels Christian

2013-01-01

Simulations were performed to compare a conventional 4-pipe chilled beam system and a 2-pipe chilled beam system. The objective was to establish requirements, possibilities and limitations for a well-functioning 2-pipe chilled beam system for both cooling and heating of office buildings. The building model had a net volume of 3669 m3, (L*B: 25.5m*11.5 m) and net ceiling height of 2.55 m. The building model was assumed to consist of 78 office rooms, 6 meeting rooms and 5 corridors with a 50% o...

8. 同程布置冷水系统管网水力特性计算机分析%Computer calculation method of hydraulic characteristics of reversed return chilled water system

刘雪峰; 刘金平; 陈星龙; 陆继东

2012-01-01

以同程布置的冷水系统管网为研究对象,在充分考虑末端支路温度调节阀调节特性的基础上,建立了管网水力计算数学模型,提出了虚拟流量的计算机逻辑算法.以10个AHU支路的同程式管网为例,在所有末端支路水力可调、部分AHU关闭及部分AHU调节失灵3种情况下,分别计算了不同供回水压差下各支路温度调节阀的开度和实际流量,计算结果符合同程式管网的固有特性.%Taking a reverse-return chilled water system as the research object, based on full consideration of the regulating characteristics of temperature regulating valves in terminal branches, establishes a mathematical model of pipe network hydraulic characteristics, and puts forward a computer logic algorithm with virtual flow. Taking a reverse-return pipe network with ten AHU branches as the example, calculates the opening of temperature regulating valves and actual flow in branches respectively in the condition of different supply-return water pressure differences in three kinds of operating conditions of pipe network including all terminal branches being hydraulic adjustable, part AHU closing and part AHU being out of adjustment. The calculation results are in accord with the natural characteristics of reversed return pipe network.

9. Dynamic modeling of stratification for chilled water storage tank

Air conditioning of buildings can be costly and energy consuming. Application of thermal energy storage (TES) reduces cost and energy consumption. The efficiency of the overall operation is affected by storage tank sizing design, which affects thermal stratification of water during charging and discharging processes in TES system. In this study, numerical simulation is used to determine the relationship between tank size and good thermal stratification. Three dimensional simulations with different tank height-to-diameter ratio (HD) and inlet Reynolds number (Re) are investigated. The effect of the number of diffuser holes is also studied. For shallow tanks (low HD) simulations, no acceptable thermocline thickness can be seen for all Re experimented. Partial mixing is observed throughout the process. Medium HD tanks simulations show good thermocline behavior and clear distinction between warm and cold water can be seen. Finally, deep tanks (high HD) show less acceptable thermocline thickness as compared to that of medium HD tanks. From this study, doubling and halving the number of diffuser holes show no significant effect on the thermocline behavior

10. Innovative two-pipe active chilled beam system for simultaneous heating and cooling of office buildings

Maccarini, Alessandro; Afshari, Alireza; Bergsøe, Niels Christian;

2014-01-01

The aim of this paper was to investigate the energy savings potential of an innovative two-pipe system in an active chilled beam application for heating and cooling of office buildings. The characteristic of the system is its ability to provide simultaneous heating and cooling by transferring...... heating, cooling and ventilation loads were calculated by the program and an annual energy consumption evaluation of the system was made. Simulation results showed that the innovative two-pipe active chilled beam system used approximately 5% less energy than a conventional four-pipe system....

11. A comparison of chilled DI water/ozone and CO{sub 2}-based supercritical fluids as replacements for photoresist-stripping solvents

Rubin, J.B.; Davenhall, L.B.; Barton, J.; Taylor, C.M.V. [Los Alamos National Lab., NM (United States). Chemical Science and Technology Div.; Tiefert, K. [Hewlett-Packard Co., Santa Clara, CA (United States)

1998-12-31

Part of the Hewlett Packard Components Group`s Product Stewardship program is the ongoing effort to investigate ways to eliminate or reduce as much as possible the use of chemical substances from manufacturing processes. Currently used techniques to remove hard-baked photoresists from semiconductor wafers require the use of inorganic chemicals or organic strippers and associated organic solvents. Environmental, health and safety, as well as cost considerations prompted the search for alternative, more environmentally-benign, and cost-effective solutions. Two promising, emerging technologies were selected for evaluation: the chilled DI water/ozone technique and supercritical fluids based on carbon dioxide (CO{sub 2}). Evaluating chilled DI water/ozone shows this process to be effective for positive photoresist removal, but may not be compatible with all metallization systems. Testing of a closed-loop CO{sub 2}-based supercritical CO{sub 2} Resist Remover, or SCORR, at Los Alamos, on behalf of Hewlett-packard, shows that this treatment process is effective in removing photoresists, and is fully compatible with commonly used metallization systems. In this paper, the authors present details on the testing programs conducted with both the chilled DI H{sub 2}O/ozone and SCORR treatment processes.

12. Carcass orientation and drip time affect potential surface water carryover for broiler carcasses subjected to a post-chill water dip or spray

To estimate the potential for residual antimicrobial solution carryover, surface water accumulation and loss was measured on post-chill carcasses that were either dipped or sprayed with water. For all experiments, broilers were slaughtered, soft scalded or hard scalded, defeathered, and eviscerated....

13. The big chill puts the electric system under tension

Written at the occasion of a cold wave in France in February 2012 with a new peak in electricity consumption, the article first analyses the specific meteorological conditions associated with this event, and then outlines that the massive use of electric heating makes the French system particularly sensitive to temperatures, but also that the peak is also due to the massive use of electric domestic appliances at about 7 p.m. He describes how this peak is faced in terms of energy sources and outlines that there was no risk for grid security. He comments the availability of nuclear and hydroelectric energy, and of other energies (oil, coal, gas), and the margin levels. He finally states that costs of a cold wave are predictable and could be mitigated by supporting the installation of energy-saving or non-electric heating systems

14. Chilling Tendency and Chill of Cast Iron

E. Fra(s); M. Górny; W. Kapturkiewicz; H. López

2008-01-01

An analytical expression is presented for the susceptibility of liquid cast iron to solidify according tothe Fe-C-X metastable system (also known as the chilling tendency of cast iron, CT). The analysis incorpo-rates the nucleation and growth processes associated with the eutectic transformation. The CT is related tothe physicochemical state of the liquid, the eutectic cells in the flake graphite, and the number of nodules innodular cast iron. In particular, the CT can be related to the critical wall thickness, Scr, or the chill width, Wcr,in wedge shaped castings. Finally, this work serves as a guide for understanding the effect of technical fac-tors such as the melt chemistry, the spheroidizing and inoculation practice, and the holding time and tam-perature on the resultant CT and chill of the cast iron. Theoretical calculations of Scr and Wcr compare wellwith experimental data for flake graphite and nodular cast iron.

15. Reducing a solar-assisted air-conditioning system’s energy consumption by applying real-time occupancy sensors and chilled water storage tanks throughout the summer: A case study

Highlights: • We present an innovative occupancy and chilled water storage-based operation mode. • This mode was implemented to the solar-assisted air-conditioning system. • It permits to save 42% of total electrical energy during one cooling period. • It allows storing the excess cooling capacity of the absorption chiller. • It prevents the sudden start/stop (on/off cycles) of the absorption chiller. - Abstract: This study describes an innovative occupancy and chilled-water storage-based operation sequence implemented in a solar-assisted air-conditioning system. The core purpose of this solar-assisted air-conditioning system is to handle the cooling and heating load of the Solar Energy Research Centre (CIESOL), thus minimising its environmental impact. In this study, the cooling mode was investigated with special attention focused on the chilled-water storage circuit. The critical concern is that the solar-assisted air-conditioning system should always operate considering the actual load conditions, not using an abstract maximum load that is predetermined during the system’s design process, which can lead to energy waste during periods of low occupancy. Thus, the fundamental problem is to identify the optimum operation sequence for the solar-assisted air-conditioning system that provides the best energy performance. The significance of this work lies in the demonstration of a new operation strategy that utilises real-time occupancy monitoring and chilled-water storage tanks to improve the efficiency of solar-assisted air-conditioning systems, thereby reducing their electricity consumption. Adopting this strategy resulted in a large energy-saving potential. The results demonstrate that during one cooling period, it is possible to conserve approximately 42% of the total electrical energy consumed by the system prior to the adoption of this operation strategy

16. Human Response to Personalized Ventilation Combined with Chilled Ceiling

Lipczynska, Aleksandra; Kaczmarczyk, Jan; Marcol, Bartosz;

2014-01-01

, the use of radiant ceiling cooling will provide operative temperature lower than the air temperature and will improve further occupants’ thermal comfort at warm environment. Therefore combining PV with chilled ceiling may be an effective way to provide thermal comfort in rooms at temperature higher...... than the recommended in the standards upper temperature limit of 26°C. In this paper response of 24 human subjects to a PV combined with chilled ceiling system (CCPV) is compared with the response to mixing ventilation combined with chilled ceiling (CCMV). Participants were provided with control of....../return water temperature for chilled ceiling was 15,5/16,8°C at room air temperature of 26°C and 19,5/20,6°C at 28°C. During the experiment the subjects were performing typical office tasks at workstations with computers. Exposure included also increased activity level office work for a period of 25 min. At...

17. Effect of a natural organic acid-icing system on the microbiological quality of commercially relevant chilled fish species

Sanjuás, Minia; García-Soto, Bibiana; Fuertes-Gamundi, José R.; Aubourg, Santiago P.; Barros-Velázquez, J.

2012-01-01

Natural preservative organic acids (ascorbic, citric and lactic acids) were used to prepare a novel organic acid-flake icing system for the chilled preservation of hake (Merluccius merluccius), megrim (Lepidorhombus whiffiagonis) and angler (Lophius piscatorius). The icing system was prepared with two different concentrations of a commercial acid mixture-formula containing the three organic acids at 800 mg/kg and 400 mg/kg (C-800 and C-400 batches, respectively). Aerobic mesophiles, psychrotr...

18. Monitoring primary response to chilling stress in etiolated Vigna radiata and V. mungo seedlings using thermal hysteresis of water proton NMR relaxation times

Thermal hysteresis of longitudinal relaxation times (T1) of water protons in hypocotyls of etiolated Vigna radiata and V. mungo seedlings was investigated by pulse nuclear magnetic resonance (NMR) spectroscopy. Various lengths of chilling exposures during a cool-warm cycle between 20 and 0°C (below 10°C, about 4 h) for the T1 hysteresis measurement did not cause any visible injury symptoms in hypocotyls. However, the profiles of T1 hysteresis varied as a result of different chilling exposures. The sums of the T1 ratio (for detail see Introduction) reflecting T1 prolongation or shortening upon the warming process were a good quantitative index for the extent of T1 hysteresis, and the wide dispersion of this value ranging on the “minus” side (T1 prolongation upon warming) suggested the occurrence of a primary response of cells to chilling stress before obvious visible symptoms occur while the T1 ratio sums on the “plus” side (T1 shortening upon warming) corresponded to a response of serious visible injury. Therefore, the sums of the T1 ratio can be used as a non-destructive diagnostic tool for monitoring the primary event of chilling injury when lacking any visible injury symptoms. The data indicate that the critical temperature for the occurrence of primary response for chilling stress was around 7.5°C for V. radiata and 12.5°C for V. mungo

19. 超高层建筑空调二次泵水系统运行分析%Study on the Design of Chilled Water System With Primary-secondary Pumps in Super High-rise

方伟

2014-01-01

本文主要阐述了超高层建筑空调二次泵水系统的原理、盈亏管的设置及系统的运行控制策略，并给出了实际工程中超高层建筑空调二次泵水系统遇到的常见问题及解决方式，旨在为空调二次泵水系统设计提供参考。%This paper provides main points of the primary-secondary pumps system in super high-rise, the design of the profit and loss tube, and the ways of the primary-secondary pumps system control. This paper also provides several solu-tions of the primary-secondary pumps problems in the project commissioning , in order to provide a reference design of air condition Primary-secondary Pumps system.

20. Optimización de sistemas centralizados de agua helada en la etapa prematura del diseño comercial // Optimization of chilled water system in premature stage of coommercial design

Yarelis Valdivia‐Nodal

2012-01-01

Full Text Available En el presente trabajo se propone un procedimiento para la optimización de un sistema de climatizacióncentralizada por agua helada en la etapa prematura del diseño comercial, para ello se crea un modelohíbrido que combina herramientas termoeconómicas con técnicas de inteligencia artificial como son lasredes neuronales artificiales y los algoritmos genéticos para minimizar el costo de los productos finales delsistema (agua fría para climatización de locales y agua caliente para calentamiento de agua sanitaria.Con este objetivo se calculan las variables de diseño y de operación que garantizan el mínimo costo totaldel sistema, formado por los costos capitales de cada uno de sus componentes y el costo asociado a laenergía consumidaPalabras claves: termoeconomía, optimización, algoritmos genéticos, sistemas de climatizacióncentralizada.__________________________________________________________________AbstractIn this paper the procedure of optimization for the conceptual design of a centralized air conditioning chillerwater system is developed, for which a hybrid model is created that combines thermoeconomic tools withartificial intelligence technique such as Artificial Neural Networks (ANN and Genetic Algorithms (GA forthe optimization of the final products of the system. With this objective the design and operation variablesare calculated that guarantees the minimum total cost of the system, including the capital costs of each ofits components and the cost associated to the energy consumed.Key words: thermoeconomic, optimization, genetic algorithms, chiller.

1. Effects of chlorine or chlorine dioxide during immersion chilling on recovery of bacteria from broiler carcasses and chiller water

A study was conducted to determine the microbiological impact of immersion chilling broiler carcasses with chlorine or chlorine dioxide. Eviscerated, pre-chill commercial broiler carcasses were cut into left and right halves along the keel bone, and each half was rinsed (HCR) in 100 mL of 0.1% pept...

2. Preparation and characterization of microparticles of piroxicam by spray drying and spray chilling methods

Dixit, M.; Kini, A.G.; Kulkarni, P.K.

2010-01-01

Piroxicam, an anti-inflammatory drug, exhibits poor water solubility and flow properties, poor dissolution and poor wetting. Consequently, the aim of this study was to improve the dissolution of piroxicam. Microparticles containing piroxicam were produced by spray drying, using isopropyl alcohol and water in the ratio of 40:60 v/v as solvent system, and spray chilling technology by melting the drug and chilling it with a pneumatic nozzle to enhance dissolution rate. The prepared formulations ...

3. On the Paradox of Chilling Water: Crossover Temperature in the Mpemba Effect

Wang, Andrew; Chen, Monica; Vourgourakis, Yanni; Nassar, Antonio

2011-01-01

Unlike most of the research on the Mpemba effect which has focused on verifying the observation that warm water freezes faster than cold water, our work quantitatively investigates the rates at which hot and cold water cool and the point at which hot water reaches a lower temperature than cold water under a set of external conditions. Using a vacuum pump to cool samples of water initially at different temperatures, we measured reproducible temperature values at which hot and cold water equili...

4. Evaluation of the suitability of empirically-based models for predicting energy performance of centrifugal water chillers with variable chilled water flow

Highlights: ► We evaluate the suitability of 11 empirically performance models for centrifugal water chillers. ► The prediction accuracy of each model is based on CV values. ► The evaluation for model suitability is based on five indexes. ► The BQ, MP, SMP, and MDOE-2 models have good prediction accuracy. ► The BQ, MP, and SMP models have the best suitability. - Abstract: This study evaluates the performance prediction ability and model suitability of eleven empirically-based performance models for centrifugal water chillers. Specifically, this study uses over 2000 datasets with a constant or variable chilled water flow rate for fixed or variable speed drive centrifugal liquid chillers. The best regression coefficients for each empirical-based model were obtained using the ordinary least squares (OLSs) method. The model prediction accuracy of each empirical-based model is based on the coefficient of variation of root-mean-square error (CV). The evaluation for model suitability is based on the considerations of prediction ability, the complexity in training datasets, the effort needed to calibrate, the generality of the model, and its ability to physically interpret the model regression coefficients in this study. Results show that among the eleven empirical-based models, the BQ (CV = 0.54%), MP (CV = 0.61%), SMP (CV = 0.70%), and MDOE-2 (CV = 0.63%) models have overall prediction CV values under 1% for all kinds of datasets and achieve extremely good prediction accuracy. Because the MDOE-2 model has a more complicated datasets training process than the BQ, MP, and SMP models, and it has no ability to physically interpret the model regression coefficients, the BQ, MP, and SMP models have the best suitability. The results of this study provide important reference values for selecting empirically-based performance models for energy analysis, optimal operating control, energy efficiency measurement and verification (M and V), and the development of fault

5. Proposal for the award of a contract for the supply and installation of chilled water distribution stations for the SPS accelerator

2000-01-01

This document concerns the award of a contract for the supply and installation of chilled water distribution stations for the SPS accelerator. Following a market survey carried out among 82 firms in eighteen Member States, a call for tenders (IT-2742/ST/SPS) was sent on 17 January 2000 to 10 firms and seven consortia in nine Member States. By the closing date, CERN had received ten tenders from five firms and five consortia. The Finance Committee is invited to agree to the negotiation of a contract with INIZIATIVE INDUSTRIALI (IT), the lowest bidder, for the supply and installation of chilled water distribution stations for the SPS Accelerator, for an amount of 1 775 127 Swiss francs, not subject to revision. INIZIATIVE INDUSTRIALI (IT) has indicated the following distribution by country of the contract value covered by this adjudication proposal: IT-100%.

6. Operating characteristics and efficiencies of an active chilled beam terminal unit under variable air volume mode

Appropriately designing and maintaining temperature and relative humidity in a given space is essential for active chilled beam systems, where condensation should be strictly prevented. As a consequence, the Total Cooling Output Capacity (TCOC) of an active chilled beam system should be matched with the total cooling load of the applied space, as well as the Sensible Heat Ratio (SHR) of the system with the SHR of the space. From such a perspective, this paper for the first time explored the operating characteristics of a 2-way discharge active chilled beam terminal unit. Based on an experimentally verified model of the unit, a series of realistic simulations were carried out under various primary air volume flow rates and various chilled water volume flow rates. Inherent correlations between the TCOC and SHR were revealed. In the meanwhile, the operating efficiencies of the unit were also measured by an energy saving potential index ε, which is defined as the ratio of chilled water sensible cooling output capacity to the total sensible cooling output capacity. In addition, influences of different primary air and space conditions on the operating characteristics and efficiencies were studied. The results obtained in this study are expected to facilitate a better understanding of the active chilled beam terminal unit, so as to the designs, the operating principles, and the control strategies of active chilled beam systems for an improved indoor thermal environment. - Highlights: • The operating characteristics and efficiencies of an active chilled beam terminal unit were revealed. • The performance indexes were correlated and mutually constrained with a colorful trapezoid. • The sensitivity of the performance indexes to actual primary air and space conditions were evaluated. • Application range of the active chilled beam terminal unit can be enlarged at a low primary air relative humidity

7. On the Paradox of Chilling Water: Crossover Temperature in the Mpemba Effect

Wang, Andrew; Vourgourakis, Yanni; Nassar, Antonio

2011-01-01

Unlike most of the research on the Mpemba effect which has focused on verifying the observation that warm water freezes faster than cold water, our work quantitatively investigates the rates at which hot and cold water cool and the point at which hot water reaches a lower temperature than cold water under a set of external conditions. Using a vacuum pump to cool samples of water initially at different temperatures, we measured reproducible temperature values at which hot and cold water equilibrate. We have confirmed that warmer water indeed cools at a faster rate than colder water and that, surprisingly, this trend continues past the point where the temperatures of the two samples are the same. Our results show that when using optimal initial temperature conditions, the crossover temperature is found to be 2.7 oC whereas our other set of initial conditions gave a crossover temperature of -0.07 oC. These data taken together provide a definite quantitative evidence of the Mpemba effect.

8. Modeling and Test Data Analysis of a Tank Rapid Chill and Fill System for the Advanced Shuttle Upper Stage (ASUS) Concept

Flachbart, Robin; Hedayat, Ali; Holt, Kimberly A.; Cruit, Wendy (Technical Monitor)

2001-01-01

The Advanced Shuttle Upper Stage (ASUS) concept addresses safety concerns associated .with cryogenic stages by launching empty, and filling on ascent. The ASUS employs a rapid chill and fill concept. A spray bar is used to completely chill the tank before fill, allowing the vent valve to be closed during the fill process. The first tests of this concept, using a flight size (not flight weight) tank. were conducted at Marshall Space Flight Center (MSFC) during the summer of 2000. The objectives of the testing were to: 1) demonstrate that a flight size tank could be filled in roughly 5 minutes to accommodate the shuttle ascent window, and 2) demonstrate a no-vent fill of the tank. A total of 12 tests were conducted. Models of the test facility fill and vent systems, as well as the tank, were constructed. The objective of achieving tank fill in 5 minutes was met during the test series. However, liquid began to accumulate in the tank before it was chilled. Since the tank was not chilled until the end of each test, vent valve closure during fill was not possible. Even though the chill and fill process did not occur as expected, reasonable model correlation with the test data was achieved.

9. Water systems

The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surfaces have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

10. Water systems

The present paper describes the coolant chemistry and its consequences for 1300 MWsub(e) KWU PWR plants. Some selected systems, i.e. primary heat transport system, steam water cycle and cooling water arrangements, are chosen for this description. Various aspects of coolant chemistry regarding general corrosion, selective types of corrosion and deposits on heat transfer surface have been discussed. The water supply systems necessary to fulfill the requirements of the coolant chemistry are discussed as well. It has been concluded that a good operating performance can only be achieved when - beside other factors - the water chemistry has been given sufficient consideration. (orig./RW)

11. The impact of reducing mine chilled water supply during periods of low production

Schoeman, W.; Schutte, A.; Kleingeld, M

2014-01-01

As part of the Demand Side Management (DSM) initiative, Eskom partially funds load management and energy efficiency projects. Large industries are therefore willing participants in the Eskom funded electricity savings programme that hold benefits for all parties. One such industry is the mining sector. The refrigeration and pumping systems used in these sectors are two of the major electricity consumers. As part of DSM initiative, an electrical energy savings project was developed and impleme...

12. Effect of rearing system on body traits and fillet quality of meagre (Argyrosomus regius, Asso 1801 chilled for a short time

Roberta Martelli

2013-04-01

Full Text Available The purpose of this study was to evaluate qualitative traits of meagre (Argyrosomus regius from two different rearing systems (land-based tank filled with geothermal water vs offshore sea cage and after short-term storage at chilling temperature (1, 2, or 3 days. Fish originated from the same batch were fed the same diet. Morpho-biometric traits, L*, a*, and b* colour parameters, texture, free water, proximate composition, total lipids, fatty acids, iron, and selenium contents were analyzed in the fillets. Most parameters were affected by rearing system. Compared to tank-reared fish, caged fish were shorter, poorer in visceral fat, and had higher incidence in cavity content and liver, lower incidence in gonads and head. Caged fish also had softer fillets in the epaxial site, which showed a higher tendency towards greenish colour. Caged fish also showed higher lipid content but lower Fe and Se content. Tank-reared fish fillets were more abundant in PUFAn-3, mainly due to DHA (18.54 vs 12.95%; P<0.001 and consequently showed the best healthiness indexes. Minimal changes, mostly involving colour and texture, were detected during the first three days of refrigerated storage. During storage, no significant modification of the parameters investigated could be ascribed to the rearing system

13. Chilled packing systems for fruit flies (Diptera: Tephritidae) in the sterile insect technique

We evaluated three packing systems (PARC boxes, 'GT' screen towers and 'MX' screen towers) for the emergence and sexual maturation of sterile fruit flies, at three adult fl y densities (1, 1.2 and 1.3 fly/cm 2) and three food types. At the lowest density, results showed no significant differences in the longevity and flight ability of adult Anastrepha ludens (Loew) and Anastrepha obliqua Macquart among the three packing systems. Higher densities resulted in a decrease in these parameters. In the evaluation of the three food types, no significant differences were found either on longevity or flight ability of A. ludens. However, the greatest longevity for both sexes A. obliqua was obtained with commercial powdered Mb and the mix of sugar, protein and corn starch on paper (SPCP) food types. The highest value for flight ability in A. obliqua males was obtained with powdered Mb and SPCP food types, and for females with Mb powdered food. Our data indicated that GT and MX screen tower packing systems are an alternative to the PARC boxes, since they were suitable for adult fl y sexual maturation without any harm to their longevity or flight ability. The tested foods were equivalent in both fruit fl y species, with the exception of the agar type for A. obliqua, which yielded the lowest biological parameters evaluated. Our results contribute to the application of new methods for the packing and release of sterile flies in large-scale programs. (author)

14. Chilled packing systems for fruit flies (Diptera: Tephritidae) in the sterile insect technique

Hernandez, Emilio; Escobar, Arseny; Bravo, Bigail; Montoya, Pablo [Instituto Interamericano de Cooperacion para la Agricultura (IICA), Chiapas (Mexico); Secretaria de Agricultura, Ganaderia, Desarrollo Rural, Pesca y Alimentacion (SAGARPA), Mexico, D.F. (Mexico). Programa Moscafrut

2010-07-15

We evaluated three packing systems (PARC boxes, 'GT' screen towers and 'MX' screen towers) for the emergence and sexual maturation of sterile fruit flies, at three adult fl y densities (1, 1.2 and 1.3 fly/cm 2) and three food types. At the lowest density, results showed no significant differences in the longevity and flight ability of adult Anastrepha ludens (Loew) and Anastrepha obliqua Macquart among the three packing systems. Higher densities resulted in a decrease in these parameters. In the evaluation of the three food types, no significant differences were found either on longevity or flight ability of A. ludens. However, the greatest longevity for both sexes A. obliqua was obtained with commercial powdered Mb and the mix of sugar, protein and corn starch on paper (SPCP) food types. The highest value for flight ability in A. obliqua males was obtained with powdered Mb and SPCP food types, and for females with Mb powdered food. Our data indicated that GT and MX screen tower packing systems are an alternative to the PARC boxes, since they were suitable for adult fl y sexual maturation without any harm to their longevity or flight ability. The tested foods were equivalent in both fruit fl y species, with the exception of the agar type for A. obliqua, which yielded the lowest biological parameters evaluated. Our results contribute to the application of new methods for the packing and release of sterile flies in large-scale programs. (author)

15. Ethylene Production by Chilled Cucumbers (Cucumis sativus L.).

Wang, C Y; Adams, D O

1980-11-01

Chilling at 2.5 C accelerated the synthesis of 1-aminocyclopropane-1-carboxylic acid (ACC) and C(2)H(4) production in cucumber fruit. Skin tissue contained higher levels of ACC and was more sensitive to chilling than was cortex tissue. Accumulation of ACC in chilled tissue was detected after 1 day of chilling and remained elevated even after C(2)H(4) production started to decline. These data suggest that ACC synthesis is readily stimulated by chilling, whereas the system that converts ACC to C(2)H(4) is vulnerable to chilling injury. Chilling-induced C(2)H(4) production was inhibited by amino-ethoxyvinylglycine, sodium benzoate, propyl gallate, 2,4-dinitrophenol, carbonyl cyanide m-chlorophenylhydrazone, and cycloheximide. The utilization of methionine for ACC formation and chilling-induced C(2)H(4) biosynthesis was established using l-[3,4-(14)C]methionine. Chilled tissue had a higher capacity to convert l-[3,4-(14)C]methionine to ACC and C(2)H(4) than did nonchilled tissue. PMID:16661538

16. STUDY OF CYLPEBS CHILLING

E. I. Marukovich

2016-01-01

Full Text Available Methods of increasing the shock resistance of cast-iron grinding bodies are researched. The models of heat transfer in the process of casting and shock-abrasive wear are presented. Tooling to produce experimental samples of milling bodies chilling(gravity die casting is manufactured, samples of cylpebs are produced.

Chilled, vacuum-packed New Zealand lamb loins have been irradiated at doses between 1-8 kGy. The report outlines the methods used and provides dosimetry details. An appendix summarises the results of a taste trial conducted on the irradiated meat by the Meat Industry Research Institute of New Zealand. This showed that, even at 1 kGy, detectable flavours were induced by the radiation treatment

18. Photosynthetic responses to chilling in a chilling-tolerant and chilling-sensitive Miscanthus hybrid.

Friesen, P C; Sage, R F

2016-07-01

Miscanthus is a C4 perennial grass being developed for bioenergy production in temperate regions where chilling events are common. To evaluate chilling effects on Miscanthus, we assessed the processes controlling net CO2 assimilation rate (A) in Miscanthus x giganteus (M161) and a chilling-sensitive Miscanthus hybrid (M115) before and after a chilling treatment of 12/5 °C. The temperature response of A and maximum Rubisco activity in vitro were identical below 20 °C in chilled and unchilled M161, demonstrating Rubisco capacity limits or co-limits A at cooler temperatures. By contrast, A in M115 decreased at all measurement temperatures after growth at 12/5 °C. Rubisco activity in vitro declined in proportion to the reduction in A in chilled M115 plants, indicating Rubisco capacity is responsible in part for the decline in A. Pyruvate orthophosphate dikinase activities were also reduced by the chilling treatment when assayed at 28 °C, indicating this enzyme may also contribute to the reduction in A in M115. The maximum extractable activities of PEPCase and NADP-ME remained largely unchanged after chilling. The carboxylation efficiency of the C4 cycle was depressed in both genotypes to a similar extent after chilling. ΦP :ΦCO2 remained unchanged in both genotypes indicating the C3 and C4 cycles decline equivalently upon chilling. PMID:26714623

19. Higher Chilling-Tolerance of Grafted-Cucumber Seedling Leaves upon Exposure to Chilling Stress

LI Jian-yong; TIAN Hai-xia; LI Xin-guo; MENG Jing-jing; HE Qi-wei

2008-01-01

The roots of figleaf gourd (Cucurbita ficifolia, as rootstock) could improve the resistance of cucumber plants (Cucumis sativus L. cv. Jinyan 4, as scion) to low temperature. In this experiment, the root activity and photosynthetic activity of photosystems in the own-rooted and grafted-cucumber plants were studied at chilling temperature (4℃) under low irradiance (100 μmol m-2 s-1 PFD). Compared with dark adaptation seedlings, the chlorophyll a fluorescence transient curve and the oxidizable P700 (P700+) of both the own-rooted and grafted seedlings decreased, and PS2 and PSl of the own-rooted seedling leaves were more inhibited than that of grafted ones at the end of chilling stress. The reduced triphenyltetrazolium chloride (TTC), which was used to reflect the root activity, kept stable in grafted seedling roots at the end of chilling stress, while it decreased noticeably in the own-rooted seedling roots. These results implied that the root system activity of the grafted seedling roots was higher than that of the own-rooted ones. Superoxide dismutase (SOD) activity was higher in both the grafted seedling roots and leaves than that in own-rooted seedlings at both room temperature and chilling temperature. Upon exposure to chilling stress, the malondialdehyde (MDA) content, which reflects the degree of lipid peroxidation, increased markedly in the own-rooted seedling roots and leaves and kept stable in the grafted-cucumber seedlings.

20. Using a concentrate of phenols obtained from olive vegetation water to preserve chilled food: two case studies

Luca Fasolato

2016-05-01

Full Text Available Phenols are plant metabolites characterised by several interesting bioactive properties such as antioxidant and bactericidal activities. In this study the application of a phenols concentrate (PC from olive vegetation water to two different fresh products – gilt-head seabream (Sparus aurata and chicken breast – was described. Products were treated in a bath of PC (22 g/L; chicken breast or sprayed with two different solutions (L1:0.75 and L2:1.5 mg/mL; seabream and then stored under refrigeration conditions. The shelf life was monitored through microbiological analyses – quality index method for seabream and a specific sensory index for raw breast. The secondary products of lipid-peroxidation of the chicken breast were determined using the thiobarbituric acid reactive substances (TBARs test on cooked samples. Multivariate statistical techniques were adopted to investigate the impact of phenols and microbiological data were fitted by DMfit software. In seabream, the levels of PC did not highlight any significant difference on microbiological and sensory features. DMfit models suggested an effect only on H2S producing bacteria with an increased lag phase compared to the control samples (C: 87 h vs L2: 136 h. The results on chicken breast showed that the PC bath clearly modified the growth of Pseudomonas and Enterobacteriaceae. The phenol dipping was effective in limiting lipid-peroxidation (TBARs after cooking. Treated samples disclosed an increase of shelf life of 2 days. These could be considered as preliminary findings suggesting the use of this concentrate as preservative in some fresh products.

1. Impact of heat load location and strength on air flow pattern with a passive chilled beam system

Kosonen, Risto [Halton Oy, Niittyvillankuja 4, 01510 Vantaa (Finland); Saarinen, Pekka; Koskela, Hannu [Finnish Institute of Occupational Health, Lemminkaisenkatu 14-18 B, 20520 Turku (Finland); Hole, Alex [Arup, Rob Leslie-Carter, Level 10, 201 Kent Street, Sydney, NSW 2000 (Australia)

2010-01-15

A passive chilled beam is a source of natural convection, creating a flow of cold air directly into the occupied zone. Experiments were conducted in a mock-up of an office room to study the air velocities in the occupied spaces. In addition, velocity profiles are registered when underneath heat loads exist and the cool and warm air flows interact. Experimental laboratory study revealed that in the case of the underneath heat gains, even no upward plume was generated and the dummy only acted as a flow obstacle, having a significant effect on the velocity profile. Furthermore, in an actual occupied office environment, the thermal plumes and the supply air diffuser mixed effectively the whole air volume. The maximum air velocity measured was still below 0.25 m/s with the extremely high heat gain of 164 W/m{sup 2}. The results demonstrate that analysis methods were the interaction of convection flow and jet are not taken into account could not accurately describe air movement and draught risk in the occupied room space. (author)

2. Evaluation of trigeneration system using microturbine, ammonia-water absorption chiller, and a heat recovery boiler

Preter, Felipe C.; Rocha, Marcelo S.; Simoes-Moreira, Jose Roberto [SISEA - Alternative Energy Systems Lab. Dept. of Mechanical Engineering. University of Sao Paulo (EP/USP), SP (Brazil)], e-mails: felipe.preter@poli.usp.br, msrocha@poli.usp.br, jrsimoes@usp.br; Andreos, Ronaldo [COMGAS - Companhia de Gas de Sao Paulo, SP (Brazil)], e-mail: randreos@comgas.com.br

2010-07-01

In this work, a CCHP or tri generation system has been projected, mounted, and tested in laboratory, combining a microturbine for power generation, a heat recovery boiler for hot water production, and an ammonia water absorption chiller for chilled water production. The project was motivated by the large practical applications of this kind of energy recovery system in commerce, and industry, and, in general, more than 85% of the energy source is used as power, hot water, and cold water. In the first part, the trigeneration system theoretical model is detailed, and in the second part, experimental results are presented for different operation conditions. (author)

3. Reestablishment of ion homeostasis during chill-coma recovery in the cricket Gryllus pennsylvanicus

MacMillan, Heath A.; Williams, Caroline M.; Staples, James F.; Sinclair, Brent J.

2012-01-01

The time required to recover from cold-induced paralysis (chill-coma) is a common measure of insect cold tolerance used to test central questions in thermal biology and predict the effects of climate change on insect populations. The onset of chill-coma in the fall field cricket (Gryllus pennsylvanicus, Orthoptera: Gryllidae) is accompanied by a progressive drift of Na+ and water from the hemolymph to the gut, but the physiological mechanisms underlying recovery from chill-coma are not unders...

4. Welding Using Chilled-Inert-Gas Purging

Mcgee, William F.; Rybicki, Daniel J.

1995-01-01

Report describes study of fusion welding using chilled inert gas. Marked improvement shown in welding of aluminum using chilled helium gas. Chilling inert gas produces two additional benefits: 1) creation of ultradense inert atmosphere around welds; 2) chilled gas cools metal more quickly down to temperature at which metals not reactive.

5. Short and long term effects of root and shoot chilling of ransom soybean.

Musser, R L; Thomas, S A; Kramer, P J

1983-11-01

The immediate short term effects on some physiological processes and the long term effects on morphology and reproductive development of root- and shoot-chilled soybeans (Glycine max L. cv Ransom) were studied. Roots or shoots of 16- or 17-day-old plants were chilled at 10 degrees C for one week, and then rewarmed to 25 degrees C. Leaf elongation rate, net CO(2) uptake rate, and stomatal conductance decreased during root or shoot chilling. Root chilling had only temporary effects on water relations, while shoot chilling caused large changes in potentials during chilling. Most processes measured returned to control levels after two days of rewarming. Root-chilled plants harvested 90 days after emergence were similar in morphology and seed weight to controls. Shoot-chilled plants showed a large increase over controls in axillary branch growth, but an early abortion of flowers and a delayed resumption of flowering caused a 78% reduction in seed weight. Root chilling in this study was found to have little or no long term effect on the plants, while shoot chilling caused significant changes in vegetative morphology, and a delay in flowering and subsequent pod filling. PMID:16663300

6. Sustainable Water Systems

Miklas Scholz

2013-02-01

Full Text Available Sustainable water systems often comprise complex combinations of traditional and new system components that mimic natural processes. These green systems aim to protect public health and safety, and restore natural and human landscapes. Green infrastructure elements such as most sustainable drainage systems trap storm water but may contaminate groundwater. There is a need to summarize recent trends in sustainable water systems management in a focused document. The aim of this special issue is therefore to disseminate and share scientific findings on novel sustainable water systems addressing recent problems and opportunities. This special issue focuses on the following key topics: climate change adaptation and vulnerability assessment of water resources systems; holistic water management; carbon credits; potable water savings; sustainable water technologies; nutrient management; holistic storm water reuse; water and wastewater infrastructure planning; ecological status of watercourses defined by the Water Framework Directive. The combined knowledge output advances the understanding of sustainable water, wastewater and storm water systems in the developed and developing world. The research highlights the need for integrated decision-support frameworks addressing the impact of climate change on local and national water resources management strategies involving all relevant stakeholders at all levels.

7. Cold water aquifer storage. [air conditioning

Reddell, D. L.; Davison, R. R.; Harris, W. B.

1980-01-01

A working prototype system is described in which water is pumped from an aquifer at 70 F in the winter time, chilled to a temperature of less than 50 F, injected into a ground-water aquifer, stored for a period of several months, pumped back to the surface in the summer time. A total of 8.1 million gallons of chilled water at an average temperature of 48 F were injected. This was followed by a storage period of 100 days. The recovery cycle was completed a year later with a total of 8.1 million gallons recovered. Approximately 20 percent of the chill energy was recovered.

8. Sustainable Water Systems

Miklas Scholz

2013-01-01

Sustainable water systems often comprise complex combinations of traditional and new system components that mimic natural processes. These green systems aim to protect public health and safety, and restore natural and human landscapes. Green infrastructure elements such as most sustainable drainage systems trap storm water but may contaminate groundwater. There is a need to summarize recent trends in sustainable water systems management in a focused document. The aim of this special issue is ...

9. Performance of personalized ventilation combined with chilled ceiling in an office room: inhaled air quality and contaminant distribution

Lipczynska, Aleksandra; Kaczmarczyk, Jan; Melikov, Arsen Krikor

2014-01-01

In a simulated two persons’ office room inhaled air quality and contaminant distribution provided with personalized ventilation combined with chilled ceiling, mixing ventilation only, chilled ceiling with mixing ventilation and chilled ceiling with mixing and personalized ventilation was studied...... people (exhaled air, bioeffluents) and building materials (wall painting). Personalized ventilation combined with chilled ceiling ensured highest air quality at the workstation under all conditions. Pollutant concentration in the occupied zone away from the workstations did not differ substantially...... between the tested systems. Chilled ceiling combined with personalized ventilation working as the only air supplying system may be optimal solution in many buildings....

10. The integrated effect of DSM on mine chilled water systems / Willem Schoeman

Schoeman, Willem

2014-01-01

The national electricity utility in South Africa, Eskom, is currently under pressure to supply the increasing demand for electricity on a national level. To address this problem in the short term, Eskom partially funds load management and energy efficiency projects. In the meantime, Eskom is also increasing their generation capacity through the erection of new power stations. To finance these capital projects, sharp tariff increases, higher than inflation, are levied, resulting...

11. Impact of the sampling method and chilling on the Salmonella recovery from pig carcasses.

Vanantwerpen, Gerty; De Zutter, Lieven; Berkvens, Dirk; Houf, Kurt

2016-09-01

Differences in recovery of Salmonella on pig carcasses using non-destructive and destructive sampling methods is not well understood in respect to the chilling processes applied in slaughterhouses. Therefore, in two slaughterhouses, four strains at two different concentrations were inoculated onto pork skin. Inoculated skin samples were sampled before and after chilling with two sampling methods: swabbing and destruction. Both slaughterhouses were visited three times and all tests were performed in triplicate. All samples were analysed using the ISO-method and recovered isolates were confirmed by PFGE. The chilling system (fast or conventional cooling) nor the sampling step (before and after chilling) did not significantly influence the recovery of Salmonella. However, swabbing after chilling leads to an underestimation of the real number of contaminated carcasses. Therefore, destructive sampling is the more designated sampling method after chilling. PMID:27236225

12. Comparison of microbial load in immersion chilling water and poultry carcasses after 8, 16 and 24 working hours Comparação da carga microbiana em águas de pré-resfriamento e carcaças de frangos, após jornadas de trabalho de 8, 16 e 24 horas

Ricardo Cavani

2010-07-01

Full Text Available Poultry processing facilities are known for using a great amount of water, which is mainly used on carcasses chilling stage. In Brazil, meat regulations state that each chiller tank must be emptied, cleaned and sanitized every 8 working hours. The aim of the current study was to assess the microbial load of chiller water used in poultry immersion chilling system after 8, 16 and 24 working hours in order to evaluate the reduction of water changes and chiller sanitization. Conventional physicochemical and microbiological assays were done in water supply samples (n=69 to suppress interferences caused by freshwater addition; pre chilled (n=345 post chilled carcasses (n=345 and chiller water samples of the last stage (n=69. The results showed no significant differences on microbial load samples between the three shifts suggesting that the proposed reduction may be secure and reduces the volume of wastewater that would impact the environment, besides improving the rational use of processing time.As atividades dos estabelecimentos de abate de frangos são conhecidas por utilizarem grandes volumes de água durante seus processos, principalmente no processo de resfriamento das carcaças de frangos. Parte desse volume utilizado se faz necessário, em cumprimento à legislação que determina que cada tanque do sistema de pré-resfriadores contínuos por imersão deve ser completamente esvaziado, limpo e desinfetado no final de cada período de trabalho (oito horas. O objetivo deste estudo foi comparar a carga microbiana das águas do sistema de resfriamento e das carcaças de frango ao final de oito, dezesseis e vinte e quatro horas de trabalho do abatedouro, para possível redução do número de vezes do completo esvaziamento dos tanques do sistema de resfriamento. Foram avaliadas, por meio de métodos convencionais microbiológicos e físico-químicos, amostras da água de abastecimento (n=69, visando a evitar possível interferência nas contagens das

13. Optimizing the water flow rate in space HVAC systems. New data for the dimensioning of installations; Optimiser le debit d'eau dans les ventilo-convecteurs. Des donnees nouvelles pour dimensionner les installations

Palenzuela, D.; Cyssau, R.

2000-09-01

The temperature increase of the chilled water specified for the heat exchangers of space heating and ventilating systems is in general of 5 deg. C. However, the technical-economical study presented in this document shows that the best economical conditions correspond to a temperature rise of 10 deg. C and a water flow rate divided by 2. (J.S.)

14. Chilling Out with Colds

... Other Kids Are Reading Movie: Digestive System Winter Sports: Sledding, Skiing, Snowboarding, Skating Crushes What's a Booger? ... body already has the best cold cure — your immune system. The immune system defends your body against illness. ...

15. Water quality diagnosis system

The present invention provides a water quality diagnosis system for always monitoring the state of pipeline component materials and equipments in a power plant to previously detect abnormality. That is, it comprises a water quality sensor for measuring conductivity, pH, dissolved oxygen concentration, metal concentration, metal composition, chemical form and radioactive concentration, and a computer system. The computer system comprises an abnormal event simulation calculation section based on an abnormality prediction model, intelligence data base reflecting experience and knowledge with reference to corrosion and leaching of metals, water quality data base accumulating base data with reference to corrosion of metals and material data with reference to all over the entire systems of the structural components of the plant and a reasoning engine. Then, the condition and the speed of corrosion for all over the system are determined to forecast the normal state by using the water quality data inputted periodically from the water quality sensor. The condition of abnormality is determined based on the intelligence base and the reasoning engine. (I.S.)

16. Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica).

Fan, Shenghua; Bielenberg, Douglas G; Zhebentyayeva, Tetyana N; Reighard, Gregory L; Okie, William R; Holland, Doron; Abbott, Albert G

2010-03-01

*Chilling requirement, together with heat requirement, determines the bloom date, which has an impact on the climatic distribution of the genotypes of tree species. The molecular basis of floral bud chilling requirement is poorly understood, despite its importance to the adaptation and production of fruit trees. In addition, the genetic nature of heat requirement and the genetic interrelationships among chilling requirement, heat requirement and bloom date remain unclear. *A peach (Prunus persica) F(2) population of 378 genotypes developed from two genotypes with contrasting chilling requirements was used for linkage map construction and quantitative trait loci (QTL) mapping. The floral bud chilling and heat requirements of each genotype were evaluated over 2 yr and the bloom date was scored over 4 yr. *Twenty QTLs with additive effects were identified for three traits, including one major QTL for chilling requirement and two major QTLs for bloom date. The majority of QTLs colocalized with QTLs for other trait(s). In particular, one genomic region of 2 cM, pleiotropic for the three traits, overlapped with the sequenced peach EVG region. *This first report on the QTL mapping of floral bud chilling requirement will facilitate marker-assisted breeding for low chilling requirement cultivars and the map-based cloning of genes controlling chilling requirement. The extensive colocalization of QTLs suggests that there may be one unified temperature sensing and action system regulating chilling requirement, heat requirement and bloom date together. PMID:20028471

17. Water Purification Systems

1994-01-01

Clearwater Pool Technologies employs NASA-developed silver/copper ionization to purify turtle and dolphin tanks, cooling towers, spas, water recycling systems, etc. The pool purifier consists of a microcomputer to monitor water conditions, a pair of metallic electrodes, and a rheostat controller. Ions are generated by passing a low voltage current through the electrodes; the silver ions kill the bacteria, and the copper ions kill algae. This technology has found broad application because it offers an alternative to chemical disinfectants. It was originally developed to purify water on Apollo spacecraft. Caribbean Clear has been using NASA's silver ionization technology for water purification for more than a decade. Two new products incorporate advancements of the basic technology. One is the AquaKing, a system designed for areas with no source of acceptable drinking water. Another is the Caribbean Clear Controller, designed for commercial pool and water park applications where sanitizing is combined with feedback control of pH and an oxidizer, chlorine or bromine. The technology was originally developed to purify water on Apollo spacecraft.

18. Thermal environment and air quality in office with personalized ventilation combined with chilled ceiling

Lipczynska, Aleksandra; Kaczmarczyk, Jan; Melikov, Arsen Krikor

2015-01-01

The thermal environment and air quality conditions provided with combined system of chilled ceiling and personalized ventilation (PV) were studied in a simulated office room for two occupants. The proposed system was compared with total volume HVAC solutions used today, namely mixing ventilation...... and chilled ceiling combined with mixing ventilation. The objective of the study was to evaluate whether PV can be the only ventilation system in the rooms equipped with chilled ceiling. The room air temperature was 26°C in cases with traditional systems and 28°C when PV was used. PV supplied air with...

19. The Big Chill

2001-01-01

In just five years the LHC's twenty-seven kilometre ring of superconducting magnets will be brought down to a chily 1.9 Kelvin - some 300 degrees below room temperature - as CERN's new flagship accelerator is commissioned. Validating all the systems that will cool and power the LHC is the job of String 2, a chain of prototype magnets currently being put through its paces in SM18.

20. 21 CFR 890.5940 - Chilling unit.

2010-04-01

... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Chilling unit. 890.5940 Section 890.5940 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES PHYSICAL MEDICINE DEVICES Physical Medicine Therapeutic Devices § 890.5940 Chilling unit....

1. Custo-efetividade da produção de refeições coletivas sob o aspecto higiênico-sanitário em sistemas cook-chill e tradicional Cost-effectiveness applied to hygienic-sanitary aspects of collective meals production in cook-chill and traditional systems

Vera Megumi Kawasaki

2007-04-01

potencial de melhoria do desempenho da efetividade na produção de refeições seguras.OBJECTIVE: The purpose of this study was to evaluate the cost efficiency relationship from two food services from Sao Paulo city that adopt different collective meals production systems (conventional and cook-chill. METHODS: The method employed was based on cost efficiency analysis, using time and temperature criteria established in Brazilian laws as efficiency indicators for safety in hygiene and sanitary aspects of the collective meals production systems. Costs were calculated through the differential direct cost method, using as basis the costs of inputs that were exclusive to each production system. RESULTS: The results demonstrated that the differential direct cost from food services that adopted the conventional production system (food service unit1 was R\$0.69 per meal, while the cost of food services that adopted the cook-chill production system (food service unit 2 was R\$2.66 per meal. In terms of effectiveness, food service unit 1 achieved an accomplishment level of 27.9% in time and temperature criteria, while food service unit 2 achieved an accomplishment level of 68.2%. The most cost-effective alternative was the conventional production system represented by food service unit 1, with a cost-efficiency ratio of 2.484; while food service unit 2 obtained a cost efficiency ratio of 3.907. CONCLUSION: The main transgression causes in food safety criteria detected in both food services were related to procedures that seek improvements in sensory quality and economy instead of safety and there was little relationship between the inherent differences of the adopted production system. Critical stages can be controlled by monitoring food temperature, a low cost procedure with a high potential of improving efficiency performance in the production of safe meals.

2. Music chills: The eye pupil as a mirror to music's soul.

Laeng, Bruno; Eidet, Lise Mette; Sulutvedt, Unni; Panksepp, Jaak

2016-08-01

This study evaluated whether music-induced aesthetic "chill" responses, which typically correspond to peak emotional experiences, can be objectively monitored by degree of pupillary dilation. Participants listened to self-chosen songs versus control songs chosen by other participants. The experiment included an active condition where participants made key presses to indicate when experiencing chills and a passive condition (without key presses). Chills were reported more frequently for self-selected songs than control songs. Pupil diameter was concurrently measured by an eye-tracker while participants listened to each of the songs. Pupil size was larger within specific time-windows around the chill events, as monitored by key responses, than in comparison to pupil size observed during 'passive' song listening. In addition, there was a clear relationship between pupil diameter within the chills-related time-windows during both active and passive conditions, thus ruling out the possibility that chills-related pupil dilations were an artifact of making a manual response. These findings strongly suggest that music chills can be visible in the moment-to-moment changes in the size of pupillary responses and that a neuromodulatory role of the central norepinephrine system is thereby implicated in this phenomenon. PMID:27500655

3. Public Water Supply Systems (PWS)

Kansas Data Access and Support Center — This dataset includes boundaries for most public water supply systems (PWS) in Kansas (525 municipalities, 289 rural water districts and 13 public wholesale water...

4. Human response to individually controlled micro environment generated with localized chilled beam

Uth, Simon C.; Nygaard, Linette; Bolashikov, Zhecho Dimitrov;

2014-01-01

Indoor environment in a single-office room created by a localised chilled beam with individual control of the primary air flow was studied. Response of 24 human subjects when exposed to the environment generated by the chilled beam was collected via questionnaires under a 2-hour exposure including...... different work tasks at three locations in the room. Response of the subjects to the environment generated with a chilled ceiling combined with mixing air distribution was used for comparison. The air temperature in the room was kept at 26 or 28 °C. Results show no significant difference in the overall and...... local thermal sensation reported by the subjects with the two systems. Both systems were equally acceptable. At 26°C the individual control of the localised chilled beam lead to higher acceptability of the work environment. At 28°C the acceptability decreased with the two systems. It was not acceptable...

5. Effects of watertable and fertilizer management on susceptibility of tomato fruit to chilling injury

In a 2-year study (1993-1994), 'New Yorker' tomato (Lycopersicon esculentum Mill.) plants grown in field lysimeters were subjected to four water table depth (WTD) treatments (0.3, 0.6, 0.8, and 1.0 m from the soil surface) factorially combined with 5 potassium/calcium fertilization combinations. Mature-green fruit from four replicates of each treatment were stored at 5C for 21 days, and fruit color was monitored with a tristimulus colorimeter. Fruit were subsequently allowed to ripen at 20C for 10 days, at which time chilling injury was assessed on the basis of delayed ripening and area of lesions. Potassium and calcium applied in the field had no effect on chilling tolerance of the fruit. In the drier year (1993), shallower WTD treatments generally yielded fruit that changed color less during chilling and were more chilling-sensitive based on delayed ripening. In the wetter year, differences in color change and chilling tolerance between WTD, if any, were small. Over both years, lesion area varied with WTD, but not in a consistent manner. Based on these results, we suggest that differences in water availability should be considered when studying tomato fruit chilling

6. Physiological and Biochemical Mechanisms of Seed Priming-Induced Chilling Tolerance in Rice Cultivars.

2016-01-01

Rice belongs to tropical and subtropical environments and is extremely sensitive to chilling stress particularly during emergence and early stages of seedling development. Seed priming can be a good approach to enhance rice germination and stand establishment under chilling stress. The present study examined the role of different seed priming techniques viz., hydropriming, osmopriming, redox priming, chemical priming, and hormonal priming, in enhancing the chilling tolerance in rice. The most effective reagents and their pre-optimized concentrations based on preliminary experiments were used in this study. Two different rice cultivars were sown under chilling stress (18°C) and normal temperatures (28°C) in separate growth chambers. A non-primed control treatment was also maintained for comparison. Chilling stress caused erratic and delayed germination, poor seedling growth, reduced starch metabolism, and lower respiration rate, while higher lipid peroxidation and hydrogen peroxide accumulation in rice seedlings of both cultivars. Nevertheless, all the seed priming treatments effectively alleviated the negative effects of chilling stress. In addition, seed priming treatments triggered the activities of superoxide dismutase, peroxidase, and catalase, and enhanced the accumulations of glutathione and free proline in rice seedlings, which suggests that these measures help prevent the rice seedlings from chilling induced oxidative stress. Chemical priming with selenium and hormonal priming with salicylic acid remained more effective treatments for both rice cultivars under chilling stress than all other priming treatments. The better performance and greater tolerance of primed rice seedlings was associated with enhanced starch metabolism, high respiration rate, lower lipid peroxidation, and strong antioxidative defense system under chilling stress. PMID:26904078

7. Physiological and biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars

2016-02-01

Full Text Available Rice belongs to tropical and subtropical environments and is extremely sensitive to chilling stress particularly during emergence and early stages of seedling development. Seed priming can be a good approach to enhance rice germination and stand establishment under chilling stress. The present study examined the role of different seed priming techniques viz., hydropriming, osmopriming, redox priming, chemical priming, and hormonal priming, in enhancing the chilling tolerance in rice. The most effective reagents and their pre-optimized concentrations based on preliminary experiments were used in this study. Two different rice cultivars were sown under chilling stress (18˚C and normal temperatures (28˚C in separate growth chambers. A non-primed control treatment was also maintained for comparison. Chilling stress caused erratic and delayed germination, poor seedling growth, reduced starch metabolism and lower respiration rate, while higher lipid peroxidation and hydrogen peroxide accumulation in rice seedlings of both cultivars. Nevertheless, all the seed priming treatments effectively alleviated the negative effects of chilling stress. In addition, seed priming treatments triggered the activities of superoxide dismutase, peroxidase, and catalase, and enhanced the accumulations of glutathione and free proline in rice seedlings, which suggests that these measures help prevent the rice seedlings from chilling induced oxidative stress. Chemical priming with selenium and hormonal priming with salicylic acid remained more effective treatments for both rice cultivars under chilling stress than all other priming treatments. The better performance and greater tolerance of primed rice seedlings was associated with enhanced starch metabolism, high respiration rate, lower lipid peroxidation, and strong antioxidative defense system under chilling stress.

8. Cook & Chill - Rapid Chilling of Food 'in situ'

Paul, Joachim

2003-01-01

Rapid cooling of products is of increasing importance for food preservation and for industrial processes. Slurry ice (Binary Ice) is a two-phase cooling fluid consisting of suspended ice crystals in an aqueous solution or mixture. Latent energy contained in the fluid yields rapid cooling which...... is expressed in high cooling velocity. It is, however, difficult to establish cooling curves for every product and process. Using two readings from a cooling process allows the va��to be determined of a constant OCT which expresses the specific cooling velocity and serves to establish cooling curves...... for a given product and process and to compare different cooling fluids and methods. Chilling of hot products in professional cooking kettles immediately after cooking is achieved best by using Binary Ice. The paper gives an equation, which describes the cooling velocity for such kettles and other products...

9. Improving Chilling Tolerance of Maize Seedlings under Cold Conditions by Spermine Application

2012-08-01

Full Text Available Low temperature is an important abiotic stress which reduces crops growth and productivity and causes physiological damages to cellular structures. The aim of this study was to investigate the probability of spermine application to improve chilling tolerance of maize under stress conditions. The treatments were included seed priming with spermine (30, 60 and 90 mg/l solutions and normal and stress condition. Seed emergence was improved by spermine priming on both conditions and mean emergence time (MET was also decreased with priming. Shoot and root length was highly reduced under stress conditions, but the treated seeds were improved along with increased spermine concentration. Seedling dry weight was also affected by priming and reduced weight of stressful seedlings was alleviated by spermine priming. Decreased relative water content on seedlings under stress was elevated by the treatments and significantly increased. Electrolyte leakage was also recovered by applied treatments while it was adversely decreased on cold conditions. Antioxidative system was highly responded to spermine application. Superoxide dismutase (SOD activity increased on both normal and stress conditions, but a little decrease was observed on seedlings treated with 90 ppm level and under chilling conditions. Catalase activity was also amplified by spermine treatments. Priming had a great effect on ascorbate peroxidase (APX activity on both stressful and normal seedlings and increased it compare with non treated seedlings. It is also important to note that with increasing spermine concentration to 90 ppm, no considerable differences were observed. Thus, 60 ppm concentration could be proposed as the appropriate level of spermine in order to improve chilling tolerance of maize seedlings.

10. Measured performance of a 3 ton LiBr absorption water chiller and its effect on cooling system operation

Namkoong, D.

1976-01-01

A three ton lithium bromide absorption water chiller was tested for a number of conditions involving hot water input, chilled water, and the cooling water. The primary influences on chiller capacity were the hot water inlet temperature and the cooling water inlet temperature. One combination of these two parameters extended the output to as much as 125% of design capacity, but no combination could lower the capacity to below 60% of design. A cooling system was conceptually designed so that it could provide several modes of operation. Such flexibility is needed for any solar cooling system to be able to accommodate the varying solar energy collection and the varying building demand. It was concluded that a three-ton absorption water chiller with the kind of performance that was measured can be incorporated into a cooling system such as that proposed, to provide efficient cooling over the specified ranges of operating conditions.

11. Automated Water-Purification System

Ahlstrom, Harlow G.; Hames, Peter S.; Menninger, Fredrick J.

1988-01-01

Reverse-osmosis system operates and maintains itself with minimal human attention, using programmable controller. In purifier, membranes surround hollow cores through which clean product water flows out of reverse-osmosis unit. No chemical reactions or phase changes involved. Reject water, in which dissolved solids concentrated, emerges from outer membrane material on same side water entered. Flow controls maintain ratio of 50 percent product water and 50 percent reject water. Membranes expected to last from 3 to 15 years.

12. Suppression of volatile production in tomato fruit exposed to chilling temperature and alleviation of chilling injury by a pre-chilling heat treatment

Chilling exposure of tomato fruit to 5 °C for less than 5 days at mature green stage does not cause visual symptom of chilling injury (CI), however, it is unknown whether such conditions would impact flavor quality (internal CI) after ripening, and if a pre-chilling heat treatment could alleviate in...

13. Modification of Water Circulation in Demineralized Water System

Long lifetime and efficient are expected for demineralized water system. Therefore, water circulation system for demineralized water system was made by modifying water distillation system, include building circulation water system for water efficiency and equipment installation, such as: ion exchanger for demineralized water process, cooling system, water circulation semiautomatic system and Compressor ETC-100 device for automatic cooling machine. This modified system was able to produce demineralized water with conductivity 0,8 – 0,9μs (microsiemen), reduce incrustations in distillation equipment which can longer the lifetime and water saving. (author)

14. Water Hydraulic Systems

2005-01-01

The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

15. Water Treatment Technology - Distribution Systems.

Ross-Harrington, Melinda; Kincaid, G. David

One of twelve water treatment technology units, this student manual on distribution systems provides instructional materials for six competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: types of pipe for distribution systems, types…

16. CFX Analysis of the Heat and Mass Transfer During the Chilling of a Lamb Carcass using a 3D Model

Hannon, Joseph; Keane, Garrett; O'Flaherty, Micheal

2013-01-01

Lamb meat is a popular red meat which must go through a complex refrigeration process before being served at the dinner table to reduce bacterial growth and retain meat quality. A major disadvantage of chilling is the drip losses which are losses in weight by evaporation of water contained within the meat. The aim of this work is to simulate the conventional chilling process of a lamb carcass using a three dimensional model.

17. Operational Management System for Regulated Water Systems

van Loenen, A.; van Dijk, M.; van Verseveld, W.; Berger, H.

2012-04-01

Most of the Dutch large rivers, canals and lakes are controlled by the Dutch water authorities. The main reasons concern safety, navigation and fresh water supply. Historically the separate water bodies have been controlled locally. For optimizating management of these water systems an integrated approach was required. Presented is a platform which integrates data from all control objects for monitoring and control purposes. The Operational Management System for Regulated Water Systems (IWP) is an implementation of Delft-FEWS which supports operational control of water systems and actively gives advice. One of the main characteristics of IWP is that is real-time collects, transforms and presents different types of data, which all add to the operational water management. Next to that, hydrodynamic models and intelligent decision support tools are added to support the water managers during their daily control activities. An important advantage of IWP is that it uses the Delft-FEWS framework, therefore processes like central data collection, transformations, data processing and presentation are simply configured. At all control locations the same information is readily available. The operational water management itself gains from this information, but it can also contribute to cost efficiency (no unnecessary pumping), better use of available storage and advise during (water polution) calamities.

18. Water Supply Infrastructure System Surety

EKMAN,MARK E.; ISBELL,DARYL

2000-01-06

The executive branch of the United States government has acknowledged and identified threats to the water supply infrastructure of the United States. These threats include contamination of the water supply, aging infrastructure components, and malicious attack. Government recognition of the importance of providing safe, secure, and reliable water supplies has a historical precedence in the water works of the ancient Romans, who recognized the same basic threats to their water supply infrastructure the United States acknowledges today. System surety is the philosophy of ''designing for threats, planning for failure, and managing for success'' in system design and implementation. System surety is an alternative to traditional compliance-based approaches to safety, security, and reliability. Four types of surety are recognized: reactive surety; proactive surety, preventative surety; and fundamental, inherent surety. The five steps of the system surety approach can be used to establish the type of surety needed for the water infrastructure and the methods used to realize a sure water infrastructure. The benefit to the water industry of using the system surety approach to infrastructure design and assessment is a proactive approach to safety, security, and reliability for water transmission, treatment, distribution, and wastewater collection and treatment.

19. Heavy water extraction system

In accordance with the present invention the tray for extracting liquid effluent from the humidifier section of the process is located in an intermediate position in the section, having a plurality of the trays of the section thereabove, with a balancing flow of heated water being admitted to the section beneath the extraction tray, to maintain substantially uniform loading of the trays in the humidifier section. The water being admitted in heat providing relation to the humidifier is divided into first and second portions, with the first portion admitted at the top of the humidifier section and the second portion substantially equal to the quantity of effluent extracted being admitted to the section beneath the extraction tray so as to maintain balance in the trays. The deuterium content of the gas, in passing through the trays above the extracting tray, is increased. The second water portion of the heater circuit is passed in heat exchanging relation with the effluent, to raise the temperature of the effluent prior to entry into the gas stripping portion of the plant wherein H2S gas is recovered for recycling. (author)

20. Directional distribution of chilling winds in Estonia

Saue, Triin

2015-11-01

Wind chill equivalent temperature (WCET) is used to define thermal discomfort in winter months. Directional distributions of winds, which are associated with uncomfortable weather, were composed of three climatologically different Estonian locations: Vilsandi, Kuusiku, and Jõhvi. Cases with wind chill equivalent temperature prevalent wind directions in Estonia: W, SW, and NW bring warm air in winter from the North Atlantic, while winds from the East-European plain (NE, E, and SE) are associated with cold air. The eastern prevalence was stronger when a lower threshold was used. A directional approach may find several applications, such as building, agricultural, landscape, or settlement planning.

1. The Exploration Water Recovery System

ORourke, Mary Jane E.; Carter, Layne; Holder, Donald W.; Tomes, Kristin M.

2006-01-01

The Exploration Water Recovery System is designed towards fulfillment of NASA s Vision for Space Exploration, which will require elevation of existing technologies to higher levels of optimization. This new system, designed for application to the Exploration infrastructure, presents a novel combination of proven air and water purification technologies. The integration of unit operations is modified from that of the current state-of-the-art water recovery system so as to optimize treatment of the various waste water streams, contaminant loads, and flow rates. Optimization is achieved primarily through the removal of volatile organic contaminants from the vapor phase prior to their absorption into the liquid phase. In the current state-of-the-art system, the water vapor in the cabin atmosphere is condensed, and the volatile organic contaminants present in that atmosphere are absorbed into the aqueous phase. Removal of contaminants the5 occurs via catalytic oxidation in the liquid phase. Oxidation kinetics, however, dictate that removal of volatile organic contaminants from the vapor phase can inherently be more efficient than their removal from the aqueous phase. Taking advantage of this efficiency reduces the complexity of the water recovery system. This reduction in system complexity is accompanied by reductions in the weight, volume, power, and resupply requirements of the system. Vapor compression distillation technology is used to treat the urine, condensate, and hygiene waste streams. This contributes to the reduction in resupply, as incorporation of vapor compression distillation technology at this point in the process reduces reliance on the expendable ion exchange and adsorption media used in the current state-of-the-art water recovery system. Other proven technologies that are incorporated into the Exploration Water Recovery System include the Trace Contaminant Control System and the Volatile Removal Assembly.

2. Chilling rate effects on pork loin tenderness in commercial processing plants.

Shackelford, S D; King, D A; Wheeler, T L

2012-08-01

The present experiment was conducted to provide a large-scale objective comparison of pork LM tenderness and other meat quality traits among packing plants that differ in stunning method and carcass chilling rate. For each of 2 replicates, pigs were sourced from a single barn of a commercial finishing operation that fed pigs from a single terminal crossbred line. On each day, 3 trucks were loaded, with each of those trucks delivering the pigs to a different plant. Plant A used CO(2) stunning and conventional spray chilling; Plant B used CO(2) stunning and blast chilling; and Plant C used electrical stunning and blast chilling. The boneless, vacuum-packaged loin was obtained from the left side of each carcass (n = 597; 100 · plant(-1) · replicate(-1)). As designed, HCW, LM depth, and LM intramuscular fat percentage did not differ among plants (P > 0.05). By 1.67 h postmortem (1 h after the carcasses exited the harvest floor), the average deep LM temperature was >10°C warmer for Plant A than Plants B and C (32.1°C, 21.6°C, and 19.3°C, for Plants A, B, and C, respectively) and deep LM temperature continued to be >10°C warmer for Plant A until 4.17 h or 6.33 h postmortem than for Plants C and B, respectively. Both plants that used blast chilling produced loins with greater LM slice shear force at 15 d postmortem than did the plant that used conventional spray chilling (P 25 kg) LM slice shear force values was greater for Plant B than Plant A (14.7% vs. 1%; P electrical stunning (P < 0.05). This research shows that differences in chilling systems among pork packing plants can have a strong influence on loin chop tenderness. PMID:22307481

3. Protection of ultrastructure in chilling-stressed banana leaves by salicylic acid

KANG Guo-zhang; WANG Zheng-xun; XIA Kuai-fei; SUN Gu-chou

2007-01-01

Objective: Chilling tolerance of salicylic acid (SA) in banana seedlings (Musa acuminata cv., Williams 8818) was investigated by changes in ultrastructure in this study. Methods: Light and electron microscope observation. Results: Pretreatment with 0.5 mmol/L SA under normal growth conditions (30/22 ℃) by foliar spray and root irrigation resulted in many changes in ultrastructure of banana cells, such as cells separation from palisade parenchymas, the appearance of crevices in cell walls, the swelling of grana and stromal thylakoids, and a reduction in the number of starch granules. These results implied that SA treatment at 30/22 ℃ could be a type of stress. During 3 d of exposure to 7 ℃ chilling stress under low light, however, cell ultrastructure of SA-pretreated banana seedlings showed less deterioration than those of control seedlings (distilled water-pretreated). Conclusion:SA could provide some protection for cell structure of chilling-stressed banana seedling.

4. Next Generation HVAC System

Takagi, Yasuo; Murakami, Yoshiki; Hanada, Yuuichi; Nishimura, Nobutaka; Yamazaki, Kenichi; Itoh, Yasuyuki

A new HVAC (Heating, Ventilating, and Air-Conditioning) system for buildings is proposed. The key technology for the system is a twin coil air handling unit (AHU) and its advanced control method. One coil is equipped to cool and dehumidify the fresh air intake, and the other coil is for cooling circulated air. The deeply chilled water is necessary only for removing the moisture from the fresh air. The latter coil requires moderately cool water according to the HVAC load. Then 2 kinds of chilled water in terms of temperature should be prepared. The structure helps saving the energy consumption for air-conditioning because the higher chilled water temperature implies the better chiller efficiency (COP: Coefficient of Performance). In addition, an advanced control method that is called an ‘Air-Water cooperation system’ is introduced. The control system mainly focuses on energy savings through changing the temperature of the chilled water and supply air according to the HVAC load and weather conditions. In this paper, we introduce a Next Generation HVAC system with its control system and present evaluation results of the system for the model-building simulator.

5. Drinking Water Fact Sheet: Drinking Water Treatment Systems

Mesner, Nancy; Daniels, Barbara

2010-01-01

This fact sheet provides information about drinking water treatment systems. This fact sheet discusses different types of water treatment systems available to homeowners. It includes a table with water contaminants or problems, possible causes of the problem, and solutions.

6. Guns on Campus: A Chilling Effect

Mash, Kenneth M.

2013-01-01

The author of this article observes that, while much has been written on the overall topic of safety with regard to allowing guns on college campuses, little has been said about how allowing the possession of deadly weapons can create a "chilling effect" on academic discussions. This article considers how some universities have…

7. Estimation of chilling requirement and effect of hydrogen cyanamide on budbreak and fruit characteristics of 'superior seedless' table grape cultivated in a mild winter climate

The chilling requirement and optimum time for hydrogen cyanamide (HC) application were determined for Superior Seedless table grape grown in southern Tunisia, an arid mild winter region. The reliability of five models to predict chilling accumulation for this cultivar was also investigated. In mid-November, current season shoots were excised and subjected to artificial chilling at 7 deg. C for different lengths of time. Each time, half the shoots were treated with a 2% (v/v) aqueous solution of HC, the others were sprayed with distilled water. Thereafter, these shoots were forced to budburst. Rest intensity gradually declined due to chilling accumulation. We estimated that the cultivar needed approx. 440 hours (h) of chilling, or chilling requirement (CR), to overcome endodormancy. During two dormant seasons, estimation of chilling accumulation showed that the Positive Chill Unit model was the most suitable to predict rest completion for Superior Seedless grown under our climatic conditions. Using this model, we found that the variety's CR was not always met by mid-February. In both laboratory and field trials, HC was most effective in enhancing and advancing budbreak if applied when approx. 2/3 of the cultivar's CR were met. Moreover, by this application berry weight and diameter were increased and fruit maturity was advanced. Our study indicated that HC (2%) was effective in advancing budbreak and fruit maturity of Superior Seedless table grape although its effectiveness depended on application date. (author)

8. Chilling-Mediated DNA Methylation Changes during Dormancy and Its Release Reveal the Importance of Epigenetic Regulation during Winter Dormancy in Apple (Malus x domestica Borkh..

Gulshan Kumar

Full Text Available Winter dormancy is a well known mechanism adopted by temperate plants, to mitigate the chilling temperature of winters. However, acquisition of sufficient chilling during winter dormancy ensures the normal phenological traits in subsequent growing period. Thus, low temperature appears to play crucial roles in growth and development of temperate plants. Apple, being an important temperate fruit crop, also requires sufficient chilling to release winter dormancy and normal phenological traits, which are often associated with yield and quality of fruits. DNA cytosine methylation is one of the important epigenetic modifications which remarkably affect the gene expression during various developmental and adaptive processes. In present study, methylation sensitive amplified polymorphism was employed to assess the changes in cytosine methylation during dormancy, active growth and fruit set in apple, under differential chilling conditions. Under high chill conditions, total methylation was decreased from 27.2% in dormant bud to 21.0% in fruit set stage, while no significant reduction was found under low chill conditions. Moreover, the demethylation was found to be decreased, while methylation increased from dormant bud to fruit set stage under low chill as compared to high chill conditions. In addition, RNA-Seq analysis showed high expression of DNA methyltransferases and histone methyltransferases during dormancy and fruit set, and low expression of DNA glcosylases during active growth under low chill conditions, which was in accordance with changes in methylation patterns. The RNA-Seq data of 47 genes associated with MSAP fragments involved in cellular metabolism, stress response, antioxidant system and transcriptional regulation showed correlation between methylation and their expression. Similarly, bisulfite sequencing and qRT-PCR analysis of selected genes also showed correlation between gene body methylation and gene expression. Moreover

9. Onsite Waste Water Treatment System

T. Subramani

2014-06-01

Full Text Available Onsite wastewater treatment systems (OWTSs have evolved from the pit privies used widely throughout history to installations capable of producing a disinfected effluent that is fit for human consumption. Although achieving such a level of effluent quality is seldom necessary, the ability of onsite systems to remove settles able solids, floatable grease and scum, nutrients, and pathogens. From wastewater discharges defines their importance in protecting human health and environmental resources. In the modern era, the typical onsite system has consisted primarily of a septic tank and a soil absorption field, also known as a subsurface wastewater infiltration system, or SWIS. In this manual, such systems are referred to as conventional systems. Septic tanks remove most settle able and floatable material and function as an anaerobic bioreactor that promotes partial digestion of retained organic matter. Septic tank effluent, which contains significant concentrations of pathogens and nutrients, has traditionally been discharged to soil, sand, or other media absorption fields (SWISs for further treatment through biological processes, adsorption, filtration, and infiltration into underlying soils. Conventional systems work well if they are installed in areas with appropriate soils and hydraulic capacities; designed to treat the incoming waste load to meet public health, ground water, and surface water performance standards; installed properly; and maintained to ensure long-term performance. These criteria, however, are often not met. Only about one-third of the land area in the United States has soils suited for conventional subsurface soil absorption fields. System densities in some areas exceed the capacity of even suitable soils to assimilate wastewater flows and retain and transform their contaminants. In addition, many systems are located too close to ground water or surface waters and others, particularly in rural areas with newly installed public

10. Assessment on reliability of water quality in water distribution systems

伍悦滨; 田海; 王龙岩

2004-01-01

Water leaving the treatment works is usually of a high quality but its properties change during the transportation stage. Increasing awareness of the quality of the service provided within the water industry today and assessing the reliability of the water quality in a distribution system has become a major significance for decision on system operation based on water quality in distribution networks. Using together a water age model, a chlorine decay model and a model of acceptable maximum water age can assess the reliability of the water quality in a distribution system. First, the nodal water age values in a certain complex distribution system can be calculated by the water age model. Then, the acceptable maximum water age value in the distribution system is obtained based on the chlorine decay model. The nodes at which the water age values are below the maximum value are regarded as reliable nodes. Finally, the reliability index on the percentile weighted by the nodal demands reflects the reliability of the water quality in the distribution system. The approach has been applied in a real water distribution network. The contour plot based on the water age values determines a surface of the reliability of the water quality. At any time, this surface is used to locate high water age but poor reliability areas, which identify parts of the network that may be of poor water quality. As a result, the contour water age provides a valuable aid for a straight insight into the water quality in the distribution system.

11. Potential energy savings with personalized ventilation coupled with passive chilled beams

Lyubenova, Velina S.; Holsøe, Jan W.; Melikov, Arsen Krikor

2011-01-01

distribution used today. The potential of PV for energy saving has been studied little. In this study, the energy saving potential of desk mounted PV in conjunction with either mixing ventilation or a passive chilled beam system is compared to mixing ventilation alone by means of computer simulations. An open...... 20% (and up to 40% when extending the temperature in the room by 2 °C above the upper limit recommended in the standards) compared to mixing ventilation only. When PV was combined with passive chilled beams, the reduction of the supplied air was up to 80%. This ventiltion strategy may lead to energy...

12. Comparative metabolomic analysis reveals a reactive oxygen species-dominated dynamic model underlying chilling environment adaptation and tolerance in rice.

Zhang, Jingyu; Luo, Wei; Zhao, Yuan; Xu, Yunyuan; Song, Shuhui; Chong, Kang

2016-09-01

Cold, a major environmental stress for plants, has been studied intensively for decades. Its response system has been revealed, especially at the transcriptional level. The mechanisms underlying recovery growth and environmental adaptation, however, remain unknown. Taking advantage of a naturally existing system, two subspecies of Asian cultivated rice (Oryza sativa) with significant divergence in chilling tolerance, we analyzed representative japonica and indica varieties, Nipponbare and 93-11, using comparative metabolomic analysis at six time points covering chilling treatment and recovery. In total, 223 known metabolites were detected. During chilling treatment, significant biochemical changes were centered on antioxidation. During recovery, a wide-ranging chilling response was observed. Large-scale amino acid accumulation occurred, consistent with the appearance of chilling injury. At the mid-treatment stage, the accumulation of antioxidation-related compounds appeared earlier in Nipponbare than in 93-11, consistent with the higher reactive oxygen species (ROS) levels in japonica vs indica varieties. A significant contribution of ROS-mediated gene regulation, rather than the C-repeat binding factor/dehydration-responsive-element binding factor (CBF/DREB) regulon, to the more vigorous transcriptional stress response in Nipponbare was revealed by RNA-seq. Accordingly, during recovery, the induction of stress-tolerant-related metabolites was more active in the chilling-tolerant variety Nipponbare. Senescence-related compounds accumulated only in the chilling-sensitive variety 93-11. Our study uncovers the dynamic metabolic models underlying chilling response and recovery, and reveals a ROS-dominated rice adaptation mechanism to low-temperature environments. PMID:27198693

13. Thermal conveyance systems

1978-09-01

The purpose of the evaluation is to characterize modern technology for long-distance, large-diameter, underground steam and high-temperature water (HTW) transport systems and for hot-water and chilled-water systems that distribute thermal energy within communities. Data on the status of existing systems have been compiled and compared with recommended design factors for fluid flow to aid in parameter selection for assessing performance in transporting and distributing thermal energy.

14. Rested and stressed farmed Atlantic cod (Gadus morhua) chilled in ice or slurry and effects on quality.

Digre, Hanne; Erikson, Ulf; Aursand, Ida G; Gallart-Jornet, Lorena; Misimi, Ekrem; Rustad, Turid

2011-01-01

The main objectives of this study were to investigate (1) whether rested harvest of farmed cod was better maintained by chilling with slurry rather than by traditional ice storage, (2) whether chilling with slurry would be a feasible chilling method to assure low core temperatures (≤0 °C) at packing of gutted fish, and (3) the effects of superchilling compared with traditional ice on selected quality parameters of cod during storage. In the experiment, seawater slurry at -2.0 ± 0.3 °C was used. Anesthetized (AQUI-S™), percussion stunned, and stressed cod chilled in slurry were compared. Cod stored on ice were used as reference group. The fish were evaluated at the day of slaughter, and after 7 and 14 d of storage according to handling stress (initial muscle pH, muscle twitches, rigor mortis), core temperatures, quality index method, microbial counts, weight changes, salt and water content, water distribution, pH, adenosine triphosphate-degradation products, K-value, water-holding capacity, fillet color, and texture. Chilling cod in slurry was more rapid than chilling in ice. Prechilling (1 d) of cod in slurry before subsequent ice storage resulted in lower quality 7 d postmortem compared with both ice and continuous slurry storage. The potential advantages of superchilling became more prominent after 14 d with lower microbiological activity, better maintenance of freshness (lower total quality index scores and lower K-values) compared with fish stored on ice. A drawback with slurry-stored fish was that cloudy eyes developed earlier, in addition to weight gain and salt uptake compared to ice-stored fish. Practical Application: Chilling is an essential operation in any fish-processing plant. This manuscript addresses different applications of slurry ice in the processing and storage of Atlantic cod. Cod quality was assessed after 7 and 14 d of iced and superchilled storage. PMID:21535722

15. Automatic Water Sensor Window Opening System

Percher, Michael

2013-12-05

A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

16. The Water System and Water Chain in Dutch Water and Environmental Legislation

Pieter Jong

2007-01-01

This paper deals with Dutch legislation on the water system and water chain. In brief, the water system is the totality of surface water and ground water, which belong together to the natural environment; while the water chain lies in the sphere of public utilities, comprising the pathway from drinking-water supply to wastewater treatment. The water system is regulated in legislation for which the M inistry of Transport, Public Works and Water Management is responsible. The water chain is reg...

17. Directional distribution of chilling winds in Estonia

Saue, Triin

2016-08-01

Wind chill equivalent temperature (WCET) is used to define thermal discomfort in winter months. Directional distributions of winds, which are associated with uncomfortable weather, were composed of three climatologically different Estonian locations: Vilsandi, Kuusiku, and Jõhvi. Cases with wind chill equivalent temperature <-10 °C, which could be classified as "uncomfortable or worse," were investigated. Additional thresholds were used to measure weather risk. The 25th percentile of daily minimum WCET was tested to measure classical prevalent wind directions in Estonia: W, SW, and NW bring warm air in winter from the North Atlantic, while winds from the East-European plain (NE, E, and SE) are associated with cold air. The eastern prevalence was stronger when a lower threshold was used. A directional approach may find several applications, such as building, agricultural, landscape, or settlement planning.

18. Performance of turbine auxiliaries and service systems at Rajasthan Atomic Power Station

Performance of the turbine auxiliaries and service systems at the Rajasthan Atomic Power Station, India are described. Some of the specific problems encountered in connection with the feed water, turbine governing and common services like compressed air, chilled water, water treatment and chlorination systems are outlined. (K.B.)

19. Solar heating, cooling, and hot water systems installed at Richland, Washington

1979-01-01

The project described is part of the U. S. Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid-liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program was provided from the beginning of the program, and resulted in numerous visitors and tour groups.

20. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

In Part 1 of this study, the performance characteristics of a 457kW gas engine-driven heat pump (GHP) chiller have been obtained from a simulation model analysis for both cooling and heating modes and it has been found that the part-load characteristics of the GHP chiller are fairly well. On the back of Part 1, a computer simulation program has been developed for the evaluation of GHP chiller systems to compare with the other types of heat source systems for air-conditioning and hot water supply applications. The simulation program can be used to estimate annual energy consumption, annual CO2 emission, etc. of the systems with the data of monthly and hourly thermal loads on various buildings, outdoor air conditions, and characteristics of various components comprising the systems. By applying this to some cases of medium-scale hotel, office, shop, and hospital buildings, it has been found that the GHP chiller systems have advantages particularly in the cases of hotels and hospitals where a lot of hot water demand exists. It has also been found that the combination of a GHP chiller and a direct-fired absorption water chiller boiler (hot and chilled water generator) appears promising.

1. Analisis Kecepatan Bottom Block Terhadap Struktur Mikro Produk Direct Chill Casting

Soejono Tjitro

2004-01-01

Full Text Available Direct chill casting process is used to produce to ingot. To produce to ingot is influenced such as bottom block speed. The objective of this research is to examine to ingot's microstructures. To use to bottom block speed is 57 mm/min and 67 mm/min. The pouring temperature of melt aluminum alloys is 750oC. Water flow rate is constant. Testing specimen is round shape which diameter and length each 70 mm and 400 mm. Microstructures on longitudinal and transversal round is investigated. Generally, microstructures of product of Direct Casting Process is non-uniform dendritic. Grain shape of 67 mm/minute bottom block rate is larger than 57 mm/minute bottom block rate. Abstract in Bahasa Indonesia : Proses Direct Chill Casting digunakan untuk menghasilkan ingot. Proses pembuatan ingot ini dipengaruhi antara lain kecepatan bottom block. Penelitian ini bertujuan untuk mengamati pengaruh kecepatan bottom block terhadap struktur mikro ingot. Kecepatan bottom block yang digunakan 57 mm/menit dan 67 mm/menit. Temperatur tuang paduan aluminium 750oC. Debit air konstan. Spesimen uji berbentuk round dengan diameter 70 mm dan panjang 400 mm. Struktur mikro yang diamati pada ke arah longitudinal dan transversal round. Struktur mikro yang dihasilkan proses direct chill casting secara umum adalah dendritik yang tidak seragam. Bentuk butir kecepatan bottom block 67 mm/menit lebih besar daripada kecepatan bottom block 57 mm/menit. Kata kunci: direct chill casting, struktur mikro, kecepatan bottom block.

2. Evaluation of Various Packaging Systems on the Activity of Antioxidant Enzyme, and Oxidation and Color Stabilities in Sliced Hanwoo (Korean Cattle) Beef Loin during Chill Storage

Kang, Sun Moon; Kang, Geunho; Seong, Pil-Nam; Park, Beomyoung; Cho, Soohyun

2014-01-01

The effects of various packaging systems, vacuum packaging (VACP), medium oxygen-modified atmosphere packaging (50% O2/20% CO2/30% N2, MOMAP), MOMAP combined with vacuum skin packaging (VSP-MOMAP), high oxygen-MAP (80% O2/20% CO2/0% N2, HOMAP), and HOMAP combined with VSP (VSP-HOMAP), on the activity of antioxidant enzyme, and oxidation and color stabilities in sliced Hanwoo (Korean cattle) beef loin were investigated at 4°C for 14 d. Higher (p

3. Drinking Water Temperature Modelling in Domestic Systems

Moerman, A.; Blokker, M.; Vreeburg, J.; Van der Hoek, J.P.

2014-01-01

Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According

4. Mobile surface water filtration system

Aashish Vatsyayan

2012-09-01

Full Text Available To design a mobile system for surface water filtrationMethodology: the filtration of surface impurities begins with their retraction to concentrated thickness using non ionising surfactants, then isolation using surface tension property and sedimentation of impurities in process chamber using electrocoagulation. Result:following studies done to determine the rate of spreading of crude oil on water a method for retraction of spread crude oil to concentrated volumes is developed involving addition of non -ionising surfactants in contrast to use of dispersants. Electrocoagulation process involves multiple processes taking place to lead to depositionof impurities such as oil, grease, metals. Studies of experiments conducted reveals parameters necessary for design of electrocoagulation process chamber though a holistic approach towards system designing is still required. Propeller theory is used in determining the required design of propeller and the desired thrust, the overall structure will finally contribute in deciding the choice of propeller.

5. Drinking Water Temperature Modelling in Domestic Systems

Moerman, A; Blokker, M.; Vreeburg, J.; J. P. van der Hoek

2014-01-01

Domestic water supply systems are the final stage of the transport process to deliver potable water to the customers’ tap. Under the influence of temperature, residence time and pipe materials the drinking water quality can change while the water passes the domestic drinking water system. According to the Dutch Drinking Water Act the drinking water temperature may not exceed the 25 °C threshold at point-of-use level. This paper provides a mathematical approach to model the heating of drinking...

6. Propulsion Systems in Water Tunnel

1995-01-01

agreement with the field experiment with prototype craft. Measurements are also made for the losses in the intake and the nozzle. The optimization study of the water jet systems is conducted by simulating the change of the nozzle outlet diameter with the variable nozzle arrangement. It is suggested that the nozzle outlet diameter should be decreased as the craft velocity increases to obtain an optimum propulsive efficiency in a wide range of craft velocity.

7. New age water chillers with water as refrigerant

Kühnl-Kinel, J

1998-01-01

Vacuum-process technology producing chilled water needs no refrigerant of the conventional kind, but water from the process itself is used to generate cooling. This eye-catching novelty incorporates many of the considerations about the future of refrigerants: "ozone friendly", no extra demands for safety measures or for skilful operators, no special requirements concerning the installation's components, lower maintenance costs since leakages can be accommodated from the system. Vacuum-process technology may be used not only for production of chilled water but also for Binary Ice - pumpable suspension of minute ice crystals in an aqueous solution. This means that all the advantages related to a latent heat system may become available.

8. Effects of Exogenous Silicon on the Activities of Antioxidant Enzymes and Lipid Peroxidation in Chilling-Stressed Cucumber Leaves

LIU Jiao-jing; LIN Shao-hang; XU Pei-lei; WANG Xiu-juan; BAI Ji-gang

2009-01-01

In order to increase vegetable productivity by improving environmental conditions,this article investigates the effects of exogenous silicon on the activities of major antioxidant enzymes and on lipid peroxidation under chilling stress,and it examines whether silicon-induced chilling tolerance is mediated by an increase in antioxidant activity.Cucumis sativus cv.Jinchun 4 was hydroponically cultivated to the two-leaf stage,at which point seedlings were watered with different concentrations of silicon (0,0.1 and 1 mmol L-1) and separately exposed to normal (25/18℃) or chilling (15/8℃) temperatures for six days under low light (100 umol m-2 s-1).Data were collected from the second leaves on the percentage of withering and the levels of endogenous silicon,malondialdehyde (MDA),hydrogen peroxide (H2O2),superoxide radical (O2·-), superoxide dismutase (SOD,EC 1.15.1.1),glutathione peroxidase (GSH-Px,EC 1.11.1.9),ascorbate peroxidase (APX,EC 1.11.1.11),monodehydroascorbate reductase (MDHAR,EC 1.6.5.4),glutathione reductase (GR,EC 1.6.4.2),reduced glutathione (GSH) and ascorbate (AsA).Compared to normal temperatures,chilling resulted in partially withered leaves and increased MDA content.When 0.1 or 1 mmol L-1 exogenous silicon was combined with chilling.the withering of the cucumber leaves was reduced relative to the original chilling treatment,while the endogenous silicon content was increased,antioxidants such as SOD,GSH-Px,APX,MDHAR,GR,GSH,and AsA were more active,and the levels of H2O2,O2·-,and MDA were lower.We propose that exogenous silicon leads to greater deposition of endogenous silicon and thereby increases antioxidant activities and reduces lipid peroxidation induced by chilling.

9. WATER SPRAY-CHILLING OF BEEF CARCASSES AND MEAT AGEING ON WEIGHT LOSS, COLOR AND LONGISSIMUS LUMBORUM ACCEPTANCE ASPERSÃO DE ÁGUA FRIA NO INÍCIO DO RESFRIAMENTO DE CARCAÇAS BOVINAS E MATURAÇÃO DA CARNE SOBRE O PESO, COR E ACEITAÇÃO DO MÚSCULO LONGISSIMUS LUMBORUM

PEDRO EDUARDO DE FELÍCIO

2007-12-01

Full Text Available

The objective of this experiment was to evaluate the effects of spray-chilling in carcasses weight loss, purge loss, color and appearance of aged striploin (m. Longissi-mus lumborum steaks. Two lots of intact male, nearly 12 month old, grain finished cattle, were slaughtered, being 16 of the Montana composite breed, in the first slaughter, and 24 crossbreds (½ Nelore X ½ Simental in the second one. After bleeding, electrical stimulation, skinning and evisceration, the carcasses submitted to one of the two cooling systems: (1 Without spray-chilling (SA; (2 With spray-chilling (CA. Carcasses were weighted before and after cooling. In the boning room steaks of 2.5 cm thick from the striploin were taken, vacuum packaged, and aged for 7, 14, 30 and 60 days. Samples were then removed from the package, placed in an expanded polystyrene trays covered with a PVC film, and exposed in refrigerated displays for 48 hours. CIE Lab color was measured after 24 hours using a hand colorimeter. A visual analysis of the samples was also done for the attributes of color, overall acceptability, and buying option. The spray-chilling was efficient in reducing the weight loss (P<0.05. Effects (P<0.001 of the spray-chilling and aging time on purge loss were observed. The samples from the CA carcasses had higher (P<0.001 purge loss, which had an increase at 30 or more days of aging in this treatment but not in the SA. No effect (P>0.05 of the spray-chilling treatment and aging time was observed on the color visual analysis.

Key-words:  Beef quality purge loss,  spray-chilling, striploin, vacuum package.

O objetivo desta pesquisa foi avaliar os efeitos da aspersão de água gelada, nas primeiras seis horas de resfriamento, nas perdas de peso por evaporação das carcaças e, também, do tempo de maturação em embalagem a vácuo, nas perdas por exsudação da carne, e na cor e aceita

10. Effects of Chilling Stress on Photosynthetic Rate and Chlorophyll Fluorescence Parameter in Seedlings of Two Rice Cultivars Differing in Cold Tolerance

WANG Guo-li; GUO Zhen-fei

2005-01-01

A cold-tolerant cultivar, Xiangnuo 1, and a cold-sensitive cultivar, IR50, were used to study the influence of chilling on photosynthetic rate and chlorophyll fluorescence parameters in rice seedlings. The photosynthetic rates declined dramatically during chilling, and decreased by 48.7% and 67.5% in Xiangnuo 1 and IR50 seedlings, respectively, after being subjected to chilling treatment for two days. Chlorophyll fluorescence measurements showed that relatively higher qP and qNP in Xiangnuo 1 were maintained to dissipate the redundant excitation energy and protect the reaction centers from chill injury; accordingly, redundant excitation energy accumulated less in the reaction centers, and antenna systems were less injured by chilling in Xiangnuo 1. On the contrary, in IR50, qP and qNP declined rapidly while Ex increased, as the chilling persisted. This result indicated that the reaction centers and antenna systems in IR50 were damaged severely by chilling, which led to the lower photosynthetic rate.

11. Integrated Quality Assurance of Chilled Food Fish at Sea

Frederiksen, Marco Thorup; Olsen, Karsten Bæk; Popescu, Valeriu

1997-01-01

The aim of the IQAS project is to improve the quality of fresh fish (white fish and flat fish) landed by the Community vessels significantly and to increase the proportion of the fish caught used for food purposes, as well as to improve the on-board working conditions. This will be achieved by......, container labelling and data storage system has been developed to specify the quality of the fish to the buyer at the point of sale by reference to the actual time/temperature history of the fish prior to the sale and to the measurements of length and weight...... specifying and developing safe, efficient, mechanized on-board handling systems enabling the catch to be sorted, gutted, bled, characterized for length and weight, prepared quickly and correctly for rapid chilling and to be stored in appropriate, labelled containers at 0°C until sold. A monitoring, measuring...

12. California community water systems inventory dataset, 2010

California Environmental Health Tracking Program — This data set contains information about all Community Water Systems in California. Data are derived from California Office of Drinking Water (ODW) Water Quality...

13. Water management - management actions applied to water resources system

In this paper are presented a general description of water resource systems, a systematisation of the management tasks and the approaches for solution, including a review of methods used for solution of water management tasks and the fundamental postulates in the management. The management of water resources is a synonym for the management actions applied to water resource systems. It is a general term that unites planning and exploitation of the systems. The modern planning assumes separating the water racecourse part from the hydro technical part of the project. The water resource study is concerned with the solution for the resource problem. This means the parameters of the system are determined in parallel with the definition of the water utilisation regime. The hydro-technical part of the project is the design of structures necessary for the water resource solution. (Original)

14. Chilled Ammonia Process for CO2 Capture

Darde, Victor Camille Alfred; Thomsen, Kaj; Well, Willy J.M. van;

2010-01-01

The chilled ammonia process absorbs the CO2 at low temperature (2–10°C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows good...... pressure up to 100bars. The results show that solid phases consisting of ammonium carbonate and bicarbonate are formed in the absorber. The heat requirements in the absorber and in the desorber have been studied. The enthalpy calculations show that a heat requirement for the desorber lower than 2GJ/ton CO2...

15. Chilled ammonia process for CO2 capture

Darde, Victor Camille Alfred; Thomsen, Kaj; van Well, Willy J. M;

2009-01-01

The chilled ammonia process absorbs the CO2 at low temperature (2-10 degrees C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows...... C and pressure up to 100 bars [1]. The results show that solid phases consisting of ammonium carbonate and bicarbonate are formed in the absorber. The energy requirements in the absorber and in the desorber have been studied. The enthalpy calculations show that an energy requirement for the desorber...

16. Carbon and Water Resource Management for Water Distribution Systems

Hendrickson, Thomas Peter

2013-01-01

Water distribution systems (WDS) worldwide face increasing challenges as population growth strains a limited water supply in many areas. In the United States, existing water infrastructure systems require significant investments to refurbish an aging stock of assets. Much of this investment is required in drinking water transmission and distribution, where a substantial amount of material and economic inputs are lost as a result of pipeline leaks. With growing worldwide concern for reducing e...

17. Tetra-combined cogeneration system. Exergy and thermo economic evaluation; Sistema tetra combinado de cogeracao. Avaliacao exergetica e termoeconomica

Arriola, Domingo Wilson Garagatti [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: wgarriol@usp.br; Oliveira Junior, Silvio de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)]. E-mail: olivsilj@ipt.br

2000-07-01

This paper presents the description and the exergy and thermo economic evaluation of a new cogeneration system, called tetra-combined cogeneration system, that generates electricity and chilled water (for air conditioning purposes) and eventually steam. This system is composed of a gas turbine, a heat recovery steam generator, a condensation/extraction steam turbine and a hybrid absorption/steam ejection chiller. The exergy and thermo economic performance (exergy based costs of electricity, steam and chilled water production) of this system is compared with the performances of conventional cogeneration systems, pointing out the advantages and disadvantages of this new system. (author)

18. Tetra-combined cogeneration system. Exergy and thermoeconomic evaluation; Sistema tetra combinado de cogeracao. Avaliacao exergetica e termoeconomica

Arriola, Domingo Wilson Garagatti [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: wgarriol@usp.br; Oliveira Junior, Silvio de [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)]. E-mail: olivsilj@ipt.br

2000-07-01

The description and the exergy and thermo economic evaluation of a new cogeneration system, called tetra-combined cogeneration system, that generates electricity and chilled water (for air conditioning purposes) and eventually steam is presented. This system is composed of a gas turbine, a heat recovery steam generator, a condensation/extraction steam turbine and a hybrid absorption/steam ejection chiller.The exergy and thermo economic performance (exergy based costs of electricity, steam and chilled water production) of this system is compared with the performances of conventional cogeneration systems, pointing out the advantages and disadvantages of this new system. (author)

19. 76 FR 166 - Fresh and Chilled Atlantic Salmon From Norway

2011-01-03

... imports of fresh and chilled Atlantic salmon from Norway (56 FR 14920, 14921). Following five-year reviews... imports of fresh and chilled Atlantic salmon from Norway (71 FR 7512). The Commission is now conducting...), as most recently amended at 74 FR 2847 (January 16, 2009). \\1\\ \\1\\ No response to this request...

20. Simulation Study of Al-1Mn/Al-10Si Circular Clad Ingots Prepared by Direct Chill Casting

Wu, Li; Kang, Huijun; Chen, Zongning; Fu, Ying; Wang, Tongmin

2016-02-01

A modified direct chill casting process based on Novelis FusionTM Technology co-casting process was used recently to prepare Al-1Mn/Al-10Si circular clad ingots. In the current study, a comprehensive simulation model was developed to investigate the direct chill casting process for preparing the Al-1Mn/Al-10Si circular clad ingots, and a parametric study and experimental research of the direct chill casting process was conducted to explore potential success and failure casting conditions. The simulation results revealed the bonding mechanism of the Al-1Mn/Al-10Si interface in the direct chill casting process and identified the effect of certain parameters on casting performance. The results indicated that the effect of casting speed and Al-1Mn casting temperature on the variations of the minimum solid fraction of Al-1Mn at the interface is stronger than that of cooling water flow rate in inner mold, while Al-10Si casting temperature is the weakest of the four casting parameters. The corresponding experimental results verified that Al-1Mn/Al-10Si circular clad ingot with acceptable metallurgical bonding can be successfully prepared by direct chill casting process under the proper casting parameters. The thickness of diffusion zone is about 40 μm, and the fractured position in tensile test was located in the Al-1Mn alloy side which indicated the strength of the interfacial region is higher than that of Al-1Mn alloy.

1. Effects of chilling on protein synthesis in tomato suspension cultures

The effect of chilling on cell growth, cell viability, protein content and protein composition in suspension cultures of L. esculentum and L. hirsutum was investigated. Cell growth for both species was arrested at 2 degrees C but when cultures were transferred to 25 degree C cell growth resumed. There was no difference in viability between control and chilled cultures of L. esculentum, however, L. hirsutum control cultures exhibited larger amounts of Fluorescein Diacetate induced fluorescence than chilled cultures. 35S-methionine incorporation into proteins was 2.5-2 times higher in L. hirsutum than in L. esculentum. Quantitative and qualitative differences, in 35S-methionine labelled proteins, between chilled and control cultures were observed by SDS-PAGE and fluorography. Protein content in chilled cultures decreased over time but then increased when cultures were transferred to 25 degrees C

2. Mechanism of silicon influence on the chill of cast iron

E. Fraś

2007-12-01

Full Text Available In this work an analytical solution of general validity is used to explain mechanism of the silicon influence on the absolute chill tendency (CT and chill (w of cast iron. It is found that CT can be related to nucleation potential of graphite (Nv, growth parameter (μ of eutectic cells, temperature range (ΔTsc and the pre-eutectic austenite volume fraction (fγ. It has been shown that silicon additions: a impede the growth of graphite eutectic cells, μ, b expands the temperature range ΔTsc, c increases the nucleation potential of graphite Nv, d lowers the pre-eutectic austenite volume fraction, fγ. and in consequence the absolute chilling tendency, CT decreases. The minimum wall thicknesses for chilled castings, or chill widths (w in wedge shaped castings is related to CT and as silcon contents increases, the w value also increases.

3. Cod and rainbow trout as freeze-chilled meal elements

Jensen, Louise Helene Søgaard; Nielsen, Jette; Jørgensen, Bo;

2010-01-01

Meal elements' are elements of a meal, e.g. portions of pre-fried meat, sauces, frozen fish or pre-processed vegetables typically prepared industrially. The meal elements are distributed to professional satellite kitchens, where the staff can combine them into complete meals. Freeze-chilling is a...... process consisting of freezing and frozen storage followed by thawing and chilled storage. Combining the two would enable the manufacturer to produce large quantities of frozen meal elements to be released into the chill chain according to demand. We have studied the influence of freeze-chilling on the...... quality attributes of cod and rainbow trout portions. Sensory profiling and chemical analyses were used to determine the changes in quality after slow thawing and subsequent chill storage and to find the high-quality shelf life. RESULTS: Cod had a consistent and high sensory quality during the first 6...

4. Electroporation System for Sterilizing Water

Schlager, Kenneth J.

2005-01-01

A prototype of an electroporation system for sterilizing wastewater or drinking water has been developed. In electroporation, applied electric fields cause transient and/or permanent changes in the porosities of living cells. Electroporation at lower field strengths can be exploited to increase the efficiency of chemical disinfection (as in chlorination). Electroporation at higher field strengths is capable of inactivating and even killing bacteria and other pathogens, without use of chemicals. Hence, electroporation is at least a partial alternative to chlorination. The transient changes that occur in micro-organisms at lower electric-field strengths include significantly increased uptake of ions and molecules. Such increased uptake makes it possible to achieve disinfection at lower doses of chemicals (e.g., chlorine or ozone) than would otherwise be needed. Lower doses translate to lower costs and reduced concentrations of such carcinogenic chemical byproducts as trichloromethane. Higher electric fields cause cell membranes to lose semipermeability and thereby become unable to function as selective osmotic barriers between the cells and the environment. This loss of function is the cause of the cell death at higher electric-field intensities. Experimental evidence does not indicate cell lysis but, rather, combined leaking of cell proteins out of the cells as well as invasion of foreign chemical compounds into the cells. The concept of electroporation is not new: it has been applied in molecular biology and genetic engineering for decades. However, the laboratory-scale electroporators used heretofore have been built around small (400-microliter) cuvettes, partly because the smallness facilitates the generation of electric fields of sufficient magnitude to cause electroporation. Moreover, most laboratory- scale electroporators have been designed for testing static water. In contrast, the treatment cell in the present system is much larger and features a flow

5. Respiratory Response of Dormant Nectarine Floral Buds on Chilling Deficiency

TAN Yue; GAO Dong-sheng; LI Ling; CHEN Xiu-de; XU Ai-hong

2010-01-01

Changes in main biochemical respiratory pathways in dormant nectarine floral buds were studied with nectarine trees (Prunus persica.var,nectariana cv.Shuguang) in order to determine the function of respiration in dormancy release.Oxygen-electrode system and respiratory inhibitors were used to measure total respiratory rates and rates of respiratory pathways.Results showed that chilling deficiency blocked the transition of respiratory mode,and made buds stay in a state of high level pentose phosphate pathway (PPP) and low level tricarboxylic acid cycle (TCA).The decline of PPP and activation of TCA occurred synchronously with the release of dormancy.In addition,the inhibition of PPP stimulated a respiration increase related with TCA.It could be concluded that the function of PPP activation in dormancy release might be limited and PPP declination inducing TCA activation might be part of respiration mode transition mechanism during bud sprouting.

6. Nut crop yield records show that budbreak-based chilling requirements may not reflect yield decline chill thresholds

Pope, Katherine S.; Dose, Volker; Da Silva, David; Brown, Patrick H.; DeJong, Theodore M.

2015-06-01

Warming winters due to climate change may critically affect temperate tree species. Insufficiently cold winters are thought to result in fewer viable flower buds and the subsequent development of fewer fruits or nuts, decreasing the yield of an orchard or fecundity of a species. The best existing approximation for a threshold of sufficient cold accumulation, the "chilling requirement" of a species or variety, has been quantified by manipulating or modeling the conditions that result in dormant bud breaking. However, the physiological processes that affect budbreak are not the same as those that determine yield. This study sought to test whether budbreak-based chilling thresholds can reasonably approximate the thresholds that affect yield, particularly regarding the potential impacts of climate change on temperate tree crop yields. County-wide yield records for almond ( Prunus dulcis), pistachio ( Pistacia vera), and walnut ( Juglans regia) in the Central Valley of California were compared with 50 years of weather records. Bayesian nonparametric function estimation was used to model yield potentials at varying amounts of chill accumulation. In almonds, average yields occurred when chill accumulation was close to the budbreak-based chilling requirement. However, in the other two crops, pistachios and walnuts, the best previous estimate of the budbreak-based chilling requirements was 19-32 % higher than the chilling accumulations associated with average or above average yields. This research indicates that physiological processes beyond requirements for budbreak should be considered when estimating chill accumulation thresholds of yield decline and potential impacts of climate change.

7. Water reactive hydrogen fuel cell power system

Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

2014-01-21

A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

8. Safety Problems of Small Water Supply Systems

Tchórzewska-Cieślak Barbara

2016-07-01

Full Text Available The paper presents issues related to risks associated with the operation of small water supply systems on the background of water consumer safety assessment made on the basis of risk analysis. Definition of water consumer safety loss as a risk associated with the water consumption of poor quality or water lack was proposed. For this purpose, a three-parameter matrix is implemented with the parameters of the probability of a representative accident scenario, the losses of the water consumers and their protection. Risk management, together with the implementation of protective barriers of small water supply system against threats is a fundamental condition for the continued operation of the system.

9. Control methods of commonly used HVAC water systems%常用空调水系统的控制方法

苏夺

2012-01-01

介绍了变流量一次泵系统冷水机组定流量方式、变流量一次泵系统冷水机组变流量方式、二次泵变流量系统、免费冷却系统以及水环热泵系统等常见的空调水系统的特点及自动控制方式.%Presents the characteristics and control methods of CWV chillers and VWV chillers of variable primary flow chilled water system, variable secondary pump water system, free cooling system and water loop heat pump system.

10. Human perception of indoor environment generated by chilled ceiling combined with mixing ventilation or localised chilled beam under cooling mode

Bolashikov, Zhecho Dimitrov; Nygaard, Linette; Uth, Simon C.;

2014-01-01

Experiments with 24 subjects were performed to study and compare the human perception of the indoor environment under summer conditions generated by a chilled ceiling combined with overhead mixing ventilation and localised chilled beam. The experiments were performed in an experimental chamber (4...... simulate direct solar load on the floor (270 W). The total heat load in the room was 56 W/m2. The air temperature around the workstation by the window was kept either 26 or 28 oC. The supplied air by the overhead mixing ventilation and the primary supply air of the localised chilled beam was kept at 13 L....../s and 16 0C. The localised chilled beam was installed over the workstation placed by the simulated window. During the experiment the subjects were delegated control over the primary flow rate supplied by the localised chilled beam. The whole exposure lasted 2 hours with 30 min of acclimatisation before...

11. A versatile energy management system for large integrated cooling systems

Du Plessis, Gideon Edgar; Liebenberg, Leon; Mathews, Edward Henry; Du Plessis, Johan Nicolaas

2013-01-01

Large, energy intensive cooling systems are found on deep level mines to supply chilled service water and cool ventilation air to the mine. The need exists for a simple, real-time energy management tool for large, integrated cooling systems. A versatile energy management system was developed for the large cooling systems of deep mines as a typical example of a generic systems-based energy management tool. The system connects to the SCADA systems of mines and features a hierarchica...

12. Biofilm formation in a hot water system

Bagh, L.K.; Albrechtsen, Hans-Jørgen; Arvin, Erik; Ovesen, K.

2002-01-01

The biofilm formation rate was measured in situ in a hot water system in an apartment building by specially designed sampling equipment, and the net growth of the suspended bacteria was measured by incubation of water samples with the indigeneous bacteria. The biofilm formation rate reached a...... higher level in the hot water distribution system (2.1 d–1 to 2.3 d–1) than in the hot water tank (1.4 d–1 to 2.2 d–1) indicating an important area for surface associated growth. The net growth rate of the suspended bacteria measured in hot water from the top, middle and bottom of the hot water tank, in...... the sludge, or in the water from the distribution system was negligible. This indicated that bacterial growth took place on the inner surfaces in the hot water system and biofilm formation and detachment of bacteria could account for most of the suspended bacteria actually measured in hot water...

13. Combined air and water pollution control system

Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

1990-01-01

A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

14. Lipid hydrolysis and oxidation in farmed gilthead seabream (Sparus aurata) slaughtered and chilled under different icing conditions

Pena, Javier; Álvarez, Victoria; Aubourg, Santiago P.

2010-01-01

This work focuses on the slaughtering and chilled storage (up to 14 days) related to the commercialization of fresh farmed gilthead seabream (Sparus aurata). A slurry ice (SI) system was applied and evaluated in comparison to traditional flake ice (FI). Lipid hydrolysis and oxidation were analyzed and compared to sensory acceptance and trimethylamine (TMA) formation. An important quality loss could be assessed in fish during slaughtering and chilling storage, according to sensory assessment a...

15. Implementing slab solar water heating system

Raveendran, S. K.; Shen, C. Q.

2015-08-01

Water heating contributes a significant part of energy consumption in typical household. One of the most employed technologies today that helps in reducing the energy consumption of water heating would be conventional solar water heating system. However, this system is expensive and less affordable by most family. The main objective of this project is to design and implement an alternative type of solar water heating system that utilize only passive solar energy which is known as slab solar water heating system. Slab solar water heating system is a system that heat up cold water using the solar radiance from the sun. The unique part of this system is that it does not require any form of electricity in order to operate. Solar radiance is converted into heat energy through convection method and cold water will be heated up by using conduction method [1]. The design of this system is governed by the criteria of low implementation cost and energy saving. Selection of material in the construction of a slab solar water heating system is important as it will directly affect the efficiency and performance of the system. A prototype has been built to realize the idea and it had been proven that this system was able to provide sufficient hot water supply for typical household usage at any given time.

16. Sustainable Soil Water Management Systems

Basch, G.; Kassam, A.; Friedrich, T; Santos, F. L.; Gubiani, P.I.; Calegari, A.; J. M. Reichert; dos Santos, D.R.

2012-01-01

Soil quality and its management must be considered as key elements for an effective management of water resources, given that the hydrological cycle and land management are intimately linked (Bossio et al. 2007). Soil degradation has been described by Bossio et al. (2010) as the starting point of a negative cycle of soil-water relationships, creating a positive, self-accelerating feedback loop with important negative impacts on water cycling and water productivity. Therefore, sustainable soil...

17. Reseptioptimointi cook and chill -tuotantotapaan : Case: Kolarin keskuskeittiö

Pääkkölä, Henna

2010-01-01

Opinnäytetyön tarkoituksena oli perehtyä cook and chill -tuotantotapaan ja tutkia sen vaikutuksia reseptioptimointiin. Tavoitteena oli selvittää cook and chill -tuotantotavan etuja ja mahdollisia haasteita ammattikeittiön ruokatuotannossa sekä tuottaa aiheesta tietoa suomenkielisiä lukijoita varten. Opinnäytetyön tavoitteena oli myös optimoida Kolarin keskuskeittiön lounasruokalistan lämpimille aterioille cook and chill -tuotantotapaan soveltuvat ruokaohjeet sekä valmistusprosessikuvaukset. T...

18. ASPECTS OF OPTIMIZATION OF WATER MANAGEMENT SYSTEMS

E. BEILICCI

2013-03-01

Full Text Available Water management system include all activities and works which providing the administration of public domain of water, with local / national interest, and qualitative, quantitative and sustainable management of water resources. Hydrotechnical arrangements, consisting of a set of hydraulic structures, produce both a favorable and unfavorable influences on environment. Their different constructive and exploitation solutions exercise a significantly impact on the environment. Therefore the advantages and disadvantages of each solution must be weighed and determined to materialize one or other of them seriously argued.The optimization of water management systems is needed to meet current and future requirements in the field of rational water management in the context of integrated water resources management. Optimization process of complex water management systems includes several components related to environmental protection, technical side and the business side. This paper summarizes the main aspects and possibilities of optimization of existing water management systems and those that are to be achieved.

19. Water masers in the Kronian system

Pogrebenko, Sergei V.; Gurvits, Leonid I.; Elitzur, Moshe; Cosmovici, Cristiano B.; Avruch, Ian M.; Pluchino, Salvatore; Montebugnoli, Stelio; Salerno, Emma; Maccaferri, Giuseppe; Mujunen, Ari; Ritakari, Jouko; Molera, Guifre; Wagner, Jan; Uunila, Minttu; Cimo, Giuseppe; Schilliro, Francesco; Bartolini, Marco; Fernández, J. A.; Lazzaro, D.; Prialnik, D.; Schulz, R.

2010-01-01

The presence of water has been considered for a long time as a key condition for life in planetary environments. The Cassini mission discovered water vapour in the Kronian system by detecting absorption of

20. Lipid hydrolysis and oxidation in farmed gilt head sea bream (Sparus aurata) slaughtered and chilled under different icing conditions

Aubourg, S. P.; Alvarez, V.; Pena, J.

2010-07-01

This work focuses on the slaughtering and chilled storage (up to 14 days) related to the commercialization of fresh farmed gilt head sea bream (Spa rus aurata). A slurry ice (SI) system was applied and evaluated in comparison to traditional flake ice (FI). Lipid hydrolysis and oxidation were analyzed and compared to sensory acceptance and trimethylamine (TMA) formation. An important quality loss could be assessed in fish during slaughtering and chilling storage, according to sensory assessment and TMA formation. However, lipid damage development was found relatively low, in agreement to the different lipid quality indexes checked (lipid hydrolysis; primary, secondary and tertiary lipid oxidation). No development of rancid odor and no polyunsaturated fatty acid losses were detected. The employment of SI as a slaughtering and chilling strategy was found useful to inhibit quality loss in gilthead seabream resulting in a shelf life increase and a TMA and free fatty acid formation inhibition. (Author)

1. CHANGES OF BACKSCATTERING PARAMETERS DURING CHILLING INJURY IN BANANAS

NORHASHILA HASHIM

2014-06-01

Full Text Available The change in backscattering parameters during the appearance of chilling injury in bananas was investigated. Bananas were stored at a chilling temperature for two days and the degrees of the chilling injuries that appeared were measured before, during and after storage using backscattering imaging and visual assessment. Laser lights at 660 nm and 785 nm wavelengths were shot consecutively onto the samples in a dark room and a camera was used to capture the backscattered lights that appeared on the samples. The captured images were analysed and the changes of intensity against pixel count were plotted into graphs. The plotted graph provides useful information of backscattering parameters such as inflection point (IP, slope after inflection point (SA, and full width at half maximum (FWHM and saturation radius (RSAT. Results of statistical analysis indicated that there were significant changes of these backscattering parameters as chilling injury developed.

2. SOME ASPECTS OF TECHNOLOGICAL PROCESS OF CASTINGS IN COATED CHILL

A. N. Krutilin

2010-01-01

Full Text Available Analysis of technological process of pouring into coated iron chill is presented. It is shown that the process is very sensitive to the change of technological parameters, is rather complex in regulation and control.

3. Integrated solar water-heater and solar water cooler performance during winter time

Solar powered water heater and water cooler is an important contribution for the reduction of fossil fuel consumptions and harmful emissions to the environment. This study aims to harness the available solar potential of Pakistan and provide an option fulfilling the domestic hot and cold water demands during winter and summer seasons respectively. The system was designed for the tap-water temperature of 65 degree C (149 degree F) and the chilled drinking-water temperature of 14 degree C (57 degree F) that are the recommended temperatures by World Health Organization (WHO). The solar water heater serves one of the facilities of the Department of Mechanical Engineering at NED University of Engineering and Technology whereas, the solar water cooler will provide drinking water to approximately 50 people including both faculty and students. A pair of single glazed flat plate solar collector was installed to convert solar radiations to heat. Hot water storage and supply system was carefully designed and fabricated to obtain the designed tap-water temperature. Vapour-absorption refrigeration system was designed to chill drinking water. Intensity of solar radiations falling on the solar collector, water temperatures at the inlet and outlet of the solar collectors and the tap water temperature were measured and analyzed at different hours of the day and at different days of the month. The results show that the installed solar collector system has potential to feed hot water of temperatures ranging from 65 degree C (149 degree F) to 70 Degree C (158 degree F), that is the required hot water temperature to operate a vapour absorption chilled water production system. (author)

4. Extending Shelf Life of Chilled Pork by Combination of Chitosan Coating With Spice Extracts

XIA Xiufang; KONG Baohua

2008-01-01

The effects of spices (cinnamon, rosemary, clove) extracts and chitosan on microbiological growth, drip loss, color, and lipid oxidation of fresh chilled meat stored for 28 days at 4"C were investigated. There were four treatments: control, coated with spices(cimmamon 1.5g·L-1+rosemary 1.5·L-1+colve 1.0 g·L-1),coated with 0.5% chitosan,coated with spices and chitosan.Chitosan coating resulted in significant inhibition of microbial growth (P＜0.05), while the lowest microbial counts were obtained in the samples containing both chitosan and spices, indicating a possible synergistic effect. Chitosan and its combinations with spices also showed the most intense antioxidative effect when compared to the controls (P＜0.05). Meanwhile, chitosan coating could decrease water loss and keep better color of chilled meat. The combined spice extracts and chitosan coating could effectively extend the shelf life of chilled meat.

5. Manipulation of monoubiquitin improves chilling tolerance in transgenic tobacco (Nicotiana tabacum).

Feng, Yanan; Zhang, Meng; Guo, Qifang; Wang, Guokun; Gong, Jiangfeng; Xu, Ying; Wang, Wei

2014-02-01

Ubiquitin (Ub) is a multifunctional protein that mainly functions to tag proteins for selective degradation by the 26S proteasome. We cloned an Ub gene TaUb2 from wheat (Triticum aestivum L.) previously. To study the function of TaUB2 in chilling stress, sense and antisense Ub transgenic tobacco plants (Nicotiana tabacum L.), as well as wild type (WT) and vector control β-glucuronidase (T-GUS) plants, were used. Under stress, leaf wilting in sense plants was significantly less than in controls, but more severe in antisense plants. Meanwhile, the net photosynthetic rate (Pn) and the maximal photochemical efficiency of PSII (Fv/Fm) in sense plants were greater than controls, but lower in antisense plants during chilling stress and recovery. Less wilting in sense plants resulted from improved water status, which may be related to the accumulation of proline and solute sugar. Furthermore, as indicated by electrolyte leakage, membrane damage under stress was less in sense plants and more severe in antisense plants than controls. Consistent with electrolyte leakage, the malondialdehyde (MDA) content was less in sense plants, but more in antisense plants compared to controls. Meanwhile, the less accumulation of reactive oxygen species (ROS) and the greater antioxidant enzyme activity in sense plants implied the improved antioxidant competence by the overexpression of monoubiquitin gene Ta-Ub2 from wheat. We suggest that overexpressing Ub is a useful strategy to promote chilling tolerance. The improvement of ROS scavenging may be an important mechanism underlying the role of Ub in promoting plants tolerant to chilling stress. PMID:24445300

6. ChillFish: A Respiration Game for Children with ADHD

2016-01-01

Breathing exercises can help children with ADHD control their stress level, but it can be hard for a child to sustain attention throughout such an exercise. In this paper, we present ChillFish, a breath-controlled biofeedback game designed in collaboration with ADHD professionals to investigate the possibilities of combining breathing exercises and game design. Based on a pilot study with 16 adults, we found that playing ChillFish had a positive effect, helping the participants to reach a rel...

7. Solar heating, cooling, and hot water systems installed at Richland, Washington. Final report

1979-06-01

Project Sunburst is a demonstration system for solar space heating and cooling and solar hot water heating for a 14,400 square foot office building in Richland, Washington. The project is part of the US Department of Energy's solar demonstration program, and became operational in April 1978. The solar system uses 6,000 square feet of flat-plate liquid collectors in a closed loop to deliver solar energy through a liquid--liquid heat exchanger to the building heat-pump duct work or 9,000-gallon thermal energy storage tank. A 25-ton Arkla solar-driven absorption chiller provides the cooling, in conjunction with a 2,000 gallon chilled water storage tank and reflective ponds on three sides of the building to reject surplus heat. A near-by building is essentially identical except for having conventional heat-pump heating and cooling, and can serve as an experimental control. An on-going public relations program has been provided from the beginning of the program and has resulted in numerous visitors and tour groups.

8. Impact of personalized ventilation combined with chilled ceiling on eye irritation symptoms

Lipczynska, Aleksandra; Marcol, Bartosz; Kaczmarczyk, Jan;

2014-01-01

, elevated air movement toward face and increased radiant cooling may have impact on the eye symptoms. Twenty four human subjects participated in experiments with PV combined with chilled ceiling system (CCPV) and with mixing ventilation (MV) combined with chilled ceiling (CCMV). In the experiments with PV...... at workstations with computers. Exposure included also a higher activity level office work for a period of 25 min outside computer workstations. The influence of the environment on eye symptoms was assessed by subjective votes and objective measurements. Subjects reported on the eye irritation and the intensity...... of eye dryness 6 times throughout each experiment. Eye tear film samples were taken at the beginning and the end of the exposure. The blinking rate was analysed in the beginning and at the end of exposures. The preliminary results of the analyses reveal that the environment subjects were exposed to had...

9. ASPECTS OF OPTIMIZATION OF WATER MANAGEMENT SYSTEMS

E. BEILICCI; R. BEILICCI

2013-01-01

Water management system include all activities and works which providing the administration of public domain of water, with local / national interest, and qualitative, quantitative and sustainable management of water resources. Hydrotechnical arrangements, consisting of a set of hydraulic structures, produce both a favorable and unfavorable influences on environment. Their different constructive and exploitation solutions exercise a significantly impact on the environment. Therefore the advan...

10. The effect of hot-rolling on chill-cast AI-AI3Ni, chill-cast AI-AI2Cu, and Unidirectionally Solidified AI-AI3Ni Eutectic Alloys

Jardine, F. S. J.; Cantor, B.

1986-11-01

The effect of hot-rolling on the mechanical properties and microstructures of chill-cast Al-Al3Ni, chill-cast Al-Al2Cu, and unidirectionally solidified Al-Al3Ni eutectic alloys has been studied. The chill-cast eutectic alloys were produced by casting into preheated mild steel molds placed on copper chills. This system promoted growth along the length of the ingot and not radially from the mold wall. Cellular microstructures resulted with good alignment of Al3Ni fibers or Al2Cu lamellae within the cells and an interfiber/lamellar spacing of ~ 1 /urn. In contrast, the Al-Al3Ni eutectic alloy was also unidirectionally solidified at a growth rate of 3 x 10-1 m s-1 in a conventional horizontal crystal grower. This produced well-aligned Al3Ni fibers with an interfiber spacing of 1.2 ώm. Both the unidirectionally solidified and chill-cast Al-Al3Ni eutectic alloy can be hot-rolled at 773 K to reductions in area of greater than 95 pct. Deformation was achieved by Al3Ni fiber fracturing followed by separation of the broken fiber fragments in the rolling direction. Additionally, for the chill-cast eutectic the cellular microstructure disappeared and the Al3Ni fibers were homogeneously distributed throughout the matrix, after area reductions of 60 to 70 pct. In both cases, the eutectic microstructure was deformed with a constant volume fraction of Al3Ni/unit volume being maintained during rolling. The chill-cast Al-Al2Cu eutectic alloy can be hot-rolled at 773 K to an area reduction of ~50 pct, after the continuous brittle Al2Cu phase within the cells has been ‘broken up’ by coarsening at high temperature. The variations of room temperature tensile properties for the chill-cast and unidirectionally solidified eutectic alloys were measured as a function of reduction of thickness during hot-rolling and the results were compared with predicted strengths from discontinuous fiber reinforcement theory.

11. Water masers in the Saturnian system

Pogrebenko, S. V.; Gurvits, L. I.; Elitzur, M.; Cosmovici, C. B.; Avruch, I. M.; Montebugnoli, S.; Salerno, E.; Pluchino, S.; Maccaferri, G.; Mujunen, A.; Ritakari, J.; Wagner, J.; Molera, G.; Uunila, M.

2009-02-01

Context: The presence of water has long been seen as a key condition for life in planetary environments. The Cassini spacecraft discovered water vapour in the Saturnian system by detecting absorption of UV emission from a background star. Investigating other possible manifestations of water is essential, one of which, provided physical conditions are suitable, is maser emission. Aims: We report detection of water maser emission at 22 GHz associated with several Kronian satellites using Earth-based radio telescopes. Methods: We searched for water maser emission in the Saturnian system in an observing campaign using the Metsähovi and Medicina radio telescopes. Spectral data were Doppler-corrected over orbital phase for the Saturnian satellites, yielding detections of water maser emission associated with the moons Hyperion, Titan, Enceladus, and Atlas. Results: The detection of Saturnian water molecules by remote astronomical observation can be combined with in situ spacecraft measurements to harmonise the physical model of the Saturnian system.

12. Functional systems of a pressurized water reactor

The main topics, discussed in the present paper, are: - Principle design of the reactor coolant system - reactor pressure vessel with internals - containment design - residual heat removal and emergency cooling systems - nuclear component cooling systems - emergency feed water systems - plant electric power supply system. (orig./RW)

13. Kansas Water Quality Action Targeting System (KATS)

Kansas Data Access and Support Center — This system is a revision of the original KATS system developed in 1990 as a tool to aid resource managers target Kansas valuable and vulnerable water resources for...

14. Water system models in virtual environment

Gosar, Leon

2008-01-01

The water system elements can not be illustrated with spatial data with constant geometry. A three-dimensional abstraction, through which spatial data on water bodies can be examined, is composed of dynamic structures with complex geometry and topology. A three-dimensional visualisation of surfaces does not suffice to define the meaning of individual elements of space in which water bodies are included. Maps rules for water management contents have been drawn for decades. Due to the developme...

15. Effects of chilling and ABA on [3H]gibberellin A4 metabolism in somatic embryos of grape (Vitis vinifera L. x V. rupestris Scheele)

Previous work has indicated that changes in gibberellin (GA) metabolism may be involved in chilling-induced release from dormancy in somatic embryos of grape (Vitis vinifera L. x V. rupestris Scheele). The authors have chilled somatic embryos of grape for 2, 4, or 8 weeks, then incubated them with [3H]GA4 (of high specific activity, 4.81 x 1019 becquerel per millimole) for 48 hours at 260C. Chilling had little effect on the total amount of free [3H]GA-like metabolites formed during incubation at 260C, but did change the relative proportions of individual metabolites. The amount of highly water-soluble [3H] metabolites formed at 260C decreased in embryos chilled for 4 or 8 weeks. The concentration of endogeneous GA precursors (e.g., GA12 aldehyde-, kaurene, and kaurenoic acid-like substances) increased in embryos chilled for 4 or 8 weeks. Treatment with abscisic acid (ABA) (known to inhibit germination in grape embryos) concurrent with [3H]GA4 treatment at 260C, reduced the uptake of [3H] GA4 but had little effect on the qualitative spectrum of metabolites. However, in the embryos chilled for 8 weeks and then treated with ABA for 48 hours at 260C, there was a higher concentration of GA precursors than in untreated control embryos. Chilled embryos thus have an enhanced potential for an increase in free GAs through synthesis from increased amounts of GA precursors, or through a reduced ability to form highly water-soluble GA metabolites (i.e., GA conjugates or polyhydroxylated free GAs)

16. Defect and Innovation of Water Rights System

Zhou Bin

2008-01-01

The rare deposition of water resources conflicts with its limitless demand. This determined the existence of the water rights transaction system. The implementation of the water rights transaction system requires clarifying the definition of water re-source fight above all distinctly. At present, it is a kind of common right system arrangement which needs the Chinese government to dispose of water resources. Though a series of management sys-tems guaranteed the government's supply of water resource, it hindered the development of the water market seriously and caused the utilization of water resources to stay in the inefficient or low efficient state for a long time. Thus, we should change the government's leading role in the resource distribution and really rely on the market to carry on the water rights trade and transac-tion. In this way, the water rights could become a kind of private property right relatively, and circulate freely in the market. As a result of this, we should overcome the defects of common right, make its external performance internalized maximally and achieve the optimized water resource disposition and use it more effec-tively.

17. Solar PV energy for water pumping system

The paper provides an introduction into understanding the relative merits, characteristics, including economics, of photovoltically powered water pumping systems. Although more than 10,000 photovoltaic pumping systems are known to be operating through out the world, many potential users do not know how to decide weather feasibility assessment, and system procurement so that the reader can made an informed decision about water pumping systems, especially those powered with photovoltaics. (author)

18. Environmental management of water systems under uncertainty

Baresel, Christian

2007-01-01

Hydrological drainage/river basins constitute highly heterogeneous systems of coupled natural and anthropogenic water and pollutant flows across political, national and international boundaries. These flows need to be appropriately understood, quantified and communicated to stakeholders, in order to appropriately guide environmental water system management. In this thesis, various uncertainties about water and pollutant flows in drainage/river basins and their implications for effective and e...

19. Water balance in fuel cells systems

Fuel cell systems are attractive for their high efficiency (i.e., electric power generated per weight/volume of fuel,) and lower emissions. These systems are being developed for applications that include transportation (propulsion and auxiliary), remote stationary, and portable. Where these systems use on-board fuel processing of available fuels, the fuel processor requires high-purity water. For utility applications, this water may be available on-site, but for most applications, the process water must be recovered from the fuel cell system exhaust gas. For such applications, it is critically important that the fuel cell system be a net water-producing device. A variety of environmental conditions (e.g., ambient temperature, pressure), fuel cell system design, and operating conditions determine whether the fuel cell system is water-producing or water-consuming. This paper will review and discuss the conditions that determine the net-water balance of a generic fuel cell system and identify some options that will help meet the water needs of the fuel processor

20. Solar-powered hot-water system

Collins, E. R.

1979-01-01

Hot-water system requires no external power except solar energy. System is completely self-controlling. It includes solar-powered pump, solar-thermally and hydrothermally operated valves, and storage tank filled with open-celled foam, to maintain thermal stratification in stored water.

1. Fracture analysis of chilled cast iron camshaft

Li Ping; Li Fengjun; Cai Anke; Wei Bokang

2009-01-01

The fracture of a camshaft made of chilled cast iron, installed in a home-made Fukang car, happened only after running over a distance of 6,200 km. The fractured camshaft was received to conduct a series of failure analyses using visual inspection, SEM observation of fracture section, microstructure analysis, chemical composition analysis and hardness examination and so on, while those of CKD camshaft made by Citroen Company in France was also simultaneously analyzed to compare the difference between them. The results showed that the fracture of the camshaft mainly results from white section in macrostructure and Ledeburite in microstructure; the crack in the fractured camshaft should be recognized to initiate at the boundary of coarser needle-like carbide and matrix, and then propagate through the transverse section. At the same time, the casting defects such as dendritic shrinkage, accumulated inclusion and initiated crack and abnormal external force might stimulate the fracture of camshaft as well. Based on failure analysis, some measures have been employed, and as a result, the fracture of home-made camshafts has been effectively prevented.

2. Wash water waste pretreatment system

1977-01-01

Investigations were completed on wash waters based on each candidate personal cleansing agent. Evaluations of coagulants, antifoam agents, and the effect of promising antifoams on the chemical precipitation were included. Based on these evaluations two candidate soaps as well as their companion antifoam agents were selected for further work. Operating parameters included the effect of soap concentration, ferric chloride concentration, duration of mixing, and pore size of depth filters on the degree of soap removal. The effect of pressure on water flow through filter cartridges and on the rate of decline of water flow was also investigated. The culmination of the program was the recommendation of a pretreatment concept based on chemical precipitation followed by pressure filtration.

3. Determination of unidirectional heat transfer coefficient during unsteady-state solidification at metal casting-chill interface

In this study, the interfacial heat transfer coefficient (IHTC) for vertically upward unidirectional solidification of a eutectic Al-Si casting on water cooled copper and steel chills was measured during solidification. A finite difference method (FDM) was used for solution of the inverse heat conduction problem (IHCP). Six computer guided thermocouples were connected with the chill and casting, and the time-temperature data were recorded automatically. The thermocouples were placed, located symmetrically, at 5 mm, 37.5 mm and 75 mm from the interface. As the lateral surfaces are very well heat isolated, the unidirectional solidification process starts vertically upward at the interface surface. The measured time-temperature data files were used by a FDM using an explicit technique. A heat flow computer program has been written to estimate the transient metal-chill IHTC in the IHCP. The experimental and calculated temperatures have shown excellent agreement. The IHTC during vertically upward unidirectional solidification of an Al-Si casting on copper and steel chills have varied between about 19-9.5 kW/m2 K and 6.5-5 kW/m2 K, respectively

4. Determination of unidirectional heat transfer coefficient during unsteady-state solidification at metal casting-chill interface

Sahin, Haci Mehmet [Gazi Ueniversitesi, Teknik Egitim Fakueltesi, Teknikokullar, Ankara 06503 (Turkey)]. E-mail: mesahin@gazi.edu.tr; Kocatepe, Kadir [Gazi Ueniversitesi, Teknik Egitim Fakueltesi, Teknikokullar, Ankara 06503 (Turkey); Kayikci, Ramazan [Sakarya Ueniversitesi, Teknik Egitim Fakueltesi, Sakarya (Turkey); Akar, Neset [Gazi Ueniversitesi, Teknik Egitim Fakueltesi, Teknikokullar, Ankara 06503 (Turkey)

2006-01-15

In this study, the interfacial heat transfer coefficient (IHTC) for vertically upward unidirectional solidification of a eutectic Al-Si casting on water cooled copper and steel chills was measured during solidification. A finite difference method (FDM) was used for solution of the inverse heat conduction problem (IHCP). Six computer guided thermocouples were connected with the chill and casting, and the time-temperature data were recorded automatically. The thermocouples were placed, located symmetrically, at 5 mm, 37.5 mm and 75 mm from the interface. As the lateral surfaces are very well heat isolated, the unidirectional solidification process starts vertically upward at the interface surface. The measured time-temperature data files were used by a FDM using an explicit technique. A heat flow computer program has been written to estimate the transient metal-chill IHTC in the IHCP. The experimental and calculated temperatures have shown excellent agreement. The IHTC during vertically upward unidirectional solidification of an Al-Si casting on copper and steel chills have varied between about 19-9.5 kW/m{sup 2} K and 6.5-5 kW/m{sup 2} K, respectively.

5. Climate Change Impact on Evapotranspiration, Heat Stress and Chill Requirements

Snyder, R. L.; Marras, S.; Spano, D.

2013-12-01

Carbon dioxide concentration scenarios project an increase in CO2 from 372 ppm to between 500 and 950 ppm by the year 2100, and the potential effect on temperature, humidity, and plant responses to environmental factors are complex and concerning. For 2100, mean daily temperature increase projections range from 1.2oC to 6.8oC depending on greenhouse gas emissions. On the bad side, higher temperatures are often associated with increases in evapotranspiration (ET), heat stress, and pest infestations. On the good side, increased temperature is commonly related to less frost damage, faster growth, and higher production in some cases. One misconception is that global warming will increase evapotranspiration and, hence, agricultural water demand. As the oceans and other water bodies warm, evaporation and humidity are likely to increase globally, but higher humidity tends to reduce plant transpiration and hence ET. Higher CO2 concentrations also tend to reduce ET, and, in the end, the increase in ET due to higher temperature is likely to be offset by a decrease in ET due to higher humidity and CO2. With a decrease in daytime evapotranspiration, the canopy temperature is likely to rise relative to the air temperature, and this implies that heat stress could be worse than predicted by increased air temperature. Daily minimum temperatures are generally increasing about twice as fast as maximum temperatures presumably because of the increasing dew point temperatures as more water vapor is added to the atmosphere. This could present a serious problem to meet the chill requirement for fruit and nut crops. Growing seasons, i.e., from the last spring to the first fall frost, are likely to increase, but the crop growth period is likely to shorten due to higher temperature. Thus, spring frost damage is unlikely to change but there should be fewer damaging fall frost events. In this paper, we will present some ideas on the possible impact of climate change on evapotranspiration and

6. Water turbine system and method of operation

Costin, Daniel P.

2010-06-15

A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

7. Preoperational test report, raw water system

This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

8. Preoperational test report, raw water system

Clifton, F.T.

1997-10-29

This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

9. Water turbine system and method of operation

Costin, Daniel P.

2011-05-10

A system for providing electrical power from a current turbine is provided. The system includes a floatation device and a mooring. A water turbine structure is provided having an upper and lower portion wherein the lower portion includes a water fillable chamber. A plurality of cables are used to couple the system where a first cable couples the water turbine to the mooring and a second cable couples the floatation device to the first cable. The system is arranged to allow the turbine structure to be deployed and retrieved for service, repair, maintenance and redeployment.

10. Screening reactor steam/water piping systems for water hammer

A steam/water system possessing a certain combination of thermal, hydraulic and operational states, can, in certain geometries, lead to a steam bubble collapse induced water hammer. These states, operations, and geometries are identified. A procedure that can be used for identifying whether an unbuilt reactor system is prone to water hammer is proposed. For the most common water hammer, steam bubble collapse induced water hammer, six conditions must be met in order for one to occur. These are: (1) the pipe must be almost horizontal; (2) the subcooling must be greater than 20 C; (3) the L/D must be greater than 24; (4) the velocity must be low enough so that the pipe does not run full, i.e., the Froude number must be less than one; (5) there should be void nearby; (6) the pressure must be high enough so that significant damage occurs, that is the pressure should be above 10 atmospheres. Recommendations on how to avoid this kind of water hammer in both the design and the operation of the reactor system are made

11. Reactor water level control system

A BWR type reactor comprises a control valve disposed in a reactor water draining pipelines and undergoing an instruction to control the opening degree, an operation board having a setting device for generating the instruction and a control board for giving the instruction generated by the setting device to the control valve. The instruction is supplied from the setting device to the control valve by way of a control circuit to adjust the opening degree of the control valve thereby controlling the water level in the reactor. In addition, a controller generating an instruction independent of the setting device and a signal transmission channel for signal-transmitting the instruction independent of the control circuit are disposed, to connect the controller electrically to the signal transmission. The signal transmission channel and the control circuit are electrically connected to the control valve switchably with each other. Since instruction can be given to the control valve even at a periodical inspection or modification when the setting device and the control circuit can not be used, the reactor water level can be controlled automatically. Then, operator's working efficiency upon inspection can be improved remarkably. (N.H.)

12. Improvement of turkey breast meat quality and cooked gel functionality using hot-boning, quarter sectioning, crust-freeze-air-chilling and cold-batter-mincing technologies.

Lee, H C; Erasmus, M A; Swanson, J C; Hong, H G; Kang, I

2016-01-01

The effect of rapid carcass chilling on breast meat quality was evaluated using commercial (COMM) and random-bred (RB) turkeys. Immediately after slaughter, 48 turkeys from COMM or RB line were randomly subjected to one of four chilling methods: 1) water-immersion chilling (WIC) of the carcasses at 0°C ice slurry, 2) WIC after temperature abuse (TA) of the carcasses at 40°C for 30 min (TA-WIC), 3) hot-boning, quarter sectioning, and crust-freeze-air-chilling (HB-(1)/4CFAC) of breast fillets at -12°C, and 4) HB-(1)/4CFAC of fillets after TA of carcasses (TA-HB-(1)/4CFAC). The TA increased carcass and fillet temperatures by ∼1.3 and ∼4.1°C, respectively, regardless of turkey line, whereas HB-(1)/4CFAC of fillets required 28 and 33% of carcass chilling time for COMM and RB, respectively. During chilling, COMM breast pH rapidly reduced from 6.04 to 5.82, resulting in a significantly lower pH than RB after chilling (P 0.05). Significantly higher L* value and cooking yield (P 0.05). Higher values of hardness, gumminess, and chewiness were found for RB, no TA, and HB-(1)/4CFAC gels than COMM, TA, and WIC, respectively. These results generally indicated that protein quality and textural properties of turkey fillets were improved, regardless of strains or temperature abuse, using HB-(1)/4CFAC technology. PMID:26527709

13. Inhibition of chloroplast protein synthesis following light chilling of tomato

In the present study we looked at the effects of a high light chill on the pulsed incorporation of 35S methionine into total, stromal, and thylakoid proteins of lightly abraded leaflets of 18-21 day old tomato (Lycopersicon esculentum Mill ca. Floramerica) seedlings. Based on gel fluorographic patterns of marker proteins that are indicative of the net rates of chloroplast and cytoplasmic protein synthesis, there appears to be a nearly complete cessation of chloroplastic protein synthesis. No labeling is observed for either the stromal large subunit of Rubisco or the thylakoid-bound alpha and beta subunits of the coupling factor. One notable exception, however, appears to be the 32 kd, D1 protein. Its net synthetic rate remains high despite the inhibition of other chloroplastically synthesized proteins. The small subunit of Rubicso, LHCP-II, as well as several other proteins of known cytoplasmic origin, were still synthesized, albeit, at lower than control rates. Light chilling of chill-insensitive spinach produced a similar, but less dramatic differential behavior between chloroplastic and cytoplasmic protein synthesis. It appears, in chilling-sensitive plants, that chloroplast protein synthesis exhibits a greater sensitivity to low temperature inhibition than does cytoplasmic protein synthesis and that recovery of chloroplast protein synthesis may play an important role in recovery of photosynthetic activity following chilling

14. Integrated waste and water management system

Murray, R. W.; Sauer, R. L.

1986-01-01

The performance requirements of the NASA Space Station have prompted a reexamination of a previously developed integrated waste and water management system that used distillation and catalytic oxydation to purify waste water, and microbial digestion and incineration for waste solids disposal. This system successfully operated continuously for 206 days, for a 4-man equivalent load of urine, feces, wash water, condensate, and trash. Attention is given to synergisms that could be established with other life support systems, in the cases of thermal integration, design commonality, and novel technologies.

15. Water delivery in the Early Solar System

Dvorak, Rudolf; Eggl, Siegfried; Süli, Áron; Sándor, Zsolt; Galiazzo, Mattia; Pilat-Lohinger, Elke

2015-01-01

As part of the national scientific network 'Pathways to Habitable Worlds' the delivery of water onto terrestrial planets is a key question since water is essential for the development of life as we know it. After summarizing the state of the art we show some first results of the transport of water in the early Solar System for scattered main belt objects. Hereby we investigate the questions whether planetesimals and planetesimal fragments which have gained considerable inclination due to the ...

16. Corrosion evaluation of service water system materials

The availability and reliability of the service water system is critical for safe operation of a nuclear power plant. Degradation of the system piping and components has forced utilities to re-evaluate the corrosion behavior of current and alternative system materials, to support assessments of the remaining service life of the service water system, selection of replacement materials, implementation of corrosion protection methods and corrosion monitoring programs, and identification of maintenance and operational constraints consistent with the materials used. TU Electric and Stone and Webster developed a service water materials evaluation program for the Comanche Peak Steam Electric Station. Because of the length of exposure and the generic interest in this program by the nuclear power industry, EPRI joined TU to co-sponsor the test program. The program was designed to evaluate the corrosion behavior of current system materials and candidate replacement materials and to determine the operational and design changes which could improve the corrosion performance of the system. Although the test program was designed to be representative of service water system materials and environments targeted to conditions at Comanche Peak, these conditions are typical of and relevant to other fresh water cooled nuclear service water systems. Testing was performed in raw water and water treated with biocide under typical service water operating conditions including continuous flow, intermittent flow, and stagnant conditions. The test program evaluated the 300 Series and 6% molybdenum stainless steels, copper-nickel, titanium, carbon steel, and a formed-in-place nonmetallic pipe lining to determine susceptibility to general, crevice, and microbiologically influenced corrosion and pitting attack. This report presents the results of the test program after 4 years of exposure

17. The oxidative stability of chilled and frozen pilchards used as feed for captive southern bluefin tuna

Fitz-Gerald, C.H.; Bremner, Allan

1998-01-01

obvious deterioration within two days. Substantial peroxide values were found and oxidised odours and flavours were clearly evident after 4 days' chilled storage. In frozen storage, oxidation occurred after only one month at a temperature of -20°C. This could be delayed if the fish were glazed with water....... Vacuum packaging in a film of low permeability to oxygen was less effective than glazing and is not recommended due to cost. Pilchards in which oxidation had commenced before freezing continued to oxidise in frozen storage irrespective of whether they were glazed or vacuum packed. It was thus thoroughly...

18. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

Fong, K.F., E-mail: bssquare@cityu.edu.hk [Building Energy and Environmental Technology Research Unit, School of Energy and Environment and Division of Building Science and Technology, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong (China); Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S. [Building Energy and Environmental Technology Research Unit, School of Energy and Environment and Division of Building Science and Technology, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong (China)

2011-08-15

Highlights: {yields} A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. {yields} An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. {yields} Year-round cooling and energy performances were evaluated through dynamic simulation. {yields} Its annual primary energy consumption was lower than conventional system up to 36.5%. {yields} The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual

19. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

Highlights: → A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. → An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. → Year-round cooling and energy performances were evaluated through dynamic simulation. → Its annual primary energy consumption was lower than conventional system up to 36.5%. → The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy

20. Investigation on an Open Cycle Water Chiller based on Desiccant Dehumidification

Pettersen, Sindre

2012-01-01

In this thesis, a novel open cycle desiccant dehumidification system is experimentally studied. The system is installed and operated at Shanghai Jiao Tong University (SJTU) as part of the Green Energy Laboratory (GEL) initiative. The system uses two-stage desiccant dehumidification as well as regenerative evaporative cooling for chilled water production. The purpose of the thesis is to evaluate the system performance during different ambient and operational conditions. The investigated system...

1. Case study: the effects of a variable flow energy saving strategy on a deep-mine cooling system

Du Plessis, Gideon Edgar; Liebenberg, Leon; Mathews, Edward Henry

2013-01-01

Cooling systems consume up to 25% of the total electricity used on deep level mines. These systems are integrated with the water reticulation system to provide chilled service water to the mine as well as cooling for mine ventilation air. Although there is definite potential for demand-side management on these systems, it is critical that the service delivery be maintained so as not to adversely affect productivity. An energy saving strategy based on variable water flow was developed for the ...

2. Residential hot water distribution systems: Roundtablesession

Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

2002-08-01

Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

3. Putative paternal factors controlling chilling tolerance in Korean market-type cucumber (Cucumis sativus L.)

Chilling temperatures (Korean market-type cucumber (Cucumis sativus L.) plants during winter and early spring growing seasons. Inheritance to chilling in U.S. processing cucumber is controlled by cytoplasmic (maternally) and nuclear factors. To understand inherit...

4. Application of Silicon Carbide Chills in Controlling the Solidification Process of Casts Made of IN-713C Nickel Superalloy

D. Szeliga

2012-12-01

Full Text Available The paper presents the method of manufacturing casts made of the IN-713C nickel superalloy using the wax lost investment castingprocess and silicon carbide chills. The authors designed experimental casts, the gating system and selected the chills material. Wax pattern,ceramic shell mould and experimental casts were prepared for the purposes of research. On the basis of the temperature distributionmeasurements, the kinetics of the solidification process was determined in the thickened part of the plate cast. This allowed to establish thequantity of phase transitions which occurred during cast cooling process and the approximate values of liquidus, eutectic, solidus andsolvus temperatures as well as the solidification time and the average value of cast cooling rate. Non-destructive testing and macroscopicanalysis were applied to determine the location and size of shrinkage defects. The authors present the mechanism of solidification andformation of shrinkage defects in casts with and without chills. It was found that the applied chills influence significantly the hot spots andthe remaining part of the cast. Their presence allows to create conditions for solidification of IN-713C nickel superalloy cast withoutshrinkage defects.

5. Surface Waters Information Management System (SWIMS)

Kansas Data Access and Support Center — The Surface Waters Information Management System (SWIMS) has been designed to meet multi-agency hydrologic database needs for Kansas. The SWIMS project was...

6. Environmental Control and Life Support System, Water Recovery System

2000-01-01

The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center (MSFC) is responsible for designing and building the life support systems that will provide the crew of the International Space Station (ISS) a comfortable environment in which to live and work. This is a close-up view of ECLSS Water Recovery System (WRS) racks. The MSFC's ECLSS Group overseas much of the development of the hardware that will allow a constant supply of clean water for four to six crewmembers aboard the ISS. The WRS provides clean water through the reclamation of wastewaters, including water obtained from the Space Shuttle's fuel cells, crewmember urine, used shower, handwash and oral hygiene water cabin humidity condensate, and Extravehicular Activity (EVA) wastes. The WRS is comprised of a Urine Processor Assembly (UPA), and a Water Processor Assembly (WPA). The UPA accepts and processes pretreated crewmember urine to allow it to be processed along with other wastewaters in the WPA, which removes free gas, organic, and nonorganic constituents before the water goes through a series of multifiltration beds for further purification. Product water quality is monitored primarily through conductivity measurements. Unacceptable water is sent back through the WPA for reprocessing. Clean water is sent to a storage tank. The water must meet stringent purity standards before consumption by the crew. The UPA provided by the MSFC and the WRA is provided by the prime contractor, Hamilton Sundstrand Space Systems, International (HSSSI) from Cornecticut.

7. Cold Vacuum Drying facility potable water system design description

This document describes the Cold Vacuum Drying Facility (CVDF) potable water (PW) system. The PW system provides potable water to the CVDF for supply to sinks, water closets, urinals, showers, custodial service sinks, drinking fountains, the decontamination shower, supply water to the non-PW systems, and makeup water for the de-ionized water system

8. Renewable Energy Powered Water Treatment Systems

Richards, Bryce S.; Schäfer, Andrea

2009-01-01

There are many motivations for choosing renewable energy technologies to provide the necessary energy to power water treatment systems for reuse and desalination. These range from the lack of an existing electricity grid, particularly in remote areas, to securing future energy and water supplies, to purely financial incentives. While many renewable energy technologies exist the two dominant ones used for powering desalination systems are PV modules and wind turbines. While wave...

9. Identification of chilling and heat requirements of cherry trees—a statistical approach

Luedeling, Eike; Kunz, Achim; Blanke, Michael M.

2013-09-01

Most trees from temperate climates require the accumulation of winter chill and subsequent heat during their dormant phase to resume growth and initiate flowering in the following spring. Global warming could reduce chill and hence hamper the cultivation of high-chill species such as cherries. Yet determining chilling and heat requirements requires large-scale controlled-forcing experiments, and estimates are thus often unavailable. Where long-term phenology datasets exist, partial least squares (PLS) regression can be used as an alternative, to determine climatic requirements statistically. Bloom dates of cherry cv. `Schneiders späte Knorpelkirsche' trees in Klein-Altendorf, Germany, from 24 growing seasons were correlated with 11-day running means of daily mean temperature. Based on the output of the PLS regression, five candidate chilling periods ranging in length from 17 to 102 days, and one forcing phase of 66 days were delineated. Among three common chill models used to quantify chill, the Dynamic Model showed the lowest variation in chill, indicating that it may be more accurate than the Utah and Chilling Hours Models. Based on the longest candidate chilling phase with the earliest starting date, cv. `Schneiders späte Knorpelkirsche' cherries at Bonn exhibited a chilling requirement of 68.6 ± 5.7 chill portions (or 1,375 ± 178 chilling hours or 1,410 ± 238 Utah chill units) and a heat requirement of 3,473 ± 1,236 growing degree hours. Closer investigation of the distinct chilling phases detected by PLS regression could contribute to our understanding of dormancy processes and thus help fruit and nut growers identify suitable tree cultivars for a future in which static climatic conditions can no longer be assumed. All procedures used in this study were bundled in an R package (`chillR') and are provided as Supplementary materials. The procedure was also applied to leaf emergence dates of walnut (cv. `Payne') at Davis, California.

10. Study on hydrodynamics associated with quality of water in water distribution system

李欣; 顾大明; 赵洪宾; 袁一星

2002-01-01

The quality of water in water distribution system may vary with both location and time. Water quality models were used to predict spatial and temporal variation of water quality throughout the water system. Before analyzing the variations of water quality, it is necessary to determine the hydrodynamics in water distribution system. Analytical methods for the flow path from water sources to the observed point and water age of every observed node are proposed. This paper makes a further study on water supply route of multi-sources water supply network system. These studies have been applied to an actual water distribution system.

11. Amelioration of Chilling Injuries in Watermelon Seedlings by Abscisic Acid

Korkmaz, Ahmet

2002-01-01

A greenhouse study, designed in a randomized complete block design with five replications, was carried out at Clemson University, Clemson, SC, USA, in the spring of 1997. The objective of the study was to investigate whether abscisic acid (ABA) would mitigate chilling damages in the watermelon, a chilling-sensitive plant. 'Crimson Sweet' [Citrullus lanatus (Thumb) Matsum. & Nakai.] watermelon seedlings were grown in a greenhouse with a temperature regime of 25ºC (day) and 20ºC...

12. ChillFish: A Respiration Game for Children with ADHD

2016-01-01

Breathing exercises can help children with ADHD control their stress level, but it can be hard for a child to sustain attention throughout such an exercise. In this paper, we present ChillFish, a breath-controlled biofeedback game designed in collaboration with ADHD professionals to investigate the...... possibilities of combining breathing exercises and game design. Based on a pilot study with 16 adults, we found that playing ChillFish had a positive effect, helping the participants to reach a relaxed state similar to the one offered by traditional breathing exercises. Further, we analyze the opportunities and...

13. Quality effect of freeze-chilling in cod and rainbow trout

Jensen, Louise Helene Søgaard; Nielsen, Jette; Jørgensen, Bo;

-chilling on the quality of raw fish portions as an example of a meal element. The thawing of frozen products during transport was mimicked by placing cardboard boxes with frozen, vacuum packaged portions of fish in a chilling facility and allowing them to thaw slowly. To mimic possible subsequent chill storage...

14. Upgrades to the ISS Water Recovery System

Kayatin, Matthew J.; Carter, Donald L.; Schunk, Richard G.; Pruitt, Jennifer M.

2016-01-01

The International Space Station Water Recovery System (WRS) is comprised of the Water Processor Assembly (WPA) and the Urine Processor Assembly (UPA). The WRS produces potable water from a combination of crew urine (first processed through the UPA), crew latent, and Sabatier product water. Though the WRS has performed well since operations began in November 2008, several modifications have been identified to improve the overall system performance. These modifications can reduce resupply and improve overall system reliability, which is beneficial for the ongoing ISS mission as well as for future NASA manned missions. The following paper details efforts to reduce the resupply mass of the WPA Multifiltration Bed, develop improved catalyst for the WPA Catalytic Reactor, evaluate optimum operation of UPA through parametric testing, and improve reliability of the UPA fluids pump and Distillation Assembly.

15. Effect of Pre-Chilling Duration and Kinetin on Germination of Capers (Capparis Spinosa Var. Spinosa And Capparis Ovata Var. Canescens) Seeds

KAYA, Talip; SÖYLER, Durmuş Ali; ÖZCAN, Sabahattin

2014-01-01

This study was conducted to determine theeffects of pre-chilling and kinetin treatment on germination of Capparis spinosa var. spinosa and Capparis ovata var. canescens seeds. Seeds were kept 1, 2, 4, 6, 8 and 12 weeks for pre-chilling at +4 ºC. After the prechilling, Seeds were treated with distilled water, 100, 200, 400 and 800 ppm doses of kinetin and 2000 ppm dose of GA3 which was used as positive control for 24 hours at 22 ºC. The research was conducted with 4 repetitionin in fitler pape...

16. Hanford 200 area (sanitary) waste water system

The US Department of Energy (DOE) Hanford Site is located in southeastern Washington State. The Hanford Site is approximately 1,450 sq. km (560 sq. mi) of semiarid land set aside for activities of the DOE. The reactor fuel processing and waste management facilities are located in the 200 Areas. Over the last 50 years at Hanford dicard of hazardous and sanitary waste water has resulted in billions of liters of waste water discharged to the ground. As part of the TPA, discharges of hazardous waste water to the ground and waters of Washington State are to be eliminated in 1995. Currently sanitary waste water from the 200 Area Plateau is handled with on-site septic tank and subsurface disposal systems, many of which were constructed in the 1940s and most do not meet current standards. Features unique to the proposed new sanitary waste water handling systems include: (1) cost effective operation of the treatment system as evaporative lagoons with state-of-the-art liner systems, and (2) routing collection lines to avoid historic contamination zones. The paper focuses on the challenges met in planning and designing the collection system

17. Amoxicillin in a biological water recovery system

Pharmaceuticals are new contaminants of concern in the aquatic environment, having been identified in groundwater, surface water, and residential tap water. Possible sources of pharmaceuticals include household wastewaters, runoff from feedlots, or waste discharges from pharmaceutical manufacturing plants. When surface water or groundwater supplies impacted by pharmaceuticals are used in drinking water production, the contaminants may reduce drinking water quality. Many pharmaceuticals, such as amoxicillin, pass through the body largely unmetabolized and directly enter wastewater collection systems. Pharmaceuticals are designed to persist in the body long enough to have the desired therapeutic effect. Therefore, they may also have the ability to persist in the environment (Seiler et al, 1999). The purpose of this work is to determine the overall transformation potential of a candidate pharmaceutical in wastewater treatment with specific emphasis on recycle systems. Amoxicillin is the selected pharmaceutical agent, an orally absorbed broad-spectrum antibiotic with a variety of clinical uses including ear, nose, and throat infections and lower respiratory tract infections. Experiments were conducted using an anaerobic reactor (with NO3- and NO2- as the e- acceptors) followed by a two-phase nitrifying tubular reactor. Influent composed of water, urine and surfactant was spiked with amoxicillin and fed into the wastewater recycle system. The concentration of amoxicillin in the feed and effluent was quantified using an HPLC. Results from this study include potential for long-term buildup in recycled systems, accumulation of breakdown products and possible transfer of antibiotic resistance to microorganisms in the system effluent. In addition, the results of this study may provide information on contamination potential for communities that are considering supplementing drinking water supplies with recovered wastewater or for entities considering a closed loop wastewater

18. Amoxicillin in a biological water recovery system

Morse, A.; Jackson, A.; Rainwater, K. [Texas Tech Univ., Water Resources Center, Lubbock, Texas (United States); Pickering, K. [Johnson Space Center, NASA, Houston, Texas (United States)

2002-06-15

Pharmaceuticals are new contaminants of concern in the aquatic environment, having been identified in groundwater, surface water, and residential tap water. Possible sources of pharmaceuticals include household wastewaters, runoff from feedlots, or waste discharges from pharmaceutical manufacturing plants. When surface water or groundwater supplies impacted by pharmaceuticals are used in drinking water production, the contaminants may reduce drinking water quality. Many pharmaceuticals, such as amoxicillin, pass through the body largely unmetabolized and directly enter wastewater collection systems. Pharmaceuticals are designed to persist in the body long enough to have the desired therapeutic effect. Therefore, they may also have the ability to persist in the environment (Seiler et al, 1999). The purpose of this work is to determine the overall transformation potential of a candidate pharmaceutical in wastewater treatment with specific emphasis on recycle systems. Amoxicillin is the selected pharmaceutical agent, an orally absorbed broad-spectrum antibiotic with a variety of clinical uses including ear, nose, and throat infections and lower respiratory tract infections. Experiments were conducted using an anaerobic reactor (with NO{sub 3}{sup -} and NO{sub 2}{sup -} as the e{sup -} acceptors) followed by a two-phase nitrifying tubular reactor. Influent composed of water, urine and surfactant was spiked with amoxicillin and fed into the wastewater recycle system. The concentration of amoxicillin in the feed and effluent was quantified using an HPLC. Results from this study include potential for long-term buildup in recycled systems, accumulation of breakdown products and possible transfer of antibiotic resistance to microorganisms in the system effluent. In addition, the results of this study may provide information on contamination potential for communities that are considering supplementing drinking water supplies with recovered wastewater or for entities

19. The integration of water loop heat pump and building structural thermal storage systems

Marseille, T.J.; Schliesing, J.S.

1991-10-01

Many commercial buildings need heat in one part and, at the same time, cooling in another part. Even more common is the need for heating during one part of the day and cooling during another in the same spaces. If that energy could be shifted or stored for later use, significant energy might be saved. If a building's heating and cooling subsystems could be integrated with the building's structural mass and used to collect, store, and deliver energy, the energy might be save cost-effectively. To explore this opportunity, researchers at the Pacific Northwest Laboratory (PNL) examined the thermal interactions between the heating, ventilating, and air-conditioning (HVAC) system and the structure of a commercial building. Computer models were developed to simulate the interactions in an existing building located in Seattle, Washington, to determine how these building subsystems could be integrated to improve energy efficiency. The HVAC subsystems in the existing building were modeled. These subsystems consist of decentralized water-source heat pumps (WSHP) in a closed water loop, connected to cooling towers for heat rejection during cooling mode and boilers to augment heating. An initial base case'' computer model of the Seattle building, as-built, was developed. Metered data available for the building were used to calibrate this model to ensure that the analysis would provide information that closely reflected the operation of a real building. The HVAC system and building structure were integrated in the model using the concrete floor slabs as thermal storage media. The slabs may be actively charged during off-peak periods with the chilled water in the loop and then either actively or passively discharged into the conditioned space during peak periods. 21 refs., 37 figs., 17 tabs.

20. Inhibition of photosynthesis by chilling in moderate light: a comparison of plants sensitive and insensitive to chilling.

Hodgson, R A; Raison, J K

1989-12-01

Photosynthetic activity, in leaf slices and isolated thylakoids, was examined at 25° C after preincubation of the slices at either 25° C or 4° C at a moderate photon flux density (PFD) of 450 μmol·m(-2)·s(-1), or at 4° C in the dark. The plants used wereSpinacia oleracea L.,Cucumis sativus L. andNerium oleander L. which was acclimated to growth at 20° C or 45° C. The plants were grown at a PFD of 550 μmol·m(-2)·s(-1). Photosynthesis, measured as CO2-dependent O2 evolution, was not inhibited in leaf slices from any plant after preincubation at 25° C at a moderate PFD or at 4° C in the dark. However, exposure to 4° C at a moderate PFD induced an inhibition of CO2-dependent O2 evolution within 1 h inC. sativus, a chilling-sensitive plant, and in 45° C-grownN. oleander. The inhibition in these plants after 5 h reached 80% and 40%, respectively, and was independent of the CO2 concentration but was reduced at O2 concentrations of less than 3%. Methyl-viologen-dependent O2 exchange in leaf slices from these plants was not inhibited. There was no photoxidation of chlorophyll, in isolated thylakoids, or any inhibition of electron transport at photosystem (PS)II, PSI or through both photosystems which would account for the inhibition of photosynthesis. The conditions which inhibit photosynthesis in chilling-sensitive plants do not cause inhibition inS. oleracea, a chilling-insensitive plant, or in 20° C-grownN. oleander. The CO2-dependent photosynthesis, measured at 5° C, was reduced to about 3% of that recorded at 25° C in chilling-sensitive plants but only to about 30% in the chilling-insensitive plants. Methyl-viologen-dependent O2 exchange, measured at 5° C, was greater than 25% of the activity at 25° C in all the plants. The results indicate that the mechanism of the chilling-induced inhibition of photosynthesis does not involve damage to PSII. That inhibition of photosynthesis is observed only in the chilling-sensitive plants indicates it is

1. Remote decontamination system for contaminated water tanks

Based on the experience of decontamination works and achievements of construction with remote- handling/unmanned technologies, Obayashi Corporation has developed technologies for the decontamination of contaminated water tanks at the Fukushima Daiichi NPS as an entity to implement with subsidies the 'Validation of technologies for contaminated water management' project in the FY2013 Supplementary Budget. Our remote decontamination system requires no manned operation inside tanks during decontamination work and contributes to exposure reduction. The decontamination performance and system practicality have been confirmed by full-scale demonstration test. This report describes the technology outline of present system and its demonstration test results. (author)

2. Space Station Freedom regenerative water recovery system configuration selection

Reysa, R.; Edwards, J.

1991-01-01

The Space Station Freedom (SSF) must recover water from various waste water sources to reduce 90 day water resupply demands for a four/eight person crew. The water recovery system options considered are summarized together with system configuration merits and demerits, resource advantages and disadvantages, and water quality considerations used to select the SSF water recovery system.

3. TORR system polishes oily water clean

The TORR (total oil recovery and remediation) system utilizes a specially patented polymer material, similar to styrofoam, which is used to get rid of non-soluble hydrocarbons from water. An application in Fort Smith, Northwest Territories, is described where it was used to recover diesel oil, which had been seeping into the groundwater over a period of 20 years. About 100,000 gallons of heating oil had leached into the water; TORR removed the non-soluble hydrocarbons, while another piece of equipment removed the soluble portions. After treatment the water tested consistently at non-detectable levels and was clean enough to be discharged into the town's sewer system. The system is considered ideal for oil spills clean-up underground, onshore, or the open sea, but it also has many potentially useful applications in industrial and oilfield applications. Water used in steam injection and water floods to produce heavy oil and SAGD applications are some of the obvious ones that come to mind. Cleaning up the huge tailings ponds at the mining and processing of oil sands, and removing diluent from water that is used to thin out bitumen in pipelines so that it can be transported to processing plants, are other promising areas of application. Several field trials to test the effectiveness of the system in these type of applications are scheduled for the summer and fall of 2002

4. Radon in water aeration system operational performance

North East Environmental Products, Inc. is a manufacturer of residential scale aeration systems for removal of radon and volatile organic chemicals from private water supplies. This paper is a review of the operational history of residential scale point of entry (POE) radon aeration systems. Emphasis is placed on the difficulties and solutions encountered in actual installations caused by both mechanical difficulties and water quality parameters. A summary of radon reduction efficiency is presented for wells with radon concentrations from 21,000 to 2,600,000 pCi/L. A discussion of customer concerns and attitudes is presented along with other areas for further technical improvement. Training techniques for dealers and installers are also discussed. An update of the current status of the radon in water industry includes current sales volumes as compared to the potential market and an update on the radon in water MCL standard setting process from an industry perspective

5. Biologically-Inspired Water Propulsion System

Andrzej Sioma

2013-01-01

Most propulsion systems of vehicles travelling in the aquatic environment are equipped with propellers.Observations of nature,however,show that the absolute majority of organisms travel through water using wave motion,paddling or using water jet power.Inspired by these observations of nature,an innovative propulsion system working in aquatic environment was developed.This paper presents the design of the water propulsion system.Particular attention was paid to the use of paddling techniques and water jet power.A group of organisms that use those mechanisms to travel through water was selected and analysed.The results of research were used in the design of a propulsion system modelled simultaneously on two methods of movement in the aquatic environment.A method for modelling a propulsion system using a combination of the two solutions and the result were described.A conceptual design and a prototype constructed based on the solution were presented.With respect to the solution developed,studies and analyses of selected parameters of the prototype were described.

6. Alternative Electrochemical Systems for Ozonation of Water

Andrews, Craig C.; Murphy, Oliver J.

2003-01-01

Electrochemical systems that are especially well suited for the small-scale generation of ozone and ozonated water for local use have been invented. These systems can operate with very little maintenance, and the only inputs needed during operation are electric power and water. Ozonated water produced by these systems can be used in diverse industrial applications: A few examples include sterilization in the brewing industry, general disinfection, and treatment of sewage and recycled water. The basic principle of operation admits of several alternative system configurations. The heart of the system is a stack of electrolytic cells, each containing a proton-exchange membrane (which serves as a solid electrolyte) sandwiched between a catalytic anode and a catalytic cathode. Preferably, the proton-exchange membrane is made of a perfluorinated sulfonic acid polymer. During electrolysis, a mixture of O2 and O3 gases is generated at the anode and H2 is generated at the cathode. Some of the O3 generated at the anode becomes dissolved in the water. The proportion of O3 in the O2/O3 mixture can be maximized by the selection of suitable electrode materials and the use of a high overpotential. Although the proton-exchange membrane conducts protons, it does not conduct electrons. It is also impermeable by gases; consequently, it maintains separation between the O2/O3 mixture evolved at the anode and the H2 evolved at the cathode.

7. Build-up the new essential service water system (TVD)

n this paper there is description of the service water system reconstruction goals, description of the service water system before reconstruction, and description of the essential service water system in NPP V-1 Jaslovske Bohunice after reconstruction. (author)

8. Water injected fuel cell system compressor

Siepierski, James S.; Moore, Barbara S.; Hoch, Martin Monroe

2001-01-01

A fuel cell system including a dry compressor for pressurizing air supplied to the cathode side of the fuel cell. An injector sprays a controlled amount of water on to the compressor's rotor(s) to improve the energy efficiency of the compressor. The amount of water sprayed out the rotor(s) is controlled relative to the mass flow rate of air inputted to the compressor.

9. Design software for solar water heating systems

Zheng Ruicheng; Li Zhong; He Tao; Zhange Xinyu; Feng Airong; Sun Zhifeng [Inst. of Air Conditioning, China Academy of Building Research, BJ (China)

2008-07-01

It is introduced that the ''Design Software for Solar Water Heating Systems'' which is the first design software suitable to China's weather condition and product's performance in the paper. The software developed by IAC, CABR independently and has CABR own knowledge property right. There are three databases and four function modules in the software and the capacity of the software is both of system design and system effect analysis. (orig.)

10. 77 FR 10772 - Fresh and Chilled Atlantic Salmon From Norway

2012-02-23

..., 2011 (76 FR 166) and determined on April 8, 2011 that it would conduct full reviews (76 FR 22422, April..., 2011 (76 FR 38698). The hearing was held in Washington, DC, on November 30, 2011, and all persons who... COMMISSION Fresh and Chilled Atlantic Salmon From Norway Determination On the basis of the record...

11. Chilling the Messenger: The Impact of Libel on Community Newspapers.

Hansen, Elizabeth K.; Moore, Roy L.

A study used a new attitude and behavioral scale for measuring the chilling effect--an undercurrent of fear with respect to publishing decisions--and to determine the impact, if any, of threatened or actual libel suits on community newspapers. The editors and/or publishers of all 167 newspapers in Kentucky with a circulation of less than 50,000…

12. Development of a Microbial Time/Temperature Indicator Prototype for Monitoring the Microbiological Quality of Chilled Foods▿

Vaikousi, Hariklia; Biliaderis, Costas G.; Koutsoumanis, Konstantinos P.

2008-01-01

A time/temperature indicator (TTI) system based on the growth and metabolic activity of a Lactobacillus sakei strain was developed for monitoring food quality throughout the chilled-food chain. In the designed system, an irreversible color change of a chemical chromatic indicator (from red to yellow) progressively occurs due to the pH decline that results from microbial growth and metabolism in a selected medium. The relation of the TTI response (color change) to the growth and metabolic acti...

13. Solar heating and cooling system for an office building at Reedy Creek Utilities

1978-01-01

The solar energy system installed in a two story office building at a utilities company, which provides utility service to Walt Disney World, is described. The solar energy system application is 100 percent heating, 80 percent cooling, and 100 percent hot water. The storage medium is water with a capacity of 10,000 gallons hot and 10,000 gallons chilled water. Performance to date has equaled or exceeded design criteria.

14. Characteristics of Trihalomethanes in Water Distribution System

ZHAO Ming; ZHANG Jie; ZHANG Xin-yu; ZHENG Shuang-ying; LI Xin

2008-01-01

To investigate the characteristics of disinfection by-products (DBPs) in an actual water distribution system using the raw water with high bromide ion concentration, the composition and concentration of trihalomethanes (THMs) formed by chlorination of the water in the presence of bromide ion were measured in a city water distribution system during one year. The results show that brominated THMs contributed a great part (83%89%) to the index for additive toxicity (ATI) and resulted in the ATI of most of the samples exceeding WHO guideline standard for total THMs (TTHMs), especially during the summer (rainy season). This indicates that the chlorination of water in the presence of bromide ion leaded to high ratios of brominated THMs to TTHMs. However, a visible increase in the concentration of THMs with increasing residence time in the distribution system was not observed. Additionally, based on alternatives analysis, packed tower aeration method is proposed to reduce THMs level of the finished water leaving the treatment plant.

15. Modelagem do sistema de resfriamento por imersão de carcaças de frangos utilizando redes neurais artificiais = Modeling of the poultry carcass immersion chilling system using artificial neural networks

Túlio Klassen

2009-04-01

water cooling time and temperature, and as output variable the temperature of the chicken when exiting the chiller.The results obtained showed that the network with 8 neurons in the input layer and 24 in the hidden layer best represented the investigated system.

16. Effect of Heat Shock Treatment and Aloe Vera Coating to Chilling Injury Symptom in Tomato (Lycopersicon asculantum Mill.

Sutrisno

2012-04-01

Full Text Available This research was undertaken to determine the effect of length in heat shock and edible coating as pre-storage treatment to Chilling Injury (CI symptom reflected by ion leakage induced and quality properties in tomato (Lycopersicon asculantum Mill.. Heat Shock Treatment (HST was conducted at three different levels of length, which were, 20; 40 and 60 min. Edible coating was conducted using aloe vera gel. The result showed that HST and Aloe Vera Coating (AVC were more effective to reduce CI symptom at lower chilling storage. Prolong exposure to heated water may delay climacteric peak. The length of heat shock, AVC treatment and low temperature storage significantly affected the tomato quality parameter but not significantly different for each treatment except weight loss. HST for 20 min at ambient temperature was significantly different to other treatment.

17. Adapting water accounting for integrated water resource management. The Júcar Water Resource System (Spain)

Momblanch, Andrea; Andreu, Joaquín; Paredes-Arquiola, Javier; Solera, Abel; Pedro-Monzonís, María

2014-11-01

An increase in water demands, exacerbated by climate change and the tightening of environmental requirements, leads to a reduction in available water resources for economic uses. This situation poses challenges for water resource planning and management. Water accounting has emerged as an appropriate tool to improve transparency and control in water management. There are multiple water accounting approaches, but they generally involve a very exhaustive list of accounted concepts. According to our findings in this research, one of the best water accounting methodologies is the Australian Water Accounting Standard. However, its implementation for integrated water resource planning and management purposes calls into questioning the amount of information and level of detail necessary for the users of water accounts. In this paper, we present a different method of applying the Australian Water Accounting Standard in relation to water resource management, which improves its utility. In order to compare the original approach and that proposed here, we present and discuss an application to the Júcar Water Resource System, in eastern Spain.

18. Chemistry management of generator stator water system

Chemistry management of water cooled turbine generators with hollow copper conductors is very essential to avoid possible re-deposition of released copper oxides on stator windings, which otherwise may cause flow restrictions by partial plugging of copper hollow conductors and impair cooling. The phenomenon which is of more concern is not strictly of corrosion failure, but the consequences caused by the re-deposition of copper oxides that were formed by reaction of copper with oxygen. There were also some Operating experiences (OE) related to Copper oxide fouling in the system resulting shut down/off-line of plants. In Madras Atomic Power Station (MAPS), the turbine generator stator windings are of Copper material and cooled by demineralized water passing through the hollow conductors. The heated water from the stator is cooled by process water. A part of the stator water is continuously passed through a mixed bed polisher to remove any soluble ionic contaminants to maintain the purity of system water and also maintain copper content as low as possible to avoid possible re-deposition of released copper oxides on stator windings. The chemistry regime employed is neutral water with dissolved oxygen content between 1000-2000 ppb. Chemistry management of Stator water system was reviewed to know its effectiveness. Detailed chemical analyses of the spent resins from the polishing unit were carried out in various campaigns which indicated only part exhaustion of the polishing unit resins and reasonably low levels of copper entrapment in the resins, thus highlighting the effectiveness of the in-practice chemistry regime. (author)

19. Wash water waste pretreatment system study

1976-01-01

The use of real wash water had no adverse effect on soap removal when an Olive Leaf soap based system was used; 96 percent of the soap was removed using ferric chloride. Numerous chemical agents were evaluated as antifoams for synthetic wash water. Wash water surfactants used included Olive Leaf Soap, Ivory Soap, Neutrogena and Neutrogena Rain Bath Gel, Alipal CO-436, Aerosol 18, Miranol JEM, Palmeto, and Aerosol MA-80. For each type of soapy wash water evaluated, at least one antifoam capable of causing nonpersistent foam was identified. In general, the silicones and the heavy metal ions (i.e., ferric, aluminum, etc.) were the most effective antifoams. Required dosage was in the range of 50 to 200 ppm.

20. Modelling water uptake efficiency of root systems

Leitner, Daniel; Tron, Stefania; Schröder, Natalie; Bodner, Gernot; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry; Schnepf, Andrea

2016-04-01

Water uptake is crucial for plant productivity. Trait based breeding for more water efficient crops will enable a sustainable agricultural management under specific pedoclimatic conditions, and can increase drought resistance of plants. Mathematical modelling can be used to find suitable root system traits for better water uptake efficiency defined as amount of water taken up per unit of root biomass. This approach requires large simulation times and large number of simulation runs, since we test different root systems under different pedoclimatic conditions. In this work, we model water movement by the 1-dimensional Richards equation with the soil hydraulic properties described according to the van Genuchten model. Climatic conditions serve as the upper boundary condition. The root system grows during the simulation period and water uptake is calculated via a sink term (after Tron et al. 2015). The goal of this work is to compare different free software tools based on different numerical schemes to solve the model. We compare implementations using DUMUX (based on finite volumes), Hydrus 1D (based on finite elements), and a Matlab implementation of Van Dam, J. C., & Feddes 2000 (based on finite differences). We analyse the methods for accuracy, speed and flexibility. Using this model case study, we can clearly show the impact of various root system traits on water uptake efficiency. Furthermore, we can quantify frequent simplifications that are introduced in the modelling step like considering a static root system instead of a growing one, or considering a sink term based on root density instead of considering the full root hydraulic model (Javaux et al. 2008). References Tron, S., Bodner, G., Laio, F., Ridolfi, L., & Leitner, D. (2015). Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological modelling, 312, 200-210. Van Dam, J. C., & Feddes, R. A. (2000). Numerical simulation of infiltration, evaporation and shallow

1. AOIPS water resources data management system

Vanwie, P.

1977-01-01

The text and computer-generated displays used to demonstrate the AOIPS (Atmospheric and Oceanographic Information Processing System) water resources data management system are investigated. The system was developed to assist hydrologists in analyzing the physical processes occurring in watersheds. It was designed to alleviate some of the problems encountered while investigating the complex interrelationships of variables such as land-cover type, topography, precipitation, snow melt, surface runoff, evapotranspiration, and streamflow rates. The system has an interactive image processing capability and a color video display to display results as they are obtained.

2. Water chemistry and poultry processing water quality

This study examined the influences of water chemistry on the quality of process water used in immersion chillers. During commercial poultry processing the bird carcasses come in direct contact with process water during washing and chilling operations. Contamination of the process water with bacteria...

3. Water Treatment Systems for Long Spaceflights

FLynn, Michael T.

2012-01-01

Space exploration will require new life support systems to support the crew on journeys lasting from a few days to several weeks, or longer. These systems should also be designed to reduce the mass required to keep humans alive in space. Water accounts for about 80 percent of the daily mass intake required to keep a person alive. As a result, recycling water offers a high return on investment for space life support. Water recycling can also increase mission safety by providing an emergency supply of drinking water, where another supply is exhausted or contaminated. These technologies also increase safety by providing a lightweight backup to stored supplies, and they allow astronauts to meet daily drinking water requirements by recycling the water contained in their own urine. They also convert urine into concentrated brine that is biologically stable and nonthreatening, and can be safely stored onboard. This approach eliminates the need to have a dedicated vent to dump urine overboard. These needs are met by a system that provides a contaminant treatment pouch, referred to as a urine cell or contaminant cell, that converts urine or another liquid containing contaminants into a fortified drink, engineered to meet human hydration, electrolyte, and caloric requirements, using a variant of forward osmosis (FO) to draw water from a urine container into the concentrated fortified drink as part of a recycling stage. An activated carbon pretreatment removes most organic molecules. Salinity of the initial liquid mix (urine plus other) is synergistically used to enhance the precipitation of organic molecules so that activated carbon can remove most of the organics. A functional osmotic bag is then used to remove inorganic contaminants. If a contaminant is processed for which the saline content is different than optimal for precipitating organic molecules, the saline content of the liquid should be adjusted toward the optimal value for that contaminant. A first urine

4. CLASSIFICATION OF THE MGR SITE WATER SYSTEM

The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) site water system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

5. Vulnerability of Water Supply Systems to Droughts

Bowles, David S.; Hughes, Trevor C.; James, W. Robert; Jensen, Donald T.; Haws, Frank W.

1980-01-01

This summary completion report describes the project work completed in three areas: 1) the development and preliminary testing of drought severity and vulnerability indices, 2) the impacts of Utah's 1977 drought, and 3) an operation comparison of stochastic streamflow models. The drought indices were evaluated for three municipal and three irrigation water supply systems in Utah. It was concluded that a continuous...

6. LIGHTWEIGHT GREEN ROOF WATER RETENTION SYSTEM

During Phase I, we have forged numerous necessary partnerships, which will allow us to begin our implementation tests. Working with the Philadelphia Water Department (PWD) and Drexel Smart House (DSH) we have 3 to 4 prime test sites for our system. We plan to execute our insta...

7. Statistical mechanics of the shallow water system

Chavanis, P. H.; Sommeria, J.

2000-01-01

We extend the formalism of the statistical theory developed for the 2D Euler equation to the case of shallow water system. Relaxation equations towards the maximum entropy state are proposed, which provide a parametrization of sub-grid scale eddies in 2D compressible turbulence.

8. A Water Recovery System Evolved for Exploration

ORourke, Mary Jane E.; Perry, Jay L.; Carter, Donald L.

2006-01-01

A new water recovery system designed towards fulfillment of NASA's Vision for Space Exploration is presented. This water recovery system is an evolution of the current state-of-the-art system. Through novel integration of proven technologies for air and water purification, this system promises to elevate existing technology to higher levels of optimization. The novel aspect of the system is twofold: Volatile organic contaminants will be removed from the cabin air via catalytic oxidation in the vapor phase, prior to their absorption into the aqueous phase, and vapor compression distillation technology will be used to process the condensate and hygiene waste streams in addition to the urine waste stream. Oxidation kinetics dictate that removal of volatile organic contaminants from the vapor phase is more efficient. Treatment of the various waste streams by VCD will reduce the load on the expendable ion exchange and adsorption media which follow, and on the aqueous-phase volatile removal assembly further downstream. Incorporating these advantages will reduce the weight, volume, and power requirements of the system, as well as resupply.

9. Use of low-dose irradiation to enhance the safety and quality of chilled ready meals

The market for 'cook-chill' ready meals has expanded significantly during the past ten years. This specific category of food has been defined as a catering system based on the full cooking of food followed by fast chilling and storage in controlled temperature conditions (0-3 deg. C) and subsequent thorough re-heating before consumption. Such meals cover a wide range of commodities including meat, poultry, fish, vegetables, pasta and desserts and are used at home by consumers and by the catering industry for use, for example, as hospital meals or meals-on-wheels. These products have a relatively short shelf-life with a recommended maximum shelf-life of 5 days at 0-3 deg. C including the day of cooking. In addition, there are other concerns with regard to microbiological quality, reduced sensory quality and decreased nutritive value. It has been suggested that low-dose irradiation could be used to extend the shelf-life of these products while at the same time reducing the risk of food poisoning. Research carried out at QUB and DARD has readily demonstrated that the safety and shelf-life of chilled ready meals consisting of meat (chicken, beef or pork) and certain vegetables (e.g. broccoli, carrots and roast potatoes) can be enhanced by irradiation doses of 2 or 3 kGy without having a detrimental effect on sensory or nutritional quality. To date, investigations have been limited to such traditional meals with no research being carried out on the more popular ready meals such as lasagna, cottage pies, curries, etc. which have a relatively short shelf-life upon purchase. It is therefore the objective of this work program to investigate the effect of low-dose irradiation (1-5 kGy) on the microbiological, sensory and nutritional quality of these meals and to determine if their overall quality can be enhanced

10. Exogenous melatonin improves corn (Zea mays L.) embryo proteome in seeds subjected to chilling stress.

Kołodziejczyk, Izabela; Dzitko, Katarzyna; Szewczyk, Rafał; Posmyk, Małgorzata M

2016-04-01

Melatonin (MEL; N-acetyl-5-methoxytryptamine) plays an important role in plant stress defense. Various plant species rich in this indoleamine have shown a higher capacity for stress tolerance. Moreover, it has great potential for plant biostimulation, is biodegradable and non-toxic for the environment. All this indicates that our concept of seed enrichment with exogenous MEL is justified. This work concerns the effects of corn (Zea mays L.) seed pre-sowing treatments supplemented with MEL. Non-treated seeds (nt), and those hydroprimed with water (H) or with MEL solutions 50 and 500μM (HMel50, HMel500) were compared. Positive effects of seed priming are particularly apparent during germination under suboptimal conditions. The impact of MEL applied by priming on seed protein profiles during imbibition/germination at low temperature has not been investigated to date. In order to identify changes in the corn seed proteome after applying hydropriming techniques, purified protein extracts of chilling stressed seed embryos (14 days, 5°C) were separated by two-dimensional electrophoresis. Then proteome maps were graphically and statistically compared and selected protein spots were qualitatively analyzed using mass spectrometry techniques and identified. This study aimed to analyze the priming-induced changes in maize embryo proteome and at identifying priming-associated and MEL-associated proteins in maize seeds subjected to chilling. We attempt to explain how MEL expands plant capacity for stress tolerance. PMID:26945210